Sample records for lethal mutations induced

  1. DNA replication error-induced extinction of diploid yeast.

    PubMed

    Herr, Alan J; Kennedy, Scott R; Knowels, Gary M; Schultz, Eric M; Preston, Bradley D

    2014-03-01

    Genetic defects in DNA polymerase accuracy, proofreading, or mismatch repair (MMR) induce mutator phenotypes that accelerate adaptation of microbes and tumor cells. Certain combinations of mutator alleles synergistically increase mutation rates to levels that drive extinction of haploid cells. The maximum tolerated mutation rate of diploid cells is unknown. Here, we define the threshold for replication error-induced extinction (EEX) of diploid Saccharomyces cerevisiae. Double-mutant pol3 alleles that carry mutations for defective DNA polymerase-δ proofreading (pol3-01) and accuracy (pol3-L612M or pol3-L612G) induce strong mutator phenotypes in heterozygous diploids (POL3/pol3-01,L612M or POL3/pol3-01,L612G). Both pol3-01,L612M and pol3-01,L612G alleles are lethal in the homozygous state; cells with pol3-01,L612M divide up to 10 times before arresting at random stages in the cell cycle. Antimutator eex mutations in the pol3 alleles suppress this lethality (pol3-01,L612M,eex or pol3-01,L612G,eex). MMR defects synergize with pol3-01,L612M,eex and pol3-01,L612G,eex alleles, increasing mutation rates and impairing growth. Conversely, inactivation of the Dun1 S-phase checkpoint kinase suppresses strong pol3-01,L612M,eex and pol3-01,L612G,eex mutator phenotypes as well as the lethal pol3-01,L612M phenotype. Our results reveal that the lethal error threshold in diploids is 10 times higher than in haploids and likely determined by homozygous inactivation of essential genes. Pronounced loss of fitness occurs at mutation rates well below the lethal threshold, suggesting that mutator-driven cancers may be susceptible to drugs that exacerbate replication errors.

  2. RADIATION INDUCED VIABILITY MUTATIONS IN THE HONEY BEE. Progress Report for 1961 and Renewal Proposal of Contract for 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W.R.

    The spectrum of viability mutations ranging from dominant lethals to detrimentals in haploids that resulted from irradiating semen from a single haploid male was studied in the honey bee. From the decrease in viability of diploid progeny following irradiation of the spermatheca of the parental queen, it was calculated that one or more dominant lethals were induced in 60.8% of the sperm cells. In a separate test using the same dosage on an unrelated queen 60.9% dominant lethals were found. Recessive mutations and mutants with incomplete dominance were detected in haploid progeny of F-1 queens. (M.C.G.)

  3. Back to the future: revisiting HIV-1 lethal mutagenesis

    PubMed Central

    Dapp, Michael J.; Patterson, Steven E.; Mansky, Louis M.

    2012-01-01

    The concept of eliminating HIV-1 infectivity by elevating the viral mutation rate was first proposed over a decade ago, even though the general concept had been conceived earlier for RNA viruses. Lethal mutagenesis was originally viewed as a novel chemotherapeutic approach for treating HIV-1 infection in which use of a viral mutagen would over multiple rounds of replication lead to the lethal accumulation of mutations, rendering the virus population non infectious – known as the slow mutation accumulation model. There have been limitations in obtaining good efficacy data with drug leads, leaving some doubt into clinical translation. More recent studies of the APOBEC3 proteins as well as new progress in the use of nucleoside analogs for inducing lethal mutagenesis have helped to refocus attention on rapid induction of HIV-1 lethal mutagenesis in a single or limited number of replication cycles leading to a rapid mutation accumulation model. PMID:23195922

  4. [Mutagenic and antimutagenic properties of bemitil].

    PubMed

    Seredenin, S B; Bobkov, Iu G; Durnev, A D; Dubovskaia, O Iu

    1986-07-01

    Complex research of the genetic activity of a new 2-mercaptobenzimidazole derivative bemythyl has shown that the drug failed to induce recessive, age-related lethal mutations in drosophila, dominant lethal mutations in germ mammalian cells and chromosomal damage in murine bone marrow cells and human peripheral blood cell cultures. The experiments on mice have demonstrated that therapeutic bemythyl doses caused a two-fold decrease in the level of aberrant cells induced by alkylating agents--fotrin and fopurin.

  5. A screen to identify Drosophila genes required for integrin-mediated adhesion.

    PubMed Central

    Walsh, E P; Brown, N H

    1998-01-01

    Drosophila integrins have essential adhesive roles during development, including adhesion between the two wing surfaces. Most position-specific integrin mutations cause lethality, and clones of homozygous mutant cells in the wing do not adhere to the apposing surface, causing blisters. We have used FLP-FRT induced mitotic recombination to generate clones of randomly induced mutations in the F1 generation and screened for mutations that cause wing blisters. This phenotype is highly selective, since only 14 lethal complementation groups were identified in screens of the five major chromosome arms. Of the loci identified, 3 are PS integrin genes, 2 are blistered and bloated, and the remaining 9 appear to be newly characterized loci. All 11 nonintegrin loci are required on both sides of the wing, in contrast to integrin alpha subunit genes. Mutations in 8 loci only disrupt adhesion in the wing, similar to integrin mutations, while mutations in the 3 other loci cause additional wing defects. Mutations in 4 loci, like the strongest integrin mutations, cause a "tail-up" embryonic lethal phenotype, and mutant alleles of 1 of these loci strongly enhance an integrin mutation. Thus several of these loci are good candidates for genes encoding cytoplasmic proteins required for integrin function. PMID:9755209

  6. The induction of mutation and recombination following UV irradiation during meiosis in Saccharomyces cerevisiae.

    PubMed

    Kelly, S L; Parry, J M

    1983-03-01

    Irradiation of yeast cultures with ultraviolet light at discrete stages during meiosis produces cyclic variations in sensitivity, i.e. cells are more sensitive to the lethal effects of UV light prior to entry into the meiotic DNA synthesis, and this corresponds to a peak of induction of point mutation. Cells become more resistant to both induced point mutation and lethality as they enter meiotic DNA synthesis, but become more sensitive again during spore formation. The induced level of intragenic recombination rises during the period of commitment to recombination to a level indistinguishable from the full meiotic level of spontaneous intragenic recombination. Induced reciprocal recombination remains above the spontaneous level up to the point of commitment to sporulation.

  7. Lethal and mutagenic effects of ion beams and γ-rays in Aspergillus oryzae.

    PubMed

    Toyoshima, Yoshiyuki; Takahashi, Akemi; Tanaka, Hisaki; Watanabe, Jun; Mogi, Yoshinobu; Yamazaki, Tatsuo; Hamada, Ryoko; Iwashita, Kazuhiro; Satoh, Katsuya; Narumi, Issay

    2012-12-01

    Aspergillus oryzae is a fungus that is used widely in traditional Japanese fermentation industries. In this study, the lethal and mutagenic effects of different linear energy transfer (LET) radiation in freeze-dried conidia of A. oryzae were investigated. The lethal effect, which was evaluated by a 90% lethal dose, was dependent on the LET value of the ionizing radiation. The most lethal ionizing radiation among that tested was (12)C(5+) ion beams with an LET of 121keV/μm. The (12)C(5+) ion beams had a 3.6-times higher lethal effect than low-LET (0.2keV/μm) γ-rays. The mutagenic effect was evaluated by the frequency of selenate resistant mutants. (12)C(6+) ion beams with an LET of 86keV/μm were the most effective in inducing selenate resistance. The mutant frequency following exposure to (12)C(6+) ion beams increased with an increase in dose and reached 3.47×10(-3) at 700Gy. In the dose range from 0 to 700Gy, (12)C(5+) ion beams were the second most effective in inducing selenate resistance, the mutant frequency of which reached a maximum peak (1.67×10(-3)) at 400Gy. To elucidate the characteristics of mutation induced by ionizing radiation, mutations in the sulphate permease gene (sB) and ATP sulfurylase gene (sC) loci, the loss of function of which results in a selenate resistant phenotype, were compared between (12)C(5+) ion beams and γ-rays. We detected all types of transversions and transitions. For frameshifts, the frequency of a +1 frameshift was the highest in all cases. Although the incidence of deletions >2bp was generally low, deletions >20bp were characteristic for (12)C(5+) ion beams. γ-rays had a tendency to generate mutants carrying a multitude of mutations in the same locus. Both forms of radiation also induced genome-wide large-scale mutations including chromosome rearrangements and large deletions. These results provide new basic insights into the mutation breeding of A. oryzae using ionizing radiation. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  8. The timing of UV mutagenesis in yeast: a pedigree analysis of induced recessive mutation.

    PubMed

    James, A P; Kilbey, B J

    1977-10-01

    The mechanism of UV-induced mutation in eukaryotes was studied in individual yeast cells by a procedure that combined pedigree analysis and tetrad analysis. The technique involved the induction of recessive lethals and semilethals in G1 diploid cells. Induced frequencies were 25 and 61 percent at survival levels of 90 and 77 percent, respectively. No evidence of gross chromosome aberrations was detected. Recessive mutations that affect only one strand or that affect both strands of the DNA molecule are induced much at random among a population of cells, and both types can occur within the same cell. However, the data confirm that two-strand mutations are in the majority after a low level of irradiation. The simplest explanation involves a mechanism whereby most mutations are fixed in both strands prior to the first round of post-irradiation DNA replication. The recessive mutational consequences of irradiation are exhausted at the conclusion of the first post-irradiation cell division, although dominant-lethal sectoring continues at a high level through the second post-irradiation division. It is concluded that pyrimidine dimers that persist to the second round of DNA replication are rare or ineffective.

  9. RADIATION INDUCED VIABILITY MUTATIONS IN THE HONEY BEE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W.R.

    The frequency of recessive detrimental mutations expressed in the haploid drone honey bee was investigated and compared with recessive and dominant lethal mutations detected in the haploid drone and diploid worker. A single queen was inseminated by a drone homozygous for three genetic markers. Viability of progeny was determined, and hybrid daughters bearing the genetic markers were stored in colonies. The spermatheca of the queen was then irradiated with 2600 r kvp x rays. Morphological defects and viability were studied in progeny and grand-progeny. A total of 92 pairs was tested during one season. Results showed that 60.8% of themore » sperm cells receiving radiation contained at least one or more dominant lethals. Correcting for the saturation effect on the assumption of independence of each dominant lethal, an average proportion of 0.94 dominant lethals were found per cell. The average reduction in embryonic viability was 28%. Forty per cent of the queens tested contained one or more recessive lethals. Corrections in procedure and plans for future work, as well as work in progress, are described. (H.M.G.)« less

  10. Effective lethal mutagenesis of influenza virus by three nucleoside analogs.

    PubMed

    Pauly, Matthew D; Lauring, Adam S

    2015-04-01

    Lethal mutagenesis is a broad-spectrum antiviral strategy that exploits the high mutation rate and low mutational tolerance of many RNA viruses. This approach uses mutagenic drugs to increase viral mutation rates and burden viral populations with mutations that reduce the number of infectious progeny. We investigated the effectiveness of lethal mutagenesis as a strategy against influenza virus using three nucleoside analogs, ribavirin, 5-azacytidine, and 5-fluorouracil. All three drugs were active against a panel of seasonal H3N2 and laboratory-adapted H1N1 strains. We found that each drug increased the frequency of mutations in influenza virus populations and decreased the virus' specific infectivity, indicating a mutagenic mode of action. We were able to drive viral populations to extinction by passaging influenza virus in the presence of each drug, indicating that complete lethal mutagenesis of influenza virus populations can be achieved when a sufficient mutational burden is applied. Population-wide resistance to these mutagenic agents did not arise after serial passage of influenza virus populations in sublethal concentrations of drug. Sequencing of these drug-passaged viral populations revealed genome-wide accumulation of mutations at low frequency. The replicative capacity of drug-passaged populations was reduced at higher multiplicities of infection, suggesting the presence of defective interfering particles and a possible barrier to the evolution of resistance. Together, our data suggest that lethal mutagenesis may be a particularly effective therapeutic approach with a high genetic barrier to resistance for influenza virus. Influenza virus is an RNA virus that causes significant morbidity and mortality during annual epidemics. Novel therapies for RNA viruses are needed due to the ease with which these viruses evolve resistance to existing therapeutics. Lethal mutagenesis is a broad-spectrum strategy that exploits the high mutation rate and the low mutational tolerance of most RNA viruses. It is thought to possess a higher barrier to resistance than conventional antiviral strategies. We investigated the effectiveness of lethal mutagenesis against influenza virus using three different drugs. We showed that influenza virus was sensitive to lethal mutagenesis by demonstrating that all three drugs induced mutations and led to an increase in the generation of defective viral particles. We also found that it may be difficult for resistance to these drugs to arise at a population-wide level. Our data suggest that lethal mutagenesis may be an attractive anti-influenza strategy that warrants further investigation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Drugging the Cancers Addicted to DNA Repair.

    PubMed

    Nickoloff, Jac A; Jones, Dennie; Lee, Suk-Hee; Williamson, Elizabeth A; Hromas, Robert

    2017-11-01

    Defects in DNA repair can result in oncogenic genomic instability. Cancers occurring from DNA repair defects were once thought to be limited to rare inherited mutations (such as BRCA1 or 2). It now appears that a clinically significant fraction of cancers have acquired DNA repair defects. DNA repair pathways operate in related networks, and cancers arising from loss of one DNA repair component typically become addicted to other repair pathways to survive and proliferate. Drug inhibition of the rescue repair pathway prevents the repair-deficient cancer cell from replicating, causing apoptosis (termed synthetic lethality). However, the selective pressure of inhibiting the rescue repair pathway can generate further mutations that confer resistance to the synthetic lethal drugs. Many such drugs currently in clinical use inhibit PARP1, a repair component to which cancers arising from inherited BRCA1 or 2 mutations become addicted. It is now clear that drugs inducing synthetic lethality may also be therapeutic in cancers with acquired DNA repair defects, which would markedly broaden their applicability beyond treatment of cancers with inherited DNA repair defects. Here we review how each DNA repair pathway can be attacked therapeutically and evaluate DNA repair components as potential drug targets to induce synthetic lethality. Clinical use of drugs targeting DNA repair will markedly increase when functional and genetic loss of repair components are consistently identified. In addition, future therapies will exploit artificial synthetic lethality, where complementary DNA repair pathways are targeted simultaneously in cancers without DNA repair defects. © The Author 2017. Published by Oxford University Press.

  12. [Chlorophyll mutations induced by gamma radiation in Phaseolus vulgaris L].

    PubMed

    Meoño, M E

    1975-07-01

    In a study of chlorophyll mutants of Phaseolus vulgaris L. through Co60 gamma radiation, five types of mutants, classified as albino, cream, yellow, yellow-green and light green were obtained; all were lethal; their segregation was always proportionally lower than the Mendelian. Gamma radiation-induced mutations in black beans do not depart significantly from those obtained elsewhere in barley and wheat.

  13. Inhibition of BRCA2 and Thymidylate Synthase Creates Multidrug Sensitive Tumor Cells via the Induction of Combined "Complementary Lethality".

    PubMed

    Rytelewski, Mateusz; Ferguson, Peter J; Maleki Vareki, Saman; Figueredo, Rene; Vincent, Mark; Koropatnick, James

    2013-03-12

    A high mutation rate leading to tumor cell heterogeneity is a driver of malignancy in human cancers. Paradoxically, however, genomic instability can also render tumors vulnerable to therapeutic attack. Thus, targeting DNA repair may induce an intolerable level of DNA damage in tumor cells. BRCA2 mediates homologous recombination repair, and BRCA2 polymorphisms increase cancer risk. However, tumors with BRCA2 mutations respond better to chemotherapy and are associated with improved patient prognosis. Thymidylate synthase (TS) is also involved in DNA maintenance and generates cellular thymidylate. We determined that antisense downregulation of BRCA2 synergistically potentiated drugs with mechanisms of action related to BRCA2 function (cisplatin, melphalan), a phenomenon we named "complementary lethality." TS knockdown induced complementary lethality to TS-targeting drugs (5-FUdR and pemetrexed) but not DNA cross-linking agents. Combined targeting of BRCA2 and TS induced complementary lethality to both DNA-damaging and TS-targeting agents, thus creating multidrug sensitive tumors. In addition, we demonstrated for the first time that simultaneous downregulation of both targets induced combined complementary lethality to multiple mechanistically different drugs in the same cell population. In this study, we propose and define the concept of "complementary lethality" and show that actively targeting BRCA2 and TS is of potential therapeutic benefit in multidrug treatment of human tumors. This work has contributed to the development of a BRCA2-targeting antisense oligdeoxynucleotide (ASO) "BR-1" which we will test in vivo in combination with our TS-targeting ASO "SARI 83" and attempt early clinical trials in the future.Molecular Therapy - Nucleic Acids (2013) 2, e78; doi:10.1038/mtna.2013.7 published online 12 March 2013.

  14. [Mutants of the yeast Saccharomyces cerevisiae characterized by enhanced induced mutagenesis. III. Effect of the him mutation on the effectiveness and specificity of UF-induced mutagenesis].

    PubMed

    Ivanov, E L; Koval'tsova, S V; Korolev, V G

    1987-09-01

    We have studied the influence of him1-1, him2-1, him3-1 and himX mutations on induction frequency and specificity of UV-induced adenine-dependent mutations in the yeast Saccharomyces cerevisiae. Him mutations do not render haploid cells more sensitive to the lethal action of UV-light; however, in him strains adenine-dependent mutations (ade1, ade2) were induced more frequently (1.5--2-fold), as compared to the HIM strain. An analysis of the molecular nature of ade2 mutants revealed that him1-1, him2-1 and himX mutations increase specifically the yield of transitions (AT----GC and GC----AT), whereas in the him3-1 strain the yield of transversions was enhanced as well. We suggest him mutations analysed to affect specific repair pathway for mismatch correction.

  15. Chromosomal Effects on Mutability in the P-M System of Hybrid Dysgenesis in DROSOPHILA MELANOGASTER

    PubMed Central

    Simmons, Michael J.; Raymond, John D.; Laverty, Todd R.; Doll, Rhonda F.; Raymond, Nancy C.; Kocur, Gordon J.; Drier, Eric A.

    1985-01-01

    Two manifestations of hybrid dysgenesis were studied in flies with chromosomes derived from two different P strains. In one set of experiments, the occurrence of recessive X-linked lethal mutations in the germ cells of dysgenic males was monitored. In the other, the behavior of an X-linked P-element insertion mutation, sn w, was studied in dysgenic males and also in dysgenic females. The chromosomes of one P strain were more proficient at causing dysgenesis in both sets of experiments. However, there was variation among the chromosomes of each strain in regard to the ability to induce lethals or to destabilize snw. The X chromosome, especially when it came from the stronger P strain, had a pronounced effect on both measures of dysgenesis, but in combination with the major autosomes, these effects were reduced. For the stronger P strain, the autosomes by themselves contributed significantly to the production of X-linked lethals and also had large effects on the behavior of snw, but they did not act additively on these two characters. For this strain, the effects of the autosomes on the X-linked lethal mutation rate suggest that only 1/100 P element transpositions causes a recessive lethal mutation. For the weaker P strain, the autosomes had only slight effects on the behavior of snw and appeared to have negligible effects on the X-linked lethal mutation rate. Combinations of chromosomes from either the strong or the weak P strain affected both aspects of dysgenesis in a nonadditive fashion, suggesting that the P elements on these chromosomes competed with each other for transposase, the P-encoded function that triggers P element activity. Age and sex also influenced the ability of chromosomes and combinations of chromosomes to cause dysgenesis. PMID:3934034

  16. Advances in Radiation Mutagenesis through Studies on Drosophila

    DOE R&D Accomplishments Database

    Muller, H. J.

    1958-06-01

    The approximately linear relation between radiation dose and induced lethals known for Drosophila spermatozoa, is now extended to spermatids. Data are included regarding oogonia. The linearity principle has been confined for minute structural changes in sperm as multi-hit events, on about the 1.5 power of the dose, long known for spermatozoa, is now extended to spermatids and late oocytes, for relatively short exposures. are found to allow union of broken chromosomes. Therefore, the frequencies are lower for more dispersed exposures of varies with lethals induced in late oocytes follow the same frequency pattern and there fore are multi-hit events. Yet han spermatozoan irradiation that two broken ends derived from nonreciprocal. The following is the order of decreasing radiation mutability of different stages found by ourselves and others: spermatids, spermatozoa in females, spermatozoa 0 to 1 day before ejaculation, earlier spermatozoa, late oocytes, gonia of either sex. Lethal frequencies for these stages range over approximately an order of magnitude, gross structural changes far more widely. Of potential usefulness is our extension of genesis by anoxia, known for spermatozoa in adult males, to those in pupal males and in females, to sperion is especially marked but the increase caused by substituting oxygen for air is less marked, perhaps because of enzymatic differences. In contrast, the induction of gross structural changes in oocytes, but not in spermatids, is markedly reduced by oxygen post-treatment; it is increased by dehydration. The efficacy of induction of structural changes by treatment of spermatozoa, whether with radiation or chemical mutagen, is correlated with the conditions of sperm utilization and egg production. Improving our perspective on radiation effects, some 800,000 offspring have been scored for spontaneous visible mutations of 13 specific loci. The average point-mutation rate was 0.5 to 1.0 per locus among 10/sup 5/ germ cells. Most mutation occurred in peri- fertilization stages. All loci studied mutated from one to nine times. Loci mutating oftener spontaneously also gave more radiation mutation, in other studies, Spectra of individual loci prove similar for spontaneous and induced mutation. Studies on back-mutation also showed similarity of spontaneous and radiation mutations. The doubling dose for back-mutations of forked induced in spermatozoa was several hundred roentgens, gonia at diverse loci. Recent analyses of human mutational load lead to mutation-rate estimated like those earlier based on extrapolations from Drosophila, thus supporting the significance for man of the present studies. (auth)

  17. cea-kil operon of the ColE1 plasmid.

    PubMed Central

    Sabik, J F; Suit, J L; Luria, S E

    1983-01-01

    We isolated a series of Tn5 transposon insertion mutants and chemically induced mutants with mutations in the region of the ColE1 plasmid that includes the cea (colicin) and imm (immunity) genes. Bacterial cells harboring each of the mutant plasmids were tested for their response to the colicin-inducing agent mitomycin C. All insertion mutations within the cea gene failed to bring about cell killing after mitomycin C treatment. A cea- amber mutation exerted a polar effect on killing by mitomycin C. Two insertions beyond the cea gene but within or near the imm gene also prevented the lethal response to mitomycin C. These findings suggest the presence in the ColE1 plasmid of an operon containing the cea and kil genes whose product is needed for mitomycin C-induced lethality. Bacteria carrying ColE1 plasmids with Tn5 inserted within the cea gene produced serologically cross-reacting fragments of the colicin E1 molecule, the lengths of which were proportional to the distance between the insertion and the promoter end of the cea gene. Images PMID:6298187

  18. Metabolic synthetic lethality in cancer therapy.

    PubMed

    Zecchini, Vincent; Frezza, Christian

    2017-08-01

    Our understanding of cancer has recently seen a major paradigm shift resulting in it being viewed as a metabolic disorder, and altered cellular metabolism being recognised as a hallmark of cancer. This concept was spurred by the findings that the oncogenic mutations driving tumorigenesis induce a reprogramming of cancer cell metabolism that is required for unrestrained growth and proliferation. The recent discovery that mutations in key mitochondrial enzymes play a causal role in tumorigenesis suggested that dysregulation of metabolism could also be a driver of tumorigenesis. These mutations induce profound adaptive metabolic alterations that are a prerequisite for the survival of the mutated cells. Because these metabolic events are specific to cancer cells, they offer an opportunity to develop new therapies that specifically target tumour cells without affecting healthy tissue. Here, we will describe recent developments in metabolism-based cancer therapy, in particular focusing on the concept of metabolic synthetic lethality. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Minimal Contribution of APOBEC3-Induced G-to-A Hypermutation to HIV-1 Recombination and Genetic Variation

    PubMed Central

    Nikolaitchik, Olga A.; Burdick, Ryan C.; Gorelick, Robert J.; Keele, Brandon F.; Hu, Wei-Shau; Pathak, Vinay K.

    2016-01-01

    Although the predominant effect of host restriction APOBEC3 proteins on HIV-1 infection is to block viral replication, they might inadvertently increase retroviral genetic variation by inducing G-to-A hypermutation. Numerous studies have disagreed on the contribution of hypermutation to viral genetic diversity and evolution. Confounding factors contributing to the debate include the extent of lethal (stop codon) and sublethal hypermutation induced by different APOBEC3 proteins, the inability to distinguish between G-to-A mutations induced by APOBEC3 proteins and error-prone viral replication, the potential impact of hypermutation on the frequency of retroviral recombination, and the extent to which viral recombination occurs in vivo, which can reassort mutations in hypermutated genomes. Here, we determined the effects of hypermutation on the HIV-1 recombination rate and its contribution to genetic variation through recombination to generate progeny genomes containing portions of hypermutated genomes without lethal mutations. We found that hypermutation did not significantly affect the rate of recombination, and recombination between hypermutated and wild-type genomes only increased the viral mutation rate by 3.9 × 10−5 mutations/bp/replication cycle in heterozygous virions, which is similar to the HIV-1 mutation rate. Since copackaging of hypermutated and wild-type genomes occurs very rarely in vivo, recombination between hypermutated and wild-type genomes does not significantly contribute to the genetic variation of replicating HIV-1. We also analyzed previously reported hypermutated sequences from infected patients and determined that the frequency of sublethal mutagenesis for A3G and A3F is negligible (4 × 10−21 and1 × 10−11, respectively) and its contribution to viral mutations is far below mutations generated during error-prone reverse transcription. Taken together, we conclude that the contribution of APOBEC3-induced hypermutation to HIV-1 genetic variation is substantially lower than that from mutations during error-prone replication. PMID:27186986

  20. Minimal Contribution of APOBEC3-Induced G-to-A Hypermutation to HIV-1 Recombination and Genetic Variation.

    PubMed

    Delviks-Frankenberry, Krista A; Nikolaitchik, Olga A; Burdick, Ryan C; Gorelick, Robert J; Keele, Brandon F; Hu, Wei-Shau; Pathak, Vinay K

    2016-05-01

    Although the predominant effect of host restriction APOBEC3 proteins on HIV-1 infection is to block viral replication, they might inadvertently increase retroviral genetic variation by inducing G-to-A hypermutation. Numerous studies have disagreed on the contribution of hypermutation to viral genetic diversity and evolution. Confounding factors contributing to the debate include the extent of lethal (stop codon) and sublethal hypermutation induced by different APOBEC3 proteins, the inability to distinguish between G-to-A mutations induced by APOBEC3 proteins and error-prone viral replication, the potential impact of hypermutation on the frequency of retroviral recombination, and the extent to which viral recombination occurs in vivo, which can reassort mutations in hypermutated genomes. Here, we determined the effects of hypermutation on the HIV-1 recombination rate and its contribution to genetic variation through recombination to generate progeny genomes containing portions of hypermutated genomes without lethal mutations. We found that hypermutation did not significantly affect the rate of recombination, and recombination between hypermutated and wild-type genomes only increased the viral mutation rate by 3.9 × 10-5 mutations/bp/replication cycle in heterozygous virions, which is similar to the HIV-1 mutation rate. Since copackaging of hypermutated and wild-type genomes occurs very rarely in vivo, recombination between hypermutated and wild-type genomes does not significantly contribute to the genetic variation of replicating HIV-1. We also analyzed previously reported hypermutated sequences from infected patients and determined that the frequency of sublethal mutagenesis for A3G and A3F is negligible (4 × 10-21 and1 × 10-11, respectively) and its contribution to viral mutations is far below mutations generated during error-prone reverse transcription. Taken together, we conclude that the contribution of APOBEC3-induced hypermutation to HIV-1 genetic variation is substantially lower than that from mutations during error-prone replication.

  1. Emergence of DNA Polymerase ε Antimutators That Escape Error-Induced Extinction in Yeast

    PubMed Central

    Williams, Lindsey N.; Herr, Alan J.; Preston, Bradley D.

    2013-01-01

    DNA polymerases (Pols) ε and δ perform the bulk of yeast leading- and lagging-strand DNA synthesis. Both Pols possess intrinsic proofreading exonucleases that edit errors during polymerization. Rare errors that elude proofreading are extended into duplex DNA and excised by the mismatch repair (MMR) system. Strains that lack Pol proofreading or MMR exhibit a 10- to 100-fold increase in spontaneous mutation rate (mutator phenotype), and inactivation of both Pol δ proofreading (pol3-01) and MMR is lethal due to replication error-induced extinction (EEX). It is unclear whether a similar synthetic lethal relationship exists between defects in Pol ε proofreading (pol2-4) and MMR. Using a plasmid-shuffling strategy in haploid Saccharomyces cerevisiae, we observed synthetic lethality of pol2-4 with alleles that completely abrogate MMR (msh2Δ, mlh1Δ, msh3Δ msh6Δ, or pms1Δ mlh3Δ) but not with partial MMR loss (msh3Δ, msh6Δ, pms1Δ, or mlh3Δ), indicating that high levels of unrepaired Pol ε errors drive extinction. However, variants that escape this error-induced extinction (eex mutants) frequently emerged. Five percent of pol2-4 msh2Δ eex mutants encoded second-site changes in Pol ε that reduced the pol2-4 mutator phenotype between 3- and 23-fold. The remaining eex alleles were extragenic to pol2-4. The locations of antimutator amino-acid changes in Pol ε and their effects on mutation spectra suggest multiple mechanisms of mutator suppression. Our data indicate that unrepaired leading- and lagging-strand polymerase errors drive extinction within a few cell divisions and suggest that there are polymerase-specific pathways of mutator suppression. The prevalence of suppressors extragenic to the Pol ε gene suggests that factors in addition to proofreading and MMR influence leading-strand DNA replication fidelity. PMID:23307893

  2. The Generation and Genetic Analysis of Suppressors of Lethal Mutations in the Caenorhabditis Elegans Rol-3(v) Gene

    PubMed Central

    Barbazuk, W. B.; Johnsen, R. C.; Baillie, D. L.

    1994-01-01

    The Caenorhabditis elegans rol-3(e754) mutation is a member of a general glass of mutations affecting gross morphology, presumably through disruption of the nematode cuticle. Adult worms homozygous for rol-3(e754) exhibit rotation about their long axis associated with a left-hand twisted cuticle, musculature, gut and ventral nerve cord. Our laboratory previously isolated 12 recessive lethal alleles of rol-3. All these lethal alleles cause an arrest in development at either early or mid-larval stages, suggesting that the rol-3 gene product performs an essential developmental function. Furthermore, through the use of the heterochronic mutants lin-14 and lin-29, we have established that the expression of rol-3(e754)'s adult specific visible function is not dependent on the presence of an adult cuticle. In an attempt to understand rol-3's developmental role we sought to identify other genes whose products interact with that of rol-3. Toward this end, we generated eight EMS induced and two gamma irradiation-induced recessive suppressors of the temperature sensitive (ts) mid-larval lethal phenotype of rol-3(s1040ts). These suppressors define two complementation groups srl-1 II and srl-2 III; and, while they suppress the rol-3(s1040) lethality, they do not suppress the adult specific visible rolling phenotype. Furthermore, there is a complex genetic interaction between srl-2 and srl-1 such that srl-2(s2506) fails to complement all srl alleles tested. These results suggest that srl-1 and srl-2 may share a common function and, thus, possibly constitute members of the same gene family. Mutations in both srl-1 and srl-2 produce no obvious hermaphrodite phenotypes in the absence of rol-3(s1040ts); however, males homozygous for either srl-1 or srl-2 display aberrant tail morphology. We present evidence suggesting that the members of srl-2 are not allele specific with respect to their suppression of rol-3 lethality, and that rol-3 may act in some way to influence proper posterior morphogenesis. Finally, based on our genetic analysis of rol-3 and the srl mutations, we present a model whereby the wild-type products of the srl loci act in a concerted manner to negatively regulate the rol-3 gene. PMID:8138151

  3. A comprehensive evaluation of CHEK2 germline mutations in men with prostate cancer.

    PubMed

    Wu, Yishuo; Yu, Hongjie; Zheng, S Lilly; Na, Rong; Mamawala, Mufaddal; Landis, Tricia; Wiley, Kathleen; Petkewicz, Jacqueline; Shah, Sameep; Shi, Zhuqing; Novakovic, Kristian; McGuire, Michael; Brendler, Charles B; Ding, Qiang; Helfand, Brian T; Carter, H Ballentine; Cooney, Kathleen A; Isaacs, William B; Xu, Jianfeng

    2018-06-01

    Germline mutations in CHEK2 have been associated with prostate cancer (PCa) risk. Our objective is to examine whether germline pathogenic CHEK2 mutations can differentiate risk of lethal from indolent PCa. A case-case study of 703 lethal PCa patients and 1455 patients with low-risk localized PCa of European, African, and Chinese origin was performed. Germline DNA samples from these patients were sequenced for CHEK2. Mutation carrier rates and their association with lethal PCa were analyzed using the Fisher exact test and Kaplan-Meier survival analysis. In the entire study population, 40 (1.85%) patients were identified as carrying one of 15 different germline CHEK2 pathogenic or likely pathogenic mutations. CHEK2 mutations were detected in 16 (2.28%) of 703 lethal PCa patients compared with 24 (1.65%) of 1455 low-risk PCa patients (P = 0.31). No association was found between CHEK2 mutation status and early-diagnosis or PCa-specific survival time. However, the most common mutation in CHEK2, c.1100delC (p.T367 fs), had a significantly higher carrier rate (1.28%) in lethal PCa patients than low-risk PCa patients of European American origin (0.16%), P = 0.0038. The estimated Odds Ratio of this mutation for lethal PCa was 7.86. The carrier rate in lethal PCa was also significantly higher than that (0.46%) in 32 461 non-Finnish European subjects from the Exome Aggregation Consortium (ExAC) (P = 0.01). While overall CHEK2 mutations were not significantly more common in men with lethal compared to low-risk PCa, the specific CHEK2 mutation, c.1100delC, appears to contribute to an increased risk of lethal PCa in European American men. © 2018 Wiley Periodicals, Inc.

  4. FIRST RESULTS ON X-RAY-INDUCED GENETIC DAMAGE IN ARTEMIA SALINA LEACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metalli, P.; Ballardin, E.

    1962-01-01

    Prophase oocytes of diploid and tetraploid pantenogenetic Antemia salina were x irradiated with 1000 r and damage was scored as oocyte or embryo lethal mutations at the first (X/sub 1/) and at the second (X/sub 2/) generations after irradiation. Dominant lethality shown at X/sub 1/ was much greater for the diploid strain than for the tetraploid; lethality observed at X/sub 2/ was increased with respect to X/sub 1/ in the diploid strain, while in the tetraploid it remained unmodified. (auth)

  5. Maternal-Effect Lethal Mutations on Linkage Group II of Caenorhabditis Elegans

    PubMed Central

    Kemphues, K. J.; Kusch, M.; Wolf, N.

    1988-01-01

    We have analyzed a set of linkage group (LG) II maternal-effect lethal mutations in Caenorhabditis elegans isolated by a new screening procedure. Screens of 12,455 F(1) progeny from mutagenized adults resulted in the recovery of 54 maternal-effect lethal mutations identifying 29 genes. Of the 54 mutations, 39 are strict maternal-effect mutations defining 17 genes. These 17 genes fall into two classes distinguished by frequency of mutation to strict maternal-effect lethality. The smaller class, comprised of four genes, mutated to strict maternal-effect lethality at a frequency close to 5 X 10(-4), a rate typical of essential genes in C. elegans. Two of these genes are expressed during oogenesis and required exclusively for embryogenesis (pure maternal genes), one appears to be required specifically for meiosis, and the fourth has a more complex pattern of expression. The other 13 genes were represented by only one or two strict maternal alleles each. Two of these are identical genes previously identified by nonmaternal embryonic lethal mutations. We interpret our results to mean that although many C. elegans genes can mutate to strict maternal-effect lethality, most genes mutate to that phenotype rarely. Pure maternal genes, however, are among a smaller class of genes that mutate to maternal-effect lethality at typical rates. If our interpretation is correct, we are near saturation for pure maternal genes in the region of LG II balanced by mnC1. We conclude that the number of pure maternal genes in C. elegans is small, being probably not much higher than 12. PMID:3224814

  6. X-ray induced dominant lethal mutations in mature and immature oocytes of guinea-pigs and golden hamsters.

    PubMed

    Cox, B D; Lyon, M F

    1975-06-01

    The induction of dominant lethal mutations by doses of 100-400 rad X-rays in oocytes of the guinea-pig and golden hamster was studied using criteria of embryonic mortality. For both species higher yields were obtained from mature than from immature oocytes, in contrast to results for the mouse. Data on fertility indicated that in the golden hamster, as in the mouse, immature oocytes were more sensitive to killing by X-rays than mature oocytes but that the converse was true in the guinea-pig. The dose-response relationship for mutation to dominant lethals in pre-ovulatory oocytes of guinea-pig and golden hamsters was linear, both when based on pre- and post-implantation loss and when on post-implantation loss only. The rate per unit dose was higher for the golden hamster, and the old golden hamsters were possibly slightly more sensitive than young ones. The mutation rate data for mature oocytes of the mouse, using post-implantation loss alone, also fitted a linear dose-response relationship, except that the rate per unit dose was lower than for the other two species.

  7. Advances in radiation mutagenesis through studies on Drosophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, H. J.

    The approximately linear relation between radiation dose and induced lethals, known for Drosophila spermatozoa, is now extended to spermatids. Data are included regarding oogonia. The linearity principle has been confirmed for minute structural changes in spermatozoa. The dependence of gross structural changes, as multi-hit events, on about the 1.5 power of the dose, long known for spermatozoa, is now extended to spermatids and late oocytes, for relatively short exposures. However, these stages unlike spermatozoa are found to allow union of broken chromosomes. Therefore, the frequencies are lower for more dispersed exposures of these stages, and the precise dose relation variesmore » with the timing. Part of the dominant and even recessive lethals induced in late oocytes follow the same frequency pattern and therefore are multi-hit events. Yet there is a much lower chance after oocytic than spermatozoan irradiation that two broken ends derived from different hits will unite, hence most such unions are nonreciprocal. The following is the order of decreasing radiation mutability of different stages found by ourselves and others: spermatids, spermatozoa in females, spermatozoa 0 to 1 day before ejaculation, earlier spermatozoa, late oocytes, gonia of either sex. Lethal frequencies for these stages range over approximately an order of magnitude, gross structural changes far more widely. Of potential usefulness is our extension of the principle of marked reduction of radiation mutagenesis by anoxia, known for spermatozoa in adult males, to those in pupal males and in females to spermatids and to oocytes. In spermatids this reduction is especially marked but the increase caused by substituting oxygen for air is less marked, perhaps because of enzymatic differences. In contrast, the induction of gross structural changes in oocytes, but not in spermatids, is markedly reduced by oxygen post-treatment; it is increased by dehydration. The efficacy of induction of structural changes by treatment of spermatozoa, whether with radiation or chemical mutagens, is correlated with the conditions of sperm utilization and egg production. Improving our perspective on radiation effects, some 800,000 offspring have been scored for spontaneous visible mutations of 13 specific loci. The average point-mutation rate was 0.5 to 1.0 per locus among 10/sup 5/ germ cells. Most mutations occurred in peri-fertilization stages. All loci studied mutated from one to nine times. Loci mutating oftener spontaneously also gave more radiation mutation, in other studies. Spectra of individual loci prove similar for spontaneous and induced mutation. Studies on back-mutations also showed similarity of spontaneous and radiation mutations. The doubling dose for back-mutations of forked induced in spermatozoa was several hundred roentgens, similar to that for direct point-mutations induced in gonia at diverse loci. Recent analyses of human mutational load lead to mutation-rate estimates like those earlier based on extrapolations from Drosophila, thus supporting the significance for man of the present studies. (auth)« less

  8. Coffee mitigates cyclophosphamide-induced genotoxic damage in Drosophila melanogaster germ cells.

    PubMed

    Nagpal, Isha; Abraham, Suresh K

    2018-02-26

    In the present study, coffee (CF) was evaluated for its protective effects against genotoxic damage and oxidative stress induced by the chemotherapeutic drug, cyclophosphamide (CPH). The sex-linked recessive lethal (SLRL) test was employed to study the induction of mutations in the larvae as well as in all the successive germ cell stages of treated males. Control and treated third instar larvae were used to monitor the biomarkers of oxidative stress response such as glutathione content (GSH), glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD) and lipid peroxidation (MDA content). Our results demonstrated that co-administration of CF (2%) with CPH (3 mM) has significantly reduced CPH-induced lethal mutations in the germ cells of larvae and adult flies. The reductions observed in mutation frequencies were: 75% in larvae and 62.4% in the adult. Significant enhancement in antioxidant enzymatic levels: CAT (46.6%) > SOD (43.0%) > GST (42.4%) > GSH (31.6%) and reduction in MDA levels (32.05%) in the pretreated third instar larvae demonstrated the antioxidant activity of CF against CPH-induced oxidative stress. The findings from the present study suggest that the Drosophila model is an ideal one for evaluating the antigenotoxic and antioxidant activity of complex mixtures like CF.

  9. WT1: a weak spot in KRAS-induced transformation

    PubMed Central

    Licciulli, Silvia; Kissil, Joseph L.

    2010-01-01

    Activating mutations in the Ras alleles are found frequently in tumors, making the proteins they encode highly attractive candidate therapeutic targets. However, Ras proteins have proven difficult to target directly. Recent approaches have therefore focused on identifying indirect targets to inhibit Ras-induced oncogenesis. For example, RNAi-based negative selection screens to identify genes that when silenced in concert with activating Ras mutations are incompatible with cellular proliferation, a concept known as synthetic lethality. In this issue of the JCI, Vicent et al. report on the identification of Wilms tumor 1 (Wt1) as a Kras synthetic-lethal gene in a mouse model of lung adenocarcinoma. Silencing of Wt1 in cells expressing an endogenous allele of activated Kras triggers senescence in vitro and has an impact on tumor progression in vivo. These findings are of significant interest given previous studies suggesting that the ability of oncogenic Kras to induce senescence versus proliferation depends on its levels of expression. PMID:20972324

  10. GENETIC EFFECTS OF SPACEFLIGHT FACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glembotskii, Ya.L.; Parfenov, G.P.

    1962-12-01

    With the object of investigating effects of spaceflight factors on heredity, Drosophila melanogaster was carried on the second, fourth, and fifth orbital spaceships and on Vostok-1 and Vostok-2. Four different spaceflight effects were investigated. Nondisjunction of chromosomes was investigated by exposing unfertilized white-eyed Drosophila females on Vostoks 1 and 2 and mating them on their return with red-eyed males. Primary nondisjunction of chromosomes resulted in the appearance of four times as many unusual genotypes (XXY females and XO males) among the progeny of the exposed group as among offspring of the controls. However, the increase in nondisjunction cannot be ascribedmore » to radiation effects. Induced crossovers were investigated by exposing heterozygotic males (having normal phenotypes but three recessive genes in the second chromosome) on the fifth orbital spaceship and on Vostoks 1 and 2. Upon return they were mated with homozygotic females displaying the three recessive characteristics (black body, cinnabar eyes, and vestigial wings). Drosophila carried in the fifth orbital spaceship with no protection against low-frequency vibrations showed crossover incidence of 0.50 450 deg C in a 0.12%, compared to an incidence of 0.05 450 deg C in a 0.05% or none at all on Vostok spaceships, where the insect containers were cushioned against vibration. Dominant lethal mutations were investigated by exposing two strains of Drosophila melanogaster (D- 18 with a high rate of spontaneous lethal mutations, and D-32 with a low rate for the same mutations) of the five spacecraft. The number of dominant lethal mutations was found to increase somewhat in all groups exposed to space flight. Sex-linked recessive lethal mutations were investigated by exposing young males of the D-18 and D-32 strains of Drosophila melanogaster on all five vehicles. Exposure on the second and fourth orbital spaceships and on Vostok-1 resulted in statistically significant numbers of sex-linked recessive lethal mutations for spermatozoa and spermatids of both strains. However, no increase in mutations was observed following exposure on the fifth orbital spaceship and on Vostok-2. (TCO)« less

  11. Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. IV. Influence of DNA replication and excision repair on REV2 dependent UV-mutagenesis and repair.

    PubMed

    Siede, W; Eckardt, F

    1986-01-01

    A double mutant being thermoconditionally defective in mutation induction as well as in repair of pre-lethal UV-induced DNA damage (rev2ts) and deficient in excision repair (rad3-2) was studied in temperature-shift experiments. The influence of inhibitors of DNA replication (hydroxyurea, aphidicolin) was determined. Additionally, an analysis of the dose-response pattern of mutation induction ("mutation kinetics") at several ochre alleles was carried out. It was concluded that the UV-inducible REV2 dependent mutagenic repair process is not induced in excision-deficient cells. In excision-deficient cells, REV2 dependent mutation fixation is slow and mostly post-replicative though not dependent on DNA replication. The REV2 mediated mutagenic process could be separated from the repair function.

  12. Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data

    NASA Astrophysics Data System (ADS)

    Sinha, Subarna; Thomas, Daniel; Chan, Steven; Gao, Yang; Brunen, Diede; Torabi, Damoun; Reinisch, Andreas; Hernandez, David; Chan, Andy; Rankin, Erinn B.; Bernards, Rene; Majeti, Ravindra; Dill, David L.

    2017-05-01

    Two genes are synthetically lethal (SL) when defects in both are lethal to a cell but a single defect is non-lethal. SL partners of cancer mutations are of great interest as pharmacological targets; however, identifying them by cell line-based methods is challenging. Here we develop MiSL (Mining Synthetic Lethals), an algorithm that mines pan-cancer human primary tumour data to identify mutation-specific SL partners for specific cancers. We apply MiSL to 12 different cancers and predict 145,891 SL partners for 3,120 mutations, including known mutation-specific SL partners. Comparisons with functional screens show that MiSL predictions are enriched for SLs in multiple cancers. We extensively validate a SL interaction identified by MiSL between the IDH1 mutation and ACACA in leukaemia using gene targeting and patient-derived xenografts. Furthermore, we apply MiSL to pinpoint genetic biomarkers for drug sensitivity. These results demonstrate that MiSL can accelerate precision oncology by identifying mutation-specific targets and biomarkers.

  13. THE ACTION OF RADIATION AND OTHER MUTAGENIC AGENTS (1) IN INDUCING MUTATION IN DROSOPHILA FEMALES, AND (2) IN CONTROLLING THE ACTION OF SPECIFIC GENES RESPONSIBLE FOR SUPPRESSING UNCONTROLLED GROWTH. Report Covering 9-Year Period, May 1, 1953-April 30, 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, H.B.

    1962-02-01

    Studies of the comparative mutagenic effects of ionizing radiations on males and females of Drosophila melanogaster are described. Sex-linked recessive lethal mutations were induced in nitrogen, air, and oxygen at doses of obtained in spermatozoa were uniformly about one-third higher than the frequencies obtained for the same dose and condition of atmosphere in mature oocytes. The relative frequencies of recessive autosomal lethals in mature male and female germ cells were identical with the relative fre quencies of sex-linked recessive lethals. In studies of point mutations and deficiencies involving specific loci, the rates in the male germ cells exceeded those inmore » the female germ cells by a proportion equal to that found to apply to autosomal and sex-linked recessive lethals. Spontaneous mutation rates were determined for a number of specific loci marked by recessive genes used in the tested stocks. Fertility was lost in both males and females when they were x-rayed as 80-hr-old larvae and bred upon emerging as adults. Females recovered their fertility rapidly but the males did so at a much slower rate. The brown; scarlet'' stock was found to carry two mutants each suppressed by a particular suppressor gene. It was concluded that the two suppressors act along different metabolic pathways departing from tryplophan, but both involving an x-ray-sensitive step. A study was made of the effects on the life span of two different mating regimens: immediate and deferred. It was found that the lines previously subjected to immediate mating significantly outlived the lines previously subjected to deferred mating when the mating regimen in the test was immediate mating. Exactly the opposite happened when the mating regimen in the test was deferred mating. (M.C.G.)« less

  14. Radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.

    1994-01-01

    Quantitative assessment of the heritable somatic effects of ionizing radiation exposures has relied upon the assumption that radiation-induced lesions were 'fixed' in the DNA prior to the first postirradiation mitosis. Lesion conversion was thought to occur during the initial round of DNA replication or as a consequence of error-prone enzymatic processing of lesions. The standard experimental protocols for the assessment of a variety of radiation-induced endpoints (cell death, specific locus mutations, neoplastic transformation and chromosome aberrations) evaluate these various endpoints at a single snapshot in time. In contrast with the aforementioned approaches, some studies have specifically assessed radiation effects as a function of time following exposure. Evidence has accumulated in support of the hypothesis that radiation exposure induces a persistent destabilization of the genome. This instability has been observed as a delayed expression of lethal mutations, as an enhanced rate of accumulation of non-lethal heritable alterations, and as a progressive intraclonal chromosomal heterogeneity. The genetic controls and biochemical mechanisms underlying radiation-induced genomic instability have not yet been delineated. The aim is to integrate the accumulated evidence that suggests that radiation exposure has a persistent effect on the stability of the mammalian genome.

  15. [Genetic control of mitotic crossing-over in yeasts. III. Induction by 8-methoxypsoralen and long-wave UV irradiation (lambda=365 nm)].

    PubMed

    Fedorova, I V; Marfin, S V

    1982-02-01

    The lethal effect of 8-methoxypsoralen (8-MOP) plus 365 nm light has been studied in haploid radiosensitive strains of Saccharomyces cerevisiae. The diploid of wild type and the diploid homozygous for the rad2 mutation (this mutation blocks the excision of UV-induced pyrimidine dimers) were more resistant to the lethal effect of 8-MOP plus 365 nm light than the haploid of wild type and rad2 haploid, respectively. The diploid homozygous for rad54 mutation (the mutation blocks the repair of double-strand breaks in DNA) was more sensitive than haploid rad54. The method of repeated irradiation allowed to study the capacity of radiosensitive diploids to remove monoadducts induced by 8-MOP in DNA. This process was very effective in diploids of wild type and in the rad54 rad54 diploid, while the rad2 rad2 diploid was characterized by nearly complete absence of monoadduct excision. The study of mitotic crossing over and mitotic segregation in yeast diploids, containing a pair of complementing alleles of the ade2 gene (red/pink) has shown a very high recombinogenic effect of 8-MOP plus 365 nm light. The rad2 mutation slightly increased the frequency of mitotic segregation and mitotic crossing over. The rad54 mutation decreased the frequency of mitotic segregation and entirely suppressed mitotic crossing over. The method of repeated irradiation showed that the cross-links, but not monoadducts, are the main cause of high recombinogenic effect of 8-MOP plus 365 nm light. The possible participation of different repair systems in recombinational processes induced by 8-MOP in yeast cells is discussed.

  16. Theories of Lethal Mutagenesis: From Error Catastrophe to Lethal Defection.

    PubMed

    Tejero, Héctor; Montero, Francisco; Nuño, Juan Carlos

    2016-01-01

    RNA viruses get extinct in a process called lethal mutagenesis when subjected to an increase in their mutation rate, for instance, by the action of mutagenic drugs. Several approaches have been proposed to understand this phenomenon. The extinction of RNA viruses by increased mutational pressure was inspired by the concept of the error threshold. The now classic quasispecies model predicts the existence of a limit to the mutation rate beyond which the genetic information of the wild type could not be efficiently transmitted to the next generation. This limit was called the error threshold, and for mutation rates larger than this threshold, the quasispecies was said to enter into error catastrophe. This transition has been assumed to foster the extinction of the whole population. Alternative explanations of lethal mutagenesis have been proposed recently. In the first place, a distinction is made between the error threshold and the extinction threshold, the mutation rate beyond which a population gets extinct. Extinction is explained from the effect the mutation rate has, throughout the mutational load, on the reproductive ability of the whole population. Secondly, lethal defection takes also into account the effect of interactions within mutant spectra, which have been shown to be determinant for the understanding the extinction of RNA virus due to an augmented mutational pressure. Nonetheless, some relevant issues concerning lethal mutagenesis are not completely understood yet, as so survival of the flattest, i.e. the development of resistance to lethal mutagenesis by evolving towards mutationally more robust regions of sequence space, or sublethal mutagenesis, i.e., the increase of the mutation rate below the extinction threshold which may boost the adaptability of RNA virus, increasing their ability to develop resistance to drugs (including mutagens). A better design of antiviral therapies will still require an improvement of our knowledge about lethal mutagenesis.

  17. RNase H2 catalytic core Aicardi-Goutières syndrome–related mutant invokes cGAS–STING innate immune-sensing pathway in mice

    PubMed Central

    Pokatayev, Vladislav; Hasin, Naushaba; Chon, Hyongi; Cerritelli, Susana M.; Sakhuja, Kiran; Ward, Jerrold M.; Morris, H. Douglas; Yan, Nan

    2016-01-01

    The neuroinflammatory autoimmune disease Aicardi-Goutières syndrome (AGS) develops from mutations in genes encoding several nucleotide-processing proteins, including RNase H2. Defective RNase H2 may induce accumulation of self-nucleic acid species that trigger chronic type I interferon and inflammatory responses, leading to AGS pathology. We created a knock-in mouse model with an RNase H2 AGS mutation in a highly conserved residue of the catalytic subunit, Rnaseh2aG37S/G37S (G37S), to understand disease pathology. G37S homozygotes are perinatal lethal, in contrast to the early embryonic lethality previously reported for Rnaseh2b- or Rnaseh2c-null mice. Importantly, we found that the G37S mutation led to increased expression of interferon-stimulated genes dependent on the cGAS–STING signaling pathway. Ablation of STING in the G37S mice results in partial rescue of the perinatal lethality, with viable mice exhibiting white spotting on their ventral surface. We believe that the G37S knock-in mouse provides an excellent animal model for studying RNASEH2-associated autoimmune diseases. PMID:26880576

  18. Leapfrogging: primordial germ cell transplantation permits recovery of CRISPR/Cas9-induced mutations in essential genes

    PubMed Central

    Fish, Margaret B.; Cho, Ken W. Y.

    2016-01-01

    CRISPR/Cas9 genome editing is revolutionizing genetic loss-of-function analysis but technical limitations remain that slow progress when creating mutant lines. First, in conventional genetic breeding schemes, mosaic founder animals carrying mutant alleles are outcrossed to produce F1 heterozygotes. Phenotypic analysis occurs in the F2 generation following F1 intercrosses. Thus, mutant analyses will require multi-generational studies. Second, when targeting essential genes, efficient mutagenesis of founders is often lethal, preventing the acquisition of mature animals. Reducing mutagenesis levels may improve founder survival, but results in lower, more variable rates of germline transmission. Therefore, an efficient approach to study lethal mutations would be useful. To overcome these shortfalls, we introduce ‘leapfrogging’, a method combining efficient CRISPR mutagenesis with transplantation of mutated primordial germ cells into a wild-type host. Tested using Xenopus tropicalis, we show that founders containing transplants transmit mutant alleles with high efficiency. F1 offspring from intercrosses between F0 animals that carry embryonic lethal alleles recapitulate loss-of-function phenotypes, circumventing an entire generation of breeding. We anticipate that leapfrogging will be transferable to other species. PMID:27385011

  19. Utilization of a quantitative mammalian cell mutation system, CHO/HGPRT, in experimental mutagenesis and genetic toxicology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsie, A. W.; Couch, D. B.; O'Neill, J. P.

    1977-01-01

    Development of the CHO/HGPRT system is described and a host-mediated CHO/HGPRT assay is discussed. The following topics are discussed: evidence for the genetic origin of mutation induction in the CHO/HGPRT system; dose-response relationship for EMS-mediated mutation induction and cell lethality; apparent dosimetry of EMS-induced mutagenesis; structure-activity relationship of alkylating agents and ICR compounds; mutagenicity and cytotoxicity of congeners of two classes of nitrosi compounds; and preliminary validation of the CHO/HGPRT assay in predicting chemical carcinogenicity. (HLW)

  20. The effect of radiation on the long term productivity of a plant based CELSS

    NASA Technical Reports Server (NTRS)

    Thompson, B. G.; Lake, B. H.

    1987-01-01

    Mutations occur at a higher rate in space than under terrestrial conditions, primarily due to an increase in radiation levels. These mutations may effect the productivity of plants found in a controlled ecological life support system (CELSS). Computer simulations of plants with different ploidies, modes of reproduction, lethality thresholds, viability thresholds and susceptibilities to radiation induced mutations were performed under space normal and solar flare conditions. These simulations identified plant characteristics that would enable plants to retain high productivities over time in a CELSS.

  1. Evasion of adaptive immunity by HIV through the action of host APOBEC3G/F enzymes.

    PubMed

    Grant, Michael; Larijani, Mani

    2017-09-12

    APOBEC3G (A3G) and APOBEC3F (A3F) are DNA-mutating enzymes expressed in T cells, dendritic cells and macrophages. A3G/F have been considered innate immune host factors, based on reports that they lethally mutate the HIV genome in vitro. In vivo, A3G/F effectiveness is limited by viral proteins, entrapment in inactive complexes and filtration of mutations during viral life cycle. We hypothesized that the impact of sub-lethal A3G/F action could extend beyond the realm of innate immunity confined to the cytoplasm of infected cells. We measured recognition of wild type and A3G/F-mutated epitopes by cytotoxic T lymphocytes (CTL) from HIV-infected individuals and found that A3G/F-induced mutations overwhelmingly diminished CTL recognition of HIV peptides, in a human histocompatibility-linked leukocyte antigen (HLA)-dependent manner. Furthermore, we found corresponding enrichment of A3G/F-favored motifs in CTL epitope-encoding sequences within the HIV genome. These findings illustrate that A3G/F-mediated mutations mediate immune evasion by HIV in vivo. Therefore, we suggest that vaccine strategies target T cell or antibody epitopes that are not poised for mutation into escape variants by A3G/F action.

  2. In silico Analysis of Conformational Changes Induced by Mutation of Aromatic Binding Residues: Consequences for Drug Binding in the hERG K+ Channel

    PubMed Central

    Knape, Kirsten; Linder, Tobias; Wolschann, Peter; Beyer, Anton; Stary-Weinzinger, Anna

    2011-01-01

    Pharmacological inhibition of cardiac hERG K+ channels is associated with increased risk of lethal arrhythmias. Many drugs reduce hERG current by directly binding to the channel, thereby blocking ion conduction. Mutation of two aromatic residues (F656 and Y652) substantially decreases the potency of numerous structurally diverse compounds. Nevertheless, some drugs are only weakly affected by mutation Y652A. In this study we utilize molecular dynamics simulations and docking studies to analyze the different effects of mutation Y652A on a selected number of hERG blockers. MD simulations reveal conformational changes in the binding site induced by mutation Y652A. Loss of π-π-stacking between the two aromatic residues induces a conformational change of the F656 side chain from a cavity facing to cavity lining orientation. Docking studies and MD simulations qualitatively reproduce the diverse experimentally observed modulatory effects of mutation Y652A and provide a new structural interpretation for the sensitivity differences. PMID:22194911

  3. Lethal mutagenesis: targeting the mutator phenotype in cancer.

    PubMed

    Fox, Edward J; Loeb, Lawrence A

    2010-10-01

    The evolution of cancer and RNA viruses share many similarities. Both exploit high levels of genotypic diversity to enable extensive phenotypic plasticity and thereby facilitate rapid adaptation. In order to accumulate large numbers of mutations, we have proposed that cancers express a mutator phenotype. Similar to cancer cells, many viral populations, by replicating their genomes with low fidelity, carry a substantial mutational load. As high levels of mutation are potentially deleterious, the viral mutation frequency is thresholded at a level below which viral populations equilibrate in a traditional mutation-selection balance, and above which the population is no longer viable, i.e., the population undergoes an error catastrophe. Because their mutation frequencies are fine-tuned just below this error threshold, viral populations are susceptible to further increases in mutational load and, recently this phenomenon has been exploited therapeutically by a concept that has been termed lethal mutagenesis. Here we review the application of lethal mutagenesis to the treatment of HIV and discuss how lethal mutagenesis may represent a novel therapeutic approach for the treatment of solid cancers. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. INTERACTION OF X AND ULTRAVIOLET RADIATION IN PRODUCTION OF RECESSIVE LETHALS IN DROSOPHILA MELANOGASTER (in Italian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicoletti, B.; Olivieri, G.

    1962-01-01

    The possibility that uv rays given to different biological systems before or after x rays could modify genetic or cytological effects is reviewed and discussed. Kaufmann and Hollaender's conclusions about the recovering effect of uv rays on chromosomal damage induced in Drosophila sperms by a pre-treatment of x rays are discussed and analyzed taking into accourt some general considerations. Preliminary results of similar experiments on the frequency of sex-linked recessive lethals induced after single and combined x + uv treatments in Drosophila sperms are reported. All our experiments indicate no effect of the uv treatment (at the given wave lengthsmore » and doses) in lowering the frequency of the x-ray-induced recessive lethals. On the contrary, there are some indications for a synergistic action between the two radiations. These results not in agreement with the generally accepted theory that uv rays do recover X-ray- induced chromosomal damages, could be expiained With the well established correlation between chromosomal rejoined breaks and genic mutations. (auth)« less

  5. Interferon-induced TRAIL-independent cell death in DNase II-/- embryos.

    PubMed

    Kitahara, Yusuke; Kawane, Kohki; Nagata, Shigekazu

    2010-09-01

    The chromosomal DNA of apoptotic cells and the nuclear DNA expelled from erythroid precursors is cleaved by DNase II in lysosomes after the cells or nuclei are engulfed by macrophages. DNase II(-/-) embryos suffer from lethal anemia due to IFN-beta produced in the macrophages carrying undigested DNA. Here, we show that Type I IFN induced a caspase-dependent cell death in human epithelial cells that were transformed to express a high level of IFN type I receptor. During this death process, a set of genes was strongly activated, one of which encoded TRAIL, a death ligand. A high level of TRAIL mRNA was also found in the fetal liver of the lethally anemic DNase II(-/-) embryos, and a lack of IFN type I receptor in the DNase II(-/-) IFN-IR(-/-) embryos blocked the expression of TRAIL mRNA. However, a null mutation in TRAIL did not rescue the lethal anemia of the DNase II(-/-) embryos, indicating that TRAIL is dispensable for inducing the apoptosis of erythroid cells in DNase II(-/-) embryos, and therefore, that there is a TRAIL-independent mechanism for the IFN-induced apoptosis.

  6. Error catastrophe and phase transition in the empirical fitness landscape of HIV

    NASA Astrophysics Data System (ADS)

    Hart, Gregory R.; Ferguson, Andrew L.

    2015-03-01

    We have translated clinical sequence databases of the p6 HIV protein into an empirical fitness landscape quantifying viral replicative capacity as a function of the amino acid sequence. We show that the viral population resides close to a phase transition in sequence space corresponding to an "error catastrophe" beyond which there is lethal accumulation of mutations. Our model predicts that the phase transition may be induced by drug therapies that elevate the mutation rate, or by forcing mutations at particular amino acids. Applying immune pressure to any combination of killer T-cell targets cannot induce the transition, providing a rationale for why the viral protein can exist close to the error catastrophe without sustaining fatal fitness penalties due to adaptive immunity.

  7. Mitochondrial uncoupler exerts a synthetic lethal effect against β-catenin mutant tumor cells.

    PubMed

    Shikata, Yuki; Kiga, Masaki; Futamura, Yushi; Aono, Harumi; Inoue, Hiroyuki; Kawada, Manabu; Osada, Hiroyuki; Imoto, Masaya

    2017-04-01

    The wingless/int-1 (Wnt) signal transduction pathway plays a central role in cell proliferation, survival, differentiation and apoptosis. When β-catenin: a component of the Wnt pathway, is mutated into an active form, cell growth signaling is hyperactive and drives oncogenesis. As β-catenin is mutated in a wide variety of tumors, including up to 10% of all sporadic colon carcinomas and 20% of hepatocellular carcinomas, it has been considered a promising target for therapeutic interventions. Therefore, we screened an in-house natural product library for compounds that exhibited synthetic lethality towards β-catenin mutations and isolated nonactin, an antibiotic mitochondrial uncoupler, as a hit compound. Nonactin, as well as other mitochondrial uncouplers, induced apoptosis selectively in β-catenin mutated tumor cells. Significant tumor regression was observed in the β-catenin mutant HCT 116 xenograft model, but not in the β-catenin wild type A375 xenograft model, in response to daily administration of nonactin in vivo. Furthermore, we found that expression of an active mutant form of β-catenin induced a decrease in the glycolysis rate. Taken together, our results demonstrate that tumor cells with mutated β-catenin depend on mitochondrial oxidative phosphorylation for survival. Therefore, they undergo apoptosis in response to mitochondrial dysfunction following the addition of mitochondrial uncouplers, such as nonactin. These results suggest that targeting mitochondria is a potential chemotherapeutic strategy for tumor cells that harbor β-catenin mutations. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  8. Comparative studies on the lethal, mutagenic, and recombinogenic effects of ultraviolet -A, -B, -C, and visible light with and without 8-methoxypsoralen in Saccharomyces cerevisiae.

    PubMed

    Mondon, P; Shahin, M M

    1992-05-01

    Genetic effects of UV-A, UV-B, UV-C, and the combination of 8-methoxypsoralen (8-MOP) with UV-A or visible light were studied in the haploid strain XV185-14C and diploid strain D5 of Saccharomyces cerevisiae. The induction of his+, lys+, and hom+ reverse mutations was measured in strain XV185-14C. In strain D5 we measured the induction of genetically altered colonies, particularly twin spot colonies arising from a mitotic crossing-over. UV-C and UV-B induced point mutations at the three loci in the haploid strain and mitotic crossing-over and other genetic alterations in the diploid strain. UV-C was more mutagenic and recombinogenic than UV-B. UV-A or visible light alone did not induce genotoxic effects at the doses tested. However, UV-A plus 8-MOP produced lethal and mutagenic effects in the haploid strain XV185-14C, although mutagenic activity was less than that of UV-B. Visible light plus 8-MOP also induced genotoxic effects in strain XV185-14C. In the diploid strain D5, UV-A plus 8-MOP induced a higher frequency of genetic alterations than UV-B at comparative doses. Visible light plus 8-MOP was also genetically active in strain D5. The haploid strain was more sensitive to the lethal effects of UV-C, UV-B, UV-A, and impure visible light plus 8-MOP than the diploid strain.

  9. Epidermolysis bullosa with congenital pyloric atresia: novel mutations in the beta 4 integrin gene (ITGB4) and genotype/phenotype correlations.

    PubMed

    Nakano, A; Pulkkinen, L; Murrell, D; Rico, J; Lucky, A W; Garzon, M; Stevens, C A; Robertson, S; Pfendner, E; Uitto, J

    2001-05-01

    Epidermolysis bullosa with pyloric atresia (EB-PA: OMIM 226730), also known as Carmi syndrome, is a rare autosomal recessive genodermatosis that manifests with neonatal mucocutaneous fragility associated with congenital pyloric atresia. The disease is frequently lethal within the first year, but nonlethal cases have been reported. Mutations in the genes encoding subunit polypeptides of the alpha 6 beta 4 integrin (ITGA6 and ITGB4) have been demonstrated in EB-PA patients. To extend the repertoire of mutations and to identify genotype-phenotype correlations, we examined seven new EB-PA families, four with lethal and three with nonlethal disease variants. DNA from patients was screened for mutations using heteroduplex analysis followed by nucleotide sequencing of PCR products spanning all beta 4 integrin-coding sequences. Mutation analysis disclosed 12 distinct mutations, 11 of them novel. Four mutations predicted a premature termination codon as a result of nonsense mutations or small out-of-frame insertions or deletions, whereas seven were missense mutations. This brings the total number of distinct ITGB4 mutations to 33. The mutation database indicates that premature termination codons are associated predominantly with the lethal EB-PA variants, whereas missense mutations are more prevalent in nonlethal forms. However, the consequences of the missense mutations are position dependent, and substitutions of highly conserved amino acids may have lethal consequences. In general, indirect immunofluorescence studies of affected skin revealed negative staining for beta 4 integrin in lethal cases and positive, but attenuated, staining in nonlethal cases and correlated with clinical phenotype. The data on specific mutations in EB-PA patients allows prenatal testing and preimplantation genetic diagnosis in families at risk.

  10. APOBEC3G-Induced Hypermutation of Human Immunodeficiency Virus Type-1 Is Typically a Discrete “All or Nothing” Phenomenon

    PubMed Central

    Armitage, Andrew E.; Deforche, Koen; Chang, Chih-hao; Wee, Edmund; Kramer, Beatrice; Welch, John J.; Gerstoft, Jan; Fugger, Lars; McMichael, Andrew; Rambaut, Andrew; Iversen, Astrid K. N.

    2012-01-01

    The rapid evolution of Human Immunodeficiency Virus (HIV-1) allows studies of ongoing host–pathogen interactions. One key selective host factor is APOBEC3G (hA3G) that can cause extensive and inactivating Guanosine-to-Adenosine (G-to-A) mutation on HIV plus-strand DNA (termed hypermutation). HIV can inhibit this innate anti-viral defense through binding of the viral protein Vif to hA3G, but binding efficiency varies and hypermutation frequencies fluctuate in patients. A pivotal question is whether hA3G-induced G-to-A mutation is always lethal to the virus or if it may occur at sub-lethal frequencies that could increase viral diversification. We show in vitro that limiting-levels of hA3G-activity (i.e. when only a single hA3G-unit is likely to act on HIV) produce hypermutation frequencies similar to those in patients and demonstrate in silico that potentially non-lethal G-to-A mutation rates are ∼10-fold lower than the lowest observed hypermutation levels in vitro and in vivo. Our results suggest that even a single incorporated hA3G-unit is likely to cause extensive and inactivating levels of HIV hypermutation and that hypermutation therefore is typically a discrete “all or nothing” phenomenon. Thus, therapeutic measures that inhibit the interaction between Vif and hA3G will likely not increase virus diversification but expand the fraction of hypermutated proviruses within the infected host. PMID:22457633

  11. Embryonic lethality is not sufficient to explain hourglass-like conservation of vertebrate embryos.

    PubMed

    Uchida, Yui; Uesaka, Masahiro; Yamamoto, Takayoshi; Takeda, Hiroyuki; Irie, Naoki

    2018-01-01

    Understanding the general trends in developmental changes during animal evolution, which are often associated with morphological diversification, has long been a central issue in evolutionary developmental biology. Recent comparative transcriptomic studies revealed that gene expression profiles of mid-embryonic period tend to be more evolutionarily conserved than those in earlier or later periods. While the hourglass-like divergence of developmental processes has been demonstrated in a variety of animal groups such as vertebrates, arthropods, and nematodes, the exact mechanism leading to this mid-embryonic conservation remains to be clarified. One possibility is that the mid-embryonic period (pharyngula period in vertebrates) is highly prone to embryonic lethality, and the resulting negative selections lead to evolutionary conservation of this phase. Here, we tested this "mid-embryonic lethality hypothesis" by measuring the rate of lethal phenotypes of three different species of vertebrate embryos subjected to two kinds of perturbations: transient perturbations and genetic mutations. By subjecting zebrafish ( Danio rerio ), African clawed frog ( Xenopus laevis ), and chicken ( Gallus gallus ) embryos to transient perturbations, namely heat shock and inhibitor treatments during three developmental periods [early (represented by blastula and gastrula), pharyngula, and late], we found that the early stages showed the highest rate of lethal phenotypes in all three species. This result was corroborated by perturbation with genetic mutations. By tracking the survival rate of wild-type embryos and embryos with genetic mutations induced by UV irradiation in zebrafish and African clawed frogs, we found that the highest decrease in survival rate was at the early stages particularly around gastrulation in both these species. In opposition to the "mid-embryonic lethality hypothesis," our results consistently showed that the stage with the highest lethality was not around the conserved pharyngula period, but rather around the early period in all the vertebrate species tested. These results suggest that negative selection by embryonic lethality could not explain hourglass-like conservation of animal embryos. This highlights the potential contribution of alternative mechanisms such as the diversifying effect of positive selections against earlier and later stages, and developmental constraints which lead to conservation of mid-embryonic stages.

  12. Molecular and Genetic Characterization of the Drosophila Melanogaster 87e Actin Gene Region

    PubMed Central

    Manseau, L. J.; Ganetzky, B.; Craig, E. A.

    1988-01-01

    A combined molecular and genetic analysis of the 87E actin gene (Act87E) in Drosophila melanogaster was undertaken. A clone of Act87E was isolated and characterized. The Act87E transcription unit is 1.57 kb and includes a 556-base intervening sequence in the 5' leader of the gene. The protein-coding region is contiguous and encodes a protein that is >93% identical to the other Drosophila actins. By in situ hybridization with a series of deficiencies that break in 87E, Act87E was localized to a region encompassing one to three faint, polytene chromosome bands. The region between the deficiency endpoints that flank the actin gene was isolated and measures approximately 24-30 kb. The closest proximal deficiency endpoint lies 8-10 kb 5' to the actin gene; the closest distal deficiency endpoint lies 16-20 kb 3' to the actin gene. A single, recessive lethal complementation group lies between the deficiency endpoints that flank the actin gene. An EMS mutagenesis screen produced four additional members of this recessive lethal complementation group. Molecular analysis of the members of this complementation group indicated that two of the newly induced mutations have deletions of approximately 1 kb in a transcribed region 4-5 kb 3' (distal) to the actin gene. This result suggests that the recessive lethal complementation group represents a gene separate from and distal to the actin gene. The mutagenesis screen failed to identify additional recessive lethal complementation groups in the actin gene-containing region. The implications of the failure to identify recessive lethal mutations in the actin gene are discussed in reference to studies of other conserved multigene families and other muscle protein mutations. PMID:2840338

  13. Structure-Based Systematic Isolation of Conditional-Lethal Mutations in the Single Yeast Calmodulin Gene

    PubMed Central

    Ohya, Y.; Botstein, D.

    1994-01-01

    Conditional-lethal mutations of the single calmodulin gene in Saccharomyces cerevisiae have been very difficult to isolate by random and systematic methods, despite the fact that deletions cause recessive lethality. We report here the isolation of numerous conditional-lethal mutants that were recovered by systematically altering phenylalanine residues. The phenylalanine residues of calmodulin were implicated in function both by structural studies of calmodulin bound to target peptides and by their extraordinary conservation in evolution. Seven single and 26 multiple Phe -> Ala mutations were constructed. Mutant phenotypes were examined in a haploid cmd1 disrupted strain under three conditions: single copy, low copy, and overexpressed. Whereas all but one of the single mutations caused no obvious phenotype, most of the multiple mutations caused obvious growth phenotypes. Five were lethal, 6 were lethal only in synthetic medium, 13 were temperature-sensitive lethal and 2 had no discernible phenotypic consequences. Overexpression of some of the mutant genes restored the phenotype to nearly wild type. Several temperature-sensitive calmodulin mutations were suppressed by elevated concentration of CaCl(2) in the medium. Mutant calmodulin protein was detected at normal levels in extracts of most of the lethal mutant cells, suggesting that the deleterious phenotypes were due to loss of the calmodulin function and not protein instability. Analysis of diploid strains heterozygous for all combinations of cmd1-ts alleles revealed four intragenic complementation groups. The contributions of individual phe->ala changes to mutant phenotypes support the idea of internal functional redundancy in the symmetrical calmodulin protein molecule. These results suggest that the several phenylalanine residues in calmodulin are required to different extents in different combinations in order to carry out each of the several essential tasks. PMID:7896089

  14. Cationic lipid-assisted polymeric nanoparticle mediated GATA2 siRNA delivery for synthetic lethal therapy of KRAS mutant non-small-cell lung carcinoma.

    PubMed

    Shen, Song; Mao, Chong-Qiong; Yang, Xian-Zhu; Du, Xiao-Jiao; Liu, Yang; Zhu, Yan-Hua; Wang, Jun

    2014-08-04

    Synthetic lethal interaction provides a conceptual framework for the development of wiser cancer therapeutics. In this study, we exploited a therapeutic strategy based on the interaction between GATA binding protein 2 (GATA2) downregulation and the KRAS mutation status by delivering small interfering RNA targeting GATA2 (siGATA2) with cationic lipid-assisted polymeric nanoparticles for treatment of non-small-cell lung carcinoma (NSCLC) harboring oncogenic KRAS mutations. Nanoparticles carrying siGATA2 (NPsiGATA2) were effectively taken up by NSCLC cells and resulted in targeted gene suppression. NPsiGATA2 selectively inhibited cell proliferation and induced cell apoptosis in KRAS mutant NSCLC cells. However, this intervention was harmless to normal KRAS wild-type NSCLC cells and HL7702 hepatocytes, confirming the advantage of synthetic lethality-based therapy. Moreover, systemic delivery of NPsiGATA2 significantly inhibited tumor growth in the KRAS mutant A549 NSCLC xenograft murine model, suggesting the therapeutic promise of NPsiGATA2 delivery in KRAS mutant NSCLC therapy.

  15. Ascorbate, added after irradiation, reduces the mutant yield and alters the spectrum of CD59- mutations in A(L) cells irradiated with high LET carbon ions

    NASA Technical Reports Server (NTRS)

    Ueno, Akiko; Vannais, Diane; Lenarczyk, Marek; Waldren, Charles A.; Chatterjee, A. (Principal Investigator)

    2002-01-01

    It has been reported that X-ray induced HPRT- mutation in cultured human cells is prevented by ascorbate added after irradiation. Mutation extinction is attributed to neutralization by ascorbate, of radiation-induced long-lived radicals (LLR) with half-lives of several hours. We here show that post-irradiation treatment with ascorbate (5 mM added 30 min after radiation) reduces, but does not eliminate, the induction of CD59- mutants in human-hamster hybrid A(L) cells exposed to high-LET carbon ions (LET of 100 KeV/microm). RibCys, [2(R,S)-D-ribo-1',2',3',4'-Tetrahydroxybutyl]-thiazolidene-4(R)-ca riboxylic acid] (4 mM) gave a similar but lesser effect. The lethality of the carbon ions was not altered by these chemicals. Preliminary data are presented that ascorbate also alters the spectrum of CD59- mutations induced by the carbon beam, mainly by reducing the incidence of small mutations and mutants displaying transmissible genomic instability (TGI), while large mutations are unaffected. Our results suggest that LLR are important in initiating TGI.

  16. The population genetics of human disease: The case of recessive, lethal mutations

    PubMed Central

    Gao, Ziyue; Baker, Zachary; Diesel, José Francisco; Simons, Yuval B.; Haque, Imran S.; Pickrell, Joseph; Przeworski, Molly

    2017-01-01

    Do the frequencies of disease mutations in human populations reflect a simple balance between mutation and purifying selection? What other factors shape the prevalence of disease mutations? To begin to answer these questions, we focused on one of the simplest cases: recessive mutations that alone cause lethal diseases or complete sterility. To this end, we generated a hand-curated set of 417 Mendelian mutations in 32 genes reported to cause a recessive, lethal Mendelian disease. We then considered analytic models of mutation-selection balance in infinite and finite populations of constant sizes and simulations of purifying selection in a more realistic demographic setting, and tested how well these models fit allele frequencies estimated from 33,370 individuals of European ancestry. In doing so, we distinguished between CpG transitions, which occur at a substantially elevated rate, and three other mutation types. Intriguingly, the observed frequency for CpG transitions is slightly higher than expectation but close, whereas the frequencies observed for the three other mutation types are an order of magnitude higher than expected, with a bigger deviation from expectation seen for less mutable types. This discrepancy is even larger when subtle fitness effects in heterozygotes or lethal compound heterozygotes are taken into account. In principle, higher than expected frequencies of disease mutations could be due to widespread errors in reporting causal variants, compensation by other mutations, or balancing selection. It is unclear why these factors would have a greater impact on disease mutations that occur at lower rates, however. We argue instead that the unexpectedly high frequency of disease mutations and the relationship to the mutation rate likely reflect an ascertainment bias: of all the mutations that cause recessive lethal diseases, those that by chance have reached higher frequencies are more likely to have been identified and thus to have been included in this study. Beyond the specific application, this study highlights the parameters likely to be important in shaping the frequencies of Mendelian disease alleles. PMID:28957316

  17. NORF5/HUG1 is a component of the MEC1-mediated checkpoint response to DNA damage and replication arrest in Saccharomyces cerevisiae.

    PubMed

    Basrai, M A; Velculescu, V E; Kinzler, K W; Hieter, P

    1999-10-01

    Analysis of global gene expression in Saccharomyces cerevisiae by the serial analysis of gene expression technique has permitted the identification of at least 302 previously unidentified transcripts from nonannotated open reading frames (NORFs). Transcription of one of these, NORF5/HUG1 (hydroxyurea and UV and gamma radiation induced), is induced by DNA damage, and this induction requires MEC1, a homolog of the ataxia telangiectasia mutated (ATM) gene. DNA damage-specific induction of HUG1, which is independent of the cell cycle stage, is due to the alleviation of repression by the Crt1p-Ssn6p-Tup1p complex. Overexpression of HUG1 is lethal in combination with a mec1 mutation in the presence of DNA damage or replication arrest, whereas a deletion of HUG1 rescues the lethality due to a mec1 null allele. HUG1 is the first example of a NORF with important biological functional properties and defines a novel component of the MEC1 checkpoint pathway.

  18. Variability in mutational fitness effects prevents full lethal transitions in large quasispecies populations

    NASA Astrophysics Data System (ADS)

    Sardanyés, Josep; Simó, Carles; Martínez, Regina; Solé, Ricard V.; Elena, Santiago F.

    2014-04-01

    The distribution of mutational fitness effects (DMFE) is crucial to the evolutionary fate of quasispecies. In this article we analyze the effect of the DMFE on the dynamics of a large quasispecies by means of a phenotypic version of the classic Eigen's model that incorporates beneficial, neutral, deleterious, and lethal mutations. By parameterizing the model with available experimental data on the DMFE of Vesicular stomatitis virus (VSV) and Tobacco etch virus (TEV), we found that increasing mutation does not totally push the entire viral quasispecies towards deleterious or lethal regions of the phenotypic sequence space. The probability of finding regions in the parameter space of the general model that results in a quasispecies only composed by lethal phenotypes is extremely small at equilibrium and in transient times. The implications of our findings can be extended to other scenarios, such as lethal mutagenesis or genomically unstable cancer, where increased mutagenesis has been suggested as a potential therapy.

  19. Histone deacetylase inhibitor treatment induces ‘BRCAness’ and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells

    PubMed Central

    Ha, Kyungsoo; Bhaskara, Srividya; Cerchietti, Leandro; Devaraj, Santhana G. T.; Shah, Bhavin; Sharma, Sunil; Chang, Jenny C.; Melnick, Ari M.; Hiebert, Scott; Bhalla, Kapil N.

    2014-01-01

    There is an unmet need to develop new, more effective and safe therapies for the aggressive forms of triple negative breast cancers (TNBCs). While up to 20% of women under 50 years of age with TNBC harbor germline mutations in BRCA1, and these tumors are sensitive to treatment with poly(ADP) ribose polymerase inhibitors, a majority of TNBCs lack BRCA1 mutations or loss of expression. Findings presented here demonstrate that by attenuating the levels of DNA damage response and homologous recombination proteins, pan-histone deacetylase inhibitor (HDI) treatment induces ‘BRCAness’ and sensitizes TNBC cells lacking BRCA1 to lethal effects of PARP inhibitor or cisplatin. Treatment with HDI also induced hyperacetylation of nuclear hsp90. Similar effects were observed following shRNA-mediated depletion of HDAC3, confirming its role as the deacetylase for nuclear HSP90. Furthermore, cotreatment with HDI and ABT-888 induced significantly more DNA strand breaks than either agent alone, and synergistically induced apoptosis of TNBC cells. Notably, co-treatment with HDI and ABT-888 significantly reduced in vivo tumor growth and markedly improved the survival of mice bearing TNBC cell xenografts. These findings support the rationale to interrogate the clinical activity of this novel combination against human TNBC, irrespective of its expression of mutant BRCA1. PMID:25026298

  20. Inactivation of CDK2 is synthetically lethal to MYCN over-expressing cancer cells

    PubMed Central

    Molenaar, Jan J.; Ebus, Marli E.; Geerts, Dirk; Koster, Jan; Lamers, Fieke; Valentijn, Linda J.; Westerhout, Ellen M.; Versteeg, Rogier; Caron, Huib N.

    2009-01-01

    Two genes have a synthetically lethal relationship when the silencing or inhibiting of 1 gene is only lethal in the context of a mutation or activation of the second gene. This situation offers an attractive therapeutic strategy, as inhibition of such a gene will only trigger cell death in tumor cells with an activated second oncogene but spare normal cells without activation of the second oncogene. Here we present evidence that CDK2 is synthetically lethal to neuroblastoma cells with MYCN amplification and over-expression. Neuroblastomas are childhood tumors with an often lethal outcome. Twenty percent of the tumors have MYCN amplification, and these tumors are ultimately refractory to any therapy. Targeted silencing of CDK2 by 3 RNA interference techniques induced apoptosis in MYCN-amplified neuroblastoma cell lines, but not in MYCN single copy cells. Silencing of MYCN abrogated this apoptotic response in MYCN-amplified cells. Inversely, silencing of CDK2 in MYCN single copy cells did not trigger apoptosis, unless a MYCN transgene was activated. The MYCN induced apoptosis after CDK2 silencing was accompanied by nuclear stabilization of P53, and mRNA profiling showed up-regulation of P53 target genes. Silencing of P53 rescued the cells from MYCN-driven apoptosis. The synthetic lethality of CDK2 silencing in MYCN activated neuroblastoma cells can also be triggered by inhibition of CDK2 with a small molecule drug. Treatment of neuroblastoma cells with roscovitine, a CDK inhibitor, at clinically achievable concentrations induced MYCN-dependent apoptosis. The synthetically lethal relationship between CDK2 and MYCN indicates CDK2 inhibitors as potential MYCN-selective cancer therapeutics. PMID:19525400

  1. Functional Analysis of Variants of Unknown Significance in BRCA1 and BRCA2 Using Complementation of a Synthetic Lethal Interaction with PARP Inhibition

    DTIC Science & Technology

    2014-12-01

    general population3-5. A pathogenic mutation in BRCA1 or BRCA2 is an important genetic biomarker for a high ovarian cancer risk in breast cancer patients...doxycycline induces cytological signs of synthetic lethality with Parp inhibitor by RAD51 and RH2AX focus formation. REPORTABLE OUTCOMES None RH2AX... genetics . Mar 2001;68(3):700-710. 3. Chen S, Parmigiani G. Meta-analysis of BRCA1 and BRCA2 penetrance. Journal of clinical oncology : official journal of

  2. Kunjin Virus Replicon-Based Vaccines Expressing Ebola Virus Glycoprotein GP Protect the Guinea Pig Against Lethal Ebola Virus Infection

    PubMed Central

    Reynard, O.; Mokhonov, V.; Mokhonova, E.; Leung, J.; Page, A.; Mateo, M.; Pyankova, O.; Georges-Courbot, M. C.; Raoul, H.; Khromykh, A. A.

    2011-01-01

    Pre- or postexposure treatments against the filoviral hemorrhagic fevers are currently not available for human use. We evaluated, in a guinea pig model, the immunogenic potential of Kunjin virus (KUN)–derived replicons as a vaccine candidate against Ebola virus (EBOV). Virus like particles (VLPs) containing KUN replicons expressing EBOV wild-type glycoprotein GP, membrane anchor-truncated GP (GP/Ctr), and mutated GP (D637L) with enhanced shedding capacity were generated and assayed for their protective efficacy. Immunization with KUN VLPs expressing full-length wild-type and D637L-mutated GPs but not membrane anchor–truncated GP induced dose-dependent protection against a challenge of a lethal dose of recombinant guinea pig-adapted EBOV. The surviving animals showed complete clearance of the virus. Our results demonstrate the potential for KUN replicon vectors as vaccine candidates against EBOV infection. PMID:21987742

  3. An essential role of intestinal cell kinase in lung development is linked to the perinatal lethality of human ECO syndrome

    PubMed Central

    Tong, Yixin; Park, So Hyun; Wu, Di; Xu, Wenhao; Guillot, Stacey J.; Jin, Li; Li, Xudong; Wang, Yalin; Lin, Chyuan-Sheng; Fu, Zheng

    2017-01-01

    Human endocrine-cerebro-osteodysplasia (ECO) syndrome, caused by the loss-of-function mutation R272Q in the ICK (intestinal cell kinase) gene, is a neonatal-lethal developmental disorder. To elucidate the molecular basis of ECO syndrome, we constructed an Ick R272Q knock-in mouse model that recapitulates ECO pathological phenotypes. Newborns bearing Ick R272Q homozygous mutations die at birth due to respiratory distress. Ick mutant lungs exhibit not only impaired branching morphogenesis associated with reduced mesenchymal proliferation, but also significant airspace deficiency in primitive alveoli concomitant with abnormal interstitial mesenchymal differentiation. ICK dysfunction induces elongated primary cilia and perturbs ciliary Hedgehog signaling and autophagy during lung sacculation. Our study identifies an essential role for ICK in lung development and advances the mechanistic understanding of ECO syndrome. PMID:28380258

  4. An essential role of intestinal cell kinase in lung development is linked to the perinatal lethality of human ECO syndrome.

    PubMed

    Tong, Yixin; Park, So Hyun; Wu, Di; Xu, Wenhao; Guillot, Stacey J; Jin, Li; Li, Xudong; Wang, Yalin; Lin, Chyuan-Sheng; Fu, Zheng

    2017-05-01

    Human endocrine-cerebro-osteodysplasia (ECO) syndrome, caused by the loss-of-function mutation R272Q in the intestinal cell kinase (ICK) gene, is a neonatal-lethal developmental disorder. To elucidate the molecular basis of ECO syndrome, we constructed an Ick R272Q knock-in mouse model that recapitulates ECO pathological phenotypes. Newborns bearing Ick R272Q homozygous mutations die at birth due to respiratory distress. Ick mutant lungs exhibit not only impaired branching morphogenesis associated with reduced mesenchymal proliferation but also significant airspace deficiency in primitive alveoli concomitant with abnormal interstitial mesenchymal differentiation. ICK dysfunction induces elongated primary cilia and perturbs ciliary Hedgehog signaling and autophagy during lung sacculation. Our study identifies an essential role for ICK in lung development and advances the mechanistic understanding of ECO syndrome. © 2017 Federation of European Biochemical Societies.

  5. A functional cancer genomics screen identifies a druggable synthetic lethal interaction between MSH3 and PRKDC.

    PubMed

    Dietlein, Felix; Thelen, Lisa; Jokic, Mladen; Jachimowicz, Ron D; Ivan, Laura; Knittel, Gero; Leeser, Uschi; van Oers, Johanna; Edelmann, Winfried; Heukamp, Lukas C; Reinhardt, H Christian

    2014-05-01

    Here, we use a large-scale cell line-based approach to identify cancer cell-specific mutations that are associated with DNA-dependent protein kinase catalytic subunit (DNA-PKcs) dependence. For this purpose, we profiled the mutational landscape across 1,319 cancer-associated genes of 67 distinct cell lines and identified numerous genes involved in homologous recombination-mediated DNA repair, including BRCA1, BRCA2, ATM, PAXIP, and RAD50, as being associated with non-oncogene addiction to DNA-PKcs. Mutations in the mismatch repair gene MSH3, which have been reported to occur recurrently in numerous human cancer entities, emerged as the most significant predictors of DNA-PKcs addiction. Concordantly, DNA-PKcs inhibition robustly induced apoptosis in MSH3-mutant cell lines in vitro and displayed remarkable single-agent efficacy against MSH3-mutant tumors in vivo. Thus, we here identify a therapeutically actionable synthetic lethal interaction between MSH3 and the non-homologous end joining kinase DNA-PKcs. Our observations recommend DNA-PKcs inhibition as a therapeutic concept for the treatment of human cancers displaying homologous recombination defects.

  6. Standard Operating Procedure for Mutagenicity Testing Using the Drosophila melanogaster Sex-Linked Recessive Lethal Assay.

    DTIC Science & Technology

    1982-01-01

    60025, 22 December 1978 10. ALDERSON, T. Chemically induced delayed germinal mutation in Drosophila. Nature 207:164-167, 1965 11. BLUM, A. and B.N...Superintendent Commander Academy of Health Sciences US Army Institute of Dental Research ATTN: AHS-COM Washington DC 20012 Fort Sam Houston TX 78234 Assistant

  7. Consortium for Osteogenesis Imperfecta Mutations in the Helical Domain of Type I Collagen: Regions Rich in Lethal Mutations Align With Collagen Binding Sites for Integrins and Proteoglycans

    PubMed Central

    Marini, Joan C.; Forlino, Antonella; Cabral, Wayne A.; Barnes, Aileen M.; San Antonio, James D.; Milgrom, Sarah; Hyland, James C.; Körkkö, Jarmo; Prockop, Darwin J.; De Paepe, Anne; Coucke, Paul; Symoens, Sofie; Glorieux, Francis H.; Roughley, Peter J.; Lund, Alan M.; Kuurila-Svahn, Kaija; Hartikka, Heini; Cohn, Daniel H.; Krakow, Deborah; Mottes, Monica; Schwarze, Ulrike; Chen, Diana; Yang, Kathleen; Kuslich, Christine; Troendle, James; Dalgleish, Raymond; Byers, Peter H.

    2014-01-01

    Osteogenesis imperfecta (OI) is a generalized disorder of connective tissue characterized by fragile bones and easy susceptibility to fracture. Most cases of OI are caused by mutations in type I collagen. We have identified and assembled structural mutations in type I collagen genes (COL1A1 and COL1A2, encoding the proα1(I) and proα2(I) chains, respectively) that result in OI. Quantitative defects causing type I OI were not included. Of these 832 independent mutations, 682 result in substitution for glycine residues in the triple helical domain of the encoded protein and 150 alter splice sites. Distinct genotype–phenotype relationships emerge for each chain. One-third of the mutations that result in glycine substitutions in α1(I) are lethal, especially when the substituting residues are charged or have a branched side chain. Substitutions in the first 200 residues are nonlethal and have variable outcome thereafter, unrelated to folding or helix stability domains. Two exclusively lethal regions (helix positions 691–823 and 910–964) align with major ligand binding regions (MLBRs), suggesting crucial interactions of collagen monomers or fibrils with integrins, matrix metalloproteinases (MMPs), fibronectin, and cartilage oligomeric matrix protein (COMP). Mutations in COL1A2 are predominantly nonlethal (80%). Lethal substitutions are located in eight regularly spaced clusters along the chain, supporting a regional model. The lethal regions align with proteoglycan binding sites along the fibril, suggesting a role in fibril–matrix interactions. Recurrences at the same site in α2(I) are generally concordant for outcome, unlike α1(I). Splice site mutations comprise 20% of helical mutations identified in OI patients, and may lead to exon skipping, intron inclusion, or the activation of cryptic splice sites. Splice site mutations in COL1A1 are rarely lethal; they often lead to frameshifts and the mild type I phenotype. In α2(I), lethal exon skipping events are located in the carboxyl half of the chain. Our data on genotype–phenotype relationships indicate that the two collagen chains play very different roles in matrix integrity and that phenotype depends on intracellular and extracellular events. PMID:17078022

  8. a/alpha-specific effect on the mms3 mutation on ultraviolet mutagenesis in Saccharomyces cerevisiae.

    PubMed

    Martin, P; Prakash, L; Prakash, S

    1981-05-01

    A new gene involved in error-prone repair of ultraviolet (UV) damage has been identified in Saccharomyces cerevisiae by the mms3-1 mutation. UV-induced reversion is reduced in diploids that are homozygous for mms3-1, only if they are also heterozygous (MATa/MAT alpha) at the mating type locus. The mms3-1 mutation has no effect on UV-induced reversion either in haploids or MATa/MATa or MAT alpha/MAT alpha diploids. The mutation confers sensitivity to UV and methyl methane sulfonate in both haploids and diploids. Even though mutation induction by UV is restored to wild-type levels in MATa/MATa mms3-1/mms3-1 or MAT alpha/MAT alpha mms3-1/mms3-1 diploids, such strains still retain sensitivity to the lethal effects of UV. Survival after UV irradiation in mms3-1 rad double mutant combinations indicates that mms3-1 is epistatic to rad6-1 whereas non-epistatic interactions are observed with rad3 and rad52 mutants. When present in the homozygous state in MATa/MAT alpha his1-1/his1-315 heteroallelic diploids, mms3-1 was found to lower UV-induced mitotic recombination.

  9. A strong loss-of-function mutation in RAN1 results in constitution activation of the ethylene response pathway as well as a rosette-lethal phenotype

    Treesearch

    Keith Woeste; Joseph J. Kieber

    2000-01-01

    A recessive mutation was identified that constitutively activated the ethylene response pathway in Arabidopsis and resuited in a rosette-lethal phenotype. Positional cloning of the gene corresponding to this mutation revealed that it was allelic to responsive to antagonist1 (ran1), a mutation that causes seedlings to respond in a positive manner to what is normally a...

  10. Processing closely spaced lesions during Nucleotide Excision Repair triggers mutagenesis in E. coli

    PubMed Central

    Isogawa, Asako; Fujii, Shingo

    2017-01-01

    It is generally assumed that most point mutations are fixed when damage containing template DNA undergoes replication, either right at the fork or behind the fork during gap filling. Here we provide genetic evidence for a pathway, dependent on Nucleotide Excision Repair, that induces mutations when processing closely spaced lesions. This pathway, referred to as Nucleotide Excision Repair-induced Mutagenesis (NERiM), exhibits several characteristics distinct from mutations that occur within the course of replication: i) following UV irradiation, NER-induced mutations are fixed much more rapidly (t ½ ≈ 30 min) than replication dependent mutations (t ½ ≈ 80–100 min) ii) NERiM specifically requires DNA Pol IV in addition to Pol V iii) NERiM exhibits a two-hit dose-response curve that suggests processing of closely spaced lesions. A mathematical model let us define the geometry (infer the structure) of the toxic intermediate as being formed when NER incises a lesion that resides in close proximity of another lesion in the complementary strand. This critical NER intermediate requires Pol IV / Pol II for repair, it is either lethal if left unrepaired or mutation-prone when repaired. Finally, NERiM is found to operate in stationary phase cells providing an intriguing possibility for ongoing evolution in the absence of replication. PMID:28686598

  11. Genome-Wide Mutation Avalanches Induced in Diploid Yeast Cells by a Base Analog or an APOBEC Deaminase

    PubMed Central

    Lada, Artem G.; Stepchenkova, Elena I.; Waisertreiger, Irina S. R.; Noskov, Vladimir N.; Dhar, Alok; Eudy, James D.; Boissy, Robert J.; Hirano, Masayuki; Rogozin, Igor B.; Pavlov, Youri I.

    2013-01-01

    Genetic information should be accurately transmitted from cell to cell; conversely, the adaptation in evolution and disease is fueled by mutations. In the case of cancer development, multiple genetic changes happen in somatic diploid cells. Most classic studies of the molecular mechanisms of mutagenesis have been performed in haploids. We demonstrate that the parameters of the mutation process are different in diploid cell populations. The genomes of drug-resistant mutants induced in yeast diploids by base analog 6-hydroxylaminopurine (HAP) or AID/APOBEC cytosine deaminase PmCDA1 from lamprey carried a stunning load of thousands of unselected mutations. Haploid mutants contained almost an order of magnitude fewer mutations. To explain this, we propose that the distribution of induced mutation rates in the cell population is uneven. The mutants in diploids with coincidental mutations in the two copies of the reporter gene arise from a fraction of cells that are transiently hypersensitive to the mutagenic action of a given mutagen. The progeny of such cells were never recovered in haploids due to the lethality caused by the inactivation of single-copy essential genes in cells with too many induced mutations. In diploid cells, the progeny of hypersensitive cells survived, but their genomes were saturated by heterozygous mutations. The reason for the hypermutability of cells could be transient faults of the mutation prevention pathways, like sanitization of nucleotide pools for HAP or an elevated expression of the PmCDA1 gene or the temporary inability of the destruction of the deaminase. The hypothesis on spikes of mutability may explain the sudden acquisition of multiple mutational changes during evolution and carcinogenesis. PMID:24039593

  12. Identification of defective illegitimate recombinational repair of oxidatively-induced DNA double-strand breaks in ataxia-telangiectasia cells

    NASA Technical Reports Server (NTRS)

    Dar, M. E.; Winters, T. A.; Jorgensen, T. J.

    1997-01-01

    Ataxia-telangiectasia (A-T) is an autosomal-recessive lethal human disease. Homozygotes suffer from a number of neurological disorders, as well as very high cancer incidence. Heterozygotes may also have a higher than normal risk of cancer, particularly for the breast. The gene responsible for the disease (ATM) has been cloned, but its role in mechanisms of the disease remain unknown. Cellular A-T phenotypes, such as radiosensitivity and genomic instability, suggest that a deficiency in the repair of DNA double-strand breaks (DSBs) may be the primary defect; however, overall levels of DSB rejoining appear normal. We used the shuttle vector, pZ189, containing an oxidatively-induced DSB, to compare the integrity of DSB rejoining in one normal and two A-T fibroblast cells lines. Mutation frequencies were two-fold higher in A-T cells, and the mutational spectrum was different. The majority of the mutations found in all three cell lines were deletions (44-63%). The DNA sequence analysis indicated that 17 of the 17 plasmids with deletion mutations in normal cells occurred between short direct-repeat sequences (removing one of the repeats plus the intervening sequences), implicating illegitimate recombination in DSB rejoining. The combined data from both A-T cell lines showed that 21 of 24 deletions did not involve direct-repeats sequences, implicating a defect in the illegitimate recombination pathway. These findings suggest that the A-T gene product may either directly participate in illegitimate recombination or modulate the pathway. Regardless, this defect is likely to be important to a mechanistic understanding of this lethal disease.

  13. Saccharomyces cerevisiae mutants with enhanced induced mutation and altered mitotic gene conversion.

    PubMed

    Ivanov, E L; Kovaltzova, S V; Korolev, V G

    1989-08-01

    We have developed a method to isolate yeast (Saccharomyces cerevisiae) mutants with enhanced induced mutagenesis based on nitrous acid-induced reversion of the ade2-42 allele. Six mutants have been isolated and designated him (high induced mutagenesis), and 4 of them were studied in more detail. The him mutants displayed enhanced reversion of the ade2-42 allele, either spontaneous or induced by nitrous acid, UV light, and the base analog 6-N-hydroxylaminopurine, but not by gamma-irradiation. It is worth noting that the him mutants turned out not to be sensitive to the lethal effects of the mutagens used. The enhancement in mutation induced by nitrous acid, UV light, and 6-N-hydroxylaminopurine has been confirmed in a forward-mutation assay (induction of mutations in the ADE1, ADE2 genes). The latter agent revealed the most apparent differences between the him mutants and the wild-type strain and was, therefore, chosen for the genetic analysis of mutants, him mutations analyzed behaved as a single Mendelian trait; complementation tests indicated 3 complementation groups (HIM1, HIM2, and HIM3), each containing 1 mutant allele. Uracil-DNA glycosylase activity was determined in crude cell extracts, and no significant differences between the wild-type and him strains were detected. Spontaneous mitotic gene conversion at the ADE2 locus is altered in him1 strains, either increased or decreased, depending on the particular heteroallelic combination. Genetic evidence strongly suggests him mutations to be involved in a process of mismatch correction of molecular heteroduplexes.

  14. RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair. Characteristics of radH mutants and sequence of the gene.

    PubMed

    Aboussekhra, A; Chanet, R; Zgaga, Z; Cassier-Chauvat, C; Heude, M; Fabre, F

    1989-09-25

    A new type of radiation-sensitive mutant of S. cerevisiae is described. The recessive radH mutation sensitizes to the lethal effect of UV radiations haploids in the G1 but not in the G2 mitotic phase. Homozygous diploids are as sensitive as G1 haploids. The UV-induced mutagenesis is depressed, while the induction of gene conversion is increased. The mutation is believed to channel the repair of lesions engaged in the mutagenic pathway into a recombination process, successful if the events involve sister-chromatids but lethal if they involve homologous chromosomes. The sequence of the RADH gene reveals that it may code for a DNA helicase, with a Mr of 134 kDa. All the consensus domains of known DNA helicases are present. Besides these consensus regions, strong homologies with the Rep and UvrD helicases of E. coli were found. The RadH putative helicase appears to belong to the set of proteins involved in the error-prone repair mechanism, at least for UV-induced lesions, and could act in coordination with the Rev3 error-prone DNA polymerase.

  15. Isolation and Genetic Characterization of a Mutation Affecting Ribosomal Resistance to Cycloheximide in Tetrahymena

    PubMed Central

    Ares, Manuel; Bruns, Peter J.

    1978-01-01

    A dominant mutation at a new locus affecting resistance to cycloheximide has been isolated by exploiting a synergistic relationship with a previously known mutation for cycloheximide resistance in Tetrahymena. The new mutation (ChxB) was induced in a line homozygous for ChxA and was recovered from that background by a new technique termed interrupted genomic exclusion. Segregation data from the interrupted genomic exclusion suggest that ChxA and ChxB are separate, linked loci showing 30% recombination. Minimal lethal doses of cycloheximide for the four possible combinations of the wild-type and mutant alleles of these two genes are: wild type 6 µg/ml, ChxA 125 µg/ml, ChxB 10 µg/ml, ChxA-ChxB 175 µg/ml. PMID:730051

  16. DNA Polymerase ζ is essential for hexavalent chromium-induced mutagenesis

    PubMed Central

    O'Brien, Travis J.; Witcher, Preston; Brooks, Bradford; Patierno, Steven R.

    2009-01-01

    Translesion synthesis (TLS) is a unique DNA damage tolerance mechanism involved in the replicative bypass of genetic lesions in favor of uninterrupted DNA replication. TLS is critical for the generation of mutations by many different chemical and physical agents, however, there is no information available regarding the role of TLS in carcinogenic metal-induced mutagenesis. Hexavalent chromium (Cr(VI))-containing compounds are highly complex genotoxins possessing both mutagenic and clastogenic activities. The focus of this work was to determine the impact that TLS has on Cr(VI)-induced mutagenesis in S. cerevisiae. Wild-type yeast and strains deficient in TLS polymerases (i.e. Polζ (rev3), Polη (rad30)) were exposed to Cr(VI) and monitored for cell survival and forward mutagenesis at the CAN1 locus. In general, TLS deficiency had little impact on Cr(VI)-induced clonogenic lethality or cell growth. rad30 yeast exhibited higher levels of basal and induced mutagenesis compared to Wt and rev3 yeast. In contrast, rev3 yeast displayed attenuated Cr(VI)-induced mutagenesis. Moreover, deletion of REV3 in rad30 yeast (rad30 rev3) resulted in a significant decrease in basal and Cr(VI) mutagenesis relative to Wt and rad30 single mutants indicating that mutagenesis primarily depended upon Polζ. Interestingly, rev3 yeast were similar to Wt yeast in susceptibility to Cr(VI)-induced frameshift mutations. Mutational analysis of the CAN1 gene revealed that Cr(VI)-induced base substitution mutations accounted for 83.9% and 100.0% of the total mutations in Wt and rev3 yeast, respectively. Insertions and deletions comprised 16.1% of the total mutations in Cr(VI) treated Wt yeast but were not observed rev3 yeast. This work provides novel information regarding the molecular mechanisms of Cr(VI)-induced mutagenesis and is the first report demonstrating a role for TLS in the fixation of mutations induced by a carcinogenic metal. PMID:19428373

  17. Germline Mutations in ATM and BRCA1/2 Distinguish Risk for Lethal and Indolent Prostate Cancer and are Associated with Early Age at Death

    PubMed Central

    Na, Rong; Zheng, S. Lilly; Han, Misop; Yu, Hongjie; Jiang, Deke; Shah, Sameep; Ewing, Charles M.; Zhang, Liti; Novakovic, Kristian; Petkewicz, Jacqueline; Gulukota, Kamalakar; Helseth, Donald L.; Quinn, Margo; Humphries, Elizabeth; Wiley, Kathleen E.; Isaacs, Sarah D.; Wu, Yishuo; Liu, Xu; Zhang, Ning; Wang, Chi-Hsiung; Khandekar, Janardan; Hulick, Peter J.; Shevrin, Daniel H.; Cooney, Kathleen A.; Shen, Zhoujun; Partin, Alan W.; Carter, H. Ballentine; Carducci, Michael A.; Eisenberger, Mario A.; Denmeade, Sam R.; McGuire, Michael; Walsh, Patrick C.; Helfand, Brian T.; Brendler, Charles B.; Ding, Qiang; Xu, Jianfeng; Isaacs, William B.

    2017-01-01

    Background Germline mutations in BRCA1/2 and ATM have been associated with prostate cancer (PCa) risk. Objective To directly assess whether germline mutations in these three genes distinguish lethal from indolent PCa and whether they confer any effect on age at death. Design, setting, and participants A retrospective case-case study of 313 patients who died of PCa and 486 patients with low-risk localized PCa of European, African, and Chinese descent. Germline DNA of each of the 799 patients was sequenced for these three genes. Outcome measurements and statistical analysis Mutation carrier rates and their effect on lethal PCa were analyzed using the Fisher’s exact test and Cox regression analysis, respectively. Results and limitations The combined BRCA1/2 and ATM mutation carrier rate was significantly higher in lethal PCa patients (6.07%) than localized PCa patients (1.44%), p = 0.0007. The rate also differed significantly among lethal PCa patients as a function of age at death (10.00%, 9.08%, 8.33%, 4.94%, and 2.97% in patients who died ≤60 yr, 61–65 yr, 66–70 yr, 71–75 yr, and over 75 yr, respectively, p = 0.046) and time to death after diagnosis (12.26%, 4.76%, and 0.98% in patients who died ≤5 yr, 6–10 yr, and > 10 yr after a PCa diagnosis, respectively, p = 0.0006). Survival analysis in the entire cohort revealed mutation carriers remained an independent predictor of lethal PCa after adjusting for race and age, prostate-specific antigen, and Gleason score at the time of diagnosis (hazard ratio = 2.13, 95% confidence interval: 1.24–3.66, p = 0.004). A limitation of this study is that other DNA repair genes were not analyzed. Conclusions Mutation status of BRCA1/2 and ATM distinguishes risk for lethal and indolent PCa and is associated with earlier age at death and shorter survival time. Patient summary Prostate cancer patients with inherited mutations in BRCA1/2 and ATM are more likely to die of prostate cancer and do so at an earlier age. PMID:27989354

  18. SMARCA4-inactivating mutations increase sensitivity to Aurora kinase A inhibitor VX-680 in non-small cell lung cancers. | Office of Cancer Genomics

    Cancer.gov

    Mutations in the SMARCA4/BRG1 gene resulting in complete loss of its protein (BRG1) occur frequently in non-small cell lung cancer (NSCLC) cells. Currently, no single therapeutic agent has been identified as synthetically lethal with SMARCA4/BRG1 loss. We identify AURKA activity as essential in NSCLC cells lacking SMARCA4/BRG1. In these cells, RNAi-mediated depletion or chemical inhibition of AURKA induces apoptosis and cell death in vitro and in xenograft mouse models.

  19. Germline mutations in RYR1 are associated with foetal akinesia deformation sequence/lethal multiple pterygium syndrome.

    PubMed

    McKie, Arthur B; Alsaedi, Atif; Vogt, Julie; Stuurman, Kyra E; Weiss, Marjan M; Shakeel, Hassan; Tee, Louise; Morgan, Neil V; Nikkels, Peter G J; van Haaften, Gijs; Park, Soo-Mi; van der Smagt, Jasper J; Bugiani, Marianna; Maher, Eamonn R

    2014-12-05

    Foetal akinesia deformation sequence syndrome (FADS) is a genetically heterogeneous disorder characterised by the combination of foetal akinesia and developmental defects which may include pterygia (joint webbing). Traditionally multiple pterygium syndrome (MPS) has been divided into two forms: prenatally lethal (LMPS) and non-lethal Escobar type (EVMPS) types. Interestingly, FADS, LMPS and EVMPS may be allelic e.g. each of these phenotypes may result from mutations in the foetal acetylcholine receptor gamma subunit gene (CHRNG). Many cases of FADS and MPS do not have a mutation in a known FADS/MPS gene and we undertook molecular genetic studies to identify novel causes of these phenotypes. After mapping a novel locus for FADS/LMPS to chromosome 19, we identified a homozygous null mutation in the RYR1 gene in a consanguineous kindred with recurrent LMPS pregnancies. Resequencing of RYR1 in a cohort of 66 unrelated probands with FADS/LMPS/EVMPS (36 with FADS/LMPS and 30 with EVMPS) revealed two additional homozygous mutations (in frame deletions). The overall frequency of RYR1 mutations in probands with FADS/LMPS was 8.3%. Our findings report, for the first time, a homozygous RYR1 null mutation and expand the range of RYR1-related phenotypes to include early lethal FADS/LMPS. We suggest that RYR1 mutation analysis should be performed in cases of severe FADS/LMPS even in the absence of specific histopathological indicators of RYR1-related disease.

  20. Synthetic Lethal Therapy for KRAS Mutant Non-small-cell Lung Carcinoma with Nanoparticle-mediated CDK4 siRNA Delivery

    PubMed Central

    Mao, Cheng-Qiong; Xiong, Meng-Hua; Liu, Yang; Shen, Song; Du, Xiao-Jiao; Yang, Xian-Zhu; Dou, Shuang; Zhang, Pei-Zhuo; Wang, Jun

    2014-01-01

    The KRAS mutation is present in ~20% of lung cancers and has not yet been effectively targeted for therapy. This mutation is associated with a poor prognosis in non-small-cell lung carcinomas (NSCLCs) and confers resistance to standard anticancer treatment drugs, including epidermal growth factor receptor tyrosine kinase inhibitors. In this study, we exploited a new therapeutic strategy based on the synthetic lethal interaction between cyclin-dependent kinase 4 (CDK4) downregulation and the KRAS mutation to deliver micellar nanoparticles (MNPs) containing small interfering RNA targeting CDK4 (MNPsiCDK4) for treatment in NSCLCs harboring the oncogenic KRAS mutation. Following MNPsiCDK4 administration, CDK4 expression was decreased, accompanied by inhibited cell proliferation, specifically in KRAS mutant NSCLCs. However, this intervention was harmless to normal KRAS wild-type cells, confirming the proposed mechanism of synthetic lethality. Moreover, systemic delivery of MNPsiCDK4 significantly inhibited tumor growth in an A549 NSCLC xenograft murine model, with depressed expression of CDK4 and mutational KRAS status, suggesting the therapeutic promise of MNPsiCDK4 delivery in KRAS mutant NSCLCs via a synthetic lethal interaction between KRAS and CDK4. PMID:24496383

  1. Lack of chemically induced mutation in repair-deficient mutants of yeast.

    PubMed

    Prakash, L

    1974-12-01

    Two genes, rad6 and rad9, that confer radiation sensitivity in the yeast Saccharomyces cerevisiae also greatly reduce the frequency of chemically-induced reversions of a tester mutant cyc1-131, which is a chain initiation mutant in the structural gene determining iso-1-cytochrome c. Mutations induced by ethyl methanesulfonate (EMS), diethyl sulfate (DES), methyl methanesulfonate (MMS), dimethyl sulfate (DMS), nitroquinoline oxide (NQO), nitrosoguanidine (NTG), nitrogen mustard (HN2), beta-propiolactone, and tritiated uridine, as well as mutations induced by ultraviolet light (UV) and ionizing radiation were greatly diminished in strains homozygous for either the rad6 or rad9 gene. Nitrous acid and nitrosoimidazolidone (NIL), on the other hand, were highly mutagenic in these repair-deficient mutants, and at low doses, these mutagens acted with about the same efficiency as in the normal RAD strain. At high doses of either nitrous acid or NIL, however, reversion frequencies were significantly reduced in the two rad mutants compared to normal strains. Although both rad mutants are immutable to about the same extent, the rad9 strains tend to be less sensitive to the lethal effect of chemical mutagens than rad6 strains. It is concluded that yeast requires a functional repair system for mutation induction by chemical agents.

  2. Identification of Lethal Mutations in Yeast Threonyl-tRNA Synthetase Revealing Critical Residues in Its Human Homolog*

    PubMed Central

    Ruan, Zhi-Rong; Fang, Zhi-Peng; Ye, Qing; Lei, Hui-Yan; Eriani, Gilbert; Zhou, Xiao-Long; Wang, En-Duo

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) are a group of ancient enzymes catalyzing aminoacylation and editing reactions for protein biosynthesis. Increasing evidence suggests that these critical enzymes are often associated with mammalian disorders. Therefore, complete determination of the enzymes functions is essential for informed diagnosis and treatment. Here, we show that a yeast knock-out strain for the threonyl-tRNA synthetase (ThrRS) gene is an excellent platform for such an investigation. Saccharomyces cerevisiae ThrRS has a unique modular structure containing four structural domains and a eukaryote-specific N-terminal extension. Using randomly mutated libraries of the ThrRS gene (thrS) and a genetic screen, a set of loss-of-function mutants were identified. The mutations affected the synthetic and editing activities and influenced the dimer interface. The results also highlighted the role of the N-terminal extension for enzymatic activity and protein stability. To gain insights into the pathological mechanisms induced by mutated aaRSs, we systematically introduced the loss-of-function mutations into the human cytoplasmic ThrRS gene. All mutations induced similar detrimental effects, showing that the yeast model could be used to study pathology-associated point mutations in mammalian aaRSs. PMID:25416776

  3. Mutagenic effect of accelerated heavy ions on bacterial cells

    NASA Astrophysics Data System (ADS)

    Boreyko, A. V.; Krasavin, E. A.

    2011-11-01

    The heavy ion accelerators of the Joint Institute for Nuclear Research were used to study the regularities and mechanisms of formation of different types of mutations in prokaryote cells. The induction of direct (lac-, ton B-, col B) mutations for Esherichia coli cells and reverse his- → His+ mutations of Salmonella typhimurium, Bacillus subtilis cells under the action of radiation in a wide range of linear energy transfer (LET) was studied. The regularities of formation of gene and structural (tonB trp-) mutations for Esherichia coli bacteria under the action of accelerated heavy ions were studied. It was demonstrated that the rate of gene mutations as a function of the dose under the action of Γ rays and accelerated heavy ions is described by linear-quadratic functions. For structural mutations, linear "dose-effect" dependences are typical. The quadratic character of mutagenesis dose curves is determined by the "interaction" of two independent "hitting" events in the course of SOS repair of genetic structures. The conclusion made was that gene mutations under the action of accelerated heavy ions are induced by δ electron regions of charged particle tracks. The methods of SOS chromotest, SOS lux test, and λ prophage induction were used to study the regularities of SOS response of cells under the action of radiations in a wide LET range. The following proposition was substantiated: the molecular basis for formation of gene mutations are cluster single-strand DNA breaks, and that for structural mutations, double-strand DNA breaks. It was found out that the LET dependence of the relative biological efficiency of accelerated ions is described by curves with a local maximum. It was demonstrated that the biological efficiency of ionizing radiations with different physical characteristics on cells with different genotype, estimated by the lethal action, induction of gene and deletion mutations, precision excision of transposons, is determined by the specific features of energy transfer of the radiations that affect the character of induced DNA damage, and the efficiency inducible and constitutive cell repair systems. The growth of relative biological efficiency of heavy charged particles is determined by the growth of the damage yield of the DNA participating in the formation of radiation-induced effects, and higher efficiency of inducible repair systems. It was established that the LET value ( L max) for which the maximum (according to the applied irradiation criteria) coefficients of relative biological efficiency are observed varies depending on the character of the registered radiation induced effect. It was demonstrated that for gene mutations and induction of precision excision of mobile elements the values of L max are realized in a LET range of ≈20 keV/μm. For lethal effects of irradiation and induction of deletion mutations the value of L max is ≈ 100 and 50 keV/μm, respectively. The differences in the L max for the studied radiation gene effectis are determined by the different type of DNA damage participating in the mutation process. A molecular model of the formation of gene mutations in Escherichia coli cells under the action of ionizing radiation was proposed. Basic DNA radiation damage and main repair ways were considered in the framework of this model. The basis is the idea of the decisive role of mutagenic, error-prone, branch of SOS repair in fixing premutation DNA damage into point mutations. It was demonstrated that the central mechanism in this process is the formation of an inducible multi-enzymatic complex including the DNA polymerase V (Umu C), RecA-protease, SSB proteins, subunits of DNA polymerase III, performing erroneous DNA synthesis on the damaged matrix. A mathematical model of induction of gene mutations under ultraviolet cell irradiation was developed based on the molecular model.

  4. Nonpermissiveness for mouse embryonic stem (ES) cell derivation circumvented by a single backcross to 129/Sv strain: establishment of ES cell lines bearing the Omd conditional lethal mutation.

    PubMed

    Kress, C; Vandormael-Pournin, S; Baldacci, P; Cohen-Tannoudji, M; Babinet, C

    1998-12-01

    The inbred mouse strain DDK carries a conditional early embryonic lethal mutation that is manifested when DDK females are crossed to males of other inbred strains but not in the corresponding reciprocal crosses. It has been shown that embryonic lethality could be assigned to a single genetic locus called Ovum mutant (Om), on Chromosome (Chr) 11 near Syca 1. In the course of our study of the molecular mechanisms underlying the embryonic lethality, we were interested in deriving an embryonic stem cell bearing the Om mutation in the homozygous state (Omd/Omd). However, it turned out that DDK is nonpermissive for ES cell establishment, with a standard protocol. Here we show that permissiveness could be obtained using Omd/Omd blastocysts with a 75% 129/Sv and 25% DDK genetic background. Several germline-competent Omd/Omd ES cell lines have been derived from blastocysts of this genotype. Such a scenario could be extended to the generation of ES cell lines bearing any mutation present in an otherwise nonpermissive mouse strain.

  5. Chitin synthase III: synthetic lethal mutants and "stress related" chitin synthesis that bypasses the CSD3/CHS6 localization pathway.

    PubMed

    Osmond, B C; Specht, C A; Robbins, P W

    1999-09-28

    We screened Saccharomyces strains for mutants that are synthetically lethal with deletion of the major chitin synthase gene CHS3. In addition to finding, not surprisingly, that mutations in major cell wall-related genes such as FKS1 (glucan synthase) and mutations in any of the Golgi glycosylation complex genes (MNN9 family) are lethal in combination with chs3Delta, we found that a mutation in Srv2p, a bifunctional regulatory gene, is notably lethal in the chs3 deletion. In extending studies of fks1-chitin synthase 3 interactions, we made the surprising discovery that deletion of CSD3/CHS6, a gene normally required for Chs3p delivery and activity in vivo, was not lethal with fks1 and, in fact, that lack of Csd3p/Chs6p did not decrease the high level of stress-related chitin made in the fks1 mutant. This finding suggests that "stress response" chitin synthesis proceeds through an alternate Chs3p targeting pathway.

  6. Chitin synthase III: Synthetic lethal mutants and “stress related” chitin synthesis that bypasses the CSD3/CHS6 localization pathway

    PubMed Central

    Osmond, Barbara C.; Specht, Charles A.; Robbins, Phillips W.

    1999-01-01

    We screened Saccharomyces strains for mutants that are synthetically lethal with deletion of the major chitin synthase gene CHS3. In addition to finding, not surprisingly, that mutations in major cell wall-related genes such as FKS1 (glucan synthase) and mutations in any of the Golgi glycosylation complex genes (MNN9 family) are lethal in combination with chs3Δ, we found that a mutation in Srv2p, a bifunctional regulatory gene, is notably lethal in the chs3 deletion. In extending studies of fks1-chitin synthase 3 interactions, we made the surprising discovery that deletion of CSD3/CHS6, a gene normally required for Chs3p delivery and activity in vivo, was not lethal with fks1 and, in fact, that lack of Csd3p/Chs6p did not decrease the high level of stress-related chitin made in the fks1 mutant. This finding suggests that “stress response” chitin synthesis proceeds through an alternate Chs3p targeting pathway. PMID:10500155

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, C.R.; Taylor, C.D.; Haworth, J.C.

    The authors have discovered a single homoallelic nucleotide substitution as the putative cause of the perinatal (lethal) form of hypophosphatasia in Canadian Mennonites. Previous linkage and haplotype analysis in this population suggested that a single mutational event was responsible for this autosomal recessive form of hypophosphatasia. The mutation is a guanosine-to-adenosine substitution at nucleotide position 1177 in exon 10 of the tissue nonspecific (liver/bone/kidney) alkaline phosphatase gene. This Gly[sup 317] [yields] Asp mutation segregates exclusively with the heterozygote phenotype previously assigned by biochemical testing (maximum combined lod score of 18.24 at [theta] = 0.00). This putative disease-causing mutation has notmore » been described in controls nor in other non-Mennonite probands with both lethal and nonlethal forms of hypophosphatasia studied to date. This Gly[sup 317] [yields] Asp mutation changes a polar glycine to an acidic aspartate at amino acid position 317 within the highly conserved active site region of the 507-amino-acid polypeptide. Carrier screening for this lethal mutation in a high-risk population is now feasible. 15 refs., 2 figs.« less

  8. Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly.

    PubMed

    Braun, Daniela A; Rao, Jia; Mollet, Geraldine; Schapiro, David; Daugeron, Marie-Claire; Tan, Weizhen; Gribouval, Olivier; Boyer, Olivia; Revy, Patrick; Jobst-Schwan, Tilman; Schmidt, Johanna Magdalena; Lawson, Jennifer A; Schanze, Denny; Ashraf, Shazia; Ullmann, Jeremy F P; Hoogstraten, Charlotte A; Boddaert, Nathalie; Collinet, Bruno; Martin, Gaëlle; Liger, Dominique; Lovric, Svjetlana; Furlano, Monica; Guerrera, I Chiara; Sanchez-Ferras, Oraly; Hu, Jennifer F; Boschat, Anne-Claire; Sanquer, Sylvia; Menten, Björn; Vergult, Sarah; De Rocker, Nina; Airik, Merlin; Hermle, Tobias; Shril, Shirlee; Widmeier, Eugen; Gee, Heon Yung; Choi, Won-Il; Sadowski, Carolin E; Pabst, Werner L; Warejko, Jillian K; Daga, Ankana; Basta, Tamara; Matejas, Verena; Scharmann, Karin; Kienast, Sandra D; Behnam, Babak; Beeson, Brendan; Begtrup, Amber; Bruce, Malcolm; Ch'ng, Gaik-Siew; Lin, Shuan-Pei; Chang, Jui-Hsing; Chen, Chao-Huei; Cho, Megan T; Gaffney, Patrick M; Gipson, Patrick E; Hsu, Chyong-Hsin; Kari, Jameela A; Ke, Yu-Yuan; Kiraly-Borri, Cathy; Lai, Wai-Ming; Lemyre, Emmanuelle; Littlejohn, Rebecca Okashah; Masri, Amira; Moghtaderi, Mastaneh; Nakamura, Kazuyuki; Ozaltin, Fatih; Praet, Marleen; Prasad, Chitra; Prytula, Agnieszka; Roeder, Elizabeth R; Rump, Patrick; Schnur, Rhonda E; Shiihara, Takashi; Sinha, Manish D; Soliman, Neveen A; Soulami, Kenza; Sweetser, David A; Tsai, Wen-Hui; Tsai, Jeng-Daw; Topaloglu, Rezan; Vester, Udo; Viskochil, David H; Vatanavicharn, Nithiwat; Waxler, Jessica L; Wierenga, Klaas J; Wolf, Matthias T F; Wong, Sik-Nin; Leidel, Sebastian A; Truglio, Gessica; Dedon, Peter C; Poduri, Annapurna; Mane, Shrikant; Lifton, Richard P; Bouchard, Maxime; Kannu, Peter; Chitayat, David; Magen, Daniella; Callewaert, Bert; van Tilbeurgh, Herman; Zenker, Martin; Antignac, Corinne; Hildebrandt, Friedhelm

    2017-10-01

    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.

  9. Oligosyndactylism Mice Have an Inversion of Chromosome 8

    PubMed Central

    Wise, Thomas L.; Pravtcheva, Dimitrina D.

    2004-01-01

    The radiation-induced mutation Oligosyndactylism (Os) is associated with limb and kidney defects in heterozygotes and with mitotic arrest and embryonic lethality in homozygotes. We reported that the cell cycle block in Os and in the 94-A/K transgene-induced mutations is due to disruption of the Anapc10 (Apc10/Doc1) gene. To understand the genetic basis of the limb and kidney abnormalities in Os mice we characterized the structural changes of chromosome 8 associated with this mutation. We demonstrate that the Os chromosome 8 has suffered two breaks that are 5 cM (∼10 Mb) apart and the internal fragment delineated by the breaks is in an inverted orientation on the mutant chromosome. While sequences in proximity to the distal break are present in an abnormal Os-specific Anapc10 hybrid transcript, transcription of these sequences in normal mice is low and difficult to detect. Transfer of the Os mutation onto an FVB/N background indicated that the absence of dominant effects in 94-A/K mice is not due to strain background effects on the mutation. Further analysis of this mutation will determine if a gene interrupted by the break or a long-range effect of the rearrangement on neighboring genes is responsible for the dominant effects of Os. PMID:15611179

  10. Mutations in the histone fold domain of the TAF12 gene show synthetic lethality with the TAF1 gene lacking the TAF N-terminal domain (TAND) by different mechanisms from those in the SPT15 gene encoding the TATA box-binding protein (TBP)

    PubMed Central

    Kobayashi, Akiko; Miyake, Tsuyoshi; Kawaichi, Masashi; Kokubo, Tetsuro

    2003-01-01

    The general transcription factor TFIID, composed of the TATA box-binding protein (TBP) and 14 TBP-associated factors (TAFs), is important for both basal and regulated transcription by RNA polymerase II. Although it is well known that the TAF N-terminal domain (TAND) at the amino-terminus of the TAF1 protein binds to TBP and thereby inhibits TBP function in vitro, the physiological role of this domain remains obscure. In our previous study, we screened for mutations that cause lethality when co-expressed with the TAF1 gene lacking TAND (taf1-ΔTAND) and identified two ΔTAND synthetic lethal (nsl) mutations as those in the SPT15 gene encoding TBP. In this study we isolated another nsl mutation in the same screen and identified it to be a mutation in the histone fold domain (HFD) of the TAF12 gene. Several other HFD mutations of this gene also exhibit nsl phenotypes, and all of them are more or less impaired in transcriptional activation in vivo. Interestingly, a set of genes affected in the taf1-ΔTAND mutant is similarly affected in the taf12 HFD mutants but not in the nsl mutants of TBP. Therefore, we discovered that the nsl mutations of these two genes cause lethality in the taf1-ΔTAND mutant by different mechanisms. PMID:12582246

  11. Nematode radiobiology and development in space. Results from IML-1

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Schubert, W. W.; Kazarians, G. A.; Richards, G. F.; Benton, E. V.; Benton, E. R.; Henke, R.

    1994-01-01

    The Radiat experiment was one of 17 investigations which used the ESA Biorack on IML-1 (International Microgravity Laboratory) and it had two objectives. The first objective was to isolate and characterize mutations induced by cosmic rays; the second was to assess the fidelity of development in 0-gravity over two consecutive generations. Two strategies were used to isolate mutations in a set of essential genes or a specific gene and to correlate the genetic events with the passage of charged particles. The results were isolation of 60 lethal mutations whose phenotypes are related to the local pattern of energy deposition. 12 mutations in the unc-22 gene include large deletions as characterized by DNA hybridization studies. Development of nematodes proceeded through two consecutive generations with no obvious defects. Cytoplasmic determinants in embryos, nuclear location and symmetry of cellular anatomy were normal as were Mendelian segregation and recombination of genetic markers.

  12. Identification of a nonsense mutation in APAF1 that is likely causal for a decrease in reproductive efficiency in Holstein dairy cattle

    USDA-ARS?s Scientific Manuscript database

    A haplotype on cattle chromosome 5 carrying a recessive lethal allele was found to originate in a Holstein-Friesian foundation sire. Resequencing led to the identification of a stop-gain mutation in exon 11 of APAF1, a gene known to cause embryonic lethality and neurodevelopmental abnormalities in ...

  13. Use of the Polymerase Chain Reaction and Complementary DNA Probes in the Detection of Duchenne Muscular Dystrophy Carriers

    DTIC Science & Technology

    1990-01-01

    dominant or X-linked mutations, for example DMD and lethal osteogenesis imperfecta (1, 97). This phenomenon is the result of a dual population of...of the mutations. Am J Hum Genet 1988; 43: 620-29. 97. Cohn DH, Starman B, Blumberg B, Byers PH. Recurrence of lethal osteogenesis imperfecta due to

  14. Targeted Disruption of Mouse Yin Yang 1 Transcription Factor Results in Peri-Implantation Lethality

    PubMed Central

    Donohoe, Mary E.; Zhang, Xiaolin; McGinnis, Lynda; Biggers, John; Li, En; Shi, Yang

    1999-01-01

    Yin Yang 1 (YY1) is a zinc finger-containing transcription factor and a target of viral oncoproteins. To determine the biological role of YY1 in mammalian development, we generated mice deficient for YY1 by gene targeting. Homozygosity for the mutated YY1 allele results in embryonic lethality in the mouse. YY1 mutants undergo implantation and induce uterine decidualization but rapidly degenerate around the time of implantation. A subset of YY1 heterozygote embryos are developmentally retarded and exhibit neurulation defects, suggesting that YY1 may have additional roles during later stages of mouse embryogenesis. Our studies demonstrate an essential function for YY1 in the development of the mouse embryo. PMID:10490658

  15. A Strong Loss-of-Function Mutation in RAN1 Results in Constitutive Activation of the Ethylene Response Pathway as Well as a Rosette-Lethal Phenotype

    PubMed Central

    Woeste, Keith E.; Kieber, Joseph J.

    2000-01-01

    A recessive mutation was identified that constitutively activated the ethylene response pathway in Arabidopsis and resulted in a rosette-lethal phenotype. Positional cloning of the gene corresponding to this mutation revealed that it was allelic to responsive to antagonist1 (ran1), a mutation that causes seedlings to respond in a positive manner to what is normally a competitive inhibitor of ethylene binding. In contrast to the previously identified ran1-1 and ran1-2 alleles that are morphologically indistinguishable from wild-type plants, this ran1-3 allele results in a rosette-lethal phenotype. The predicted protein encoded by the RAN1 gene is similar to the Wilson and Menkes disease proteins and yeast Ccc2 protein, which are integral membrane cation-transporting P-type ATPases involved in copper trafficking. Genetic epistasis analysis indicated that RAN1 acts upstream of mutations in the ethylene receptor gene family. However, the rosette-lethal phenotype of ran1-3 was not suppressed by ethylene-insensitive mutants, suggesting that this mutation also affects a non-ethylene-dependent pathway regulating cell expansion. The phenotype of ran1-3 mutants is similar to loss-of-function ethylene receptor mutants, suggesting that RAN1 may be required to form functional ethylene receptors. Furthermore, these results suggest that copper is required not only for ethylene binding but also for the signaling function of the ethylene receptors. PMID:10715329

  16. A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype

    NASA Technical Reports Server (NTRS)

    Woeste, K. E.; Kieber, J. J.; Evans, M. L. (Principal Investigator)

    2000-01-01

    A recessive mutation was identified that constitutively activated the ethylene response pathway in Arabidopsis and resulted in a rosette-lethal phenotype. Positional cloning of the gene corresponding to this mutation revealed that it was allelic to responsive to antagonist1 (ran1), a mutation that causes seedlings to respond in a positive manner to what is normally a competitive inhibitor of ethylene binding. In contrast to the previously identified ran1-1 and ran1-2 alleles that are morphologically indistinguishable from wild-type plants, this ran1-3 allele results in a rosette-lethal phenotype. The predicted protein encoded by the RAN1 gene is similar to the Wilson and Menkes disease proteins and yeast Ccc2 protein, which are integral membrane cation-transporting P-type ATPases involved in copper trafficking. Genetic epistasis analysis indicated that RAN1 acts upstream of mutations in the ethylene receptor gene family. However, the rosette-lethal phenotype of ran1-3 was not suppressed by ethylene-insensitive mutants, suggesting that this mutation also affects a non-ethylene-dependent pathway regulating cell expansion. The phenotype of ran1-3 mutants is similar to loss-of-function ethylene receptor mutants, suggesting that RAN1 may be required to form functional ethylene receptors. Furthermore, these results suggest that copper is required not only for ethylene binding but also for the signaling function of the ethylene receptors.

  17. Biological damage induced by ionizing cosmic rays in dry Arabidopsis seeds.

    PubMed

    Kranz, A R; Bork, U; Bucker, H; Reitz, G

    1990-01-01

    In September 1987 dry seeds containing embryos of the crucifer plant Arabidopsis thaliana (L.) Heynh, were flown in orbit for 13 days on the Kosmos 1887 satellite. The seeds were fixed on CNd detectors and stored in units of Biorack type I/O. One unit was exposed inside, another one outside the satellite. The temperature profile of the flown seeds inside the satellite was simulated on earth in an identical backup control sample (BC). An additional control (SC) was studied with the original seeds sample. By use of the CNd-detector, HZE-tracks were measured with a PC-assisted microscope. The biological damages were investigated by growing the seeds under controlled climatic conditions. The following biological endpoints of the cosmic radiation damage were studied: germination, radicle length, sublethality, morphological aberrations, flower development, tumorization, embryo lethality inside the siliques. The summarized damage (D) and the mutation frequencies of embyronic lethal genes were calculated. The following results were obtained: the damages increase significantly in orbit at all biological endpoints; germination and fiowerings especially, as well as embryo lethality of fruits and lethal mutation frequency, were maximum mostly for HZE-hit seeds. Additionally, an increase of damage was observed for the seeds of the outside-exposed Biorack in comparison to the inside ones, which was probably caused by less radiation shielding and free space vacuum. The significance of the results obtained is discussed with respect to stress and risk and, thus, the quality of the RBE-factors and heavy ionizing radiation all needed for the very definition of radiation protection standards in space.

  18. Inferring the distribution of mutational effects on fitness in Drosophila.

    PubMed

    Loewe, Laurence; Charlesworth, Brian

    2006-09-22

    The properties of the distribution of deleterious mutational effects on fitness (DDME) are of fundamental importance for evolutionary genetics. Since it is extremely difficult to determine the nature of this distribution, several methods using various assumptions about the DDME have been developed, for the purpose of parameter estimation. We apply a newly developed method to DNA sequence polymorphism data from two Drosophila species and compare estimates of the parameters of the distribution of the heterozygous fitness effects of amino acid mutations for several different distribution functions. The results exclude normal and gamma distributions, since these predict too few effectively lethal mutations and power-law distributions as a result of predicting too many lethals. Only the lognormal distribution appears to fit both the diversity data and the frequency of lethals. This DDME arises naturally in complex systems when independent factors contribute multiplicatively to an increase in fitness-reducing damage. Several important parameters, such as the fraction of effectively neutral non-synonymous mutations and the harmonic mean of non-neutral selection coefficients, are robust to the form of the DDME. Our results suggest that the majority of non-synonymous mutations in Drosophila are under effective purifying selection.

  19. Large-scale identification of chemically induced mutations in Drosophila melanogaster

    PubMed Central

    Haelterman, Nele A.; Jiang, Lichun; Li, Yumei; Bayat, Vafa; Sandoval, Hector; Ugur, Berrak; Tan, Kai Li; Zhang, Ke; Bei, Danqing; Xiong, Bo; Charng, Wu-Lin; Busby, Theodore; Jawaid, Adeel; David, Gabriela; Jaiswal, Manish; Venken, Koen J.T.; Yamamoto, Shinya

    2014-01-01

    Forward genetic screens using chemical mutagens have been successful in defining the function of thousands of genes in eukaryotic model organisms. The main drawback of this strategy is the time-consuming identification of the molecular lesions causative of the phenotypes of interest. With whole-genome sequencing (WGS), it is now possible to sequence hundreds of strains, but determining which mutations are causative among thousands of polymorphisms remains challenging. We have sequenced 394 mutant strains, generated in a chemical mutagenesis screen, for essential genes on the Drosophila X chromosome and describe strategies to reduce the number of candidate mutations from an average of ∼3500 to 35 single-nucleotide variants per chromosome. By combining WGS with a rough mapping method based on large duplications, we were able to map 274 (∼70%) mutations. We show that these mutations are causative, using small 80-kb duplications that rescue lethality. Hence, our findings demonstrate that combining rough mapping with WGS dramatically expands the toolkit necessary for assigning function to genes. PMID:25258387

  20. Mismatch repair deficiency does not enhance ENU mutagenesis in the zebrafish germ line.

    PubMed

    Feitsma, Harma; de Bruijn, Ewart; van de Belt, Jose; Nijman, Isaac J; Cuppen, Edwin

    2008-07-01

    S(N)1-type alkylating agents such as N-ethyl-N-nitrosourea (ENU) are very potent mutagens. They act by transferring their alkyl group to DNA bases, which, upon mispairing during replication, can cause single base pair mutations in the next replication cycle. As DNA mismatch repair (MMR) proteins are involved in the recognition of alkylation damage, we hypothesized that ENU-induced mutation rates could be increased in a MMR-deficient background, which would be beneficial for mutagenesis approaches. We applied a standard ENU mutagenesis protocol to adult zebrafish deficient in the MMR gene msh6 and heterozygous controls to study the effect of MMR on ENU-induced DNA damage. Dose-dependent lethality was found to be similar for homozygous and heterozygous mutants, indicating that there is no difference in ENU resistance. Mutation discovery by high-throughput dideoxy resequencing of genomic targets in outcrossed progeny of the mutagenized fish did also not reveal any differences in germ line mutation frequency. These results may indicate that the maximum mutation load for zebrafish has been reached with the currently used, highly optimized ENU mutagenesis protocol. Alternatively, the MMR system in the zebrafish germ line may be saturated very rapidly, thereby having a limited effect on high-dose ENU mutagenesis.

  1. Mutations in the evolutionarily highly conserved KEOPS complex genes cause nephrotic syndrome with microcephaly

    PubMed Central

    Braun, Daniela A.; Rao, Jia; Mollet, Geraldine; Schapiro, David; Daugeron, Marie-Claire; Tan, Weizhen; Gribouval, Olivier; Boyer, Olivia; Revy, Patrick; Jobst-Schwan, Tilman; Schmidt, Johanna Magdalena; Lawson, Jennifer A.; Schanze, Denny; Ashraf, Shazia; Boddaert, Nathalie; Collinet, Bruno; Martin, Gaëlle; Liger, Dominique; Lovric, Svjetlana; Furlano, Monica; Guerrera, I. Chiara; Sanchez-Ferras, Oraly; Menten, Björn; Vergult, Sarah; De Rocker, Nina; Airik, Merlin; Hermle, Tobias; Shril, Shirlee; Widmeier, Eugen; Gee, Heon Yung; Choi, Won-Il; Sadowski, Carolin E.; Pabst, Werner L.; Warejko, Jillian; Daga, Ankana; LeBerre, Tamara Basta; Matejas, Verena; Behnam, Babak; Beeson, Brendan; Begtrup, Amber; Bruce, Malcolm; Ch'ng, Gaik-Siew; Lin, Shuan-Pei; Chang, Jui-Hsing; Chen, Chao-Huei; Cho, Megan T.; Gipson, Patrick E.; Hsu, Chyong-Hsin; Kari, Jameela A.; Ke, Yu-Yuan; Kiraly-Borri, Cathy; Lai, Wai-ming; Lemyre, Emmanuelle; Littlejohn, Rebecca Okasha; Masri, Amira; Moghtaderi, Mastaneh; Nakamura, Kazuyuki; Praet, Marleen; Prasad, Chitra; Prytula, Agnieszka; Roeder, Elizabeth; Rump, Patrick; Schnur, Rhonda E.; Shiihara, Takashi; Sinha, Manish; Soliman, Neveen A; Soulami, Kenza; Sweetser, David A.; Tsai, Wen-Hui; Tsai, Jeng-Daw; Vester, Udo; Viskochil, David H.; Vatanavicharn, Nithiwat; Waxler, Jessica L.; Wolf, Matthias T.F.; Wong, Sik-Nin; Poduri, Annapurna; Truglio, Gessica; Mane, Shrikant; Lifton, Richard P.; Bouchard, Maxime; Kannu, Peter; Chitayat, David; Magen, Daniella; Calleweart, Bert; van Tilbeurgh, Herman; Zenker, Martin; Antignac, Corinne; Hildebrandt, Friedhelm

    2018-01-01

    Galloway-Mowat syndrome (GAMOS) is a severe autosomal-recessive disease characterized by the combination of early-onset steroid-resistant nephrotic syndrome (SRNS) and microcephaly with brain anomalies. To date, mutations of WDR73 are the only known monogenic cause of GAMOS and in most affected individuals the molecular diagnosis remains elusive. We here identify recessive mutations of OSGEP, TP53RK, TPRKB, or LAGE3, encoding the 4 subunits of the KEOPS complex in 33 individuals of 30 families with GAMOS. CRISPR/Cas9 knockout in zebrafish and mice recapitulates the human phenotype of microcephaly and results in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibits cell proliferation, which human mutations fail to rescue, and knockdown of either gene activates DNA damage response signaling and induces apoptosis. OSGEP and TP53RK molecularly interact and co-localize with the actin-regulating ARP2/3 complex. Furthermore, knockdown of OSGEP and TP53RK induces defects of the actin cytoskeleton and reduces migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identify 4 novel monogenic causes of GAMOS, describe the first link between KEOPS function and human disease, and delineate potential pathogenic mechanisms. PMID:28805828

  2. Analysis of mutant quantity and quality in human-hamster hybrid AL and AL-179 cells exposed to 137Cs-gamma or HZE-Fe ions

    NASA Technical Reports Server (NTRS)

    Waldren, C.; Vannais, D.; Drabek, R.; Gustafson, D.; Kraemer, S.; Lenarczyk, M.; Kronenberg, A.; Hei, T.; Ueno, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    We measured the number of mutants and the kinds of mutations induced by 137Cs-gamma and by HZE-Fe (56Fe [600 MeV/amu, LET = 190 KeV/micrometer) in standard AL human hamster hybrid cells and in a new variant hybrid, AL-179. We found that HZE-Fe was more mutagenic than 137Cs-gamma per unit dose (about 1.6 fold), but was slightly less mutagenic per mean lethal dose, DO, at both the S1 and hprt- loci of AL cells. On the other hand, HZE-Fe induced about nine fold more complex S1- mutants than 137Cs-gamma rays, 28% vs 3%. 137Cs-gamma rays induced about twice as many S1- mutants and hprt-mutants in AL-179 as in AL cells, and about nine times more of the former were complex, and potentially unstable kinds of mutations.

  3. Mutation-Linked Defective Inter-Domain Interactions within Ryanodine Receptor Cause Aberrant Ca2+ Release Leading to Catecholaminergic Polymorphic Ventricular Tachycardia

    PubMed Central

    Suetomi, Takeshi; Yano, Masafumi; Uchinoumi, Hitoshi; Fukuda, Masakazu; Hino, Akihiro; Ono, Makoto; Xu, Xiaojuan; Tateishi, Hiroki; Okuda, Shinichi; Doi, Masahiro; Kobayashi, Shigeki; Ikeda, Yasuhiho; Yamamoto, Takeshi; Ikemoto, Noriaki; Matsuzaki, Masunori

    2011-01-01

    Background The molecular mechanism by which catecholaminergic polymorphic ventricular tachycardia (CPVT) is induced by single amino acid mutations within the cardiac ryanodine receptor (RyR2) remains elusive. Here, we investigated mutation-induced conformational defects of RyR2 using a knock-in (KI) mouse model expressing the human CPVT-associated RyR2 mutant (S2246L; Serine to Leucine mutation at the residue 2246). Methods and Results All KI mice we examined produced VT after exercise on a treadmill. cAMP-dependent increase in the frequency of Ca2+ sparks was more pronounced in saponin-permeabilized KI cardiomyocytes than in WT cardiomyocytes. Site-directed fluorescent labeling and quartz microbalance assays of the specific binding of DP2246 (a peptide corresponding to the 2232–2266 region: the 2246 domain) showed that DP2246 binds with the K201-binding sequence of RyR2 (1741– 2270). Introduction of S2246L mutation into the DP2246 increased the affinity of peptide binding. Fluorescence quench assays of inter-domain interactions within RyR2 showed that tight interaction of the 2246 domain/K201-binding domain is coupled with domain unzipping of the N-terminal (1-600)/central (2000–2500) domain pair in an allosteric manner. Dantrolene corrected the mutation-caused domain unzipping of the domain switch, and stopped the exercise-induced ventricular tachycardia. Conclusions The CPVT-linked mutation of RyR2, S2246L, causes an abnormally tight local sub-domain/sub-domain interaction within the central domain involving the mutation site, which induces defective interaction between the N-terminal and central domains. This results in an erroneous activation of Ca2+ channel in a diastolic state reflecting on the increased Ca2+ spark frequency, which then leads to lethal arrhythmia. PMID:21768539

  4. Mutation-linked defective interdomain interactions within ryanodine receptor cause aberrant Ca²⁺release leading to catecholaminergic polymorphic ventricular tachycardia.

    PubMed

    Suetomi, Takeshi; Yano, Masafumi; Uchinoumi, Hitoshi; Fukuda, Masakazu; Hino, Akihiro; Ono, Makoto; Xu, Xiaojuan; Tateishi, Hiroki; Okuda, Shinichi; Doi, Masahiro; Kobayashi, Shigeki; Ikeda, Yasuhiro; Yamamoto, Takeshi; Ikemoto, Noriaki; Matsuzaki, Masunori

    2011-08-09

    The molecular mechanism by which catecholaminergic polymorphic ventricular tachycardia is induced by single amino acid mutations within the cardiac ryanodine receptor (RyR2) remains elusive. In the present study, we investigated mutation-induced conformational defects of RyR2 using a knockin mouse model expressing the human catecholaminergic polymorphic ventricular tachycardia-associated RyR2 mutant (S2246L; serine to leucine mutation at the residue 2246). All knockin mice we examined produced ventricular tachycardia after exercise on a treadmill. cAMP-dependent increase in the frequency of Ca²⁺ sparks was more pronounced in saponin-permeabilized knockin cardiomyocytes than in wild-type cardiomyocytes. Site-directed fluorescent labeling and quartz microbalance assays of the specific binding of DP2246 (a peptide corresponding to the 2232 to 2266 region: the 2246 domain) showed that DP2246 binds with the K201-binding sequence of RyR2 (1741 to 2270). Introduction of S2246L mutation into the DP2246 increased the affinity of peptide binding. Fluorescence quench assays of interdomain interactions within RyR2 showed that tight interaction of the 2246 domain/K201-binding domain is coupled with domain unzipping of the N-terminal (1 to 600)/central (2000 to 2500) domain pair in an allosteric manner. Dantrolene corrected the mutation-caused domain unzipping of the domain switch and stopped the exercise-induced ventricular tachycardia. The catecholaminergic polymorphic ventricular tachycardia-linked mutation of RyR2, S2246L, causes an abnormally tight local subdomain-subdomain interaction within the central domain involving the mutation site, which induces defective interaction between the N-terminal and central domains. This results in an erroneous activation of Ca²⁺ channel in a diastolic state reflecting on the increased Ca²⁺ spark frequency, which then leads to lethal arrhythmia.

  5. PSO4: a novel gene involved in error-prone repair in Saccharomyces cerevisiae.

    PubMed

    Henriques, J A; Vicente, E J; Leandro da Silva, K V; Schenberg, A C

    1989-09-01

    The haploid xs9 mutant, originally selected for on the basis of a slight sensitivity to the lethal effect of X-rays, was found to be extremely sensitive to inactivation by 8-methoxypsoralen (8MOP) photoaddition, especially when cells are treated in the G2 phase of the cell cycle. As the xs9 mutation showed no allelism with any of the 3 known pso mutations, it was now given the name of pso4-1. Regarding inactivation, the pso4-1 mutant is also sensitive to mono- (HN1) or bi-functional (HN2) nitrogen mustards, it is slightly sensitive to 254 nm UV radiation (UV), and shows nearly normal sensitivity to 3-carbethoxypsoralen (3-CPs) photoaddition or methyl methanesulfonate (MMS). Regarding mutagenesis, the pso4-1 mutation completely blocks reverse and forward mutations induced by either 8MOP or 3CPs photoaddition, or by gamma-rays. In the cases of UV, HN1, HN2 or MMS treatments, while reversion induction is still completely abolished, forward mutagenesis is only partially inhibited for UV, HN1, or MMS, and it is unaffected for HN2. Besides severely inhibiting induced mutagenesis, the pso4-1 mutation was found to be semi-dominant, to block sporulation, to abolish the diploid resistance effect, and to block induced mitotic recombination, which indicates that the PSO4 gene is involved in a recombinational pathway of error-prone repair, comparable to the E. coli SOS repair pathway.

  6. Suppression Analysis Reveals a Functional Difference between the Serines in Positions Two and Five in the Consensus Sequence of the C-Terminal Domain of Yeast RNA Polymerase II

    PubMed Central

    Yuryev, A.; Corden, J. L.

    1996-01-01

    The largest subunit of RNA polymerase II contains a repetitive C-terminal domain (CTD) consisting of tandem repeats of the consensus sequence Tyr(1)Ser(2)Pro(3)Thr(4) Ser(5)Pro(6) Ser(7). Substitution of nonphosphorylatable amino acids at positions two or five of the Saccharomyces cerevisiae CTD is lethal. We developed a selection ssytem for isolating suppressors of this lethal phenotype and cloned a gene, SCA1 (suppressor of CTD alanine), which complements recessive suppressors of lethal multiple-substitution mutations. A partial deletion of SCA1 (sca1Δ::hisG) suppresses alanine or glutamate substitutions at position two of the consensus CTD sequence, and a lethal CTD truncation mutation, but SCA1 deletion does not suppress alanine or glutamate substitutions at position five. SCA1 is identical to SRB9, a suppressor of a cold-sensitive CTD truncation mutation. Strains carrying dominant SRB mutations have the same suppression properties as a sca1Δ::hisG strain. These results reveal a functional difference between positions two and five of the consensus CTD heptapeptide repeat. The ability of SCA1 and SRB mutant alleles to suppress CTD truncation mutations suggest that substitutions at position two, but not at position five, cause a defect in RNA polymerase II function similar to that introduced by CTD truncation. PMID:8725217

  7. Killed but metabolically active Bacillus anthracis vaccines induce broad and protective immunity against anthrax.

    PubMed

    Skoble, Justin; Beaber, John W; Gao, Yi; Lovchik, Julie A; Sower, Laurie E; Liu, Weiqun; Luckett, William; Peterson, Johnny W; Calendar, Richard; Portnoy, Daniel A; Lyons, C Rick; Dubensky, Thomas W

    2009-04-01

    Bacillus anthracis is the causative agent of anthrax. We have developed a novel whole-bacterial-cell anthrax vaccine utilizing B. anthracis that is killed but metabolically active (KBMA). Vaccine strains that are asporogenic and nucleotide excision repair deficient were engineered by deleting the spoIIE and uvrAB genes, rendering B. anthracis extremely sensitive to photochemical inactivation with S-59 psoralen and UV light. We also introduced point mutations into the lef and cya genes, which allowed inactive but immunogenic toxins to be produced. Photochemically inactivated vaccine strains maintained a high degree of metabolic activity and secreted protective antigen (PA), lethal factor, and edema factor. KBMA B. anthracis vaccines were avirulent in mice and induced less injection site inflammation than recombinant PA adsorbed to aluminum hydroxide gel. KBMA B. anthracis-vaccinated animals produced antibodies against numerous anthrax antigens, including high levels of anti-PA and toxin-neutralizing antibodies. Vaccination with KBMA B. anthracis fully protected mice against challenge with lethal doses of toxinogenic unencapsulated Sterne 7702 spores and rabbits against challenge with lethal pneumonic doses of fully virulent Ames strain spores. Guinea pigs vaccinated with KBMA B. anthracis were partially protected against lethal Ames spore challenge, which was comparable to vaccination with the licensed vaccine anthrax vaccine adsorbed. These data demonstrate that KBMA anthrax vaccines are well tolerated and elicit potent protective immune responses. The use of KBMA vaccines may be broadly applicable to bacterial pathogens, especially those for which the correlates of protective immunity are unknown.

  8. Loss of Roquin induces early death and immune deregulation but not autoimmunity.

    PubMed

    Bertossi, Arianna; Aichinger, Martin; Sansonetti, Paola; Lech, Maciej; Neff, Frauke; Pal, Martin; Wunderlich, F Thomas; Anders, Hans-Joachim; Klein, Ludger; Schmidt-Supprian, Marc

    2011-08-29

    The substitution of one amino acid in the Roquin protein by the sanroque mutation induces a dramatic autoimmune syndrome in mice. This is believed to occur through ectopic expression of inducible T cell co-stimulator (ICOS) and unrestrained differentiation of follicular T helper cells, which induce spontaneous germinal center reactions to self-antigens. In this study, we demonstrate that tissue-specific ablation of Roquin in T or B cells, in the entire hematopoietic system, or in epithelial cells of transplanted thymi did not cause autoimmunity. Loss of Roquin induced elevated expression of ICOS through T cell-intrinsic and -extrinsic mechanisms, which itself was not sufficient to break self-tolerance. Instead, ablation of Roquin in the hematopoietic system caused defined changes in immune homeostasis, including the expansion of macrophages, eosinophils, and T cell subsets, most dramatically CD8 effector-like T cells, through cell-autonomous and nonautonomous mechanisms. Germline Roquin deficiency led to perinatal lethality, which was partially rescued on the genetic background of an outbred strain. However, not even complete absence of Roquin resulted in overt self-reactivity, suggesting that the sanroque mutation induces autoimmunity through an as yet unknown mechanism. © 2011 Bertossi et al.

  9. Radiation-induced genomic instability: radiation quality and dose response

    NASA Technical Reports Server (NTRS)

    Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.

    2003-01-01

    Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.

  10. A Strategy To Isolate Modifiers of Caenorhabditis elegans Lethal Mutations: Investigating the Endoderm Specifying Ability of the Intestinal Differentiation GATA Factor ELT-2.

    PubMed

    Wiesenfahrt, Tobias; Duanmu, Jingjie; Snider, Frances; Moerman, Don; Au, Vinci; Li-Leger, Erica; Flibotte, Stephane; Parker, Dylan M; Marshall, Craig J; Nishimura, Erin Osborne; Mains, Paul E; McGhee, James D

    2018-05-04

    The ELT-2 GATA factor normally functions in differentiation of the C. elegans endoderm, downstream of endoderm specification. We have previously shown that, if ELT-2 is expressed sufficiently early, it is also able to specify the endoderm and to replace all other members of the core GATA-factor transcriptional cascade (END-1, END-3, ELT-7). However, such rescue requires multiple copies (and presumably overexpression) of the end-1p :: elt-2 cDNA transgene; a single copy of the transgene does not rescue. We have made this observation the basis of a genetic screen to search for genetic modifiers that allow a single copy of the end-1p :: elt-2 cDNA transgene to rescue the lethality of the end-1 end-3 double mutant. We performed this screen on a strain that has a single copy insertion of the transgene in an end-1 end-3 background. These animals are kept alive by virtue of an extrachromosomal array containing multiple copies of the rescuing transgene; the extrachromosomal array also contains a toxin under heat shock control to counterselect for mutagenized survivors that have been able to lose the rescuing array. A screen of ∼14,000 mutagenized haploid genomes produced 17 independent surviving strains. Whole genome sequencing was performed to identify genes that incurred independent mutations in more than one surviving strain. The C. elegans gene tasp-1 was mutated in four independent strains. tasp-1 encodes the C. elegans homolog of Taspase, a threonine-aspartic acid protease that has been found, in both mammals and insects, to cleave several proteins involved in transcription, in particular MLL1/trithorax and TFIIA. A second gene, pqn-82 , was mutated in two independent strains and encodes a glutamine-asparagine rich protein. tasp-1 and pqn-82 were verified as loss-of-function modifiers of the end-1p :: elt-2 transgene by RNAi and by CRISPR/Cas9-induced mutations. In both cases, gene loss leads to modest increases in the level of ELT-2 protein in the early endoderm although ELT-2 levels do not strictly correlate with rescue. We suggest that tasp-1 and pqn-82 represent a class of genes acting in the early embryo to modulate levels of critical transcription factors or to modulate the responsiveness of critical target genes. The screen's design, rescuing lethality with an extrachromosomal transgene followed by counterselection, has a background survival rate of <10 -4 without mutagenesis and should be readily adapted to the general problem of identifying suppressors of C. elegans lethal mutations. Copyright © 2018 Wiesenfahrt et al.

  11. Mutations in new cell cycle genes that fail to complement a multiply mutant third chromosome of Drosophila.

    PubMed

    White-Cooper, H; Carmena, M; Gonzalez, C; Glover, D M

    1996-11-01

    We have simultaneously screened for new alleles and second site mutations that fail to complement five cell cycle mutations of Drosphila carried on a single third chromosome (gnu, polo, mgr, asp, stg). Females that are either transheterozygous for scott of the antartic (scant) and polo, or homozygous for scant produce embryos that show mitotic defects. A maternal effect upon embryonic mitoses is also seen in embryos derived from females transheterozygous with helter skelter (hsk) and either mgr or asp. cleopatra (cleo), fails to complement asp but is not uncovered by a deficiency for asp. The mitotic phenotype of larvae heterozygous for cleo and the multiple mutant chromosome is similar to weak alleles of asp, but there are no defects in male meiosis. Mutations that failed to complement stg fell into two complementation groups corresponding to stg and a new gene noose. Three of the new stg alleles are early zygotic lethals, whereas the fourth is a pharate adult lethal allele that affects both mitosis and meiosis. Mutations in noose fully complement a small deficiency that removes stg, but when placed in trans to certain stg alleles, result in late lethality and mitotic abnormalities in larval brains.

  12. Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability.

    PubMed

    Dietrich, Charles R; Han, Gongshe; Chen, Ming; Berg, R Howard; Dunn, Teresa M; Cahoon, Edgar B

    2008-04-01

    Serine palmitoyltransferase (SPT) catalyzes the first step in sphingolipid biosynthesis, and downregulation of this enzyme provides a means for exploring sphingolipid function in cells. We have previously demonstrated that Arabidopsis SPT requires LCB1 and LCB2 subunits for activity, as is the case in other eukaryotes. In this study, we show that Arabidopsis has two genes (AtLCB2a and AtLCB2b) that encode functional isoforms of the LCB2 subunit. No alterations in sphingolipid content or growth were observed in T-DNA mutants for either gene, but homozygous double mutants were not recoverable, suggesting that these genes are functionally redundant. Reciprocal crosses conducted with Atlcb2a and Atlcb2b mutants indicated that lethality is associated primarily with the inability to transmit the lcb2 null genotype through the haploid pollen. Consistent with this, approximately 50% of the pollen obtained from plants homozygous for a mutation in one gene and heterozygous for a mutation in the second gene arrested during transition from uni-nucleate microspore to bicellular pollen. Ultrastructural analyses revealed that these pollen grains contained aberrant endomembranes and lacked an intine layer. To examine sphingolipid function in sporophytic cells, Arabidopsis lines were generated that allowed inducible RNAi silencing of AtLCB2b in an Atlcb2a mutant background. Studies conducted with these lines demonstrated that sphingolipids are essential throughout plant development, and that lethality resulting from LCB2 silencing in seedlings could be partially rescued by supplying exogenous long-chain bases. Overall, these studies provide insights into the genetic and biochemical properties of SPT and sphingolipid function in Arabidopsis.

  13. Empirical complexities in the genetic foundations of lethal mutagenesis.

    PubMed

    Bull, James J; Joyce, Paul; Gladstone, Eric; Molineux, Ian J

    2013-10-01

    From population genetics theory, elevating the mutation rate of a large population should progressively reduce average fitness. If the fitness decline is large enough, the population will go extinct in a process known as lethal mutagenesis. Lethal mutagenesis has been endorsed in the virology literature as a promising approach to viral treatment, and several in vitro studies have forced viral extinction with high doses of mutagenic drugs. Yet only one empirical study has tested the genetic models underlying lethal mutagenesis, and the theory failed on even a qualitative level. Here we provide a new level of analysis of lethal mutagenesis by developing and evaluating models specifically tailored to empirical systems that may be used to test the theory. We first quantify a bias in the estimation of a critical parameter and consider whether that bias underlies the previously observed lack of concordance between theory and experiment. We then consider a seemingly ideal protocol that avoids this bias-mutagenesis of virions-but find that it is hampered by other problems. Finally, results that reveal difficulties in the mere interpretation of mutations assayed from double-strand genomes are derived. Our analyses expose unanticipated complexities in testing the theory. Nevertheless, the previous failure of the theory to predict experimental outcomes appears to reside in evolutionary mechanisms neglected by the theory (e.g., beneficial mutations) rather than from a mismatch between the empirical setup and model assumptions. This interpretation raises the specter that naive attempts at lethal mutagenesis may augment adaptation rather than retard it.

  14. Mutation of Chinese Hamster V79 cells and transformation and mutation of mouse fibroblast C3H/10T1/2 clone 8 cells by aflatoxin B1 and four other furocoumarins isolated from two Nigerian medicinal plants.

    PubMed

    Uwaifo, A O; Billings, P C; Heidelberger, C

    1983-03-01

    Mutation by aflatoxin B1 (AFB1), imperatorin, marmesin, chalepin, and 8-methoxypsoralen (MOP), with and without black light (BL; long-wavelength ultraviolet light) activation, was determined at the hypoxanthine-guanine phosphoribosyltransferase locus (8-azaguanine resistance) in Chinese hamster V79 cells and at the ouabain locus in mouse C3H/1OT1/2 cells. Transformation by these furocoumarins under the same activation conditions was also investigated in C3H/1OT1/2 cells. In V79 cells, AFB1 induced a 4-fold maximum mutation frequency over controls under BL activation at a concentration of 5 micrograms/ml; marmesin induced a 2-fold increased mutation frequency at 1.5 micrograms/ml; MOP induced a 19-fold increase at 10 micrograms/ml; chalepin induced a 3-fold increase at 5 micrograms/ml; and imperatorin induced a 20-fold increase at 10 micrograms/ml. Essentially no mutation was observed at the ouabain-resistant (Ouar) locus in C3H/1OT1/2 cells with any of these compounds. In the transformation assays, type II and type III foci were observed at a 1-microgram/ml addition of AFB1 with or without BL activation; while with MOP and imperatorin, these types of foci were observed only with BL activation. Marmesin, although relatively more cytotoxic than the other furocoumarins studied, with a 50% lethal dose of less than 0.5 micrograms/ml, was not as mutagenic or potentially carcinogenic as were AFB1, imperatorin, or MOP with BL activation. These furocoumarins are considered to be involved in the etiology of the high incidence of skin cancer in Nigeria. Our experiments reinforce that concept and suggest that exposure to these furocoumarins may constitute a real carcinogenic hazard.

  15. Spontaneous Generation of Infectious Prion Disease in Transgenic Mice

    PubMed Central

    Castilla, Joaquín; Pintado, Belén; Gutiérrez-Adan, Alfonso; Andréoletti, Olivier; Aguilar-Calvo, Patricia; Arroba, Ana-Isabel; Parra-Arrondo, Beatriz; Ferrer, Isidro; Manzanares, Jorge; Espinosa, Juan-Carlos

    2013-01-01

    We generated transgenic mice expressing bovine cellular prion protein (PrPC) with a leucine substitution at codon 113 (113L). This protein is homologous to human protein with mutation 102L, and its genetic link with Gerstmann–Sträussler–Scheinker syndrome has been established. This mutation in bovine PrPC causes a fully penetrant, lethal, spongiform encephalopathy. This genetic disease was transmitted by intracerebral inoculation of brain homogenate from ill mice expressing mutant bovine PrP to mice expressing wild-type bovine PrP, which indicated de novo generation of infectious prions. Our findings demonstrate that a single amino acid change in the PrPC sequence can induce spontaneous generation of an infectious prion disease that differs from all others identified in hosts expressing the same PrPC sequence. These observations support the view that a variety of infectious prion strains might spontaneously emerge in hosts displaying random genetic PrPC mutations. PMID:24274622

  16. Correlation between In Vitro Cytotoxicity and In Vivo Lethal Activity in Mice of Epsilon Toxin Mutants from Clostridium perfringens

    PubMed Central

    Dorca-Arévalo, Jonatan; Pauillac, Serge; Díaz-Hidalgo, Laura; Martín-Satué, Mireia; Popoff, Michel R.; Blasi, Juan

    2014-01-01

    Epsilon toxin (Etx) from Clostridium perfringens is a pore-forming protein with a lethal effect on livestock, producing severe enterotoxemia characterized by general edema and neurological alterations. Site-specific mutations of the toxin are valuable tools to study the cellular and molecular mechanism of the toxin activity. In particular, mutants with paired cysteine substitutions that affect the membrane insertion domain behaved as dominant-negative inhibitors of toxin activity in MDCK cells. We produced similar mutants, together with a well-known non-toxic mutant (Etx-H106P), as green fluorescent protein (GFP) fusion proteins to perform in vivo studies in an acutely intoxicated mouse model. The mutant (GFP-Etx-I51C/A114C) had a lethal effect with generalized edema, and accumulated in the brain parenchyma due to its ability to cross the blood-brain barrier (BBB). In the renal system, this mutant had a cytotoxic effect on distal tubule epithelial cells. The other mutants studied (GFP-Etx-V56C/F118C and GFP-Etx-H106P) did not have a lethal effect or cross the BBB, and failed to induce a cytotoxic effect on renal epithelial cells. These data suggest a direct correlation between the lethal effect of the toxin, with its cytotoxic effect on the kidney distal tubule cells, and the ability to cross the BBB. PMID:25013927

  17. Correlation between in vitro cytotoxicity and in vivo lethal activity in mice of epsilon toxin mutants from Clostridium perfringens.

    PubMed

    Dorca-Arévalo, Jonatan; Pauillac, Serge; Díaz-Hidalgo, Laura; Martín-Satué, Mireia; Popoff, Michel R; Blasi, Juan

    2014-01-01

    Epsilon toxin (Etx) from Clostridium perfringens is a pore-forming protein with a lethal effect on livestock, producing severe enterotoxemia characterized by general edema and neurological alterations. Site-specific mutations of the toxin are valuable tools to study the cellular and molecular mechanism of the toxin activity. In particular, mutants with paired cysteine substitutions that affect the membrane insertion domain behaved as dominant-negative inhibitors of toxin activity in MDCK cells. We produced similar mutants, together with a well-known non-toxic mutant (Etx-H106P), as green fluorescent protein (GFP) fusion proteins to perform in vivo studies in an acutely intoxicated mouse model. The mutant (GFP-Etx-I51C/A114C) had a lethal effect with generalized edema, and accumulated in the brain parenchyma due to its ability to cross the blood-brain barrier (BBB). In the renal system, this mutant had a cytotoxic effect on distal tubule epithelial cells. The other mutants studied (GFP-Etx-V56C/F118C and GFP-Etx-H106P) did not have a lethal effect or cross the BBB, and failed to induce a cytotoxic effect on renal epithelial cells. These data suggest a direct correlation between the lethal effect of the toxin, with its cytotoxic effect on the kidney distal tubule cells, and the ability to cross the BBB.

  18. Lack of mutational hot spots during decitabine-mediated HIV-1 mutagenesis.

    PubMed

    Rawson, Jonathan M O; Landman, Sean R; Reilly, Cavan S; Bonnac, Laurent; Patterson, Steven E; Mansky, Louis M

    2015-11-01

    Decitabine has previously been shown to induce lethal mutagenesis of human immunodeficiency virus type 1 (HIV-1). However, the factors that determine the susceptibilities of individual sequence positions in HIV-1 to decitabine have not yet been defined. To investigate this, we performed Illumina high-throughput sequencing of multiple amplicons prepared from proviral DNA that was recovered from decitabine-treated cells infected with HIV-1. We found that decitabine induced an ≈4.1-fold increase in the total mutation frequency of HIV-1, primarily due to a striking ≈155-fold increase in the G-to-C transversion frequency. Intriguingly, decitabine also led to an ≈29-fold increase in the C-to-G transversion frequency. G-to-C frequencies varied substantially (up to ≈80-fold) depending upon sequence position, but surprisingly, mutational hot spots (defined as upper outliers within the mutation frequency distribution) were not observed. We further found that every single guanine position examined was significantly susceptible to the mutagenic effects of decitabine. Taken together, these observations demonstrate for the first time that decitabine-mediated HIV-1 mutagenesis is promiscuous and occurs in the absence of a clear bias for mutational hot spots. These data imply that decitabine-mediated G-to-C mutagenesis is a highly effective antiviral mechanism for extinguishing HIV-1 infectivity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. A recurrent mutation causing Melnick-Needles syndrome in females confers a severe, lethal phenotype in males.

    PubMed

    Spencer, Careni; Lombaard, Hendrik; Wise, Amy; Krause, Amanda; Robertson, Stephen P

    2018-04-01

    Melnick-Needles syndrome (MNS; MIM 309350) is an X-linked skeletal dysplasia caused by mutations in FLNA. Females with the condition present with characteristic facial features, short stature, skeletal anomalies, including poorly modeled and sclerotic bones, and structural abnormalities such as cardiac and urological defects. Previously males were thought to present with either a mild phenotype compatible with life or a severe lethal presentation depending on the maternal phenotype. The discovery of a limited number of mutations in FLNA as the cause of the condition has clarified the molecular basis of the disorder, but only a very small number of severely affected males have been reported with MNS. Furthermore, no mildly affected males have been described with a molecular confirmation of the condition. In this report, we describe the clinical and molecular findings of a mildly affected mother with MNS and her severely affected son. They shared a well-documented disease-causing variant in FLNA, p.(Ala1188Thr), one of two highly recurrent mutations leading to the disorder. This is only the fourth report of a male with perinatal lethal MNS and a molecular confirmation; it is the first description of this specific mutation in a male. © 2018 Wiley Periodicals, Inc.

  20. Dissociation of tsl-tif-Induced Filamentation and recA Protein Synthesis in Escherichia coli K-12

    PubMed Central

    Huisman, Olivier; D'Ari, Richard; George, Jacqueline

    1980-01-01

    In Escherichia coli, expression of the tif-1 mutation (in the recA gene) induces the “SOS response” at 40°C, including massive synthesis of the recA(tif) protein, cell filamentation, appearance of new repair and mutagenic activities, and prophage induction. Expression of the tsl-1 mutation (in the lexA gene) induces massive synthesis of the recA protein and cell filamentation at 42°C, although other SOS functions are not induced. In this paper we show that the septation inhibition induced in tif and tsl strains at 42°C is not due to the presence of a high concentration of recA protein since (i) no recA mutants (≤10−8) were isolated among thermoresistant nonfilamenting revertants of a tif-1 tsl-1 strain, (ii) in a tsl-1 zab-53 strain, only the low basal level of recA protein was synthesized at 42°C, yet cell division was inhibited, and (iii) in a tsl-1 recA99 (amber) strain, no recA protein could be detected at 42°C, yet cell division was inhibited. Among suppressors of tsl-tif-induced lethality are mutations at a locus which we call infB, located in the 66- to 83-min region. The infB1 mutation confers a highly pleiotropic phenotype, which is suggestive of a regulatory defect; it suppressed tsl-tif-induced filamentation but not recA protein synthesis, it did not suppress ultraviolet-induced filamentation (in a lon derivative), and it reduced but did not abolish tif-mediated induction of λ prophage and bacterial mutagenesis. The dissociation of tsl-tif-induced septation inhibition and recA protein synthesis in the tif-1 tsl-1 infB1 strain suggests that the control of SOS filamentation may not be strictly identical to the control of recA protein synthesis. Images PMID:6445897

  1. Protective effects of tea polyphenols and β-carotene against γ-radiation induced mutation and oxidative stress in Drosophila melanogaster.

    PubMed

    Nagpal, Isha; Abraham, Suresh K

    2017-01-01

    The commonly consumed antioxidants β-carotene and tea polyphenols were used to assess their protective effects against γ-radiation induced sex-linked recessive lethal (SLRL) mutation and oxidative stress in Drosophila melanogaster . Third instar larvae and adult males of wild-type Oregon-K (ORK) were fed on test agents for 24 and 72 h respectively before exposure to 10Gy γ-irradiation. The treated/control flies were used to assess the induction of SLRLs. We also evaluated antioxidant properties of these phytochemicals in the third instar larvae. Different stages of spermatogenesis in adult males showed a decrease in γ-radiation induced SLRL frequencies upon co-treatment with test agents. A similar trend was observed in larvae. Furthermore, a significant increase in antioxidant enzymatic activities with a decrease in malondialdehyde content was observed. β-carotene and tea polyphenols have exerted antigenotoxic and antioxidant effects in Drosophila . This study demonstrated the suitability of Drosophila as an alternative to mammalian testing for evaluating the antigenotoxic and antioxidant activity of natural products.

  2. Persistence of DNA adducts, hypermutation and acquisition of cellular resistance to alkylating agents in glioblastoma.

    PubMed

    Head, R J; Fay, M F; Cosgrove, L; Y C Fung, K; Rundle-Thiele, D; Martin, J H

    2017-12-02

    Glioblastoma is a lethal form of brain tumour usually treated by surgical resection followed by radiotherapy and an alkylating chemotherapeutic agent. Key to the success of this multimodal approach is maintaining apoptotic sensitivity of tumour cells to the alkylating agent. This initial treatment likely establishes conditions contributing to development of drug resistance as alkylating agents form the O 6 -methylguanine adduct. This activates the mismatch repair (MMR) process inducing apoptosis and mutagenesis. This review describes key juxtaposed drivers in the balance between alkylation induced mutagenesis and apoptosis. Mutations in MMR genes are the probable drivers for alkylation based drug resistance. Critical to this interaction are the dose-response and temporal interactions between adduct formation and MMR mutations. The precision in dose interval, dose-responses and temporal relationships dictate a role for alkylating agents in either promoting experimental tumour formation or inducing tumour cell death with chemotherapy. Importantly, this resultant loss of chemotherapeutic selective pressure provides opportunity to explore novel therapeutics and appropriate combinations to minimise alkylation based drug resistance and tumour relapse.

  3. Mutations in KIAA0586 Cause Lethal Ciliopathies Ranging from a Hydrolethalus Phenotype to Short-Rib Polydactyly Syndrome

    PubMed Central

    Alby, Caroline; Piquand, Kevin; Huber, Céline; Megarbané, André; Ichkou, Amale; Legendre, Marine; Pelluard, Fanny; Encha-Ravazi, Ferechté; Abi-Tayeh, Georges; Bessières, Bettina; El Chehadeh-Djebbar, Salima; Laurent, Nicole; Faivre, Laurence; Sztriha, László; Zombor, Melinda; Szabó, Hajnalka; Failler, Marion; Garfa-Traore, Meriem; Bole, Christine; Nitschké, Patrick; Nizon, Mathilde; Elkhartoufi, Nadia; Clerget-Darpoux, Françoise; Munnich, Arnold; Lyonnet, Stanislas; Vekemans, Michel; Saunier, Sophie; Cormier-Daire, Valérie; Attié-Bitach, Tania; Thomas, Sophie

    2015-01-01

    KIAA0586, the human ortholog of chicken TALPID3, is a centrosomal protein that is essential for primary ciliogenesis. Its disruption in animal models causes defects attributed to abnormal hedgehog signaling; these defects include polydactyly and abnormal dorsoventral patterning of the neural tube. Here, we report homozygous mutations of KIAA0586 in four families affected by lethal ciliopathies ranging from a hydrolethalus phenotype to short-rib polydactyly. We show defective ciliogenesis, as well as abnormal response to SHH-signaling activation in cells derived from affected individuals, consistent with a role of KIAA0586 in primary cilia biogenesis. Whereas centriolar maturation seemed unaffected in mutant cells, we observed an abnormal extended pattern of CEP290, a centriolar satellite protein previously associated with ciliopathies. Our data show the crucial role of KIAA0586 in human primary ciliogenesis and subsequent abnormal hedgehog signaling through abnormal GLI3 processing. Our results thus establish that KIAA0586 mutations cause lethal ciliopathies. PMID:26166481

  4. Mutagenic and lethal effects of (5-/sup 125/I)lodo-2'-deoxyuridine incorporated into DNA of mammalian cells, and their RBEs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, N.; Fujiwara, Y.

    1981-12-01

    Decay of /sup 125/I unifilarly incorporated as 5-iodo-2'-deoxyuridine (IdUrd) into DNA of V79 Chinese hamster cells was approximately an order of magnitude more effective in inducing both 6-thioguanine-resistant mutation and cell inactivation than external X rays under equivalent conditions. RBEs of mutation and killing induced by /sup 125/I decays, compared with 170-kVp X rays of low LET, were approx. = 11 for mutation (ratio of the induction rate in frequency/rad = 11.3 X 10/sup -7/ (/sup 125/I)/100 X 10/sup -7/ (X rays at -79/sup o/C)) and approx. = 10 for cell inactivation (D/sub 0/ ratio = 505 rad (X raysmore » at -79/sup o/C)/52 rad (/sup 125/I)). These RBE values may well exceed the reported maximum values for high-LET radiation in the LET range of 80-110 keV/..mu..m, suggesting that the Auger effect is different from the high-LET radiation effect alone. Thus these biological consequences arise not only from radiation effects of Auger electrons on the immediate vicinity in DNA, but also from the nonionogenic effect through charge transfer processes. In addition, higher inductions of mutation and killing by external X rays in unifilarly IdUrd-substituted cells than in ordinal cells were observed, suggesting a possible involvement of X-ray-induced Auger phenomenon in iodine in DNA.« less

  5. Novel TMEM67 Mutations and Genotype-phenotype Correlates in Meckelin-related Ciliopathies

    PubMed Central

    Iannicelli, Miriam; Brancati, Francesco; Mougou-Zerelli, Soumaya; Mazzotta, Annalisa; Thomas, Sophie; Elkhartoufi, Nadia; Travaglini, Lorena; Gomes, Céline; Ardissino, Gian Luigi; Bertini, Enrico; Boltshauser, Eugen; Castorina, Pierangela; D'Arrigo, Stefano; Fischetto, Rita; Leroy, Brigitte; Loget, Philippe; Bonnière, Maryse; Starck, Lena; Tantau, Julia; Gentilin, Barbara; Majore, Silvia; Swistun, Dominika; Flori, Elizabeth; Lalatta, Faustina; Pantaleoni, Chiara; Johannes.Penzien; Grammatico, Paola; Dallapiccola, Bruno; Gleeson, Joseph G.; Attie-Bitach, Tania; Valente, Enza Maria

    2010-01-01

    Human ciliopathies are hereditary conditions caused by defects of proteins expressed at the primary cilium. Among ciliopathies, Joubert syndrome and related disorders (JSRD), Meckel syndrome (MKS) and nephronophthisis (NPH) present clinical and genetic overlap, being allelic at several loci. One of the most interesting gene is TMEM67, encoding the transmembrane protein meckelin. We performed mutation analysis of TMEM67 in 341 probands, including 265 JSRD representative of all clinical subgroups and 76 MKS fetuses. We identified 33 distinct mutations, of which 20 were novel, in 8/10 (80%) JS with liver involvement (COACH phenotype) and 12/76 (16%) MKS fetuses. No mutations were found in other JSRD subtypes, confirming the strong association between TMEM67 mutations and liver involvement. Literature review of all published TMEM67 mutated cases was performed to delineate genotype-phenotype correlates. In particular, comparison of the types of mutations and their distribution along the gene in lethal versus non lethal phenotypes showed in MKS patients a significant enrichment of missense mutations falling in TMEM67 exons 8 to 15, especially when in combination with a truncating mutation. These exons encode for a region of unknown function in the extracellular domain of meckelin. PMID:20232449

  6. Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa

    PubMed Central

    Sebastiano, Vittorio; Zhen, Hanson Hui; Haddad, Bahareh; Bashkirova, Elizaveta; Melo, Sandra P.; Wang, Pei; Leung, Thomas L.; Siprashvili, Zurab; Tichy, Andrea; Li, Jiang; Ameen, Mohammed; Hawkins, John; Lee, Susie; Li, Lingjie; Schwertschkow, Aaron; Bauer, Gerhard; Lisowski, Leszek; Kay, Mark A.; Kim, Seung K.; Lane, Alfred T.; Wernig, Marius; Oro, Anthony E.

    2015-01-01

    Patients with recessive dystrophic epidermolysis bullosa (RDEB) lack functional type VII collagen owing to mutations in the gene COL7A1 and suffer severe blistering and chronic wounds that ultimately lead to infection and development of lethal squamous cell carcinoma. The discovery of induced pluripotent stem cells (iPSCs) and the ability to edit the genome bring the possibility to provide definitive genetic therapy through corrected autologous tissues. We generated patient-derived COL7A1-corrected epithelial keratinocyte sheets for autologous grafting. We demonstrate the utility of sequential reprogramming and adenovirus-associated viral genome editing to generate corrected iPSC banks. iPSC-derived keratinocytes were produced with minimal heterogeneity, and these cells secreted wild-type type VII collagen, resulting in stratified epidermis in vitro in organotypic cultures and in vivo in mice. Sequencing of corrected cell lines before tissue formation revealed heterogeneity of cancer-predisposing mutations, allowing us to select COL7A1-corrected banks with minimal mutational burden for downstream epidermis production. Our results provide a clinical platform to use iPSCs in the treatment of debilitating genodermatoses, such as RDEB. PMID:25429056

  7. Loss of ATM kinase activity leads to embryonic lethality in mice.

    PubMed

    Daniel, Jeremy A; Pellegrini, Manuela; Lee, Baeck-Seung; Guo, Zhi; Filsuf, Darius; Belkina, Natalya V; You, Zhongsheng; Paull, Tanya T; Sleckman, Barry P; Feigenbaum, Lionel; Nussenzweig, André

    2012-08-06

    Ataxia telangiectasia (A-T) mutated (ATM) is a key deoxyribonucleic acid (DNA) damage signaling kinase that regulates DNA repair, cell cycle checkpoints, and apoptosis. The majority of patients with A-T, a cancer-prone neurodegenerative disease, present with null mutations in Atm. To determine whether the functions of ATM are mediated solely by its kinase activity, we generated two mouse models containing single, catalytically inactivating point mutations in Atm. In this paper, we show that, in contrast to Atm-null mice, both D2899A and Q2740P mutations cause early embryonic lethality in mice, without displaying dominant-negative interfering activity. Using conditional deletion, we find that the D2899A mutation in adult mice behaves largely similar to Atm-null cells but shows greater deficiency in homologous recombination (HR) as measured by hypersensitivity to poly (adenosine diphosphate-ribose) polymerase inhibition and increased genomic instability. These results may explain why missense mutations with no detectable kinase activity are rarely found in patients with classical A-T. We propose that ATM kinase-inactive missense mutations, unless otherwise compensated for, interfere with HR during embryogenesis.

  8. Uncoupling thermotolerance from the induction of heat shock proteins.

    PubMed Central

    Smith, B J; Yaffe, M P

    1991-01-01

    Exposure of cells to elevated temperatures causes a rapid increase in the synthesis of heat shock proteins (hsps) and induces thermotolerance, the increased ability of cells to survive exposure to lethal temperatures; however, the connection between hsp induction and the acquisition of thermotolerance is unclear. hsp induction in the yeast Saccharomyces cerevisiae is mediated by the activation of heat-shock transcription factor, and recently we have described a mutation, hsf1-m3, in heat-shock transcription factor that prevents the factor's activation. We now demonstrate that this mutation results in a general block in heat-shock induction but does not affect the acquisition of thermotolerance. Our results indicate that high-level induction of the major hsps is not required for cells to acquire thermotolerance. Images PMID:1763024

  9. Pancreatic SEC23B deficiency is sufficient to explain the perinatal lethality of germline SEC23B deficiency in mice

    PubMed Central

    Khoriaty, Rami; Everett, Lesley; Chase, Jennifer; Zhu, Guojing; Hoenerhoff, Mark; McKnight, Brooke; Vasievich, Matthew P.; Zhang, Bin; Tomberg, Kärt; Williams, John; Maillard, Ivan; Ginsburg, David

    2016-01-01

    In humans, loss of function mutations in SEC23B result in Congenital Dyserythropoietic Anemia type II (CDAII), a disease limited to defective erythroid development. Patients with two nonsense SEC23B mutations have not been reported, suggesting that complete SEC23B deficiency might be lethal. We previously reported that SEC23B-deficient mice die perinatally, exhibiting massive pancreatic degeneration and that mice with hematopoietic SEC23B deficiency do not exhibit CDAII. We now show that SEC23B deficiency restricted to the pancreas is sufficient to explain the lethality observed in mice with global SEC23B-deficiency. Immunohistochemical stains demonstrate an acinar cell defect but normal islet cells. Mammalian genomes contain two Sec23 paralogs, Sec23A and Sec23B. The encoded proteins share ~85% amino acid sequence identity. We generate mice with pancreatic SEC23A deficiency and demonstrate that these mice survive normally, exhibiting normal pancreatic weights and histology. Taken together, these data demonstrate that SEC23B but not SEC23A is essential for murine pancreatic development. We also demonstrate that two BAC transgenes spanning Sec23b rescue the lethality of mice homozygous for a Sec23b gene trap allele, excluding a passenger gene mutation as the cause of the pancreatic lethality, and indicating that the regulatory elements critical for Sec23b pancreatic function reside within the BAC transgenes. PMID:27297878

  10. Mutations at the flavin binding site of ETF:QO yield a MADD-like severe phenotype in Drosophila.

    PubMed

    Alves, Ema; Henriques, Bárbara J; Rodrigues, João V; Prudêncio, Pedro; Rocha, Hugo; Vilarinho, Laura; Martinho, Rui G; Gomes, Cláudio M

    2012-08-01

    Following a screening on EMS-induced Drosophila mutants defective for formation and morphogenesis of epithelial cells, we have identified three lethal mutants defective for the production of embryonic cuticle. The mutants are allelic to the CG12140 gene, the fly homologue of electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO). In humans, inherited defects in this inner membrane protein account for multiple acyl-CoA dehydrogenase deficiency (MADD), a metabolic disease of β-oxidation, with a broad range of clinical phenotypes, varying from embryonic lethal to mild forms. The three mutant alleles carried distinct missense mutations in ETF:QO (G65E, A68V and S104F) and maternal mutant embryos for ETF:QO showed lethal morphogenetic defects and a significant induction of apoptosis following germ-band elongation. This phenotype is accompanied by an embryonic accumulation of short- and medium-chain acylcarnitines (C4, C8 and C12) as well as long-chain acylcarnitines (C14 and C16:1), whose elevation is also found in severe MADD forms in humans under intense metabolic decompensation. In agreement the ETF:QO activity in the mutant embryos is markedly decreased in relation to wild type activity. Amino acid sequence analysis and structural mapping into a molecular model of ETF:QO show that all mutations map at FAD interacting residues, two of which at the nucleotide-binding Rossmann fold. This structural domain is composed by a β-strand connected by a short loop to an α-helix, and its perturbation results in impaired cofactor association via structural destabilisation and consequently enzymatic inactivation. This work thus pinpoints the molecular origins of a severe MADD-like phenotype in the fruit fly and establishes the proof of concept concerning the suitability of this organism as a potential model organism for MADD. © 2012 Elsevier B.V. All rights reserved.

  11. The maternally expressed WRKY transcription factor TTG2 controls lethality in interploidy crosses of Arabidopsis.

    PubMed

    Dilkes, Brian P; Spielman, Melissa; Weizbauer, Renate; Watson, Brian; Burkart-Waco, Diana; Scott, Rod J; Comai, Luca

    2008-12-09

    The molecular mechanisms underlying lethality of F1 hybrids between diverged parents are one target of speciation research. Crosses between diploid and tetraploid individuals of the same genotype can result in F1 lethality, and this dosage-sensitive incompatibility plays a role in polyploid speciation. We have identified variation in F1 lethality in interploidy crosses of Arabidopsis thaliana and determined the genetic architecture of the maternally expressed variation via QTL mapping. A single large-effect QTL, DR. STRANGELOVE 1 (DSL1), was identified as well as two QTL with epistatic relationships to DSL1. DSL1 affects the rate of postzygotic lethality via expression in the maternal sporophyte. Fine mapping placed DSL1 in an interval encoding the maternal effect transcription factor TTG2. Maternal parents carrying loss-of-function mutations in TTG2 suppressed the F1 lethality caused by paternal excess interploidy crosses. The frequency of cellularization in the endosperm was similarly affected by both natural variation and ttg2 loss-of-function mutants. The simple genetic basis of the natural variation and effects of single-gene mutations suggests that F1 lethality in polyploids could evolve rapidly. Furthermore, the role of the sporophytically active TTG2 gene in interploidy crosses indicates that the developmental programming of the mother regulates the viability of interploidy hybrid offspring.

  12. 5-Azacytidine Can Induce Lethal Mutagenesis in Human Immunodeficiency Virus Type 1▿ †

    PubMed Central

    Dapp, Michael J.; Clouser, Christine L.; Patterson, Steven; Mansky, Louis M.

    2009-01-01

    Ribonucleosides inhibit human immunodeficiency virus type 1 (HIV-1) replication by mechanisms that have not been fully elucidated. Here, we report the antiviral mechanism for the ribonucleoside analog 5-azacytidine (5-AZC). We hypothesized that the anti-HIV-1 activity of 5-AZC was due to an increase in the HIV-1 mutation rate following its incorporation into viral RNA during transcription. However, we demonstrate that 5-AZC's primary antiviral activity can be attributed to its effect on the early phase of HIV-1 replication. Furthermore, the antiviral activity was associated with an increase in the frequency of viral mutants, suggesting that 5-AZC's primary target is reverse transcription. Sequencing analysis showed an enrichment in G-to-C transversion mutations and further supports the idea that reverse transcription is an antiviral target of 5-AZC. These results indicate that 5-AZC is incorporated into viral DNA following reduction to 5-aza-2′-deoxycytidine. Incorporation into the viral DNA leads to an increase in mutant frequency that is consistent with lethal mutagenesis during reverse transcription as the primary antiviral mechanism of 5-AZC. Antiviral activity and increased mutation frequency were also associated with the late phase of HIV-1 replication; however, 5-AZC's effect on the late phase was less robust. These results reveal that the primary antiviral mechanism of 5-AZC can be attributed to its ability to increase the HIV-1 mutation frequency through viral-DNA incorporation during reverse transcription. Our observations indicate that 5-AZC can affect two steps in HIV-1 replication (i.e., transcription and reverse transcription) but that its primary antiviral activity is due to incorporation during reverse transcription. PMID:19726509

  13. KEAP1-dependent synthetic lethality induced by AKT and TXNRD1 inhibitors in lung cancer

    PubMed Central

    Dai, Bingbing; Yoo, Suk-Yuong; Bartholomeusz, Geoffrey; Graham, Ryan A.; Majidi, Mourad; Yan, Shaoyu; Meng, Jieru; Ji, Lin; Coombes, Kevin; Minna, John D.; Fang, Bingliang; Roth, Jack A.

    2013-01-01

    Intrinsic resistance to agents targeting phosphatidylinositol-3-kinase (PI3K)/AKT pathway is one of the major challenges in cancer treatment with such agents. The objective of this study is to identify the genes or pathways that can be targeted to overcome the resistance of non-small cell lung cancer to the AKT inhibitor, MK2206, which is currently being evaluated in phase I and II clinical trials. Using a genome-wide small interfering RNA (siRNA) library screening and biological characterization we identified that inhibition of Thioredoxin Reductase-1 (TXNRD1), one of the key anti-oxidant enzymes, with siRNAs or its inhibitor, Auranofin, sensitized non-small cell lung cancer cells to MK2206 treatment in vitro and in vivo. We found that simultaneous inhibition of TXNRD1 and AKT pathways induced robust reactive oxygen species (ROS) production, which was involved in c-Jun N-terminal Kinase (JNK, MAPK8) activation and cell apoptosis. Furthermore we found that the synthetic lethality interaction between the TXNRD1 and AKT pathways occurred through the KEAP1/NRF2 cellular antioxidant pathway. Lastly, we found that synthetic lethality induced by TXNRD1 and AKT inhibitors relied on wild type KEAP1 function. Our study indicates that targeting the interaction between AKT and TXNRD1 antioxidant pathways with MK2206 and Auranofin, a FDA approved drug, is a rational strategy to treat lung cancer and that KEAP1 mutation status may offer a predicative biomarker for such combination approaches. PMID:23824739

  14. Mutation in fission yeast phosphatidylinositol 4-kinase Pik1 is synthetically lethal with defect in telomere protection protein Pot1.

    PubMed

    Sugihara, Asami; Nguyen, Luan Cao; Shamim, Hossain Mohammad; Iida, Tetsushi; Nakase, Mai; Takegawa, Kaoru; Senda, Mitsuhisa; Jida, Shohei; Ueno, Masaru

    2018-02-19

    Fission yeast Pik1p is one of three phosphatidylinositol 4-kinases associated with the Golgi complex, but its function is not fully understood. Deletion of pot1 + causes telomere degradation and chromosome circularization. We searched for the gene which becomes synthetically lethal with pot1Δ. We obtained a novel pik1 mutant, pik1-1, which is synthetically lethal with pot1Δ. We found phosphoinositol 4-phosphate in the Golgi was reduced in pik1-1. To investigate the mechanism of the lethality of the pot1Δ pik1-1 double mutant, we constructed the nmt-pot1-aid pik1-1 strain, where Pot1 function becomes low by drugs, which leads to telomere loss and chromosome circularization, and found pik1-1 mutation does not affect telomere resection and chromosome circularization. Thus, our results suggest that pik1 + is required for the maintenance of circular chromosomes. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Three endocrine neoplasms: an unusual combination of pheochromocytoma, pituitary adenoma, and papillary thyroid carcinoma.

    PubMed

    Sisson, James C; Giordano, Thomas J; Avram, Anca M

    2012-04-01

    Three endocrine neoplasms-bilateral pheochromocytomas, somatotrophic pituitary adenoma inducing acromegaly, and papillary carcinoma of the thyroid-occurred concurrently in a patient. A genetic mutation was hypothesized. Possible previously described genetic mutations were explored. Clinical assessments, laboratory data, images of tumors, histopathology, and immunohistochemistry of excised tissues documented the three neoplasms. Clinical assessment of the patient, family history, and a review of the literature sought a familial basis for the disorders. The methods confirmed the presence of three endocrine neoplasms. Each neoplasm was surgically excised and histologically verified. Surgical and (131)I treatments reduced the papillary carcinoma, but eventually this tumor progressed to a lethal degree. History, including that of nine siblings, uncovered no familial neoplasms. No similar case was found in the literature, but possible associations with germline mutations were considered. The concurrent development of pheochromocytomas, pituitary somatotrophic adenoma, and papillary thyroid carcinoma appears to be unique. Nevertheless, such tumors, particularly bilateral pheochromocytomas, strongly suggest a de novo germline mutation in a gene not previously associated with multiple endocrine neoplasia syndromes.

  16. Transcription Regulation of HYPK by Heat Shock Factor 1

    PubMed Central

    Das, Srijit; Bhattacharyya, Nitai Pada

    2014-01-01

    HYPK (Huntingtin Yeast Partner K) was originally identified by yeast two-hybrid assay as an interactor of Huntingtin, the protein mutated in Huntington's disease. HYPK was characterized earlier as an intrinsically unstructured protein having chaperone-like activity in vitro and in vivo. HYPK has the ability of reducing rate of aggregate formation and subsequent toxicity caused by mutant Huntingtin. Further investigation revealed that HYPK is involved in diverse cellular processes and required for normal functioning of cells. In this study we observed that hyperthermia increases HYPK expression in human and mouse cells in culture. Expression of exogenous Heat Shock Factor 1 (HSF1), upon heat treatment could induce HYPK expression, whereas HSF1 knockdown reduced endogenous as well as heat-induced HYPK expression. Putative HSF1-binding site present in the promoter of human HYPK gene was identified and validated by reporter assay. Chromatin immunoprecipitation revealed in vivo interaction of HSF1 and RNA polymerase II with HYPK promoter sequence. Additionally, acetylation of histone H4, a known epigenetic marker of inducible HSF1 binding, was observed in response to heat shock in HYPK gene promoter. Overexpression of HYPK inhibited cells from lethal heat-induced death whereas knockdown of HYPK made the cells susceptible to lethal heat shock-induced death. Apart from elevated temperature, HYPK was also upregulated by hypoxia and proteasome inhibition, two other forms of cellular stress. We concluded that chaperone-like protein HYPK is induced by cellular stress and under transcriptional regulation of HSF1. PMID:24465598

  17. Evolution of high-level resistance during low-level antibiotic exposure.

    PubMed

    Wistrand-Yuen, Erik; Knopp, Michael; Hjort, Karin; Koskiniemi, Sanna; Berg, Otto G; Andersson, Dan I

    2018-04-23

    It has become increasingly clear that low levels of antibiotics present in many environments can select for resistant bacteria, yet the evolutionary pathways for resistance development during exposure to low amounts of antibiotics remain poorly defined. Here we show that Salmonella enterica exposed to sub-MIC levels of streptomycin evolved high-level resistance via novel mechanisms that are different from those observed during lethal selections. During lethal selection only rpsL mutations are found, whereas at sub-MIC selection resistance is generated by several small-effect resistance mutations that combined confer high-level resistance via three different mechanisms: (i) alteration of the ribosomal RNA target (gidB mutations), (ii) reduction in aminoglycoside uptake (cyoB, nuoG, and trkH mutations), and (iii) induction of the aminoglycoside-modifying enzyme AadA (znuA mutations). These results demonstrate how the strength of the selective pressure influences evolutionary trajectories and that even weak selective pressures can cause evolution of high-level resistance.

  18. P-Element Insertion Alleles of Essential Genes on the Third Chromosome of Drosophila Melanogaster: Correlation of Physical and Cytogenetic Maps in Chromosomal Region 86e-87f

    PubMed Central

    Deak, P.; Omar, M. M.; Saunders, RDC.; Pal, M.; Komonyi, O.; Szidonya, J.; Maroy, P.; Zhang, Y.; Ashburner, M.; Benos, P.; Savakis, C.; Siden-Kiamos, I.; Louis, C.; Bolshakov, V. N.; Kafatos, F. C.; Madueno, E.; Modolell, J.; Glover, D. M.

    1997-01-01

    We have established a collection of 2460 lethal or semi-lethal mutant lines using a procedure thought to insert single P elements into vital genes on the third chromosome of Drosophila melanogaster. More than 1200 randomly selected lines were examined by in situ hybridization and 90% found to contain single insertions at sites that mark 89% of all lettered subdivisions of the Bridges' map. A set of chromosomal deficiencies that collectively uncover ~25% of the euchromatin of chromosome 3 reveal lethal mutations in 468 lines corresponding to 145 complementation groups. We undertook a detailed analysis of the cytogenetic interval 86E-87F and identified 87 P-element-induced mutations falling into 38 complementation groups, 16 of which correspond to previously known genes. Twenty-one of these 38 complementation groups have at least one allele that has a P-element insertion at a position consistent with the cytogenetics of the locus. We have rescued P elements and flanking chromosomal sequences from the 86E-87F region in 35 lines with either lethal or genetically silent P insertions, and used these as probes to identify cosmids and P1 clones from the Drosophila genome projects. This has tied together the physical and genetic maps and has linked 44 previously identified cosmid contigs into seven ``supercontigs'' that span the interval. STS data for sequences flanking one side of the P-element insertions in 49 lines has identified insertions in the αγ element at 87C, two known transposable elements, and the open reading frames of seven putative single copy genes. These correspond to five known genes in this interval, and two genes identified by the homology of their predicted products to known proteins from other organisms. PMID:9409831

  19. Systematic screening of isogenic cancer cells identifies DUSP6 as context-specific synthetic lethal target in melanoma

    PubMed Central

    Wittig-Blaich, Stephanie; Wittig, Rainer; Schmidt, Steffen; Lyer, Stefan; Bewerunge-Hudler, Melanie; Gronert-Sum, Sabine; Strobel-Freidekind, Olga; Müller, Carolin; List, Markus; Jaskot, Aleksandra; Christiansen, Helle; Hafner, Mathias; Schadendorf, Dirk; Block, Ines; Mollenhauer, Jan

    2017-01-01

    Next-generation sequencing has dramatically increased genome-wide profiling options and conceptually initiates the possibility for personalized cancer therapy. State-of-the-art sequencing studies yield large candidate gene sets comprising dozens or hundreds of mutated genes. However, few technologies are available for the systematic downstream evaluation of these results to identify novel starting points of future cancer therapies. We improved and extended a site-specific recombination-based system for systematic analysis of the individual functions of a large number of candidate genes. This was facilitated by a novel system for the construction of isogenic constitutive and inducible gain- and loss-of-function cell lines. Additionally, we demonstrate the construction of isogenic cell lines with combinations of the traits for advanced functional in vitro analyses. In a proof-of-concept experiment, a library of 108 isogenic melanoma cell lines was constructed and 8 genes were identified that significantly reduced viability in a discovery screen and in an independent validation screen. Here, we demonstrate the broad applicability of this recombination-based method and we proved its potential to identify new drug targets via the identification of the tumor suppressor DUSP6 as potential synthetic lethal target in melanoma cell lines with BRAF V600E mutations and high DUSP6 expression. PMID:28423600

  20. Myopathy-inducing mutation H40Y in ACTA1 hampers actin filament structure and function

    DOE PAGES

    Chan, Chun; Fan, Jun; Messer, Andrew E.; ...

    2016-04-22

    In humans, more than 200 missense mutations have been identified in the ACTA1 gene. The exact molecular mechanisms by which, these particular mutations become toxic and lead to muscle weakness and myopathies remain obscure. To address this, here, we performed a molecular dynamics simulation, and we used a broad range of biophysical assays to determine how the lethal and myopathy-related H40Y amino acid substitution in actin affects the structure, stability, and function of this protein. Interestingly, our results showed that H40Y severely disrupts the DNase I-binding-loop structure and actin filaments. In addition, we observed that normal and mutant actin monomersmore » are likely to form distinctive homopolymers, with mutant filaments being very stiff, and not supporting proper myosin binding. Lastly, these phenomena underlie the toxicity of H40Y and may be considered as important triggering factors for the contractile dysfunction, muscle weakness and disease phenotype seen in patients.« less

  1. Myopathy-inducing mutation H40Y in ACTA1 hampers actin filament structure and function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Chun; Fan, Jun; Messer, Andrew E.

    In humans, more than 200 missense mutations have been identified in the ACTA1 gene. The exact molecular mechanisms by which, these particular mutations become toxic and lead to muscle weakness and myopathies remain obscure. To address this, here, we performed a molecular dynamics simulation, and we used a broad range of biophysical assays to determine how the lethal and myopathy-related H40Y amino acid substitution in actin affects the structure, stability, and function of this protein. Interestingly, our results showed that H40Y severely disrupts the DNase I-binding-loop structure and actin filaments. In addition, we observed that normal and mutant actin monomersmore » are likely to form distinctive homopolymers, with mutant filaments being very stiff, and not supporting proper myosin binding. Lastly, these phenomena underlie the toxicity of H40Y and may be considered as important triggering factors for the contractile dysfunction, muscle weakness and disease phenotype seen in patients.« less

  2. A bacterial cocaine esterase protects against cocaine-induced epileptogenic activity and lethality.

    PubMed

    Jutkiewicz, Emily M; Baladi, Michelle G; Cooper, Ziva D; Narasimhan, Diwahar; Sunahara, Roger K; Woods, James H

    2009-09-01

    Cocaine toxicity results in cardiovascular complications, seizures, and death and accounts for approximately 20% of drug-related emergency department visits every year. Presently, there are no treatments to eliminate the toxic effects of cocaine. The present study hypothesizes that a bacterial cocaine esterase with high catalytic efficiency would provide rapid and robust protection from cocaine-induced convulsions, epileptogenic activity, and lethality. Cocaine-induced paroxysmal activity and convulsions were evaluated in rats surgically implanted with radiotelemetry devices (N=6 per treatment group). Cocaine esterase was administered 1 minute after a lethal dose of cocaine or after cocaine-induced convulsions to determine the ability of the enzyme to prevent or reverse, respectively, the effects of cocaine. The cocaine esterase prevented all cocaine-induced electroencephalographic changes and lethality. This effect was specific for cocaine because the esterase did not prevent convulsions and death induced by a cocaine analog, (-)-2beta-carbomethoxy-3beta-phenyltropane. The esterase prevented lethality even after cocaine-induced convulsions occurred. In contrast, the short-acting benzodiazepine, midazolam, prevented cocaine-induced convulsions but not the lethal effects of cocaine. The data showed that cocaine esterase successfully degraded circulating cocaine to prevent lethality and that cocaine-induced convulsions alone are not responsible for the lethal effects of cocaine in this model. Therefore, further investigation into the use of cocaine esterase for treating cocaine overdose and its toxic effects is warranted.

  3. A novel class of Saccharomyces cerevisiae mutants specifically UV-sensitive to "petite" induction.

    PubMed

    Moustacchi, E; Perlman, P S; Mahler, H R

    1976-11-17

    A mutant of Saccharomyces cerevisiae has been isolated which, though exhibiting a normal response to nuclear genetic damage by ultraviolet light (UV), is more sensitive than its wild type specifically in the production of the cytoplasmic (rho-) mutation by this agent. Some of the features of this mutation which has been designated uvsrho 5 are: i) The mutation is recessive, it exhibits a Mendelian, and hence presumably nuclear, pattern of segregation, but manifests its effects specifically and pleiotropically on mitochondrial functions. ii) Mutant cells resemble their wild type parents in a) growth characteristics on glucose; b) in their UV induced dose response to lethality or nuclear mutation and c) the ability of their mitochondrial genome, upon mating with appropriate testers, of transmitting and recombining various markers, albeit with enhanced efficiency. Similarly, d) they are able to modulate the expression of mitochondrial mutagenesis by ethidium bromide. Thus their mitochondrial DNA appears genetically as competent as that of the wild type. iii) Mutant cells differ from their wild type parents in a) growth characteristics on glycerol; b) susceptibility to induction of the mitochondrial (rho-) mutation by various mutagens, in that the rate of spontaneous mutation is slightly and that by UV is significantly enhanced, whild that by ethidium bromide is greatly diminished. Conversely, c) modulating influences resulting in the repair of initial damage are diminished fro UV and stimulated in the case of Berenil. iv) The amount of mitochondrial DNA per cell appears elevated in the mutant, relative to wild type, and its rate of degradation subsequent to a mutagenic exposure to either UV or ethidium bromide is diminished. v) A self-consistent scheme to account for this and all other information so far available for the induction and modulation of the (rho-) mutation is presented. In a previous study it was shown that some nuclear mutants of Saccharomyces cerevisiae, more sensitive to lethal damage induced by ultraviolet light (rad) than their parent wild type (RAD), also exhibit a concomitant modification in sensitivity to both nuclear and cytoplasmic genetic damage (Moustacchi, 1971). However, another class of rad mutants respond to the induction of the cytoplasmic "petite" also designated as rho- (or rho-) mutation by UV in a manner indistinguishable from that of the RAD strain. One possible interpretation of this last observation is that some of the steps in the expression of the UV damage on mitochondrial (mt)DNA may be governed by other nuclear and cytoplasmic genetic determinants, the products of which may then act specifically on mitochondrial lesions. If this assumption is correct, it should be possible to find mutants with a normal response to nuclear damage but specifically UV-sensitive towards induction of (rho-)...

  4. Inviability of a DNA2 deletion mutant is due to the DNA damage checkpoint.

    PubMed

    Budd, Martin E; Antoshechkin, Igor A; Reis, Clara; Wold, Barbara J; Campbell, Judith L

    2011-05-15

    Dna2 is a dual polarity exo/endonuclease, and 5' to 3' DNA helicase involved in Okazaki Fragment Processing (OFP) and Double-Strand Break (DSB) Repair. In yeast, DNA2 is an essential gene, as expected for a DNA replication protein. Suppression of the lethality of dna2Δ mutants has been found to occur by two mechanisms: overexpression of RAD27 (scFEN1) , encoding a 5' to 3' exo/endo nuclease that processes Okazaki fragments (OFs) for ligation, or deletion of PIF1, a 5' to 3' helicase involved in mitochondrial recombination, telomerase inhibition and OFP. Mapping of a novel, spontaneously arising suppressor of dna2Δ now reveals that mutation of rad9 and double mutation of rad9 mrc1 can also suppress the lethality of dna2Δ mutants. Interaction of dna2Δ and DNA damage checkpoint mutations provides insight as to why dna2Δ is lethal but rad27Δ is not, even though evidence shows that Rad27 (ScFEN1) processes most of the Okazaki fragments, while Dna2 processes only a subset.

  5. Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome.

    PubMed

    Guemez-Gamboa, Alicia; Nguyen, Long N; Yang, Hongbo; Zaki, Maha S; Kara, Majdi; Ben-Omran, Tawfeg; Akizu, Naiara; Rosti, Rasim Ozgur; Rosti, Basak; Scott, Eric; Schroth, Jana; Copeland, Brett; Vaux, Keith K; Cazenave-Gassiot, Amaury; Quek, Debra Q Y; Wong, Bernice H; Tan, Bryan C; Wenk, Markus R; Gunel, Murat; Gabriel, Stacey; Chi, Neil C; Silver, David L; Gleeson, Joseph G

    2015-07-01

    Docosahexanoic acid (DHA) is the most abundant omega-3 fatty acid in brain, and, although it is considered essential, deficiency has not been linked to disease. Despite the large mass of DHA in phospholipids, the brain does not synthesize it. DHA is imported across the blood-brain barrier (BBB) through the major facilitator superfamily domain-containing 2a (MFSD2A) protein. MFSD2A transports DHA as well as other fatty acids in the form of lysophosphatidylcholine (LPC). We identify two families displaying MFSD2A mutations in conserved residues. Affected individuals exhibited a lethal microcephaly syndrome linked to inadequate uptake of LPC lipids. The MFSD2A mutations impaired transport activity in a cell-based assay. Moreover, when expressed in mfsd2aa-morphant zebrafish, mutants failed to rescue microcephaly, BBB breakdown and lethality. Our results establish a link between transport of DHA and LPCs by MFSD2A and human brain growth and function, presenting the first evidence of monogenic disease related to transport of DHA in humans.

  6. Mutations in KIAA0586 Cause Lethal Ciliopathies Ranging from a Hydrolethalus Phenotype to Short-Rib Polydactyly Syndrome.

    PubMed

    Alby, Caroline; Piquand, Kevin; Huber, Céline; Megarbané, André; Ichkou, Amale; Legendre, Marine; Pelluard, Fanny; Encha-Ravazi, Ferechté; Abi-Tayeh, Georges; Bessières, Bettina; El Chehadeh-Djebbar, Salima; Laurent, Nicole; Faivre, Laurence; Sztriha, László; Zombor, Melinda; Szabó, Hajnalka; Failler, Marion; Garfa-Traore, Meriem; Bole, Christine; Nitschké, Patrick; Nizon, Mathilde; Elkhartoufi, Nadia; Clerget-Darpoux, Françoise; Munnich, Arnold; Lyonnet, Stanislas; Vekemans, Michel; Saunier, Sophie; Cormier-Daire, Valérie; Attié-Bitach, Tania; Thomas, Sophie

    2015-08-06

    KIAA0586, the human ortholog of chicken TALPID3, is a centrosomal protein that is essential for primary ciliogenesis. Its disruption in animal models causes defects attributed to abnormal hedgehog signaling; these defects include polydactyly and abnormal dorsoventral patterning of the neural tube. Here, we report homozygous mutations of KIAA0586 in four families affected by lethal ciliopathies ranging from a hydrolethalus phenotype to short-rib polydactyly. We show defective ciliogenesis, as well as abnormal response to SHH-signaling activation in cells derived from affected individuals, consistent with a role of KIAA0586 in primary cilia biogenesis. Whereas centriolar maturation seemed unaffected in mutant cells, we observed an abnormal extended pattern of CEP290, a centriolar satellite protein previously associated with ciliopathies. Our data show the crucial role of KIAA0586 in human primary ciliogenesis and subsequent abnormal hedgehog signaling through abnormal GLI3 processing. Our results thus establish that KIAA0586 mutations cause lethal ciliopathies. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. New insights into genotype–phenotype correlation for GLI3 mutations

    PubMed Central

    Démurger, Florence; Ichkou, Amale; Mougou-Zerelli, Soumaya; Le Merrer, Martine; Goudefroye, Géraldine; Delezoide, Anne-Lise; Quélin, Chloé; Manouvrier, Sylvie; Baujat, Geneviève; Fradin, Mélanie; Pasquier, Laurent; Megarbané, André; Faivre, Laurence; Baumann, Clarisse; Nampoothiri, Sheela; Roume, Joëlle; Isidor, Bertrand; Lacombe, Didier; Delrue, Marie-Ange; Mercier, Sandra; Philip, Nicole; Schaefer, Elise; Holder, Muriel; Krause, Amanda; Laffargue, Fanny; Sinico, Martine; Amram, Daniel; André, Gwenaelle; Liquier, Alain; Rossi, Massimiliano; Amiel, Jeanne; Giuliano, Fabienne; Boute, Odile; Dieux-Coeslier, Anne; Jacquemont, Marie-Line; Afenjar, Alexandra; Van Maldergem, Lionel; Lackmy-Port-Lis, Marylin; Vincent- Delorme, Catherine; Chauvet, Marie-Liesse; Cormier-Daire, Valérie; Devisme, Louise; Geneviève, David; Munnich, Arnold; Viot, Géraldine; Raoul, Odile; Romana, Serge; Gonzales, Marie; Encha-Razavi, Ferechte; Odent, Sylvie; Vekemans, Michel; Attie-Bitach, Tania

    2015-01-01

    The phenotypic spectrum of GLI3 mutations includes autosomal dominant Greig cephalopolysyndactyly syndrome (GCPS) and Pallister–Hall syndrome (PHS). PHS was first described as a lethal condition associating hypothalamic hamartoma, postaxial or central polydactyly, anal atresia and bifid epiglottis. Typical GCPS combines polysyndactyly of hands and feet and craniofacial features. Genotype–phenotype correlations have been found both for the location and the nature of GLI3 mutations, highlighting the bifunctional nature of GLI3 during development. Here we report on the molecular and clinical study of 76 cases from 55 families with either a GLI3 mutation (49 GCPS and 21 PHS), or a large deletion encompassing the GLI3 gene (6 GCPS cases). Most of mutations are novel and consistent with the previously reported genotype–phenotype correlation. Our results also show a correlation between the location of the mutation and abnormal corpus callosum observed in some patients with GCPS. Fetal PHS observations emphasize on the possible lethality of GLI3 mutations and extend the phenotypic spectrum of malformations such as agnathia and reductional limbs defects. GLI3 expression studied by in situ hybridization during human development confirms its early expression in target tissues. PMID:24736735

  8. New insights into genotype-phenotype correlation for GLI3 mutations.

    PubMed

    Démurger, Florence; Ichkou, Amale; Mougou-Zerelli, Soumaya; Le Merrer, Martine; Goudefroye, Géraldine; Delezoide, Anne-Lise; Quélin, Chloé; Manouvrier, Sylvie; Baujat, Geneviève; Fradin, Mélanie; Pasquier, Laurent; Megarbané, André; Faivre, Laurence; Baumann, Clarisse; Nampoothiri, Sheela; Roume, Joëlle; Isidor, Bertrand; Lacombe, Didier; Delrue, Marie-Ange; Mercier, Sandra; Philip, Nicole; Schaefer, Elise; Holder, Muriel; Krause, Amanda; Laffargue, Fanny; Sinico, Martine; Amram, Daniel; André, Gwenaelle; Liquier, Alain; Rossi, Massimiliano; Amiel, Jeanne; Giuliano, Fabienne; Boute, Odile; Dieux-Coeslier, Anne; Jacquemont, Marie-Line; Afenjar, Alexandra; Van Maldergem, Lionel; Lackmy-Port-Lis, Marylin; Vincent-Delorme, Catherine; Chauvet, Marie-Liesse; Cormier-Daire, Valérie; Devisme, Louise; Geneviève, David; Munnich, Arnold; Viot, Géraldine; Raoul, Odile; Romana, Serge; Gonzales, Marie; Encha-Razavi, Ferechte; Odent, Sylvie; Vekemans, Michel; Attie-Bitach, Tania

    2015-01-01

    The phenotypic spectrum of GLI3 mutations includes autosomal dominant Greig cephalopolysyndactyly syndrome (GCPS) and Pallister-Hall syndrome (PHS). PHS was first described as a lethal condition associating hypothalamic hamartoma, postaxial or central polydactyly, anal atresia and bifid epiglottis. Typical GCPS combines polysyndactyly of hands and feet and craniofacial features. Genotype-phenotype correlations have been found both for the location and the nature of GLI3 mutations, highlighting the bifunctional nature of GLI3 during development. Here we report on the molecular and clinical study of 76 cases from 55 families with either a GLI3 mutation (49 GCPS and 21 PHS), or a large deletion encompassing the GLI3 gene (6 GCPS cases). Most of mutations are novel and consistent with the previously reported genotype-phenotype correlation. Our results also show a correlation between the location of the mutation and abnormal corpus callosum observed in some patients with GCPS. Fetal PHS observations emphasize on the possible lethality of GLI3 mutations and extend the phenotypic spectrum of malformations such as agnathia and reductional limbs defects. GLI3 expression studied by in situ hybridization during human development confirms its early expression in target tissues.

  9. Effects of Decay of Incorporated H3-Thymidine on Bacteria

    PubMed Central

    Person, Stanley; Leah Lewis, Hazel

    1962-01-01

    The killing efficiency due to the decay of incorporated H3-thymidine in three mutants of E. coli strain 15: 15T-, 15T-L-, and 15T-U- has been determined. This efficiency is comparable to that previously determined by others for P32 decay. The killing efficiency has been determined as a function of H3-thymidine specific activity, storage media and storage temperature. We have observed a latent killing effect that causes lethality under certain conditions. The kinetics of latent killing have been examined at several temperatures. Finally, mutation production induced by H3-thymidine decays was shown to occur. The results are consistent with the idea that inactivation and mutations may be caused by a process in the nuclear transmutation that is not associated with β-particle ionization damage. PMID:19431318

  10. Nucleobases and corresponding nucleosides display potent antiviral activities against dengue virus possibly through viral lethal mutagenesis.

    PubMed

    Qiu, Li; Patterson, Steven E; Bonnac, Laurent F; Geraghty, Robert J

    2018-04-01

    Dengue virus affects millions of people worldwide each year. To date, there is no drug for the treatment of dengue-associated disease. Nucleosides are effective antivirals and work by inhibiting the accurate replication of the viral genome. Nucleobases offer a cheaper alternative to nucleosides for broad antiviral applications. Metabolic activation of nucleobases involves condensation with 5-phosphoribosyl-1-pyrophosphate to give the corresponding nucleoside-5'-monophosphate. This could provide an alternative to phosphorylation of a nucleoside, a step that is often rate limiting and inefficient in activation of nucleosides. We evaluated more than 30 nucleobases and corresponding nucleosides for their antiviral activity against dengue virus. Five nucleobases and two nucleosides were found to induce potent antiviral effects not previously described. Our studies further revealed that nucleobases were usually more active with a better tissue culture therapeutic index than their corresponding nucleosides. The development of viral lethal mutagenesis, an antiviral approach that takes into account the quasispecies behavior of RNA viruses, represents an exciting prospect not yet studied in the context of dengue replication. Passage of the virus in the presence of the nucleobase 3a (T-1105) and corresponding nucleoside 3b (T-1106), favipiravir derivatives, induced an increase in apparent mutations, indicating lethal mutagenesis as a possible antiviral mechanism. A more concerted and widespread screening of nucleobase libraries is a very promising approach to identify dengue virus inhibitors including those that may act as viral mutagens.

  11. A Bacterial Cocaine Esterase Protects Against Cocaine-Induced Epileptogenic Activity and Lethality

    PubMed Central

    Jutkiewicz, Emily M.; Baladi, Michelle G.; Cooper, Ziva D.; Narasimhan, Diwahar; Sunahara, Roger K.; Woods, James H.

    2012-01-01

    Study objective Cocaine toxicity results in cardiovascular complications, seizures, and death and accounts for approximately 20% of drug-related emergency department visits every year. Presently, there are no treatments to eliminate the toxic effects of cocaine. The present study hypothesizes that a bacterial cocaine esterase with high catalytic efficiency would provide rapid and robust protection from cocaine-induced convulsions, epileptogenic activity, and lethality. Methods Cocaine-induced paroxysmal activity and convulsions were evaluated in rats surgically implanted with radiotelemetry devices (N=6 per treatment group). Cocaine esterase was administered 1 minute after a lethal dose of cocaine or after cocaine-induced convulsions to determine the ability of the enzyme to prevent or reverse, respectively, the effects of cocaine. Results The cocaine esterase prevented all cocaine-induced electroencephalographic changes and lethality. This effect was specific for cocaine because the esterase did not prevent convulsions and death induced by a cocaine analog, (−)-2β-carbomethoxy-3β-phenyltropane. The esterase prevented lethality even after cocaine-induced convulsions occurred. In contrast, the short-acting benzodiazepine, midazolam, prevented cocaine-induced convulsions but not the lethal effects of cocaine. Conclusion The data showed that cocaine esterase successfully degraded circulating cocaine to prevent lethality and that cocaine-induced convulsions alone are not responsible for the lethal effects of cocaine in this model. Therefore, further investigation into the use of cocaine esterase for treating cocaine overdose and its toxic effects is warranted. PMID:19013687

  12. A spontaneous mutation of the Wwox gene and audiogenic seizures in rats with lethal dwarfism and epilepsy.

    PubMed

    Suzuki, H; Katayama, K; Takenaka, M; Amakasu, K; Saito, K; Suzuki, K

    2009-10-01

    The lde/lde rat is characterized by dwarfism, postnatal lethality, male hypogonadism, a high incidence of epilepsy and many vacuoles in the hippocampus and amygdala. We used a candidate approach to identify the gene responsible for the lde phenotype and assessed the susceptibility of lde/lde rats for audiogenic seizures. Following backcross breeding of lethal dwarfism with epilepsy (LDE) to Brown Norway rats, the lde/lde rats with an altered genetic background showed all pleiotropic phenotypes. The lde locus was mapped to a 1.5-Mbp region on rat chromosome 19 that included the latter half of the Wwox gene. Sequencing of the full-length Wwox transcript identified a 13-bp deletion in exon 9 in lde/lde rats. This mutation causes a frame shift, resulting in aberrant amino acid sequences at the C-terminal. Western blotting showed that both the full-length products of the Wwox gene and its isoform were present in normal testes and hippocampi, whereas both products were undetectable in the testes and hippocampi of lde/lde rats. Sound stimulation induced epileptic seizures in 95% of lde/lde rats, with starting as wild running (WR), sometimes progressing to tonic-clonic convulsions. Electroencephalogram (EEG) analysis showed interictal spikes, fast waves during WR and burst of spikes during clonic phases. The Wwox protein is expressed in the central nervous system (CNS), indicating that abnormal neuronal excitability in lde/lde rats may be because of a lack of Wwox function. The lde/lde rat is not only useful for understanding the multiple functions of Wwox but is also a unique model for studying the physiological function of Wwox in CNS.

  13. Monoketone analogs of curcumin, a new class of Fanconi anemia pathway inhibitors.

    PubMed

    Landais, Igor; Hiddingh, Sanne; McCarroll, Matthew; Yang, Chao; Sun, Aiming; Turker, Mitchell S; Snyder, James P; Hoatlin, Maureen E

    2009-12-31

    The Fanconi anemia (FA) pathway is a multigene DNA damage response network implicated in the repair of DNA lesions that arise during replication or after exogenous DNA damage. The FA pathway displays synthetic lethal relationship with certain DNA repair genes such as ATM (Ataxia Telangectasia Mutated) that are frequently mutated in tumors. Thus, inhibition of FANCD2 monoubiquitylation (FANCD2-Ub), a key step in the FA pathway, might target tumor cells defective in ATM through synthetic lethal interaction. Curcumin was previously identified as a weak inhibitor of FANCD2-Ub. The aim of this study is to identify derivatives of curcumin with better activity and specificity. Using a replication-free assay in Xenopus extracts, we screened monoketone analogs of curcumin for inhibition of FANCD2-Ub and identified analog EF24 as a strong inhibitor. Mechanistic studies suggest that EF24 targets the FA pathway through inhibition of the NF-kB pathway kinase IKK. In HeLa cells, nanomolar concentrations of EF24 inhibited hydroxyurea (HU)-induced FANCD2-Ub and foci in a cell-cycle independent manner. Survival assays revealed that EF24 specifically sensitizes FA-competent cells to the DNA crosslinking agent mitomycin C (MMC). In addition, in contrast with curcumin, ATM-deficient cells are twofold more sensitive to EF24 than matched wild-type cells, consistent with a synthetic lethal effect between FA pathway inhibition and ATM deficiency. An independent screen identified 4H-TTD, a compound structurally related to EF24 that displays similar activity in egg extracts and in cells. These results suggest that monoketone analogs of curcumin are potent inhibitors of the FA pathway and constitute a promising new class of targeted anticancer compounds.

  14. Monoketone analogs of curcumin, a new class of Fanconi anemia pathway inhibitors

    PubMed Central

    2009-01-01

    Background The Fanconi anemia (FA) pathway is a multigene DNA damage response network implicated in the repair of DNA lesions that arise during replication or after exogenous DNA damage. The FA pathway displays synthetic lethal relationship with certain DNA repair genes such as ATM (Ataxia Telangectasia Mutated) that are frequently mutated in tumors. Thus, inhibition of FANCD2 monoubiquitylation (FANCD2-Ub), a key step in the FA pathway, might target tumor cells defective in ATM through synthetic lethal interaction. Curcumin was previously identified as a weak inhibitor of FANCD2-Ub. The aim of this study is to identify derivatives of curcumin with better activity and specificity. Results Using a replication-free assay in Xenopus extracts, we screened monoketone analogs of curcumin for inhibition of FANCD2-Ub and identified analog EF24 as a strong inhibitor. Mechanistic studies suggest that EF24 targets the FA pathway through inhibition of the NF-kB pathway kinase IKK. In HeLa cells, nanomolar concentrations of EF24 inhibited hydroxyurea (HU)-induced FANCD2-Ub and foci in a cell-cycle independent manner. Survival assays revealed that EF24 specifically sensitizes FA-competent cells to the DNA crosslinking agent mitomycin C (MMC). In addition, in contrast with curcumin, ATM-deficient cells are twofold more sensitive to EF24 than matched wild-type cells, consistent with a synthetic lethal effect between FA pathway inhibition and ATM deficiency. An independent screen identified 4H-TTD, a compound structurally related to EF24 that displays similar activity in egg extracts and in cells. Conclusions These results suggest that monoketone analogs of curcumin are potent inhibitors of the FA pathway and constitute a promising new class of targeted anticancer compounds. PMID:20043851

  15. Mechanisms and significance of fungicide resistance†

    PubMed Central

    Deising, Holger B.; Reimann, Sven; Pascholati, Sérgio F.

    2008-01-01

    In this review article, we show that occurrence of fungicide resistance is one of the most important issues in modern agriculture. Fungicide resistance may be due to mutations of genes encoding fungicide targets (qualitative fungicide resistance) or to different mechanisms that are induced by sub-lethal fungicide stress. These mechanisms result in different and varying levels of resistance (quantitative fungicide resistance). We discuss whether or not extensive use of fungicides in agricultural environments is related to the occurrence of fungicide resistance in clinical environments. Furthermore, we provide recommendations of how development of fungicide resistant pathogen populations may be prevented or delayed. PMID:24031218

  16. Effect of lethality on the extinction and on the error threshold of quasispecies.

    PubMed

    Tejero, Hector; Marín, Arturo; Montero, Francisco

    2010-02-21

    In this paper the effect of lethality on error threshold and extinction has been studied in a population of error-prone self-replicating molecules. For given lethality and a simple fitness landscape, three dynamic regimes can be obtained: quasispecies, error catastrophe, and extinction. Using a simple model in which molecules are classified as master, lethal and non-lethal mutants, it is possible to obtain the mutation rates of the transitions between the three regimes analytically. The numerical resolution of the extended model, in which molecules are classified depending on their Hamming distance to the master sequence, confirms the results obtained in the simple model and shows how an error catastrophe regime changes when lethality is taken in account. (c) 2009 Elsevier Ltd. All rights reserved.

  17. CDK1 Is a Synthetic Lethal Target for KRAS Mutant Tumours

    PubMed Central

    Costa-Cabral, Sara; Brough, Rachel; Konde, Asha; Aarts, Marieke; Campbell, James; Marinari, Eliana; Riffell, Jenna; Bardelli, Alberto; Torrance, Christopher; Lord, Christopher J.; Ashworth, Alan

    2016-01-01

    Activating KRAS mutations are found in approximately 20% of human cancers but no RAS-directed therapies are currently available. Here we describe a novel, robust, KRAS synthetic lethal interaction with the cyclin dependent kinase, CDK1. This was discovered using parallel siRNA screens in KRAS mutant and wild type colorectal isogenic tumour cells and subsequently validated in a genetically diverse panel of 26 colorectal and pancreatic tumour cell models. This established that the KRAS/CDK1 synthetic lethality applies in tumour cells with either amino acid position 12 (p.G12V, pG12D, p.G12S) or amino acid position 13 (p.G13D) KRAS mutations and can also be replicated in vivo in a xenograft model using a small molecule CDK1 inhibitor. Mechanistically, CDK1 inhibition caused a reduction in the S-phase fraction of KRAS mutant cells, an effect also characterised by modulation of Rb, a master control of the G1/S checkpoint. Taken together, these observations suggest that the KRAS/CDK1 interaction is a robust synthetic lethal effect worthy of further investigation. PMID:26881434

  18. Dominant Drop mutants are gain-of-function alleles of the muscle segment homeobox gene (msh) whose overexpression leads to the arrest of eye development.

    PubMed

    Mozer, B A

    2001-05-15

    Dominant Drop (Dr) mutations are nearly eyeless and have additional recessive phenotypes including lethality and patterning defects in eye and sensory bristles due to cis-regulatory lesions in the cell cycle regulator string (stg). Genetic analysis demonstrates that the dominant small eye phenotype is the result of separate gain-of-function mutations in the closely linked muscle segment homeobox (msh) gene, encoding a homeodomain transcription factor required for patterning of muscle and nervous system. Reversion of the Dr(Mio) allele was coincident with the generation of lethal loss-of-function mutations in msh in cis, suggesting that the dominant eye phenotype is the result of ectopic expression. Molecular genetic analysis revealed that two dominant Dr alleles contain lesions upstream of the msh transcription start site. In the Dr(Mio) mutant, a 3S18 retrotransposon insertion is the target of second-site mutations (P-element insertions or deletions) which suppress the dominant eye phenotype following reversion. The pattern of 3S18 expression and the absence of msh in eye imaginal discs suggest that transcriptional activation of the msh promoter accounts for ectopic expression. Dr dominant mutations arrest eye development by blocking the progression of the morphogenetic furrow leading to photoreceptor cell loss via apoptosis. Gal4-mediated ubiquitous expression of msh in third-instar larvae was sufficient to arrest the morphogenetic furrow in the eye imaginal disc and resulted in lethality prior to eclosion. Dominant mutations in the human msx2 gene, one of the vertebrate homologs of msh, are associated with craniosynostosis, a disease affecting cranial development. The Dr mutations are the first example of gain-of-function mutations in the msh/msx gene family identified in a genetically tractible model organism and may serve as a useful tool to identify additional genes that regulate this class of homeodomain proteins. Copyright 2001 Academic Press.

  19. Functional genomics reveals the induction of inflammatory response and metalloproteinase gene expression during lethal Ebola virus infection.

    PubMed

    Cilloniz, Cristian; Ebihara, Hideki; Ni, Chester; Neumann, Gabriele; Korth, Marcus J; Kelly, Sara M; Kawaoka, Yoshihiro; Feldmann, Heinz; Katze, Michael G

    2011-09-01

    Ebola virus is the etiologic agent of a lethal hemorrhagic fever in humans and nonhuman primates with mortality rates of up to 90%. Previous studies with Zaire Ebola virus (ZEBOV), mouse-adapted virus (MA-ZEBOV), and mutant viruses (ZEBOV-NP(ma), ZEBOV-VP24(ma), and ZEBOV-NP/VP24(ma)) allowed us to identify the mutations in viral protein 24 (VP24) and nucleoprotein (NP) responsible for acquisition of high virulence in mice. To elucidate specific molecular signatures associated with lethality, we compared global gene expression profiles in spleen samples from mice infected with these viruses and performed an extensive functional analysis. Our analysis showed that the lethal viruses (MA-ZEBOV and ZEBOV-NP/VP24(ma)) elicited a strong expression of genes 72 h after infection. In addition, we found that although the host transcriptional response to ZEBOV-VP24(ma) was nearly the same as that to ZEBOV-NP/VP24(ma), the contribution of a mutation in the NP gene was required for a lethal phenotype. Further analysis indicated that one of the most relevant biological functions differentially regulated by the lethal viruses was the inflammatory response, as was the induction of specific metalloproteinases, which were present in our newly identify functional network that was associated with Ebola virus lethality. Our results suggest that this dysregulated proinflammatory response increased the severity of disease. Consequently, the newly discovered molecular signature could be used as the starting point for the development of new drugs and therapeutics. To our knowledge, this is the first study that clearly defines unique molecular signatures associated with Ebola virus lethality.

  20. Biological responses of Habrobracon to spaceflight.

    PubMed

    von Borstel, R C; Smith, R H; Whiting, A R; Grosch, D S

    1970-01-01

    Since the interaction of the parasitic wasp Habrobracon with the space environment could not be prejudged, we decided to test approximately 30 different parameters of a genetic, mutational, biochemical, behavioral, and physiological character in the one spaceflight we had at our disposal. These parameters were examined at six different exposures of gamma-radiation (including 0 dose) in flight, resulting in about 180 different endpoints in all. The most profound effects of spaceflight in conjunction with radiation were decreased hatchability and enhanced fecundity of eggs exposed to spaceflight at different stages of oogenesis. The interpretation we favor is that these two endpoints are reflections of chromosomal non-disjunction in the former case and inhibition of cell division in the latter. Our most comprehensive study of mutagenesis was on sperm, where dominant lethality, recessive lethality, translocations, and visible mutations were assayed; the only effect found was a threefold enhancement of the recessive lethal mutation frequency in the non-irradiated sperm in the orbited Habrobracon males. Behavioral and biochemical differences were found. Mating activity of orbited males was severely disrupted and xanthine dehydrogenase activity was sharply decreased in the irradiated flight animals, an unexpected observation. Postflight experiments were like the ground-based control experiments in all aspects but one. Under conditions of vibration similar to those encountered during the launch and re-entry, the mutation frequency in the sperm increased by a factor of three over that of the non-vibrated control.

  1. Survival and dominant transmission of "lethal" platyspondylic dwarfism of the "West coast" types.

    PubMed

    Omran, H; Uhl, M; Brandis, M; Wolff, G

    2000-03-01

    Torrance, San Diego, and Luton types ("West coast" types) of neonatal platyspondylic short-limbed dwarfism are suspected to be caused by dominant mutations that are obligatorily lethal. We report on an affected mother, who passed the disease to her daughter, confirming dominant disease transmission. Survival of the mother indicates a wider phenotypic spectrum.

  2. EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia

    PubMed Central

    Boczonadi, Veronika; Müller, Juliane S.; Pyle, Angela; Munkley, Jennifer; Dor, Talya; Quartararo, Jade; Ferrero, Ileana; Karcagi, Veronika; Giunta, Michele; Polvikoski, Tuomo; Birchall, Daniel; Princzinger, Agota; Cinnamon, Yuval; Lützkendorf, Susanne; Piko, Henriett; Reza, Mojgan; Florez, Laura; Santibanez-Koref, Mauro; Griffin, Helen; Schuelke, Markus; Elpeleg, Orly; Kalaydjieva, Luba; Lochmüller, Hanns; Elliott, David J.; Chinnery, Patrick F.; Edvardson, Shimon; Horvath, Rita

    2014-01-01

    The exosome is a multi-protein complex, required for the degradation of AU-rich element (ARE) containing messenger RNAs (mRNAs). EXOSC8 is an essential protein of the exosome core, as its depletion causes a severe growth defect in yeast. Here we show that homozygous missense mutations in EXOSC8 cause progressive and lethal neurological disease in 22 infants from three independent pedigrees. Affected individuals have cerebellar and corpus callosum hypoplasia, abnormal myelination of the central nervous system or spinal motor neuron disease. Experimental downregulation of EXOSC8 in human oligodendroglia cells and in zebrafish induce a specific increase in ARE mRNAs encoding myelin proteins, showing that the imbalanced supply of myelin proteins causes the disruption of myelin, and explaining the clinical presentation. These findings show the central role of the exosomal pathway in neurodegenerative disease. PMID:24989451

  3. Molecular determinants of Ebola virus virulence in mice.

    PubMed

    Ebihara, Hideki; Takada, Ayato; Kobasa, Darwyn; Jones, Steven; Neumann, Gabriele; Theriault, Steven; Bray, Mike; Feldmann, Heinz; Kawaoka, Yoshihiro

    2006-07-01

    Zaire ebolavirus (ZEBOV) causes severe hemorrhagic fever in humans and nonhuman primates, with fatality rates in humans of up to 90%. The molecular basis for the extreme virulence of ZEBOV remains elusive. While adult mice resist ZEBOV infection, the Mayinga strain of the virus has been adapted to cause lethal infection in these animals. To understand the pathogenesis underlying the extreme virulence of Ebola virus (EBOV), here we identified the mutations responsible for the acquisition of the high virulence of the adapted Mayinga strain in mice, by using reverse genetics. We found that mutations in viral protein 24 and in the nucleoprotein were primarily responsible for the acquisition of high virulence. Moreover, the role of these proteins in virulence correlated with their ability to evade type I interferon-stimulated antiviral responses. These findings suggest a critical role for overcoming the interferon-induced antiviral state in the pathogenicity of EBOV and offer new insights into the pathogenesis of EBOV infection.

  4. Favipiravir elicits antiviral mutagenesis during virus replication in vivo.

    PubMed

    Arias, Armando; Thorne, Lucy; Goodfellow, Ian

    2014-10-21

    Lethal mutagenesis has emerged as a novel potential therapeutic approach to treat viral infections. Several studies have demonstrated that increases in the high mutation rates inherent to RNA viruses lead to viral extinction in cell culture, but evidence during infections in vivo is limited. In this study, we show that the broad-range antiviral nucleoside favipiravir reduces viral load in vivo by exerting antiviral mutagenesis in a mouse model for norovirus infection. Increased mutation frequencies were observed in samples from treated mice and were accompanied with lower or in some cases undetectable levels of infectious virus in faeces and tissues. Viral RNA isolated from treated animals showed reduced infectivity, a feature of populations approaching extinction during antiviral mutagenesis. These results suggest that favipiravir can induce norovirus mutagenesis in vivo, which in some cases leads to virus extinction, providing a proof-of-principle for the use of favipiravir derivatives or mutagenic nucleosides in the clinical treatment of noroviruses.

  5. Topology of evolving, mutagenized viral populations: quasispecies expansion, compression, and operation of negative selection.

    PubMed

    Ojosnegros, Samuel; Agudo, Rubén; Sierra, Macarena; Briones, Carlos; Sierra, Saleta; González-López, Claudia; Domingo, Esteban; Cristina, Juan

    2008-07-17

    The molecular events and evolutionary forces underlying lethal mutagenesis of virus (or virus extinction through an excess of mutations) are not well understood. Here we apply for the first time phylogenetic methods and Partition Analysis of Quasispecies (PAQ) to monitor genetic distances and intra-population structures of mutant spectra of foot-and-mouth disease virus (FMDV) quasispecies subjected to mutagenesis by base and nucleoside analogues. Phylogenetic and PAQ analyses have revealed a highly dynamic variation of intrapopulation diversity of FMDV quasispecies. The population diversity first suffers striking expansions in the presence of mutagens and then compressions either when the presence of the mutagenic analogue was discontinued or when a mutation that decreased sensitivity to a mutagen was selected. The pattern of mutations found in the populations was in agreement with the behavior of the corresponding nucleotide analogues with FMDV in vitro. Mutations accumulated at preferred genomic sites, and dn/ds ratios indicate the operation of negative (or purifying) selection in populations subjected to mutagenesis. No evidence of unusually elevated genetic distances has been obtained for FMDV populations approaching extinction. Phylogenetic and PAQ analysis provide adequate procedures to describe the evolution of viral sequences subjected to lethal mutagenesis. These methods define the changes of intra-population structure more precisely than mutation frequencies and Shannon entropies. PAQ is very sensitive to variations of intrapopulation genetic distances. Strong negative (or purifying) selection operates in FMDV populations subjected to enhanced mutagenesis. The quantifications provide evidence that extinction does not imply unusual increases of intrapopulation complexity, in support of the lethal defection model of virus extinction.

  6. K-RasV14I recapitulates Noonan syndrome in mice

    PubMed Central

    Hernández-Porras, Isabel; Fabbiano, Salvatore; Schuhmacher, Alberto J.; Aicher, Alexandra; Cañamero, Marta; Cámara, Juan Antonio; Cussó, Lorena; Desco, Manuel; Heeschen, Christopher; Mulero, Francisca; Bustelo, Xosé R.; Guerra, Carmen; Barbacid, Mariano

    2014-01-01

    Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, craniofacial dysmorphism, and congenital heart defects. NS also is associated with a risk for developing myeloproliferative disorders (MPD), including juvenile myelomonocytic leukemia (JMML). Mutations responsible for NS occur in at least 11 different loci including KRAS. Here we describe a mouse model for NS induced by K-RasV14I, a recurrent KRAS mutation in NS patients. K-RasV14I–mutant mice displayed multiple NS-associated developmental defects such as growth delay, craniofacial dysmorphia, cardiac defects, and hematologic abnormalities including a severe form of MPD that resembles human JMML. Homozygous animals had perinatal lethality whose penetrance varied with genetic background. Exposure of pregnant mothers to a MEK inhibitor rescued perinatal lethality and prevented craniofacial dysmorphia and cardiac defects. However, Mek inhibition was not sufficient to correct these defects when mice were treated after weaning. Interestingly, Mek inhibition did not correct the neoplastic MPD characteristic of these mutant mice, regardless of the timing at which the mice were treated, thus suggesting that MPD is driven by additional signaling pathways. These genetically engineered K-RasV14I–mutant mice offer an experimental tool for studying the molecular mechanisms underlying the clinical manifestations of NS. Perhaps more importantly, they should be useful as a preclinical model to test new therapies aimed at preventing or ameliorating those deficits associated with this syndrome. PMID:25359213

  7. The PSO4 gene is responsible for an error-prone recombinational DNA repair pathway in Saccharomyces cerevisiae.

    PubMed

    de Andrade, H H; Marques, E K; Schenberg, A C; Henriques, J A

    1989-06-01

    The induction of mitotic gene conversion and crossing-over in Saccharomyces cerevisiae diploid cells homozygous for the pso4-1 mutation was examined in comparison to the corresponding wild-type strain. The pso4-1 mutant strain was found to be completely blocked in mitotic recombination induced by photoaddition of mono- and bifunctional psoralen derivatives as well as by mono- (HN1) and bifunctional (HN2) nitrogen mustards or 254 nm UV radiation in both stationary and exponential phases of growth. Concerning the lethal effect, diploids homozygous for the pso4-1 mutation are more sensitive to all agents tested in any growth phase. However, this effect is more pronounced in the G2 phase of the cell cycle. These results imply that the ploidy effect and the resistance of budding cells are under the control of the PSO4 gene. On the other hand, the pso4-1 mutant is mutationally defective for all agents used. Therefore, the pso4-1 mutant has a generalized block in both recombination and mutation ability. This indicates that the PSO4 gene is involved in an error-prone repair pathway which relies on a recombinational mechanism, strongly suggesting an analogy between the pso4-1 mutation and the RecA or LexA mutation of Escherichia coli.

  8. Pathogenesis of listeria-infected Drosophila wntD mutants is associated with elevated levels of the novel immunity gene edin.

    PubMed

    Gordon, Michael D; Ayres, Janelle S; Schneider, David S; Nusse, Roel

    2008-07-25

    Drosophila melanogaster mount an effective innate immune response against invading microorganisms, but can eventually succumb to persistent pathogenic infections. Understanding of this pathogenesis is limited, but it appears that host factors, induced by microbes, can have a direct cost to the host organism. Mutations in wntD cause susceptibility to Listeria monocytogenes infection, apparently through the derepression of Toll-Dorsal target genes, some of which are deleterious to survival. Here, we use gene expression profiling to identify genes that may mediate the observed susceptibility of wntD mutants to lethal infection. These genes include the TNF family member eiger and the novel immunity gene edin (elevated during infection; synonym CG32185), both of which are more strongly induced by infection of wntD mutants compared to controls. edin is also expressed more highly during infection of wild-type flies with wild-type Salmonella typhimurium than with a less pathogenic mutant strain, and its expression is regulated in part by the Imd pathway. Furthermore, overexpression of edin can induce age-dependent lethality, while loss of function in edin renders flies more susceptible to Listeria infection. These results are consistent with a model in which the regulation of host factors, including edin, must be tightly controlled to avoid the detrimental consequences of having too much or too little activity.

  9. Targeting human apurinic/apyrimidinic endonuclease 1 (APE1) in phosphatase and tensin homolog (PTEN) deficient melanoma cells for personalized therapy.

    PubMed

    Abbotts, Rachel; Jewell, Rosalyn; Nsengimana, Jérémie; Maloney, David J; Simeonov, Anton; Seedhouse, Claire; Elliott, Faye; Laye, Jon; Walker, Christy; Jadhav, Ajit; Grabowska, Anna; Ball, Graham; Patel, Poulam M; Newton-Bishop, Julia; Wilson, David M; Madhusudan, Srinivasan

    2014-05-30

    Phosphatase and tensin homolog (PTEN) loss is associated with genomic instability. APE1 is a key player in DNA base excision repair (BER) and an emerging drug target in cancer. We have developed small molecule inhibitors against APE1 repair nuclease activity. In the current study we explored a synthetic lethal relationship between PTEN and APE1 in melanoma. Clinicopathological significance of PTEN mRNA and APE1 mRNA expression was investigated in 191 human melanomas. Preclinically, PTEN-deficient BRAF-mutated (UACC62, HT144, and SKMel28), PTEN-proficient BRAF-wildtype (MeWo), and doxycycline-inducible PTEN-knockout BRAF-wildtype MeWo melanoma cells were DNA repair expression profiled and investigated for synthetic lethality using a panel of four prototypical APE1 inhibitors. In human tumours, low PTEN mRNA and high APE1 mRNA was significantly associated with reduced relapse free and overall survival. Pre-clinically, compared to PTEN-proficient cells, PTEN-deficient cells displayed impaired expression of genes involved in DNA double strand break (DSB) repair. Synthetic lethality in PTEN-deficient cells was evidenced by increased sensitivity, accumulation of DSBs and induction of apoptosis following treatment with APE1 inhibitors. We conclude that PTEN deficiency is not only a promising biomarker in melanoma, but can also be targeted by a synthetic lethality strategy using inhibitors of BER, such as those targeting APE1.

  10. Mutation at p53 serine 389 does not rescue the embryonic lethality in mdm2 or mdm4 null mice.

    PubMed

    Iwakuma, Tomoo; Parant, John M; Fasulo, Mark; Zwart, Edwin; Jacks, Tyler; de Vries, Annemieke; Lozano, Guillermina

    2004-10-07

    Mdm2 and its homolog Mdm4 inhibit the function of the tumor suppressor p53. Targeted disruption of either mdm2 or mdm4 genes in mice results in embryonic lethality that is completely rescued by concomitant deletion of p53, suggesting that deletion of negative regulators of p53 results in a constitutively active p53. Thus, these mouse models offer a unique in vivo system to assay the functional significance of different p53 modifications. Phosphorylation of serine 389 in murine p53 occurs specifically after ultraviolet-light-induced DNA damage, and phosphorylation of this site enhances p53 activity both in vitro and in vivo. Recently, mice with a serine to alanine substitution at serine 389 (p53S389A) in the endogenous p53 locus were generated. To examine the in vivo significance of serine 389 phosphorylation during embryogenesis, we crossed these mutant mice to mice lacking mdm2 or mdm4. The p53S389A allele did not alter the embryonic lethality of mdm2 or mdm4. Additional crosses to assay the effect of one p53S389A allele with a p53 null allele also did not rescue the lethal phenotypes. In conclusion, the phenotypes due to loss of mdm2 or mdm4 were not even partially rescued by p53S389A, suggesting that p53S389A is functionally wild type during embryogenesis.

  11. Narrowing the wingless-2 mutation to a 227 Kb candidate region on chicken chromosome 12

    USDA-ARS?s Scientific Manuscript database

    Wingless-2 (wg-2) is an autosomal recessive mutation in chicken that results in an embryonic lethal condition. Affected individuals exhibit a multisystem syndrome characterized by absent wings, truncated legs, and craniofacial, kidney, and feather malformations. Previously, work focused on phenotype...

  12. THE EFFECTS OF CHLORAMPHENICOL, STREPTOMYCIN, AND PENICILLIN ON THE INDUCTION OF MUTATIONS BY X-RAYS IN DROSOPHILA MELANOGASTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, A.M.

    The injection of chloramphenicol, streptomycin, or penicillin into Drosophila males just before exposure to x irradiation caused a reduction in the yield of sex linked recessive lethal mutations. The effect appears to be primarily on spermatids and possibly spermatocytes. (auth)

  13. A Genetic Screen Reveals an Unexpected Role for Yorkie Signaling in JAK/STAT-Dependent Hematopoietic Malignancies in Drosophila melanogaster

    PubMed Central

    Anderson, Abigail M.; Bailetti, Alessandro A.; Rodkin, Elizabeth; De, Atish; Bach, Erika A.

    2017-01-01

    A gain-of-function mutation in the tyrosine kinase JAK2 (JAK2V617F) causes human myeloproliferative neoplasms (MPNs). These patients present with high numbers of myeloid lineage cells and have numerous complications. Since current MPN therapies are not curative, there is a need to find new regulators and targets of Janus kinase/Signal transducer and activator of transcription (JAK/STAT) signaling that may represent additional clinical interventions . Drosophila melanogaster offers a low complexity model to study MPNs as JAK/STAT signaling is simplified with only one JAK [Hopscotch (Hop)] and one STAT (Stat92E). hopTumorous-lethal (Tum-l) is a gain-of-function mutation that causes dramatic expansion of myeloid cells, which then form lethal melanotic tumors. Through an F1 deficiency (Df) screen, we identified 11 suppressors and 35 enhancers of melanotic tumors in hopTum-l animals. Dfs that uncover the Hippo (Hpo) pathway genes expanded (ex) and warts (wts) strongly enhanced the hopTum-l tumor burden, as did mutations in ex, wts, and other Hpo pathway genes. Target genes of the Hpo pathway effector Yorkie (Yki) were significantly upregulated in hopTum-l blood cells, indicating that Yki signaling was increased. Ectopic hematopoietic activation of Yki in otherwise wild-type animals increased hemocyte proliferation but did not induce melanotic tumors. However, hematopoietic depletion of Yki significantly reduced the hopTum-l tumor burden, demonstrating that Yki is required for melanotic tumors in this background. These results support a model in which elevated Yki signaling increases the number of hemocytes, which become melanotic tumors as a result of elevated JAK/STAT signaling. PMID:28620086

  14. Mutational analysis of varicella-zoster virus (VZV) immediate early protein (IE62) subdomains and their importance in viral replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, Mohamed I., E-mail: mkhalil2@stanford.edu; Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo; Che, Xibing

    VZV IE62 is an essential, immediate-early, tegument protein and consists of five domains. We generated recombinant viruses carrying mutations in the first three IE62 domains and tested their influence on VZV replication kinetics. The mutations in domain I did not affect replication kinetics while domain II mutations, disrupting the DNA binding and dimerization domain (DBD), were lethal for VZV replication. Mutations in domain III of the nuclear localization signal (NLS) and the two phosphorylation sites S686A/S722A resulted in slower growth in early and late infection respectively and were associated with IE62 accumulation in the cytoplasm and nucleus respectively. This studymore » mapped the functional domains of IE62 in context of viral infection, indicating that DNA binding and dimerization domain is essential for VZV replication. In addition, the correct localization of IE62, whether nuclear or cytoplasmic, at different points in the viral life cycle, is important for normal progression of VZV replication. - Highlights: • Mutation of IE62 domain I did not affect VZV replication in melanoma cells. • IE62 domain II and III are important for VZV replication in melanoma cells. • Mutations of IE62 domain II (DBD) were lethal for virus replication. • Mutations of IE62 NLS and phosphorylation sites inhibited VZV replication. • NLS and S686A/S722A mutations altered localization of IE62 during early and late infection.« less

  15. Drosophila Lin-52 Acts in Opposition to Repressive Components of the Myb-MuvB/dREAM Complex

    PubMed Central

    Lewis, Peter W.; Sahoo, Debashis; Geng, Cuiyun; Bell, Maren

    2012-01-01

    The Drosophila melanogaster Myb-MuvB/dREAM complex (MMB/dREAM) participates in both the activation and repression of developmentally regulated genes and origins of DNA replication. Mutants in MMB subunits exhibit diverse phenotypes, including lethality, eye defects, reduced fecundity, and sterility. Here, we used P-element excision to generate mutations in lin-52, which encodes the smallest subunit of the MMB/dREAM complex. lin-52 is required for viability, as null mutants die prior to pupariation. The generation of somatic and germ line mutant clones indicates that lin-52 is required for adult eye development and for early embryogenesis via maternal effects. Interestingly, the maternal-effect embryonic lethality, larval lethality, and adult eye defects could be suppressed by mutations in other subunits of the MMB/dREAM complex. These results suggest that a partial MMB/dREAM complex is responsible for the lethality and eye defects of lin-52 mutants. Furthermore, these findings support a model in which the Lin-52 and Myb proteins counteract the repressive activities of the other members of the MMB/dREAM complex at specific genomic loci in a developmentally controlled manner. PMID:22688510

  16. Complementation Studies of Bacteriophage λ O Amber Mutants by Allelic Forms of O Expressed from Plasmid, and O-P Interaction Phenotypes.

    PubMed

    Hayes, Sidney; Rajamanickam, Karthic; Hayes, Connie

    2018-04-05

    λ genes O and P are required for replication initiation from the bacteriophage λ origin site, ori λ, located within gene O . Questions have persisted for years about whether O-defects can indeed be complemented in trans . We show the effect of original null mutations in O and the influence of four origin mutations (three are in-frame deletions and one is a point mutation) on complementation. This is the first demonstration that O proteins with internal deletions can complement for O activity, and that expression of the N-terminal portion of gene P can completely prevent O complementation. We show that O-P co-expression can limit the lethal effect of P on cell growth. We explore the influence of the contiguous small RNA OOP on O complementation and P-lethality.

  17. Synthetic Lethality Reveals Mechanisms of Mycobacterium tuberculosis Resistance to β-Lactams

    PubMed Central

    Lun, Shichun; Miranda, David; Kubler, Andre; Guo, Haidan; Maiga, Mariama C.; Winglee, Kathryn; Pelly, Shaaretha

    2014-01-01

    ABSTRACT Most β-lactam antibiotics are ineffective against Mycobacterium tuberculosis due to the microbe’s innate resistance. The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains has prompted interest to repurpose this class of drugs. To identify the genetic determinants of innate β-lactam resistance, we carried out a synthetic lethality screen on a transposon mutant library for susceptibility to imipenem, a carbapenem β-lactam antibiotic. Mutations in 74 unique genes demonstrated synthetic lethality. The majority of mutations were in genes associated with cell wall biosynthesis. A second quantitative real-time PCR (qPCR)-based synthetic lethality screen of randomly selected mutants confirmed the role of cell wall biosynthesis in β-lactam resistance. The global transcriptional response of the bacterium to β-lactams was investigated, and changes in levels of expression of cell wall biosynthetic genes were identified. Finally, we validated these screens in vivo using the MT1616 transposon mutant, which lacks a functional acyl-transferase gene. Mice infected with the mutant responded to β-lactam treatment with a 100-fold decrease in bacillary lung burden over 4 weeks, while the numbers of organisms in the lungs of mice infected with wild-type bacilli proliferated. These findings reveal a road map of genes required for β-lactam resistance and validate synthetic lethality screening as a promising tool for repurposing existing classes of licensed, safe, well-characterized antimicrobials against tuberculosis. PMID:25227469

  18. A Functional Genomics Approach to Identify Novel Breast Cancer Gene Targets in Yeast

    DTIC Science & Technology

    2005-05-01

    Chaleff DT, Valent B, Fink GR. Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 1984; 107(2): 179-97... mutations , and are synthetically lethal with rotl mutations ROX3 YBL093C Repressor Of hypoXic genes : RNA polymerase I1 holcenzyme component 3,3 SSS...mitochondrial gene products; mutation causes an elevated rate of mitochondrial turnover; 3 MOD after 60 generations, MOD on NaCI YNDI YER005W Yeast Nucleoside

  19. Lethal mitochondrial cardiomyopathy in a hypomorphic Med30 mouse mutant is ameliorated by ketogenic diet

    PubMed Central

    Krebs, Philippe; Fan, Weiwei; Chen, Yen-Hui; Tobita, Kimimasa; Downes, Michael R.; Wood, Malcolm R.; Sun, Lei; Xia, Yu; Ding, Ning; Spaeth, Jason M.; Moresco, Eva Marie Y.; Boyer, Thomas G.; Lo, Cecilia Wen Ya; Yen, Jeffrey; Evans, Ronald M.; Beutler, Bruce

    2011-01-01

    Deficiencies of subunits of the transcriptional regulatory complex Mediator generally result in embryonic lethality, precluding study of its physiological function. Here we describe a missense mutation in Med30 causing progressive cardiomyopathy in homozygous mice that, although viable during lactation, show precipitous lethality 2–3 wk after weaning. Expression profiling reveals pleiotropic changes in transcription of cardiac genes required for oxidative phosphorylation and mitochondrial integrity. Weaning mice to a ketogenic diet extends viability to 8.5 wk. Thus, we establish a mechanistic connection between Mediator and induction of a metabolic program for oxidative phosphorylation and fatty acid oxidation, in which lethal cardiomyopathy is mitigated by dietary intervention. PMID:22106289

  20. Truncating Mutations of MAGEL2, a Gene within the Prader-Willi Locus, Are Responsible for Severe Arthrogryposis

    PubMed Central

    Mejlachowicz, Dan; Nolent, Flora; Maluenda, Jérome; Ranjatoelina-Randrianaivo, Hanitra; Giuliano, Fabienne; Gut, Ivo; Sternberg, Damien; Laquerrière, Annie; Melki, Judith

    2015-01-01

    Arthrogryposis multiplex congenita (AMC) is characterized by the presence of multiple joint contractures resulting from reduced or absent fetal movement. Here, we report two unrelated families affected by lethal AMC. By genetic mapping and whole-exome sequencing in a multiplex family, a heterozygous truncating MAGEL2 mutation leading to frameshift and a premature stop codon (c.1996delC, p.Gln666Serfs∗36) and inherited from the father was identified in the probands. In another family, a distinct heterozygous truncating mutation leading to frameshift (c.2118delT, p.Leu708Trpfs∗7) and occurring de novo on the paternal allele of MAGEL2 was identified in the affected individual. In both families, RNA analysis identified the mutated paternal MAGEL2 transcripts only in affected individuals. MAGEL2 is one of the paternally expressed genes within the Prader-Willi syndrome (PWS) locus. PWS is associated with, to varying extents, reduced fetal mobility, severe infantile hypotonia, childhood-onset obesity, hypogonadism, and intellectual disability. MAGEL2 mutations have been recently reported in affected individuals with features resembling PWS and called Schaaf-Yang syndrome. Here, we show that paternal MAGEL2 mutations are also responsible for lethal AMC, recapitulating the clinical spectrum of PWS and suggesting that MAGEL2 is a PWS-determining gene. PMID:26365340

  1. Unlocking the Bottleneck in Forward Genetics Using Whole-Genome Sequencing and Identity by Descent to Isolate Causative Mutations

    PubMed Central

    Siggs, Owen M.; Miosge, Lisa A.; Roots, Carla M.; Enders, Anselm; Bertram, Edward M.; Crockford, Tanya L.; Whittle, Belinda; Potter, Paul K.; Simon, Michelle M.; Mallon, Ann-Marie; Brown, Steve D. M.; Beutler, Bruce; Goodnow, Christopher C.; Lunter, Gerton; Cornall, Richard J.

    2013-01-01

    Forward genetics screens with N-ethyl-N-nitrosourea (ENU) provide a powerful way to illuminate gene function and generate mouse models of human disease; however, the identification of causative mutations remains a limiting step. Current strategies depend on conventional mapping, so the propagation of affected mice requires non-lethal screens; accurate tracking of phenotypes through pedigrees is complex and uncertain; out-crossing can introduce unexpected modifiers; and Sanger sequencing of candidate genes is inefficient. Here we show how these problems can be efficiently overcome using whole-genome sequencing (WGS) to detect the ENU mutations and then identify regions that are identical by descent (IBD) in multiple affected mice. In this strategy, we use a modification of the Lander-Green algorithm to isolate causative recessive and dominant mutations, even at low coverage, on a pure strain background. Analysis of the IBD regions also allows us to calculate the ENU mutation rate (1.54 mutations per Mb) and to model future strategies for genetic screens in mice. The introduction of this approach will accelerate the discovery of causal variants, permit broader and more informative lethal screens to be used, reduce animal costs, and herald a new era for ENU mutagenesis. PMID:23382690

  2. Measuring the spectrum of mutation induced by nitrogen ions and protons in the human-hamster hybrid cell line A(L)C

    NASA Technical Reports Server (NTRS)

    Kraemer, S. M.; Kronenberg, A.; Ueno, A.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    2000-01-01

    Astronauts can be exposed to charged particles, including protons, alpha particles and heavier ions, during space flights. Therefore, studying the biological effectiveness of these sparsely and densely ionizing radiations is important to understanding the potential health effects for astronauts. We evaluated the mutagenic effectiveness of sparsely ionizing 55 MeV protons and densely ionizing 32 MeV/nucleon nitrogen ions using cells of two human-hamster cell lines, A(L) and A(L)C. We have previously characterized a spectrum of mutations, including megabase deletions, in human chromosome 11, the sole human chromosome in the human-hamster hybrid cell lines A(L)C and A(L). CD59(-) mutants have lost expression of a human cell surface antigen encoded by the CD59 gene located at 11p13. Deletion of genes located on the tip of the short arm of 11 (11p15.5) is lethal to the A(L) hybrid, so that CD59 mutants that lose the entire chromosome 11 die and escape detection. In contrast, deletion of the 11p15.5 region is not lethal in the hybrid A(L)C, allowing for the detection of chromosome loss or other chromosomal mutations involving 11p15.5. The 55 MeV protons and 32 MeV/nucleon nitrogen ions were each about 10 times more mutagenic per unit dose at the CD59 locus in A(L)C cells than in A(L) cells. In the case of nitrogen ions, the mutations observed in A(L)C cells were predominantly due to chromosome loss events or 11p deletions, often containing a breakpoint in the pericentromeric region. The increase in the CD59(-) mutant fraction for A(L)C cells exposed to protons was associated with either translocation of portions of 11q onto a hamster chromosome, or discontinuous or "skipping" mutations. We demonstrate here that A(L)C cells are a powerful tool that will aid in the understanding of the mutagenic effects of different types of ionizing radiation.

  3. Genetic Rescue of Mitochondrial and Skeletal Muscle Impairment in an Induced Pluripotent Stem Cells Model of Coenzyme Q10 Deficiency.

    PubMed

    Romero-Moya, Damià; Santos-Ocaña, Carlos; Castaño, Julio; Garrabou, Gloria; Rodríguez-Gómez, José A; Ruiz-Bonilla, Vanesa; Bueno, Clara; González-Rodríguez, Patricia; Giorgetti, Alessandra; Perdiguero, Eusebio; Prieto, Cristina; Moren-Nuñez, Constanza; Fernández-Ayala, Daniel J; Victoria Cascajo, Maria; Velasco, Iván; Canals, Josep Maria; Montero, Raquel; Yubero, Delia; Jou, Cristina; López-Barneo, José; Cardellach, Francesc; Muñoz-Cánoves, Pura; Artuch, Rafael; Navas, Plácido; Menendez, Pablo

    2017-07-01

    Coenzyme Q 10 (CoQ 10 ) plays a crucial role in mitochondria as an electron carrier within the mitochondrial respiratory chain (MRC) and is an essential antioxidant. Mutations in genes responsible for CoQ 10 biosynthesis (COQ genes) cause primary CoQ 10 deficiency, a rare and heterogeneous mitochondrial disorder with no clear genotype-phenotype association, mainly affecting tissues with high-energy demand including brain and skeletal muscle (SkM). Here, we report a four-year-old girl diagnosed with minor mental retardation and lethal rhabdomyolysis harboring a heterozygous mutation (c.483G > C (E161D)) in COQ4. The patient's fibroblasts showed a decrease in [CoQ 10 ], CoQ 10 biosynthesis, MRC activity affecting complexes I/II + III, and respiration defects. Bona fide induced pluripotent stem cell (iPSCs) lines carrying the COQ4 mutation (CQ4-iPSCs) were generated, characterized and genetically edited using the CRISPR-Cas9 system (CQ4 ed -iPSCs). Extensive differentiation and metabolic assays of control-iPSCs, CQ4-iPSCs and CQ4 ed -iPSCs demonstrated a genotype association, reproducing the disease phenotype. The COQ4 mutation in iPSC was associated with CoQ 10 deficiency, metabolic dysfunction, and respiration defects. iPSC differentiation into SkM was compromised, and the resulting SkM also displayed respiration defects. Remarkably, iPSC differentiation in dopaminergic or motor neurons was unaffected. This study offers an unprecedented iPSC model recapitulating CoQ 10 deficiency-associated functional and metabolic phenotypes caused by COQ4 mutation. Stem Cells 2017;35:1687-1703. © 2017 AlphaMed Press.

  4. Synthetically lethal nanoparticles for treatment of endometrial cancer

    NASA Astrophysics Data System (ADS)

    Ebeid, Kareem; Meng, Xiangbing; Thiel, Kristina W.; Do, Anh-Vu; Geary, Sean M.; Morris, Angie S.; Pham, Erica L.; Wongrakpanich, Amaraporn; Chhonker, Yashpal S.; Murry, Daryl J.; Leslie, Kimberly K.; Salem, Aliasger K.

    2018-01-01

    Uterine serous carcinoma, one of the most aggressive types of endometrial cancer, is characterized by poor outcomes and mutations in the tumour suppressor p53. Our objective was to engender synthetic lethality to paclitaxel (PTX), the frontline treatment for endometrial cancer, in tumours with mutant p53 and enhance the therapeutic efficacy using polymeric nanoparticles (NPs). First, we identified the optimal NP formulation through comprehensive analyses of release profiles and cellular-uptake and cell viability studies. Not only were PTX-loaded NPs superior to PTX in solution, but the combination of PTX-loaded NPs with the antiangiogenic molecular inhibitor BIBF 1120 (BIBF) promoted synthetic lethality specifically in cells with the loss-of-function (LOF) p53 mutation. In a xenograft model of endometrial cancer, this combinatorial therapy resulted in a marked inhibition of tumour progression and extended survival. Together, our data provide compelling evidence for future studies of BIBF- and PTX-loaded NPs as a therapeutic opportunity for LOF p53 cancers.

  5. A familial case of Keratitis-Ichthyosis-Deafness (KID) syndrome with the GJB2 mutation G45E.

    PubMed

    Jonard, Laurence; Feldmann, Delphine; Parsy, Christophe; Freitag, Sylvie; Sinico, Martine; Koval, Céleste; Grati, Mhamed; Couderc, Remy; Denoyelle, Françoise; Bodemer, Christine; Marlin, Sandrine; Hadj-Rabia, Smail

    2008-01-01

    Keratitis-Ichthyosis-Deafness (KID) syndrome (OMIM 148210) is a congenital ectodermal defect. KID consists of an atypical ichthyosiform erythroderma associated with congenital sensorineural deafness. A rare form of the KID syndrome is a fatal course in the first year of life due to severe skin lesion infections and septicaemia. KID appears to be genetically heterogeneous and may be caused by mutations in connexin 26 or connexin 30 genes. GJB2 mutations in the connexin 26 gene are the main cause of the disease. Most of the cases caused by GJB2 mutations are sporadic, but dominant transmission has also been described. To date, the rare lethal form of the disease has been only observed in two Caucasian sporadic patients with the GJB2 mutation, with the p.Gly45Glu (G45E) arising de novo. We have reported an African family with dizygotic twins suffering from a lethal form of KID. The dizygosity of the twins was confirmed by microsatellite markers. The two patients were heterozygous for the G45E mutation of GJB2, whereas the mutation was not detected in the two parents. The unusual transmission of the disease observed in this family could be explained by the occurrence of a somatic or more probably a germinal mosaic in one of the parents.

  6. Ehlers-Danlos syndrome with lethal cardiac valvular dystrophy in males carrying a novel splice mutation in FLNA.

    PubMed

    Ritelli, Marco; Morlino, Silvia; Giacopuzzi, Edoardo; Carini, Giulia; Cinquina, Valeria; Chiarelli, Nicola; Majore, Silvia; Colombi, Marina; Castori, Marco

    2017-01-01

    Filamin A is an X-linked, ubiquitous actin-binding protein whose mutations are associated to multiple disorders with limited genotype-phenotype correlations. While gain-of-function mutations cause various bone dysplasias, loss-of-function variants are the most common cause of periventricular nodular heterotopias with variable soft connective tissue involvement, as well as X-linked cardiac valvular dystrophy (XCVD). The term "Ehlers-Danlos syndrome (EDS) with periventricular heterotopias" has been used in females with neurological, cardiovascular, integument and joint manifestations, but this nosology is still a matter of debate. We report the clinical and molecular update of an Italian family with an X-linked recessive soft connective tissue disorder and which was described, in 1975, as the first example of EDS type V of the Berlin nosology. The cutaneous phenotype of the index patient was close to classical EDS and all males died for a lethal cardiac valvular dystrophy. Whole exome sequencing identified the novel c.1829-1G>C splice variation in FLNA in two affected cousins. The nucleotide change was predicted to abolish the canonical splice acceptor site of exon 13 and to activate a cryptic acceptor site 15 bp downstream, leading to in frame deletion of five amino acid residues (p.Phe611_Gly615del). The predicted in frame deletion clusters with all the mutations previously identified in XCVD and falls within the N-terminus rod 1 domain of filamin A. Our findings expand the male-specific phenotype of FLNA mutations that now includes classical-like EDS with lethal cardiac valvular dystrophy, and offer further insights for the genotype-phenotype correlations within this spectrum. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roehrig, John T., E-mail: jtr1@cdc.gov; Butrapet, Siritorn; Liss, Nathan M.

    Using an infectious cDNA clone we engineered seven mutations in the putative heparan sulfate- and receptor-binding motifs of the envelope protein of dengue virus serotype 2, strain 16681. Four mutant viruses, KK122/123EE, E202K, G304K, and KKK305/307/310EEE, were recovered following transfection of C6/36 cells. A fifth mutant, KK291/295EE, was recovered from C6/36 cells with a compensatory E295V mutation. All mutants grew in and mediated fusion of virus-infected C6/36 cells, but three of the mutants, KK122/123EE, E202K, G304K, did not grow in Vero cells without further modification. Two Vero cell lethal mutants, KK291/295EV and KKK307/307/310EEE, failed to replicate in DC-SIGN-transformed Raji cellsmore » and did not react with monoclonal antibodies known to block DENV attachment to Vero cells. Additionally, both mutants were unable to initiate negative-strand vRNA synthesis in Vero cells by 72 h post-infection, suggesting that the replication block occurred prior to virus-mediated membrane fusion. - Highlights: • Heparan sulfate- and receptor-binding motifs of DENV2 envelope protein were mutated. • Four mutant viruses were isolated—all could fuse C6/36 cells. • Two of these mutants were lethal in Vero cells without further modification. • Lethal mutations were KK291/295EV and KKK305/307/310EEE. • Cell attachment was implicated as the replication block for both mutants.« less

  8. Topology of evolving, mutagenized viral populations: quasispecies expansion, compression, and operation of negative selection

    PubMed Central

    2008-01-01

    Background The molecular events and evolutionary forces underlying lethal mutagenesis of virus (or virus extinction through an excess of mutations) are not well understood. Here we apply for the first time phylogenetic methods and Partition Analysis of Quasispecies (PAQ) to monitor genetic distances and intra-population structures of mutant spectra of foot-and-mouth disease virus (FMDV) quasispecies subjected to mutagenesis by base and nucleoside analogues. Results Phylogenetic and PAQ analyses have revealed a highly dynamic variation of intrapopulation diversity of FMDV quasispecies. The population diversity first suffers striking expansions in the presence of mutagens and then compressions either when the presence of the mutagenic analogue was discontinued or when a mutation that decreased sensitivity to a mutagen was selected. The pattern of mutations found in the populations was in agreement with the behavior of the corresponding nucleotide analogues with FMDV in vitro. Mutations accumulated at preferred genomic sites, and dn/ds ratios indicate the operation of negative (or purifying) selection in populations subjected to mutagenesis. No evidence of unusually elevated genetic distances has been obtained for FMDV populations approaching extinction. Conclusion Phylogenetic and PAQ analysis provide adequate procedures to describe the evolution of viral sequences subjected to lethal mutagenesis. These methods define the changes of intra-population structure more precisely than mutation frequencies and Shannon entropies. PAQ is very sensitive to variations of intrapopulation genetic distances. Strong negative (or purifying) selection operates in FMDV populations subjected to enhanced mutagenesis. The quantifications provide evidence that extinction does not imply unusual increases of intrapopulation complexity, in support of the lethal defection model of virus extinction. PMID:18637173

  9. A missense mutation in PFAS (phosphoribosylformylglycinamidine synthase) is likely causal for embryonic lethality associated with the MH1 haplotype in Montbéliarde dairy cattle.

    PubMed

    Michot, Pauline; Fritz, Sébastien; Barbat, Anne; Boussaha, Mekki; Deloche, Marie-Christine; Grohs, Cécile; Hoze, Chris; Le Berre, Laurène; Le Bourhis, Daniel; Desnoes, Olivier; Salvetti, Pascal; Schibler, Laurent; Boichard, Didier; Capitan, Aurélien

    2017-10-01

    A candidate mutation in the sex hormone binding globulin gene was proposed in 2013 to be responsible for the MH1 recessive embryonic lethal locus segregating in the Montbéliarde breed. In this follow-up study, we excluded this candidate variant because healthy homozygous carriers were observed in large-scale genotyping data generated in the framework of the genomic selection program. We fine mapped the MH1 locus in a 702-kb interval and analyzed genome sequence data from the 1,000 bull genomes project and 54 Montbéliarde bulls (including 14 carriers and 40 noncarriers). We report the identification of a strong candidate mutation in the gene encoding phosphoribosylformylglycinamidine synthase (PFAS), a protein involved in de novo purine synthesis. This mutation, located in a class I glutamine amidotransferase-like domain, results in the substitution of an arginine residue that is entirely conserved among eukaryotes by a cysteine (p.R1205C). No homozygote for the cysteine-encoding allele was observed in a large population of more than 25,000 individuals despite a 6.7% allelic frequency and 122 expected homozygotes under neutrality assumption. Genotyping of 18 embryos collected from heterozygous parents as well as analysis on nonreturn rates suggested that most homozygous carriers died between 7 and 35 d postinsemination. The identification of this strong candidate mutation will enable the accurate testing of the reproducers and the efficient selection against this lethal recessive embryonic defect in the Montbéliarde breed. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Phenotypic characterization of spontaneously mutated rats showing lethal dwarfism and epilepsy.

    PubMed

    Suzuki, Hiroetsu; Takenaka, Motoo; Suzuki, Katsushi

    2007-08-01

    We have characterized the phenotype of spontaneously mutated rats, found during experimental inbreeding in a closed colony of Wistar Imamichi rats. Mutant rats showed severe dwarfism, short lifespan (early postnatal lethality), and high incidence of epileptic seizures. Mutant rats showed growth retardation after 3 d of age, and at 21 d their weight was about 56% that of normal rats. Most mutant rats died without reaching maturity, and 95% of the mutant rats had an ataxic gait. About 34% of the dwarf rats experienced epileptic seizures, most of which started as 'wild running' convulsions, progressing to generalized tonic-clonic convulsions. At age 28 d, the relative weight of the testes was significantly lower, and the relative weight of the brain was significantly higher, in mutant than in normal rats. Histologically, increased apoptotic germ cells, lack of spermatocytes, and immature Leydig cells were found in the mutant testes, and extracellular vacuoles of various sizes were present in the hippocampus and amygdala of the mutant brain. Mutant rats had significantly increased concentrations of plasma urea nitrogen, creatinine, and inorganic phosphate, as well as decreased concentrations of plasma growth hormone. Hereditary analysis showed that the defects were inherited as a single recessive trait. We have named the hypothetically mutated gene as lde (lethal dwarfism with epilepsy).

  11. Tumorigenic Properties of Drosophila Epithelial Cells Mutant for lethal giant larvae.

    PubMed

    Calleja, Manuel; Morata, Ginés; Casanova, Jordi

    2016-08-01

    Mutations in Drosophila tumor suppressor genes (TSGs) lead to the formation of invasive tumors in the brain and imaginal discs. Here we studied the tumorigenic properties of imaginal discs mutant for the TSG gene lethal giant larvae (lgl). lgl mutant cells display the characteristic features of mammalian tumor cells: they can proliferate indefinitely, induce additional tracheogenesis (an insect counterpart of vasculogenesis) and invade neighboring tissues. Lgl mutant tissues exhibit high apoptotic levels, which lead to the activation of the Jun-N-Terminal Kinase (JNK) pathway. We propose that JNK is a key factor in the acquisition of these tumorigenic properties; it promotes cell proliferation and induces high levels of Mmp1 and confers tumor cells capacity to invade wild-type tissue. Noteworthy, lgl RNAi-mediated down-regulation does not produce similar transformations in the central nervous system (CNS), thereby indicating a fundamental difference between the cells of developing imaginal discs and those of differentiated organs. We discuss these results in the light of the "single big-hit origin" of some human pediatric or developmental cancers. Down-regulation of lgl in imaginal discs is sufficient to enhance tracheogenesis and to promote invasion and colonization of other larval structures including the CNS. Developmental Dynamics 245:834-843, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Katz model prediction of Caenorhabditis elegans mutagenesis on STS-42

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Katz, Robert; Badhwar, Gautam D.

    1992-01-01

    Response parameters that describe the production of recessive lethal mutations in C. elegans from ionizing radiation are obtained with the Katz track structure model. The authors used models of the space radiation environment and radiation transport to predict and discuss mutation rates for C. elegans on the IML-1 experiment aboard STS-42.

  13. An active site mutation increases the polymerase activity of the guinea pig-lethal Marburg virus.

    PubMed

    Koehler, Alexander; Kolesnikova, Larissa; Becker, Stephan

    2016-10-01

    Marburg virus (MARV) causes severe, often fatal, disease in humans and transient illness in rodents. Sequential passaging of MARV in guinea pigs resulted in selection of a lethal virus containing 4 aa changes. A D184N mutation in VP40 (VP40D184N), which leads to a species-specific gain of viral fitness, and three mutations in the active site of viral RNA-dependent RNA polymerase L, which were investigated in the present study for functional significance in human and guinea pig cells. The transcription/replication activity of L mutants was strongly enhanced by a substitution at position 741 (S741C), and inhibited by other substitutions (D758A and A759D) in both species. The polymerase activity of L carrying the S741C substitution was eightfold higher in guinea pig cells than in human cells upon co-expression with VP40D184N, suggesting that the additive effect of the two mutations provides MARV a replicative advantage in the new host.

  14. Lethal genes surviving by mosaicism: a possible explanation for sporadic birth defects involving the skin.

    PubMed

    Happle, R

    1987-04-01

    A genetic concept is advanced to explain the origin of several sporadic syndromes characterized by a mosaic distribution of skin defects. It is postulated that these disorders are due to the action of a lethal gene surviving by mosaicism. The presence of the mutation in the zygote will lead to death of the embryo at an early stage of development. Cells bearing the mutation can survive only in a mosaic state, in close proximity with normal cells. The mosaic may arise either from a gametic half chromatid mutation or from an early somatic mutation. This concept of origin is proposed to apply to the Schimmelpenning-Feuerstein-Mims syndrome, the McCune-Albright syndrome, the Klippel-Trenaunay syndrome, the Sturge-Weber syndrome, and neurocutaneous melanosis. Moreover, this etiologic hypothesis may apply to two other birth defects that have recently been delineated, the Proteus syndrome (partial gigantism of hands or feet, hemihypertrophy, macrocephaly, linear papillomatous epidermal nevus, subcutaneous hemangiomas and lipomas, accelerated growth, and visceral anomalies), and the Delleman-Oorthuys syndrome (orbital cyst, porencephaly, periorbital appendages, and focal aplasia of the skin.

  15. Clostridium sordellii lethal toxin kills mice by inducing a major increase in lung vascular permeability.

    PubMed

    Geny, Blandine; Khun, Huot; Fitting, Catherine; Zarantonelli, Leticia; Mazuet, Christelle; Cayet, Nadège; Szatanik, Marek; Prevost, Marie-Christine; Cavaillon, Jean-Marc; Huerre, Michel; Popoff, Michel R

    2007-03-01

    When intraperitoneally injected into Swiss mice, Clostridium sordellii lethal toxin reproduces the fatal toxic shock syndrome observed in humans and animals after natural infection. This animal model was used to study the mechanism of lethal toxin-induced death. Histopathological and biochemical analyses identified lung and heart as preferential organs targeted by lethal toxin. Massive extravasation of blood fluid in the thoracic cage, resulting from an increase in lung vascular permeability, generated profound modifications such as animal dehydration, increase in hematocrit, hypoxia, and finally, cardiorespiratory failure. Vascular permeability increase induced by lethal toxin resulted from modifications of lung endothelial cells as evidenced by electron microscopy. Immunohistochemical analysis demonstrated that VE-cadherin, a protein participating in intercellular adherens junctions, was redistributed from membrane to cytosol in lung endothelial cells. No major sign of lethal toxin-induced inflammation was observed that could participate in the toxic shock syndrome. The main effect of the lethal toxin is the glucosylation-dependent inactivation of small GTPases, in particular Rac, which is involved in actin polymerization occurring in vivo in lungs leading to E-cadherin junction destabilization. We conclude that the cells most susceptible to lethal toxin are lung vascular endothelial cells, the adherens junctions of which were altered after intoxication.

  16. Clostridium sordellii Lethal Toxin Kills Mice by Inducing a Major Increase in Lung Vascular Permeability

    PubMed Central

    Geny, Blandine; Khun, Huot; Fitting, Catherine; Zarantonelli, Leticia; Mazuet, Christelle; Cayet, Nadège; Szatanik, Marek; Prevost, Marie-Christine; Cavaillon, Jean-Marc; Huerre, Michel; Popoff, Michel R.

    2007-01-01

    When intraperitoneally injected into Swiss mice, Clostridium sordellii lethal toxin reproduces the fatal toxic shock syndrome observed in humans and animals after natural infection. This animal model was used to study the mechanism of lethal toxin-induced death. Histopathological and biochemical analyses identified lung and heart as preferential organs targeted by lethal toxin. Massive extravasation of blood fluid in the thoracic cage, resulting from an increase in lung vascular permeability, generated profound modifications such as animal dehydration, increase in hematocrit, hypoxia, and finally, cardiorespiratory failure. Vascular permeability increase induced by lethal toxin resulted from modifications of lung endothelial cells as evidenced by electron microscopy. Immunohistochemical analysis demonstrated that VE-cadherin, a protein participating in intercellular adherens junctions, was redistributed from membrane to cytosol in lung endothelial cells. No major sign of lethal toxin-induced inflammation was observed that could participate in the toxic shock syndrome. The main effect of the lethal toxin is the glucosylation-dependent inactivation of small GTPases, in particular Rac, which is involved in actin polymerization occurring in vivo in lungs leading to E-cadherin junction destabilization. We conclude that the cells most susceptible to lethal toxin are lung vascular endothelial cells, the adherens junctions of which were altered after intoxication. PMID:17322384

  17. Mutation induction in bacteria after heavy ion irradiation

    NASA Technical Reports Server (NTRS)

    Horneck, G.; Kozubek, S.

    1994-01-01

    From a compilation of experimental data on the mutagenic effects of heavy ions in bacteria, main conclusions have been drawn as follows: (1) The mutagenic efficacy of heavy ions in bacteria depends on physical and biological variables. Physical variables are the radiation dose, energy and charge of the ion; the biological variables are the bacterial strain, the repair genotype of bacteria, and the endpoint investigated (type of mutation, induction of enzymes related to mutagenesis); (2) The responses on dose or fluence are mainly linear or linear quadratic. The quadratic component, if found for low LET radiation, is gradually reduced with increasing LET; (3) At low values of Z and LET the cross section of mutation induction sigma m (as well as SOS response, sigma sos. and lambda phage induction, sigma lambda versus LET curves can be quite consistently described by a common function which increases up to approximately 100 keV/mu m. For higher LET values, the sigma(m) versus LET curves show the so-called 'hooks' observed also for other endpoints; (4) For light ions (Z is less than or equal to 4), the cross sections mostly decrease with increasing ion energy, which is probably related to the decrease of the specific energy departed by the ion inside the sensitive volume (cell). For ions in the range of Z = 10, sigma(m) is nearly independent on the ion energy. For heavier ions (Z is greater than or equal to 16), sigma(m) increases with the energy up to a maximum or saturation around 10 MeV/u. The increment becomes steeper with increasing atomic number of the ion. It correlates with the increasing track radius of the heavy ion; (5) The mutagenic efficiency per lethal event changes slightly with ion energy, if Z is small indicating a rough correlation between cellular lethality and mutation induction, only. For ions of higher Z this relation increases with energy, indicating a change in the 'mode' of radiation action from 'killing-prone' to 'mutation-prone'; and (6) Repair genotype substantially influences the radiation induced mutagenesis. Different mechanisms of mutation induction and/or different types of biologically significant lesions in wild type cells compared to repair deficient strains are a likely explanation.

  18. Atelosteogenesis type 2.

    PubMed Central

    Newbury-Ecob, R

    1998-01-01

    Atelosteogenesis type 2 (AO2) (MIM 256050) is a neonatally lethal chondrodysplasia characterised by severe limb shortening and deficient ossification of parts of the skeleton. Other features include facial dysmorphism, cleft palate, talipes, and abducted thumbs and toes. Phenotypic overlap with non-lethal diastrophic dysplasia (DTD) suggested a common aetiology and it has recently been confirmed that both syndromes result from mutations in the DTDST (diastrophic dysplasia sulphate transporter) gene. Images PMID:9475095

  19. Protease-deficient herpes simplex virus protects mice from lethal herpesvirus infection.

    PubMed Central

    Hippenmeyer, P J; Rankin, A M; Luckow, V A; Neises, G R

    1997-01-01

    Null mutants and attenuated mutants of herpes simplex virus (HSV) have been shown to induce immunity against challenge from wild-type virus. Null viruses with a defect in late gene products would be expected to express more viral genes than viruses with defects in essential early gene products and thus induce a better immune response. Herpesviruses encode a late gene product (serine protease) that is autocatalytic and cleaves the capsid assembly protein during viral replication. To determine whether a virus with a mutation in this gene could induce immunity, we constructed a recombinant virus containing the gusA reporter gene in the protease domain of the HSV type 1 UL26 open reading frame (ORF). Consistent with previous results (M. Gao, L. Matusick-Kumar, W. Hurlburt, S. F. DiTusa, W. W. Newcomb, J. C. Brown, P. J. McCann, I. Deckman, and R. J. Colonno, J. Virol. 68:3702-3712, 1994), recombinant virus could be isolated only from helper cell lines expressing the product of the UL26 ORF. Mice inoculated with the recombinant virus were unaffected by doses of virus that were lethal to mice infected with wild-type virus. Mice which were previously inoculated with the recombinant virus were also protected by a subsequent challenge with wild-type virus in a dose-dependent manner. These results indicate that recombinant viruses lacking the protease gene are avirulent but render protection from subsequent challenge. PMID:8995617

  20. [Identification of new genes that affect [PSI^(+)] prion toxicity in Saccharomyces cerevisiae yeast].

    PubMed

    Matveenko, A G; Belousov, M V; Bondarev, S A; Moskalenko, S E; Zhouravleva, G A

    2016-01-01

    Translation termination is an important step in gene expression. Its correct processing is governed by eRF1 (Sup45) and eRF3 (Sup35) proteins. In Saccharomyces cerevisiae, mutations in the corresponding genes, as well as Sup35 aggregation in [PSI^(+)] cells that propagate the prion form of Sup35 lead to inaccurate stop codon recognition and, consequently, nonsense suppression. The presence of stronger prion variants results in the more efficient suppression of nonsense mutations. Previously, we proposed a synthetic lethality test that enables the identification of genes that may influence either translation termination factors or [PSI^(+)] manifestation. This is based on the fact that the combination of sup45 mutations with the strong [PSI^(+)] prion variant in diploids is lethal. In this work, a set of genes that were previously shown to enhance nonsense suppression was analyzed. It was found that ABF1, FKH2, and REB1 overexpression decreased the growth of strains in a prion-dependent manner and, thus, might influence [PSI^(+)] prion toxicity. It was also shown that the synthetic lethality of [PSI^(+)] and sup45 mutations increased with the overexpression of GLN3 and MOT3 that encode Q/N-rich transcription factors. An analysis of the effects of their expression on the transcription of the release factors genes revealed an increase in SUP35 transcription in both cases. Since SUP35 overexpression is known to be toxic in [PSI^(+)] strains, these genes apparently enhance [PSI^(+)] toxicity via the regulation of SUP35 transcription.

  1. The Role of BRCA1/BARD1 Heterodimers in the Mitosis-Interphase Transition

    DTIC Science & Technology

    2007-05-01

    53 4 INTRODUCTION Germ line mutations in the BRCA1 gene predispose to breast and/or ovarian cancer (Miki, et al...Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53...Ludwig, T., Chapman, D.L., Papaioannou, V.E., and Efstratiadis, A. (1997). Targeted mutations of breast cancer susceptibility gene homo- logs in mice

  2. Homozygous/Compound Heterozygous Triadin Mutations Associated With Autosomal-Recessive Long-QT Syndrome and Pediatric Sudden Cardiac Arrest: Elucidation of the Triadin Knockout Syndrome.

    PubMed

    Altmann, Helene M; Tester, David J; Will, Melissa L; Middha, Sumit; Evans, Jared M; Eckloff, Bruce W; Ackerman, Michael J

    2015-06-09

    Long-QT syndrome (LQTS) may result in syncope, seizures, or sudden cardiac arrest. Although 16 LQTS-susceptibility genes have been discovered, 20% to 25% of LQTS remains genetically elusive. We performed whole-exome sequencing child-parent trio analysis followed by recessive and sporadic inheritance modeling and disease-network candidate analysis gene ranking to identify a novel underlying genetic mechanism for LQTS. Subsequent mutational analysis of the candidate gene was performed with polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing on a cohort of 33 additional unrelated patients with genetically elusive LQTS. After whole-exome sequencing and variant filtration, a homozygous p.D18fs*13 TRDN-encoded triadin frameshift mutation was discovered in a 10-year-old female patient with LQTS with a QTc of 500 milliseconds who experienced recurrent exertion-induced syncope/cardiac arrest beginning at 1 year of age. Subsequent mutational analysis of TRDN revealed either homozygous or compound heterozygous frameshift mutations in 4 of 33 unrelated cases of LQTS (12%). All 5 TRDN-null patients displayed extensive T-wave inversions in precordial leads V1 through V4, with either persistent or transient QT prolongation and severe disease expression of exercise-induced cardiac arrest in early childhood (≤3 years of age) and required aggressive therapy. The overall yield of TRDN mutations was significantly greater in patients ≤10 years of age (5 of 10, 50%) compared with older patients (0 of 24, 0%; P=0.0009). We identified TRDN as a novel underlying genetic basis for recessively inherited LQTS. All TRDN-null patients had strikingly similar phenotypes. Given the recurrent nature of potential lethal arrhythmias, patients fitting this phenotypic profile should undergo cardiac TRDN genetic testing. © 2015 American Heart Association, Inc.

  3. piRNA-mediated transposon regulation and the germ-line mutation rate in Drosophila melanogaster males.

    PubMed

    Simmons, Michael J; Peterson, Mark P; Thorp, Michael W; Buschette, Jared T; DiPrima, Stephanie N; Harter, Christine L; Skolnick, Matthew J

    2015-03-01

    Transposons, especially retrotransposons, are abundant in the genome of Drosophila melanogaster. These mobile elements are regulated by small RNAs that interact with the Piwi family of proteins-the piwi-interacting or piRNAs. The Piwi proteins are encoded by the genes argonaute3 (ago3), aubergine (aub), and piwi. Heterochromatin Protein 1 (HP1), a chromatin-organizing protein encoded by the Suppressor of variegation 205 [Su(var)205] gene, also plays a role in this regulation. To assess the mutational impact of weakening the system for transposon regulation, we measured the frequency of recessive X-linked lethal mutations occurring in the germ lines of males from stocks that were heterozygous for mutant alleles of the ago3, aub, piwi, or Su(var)205 genes. These mutant alleles are expected to deplete the wild-type proteins encoded by these genes by as much as 50%. The mutant alleles of piwi and Su(var)205 significantly increased the X-linked lethal mutation frequency, whereas the mutant alleles of ago3 did not. An increased mutation frequency was also observed in males from one of two mutant aub stocks, but this increase may not have been due to the aub mutant. The increased mutation frequency caused by depleting Piwi or HP1suggests that chromatin-organizing proteins play important roles in minimizing the germ-line mutation rate, possibly by stabilizing the structure of the heterochromatin in which many transposons are situated. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Candidate synthetic lethality partners to PARP inhibitors in the treatment of ovarian clear cell cancer

    PubMed Central

    Kawahara, Naoki; Ogawa, Kenji; Nagayasu, Mika; Kimura, Mai; Sasaki, Yoshikazu; Kobayashi, Hiroshi

    2017-01-01

    Inhibitors of poly(ADP-ribose) polymerase (PARP) are new types of personalized treatment of relapsed platinum-sensitive ovarian cancer harboring BRCA1/2 mutations. Ovarian clear cell cancer (CCC), a subset of ovarian cancer, often appears as low-stage disease with a higher incidence among Japanese. Advanced CCC is highly aggressive with poor patient outcome. The aim of the present study was to determine the potential synthetic lethality gene pairs for PARP inhibitions in patients with CCC through virtual and biological screenings as well as clinical studies. We conducted a literature review for putative PARP sensitivity genes that are associated with the CCC pathophysiology. Previous studies identified a variety of putative target genes from several pathways associated with DNA damage repair, chromatin remodeling complex, PI3K-AKT-mTOR signaling, Notch signaling, cell cycle checkpoint signaling, BRCA-associated complex and Fanconi's anemia susceptibility genes that could be used as biomarkers or therapeutic targets for PARP inhibition. BRCA1/2, ATM, ATR, BARD1, CCNE1, CHEK1, CKS1B, DNMT1, ERBB2, FGFR2, MRE11A, MYC, NOTCH1 and PTEN were considered as candidate genes for synthetic lethality gene partners for PARP interactions. When considering the biological background underlying PARP inhibition, we hypothesized that PARP inhibitors would be a novel synthetic lethal therapeutic approach for CCC tumors harboring homologous recombination deficiency and activating oncogene mutations. The results showed that the majority of CCC tumors appear to have indicators of DNA repair dysfunction similar to those in BRCA-mutation carriers, suggesting the possible utility of PARP inhibitors in a subset of CCC. PMID:29109859

  5. A Single Amino Acid Change in the Marburg Virus Matrix Protein VP40 Provides a Replicative Advantage in a Species-Specific Manner

    PubMed Central

    Koehler, Alexander; Kolesnikova, Larissa; Welzel, Ulla; Schudt, Gordian; Herwig, Astrid

    2015-01-01

    ABSTRACT Marburg virus (MARV) induces severe hemorrhagic fever in humans and nonhuman primates but only transient nonlethal disease in rodents. However, sequential passages of MARV in rodents boosts infection leading to lethal disease. Guinea pig-adapted MARV contains one mutation in the viral matrix protein VP40 at position 184 (VP40D184N). The contribution of the D184N mutation to the efficacy of replication in a new host is unknown. In the present study, we demonstrated that recombinant MARV containing the D184N mutation in VP40 [rMARVVP40(D184N)] grew to higher titers than wild-type recombinant MARV (rMARVWT) in guinea pig cells. Moreover, rMARVVP40(D184N) displayed higher infectivity in guinea pig cells. Comparative analysis of VP40 functions indicated that neither the interferon (IFN)-antagonistic function nor the membrane binding capabilities of VP40 were affected by the D184N mutation. However, the production of VP40-induced virus-like particles (VLPs) and the recruitment of other viral proteins to the budding site was improved by the D184N mutation in guinea pig cells, which resulted in the higher infectivity of VP40D184N-induced infectious VLPs (iVLPs) compared to that of VP40-induced iVLPs. In addition, the function of VP40 in suppressing viral RNA synthesis was influenced by the D184N mutation specifically in guinea pig cells, thus allowing greater rates of transcription and replication. Our results showed that the improved viral fitness of rMARVVP40(D184N) in guinea pig cells was due to the better viral assembly function of VP40D184N and its lower inhibitory effect on viral transcription and replication rather than modulation of the VP40-mediated suppression of IFN signaling. IMPORTANCE The increased virulence achieved by virus passaging in a new host was accompanied by mutations in the viral genome. Analyzing how these mutations affect the functions of viral proteins and the ability of the virus to grow within new host cells helps in the understanding of the molecular mechanisms increasing virulence. Using a reverse genetics approach, we demonstrated that a single mutation in MARV VP40 detected in a guinea pig-adapted MARV provided a replicative advantage of rMARVVP40(D184N) in guinea pig cells. Our studies show that this replicative advantage of rMARV VP40D184N was based on the improved functions of VP40 in iVLP assembly and in the regulation of transcription and replication rather than on the ability of VP40 to combat the host innate immunity. PMID:26581998

  6. Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer

    DOE PAGES

    Hong, Matthew K. H.; Macintyre, Geoff; Wedge, David C.; ...

    2015-04-01

    Tumour heterogeneity in primary prostate cancer is a well-established phenomenon. However, how the subclonal diversity of tumours changes during metastasis and progression to lethality is poorly understood. Here we reveal the precise direction of metastatic spread across four lethal prostate cancer patients using whole-genome and ultra-deep targeted sequencing of longitudinally collected primary and metastatic tumours. We find one case of metastatic spread to the surgical bed causing local recurrence, and another case of cross-metastatic site seeding combining with dynamic remoulding of subclonal mixtures in response to therapy. By ultra-deep sequencing end-stage blood, we detect both metastatic and primary tumour clones,more » even years after removal of the prostate. As a result, analysis of mutations associated with metastasis reveals an enrichment of TP53 mutations, and additional sequencing of metastases from 19 patients demonstrates that acquisition of TP53 mutations is linked with the expansion of subclones with metastatic potential which we can detect in the blood.« less

  7. Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer.

    PubMed

    Hong, Matthew K H; Macintyre, Geoff; Wedge, David C; Van Loo, Peter; Patel, Keval; Lunke, Sebastian; Alexandrov, Ludmil B; Sloggett, Clare; Cmero, Marek; Marass, Francesco; Tsui, Dana; Mangiola, Stefano; Lonie, Andrew; Naeem, Haroon; Sapre, Nikhil; Phal, Pramit M; Kurganovs, Natalie; Chin, Xiaowen; Kerger, Michael; Warren, Anne Y; Neal, David; Gnanapragasam, Vincent; Rosenfeld, Nitzan; Pedersen, John S; Ryan, Andrew; Haviv, Izhak; Costello, Anthony J; Corcoran, Niall M; Hovens, Christopher M

    2015-04-01

    Tumour heterogeneity in primary prostate cancer is a well-established phenomenon. However, how the subclonal diversity of tumours changes during metastasis and progression to lethality is poorly understood. Here we reveal the precise direction of metastatic spread across four lethal prostate cancer patients using whole-genome and ultra-deep targeted sequencing of longitudinally collected primary and metastatic tumours. We find one case of metastatic spread to the surgical bed causing local recurrence, and another case of cross-metastatic site seeding combining with dynamic remoulding of subclonal mixtures in response to therapy. By ultra-deep sequencing end-stage blood, we detect both metastatic and primary tumour clones, even years after removal of the prostate. Analysis of mutations associated with metastasis reveals an enrichment of TP53 mutations, and additional sequencing of metastases from 19 patients demonstrates that acquisition of TP53 mutations is linked with the expansion of subclones with metastatic potential which we can detect in the blood.

  8. A Cocaine Hydrolase Engineered from Human Butyrylcholinesterase Selectively Blocks Cocaine Toxicity and Reinstatement of Drug Seeking in Rats

    PubMed Central

    Brimijoin, Stephen; Gao, Yang; Anker, Justin J; Gliddon, Luke A; LaFleur, David; Shah, R; Zhao, Qinghai; Singh, M; Carroll, Marilyn E

    2008-01-01

    Successive rational mutations of human butyrylcholinesterase (BChE) followed by fusion to human serum albumin have yielded an efficient hydrolase that offers realistic options for therapy of cocaine overdose and abuse. This albumin-BChE prevented seizures in rats given a normally lethal cocaine injection (100 mg/kg, i.p.), lowered brain cocaine levels even when administered after the drug, and provided rescue after convulsions commenced. Moreover, it selectively blocked cocaine-induced reinstatement of drug seeking in rats that had previously self-administered cocaine. The enzyme treatment was well tolerated and may be worth exploring for clinical application in humans. PMID:18199998

  9. Molecular Determinants of Ebola Virus Virulence in Mice

    PubMed Central

    Ebihara, Hideki; Takada, Ayato; Kobasa, Darwyn; Jones, Steven; Neumann, Gabriele; Theriault, Steven; Bray, Mike; Feldmann, Heinz; Kawaoka, Yoshihiro

    2006-01-01

    Zaire ebolavirus (ZEBOV) causes severe hemorrhagic fever in humans and nonhuman primates, with fatality rates in humans of up to 90%. The molecular basis for the extreme virulence of ZEBOV remains elusive. While adult mice resist ZEBOV infection, the Mayinga strain of the virus has been adapted to cause lethal infection in these animals. To understand the pathogenesis underlying the extreme virulence of Ebola virus (EBOV), here we identified the mutations responsible for the acquisition of the high virulence of the adapted Mayinga strain in mice, by using reverse genetics. We found that mutations in viral protein 24 and in the nucleoprotein were primarily responsible for the acquisition of high virulence. Moreover, the role of these proteins in virulence correlated with their ability to evade type I interferon-stimulated antiviral responses. These findings suggest a critical role for overcoming the interferon-induced antiviral state in the pathogenicity of EBOV and offer new insights into the pathogenesis of EBOV infection. PMID:16848640

  10. Role of Fanconi Anemia FANCG in Preventing Double-Strand Breakage and Chromosomal Rearrangement during DNA Replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tebbs, R S; Hinz, J M; Yamada, N A

    The Fanconi anemia (FA) proteins overlap with those of homologous recombination through FANCD1/BRCA2, but the biochemical functions of other FA proteins are unknown. By constructing and characterizing a null fancg mutant of hamster CHO cells, we present several new insights for FA. The fancg cells show a broad sensitivity to genotoxic agents, not supporting the conventional concept of sensitivity to only DNA crosslinking agents. The aprt mutation rate is normal, but hprt mutations are reduced, which we ascribe to the lethality of large deletions. CAD and dhfr gene amplification rates are increased, implying excess chromosomal breakage during DNA replication, andmore » suggesting amplification as a contributing factor to cancer-proneness in FA patients. In S-phase cells, both spontaneous and mutagen-induced Rad51 nuclear foci are elevated. These results support a model in which FancG protein helps to prevent collapse of replication forks by allowing translesion synthesis or lesion bypass through homologous recombination.« less

  11. A synthetic lethal screen identifies ATR-inhibition as a novel therapeutic approach for POLD1-deficient cancers

    PubMed Central

    Hocke, Sandra; Guo, Yang; Job, Albert; Orth, Michael; Ziesch, Andreas; Lauber, Kirsten; De Toni, Enrico N; Gress, Thomas M.; Herbst, Andreas; Göke, Burkhard; Gallmeier, Eike

    2016-01-01

    The phosphoinositide 3-kinase-related kinase ATR represents a central checkpoint regulator and mediator of DNA-repair. Its inhibition selectively eliminates certain subsets of cancer cells in various tumor types, but the underlying genetic determinants remain enigmatic. Here, we applied a synthetic lethal screen directed against 288 DNA-repair genes using the well-defined ATR knock-in model of DLD1 colorectal cancer cells to identify potential DNA-repair defects mediating these effects. We identified a set of DNA-repair proteins, whose knockdown selectively killed ATR-deficient cancer cells. From this set, we further investigated the profound synthetic lethal interaction between ATR and POLD1. ATR-dependent POLD1 knockdown-induced cell killing was reproducible pharmacologically in POLD1-depleted DLD1 cells and a panel of other colorectal cancer cell lines by using chemical inhibitors of ATR or its major effector kinase CHK1. Mechanistically, POLD1 depletion in ATR-deficient cells caused caspase-dependent apoptosis without preceding cell cycle arrest and increased DNA-damage along with impaired DNA-repair. Our data could have clinical implications regarding tumor genotype-based cancer therapy, as inactivating POLD1 mutations have recently been identified in small subsets of colorectal and endometrial cancers. POLD1 deficiency might thus represent a predictive marker for treatment response towards ATR- or CHK1-inhibitors that are currently tested in clinical trials. PMID:26755646

  12. Toll-like receptor 4 knockout protects against anthrax lethal toxin-induced cardiac contractile dysfunction: role of autophagy.

    PubMed

    Kandadi, Machender R; Frankel, Arthur E; Ren, Jun

    2012-10-01

    Anthrax lethal toxin (LeTx) is known to induce circulatory shock and death, although the underlying mechanisms have not been elucidated. This study was designed to evaluate the role of toll-like receptor 4 (TLR4) in anthrax lethal toxin-induced cardiac contractile dysfunction. Wild-type (WT) and TLR4 knockout (TLR⁻/⁻) mice were challenged with lethal toxin (2 µg·g⁻¹, i.p.), and cardiac function was assessed 18 h later using echocardiography and edge detection. Small interfering RNA (siRNA) was employed to knockdown TLR4 receptor or class III PI3K in H9C2 myoblasts. GFP-LC3 puncta was used to assess autophagosome formation. Western blot analysis was performed to evaluate autophagy (LC3, Becline-1, Agt5 and Agt7) and endoplasmic reticulum (ER) stress (BiP, eIF2α and calreticulin). In WT mice, lethal toxin exposure induced cardiac contractile dysfunction, as evidenced by reduced fractional shortening, peak shortening, maximal velocity of shortening/re-lengthening, prolonged re-lengthening duration and intracellular Ca²⁺ derangement. These effects were significantly attenuated or absent in the TLR4 knockout mice. In addition, lethal toxin elicited autophagy in the absence of change in ER stress. Knockdown of TLR4 or class III PI3 kinase using siRNA but not the autophagy inhibitor 3-methyladenine significantly attenuated or inhibited lethal toxin-induced autophagy in H9C2 cells. Our results suggest that TLR4 may be pivotal in mediating the lethal cardiac toxicity induced by anthrax possibly through induction of autophagy. These findings suggest that compounds that negatively modulate TLR4 signalling and autophagy could be used to treat anthrax infection-induced cardiovascular complications. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  13. Toll-like receptor 4 knockout protects against anthrax lethal toxin-induced cardiac contractile dysfunction: role of autophagy

    PubMed Central

    Kandadi, Machender R; Frankel, Arthur E; Ren, Jun

    2012-01-01

    BACKGROUND AND PURPOSE Anthrax lethal toxin (LeTx) is known to induce circulatory shock and death, although the underlying mechanisms have not been elucidated. This study was designed to evaluate the role of toll-like receptor 4 (TLR4) in anthrax lethal toxin-induced cardiac contractile dysfunction. EXPERIMENTAL APPROACH Wild-type (WT) and TLR4 knockout (TLR−/−) mice were challenged with lethal toxin (2 µg·g−1, i.p.), and cardiac function was assessed 18 h later using echocardiography and edge detection. Small interfering RNA (siRNA) was employed to knockdown TLR4 receptor or class III PI3K in H9C2 myoblasts. GFP–LC3 puncta was used to assess autophagosome formation. Western blot analysis was performed to evaluate autophagy (LC3, Becline-1, Agt5 and Agt7) and endoplasmic reticulum (ER) stress (BiP, eIF2α and calreticulin). KEY RESULTS In WT mice, lethal toxin exposure induced cardiac contractile dysfunction, as evidenced by reduced fractional shortening, peak shortening, maximal velocity of shortening/re-lengthening, prolonged re-lengthening duration and intracellular Ca2+ derangement. These effects were significantly attenuated or absent in the TLR4 knockout mice. In addition, lethal toxin elicited autophagy in the absence of change in ER stress. Knockdown of TLR4 or class III PI3 kinase using siRNA but not the autophagy inhibitor 3-methyladenine significantly attenuated or inhibited lethal toxin-induced autophagy in H9C2 cells. CONCLUSION AND IMPLICATIONS Our results suggest that TLR4 may be pivotal in mediating the lethal cardiac toxicity induced by anthrax possibly through induction of autophagy. These findings suggest that compounds that negatively modulate TLR4 signalling and autophagy could be used to treat anthrax infection-induced cardiovascular complications. PMID:22612289

  14. Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules.

    PubMed

    Pulipparacharuvil, Suprabha; Akbar, Mohammed Ali; Ray, Sanchali; Sevrioukov, Evgueny A; Haberman, Adam S; Rohrer, Jack; Krämer, Helmut

    2005-08-15

    Mutations that disrupt trafficking to lysosomes and lysosome-related organelles cause multiple diseases, including Hermansky-Pudlak syndrome. The Drosophila eye is a model system for analyzing such mutations. The eye-color genes carnation and deep orange encode two subunits of the Vps-C protein complex required for endosomal trafficking and pigment-granule biogenesis. Here we demonstrate that dVps16A (CG8454) encodes another Vps-C subunit. Biochemical experiments revealed a specific interaction between the dVps16A C-terminus and the Sec1/Munc18 homolog Carnation but not its closest homolog, dVps33B. Instead, dVps33B interacted with a related protein, dVps16B (CG18112). Deep orange bound both Vps16 homologs. Like a deep orange null mutation, eye-specific RNAi-induced knockdown of dVps16A inhibited lysosomal delivery of internalized ligands and interfered with biogenesis of pigment granules. Ubiquitous knockdown of dVps16A was lethal. Together, these findings demonstrate that Drosophila Vps16A is essential for lysosomal trafficking. Furthermore, metazoans have two types of Vps-C complexes with non-redundant functions.

  15. Nutritional supplement chromium picolinate causes sterility and lethal mutations in Drosophila melanogaster

    PubMed Central

    Hepburn, Dion D. D.; Xiao, Jiarong; Bindom, Sharell; Vincent, John B.; O'Donnell, Janis

    2003-01-01

    The nutritional dietary supplement chromium picolinate, [Cr(pic)3], has gained much notoriety as a safe supplement that supposedly promotes fat loss and muscle enhancement in humans. Thus, a significant industry has materialized around the incorporation of [Cr(pic)3] in many sports foods and drinks and a variety of weight loss products. However, in vitro studies have suggested that low levels of [Cr(pic)3] in the presence of biological reducing agents can catalytically generate reactive oxygen species, and recent in vivo studies have detected oxidative damage in rats receiving the supplement. The potential deleterious in vivo effects of this activity were examined by using Drosophila melanogaster. [Cr(pic)3], but not CrCl3, at levels of 260 μg Cr/kg food or less were found to lower the success rate of pupation and eclosion and to arrest development of pupae in a concentration dependent fashion. X-linked lethal analysis indicates that the supplement greatly enhances the rate of appearance of lethal mutations and dominant female sterility. PMID:12649323

  16. Familial Ehlers-Danlos syndrome with lethal arterial events caused by a mutation in COL5A1.

    PubMed

    Monroe, Glen R; Harakalova, Magdalena; van der Crabben, Saskia N; Majoor-Krakauer, Danielle; Bertoli-Avella, Aida M; Moll, Frans L; Oranen, Björn I; Dooijes, Dennis; Vink, Aryan; Knoers, Nine V; Maugeri, Alessandra; Pals, Gerard; Nijman, Isaac J; van Haaften, Gijs; Baas, Annette F

    2015-06-01

    Different forms of Ehlers-Danlos syndrome (EDS) exist, with specific phenotypes and associated genes. Vascular EDS, caused by heterozygous mutations in the COL3A1 gene, is characterized by fragile vasculature with a high risk of catastrophic vascular events at a young age. Classic EDS, caused by heterozygous mutations in the COL5A1 or COL5A2 genes, is characterized by fragile, hyperextensible skin and joint laxity. To date, vessel rupture in four unrelated classic EDS patients with a confirmed COL5A1 mutation has been reported. We describe familial occurrence of a phenotype resembling vascular EDS in a mother and her two sons, who all died at an early age from arterial ruptures. Diagnostic Sanger sequencing in the proband failed to detect aberrations in COL3A1, COL1A1, COL1A2, TGFBR1, TGFBR2, SMAD3, and ACTA2. Next, the proband's DNA was analyzed using a next-generation sequencing approach targeting 554 genes linked to vascular disease (VASCULOME project). A novel heterozygous mutation in COL5A1 was detected, resulting in an essential glycine substitution at the C-terminal end of the triple helix domain (NM_000093.4:c.4610G>T; p.Gly1537Val). This mutation was also present in DNA isolated from autopsy material of the index's brother. No material was available from the mother, but the mutation was excluded in her parents, siblings and in the father of her sons, suggesting that the COL5A1 mutation occurred in the mother's genome de novo. In conclusion, we report familial occurrence of lethal arterial events caused by a COL5A1 mutation. © 2015 Wiley Periodicals, Inc.

  17. Mutation of Breast Cancer Cell Genomic DNA by APOBEC3B

    DTIC Science & Technology

    2013-09-01

    lethal prostate cancers. Proc. Natl Acad. Sci. USA 108, 17087–17092 (2011). 5. Parsons, D. W. et al. The genetic landscape of the childhood cancer...7. Stransky, N. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 333, 1157–1160 (2011). 8. Nik-Zainal, S. et al...Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012). 9. Stephens, P. J. et al. The landscape of cancer genes and

  18. The Drosophila mitochondrial translation elongation factor G1 contains a nuclear localization signal and inhibits growth and DPP signaling.

    PubMed

    Trivigno, Catherine; Haerry, Theodor E

    2011-02-25

    Mutations in the human mitochondrial elongation factor G1 (EF-G1) are recessive lethal and cause death shortly after birth. We have isolated mutations in iconoclast (ico), which encodes the highly conserved Drosophila orthologue of EF-G1. We find that EF-G1 is essential during fly development, but its function is not required in every tissue. In contrast to null mutations, missense mutations exhibit stronger, possibly neomorphic phenotypes that lead to premature death during embryogenesis. Our experiments show that EF-G1 contains a secondary C-terminal nuclear localization signal. Expression of missense mutant forms of EF-G1 can accumulate in the nucleus and cause growth and patterning defects and animal lethality. We find that transgenes that encode mutant human EF-G1 proteins can rescue ico mutants, indicating that the underlying problem of the human disease is not just the loss of enzymatic activity. Our results are consistent with a model where EF-G1 acts as a retrograde signal from mitochondria to the nucleus to slow down cell proliferation if mitochondrial energy output is low.

  19. The Drosophila Mitochondrial Translation Elongation Factor G1 Contains a Nuclear Localization Signal and Inhibits Growth and DPP Signaling

    PubMed Central

    Trivigno, Catherine; Haerry, Theodor E.

    2011-01-01

    Mutations in the human mitochondrial elongation factor G1 (EF-G1) are recessive lethal and cause death shortly after birth. We have isolated mutations in iconoclast (ico), which encodes the highly conserved Drosophila orthologue of EF-G1. We find that EF-G1 is essential during fly development, but its function is not required in every tissue. In contrast to null mutations, missense mutations exhibit stronger, possibly neomorphic phenotypes that lead to premature death during embryogenesis. Our experiments show that EF-G1 contains a secondary C-terminal nuclear localization signal. Expression of missense mutant forms of EF-G1 can accumulate in the nucleus and cause growth and patterning defects and animal lethality. We find that transgenes that encode mutant human EF-G1 proteins can rescue ico mutants, indicating that the underlying problem of the human disease is not just the loss of enzymatic activity. Our results are consistent with a model where EF-G1 acts as a retrograde signal from mitochondria to the nucleus to slow down cell proliferation if mitochondrial energy output is low. PMID:21364917

  20. RNA interference can target pre-mRNA: consequences for gene expression in a Caenorhabditis elegans operon.

    PubMed Central

    Bosher, J M; Dufourcq, P; Sookhareea, S; Labouesse, M

    1999-01-01

    In nematodes, flies, trypanosomes, and planarians, introduction of double-stranded RNA results in sequence-specific inactivation of gene function, a process termed RNA interference (RNAi). We demonstrate that RNAi against the Caenorhabditis elegans gene lir-1, which is part of the lir-1/lin-26 operon, induced phenotypes very different from a newly isolated lir-1 null mutation. Specifically, lir-1(RNAi) induced embryonic lethality reminiscent of moderately strong lin-26 alleles, whereas the lir-1 null mutant was viable. We show that the lir-1(RNAi) phenotypes resulted from a severe loss of lin-26 gene expression. In addition, we found that RNAi directed against lir-1 or lin-26 introns induced similar phenotypes, so we conclude that lir-1(RNAi) targets the lir-1/lin-26 pre-mRNA. This provides direct evidence that RNA interference can prevent gene expression by targeting nuclear transcripts. Our results highlight that caution may be necessary when interpreting RNA interference without the benefit of mutant alleles. PMID:10545456

  1. FGFR3-related condition: a skeletal dysplasia with similarities to thanatophoric dysplasia and SADDAN due to Lys650Met.

    PubMed

    Farmakis, Shannon G; Shinawi, Marwan; Miller-Thomas, Michelle; Radmanesh, Alireza; Herman, Thomas E

    2015-03-01

    Mutations in the fibroblast growth factor receptor 3 (FGFR3) gene account for six related skeletal dysplasia conditions: achondroplasia, hypochondroplasia, thanatophoric dysplasia types 1 and 2, SADDAN (severe achondroplasia with developmental delay and acanthosis nigricans), and platyspondylic lethal skeletal dysplasia, San Diego type. This group of disorders has very characteristic clinical and radiologic features, which distinguish them from other skeletal dysplasias. They display a spectrum of severity in the skeletal findings, ranging from relatively mild hypochondroplasia to lethal thanatophoric dysplasia. We report a patient who has the missense FGFR3 mutation, Lys650Met, previously reported in association only with SADDAN, who exhibits some findings similar to both thanatophoric dysplasia (types 1 and 2) in addition to those findings characteristic of SADDAN.

  2. A novel nonsense mutation in the APTX gene associated with delayed DNA single-strand break removal fails to enhance sensitivity to different genotoxic agents.

    PubMed

    Crimella, Claudia; Cantoni, Orazio; Guidarelli, Andrea; Vantaggiato, Chiara; Martinuzzi, Andrea; Fiorani, Mara; Azzolini, Catia; Orso, Genny; Bresolin, Nereo; Bassi, Maria Teresa

    2011-04-01

    APTX is the gene involved in ataxia with oculomotor apraxia type 1 (AOA1), a recessive disorder with early-onset cerebellar ataxia, oculomotor apraxia and peripheral neuropathy. The encoded protein, aprataxin, is a DNA repair protein processing the products of abortive ligations, 5'-adenylated DNA. We describe a novel nonsense mutation in APTX, c.892C>T (p.Gln298X), segregating in two AOA1 patients and leading to the loss of aprataxin protein in patient's cells. These cells, while exhibiting reduced catalase activity, are not hypersensitive to toxicity elicited by H(2)O(2) exposure at either physiologic or ice-bath temperature. On the other hand, the rate of repair of DNA single-strand-breaks (SSBs) induced in both conditions is always significantly slower in AOA1 cells. By using the alkylating agent methyl methane sulphonate (MMS) we confirmed the association of the APTX mutation with a DNA repair defect in the absence of detectable changes in susceptibility to toxicity. These results, while consistent with a role of aprataxin in the repair of SSBs induced by H(2)O(2), or MMS, demonstrate that other mechanisms may be recruited in AOA1 cells to complete the repair process, although at a slower rate. Lack of hypersensitivity to the oxidant, or MMS, also implies that delayed repair is not per se a lethal event. © 2011 Wiley-Liss, Inc.

  3. Macrolides selectively inhibit mutant KCNJ5 potassium channels that cause aldosterone-producing adenoma

    PubMed Central

    Scholl, Ute I.; Abriola, Laura; Zhang, Chengbiao; Reimer, Esther N.; Plummer, Mark; Zhang, Junhui; Hoyer, Denton; Merkel, Jane S.; Wang, Wenhui; Lifton, Richard P.

    2017-01-01

    Aldosterone-producing adenomas (APAs) are benign tumors of the adrenal gland that constitutively produce the salt-retaining steroid hormone aldosterone and cause millions of cases of severe hypertension worldwide. Either of 2 somatic mutations in the potassium channel KCNJ5 (G151R and L168R, hereafter referred to as KCNJ5MUT) in adrenocortical cells account for half of APAs worldwide. These mutations alter channel selectivity to allow abnormal Na+ conductance, resulting in membrane depolarization, calcium influx, aldosterone production, and cell proliferation. Because APA diagnosis requires a difficult invasive procedure, patients often remain undiagnosed and inadequately treated. Inhibitors of KCNJ5MUT could allow noninvasive diagnosis and therapy of APAs carrying KCNJ5 mutations. Here, we developed a high-throughput screen for rescue of KCNJ5MUT-induced lethality and identified a series of macrolide antibiotics, including roxithromycin, that potently inhibit KCNJ5MUT, but not KCNJ5WT. Electrophysiology demonstrated direct KCNJ5MUT inhibition. In human aldosterone-producing adrenocortical cancer cell lines, roxithromycin inhibited KCNJ5MUT-induced induction of CYP11B2 (encoding aldosterone synthase) expression and aldosterone production. Further exploration of macrolides showed that KCNJ5MUT was similarly selectively inhibited by idremcinal, a macrolide motilin receptor agonist, and by synthesized macrolide derivatives lacking antibiotic or motilide activity. Macrolide-derived selective KCNJ5MUT inhibitors thus have the potential to advance the diagnosis and treatment of APAs harboring KCNJ5MUT. PMID:28604387

  4. Macrolides selectively inhibit mutant KCNJ5 potassium channels that cause aldosterone-producing adenoma.

    PubMed

    Scholl, Ute I; Abriola, Laura; Zhang, Chengbiao; Reimer, Esther N; Plummer, Mark; Kazmierczak, Barbara I; Zhang, Junhui; Hoyer, Denton; Merkel, Jane S; Wang, Wenhui; Lifton, Richard P

    2017-06-30

    Aldosterone-producing adenomas (APAs) are benign tumors of the adrenal gland that constitutively produce the salt-retaining steroid hormone aldosterone and cause millions of cases of severe hypertension worldwide. Either of 2 somatic mutations in the potassium channel KCNJ5 (G151R and L168R, hereafter referred to as KCNJ5MUT) in adrenocortical cells account for half of APAs worldwide. These mutations alter channel selectivity to allow abnormal Na+ conductance, resulting in membrane depolarization, calcium influx, aldosterone production, and cell proliferation. Because APA diagnosis requires a difficult invasive procedure, patients often remain undiagnosed and inadequately treated. Inhibitors of KCNJ5MUT could allow noninvasive diagnosis and therapy of APAs carrying KCNJ5 mutations. Here, we developed a high-throughput screen for rescue of KCNJ5MUT-induced lethality and identified a series of macrolide antibiotics, including roxithromycin, that potently inhibit KCNJ5MUT, but not KCNJ5WT. Electrophysiology demonstrated direct KCNJ5MUT inhibition. In human aldosterone-producing adrenocortical cancer cell lines, roxithromycin inhibited KCNJ5MUT-induced induction of CYP11B2 (encoding aldosterone synthase) expression and aldosterone production. Further exploration of macrolides showed that KCNJ5MUT was similarly selectively inhibited by idremcinal, a macrolide motilin receptor agonist, and by synthesized macrolide derivatives lacking antibiotic or motilide activity. Macrolide-derived selective KCNJ5MUT inhibitors thus have the potential to advance the diagnosis and treatment of APAs harboring KCNJ5MUT.

  5. RyR2R420Q catecholaminergic polymorphic ventricular tachycardia mutation induces bradycardia by disturbing the coupled clock pacemaker mechanism

    PubMed Central

    Wang, Yue Yi; Mesirca, Pietro; Marqués-Sulé, Elena; Villejoubert, Olivier; D’Ocon, Pilar; Ruiz, Cristina; Domingo, Diana; Zorio, Esther; Mangoni, Matteo E.; Benitah, Jean-Pierre; Gómez, Ana María

    2017-01-01

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a lethal genetic arrhythmia that manifests syncope or sudden death in children and young adults under stress conditions. CPVT patients often present bradycardia and sino-atrial node (SAN) dysfunction. However, the mechanism remains unclear. We analyzed SAN function in two CPVT families and in a novel knock-in (KI) mouse model carrying the RyR2R420Q mutation. Humans and KI mice presented slower resting heart rate. Accordingly, the rate of spontaneous intracellular Ca2+ ([Ca2+]i) transients was slower in KI mouse SAN preparations than in WT, without any significant alteration in the “funny” current (If ). The L-type Ca2+ current was reduced in KI SAN cells in a [Ca2+]i-dependent way, suggesting that bradycardia was due to disrupted crosstalk between the “voltage” and “Ca2+” clock, and the mechanisms of pacemaking was induced by aberrant spontaneous RyR2- dependent Ca2+ release. This finding was consistent with a higher Ca2+ leak during diastolic periods produced by long-lasting Ca2+ sparks in KI SAN cells. Our results uncover a mechanism for the CPVT-causing RyR2 N-terminal mutation R420Q, and they highlight the fact that enhancing the Ca2+ clock may slow the heart rhythm by disturbing the coupling between Ca2+ and voltage clocks. PMID:28422759

  6. Hypericum perforatum Reduces Paracetamol-Induced Hepatotoxicity and Lethality in Mice by Modulating Inflammation and Oxidative Stress.

    PubMed

    Hohmann, Miriam S N; Cardoso, Renato D R; Fattori, Victor; Arakawa, Nilton S; Tomaz, José C; Lopes, Norberto P; Casagrande, Rubia; Verri, Waldiceu A

    2015-07-01

    Hypericum perforatum is a medicinal plant with anti-inflammatory and antioxidant properties, which is commercially available for therapeutic use in Brazil. Herein the effect of H. perforatum extract on paracetamol (acetaminophen)-induced hepatotoxicity, lethality, inflammation, and oxidative stress in male swiss mice were investigated. HPLC analysis demonstrated the presence of rutin, quercetin, hypericin, pseudohypericin, and hyperforin in H. perforatum extract. Paracetamol (0.15-3.0 g/kg, p.o.) induced dose-dependent mortality. The sub-maximal lethal dose of paracetamol (1.5 g/kg, p.o.) was chosen for the experiments in the study. H. perforatum (30-300 mg/kg, i.p.) dose-dependently reduced paracetamol-induced lethality. Paracetamol-induced increase in plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) concentrations, and hepatic myeloperoxidase activity, IL-1β, TNF-α, and IFN-γ concentrations as well as decreased reduced glutathione (GSH) concentrations and capacity to reduce 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate radical cation; ABTS˙(+) ) were inhibited by H. perforatum (300 mg/kg, i.p.) treatment. Therefore, H. perforatum protects mice against paracetamol-induced lethality and liver damage. This effect seems to be related to the reduction of paracetamol-induced cytokine production, neutrophil recruitment, and oxidative stress. Copyright © 2015 John Wiley & Sons, Ltd.

  7. TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice

    NASA Technical Reports Server (NTRS)

    Zhang, D.; Gaussin, V.; Taffet, G. E.; Belaguli, N. S.; Yamada, M.; Schwartz, R. J.; Michael, L. H.; Overbeek, P. A.; Schneider, M. D.

    2000-01-01

    The transforming-growth-factor-beta-activated kinase TAK1 is a member of the mitogen-activated protein kinase kinase kinase family, which couples extracellular stimuli to gene transcription. The in vivo function of TAK1 is not understood. Here, we investigated the potential involvement of TAK1 in cardiac hypertrophy. In adult mouse myocardium, TAK1 kinase activity was upregulated 7 days after aortic banding, a mechanical load that induces hypertrophy and expression of transforming growth factor beta. An activating mutation of TAK1 expressed in myocardium of transgenic mice was sufficient to produce p38 mitogen-activated protein kinase phosphorylation in vivo, cardiac hypertrophy, interstitial fibrosis, severe myocardial dysfunction, 'fetal' gene induction, apoptosis and early lethality. Thus, TAK1 activity is induced as a delayed response to mechanical stress, and can suffice to elicit myocardial hypertrophy and fulminant heart failure.

  8. The gametocidal chromosome as a tool for chromosome manipulation in wheat.

    PubMed

    Endo, T R

    2007-01-01

    Many alien chromosomes have been introduced into common wheat (the genus Triticum) from related wild species (the genus Aegilops). Some alien chromosomes have unique genes that secure their existence in the host by causing chromosome breakage in the gametes lacking them. Such chromosomes or genes, called gametocidal (Gc) chromosomes or Gc genes, are derived from different genomes (C, S, S(l) and M(g)) and belong to three different homoeologous groups 2, 3 and 4. The Gc genes of the C and M(g) genomes induce mild, or semi-lethal, chromosome mutations in euploid and alien addition lines of common wheat. Thus, induced chromosomal rearrangements have been identified and established in wheat stocks carrying deletions of wheat and alien (rye and barley) chromosomes or wheat-alien translocations. The gametocidal chromosomes isolated in wheat to date are reviewed here, focusing on their feature as a tool for chromosome manipulation.

  9. Disruption of NBS1 gene leads to early embryonic lethality in homozygous null mice and induces specific cancer in heterozygous mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurimasa, Akihiro; Burma, Sandeep; Henrie, Melinda

    2002-04-15

    Nijmegen breakage syndrome (NBS) is a rare autosomal recessive chromosome instability syndrome characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition, with cellular features similar to that of ataxia telangiectasia (AT). NBS results from mutations in the mammalian gene Nbs1 that codes for a 95-kDa protein called nibrin, NBS1, or p95. To establish an animal model for NBS, we attempted to generate NBS1 knockout mice. However, NBS1 gene knockouts were lethal at an early embryonic stage. NBS1 homozygous(-/-) blastocyst cells cultured in vitro showed retarded growth and subsequently underwent growth arrest within 5 days of culture. Apoptosis, assayed by TUNELmore » staining, was observed in NBSI homozygous(-/-) blastocyst cells cultured for four days. NBSI heterozygous(+/-) mice were normal, and exhibited no specific phenotype for at least one year. However, fibroblast cells from NBSI heterozygous(+/-) mice displayed an enhanced frequency of spontaneous transformation to anchorage-independent growth as compared to NBS1 wild-type(+/+) cells. Furthermore, heterozygous(+/-) mice exhibited a high incidence of hepatocellular carcinoma after one year compared to wild-type mice, even though no significant differences in the incidence of other tumors such as lung adenocarcinoma and lymphoma were observed. Taken together, these results strongly suggest that NBS1 heterozygosity and reduced NBSI expression induces formation of specific tumors in mice.« less

  10. Mutagenesis of Dengue Virus Protein NS2A Revealed a Novel Domain Responsible for Virus-Induced Cytopathic Effect and Interactions between NS2A and NS2B Transmembrane Segments.

    PubMed

    Wu, Ren-Huang; Tsai, Ming-Han; Tsai, Kuen-Nan; Tian, Jia Ni; Wu, Jian-Sung; Wu, Su-Ying; Chern, Jyh-Haur; Chen, Chun-Hong; Yueh, Andrew

    2017-06-15

    The NS2A protein of dengue virus (DENV) has eight predicted transmembrane segments (pTMS1 to -8) and participates in RNA replication, virion assembly, and host antiviral response. However, the roles of specific amino acid residues within the pTMS regions of NS2A during the viral life cycle are not clear. Here, we explore the function of DENV NS2A by introducing a series of alanine substitutions into the N-terminal half (pTMS1 to -4) of the protein in the context of a DENV infectious clone or subgenomic replicon. Six NS2A mutants (NM5, -7, -9, and -17 to -19) around pTMS1 and -2 displayed a novel phenotype showing a >1,000-fold reduction in virus yield, an absence of plaque formation despite wild-type-like replicon activity, and infectious-virus-like particle yields. HEK-293 cells infected with the six NS2A mutant viruses failed to cause a virus-induced cytopathic effect (CPE) by MitoCapture staining, cell proliferation, and lactate dehydrogenase release assays. Sequencing analyses of pseudorevertant viruses derived from lethal-mutant viruses revealed two consensus reversion mutations, leucine to phenylalanine at codon 181 (L181F) within pTMS7 of NS2A and isoleucine to threonine at codon 114 (I114T) within NS2B. The introduction of an NS2A-L181F mutation into the lethal (NM15, -16, -25, and -33) and CPE-defective (NM7, -9, and -19) mutants substantially rescued virus infectivity and virus-induced CPE, respectively, whereas the NS2B-L114T mutation rescued the NM16, -25, and -33 mutants. In conclusion, the results revealed the essential roles of the N-terminal half of NS2A in RNA replication and virus-induced CPE. Intramolecular interactions between pTMSs of NS2A and intermolecular interactions between the NS2A and NS2B proteins were also implicated. IMPORTANCE The characterization of the N-terminal (current study) and C-terminal halves of DENV NS2A is the most comprehensive mutagenesis study to date to investigate the function of NS2A during the flaviviral life cycle. A novel region responsible for virus-induced cytopathic effect (CPE) within pTMS1 and -2 of DENV NS2A was identified. Revertant genetics studies implied unexpected relationships between various pTMSs of DENV NS2A and NS2B. These results provide comprehensive information regarding the functions of DENV NS2A and the specific amino acids and transmembrane segments responsible for these functions. The positions and properties of the rescuing mutations were also revealed, providing important clues regarding the manner in which intramolecular or intermolecular interactions between the pTMSs of NS2A and NS2B regulate virus replication, assembly/secretion, and virus-induced CPE. These results expand the understanding of flavivirus replication. The knowledge may also facilitate studies of pathogenesis and novel vaccine and antiflaviviral drug development. Copyright © 2017 American Society for Microbiology.

  11. Novel Lethal Form of Congenital Hypopituitarism Associated With the First Recessive LHX4 Mutation

    PubMed Central

    Gregory, L. C.; Humayun, K. N.; Turton, J. P. G.; McCabe, M. J.; Rhodes, S. J.

    2015-01-01

    Background: LHX4 encodes a member of the LIM-homeodomain family of transcription factors that is required for normal development of the pituitary gland. To date, only incompletely penetrant heterozygous mutations in LHX4 have been described in patients with variable combined pituitary hormone deficiencies. Objective/Hypothesis: To report a unique family with a novel recessive variant in LHX4 associated with a lethal form of congenital hypopituitarism that was identified through screening a total of 97 patients. Method: We screened 97 unrelated patients with combined pituitary hormone deficiency, including 65% with an ectopic posterior pituitary, for variants in the LHX4 gene using Sanger sequencing. Control databases (1000 Genomes, dbSNP, Exome Variant Server, ExAC Browser) were consulted upon identification of variants. Results: We identified the first novel homozygous missense variant (c.377C>T, p.T126M) in two deceased male patients of Pakistani origin with severe panhypopituitarism associated with anterior pituitary aplasia and posterior pituitary ectopia. Both were born small for gestational age with a small phallus, undescended testes, and mid-facial hypoplasia. The parents' first-born child was a female with mid-facial hypoplasia (DNA was unavailable). Despite rapid commencement of hydrocortisone and T4 in the brothers, all three children died within the first week of life. The LHX4(p.T126M) variant is located within the LIM2 domain, in a highly conserved location. The absence of homozygosity for the variant in over 65 000 controls suggests that it is likely to be responsible for the phenotype. Conclusion: We report, for the first time to our knowledge, a novel homozygous mutation in LHX4 associated with a lethal phenotype, implying that recessive mutations in LHX4 may be incompatible with life. PMID:25871839

  12. Dync1h1 Mutation Causes Proprioceptive Sensory Neuron Loss and Impaired Retrograde Axonal Transport of Dorsal Root Ganglion Neurons.

    PubMed

    Zhao, Jing; Wang, Yi; Xu, Huan; Fu, Yuan; Qian, Ting; Bo, Deng; Lu, Yan-Xin; Xiong, Yi; Wan, Jun; Zhang, Xiang; Dong, Qiang; Chen, Xiang-Jun

    2016-07-01

    Sprawling (Swl) is a radiation-induced mutation which has been identified to have a nine base pair deletion in dynein heavy chain 1 (DYNC1H1: encoded by a single gene Dync1h1). This study is to investigate the phenotype and the underlying mechanism of the Dync1h1 mutant. To display the phenotype of Swl mutant mice, we examined the embryos of homozygous (Swl/Swl) and heterozygous (Swl/+) mice and their postnatal dorsal root ganglion (DRG) of surviving Swl/+ mice. The Swl/+ mice could survive for a normal life span, while Swl/Swl could only survive till embryonic (E) 8.5 days. Excessive apoptosis of Swl/+ DRG neurons was revealed during E11.5-E15.5 days, and the peak rate was at E13.5 days. In vitro study of mutated DRG neurons showed impaired retrograde transport of dynein-driven nerve growth factor (NGF). Mitochondria, another dynein-driven cargo, demonstrated much slower retrograde transport velocity in Swl/+ neurons than in wild-type (WT) neurons. Nevertheless, the Swl, Loa, and Cra mutations did not affect homodimerization of DYNC1H1. The Swl/Swl mutation of Dync1h1 gene led to embryonic mal-development and lethality, whereas the Swl/+ DRG neurons demonstrated deficient retrograde transport in dynein-driven cargos and excessive apoptosis during mid- to late-developmental stages. The underlying mechanism of the mutation may not be due to impaired homodimerization of DYNC1H1. © 2016 John Wiley & Sons Ltd.

  13. Vaccination With a Highly Attenuated Recombinant Vesicular Stomatitis Virus Vector Protects Against Challenge With a Lethal Dose of Ebola Virus

    PubMed Central

    Matassov, Demetrius; Marzi, Andrea; Latham, Terri; Xu, Rong; Ota-Setlik, Ayuko; Feldmann, Friederike; Geisbert, Joan B.; Mire, Chad E.; Hamm, Stefan; Nowak, Becky; Egan, Michael A.; Geisbert, Thomas W.; Eldridge, John H.; Feldmann, Heinz; Clarke, David K.

    2015-01-01

    Previously, recombinant vesicular stomatitis virus (rVSV) pseudotypes expressing Ebolavirus glycoproteins (GPs) in place of the VSV G protein demonstrated protection of nonhuman primates from lethal homologous Ebolavirus challenge. Those pseudotype vectors contained no additional attenuating mutations in the rVSV genome. Here we describe rVSV vectors containing a full complement of VSV genes and expressing the Ebola virus (EBOV) GP from an additional transcription unit. These rVSV vectors contain the same combination of attenuating mutations used previously in the clinical development pathway of an rVSV/human immunodeficiency virus type 1 vaccine. One of these rVSV vectors (N4CT1-EBOVGP1), which expresses membrane-anchored EBOV GP from the first position in the genome (GP1), elicited a balanced cellular and humoral GP-specific immune response in mice. Guinea pigs immunized with a single dose of this vector were protected from any signs of disease following lethal EBOV challenge, while control animals died in 7–9 days. Subsequently, N4CT1-EBOVGP1 demonstrated complete, single-dose protection of 2 macaques following lethal EBOV challenge. A single sham-vaccinated macaque died from disease due to EBOV infection. These results demonstrate that highly attenuated rVSV vectors expressing EBOV GP may provide safer alternatives to current EBOV vaccines. PMID:26109675

  14. The population genetics of X-autosome synthetic lethals and steriles.

    PubMed

    Lachance, Joseph; Johnson, Norman A; True, John R

    2011-11-01

    Epistatic interactions are widespread, and many of these interactions involve combinations of alleles at different loci that are deleterious when present in the same individual. The average genetic environment of sex-linked genes differs from that of autosomal genes, suggesting that the population genetics of interacting X-linked and autosomal alleles may be complex. Using both analytical theory and computer simulations, we analyzed the evolutionary trajectories and mutation-selection balance conditions for X-autosome synthetic lethals and steriles. Allele frequencies follow a set of fundamental trajectories, and incompatible alleles are able to segregate at much higher frequencies than single-locus expectations. Equilibria exist, and they can involve fixation of either autosomal or X-linked alleles. The exact equilibrium depends on whether synthetic alleles are dominant or recessive and whether fitness effects are seen in males, females, or both sexes. When single-locus fitness effects and synthetic incompatibilities are both present, population dynamics depend on the dominance of alleles and historical contingency (i.e., whether X-linked or autosomal mutations occur first). Recessive synthetic lethality can result in high-frequency X-linked alleles, and dominant synthetic lethality can result in high-frequency autosomal alleles. Many X-autosome incompatibilities in natural populations may be cryptic, appearing to be single-locus effects because one locus is fixed. We also discuss the implications of these findings with respect to standing genetic variation and the origins of Haldane's rule.

  15. RpoS Plays a Central Role in the SOS Induction by Sub-Lethal Aminoglycoside Concentrations in Vibrio cholerae

    PubMed Central

    Baharoglu, Zeynep; Krin, Evelyne; Mazel, Didier

    2013-01-01

    Bacteria encounter sub-inhibitory concentrations of antibiotics in various niches, where these low doses play a key role for antibiotic resistance selection. However, the physiological effects of these sub-lethal concentrations and their observed connection to the cellular mechanisms generating genetic diversification are still poorly understood. It is known that, unlike for the model bacterium Escherichia coli, sub-minimal inhibitory concentrations (sub-MIC) of aminoglycosides (AGs) induce the SOS response in Vibrio cholerae. SOS is induced upon DNA damage, and since AGs do not directly target DNA, we addressed two issues in this study: how sub-MIC AGs induce SOS in V. cholerae and why they do not do so in E. coli. We found that when bacteria are grown with tobramycin at a concentration 100-fold below the MIC, intracellular reactive oxygen species strongly increase in V. cholerae but not in E. coli. Using flow cytometry and gfp fusions with the SOS regulated promoter of intIA, we followed AG-dependent SOS induction. Testing the different mutation repair pathways, we found that over-expression of the base excision repair (BER) pathway protein MutY relieved this SOS induction in V. cholerae, suggesting a role for oxidized guanine in AG-mediated indirect DNA damage. As a corollary, we established that a BER pathway deficient E. coli strain induces SOS in response to sub-MIC AGs. We finally demonstrate that the RpoS general stress regulator prevents oxidative stress-mediated DNA damage formation in E. coli. We further show that AG-mediated SOS induction is conserved among the distantly related Gram negative pathogens Klebsiella pneumoniae and Photorhabdus luminescens, suggesting that E. coli is more of an exception than a paradigm for the physiological response to antibiotics sub-MIC. PMID:23613664

  16. RpoS plays a central role in the SOS induction by sub-lethal aminoglycoside concentrations in Vibrio cholerae.

    PubMed

    Baharoglu, Zeynep; Krin, Evelyne; Mazel, Didier

    2013-01-01

    Bacteria encounter sub-inhibitory concentrations of antibiotics in various niches, where these low doses play a key role for antibiotic resistance selection. However, the physiological effects of these sub-lethal concentrations and their observed connection to the cellular mechanisms generating genetic diversification are still poorly understood. It is known that, unlike for the model bacterium Escherichia coli, sub-minimal inhibitory concentrations (sub-MIC) of aminoglycosides (AGs) induce the SOS response in Vibrio cholerae. SOS is induced upon DNA damage, and since AGs do not directly target DNA, we addressed two issues in this study: how sub-MIC AGs induce SOS in V. cholerae and why they do not do so in E. coli. We found that when bacteria are grown with tobramycin at a concentration 100-fold below the MIC, intracellular reactive oxygen species strongly increase in V. cholerae but not in E. coli. Using flow cytometry and gfp fusions with the SOS regulated promoter of intIA, we followed AG-dependent SOS induction. Testing the different mutation repair pathways, we found that over-expression of the base excision repair (BER) pathway protein MutY relieved this SOS induction in V. cholerae, suggesting a role for oxidized guanine in AG-mediated indirect DNA damage. As a corollary, we established that a BER pathway deficient E. coli strain induces SOS in response to sub-MIC AGs. We finally demonstrate that the RpoS general stress regulator prevents oxidative stress-mediated DNA damage formation in E. coli. We further show that AG-mediated SOS induction is conserved among the distantly related Gram negative pathogens Klebsiella pneumoniae and Photorhabdus luminescens, suggesting that E. coli is more of an exception than a paradigm for the physiological response to antibiotics sub-MIC.

  17. Mutation dynamics and fitness effects followed in single cells.

    PubMed

    Robert, Lydia; Ollion, Jean; Robert, Jerome; Song, Xiaohu; Matic, Ivan; Elez, Marina

    2018-03-16

    Mutations have been investigated for more than a century but remain difficult to observe directly in single cells, which limits the characterization of their dynamics and fitness effects. By combining microfluidics, time-lapse imaging, and a fluorescent tag of the mismatch repair system in Escherichia coli , we visualized the emergence of mutations in single cells, revealing Poissonian dynamics. Concomitantly, we tracked the growth and life span of single cells, accumulating ~20,000 mutations genome-wide over hundreds of generations. This analysis revealed that 1% of mutations were lethal; nonlethal mutations displayed a heavy-tailed distribution of fitness effects and were dominated by quasi-neutral mutations with an average cost of 0.3%. Our approach has enabled the investigation of single-cell individuality in mutation rate, mutation fitness costs, and mutation interactions. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Computational analysis of histidine mutations on the structural stability of human tyrosinases leading to albinism insurgence.

    PubMed

    Hassan, Mubashir; Abbas, Qamar; Raza, Hussain; Moustafa, Ahmed A; Seo, Sung-Yum

    2017-07-25

    Misfolding and structural alteration in proteins lead to serious malfunctions and cause various diseases in humans. Mutations at the active binding site in tyrosinase impair structural stability and cause lethal albinism by abolishing copper binding. To evaluate the histidine mutational effect, all mutated structures were built using homology modelling. The protein sequence was retrieved from the UniProt database, and 3D models of original and mutated human tyrosinase sequences were predicted by changing the residual positions within the target sequence separately. Structural and mutational analyses were performed to interpret the significance of mutated residues (N 180 , R 202 , Q 202 , R 211 , Y 363 , R 367 , Y 367 and D 390 ) at the active binding site of tyrosinases. CSpritz analysis depicted that 23.25% residues actively participate in the instability of tyrosinase. The accuracy of predicted models was confirmed through online servers ProSA-web, ERRAT score and VERIFY 3D values. The theoretical pI and GRAVY generated results also showed the accuracy of the predicted models. The CCA negative correlation results depicted that the replacement of mutated residues at His within the active binding site disturbs the structural stability of tyrosinases. The predicted CCA scores of Tyr 367 (-0.079) and Q/R 202 (0.032) revealed that both mutations have more potential to disturb the structural stability. MD simulation analyses of all predicted models justified that Gln 202 , Arg 202 , Tyr 367 and D 390 replacement made the protein structures more susceptible to destabilization. Mutational results showed that the replacement of His with Q/R 202 and Y/R 363 has a lethal effect and may cause melanin associated diseases such as OCA1. Taken together, our computational analysis depicts that the mutated residues such as Q/R 202 and Y/R 363 actively participate in instability and misfolding of tyrosinases, which may govern OCA1 through disturbing the melanin biosynthetic pathway.

  19. Modeling synthetic lethality

    PubMed Central

    Le Meur, Nolwenn; Gentleman, Robert

    2008-01-01

    Background Synthetic lethality defines a genetic interaction where the combination of mutations in two or more genes leads to cell death. The implications of synthetic lethal screens have been discussed in the context of drug development as synthetic lethal pairs could be used to selectively kill cancer cells, but leave normal cells relatively unharmed. A challenge is to assess genome-wide experimental data and integrate the results to better understand the underlying biological processes. We propose statistical and computational tools that can be used to find relationships between synthetic lethality and cellular organizational units. Results In Saccharomyces cerevisiae, we identified multi-protein complexes and pairs of multi-protein complexes that share an unusually high number of synthetic genetic interactions. As previously predicted, we found that synthetic lethality can arise from subunits of an essential multi-protein complex or between pairs of multi-protein complexes. Finally, using multi-protein complexes allowed us to take into account the pleiotropic nature of the gene products. Conclusions Modeling synthetic lethality using current estimates of the yeast interactome is an efficient approach to disentangle some of the complex molecular interactions that drive a cell. Our model in conjunction with applied statistical methods and computational methods provides new tools to better characterize synthetic genetic interactions. PMID:18789146

  20. Genetics Home Reference: oculofaciocardiodental syndrome

    MedlinePlus

    ... the signs and symptoms of OFCD syndrome. In males (who have only one X chromosome ), mutations result ... be lethal very early in development, so no males are born with OFCD syndrome. Related Information What ...

  1. Clinical and molecular characterization of Diastrophic Dysplasia in the Portuguese population.

    PubMed

    Barbosa, M; Sousa, A B; Medeira, A; Lourenço, T; Saraiva, J; Pinto-Basto, J; Soares, G; Fortuna, A M; Superti-Furga, A; Mittaz, L; Reis-Lima, M; Bonafé, L

    2011-12-01

    SLC26A2-related dysplasias encompass a spectrum of diseases: from lethal achondrogenesis type 1B (ACG1B; MIM #600972) and atelosteogenesis type 2 (AO2; MIM #256050) to classical diastrophic dysplasia (cDTD; MIM #222600) and recessive multiple epiphyseal dysplasia (rMED; MIM #226900). This study aimed at characterizing clinically, radiologically and molecularly 14 patients affected by non-lethal SLC26A2-related dysplasias and at evaluating genotype-phenotype correlation. Phenotypically, eight patients were classified as cDTD, four patients as rMED and two patients had an intermediate phenotype (mild DTD - mDTD, previously 'DTD variant'). The Arg279Trp mutation was present in all patients, either in homozygosity (resulting in rMED) or in compound heterozygosity with the known severe alleles Arg178Ter or Asn425Asp (resulting in DTD) or with the mutation c.727-1G>C (causing mDTD). The 'Finnish mutation', c.-26+2T>C, and the p.Cys653Ser, both frequent mutations in non-Portuguese populations, were not identified in any of the patients of our cohort and are probably very rare in the Portuguese population. A targeted mutation analysis for p.Arg279Trp and p.Arg178Ter in the Portuguese population allows the identification of approximately 90% of the pathogenic alleles. © 2010 John Wiley & Sons A/S.

  2. A novel live attenuated anthrax spore vaccine based on an acapsular Bacillus anthracis Sterne strain with mutations in the htrA, lef and cya genes.

    PubMed

    Chitlaru, Theodor; Israeli, Ma'ayan; Rotem, Shahar; Elia, Uri; Bar-Haim, Erez; Ehrlich, Sharon; Cohen, Ofer; Shafferman, Avigdor

    2017-10-20

    We recently reported the development of a novel, next-generation, live attenuated anthrax spore vaccine based on disruption of the htrA (High Temperature Requirement A) gene in the Bacillus anthracis Sterne veterinary vaccine strain. This vaccine exhibited a highly significant decrease in virulence in murine, guinea pig and rabbit animal models yet preserved the protective value of the parental Sterne strain. Here, we report the evaluation of additional mutations in the lef and cya genes, encoding for the toxin components lethal factor (LF) and edema factor (EF), to further attenuate the SterneΔhtrA strain and improve its compatibility for human use. Accordingly, we constructed seven B. anthracis Sterne-derived strains exhibiting different combinations of mutations in the htrA, cya and lef genes. The various strains were indistinguishable in growth in vitro and in their ability to synthesise the protective antigen (PA, necessary for the elicitation of protection). In the sensitive murine model, we observed a gradual increase (ΔhtrA<ΔhtrAΔcya<ΔhtrAΔlef<ΔhtrAΔlefΔcya) in attenuation - up to 10 8 -fold relative to the parental Sterne vaccine strain. Most importantly, all various SterneΔhtrA derivative strains did not differ in their ability to elicit protective immunity in guinea pigs. Immunisation of guinea pigs with a single dose (10 9 spores) or double doses (>10 7 spores) of the most attenuated triple mutant strain SterneΔhtrAlef MUT Δcya induced a robust immune response, providing complete protection against a subsequent respiratory lethal challenge. Partial protection was observed in animals vaccinated with a double dose of as few as 10 5 spores. Furthermore, protective immune status was maintained in all vaccinated guinea pigs and rabbits for at least 40 and 30weeks, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions

    PubMed Central

    Vergnano, Marta; Wan, Chris

    2017-01-01

    ABSTRACT We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP), cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA) and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR) inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection. PMID:28743817

  4. A STUDY OF THE EFFECTS OF ELEVATED TEMPERATURES ON THE GROWTH AND INHERITANCE OF SACCHAROMYCES CEREVISIAE (thesis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, F

    1958-11-01

    A comparative study was made of the growth of yeast in various media at the optimum temperature (30 ) and at supraoptimum temperatures. It was found that at elevated temperatures there is a decrease in the ability of yeast to grow, which may be alleviated by increasing the percentage of yeast extract in the medium, adding oleic acid to the medium, or using an inoculum of cells that have previously been grown at the elevated temperature. Because of these findings, it is believed that growth at elevated temperatures results in an increased nutrient requirement which may be eliminated by inducedmore » adaptation. When yeasts were grown at elevated temperatures or exposed for a short time to lethal temperatures it was found that there was a great increase in the fraction of respiratory-deficient mutants (petites). It was shown that the increase of mutants did not arise because of selection, but that the elevated temperatures actually induced the mutation. From the results of various genetic analyses it is shown that these respiratorydeficient mutants are very similar, if not identical. to vegetative petites occurring spontaneously or induced by acriflavine. The kinetics of this mutation is discussed, with possible theoretical interpretations. (auth)« less

  5. Radiosensitivity of jute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshua, D.C.; Thakare, R.G.; Rao, N.S.

    1972-11-01

    The differential effects of fast and thermal neutrons and gamma rays on diploid ond autotetraploid of C. olitorius cv JRO 632 were studied. The frequency and spectrum of lethal chlorophyll mutations were studied in the diploid variety. (auth)

  6. A case of thanatophoric dysplasia type 2: a novel mutation.

    PubMed

    Gülaşı, Selvi; Atıcı, Aytuğ; Çelik, Yalçın

    2015-03-01

    Thanatophoric dysplasia (TD) is a lethal form of skeletal dysplasia with short-limb dwarfism. Two types distinguished with their radiological characteristics have been defined clinically. The femur is curved in type 1, while it is straight in type 2. TD is known to be due to a mutation in the fibroblast growth factor receptor 3 (FGFR3) gene. We report a male patient who showed clinical findings congruent with TD type 2 and a new mutation in the FGFR3 gene, a finding which has not been reported previously.

  7. CHILD syndrome in a boy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Happle, R.; Effendy, I., Megahed, M.; Orlow, S.J.

    CHILD syndrome (congential hemidysplasia with ichthyosiform nevus and limb defects) occurs, as a rule, exclusively in girls because of the underlying X-linked gene exerts a lethal effect on male embryos. In this report the characteristic manifestations of CHILD syndrome are described in a 2-year-old boy with a normal chromosome constitution 46,XY. This exceptional case is best explained by the assumption of an early somatic mutation and thus compatible with the concept of X-linked dominant male-lethal inheritance of this trait. 18 refs., 6 figs.

  8. A case of boomerang dysplasia with a novel causative mutation in filamin B: identification of typical imaging findings on ultrasonography and 3D-CT imaging.

    PubMed

    Tsutsumi, Seiji; Maekawa, Ayako; Obata, Miyuki; Morgan, Timothy; Robertson, Stephen P; Kurachi, Hirohisa

    2012-01-01

    Boomerang dysplasia is a rare lethal osteochondrodysplasia characterized by disorganized mineralization of the skeleton, leading to complete nonossification of some limb bones and vertebral elements, and a boomerang-like aspect to some of the long tubular bones. Like many short-limbed skeletal dysplasias with accompanying thoracic hypoplasia, the potential lethality of the phenotype can be difficult to ascertain prenatally. We report a case of boomerang dysplasia prenatally diagnosed by use of ultrasonography and 3D-CT imaging, and identified a novel mutation in the gene encoding the cytoskeletal protein filamin B (FLNB) postmortem. Findings that aided the radiological diagnosis of this condition in utero included absent ossification of two out of three long bones in each limb and elements of the vertebrae and a boomerang-like shape to the ulnae. The identified mutation is the third described for this disorder and is predicted to lead to amino acid substitution in the actin-binding domain of the filamin B molecule. Copyright © 2012 S. Karger AG, Basel.

  9. Long survival in patients with leigh syndrome and the m.10191T>C mutation in MT-ND3 : a case report and review of the literature.

    PubMed

    Levy, Rebecca J; Ríos, Purificación Gutierrez; Akman, Hasan O; Sciacco, Monica; Vivo, Darryl C De; DiMauro, Salvatore

    2014-10-01

    We report an unusual case of Leigh syndrome due to the m.10191T>C mutation in the complex I gene MT-ND3. This mutation has been associated with a spectrum of clinical phenotypes ranging from infant lethality to adult onset. Despite infantile onset and severe symptoms, our patient has survived to early adulthood because of a strict dietary regimen and parental care. This patient is an extreme example of the frequently prolonged course of Leigh syndrome due to this particular mutation. © The Author(s) 2013.

  10. Two O-linked N-acetylglucosamine transferase genes of Arabidopsis thaliana L. Heynh. have overlapping functions necessary for gamete and seed development.

    PubMed Central

    Hartweck, Lynn M; Scott, Cheryl L; Olszewski, Neil E

    2002-01-01

    The Arabidopsis SECRET AGENT (SEC) and SPINDLY (SPY) proteins are similar to animal O-linked N-acetylglucosamine transferases (OGTs). OGTs catalyze the transfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to Ser/Thr residues of proteins. In animals, O-GlcNAcylation has been shown to affect protein activity, stability, and/or localization. SEC protein expressed in Escherichia coli had autocatalytic OGT activity. To determine the function of SEC in plants, two tDNA insertional mutants were identified and analyzed. Although sec mutant plants did not exhibit obvious phenotypes, sec and spy mutations had a synthetic lethal interaction. This lethality was incompletely penetrant in gametes and completely penetrant postfertilization. The rate of both female and male sec spy gamete transmission was higher in plants heterozygous for both mutations than in plants heterozygous for sec and homozygous for spy. Double-mutant embryos aborted at various stages of development and no double-mutant seedlings were obtained. These results indicate that OGT activity is required during gametogenesis and embryogenesis with lethality occurring when parentally derived SEC, SPY, and/or O-GlcNAcylated proteins become limiting. PMID:12136030

  11. Gene expression and mutation-guided synthetic lethality eradicates proliferating and quiescent leukemia cells

    PubMed Central

    Nieborowska-Skorska, Margaret; Sullivan, Katherine; Dasgupta, Yashodhara; Podszywalow-Bartnicka, Paulina; Maifrede, Silvia; Di Marcantonio, Daniela; Bolton-Gillespie, Elisabeth; Cramer-Morales, Kimberly; Lee, Jaewong; Li, Min; Slupianek, Artur; Gritsyuk, Daniel; Cerny-Reiterer, Sabine; Seferynska, Ilona; Bullinger, Lars; Gorbunova, Vera; Piwocka, Katarzyna; Valent, Peter; Civin, Curt I.; Muschen, Markus; Dick, John E.; Wang, Jean C.Y.; Bhatia, Smita; Bhatia, Ravi; Eppert, Kolja; Minden, Mark D.; Sykes, Stephen M.

    2017-01-01

    Quiescent and proliferating leukemia cells accumulate highly lethal DNA double-strand breaks that are repaired by 2 major mechanisms: BRCA-dependent homologous recombination and DNA-dependent protein kinase–mediated (DNA-PK–mediated) nonhomologous end-joining, whereas DNA repair pathways mediated by poly(ADP)ribose polymerase 1 (PARP1) serve as backups. Here we have designed a personalized medicine approach called gene expression and mutation analysis (GEMA) to identify BRCA- and DNA-PK–deficient leukemias either directly, using reverse transcription-quantitative PCR, microarrays, and flow cytometry, or indirectly, by the presence of oncogenes such as BCR-ABL1. DNA-PK–deficient quiescent leukemia cells and BRCA/DNA-PK–deficient proliferating leukemia cells were sensitive to PARP1 inhibitors that were administered alone or in combination with current antileukemic drugs. In conclusion, GEMA-guided targeting of PARP1 resulted in dual cellular synthetic lethality in quiescent and proliferating immature leukemia cells, and is thus a potential approach to eradicate leukemia stem and progenitor cells that are responsible for initiation and manifestation of the disease. Further, an analysis of The Cancer Genome Atlas database indicated that this personalized medicine approach could also be applied to treat numerous solid tumors from individual patients. PMID:28481221

  12. Mutations in GLDN, Encoding Gliomedin, a Critical Component of the Nodes of Ranvier, Are Responsible for Lethal Arthrogryposis.

    PubMed

    Maluenda, Jérôme; Manso, Constance; Quevarec, Loic; Vivanti, Alexandre; Marguet, Florent; Gonzales, Marie; Guimiot, Fabien; Petit, Florence; Toutain, Annick; Whalen, Sandra; Grigorescu, Romulus; Coeslier, Anne Dieux; Gut, Marta; Gut, Ivo; Laquerrière, Annie; Devaux, Jérôme; Melki, Judith

    2016-10-06

    Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Through linkage analysis, homozygosity mapping, and exome sequencing in four unrelated families affected by lethal AMC, we identified biallelic mutations in GLDN in the affected individuals. GLDN encodes gliomedin, a secreted cell adhesion molecule involved in the formation of the nodes of Ranvier. Transmission electron microscopy of the sciatic nerve from one of the affected individuals showed a marked lengthening defect of the nodes. The GLDN mutations found in the affected individuals abolish the cell surface localization of gliomedin and its interaction with its axonal partner, neurofascin-186 (NF186), in a cell-based assay. The axoglial contact between gliomedin and NF186 is essential for the initial clustering of Na + channels at developing nodes. These results indicate a major role of gliomedin in node formation and the development of the peripheral nervous system in humans. These data indicate that mutations of GLDN or CNTNAP1 (MIM: 616286), encoding essential components of the nodes of Ranvier and paranodes, respectively, lead to inherited nodopathies, a distinct disease entity among peripheral neuropathies. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  13. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1

    PubMed Central

    Barbie, David A.; Tamayo, Pablo; Boehm, Jesse S.; Kim, So Young; Moody, Susan E.; Dunn, Ian F.; Schinzel, Anna C.; Sandy, Peter; Meylan, Etienne; Scholl, Claudia; Fröhling, Stefan; Chan, Edmond M.; Sos, Martin L.; Michel, Kathrin; Mermel, Craig; Silver, Serena J.; Weir, Barbara A.; Reiling, Jan H.; Sheng, Qing; Gupta, Piyush B.; Wadlow, Raymond C.; Le, Hanh; Hoersch, Sebastian; Wittner, Ben S.; Ramaswamy, Sridhar; Livingston, David M.; Sabatini, David M.; Meyerson, Matthew; Thomas, Roman K.; Lander, Eric S.; Mesirov, Jill P.; Root, David E.; Gilliland, D. Gary; Jacks, Tyler; Hahn, William C.

    2009-01-01

    The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. A complementary strategy for targeting KRAS is to identify gene products that, when inhibited, result in cell death only in the presence of an oncogenic allele1,2. Here we have used systematic RNA interference (RNAi) to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IκB kinase, TBK1, was selectively essential in cells that harbor mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF-κB anti-apoptotic signals involving cREL and BCL-XL that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations identify TBK1 and NF-κB signaling as essential in KRAS mutant tumors and establish a general approach for the rational identification of co-dependent pathways in cancer. PMID:19847166

  14. Mutations blocking side chain assembly, polymerization, or transport of a Wzy-dependent Streptococcus pneumoniae capsule are lethal in the absence of suppressor mutations and can affect polymer transfer to the cell wall.

    PubMed

    Xayarath, Bobbi; Yother, Janet

    2007-05-01

    Extracellular polysaccharides of many bacteria are synthesized by the Wzy polymerase-dependent mechanism, where long-chain polymers are assembled from undecaprenyl-phosphate-linked repeat units on the outer face of the cytoplasmic membrane. In gram-positive bacteria, Wzy-dependent capsules remain largely cell associated via membrane and peptidoglycan linkages. Like many Wzy-dependent capsules, the Streptococcus pneumoniae serotype 2 capsule is branched. In this study, we found that deletions of cps2K, cps2J, or cps2H, which encode a UDP-glucose dehydrogenase necessary for side chain synthesis, the putative Wzx transporter (flippase), and the putative Wzy polymerase, respectively, were obtained only in the presence of suppressor mutations. Most of the suppressor mutations were in cps2E, which encodes the initiating glycosyltransferase for capsule synthesis. The cps2K mutants containing the suppressor mutations produced low levels of high-molecular-weight polymer that was detected only in membrane fractions. cps2K-repaired mutants exhibited only modest increases in capsule production due to the effect of the secondary mutation, but capsule was detectable in both membrane and cell wall fractions. Lethality of the cps2K, cps2J, and cps2H mutations was likely due to sequestration of undecaprenyl-phosphate in the capsule pathway and either preclusion of its turnover for utilization in essential pathways or destabilization of the membrane due to an accumulation of lipid-linked intermediates. The results demonstrate that proper polymer assembly requires not only a functional transporter and polymerase but also complete repeat units. A central role for the initiating glycosyltransferase in controlling capsule synthesis is also suggested.

  15. Hypophosphatemia, hyperphosphaturia, and bisphosphonate treatment are associated with survival beyond infancy in generalized arterial calcification of infancy.

    PubMed

    Rutsch, Frank; Böyer, Petra; Nitschke, Yvonne; Ruf, Nico; Lorenz-Depierieux, Bettina; Wittkampf, Tanja; Weissen-Plenz, Gabriele; Fischer, Rudolf-Josef; Mughal, Zulf; Gregory, John W; Davies, Justin H; Loirat, Chantal; Strom, Tim M; Schnabel, Dirk; Nürnberg, Peter; Terkeltaub, Robert

    2008-12-01

    Generalized arterial calcification of infancy has been reported to be frequently lethal, and the efficiency of any therapy, including bisphosphonates, is unknown. A phosphate-poor diet markedly increases survival of NPP1 null mice, a model of generalized arterial calcification of infancy. We performed a multicenter genetic study and retrospective observational analysis of 55 subjects affected by generalized arterial calcification of infancy to identify prognostic factors. Nineteen (34%) patients survived the critical period of infancy. In all 8 surviving patients tested, hypophosphatemia due to reduced renal tubular phosphate reabsorption developed during childhood. Eleven of 17 (65%) patients treated with bisphosphonates survived. Of 26 patients who survived their first day of life and were not treated with bisphosphonates only 8 (31%) patients survived beyond infancy. Forty different homozygous or compound heterozygous mutations, including 16 novel mutations in ENPP1, were found in 41 (75%) of the 55 patients. Twenty-nine (71%) of these 41 patients died in infancy (median, 30 days). Seven of the 14 (50%) patients without ENPP1 mutations died in infancy (median, 9 days). When present on both alleles, the mutation p.P305T was associated with death in infancy in all 5 cases; otherwise, no clear genotype-phenotype correlation was seen. ENPP1 coding region mutations are associated with generalized arterial calcification of infancy in approximately 75% of subjects. Except for the p.P305T mutation, which was universally lethal when present on both alleles, the identified ENPP1 mutations per se have no discernable effect on survival. However, survival seems to be associated with hypophosphatemia linked with hyperphosphaturia and also with bisphosphonate treatment.

  16. Hypophosphatemia, Hyperphosphaturia, and Bisphosphonate Treatment Are Associated With Survival Beyond Infancy in Generalized Arterial Calcification of Infancy

    PubMed Central

    Rutsch, Frank; Böyer, Petra; Nitschke, Yvonne; Ruf, Nico; Lorenz-Depierieux, Bettina; Wittkampf, Tanja; Weissen-Plenz, Gabriele; Fischer, Rudolf-Josef; Mughal, Zulf; Gregory, John W.; Davies, Justin H.; Loirat, Chantal; Strom, Tim M.; Schnabel, Dirk; Nürnberg, Peter; Terkeltaub, Robert

    2009-01-01

    Background Generalized arterial calcification of infancy has been reported to be frequently lethal, and the efficiency of any therapy, including bisphosphonates, is unknown. A phosphate-poor diet markedly increases survival of NPP1 null mice, a model of generalized arterial calcification of infancy. Methods and Results We performed a multicenter genetic study and retrospective observational analysis of 55 subjects affected by generalized arterial calcification of infancy to identify prognostic factors. Nineteen (34%) patients survived the critical period of infancy. In all 8 surviving patients tested, hypophosphatemia due to reduced renal tubular phosphate reabsorption developed during childhood. Eleven of 17 (65%) patients treated with bisphosphonates survived. Of 26 patients who survived their first day of life and were not treated with bisphosphonates only 8 (31%) patients survived beyond infancy. Forty different homozygous or compound heterozygous mutations, including 16 novel mutations in ENPP1, were found in 41 (75%) of the 55 patients. Twenty-nine (71%) of these 41 patients died in infancy (median, 30 days). Seven of the 14 (50%) patients without ENPP1 mutations died in infancy (median, 9 days). When present on both alleles, the mutation p.P305T was associated with death in infancy in all 5 cases; otherwise, no clear genotype-phenotype correlation was seen. Conclusion ENPP1 coding region mutations are associated with generalized arterial calcification of infancy in ≈75% of subjects. Except for the p.P305T mutation, which was universally lethal when present on both alleles, the identified ENPP1 mutations per se have no discernable effect on survival. However, survival seems to be associated with hypophosphatemia linked with hyperphosphaturia and also with bisphosphonate treatment. PMID:20016754

  17. Ras1 interacts with multiple new signaling and cytoskeletal loci in Drosophila eggshell patterning and morphogenesis.

    PubMed Central

    Schnorr, J D; Holdcraft, R; Chevalier, B; Berg, C A

    2001-01-01

    Little is known about the genes that interact with Ras signaling pathways to regulate morphogenesis. The synthesis of dorsal eggshell structures in Drosophila melanogaster requires multiple rounds of Ras signaling followed by dramatic epithelial sheet movements. We took advantage of this process to identify genes that link patterning and morphogenesis; we screened lethal mutations on the second chromosome for those that could enhance a weak Ras1 eggshell phenotype. Of 1618 lethal P-element mutations tested, 13 showed significant enhancement, resulting in forked and fused dorsal appendages. Our genetic and molecular analyses together with information from the Berkeley Drosophila Genome Project reveal that 11 of these lines carry mutations in previously characterized genes. Three mutations disrupt the known Ras1 cell signaling components Star, Egfr, and Blistered, while one mutation disrupts Sec61beta, implicated in ligand secretion. Seven lines represent cell signaling and cytoskeletal components that are new to the Ras1 pathway; these are Chickadee (Profilin), Tec29, Dreadlocks, POSH, Peanut, Smt3, and MESK2, a suppressor of dominant-negative Ksr. A twelfth insertion disrupts two genes, Nrk, a "neurospecific" receptor tyrosine kinase, and Tpp, which encodes a neuropeptidase. These results suggest that Ras1 signaling during oogenesis involves novel components that may be intimately associated with additional signaling processes and with the reorganization of the cytoskeleton. To determine whether these Ras1 Enhancers function upstream or downstream of the Egf receptor, four mutations were tested for their ability to suppress an activated Egfr construct (lambdatop) expressed in oogenesis exclusively in the follicle cells. Mutations in Star and l(2)43Bb had no significant effect upon the lambdatop eggshell defect whereas smt3 and dock alleles significantly suppressed the lambdatop phenotype. PMID:11606538

  18. Ras1 interacts with multiple new signaling and cytoskeletal loci in Drosophila eggshell patterning and morphogenesis.

    PubMed

    Schnorr, J D; Holdcraft, R; Chevalier, B; Berg, C A

    2001-10-01

    Little is known about the genes that interact with Ras signaling pathways to regulate morphogenesis. The synthesis of dorsal eggshell structures in Drosophila melanogaster requires multiple rounds of Ras signaling followed by dramatic epithelial sheet movements. We took advantage of this process to identify genes that link patterning and morphogenesis; we screened lethal mutations on the second chromosome for those that could enhance a weak Ras1 eggshell phenotype. Of 1618 lethal P-element mutations tested, 13 showed significant enhancement, resulting in forked and fused dorsal appendages. Our genetic and molecular analyses together with information from the Berkeley Drosophila Genome Project reveal that 11 of these lines carry mutations in previously characterized genes. Three mutations disrupt the known Ras1 cell signaling components Star, Egfr, and Blistered, while one mutation disrupts Sec61beta, implicated in ligand secretion. Seven lines represent cell signaling and cytoskeletal components that are new to the Ras1 pathway; these are Chickadee (Profilin), Tec29, Dreadlocks, POSH, Peanut, Smt3, and MESK2, a suppressor of dominant-negative Ksr. A twelfth insertion disrupts two genes, Nrk, a "neurospecific" receptor tyrosine kinase, and Tpp, which encodes a neuropeptidase. These results suggest that Ras1 signaling during oogenesis involves novel components that may be intimately associated with additional signaling processes and with the reorganization of the cytoskeleton. To determine whether these Ras1 Enhancers function upstream or downstream of the Egf receptor, four mutations were tested for their ability to suppress an activated Egfr construct (lambdatop) expressed in oogenesis exclusively in the follicle cells. Mutations in Star and l(2)43Bb had no significant effect upon the lambdatop eggshell defect whereas smt3 and dock alleles significantly suppressed the lambdatop phenotype.

  19. Establishment and characterization of Roberts syndrome and SC phocomelia model medaka (Oryzias latipes).

    PubMed

    Morita, Akihiro; Nakahira, Kumiko; Hasegawa, Taeko; Uchida, Kaoru; Taniguchi, Yoshihito; Takeda, Shunichi; Toyoda, Atsushi; Sakaki, Yoshiyuki; Shimada, Atsuko; Takeda, Hiroyuki; Yanagihara, Itaru

    2012-06-01

    Roberts syndrome and SC phocomelia (RBS/SC) are genetic autosomal recessive syndromes caused by establishment of cohesion 1 homolog 2 ( ESCO 2) mutation. RBS/SC appear to have a variety of clinical features, even with the same mutation of the ESCO2 gene. Here, we established and genetically characterized a medaka model of RBS/SC by reverse genetics. The RBS/SC model was screened from a mutant medaka library produced by the Targeting Induced Local Lesions in Genomes method. The medaka mutant carrying the homozygous mutation at R80S in the conserved region of ESCO2 exhibited clinical variety (i.e. developmental arrest with craniofacial and chromosomal abnormalities and embryonic lethality) as characterized in RBS/SC. Moreover, widespread apoptosis and downregulation of some gene expression, including notch1a, were detected in the R80S mutant. The R80S mutant is the animal model for RBS/SC and a valuable resource that provides the opportunity to extend knowledge of ESCO2. Downregulation of some gene expression in the R80S mutant is an important clue explaining non-correlation between genotype and phenotype in RBS/SC. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  20. Induction of pure and sectored mutant clones in excision-proficient and deficient strains of yeast.

    PubMed

    Eckardt, F; Haynes, R H

    1977-06-01

    We have found that UV-induced mutation frequency in a forward non-selective assay system (scoring white adex ade2 double auxotroph mutants among the red pigmented ade2 clones) increases linearly with dose up to a maximum frequency of about 3 X 10(-3) mutants per survivor and then declines in both RAD wild-type and rad2 excision deficient strains of Saccharomyces cerevisiae. Mutation frequencies of the RAD and the rad2 strains plotted against survival are nearly identical over the entire survival range. On this basis we conclude that unexcised pyrimidine dimers are the predominant type of pre-mutational lesions in both strains. In the RAD wild-type strain pure mutant clones outnumber sectors in a 10:1 ratio at all doses used; in rad2 this ratio varies from 1:1 at low doses up to 10:1 at high doses. As others have concluded for wild-type strains we find also in the rad2 strain that pure clone formation cannot be accounted for quantitatively by lethal sectoring events alone. We conclude that heteroduplex repair is a crucial step in pure mutant clone formation and we examine the plausibility of certain macromolecular mechanisms according to which heteroduplex repair may be coupled with replication, repair and sister strand exchange in yeast mutagenesis.

  1. Cloning of the neurodegeneration gene drop-dead and characterization of additional phenotypes of its mutation.

    PubMed

    Blumenthal, Edward M

    2008-01-01

    Mutations in the Drosophila gene drop-dead (drd) result in early adult lethality and neurodegeneration, but the molecular identity of the drd gene and its mechanism of action are not known. This paper describes the characterization of a new X-linked recessive adult-lethal mutation, originally called lot's wife (lwf(1)) but subsequently identified as an allele of drd (drd(lwf)); drd(lwf) mutants die within two weeks of eclosion. Through mapping and complementation, the drd gene has been identified as CG33968, which encodes a putative integral membrane protein of unknown function. The drd(lwf) allele is associated with a nonsense mutation that eliminates nearly 80% of the CG33968 gene product; mutations in the same gene were also found in two previously described drd alleles. Characterization of drd (lwf) flies revealed additional phenotypes of drd, most notably, defects in food processing by the digestive system and in oogenesis. Mutant flies store significantly more food in their crops and defecate less than wild-type flies, suggesting that normal transfer of ingested food from the crop into the midgut is dependent upon the DRD gene product. The defect in oogenesis results in the sterility of homozygous mutant females and is associated with a reduction in the number of vitellogenic egg chambers. The disruption in vitellogenesis is far more severe than that seen in starved flies and so is unlikely to be a secondary consequence of the digestive phenotype. This study demonstrates that mutation of the drd gene CG33968 results in a complex phenotype affecting multiple physiological systems within the fly.

  2. Production of maternal-zygotic mutant zebrafish by germ-line replacement.

    PubMed

    Ciruna, Brian; Weidinger, Gilbert; Knaut, Holger; Thisse, Bernard; Thisse, Christine; Raz, Erez; Schier, Alexander F

    2002-11-12

    We report a generally applicable strategy for transferring zygotic lethal mutations through the zebrafish germ line. By using a morpholino oligonucleotide that blocks primordial germ cell (PGC) development, we generate embryos devoid of endogenous PGCs to serve as hosts for the transplantation of germ cells derived from homozygous mutant donors. Successful transfers are identified by the localization of specifically labeled donor PGCs to the region of the developing gonad in chimeric embryos. This strategy, which results in the complete replacement of the host germ line with donor PGCs, was validated by the generation of maternal and maternal-zygotic mutants for the miles apart locus. This germ-line replacement technique provides a powerful tool for studying the maternal effects of zygotic lethal mutations. Furthermore, the ability to generate large clutches of purely mutant embryos will greatly facilitate embryological, genetic, genomic, and biochemical studies.

  3. Production of maternal-zygotic mutant zebrafish by germ-line replacement

    PubMed Central

    Ciruna, Brian; Weidinger, Gilbert; Knaut, Holger; Thisse, Bernard; Thisse, Christine; Raz, Erez; Schier, Alexander F.

    2002-01-01

    We report a generally applicable strategy for transferring zygotic lethal mutations through the zebrafish germ line. By using a morpholino oligonucleotide that blocks primordial germ cell (PGC) development, we generate embryos devoid of endogenous PGCs to serve as hosts for the transplantation of germ cells derived from homozygous mutant donors. Successful transfers are identified by the localization of specifically labeled donor PGCs to the region of the developing gonad in chimeric embryos. This strategy, which results in the complete replacement of the host germ line with donor PGCs, was validated by the generation of maternal and maternal-zygotic mutants for the miles apart locus. This germ-line replacement technique provides a powerful tool for studying the maternal effects of zygotic lethal mutations. Furthermore, the ability to generate large clutches of purely mutant embryos will greatly facilitate embryological, genetic, genomic, and biochemical studies. PMID:12397179

  4. dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants.

    PubMed

    Williams, Lindsey N; Marjavaara, Lisette; Knowels, Gary M; Schultz, Eric M; Fox, Edward J; Chabes, Andrei; Herr, Alan J

    2015-05-12

    Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 (dun1Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1Δ) and radiation sensitive (Rad) 9 (rad9Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1Δ but not rad9Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.

  5. The RNA-Editing Enzyme ADAR1 Controls Innate Immune Responses to RNA

    PubMed Central

    Mannion, Niamh M.; Greenwood, Sam M.; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P.; McLaughlin, Paul J.; Jantsch, Michael F.; Dorin, Julia; Adams, Ian R.; Scadden, A.D.J.; Öhman, Marie; Keegan, Liam P.; O’Connell, Mary A.

    2014-01-01

    Summary The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. PMID:25456137

  6. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA.

    PubMed

    Mannion, Niamh M; Greenwood, Sam M; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P; McLaughlin, Paul J; Jantsch, Michael F; Dorin, Julia; Adams, Ian R; Scadden, A D J; Ohman, Marie; Keegan, Liam P; O'Connell, Mary A

    2014-11-20

    The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Activation of Hedgehog signaling by loss of GNAS causes heterotopic ossification

    PubMed Central

    Regard, Jean B.; Malhotra, Deepti; Gvozdenovic-Jeremic, Jelena; Josey, Michelle; Chen, Min; Weinstein, Lee S.; Lu, Jianming; Shore, Eileen M.; Kaplan, Frederick S.; Yang, Yingzi

    2014-01-01

    Bone formation is exquisitely controlled in space and time. Heterotopic ossification (HO), the pathologic formation of extra-skeletal bone, occurs as a common complication of trauma or in genetic disorders and can be disabling and lethal. However, the underlying molecular mechanisms are largely unknown. Here we demonstrate that Gαs restricts bone formation to the skeleton by inhibiting Hedgehog (Hh) signaling in mesenchymal progenitor cells. In progressive osseous heteroplasia (POH), a human disease caused by null mutations in GNAS that encodes Gαs, HH signaling is upregulated in ectopic osteoblasts and progenitor cells. Ectopic Hh signaling is sufficient to induce HO, while Hh signaling inhibition blocks HO in animal models. As our previous work has shown that GNAS gain of function mutations upregulate WNT/β-Catenin signaling in fibrous dysplasia (FD), our findings identify Gαs as a critical regulator of osteoblast differentiation by maintaining a balance between two key signaling pathways: Wnt/β-catenin and Hh. HH signaling inhibitors developed for cancer therapy may be repurposed to treat HO and other diseases caused by GNAS inactivation. PMID:24076664

  8. Role of T Cells and Gamma Interferon during Induction of Hypersensitivity to Lipopolysaccharide by Toxic Shock Syndrome Toxin 1 in Mice

    PubMed Central

    Dinges, Martin M.; Schlievert, Patrick M.

    2001-01-01

    The superantigenic function of toxic shock syndrome toxin 1 (TSST-1) is generally regarded as an important determinant of its lethal effects in humans or experimental animals. This study examined the role of superantigenicity in a BALB/c mouse model of lethal TSST-1-induced hypersensitivity to lipopolysaccharide (LPS). In this model, TSST-1 greatly potentiated both LPS-induced lethality, as well as LPS-induced serum tumor necrosis factor alpha (TNF-α) activity. Although BALB/c-SCID mice were resistant to these LPS enhancement effects of TSST-1, BALB/c-SCID mice reconstituted with T cells were completely susceptible to the enhancement effect of TSST-1 on LPS-induced serum TNF-α. Mice pretreated with cyclosporine (Cs) or neutralizing antibodies against gamma interferon (IFN-γ) did not develop lethal LPS hypersensitivity when injected with TSST-1, and these agents reduced the enhancement effect of TSST-1 on LPS-induced serum TNF-α by 99 and 85%, respectively. Cs pretreatment also completely inhibited the known capacity of TSST-1 to amplify LPS-induced levels of IFN-γ in serum. In contrast, mice given Cs after a priming injection of TSST-1, but before LPS, still exhibited lethal hypersensitivity to LPS. Cs given after TSST-1 also did not inhibit enhancement of LPS-induced serum TNF-α by TSST-1 but inhibited the enhancement effect of TSST-1 on LPS-induced serum IFN-γ by 50%. These experiments support the theory that TSST-1-induced hypersensitivity to LPS is mediated primarily by IFN-γ derived from superantigen-activated T cells. PMID:11179286

  9. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABA{sub A} receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakarjian, Michael P., E-mail: michael_shakarjian@nymc.edu; Department of Medicine, Division of Pulmonary and Critical Care Medicine, UMDNJ–Robert Wood Johnson Medical School, Piscataway, NJ 08854; Velíšková, Jana, E-mail: jana_veliskova@nymc.edu

    Tetramethylenedisulfotetramine (TMDT) is a highly lethal neuroactive rodenticide responsible for many accidental and intentional poisonings in mainland China. Ease of synthesis, water solubility, potency, and difficulty to treat make TMDT a potential weapon for terrorist activity. We characterized TMDT-induced convulsions and mortality in male C57BL/6 mice. TMDT (ip) produced a continuum of twitches, clonic, and tonic–clonic seizures decreasing in onset latency and increasing in severity with increasing dose; 0.4 mg/kg was 100% lethal. The NMDA antagonist, ketamine (35 mg/kg) injected ip immediately after the first TMDT-induced seizure, did not change number of tonic–clonic seizures or lethality, but increased the numbermore » of clonic seizures. Doubling the ketamine dose decreased tonic–clonic seizures and eliminated lethality through a 60 min observation period. Treating mice with another NMDA antagonist, MK-801, 0.5 or 1 mg/kg ip, showed similar effects as low and high doses of ketamine, respectively, and prevented lethality, converting status epilepticus EEG activity to isolated interictal discharges. Treatment with these agents 15 min prior to TMDT administration did not increase their effectiveness. Post-treatment with the GABA{sub A} receptor allosteric enhancer diazepam (5 mg/kg) greatly reduced seizure manifestations and prevented lethality 60 min post-TMDT, but ictal events were evident in EEG recordings and, hours post-treatment, mice experienced status epilepticus and died. Thus, TMDT is a highly potent and lethal convulsant for which single-dose benzodiazepine treatment is inadequate in managing electrographic seizures or lethality. Repeated benzodiazepine dosing or combined application of benzodiazepines and NMDA receptor antagonists is more likely to be effective in treating TMDT poisoning. -- Highlights: ► TMDT produces convulsions and lethality at low doses in mice. ► Diazepam pre- or post-treatments inhibit TMDT-induced convulsions and death. ► Ketamine and MK-801 display biphasic actions on TMDT seizures. ► Diazepam stops convulsions, but ictal EEG events persist to cause lethality hrs later. ► Diazepam repeat dose or paired with ketamine/MK-801 may more effectively block TMDT.« less

  10. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance

    PubMed Central

    Thakur, Meghna Das; Salangsang, Fernando; Landman, Allison S.; Sellers, William R.; Pryer, Nancy K.; Levesque, Mitchell P.; Dummer, Reinhard; McMahon, Martin; Stuart, Darrin D.

    2014-01-01

    Mutational activation of BRAF is the most prevalent genetic alteration in human melanoma, with ≥ 50% of tumours expressing the BRAF(V600E) oncoprotein1,2. Moreover, the marked tumour regression and improved survival of late-stage BRAF-mutated melanoma patients in response to treatment with vemurafenib demonstrates the essential role of oncogenic BRAF in melanoma maintenance3,4. However, as most patients relapse with lethal drug-resistant disease, understanding and preventing mechanism(s) of resistance is critical to providing improved therapy5. Here we investigate the cause and consequences of vemurafenib resistance using two independently derived primary human melanoma xeno-graft models in which drugresistanceisselected by continuous vemurafenib administration. In one of these models, resistant tumours show continued dependency on BRAF(V600E) → MEK → ERK signalling owing to elevated BRAF(V600E) expression. Most importantly, we demonstrate that vemurafenib-resistant melanomas become drug dependent for their continued proliferation, such that cessation of drug administration leads to regression of established drug-resistant tumours. We further demonstrate that a discontinuous dosing strategy, which exploits the fitness disadvantage displayed by drug-resistant cells in the absence of the drug, forestalls the onset of lethal drug-resistant disease. These data highlight the concept that drug-resistant cells may also display drug dependency, such that altered dosing may prevent the emergence of lethal drug resistance. Such observations may contribute to sustaining the durability of the vemurafenib response with the ultimate goal of curative therapy for the subset of melanoma patients with BRAF mutations. PMID:23302800

  11. GPR98 mutations cause Usher syndrome type 2 in males.

    PubMed

    Ebermann, I; Wiesen, M H J; Zrenner, E; Lopez, I; Pigeon, R; Kohl, S; Löwenheim, H; Koenekoop, R K; Bolz, H J

    2009-04-01

    Mutations in the large GPR98 gene underlie Usher syndrome type 2C (USH2C), and all patients described to date have been female. It was speculated that GPR98 mutations cause a more severe, and eventually lethal, phenotype in males. We describe for the first time two male patients with USH2 with novel GPR98 mutations. Clinical characterization of a male patient and his affected sister revealed a typical USH2 phenotype in both. GPR98 may have been excluded from systematic investigation in previous studies, and the proportion of patients with USH2C probably underestimated. GPR98 should be considered in patients with USH2 of both sexes.

  12. Toxicologic study of carboxyatractyloside (active principle in cocklebur--Xanthium strumarium) in rats treated with enzyme inducers and inhibitors and glutathione precursor and depletor.

    PubMed

    Hatch, R C; Jain, A V; Weiss, R; Clark, J D

    1982-01-01

    Male rats (10 rats/group) were treated with phenobarbital (PB), phenylbutazone (PBZ), stanozolol (3 inducers of cytochrome P450-dependent enzymes), piperonyl butoxide (PBO; a P450 inhibitor), cobaltous chloride (CoCl2; an inhibitor of hemoprotein synthesis), 5,6-benzoflavone (BNF; an inducer of cytochrome P448 dependent enzymes), cysteine [CYS; a glutathione (GSH) precursor], or ethyl maleate (EM; a GSH depletor). The rats were then given a calculated LD50 dosage (13.5 mg/kg of body weight) of carboxyatractyloside (CAT) intraperitoneally. Clinical signs of toxicosis, duration of illness, lethality, gross lesions, and hepatic and renal histopathologic lesions were recorded. Seemingly, (i) CAT toxicosis has independent lethal and cytotoxic components (PBZ decreased lethality and cytotoxicity; CoCl2 decreased cytotoxicity but not lethality; BNF decreased duration of illness, and perhaps lethality, but not cytotoxicity); (ii) CAT cytotoxicity could be partly due to an active metabolite formed by de novo-synthesized, P450-/P448-independent hemoprotein (PBZ and CoCl2 had anticytotoxic effects, but PB, stanozolol, PBO, and BNF did not); (iii) CAT detoxification may occur partly through a hemoprotein-independent, PBZ-inducible enzyme, and partly through a P448-dependent (BNF-inducible) enzyme; and (iv) CAT detoxification apparently is not P450 or GSH-dependent because PB, stanozolol, and CYS had no beneficial effects, and PBO, CoCl2, and EM did not enhance toxicosis. Metabolism of CAT may have a role in its cytotoxic and lethal effects.

  13. Assessment of the lethal and sublethal effects of 20 environmental chemicals in zebrafish embryos and larvae by using OECD TG 212.

    PubMed

    Horie, Yoshifumi; Yamagishi, Takahiro; Takahashi, Hiroko; Shintaku, Youko; Iguchi, Taisen; Tatarazako, Norihisa

    2017-10-01

    Fish embryo toxicity tests are used to assess the lethal and sublethal effects of environmental chemicals in aquatic organisms. Previously, we used a short-term toxicity test published by the Organization for Economic Co-operation and Development (test no. 212: Fish, Short-term Toxicity Test on Embryo and Sac-Fry Stages [OECD TG 212]) to assess the lethal and sublethal effects of aniline and several chlorinated anilines in zebrafish embryos and larvae. To expand upon this previous study, we used OECD TG 212 in zebrafish embryos and larvae to assess the lethal and sublethal effects of 20 additional environmental chemicals that included active pharmaceutical ingredients, pesticides, metals, aromatic compounds or chlorinated anilines. Zebrafish embryos (Danio rerio) were exposed to the test chemicals until 8 days post-fertilization. A delayed lethal effect was induced by 16 of the 20 test chemicals, and a positive correlation was found between heart rate turbulence and mortality. We also found that exposure to the test chemicals at concentrations lower than the lethal concentration induced the sublethal effects of edema, body curvature and absence of swim-bladder inflation. In conclusion, the environmental chemicals assessed in the present study induced both lethal and sublethal effects in zebrafish embryos and larvae, as assessed by using OECD TG 212. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Role of decoy molecules in neuronal ischemic preconditioning

    PubMed Central

    Panneerselvam, Mathivadhani; Patel, Piyush M.; Roth, David M.; Kidd, Michael W.; Chin-Lee, Blake; Head, Brian P.; Niesman, Ingrid R.; Inoue, Satoki; Patel, Hemal H.; Davis, Daniel P.

    2011-01-01

    Decoy receptors bind with TNF related apoptosis inducing ligands (TRAIL) but do not contain the cytoplasmic domains necessary to transduce apoptotic signals. We hypothesized that decoy receptors may confer neuronal protection against lethal ischemia after ischemic preconditioning (IPC). Mixed cortical neurons were exposed to IPC one day prior to TRAIL treatment or lethal ischemia. IPC increased decoy receptor but reduced death receptor expression compared to lethal ischemia. IPC-induced increase in decoy receptor expression was reduced by prior treatment with CAPE, a nuclear factor-kappa B inhibitor (NFκB). Expression of decoy molecules, dependent on NFκB, may mediate neuronal survival induced by IPC. PMID:21315738

  15. Natural anti-carbohydrate antibodies contributing to evolutionary survival of primates in viral epidemics?

    PubMed

    Galili, Uri

    2016-11-01

    Humans produce multiple natural antibodies against carbohydrate antigens on gastrointestinal bacteria. Two such antibodies appeared in primates in recent geological times. Anti-Gal, abundant in humans, apes and Old-World monkeys, appeared 20-30 million years ago (mya) following inactivation of the α1,3GT gene (GGTA1). This gene encodes in other mammals the enzyme α1,3galactosyltransferase (α1,3GT) that synthesizes α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R) which bind anti-Gal. Anti-Neu5Gc, found only in humans, appeared in hominins <6 mya, following elimination of N-glycolylneuraminic-acid (Neu5Gc) because of inactivation of CMAH, the gene encoding hydroxylase that converts N-acetylneuraminic-acid (Neu5Ac) into Neu5Gc. These antibodies, were initially produced in few individuals that acquired random mutations inactivating the corresponding genes and eliminating α-gal epitopes or Neu5Gc, which became nonself antigens. It is suggested that these evolutionary selection events were induced by epidemics of enveloped viruses, lethal to ancestral Old World primates or hominins. Such viruses presented α-gal epitopes or Neu5Gc, synthesized in primates that conserved active GGTA1 or CMAH, respectively, and were lethal to their hosts. The natural anti-Gal or anti-Neu5Gc antibodies, produced in offspring lacking the corresponding carbohydrate antigens, neutralized and destroyed viruses presenting α-gal epitopes or Neu5Gc. These antibodies further induced rapid, effective immune responses against virus antigens, thus preventing infections from reaching lethal stages. These epidemics ultimately resulted in extinction of primate populations synthesizing these carbohydrate antigens and their replacement with offspring populations lacking the antigens and producing protective antibodies against them. Similar events could mediate the elimination of various carbohydrate antigens, thus preventing the complete extinction of other vertebrate species. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Arginine-glycine-aspartic acid motif is critical for human parechovirus 1 entry.

    PubMed

    Boonyakiat, Y; Hughes, P J; Ghazi, F; Stanway, G

    2001-10-01

    The human parechovirus 1 RGD motif in VP1 was studied by mutagenesis. An RGD-to-RGE change gave only revertant viruses with a restored RGD, while deletion of GD was lethal and nonrevertable. Mutations at the +1 and +2 positions had some effect on growth properties and a +1 M-to-P change was lethal. These studies indicate that the RGD motif plays a critical role in infectivity, presumably by interacting with integrins, and that downstream amino acids can have an influence on function.

  17. Mutation induction by charged particles of defined linear energy transfer.

    PubMed

    Hei, T K; Chen, D J; Brenner, D J; Hall, E J

    1988-07-01

    The mutagenic potential of charged particles of defined linear energy transfer (LET) was assessed using the hypoxanthine-guanine phosphoribosyl transferase locus (HGPRT) in primary human fibroblasts. Exponentially growing cultures of early passaged fibroblasts were grown as monolayers on thin mylar sheets and were irradiated with accelerated protons, deuterons or helium-3 ions. The mutation rates were compared with those generated by 137Cs gamma-rays. LET values for charged particles accelerated at the Radiological Research Accelerator Facility, using the track segment mode, ranged from 10 to 150 keV/micron. After irradiation, cells were trypsinized, subcultured and assayed for both cytotoxicity and 6-thioguanine resistance. For gamma-rays, and for the charged particles of lower LET, the dose-response curves for cell survival were characterized by a marked initial shoulder, but approximated to an exponential function of dose for higher LETs. Mutation frequencies, likewise, showed a direct correlation to LET over the dose range examined. Relative biological effectiveness (RBE) for mutagenesis, based on the initial slopes of the dose-response curves, ranged from 1.30 for 10 keV/micron protons to 9.40 for 150 keV/micron helium-3 ions. Results of the present studies indicate that high-LET radiations, apart from being efficient inducers of cell lethality, are even more efficient in mutation induction as compared to low-LET ionizing radiation. These data are consistent with results previously obtained with both rodent and human fibroblast cell lines.

  18. Concordance between isolated cleft palate in mice and alterations within a region including the gene encoding the [beta][sub 3] subunit of the type A [gamma]-aminobutyric acid receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culiat, C.T.; Stubbs, L.; Nicholls, R.D.

    1993-06-01

    Genetic and molecular analyses of a number of radiation-induced deletion mutations of the pink-eyed dilution (p) locus in mouse chromosome 7 have identified a specific interval on the genetic map associated with a neonatally lethal mutation that results in cleft palate. This interval, closely linked and distal to p, and bracketed by the genes encoding the [alpha][sub 5] and [beta][sub 3] subunits of the type A [gamma]-aminobutyric acid receptor (Gabra5 and Gabrb3, respectively), contains a gene(s) (cp1; cleft palate 1) necessary for normal palate development. The cp1 interval extends from the distal breakpoint of the prenatally lethal p[sup 83FBFo] deletionmore » to the Gabrb3 locus. Among 20 p deletions tested, there was complete concordance between alterations at the Gabrb3 transcription unit and inability to complement the cleft-palate defect. These mapping data, along with previously described in vivo and in vitro teratological effects of [gamma]-aminobutyric acid or its agonists on palate development, suggest the possibility that a particular type A [gamma]-aminobutyric acid receptor that includes the [beta][sub 3] subunit may be necessary for normal palate development. The placement of the cp1 gene within a defined segment of the larger D15S12h (p)-D15S9h-1 interval in the mouse suggests that the highly homologous region of the human genome, 15q11-q13, be evaluated for a role(s) in human fetal facial development. 29 refs., 4 figs., 1 tab.« less

  19. Preclinical evaluation of olaparib and metformin combination in BRCA1 wildtype ovarian cancer.

    PubMed

    Hijaz, M; Chhina, J; Mert, I; Taylor, M; Dar, S; Al-Wahab, Z; Ali-Fehmi, R; Buekers, T; Munkarah, A R; Rattan, R

    2016-08-01

    BRCA mutated ovarian cancers show increased responsiveness to PARP inhibitors. PARP inhibitors target DNA repair and provide a second hit to BRCA mutated tumors, resulting in "synthetic lethality". We investigated a combination of metformin and olaparib to provide "synthetic lethality" in BRCA intact ovarian cancer cells. Ovarian cancer cell lines (UWB1.289, UWB1.289.BRCA, SKOV3, OVCAR5, A2780 and C200) were treated with a combination of metformin and olaparib. Cell viability was assessed by MTT and colony formation assays. Flow cytometry was used to detect cell cycle events. In vivo studies were performed in SKOV3 or A2780 xenografts in nude mice. Animals were treated with single agent, metformin or olaparib or combination. Molecular downstream effects were examined by immunohistochemistry. Compared to single drug treatment, combination of olaparib and metformin resulted in significant reduction of cell proliferation and colony formation (p<0.001) in ovarian cancer cells. This treatment was associated with a significant S-phase cell cycle arrest (p<0.05). Combination of olaparib and metformin significantly inhibited SKOV3 and A2780 ovarian tumor xenografts which were accompanied with decreased Ki-index (p<0.001). Metformin did not affect DNA damage signaling, while olaparib induced adenosine monophosphate activated kinase activation; that was further potentiated with metformin combination in vivo. Combining PARP inhibitors with metformin enhances its anti-proliferative activity in BRCA mutant ovarian cancer cells. Furthermore, the combination showed significant activity in BRCA intact cancer cells in vitro and in vivo. This is a promising treatment regimen for women with epithelial ovarian cancer irrespective of BRCA status. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The Congested-like Tracheae Gene of Drosophila Melanogaster Encodes a Member of the Mitochondrial Carrier Family Required for Gas-Filling of the Tracheal System and Expansion of the Wings after Eclosion

    PubMed Central

    Hartenstein, K.; Sinha, P.; Mishra, A.; Schenkel, H.; Torok, I.; Mechler, B. M.

    1997-01-01

    A recessive semi-lethal mutation resulting from the insertion of a P-lacW transposon at the cytological position 23A on the polytene chromosomes of Drosophila melanogaster was found to affect the unfolding and expansion of the wings resulting in a loss of venation and a marked decrease in their size. Lethality was polyphasic with numerous animals dying during early larval development and displaying apparently collapsed tracheal trees. The gene was therefore designated as congested-like tracheae, or colt. The colt mutation resulted from the insertion of a P-lacW transposon within the coding region of a 1.4-kb transcript. Wild-type function was restored by inducing a precise excision of the P-lacW transposon, while a deletion of the colt locus, produced by imprecise excision of the P element, showed a phenotype similar to that of the original P insert. The colt gene consists of a single exon and encodes a protein of 306 amino acids made of three tandem repeats, each characterized by two predicted transmembrane segments and a loop domain. The COLT protein shares extensive homology with proteins in the mitochondrial carrier family and particularly with the DIF-1 protein of Caenorhabditis elegans, which has been shown to be maternally required for embryonic tissue differentiation. Our analysis revealed that zygotic colt function is dispensable for normal embryonic morphogenesis but is required for gas-filling of the tracheal system at hatching time of the embryo and for normal epithelial morphogenesis of the wings. PMID:9409834

  1. Frizzled 2 and frizzled 7 function redundantly in convergent extension and closure of the ventricular septum and palate: evidence for a network of interacting genes

    PubMed Central

    Yu, Huimin; Ye, Xin; Guo, Nini; Nathans, Jeremy

    2012-01-01

    Frizzled (Fz) 2 and Fz7, together with Fz1, form a distinct subfamily within the Frizzled family of Wnt receptors. Using targeted gene deletion, we show that: Fz7−/− mice exhibit tail truncation and kinking with 100% penetrance and ventricular septal defects (VSDs) with ~15% penetrance; Fz2+/−;Fz7−/− mice exhibit VSDs with ~50% penetrance and cleft palate with less than 10% penetrance; and Fz2−/−;Fz7−/− mice exhibit convergent extension defects and mid-gestational lethality with 100% penetrance. When Fz2 and/or Fz7 mutations are combined with mutations in Vangl2, Dvl3, Wnt3a, Wnt5a or Wnt11, an increased frequency of VSDs is observed with Dvl3, Wnt3a and Wnt11; an increased frequency of palate closure defects is observed with Vangl2; and early lethality and enhanced tail shortening are observed with Wnt5a. To assess the signaling pathways that underlie these and other Frizzled-mediated genetic interactions, we used transfected mammalian cells to analyze (1) canonical Wnt signaling induced by all pairwise combinations of the ten mouse Frizzleds and the 19 mouse Wnts and (2) localization of each Frizzled at cell-cell junctional complexes formed by mouse Celsr1, a likely indicator of competence for planar cell polarity signaling. These in vitro experiments indicate that Fz2 and Fz7 are competent to signal via the canonical pathway. Taken together, the data suggest that genetic interactions between Fz2, Fz7 and Vangl2, Dvl3 and Wnt genes reflect interactions among different signaling pathways in developmental processes that are highly sensitive to perturbations in Frizzled signaling. PMID:23095888

  2. Pathoadaptive Mutations of Escherichia coli K1 in Experimental Neonatal Systemic Infection

    PubMed Central

    McCarthy, Alex J.; Negus, David; Martin, Patricia; Pechincha, Catarina; Oswald, Eric; Stabler, Richard A.; Taylor, Peter W.

    2016-01-01

    Although Escherichia coli K1 strains are benign commensals in adults, their acquisition at birth by the newborn may result in life-threatening systemic infections, most commonly sepsis and meningitis. Key features of these infections, including stable gastrointestinal (GI) colonization and age-dependent invasion of the bloodstream, can be replicated in the neonatal rat. We previously increased the capacity of a septicemia isolate of E. coli K1 to elicit systemic infection following colonization of the small intestine by serial passage through two-day-old (P2) rat pups. The passaged strain, A192PP (belonging to sequence type 95), induces lethal infection in all pups fed 2–6 x 106 CFU. Here we use whole-genome sequencing to identify mutations responsible for the threefold increase in lethality between the initial clinical isolate and the passaged derivative. Only four single nucleotide polymorphisms (SNPs), in genes (gloB, yjgV, tdcE) or promoters (thrA) involved in metabolic functions, were found: no changes were detected in genes encoding virulence determinants associated with the invasive potential of E. coli K1. The passaged strain differed in carbon source utilization in comparison to the clinical isolate, most notably its inability to metabolize glucose for growth. Deletion of each of the four genes from the E. coli A192PP chromosome altered the proteome, reduced the number of colonizing bacteria in the small intestine and increased the number of P2 survivors. This work indicates that changes in metabolic potential lead to increased colonization of the neonatal GI tract, increasing the potential for translocation across the GI epithelium into the systemic circulation. PMID:27861552

  3. Pathoadaptive Mutations of Escherichia coli K1 in Experimental Neonatal Systemic Infection.

    PubMed

    McCarthy, Alex J; Negus, David; Martin, Patricia; Pechincha, Catarina; Oswald, Eric; Stabler, Richard A; Taylor, Peter W

    2016-01-01

    Although Escherichia coli K1 strains are benign commensals in adults, their acquisition at birth by the newborn may result in life-threatening systemic infections, most commonly sepsis and meningitis. Key features of these infections, including stable gastrointestinal (GI) colonization and age-dependent invasion of the bloodstream, can be replicated in the neonatal rat. We previously increased the capacity of a septicemia isolate of E. coli K1 to elicit systemic infection following colonization of the small intestine by serial passage through two-day-old (P2) rat pups. The passaged strain, A192PP (belonging to sequence type 95), induces lethal infection in all pups fed 2-6 x 106 CFU. Here we use whole-genome sequencing to identify mutations responsible for the threefold increase in lethality between the initial clinical isolate and the passaged derivative. Only four single nucleotide polymorphisms (SNPs), in genes (gloB, yjgV, tdcE) or promoters (thrA) involved in metabolic functions, were found: no changes were detected in genes encoding virulence determinants associated with the invasive potential of E. coli K1. The passaged strain differed in carbon source utilization in comparison to the clinical isolate, most notably its inability to metabolize glucose for growth. Deletion of each of the four genes from the E. coli A192PP chromosome altered the proteome, reduced the number of colonizing bacteria in the small intestine and increased the number of P2 survivors. This work indicates that changes in metabolic potential lead to increased colonization of the neonatal GI tract, increasing the potential for translocation across the GI epithelium into the systemic circulation.

  4. Synthetic Lethality of a Novel Small Molecule Against Mutant KRAS-Expressing Cancer Cells Involves AKT-Dependent ROS Production.

    PubMed

    Iskandar, Kartini; Rezlan, Majidah; Yadav, Sanjiv Kumar; Foo, Chuan Han Jonathan; Sethi, Gautam; Qiang, Yu; Bellot, Gregory L; Pervaiz, Shazib

    2016-05-10

    We recently reported the death-inducing activity of a small-molecule compound, C1, which triggered reactive oxygen species (ROS)-dependent autophagy-associated apoptosis in a variety of human cancer cell lines. In this study, we examine the ability of the compound to specifically target cancer cells harboring mutant KRAS with minimal activity against wild-type (WT) RAS-expressing cells. HCT116 cells expressing mutated KRAS are susceptible, while the WT-expressing HT29 cells are resistant. Interestingly, C1 triggers activation of mutant RAS, which results in the downstream phosphorylation and activation of AKT/PKB. Gene knockdown of KRAS or AKT or their pharmacological inhibition resulted in the abrogation of C1-induced ROS production and rescued tumor colony-forming ability. We also made use of HCT116 mutant KRAS knockout (KO) cells, which express only a single WT KRAS allele. Exposure of KO cells to C1 failed to increase mitochondrial ROS and cell death, unlike the parental cells harboring mutant KRAS. Similarly, mutant KRAS-transformed prostate epithelial cells (RWPE-1-RAS) were more sensitive to the ROS-producing and death-inducing effects of C1 than the vector only expressing RWPE-1 cells. An in vivo model of xenograft tumors generated with HCT116 KRAS(WT/MUT) or KRAS(WT/-) cells showed the efficacy of C1 treatment and its ability to affect the relative mitotic index in tumors harboring KRAS mutant. These data indicate a synthetic lethal effect against cells carrying mutant KRAS, which could have therapeutic implications given the paucity of KRAS-specific chemotherapeutic strategies. Antioxid. Redox Signal. 24, 781-794.

  5. Novel toxic shock syndrome toxin-1 amino acids required for biological activity.

    PubMed

    Brosnahan, Amanda J; Schaefers, Matthew M; Amundson, William H; Mantz, Mary J; Squier, Christopher A; Peterson, Marnie L; Schlievert, Patrick M

    2008-12-09

    Superantigens interact with T lymphocytes and macrophages to cause T lymphocyte proliferation and overwhelming cytokine production, which lead to toxic shock syndrome. Staphylococcus aureus superantigen toxic shock syndrome toxin-1 is a major cause of menstrual toxic shock syndrome. In general, superantigen-secreting S. aureus remains localized at the vaginal surface, and the superantigen must therefore penetrate the vaginal mucosa to interact with underlying immune cells to cause toxic shock syndrome. A dodecapeptide region (toxic shock syndrome toxin-1 amino acids F119-D130), relatively conserved among superantigens, has been implicated in superantigen penetration of the epithelium. The purpose of this study was to determine amino acids within this dodecapeptide region that are required for interaction with vaginal epithelium. Alanine mutations were constructed in S. aureus toxic shock syndrome toxin-1 amino acids D120 to D130. All mutants maintained superantigenicity, and selected mutants were lethal when given intravenously to rabbits. Toxic shock syndrome toxin-1 induces interleukin-8 from immortalized human vaginal epithelial cells; however, three toxin mutants (S127A, T128A, and D130A) induced low levels of interleukin-8 compared to wild type toxin. When carboxy-terminal mutants (S127A to D130A) were administered vaginally to rabbits, D130A was nonlethal, while S127A and T128A demonstrated delayed lethality compared to wild type toxin. In a porcine ex vivo permeability model, mutant D130A penetrated the vaginal mucosa more quickly than wild type toxin. Toxic shock syndrome toxin-1 residue D130 may contribute to binding an epithelial receptor, which allows it to penetrate the vaginal mucosa, induce interleukin-8, and cause toxic shock syndrome.

  6. Not just gRASping at flaws: Finding vulnerabilities to develop novel therapies for treating KRAS mutant cancers

    PubMed Central

    Ebi, Hiromichi; Faber, Anthony C; Engelman, Jeffrey A; Yano, Seiji

    2014-01-01

    Mutations in Kirsten rat-sarcoma (KRAS) are well appreciated to be major drivers of human cancers through dysregulation of multiple growth and survival pathways. Similar to many other non-kinase oncogenes and tumor suppressors, efforts to directly target KRAS pharmaceutically have not yet materialized. As a result, there is broad interest in an alternative approach to develop therapies that induce synthetic lethality in cancers with mutant KRAS, therefore exposing the particular vulnerabilities of these cancers. Fueling these efforts is our increased understanding into the biology driving KRAS mutant cancers, in particular the important pathways that mutant KRAS governs to promote survival. In this mini-review, we summarize the latest approaches to treat KRAS mutant cancers and the rationale behind them. PMID:24612015

  7. A Mutation in the Rett Syndrome Gene, MECP2, Causes X-Linked Mental Retardation and Progressive Spasticity in Males

    PubMed Central

    Meloni, Ilaria; Bruttini, Mirella; Longo, Ilaria; Mari, Francesca; Rizzolio, Flavio; D’Adamo, Patrizia; Denvriendt, Koenraad; Fryns, Jean-Pierre; Toniolo, Daniela; Renieri, Alessandra

    2000-01-01

    Heterozygous mutations in the X-linked MECP2 gene cause Rett syndrome, a severe neurodevelopmental disorder of young females. Only one male presenting an MECP2 mutation has been reported; he survived only to age 1 year, suggesting that mutations in MECP2 are male lethal. Here we report a three-generation family in which two affected males showed severe mental retardation and progressive spasticity, previously mapped in Xq27.2-qter. Two obligate carrier females showed either normal or borderline intelligence, simulating an X-linked recessive trait. The two males and the two obligate carrier females presented a mutation in the MECP2 gene, demonstrating that, in males, MECP2 can be responsible for severe mental retardation associated with neurological disorders. PMID:10986043

  8. Daboia russellii and Naja kaouthia venom neutralization by lupeol acetate isolated from the root extract of Indian sarsaparilla Hemidesmus indicus R.Br.

    PubMed

    Chatterjee, Ipshita; Chakravarty, A K; Gomes, A

    2006-06-15

    The present study reports the isolation and purification of lupeol acetate from the methanolic root extract of Indian medicinal plant Hemidesmus indicus (L.) R.Br. (family: Asclepiadaceae) which could neutralize venom induced action of Daboia russellii and Naja kaouthia on experimental animals. Lupeol acetate could significantly neutralize lethality, haemorrhage, defibrinogenation, edema, PLA(2) activity induced by Daboia russellii venom. It also neutralized Naja kaouthia venom induced lethality, cardiotoxicity, neurotoxicity and respiratory changes in experimental animals. Lupeol acetate potentiated the protection by snake venom antiserum action against Daboia russellii venom induced lethality in male albino mice. Venom induced changes in lipid peroxidation and super oxide dismutase activity was antagonized by lupeol acetate. Snake venom neutralization by lupeol acetate and its possible mechanism of action has been discussed.

  9. Gene Mutations and Genomic Rearrangements in the Mouse as a Result of Transposon Mobilization from Chromosomal Concatemers

    PubMed Central

    Geurts, Aron M; Collier, Lara S; Geurts, Jennifer L; Oseth, Leann L; Bell, Matthew L; Mu, David; Lucito, Robert; Godbout, Susan A; Green, Laura E; Lowe, Scott W; Hirsch, Betsy A; Leinwand, Leslie A; Largaespada, David A

    2006-01-01

    Previous studies of the Sleeping Beauty (SB) transposon system, as an insertional mutagen in the germline of mice, have used reverse genetic approaches. These studies have led to its proposed use for regional saturation mutagenesis by taking a forward-genetic approach. Thus, we used the SB system to mutate a region of mouse Chromosome 11 in a forward-genetic screen for recessive lethal and viable phenotypes. This work represents the first reported use of an insertional mutagen in a phenotype-driven approach. The phenotype-driven approach was successful in both recovering visible and behavioral mutants, including dominant limb and recessive behavioral phenotypes, and allowing for the rapid identification of candidate gene disruptions. In addition, a high frequency of recessive lethal mutations arose as a result of genomic rearrangements near the site of transposition, resulting from transposon mobilization. The results suggest that the SB system could be used in a forward-genetic approach to recover interesting phenotypes, but that local chromosomal rearrangements should be anticipated in conjunction with single-copy, local transposon insertions in chromosomes. Additionally, these mice may serve as a model for chromosome rearrangements caused by transposable elements during the evolution of vertebrate genomes. PMID:17009875

  10. A genetic screen for zygotic embryonic lethal mutations affecting cuticular morphology in the wasp Nasonia vitripennis.

    PubMed Central

    Pultz, M A; Zimmerman, K K; Alto, N M; Kaeberlein, M; Lange, S K; Pitt, J N; Reeves, N L; Zehrung, D L

    2000-01-01

    We have screened for zygotic embryonic lethal mutations affecting cuticular morphology in Nasonia vitripennis (Hymenoptera; Chalcidoidea). Our broad goal was to investigate the use of Nasonia for genetically surveying conservation and change in regulatory gene systems, as a means to understand the diversity of developmental strategies that have arisen during the course of evolution. Specifically, we aim to compare anteroposterior patterning gene functions in two long germ band insects, Nasonia and Drosophila. In Nasonia, unfertilized eggs develop as haploid males while fertilized eggs develop as diploid females, so the entire genome can be screened for recessive zygotic mutations by examining the progeny of F1 females. We describe 74 of >100 lines with embryonic cuticular mutant phenotypes, including representatives of coordinate, gap, pair-rule, segment polarity, homeotic, and Polycomb group functions, as well as mutants with novel phenotypes not directly comparable to those of known Drosophila genes. We conclude that Nasonia is a tractable experimental organism for comparative developmental genetic study. The mutants isolated here have begun to outline the extent of conservation and change in the genetic programs controlling embryonic patterning in Nasonia and Drosophila. PMID:10866651

  11. Icebox, a recessive X-linked mutation in Drosophila causing low sexual receptivity.

    PubMed

    Kerr, C; Ringo, J; Dowse, H; Johnson, E

    1997-11-01

    The X-linked recessive mutation icebox (ibx; 1-23, 7F1) of Drosophila melanogaster lowers the sexual receptivity of females. The probability of mating with mature wild-type males is reduced in ibx homozygotes, and the frequency of rejection behavior (rate per minute) towards courting males is increased. ibx fails to complement In(1)RA35, which is a lethal allele of Neuroglian (Nrg, which encodes a transmembrane protein found in embryonic tissues including the nervous system) due to a breakpoint in that gene; however, both l(1)B4 and l(1)VA142, other lethal mutations of Nrg, do complement ibx. 12-h ibx embryos exhibit a normal pattern of staining for the Neuroglian-specific antibody, Mab BP104. Males and females mutant for ibx have normal egg-to-adult survival and appear normal in several "general" behavioral traits including olfaction, phototaxis, locomotor activity, and heartbeat. ibx males court normally, and are successful in mating. These characteristics suggest that ibx does not cause sensory or motor defects. Ovarian growth and sperm storage are wild-type in ibx/ibx females. Treatment with the JH analog methoprene increases the receptivity of ibx/ibx females.

  12. A genetic screen for temperature-sensitive cell-division mutants of Caenorhabditis elegans.

    PubMed Central

    O'Connell, K F; Leys, C M; White, J G

    1998-01-01

    A novel screen to isolate conditional cell-division mutants in Caenorhabditis elegans has been developed. The screen is based on the phenotypes associated with existing cell-division mutations: some disrupt postembryonic divisions and affect formation of the gonad and ventral nerve cord-resulting in sterile, uncoordinated animals-while others affect embryonic divisions and result in lethality. We obtained 19 conditional mutants that displayed these phenotypes when shifted to the restrictive temperature at the appropriate developmental stage. Eighteen of these mutations have been mapped; 17 proved to be single alleles of newly identified genes, while 1 proved to be an allele of a previously identified gene. Genetic tests on the embryonic lethal phenotypes indicated that for 13 genes, embryogenesis required maternal expression, while for 6, zygotic expression could suffice. In all cases, maternal expression of wild-type activity was found to be largely sufficient for embryogenesis. Cytological analysis revealed that 10 mutants possessed embryonic cell-division defects, including failure to properly segregate DNA, failure to assemble a mitotic spindle, late cytokinesis defects, prolonged cell cycles, and improperly oriented mitotic spindles. We conclude that this approach can be used to identify mutations that affect various aspects of the cell-division cycle. PMID:9649522

  13. Unbiased Combinatorial Genomic Approaches to Identify Alternative Therapeutic Targets within the TSC Signaling Network

    DTIC Science & Technology

    2015-09-01

    assessed the specificity of mutation in Drosophila S2R+ cells. We generated a quantitative mutation reporter vector in which an sgRNA target sequence ...phosphatases (563 genes) in the Drosophila genome (Figure 4). 65 samples that displayed synthetic lethality (15 genes) or synthetic increases in viability...targeting all kinases and phosphatases (563 genes) in the Drosophila genome . . Identified three hits (mRNA-Cap, Pitslre and CycT) that scored as

  14. Hydrophobic imbalance in the cytoplasmic domain of phospholamban is a determinant for lethal dilated cardiomyopathy.

    PubMed

    Ceholski, Delaine K; Trieber, Catharine A; Young, Howard S

    2012-05-11

    The sarco(endo)plasmic reticulum calcium ATPase (SERCA) and its regulatory partner phospholamban (PLN) are essential for myocardial contractility. Arg(9) → Cys (R9C) and Arg(14) deletion (R14del) mutations in PLN are associated with lethal dilated cardiomyopathy in humans. To better understand these mutations, we made a series of amino acid substitutions in the cytoplasmic domain of PLN and tested their ability to inhibit SERCA. R9C is a complete loss-of-function mutant of PLN, whereas R14del is a mild loss-of-function mutant. When combined with wild-type PLN to simulate heterozygous conditions, the mutants had a dominant negative effect on SERCA function. A series of targeted mutations in this region of the PLN cytoplasmic domain ((8)TRSAIRR(14)) demonstrated the importance of hydrophobic balance in proper PLN regulation of SERCA. We found that Arg(9) → Leu and Thr(8) → Cys substitutions mimicked the behavior of the R9C mutant, and an Arg(14) → Ala substitution mimicked the behavior of the R14del mutant. The results reveal that the change in hydrophobicity resulting from the R9C and R14del mutations is sufficient to explain the loss of function and persistent interaction with SERCA. Hydrophobic imbalance in the cytoplasmic domain of PLN appears to be a predictor for the development and progression of dilated cardiomyopathy.

  15. Heterochromatin position effects on circularized sex chromosomes cause filicidal embryonic lethality in Drosophila melanogaster.

    PubMed

    Ferree, Patrick M; Gomez, Karina; Rominger, Peter; Howard, Dagnie; Kornfeld, Hannah; Barbash, Daniel A

    2014-04-01

    Some circularized X-Y chromosomes in Drosophila melanogaster are mitotically unstable and induce early embryonic lethality, but the genetic basis is unknown. Our experiments suggest that a large region of X-linked satellite DNA causes anaphase bridges and lethality when placed into a new heterochromatic environment within certain circularized X-Y chromosomes. These results reveal that repetitive sequences can be incompatible with one another in cis. The lethal phenotype also bears a remarkable resemblance to a case of interspecific hybrid lethality.

  16. Immunotherapy with mutated onchocystatin fails to enhance the efficacy of a sub-lethal oxytetracycline regimen against Onchocerca ochengi.

    PubMed

    Bah, Germanus S; Tanya, Vincent N; Makepeace, Benjamin L

    2015-08-15

    Human onchocerciasis (river blindness), caused by the filarial nematode Onchocerca volvulus, has been successfully controlled by a single drug, ivermectin, for over 25 years. Ivermectin prevents the disease symptoms of severe itching and visual impairment by killing the microfilarial stage, but does not eliminate the adult parasites, necessitating repeated annual treatments. Mass drug administration with ivermectin does not always break transmission in forest zones and is contraindicated in individuals heavily co-infected with Loa loa, while reports of reduced drug efficacy in Ghana and Cameroon may signal the development of resistance. An alternative treatment for onchocerciasis involves targeting the essential Wolbachia symbiont with tetracycline or its derivatives, which are adulticidal. However, implementation of antibiotic therapy has not occurred on a wide scale due to the prolonged treatment regimen required (several weeks). In the bovine Onchocerca ochengi system, it has been shown previously that prolonged oxytetracycline therapy increases eosinophil counts in intradermal nodules, which kill the adult worms by degranulating on their surface. Here, in an "immunochemotherapeutic" approach, we sought to enhance the efficacy of a short, sub-lethal antibiotic regimen against O. ochengi by prior immunotherapy targeting onchocystatin, an immunomodulatory protein located in the adult female worm cuticle. A key asparagine residue in onchocystatin was mutated to ablate immunomodulatory activity, which has been demonstrated previously to markedly improve the protective efficacy of this vaccine candidate when used as an immunoprophylactic. The immunochemotherapeutic regimen was compared with sub-lethal oxytetracycline therapy alone; onchocystatin immunotherapy alone; a gold-standard prolonged, intermittent oxytetracycline regimen; and no treatment (negative control) in naturally infected Cameroonian cattle. Readouts were collected over one year and comprised adult worm viability, dermal microfilarial density, anti-onchocystatin IgG in sera, and eosinophil counts in nodules. Only the gold-standard antibiotic regimen achieved significant killing of adult worms, a profound reduction in microfilarial load, and a sustained increase in local tissue eosinophilia. A small but statistically significant elevation in anti-onchocystatin IgG was observed for several weeks after immunisation in the immunotherapy-only group, but the antibody response in the immunochemotherapy group was more variable. At 12 weeks post-treatment, only a transient and non-significant increase in eosinophil counts was apparent in the immunochemotherapy group. We conclude that the addition of onchocystatin immunotherapy to a sub-lethal antibiotic regimen is insufficient to induce adulticidal activity, although with booster immunisations or the targeting of additional filarial immunomodulatory proteins, the efficacy of this strategy could be strengthened. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Delineating the requirements for spontaneous DNA damage resistance pathways in genome maintenance and viability in Saccharomyces cerevisiae.

    PubMed

    Morey, Natalie J; Doetsch, Paul W; Jinks-Robertson, Sue

    2003-06-01

    Cellular metabolic processes constantly generate reactive species that damage DNA. To counteract this relentless assault, cells have developed multiple pathways to resist damage. The base excision repair (BER) and nucleotide excision repair (NER) pathways remove damage whereas the recombination (REC) and postreplication repair (PRR) pathways bypass the damage, allowing deferred removal. Genetic studies in yeast indicate that these pathways can process a common spontaneous lesion(s), with mutational inactivation of any pathway increasing the burden on the remaining pathways. In this study, we examine the consequences of simultaneously compromising three or more of these pathways. Although the presence of a functional BER pathway alone is able to support haploid growth, retention of the NER, REC, or PRR pathway alone is not, indicating that BER is the key damage resistance pathway in yeast and may be responsible for the removal of the majority of either spontaneous DNA damage or specifically those lesions that are potentially lethal. In the diploid state, functional BER, NER, or REC alone can support growth, while PRR alone is insufficient for growth. In diploids, the presence of PRR alone may confer a lethal mutation load or, alternatively, PRR alone may be insufficient to deal with potentially lethal, replication-blocking lesions.

  18. ESCRT-Dependent Cell Death in a Caenorhabditis elegans Model of the Lysosomal Storage Disorder Mucolipidosis Type IV

    PubMed Central

    Huynh, Julie M.; Dang, Hope; Munoz-Tucker, Isabel A.; O’Ketch, Marvin; Liu, Ian T.; Perno, Savannah; Bhuyan, Natasha; Crain, Allison; Borbon, Ivan; Fares, Hanna

    2016-01-01

    Mutations in MCOLN1, which encodes the cation channel protein TRPML1, result in the neurodegenerative lysosomal storage disorder Mucolipidosis type IV. Mucolipidosis type IV patients show lysosomal dysfunction in many tissues and neuronal cell death. The ortholog of TRPML1 in Caenorhabditis elegans is CUP-5; loss of CUP-5 results in lysosomal dysfunction in many tissues and death of developing intestinal cells that results in embryonic lethality. We previously showed that a null mutation in the ATP-Binding Cassette transporter MRP-4 rescues the lysosomal defect and embryonic lethality of cup-5(null) worms. Here we show that reducing levels of the Endosomal Sorting Complex Required for Transport (ESCRT)-associated proteins DID-2, USP-50, and ALX-1/EGO-2, which mediate the final de-ubiquitination step of integral membrane proteins being sequestered into late endosomes, also almost fully suppresses cup-5(null) mutant lysosomal defects and embryonic lethality. Indeed, we show that MRP-4 protein is hypo-ubiquitinated in the absence of CUP-5 and that reducing levels of ESCRT-associated proteins suppresses this hypo-ubiquitination. Thus, increased ESCRT-associated de-ubiquitinating activity mediates the lysosomal defects and corresponding cell death phenotypes in the absence of CUP-5. PMID:26596346

  19. Detection of haplotypes associated with prenatal death in dairy cattle and identification of deleterious mutations in GART, SHBG and SLC37A2.

    PubMed

    Fritz, Sébastien; Capitan, Aurelien; Djari, Anis; Rodriguez, Sabrina C; Barbat, Anne; Baur, Aurélia; Grohs, Cécile; Weiss, Bernard; Boussaha, Mekki; Esquerré, Diane; Klopp, Christophe; Rocha, Dominique; Boichard, Didier

    2013-01-01

    The regular decrease of female fertility over time is a major concern in modern dairy cattle industry. Only half of this decrease is explained by indirect response to selection on milk production, suggesting the existence of other factors such as embryonic lethal genetic defects. Genomic regions harboring recessive deleterious mutations were detected in three dairy cattle breeds by identifying frequent haplotypes (>1%) showing a deficit in homozygotes among Illumina Bovine 50k Beadchip haplotyping data from the French genomic selection database (47,878 Holstein, 16,833 Montbéliarde, and 11,466 Normande animals). Thirty-four candidate haplotypes (p<10(-4)) including previously reported regions associated with Brachyspina, CVM, HH1, and HH3 in Holstein breed were identified. Haplotype length varied from 1 to 4.8 Mb and frequencies from 1.7 up to 9%. A significant negative effect on calving rate, consistent in heifers and in lactating cows, was observed for 9 of these haplotypes in matings between carrier bulls and daughters of carrier sires, confirming their association with embryonic lethal mutations. Eight regions were further investigated using whole genome sequencing data from heterozygous bull carriers and control animals (45 animals in total). Six strong candidate causative mutations including polymorphisms previously reported in FANCI (Brachyspina), SLC35A3 (CVM), APAF1 (HH1) and three novel mutations with very damaging effect on the protein structure, according to SIFT and Polyphen-2, were detected in GART, SHBG and SLC37A2 genes. In conclusion, this study reveals a yet hidden consequence of the important inbreeding rate observed in intensively selected and specialized cattle breeds. Counter-selection of these mutations and management of matings will have positive consequences on female fertility in dairy cattle.

  20. An initiator codon mutation in SDE2 causes recessive embryonic lethality in Holstein cattle.

    PubMed

    Fritz, Sébastien; Hoze, Chris; Rebours, Emmanuelle; Barbat, Anne; Bizard, Méline; Chamberlain, Amanda; Escouflaire, Clémentine; Vander Jagt, Christy; Boussaha, Mekki; Grohs, Cécile; Allais-Bonnet, Aurélie; Philippe, Maëlle; Vallée, Amélie; Amigues, Yves; Hayes, Benjamin J; Boichard, Didier; Capitan, Aurélien

    2018-04-18

    Researching depletions in homozygous genotypes for specific haplotypes among the large cohorts of animals genotyped for genomic selection is a very efficient strategy to map recessive lethal mutations. In this study, by analyzing real or imputed Illumina BovineSNP50 (Illumina Inc., San Diego, CA) genotypes from more than 250,000 Holstein animals, we identified a new locus called HH6 showing significant negative effects on conception rate and nonreturn rate at 56 d in at-risk versus control mating. We fine-mapped this locus in a 1.1-Mb interval and analyzed genome sequence data from 12 carrier and 284 noncarrier Holstein bulls. We report the identification of a strong candidate mutation in the gene encoding SDE2 telomere maintenance homolog (SDE2), a protein essential for genomic stability in eukaryotes. This A-to-G transition changes the initiator ATG (methionine) codon to ACG because the gene is transcribed on the reverse strand. Using RNA sequencing and quantitative reverse-transcription PCR, we demonstrated that this mutation does not significantly affect SDE2 splicing and expression level in heterozygous carriers compared with control animals. Initiation of translation at the closest in-frame methionine codon would truncate the SDE2 precursor by 83 amino acids, including the cleavage site necessary for its activation. Finally, no homozygote for the G allele was observed in a large population of nearly 29,000 individuals genotyped for the mutation. The low frequency (1.3%) of the derived allele in the French population and the availability of a diagnostic test on the Illumina EuroG10K SNP chip routinely used for genomic evaluation will enable rapid and efficient selection against this deleterious mutation. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Zika Virus Attenuation by Codon Pair Deoptimization Induces Sterilizing Immunity in Mouse Models.

    PubMed

    Li, Penghui; Ke, Xianliang; Wang, Ting; Tan, Zhongyuan; Luo, Dan; Miao, Yuanjiu; Sun, Jianhong; Zhang, Yuan; Liu, Yan; Hu, Qinxue; Xu, Fuqiang; Wang, Hanzhong; Zheng, Zhenhua

    2018-06-20

    Zika virus (ZIKV) infection during the large epidemics in the Americas is related to congenital abnormities or fetal demise. To date, there is no vaccine, antiviral drug, or other modality available to prevent or treat Zika virus infection. Here we designed novel live attenuated ZIKV vaccine candidates using a codon pair deoptimization strategy. Three codon pair-deoptimized ZIKVs (Min E, Min NS1, and Min E+NS1) were de novo synthesized, and recovered by reverse genetics, containing large amounts of underrepresented codon pairs in E gene and/or NS1 gene. Amino acid sequence was 100% unchanged. The codon pair-deoptimized variants had decreased replication fitness in Vero cells (Min NS1 ≫ Min E > Min E+NS1), replicated more efficiently in insect cells than in mammalian cells, and demonstrated diminished virulence in a mouse model. In particular, Min E+NS1, the most restrictive variant, induced sterilizing immunity with a robust neutralizing antibody titer, and a single immunization achieved complete protection against lethal challenge and vertical ZIKV transmission during pregnancy. More importantly, due to the numerous synonymous substitutions in the codon pair-deoptimized strains, reversion to wild-type virulence through gradual nucleotide sequence mutations is unlikely. Our results collectively demonstrate that ZIKV can be effectively attenuated by codon pair deoptimization, highlighting the potential of Min E+NS1 as a safe vaccine candidate to prevent ZIKV infections. IMPORTANCE Due to unprecedented epidemics of Zika virus (ZIKV) across the Americas and the unexpected clinical symptoms including Guillain-Barré syndrome, microcephaly and other birth defects in human, there is an urgent need for ZIKV vaccine development. Here, we provided the first attenuated versions of ZIKV with two important genes (E and/or NS1) that were subjected to codon pair deoptimization. Compared to parental ZIKV, the codon pair-deoptimized ZIKVs were mammalian-attenuated, and preferred insect to mammalian Cells. Min E+NS1, the most restrictive variant, induced sterilizing immunity with a robust neutralizing antibody titer, and achieved complete protection against lethal challenge and vertical virus transmission during pregnancy. More importantly, the massive synonymous mutational approach made it impossible to revert to wild-type virulence. Our results have proven the feasibility of codon pair deoptimization as a strategy to develop live-attenuated vaccine candidates against flavivirues like ZIKV, Japanese encephalitis virus and West Nile virus. Copyright © 2018 American Society for Microbiology.

  2. Characterization of potential driver mutations involved in human breast cancer by computational approaches

    PubMed Central

    Rajendran, Barani Kumar; Deng, Chu-Xia

    2017-01-01

    Breast cancer is the second most frequently occurring form of cancer and is also the second most lethal cancer in women worldwide. A genetic mutation is one of the key factors that alter multiple cellular regulatory pathways and drive breast cancer initiation and progression yet nature of these cancer drivers remains elusive. In this article, we have reviewed various computational perspectives and algorithms for exploring breast cancer driver mutation genes. Using both frequency based and mutational exclusivity based approaches, we identified 195 driver genes and shortlisted 63 of them as candidate drivers for breast cancer using various computational approaches. Finally, we conducted network and pathway analysis to explore their functions in breast tumorigenesis including tumor initiation, progression, and metastasis. PMID:28477017

  3. AMPA receptor desensitization mutation results in severe developmental phenotypes and early postnatal lethality

    PubMed Central

    Christie, Louisa A.; Russell, Theron A.; Xu, Jian; Wood, Lydia; Shepherd, Gordon M. G.; Contractor, Anis

    2010-01-01

    AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate) recep-tors desensitize rapidly and completely in the continued presence of their endogenous ligand glutamate; however, it is not clear what role AMPA receptor desensitization plays in the brain. We generated a knock-in mouse in which a single amino acid residue, which controls desensitization, was mutated in the GluA2 (GluR2) receptor subunit (GluA2L483Y). This mutation was homozygous lethal. However, mice carrying a single mutated allele, GluA2L483Y/wt, survived past birth, but displayed severe and progressive neurological deficits including seizures and, ultimately, increased mortality. The expression of the AMPA receptor subunits GluA1 and GluA2 was decreased, whereas NMDA receptor protein expression was increased in GluA2L483Y/wt mice. Despite this, basal synaptic transmission and plasticity in the hippocampus were largely unaffected, suggesting that neurons preferentially target receptors to synapses to normalize synaptic weight. We found no gross neuroanatomical alterations in GluA2L483Y/wt mice. Moreover, there was no accumulation of AMPA receptor subunits in intracellular compartments, suggesting that folding and assembly of AMPA receptors are not affected by this mutation. Interestingly, EPSC paired pulse ratios in the CA1 were enhanced without a change in synaptic release probability, demonstrating that postsynaptic receptor properties can contribute to facilitation. The dramatic phenotype observed in this study by the introduction of a single amino acid change demonstrates an essential role in vivo for AMPA receptor desensitization. PMID:20439731

  4. Genetics Home Reference: platyspondylic lethal skeletal dysplasia, Torrance type

    MedlinePlus

    ... type of collagen in the body. Instead of forming collagen molecules, the abnormal COL2A1 protein builds up ... Y, Nagai T, Yamaguchi T, Kosaki R, Ohashi H, Makita Y, Ikegawa S. Identification of COL2A1 mutations in ...

  5. Genetic Ablation of CCAAT/Enhancer Binding Protein α in Epidermis Reveals Its Role in Suppression of Epithelial Tumorigenesis

    PubMed Central

    Loomis, Kari D.; Zhu, Songyun; Yoon, Kyungsil; Johnson, Peter F.; Smart, Robert C.

    2013-01-01

    CCAAT/enhancer binding protein y (C/EBPα) is a basic leucine zipper transcription factor that inhibits cell cycle progression and regulates differentiation in various cell types. C/EBPα is inactivated by mutation in acute myeloid leukemia (AML) and is considered a human tumor suppressor in AML. Although C/EBPα mutations have not been observed in malignancies other than AML, greatly diminished expression of C/EBPα occurs in numerous human epithelial cancers including lung, liver, endometrial, skin, and breast, suggesting a possible tumor suppressor function. However, direct evidence for C/EBPα as an epithelial tumor suppressor is lacking due to the absence of C/EBPα mutations in epithelial tumors and the lethal effect of C/EBPα deletion in mouse model systems. To examine the function of C/EBPα in epithelial tumor development, an epidermal-specific C/EBPα knockout mouse was generated. The epidermal-specific C/EBPα knockout mice survived and displayed no detectable abnormalities in epidermal keratinocyte proliferation, differentiation, or apoptosis, showing that C/EBPα is dispensable for normal epidermal homeostasis. In spite of this, the epidermal-specific C/EBPα knockout mice were highly susceptible to skin tumor development involving oncogenic Ras. These mice displayed decreased tumor latency and striking increases in tumor incidence, multiplicity, growth rate, and the rate of malignant progression. Mice hemizygous for C/EBPα displayed an intermediate-enhanced tumor phenotype. Our results suggest that decreased expression of C/EBPα contributes to deregulation of tumor cell proliferation. C/EBPα had been proposed to block cell cycle progression through inhibition of E2F activity. We observed that C/EBPα blocked Ras-induced and epidermal growth factor-induced E2F activity in keratinocytes and also blocked Ras-induced cell transformation and cell cycle progression. Our study shows that C/EBPα is dispensable for epidermal homeostasis and provides genetic evidence that C/EBPα is a suppressor of epithelial tumorigenesis. PMID:17638888

  6. Action of nitrofurans on E. coli: mutation and induction and repair of daughter-strand gaps in DNA.

    PubMed

    Lu, C; McCalla, D R; Bryant, D W

    1979-06-01

    The antibacterial and mutagenic potency of 9 nitrofurans in "treat and plate" experiments varied over almost 5 orders of magnitude. The relative toxicities were as follows: FANFT greater than AF2 greater than ANFT greather than furazolidone greater than furagin greater than nitrofurantoin greater than nitrofurazone greater than methylnitrofuroate greater than nitrofuroic acid. In general, mutagenic activity paralleled toxicity. The compounds at concentrations corresponding to their LD50's, induced mutations at frequencies which ranged from 2.5/10(6) survivors for FANFT to 130/10(6) survivors for furagin (NF416). The observed differences in antibacterial and mutagenic activity are unlikely to be due to lack of activation of the weaker agents since the two most potent agents were reduced somewhat more slowly than many of the less active agents. The relative sensitivities to the antibacterial effects of AF2 of strains WP2, WP2 uvrA, CM561 (lexA) and CM571 (recA) were 1 : 1.6 : 3 : 7 and to nitrofurazone 1 : 1 : 25 : 50. The wvrA strain was 6--7-fold more mutable with both these agents than was WP2. No increase over the spontaneous mutation frequency was observed when recA or lexA strains were exposed to either AF2 or nitrofurazone in these experiments. When wild-type of wvrA bacteria containing nitrofuran-induced lesions replicated their DNA in drug-free medium in the presence of [3H]thymidine for 5 min, the label was found in low molecular weight DNA indicating that daughter-strand gaps were formed. During subsequent incubation in nonradioactive medium the molecular weight of the DNA increased to the control value. A recA strain (which was very sensitive to the lethal effects of AF2 and nitrofurazone) lacked the ability to repair daughter-strand gaps caused by nitrofuran-induced lesions.

  7. Protective effects of granulocyte colony-stimulating factor on endotoxin shock in mice with retrovirus-induced immunodeficiency syndrome.

    PubMed

    Toki, S; Hiromatsu, K; Aoki, Y; Makino, M; Yoshikai, Y

    1997-10-01

    Mice with retrovirus-induced murine acquired immunodeficiency syndrome (MAIDS) were hypersensitive to lipopolysaccharide (LPS)-induced lethal shock accompanied by marked elevations of systematic interleukin 1beta (IL-beta) and interferon gamma (IFN-gamma) after LPS challenge. Pretreatment with 10 microg of recombinant human granulocyte colony-stimulating factor (rhG-CSF) protected MAIDS mice from hypersensitivity to LPS-induced lethal shock and this protection was concomitant with suppression of IFN-gamma production. Copyright 1997 Academic Press Limited.

  8. NMDA antagonists exert distinct effects in experimental organophosphate or carbamate poisoning in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dekundy, Andrzej; Kaminski, Rafal M.; Zielinska, Elzbieta

    2007-03-15

    Organophosphate (OP) and carbamate acetylcholinesterase (AChE) inhibitors produce seizures and lethality in mammals. Anticonvulsant and neuroprotective properties of N-methyl-D-aspartate (NMDA) antagonists encourage the investigation of their effects in AChE inhibitor-induced poisonings. In the present study, the effects of dizocilpine (MK-801, 1 mg/kg) or 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 10 mg/kg), alone or combined with muscarinic antagonist atropine (1.8 mg/kg), on convulsant and lethal properties of an OP pesticide dichlorvos or a carbamate drug physostigmine, were studied in mice. Both dichlorvos and physostigmine induced dose-dependent seizure activity and lethality. Atropine did not prevent the occurrence of convulsions but decreased the lethal effects ofmore » both dichlorvos and physostigmine. MK-801 or CPP blocked or attenuated, respectively, dichlorvos-induced convulsions. Contrariwise, NMDA antagonists had no effect in physostigmine-induced seizures or lethality produced by dichlorvos or physostigmine. Concurrent pretreatment with atropine and either MK-801 or CPP blocked or alleviated seizures produced by dichlorvos, but not by physostigmine. Both MK-801 and CPP co-administered with atropine enhanced its antilethal effects in both dichlorvos and physostigmine poisoning. In both saline- and AChE inhibitor-treated mice, no interaction of the investigated antidotes with brain cholinesterase was found. The data indicate that both muscarinic ACh and NMDA receptor-mediated mechanisms contribute to the acute toxicity of AChE inhibitors, and NMDA receptors seem critical to OP-induced seizures.« less

  9. The Heterozygous Disproportionate Micromelia (Dmm) Mouse: Morphological Changes in Fetal Cartilage Precede Postnatal Dwarfism and Compared With Lethal Homozygotes Can Explain the Mild Phenotype

    PubMed Central

    Seegmiller, Robert E.; Bomsta, Brandon D.; Bridgewater, Laura C.; Niederhauser, Cindy M.; Montaño, Carolina; Sudweeks, Sterling; Eyre, David R.; Fernandes, Russell J.

    2008-01-01

    The disproportionate micromelia (Dmm) mouse has a mutation in the C-propeptide coding region of the Col2a1 gene that causes lethal dwarfism when homozygous (Dmm/Dmm) but causes only mild dwarfism observable ∼1-week postpartum when heterozygous (Dmm/+). The purpose of this study was 2-fold: first, to analyze and quantify morphological changes that precede the expression of mild dwarfism in Dmm/+ animals, and second, to compare morphological alterations between Dmm/+ and Dmm/Dmm fetal cartilage that may correlate with the marked skeletal differences between mild and lethal dwarfism. Light and electron transmission microscopy were used to visualize structure of chondrocytes and extracellular matrix (ECM) of fetal rib cartilage. Both Dmm/+ and Dmm/Dmm fetal rib cartilage had significantly larger chondrocytes, greater cell density, and less ECM per unit area than +/+ littermates. Quantitative RT-PCR showed a decrease in aggrecan mRNA in Dmm/+ vs +/+ cartilage. Furthermore, the cytoplasm of chondrocytes in Dmm/+ and Dmm/Dmm cartilage was occupied by significantly more distended rough endoplasmic reticulum (RER) compared with wild-type chondrocytes. Fibril diameters and packing densities of +/+ and Dmm/+ cartilage were similar, but Dmm/Dmm cartilage showed thinner, sparsely distributed fibrils. These findings support the prevailing hypothesis that a C-propeptide mutation could interrupt the normal assembly and secretion of Type II procollagen trimers, resulting in a buildup of proα1(II) chains in the RER and a reduced rate of matrix synthesis. Thus, intracellular entrapment of proα1(II) seems to be primarily responsible for the dominant-negative effect of the Dmm mutation in the expression of dwarfism. (J Histochem Cytochem 56:1003–1011, 2008) PMID:18678883

  10. The heterozygous disproportionate micromelia (dmm) mouse: morphological changes in fetal cartilage precede postnatal dwarfism and compared with lethal homozygotes can explain the mild phenotype.

    PubMed

    Seegmiller, Robert E; Bomsta, Brandon D; Bridgewater, Laura C; Niederhauser, Cindy M; Montaño, Carolina; Sudweeks, Sterling; Eyre, David R; Fernandes, Russell J

    2008-11-01

    The disproportionate micromelia (Dmm) mouse has a mutation in the C-propeptide coding region of the Col2a1 gene that causes lethal dwarfism when homozygous (Dmm/Dmm) but causes only mild dwarfism observable approximately 1-week postpartum when heterozygous (Dmm/+). The purpose of this study was 2-fold: first, to analyze and quantify morphological changes that precede the expression of mild dwarfism in Dmm/+ animals, and second, to compare morphological alterations between Dmm/+ and Dmm/Dmm fetal cartilage that may correlate with the marked skeletal differences between mild and lethal dwarfism. Light and electron transmission microscopy were used to visualize structure of chondrocytes and extracellular matrix (ECM) of fetal rib cartilage. Both Dmm/+ and Dmm/Dmm fetal rib cartilage had significantly larger chondrocytes, greater cell density, and less ECM per unit area than +/+ littermates. Quantitative RT-PCR showed a decrease in aggrecan mRNA in Dmm/+ vs +/+ cartilage. Furthermore, the cytoplasm of chondrocytes in Dmm/+ and Dmm/Dmm cartilage was occupied by significantly more distended rough endoplasmic reticulum (RER) compared with wild-type chondrocytes. Fibril diameters and packing densities of +/+ and Dmm/+ cartilage were similar, but Dmm/Dmm cartilage showed thinner, sparsely distributed fibrils. These findings support the prevailing hypothesis that a C-propeptide mutation could interrupt the normal assembly and secretion of Type II procollagen trimers, resulting in a buildup of proalpha1(II) chains in the RER and a reduced rate of matrix synthesis. Thus, intracellular entrapment of proalpha1(II) seems to be primarily responsible for the dominant-negative effect of the Dmm mutation in the expression of dwarfism.

  11. Chromosomal mutations and chromosome loss measured in a new human-hamster hybrid cell line, ALC: studies with colcemid, ultraviolet irradiation, and 137Cs gamma-rays

    NASA Technical Reports Server (NTRS)

    Kraemer, S. M.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    Small mutations, megabase deletions, and aneuploidy are involved in carcinogenesis and genetic defects, so it is important to be able to quantify these mutations and understand mechanisms of their creation. We have previously quantified a spectrum of mutations, including megabase deletions, in human chromosome 11, the sole human chromosome in a hamster-human hybrid cell line AL. S1- mutants have lost expression of a human cell surface antigen, S1, which is encoded by the M1C1 gene at 11p13 so that mutants can be detected via a complement-mediated cytotoxicity assay in which S1+ cells are killed and S1- cells survive. But loss of genes located on the tip of the short arm of 11 (11p15.5) is lethal to the AL hybrid, so that mutants that have lost the entire chromosome 11 die and escape detection. To circumvent this, we fused AL with Chinese hamster ovary (CHO) cells to produce a new hybrid, ALC, in which the requirement for maintaining 11p15.5 is relieved, allowing us to detect mutations events involving loss of 11p15.5. We evaluated the usefulness of this hybrid by conducting mutagenesis studies with colcemid, 137Cs gamma-radiation and UV 254 nm light. Colcemid induced 1000 more S1- mutants per unit dose in ALC than in AL; the increase for UV 254 nm light was only two-fold; and the increase for 137Cs gamma-rays was 12-fold. The increase in S1- mutant fraction in ALC cells treated with colcemid and 137Cs gamma-rays were largely due to chromosome loss and 11p deletions often containing a breakpoint within the centromeric region.

  12. Cell wall integrity modulates RHO1 activity via the exchange factor ROM2.

    PubMed Central

    Bickle, M; Delley, P A; Schmidt, A; Hall, M N

    1998-01-01

    The essential phosphatidylinositol kinase homologue TOR2 of Saccharomyces cerevisiae controls the actin cytoskeleton by activating a GTPase switch consisting of RHO1 (GTPase), ROM2 (GEF) and SAC7 (GAP). We have identified two mutations, rot1-1 and rot2-1, that suppress the loss of TOR2 and are synthetic-lethal. The wild-type ROT1 and ROT2 genes and a multicopy suppressor, BIG1, were isolated by their ability to rescue the rot1-1 rot2-1 double mutant. ROT2 encodes glucosidase II, and ROT1 and BIG1 encode novel proteins. We present evidence that cell wall defects activate RHO1. First, rot1, rot2, big1, cwh41, gas1 and fks1 mutations all confer cell wall defects and suppress tor2(ts). Second, destabilizing the cell wall by supplementing the growth medium with 0.005% SDS also suppresses a tor2(ts) mutation. Third, disturbing the cell wall with SDS or a rot1, rot2, big1, cwh41, gas1 or fks1 mutation increases GDP/GTP exchange activity toward RHO1. These results suggest that cell wall defects suppress a tor2 mutation by activating RHO1 independently of TOR2, thereby inducing TOR2-independent polarization of the actin cytoskeleton and cell wall synthesis. Activation of RHO1, a subunit of the cell wall synthesis enzyme glucan synthase, by a cell wall alteration would ensure that cell wall synthesis occurs only when and where needed. The mechanism of RHO1 activation by a cell wall alteration is via the exchange factor ROM2 and could be analogous to signalling by integrin receptors in mammalian cells. PMID:9545237

  13. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABAA receptors

    PubMed Central

    Shakarjian, Michael P.; Velíšková, Jana; Stanton, Patric K.; Velíšek, Libor

    2012-01-01

    Tetramethylenedisulfotetramine (TMDT) is a highly lethal neuroactive rodenticide responsible for many accidental and intentional poisonings in mainland China. Ease of synthesis, water solubility, potency, and difficulty to treat make TMDT a potential weapon for terrorist activity. We characterized TMDT-induced convulsions and mortality in male C57BL/6 mice. TMDT (ip) produced a continuum of twitches, clonic, and tonic-clonic seizures decreasing in onset latency and increasing in severity with increasing dose; 0.4 mg/kg was 100% lethal. The NMDA antagonist, ketamine (35 mg/kg) injected ip immediately after the first TMDT-induced seizure, did not change number of tonic-clonic seizures or lethality, but increased the number of clonic seizures. Doubling the ketamine dose decreased tonic-clonic seizures and eliminated lethality through a 60 min observation period. Treating mice with another NMDA antagonist, MK-801, 0.5 or 1 mg/kg ip, showed similar effects as low and high doses of ketamine, respectively, and prevented lethality, converting status epilepticus EEG activity to isolated interictal discharges. Treatment with these agents 15 min prior to TMDT administration did not increase their effectiveness. Post-treatment with the GABAA receptor allosteric enhancer diazepam (5 mg/kg) greatly reduced seizure manifestations and prevented lethality 60 min post-TMDT, but ictal events were evident in EEG recordings and, hours post-treatment, mice experienced status epilepticus and died. Thus, TMDT is a highly potent and lethal convulsant for which single-dose benzodiazepine treatment is inadequate in managing electrographic seizures or lethality. Repeated benzodiazepine dosing or combined application of benzodiazepines and NMDA receptor antagonists are more likely to be effective in treating TMDT poisoning. PMID:23022509

  14. Centrosome Linker-induced Tetraploid Segregation Errors Link Rhabdoid Phenotypes and Lethal Colorectal Cancers.

    PubMed

    Remo, Andrea; Manfrin, Erminia; Parcesepe, Pietro; Ferrarini, Alberto; Han, Hye Seung; Ugnius, Mickys; Laudanna, Carmelo; Simbolo, Michele; Malanga, Donatella; Mendes Oliveira, Duarte; Baritono, Elisabetta; Colangelo, Tommaso; Sabatino, Lina; Giuliani, Jacopo; Molinari, Enrico; Garonzi, Marianna; Xumerle, Luciano; Delledonne, Massimo; Giordano, Guido; Ghimenton, Claudio; Lonardo, Fortunato; D'angelo, Fulvio; Grillo, Federica; Mastracci, Luca; Viglietto, Giuseppe; Ceccarelli, Michele; Colantuoni, Vittorio; Scarpa, Aldo; Pancione, Massimo

    2018-05-21

    Centrosome anomalies contribute to tumorigenesis but it remains unclear how they are generated in lethal cancer phenotypes. Here, it is demonstrated that human microsatellite instable (MSI) and BRAF(V600E) mutant colorectal cancers with a lethal rhabdoid phenotype are characterized by inactivation of centrosomal functions. A splice site mutation that causes an unbalanced dosage of rootletin (CROCC), a centrosomal-linker component required for centrosome cohesion and separation at the chromosome 1p36.13 locus, resulted in abnormally shaped centrosomes in rhabdoid cells from human colon tissues. Notably, deleterious deletions at 1p36.13 were recurrent in a subgroup of BRAF(V600E) mutant and microsatellite stable (MSS) rhabdoid colorectal cancers but not in classical colorectal cancer or pediatric rhabdoid tumors. Interfering with CROCC expression in near-diploid BRAF(V600E) mutant/MSI colon cancer cells disrupts bipolar mitotic spindle architecture, promotes tetraploid segregation errors resulting in a highly aggressive rhabdoid-like phenotype in vitro. Restoring near-wild-type levels of CROCC in a metastatic model harboring 1p36.13 deletion results in correction of centrosome segregation errors and cell death, revealing a mechanism of tolerance to mitotic errors and tetraploidization promoted by deleterious 1p36.13 loss. Accordingly, cancer cells lacking 1p36.13 display far greater sensitivity to centrosome spindle pole stabilizing agents in vitro. These data shed light on a previously unknown link between centrosome cohesion defects and lethal cancer phenotypes providing new insight into pathways underlying genome instability. Mis-segregation of chromosomes is a prominent feature of chromosome instability and intra-tumoral heterogeneity recurrent in metastatic tumors for which the molecular basis is unknown. The present study provides insight into the mechanism by which defects in rootletin, a centrosome linker component causes tetraploid segregation errors and phenotypic transition to a clinically devastating form of malignant rhabdoid tumor. Copyright ©2018, American Association for Cancer Research.

  15. Effects of P Element Insertions on Quantitative Traits in Drosophila Melanogaster

    PubMed Central

    Mackay, TFC.; Lyman, R. F.; Jackson, M. S.

    1992-01-01

    P element mutagenesis was used to construct 94 third chromosome lines of Drosophila melanogaster which contained on average 3.1 stable P element inserts, in an inbred host strain background previously free of P elements. The homozygous and heterozygous effects of the inserts on viability and abdominal and sternopleural bristle number were ascertained by comparing the chromosome lines with inserts to insert-free control lines of the inbred host strain. P elements reduced average homozygous viability by 12.2% per insert and average heterozygous viability by 5.5% per insert, and induced recessive lethal mutations at a rate of 3.8% per insert. Mutational variation for the bristle traits averaged over both sexes was 0.03V(e) per homozygous P insert and 0.003V(e) per heterozygous P insert, where V(e) is the environmental variance. Mutational variation was greater for the sexes considered separately because inserts had large pleiotropic effects on sex dimorphism of bristle characters. The distributions of homozygous effects of inserts on the bristle traits were asymmetrical, with the largest effects in the direction of reducing bristle number; and highly leptokurtic, with most of the increase in variance contributed by a few lines with large effects. The inserts had partially recessive effects on the bristle traits. Insert lines with extreme bristle effects had on average greatly reduced viability. PMID:1311697

  16. The same IkappaBalpha mutation in two related individuals leads to completely different clinical syndromes.

    PubMed

    Janssen, Riny; van Wengen, Annelies; Hoeve, Marieke A; ten Dam, Monique; van der Burg, Miriam; van Dongen, Jacques; van de Vosse, Esther; van Tol, Maarten; Bredius, Robbert; Ottenhoff, Tom H; Weemaes, Corry; van Dissel, Jaap T; Lankester, Arjan

    2004-09-06

    Both innate and adaptive immune responses are dependent on activation of nuclear factor kappaB (NF-kappaB), induced upon binding of pathogen-associated molecular patterns to Toll-like receptors (TLRs). In murine models, defects in NF-kappaB pathway are often lethal and viable knockout mice have severe immune defects. Similarly, defects in the human NF-kappaB pathway described to date lead to severe clinical disease. Here, we describe a patient with a hyper immunoglobulin M-like immunodeficiency syndrome and ectodermal dysplasia. Monocytes did not produce interleukin 12p40 upon stimulation with various TLR stimuli and nuclear translocation of NF-kappaB was impaired. T cell receptor-mediated proliferation was also impaired. A heterozygous mutation was found at serine 32 in IkappaBalpha. Interestingly, his father has the same mutation but displays complex mosaicism. He does not display features of ectodermal dysplasia and did not suffer from serious infections with the exception of a relapsing Salmonella typhimurium infection. His monocyte function was impaired, whereas T cell function was relatively normal. Consistent with this, his T cells almost exclusively displayed the wild-type allele, whereas both alleles were present in his monocytes. We propose that the T and B cell compartment of the mosaic father arose as a result of selection of wild-type cells and that this underlies the widely different clinical phenotype.

  17. Isolation and Characterization of Sex-Linked Female-Sterile Mutants in DROSOPHILA MELANOGASTER with Special Attention to Eggshell Mutants

    PubMed Central

    Komitopoulou, Katia; Gans, Madeleine; Margaritis, Lukas H.; Kafatos, Fotis C.; Masson, Michele

    1983-01-01

    To study genes that function mainly or exclusively during oogenesis, we have isolated and analyzed female-sterile mutations, with special emphasis on those that affect eggshell formation. Following treatment that induced 61 to 66% lethals, 8.1% of the 1071 X chromosomes tested carried recessive female sterility mutations (87 isolates), and 8.0% carried partial female-sterile mutations (86 isolates), respectively. In addition, three dominant female steriles were recovered. Some of the mutants had very low fecundity, and others laid morphologically normal eggs that failed to develop. A third category included 29 mutants that laid eggs with morphological abnormalities: 26 were female steriles, two were partial female steriles and one was fertile. Mutants of this third category were characterized in some detail and compared with 40 previously isolated mutants that laid similarly abnormal eggs. Approximately 28–31 complementation groups with morphological abnormalities were detected, some of which were large allelic series (11, 9, 7, 6 and 5 alleles). Twenty-four groups were mapped genetically or cytogenetically, and 21 were partially characterized by ultrastructural and biochemical procedures. Of the latter, one group showed clear deficiency of yolk proteins, and nine showed prominent ultrastructural defects in the chorion (at least eight accompanied by deficiencies in characterized chorion proteins). At least six groups with clear-cut effects were found at loci not previously identified with known chorion structural genes. PMID:17246182

  18. A pharmacological screen for compounds that rescue the developmental lethality of a Drosophila ATM mutant.

    PubMed

    Rimkus, Stacey A; Wassarman, David A

    2018-01-01

    Ataxia-telangiectasia (A-T) is a neurodegenerative disease caused by mutation of the A-T mutated (ATM) gene. ATM encodes a protein kinase that is activated by DNA damage and phosphorylates many proteins, including those involved in DNA repair, cell cycle control, and apoptosis. Characteristic biological and molecular functions of ATM observed in mammals are conserved in Drosophila melanogaster. As an example, conditional loss-of-function ATM alleles in flies cause progressive neurodegeneration through activation of the innate immune response. However, unlike in mammals, null alleles of ATM in flies cause lethality during development. With the goals of understanding biological and molecular roles of ATM in a whole animal and identifying candidate therapeutics for A-T, we performed a screen of 2400 compounds, including FDA-approved drugs, natural products, and bioactive compounds, for modifiers of the developmental lethality caused by a temperature-sensitive ATM allele (ATM8) that has reduced kinase activity at non-permissive temperatures. Ten compounds reproducibly suppressed the developmental lethality of ATM8 flies, including Ronnel, which is an organophosphate. Ronnel and other suppressor compounds are known to cause mitochondrial dysfunction or to inhibit the enzyme acetylcholinesterase, which controls the levels of the neurotransmitter acetylcholine, suggesting that detrimental consequences of reduced ATM kinase activity can be rescued by inhibiting the function of mitochondria or increasing acetylcholine levels. We carried out further studies of Ronnel because, unlike the other compounds that suppressed the developmental lethality of homozygous ATM8 flies, Ronnel was toxic to the development of heterozygous ATM8 flies. Ronnel did not affect the innate immune response of ATM8 flies, and it further increased the already high levels of DNA damage in brains of ATM8 flies, but its effects were not harmful to the lifespan of rescued ATM8 flies. These results provide new leads for understanding the biological and molecular roles of ATM and for the treatment of A-T.

  19. Gene-Trap Mutagenesis Identifies Mammalian Genes Contributing to Intoxication by Clostridium perfringens ε-Toxin

    PubMed Central

    Ivie, Susan E.; Fennessey, Christine M.; Sheng, Jinsong; Rubin, Donald H.; McClain, Mark S.

    2011-01-01

    The Clostridium perfringens ε-toxin is an extremely potent toxin associated with lethal toxemias in domesticated ruminants and may be toxic to humans. Intoxication results in fluid accumulation in various tissues, most notably in the brain and kidneys. Previous studies suggest that the toxin is a pore-forming toxin, leading to dysregulated ion homeostasis and ultimately cell death. However, mammalian host factors that likely contribute to ε-toxin-induced cytotoxicity are poorly understood. A library of insertional mutant Madin Darby canine kidney (MDCK) cells, which are highly susceptible to the lethal affects of ε-toxin, was used to select clones of cells resistant to ε-toxin-induced cytotoxicity. The genes mutated in 9 surviving resistant cell clones were identified. We focused additional experiments on one of the identified genes as a means of validating the experimental approach. Gene expression microarray analysis revealed that one of the identified genes, hepatitis A virus cellular receptor 1 (HAVCR1, KIM-1, TIM1), is more abundantly expressed in human kidney cell lines than it is expressed in human cells known to be resistant to ε-toxin. One human kidney cell line, ACHN, was found to be sensitive to the toxin and expresses a larger isoform of the HAVCR1 protein than the HAVCR1 protein expressed by other, toxin-resistant human kidney cell lines. RNA interference studies in MDCK and in ACHN cells confirmed that HAVCR1 contributes to ε-toxin-induced cytotoxicity. Additionally, ε-toxin was shown to bind to HAVCR1 in vitro. The results of this study indicate that HAVCR1 and the other genes identified through the use of gene-trap mutagenesis and RNA interference strategies represent important targets for investigation of the process by which ε-toxin induces cell death and new targets for potential therapeutic intervention. PMID:21412435

  20. Gene-trap mutagenesis identifies mammalian genes contributing to intoxication by Clostridium perfringens ε-toxin.

    PubMed

    Ivie, Susan E; Fennessey, Christine M; Sheng, Jinsong; Rubin, Donald H; McClain, Mark S

    2011-03-11

    The Clostridium perfringens ε-toxin is an extremely potent toxin associated with lethal toxemias in domesticated ruminants and may be toxic to humans. Intoxication results in fluid accumulation in various tissues, most notably in the brain and kidneys. Previous studies suggest that the toxin is a pore-forming toxin, leading to dysregulated ion homeostasis and ultimately cell death. However, mammalian host factors that likely contribute to ε-toxin-induced cytotoxicity are poorly understood. A library of insertional mutant Madin Darby canine kidney (MDCK) cells, which are highly susceptible to the lethal affects of ε-toxin, was used to select clones of cells resistant to ε-toxin-induced cytotoxicity. The genes mutated in 9 surviving resistant cell clones were identified. We focused additional experiments on one of the identified genes as a means of validating the experimental approach. Gene expression microarray analysis revealed that one of the identified genes, hepatitis A virus cellular receptor 1 (HAVCR1, KIM-1, TIM1), is more abundantly expressed in human kidney cell lines than it is expressed in human cells known to be resistant to ε-toxin. One human kidney cell line, ACHN, was found to be sensitive to the toxin and expresses a larger isoform of the HAVCR1 protein than the HAVCR1 protein expressed by other, toxin-resistant human kidney cell lines. RNA interference studies in MDCK and in ACHN cells confirmed that HAVCR1 contributes to ε-toxin-induced cytotoxicity. Additionally, ε-toxin was shown to bind to HAVCR1 in vitro. The results of this study indicate that HAVCR1 and the other genes identified through the use of gene-trap mutagenesis and RNA interference strategies represent important targets for investigation of the process by which ε-toxin induces cell death and new targets for potential therapeutic intervention.

  1. AP2 hemicomplexes contribute independently to synaptic vesicle endocytosis

    PubMed Central

    Gu, Mingyu; Liu, Qiang; Watanabe, Shigeki; Sun, Lin; Hollopeter, Gunther; Grant, Barth D; Jorgensen, Erik M

    2013-01-01

    The clathrin adaptor complex AP2 is thought to be an obligate heterotetramer. We identify null mutations in the α subunit of AP2 in the nematode Caenorhabditis elegans. α-adaptin mutants are viable and the remaining μ2/β hemicomplex retains some function. Conversely, in μ2 mutants, the alpha/sigma2 hemicomplex is localized and is partially functional. α-μ2 double mutants disrupt both halves of the complex and are lethal. The lethality can be rescued by expression of AP2 components in the skin, which allowed us to evaluate the requirement for AP2 subunits at synapses. Mutations in either α or μ2 subunits alone reduce the number of synaptic vesicles by about 30%; however, simultaneous loss of both α and μ2 subunits leads to a 70% reduction in synaptic vesicles and the presence of large vacuoles. These data suggest that AP2 may function as two partially independent hemicomplexes. DOI: http://dx.doi.org/10.7554/eLife.00190.001 PMID:23482940

  2. Effect of different laser irradiation on the dysentery bacilli

    NASA Astrophysics Data System (ADS)

    Ou, Lin; Chen, Rong; Chen, Yanjiao; Li, Depin; Wen, Caixia

    1998-08-01

    The S. flexnesi, which have high drug-resistance especially in Cm, Sm, Tc, SD, were irradiated by Ar+ laser at 488 nm and semiconductor laser at 808 nm. The experiment results have shown that both Ar+ laser and semiconductor laser with power density of 1.7 w/cm2 and irradiation dose of 2000 J/cm2 can conduce to the bacterial lethality and increase the mutation rates of the bacterial drug-sensitivity, and 'Colony Count' method have the superiority over the 'Inhibacteria Ring' method. At the mean time it further indicate that the high power semiconductor laser would play an important role in the sciences of laser biological medicine. But the effect of the near infrared semiconductor laser is far lower than that of Ar+ laser of shorter wavelength at the same irradiation dose. It is clear that the output and irradiation dose of near infrared semiconductor laser shall be increased in order to get the same rates of the bacterial lethality and the drug-sensitivity mutation as Ar+ laser's.

  3. [Hygienic evaluation of the total mutagenic activity of snow samples from Magnitogorsk].

    PubMed

    Legostaeva, T B; Ingel', F I; Antipanova, N A; Iurchenko, V V; Iuretseva, N A; Kotliar, N N

    2010-01-01

    The paper gives the results of 4-year monitoring of the total mutagenic activity of snow samples from different Magnitogork areas in a test for induction of dominant lethal mutations (DLM) in the gametes of Drosophila melanogaster. An association was first found between the rate of DLM and the content of some chemical compounds in the ambient air and snow samples; moreover all the substances present in the samples, which had found genotoxic effects, showed a positive correlation with the rate of DLM. Furthermore, direct correlations were first established between the rate of DLM and the air pollution index and morbidity rates in 5-7-year-old children residing in the areas under study. The findings allow the test for induction of dominant lethal mutations (DLM) in the gametes of Drosophila melanogaster to be recommended due to its unique informative and prognostic value for monitoring ambient air pollution and for extensive use in the risk assessment system.

  4. CRISPR/Cas9 mediated genome editing in ES cells and its application for chimeric analysis in mice.

    PubMed

    Oji, Asami; Noda, Taichi; Fujihara, Yoshitaka; Miyata, Haruhiko; Kim, Yeon Joo; Muto, Masanaga; Nozawa, Kaori; Matsumura, Takafumi; Isotani, Ayako; Ikawa, Masahito

    2016-08-17

    Targeted gene disrupted mice can be efficiently generated by expressing a single guide RNA (sgRNA)/CAS9 complex in the zygote. However, the limited success of complicated genome editing, such as large deletions, point mutations, and knockins, remains to be improved. Further, the mosaicism in founder generations complicates the genotypic and phenotypic analyses in these animals. Here we show that large deletions with two sgRNAs as well as dsDNA-mediated point mutations are efficient in mouse embryonic stem cells (ESCs). The dsDNA-mediated gene knockins are also feasible in ESCs. Finally, we generated chimeric mice with biallelic mutant ESCs for a lethal gene, Dnajb13, and analyzed their phenotypes. Not only was the lethal phenotype of hydrocephalus suppressed, but we also found that Dnajb13 is required for sperm cilia formation. The combination of biallelic genome editing in ESCs and subsequent chimeric analysis provides a useful tool for rapid gene function analysis in the whole organism.

  5. Validation of Deleterious Mutations in Vorderwald Cattle

    PubMed Central

    Reinartz, Sina; Distl, Ottmar

    2016-01-01

    In Montbéliarde cattle two candidate mutations on bovine chromosomes 19 and 29 responsible for embryonic lethality have been detected. Montbéliarde bulls have been introduced into Vorderwald cattle to improve milk and fattening performance. Due to the small population size of Vorderwald cattle and the wide use of a few Montbéliarde bulls through artificial insemination, inbreeding on Montbéliarde bulls in later generations was increasing. Therefore, we genotyped an aborted fetus which was inbred on Montbéliarde as well as Vorderwald x Montbéliarde crossbred bulls for both deleterious mutations. The abortion was observed in an experimental herd of Vorderwald cattle. The objectives of the present study were to prove if one or both lethal mutations may be assumed to have caused this abortion and to show whether these deleterious mutations have been introduced into the Vorderwald cattle population through Montbéliarde bulls. The aborted fetus was homozygous for the SLC37A2:g.28879810C>T mutation (ss2019324563) on BTA29 and both parents as well as the paternal and maternal grandsire were heterozygous for this mutation. In addition, the parents and the paternal grandsire were carriers of the MH2-haplotype linked with the T-allele of the SLC37A2:g.28879810C>T mutation. For the SHBG:g.27956790C>T mutation (rs38377500) on BTA19 (MH1), the aborted fetus and its sire were heterozygous. Among all further 341 Vorderwald cattle genotyped we found 27 SLC37A2:g.28879810C>T heterozygous animals resulting in an allele frequency of 0.0396. Among the 120 male Vorderwald cattle, there were 12 heterozygous with an allele frequency of 0.05. The SLC37A2:g.28879810C>T mutation could not be found in further nine cattle breeds nor in Vorderwald cattle with contributions from Ayrshire bulls. In 69 Vorderwald cattle without genes from Montbéliarde bulls the mutated allele of SLC37A2:g.28879810C>T could not be detected. The SHBG:g.27956790C>T mutation appeared unlikely to be responsible for the present case of abortion and, in addition, we observed this mutation in a homozygous state in a living animal. In conclusion, we could demonstrate the first case of an aborted fetus carrying the deleterious SLC37A2:g.28879810C>T mutation homozygous and show that this deleterious mutation had been introduced through Montbéliarde bulls into Vorderwald cattle. PMID:27472836

  6. Adaptive tuning of mutation rates allows fast response to lethal stress in Escherichia coli

    PubMed Central

    Swings, Toon; Van den Bergh, Bram; Wuyts, Sander; Oeyen, Eline; Voordeckers, Karin; Verstrepen, Kevin J; Fauvart, Maarten; Verstraeten, Natalie; Michiels, Jan

    2017-01-01

    While specific mutations allow organisms to adapt to stressful environments, most changes in an organism's DNA negatively impact fitness. The mutation rate is therefore strictly regulated and often considered a slowly-evolving parameter. In contrast, we demonstrate an unexpected flexibility in cellular mutation rates as a response to changes in selective pressure. We show that hypermutation independently evolves when different Escherichia coli cultures adapt to high ethanol stress. Furthermore, hypermutator states are transitory and repeatedly alternate with decreases in mutation rate. Specifically, population mutation rates rise when cells experience higher stress and decline again once cells are adapted. Interestingly, we identified cellular mortality as the major force driving the quick evolution of mutation rates. Together, these findings show how organisms balance robustness and evolvability and help explain the prevalence of hypermutation in various settings, ranging from emergence of antibiotic resistance in microbes to cancer relapses upon chemotherapy. DOI: http://dx.doi.org/10.7554/eLife.22939.001 PMID:28460660

  7. Reward and Toxicity of Cocaine Metabolites Generated by Cocaine Hydrolase.

    PubMed

    Murthy, Vishakantha; Geng, Liyi; Gao, Yang; Zhang, Bin; Miller, Jordan D; Reyes, Santiago; Brimijoin, Stephen

    2015-08-01

    Butyrylcholinesterase (BChE) gene therapy is emerging as a promising concept for treatment of cocaine addiction. BChE levels after gene transfer can rise 1000-fold above those in untreated mice, making this enzyme the second most abundant plasma protein. For months or years, gene transfer of a BChE mutated into a cocaine hydrolase (CocH) can maintain enzyme levels that destroy cocaine within seconds after appearance in the blood stream, allowing little to reach the brain. Rapid enzyme action causes a sharp rise in plasma levels of two cocaine metabolites, benzoic acid (BA) and ecgonine methyl ester (EME), a smooth muscle relaxant that is mildly hypotensive and, at best, only weakly rewarding. The present study, utilizing Balb/c mice, tested reward effects and cardiovascular effects of administering EME and BA together at molar levels equivalent to those generated by a given dose of cocaine. Reward was evaluated by conditioned place preference. In this paradigm, cocaine (20 mg/kg) induced a robust positive response but the equivalent combined dose of EME + BA failed to induce either place preference or aversion. Likewise, mice that had undergone gene transfer with mouse CocH (mCocH) showed no place preference or aversion after repeated treatments with a near-lethal 80 mg/kg cocaine dose. Furthermore, a single administration of that same high cocaine dose failed to affect blood pressure as measured using the noninvasive tail-cuff method. These observations confirm that the drug metabolites generated after CocH gene transfer therapy are safe even after a dose of cocaine that would ordinarily be lethal.

  8. Lethality In Mice Following Localized Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Ferrario, Angela; Gomer, Charles J.; Murphree, A. L.

    1989-06-01

    Porphyrin photodynamic therapy directed specifically to the hind leg of various strains of mice was found to induce a high percentage of lethality at dosages which would be required to achieve cures in tumor bearing mice. Toxicity was observed in both pigmented and albino mouse strains. An inverse relationship between light dose rate and lethality was documented. Anti-coagulant drugs and anti-inflammatory agents which inhibit cyclo-oxygenase had protective effects. The response induced by localized PDT appears to mimic that of a classical traumatic shock syndrome and may be limited to PDT in small animals such as mice.

  9. Tissue-specific mosaicism for a lethal osteogenesis imperfecta COL1A1 mutation causes mild OI/EDS overlap syndrome.

    PubMed

    Symoens, Sofie; Steyaert, Wouter; Demuynck, Lynn; De Paepe, Anne; Diderich, Karin E M; Malfait, Fransiska; Coucke, Paul J

    2017-04-01

    Type I collagen is the predominant protein of connective tissues such as skin and bone. Mutations in the type I collagen genes (COL1A1 and COL1A2) mainly cause osteogenesis imperfecta (OI). We describe a patient with clinical signs of Ehlers-Danlos syndrome (EDS), including fragile skin, easy bruising, recurrent luxations, and fractures resembling mild OI. Biochemical collagen analysis of the patients' dermal fibroblasts showed faint overmodification of the type I collagen bands, a finding specific for structural defects in type I collagen. Bidirectional Sanger sequencing detected an in-frame deletion in exon 44 of COL1A1 (c.3150_3158del), resulting in the deletion of three amino acids (p.Ala1053_Gly1055del) in the collagen triple helix. This COL1A1 mutation was hitherto identified in four probands with lethal OI, and never in EDS patients. As the peaks on the electropherogram corresponding to the mutant allele were decreased in intensity, we performed next generation sequencing of COL1A1 to study mosaicism in skin and blood. While approximately 9% of the reads originating from fibroblast gDNA harbored the COL1A1 deletion, the deletion was not detected in gDNA from blood. Most likely, the mild clinical symptoms observed in our patient can be explained by the mosaic state of the mutation. © 2017 Wiley Periodicals, Inc.

  10. [Underlying Mechanisms of Methamphetamine-Induced Self-Injurious Behavior and Lethal Effects in Mice].

    PubMed

    Mori, Tomohisa; Sawaguchi, Toshiko

    2018-01-01

    Relatively high doses of psychostimulants induce neurotoxicity on the dopaminergic system and self-injurious behavior (SIB) in rodents. However the underlying neuronal mechanisms of SIB remains unclear. Dopamine receptor antagonists, N-methyl-D-aspartic acid (NMDA) receptor antagonists, Nitric Oxide Synthase (NOS) inhibitors and free radical scavengers significantly attenuate methamphetamine-induced SIB. These findings indicate that activation of dopamine as well as NMDA receptors followed by radical formation and oxidative stress, especially when mediated by NOS activation, is associated with methamphetamine-induced SIB. On the other hand, an increase in the incidence of polydrug abuse is a major problem worldwide. Coadministered methamphetamine and morphine induced lethality in more than 80% in mice, accompanied by an increase in the number of poly (ADP-ribose) polymerase (PARP)-immunoreactive cells in the heart, kidney and liver. The lethal effect and the increase in the incidence of rupture or PARP-immunoreactive cells induced by the coadministration of methamphetamine and morphine were significantly attenuated by pretreatment with a phospholipase A2 inhibitor or a radical scavenger, or by cooling of body from 30 to 90 min after drug administration. These results suggest that free radicals play an important role in the increased lethality induced by the coadministration of methamphetamine and morphine. Therefore, free radical scavengers and cooling are beneficial for preventing death that is induced by the coadministration of methamphetamine and morphine. These findings may help us better understand for masochistic behavior, which is a clinical phenomenon on SIB, as well as polydrug-abuse-induced acute toxicity.

  11. Mutations in FLNB cause boomerang dysplasia

    PubMed Central

    Bicknell, L; Morgan, T; Bonafe, L; Wessels, M; Bialer, M; Willems, P; Cohn, D; Krakow, D; Robertson, S

    2005-01-01

    Boomerang dysplasia (BD) is a perinatal lethal osteochondrodysplasia, characterised by absence or underossification of the limb bones and vertebrae. The BD phenotype is similar to a group of disorders including atelosteogenesis I, atelosteogenesis III, and dominantly inherited Larsen syndrome that we have recently shown to be associated with mutations in FLNB, the gene encoding the actin binding cytoskeletal protein, filamin B. We report the identification of mutations in FLNB in two unrelated individuals with boomerang dysplasia. The resultant substitutions, L171R and S235P, lie within the calponin homology 2 region of the actin binding domain of filamin B and occur at sites that are evolutionarily well conserved. These findings expand the phenotypic spectrum resulting from mutations in FLNB and underline the central role this protein plays during skeletogenesis in humans. PMID:15994868

  12. Mutations in FLNB cause boomerang dysplasia.

    PubMed

    Bicknell, L S; Morgan, T; Bonafé, L; Wessels, M W; Bialer, M G; Willems, P J; Cohn, D H; Krakow, D; Robertson, S P

    2005-07-01

    Boomerang dysplasia (BD) is a perinatal lethal osteochondrodysplasia, characterised by absence or underossification of the limb bones and vertebrae. The BD phenotype is similar to a group of disorders including atelosteogenesis I, atelosteogenesis III, and dominantly inherited Larsen syndrome that we have recently shown to be associated with mutations in FLNB, the gene encoding the actin binding cytoskeletal protein, filamin B. We report the identification of mutations in FLNB in two unrelated individuals with boomerang dysplasia. The resultant substitutions, L171R and S235P, lie within the calponin homology 2 region of the actin binding domain of filamin B and occur at sites that are evolutionarily well conserved. These findings expand the phenotypic spectrum resulting from mutations in FLNB and underline the central role this protein plays during skeletogenesis in humans.

  13. De Novo Emergence of Genetically Resistant Mutants of Mycobacterium tuberculosis from the Persistence Phase Cells Formed against Antituberculosis Drugs In Vitro

    PubMed Central

    Sebastian, Jees; Swaminath, Sharmada; Nair, Rashmi Ravindran; Jakkala, Kishor; Pradhan, Atul

    2016-01-01

    ABSTRACT Bacterial persisters are a subpopulation of cells that can tolerate lethal concentrations of antibiotics. However, the possibility of the emergence of genetically resistant mutants from antibiotic persister cell populations, upon continued exposure to lethal concentrations of antibiotics, remained unexplored. In the present study, we found that Mycobacterium tuberculosis cells exposed continuously to lethal concentrations of rifampin (RIF) or moxifloxacin (MXF) for prolonged durations showed killing, RIF/MXF persistence, and regrowth phases. RIF-resistant or MXF-resistant mutants carrying clinically relevant mutations in the rpoB or gyrA gene, respectively, were found to emerge at high frequency from the RIF persistence phase population. A Luria-Delbruck fluctuation experiment using RIF-exposed M. tuberculosis cells showed that the rpoB mutants were not preexistent in the population but were formed de novo from the RIF persistence phase population. The RIF persistence phase M. tuberculosis cells carried elevated levels of hydroxyl radical that inflicted extensive genome-wide mutations, generating RIF-resistant mutants. Consistent with the elevated levels of hydroxyl radical-mediated genome-wide random mutagenesis, MXF-resistant M. tuberculosis gyrA de novo mutants could be selected from the RIF persistence phase cells. Thus, unlike previous studies, which showed emergence of genetically resistant mutants upon exposure of bacteria for short durations to sublethal concentrations of antibiotics, our study demonstrates that continuous prolonged exposure of M. tuberculosis cells to lethal concentrations of an antibiotic generates antibiotic persistence phase cells that form a reservoir for the generation of genetically resistant mutants to the same antibiotic or another antibiotic. These findings may have clinical significance in the emergence of drug-resistant tubercle bacilli. PMID:27895008

  14. Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress.

    PubMed

    Feng, Wenyi; Bachant, Jeff; Collingwood, David; Raghuraman, M K; Brewer, Bonita J

    2009-12-01

    Yeast replication checkpoint mutants lose viability following transient exposure to hydroxyurea, a replication-impeding drug. In an effort to understand the basis for this lethality, we discovered that different events are responsible for inviability in checkpoint-deficient cells harboring mutations in the mec1 and rad53 genes. By monitoring genomewide replication dynamics of cells exposed to hydroxyurea, we show that cells with a checkpoint deficient allele of RAD53, rad53K227A, fail to duplicate centromeres. Following removal of the drug, however, rad53K227A cells recover substantial DNA replication, including replication through centromeres. Despite this recovery, the rad53K227A mutant fails to achieve biorientation of sister centromeres during recovery from hydroxyurea, leading to secondary activation of the spindle assembly checkpoint (SAC), aneuploidy, and lethal chromosome segregation errors. We demonstrate that cell lethality from this segregation defect could be partially remedied by reinforcing bipolar attachment. In contrast, cells with the mec1-1 sml1-1 mutations suffer from severely impaired replication resumption upon removal of hydroxyurea. mec1-1 sml1-1 cells can, however, duplicate at least some of their centromeres and achieve bipolar attachment, leading to abortive segregation and fragmentation of incompletely replicated chromosomes. Our results highlight the importance of replicating yeast centromeres early and reveal different mechanisms of cell death due to differences in replication fork progression.

  15. Myxoma virus M130R is a novel virulence factor required for lethal myxomatosis in rabbits.

    PubMed

    Barrett, John W; Werden, Steven J; Wang, Fuan; McKillop, William M; Jimenez, June; Villeneuve, Danielle; McFadden, Grant; Dekaban, Gregory A

    2009-09-01

    Myxoma virus (MV) is a highly lethal, rabbit-specific poxvirus that induces a disease called myxomatosis in European rabbits. In an effort to understand the function of predicted immunomodulatory genes we have deleted various viral genes from MV and tested the ability of these knockout viruses to induce lethal myxomatosis. MV encodes a unique 15 kD cytoplasmic protein (M130R) that is expressed late (12h post infection) during infection. M130R is a non-essential gene for MV replication in rabbit, monkey or human cell lines. Construction of a targeted gene knockout virus (vMyx130KO) and infection of susceptible rabbits demonstrate that the M130R knockout virus is attenuated and that loss of M130R expression allows the rabbit host immune system to effectively respond to and control the lethal effects of MV. M130R expression is a bona fide poxviral virulence factor necessary for full and lethal development of myxomatosis.

  16. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome

    PubMed Central

    Lamkanfi, Mohamed; Mueller, James L.; Vitari, Alberto C.; Misaghi, Shahram; Fedorova, Anna; Deshayes, Kurt; Lee, Wyne P.; Hoffman, Hal M.

    2009-01-01

    Inflammasomes activate caspase-1 for processing and secretion of the cytokines interleukin-1β (IL-1β) and IL-18. Cryopyrin/NALP3/NLRP3 is an essential component of inflammasomes triggered by microbial ligands, danger-associated molecular patterns (DAMPs), and crystals. Inappropriate Cryopyrin activity has been incriminated in the pathogenesis of gouty arthritis, Alzheimer's, and silicosis. Therefore, inhibitors of the Nalp3 inflammasome offer considerable therapeutic promise. In this study, we show that the type 2 diabetes drug glyburide prevented activation of the Cryopyrin inflammasome. Glyburide's cyclohexylurea group, which binds to adenosine triphosphatase (ATP)–sensitive K+ (KATP) channels for insulin secretion, is dispensable for inflammasome inhibition. Macrophages lacking KATP subunits or ATP-binding cassette transporters also activate the Cryopyrin inflammasome normally. Glyburide analogues inhibit ATP- but not hypothermia-induced IL-1β secretion from human monocytes expressing familial cold-associated autoinflammatory syndrome–associated Cryopyrin mutations, thus suggesting that inhibition occurs upstream of Cryopyrin. Concurrent with the role of Cryopyrin in endotoxemia, glyburide significantly delays lipopolysaccharide-induced lethality in mice. Therefore, glyburide is the first identified compound to prevent Cryopyrin activation and microbial ligand-, DAMP-, and crystal-induced IL-1β secretion. PMID:19805629

  17. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome.

    PubMed

    Lamkanfi, Mohamed; Mueller, James L; Vitari, Alberto C; Misaghi, Shahram; Fedorova, Anna; Deshayes, Kurt; Lee, Wyne P; Hoffman, Hal M; Dixit, Vishva M

    2009-10-05

    Inflammasomes activate caspase-1 for processing and secretion of the cytokines interleukin-1beta (IL-1beta) and IL-18. Cryopyrin/NALP3/NLRP3 is an essential component of inflammasomes triggered by microbial ligands, danger-associated molecular patterns (DAMPs), and crystals. Inappropriate Cryopyrin activity has been incriminated in the pathogenesis of gouty arthritis, Alzheimer's, and silicosis. Therefore, inhibitors of the Nalp3 inflammasome offer considerable therapeutic promise. In this study, we show that the type 2 diabetes drug glyburide prevented activation of the Cryopyrin inflammasome. Glyburide's cyclohexylurea group, which binds to adenosine triphosphatase (ATP)-sensitive K(+) (K(ATP)) channels for insulin secretion, is dispensable for inflammasome inhibition. Macrophages lacking K(ATP) subunits or ATP-binding cassette transporters also activate the Cryopyrin inflammasome normally. Glyburide analogues inhibit ATP- but not hypothermia-induced IL-1beta secretion from human monocytes expressing familial cold-associated autoinflammatory syndrome-associated Cryopyrin mutations, thus suggesting that inhibition occurs upstream of Cryopyrin. Concurrent with the role of Cryopyrin in endotoxemia, glyburide significantly delays lipopolysaccharide-induced lethality in mice. Therefore, glyburide is the first identified compound to prevent Cryopyrin activation and microbial ligand-, DAMP-, and crystal-induced IL-1beta secretion.

  18. Monocarboxylate transporter 1 deficiency and ketone utilization.

    PubMed

    van Hasselt, Peter M; Ferdinandusse, Sacha; Monroe, Glen R; Ruiter, Jos P N; Turkenburg, Marjolein; Geerlings, Maartje J; Duran, Karen; Harakalova, Magdalena; van der Zwaag, Bert; Monavari, Ardeshir A; Okur, Ilyas; Sharrard, Mark J; Cleary, Maureen; O'Connell, Nuala; Walker, Valerie; Rubio-Gozalbo, M Estela; de Vries, Maaike C; Visser, Gepke; Houwen, Roderick H J; van der Smagt, Jasper J; Verhoeven-Duif, Nanda M; Wanders, Ronald J A; van Haaften, Gijs

    2014-11-13

    Ketoacidosis is a potentially lethal condition caused by the imbalance between hepatic production and extrahepatic utilization of ketone bodies. We performed exome sequencing in a patient with recurrent, severe ketoacidosis and identified a homozygous frameshift mutation in the gene encoding monocarboxylate transporter 1 (SLC16A1, also called MCT1). Genetic analysis in 96 patients suspected of having ketolytic defects yielded seven additional inactivating mutations in MCT1, both homozygous and heterozygous. Mutational status was found to be correlated with ketoacidosis severity, MCT1 protein levels, and transport capacity. Thus, MCT1 deficiency is a novel cause of profound ketoacidosis; the present work suggests that MCT1-mediated ketone-body transport is needed to maintain acid-base balance.

  19. The Essential Gene EMB1611 Maintains Shoot Apical Meristem Function During Arabidopsis Development

    USDA-ARS?s Scientific Manuscript database

    The Arabidopsis thaliana genome contains hundreds of genes essential for seed development. Because null mutations in these genes cause embryo lethality, their specific molecular and developmental functions are largely unknown. Here, we identify a role for EMB1611/MEE22, an essential gene in Arabidop...

  20. Mechanism of Ovarian Epithelial Tumor Predispostion in Individuals Carrying Germline BRCA1 Mutations

    DTIC Science & Technology

    2005-01-01

    corresponds to the luteal phase. Vaginal smears obtained at the diestrus phase show primarily inflammatory cells. Immature (green) epithelial cells start...Koller, B.H. (1996). BRCA1 deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities. Nat. Genet. 12, 191-194. 22

  1. Identification of mTOR as a primary resistance factor of the IAP antagonist AT406 in hepatocellular carcinoma cells

    PubMed Central

    Wu, Shao-Feng; Zhao, Yi-Lin; Liu, Ping-Guo; Yin, Zhen-Yu

    2017-01-01

    Dysregulation of inhibitor of apoptosis (IAP) proteins (IAPs) in hepatocellular carcinoma (HCC) is often associated with poor prognosis. Here we showed that AT406, an IAP antagonist, was cytotoxic and pro-apoptotic to both established (HepG2, SMMC-7721 lines) and primary HCC cells. Activation of mTOR could be a key resistance factor of AT406 in HCC cells. mTOR inhibition (by OSI-027), kinase-dead mutation or knockdown remarkably enhanced AT406-induced lethality in HCC cells. Reversely, forced-activation of mTOR by adding SC79 or exogenous expressing a constitutively active S6K1 (T389E) attenuated AT406-induced cytotoxicity against HCC cells. We showed that AT406 induced degradation of IAPs (cIAP-1 and XIAP), but didn't affect another anti-apoptosis protein Mcl-1. Co-treatment of OSI-027 caused simultaneous Mcl-1 downregulation to overcome AT406's resistance. Significantly, shRNA knockdown of Mcl-1 remarkably facilitated AT406-induced apoptosis in HCC cells. In vivo, AT406 oral administration suppressed HepG2 tumor growth in nude mice. Its activity was potentiated with co-administration of OSI-027. We conclude that mTOR could be a key resistance factor of AT406 in HCC cells. PMID:28036295

  2. Identification of mTOR as a primary resistance factor of the IAP antagonist AT406 in hepatocellular carcinoma cells.

    PubMed

    Zhen, Mao-Chuan; Wang, Fu-Qiang; Wu, Shao-Feng; Zhao, Yi-Lin; Liu, Ping-Guo; Yin, Zhen-Yu

    2017-02-07

    Dysregulation of inhibitor of apoptosis (IAP) proteins (IAPs) in hepatocellular carcinoma (HCC) is often associated with poor prognosis. Here we showed that AT406, an IAP antagonist, was cytotoxic and pro-apoptotic to both established (HepG2, SMMC-7721 lines) and primary HCC cells. Activation of mTOR could be a key resistance factor of AT406 in HCC cells. mTOR inhibition (by OSI-027), kinase-dead mutation or knockdown remarkably enhanced AT406-induced lethality in HCC cells. Reversely, forced-activation of mTOR by adding SC79 or exogenous expressing a constitutively active S6K1 (T389E) attenuated AT406-induced cytotoxicity against HCC cells. We showed that AT406 induced degradation of IAPs (cIAP-1 and XIAP), but didn't affect another anti-apoptosis protein Mcl-1. Co-treatment of OSI-027 caused simultaneous Mcl-1 downregulation to overcome AT406's resistance. Significantly, shRNA knockdown of Mcl-1 remarkably facilitated AT406-induced apoptosis in HCC cells. In vivo, AT406 oral administration suppressed HepG2 tumor growth in nude mice. Its activity was potentiated with co-administration of OSI-027. We conclude that mTOR could be a key resistance factor of AT406 in HCC cells.

  3. Structural analysis of thermostabilizing mutations of cocaine esterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narasimhan, Diwahar; Nance, Mark R.; Gao, Daquan

    Cocaine is considered to be the most addictive of all substances of abuse and mediates its effects by inhibiting monoamine transporters, primarily the dopamine transporters. There are currently no small molecules that can be used to combat its toxic and addictive properties, in part because of the difficulty of developing compounds that inhibit cocaine binding without having intrinsic effects on dopamine transport. Most of the effective cocaine inhibitors also display addictive properties. We have recently reported the use of cocaine esterase (CocE) to accelerate the removal of systemic cocaine and to prevent cocaine-induced lethality. However, wild-type CocE is relatively unstablemore » at physiological temperatures ({tau}{sub 1/2} {approx} 13 min at 37 C), presenting challenges for its development as a viable therapeutic agent. We applied computational approaches to predict mutations to stabilize CocE and showed that several of these have increased stability both in vitro and in vivo, with the most efficacious mutant (T172R/G173Q) extending half-life up to 370 min. Here we present novel X-ray crystallographic data on these mutants that provide a plausible model for the observed enhanced stability. We also more extensively characterize the previously reported variants and report on a new stabilizing mutant, L169K. The improved stability of these engineered CocE enzymes will have a profound influence on the use of this protein to combat cocaine-induced toxicity and addiction in humans.« less

  4. ATM Expression Predicts Veliparib and Irinotecan Sensitivity in Gastric Cancer by Mediating P53-Independent Regulation of Cell Cycle and Apoptosis.

    PubMed

    Subhash, Vinod Vijay; Tan, Shi Hui; Yeo, Mei Shi; Yan, Fui Leng; Peethala, Praveen C; Liem, Natalia; Krishnan, Vaidehi; Yong, Wei Peng

    2016-12-01

    Identification of synthetically lethal cellular targets and synergistic drug combinations is important in cancer chemotherapy as they help to overcome treatment resistance and increase efficacy. The Ataxia Telangiectasia Mutated (ATM) kinase is a nuclear protein that plays a major role in the initiation of DNA repair signaling and cell-cycle check points during DNA damage. Although ATM was shown to be associated with poor prognosis in gastric cancer, its implications as a predictive biomarker for cancer chemotherapy remain unexplored. The present study evaluated ATM-induced synthetic lethality and its role in sensitization of gastric cancer cells to PARP and TOP1 inhibitors, veliparib (ABT-888) and irinotecan (CPT-11), respectively. ATM expression was detected in a panel of gastric cell lines, and the IC 50 against each inhibitors was determined. The combinatorial effect of ABT-888 and CPT-11 in gastric cancer cells was also determined both in vitro and in vivo ATM deficiency was found to be associated with enhanced sensitivity to ABT-888 and CPT-11 monotherapy, hence suggesting a mechanism of synthetic lethality. Cells with high ATM expression showed reduced sensitivity to monotherapy; however, they showed a higher therapeutic effect with ABT-888 and CPT-11 combinatorial therapy. Furthermore, ATM expression was shown to play a major role in cellular homeostasis by regulating cell-cycle progression and apoptosis in a P53-independent manner. The present study highlights the clinical utility of ATM expression as a predictive marker for sensitivity of gastric cancer cells to PARP and TOP1 inhibition and provides a deeper mechanistic insight into ATM-dependent regulation of cellular processes. Mol Cancer Ther; 15(12); 3087-96. ©2016 AACR. ©2016 American Association for Cancer Research.

  5. Accumulation of Spontaneous Mutations in the Ciliate Tetrahymena thermophila

    PubMed Central

    Long, Hong-An; Paixão, Tiago; Azevedo, Ricardo B. R.; Zufall, Rebecca A.

    2013-01-01

    Knowledge of the rate and fitness effects of mutations is essential for understanding the process of evolution. Mutations are inherently difficult to study because they are rare and are frequently eliminated by natural selection. In the ciliate Tetrahymena thermophila, mutations can accumulate in the germline genome without being exposed to selection. We have conducted a mutation accumulation (MA) experiment in this species. Assuming that all mutations are deleterious and have the same effect, we estimate that the deleterious mutation rate per haploid germline genome per generation is U = 0.0047 (95% credible interval: 0.0015, 0.0125), and that germline mutations decrease fitness by s = 11% when expressed in a homozygous state (95% CI: 4.4%, 27%). We also estimate that deleterious mutations are partially recessive on average (h = 0.26; 95% CI: –0.022, 0.62) and that the rate of lethal mutations is <10% of the deleterious mutation rate. Comparisons between the observed evolutionary responses in the germline and somatic genomes and the results from individual-based simulations of MA suggest that the two genomes have similar mutational parameters. These are the first estimates of the deleterious mutation rate and fitness effects from the eukaryotic supergroup Chromalveolata and are within the range of those of other eukaryotes. PMID:23934880

  6. Effects of a long-acting mutant bacterial cocaine esterase on acute cocaine toxicity in rats

    PubMed Central

    Collins, Gregory T.; Zaks, Matthew E.; Cunningham, Alyssa R.; St. Clair, Carley; Nichols, Joseph; Narasimhan, Diwahar; Ko, Mei-Chuan; Sunahara, Roger K.; Woods, James H.

    2011-01-01

    Background A longer acting, double mutant bacterial cocaine esterase (CocE T172R/G173Q; DM CocE) has been shown to protect mice from cocaine-induced lethality, inhibit the reinforcing effects of cocaine in rats, and reverse cocaine’s cardiovascular effects in rhesus monkeys. The current studies evaluated the effectiveness of DM CocE to protect against, and reverse cocaine’s cardiovascular, convulsant, and lethal effects in male and female rats. Methods Pretreatment studies were used to determine the effectiveness and in vivo duration of action for DM CocE to protect rats against the occurrence of cardiovascular changes, convulsion and lethality associated with acute cocaine toxicity. Posttreatment studies were used to evaluate the capacity of DM CocE to rescue rats from the cardiovascular and lethal effects of large doses of cocaine. In addition, male and female rats were studied to determine if there were any potential effects of sex on the capacity of DM CocE to protect against, or reverse acute cocaine toxicity in rats. Results Pretreatment with DM CocE dose-dependently protected rats against cocaine-induced cardiovascular changes, convulsion and lethality, with higher doses active for up to 4 hrs, and shifting cocaine-induced lethality at least 10-fold to the right. In addition to dose-dependently recovering rats from an otherwise lethal dose of cocaine, post-treatment with DM CocE also reversed the cardiovascular effects of cocaine. There were no sex-related differences in the effectiveness of DM CocE to protect against, or reverse acute cocaine toxicity. Conclusions Together, these results support the development of DM CocE for the treatment of acute cocaine toxicity. PMID:21481548

  7. Lethal Injection for Execution: Chemical Asphyxiation?

    PubMed Central

    Zimmers, Teresa A; Sheldon, Jonathan; Lubarsky, David A; López-Muñoz, Francisco; Waterman, Linda; Weisman, Richard; Koniaris, Leonidas G

    2007-01-01

    Background Lethal injection for execution was conceived as a comparatively humane alternative to electrocution or cyanide gas. The current protocols are based on one improvised by a medical examiner and an anesthesiologist in Oklahoma and are practiced on an ad hoc basis at the discretion of prison personnel. Each drug used, the ultrashort-acting barbiturate thiopental, the neuromuscular blocker pancuronium bromide, and the electrolyte potassium chloride, was expected to be lethal alone, while the combination was intended to produce anesthesia then death due to respiratory and cardiac arrest. We sought to determine whether the current drug regimen results in death in the manner intended. Methods and Findings We analyzed data from two US states that release information on executions, North Carolina and California, as well as the published clinical, laboratory, and veterinary animal experience. Execution outcomes from North Carolina and California together with interspecies dosage scaling of thiopental effects suggest that in the current practice of lethal injection, thiopental might not be fatal and might be insufficient to induce surgical anesthesia for the duration of the execution. Furthermore, evidence from North Carolina, California, and Virginia indicates that potassium chloride in lethal injection does not reliably induce cardiac arrest. Conclusions We were able to analyze only a limited number of executions. However, our findings suggest that current lethal injection protocols may not reliably effect death through the mechanisms intended, indicating a failure of design and implementation. If thiopental and potassium chloride fail to cause anesthesia and cardiac arrest, potentially aware inmates could die through pancuronium-induced asphyxiation. Thus the conventional view of lethal injection leading to an invariably peaceful and painless death is questionable. PMID:17455994

  8. Interactive lethal and mutagenic effects of ultraviolet light and bleomycin in yeast: synergism or antagonism?

    PubMed

    Lillo, O L; Severgnini, A A; Nunes, E M

    1997-11-01

    The mutagenic interactions of ultraviolet light and bleomycin in haploid populations of Saccharomyces cerevisiae were analyzed. Survival and mutation frequency as a function of different bleomycin concentrations after one conditioning dose of UV radiation were determined. Furthermore, corresponding interaction functions and sensitization factors were calculated. A synergistic interaction between UV light and bleomycin was shown for both lethal and mutagenic events when the cells were in nutrient broth during the treatments. Conversely, the interaction between UV light and bleomycin was antagonistic when the cells were in deionized water during the treatment. The magnitude of lethal and mutagenic interactions depends on dose, and thus presumably on the number of lesions. The observed interactions between UV light and bleomycin suggest that the mechanism that is most likely involved is the induction of repair systems with different error probabilities during the delay of cell division.

  9. NDST1 missense mutations in autosomal recessive intellectual disability.

    PubMed

    Reuter, Miriam S; Musante, Luciana; Hu, Hao; Diederich, Stefan; Sticht, Heinrich; Ekici, Arif B; Uebe, Steffen; Wienker, Thomas F; Bartsch, Oliver; Zechner, Ulrich; Oppitz, Cornelia; Keleman, Krystyna; Jamra, Rami Abou; Najmabadi, Hossein; Schweiger, Susann; Reis, André; Kahrizi, Kimia

    2014-11-01

    NDST1 was recently proposed as a candidate gene for autosomal recessive intellectual disability in two families. It encodes a bifunctional GlcNAc N-deacetylase/N-sulfotransferase with important functions in heparan sulfate biosynthesis. In mice, Ndst1 is crucial for embryonic development and homozygous null mutations are perinatally lethal. We now report on two additional unrelated families with homozygous missense NDST1 mutations. All mutations described to date predict the substitution of conserved amino acids in the sulfotransferase domain, and mutation modeling predicts drastic alterations in the local protein conformation. Comparing the four families, we noticed significant overlap in the clinical features, including both demonstrated and apparent intellectual disability, muscular hypotonia, epilepsy, and postnatal growth deficiency. Furthermore, in Drosophila, knockdown of sulfateless, the NDST ortholog, impairs long-term memory, highlighting its function in cognition. Our data confirm NDST1 mutations as a cause of autosomal recessive intellectual disability with a distinctive phenotype, and support an important function of NDST1 in human development. © 2014 Wiley Periodicals, Inc.

  10. Dominant lethal mutations in Drosophila melanogaster natural populations flown on board ISS.

    NASA Astrophysics Data System (ADS)

    Larina, Olga; Bekker, Anna

    The resistance to mutagenic impacts represents an important issue of manned space missions. However the reasons of its individual variability as well as the factors which could induce mutations in space flight are not fully understood. Drosophila studies accomplished by several research teams at real space flights, revealed pronounced increase of mutations in somatic and reproductive cells, nonetheless, quite an opposite spaceflight effects also occurred, i.e., mei-41 laboratory strain showed postflight mutation rates lower than that in ground control. In order to monitor the influence of space flight on the mutational process, 4 series of space experiment with D. melanogaster wild type populations were performed at International Space Station (ISS). The appliance “Drosophila-2” used for breeding of drosophila in spaceflight conditions, enabled to conduct synchronous studies with two samples of fly populations. First instar drosophila larvae were placed into the experimental appliance 12 hours before the start of transport spacecraft. The duration of experiments was 7.9 through 19.7 days. In 19.7-day experiment, two generations of the flies were raised during the space flight, and then delivered to the earth. The frequency of dominant lethal mutations (DLM) was evaluated as the percentage of embryonic death in the progeny of experimental drosophila samples. DLM tests in VV-09 and Chas-09 natural populations, performed after the exposure to 10.9-day flight, showed the increase of DLM rate in Chas-09 (0.077 in flight series vs. 0.43 in earth-based control) while post-flight DLM value in VV-09 did not diverge from on-earth sample (0.025 and 0.027 correspondingly). The same results for VV-09 were obtained after the 14.7-day and 7.9-day flights with the only exception: 7.9-day flight experiment employed DLM measurements in two VV-09 spaceflight samples, differing by the age of the flies, and the above DLM rates were detected in “younger” VV-09 sample only. DLM in the “elder” sample which returned to the earth at the late pupae stage (0.049) was 2 times higher than in both “young” flight and ground control series. To elucidate the factors underlying these discrepancies, DLM evaluation after the subsequent, 19.6-day flight experiment, was performed in three fractions of second in-flight VV-09 generation, each of them comprised imagoes with definite hatching date (postflight days 2, 3, and 5). The results revealed a gradual decrease of the proportion of embryonic death in the progeny of the second in-flight generation from 0.113 to 0.032 (which is close to baseline values). The ionizing radiation at low Earth orbits alone could not produce considerable impact on mutational frequency. By the return to the earth the flies of the first fractions had attained the pre-imaginal ontogenetic stages which display decreased tolerance to unfavourable environmental conditions, which could probably affect the mutation rate. The results obtained show that native D. melanogaster populations display different susceptibility to mutagenic impacts of space flight. Mutation rate depends on the stage of ontogenetic development and thus could present the source of discrepancies in the results of space experiments.

  11. Loss of the Mono-ADP-ribosyltransferase, Tiparp, Increases Sensitivity to Dioxin-induced Steatohepatitis and Lethality*

    PubMed Central

    Ahmed, Shaimaa; Bott, Debbie; Gomez, Alvin; Tamblyn, Laura; Rasheed, Adil; Cho, Tiffany; MacPherson, Laura; Sugamori, Kim S.; Yang, Yang; Grant, Denis M.; Cummins, Carolyn L.; Matthews, Jason

    2015-01-01

    The aryl hydrocarbon receptor (AHR) mediates the toxic effects of the environmental contaminant dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDD). Dioxin causes a range of toxic responses, including hepatic damage, steatohepatitis, and a lethal wasting syndrome; however, the mechanisms are still unknown. Here, we show that the loss of TCDD-inducible poly(ADP-ribose) polymerase (Tiparp), an ADP-ribosyltransferase and AHR repressor, increases sensitivity to dioxin-induced toxicity, steatohepatitis, and lethality. Tiparp−/− mice given a single injection of 100 μg/kg dioxin did not survive beyond day 5; all Tiparp+/+ mice survived the 30-day treatment. Dioxin-treated Tiparp−/− mice exhibited increased liver steatosis and hepatotoxicity. Tiparp ADP-ribosylated AHR but not its dimerization partner, the AHR nuclear translocator, and the repressive effects of TIPARP on AHR were reversed by the macrodomain containing mono-ADP-ribosylase MACROD1 but not MACROD2. These results reveal previously unidentified roles for Tiparp, MacroD1, and ADP-ribosylation in AHR-mediated steatohepatitis and lethality in response to dioxin. PMID:25975270

  12. Genetic factors of Ebola virus virulence in guinea pigs.

    PubMed

    Subbotina, Ekaterina; Dadaeva, Alexandra; Kachko, Alla; Chepurnov, Alexander

    2010-10-01

    Zaire ebolavirus (ZEBOV) causes severe hemorrhagic fever in primates, whereas in guinea pigs it induces a nonlethal infection with a mild fever and subsequent recovery. We performed 7 selective passages in guinea pigs resulted in obtaining of guinea pig-adapted strain (GPA-P7) strain. By the 7th passage, the infection with EBOV induced a lethal disease in animals accompanied by the characteristic hematological changes: leukocytosis (primarily due to neutrophilia) as well as pronounced deficiencies in platelets, lymphocytes, monocytes and significant decrease of blood neutrophils phagocytic capacity. Increasing of virulence correlated with appearance of several nucleotide substitutions: in the genes NP, A2166G (N566S), VP24, U10784C (L147P), G10557A (M71I), G10805U (R154L), and L, G12286A (V236I). It has been theoretically calculated that the mutations associated with an increase in EBOV virulence can confer characteristic secondary structure on the proteins NP (C-terminal region) and full-sized VP24. (c) 2010 Elsevier B.V. All rights reserved.

  13. Detection of Haplotypes Associated with Prenatal Death in Dairy Cattle and Identification of Deleterious Mutations in GART, SHBG and SLC37A2

    PubMed Central

    Fritz, Sébastien; Capitan, Aurelien; Djari, Anis; Rodriguez, Sabrina C.; Barbat, Anne; Baur, Aurélia; Grohs, Cécile; Weiss, Bernard; Boussaha, Mekki; Esquerré, Diane; Klopp, Christophe; Rocha, Dominique; Boichard, Didier

    2013-01-01

    The regular decrease of female fertility over time is a major concern in modern dairy cattle industry. Only half of this decrease is explained by indirect response to selection on milk production, suggesting the existence of other factors such as embryonic lethal genetic defects. Genomic regions harboring recessive deleterious mutations were detected in three dairy cattle breeds by identifying frequent haplotypes (>1%) showing a deficit in homozygotes among Illumina Bovine 50k Beadchip haplotyping data from the French genomic selection database (47,878 Holstein, 16,833 Montbéliarde, and 11,466 Normande animals). Thirty-four candidate haplotypes (p<10−4) including previously reported regions associated with Brachyspina, CVM, HH1, and HH3 in Holstein breed were identified. Haplotype length varied from 1 to 4.8 Mb and frequencies from 1.7 up to 9%. A significant negative effect on calving rate, consistent in heifers and in lactating cows, was observed for 9 of these haplotypes in matings between carrier bulls and daughters of carrier sires, confirming their association with embryonic lethal mutations. Eight regions were further investigated using whole genome sequencing data from heterozygous bull carriers and control animals (45 animals in total). Six strong candidate causative mutations including polymorphisms previously reported in FANCI (Brachyspina), SLC35A3 (CVM), APAF1 (HH1) and three novel mutations with very damaging effect on the protein structure, according to SIFT and Polyphen-2, were detected in GART, SHBG and SLC37A2 genes. In conclusion, this study reveals a yet hidden consequence of the important inbreeding rate observed in intensively selected and specialized cattle breeds. Counter-selection of these mutations and management of matings will have positive consequences on female fertility in dairy cattle. PMID:23762392

  14. Control of cellular morphogenesis by the Ip12/Bem2 GTPase-activating protein: possible role of protein phosphorylation

    PubMed Central

    1994-01-01

    The IPL2 gene is known to be required for normal polarized cell growth in the budding yeast Saccharomyces cerevisiae. We now show that IPL2 is identical to the previously identified BEM2 gene. bem2 mutants are defective in bud site selection at 26 degrees C and localized cell surface growth and organization of the actin cytoskeleton at 37 degrees C. BEM2 encodes a protein with a COOH-terminal domain homologous to sequences found in several GTPase-activating proteins, including human Bcr. The GTPase-activating protein-domain from the Bem2 protein (Bem2p) or human Bcr can functionally substitute for Bem2p. The Rho1 and Rho2 GTPases are the likely in vivo targets of Bem2p because bem2 mutant phenotypes can be partially suppressed by increasing the gene dosage of RHO1 or RHO2. CDC55 encodes the putative regulatory B subunit of protein phosphatase 2A, and mutations in BEM2 have previously been identified as suppressors of the cdc55-1 mutation. We show here that mutations in the previously identified GRR1 gene can suppress bem2 mutations. grr1 and cdc55 mutants are both elongated in shape and cold- sensitive for growth, and cells lacking both GRR1 and CDC55 exhibit a synthetic lethal phenotype. bem2 mutant phenotypes also can be suppressed by the SSD1-vl (also known as SRK1) mutation, which was shown previously to suppress mutations in the protein phosphatase- encoding SIT4 gene. Cells lacking both BEM2 and SIT4 exhibit a synthetic lethal phenotype even in the presence of the SSD1-v1 suppressor. These genetic interactions together suggest that protein phosphorylation and dephosphorylation play an important role in the BEM2-mediated process of polarized cell growth. PMID:7962097

  15. Control of cellular morphogenesis by the Ip12/Bem2 GTPase-activating protein: possible role of protein phosphorylation.

    PubMed

    Kim, Y J; Francisco, L; Chen, G C; Marcotte, E; Chan, C S

    1994-12-01

    The IPL2 gene is known to be required for normal polarized cell growth in the budding yeast Saccharomyces cerevisiae. We now show that IPL2 is identical to the previously identified BEM2 gene. bem2 mutants are defective in bud site selection at 26 degrees C and localized cell surface growth and organization of the actin cytoskeleton at 37 degrees C. BEM2 encodes a protein with a COOH-terminal domain homologous to sequences found in several GTPase-activating proteins, including human Bcr. The GTPase-activating protein-domain from the Bem2 protein (Bem2p) or human Bcr can functionally substitute for Bem2p. The Rho1 and Rho2 GTPases are the likely in vivo targets of Bem2p because bem2 mutant phenotypes can be partially suppressed by increasing the gene dosage of RHO1 or RHO2. CDC55 encodes the putative regulatory B subunit of protein phosphatase 2A, and mutations in BEM2 have previously been identified as suppressors of the cdc55-1 mutation. We show here that mutations in the previously identified GRR1 gene can suppress bem2 mutations. grr1 and cdc55 mutants are both elongated in shape and cold-sensitive for growth, and cells lacking both GRR1 and CDC55 exhibit a synthetic lethal phenotype. bem2 mutant phenotypes also can be suppressed by the SSD1-vl (also known as SRK1) mutation, which was shown previously to suppress mutations in the protein phosphatase-encoding SIT4 gene. Cells lacking both BEM2 and SIT4 exhibit a synthetic lethal phenotype even in the presence of the SSD1-v1 suppressor. These genetic interactions together suggest that protein phosphorylation and dephosphorylation play an important role in the BEM2-mediated process of polarized cell growth.

  16. Spontaneous mutations in Streptococcus pyogenes isolates from streptococcal toxic shock syndrome patients play roles in virulence

    PubMed Central

    Ikebe, Tadayoshi; Matsumura, Takayuki; Nihonmatsu, Hisako; Ohya, Hitomi; Okuno, Rumi; Mitsui, Chieko; Kawahara, Ryuji; Kameyama, Mitsuhiro; Sasaki, Mari; Shimada, Naomi; Ato, Manabu; Ohnishi, Makoto

    2016-01-01

    Streptococcus pyogenes (group A Streptococcus; GAS) is a widespread human pathogen and causes streptococcal toxic shock syndrome (STSS). STSS isolates have been previously shown to have high frequency mutations in the csrS/csrR (covS/covR) and/or rgg (ropB) genes, which are negative regulators of virulence. However, these mutations were found at somewhat low frequencies in emm1-genotyped isolates, the most prevalent STSS genotype. In this study, we sought to detect causal mutations of enhanced virulence in emm1 isolates lacking mutation(s) in the csrS/csrR and rgg genes. Three mutations associated with elevated virulence were found in the sic (a virulence gene) promoter, the csrR promoter, and the rocA gene (a csrR positive regulator). In vivo contribution of the sic promoter and rocA mutations to pathogenicity and lethality was confirmed in a GAS mouse model. Frequency of the sic promoter mutation was significantly higher in STSS emm1 isolates than in non-invasive STSS isolates; the rocA gene mutation frequency was not significantly different among STSS and non-STSS isolates. STSS emm1 isolates possessed a high frequency mutation in the sic promoter. Thus, this mutation may play a role in the dynamics of virulence and STSS pathogenesis. PMID:27349341

  17. Spontaneous mutations in Streptococcus pyogenes isolates from streptococcal toxic shock syndrome patients play roles in virulence.

    PubMed

    Ikebe, Tadayoshi; Matsumura, Takayuki; Nihonmatsu, Hisako; Ohya, Hitomi; Okuno, Rumi; Mitsui, Chieko; Kawahara, Ryuji; Kameyama, Mitsuhiro; Sasaki, Mari; Shimada, Naomi; Ato, Manabu; Ohnishi, Makoto

    2016-06-28

    Streptococcus pyogenes (group A Streptococcus; GAS) is a widespread human pathogen and causes streptococcal toxic shock syndrome (STSS). STSS isolates have been previously shown to have high frequency mutations in the csrS/csrR (covS/covR) and/or rgg (ropB) genes, which are negative regulators of virulence. However, these mutations were found at somewhat low frequencies in emm1-genotyped isolates, the most prevalent STSS genotype. In this study, we sought to detect causal mutations of enhanced virulence in emm1 isolates lacking mutation(s) in the csrS/csrR and rgg genes. Three mutations associated with elevated virulence were found in the sic (a virulence gene) promoter, the csrR promoter, and the rocA gene (a csrR positive regulator). In vivo contribution of the sic promoter and rocA mutations to pathogenicity and lethality was confirmed in a GAS mouse model. Frequency of the sic promoter mutation was significantly higher in STSS emm1 isolates than in non-invasive STSS isolates; the rocA gene mutation frequency was not significantly different among STSS and non-STSS isolates. STSS emm1 isolates possessed a high frequency mutation in the sic promoter. Thus, this mutation may play a role in the dynamics of virulence and STSS pathogenesis.

  18. Mutations in the Drosophila neuroglian cell adhesion molecule affect motor neuron pathfinding and peripheral nervous system patterning.

    PubMed

    Hall, S G; Bieber, A J

    1997-03-01

    We have identified and characterized three embryonic lethal mutations that alter or abolish expression of Drosophila Neuroglian and have used these mutations to analyze Neuroglian function during development. Neuroglian is a member of the immunoglobulin superfamily. It is expressed by a variety of cell types during embryonic development, including expression on motoneurons and the muscle cells that they innervate. Examination of the nervous systems of neuroglian mutant embryos reveals that motoneurons have altered pathfinding trajectories. Additionally, the sensory cell bodies of the peripheral nervous system display altered morphology and patterning. Using a temperature-sensitive mutation, the phenocritical period for Neuroglian function was determined to occur during late embryogenesis, an interval which coincides with the period during which neuromuscular connections and the peripheral nervous system pattern are established.

  19. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes

    PubMed Central

    Maher, Geoffrey J.; McGowan, Simon J.; Giannoulatou, Eleni; Verrill, Clare; Goriely, Anne; Wilkie, Andrew O. M.

    2016-01-01

    De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39–90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones. PMID:26858415

  20. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes.

    PubMed

    Maher, Geoffrey J; McGowan, Simon J; Giannoulatou, Eleni; Verrill, Clare; Goriely, Anne; Wilkie, Andrew O M

    2016-03-01

    De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39-90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones.

  1. Stopping the spread of agricultural pests with radiation: Quarantine commodity treatments and eradication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vick, K.W.

    1997-12-01

    Almost 60 yr ago, E. F. Knipling, a young U.S. Department of Agriculture (USDA) entomologist, proposed that it might be economically feasible to eradicate the newly introduced screwworm from Florida if a way could be found to sterilize the males. He believed that the male screwworm fly`s strong mating instinct would cause released sterile males to seek out and mate with native screwworm females, interrupting the normal reproductive cycle. Knipling thought this was possible because another USDA scientist, R. C. Bushland, had recently found a way to rear this animal parasite cheaply and in large numbers in the laboratory, makingmore » possible the rearing and release of large numbers of sterile male flies into the native population. Some 13 yr would pass before research showed that radiation-induced dominant lethal mutations offered an efficient, practical way to render screwworm flies sterile.« less

  2. Mutagenicity of streptozotocin and several other nitrosourea compounds in Salmonella typhimurium.

    PubMed

    Zimmer, D M; Bhuyan, B K

    1976-11-01

    The following nitrosourea compounds were compared for their ability to induce mutation (to histidine independence) in the histidine-requiring auxotroph Salmonella typhimurium his G46: MNU, streptozotocin (SZ, streptozocin) and its analogs SZA1 and SZA2, and the antitumor drugs BCNU, CCNU and DCNU. At equitoxic doses SZ, SZA1, SZA2 and MNU were almost equally mutagenic causing 150, 42, 140 and 170 mutants/106 survivors at 20% lethal dose (ID20) ALTHOUGH, ON A WIEGHT BASIS, SZ was the most mutagenic of all the compounds tested. At ID20 BCNU, CCNU and DCNU gave about 0.5 mutants/106 survivors. Our results show that these nitrosoureas, in common with many other drugs (such as cyclophosphamide, daunomycin, etc.) used in cancer chemotherapy, are highly mutagenic. The implication of our results in the screening of drugs for their mutagenicity to man is discussed.

  3. Raine Syndrome (OMIM #259775), Caused By FAM20C Mutation, Is Congenital Sclerosing Osteomalacia With Cerebral Calcification (OMIM 259660).

    PubMed

    Whyte, Michael P; McAlister, William H; Fallon, Michael D; Pierpont, Mary Ella; Bijanki, Vinieth N; Duan, Shenghui; Otaify, Ghada A; Sly, William S; Mumm, Steven

    2017-04-01

    In 1985, we briefly reported infant sisters with a unique, lethal, autosomal recessive disorder designated congenital sclerosing osteomalacia with cerebral calcification. In 1986, this condition was entered into Mendelian Inheritance In Man (MIM) as osteomalacia, sclerosing, with cerebral calcification (MIM 259660). However, no attestations followed. Instead, in 1989 Raine and colleagues published an affected neonate considering unprecedented the striking clinical and radiographic features. In 1992, "Raine syndrome" entered MIM formally as osteosclerotic bone dysplasia, lethal (MIM #259775). In 2007, the etiology emerged as loss-of-function mutation of FAM20C that encodes family with sequence similarity 20, member C. FAM20C is highly expressed in embryonic calcified tissues and encodes a kinase (dentin matrix protein 4) for most of the secreted phosphoproteome including FGF23, osteopontin, and other regulators of skeletal mineralization. Herein, we detail the clinical, radiological, biochemical, histopathological, and FAM20C findings of our patients. Following premortem tetracycline labeling, the proposita's non-decalcified skeletal histopathology after autopsy indicated no rickets but documented severe osteomalacia. Archival DNA revealed the sisters were compound heterozygotes for a unique missense mutation and a novel deletion in FAM20C. Individuals heterozygous for the missense mutation seemed to prematurely fuse their metopic suture and develop a metopic ridge sometimes including trigonocephaly. Our findings clarify FAM20C's role in hard tissue formation and mineralization, and show that Raine syndrome is congenital sclerosing osteomalacia with cerebral calcification. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  4. OAS1 Polymorphisms Are Associated with Susceptibility to West Nile Encephalitis in Horses

    PubMed Central

    Rios, Jonathan J.; Fleming, JoAnn G. W.; Bryant, Uneeda K.; Carter, Craig N.; Huber, John C.; Long, Maureen T.; Spencer, Thomas E.; Adelson, David L.

    2010-01-01

    West Nile virus, first identified within the United States in 1999, has since spread across the continental states and infected birds, humans and domestic animals, resulting in numerous deaths. Previous studies in mice identified the Oas1b gene, a member of the OAS/RNASEL innate immune system, as a determining factor for resistance to West Nile virus (WNV) infection. A recent case-control association study described mutations of human OAS1 associated with clinical susceptibility to WNV infection. Similar studies in horses, a particularly susceptible species, have been lacking, in part, because of the difficulty in collecting populations sufficiently homogenous in their infection and disease states. The equine OAS gene cluster most closely resembles the human cluster, with single copies of OAS1, OAS3 and OAS2 in the same orientation. With naturally occurring susceptible and resistant sub-populations to lethal West Nile encephalitis, we undertook a case-control association study to investigate whether, similar to humans (OAS1) and mice (Oas1b), equine OAS1 plays a role in resistance to severe WNV infection. We identified naturally occurring single nucleotide mutations in equine (Equus caballus) OAS1 and RNASEL genes and, using Fisher's Exact test, we provide evidence that mutations in equine OAS1 contribute to host susceptibility. Virtually all of the associated OAS1 polymorphisms were located within the interferon-inducible promoter, suggesting that differences in OAS1 gene expression may determine the host's ability to resist clinical manifestations associated with WNV infection. PMID:20479874

  5. Development of a chromosome-plasmid balanced lethal system for Lactobacillus acidophilus with thyA gene as selective marker.

    PubMed

    Fu, X; Xu, J G

    2000-01-01

    A chromosome-plasmid balanced lethal gene delivery system for Lactobacillus acidophilus based on the thyA gene was developed. The selected L. acidophilus DOM La strain carries a mutated thyA gene and has an obligate requirement for thymidine. This strain can be used as a host for the constructed shuttle vector pFXL03, lacking antibiotic-resistant markers but having the wild-type thyA gene from L. casei which complements the thyA chromosomal mutation. The vector also contains the replicon region from plasmid pUC19 and that of the Lactococcus plasmid pWV01, which allows the transfer between Escherichia coli, L. casei and L. acidophilus. Eight unique restriction sites (i.e., PstI, HindIII, SphI, SalI, AccI, XbaI, KpnI and SacI) are available for cloning. After 40-time transfers in modified MRS medium, no plasmid loss was observed. The vector pFXL03 is potentially useful as a food-grade vaccine delivery system for L. acidophilus.

  6. Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity.

    PubMed

    Kouno, Takahide; Silvas, Tania V; Hilbert, Brendan J; Shandilya, Shivender M D; Bohn, Markus F; Kelch, Brian A; Royer, William E; Somasundaran, Mohan; Kurt Yilmaz, Nese; Matsuo, Hiroshi; Schiffer, Celia A

    2017-04-28

    Nucleic acid editing enzymes are essential components of the immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins, and contribute to the diversification and lethality of cancers. Among these enzymes are the seven human APOBEC3 deoxycytidine deaminases, each with unique target sequence specificity and subcellular localization. While the enzymology and biological consequences have been extensively studied, the mechanism by which APOBEC3s recognize and edit DNA remains elusive. Here we present the crystal structure of a complex of a cytidine deaminase with ssDNA bound in the active site at 2.2 Å. This structure not only visualizes the active site poised for catalysis of APOBEC3A, but pinpoints the residues that confer specificity towards CC/TC motifs. The APOBEC3A-ssDNA complex defines the 5'-3' directionality and subtle conformational changes that clench the ssDNA within the binding groove, revealing the architecture and mechanism of ssDNA recognition that is likely conserved among all polynucleotide deaminases, thereby opening the door for the design of mechanistic-based therapeutics.

  7. Overcoming myelosuppression due to synthetic lethal toxicity for FLT3-targeted acute myeloid leukemia therapy

    PubMed Central

    Warkentin, Alexander A; Lopez, Michael S; Lasater, Elisabeth A; Lin, Kimberly; He, Bai-Liang; Leung, Anskar YH; Smith, Catherine C; Shah, Neil P; Shokat, Kevan M

    2014-01-01

    Activating mutations in FLT3 confer poor prognosis for individuals with acute myeloid leukemia (AML). Clinically active investigational FLT3 inhibitors can achieve complete remissions but their utility has been hampered by acquired resistance and myelosuppression attributed to a ‘synthetic lethal toxicity’ arising from simultaneous inhibition of FLT3 and KIT. We report a novel chemical strategy for selective FLT3 inhibition while avoiding KIT inhibition with the staurosporine analog, Star 27. Star 27 maintains potency against FLT3 in proliferation assays of FLT3-transformed cells compared with KIT-transformed cells, shows no toxicity towards normal human hematopoiesis at concentrations that inhibit primary FLT3-mutant AML blast growth, and is active against mutations that confer resistance to clinical inhibitors. As a more complete understanding of kinase networks emerges, it may be possible to define anti-targets such as KIT in the case of AML to allow improved kinase inhibitor design of clinical agents with enhanced efficacy and reduced toxicity. DOI: http://dx.doi.org/10.7554/eLife.03445.001 PMID:25531068

  8. Seedling lethality in Nicotiana plumbaginifolia conferred by Ds transposable element insertion into a plant-specific gene.

    PubMed

    Majira, Amel; Domin, Monique; Grandjean, Olivier; Gofron, Krystyna; Houba-Hérin, Nicole

    2002-10-01

    A seedling lethal mutant of Nicotiana plumbaginifolia (sdl-1) was isolated by transposon tagging using a maize Dissociation (Ds) element. The insertion mutation was produced by direct co-transformation of protoplasts with two plasmids: one containing Ds and a second with an Ac transposase gene. sdl-1 seedlings exhibit several phenotypes: swollen organs, short hypocotyls in light and dark conditions, and enlarged and multinucleated cells, that altogether suggest cell growth defects. Mutant cells are able to proliferate under in vitro culture conditions. Genomic DNA sequences bordering the transposon were used to recover cDNA from the normal allele. Complementation of the mutant phenotype with the cDNA confirmed that the transposon had caused the mutation. The Ds element was inserted into the first exon of the open reading frame and the homozygous mutant lacked detectable transcript. Phenocopies of the mutant were obtained by an antisense approach. SDL-1 encodes a novel protein found in several plant genomes but apparently missingfrom animal and fungal genomes; the protein is highly conserved and has a potential plastid targeting motif.

  9. Mutations Allow JC Polyomaviruses to Elude Antibody Recognition | Center for Cancer Research

    Cancer.gov

    JC polyomavirus (JCV) infects the urinary tract of most adults. In healthy individuals, JCV infection does not cause noticeable symptoms. However, in those with compromised immune systems, JCV can cause a lethal brain disease called progressive multifocal leukoencephalopathy (PML). Data from a recently approved assay to detect serum antibodies specific for the JCV protein VP1 revealed that patients with antibodies are at increased risk of developing PML. At the same time, sequencing studies of JCV in cerebrospinal fluid (CSF) identified a number of mutations in VP1. Christopher Buck, Ph.D., and Diana Pastrana, Ph.D., of CCR’s Laboratory of Cellular Oncology, and their colleagues hypothesized that the VP1 mutations could allow the virus to evade antibody-mediated elimination.

  10. Drosophila Nociceptors Mediate Larval Aversion to Dry Surface Environments Utilizing Both the Painless TRP Channel and the DEG/ENaC Subunit, PPK1

    PubMed Central

    Johnson, Wayne A.; Carder, Justin W.

    2012-01-01

    A subset of sensory neurons embedded within the Drosophila larval body wall have been characterized as high-threshold polymodal nociceptors capable of responding to noxious heat and noxious mechanical stimulation. They are also sensitized by UV-induced tissue damage leading to both thermal hyperalgesia and allodynia very similar to that observed in vertebrate nociceptors. We show that the class IV multiple-dendritic(mdIV) nociceptors are also required for a normal larval aversion to locomotion on to a dry surface environment. Drosophila melanogaster larvae are acutely susceptible to desiccation displaying a strong aversion to locomotion on dry surfaces severely limiting the distance of movement away from a moist food source. Transgenic inactivation of mdIV nociceptor neurons resulted in larvae moving inappropriately into regions of low humidity at the top of the vial reflected as an increased overall pupation height and larval desiccation. This larval lethal desiccation phenotype was not observed in wild-type controls and was completely suppressed by growth in conditions of high humidity. Transgenic hyperactivation of mdIV nociceptors caused a reciprocal hypersensitivity to dry surfaces resulting in drastically decreased pupation height but did not induce the writhing nocifensive response previously associated with mdIV nociceptor activation by noxious heat or harsh mechanical stimuli. Larvae carrying mutations in either the Drosophila TRP channel, Painless, or the degenerin/epithelial sodium channel subunit Pickpocket1(PPK1), both expressed in mdIV nociceptors, showed the same inappropriate increased pupation height and lethal desiccation observed with mdIV nociceptor inactivation. Larval aversion to dry surfaces appears to utilize the same or overlapping sensory transduction pathways activated by noxious heat and harsh mechanical stimulation but with strikingly different sensitivities and disparate physiological responses. PMID:22403719

  11. Pro-Apoptotic Role of the Human YPEL5 Gene Identified by Functional Complementation of a Yeast moh1Δ Mutation.

    PubMed

    Lee, Ji Young; Jun, Do Youn; Park, Ju Eun; Kwon, Gi Hyun; Kim, Jong-Sik; Kim, Young Ho

    2017-03-28

    To examine the pro-apoptotic role of the human ortholog (YPEL5) of the Drosophila Yippee protein, the cell viability of Saccharomyces cerevisiae mutant strain with deleted MOH1 , the yeast ortholog, was compared with that of the wild-type (WT)- MOH1 strain after exposure to different apoptogenic stimulants, including UV irradiation, methyl methanesulfonate (MMS), camptothecin (CPT), heat shock, and hyperosmotic shock. The moh1 Δ mutant exhibited enhanced cell viability compared with the WT- MOH1 strain when treated with lethal UV irradiation, 1.8 mM MMS, 100 µ CPT, heat shock at 50°C, or 1.2 M KCl. At the same time, the level of Moh1 protein was commonly up-regulated in the WT- MOH1 strain as was that of Ynk1 protein, which is known as a marker for DNA damage. Although the enhanced UV resistance of the moh1 Δ mutant largely disappeared following transformation with the yeast MOH1 gene or one of the human YPEL1-YPEL5 genes, the transformant bearing pYES2- YPEL5 was more sensitive to lethal UV irradiation and its UV sensitivity was similar to that of the WT- MOH1 strain. Under these conditions, the UV irradiation-induced apoptotic events, such as FITC-Annexin V stainability, mitochondrial membrane potential (ΔΨm) loss, and metacaspase activation, occurred to a much lesser extent in the moh1 Δ mutant compared with the WT- MOH1 strain and the mutant strain bearing pYES2- MOH1 or pYES2- YPEL5 . These results demonstrate the functional conservation between yeast Moh1 and human YPEL5, and their involvement in mitochondria-dependent apoptosis induced by DNA damage.

  12. Evaluation of Anti-HIV-1 Mutagenic Nucleoside Analogues*

    PubMed Central

    Vivet-Boudou, Valérie; Isel, Catherine; El Safadi, Yazan; Smyth, Redmond P.; Laumond, Géraldine; Moog, Christiane; Paillart, Jean-Christophe; Marquet, Roland

    2015-01-01

    Because of their high mutation rates, RNA viruses and retroviruses replicate close to the threshold of viability. Their existence as quasi-species has pioneered the concept of “lethal mutagenesis” that prompted us to synthesize pyrimidine nucleoside analogues with antiviral activity in cell culture consistent with an accumulation of deleterious mutations in the HIV-1 genome. However, testing all potentially mutagenic compounds in cell-based assays is tedious and costly. Here, we describe two simple in vitro biophysical/biochemical assays that allow prediction of the mutagenic potential of deoxyribonucleoside analogues. The first assay compares the thermal stabilities of matched and mismatched base pairs in DNA duplexes containing or not the nucleoside analogues as follows. A promising candidate should display a small destabilization of the matched base pair compared with the natural nucleoside and the smallest gap possible between the stabilities of the matched and mismatched base pairs. From this assay, we predicted that two of our compounds, 5-hydroxymethyl-2′-deoxyuridine and 5-hydroxymethyl-2′-deoxycytidine, should be mutagenic. The second in vitro reverse transcription assay assesses DNA synthesis opposite nucleoside analogues inserted into a template strand and subsequent extension of the newly synthesized base pairs. Once again, only 5-hydroxymethyl-2′-deoxyuridine and 5-hydroxymethyl-2′-deoxycytidine are predicted to be efficient mutagens. The predictive potential of our fast and easy first line screens was confirmed by detailed analysis of the mutation spectrum induced by the compounds in cell culture because only compounds 5-hydroxymethyl-2′-deoxyuridine and 5-hydroxymethyl-2′-deoxycytidine were found to increase the mutation frequency by 3.1- and 3.4-fold, respectively. PMID:25398876

  13. Evaluation of anti-HIV-1 mutagenic nucleoside analogues.

    PubMed

    Vivet-Boudou, Valérie; Isel, Catherine; El Safadi, Yazan; Smyth, Redmond P; Laumond, Géraldine; Moog, Christiane; Paillart, Jean-Christophe; Marquet, Roland

    2015-01-02

    Because of their high mutation rates, RNA viruses and retroviruses replicate close to the threshold of viability. Their existence as quasi-species has pioneered the concept of "lethal mutagenesis" that prompted us to synthesize pyrimidine nucleoside analogues with antiviral activity in cell culture consistent with an accumulation of deleterious mutations in the HIV-1 genome. However, testing all potentially mutagenic compounds in cell-based assays is tedious and costly. Here, we describe two simple in vitro biophysical/biochemical assays that allow prediction of the mutagenic potential of deoxyribonucleoside analogues. The first assay compares the thermal stabilities of matched and mismatched base pairs in DNA duplexes containing or not the nucleoside analogues as follows. A promising candidate should display a small destabilization of the matched base pair compared with the natural nucleoside and the smallest gap possible between the stabilities of the matched and mismatched base pairs. From this assay, we predicted that two of our compounds, 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine, should be mutagenic. The second in vitro reverse transcription assay assesses DNA synthesis opposite nucleoside analogues inserted into a template strand and subsequent extension of the newly synthesized base pairs. Once again, only 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine are predicted to be efficient mutagens. The predictive potential of our fast and easy first line screens was confirmed by detailed analysis of the mutation spectrum induced by the compounds in cell culture because only compounds 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine were found to increase the mutation frequency by 3.1- and 3.4-fold, respectively. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Concomitant Lethal Mutagenesis of Human Immunodeficiency Virus Type 1

    PubMed Central

    Dapp, Michael J.; Holtz, Colleen M.; Mansky, Louis M.

    2012-01-01

    RNA virus population dynamics is complex, and sophisticated approaches are needed in many cases for therapeutic intervention. One such approach, termed lethal mutagenesis, is directed at targeting the virus population structure for extinction or error catastrophe. Previous studies have demonstrated the concept of this approach with human immunodeficiency virus type 1 (HIV-1) by use of chemical mutagens (i.e., 5-azacytidine) as well as by host factors with mutagenic properties (i.e., APOBEC3G). In this study, these two unrelated mutagenic agents were used concomitantly to investigate the interplay of these distinct mutagenic mechanisms. Specifically, an HIV-1 was produced from APOBEC3G (A3G)-expressing cells and used to infect permissive target cells treated with 5-azacytidine (5-AZC). Reduced viral infectivity and increased viral mutagenesis was observed with both the viral mutagen (i.e., G-to-C mutations) and the host restriction factor (i.e., G-to-A mutations); however, when combined, had complex interactions. Intriguingly, nucleotide sequence analysis revealed that concomitant HIV-1 exposure to both 5-AZC and A3G resulted in an increase of G-to-A viral mutagenesis at the expense of G-to-C mutagenesis. A3G catalytic activity was required for the diminution in G-to-C mutagenesis. Taken together, our findings provide the first demonstration for potentiation of the mutagenic effect of a cytosine analog by A3G expression, resulting in concomitant HIV-1 lethal mutagenesis. PMID:22426127

  15. Deficiency of CRTAP in non-lethal recessive osteogenesis imperfecta reduces collagen deposition into matrix.

    PubMed

    Valli, M; Barnes, A M; Gallanti, A; Cabral, W A; Viglio, S; Weis, M A; Makareeva, E; Eyre, D; Leikin, S; Antoniazzi, F; Marini, J C; Mottes, M

    2012-11-01

    Deficiency of any component of the ER-resident collagen prolyl 3-hydroxylation complex causes recessive osteogenesis imperfecta (OI). The complex modifies the α1(I)Pro986 residue and contains cartilage-associated protein (CRTAP), prolyl 3-hydroxylase 1 (P3H1) and cyclophilin B (CyPB). Fibroblasts normally secrete about 10% of CRTAP. Most CRTAP mutations cause a null allele and lethal type VII OI. We identified a 7-year-old Egyptian boy with non-lethal type VII OI and investigated the effects of his null CRTAP mutation on collagen biochemistry, the prolyl 3-hydroxylation complex, and collagen in extracellular matrix. The proband is homozygous for an insertion/deletion in CRTAP (c.118_133del16insTACCC). His dermal fibroblasts synthesize fully overmodified type I collagen, and 3-hydroxylate only 5% of α1(I)Pro986. CRTAP transcripts are 10% of control. CRTAP protein is absent from proband cells, with residual P3H1 and normal CyPB levels. Dermal collagen fibril diameters are significantly increased. By immunofluorescence of long-term cultures, we identified a severe deficiency (10-15% of control) of collagen deposited in extracellular matrix, with disorganization of the minimal fibrillar network. Quantitative pulse-chase experiments corroborate deficiency of matrix deposition, rather than increased matrix turnover. We conclude that defects of extracellular matrix, as well as intracellular defects in collagen modification, contribute to the pathology of type VII OI. © 2011 John Wiley & Sons A/S.

  16. Targeting the DNA damage response in oncology: past, present and future perspectives.

    PubMed

    Basu, Bristi; Yap, Timothy A; Molife, L Rhoda; de Bono, Johann S

    2012-05-01

    The success of poly(ADP-ribose) polymerase inhibition in BRCA1 or BRCA2 deficient tumors as an anticancer strategy provided proof-of-concept for a synthetic lethality approach in oncology. There is therefore now active interest in expanding this approach to include other agents targeting the DNA damage response (DDR). We review lessons learnt from the development of inhibitors against DNA damage response mechanisms and envision the future of DNA repair inhibition in oncology. Preclinical synthetic lethality screens may potentially identify the best combinations of DNA-damaging drugs with inhibitors of DNA repair and the DDR or two agents acting within the DDR. Efforts are currently being made to establish robust and cost-effective assays that may be implemented within appropriate time-scales in parallel with future clinical studies. Detection of relevant mutations in a high-throughput manner, such as with next-generation sequencing for genes implicated in homologous recombination, including BRCA1, BRCA2, and ataxia telangiectasia mutated is anticipated. Novel approaches targeting the DDR are currently being evaluated and inhibitors of ATM, RAD51 and DNA-dependent protein kinase are now in early drug discovery and development. There remains great enthusiasm in oncology practice for pursuing the strategy of synthetic lethality. The future development of antitumor agents targeting the DDR should include detailed correlative biomarker work within early phase clinical studies wherever possible, with clear attempts to identify doses at which robust target modulation is observed.

  17. Leigh syndrome in Drosophila melanogaster: morphological and biochemical characterization of Surf1 post-transcriptional silencing.

    PubMed

    Da-Rè, Caterina; von Stockum, Sophia; Biscontin, Alberto; Millino, Caterina; Cisotto, Paola; Zordan, Mauro A; Zeviani, Massimo; Bernardi, Paolo; De Pittà, Cristiano; Costa, Rodolfo

    2014-10-17

    Leigh Syndrome (LS) is the most common early-onset, progressive mitochondrial encephalopathy usually leading to early death. The single most prevalent cause of LS is occurrence of mutations in the SURF1 gene, and LS(Surf1) patients show a ubiquitous and specific decrease in the activity of mitochondrial respiratory chain complex IV (cytochrome c oxidase, COX). SURF1 encodes an inner membrane mitochondrial protein involved in COX assembly. We established a Drosophila melanogaster model of LS based on the post-transcriptional silencing of CG9943, the Drosophila homolog of SURF1. Knockdown of Surf1 was induced ubiquitously in larvae and adults, which led to lethality; in the mesodermal derivatives, which led to pupal lethality; or in the central nervous system, which allowed survival. A biochemical characterization was carried out in knockdown individuals, which revealed that larvae unexpectedly displayed defects in all complexes of the mitochondrial respiratory chain and in the F-ATP synthase, while adults had a COX-selective impairment. Silencing of Surf1 expression in Drosophila S2R(+) cells led to selective loss of COX activity associated with decreased oxygen consumption and respiratory reserve. We conclude that Surf1 is essential for COX activity and mitochondrial function in D. melanogaster, thus providing a new tool that may help clarify the pathogenic mechanisms of LS. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. ACTION OF MUTAGENIC AGENTS ON AUXOTROPHIC STRAINS OF STREPTOMYCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarai, M.

    1962-01-01

    The mutagenic effect on Streptomyces auxotrophs of uv and x irradiation and of some chemical agerts was studied. From the observed reverse mutations it was concluded that uv and probably x irradiation have an optimal mutagenic dose. With nine auxotrophic strains it was shown that under the same conditions different gene loci reacted differently to the same mutagenic agent. With uy radiation, mutations occurred most frequently at doses falling within the range of 3500 to 4000 erg/mm/sup 2/. With such doses, the average mutation frequency for singly deficient mutants was 0.8 x 10/sup -6/, for doubly deficient mutants 8.4 xmore » 10/sup -8/. An analysis of the number of mutations as compared to the number of survivors in two biochemical mutants (N-4 and N-11) showed that with N- 4 the highest number of mutations was obtained at doses of 3500 to 4500 erg/mm/ sup 2/, namely, 12 to 15 per 10 surviving conidia, and with strain N-11, the highest frequency was obtained in the same dose range, namely, three to four mutations per 10/sup 6/ surviving conidia. The optimal dose of irradiation corresponds to 90 to 97% lethality. It was shown that, unlike the results with uv irradiation, with x rays no such definite relation existed between optimal dose and frequency of mutations. The highest mutation frequency occurred at doses of 20,000 to 25,000 r, which corresponded to 85 to 91% lethality. Of the chemical substances examined, a definite mutagenic action was exerted by acridine orange, streptomycin, hydroxylamine, phenyl, isocyannte, and 8-quinolinol. The maximum mutagenic frequency for survivors was 41.4 x 10/sup -6/ after uv irradiation (biochemical mutant arg 3-; frequency of sportaneous back mutation, 0.041 x 10/sup -6/). With x irradiation the maximum mutagenic frequency was 3.42 x 10/sup -6/ (biochemical mutant meth 1-; frequency of spontaneous back mutation, 0.28 X 10/sup -6/). With chemical agents the maximum mutation frequencies for the initial conidia number were as follows: acridine orange, 3.65 x 10/sup -6/ (biochemical mutant arg 3-); streptomycin, 2.05 x 10/sup -6/ (biochemical mutant arg 3-); hydroxylamine, 5.81 x 10/sup -6/ (biochemical mutant meth 1/sup -/); phenyl isocyanate, 6.11 x 10/sup -6/ (biochemical mutant meth 1/sup -/); 8- quinolinol, 1.02 x 10/sup -6/ (biochemical mutant meth 1/sup -/). (BBB)« less

  19. Fos metamorphoses: Lessons from mutants in model organisms (Drosophila).

    PubMed

    Alfonso-Gonzalez, Carlos; Riesgo-Escovar, Juan Rafael

    2018-05-10

    The Fos oncogene gene family is evolutionarily conserved throughout Eukarya. Fos proteins characteristically have a leucine zipper and a basic region with a helix-turn-helix motif that binds DNA. In vertebrates, there are several Fos homologs. They can homo- or hetero-dimerize via the leucine zipper domain. Fos homologs coupled with other transcription factors, like Jun oncoproteins, constitute the Activator Protein 1 (AP-1) complex. From its original inception as an oncogene, the subsequent finding that they act as transcription factors binding DNA sequences known as TRE, to the realization that they are activated in many different scenarios, and to loss-of-function analysis, the Fos proteins have traversed a multifarious path in development and physiology. They are instrumental in 'immediate early genes' responses, and activated by a seemingly myriad assemblage of different stimuli. Yet, the majority of these studies were basically gain-of-function studies, since it was thought that Fos genes would be cell lethal. Loss-of-function mutations in vertebrates were recovered later, and were not cell lethal. In fact, c-fos null mutations are viable with developmental defects (osteopetrosis and myeloid lineage abnormalities). It was then hypothesized that vertebrate genomes exhibit partial redundancy, explaining the 'mild' phenotypes, and complicating assessment of complete loss-of-function phenotypes. Due to its promiscuous activation, fos genes (especially c-fos) are now commonly used as markers for cellular responses to stimuli. fos homologs high sequence conservation (including Drosophila) is advantageous as it allows critical assessment of fos genes functions in this genetic model. Drosophila melanogaster contains only one fos homolog, the gene kayak. kayak mutations are lethal, and allow study of all the processes where fos is required. The kayak locus encodes several different isoforms, and is a pleiotropic gene variously required for development involving cell shape changes. In general, fos genes seem to primarily activate programs involved in cellular architectural rearrangements and cell shape changes. Copyright © 2018. Published by Elsevier B.V.

  20. Genetic tests in mice of caffeine alone and in combination with mutagens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thayer, P.S.; Kensler, C.J.

    1973-06-01

    The possible mutagenicity of caffeine was studied in mice by the dominant-lethal method, in three experiments. Male mice were given caffeine in drinking water for 8 weeks at 3.6, 13.4, 49, and 122 mg/kg/day (comparable to human consumption of 2.8 to 95 cups of coffee per day). Subsequent mating of each of six males from each group to five females per week for 8 weeks showed no significant increase in dominant-lethal mutations (embryonic deaths) whether expressed as early deaths per pregnant female or as mutation index. Although males consuming the two higher levels of caffeine produced fewer pregnancies, litter sizesmore » of females giving birth were not reduced. Single ip injections of caffeine (15 mg/kg) were given to groups of male mice prior to, subsequent to, and immediately at the time of receiving x-rays (100 R). Each of five males from each group was mated to five females per week for 7 weeks. Embryonic deaths did not show any enhancing effect of caffeine on the mutagenicity produced by the irradiation. Three groups of male mice ingested caffeine in water for 16 weeks at levels of 0, 4, and 13 mg/kg/day. Subgroups of five from each group were given either: no further treatment, a single dose of triethylene melamine at 0.2 mg/kg, or 100 R of x ray, and mated for 7 weeks as above. Fertility and litter size were not affected by the caffeine pretreatment, nor did it modify the induction of dominant-lethal mutations by triethylene melamine or x rays. Litter sizes showed no significant preimplantation losses in any experiment. Thus, under the conditions described herein and at the doses employed (higher than human exposure), there was no evidence for the mutagenicity of caffeine or the inhibition of DNA repair mechanisms in these mammalian systems. (auth)« less

  1. The Holstein Friesian Lethal Haplotype 5 (HH5) Results from a Complete Deletion of TBF1M and Cholesterol Deficiency (CDH) from an ERV-(LTR) Insertion into the Coding Region of APOB

    PubMed Central

    Schütz, Ekkehard; Wehrhahn, Christin; Wanjek, Marius; Bortfeld, Ralf; Wemheuer, Wilhelm E.; Beck, Julia; Brenig, Bertram

    2016-01-01

    Background With the availability of massive SNP data for several economically important cattle breeds, haplotype tests have been performed to identify unknown recessive disorders. A number of so-called lethal haplotypes, have been uncovered in Holstein Friesian cattle and, for at least seven of these, the causative mutations have been identified in candidate genes. However, several lethal haplotypes still remain elusive. Here we report the molecular genetic causes of lethal haplotype 5 (HH5) and cholesterol deficiency (CDH). A targeted enrichment for the known genomic regions, followed by massive parallel sequencing was used to interrogate for causative mutations in a case/control approach. Methods Targeted enrichment for the known genomic regions, followed by massive parallel sequencing was used in a case/control approach. PCRs for the causing mutations were developed and compared to routine imputing in 2,100 (HH5) and 3,100 (CDH) cattle. Results HH5 is caused by a deletion of 138kbp, spanning position 93,233kb to 93,371kb on chromosome 9 (BTA9), harboring only dimethyl-adenosine transferase 1 (TFB1M). The deletion breakpoints are flanked by bovine long interspersed nuclear elements Bov-B (upstream) and L1ME3 (downstream), suggesting a homologous recombination/deletion event. TFB1M di-methylates adenine residues in the hairpin loop at the 3’-end of mitochondrial 12S rRNA, being essential for synthesis and function of the small ribosomal subunit of mitochondria. Homozygous TFB1M-/- mice reportedly exhibit embryonal lethality with developmental defects. A 2.8% allelic frequency was determined for the German HF population. CDH results from a 1.3kbp insertion of an endogenous retrovirus (ERV2-1-LTR_BT) into exon 5 of the APOB gene at BTA11:77,959kb. The insertion is flanked by 6bp target site duplications as described for insertions mediated by retroviral integrases. A premature stop codon in the open reading frame of APOB is generated, resulting in a truncation of the protein to a length of only <140 amino acids. Such early truncations have been shown to cause an inability of chylomicron excretion from intestinal cells, resulting in malabsorption of cholesterol. The allelic frequency of this mutation in the German HF population was 6.7%, which is substantially higher than reported so far. Compared to PCR assays inferring the genetic variants directly, the routine imputing used so far showed a diagnostic sensitivity of as low as 91% (HH5) and 88% (CDH), with a high specificity for both (≥99.7%). Conclusion With the availability of direct genetic tests it will now be possible to more effectively reduce the carrier frequency and ultimately eliminate the disorders from the HF populations. Beside this, the fact that repetitive genomic elements (RE) are involved in both diseases, underline the evolutionary importance of RE, which can be detrimental as here, but also advantageous over generations. PMID:27128314

  2. Sudden cardiac death: the pro-arrhythmic interaction of an acute loading with an underlying substrate.

    PubMed

    Sutherland, George R

    2017-10-21

    Sudden cardiac death (SCD) is a complex phenomenon, occurring either in apparently normal individuals or in those where there is a recognized underlying cardiac abnormality. In both groups, the lethal arrhythmia has frequently been related to the physiologic trigger of either exercise or stress. Prior research into SCD has focused mainly on a combination of identifying either vulnerable myocardial substrates; pharmacological approaches to altering electrical activation/repolarisation in substrates; or the suppression of induced lethal arrhythmias with implantable defibrillators. However, it has been suggested that in a significant number of cases, the interaction of a transient induced trigger with a pre-existing electrical or mechanical substrate is the basis for the induction of the sustained lethal arrhythmia. In this manuscript we will discuss the precise mechanisms whereby one of such potential physiologic trigger: an acute change in systolic blood pressure, can induce a sequence of alterations in global and local cardiac mechanics which in turn result in regional left ventricular post-systolic deformation which, mediated (through stretch-induced changes in local mechano-electrical coupling) provokes local electrical after-depolarisations which can spill over into complex runs of premature ventricular beats. These local acute pressure/stretch induced runs of ventricular ectopy originate in either basal or apical normal myocardium and, in combination with a co-existing distal pro-arrhymic substrate, can interact to induce a lethal arrhythmia. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.

  3. Phenotypic spectrum of STRA6 mutations: from Matthew-Wood syndrome to non-lethal anophthalmia.

    PubMed

    Chassaing, Nicolas; Golzio, Christelle; Odent, Sylvie; Lequeux, Léopoldine; Vigouroux, Adeline; Martinovic-Bouriel, Jelena; Tiziano, Francesco Danilo; Masini, Lucia; Piro, Francesca; Maragliano, Giovanna; Delezoide, Anne-Lise; Attié-Bitach, Tania; Manouvrier-Hanu, Sylvie; Etchevers, Heather C; Calvas, Patrick

    2009-05-01

    Matthew-Wood, Spear, PDAC or MCOPS9 syndrome are alternative names used to refer to combinations of microphthalmia/anophthalmia, malformative cardiac defects, pulmonary dysgenesis, and diaphragmatic hernia. Recently, mutations in STRA6, encoding a membrane receptor for vitamin A-bearing plasma retinol binding protein, have been identified in such patients. We performed STRA6 molecular analysis in three fetuses and one child diagnosed with Matthew-Wood syndrome and in three siblings where two adult living brothers are affected with combinations of clinical anophthalmia, tetralogy of Fallot, and mental retardation. Among these patients, six novel mutations were identified, bringing the current total of known STRA6 mutations to seventeen. We extensively reviewed clinical data pertaining to all twenty-one reported patients with STRA6 mutations (the seven of this report and fourteen described elsewhere) and discuss additional features that may be part of the syndrome. The clinical spectrum associated with STRA6 deficiency is even more variable than initially described. Copyright 2009 Wiley-Liss, Inc.

  4. Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies

    PubMed Central

    Bratic, Ana; Kauppila, Timo E. S.; Macao, Bertil; Grönke, Sebastian; Siibak, Triinu; Stewart, James B.; Baggio, Francesca; Dols, Jacqueline; Partridge, Linda; Falkenberg, Maria; Wredenberg, Anna; Larsson, Nils-Göran

    2015-01-01

    Replication errors are the main cause of mitochondrial DNA (mtDNA) mutations and a compelling approach to decrease mutation levels would therefore be to increase the fidelity of the catalytic subunit (POLγA) of the mtDNA polymerase. Here we genomically engineer the tamas locus, encoding fly POLγA, and introduce alleles expressing exonuclease- (exo−) and polymerase-deficient (pol−) POLγA versions. The exo− mutant leads to accumulation of point mutations and linear deletions of mtDNA, whereas pol− mutants cause mtDNA depletion. The mutant tamas alleles are developmentally lethal but can complement each other in trans resulting in viable flies with clonally expanded mtDNA mutations. Reconstitution of human mtDNA replication in vitro confirms that replication is a highly dynamic process where POLγA goes on and off the template to allow complementation during proofreading and elongation. The created fly models are valuable tools to study germ line transmission of mtDNA and the pathophysiology of POLγA mutation disease. PMID:26554610

  5. Recently Identified Mutations in the Ebola Virus-Makona Genome Do Not Alter Pathogenicity in Animal Models.

    PubMed

    Marzi, Andrea; Chadinah, Spencer; Haddock, Elaine; Feldmann, Friederike; Arndt, Nicolette; Martellaro, Cynthia; Scott, Dana P; Hanley, Patrick W; Nyenswah, Tolbert G; Sow, Samba; Massaquoi, Moses; Feldmann, Heinz

    2018-05-08

    Ebola virus (EBOV), isolate Makona, the causative agent of the West African EBOV epidemic, has been the subject of numerous investigations to determine the genetic diversity and its potential implication for virus biology, pathogenicity, and transmissibility. Despite various mutations that have emerged over time through multiple human-to-human transmission chains, their biological relevance remains questionable. Recently, mutations in the glycoprotein GP and polymerase L, which emerged and stabilized early during the outbreak, have been associated with improved viral fitness in cell culture. Here, we infected mice and rhesus macaques with EBOV-Makona isolates carrying or lacking those mutations. Surprisingly, all isolates behaved very similarly independent of the genotype, causing severe or lethal disease in mice and macaques, respectively. Likewise, we could not detect any evidence for differences in virus shedding. Thus, no specific biological phenotype could be associated with these EBOV-Makona mutations in two animal models. Published by Elsevier Inc.

  6. Calmodulin point mutations affect Drosophila development and behavior.

    PubMed

    Nelson, H B; Heiman, R G; Bolduc, C; Kovalick, G E; Whitley, P; Stern, M; Beckingham, K

    1997-12-01

    Calmodulin (CAM) is recognized as a major intermediary in intracellular calcium signaling, but as yet little is known of its role in developmental and behavioral processes. We have generated and studied mutations to the endogenous Cam gene of Drosophila melanogaster that change single amino acids within the protein coding region. One of these mutations produces a striking pupal lethal phenotype involving failure of head eversion. Various mutant combinations produce specific patterns of ectopic wing vein formation or melanotic scabs on the cuticle. Anaphase chromosome bridging is also seen as a maternal effect during the early embryonic nuclear divisions. In addition, specific behavioral defects such as poor climbing and flightlessness are detected among these mutants. Comparisons with other Drosophila mutant phenotypes suggests potential CAM targets that may mediate these developmental and behavioral effects, and analysis of the CAM crystal structure suggests the structural consequences of the individual mutations.

  7. Calmodulin Point Mutations Affect Drosophila Development and Behavior

    PubMed Central

    Nelson, H. B.; Heiman, R. G.; Bolduc, C.; Kovalick, G. E.; Whitley, P.; Stern, M.; Beckingham, K.

    1997-01-01

    Calmodulin (CAM) is recognized as a major intermediary in intracellular calcium signaling, but as yet little is known of its role in developmental and behavioral processes. We have generated and studied mutations to the endogenous Cam gene of Drosophila melanogaster that change single amino acids within the protein coding region. One of these mutations produces a striking pupal lethal phenotype involving failure of head eversion. Various mutant combinations produce specific patterns of ectopic wing vein formation or melanotic scabs on the cuticle. Anaphase chromosome bridging is also seen as a maternal effect during the early embryonic nuclear divisions. In addition, specific behavioral defects such as poor climbing and flightlessness are detected among these mutants. Comparisons with other Drosophila mutant phenotypes suggests potential CAM targets that may mediate these developmental and behavioral effects, and analysis of the CAM crystal structure suggests the structural consequences of the individual mutations. PMID:9409836

  8. Dissecting the Mutational Landscape of Cutaneous Melanoma: An Omic Analysis Based on Patients from Greece

    PubMed Central

    Piroti, Georgia; Papadodima, Olga

    2018-01-01

    Melanoma is a lethal type of skin cancer, unless it is diagnosed early. Formalin-fixed, paraffin-embedded (FFPE) tissue is a valuable source for molecular assays after diagnostic examination, but isolated nucleic acids often suffer from degradation. Here, for the first time, we examine primary melanomas from Greek patients, using whole exome sequencing, so as to derive their mutational profile. Application of a bioinformatic framework revealed a total of 10,030 somatic mutations. Regarding the genes containing putative protein-altering mutations, 73 were common in at least three patients. Sixty-five of these 73 top common genes have been previously identified in melanoma cases. Biological processes related to melanoma were affected by varied genes in each patient, suggesting differences in the components of a pathway possibly contributing to pathogenesis. We performed a multi-level analysis highlighting a short list of candidate genes with a probable causative role in melanoma. PMID:29596374

  9. Loss of the tumor suppressor BAP1 causes myeloid transformation

    PubMed Central

    Dey, Anwesha; Seshasayee, Dhaya; Noubade, Rajkumar; French, Dorothy M.; Liu, Jinfeng; Chaurushiya, Mira S.; Kirkpatrick, Donald S.; Pham, Victoria C.; Lill, Jennie R.; Bakalarski, Corey E.; Wu, Jiansheng; Phu, Lilian; Katavolos, Paula; Saunders, Lindsay M.; Abdel-Wahab, Omar; Modrusan, Zora; Seshagiri, Somasekar; Dong, Ken; Lin, Zhonghua; Balazs, Mercedesz; Suriben, Rowena; Newton, Kim; Hymowitz, Sarah; Garcia-Manero, Guillermo; Martin, Flavius; Levine, Ross L.; Dixit, Vishva M.

    2016-01-01

    Deubiquitinating enzyme BAP1 is mutated in a hereditary cancer syndrome with increased risk of mesothelioma and uveal melanoma. Somatic BAP1 mutations occur in various malignancies. We show that mouse Bap1 gene deletion is lethal during embryogenesis, but systemic or hematopoietic-restricted deletion in adults recapitulates features of human myelodysplastic syndrome (MDS). Knock-in mice expressing BAP1 with a 3xFlag tag revealed that BAP1 interacts with HCF-1, OGT, and the polycomb group proteins ASXL1 and ASXL2 in vivo. OGT and HCF-1 levels were decreased by Bap1 deletion, indicating a critical role for BAP1 in stabilizing these epigenetic regulators. Human ASXL1 is mutated frequently in chronic myelomonocytic leukemia (CMML) so an ASXL/BAP1 complex may suppress CMML. A novel BAP1 catalytic mutation found in a MDS patient implies that BAP1 loss of function has similar consequences in mouse and man. PMID:22878500

  10. Glucose 6-phosphate dehydrogenase deficiency enhances germ cell apoptosis and causes defective embryogenesis in Caenorhabditis elegans.

    PubMed

    Yang, H-C; Chen, T-L; Wu, Y-H; Cheng, K-P; Lin, Y-H; Cheng, M-L; Ho, H-Y; Lo, S J; Chiu, D T-Y

    2013-05-02

    Glucose 6-phosphate dehydrogenase (G6PD) deficiency, known as favism, is classically manifested by hemolytic anemia in human. More recently, it has been shown that mild G6PD deficiency moderately affects cardiac function, whereas severe G6PD deficiency leads to embryonic lethality in mice. How G6PD deficiency affects organisms has not been fully elucidated due to the lack of a suitable animal model. In this study, G6PD-deficient Caenorhabditis elegans was established by RNA interference (RNAi) knockdown to delineate the role of G6PD in animal physiology. Upon G6PD RNAi knockdown, G6PD activity was significantly hampered in C. elegans in parallel with increased oxidative stress and DNA oxidative damage. Phenotypically, G6PD-knockdown enhanced germ cell apoptosis (2-fold increase), reduced egg production (65% of mock), and hatching (10% of mock). To determine whether oxidative stress is associated with G6PD knockdown-induced reproduction defects, C. elegans was challenged with a short-term hydrogen peroxide (H2O2). The early phase egg production of both mock and G6PD-knockdown C. elegans were significantly affected by H2O2. However, H2O2-induced germ cell apoptosis was more dramatic in mock than that in G6PD-deficient C. elegans. To investigate the signaling pathways involved in defective oogenesis and embryogenesis caused by G6PD knockdown, mutants of p53 and mitogen-activated protein kinase (MAPK) pathways were examined. Despite the upregulation of CEP-1 (p53), cep-1 mutation did not affect egg production and hatching in G6PD-deficient C. elegans. Neither pmk-1 nor mek-1 mutation significantly affected egg production, whereas sek-1 mutation further decreased egg production in G6PD-deficient C. elegans. Intriguingly, loss of function of sek-1 or mek-1 dramatically rescued defective hatching (8.3- and 9.6-fold increase, respectively) induced by G6PD knockdown. Taken together, these findings show that G6PD knockdown reduces egg production and hatching in C. elegans, which are possibly associated with enhanced oxidative stress and altered MAPK pathways, respectively.

  11. Complement component 5 promotes lethal thrombosis

    PubMed Central

    Mizuno, Tomohiro; Yoshioka, Kengo; Mizuno, Masashi; Shimizu, Mie; Nagano, Fumihiko; Okuda, Tomoyuki; Tsuboi, Naotake; Maruyama, Shoichi; Nagamatsu, Tadashi; Imai, Masaki

    2017-01-01

    Extracellular histones promote platelet aggregation and thrombosis; this is followed by induction of coagulation disorder, which results in exhaustion of coagulation factors. Complement component 5 (C5) is known to be associated with platelet aggregation and coagulation system activation. To date, the pathological mechanism underlying liver injury has remained unclear. Here, we investigated whether C5 promotes liver injury associated with histone-induced lethal thrombosis. C5-sufficient and C5-deficient mice received single tail vein injections of purified, unfractionated histones obtained from calf thymus (45–75 μg/g). Subsequently, the mice were monitored for survival for up to 72 h. Based on the survival data, the 45 μg/g dose was used for analysis of blood cell count, liver function, blood coagulation ability, and promotion of platelet aggregation and platelet/leukocyte aggregate (PLA) production by extracellular histones. C5-deficient mice were protected from lethal thrombosis and had milder thrombocytopenia, consumptive coagulopathy, and liver injury with embolism and lower PLA production than C5-sufficient mice. These results indicate that C5 is associated with coagulation disorders, PLA production, and embolism-induced liver injury. In conclusion, C5 promotes liver injury associated with histone-induced lethal thrombosis. PMID:28205538

  12. Detection of COPB2 as a KRAS synthetic lethal partner through integration of functional genomics screens

    PubMed Central

    Christodoulou, Eleni G.; Yang, Hai; Lademann, Franziska; Pilarsky, Christian; Beyer, Andreas; Schroeder, Michael

    2017-01-01

    Mutated KRAS plays an important role in many cancers. Although targeting KRAS directly is difficult, indirect inactivation via synthetic lethal partners (SLPs) is promising. Yet to date, there are no SLPs from high-throughput RNAi screening, which are supported by multiple screens. Here, we address this problem by aggregating and ranking data over three independent high-throughput screens. We integrate rankings by minimizing the displacement and by considering established methods such as RIGER and RSA. Our meta analysis reveals COPB2 as a potential SLP of KRAS with good support from all three screens. COPB2 is a coatomer subunit and its knock down has already been linked to disabled autophagy and reduced tumor growth. We confirm COPB2 as SLP in knock down experiments on pancreas and colorectal cancer cell lines. Overall, consistent integration of high throughput data can generate candidate synthetic lethal partners, which individual screens do not uncover. Concretely, we reveal and confirm that COPB2 is a synthetic lethal partner of KRAS and hence a promising cancer target. Ligands inhibiting COPB2 may, therefore, be promising new cancer drugs. PMID:28415695

  13. Epistatic Interactions within the Influenza A Virus Polymerase Complex Mediate Mutagen Resistance and Replication Fidelity

    PubMed Central

    Pauly, Matthew D.; Lyons, Daniel M.; Fitzsimmons, William J.

    2017-01-01

    ABSTRACT Lethal mutagenesis is a broad-spectrum antiviral strategy that employs mutagenic nucleoside analogs to exploit the high mutation rate and low mutational tolerance of many RNA viruses. Studies of mutagen-resistant viruses have identified determinants of replicative fidelity and the importance of mutation rate to viral population dynamics. We have previously demonstrated the effective lethal mutagenesis of influenza A virus using three nucleoside analogs as well as the virus’s high genetic barrier to mutagen resistance. Here, we investigate the mutagen-resistant phenotypes of mutations that were enriched in drug-treated populations. We find that PB1 T123A has higher replicative fitness than the wild type, PR8, and maintains its level of genome production during 5-fluorouracil (2,4-dihydroxy-5-fluoropyrimidine) treatment. Surprisingly, this mutagen-resistant variant also has an increased baseline rate of C-to-U and G-to-A mutations. A second drug-selected mutation, PA T97I, interacts epistatically with PB1 T123A to mediate high-level mutagen resistance, predominantly by limiting the inhibitory effect of nucleosides on polymerase activity. Consistent with the importance of epistatic interactions in the influenza virus polymerase, our data suggest that nucleoside analog resistance and replication fidelity are strain dependent. Two previously identified ribavirin {1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1H-1,2,4-triazole-3-carboxamide} resistance mutations, PB1 V43I and PB1 D27N, do not confer drug resistance in the PR8 background, and the PR8-PB1 V43I polymerase exhibits a normal baseline mutation rate. Our results highlight the genetic complexity of the influenza A virus polymerase and demonstrate that increased replicative capacity is a mechanism by which an RNA virus can counter the negative effects of elevated mutation rates. IMPORTANCE RNA viruses exist as genetically diverse populations. This standing genetic diversity gives them the potential to adapt rapidly, evolve resistance to antiviral therapeutics, and evade immune responses. Viral mutants with altered mutation rates or mutational tolerance have provided insights into how genetic diversity arises and how it affects the behavior of RNA viruses. To this end, we identified variants within the polymerase complex of influenza virus that are able to tolerate drug-mediated increases in viral mutation rates. We find that drug resistance is highly dependent on interactions among mutations in the polymerase complex. In contrast to other viruses, influenza virus counters the effect of higher mutation rates primarily by maintaining high levels of genome replication. These findings suggest the importance of maintaining large population sizes for viruses with high mutation rates and show that multiple proteins can affect both mutation rate and genome synthesis. PMID:28815216

  14. Mutagenic Effects of Ribavirin on Hepatitis E Virus-Viral Extinction versus Selection of Fitness-Enhancing Mutations.

    PubMed

    Todt, Daniel; Walter, Stephanie; Brown, Richard J P; Steinmann, Eike

    2016-10-13

    Hepatitis E virus (HEV), an important agent of viral hepatitis worldwide, can cause severe courses of infection in pregnant women and immunosuppressed patients. To date, HEV infections can only be treated with ribavirin (RBV). Major drawbacks of this therapy are that RBV is not approved for administration to pregnant women and that the virus can acquire mutations, which render the intra-host population less sensitive or even resistant to RBV. One of the proposed modes of action of RBV is a direct mutagenic effect on viral genomes, inducing mismatches and subsequent nucleotide substitutions. These transition events can drive the already error-prone viral replication beyond an error threshold, causing viral population extinction. In contrast, the expanded heterogeneous viral population can facilitate selection of mutant viruses with enhanced replication fitness. Emergence of these mutant viruses can lead to therapeutic failure. Consequently, the onset of RBV treatment in chronically HEV-infected individuals can result in two divergent outcomes: viral extinction versus selection of fitness-enhanced viruses. Following an overview of RNA viruses treated with RBV in clinics and a summary of the different antiviral modes of action of this drug, we focus on the mutagenic effect of RBV on HEV intrahost populations, and how HEV is able to overcome lethal mutagenesis.

  15. Genetic correction of β-thalassemia patient-specific iPS cells and its use in improving hemoglobin production in irradiated SCID mice.

    PubMed

    Wang, Yixuan; Zheng, Chen-Guang; Jiang, Yonghua; Zhang, Jiqin; Chen, Jiayu; Yao, Chao; Zhao, Qingguo; Liu, Sheng; Chen, Ke; Du, Juan; Yang, Ze; Gao, Shaorong

    2012-04-01

    The generation of induced pluripotent stem cells (iPSCs) from differentiated somatic cells by over-expression of several transcription factors has the potential to cure many genetic and degenerative diseases currently recalcitrant to traditional clinical approaches. One such genetic disease is β-thalassemia major (Cooley's anemia). This disease is caused by either a point mutation or the deletion of several nucleotides in the β-globin gene, and it threatens the lives of millions of people in China. In the present study, we successfully generated iPSCs from fibroblasts collected from a 2-year-old patient who was diagnosed with a homozygous 41/42 deletion in his β-globin gene. More importantly, we successfully corrected this genetic mutation in the β-thalassemia iPSCs by homologous recombination. Furthermore, transplantation of the genetically corrected iPSCs-derived hematopoietic progenitors into sub-lethally irradiated immune deficient SCID mice showed improved hemoglobin production compared with the uncorrected iPSCs. Moreover, the generation of human β-globin could be detected in the mice transplanted with corrected iPSCs-derived hematopietic progenitors. Our study provides strong evidence that iPSCs generated from a patient with a genetic disease can be corrected by homologous recombination and that the corrected iPSCs have potential clinical uses.

  16. On the mutagenicity of methadone hydrochloride. Induced dominant lethal mutation and spermatocyte chromosomal aberrations in treated males.

    PubMed

    Badr, F M; Rabouh, S A; Badr, R S

    1979-11-01

    The mutagenicity of methadone hydrochloride was tested in male mice using the dominant lethal mutation technique and the spermatocyte test of treated mice. Male mice of C3H inbred strain received one of the following doses, 1, 2, 4 or 6 mg/kg body weight once a day for 3 consecutive days. Another group of mice served as control and received saline instead. Treated males were then mated to virgin females at 3-day intervals for a period of 45 days. Pregnant females were dissected at mid-term and the corpora lutea and intrauterine contents were recorded. The spermatocytes of treated males were examined 45-50 d after treatments with methadone and abnormal pairing configurations were scored. The methadone treatment was found to increase the rate of preimplantation deaths consistently in all post-meiotic stages with all doses used. In addition, the higher doses, 4 and 6 mg, affected spermatogonia stages. Quantitatively, the dose-response relationship cannot be demonstrated though the spectrum of effect increased with higher doses as more spermatogenesis stages became more sensitive to the treatment. In many cases the frequency of live implants showed a positive correlation with preimplantation deaths in contrast with the frequency of early deaths which showed only sporadic variation. The mutation indices based on total embryonic death indicate that methadone hydrochloride affected several stages of germ-cell maturation namely, spermatozoa (M.I. 14-35), late spermatids (M.I. 15-48), early spermatids (M.I. 14-50), late spermatocytes (M.I. 15-43) and spermatogonial stages (M.I. 12-63). Chromosome analysis at diakinesis-metaphase 1 revealed significant increase in the frequency of sex chromosome and autosome univalents with different doses of methadone. The smallest dose applied was quite effective and the data represent direct dose-response relationship. Of the multivalent configuration, the most frequent type was chain quadrivalents. The frequencies of total translocations per cell were estimated as 0.1, 0.16 and 0.2 for the 4 applied doses illustrating a dose-response relationship for the doses: 1, 2 and 4 mg, whereas with the higher dose, 6 mg, an abrupt decrease was apparent (0.05). This study calls for concern regarding the possible genetic hazards this drug may impose upon human populations.

  17. Activating BRAF and PIK3CA mutations cooperate to promote anaplastic thyroid carcinogenesis.

    PubMed

    Charles, Roch-Philippe; Silva, Jillian; Iezza, Gioia; Phillips, Wayne A; McMahon, Martin

    2014-07-01

    Thyroid malignancies are the most common type of endocrine tumors. Of the various histologic subtypes, anaplastic thyroid carcinoma (ATC) represents a subset of all cases but is responsible for a significant proportion of thyroid cancer-related mortality. Indeed, ATC is regarded as one of the more aggressive and hard to treat forms of cancer. To date, there is a paucity of relevant model systems to critically evaluate how the signature genetic abnormalities detected in human ATC contribute to disease pathogenesis. Mutational activation of the BRAF protooncogene is detected in approximately 40% of papillary thyroid carcinoma (PTC) and in 25% of ATC. Moreover, in ATC, mutated BRAF is frequently found in combination with gain-of-function mutations in the p110 catalytic subunit of PI3'-Kinase (PIK3CA) or loss-of-function alterations in either the p53 (TP53) or PTEN tumor suppressors. Using mice with conditional, thyrocyte-specific expression of BRAF(V600E), we previously developed a model of PTC. However, as in humans, BRAF(V600E)-induced mouse PTC is indolent and does not lead to rapid development of end-stage disease. Here, we use mice carrying a conditional allele of PIK3CA to demonstrate that, although mutationally activated PIK3CA(H1047R) is unable to drive transformation on its own, when combined with BRAF(V600E) in thyrocytes, this leads to development of lethal ATC in mice. Combined, these data demonstrate that the BRAF(V600E) cooperates with either PIK3CA(H1074R) or with silencing of the tumor-suppressor PTEN, to promote development of anaplastic thyroid carcinoma. This genetically relevant mouse model of ATC will be an invaluable platform for preclinical testing of pathway-targeted therapies for the prevention and treatment of thyroid carcinoma. ©2014 American Association for Cancer Research.

  18. Mutation-linked, excessively tight interaction between the calmodulin binding domain and the C-terminal domain of the cardiac ryanodine receptor as a novel cause of catecholaminergic polymorphic ventricular tachycardia.

    PubMed

    Nishimura, Shigehiko; Yamamoto, Takeshi; Nakamura, Yoshihide; Kohno, Michiaki; Hamada, Yoriomi; Sufu, Yoko; Fukui, Go; Nanno, Takuma; Ishiguchi, Hironori; Kato, Takayoshi; Xu, Xiaojuan; Ono, Makoto; Oda, Tetsuro; Okuda, Shinichi; Kobayashi, Shigeki; Yano, Masafumi

    2018-06-01

    Ryanodine receptor (RyR2) is known to be a causal gene of catecholaminergic polymorphic ventricular tachycardia (CPVT), an important inherited disease. Some of the human CPVT-associated mutations have been found in a domain (4026-4172) that has EF hand motifs, the so-called calmodulin (CaM)-like domain (CaMLD). The purpose of this study was to investigate the underlying mechanism by which CPVT is induced by a mutation at CaMLD. A new N4103K/+ knock-in (KI) mice model was generated. Sustained ventricular tachycardia was frequently observed after infusion of caffeine plus epinephrine in KI mice. Endogenous CaM bound to RyR2 decreased even at baseline in isolated KI cardiomyocytes. Ca 2+ spark frequency (CaSpF) was much higher in KI cells than in wild-type cells. Addition of GSH-CaM (higher affinity CaM to RyR2) significantly decreased CaSpF. In response to isoproterenol, spontaneous Ca 2+ transient (SCaT) was frequently observed in intact KI cells. Incorporation of GSH-CaM into intact KI cells using a protein delivery kit decreased SCaT significantly. An assay using a quartz crystal microbalance technique revealed that mutated CaMLD peptide showed higher binding affinity to CaM binding domain (CaMBD) peptide. In the N4103K mutant, CaM binding affinity to RyR2 was significantly reduced regardless of beta-adrenergic stimulation. We found that this was caused by an abnormally tight interaction between CaMBD and mutated CaM-like domain (N4103K-CaMBD). Thus, CaMBD-CaMLD interaction may be a novel therapeutic target for treatment of lethal arrhythmia. Copyright © 2018 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  19. Genetics of pancreatic cancer and implications for therapy.

    PubMed

    Bhosale, Priya; Cox, Veronica; Faria, Silvana; Javadi, Sanaz; Viswanathan, Chitra; Koay, Eugene; Tamm, Eric

    2018-02-01

    Pancreatic cancer is a highly lethal disease with a dismal 5-year prognosis. Knowledge of its genetics may help in identifying new methods for patient screening, and cancer treatment. In this review, we will describe the most common mutations responsible for the genesis of pancreatic cancer and their impact on screening, patterns of disease progression, and therapy.

  20. Synthetic Lethal Therapeutic Approaches for ARID1A-Mutated Ovarian Cancer

    DTIC Science & Technology

    2017-10-01

    formation by the indicated cells (c). (d-f) ARID1A protein expression in parental and ARID1A CRISPR OVCA429 cells (d). Colony formation assay using...ovarian tumor cultures with (VOA4841) and without (XVOA295) ARID1A expression. n=3 independent experiments. (f) Control and ARID1A CRISPR OVCA429 cells

  1. Mating compatibility and competitiveness between wild and laboratory strains of Eldana saccharina (Lepidoptera: Pyralidae) after radiation treatment

    USDA-ARS?s Scientific Manuscript database

    The efficacy of the sterile insect technique (SIT) applied as part of area-wide integrated pest management (AW-IPM) programmes depends on the efficient transfer of sperm carrying dominant lethal mutations from sterile males to wild females. The success or failure of this strategy is therefore critic...

  2. Lithium-methomyl induced seizures in rats: A new model of status epilepticus?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminski, Rafal M.; Blaszczak, Piotr; Dekundy, Andrzej

    2007-03-15

    Behavioral, electroencephalographic (EEG) and neuropathological effects of methomyl, a carbamate insecticide reversibly inhibiting acetylcholinesterase activity, were studied in naive or lithium chloride (24 h, 3 mEq/kg, s.c.) pretreated male Wistar rats. In naive animals, methomyl with equal potency produced motor limbic seizures and fatal status epilepticus. Thus, the CD50 values (50% convulsant dose) for these seizure endpoints were almost equal to the LD50 (50% lethal dose) of methomyl (13 mg/kg). Lithium pretreated rats were much more susceptible to convulsant, but not lethal effect of methomyl. CD50 values of methomyl for motor limbic seizures and status epilepticus were reduced by lithiummore » pretreatment to 3.7 mg/kg (a 3.5-fold decrease) and 5.2 mg/kg (a 2.5-fold decrease), respectively. In contrast, lithium pretreatment resulted in only 1.3-fold decrease of LD50 value of methomyl (9.9 mg/kg). Moreover, lithium-methomyl treated animals developed a long-lasting status epilepticus, which was not associated with imminent lethality observed in methomyl-only treated rats. Scopolamine (10 mg/kg) or diazepam (10 mg/kg) protected all lithium-methomyl treated rats from convulsions and lethality. Cortical and hippocampal EEG recordings revealed typical epileptic discharges that were consistent with behavioral seizures observed in lithium-methomyl treated rats. In addition, convulsions induced by lithium-methomyl treatment were associated with widespread neurodegeneration of limbic structures. Our observations indicate that lithium pretreatment results in separation between convulsant and lethal effects of methomyl in rats. As such, seizures induced by lithium-methomyl administration may be an alternative to lithium-pilocarpine model of status epilepticus, which is associated with high lethality.« less

  3. Interleukin-12 Induces a Th1-like Response to Burkholderia mallei and Limited Protection in BALB/c Mice

    DTIC Science & Technology

    2005-09-02

    protection from a lethal challenge. 15. SUBJECT TERMS Burkholderia mallei , glanders , cytokines, immune response, humoral, cellular, laboratory animals...model of sublethal and lethal intraperitoneal glanders ( Burkholderia mallei ). Vet Pathol 2000;37:626–36. [34] Jankovic D, Caspar P, Zweig M, Garcia...Vaccine 24 (2006) 1413–1420 Interleukin-12 induces a Th1-like response to Burkholderia mallei and limited protection in BALB/c mice Kei Amemiya

  4. Anthrax lethal factor inhibitors as potential countermeasure of the infection.

    PubMed

    Kumar, B V S Suneel; Malik, Siddharth; Grandhi, Pradeep; Dayam, Raveendra; Sarma, J A R P

    2014-01-01

    Anthrax Lethal Factor (LF) is a zinc-dependent metalloprotease, one of the virulence factor of anthrax infection. Three forms of the anthrax infection have been identified: cutaneous (through skin), gastrointestinal (through alimentary tract), and pulmonary (by inhalation of spores). Anthrax toxin is composed of protective antigen (PA), lethal factor (LF), and edema factor (EF). Protective antigen mediates the entry of Lethal Factor/Edema Factor into the cytosol of host cells. Lethal factor (LF) inactivates mitogen-activated protein kinase kinase inducing cell death, and EF is an adenylyl cyclase impairing host defenses. In the past few years, extensive studies are undertaken to design inhibitors targeting LF. The current review focuses on the small molecule inhibitors targeting LF activity and its structure activity relationships (SAR).

  5. Genotoxic activities of the food contaminant 5-hydroxymethylfurfural using different in vitro bioassays.

    PubMed

    Severin, Isabelle; Dumont, Coralie; Jondeau-Cabaton, Adeline; Graillot, Vanessa; Chagnon, Marie-Christine

    2010-02-01

    5-Hydroxymethylfurfural (5-HMF) is known as an indicator of quality deterioration in a wide range of foods. 5-HMF is formed as an intermediate in the Maillard reaction and has been identified in a wide variety of heat-processed foods. In recent years, the presence of 5-HMF in foods has raised toxicological concerns: data have shown cytotoxic, genotoxic and tumoral effects but further studies suggest that 5-HMF does not pose a serious health risk. However the subject is still a matter of debate. We investigated the genotoxicity of the food-borne contaminant 5-HMF using the Ames test, the micronucleus (MN) and the single-cell gel electrophoresis (SCGE) assays in the human metabolically active HepG2 cell line. Cytotoxic effect of 5-HMF was first assessed using Alamar Blue as a sensitive sub-lethal assay. 5-HMF did not induce any genic mutation in bacteria whatever the concentration in the Ames test. Furthermore, it does not induce clastogenic or aneugenic effects in the HepG2 cells. In contrast, 5-HMF induced HepG2 DNA damage at concentrations from 7.87 to 25 mM in the comet assay suggesting a weak genotoxic effect of 5-HMF in the HepG2 cells probably repaired. 2009 Elsevier Ireland Ltd. All rights reserved.

  6. Delineation of the Marfan phenotype associated with mutations in exons 23-32 of the FBN1 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putnam, E.A.; Cho, M.; Milewicz, D.M.

    Marfan syndrome is a dominantly inherited connective tissue disorder with a wide range of phenotypic severity. The condition is the result of mutations in FBN1, a large gene composed of 65 exons encoding the fibrillin-1 protein. While mutations causing classic manifestations of Marfan syndrome have been identified throughout the FBN1 gene, the six previously characterized mutations resulting in the severe, perinatal lethal form of Marfan syndrome have clustered in exons 24-32 of the gene. We screened 8 patients with either neonatal Marfan syndrome or severe cardiovascular complications of Marfan syndrome for mutations in this region of the gene. Using intron-basedmore » exon-specific primers, we amplified exons 23-32 from genomic DNAs, screened these fragments by single-stranded conformational polymorphism analysis, and sequenced indicated exons. This analysis documented mutations in exons 25-27 of the FBN1 mutations in 6 of these patients. These results, taken together with previously published FBN1 mutations in this region, further define the phenotype associated with mutations in exons 24-32 of the FBN1 gene, information important for the development of possible diagnostic tests and genetic counseling. 49 refs., 4 figs., 2 tabs.« less

  7. Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing.

    PubMed

    López-Carrasco, Amparo; Ballesteros, Cristina; Sentandreu, Vicente; Delgado, Sonia; Gago-Zachert, Selma; Flores, Ricardo; Sanjuán, Rafael

    2017-09-01

    Mutation rates vary by orders of magnitude across biological systems, being higher for simpler genomes. The simplest known genomes correspond to viroids, subviral plant replicons constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplast-replicating viroid. However, whether this is a general feature of viroids remains unclear. Here, we have used high-fidelity ultra-deep sequencing to determine the mutation rate in a common host (eggplant) of two viroids, each representative of one family: the chloroplastic eggplant latent viroid (ELVd, Avsunviroidae) and the nuclear potato spindle tuber viroid (PSTVd, Pospiviroidae). This revealed higher mutation frequencies in ELVd than in PSTVd, as well as marked differences in the types of mutations produced. Rates of spontaneous mutation, quantified in vivo using the lethal mutation method, ranged from 1/1000 to 1/800 for ELVd and from 1/7000 to 1/3800 for PSTVd depending on sequencing run. These results suggest that extremely high mutability is a common feature of chloroplastic viroids, whereas the mutation rates of PSTVd and potentially other nuclear viroids appear significantly lower and closer to those of some RNA viruses.

  8. Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing

    PubMed Central

    Ballesteros, Cristina; Sentandreu, Vicente; Gago-Zachert, Selma

    2017-01-01

    Mutation rates vary by orders of magnitude across biological systems, being higher for simpler genomes. The simplest known genomes correspond to viroids, subviral plant replicons constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplast-replicating viroid. However, whether this is a general feature of viroids remains unclear. Here, we have used high-fidelity ultra-deep sequencing to determine the mutation rate in a common host (eggplant) of two viroids, each representative of one family: the chloroplastic eggplant latent viroid (ELVd, Avsunviroidae) and the nuclear potato spindle tuber viroid (PSTVd, Pospiviroidae). This revealed higher mutation frequencies in ELVd than in PSTVd, as well as marked differences in the types of mutations produced. Rates of spontaneous mutation, quantified in vivo using the lethal mutation method, ranged from 1/1000 to 1/800 for ELVd and from 1/7000 to 1/3800 for PSTVd depending on sequencing run. These results suggest that extremely high mutability is a common feature of chloroplastic viroids, whereas the mutation rates of PSTVd and potentially other nuclear viroids appear significantly lower and closer to those of some RNA viruses. PMID:28910391

  9. Cloning and Characterization of the Scalloped Region of Drosophila Melanogaster

    PubMed Central

    Campbell, S. D.; Duttaroy, A.; Katzen, A. L.; Chovnick, A.

    1991-01-01

    Viable mutants of the scalloped gene (sd) of Drosophila melanogaster exhibit defects that can include gapping of the wing margin and ectopic bristle formation on the wing. Lethal sd alleles characterized in the present study now implicate this gene in a genetic function essential for normal development. In order to further characterize the developmental role of this gene, we have undertaken to clone and characterize the region where sd maps. A P[ry(+)] transposon insertion at 13F associated with sd([ry+2216]) served as the starting point for a 42-kb chromosomal walk. Molecular lesions associated with viable and lethal sd alleles were characterized by genomic hybridization analysis as a means of defining the extent of the gene. DNA rearrangements associated with 11 viable sd alleles map to a 2-kb interval which appears to be a ``hot spot'' for P element activity. Four of five recessive lethal sd mutations were mapped by denaturing gradient gel electrophoresis to a region 12-14 kb away from the region of viable lesions. In a sd(+) genotype, at least two structurally related and developmentally regulated transcripts hybridize to the genomic region where several sd lethal alleles have been localized. A viable mutation, sd(58), used for comparison in the transcript analysis, makes at least two slightly smaller transcripts that also hybridize to this region. Preliminary analysis of cDNA clones has identified three structurally related transcripts that hybridize to this genomic region. The 5' end of these transcripts extends into the 2-kb genomic region wherein DNA rearrangements were seen in the P element rearrangements. We favor the view that the transcripts represented by these cDNA clones are products of the sd gene. If this is true, the sd gene would include genomic sequences extending over at least 14 kb of the described chromosomal walk, and would appear to be subject to alternative splicing. PMID:1706292

  10. Defining essential elements and genetic interactions of the yeast Lsm2-8 ring and demonstration that essentiality of Lsm2-8 is bypassed via overexpression of U6 snRNA or the U6 snRNP subunit Prp24.

    PubMed

    Roth, Allen J; Shuman, Stewart; Schwer, Beate

    2018-06-01

    A seven-subunit Lsm2-8 protein ring assembles on the U-rich 3' end of the U6 snRNA. A structure-guided mutational analysis of the Saccharomyces cerevisiae Lsm2-8 ring affords new insights to structure-function relations and genetic interactions of the Lsm subunits. Alanine scanning of 39 amino acids comprising the RNA-binding sites or intersubunit interfaces of Lsm2, Lsm3, Lsm4, Lsm5, and Lsm8 identified only one instance of lethality (Lsm3-R69A) and one severe growth defect (Lsm2-R63A), both involving amino acids that bind the 3'-terminal UUU trinucleotide. All other Ala mutations were benign with respect to vegetative growth. Tests of 235 pairwise combinations of benign Lsm mutants identified six instances of inter-Lsm synthetic lethality and 45 cases of nonlethal synthetic growth defects. Thus, Lsm2-8 ring function is buffered by a network of internal genetic redundancies. A salient finding was that otherwise lethal single-gene deletions lsm2 Δ, lsm3 Δ, lsm4 Δ, lsm5 , and lsm8 Δ were rescued by overexpression of U6 snRNA from a high-copy plasmid. Moreover, U6 overexpression rescued myriad lsm Δ lsm Δ double-deletions and lsm Δ lsm Δ lsm Δ triple-deletions. We find that U6 overexpression also rescues a lethal deletion of the U6 snRNP protein subunit Prp24 and that Prp24 overexpression bypasses the essentiality of the U6-associated Lsm subunits. Our results indicate that abetting U6 snRNA is the only essential function of the yeast Lsm2-8 proteins. © 2018 Roth et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. RIPK3 Mediates Necroptosis during Embryonic Development and Postnatal Inflammation in Fadd-Deficient Mice.

    PubMed

    Zhao, Qun; Yu, XianJun; Zhang, HaiWei; Liu, YongBo; Zhang, XiXi; Wu, XiaoXia; Xie, Qun; Li, Ming; Ying, Hao; Zhang, Haibing

    2017-04-25

    RIPK3 mediates cell death and regulates inflammatory responses. Although genetic studies have suggested that RIPK3-MLKL-mediated necroptosis leads to embryonic lethality in Fadd or Caspase-8-deficient mice, the exact mechanisms are not fully understood. Here, we generated Ripk3 mutant mice by altering the RIPK3 kinase domain (Ripk3 Δ/Δ mice), thus abolishing its kinase activity. Ripk3 Δ/Δ cells were resistant to necroptosis stimulation in vitro, and Ripk3 Δ/Δ mice were protected from necroptotic diseases. Although the Ripk3 Δ/Δ mutation rescued embryonic lethality in Fadd -/- embryos, Fadd -/- Ripk3 Δ/Δ mice died within 1 day after birth due to massive inflammation. These results indicate that Ripk3 ablation rescues embryonic lethality in Fadd-deficient mice by suppressing two RIPK3-mediating processes: necroptosis during embryogenesis and inflammation during postnatal development in Fadd -/- mice. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Protective Effect of Ginsenosides Rg1 and Re on Lipopolysaccharide-Induced Sepsis by Competitive Binding to Toll-Like Receptor 4

    PubMed Central

    Su, Fei; Xue, Yin; Wang, Yuemin; Zhang, Lili; Chen, Wangxue

    2015-01-01

    We previously demonstrated that ginsenosides Rg1 and Re enhanced the immune response in C3H/HeB mice but not in C3H/HeJ mice carrying a mutation in the Tlr4 gene. The results of the present study showed that both Rg1 and Re inhibited mRNA expression and production of proinflammatory mediators that included tumor necrosis factor α, interleukin-1β, interleukin-6, cyclooxygenase-2, and inducible nitric oxide synthase from lipopolysaccharide (LPS)-stimulated macrophages. Rg1 was found to be distributed both extracellularly and intracellularly but Re was located only extracellularly to compete with LPS for binding to Toll-like receptor 4. Preinjection of Rg1 and Re into rats suppressed LPS-induced increases in body temperature, white blood cell counts, and levels of serum proinflammatory mediators. Preinjection of Rg1 and Re into mice prevented the LPS-induced decreases in total white blood cell counts and neutrophil counts, inhibited excessive expression of multiple proinflammatory mediators, and successfully rescued 100% of the mice from sepsis-associated death. More significantly, when administered after lethal LPS inoculation, Rg1, but not Re, still showed a potent antisepsis effect and protected 90% of the mice from death. The better protection efficacy of Rg1 could result from its intracellular distribution, suggesting that Rg1 may be an ideal antisepsis agent. PMID:26149990

  13. Mutations in the C-terminal fragment of DnaK affecting peptide binding.

    PubMed Central

    Burkholder, W F; Zhao, X; Zhu, X; Hendrickson, W A; Gragerov, A; Gottesman, M E

    1996-01-01

    Escherichia coli DnaK acts as a molecular chaperone through its ATP-regulated binding and release of polypeptide substrates. Overexpressing a C-terminal fragment (CTF) of DnaK (Gly-384 to Lys-638) containing the polypeptide substrate binding domain is lethal in wild-type E. coli. This dominant-negative phenotype may result from the nonproductive binding of CTF to cellular polypeptide targets of DnaK. Mutations affecting DnaK substrate binding were identified by selecting noncytotoxic CTF mutants followed by in vitro screening. The clustering of such mutations in the three-dimensional structure of CTF suggests the model that loops L1,2 and L4,5 form a rigid core structure critical for interactions with substrate. Images Fig. 1 Fig. 2 Fig. 3 PMID:8855230

  14. Loss of Nephrocystin-3 Function Can Cause Embryonic Lethality, Meckel-Gruber-like Syndrome, Situs Inversus, and Renal-Hepatic-Pancreatic Dysplasia

    PubMed Central

    Bergmann, Carsten; Fliegauf, Manfred; Brüchle, Nadina Ortiz; Frank, Valeska; Olbrich, Heike; Kirschner, Jan; Schermer, Bernhard; Schmedding, Ingolf; Kispert, Andreas; Kränzlin, Bettina; Nürnberg, Gudrun; Becker, Christian; Grimm, Tiemo; Girschick, Gundula; Lynch, Sally A.; Kelehan, Peter; Senderek, Jan; Neuhaus, Thomas J.; Stallmach, Thomas; Zentgraf, Hanswalter; Nürnberg, Peter; Gretz, Norbert; Lo, Cecilia; Lienkamp, Soeren; Schäfer, Tobias; Walz, Gerd; Benzing, Thomas; Zerres, Klaus; Omran, Heymut

    2008-01-01

    Many genetic diseases have been linked to the dysfunction of primary cilia, which occur nearly ubiquitously in the body and act as solitary cellular mechanosensory organelles. The list of clinical manifestations and affected tissues in cilia-related disorders (ciliopathies) such as nephronophthisis is broad and has been attributed to the wide expression pattern of ciliary proteins. However, little is known about the molecular mechanisms leading to this dramatic diversity of phenotypes. We recently reported hypomorphic NPHP3 mutations in children and young adults with isolated nephronophthisis and associated hepatic fibrosis or tapetoretinal degeneration. Here, we chose a combinatorial approach in mice and humans to define the phenotypic spectrum of NPHP3/Nphp3 mutations and the role of the nephrocystin-3 protein. We demonstrate that the pcy mutation generates a hypomorphic Nphp3 allele that is responsible for the cystic kidney disease phenotype, whereas complete loss of Nphp3 function results in situs inversus, congenital heart defects, and embryonic lethality in mice. In humans, we show that NPHP3 mutations can cause a broad clinical spectrum of early embryonic patterning defects comprising situs inversus, polydactyly, central nervous system malformations, structural heart defects, preauricular fistulas, and a wide range of congenital anomalies of the kidney and urinary tract (CAKUT). On the functional level, we show that nephrocystin-3 directly interacts with inversin and can inhibit like inversin canonical Wnt signaling, whereas nephrocystin-3 deficiency leads in Xenopus laevis to typical planar cell polarity defects, suggesting a role in the control of canonical and noncanonical (planar cell polarity) Wnt signaling. PMID:18371931

  15. The lethality test used for estimating the potency of antivenoms against Bothrops asper snake venom: pathophysiological mechanisms, prophylactic analgesia, and a surrogate in vitro assay.

    PubMed

    Chacón, Francisco; Oviedo, Andrea; Escalante, Teresa; Solano, Gabriela; Rucavado, Alexandra; Gutiérrez, José María

    2015-01-01

    The potency of antivenoms is assessed by analyzing the neutralization of venom-induced lethality, and is expressed as the Median Effective Dose (ED50). The present study was designed to investigate the pathophysiological mechanisms responsible for lethality induced by the venom of Bothrops asper, in the experimental conditions used for the evaluation of the neutralizing potency of antivenoms. Mice injected with 4 LD50s of venom by the intraperitoneal route died within ∼25 min with drastic alterations in the abdominal organs, characterized by hemorrhage, increment in plasma extravasation, and hemoconcentration, thus leading to hypovolemia and cardiovascular collapse. Snake venom metalloproteinases (SVMPs) play a predominat role in lethality, as judged by partial inhibition by the chelating agent CaNa2EDTA. When venom was mixed with antivenom, there was a venom/antivenom ratio at which hemorrhage was significantly reduced, but mice died at later time intervals with evident hemoconcentration, indicating that other components in addition to SVMPs also contribute to plasma extravasation and lethality. Pretreatment with the analgesic tramadol did not affect the outcome of the neutralization test, thus suggesting that prophylactic (precautionary) analgesia can be introduced in this assay. Neutralization of lethality in mice correlated with neutralization of in vitro coagulant activity in human plasma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Primary Sex Determination in Drosophila melanogaster Does Not Rely on the Male-Specific Lethal Complex.

    PubMed

    Erickson, James W

    2016-02-01

    It has been proposed that the Male Specific Lethal (MSL) complex is active in Drosophila melanogaster embryos of both sexes prior to the maternal-to-zygotic transition. Elevated gene expression from the two X chromosomes of female embryos is proposed to facilitate the stable establishment of Sex-lethal (Sxl) expression, which determines sex and represses further activity of the MSL complex, leaving it active only in males. Important supporting data included female-lethal genetic interactions between the seven msl genes and either Sxl or scute and sisterlessA, two of the X-signal elements (XSE) that regulate early Sxl expression. Here I report contrary findings that there are no female-lethal genetic interactions between the msl genes and Sxl or its XSE regulators. Fly stocks containing the msl3(1) allele were found to exhibit a maternal-effect interaction with Sxl, scute, and sisterlessA mutations, but genetic complementation experiments showed that msl3 is neither necessary nor sufficient for the female-lethal interactions, which appear to be due to an unidentified maternal regulator of Sxl. Published data cited as evidence for an early function of the MSL complex in females, including a maternal effect of msl2, have been reevaluated and found not to support a maternal, or other effect, of the MSL complex in sex determination. These findings suggest that the MSL complex is not involved in primary sex determination or in X chromosome dosage compensation prior to the maternal-to-zygotic transition. Copyright © 2016 by the Genetics Society of America.

  17. hERG trafficking inhibition in drug-induced lethal cardiac arrhythmia.

    PubMed

    Nogawa, Hisashi; Kawai, Tomoyuki

    2014-10-15

    Acquired long QT syndrome induced by non-cardiovascular drugs can cause lethal cardiac arrhythmia called torsades de points and is a significant problem in drug development. The prolongation of QT interval and cardiac action potential duration are mainly due to reduced physiological function of the rapidly activating voltage-dependent potassium channels encoded by human ether-a-go-go-related gene (hERG). Structurally diverse groups of drugs are known to directly inhibit hERG channel conductance. Therefore, the ability of acute hERG inhibition is routinely assessed at the preclinical stages in pharmaceutical testing. Recent findings indicated that chronic treatment with various drugs not only inhibits hERG channels but also decreases hERG channel expression in the plasma membrane of cardiomyocytes, which has become another concern in safety pharmacology. The mechanisms involve the disruption of hERG trafficking to the surface membrane or the acceleration of hERG protein degradation. From this perspective, we present a brief overview of mechanisms of drug-induced trafficking inhibition and pathological regulation. Understanding of drug-induced hERG trafficking inhibition may provide new strategies for predicting drug-induced QT prolongation and lethal cardiac arrhythmia in pharmaceutical drug development. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Inflammation-Induced Cell Proliferation Potentiates DNA Damage-Induced Mutations In Vivo

    PubMed Central

    Kiraly, Orsolya; Gong, Guanyu; Olipitz, Werner; Muthupalani, Sureshkumar; Engelward, Bevin P.

    2015-01-01

    Mutations are a critical driver of cancer initiation. While extensive studies have focused on exposure-induced mutations, few studies have explored the importance of tissue physiology as a modulator of mutation susceptibility in vivo. Of particular interest is inflammation, a known cancer risk factor relevant to chronic inflammatory diseases and pathogen-induced inflammation. Here, we used the fluorescent yellow direct repeat (FYDR) mice that harbor a reporter to detect misalignments during homologous recombination (HR), an important class of mutations. FYDR mice were exposed to cerulein, a potent inducer of pancreatic inflammation. We show that inflammation induces DSBs (γH2AX foci) and that several days later there is an increase in cell proliferation. While isolated bouts of inflammation did not induce HR, overlap between inflammation-induced DNA damage and inflammation-induced cell proliferation induced HR significantly. To study exogenously-induced DNA damage, animals were exposed to methylnitrosourea, a model alkylating agent that creates DNA lesions relevant to both environmental exposures and cancer chemotherapy. We found that exposure to alkylation damage induces HR, and importantly, that inflammation-induced cell proliferation and alkylation induce HR in a synergistic fashion. Taken together, these results show that, during an acute bout of inflammation, there is a kinetic barrier separating DNA damage from cell proliferation that protects against mutations, and that inflammation-induced cell proliferation greatly potentiates exposure-induced mutations. These studies demonstrate a fundamental mechanism by which inflammation can act synergistically with DNA damage to induce mutations that drive cancer and cancer recurrence. PMID:25647331

  19. Protection Against Microcystin-LR-Induced Hepatoxicity by Silymarin: Biochemistry, Histopathology and Lethality

    DTIC Science & Technology

    1990-04-04

    wild artichoke (jilybus sdrinum L. Gaertn), completely abolihed the lethal effects, pathological changes, and ,34nificantly decreased the levels of...aminotransferase, and lactate dehydrogenase. Pretreatment of either rats or mice with a single dose of silymarin, a flavonotignane isolated from the wild artichoke

  20. Ribosomal vaccines. I. Immunogenicity of ribosomal fractions isolated from Salmonella typhimurium and Yersinia pestis.

    PubMed

    Johnson, W

    1972-06-01

    The immunogenicity of ribosomes and ribosomal subfractions isolated from Yersina pestis and Salmonella typhimurium has been studied. Ribosomes and ribosomal protein isolated from S. typhimurium protected mice against lethal challenge. Ribosomal ribonucleic acid isolated by phenol extraction failed to induce any significant level of protection in mice. None of the ribosomes or ribosomal subfractions isolated from Y. pestis were effective in inducing immunity to lethal challenge. These results suggest that the immunogen of the ribosomal vaccine is protein.

  1. Ribosomal Vaccines I. Immunogenicity of Ribosomal Fractions Isolated from Salmonella typhimurium and Yersinia pestis

    PubMed Central

    Johnson, William

    1972-01-01

    The immunogenicity of ribosomes and ribosomal subfractions isolated from Yersina pestis and Salmonella typhimurium has been studied. Ribosomes and ribosomal protein isolated from S. typhimurium protected mice against lethal challenge. Ribosomal ribonucleic acid isolated by phenol extraction failed to induce any significant level of protection in mice. None of the ribosomes or ribosomal subfractions isolated from Y. pestis were effective in inducing immunity to lethal challenge. These results suggest that the immunogen of the ribosomal vaccine is protein. Images PMID:4564407

  2. Severe Hypoglycemia–Induced Lethal Cardiac Arrhythmias Are Mediated by Sympathoadrenal Activation

    PubMed Central

    Reno, Candace M.; Daphna-Iken, Dorit; Chen, Y. Stefanie; VanderWeele, Jennifer; Jethi, Krishan; Fisher, Simon J.

    2013-01-01

    For people with insulin-treated diabetes, severe hypoglycemia can be lethal, though potential mechanisms involved are poorly understood. To investigate how severe hypoglycemia can be fatal, hyperinsulinemic, severe hypoglycemic (10–15 mg/dL) clamps were performed in Sprague-Dawley rats with simultaneous electrocardiogram monitoring. With goals of reducing hypoglycemia-induced mortality, the hypotheses tested were that: 1) antecedent glycemic control impacts mortality associated with severe hypoglycemia; 2) with limitation of hypokalemia, potassium supplementation could limit hypoglycemia-associated deaths; 3) with prevention of central neuroglycopenia, brain glucose infusion could prevent hypoglycemia-associated arrhythmias and deaths; and 4) with limitation of sympathoadrenal activation, adrenergic blockers could prevent hypoglycemia-induced arrhythmic deaths. Severe hypoglycemia–induced mortality was noted to be worsened by diabetes, but recurrent antecedent hypoglycemia markedly improved the ability to survive an episode of severe hypoglycemia. Potassium supplementation tended to reduce mortality. Severe hypoglycemia caused numerous cardiac arrhythmias including premature ventricular contractions, tachycardia, and high-degree heart block. Intracerebroventricular glucose infusion reduced severe hypoglycemia–induced arrhythmias and overall mortality. β-Adrenergic blockade markedly reduced cardiac arrhythmias and completely abrogated deaths due to severe hypoglycemia. Under conditions studied, sudden deaths caused by insulin-induced severe hypoglycemia were mediated by lethal cardiac arrhythmias triggered by brain neuroglycopenia and the marked sympathoadrenal response. PMID:23835337

  3. DPY-17 and MUA-3 Interact for Connective Tissue-Like Tissue Integrity in Caenorhabditis elegans: A Model for Marfan Syndrome.

    PubMed

    Fotopoulos, Pauline; Kim, Jeongho; Hyun, Moonjung; Qamari, Waiss; Lee, Inhwan; You, Young-Jai

    2015-04-27

    mua-3 is a Caenorhabditis elegans homolog of the mammalian fibrillin1, a monogenic cause of Marfan syndrome. We identified a new mutation of mua-3 that carries an in-frame deletion of 131 amino acids in the extracellular domain, which allows the mutants to survive in a temperature-dependent manner; at the permissive temperature, the mutants grow normally without obvious phenotypes, but at the nonpermissive temperature, more than 90% die during the L4 molt due to internal organ detachment. Using the temperature-sensitive lethality, we performed unbiased genetic screens to isolate suppressors to find genetic interactors of MUA-3. From two independent screens, we isolated mutations in dpy-17 as a suppressor. RNAi of dpy-17 in mua-3 rescued the lethality, confirming dpy-17 is a suppressor. dpy-17 encodes a collagen known to genetically interact with dpy-31, a BMP-1/Tolloid-like metalloprotease required for TGFβ activation in mammals. Human fibrillin1 mutants fail to sequester TGFβ2 leading to excess TGFβ signaling, which in turn contributes to Marfan syndrome or Marfan-related syndrome. Consistent with that, RNAi of dbl-1, a TGFβ homolog, modestly rescued the lethality of mua-3 mutants, suggesting a potentially conserved interaction between MUA-3 and a TGFβ pathway in C. elegans. Our work provides genetic evidence of the interaction between TGFβ and a fibrillin homolog, and thus provides a simple yet powerful genetic model to study TGFβ function in development of Marfan pathology. Copyright © 2015 Fotopoulos et al.

  4. Suppression of AKT phosphorylation restores rapamycin-based synthetic lethality in SMAD4-defective pancreatic cancer cells.

    PubMed

    Le Gendre, Onica; Sookdeo, Ayisha; Duliepre, Stephie-Anne; Utter, Matthew; Frias, Maria; Foster, David A

    2013-05-01

    mTOR has been implicated in survival signals for many human cancers. Rapamycin and TGF-β synergistically induce G1 cell-cycle arrest in several cell lines with intact TGF-β signaling pathway, which protects cells from the apoptotic effects of rapamycin during S-phase of the cell cycle. Thus, rapamycin is cytostatic in the presence of serum/TGF-β and cytotoxic in the absence of serum. However, if TGF-β signaling is defective, rapamycin induced apoptosis in both the presence and absence of serum/TGF-β in colon and breast cancer cell lines. Because genetic dysregulation of TGF-β signaling is commonly observed in pancreatic cancers-with defects in the Smad4 gene being most prevalent, we hypothesized that pancreatic cancers would display a synthetic lethality to rapamycin in the presence of serum/TGF-β. We report here that Smad4-deficient pancreatic cancer cells are killed by rapamycin in the absence of serum; however, in the presence of serum, we did not observe the predicted synthetic lethality with rapamycin. Rapamycin also induced elevated phosphorylation of the survival kinase Akt at Ser473. Suppression of rapamycin-induced Akt phosphorylation restored rapamycin sensitivity in Smad4-null, but not Smad4 wild-type pancreatic cancer cells. This study shows that the synthetic lethality to rapamycin in pancreatic cancers with defective TGF-β signaling is masked by rapamycin-induced increases in Akt phosphorylation. The implication is that a combination of approaches that suppress both Akt phosphorylation and mTOR could be effective in targeting pancreatic cancers with defective TGF-β signaling. ©2013 AACR.

  5. GUCY2C Signaling Opposes the Acute Radiation-Induced GI Syndrome.

    PubMed

    Li, Peng; Wuthrick, Evan; Rappaport, Jeff A; Kraft, Crystal; Lin, Jieru E; Marszalowicz, Glen; Snook, Adam E; Zhan, Tingting; Hyslop, Terry M; Waldman, Scott A

    2017-09-15

    High doses of ionizing radiation induce acute damage to epithelial cells of the gastrointestinal (GI) tract, mediating toxicities restricting the therapeutic efficacy of radiation in cancer and morbidity and mortality in nuclear disasters. No approved prophylaxis or therapy exists for these toxicities, in part reflecting an incomplete understanding of mechanisms contributing to the acute radiation-induced GI syndrome (RIGS). Guanylate cyclase C (GUCY2C) and its hormones guanylin and uroguanylin have recently emerged as one paracrine axis defending intestinal mucosal integrity against mutational, chemical, and inflammatory injury. Here, we reveal a role for the GUCY2C paracrine axis in compensatory mechanisms opposing RIGS. Eliminating GUCY2C signaling exacerbated RIGS, amplifying radiation-induced mortality, weight loss, mucosal bleeding, debilitation, and intestinal dysfunction. Durable expression of GUCY2C, guanylin, and uroguanylin mRNA and protein by intestinal epithelial cells was preserved following lethal irradiation inducing RIGS. Oral delivery of the heat-stable enterotoxin (ST), an exogenous GUCY2C ligand, opposed RIGS, a process requiring p53 activation mediated by dissociation from MDM2. In turn, p53 activation prevented cell death by selectively limiting mitotic catastrophe, but not apoptosis. These studies reveal a role for the GUCY2C paracrine hormone axis as a novel compensatory mechanism opposing RIGS, and they highlight the potential of oral GUCY2C agonists (Linzess; Trulance) to prevent and treat RIGS in cancer therapy and nuclear disasters. Cancer Res; 77(18); 5095-106. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. Ex-vivo assessment and non-invasive in vivo imaging of internal hemorrhages in Aga2/+ mutant mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ermolayev, Vladimir; Cohrs, Christian M.; Mohajerani, Pouyan

    Highlights: ► Aga2/+ mice, model for Osteogenesis imperfecta, have type I collagen mutation. ► Aga2/+ mice display both moderate and severe phenotypes lethal 6–11th postnatal. ► Internal hemorrhages studied in Aga2/+ vs. control mice at 6 and 9 days postnatal. ► Anatomical and functional findings in-vivo contrasted to the ex-vivo appearance. -- Abstract: Mutations in type I collagen genes (COL1A1/2) typically lead to Osteogenesis imperfecta, the most common heritable cause of skeletal fractures and bone deformation in humans. Heterozygous Col1a1{sup Aga2/+}, animals with a dominant mutation in the terminal C-propeptide domain of type I collagen develop typical skeletal hallmarks andmore » internal hemorrhages starting from 6 day after birth. The disease progression for Aga2/+ mice, however, is not uniform differing between severe phenotype lethal at the 6–11th day of life, and moderate-to-severe one with survival to adulthood. Herein we investigated whether a new modality that combines X-ray computer tomography with fluorescence tomography in one hybrid system can be employed to study internal bleedings in relation to bone fractures and obtain insights into disease progression. The disease phenotype was characterized on Aga2/+ vs. wild type mice between 6 and 9 days postnatal. Anatomical and functional findings obtained in-vivo were contrasted to the ex-vivo appearance of the same tissues under cryo-slicing.« less

  7. R-LOCUS DELETERIOUS FACTORS IN MORMONIELLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiting, P.W.

    1962-01-01

    New data are presented on 37 R-locus mutant genes containing deleterious factors or crossover suppressors. Twenty-seven of these genes are among the 206 recognizable eye-color mutants previously found by others in experiments in which wild-type males were irradiated and mated, siring 11062 daughters examined, mutation rate 1.86%. With the addition of eight mutants from later simdlar tests there were 38 mutants failing to breed, probably being dominant steriles, and seven immature, probably dominant lethals. Of the l60 mutants given successful breeding test, 80 were normal and 80 contained delcterious factors of different types - lethals, near-steriles, femalesteriles, and male-stertles. Ratemore » of deleterious factor productdon differs according to the factor mutating to produce the eye-color marker. Among the l07 genes changed in factor S alone, 68 were also deleterious (63.6%) but for the 45 in O, there were only nine (20.0%), suggesting a more sensitive region near S. More than one deleterious factor may be produced simultaneously with an eye-color change and one defeet may mask others. The gene which forms a temporary unit of segregation in heterozygotes is of a higher order of magnitude than units of heredity (gene elements, cistrons) which may be permanently present dn the germ plasm. Because of the high mutation rate to the marker eye colors scarlet and oyster white, the genetical structure of the R region may be easily studied. (auth)« less

  8. A new deletion refines the boundaries of the murine Prader–Willi syndrome imprinting center

    PubMed Central

    DuBose, Amanda J.; Smith, Emily Y.; Yang, Thomas P.; Johnstone, Karen A.; Resnick, James L.

    2011-01-01

    The human chromosomal 15q11–15q13 region is subject to both maternal and paternal genomic imprinting. Absence of paternal gene expression from this region results in Prader–Willi syndrome (PWS), while absence of maternal gene expression leads to Angelman syndrome. Transcription of paternally expressed genes in the region depends upon an imprinting center termed the PWS-IC. Imprinting defects in PWS can be caused by microdeletions and the smallest commonly deleted region indicates that the PWS-IC lies within a region of 4.3 kb. The function and location of the PWS-IC is evolutionarily conserved, but delineation of the PWS-IC in mouse has proven difficult. The first targeted mutation of the PWS-IC, a deletion of 35 kb spanning Snrpn exon 1, exhibited a complete PWS-IC deletion phenotype. Pups inheriting this mutation paternally showed a complete loss of paternal gene expression and died neonatally. A reported deletion of 4.8 kb showed only a reduction in paternal gene expression and incomplete penetrance of neonatal lethality, suggesting that some PWS-IC function had been retained. Here, we report that a 6 kb deletion spanning Snrpn exon 1 exhibits a complete PWS-IC deletion phenotype. Pups inheriting this mutation paternally lack detectable expression of all PWS genes and paternal silencing of Ube3a, exhibit maternal DNA methylation imprints at Ndn and Mkrn3 and suffer failure to thrive leading to a fully penetrant neonatal lethality. PMID:21659337

  9. A new deletion refines the boundaries of the murine Prader-Willi syndrome imprinting center.

    PubMed

    Dubose, Amanda J; Smith, Emily Y; Yang, Thomas P; Johnstone, Karen A; Resnick, James L

    2011-09-01

    The human chromosomal 15q11-15q13 region is subject to both maternal and paternal genomic imprinting. Absence of paternal gene expression from this region results in Prader-Willi syndrome (PWS), while absence of maternal gene expression leads to Angelman syndrome. Transcription of paternally expressed genes in the region depends upon an imprinting center termed the PWS-IC. Imprinting defects in PWS can be caused by microdeletions and the smallest commonly deleted region indicates that the PWS-IC lies within a region of 4.3 kb. The function and location of the PWS-IC is evolutionarily conserved, but delineation of the PWS-IC in mouse has proven difficult. The first targeted mutation of the PWS-IC, a deletion of 35 kb spanning Snrpn exon 1, exhibited a complete PWS-IC deletion phenotype. Pups inheriting this mutation paternally showed a complete loss of paternal gene expression and died neonatally. A reported deletion of 4.8 kb showed only a reduction in paternal gene expression and incomplete penetrance of neonatal lethality, suggesting that some PWS-IC function had been retained. Here, we report that a 6 kb deletion spanning Snrpn exon 1 exhibits a complete PWS-IC deletion phenotype. Pups inheriting this mutation paternally lack detectable expression of all PWS genes and paternal silencing of Ube3a, exhibit maternal DNA methylation imprints at Ndn and Mkrn3 and suffer failure to thrive leading to a fully penetrant neonatal lethality.

  10. Optimizing catecholaminergic polymorphic ventricular tachycardia therapy in calsequestrin-mutant mice

    PubMed Central

    Katz, Guy; Khoury, Assad; Kurtzwald, Efrat; Hochhauser, Edith; Porat, Eyal; Shainberg, Asher; Seidman, Jonathan G.; Seidman, Christine E.; Lorber, Abraham; Eldar, Michael; Arad, Michael

    2014-01-01

    BACKGROUND Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a lethal arrhythmia provoked by physical or emotional stress and mediated by spontaneous Ca2+ release and delayed after-depolarizations. Beta-adrenergic blockers are the therapy of choice but fail to control arrhythmia in up to 50% of patients. OBJECTIVE To optimize antiarrhythmic therapy in recessively inherited CPVT caused by calsequestrin (CASQ2) mutations. METHODS Murine heart rhythm telemetry was obtained at rest, during treadmill exercise, and after injection of epinephrine. The protocol was repeated after injection of different antiarrhythmic drugs. Results were then validated in human patients. RESULTS Adult CASQ2 mutant mice had complex ventricular arrhythmia at rest and developed bidirectional and polymorphic ventricular tachycardia on exertion. Class I antiarrhythmic agents (procainamide, lidocaine, flecainide) were ineffective in controlling arrhythmia. Propranolol and sotalol attenuated arrhythmia at rest but failed to prevent VT during sympathetic stimulation. The calcium channel blocker verapamil showed a dose-dependent protection against CPVT. Verapamil was more effective than the dihydropyridine L-type Ca2+ channel blocker nifedipine, and its activity was markedly enhanced when combined with propranolol. Human patients homozygous for CASQ2D307H mutation, remaining symptomatic despite chronic β-blocker therapy, underwent exercise testing according to the Bruce protocol with continuous electrocardiogram recording. Verapamil was combined with propranolol at maximum tolerated doses. Adding verapamil attenuated ventricular arrhythmia and prolonged exercise duration in five of 11 patients. CONCLUSION Verapamil is highly effective against catecholamine-induced arrhythmia in mice with CASQ2 mutations and may potentiate the antiarrhythmic activity of β-blockers in humans with CPVT2. PMID:20620233

  11. Congenital Heart Disease–Causing Gata4 Mutation Displays Functional Deficits In Vivo

    PubMed Central

    Misra, Chaitali; Sachan, Nita; McNally, Caryn Rothrock; Koenig, Sara N.; Nichols, Haley A.; Guggilam, Anuradha; Lucchesi, Pamela A.; Pu, William T.; Srivastava, Deepak; Garg, Vidu

    2012-01-01

    Defects of atrial and ventricular septation are the most frequent form of congenital heart disease, accounting for almost 50% of all cases. We previously reported that a heterozygous G296S missense mutation of GATA4 caused atrial and ventricular septal defects and pulmonary valve stenosis in humans. GATA4 encodes a cardiac transcription factor, and when deleted in mice it results in cardiac bifida and lethality by embryonic day (E)9.5. In vitro, the mutant GATA4 protein has a reduced DNA binding affinity and transcriptional activity and abolishes a physical interaction with TBX5, a transcription factor critical for normal heart formation. To characterize the mutation in vivo, we generated mice harboring the same mutation, Gata4 G295S. Mice homozygous for the Gata4 G295S mutant allele have normal ventral body patterning and heart looping, but have a thin ventricular myocardium, single ventricular chamber, and lethality by E11.5. While heterozygous Gata4 G295S mutant mice are viable, a subset of these mice have semilunar valve stenosis and small defects of the atrial septum. Gene expression studies of homozygous mutant mice suggest the G295S protein can sufficiently activate downstream targets of Gata4 in the endoderm but not in the developing heart. Cardiomyocyte proliferation deficits and decreased cardiac expression of CCND2, a member of the cyclin family and a direct target of Gata4, were found in embryos both homozygous and heterozygous for the Gata4 G295S allele. To further define functions of the Gata4 G295S mutation in vivo, compound mutant mice were generated in which specific cell lineages harbored both the Gata4 G295S mutant and Gata4 null alleles. Examination of these mice demonstrated that the Gata4 G295S protein has functional deficits in early myocardial development. In summary, the Gata4 G295S mutation functions as a hypomorph in vivo and leads to defects in cardiomyocyte proliferation during embryogenesis, which may contribute to the development of congenital heart defects in humans. PMID:22589735

  12. Identification and Characterization of Genes That Interact with Lin-12 in Caenorhabditis Elegans

    PubMed Central

    Tax, F. E.; Thomas, J. H.; Ferguson, E. L.; Horvitz, H. R.

    1997-01-01

    We identified and characterized 14 extragenic mutations that suppressed the dominant egg-laying defect of certain lin-12 gain-of-function mutations. These suppressors defined seven genes: sup-17, lag-2, sel-4, sel-5, sel-6, sel-7 and sel-8. Mutations in six of the genes are recessive suppressors, whereas the two mutations that define the seventh gene, lag-2, are semi-dominant suppressors. These suppressor mutations were able to suppress other lin-12 gain-of-function mutations. The suppressor mutations arose at a very low frequency per gene, 10-50 times below the typical loss-of-function mutation frequency. The suppressor mutations in sup-17 and lag-2 were shown to be rare non-null alleles, and we present evidence that null mutations in these two genes cause lethality. Temperature-shift studies for two suppressor genes, sup-17 and lag-2, suggest that both genes act at approximately the same time as lin-12 in specifying a cell fate. Suppressor alleles of six of these genes enhanced a temperature-sensitive loss-of-function allele of glp-1, a gene related to lin-12 in structure and function. Our analysis of these suppressors suggests that the majority of these genes are part of a shared lin-12/glp-1 signal transduction pathway, or act to regulate the expression or stability of lin-12 and glp-1. PMID:9409830

  13. Mutations Allow JC Polyomaviruses to Elude Antibody Recognition | Center for Cancer Research

    Cancer.gov

    JC polyomavirus (JCV) infects the urinary tract of most adults. In healthy individuals, JCV infection does not cause noticeable symptoms. However, in those with compromised immune systems, JCV can cause a lethal brain disease called progressive multifocal leukoencephalopathy (PML). Data from a recently approved assay to detect serum antibodies specific for the JCV protein VP1

  14. Mutations in the Paxillin-binding Site of Integrin-linked Kinase (ILK) Destabilize the Pseudokinase Domain and Cause Embryonic Lethality in Mice*

    PubMed Central

    Moik, Daniel; Böttcher, Anika; Makhina, Tatiana; Grashoff, Carsten; Bulus, Nada; Zent, Roy; Fässler, Reinhard

    2013-01-01

    Integrin-linked kinase (ILK) localizes to focal adhesions (FAs) where it regulates cell spreading, migration, and growth factor receptor signaling. Previous reports showed that overexpressed ILK in which Val386 and Thr387 were substituted with glycine residues (ILK-VT/GG) could neither interact with paxillin nor localize to FA in cells expressing endogenous wild-type ILK, implying that paxillin binding to ILK is required for its localization to FAs. Here, we show that introducing this mutation into the germ line of mice (ILK-VT/GG) caused vasculogenesis defects, resulting in a general developmental delay and death at around embryonic day 12.5. Fibroblasts isolated from ILK-VT/GG mice contained mutant ILK in FAs, showed normal adhesion to and spreading on extracellular matrix substrates but displayed impaired migration. Biochemical analysis revealed that VT/GG substitutions decreased ILK protein stability leading to decreased ILK levels and reduced binding to paxillin and α-parvin. Because paxillin depletion did not affect ILK localization to FAs, the embryonic lethality and the in vitro migration defects are likely due to the reduced levels of ILK-VT/GG and diminished binding to parvins. PMID:23658024

  15. Disruption of TTDA Results in Complete Nucleotide Excision Repair Deficiency and Embryonic Lethality

    PubMed Central

    Theil, Arjan F.; Nonnekens, Julie; Steurer, Barbara; Mari, Pierre-Olivier; de Wit, Jan; Lemaitre, Charlène; Marteijn, Jurgen A.; Raams, Anja; Maas, Alex; Vermeij, Marcel; Essers, Jeroen; Hoeijmakers, Jan H. J.; Giglia-Mari, Giuseppina; Vermeulen, Wim

    2013-01-01

    The ten-subunit transcription factor IIH (TFIIH) plays a crucial role in transcription and nucleotide excision repair (NER). Inactivating mutations in the smallest 8-kDa TFB5/TTDA subunit cause the neurodevelopmental progeroid repair syndrome trichothiodystrophy A (TTD-A). Previous studies have shown that TTDA is the only TFIIH subunit that appears not to be essential for NER, transcription, or viability. We studied the consequences of TTDA inactivation by generating a Ttda knock-out (Ttda−/−) mouse-model resembling TTD-A patients. Unexpectedly, Ttda−/− mice were embryonic lethal. However, in contrast to full disruption of all other TFIIH subunits, viability of Ttda−/− cells was not affected. Surprisingly, Ttda−/− cells were completely NER deficient, contrary to the incomplete NER deficiency of TTD-A patient-derived cells. We further showed that TTD-A patient mutations only partially inactivate TTDA function, explaining the relatively mild repair phenotype of TTD-A cells. Moreover, Ttda−/− cells were also highly sensitive to oxidizing agents. These findings reveal an essential role of TTDA for life, nucleotide excision repair, and oxidative DNA damage repair and identify Ttda−/− cells as a unique class of TFIIH mutants. PMID:23637614

  16. An allelic series reveals essential roles for FY in plant development in addition to flowering-time control.

    PubMed

    Henderson, Ian R; Liu, Fuquan; Drea, Sinead; Simpson, Gordon G; Dean, Caroline

    2005-08-01

    The autonomous pathway functions to promote flowering in Arabidopsis by limiting the accumulation of the floral repressor FLOWERING LOCUS C (FLC). Within this pathway FCA is a plant-specific, nuclear RNA-binding protein, which interacts with FY, a highly conserved eukaryotic polyadenylation factor. FCA and FY function to control polyadenylation site choice during processing of the FCA transcript. Null mutations in the yeast FY homologue Pfs2p are lethal. This raises the question as to whether these essential RNA processing functions are conserved in plants. Characterisation of an allelic series of fy mutations reveals that null alleles are embryo lethal. Furthermore, silencing of FY, but not FCA, is deleterious to growth in Nicotiana. The late-flowering fy alleles are hypomorphic and indicate a requirement for both intact FY WD repeats and the C-terminal domain in repression of FLC. The FY C-terminal domain binds FCA and in vitro assays demonstrate a requirement for both C-terminal FY-PPLPP repeats during this interaction. The expression domain of FY supports its roles in essential and flowering-time functions. Hence, FY may mediate both regulated and constitutive RNA 3'-end processing.

  17. Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity

    PubMed Central

    Kouno, Takahide; Silvas, Tania V.; Hilbert, Brendan J.; Shandilya, Shivender M. D.; Bohn, Markus F.; Kelch, Brian A.; Royer, William E.; Somasundaran, Mohan; Kurt Yilmaz, Nese; Matsuo, Hiroshi; Schiffer, Celia A.

    2017-01-01

    Nucleic acid editing enzymes are essential components of the immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins, and contribute to the diversification and lethality of cancers. Among these enzymes are the seven human APOBEC3 deoxycytidine deaminases, each with unique target sequence specificity and subcellular localization. While the enzymology and biological consequences have been extensively studied, the mechanism by which APOBEC3s recognize and edit DNA remains elusive. Here we present the crystal structure of a complex of a cytidine deaminase with ssDNA bound in the active site at 2.2 Å. This structure not only visualizes the active site poised for catalysis of APOBEC3A, but pinpoints the residues that confer specificity towards CC/TC motifs. The APOBEC3A–ssDNA complex defines the 5′–3′ directionality and subtle conformational changes that clench the ssDNA within the binding groove, revealing the architecture and mechanism of ssDNA recognition that is likely conserved among all polynucleotide deaminases, thereby opening the door for the design of mechanistic-based therapeutics. PMID:28452355

  18. Nanodosimetry of Low Energy (0.1 - 100 eV) Cation Damage to DNA

    NASA Astrophysics Data System (ADS)

    Sellami, L.; Martin, F.; Hunting, D.; Lacombe, S.; Huels, M. A.

    2004-03-01

    The importance of heavy ions in radiobiology is twofold: (1) they represent the most efficient and volume selective mode of radiotherapy of deep-seated and non-operable tumors, (2) in space environments, or at supersonic altitudes, the most lethal radiation consists of cosmic rays which have a high efficiency to induce clustered DNA lesions, mutations, and cancer. Thus, the study of their effects on DNA is essential for radiation risk assessment, dosimetry, and efficient use of hadrontherapy. Here, we investigate damage to DNA and its components, induced by heavy ion impact, via a novel ion-plasma method, which allows us to probe ion energy depositions in the 0.1-100 eV/nm range in nanoscopic biomolecular films. Cations are generated by electron impact in ultra pure gases (Ar, N2, CO, etc.), and are uniformly accelerated by grids towards the inside surface of a cylinder where an organic film was deposited. After ion irradiation at a specific energy and ion dose, the film is recovered and analyzed. For DNA, gel electrophoresis is used to quantify yields of single, double, and multiple strand breaks. For DNA components (mononucleotides), fragmentation and new products are measured by HPLC and MS.

  19. MASM, a Matrine Derivative, Offers Radioprotection by Modulating Lethal Total-Body Irradiation-Induced Multiple Signaling Pathways in Wistar Rats.

    PubMed

    Li, Jianzhong; Xu, Jing; Lu, Yiming; Qiu, Lei; Xu, Weiheng; Lu, Bin; Hu, Zhenlin; Chu, Zhiyong; Chai, Yifeng; Zhang, Junping

    2016-05-17

    Matrine is an alkaloid extracted from Sophora flavescens Ait and has many biological activities, such as anti-inflammatory, antitumor, anti-fibrosis, and immunosuppressive properties. In our previous studies, the matrine derivative MASM was synthesized and exhibited potent inhibitory activity against liver fibrosis. In this study, we mainly investigated its protection against lethal total-body irradiation (TBI) in rats. Administration of MASM reduced the radiation sickness characteristics and increased the 30-day survival of rats before or after lethal TBI. Ultrastructural observation illustrated that pretreatment of rats with MASM significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed that pretreatment with MASM had a dramatic effect on gene expression changes caused by TBI. Pretreatment with MASM prevented differential expression of 53% (765 genes) of 1445 differentially expressed genes induced by TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 21 pathways, such as metabolic pathways, pathways in cancer, and mitogen-activated protein kinase (MAPK) pathways. Our data indicated that pretreatment of rats with MASM modulated these pathways induced by TBI, suggesting that the pretreatment with MASM might provide the protective effects on lethal TBI mainly or partially through the modulation of these pathways, such as multiple MAPK pathways. Therefore, MASM has the potential to be used as an effective therapeutic or radioprotective agent to minimize irradiation damages and in combination with radiotherapy to improve the efficacy of cancer therapy.

  20. Leukemia inhibitory factor protects against experimental lethal Escherichia coli septic shock in mice.

    PubMed Central

    Waring, P M; Waring, L J; Billington, T; Metcalf, D

    1995-01-01

    Leukemia inhibitory factor (LIF) has recently been associated with septic shock in humans. In this study we sought to determine, in mice, the role of LIF in septic shock. During sublethal endotoxemia, serum LIF levels, as determined by radio-receptor competition assay, peaked at 2 h and were low (3 ng/ml), whereas in lethal Escherichia coli septic shock serum LIF levels rose progressively (> 30 ng/ml) in the premorbid phase coincident with the development of tissue injury. Single i.v. injections of high doses (up to 50 micrograms per mouse) of recombinant murine LIF had no obvious acute detrimental effects, whereas continued i.p. administration (30 micrograms per mouse per day) for 3-4 days induced a fatal catabolic state without evidence of preceding hemodynamic collapse or shock. Simultaneous or subsequent administration of high doses of LIF had no effect on mortality from sublethal and lethal E. coli septic shock, whereas prior administration conferred significant protection against lethality (P << 0.001 by log-rank test), an effect that was dose and interval dependent. This protective effect resembled endotoxin tolerance and was characterized by suppression of E. coli-induced serum tumor necrosis factor concentration (P < 0.05), reduction in the number of viable bacteria (P < 0.05), and prevention of sepsis-induced tissue injury. These observations suggest that systemic LIF production is part of the host response to both endotoxin and sepsis-induced tissue injury. Images Fig. 2 Fig. 5 PMID:7877978

  1. Major role of the PI3K/Akt pathway in ischemic tolerance induced by sublethal oxygen-glucose deprivation in cortical neurons in vitro.

    PubMed

    Bhuiyan, Mohammad Iqbal Hossain; Jung, Seo Yun; Kim, Hyoung Ja; Lee, Yong Sup; Jin, Changbae

    2011-06-01

    Ischemic preconditioning can provide protection to neurons from subsequent lethal ischemia. The molecular mechanisms of neuronal ischemic tolerance, however, are still not well-known. The present study, therefore, examined the role of MAPK and PI3K/Akt pathways in ischemic tolerance induced by preconditioning with sublethal oxygen-glucose deprivation (OGD) in cultured rat cortical neurons. Ischemic tolerance was simulated by preconditioning of the neurons with sublethal 1-h OGD imposed 12 h before lethal 3-h OGD. The time-course studies of relative phosphorylation and expression levels of ERK1/2, JNK and p38 MAPK showed lack of their involvement in ischemic tolerance. However, there were significant increases in Akt phosphorylation levels during the reperfusion period following preconditioned lethal OGD. In addition, Bcl-2 associated death promoter (Bad) and GSK-3β were also found to be inactivated during that reperfusion period. Finally, treatment with an inhibitor of PI3K, wortmannin, applied from 15 min before and during lethal OGD abolished not only the preconditioning-induced neuroprotection but also the Akt activation. Concomitant with blockade of the Akt activation, PI3K inhibition also resulted in activation of Bad and GSK-3β. The results suggest that ischemic tolerance induced by sublethal OGD preconditioning is primarily mediated through activation of the PI3K/Akt pathway, but not the MAPK pathway, in rat cortical neurons.

  2. Mutator dynamics in sexual and asexual experimental populations of yeast.

    PubMed

    Raynes, Yevgeniy; Gazzara, Matthew R; Sniegowski, Paul D

    2011-06-07

    In asexual populations, mutators may be expected to hitchhike with associated beneficial mutations. In sexual populations, recombination is predicted to erode such associations, inhibiting mutator hitchhiking. To investigate the effect of recombination on mutators experimentally, we compared the frequency dynamics of a mutator allele (msh2Δ) in sexual and asexual populations of Saccharomyces cerevisiae. Mutator strains increased in frequency at the expense of wild-type strains in all asexual diploid populations, with some approaching fixation in 150 generations of propagation. Over the same period of time, mutators declined toward loss in all corresponding sexual diploid populations as well as in haploid populations propagated asexually. We report the first experimental investigation of mutator dynamics in sexual populations. We show that a strong mutator quickly declines in sexual populations while hitchhiking to high frequency in asexual diploid populations, as predicted by theory. We also show that the msh2Δ mutator has a high and immediate realized cost that is alone sufficient to explain its decline in sexual populations. We postulate that this cost is indirect; namely, that it is due to a very high rate of recessive lethal or strongly deleterious mutation. However, we cannot rule out the possibility that msh2Δ also has unknown directly deleterious effects on fitness, and that these effects may differ between haploid asexual and sexual populations. Despite these reservations, our results prompt us to speculate that the short-term cost of highly deleterious recessive mutations can be as important as recombination in preventing mutator hitchhiking in sexual populations.

  3. Decreased Expression of Stable RNA Can Alleviate the Lethality Associated with RNase E Deficiency in Escherichia coli.

    PubMed

    Himabindu, P; Anupama, K

    2017-04-15

    The endoribonuclease RNase E participates in mRNA degradation, rRNA processing, and tRNA maturation in Escherichia coli , but the precise reasons for its essentiality are unclear and much debated. The enzyme is most active on RNA substrates with a 5'-terminal monophosphate, which is sensed by a domain in the enzyme that includes residue R169; E. coli also possesses a 5'-pyrophosphohydrolase, RppH, that catalyzes conversion of 5'-terminal triphosphate to 5'-terminal monophosphate on RNAs. Although the C-terminal half (CTH), beyond residue approximately 500, of RNase E is dispensable for viability, deletion of the CTH is lethal when combined with an R169Q mutation or with deletion of rppH In this work, we show that both these lethalities can be rescued in derivatives in which four or five of the seven rrn operons in the genome have been deleted. We hypothesize that the reduced stable RNA levels under these conditions minimize the need of RNase E to process them, thereby allowing for its diversion for mRNA degradation. In support of this hypothesis, we have found that other conditions that are known to reduce stable RNA levels also suppress one or both lethalities: (i) alterations in relA and spoT , which are expected to lead to increased basal ppGpp levels; (ii) stringent rpoB mutations, which mimic high intracellular ppGpp levels; and (iii) overexpression of DksA. Lethality suppression by these perturbations was RNase R dependent. Our work therefore suggests that its actions on the various substrates (mRNA, rRNA, and tRNA) jointly contribute to the essentiality of RNase E in E. coli IMPORTANCE The endoribonuclease RNase E is essential for viability in many Gram-negative bacteria, including Escherichia coli Different explanations have been offered for its essentiality, including its roles in global mRNA degradation or in the processing of several tRNA and rRNA species. Our work suggests that, rather than its role in the processing of any one particular substrate, its distributed functions on all the different substrates (mRNA, rRNA, and tRNA) are responsible for the essentiality of RNase E in E. coli . Copyright © 2017 American Society for Microbiology.

  4. Drosophila model of Meier-Gorlin syndrome based on the mutation in a conserved C-Terminal domain of Orc6.

    PubMed

    Balasov, Maxim; Akhmetova, Katarina; Chesnokov, Igor

    2015-11-01

    Meier-Gorlin syndrome (MGS) is an autosomal recessive disorder characterized by microtia, primordial dwarfism, small ears, and skeletal abnormalities. Patients with MGS often carry mutations in the genes encoding the components of the pre-replicative complex such as Origin Recognition Complex (ORC) subunits Orc1, Orc4, Orc6, and helicase loaders Cdt1 and Cdc6. Orc6 is an important component of ORC and has functions in both DNA replication and cytokinesis. Mutation in conserved C-terminal motif of Orc6 associated with MGS impedes the interaction of Orc6 with core ORC. In order to study the effects of MGS mutation in an animal model system we introduced MGS mutation in Orc6 and established Drosophila model of MGS. Mutant flies die at third instar larval stage with abnormal chromosomes and DNA replication defects. The lethality can be rescued by elevated expression of mutant Orc6 protein. Rescued MGS flies are unable to fly and display multiple planar cell polarity defects. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  5. TALPID3 controls centrosome and cell polarity and the human ortholog KIAA0586 is mutated in Joubert syndrome (JBTS23)

    PubMed Central

    Stephen, Louise A; Tawamie, Hasan; Davis, Gemma M; Tebbe, Lars; Nürnberg, Peter; Nürnberg, Gudrun; Thiele, Holger; Thoenes, Michaela; Boltshauser, Eugen; Uebe, Steffen; Rompel, Oliver; Reis, André; Ekici, Arif B; McTeir, Lynn; Fraser, Amy M; Hall, Emma A; Mill, Pleasantine; Daudet, Nicolas; Cross, Courtney; Wolfrum, Uwe; Jamra, Rami Abou; Davey, Megan G; Bolz, Hanno J

    2015-01-01

    Joubert syndrome (JBTS) is a severe recessive neurodevelopmental ciliopathy which can affect several organ systems. Mutations in known JBTS genes account for approximately half of the cases. By homozygosity mapping and whole-exome sequencing, we identified a novel locus, JBTS23, with a homozygous splice site mutation in KIAA0586 (alias TALPID3), a known lethal ciliopathy locus in model organisms. Truncating KIAA0586 mutations were identified in two additional patients with JBTS. One mutation, c.428delG (p.Arg143Lysfs*4), is unexpectedly common in the general population and may be a major contributor to JBTS. We demonstrate KIAA0586 protein localization at the basal body in human and mouse photoreceptors, as is common for JBTS proteins, and also in pericentriolar locations. We show that loss of TALPID3 (KIAA0586) function in animal models causes abnormal tissue polarity, centrosome length and orientation, and centriolar satellites. We propose that JBTS and other ciliopathies may in part result from cell polarity defects. DOI: http://dx.doi.org/10.7554/eLife.08077.001 PMID:26386247

  6. Identification of a novel insertion mutation in FGFR3 that causes thanatophoric dysplasia type 1.

    PubMed

    Lindy, Amanda S; Basehore, Monica J; Munisha, Mumingjiang; Williams, Aimee Leanne; Friez, Michael J; Writzl, Karin; Willems, Patrick; Dougan, Scott T

    2016-06-01

    Thanatophoric dysplasia is a type of short-limbed neonatal dwarfism that is usually lethal in the perinatal period. It is characterized by short limbs, a narrow, bell-shaped thorax, macrocephaly with a prominent forehead, and flattened vertebral bodies. These malformations result from autosomal dominant mutations in the fibroblast growth factor receptor 3 (FGFR3) gene. In this report, we describe a novel FGFR3 insertion mutation in a fetus with shortened limbs, curved femurs, and a narrow thorax. The diagnosis of thanatophoric dysplasia type 1 was suspected clinically, and FGFR3 sequencing showed a c.742_743insTGT variant, which predicts p.R248delinsLC. In vivo studies in zebrafish demonstrated that this mutation resulted in the overexpression of zebrafish Fgfr3, leading to the over-activation of downstream signaling and dorsalized embryos. To date, no insertions or deletions in FGFR3 have been reported to cause thanatophoric dysplasia types 1 or 2; therefore, this represents the first report to describe such a mutation. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Atelosteogenesis type II is caused by mutations in the diastrophic dysplasia sulfate-transporter gene (DTDST): Evidence for a phenotypic series involving three chondrodysplasias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haestbacka, J.; Lander, E.S.; Superti-Furga, A.

    1996-02-01

    Atelosteogenesis type II (AO II) is a neonatally lethal chondrodysplasia whose clinical and histological characteristics resemble those of another chondrodysplasia, the much less severe diastrophic dysplasia (DTD). The similarity suggests a shared pathogenesis involving lesions in the same biochemical pathway and perhaps the same gene. DTD is caused by mutations in the recently identified diastrophic dysplasia sulfate-transporter gene (DTDST). Here, we report that AOII patients also have DTDST mutations, which lead to defective uptake of inorganic sulfate and insufficient sulfation of macromolecules by patient mesenchymal cells in vitro. Together with our recent observation that a third even more severe chondrodysplasia,more » achondrogenesis type IB, is also caused by mutations in DTDST, these results demonstrate a phenotypic series of three chondrodysplasias of increasing severity caused by lesions in a single sulfate-transporter gene. The severity of the phenotype appears to be correlated with the predicted effect of the mutations on the residual activity of the DTDST protein. 24 refs., 6 figs., 1 tab.« less

  8. ON A CHANGE IN THE SPECTRUM OF SOMATIC MUTATIONS IN EPHESTIA KUEHNIELLA Z. BY TEMPERATURE TREATMENT BEFORE IRRADITION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loebbecke, E.; Oltmanns, O.

    1961-01-01

    Pupae were maintained at different temperatures (-7, doses of x rays. The incidence of 4 types of scale mutations (ES 1, ES 2, ES 3, ES 4) in the butterflies was studied. It was found to vary significantly according to temperature. The ratio of ES 1/ES 2 mutations was lowest (5: 1) at -7 un. Concent 85% and highest (11: 1) at 35 un. Concent 85% . The ES 1 mutant showed highest frequency at 25 un. Concent 85% and fell to the lowest value after preincubation at 40 un. Concent 85% . The ES 2 mutant reached its lowestmore » incidence at 35 un. Concent 85% . The ES 3 mutant varied inconsistentiy and ES 4 frequency was oniy slightly dependent on temperature. The preincubation temperature of 40 un. Concent 85% , the lethal limit for the species, generally depressed mutation frequency. The precise reason for the effect of temperature on mutation frequency is unknown but it was previously found that chromosome fragmentation and translocation were reduced at elevated temperatures. (H.H.D.)« less

  9. Induction of tumor necrosis factor alpha by the group- and type-specific polysaccharides from type III group B streptococci.

    PubMed Central

    Mancuso, G; Tomasello, F; von Hunolstein, C; Orefici, G; Teti, G

    1994-01-01

    Previous studies suggested that circulating tumor necrosis factor alpha (TNF-alpha) may have a pathophysiologic role in experimental neonatal sepsis induced by group B streptococci (GBS). This study was undertaken to investigate the ability of the type III and group-specific polysaccharides of GBS to induce TNF-alpha production and TNF-alpha-dependent lethality in neonatal rats. The cytokine was detected in plasma samples by the L929 cytotoxicity assay. Intracardiac injections of either polysaccharide induced dose-dependent, transient elevations in plasma TNF-alpha levels that returned to baseline values after 5 h. The group-specific antigen induced significantly higher mean peak TNF-alpha levels than the type III antigen (125 +/- 47 versus 44 +/- 15 U/ml with 70 mg/kg of body weight). Glycogen (70 mg/kg), used as a negative control, did not induce TNF-alpha. The lipopolysaccharide-neutralizing agent polymyxin B did not decrease TNF-alpha levels induced by either polysaccharide, ruling out contamination with endotoxin as a possible cause of TNF-alpha induction. Fifty percent lethal doses of the type III and group-specific antigens given as intracardiac injections were 105 and 16 mg/kg, respectively. Salmonella endotoxin, used as a positive control, had a 50% lethal dose of 0.1 mg/kg. The lethal activities of GBS polysaccharides, as well as endotoxin, were completely prevented by pretreatment of neonatal rats with the respective specific antibodies or anti-murine TNF-alpha serum. To assess the relative importance of the type-specific substance in TNF-alpha induction by whole bacteria, two unrelated GBS transposon mutants devoid of only the type-specific capsular polysaccharide (COH1-13 and COH31-15) were employed. Each of the heat-killed unencapsulated mutants was able to produce plasma TNF-alpha level elevations or TNF-alpha-dependent lethality but was significantly less efficient in these activities than the corresponding encapsulated wild-type strain. These data suggest that the presence of type-specific material on GBS is not necessary for the stimulation of TNF-alpha production. Type III capsular polysaccharide, however, can significantly increase the ability of GBS to induce TNF-alpha. Further studies will be needed to assess the importance of TNF-alpha induction by the group- and type-specific antigens in the pathophysiology of GBS disease. PMID:8005664

  10. Active vaccination with vaccinia virus A33 protects mice against lethal vaccinia and ectromelia viruses but not against cowpoxvirus; elucidation of the specific adaptive immune response.

    PubMed

    Paran, Nir; Lustig, Shlomo; Zvi, Anat; Erez, Noam; Israely, Tomer; Melamed, Sharon; Politi, Boaz; Ben-Nathan, David; Schneider, Paula; Lachmi, Batel; Israeli, Ofir; Stein, Dana; Levin, Reuven; Olshevsky, Udy

    2013-07-10

    Vaccinia virus protein A33 (A33VACV) plays an important role in protection against orthopoxviruses, and hence is included in experimental multi-subunit smallpox vaccines. In this study we show that single-dose vaccination with recombinant Sindbis virus expressing A33VACV, is sufficient to protect mice against lethal challenge with vaccinia virus WR (VACV-WR) and ectromelia virus (ECTV) but not against cowpox virus (CPXV), a closely related orthopoxvirus. Moreover, a subunit vaccine based on the cowpox virus A33 ortholog (A33CPXV) failed to protect against cowpox and only partially protected mice against VACV-WR challenge. We mapped regions of sequence variation between A33VACV and A33CPXVand analyzed the role of such variations in protection. We identified a single protective region located between residues 104-120 that harbors a putative H-2Kd T cell epitope as well as a B cell epitope - a target for the neutralizing antibody MAb-1G10 that blocks spreading of extracellular virions. Both epitopes in A33CPXV are mutated and predicted to be non-functional. Whereas vaccination with A33VACV did not induce in-vivo CTL activity to the predicted epitope, inhibition of virus spread in-vitro, and protection from lethal VACV challenge pointed to the B cell epitope highlighting the critical role of residue L118 and of adjacent compensatory residues in protection. This epitope's critical role in protection, as well as its modifications within the orthopoxvirus genus should be taken in context with the failure of A33 to protect against CPXV as demonstrated here. These findings should be considered when developing new subunit vaccines and monoclonal antibody based therapeutics against orthopoxviruses, especially variola virus, the etiologic agent of smallpox.

  11. Active vaccination with vaccinia virus A33 protects mice against lethal vaccinia and ectromelia viruses but not against cowpoxvirus; elucidation of the specific adaptive immune response

    PubMed Central

    2013-01-01

    Vaccinia virus protein A33 (A33VACV) plays an important role in protection against orthopoxviruses, and hence is included in experimental multi-subunit smallpox vaccines. In this study we show that single-dose vaccination with recombinant Sindbis virus expressing A33VACV, is sufficient to protect mice against lethal challenge with vaccinia virus WR (VACV-WR) and ectromelia virus (ECTV) but not against cowpox virus (CPXV), a closely related orthopoxvirus. Moreover, a subunit vaccine based on the cowpox virus A33 ortholog (A33CPXV) failed to protect against cowpox and only partially protected mice against VACV-WR challenge. We mapped regions of sequence variation between A33VACV and A33CPXVand analyzed the role of such variations in protection. We identified a single protective region located between residues 104–120 that harbors a putative H-2Kd T cell epitope as well as a B cell epitope - a target for the neutralizing antibody MAb-1G10 that blocks spreading of extracellular virions. Both epitopes in A33CPXV are mutated and predicted to be non-functional. Whereas vaccination with A33VACV did not induce in-vivo CTL activity to the predicted epitope, inhibition of virus spread in-vitro, and protection from lethal VACV challenge pointed to the B cell epitope highlighting the critical role of residue L118 and of adjacent compensatory residues in protection. This epitope’s critical role in protection, as well as its modifications within the orthopoxvirus genus should be taken in context with the failure of A33 to protect against CPXV as demonstrated here. These findings should be considered when developing new subunit vaccines and monoclonal antibody based therapeutics against orthopoxviruses, especially variola virus, the etiologic agent of smallpox. PMID:23842430

  12. The role of deleterious mutations in the stability of hybridogenetic water frog complexes

    PubMed Central

    2014-01-01

    Background Some species of water frogs originated from hybridization between different species. Such hybrid populations have a particular reproduction system called hybridogenesis. In this paper we consider the two species Pelophylax ridibundus and Pelophylax lessonae, and their hybrids Pelophylax esculentus. P. lessonae and P. esculentus form stable complexes (L-E complexes) in which P. esculentus are hemiclonal. In L-E complexes all the transmitted genomes by P. esculentus carry deleterious mutations which are lethal in homozygosity. Results We analyze, by means of an individual based computational model, L-E complexes. The results of simulations based on the model show that, by eliminating deleterious mutations, L-E complexes collapse. In addition, simulations show that particular female preferences can contribute to the diffusion of deleterious mutations among all P. esculentus frogs. Finally, simulations show how L-E complexes react to the introduction of translocated P. ridibundus. Conclusions The conclusions are the following: (i) deleterious mutations (combined with sexual preferences) strongly contribute to the stability of L-E complexes; (ii) female sexual choice can contribute to the diffusion of deleterious mutations; and (iii) the introduction of P. ridibundus can destabilize L-E complexes. PMID:24885008

  13. Novel Compound Heterozygous Mutations Expand the Recognized Phenotypes of FARS2-Linked Disease.

    PubMed

    Walker, Melissa A; Mohler, Kyle P; Hopkins, Kyle W; Oakley, Derek H; Sweetser, David A; Ibba, Michael; Frosch, Matthew P; Thibert, Ronald L

    2016-08-01

    Mutations in mitochondrial aminoacyl-tRNA synthetases are an increasingly recognized cause of human diseases, often arising in individuals with compound heterozygous mutations and presenting with system-specific phenotypes, frequently neurologic. FARS2 encodes mitochondrial phenylalanyl transfer ribonucleic acid (RNA) synthetase (mtPheRS), perturbations of which have been reported in 6 cases of an infantile, lethal disease with refractory epilepsy and progressive myoclonus. Here the authors report the case of juvenile onset refractory epilepsy and progressive myoclonus with compound heterozygous FARS2 mutations. The authors describe the clinical course over 6 years of care at their institution and diagnostic studies including electroencephalogram (EEG), brain magnetic resonance imaging (MRI), serum and cerebrospinal fluid analyses, skeletal muscle biopsy histology, and autopsy gross and histologic findings, which include features shared with Alpers-Huttenlocher syndrome, Leigh syndrome, and a previously published case of FARS2 mutation associated infantile onset disease. The authors also present structure-guided analysis of the relevant mutations based on published mitochondrial phenylalanyl transfer RNA synthetase and related protein crystal structures as well as biochemical analysis of the corresponding recombinant mutant proteins. © The Author(s) 2016.

  14. Successful bailout stenting strategy against lethal coronary dissection involving left main bifurcation.

    PubMed

    Kubota, Hiroshi; Nomura, Tetsuya; Hori, Yusuke; Yoshioka, Kenichi; Miyawaki, Daisuke; Urata, Ryota; Sugimoto, Takeshi; Kikai, Masakazu; Keira, Natsuya; Tatsumi, Tetsuya

    2017-06-01

    Catheter-induced coronary dissection involving left main bifurcation is a rare complication during cardiac catheterization but can become lethal unless it is treated appropriately. Interventional cardiologists always have to pay attention to the risk of complications related to cardiac catheterization and prepare for determining the best bailout strategy for the situation.

  15. KRAS: Reasons for optimism in lung cancer.

    PubMed

    Lindsay, C R; Jamal-Hanjani, M; Forster, M; Blackhall, F

    2018-06-09

    Despite being the most frequent gain-of-function genetic alteration in human cancer, KRAS mutation has to date offered only limited potential as a prognostic and predictive biomarker. Results from the phase III SELECT-1 trial in non-small cell lung cancer (NSCLC) recently added to a number of historical and more contemporary disappointments in targeting KRAS mutant disease, including farnesyl transferase inhibition and synthetic lethality partners such as STK33. This narrative review uses the context of these previous failures to demonstrate how the knowledge gained from these experiences can be used as a platform for exciting advances in NSCLC on the horizon. It now seems clear that mutational subtype (most commonly G12C) of individual mutations is of greater relevance than the categorical evaluation of KRAS mutation presence or otherwise. A number of direct small molecules targeted to these subtypes are in development and have shown promising biological activity, with some in the late stages of preclinical validation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Generation of muscular dystrophy model rats with a CRISPR/Cas system.

    PubMed

    Nakamura, Katsuyuki; Fujii, Wataru; Tsuboi, Masaya; Tanihata, Jun; Teramoto, Naomi; Takeuchi, Shiho; Naito, Kunihiko; Yamanouchi, Keitaro; Nishihara, Masugi

    2014-07-09

    Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder caused by mutations in the Dmd gene encoding Dystrophin. DMD model animals, such as mdx mice and canine X-linked muscular dystrophy dogs, have been widely utilized in the development of a treatment for DMD. Here, we demonstrate the generation of Dmd-mutated rats using a clustered interspaced short palindromic repeats (CRISPR)/Cas system, an RNA-based genome engineering technique that is also adaptive to rats. We simultaneously targeted two exons in the rat Dmd gene, which resulted in the absence of Dystrophin expression in the F0 generation. Dmd-mutated rats exhibited a decline in muscle strength, and the emergence of degenerative/regenerative phenotypes in the skeletal muscle, heart, and diaphragm. These mutations were heritable by the next generation, and F1 male rats exhibited similar phenotypes in their skeletal muscles. These model rats should prove to be useful for developing therapeutic methods to treat DMD.

  17. Identification of Mutations Causing Aberrant Termination and Deficient Splice Donor Site on the HBA1 Gene.

    PubMed

    Farashi, Samaneh; Vakili, Shadi; Garous, Negin F; Ashki, Mehri; Forouzesh Pour, Fatemeh; Zeinali, Fatemeh; Rad, Fariba; Imanian, Hashem; Azarkeivan, Azita; Najmabadi, Hossein

    2016-01-01

    α-Thalassemia (α-thal) is a common genetic disorder in Iran and many parts of the world. Genetic defects on the α-globin gene cluster can result in α-thal that may develop a clinical phenotype varying from almost asymptomatic to a lethal hemolytic anemia. In the present study, four Iranian individuals with hypochromic microcytic anemia, who revealed none of the known mutations responsible for α-thal, were subjected for further investigations. The thalassemic phenotype of these patients resulted from abnormal RNA splicing sites owing to a missense at the splice donor site, a truncated protein or hemoglobin (Hb) variants as a result of two different substitutions on the α1-globin gene. The clinical presentation of mild anemia in these individuals showed the contribution of these novel mutations in α-thal in spite of the dominantly expressed α2-globin gene. This study describes hematological manifestations of subjects carrying some novel mutations comparable to the reported phenotype of α(+)-thal trait.

  18. A de novo mutation in KIT causes white spotting in a subpopulation of German Shepherd dogs.

    PubMed

    Wong, A K; Ruhe, A L; Robertson, K R; Loew, E R; Williams, D C; Neff, M W

    2013-06-01

    Although variation in the KIT gene is a common cause of white spotting among domesticated animals, KIT has not been implicated in the diverse white spotting observed in the dog. Here, we show that a loss-of-function mutation in KIT recapitulates the coat color phenotypes observed in other species. A spontaneous white spotting observed in a pedigree of German Shepherd dogs was mapped by linkage analysis to a single locus on CFA13 containing KIT (pairwise LOD = 15). DNA sequence analysis identified a novel 1-bp insertion in the second exon that co-segregated with the phenotype. The expected frameshift and resulting premature stop codons predicted a severely truncated c-Kit receptor with presumably abolished activity. No dogs homozygous for the mutation were recovered from multiple intercrosses (P = 0.01), suggesting the mutation is recessively embryonic lethal. These observations are consistent with the effects of null alleles of KIT in other species. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  19. MUTATIONS INDUCED BY URBAN AIR AND DRINKING WATER: DO THEY LEAVE A MUTATIONAL SIGNATURE IN HUMAN TUMORS?

    EPA Science Inventory

    Mutations Induced by Urban Air and Drinking Water: Do They Leave a Mutational Signature in Human Tumors?

    Mutation spectra of complex environmental mixtures have been determined thus far only in Salmonella. We have determined mutation spectra for the particulate organics ...

  20. Substance P is a determinant of lethality in diet-induced hemorrhagic pancreatitis in mice.

    PubMed

    Maa, J; Grady, E F; Yoshimi, S K; Drasin, T E; Kim, E H; Hutter, M M; Bunnett, N W; Kirkwood, K S

    2000-08-01

    The neuropeptide substance P (SP) induces plasma extravasation and neutrophil infiltration by activating the neurokinin 1-receptor (NK1-R). SP-induced neurogenic inflammation is terminated by the cell surface enzyme neutral endopeptidase (NEP), which degrades SP. We determined whether genetic deletion of the NK1-R reduces mortality and, conversely, whether genetic deletion of NEP increases mortality in a lethal model of hemorrhagic pancreatitis. Necrotizing pancreatitis was induced by feeding mice a diet deficient in choline and supplemented with ethionine. We determined the length of survival, the severity of pancreatitis (by measuring the neutrophil enzyme myeloperoxidase [MPO] and by histologic evaluation), and the severity of pancreatitis-associated lung injury (lung MPO and histology) in NK1-R (+/+)/(-/-) and NEP (+/+)/(-/-) mice. Genetic deletion of the NK1-R significantly improved survival (100% vs 8% at 120 hours, P <.001) and reduced pancreatic MPO and acinar cell necrosis. Conversely, genetic deletion of NEP significantly worsened survival (0% vs 90% at 120 hours, P <.001) and exacerbated pancreatic MPO and pancreatitis-associated lung injury. Substance P is an important determinant of lethality in this model of necrotizing pancreatitis. Defects in NEP expression could lead to uncontrolled inflammation.

  1. Zn(2+)-dependence of the synergistic increase in rat thymocyte cell lethality caused by simultaneous application of 4,5-dichloro-2-octyl-4-isothiazolin-3-one (DCOIT) and H2O2.

    PubMed

    Saitoh, Shohei; Fukunaga, Eri; Ohtani, Hana; Oyama, Yasuo

    2015-09-01

    4,5-Dichloro-2-octyl-4-isothiazolin-3-one (DCOIT) is an antifouling agent that is an alternative to organotins such as tributyltin (TBT). Because DCOIT decreases catalase activity, it may increase the susceptibility of cells to oxidative stress. We examined the effects of DCOIT on rat thymocytes suffering from oxidative stress induced by H2O2. The simultaneous application of DCOIT and H2O2 induced a synergistic increase in cell lethality that was completely suppressed by chelating intracellular Zn(2+). Intracellular Zn(2+) concentration was increased by DCOIT at concentrations ranging from 0.1 μM to 3 μM. Although the increase in cell lethality produced by DCOIT alone was less than that produced by TBT alone, a synergistic increase was not induced by the combination of TBT and H2O2. Therefore, these results suggest that DCOIT increases vulnerability to oxidative stress and is more cytotoxic than TBT when oxidative stress is induced by H2O2. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Male Germline Control of Transposable Elements1

    PubMed Central

    Bao, Jianqiang; Yan, Wei

    2012-01-01

    ABSTRACT Repetitive sequences, especially transposon-derived interspersed repetitive elements, account for a large fraction of the genome in most eukaryotes. Despite the repetitive nature, these transposable elements display quantitative and qualitative differences even among species of the same lineage. Although transposable elements contribute greatly as a driving force to the biological diversity during evolution, they can induce embryonic lethality and genetic disorders as a result of insertional mutagenesis and genomic rearrangement. Temporary relaxation of the epigenetic control of retrotransposons during early germline development opens a risky window that can allow retrotransposons to escape from host constraints and to propagate abundantly in the host genome. Because germline mutations caused by retrotransposon activation are heritable and thus can be deleterious to the offspring, an adaptive strategy has evolved in host cells, especially in the germline. In this review, we will attempt to summarize general defense mechanisms deployed by the eukaryotic genome, with an emphasis on pathways utilized by the male germline to confer retrotransposon silencing. PMID:22357546

  3. DNA Damage and Repair in Human Cancer: Molecular Mechanisms and Contribution to Therapy-Related Leukemias

    PubMed Central

    Casorelli, Ida; Bossa, Cecilia; Bignami, Margherita

    2012-01-01

    Most antitumour therapies damage tumour cell DNA either directly or indirectly. Without repair, damage can result in genetic instability and eventually cancer. The strong association between the lack of DNA damage repair, mutations and cancer is dramatically demonstrated by a number of cancer-prone human syndromes, such as xeroderma pigmentosum, ataxia-telangiectasia and Fanconi anemia. Notably, DNA damage responses, and particularly DNA repair, influence the outcome of therapy. Because DNA repair normally excises lethal DNA lesions, it is intuitive that efficient repair will contribute to intrinsic drug resistance. Unexpectedly, a paradoxical relationship between DNA mismatch repair and drug sensitivity has been revealed by model studies in cell lines. This suggests that connections between DNA repair mechanism efficiency and tumour therapy might be more complex. Here, we review the evidence for the contribution of carcinogenic properties of several drugs as well as of alterations in specific mechanisms involved in drug-induced DNA damage response and repair in the pathogenesis of therapy-related cancers. PMID:23066388

  4. Infectivity and reconstitution of TMV RNA modified with N-acetoxy-2-acetylaminofluorene or benzol [a] pyrene 7,8-dihydrodiol 9,10 oxide.

    PubMed Central

    Singer, B; Pulkrabek, P; Weinstein, I B; Grunberger, D

    1980-01-01

    TMV RNA was modified by two bulky carcinogens, N-acetoxy-2-acetylamino-fluorene (AAAF) and (+/-)-7beta, 8alpha- dihydroxy-9alpha, 10alpha-epoxy-7,8,9,10-tetrahydrobenzo[alpha]pyrene (BPDE), and the effects of such substituents on biological and physical properties was studied. For both types of modification, the loss of infectivity was directly proportional to the number of chemical modifications indicating that all modifications are lethal. Neither AAAF nor BPDE produced measurable mutations. Reconstitution of modified RNA with TMV protein was partially inhibited, but such inhibition occurred to similar extents with either carcinogen and a varying levels of modification. The data suggest that both types of substitution of TMV RNA generally permit the TMV coat protein to aggregate normally around the RNA, but that AAAF and BPDE may induce some conformational change in the initiation region that inhibits the initiation step. PMID:6776494

  5. Targeted Vaccination against Human α-Lactalbumin for Immunotherapy and Primary Immunoprevention of Triple Negative Breast Cancer

    PubMed Central

    Tuohy, Vincent K.; Jaini, Ritika; Johnson, Justin M.; Loya, Matthew G.; Wilk, Dennis; Downs-Kelly, Erinn; Mazumder, Suparna

    2016-01-01

    We have proposed that safe and effective protection against the development of adult onset cancers may be achieved by vaccination against tissue-specific self-proteins that are “retired” from expression at immunogenic levels in normal tissues as we age, but are overexpressed in emerging tumors. α-Lactalbumin is an example of a “retired” self-protein because its expression in normal tissues is confined exclusively to the breast during late pregnancy and lactation, but is also expressed in the vast majority of human triple negative breast cancers (TNBC)—the most aggressive and lethal form of breast cancer and the predominant form that occurs in women at high genetic risk including those with mutated BRCA1 genes. In anticipation of upcoming clinical trials, here we provide preclinical data indicating that α-lactalbumin has the potential as a vaccine target for inducing safe and effective primary immunoprevention as well as immunotherapy against TNBC. PMID:27322324

  6. ATM regulates 3-Methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents

    PubMed Central

    Agnihotri, Sameer; Burrell, Kelly; Buczkowicz, Pawel; Remke, Marc; Golbourn, Brian; Chornenkyy, Yevgen; Gajadhar, Aaron; Fernandez, Nestor A.; Clarke, Ian D.; Barszczyk, Mark S.; Pajovic, Sanja; Ternamian, Christian; Head, Renee; Sabha, Nesrin; Sobol, Robert W.; Taylor, Michael D; Rutka, James T.; Jones, Chris; Dirks, Peter B.; Zadeh, Gelareh; Hawkins, Cynthia

    2014-01-01

    Alkylating agents are a frontline therapy for the treatment of several aggressive cancers including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed; increasing therapeutic response while minimizing toxicity. Using a siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM) were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. PMID:25100205

  7. ATM Deficiency Generating Genomic Instability Sensitizes Pancreatic Ductal Adenocarcinoma Cells to Therapy-Induced DNA Damage.

    PubMed

    Perkhofer, Lukas; Schmitt, Anna; Romero Carrasco, Maria Carolina; Ihle, Michaela; Hampp, Stephanie; Ruess, Dietrich Alexander; Hessmann, Elisabeth; Russell, Ronan; Lechel, André; Azoitei, Ninel; Lin, Qiong; Liebau, Stefan; Hohwieler, Meike; Bohnenberger, Hanibal; Lesina, Marina; Algül, Hana; Gieldon, Laura; Schröck, Evelin; Gaedcke, Jochen; Wagner, Martin; Wiesmüller, Lisa; Sipos, Bence; Seufferlein, Thomas; Reinhardt, Hans Christian; Frappart, Pierre-Olivier; Kleger, Alexander

    2017-10-15

    Pancreatic ductal adenocarcinomas (PDAC) harbor recurrent functional mutations of the master DNA damage response kinase ATM, which has been shown to accelerate tumorigenesis and epithelial-mesenchymal transition. To study how ATM deficiency affects genome integrity in this setting, we evaluated the molecular and functional effects of conditional Atm deletion in a mouse model of PDAC. ATM deficiency was associated with increased mitotic defects, recurrent genomic rearrangements, and deregulated DNA integrity checkpoints, reminiscent of human PDAC. We hypothesized that altered genome integrity might allow synthetic lethality-based options for targeted therapeutic intervention. Supporting this possibility, we found that the PARP inhibitor olaparib or ATR inhibitors reduced the viability of PDAC cells in vitro and in vivo associated with a genotype-selective increase in apoptosis. Overall, our results offered a preclinical mechanistic rationale for the use of PARP and ATR inhibitors to improve treatment of ATM-mutant PDAC. Cancer Res; 77(20); 5576-90. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Chromosomal Fragmentation in "Escherichia Coli": Its Absence in "mutT" Mutants and Its Mechanisms in "seqA" Mutants

    ERIC Educational Resources Information Center

    Rotman, Ella Rose

    2009-01-01

    Chromosomal fragmentation in "Escherichia coli" is a lethal event for the cell unless mended by the recombinational repair proteins RecA, RecBCD, and RuvABC. Certain mutations exacerbate problems that cause the cell to be dependent on the recombinational repair proteins for viability. We tested whether the absence of the MutT protein caused…

  9. Viper and cobra venom neutralization by beta-sitosterol and stigmasterol isolated from the root extract of Pluchea indica Less. (Asteraceae).

    PubMed

    Gomes, A; Saha, Archita; Chatterjee, Ipshita; Chakravarty, A K

    2007-09-01

    We reported previously that the methanolic root extract of the Indian medicinal plant Pluchea indica Less. (Asteraceae) could neutralize viper venom-induced action [Alam, M.I., Auddy, B., Gomes, A., 1996. Viper venom neutralization by Indian medicinal plant (Hemidesmus indicus and P. indica) root extracts. Phytother. Res. 10, 58-61]. The present study reports the neutralization of viper and cobra venom by beta-sitosterol and stigmasterol isolated from the root extract of P. indica Less. (Asteraceae). The active fraction (containing the major compound beta-sitosterol and the minor compound stigmasterol) was isolated and purified by silica gel column chromatography and the structure was determined using spectroscopic analysis (EIMS, (1)H NMR, (13)C NMR). Anti-snake venom activity was studied in experimental animals. The active fraction was found to significantly neutralize viper venom-induced lethal, hemorrhagic, defibrinogenation, edema and PLA(2) activity. Cobra venom-induced lethality, cardiotoxicity, neurotoxicity, respiratory changes and PLA(2) activity were also antagonized by the active component. It potentiated commercial snake venom antiserum action against venom-induced lethality in male albino mice. The active fraction could antagonize venom-induced changes in lipid peroxidation and superoxide dismutase activity. This study suggests that beta-sitosterol and stigmasterol may play an important role, along with antiserum, in neutralizing snake venom-induced actions.

  10. Mutation and repair in an ultraviolet-sensitive Chinese hamster ovary cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, R.D.

    1981-11-01

    An ultraviolet (UV) light-sensitive mutant of Chinese hamster ovary cells (CHO) has been isolated and characterized with respect to a number of post-irradiation responses. The UV-sensitive mutant, termed 43-3B, has the same growth rate and chromosome number as the wild-type CHO-9. 43-3B is hypersensitive to the lethal effects of UV light (D/sub 0/ of 0.3 J/m/sup 2/ as compared to 3.2 J/m/sup 2/ for the wild-type). A marked UV-hypermutability is observed in 43-3B as compared to the wild-type, as measured with markers for induced resistance to 6-thioguanine, ouabain, and diphtheria toxin. A factor of 38 to 65 more mutations aremore » induced per unit fluence in 43-3B than in CHO-9. The UV-sensitive mutant is also sensitive to killing by simulated solar light, although the D/sub 0/ ratio is not as great as for germicidal UV. 43-3B exhibits only about 17% of the wild-type level of UV-stimulated DNA repair synthesis, as measured by autoradiography of G/sub 1/ phase cells. A much reduced ability to recover control rates of semiconservative DNA synthesis after UV irradiation was observed in the repair-deficient 43-3B cell line. Recovery of colony-forming ability between fractionated UV exposures was observed in the wild-type CHO-9, but little recovery was seen in 43-3B. The present investigation demonstrates that a sensitive/wild-type pair of CHO cell lines can be used in comparative studies to determine the involvement of repair in a wide range of post-irradiation phenomena.« less

  11. O-Serotype Conversion in Salmonella Typhimurium Induces Protective Immune Responses against Invasive Non-Typhoidal Salmonella Infections.

    PubMed

    Li, Pei; Liu, Qing; Luo, Hongyan; Liang, Kang; Yi, Jie; Luo, Ying; Hu, Yunlong; Han, Yue; Kong, Qingke

    2017-01-01

    Salmonella infections remain a big problem worldwide, causing enteric fever by Salmonella Typhi (or Paratyphi) or self-limiting gastroenteritis by non-typhoidal Salmonella (NTS) in healthy individuals. NTS may become invasive and cause septicemia in elderly or immuno-compromised individuals, leading to high mortality and morbidity. No vaccines are currently available for preventing NTS infection in human. As these invasive NTS are restricted to several O-antigen serogroups including B1, D1, C1, and C2, O-antigen polysaccharide is believed to be a good target for vaccine development. In this study, a strategy of O-serotype conversion was investigated to develop live attenuated S . Typhimurium vaccines against the major serovars of NTS infections. The immunodominant O4 serotype of S . Typhimurium was converted into O9, O7, and O8 serotypes through unmarked chromosomal deletion-insertion mutations. O-serotype conversion was confirmed by LPS silver staining and western blotting. All O-serotype conversion mutations were successfully introduced into the live attenuated S . Typhimurium vaccine S738 (Δ crp Δ cya ) to evaluate their immunogenicity in mice model. The vaccine candidates induced high amounts of heterologous O-polysaccharide-specific functional IgG responses. Vaccinated mice survived a challenge of 100 times the 50% lethality dose (LD 50 ) of wild-type S . Typhimurium. Protective efficacy against heterologous virulent Salmonella challenges was highly O-serotype related. Furthermore, broad-spectrum protection against S . Typhimurium, S . Enteritidis, and S . Choleraesuis was observed by co-vaccination of O9 and O7 O-serotype-converted vaccine candidates. This study highlights the strategy of expressing heterologous O-polysaccharides via genetic engineering in developing live attenuated S . Typhimurium vaccines against NTS infections.

  12. A novel miR-371a-5p-mediated pathway, leading to BAG3 upregulation in cardiomyocytes in response to epinephrine, is lost in Takotsubo cardiomyopathy

    PubMed Central

    d'Avenia, M; Citro, R; De Marco, M; Veronese, A; Rosati, A; Visone, R; Leptidis, S; Philippen, L; Vitale, G; Cavallo, A; Silverio, A; Prota, C; Gravina, P; De Cola, A; Carletti, E; Coppola, G; Gallo, S; Provenza, G; Bossone, E; Piscione, F; Hahne, M; De Windt, L J; Turco, M C; De Laurenzi, V

    2015-01-01

    Molecular mechanisms protecting cardiomyocytes from stress-induced death, including tension stress, are essential for cardiac physiology and defects in these protective mechanisms can result in pathological alterations. Bcl2-associated athanogene 3 (BAG3) is expressed in cardiomyocytes and is a component of the chaperone-assisted autophagy pathway, essential for homeostasis of mechanically altered cells. BAG3 ablation in mice results in a lethal cardiomyopathy soon after birth and mutations of this gene have been associated with different cardiomyopathies including stress-induced Takotsubo cardiomyopathy (TTC). The pathogenic mechanism leading to TTC has not been defined, but it has been suggested that the heart can be damaged by excessive epinephrine (epi) spillover in the absence of a protective mechanism. The aim of this study was to provide more evidence for a role of BAG3 in the pathogenesis of TTC. Therefore, we sequenced BAG3 gene in 70 TTC patients and in 81 healthy donors with the absence of evaluable cardiovascular disease. Mutations and polymorphisms detected in the BAG3 gene included a frequent nucleotide change g2252c in the BAG3 3′-untranslated region (3′-UTR) of Takotsubo patients (P<0.05), resulting in loss of binding of microRNA-371a-5p (miR-371a-5p) as evidenced by dual-luciferase reporter assays and argonaute RNA-induced silencing complex catalytic component 2/pull-down assays. Moreover, we describe a novel signaling pathway in cardiomyocytes that leads to BAG3 upregulation on exposure to epi through an ERK-dependent upregulation of miR-371a-5p. In conclusion, the presence of a g2252c polymorphism in the BAG3 3′-UTR determines loss of miR-371a-5p binding and results in an altered response to epi, potentially representing a new molecular mechanism that contributes to TTC pathogenesis. PMID:26512958

  13. A novel miR-371a-5p-mediated pathway, leading to BAG3 upregulation in cardiomyocytes in response to epinephrine, is lost in Takotsubo cardiomyopathy.

    PubMed

    d'Avenia, M; Citro, R; De Marco, M; Veronese, A; Rosati, A; Visone, R; Leptidis, S; Philippen, L; Vitale, G; Cavallo, A; Silverio, A; Prota, C; Gravina, P; De Cola, A; Carletti, E; Coppola, G; Gallo, S; Provenza, G; Bossone, E; Piscione, F; Hahne, M; De Windt, L J; Turco, M C; De Laurenzi, V

    2015-10-29

    Molecular mechanisms protecting cardiomyocytes from stress-induced death, including tension stress, are essential for cardiac physiology and defects in these protective mechanisms can result in pathological alterations. Bcl2-associated athanogene 3 (BAG3) is expressed in cardiomyocytes and is a component of the chaperone-assisted autophagy pathway, essential for homeostasis of mechanically altered cells. BAG3 ablation in mice results in a lethal cardiomyopathy soon after birth and mutations of this gene have been associated with different cardiomyopathies including stress-induced Takotsubo cardiomyopathy (TTC). The pathogenic mechanism leading to TTC has not been defined, but it has been suggested that the heart can be damaged by excessive epinephrine (epi) spillover in the absence of a protective mechanism. The aim of this study was to provide more evidence for a role of BAG3 in the pathogenesis of TTC. Therefore, we sequenced BAG3 gene in 70 TTC patients and in 81 healthy donors with the absence of evaluable cardiovascular disease. Mutations and polymorphisms detected in the BAG3 gene included a frequent nucleotide change g2252c in the BAG3 3'-untranslated region (3'-UTR) of Takotsubo patients (P<0.05), resulting in loss of binding of microRNA-371a-5p (miR-371a-5p) as evidenced by dual-luciferase reporter assays and argonaute RNA-induced silencing complex catalytic component 2/pull-down assays. Moreover, we describe a novel signaling pathway in cardiomyocytes that leads to BAG3 upregulation on exposure to epi through an ERK-dependent upregulation of miR-371a-5p. In conclusion, the presence of a g2252c polymorphism in the BAG3 3'-UTR determines loss of miR-371a-5p binding and results in an altered response to epi, potentially representing a new molecular mechanism that contributes to TTC pathogenesis.

  14. Two-dimensional IR spectroscopy of the anti-HIV agent KP1212 reveals protonated and neutral tautomers that influence pH-dependent mutagenicity.

    PubMed

    Peng, Chunte Sam; Fedeles, Bogdan I; Singh, Vipender; Li, Deyu; Amariuta, Tiffany; Essigmann, John M; Tokmakoff, Andrei

    2015-03-17

    Antiviral drugs designed to accelerate viral mutation rates can drive a viral population to extinction in a process called lethal mutagenesis. One such molecule is 5,6-dihydro-5-aza-2'-deoxycytidine (KP1212), a selective mutagen that induces A-to-G and G-to-A mutations in the genome of replicating HIV. The mutagenic property of KP1212 was hypothesized to originate from its amino-imino tautomerism, which would explain its ability to base pair with either G or A. To test the multiple tautomer hypothesis, we used 2D IR spectroscopy, which offers subpicosecond time resolution and structural sensitivity to distinguish among rapidly interconverting tautomers. We identified several KP1212 tautomers and found that >60% of neutral KP1212 is present in the enol-imino form. The abundant proportion of this traditionally rare tautomer offers a compelling structure-based mechanism for pairing with adenine. Additionally, the pKa of KP1212 was measured to be 7.0, meaning a substantial population of KP1212 is protonated at physiological pH. Furthermore, the mutagenicity of KP1212 was found to increase dramatically at pH <7, suggesting a significant biological role for the protonated KP1212 molecules. Overall, our data reveal that the bimodal mutagenic properties of KP1212 result from its unique shape shifting ability that utilizes both tautomerization and protonation.

  15. Adaptation and Preadaptation of Salmonella enterica to Bile

    PubMed Central

    Hernández, Sara B.; Cota, Ignacio; Ducret, Adrien; Aussel, Laurent; Casadesús, Josep

    2012-01-01

    Bile possesses antibacterial activity because bile salts disrupt membranes, denature proteins, and damage DNA. This study describes mechanisms employed by the bacterium Salmonella enterica to survive bile. Sublethal concentrations of the bile salt sodium deoxycholate (DOC) adapt Salmonella to survive lethal concentrations of bile. Adaptation seems to be associated to multiple changes in gene expression, which include upregulation of the RpoS-dependent general stress response and other stress responses. The crucial role of the general stress response in adaptation to bile is supported by the observation that RpoS− mutants are bile-sensitive. While adaptation to bile involves a response by the bacterial population, individual cells can become bile-resistant without adaptation: plating of a non-adapted S. enterica culture on medium containing a lethal concentration of bile yields bile-resistant colonies at frequencies between 10−6 and 10−7 per cell and generation. Fluctuation analysis indicates that such colonies derive from bile-resistant cells present in the previous culture. A fraction of such isolates are stable, indicating that bile resistance can be acquired by mutation. Full genome sequencing of bile-resistant mutants shows that alteration of the lipopolysaccharide transport machinery is a frequent cause of mutational bile resistance. However, selection on lethal concentrations of bile also provides bile-resistant isolates that are not mutants. We propose that such isolates derive from rare cells whose physiological state permitted survival upon encountering bile. This view is supported by single cell analysis of gene expression using a microscope fluidic system: batch cultures of Salmonella contain cells that activate stress response genes in the absence of DOC. This phenomenon underscores the existence of phenotypic heterogeneity in clonal populations of bacteria and may illustrate the adaptive value of gene expression fluctuations. PMID:22275872

  16. The Hmr and Lhr Hybrid Incompatibility Genes Suppress a Broad Range of Heterochromatic Repeats

    PubMed Central

    Satyaki, P. R. V.; Cuykendall, Tawny N.; Wei, Kevin H-C.; Brideau, Nicholas J.; Kwak, Hojoong; Aruna, S.; Ferree, Patrick M.; Ji, Shuqing; Barbash, Daniel A.

    2014-01-01

    Hybrid incompatibilities (HIs) cause reproductive isolation between species and thus contribute to speciation. Several HI genes encode adaptively evolving proteins that localize to or interact with heterochromatin, suggesting that HIs may result from co-evolution with rapidly evolving heterochromatic DNA. Little is known, however, about the intraspecific function of these HI genes, the specific sequences they interact with, or the evolutionary forces that drive their divergence. The genes Hmr and Lhr genetically interact to cause hybrid lethality between Drosophila melanogaster and D. simulans, yet mutations in both genes are viable. Here, we report that Hmr and Lhr encode proteins that form a heterochromatic complex with Heterochromatin Protein 1 (HP1a). Using RNA-Seq analyses we discovered that Hmr and Lhr are required to repress transcripts from satellite DNAs and many families of transposable elements (TEs). By comparing Hmr and Lhr function between D. melanogaster and D. simulans we identify several satellite DNAs and TEs that are differentially regulated between the species. Hmr and Lhr mutations also cause massive overexpression of telomeric TEs and significant telomere lengthening. Hmr and Lhr therefore regulate three types of heterochromatic sequences that are responsible for the significant differences in genome size and structure between D. melanogaster and D. simulans and have high potential to cause genetic conflicts with host fitness. We further find that many TEs are overexpressed in hybrids but that those specifically mis-expressed in lethal hybrids do not closely correlate with Hmr function. Our results therefore argue that adaptive divergence of heterochromatin proteins in response to repetitive DNAs is an important underlying force driving the evolution of hybrid incompatibility genes, but that hybrid lethality likely results from novel epistatic genetic interactions that are distinct to the hybrid background. PMID:24651406

  17. Molecular mechanisms of transformation of C3H/10T1/2 C1 8 mouse embryo cells and diploid human fibroblasts by carcinogenic metal compounds.

    PubMed Central

    Landolph, J R

    1994-01-01

    Carcinogenic arsenic, nickel, and chromium compounds induced morphological and neoplastic transformation but no mutation to ouabain resistance in 10T1/2 mouse embryo cells; lead chromate also did not induce mutation to ouabain or 6-thioguanine resistance in Chinese hamster ovary cells. The mechanism of metal-induced morphological transformation was likely not due to the specific base substitution mutations measured in ouabain resistance mutation assays, and for lead chromate, likely not due to this type of base substitution mutation or to frameshift mutations. Preliminary data indicate increases in steady-state levels of c-myc RNA in arsenic-, nickel-, and chromium-transformed cell lines. We also showed that carcinogenic nickel, chromium, and arsenic compounds and N-methyl-N-nitro-N-nitrosoguanidine (MNNG) induced stable anchorage independence (Al) in diploid human fibroblasts (DHF) but no focus formation or immortality. Nickel subsulfide and lead chromate induced Al but not mutation to 6-thioguanine resistance. The mechanism of induction of Al by metal salts in DHF was likely not by the type of base substitution or frameshift mutations measured in these assays. MNNG induced Al, mutation to 6-thioguanine resistance, and mutation to ouabain resistance, and might induce Al by base substitution or frameshift mutations. Dexamethasone, aspirin, and salicylic acid inhibited nickel subsulfide, MNNG, and 12-O-tetrade-canoylphorbol-13-acetate (TPA)-induced Al in DHF, suggesting that arachidonic acid metabolism and oxygen radical generation play a role in induction of Al. We propose that nickel compounds stimulate arachidonic acid metabolism, consequent oxygen radical generation, and oxygen radical attack upon DNA.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1. PMID:7843085

  18. Immunization of mice with baculovirus-derived recombinant SV40 large tumour antigen induces protective tumour immunity to a lethal challenge with SV40-transformed cells.

    PubMed Central

    Shearer, M H; Bright, R K; Lanford, R E; Kennedy, R C

    1993-01-01

    In this study, we examined the humoral immune responses and in vivo tumour immunity induced by baculovirus recombinant simian virus 40 (SV40) large tumour antigen (rSV40 T-ag). BALB/c mice immunized with rSV40 T-ag produced antibody responses that recognized SV40 large tumour antigen (T-ag) by ELISA. Analysis of these anti-SV40 T-ag responses indicated that the antibodies recognized epitopes associated with both the carboxy and amino terminus of SV40 T-ag. This pattern of SV40 T-ag epitope recognition was similar to that observed in anti-SV40 T-ag responses induced by inoculation with irradiated SV40-transformed cells. Mice immunized with either rSV40 T-ag or with the inactivated transformed cells were protected from a subsequent in vivo lethal tumour challenge with live SV40-transformed cells. These studies suggest that humoral immune responses induced by rSV40 T-ag are similar in epitope specificity to that induced by inactivated SV40-transformed cells. In addition, recombinant tumour-specific antigens from papovaviruses, such as SV40, can be used to induce tumour immunity which protects from a subsequent lethal tumour challenge. This study may provide insight into the use of recombinant tumour antigens as putative tumour vaccines and in the development of active immunotherapeutic strategies for treating virus-induced cancers. PMID:7679059

  19. Experimental Determination and Prediction of the Fitness Effects of Random Point Mutations in the Biosynthetic Enzyme HisA

    PubMed Central

    Lundin, Erik; Tang, Po-Cheng; Guy, Lionel; Näsvall, Joakim; Andersson, Dan I

    2018-01-01

    Abstract The distribution of fitness effects of mutations is a factor of fundamental importance in evolutionary biology. We determined the distribution of fitness effects of 510 mutants that each carried between 1 and 10 mutations (synonymous and nonsynonymous) in the hisA gene, encoding an essential enzyme in the l-histidine biosynthesis pathway of Salmonella enterica. For the full set of mutants, the distribution was bimodal with many apparently neutral mutations and many lethal mutations. For a subset of 81 single, nonsynonymous mutants most mutations appeared neutral at high expression levels, whereas at low expression levels only a few mutations were neutral. Furthermore, we examined how the magnitude of the observed fitness effects was correlated to several measures of biophysical properties and phylogenetic conservation.We conclude that for HisA: (i) The effect of mutations can be masked by high expression levels, such that mutations that are deleterious to the function of the protein can still be neutral with regard to organism fitness if the protein is expressed at a sufficiently high level; (ii) the shape of the fitness distribution is dependent on the extent to which the protein is rate-limiting for growth; (iii) negative epistatic interactions, on an average, amplified the combined effect of nonsynonymous mutations; and (iv) no single sequence-based predictor could confidently predict the fitness effects of mutations in HisA, but a combination of multiple predictors could predict the effect with a SD of 0.04 resulting in 80% of the mutations predicted within 12% of their observed selection coefficients. PMID:29294020

  20. Introduction of translation stop codons into the viral glycoprotein gene in a fish DNA vaccine eliminates induction of protective immunity

    USGS Publications Warehouse

    Garver, K.A.; Conway, C.M.; Kurath, G.

    2006-01-01

    A highly efficacious DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was mutated to introduce two stop codons to prevent glycoprotein translation while maintaining the plasmid DNA integrity and RNA transcription ability. The mutated plasmid vaccine, denoted pIHNw-G2stop, when injected intramuscularly into fish at high doses, lacked detectable glycoprotein expression in the injection site muscle, and did not provide protection against lethal virus challenge 7 days post-vaccination. These results suggest that the G-protein itself is required to stimulate the early protective antiviral response observed after vaccination with the nonmutated parental DNA vaccine. ?? Springer Science+Business Media, Inc. 2006.

  1. Introduction of translation stop condons into the viral glycoprotein gene in a fish DNA vaccine eliminates induction of protective immunity

    USGS Publications Warehouse

    Garver, Kyle A.; Conway, Carla M.; Kurath, Gael

    2006-01-01

    A highly efficacious DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was mutated to introduce two stop codons to prevent glycoprotein translation while maintaining the plasmid DNA integrity and RNA transcription ability. The mutated plasmid vaccine, denoted pIHNw-G2stop, when injected intramuscularly into fish at high doses, lacked detectable glycoprotein expression in the injection site muscle, and did not provide protection against lethal virus challenge 7 days post-vaccination. These results suggest that the G-protein itself is required to stimulate the early protective antiviral response observed after vaccination with the nonmutated parental DNA vaccine.

  2. Three patients with Schaaf-Yang syndrome exhibiting arthrogryposis and endocrinological abnormalities.

    PubMed

    Enya, Takuji; Okamoto, Nobuhiko; Iba, Yoshinori; Miyazawa, Tomoki; Okada, Mitsuru; Ida, Shinobu; Naruto, Takuya; Imoto, Issei; Fujita, Atsushi; Miyake, Noriko; Matsumoto, Naomichi; Sugimoto, Keisuke; Takemura, Tsukasa

    2018-03-01

    MAGEL2 is the paternally expressed gene within Prader-Willi syndrome critical region at 15q11.2. We encountered three individuals in whom truncating mutations of MAGEL2 were identified. Patients 1 and 2, siblings born to healthy, non-consanguineous Japanese parents, showed generalized hypotonia, lethargy, severe respiratory difficulty, poor feeding, and multiple anomalies including arthrogryposis soon after birth. We carried out whole-exome sequencing, which detected a MAGEL2 mutation (c.1912C>T, p.Gln638*, heterozygous). The patients' father was heterozygous for the mutation. Patient 3 was a female infant, showed respiratory difficulty reflecting pulmonary hypoplasia, generalized hypotonia, feeding difficulty and multiple anomalies soon after birth. Targeted next-generation sequencing detected a novel heterozygous mutation in MAGEL2 (c.3131C>A, p.Ser1044*). This mutation was not found in the parents. MAGEL2 mutations, first reported to be the cause of the Prader-Willi like syndrome with autism by Schaaf et al. (2013) Nature Genetics, 45: 1405-1408 show the wide range of phenotypic spectrum from lethal arthrogryposis multiplex congenital to autism spectrum disorder (ASD) and mild intellectual disability (ID). Our results indicate that MAGEL2 mutations cause multiple congenital anomalies and intellectual disability accompanied by arthrogryposis multiplex congenita and various endocrinologic abnormalities, supporting that the view that clinical phenotypes of MAGEL2 mutations are variable. © 2018 Wiley Periodicals, Inc.

  3. Physical and chemical mutagenesis on a mycophagous nematode Aphelenchoides composticola (M.T. Franklin, 1957) (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Person, F.; Brun, J.

    1974-01-01

    Chemical mutagens as EMS, acriflavine, acridine, colchicine, nitrous acide and physical mutagens, such as X rays, have been used on the gonochoric mycophagous Nematode Aphelenchoides composticola. They show a nematicid activity due, to their toxicity on treated Nematodes and to the induction of lethal mutations affecting particularly early stages of gametogenesis. They produce abnormal strains dwarfs or giants (up to 25% of the population). Concentrations of chemical mutagens varying from 0.2 to 0.5% correspond to the optimal production of abnormalities. Similar results were obtained by irradiation near to 2000r. The action of the mutagens shows some differences: EMS and Xmore » rays generally produce dwarfs, whereas acriflavine, acridine, colchicine or nitrous acid induced only giants. Abnormal strains appear: in the F$sub 1$, generation by X rays or acridine treatments; in the F$sub 2$ or F$sub 3$ generation by acriflavine, colchicine, nitrous acid or EMS action. The abnormal strains could be either variants or mutants and from these we select: four dwarfs B, C, D, E, induced by EMS 0.5% for 24 hours appearing in the F$sub 3$ generation; or dwarf F induced by irradiation of 1500r appearing in the F$sub 1$ generation. All these selected mutants are autosomal recessive single factors D and C controlled by two alleles of the some locus. (FR)« less

  4. The role of PARP inhibition in triple-negative breast cancer: Unraveling the wide spectrum of synthetic lethality.

    PubMed

    Papadimitriou, Marios; Mountzios, Giannis; Papadimitriou, Christos A

    2018-05-02

    Triple-negative breast cancer (TNBC) accounts for approximately 15-20% of all breast cancers and is characterized by a lack of immunohistochemical expression of estrogen receptors (ER), progesterone receptors (PR) and HER2. TNBC is associated with poor long-term outcomes compared with other breast cancer subtypes. Many of these tumors are also basal-like cancers which are characterized by an aggressive biological behavior with a distant recurrence peak observed early at 3 years following diagnosis. Furthermore, metastatic TNBC bears a dismal prognosis with an average survival of 12 months. Although the prevalence of genetic alterations among women with TNBC differs significantly by ethnicity, race and age, BRCA mutations (including both germline mutations and somatic genetic aberrations) are found in up to 20-25% of unselected patients and especially in those of the basal-like immunophenotype. Therefore, defects in the DNA repair pathway could represent a promising therapeutic target for this subgroup of TNBC patients. Poly(ADP-ribose) polymerase (PARP) inhibitors exploit this deficiency through synthetic lethality and have emerged as promising anticancer therapies, especially in BRCA1 or BRCA2 mutation carriers. Several PARP inhibitors are currently being evaluated in the adjuvant, neo-adjuvant, and metastatic setting for the treatment of breast cancer patients with a deficient homologous recombination pathway. In this article, we review the major molecular characteristics of TNBC, the mechanisms of homologous recombination, and the role of PARP inhibition as an emerging therapeutic strategy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The Yeast Gene, MDM20, Is Necessary for Mitochondrial Inheritance and Organization of the Actin Cytoskeleton

    PubMed Central

    Hermann, Greg J.; King, Edward J.; Shaw, Janet M.

    1997-01-01

    In Saccharomyces cerevisiae, the growing bud inherits a portion of the mitochondrial network from the mother cell soon after it emerges. Although this polarized transport of mitochondria is thought to require functions of the cytoskeleton, there are conflicting reports concerning the nature of the cytoskeletal element involved. Here we report the isolation of a yeast mutant, mdm20, in which both mitochondrial inheritance and actin cables (bundles of actin filaments) are disrupted. The MDM20 gene encodes a 93-kD polypeptide with no homology to other characterized proteins. Extra copies of TPM1, a gene encoding the actin filament–binding protein tropomyosin, suppress mitochondrial inheritance defects and partially restore actin cables in mdm20Δ cells. Synthetic lethality is also observed between mdm20 and tpm1 mutant strains. Overexpression of a second yeast tropomyosin, Tpm2p, rescues mutant phenotypes in the mdm20 strain to a lesser extent. Together, these results provide compelling evidence that mitochondrial inheritance in yeast is an actin-mediated process. MDM20 and TPM1 also exhibit the same pattern of genetic interactions; mutations in MDM20 are synthetically lethal with mutations in BEM2 and MYO2 but not SAC6. Although MDM20 and TPM1 are both required for the formation and/or stabilization of actin cables, mutations in these genes disrupt mitochondrial inheritance and nuclear segregation to different extents. Thus, Mdm20p and Tpm1p may act in vivo to establish molecular and functional heterogeneity of the actin cytoskeleton. PMID:9105043

  6. C-terminal phenylalanine of bacteriophage T7 single-stranded DNA-binding protein is essential for strand displacement synthesis by T7 DNA polymerase at a nick in DNA.

    PubMed

    Ghosh, Sharmistha; Marintcheva, Boriana; Takahashi, Masateru; Richardson, Charles C

    2009-10-30

    Single-stranded DNA-binding protein (gp2.5), encoded by gene 2.5 of bacteriophage T7, plays an essential role in DNA replication. Not only does it remove impediments of secondary structure in the DNA, it also modulates the activities of the other replication proteins. The acidic C-terminal tail of gp2.5, bearing a C-terminal phenylalanine, physically and functionally interacts with the helicase and DNA polymerase. Deletion of the phenylalanine or substitution with a nonaromatic amino acid gives rise to a dominant lethal phenotype, and the altered gp2.5 has reduced affinity for T7 DNA polymerase. Suppressors of the dominant lethal phenotype have led to the identification of mutations in gene 5 that encodes the T7 DNA polymerase. The altered residues in the polymerase are solvent-exposed and lie in regions that are adjacent to the bound DNA. gp2.5 lacking the C-terminal phenylalanine has a lower affinity for gp5-thioredoxin relative to the wild-type gp2.5, and this affinity is partially restored by the suppressor mutations in DNA polymerase. gp2.5 enables T7 DNA polymerase to catalyze strand displacement DNA synthesis at a nick in DNA. The resulting 5'-single-stranded DNA tail provides a loading site for T7 DNA helicase. gp2.5 lacking the C-terminal phenylalanine does not support this event with wild-type DNA polymerase but does to a limited extent with T7 DNA polymerase harboring the suppressor mutations.

  7. A rare complex DNA rearrangement in the murine Steel gene results in exon duplication and a lethal phenotype.

    PubMed

    Chandra, Saurabh; Kapur, Reuben; Chuzhanova, Nadia; Summey, Victoria; Prentice, David; Barker, Jane; Cooper, David N; Williams, David A

    2003-11-15

    Kit ligand (Kitl), encoded by the Steel (Sl) locus, plays an essential role in hematopoiesis, gametogenesis, and melanogenesis during both embryonic and adult life. We have characterized a new spontaneous mutant of the Sl locus in mice designated KitlSl-20J that arose in the breeding colony at Jackson Laboratories. Heterozygous KitlSl-20J mice display a white belly spot and intercrossing results in an embryonic lethal phenotype in the homozygous state. Analysis of homozygous embryos demonstrated a significant reduction in fetal liver cellularity, colony forming unit-erythroid (CFU-E) progenitors, and a total absence of germ cells. Although expressed in vivo, recombinant mutant protein demonstrated loss of bioactivity that was correlated with lack of receptor binding. Analysis of the Sl gene transcripts in heterozygous KitlSl-20J mice revealed an in-frame tandem duplication of exon 3. A long-range polymerase chain reaction (PCR) strategy using overlapping primers in exon 3 amplified an approximately 7-kilobase (kb) product from DNA isolated from heterozygous KitlSl-20J mice but not from wild-type DNA that contained sequences from both introns 2 and 3 and an inverted intron 2 sequence, suggesting a complex rearrangement as the mechanism of the mutation. "Complexity analysis" of the sequence of the amplified product strongly suggests that local DNA motifs may have contributed to the generation of this spontaneous KitlSl-20J allele, likely mediated by a 2-step process. The KitlSl-20J mutation is a unique KitlSl allele and represents an unusual mechanism of mutation.

  8. Rescue of bilirubin-induced neonatal lethality in a mouse model of Crigler-Najjar syndrome type I by AAV9-mediated gene transfer

    PubMed Central

    Bortolussi, Giulia; Zentilin, Lorena; Baj, Gabriele; Giraudi, Pablo; Bellarosa, Cristina; Giacca, Mauro; Tiribelli, Claudio; Muro, Andrés F.

    2012-01-01

    Crigler-Najjar type I (CNI) syndrome is a recessively inherited disorder characterized by severe unconjugated hyperbilirubinemia caused by uridine diphosphoglucuronosyltransferase 1A1 (UGT1A1) deficiency. The disease is lethal due to bilirubin-induced neurological damage unless phototherapy is applied from birth. However, treatment becomes less effective during growth, and liver transplantation is required. To investigate the pathophysiology of the disease and therapeutic approaches in mice, we generated a mouse model by introducing a premature stop codon in the UGT1a1 gene, which results in an inactive enzyme. Homozygous mutant mice developed severe jaundice soon after birth and died within 11 d, showing significant cerebellar alterations. To rescue neonatal lethality, newborns were injected with a single dose of adeno-associated viral vector 9 (AAV9) expressing the human UGT1A1. Gene therapy treatment completely rescued all AAV-treated mutant mice, accompanied by lower plasma bilirubin levels and normal brain histology and motor coordination. Our mouse model of CNI reproduces genetic and phenotypic features of the human disease. We have shown, for the first time, the full recovery of the lethal effects of neonatal hyperbilirubinemia. We believe that, besides gene-addition-based therapies, our mice could represent a very useful model to develop and test novel technologies based on gene correction by homologous recombination.—Bortolussi, G., Zentilin, L., Baj, G., Giraudi, P., Bellarosa, C., Giacca, M., Tiribelli, C., Muro, A. F. Rescue of bilirubin-induced neonatal lethality in a mouse model of Crigler-Najjar syndrome type I by AAV9-mediated gene transfer. PMID:22094718

  9. A cardiovascular drug rescues mice from lethal sepsis by selectively attenuating a late-acting proinflammatory mediator, high mobility group box 1.

    PubMed

    Li, Wei; Li, Jianhua; Ashok, Mala; Wu, Rongqian; Chen, Dazhi; Yang, Lihong; Yang, Huan; Tracey, Kevin J; Wang, Ping; Sama, Andrew E; Wang, Haichao

    2007-03-15

    The pathogenesis of sepsis is mediated in part by bacterial endotoxin, which stimulates macrophages/monocytes to sequentially release early (e.g., TNF, IL-1, and IFN-gamma) and late (e.g., high mobility group box 1 (HMGB1) protein) proinflammatory cytokines. The recent discovery of HMGB1 as a late mediator of lethal sepsis has prompted investigation for development of new experimental therapeutics. We found that many steroidal drugs (such as dexamethasone and cortisone) and nonsteroidal anti-inflammatory drugs (such as aspirin, ibuprofen, and indomethacin) failed to influence endotoxin-induced HMGB1 release even at superpharmacological concentrations (up to 10-25 microM). However, several steroid-like pigments (tanshinone I, tanshinone IIA, and cryptotanshinone) of a popular Chinese herb, Danshen (Salvia miltiorrhiza), dose dependently attenuated endotoxin-induced HMGB1 release in macrophage/monocyte cultures. A water-soluble tanshinone IIA sodium sulfonate derivative (TSNIIA-SS), which has been widely used as a Chinese medicine for patients with cardiovascular disorders, selectively abrogated endotoxin-induced HMGB1 cytoplasmic translocation and release in a glucocorticoid receptor-independent manner. Administration of TSNIIA-SS significantly protected mice against lethal endotoxemia and rescued mice from lethal sepsis even when the first dose was given 24 h after the onset of sepsis. The therapeutic effects were partly attributable to attenuation of systemic accumulation of HMGB1 (but not TNF and NO) and improvement of cardiovascular physiologic parameters (e.g., decrease in total peripheral vascular resistance and increase in cardiac stroke volume) in septic animals. Taken together, these data re-enforce the pathogenic role of HMGB1 in lethal sepsis, and support a therapeutic potential for TSNIIA-SS in the treatment of human sepsis.

  10. A Cardiovascular Drug Rescues Mice from Lethal Sepsis by Selectively Attenuating a Late-Acting Proinflammatory Mediator, High Mobility Group Box 11

    PubMed Central

    Li, Wei; Li, Jianhua; Ashok, Mala; Wu, Rongqian; Chen, Dazhi; Yang, Lihong; Yang, Huan; Tracey, Kevin J.; Wang, Ping; Sama, Andrew E.; Wang, Haichao

    2007-01-01

    The pathogenesis of sepsis is mediated in part by bacterial endotoxin, which stimulates macrophages/monocytes to sequentially release early (e.g., TNF, IL-1, and IFN-γ) and late (e.g., high mobility group box 1 (HMGB1) protein) proinflammatory cytokines. The recent discovery of HMGB1 as a late mediator of lethal sepsis has prompted investigation for development of new experimental therapeutics. We found that many steroidal drugs (such as dexamethasone and cortisone) and nonsteroidal anti-inflammatory drugs (such as aspirin, ibuprofen, and indomethacin) failed to influence endotoxin-induced HMGB1 release even at superpharmacological concentrations (up to 10–25 μM). However, several steroid-like pigments (tanshinone I, tanshinone IIA, and cryptotanshinone) of a popular Chinese herb, Danshen (Salvia miltiorrhiza), dose dependently attenuated endotoxin-induced HMGB1 release in macrophage/monocyte cultures. A water-soluble tanshinone IIA sodium sulfonate derivative (TSNIIA-SS), which has been widely used as a Chinese medicine for patients with cardiovascular disorders, selectively abrogated endotoxin-induced HMGB1 cytoplasmic translocation and release in a glucocorticoid receptor-independent manner. Administration of TSNIIA-SS significantly protected mice against lethal endotoxemia and rescued mice from lethal sepsis even when the first dose was given 24 h after the onset of sepsis. The therapeutic effects were partly attributable to attenuation of systemic accumulation of HMGB1 (but not TNF and NO) and improvement of cardiovascular physiologic parameters (e.g., decrease in total peripheral vascular resistance and increase in cardiac stroke volume) in septic animals. Taken together, these data re-enforce the pathogenic role of HMGB1 in lethal sepsis, and support a therapeutic potential for TSNIIA-SS in the treatment of human sepsis. PMID:17339485

  11. The Major Acute-Phase Protein, Serum Amyloid P Component, in Mice Is Not Involved in Endogenous Resistance against Tumor Necrosis Factor Alpha-Induced Lethal Hepatitis, Shock, and Skin Necrosis

    PubMed Central

    Van Molle, Wim; Hochepied, Tino; Brouckaert, Peter; Libert, Claude

    2000-01-01

    The proinflammatory cytokine tumor necrosis factor alpha (TNF-α) induces lethal hepatitis when injected into d-(+)-galactosamine-sensitized mice on the one hand or systemic inflammatory response syndrome (SIRS) in normal mice on the other hand. We studied whether serum amyloid P component (SAP), the major acute-phase protein in mice, plays a protective role in both lethal models. For this purpose, we used SAP0/0 mice generated by gene targeting. We studied the lethal response of SAP0/0 or SAP+/+ mice to both lethal triggers but found no differences in the sensitivity of both types of mice. We also investigated whether SAP is involved in establishing two types of endogenous protection: one using a single injection of interleukin-1β (IL-1β) for desensitization and clearly involving a liver protein, the other by tolerizing mice for 5 days using small doses of human TNF-α. Although after IL-1β or after tolerization the SAP levels in the serum had risen fourfold in the control mice and not in the SAP0/0 mice, the same extents of desensitization and tolerization were achieved. Finally, we observed that the induction of hemorrhagic necrosis in the skin of mice by two consecutive local injections with TNF-α was not altered in SAP0/0 mice. We conclude that the presence or absence of SAP has no influence on the sensitivity of mice to TNF-α-induced hepatitis, SIRS, and hemorrhagic necrosis or on the endogenous protective mechanisms of desensitization or tolerization. PMID:10948120

  12. Increased H+ efflux is sufficient to induce dysplasia and necessary for viability with oncogene expression

    PubMed Central

    Grillo-Hill, Bree K; Choi, Changhoon; Jimenez-Vidal, Maite; Barber, Diane L

    2015-01-01

    Intracellular pH (pHi) dynamics is increasingly recognized as an important regulator of a range of normal and pathological cell behaviors. Notably, increased pHi is now acknowledged as a conserved characteristic of cancers and in cell models is confirmed to increase proliferation and migration as well as limit apoptosis. However, the significance of increased pHi for cancer in vivo remains unresolved. Using Drosophila melanogaster, we show that increased pHi is sufficient to induce dysplasia in the absence of other transforming cues and potentiates growth and invasion with oncogenic Ras. Using a genetically encoded biosensor we also confirm increased pHi in situ. Moreover, in Drosophila models and clonal human mammary cells we show that limiting H+ efflux with oncogenic Raf or Ras induces acidosis and synthetic lethality. Further, we show lethality in invasive primary tumor cell lines with inhibiting H+ efflux. Synthetic lethality with reduced H+ efflux and activated oncogene expression could be exploited therapeutically to restrain cancer progression while limiting off-target effects. DOI: http://dx.doi.org/10.7554/eLife.03270.001 PMID:25793441

  13. Consequences of Lethal-Whole-Body Gamma Radiation and Possible Ameliorative Role of Melatonin

    PubMed Central

    Mihandoost, Ehsan; Shirazi, Alireza; Mahdavi, Seied Rabie; Aliasgharzadeh, Akbar

    2014-01-01

    Gamma radiation induces the generation of free radicals, leading to serious cellular damages in biological systems. Radioprotectors act as prophylactic agents that are administered to shield normal cells and tissues from the deleterious effects of radiation. Melatonin synergistically acts as an immune-stimulator and antioxidant. We investigated the possible radioprotective role of melatonin (100 mg/kg i.p.) against lethal-whole-body radiation- (10 Gy) induced sickness, body weight loss, and mortality in rats. Results of the present study suggest that exposure to lethal-whole-body radiation incurred mortality, body weight loss, and apoptosis and it also depleted the immunity and the antioxidant status of the rats. Our results show that melatonin pretreatment provides protection against radiation induced mortality, oxidative stress, and immune-suppression. The melatonin pretreated irradiated rats showed less change in body weight as compared to radiation only group. On the other hand, melatonin appeared to have another radioprotective role, suggesting that melatonin may reduce apoptosis through a caspase-3-mediated pathway by blocking caspase-3 activity. PMID:25431791

  14. Gsα deficiency in the paraventricular nucleus of the hypothalamus partially contributes to obesity associated with Gsα mutations.

    PubMed

    Chen, Min; Berger, Alta; Kablan, Ahmed; Zhang, Jiandi; Gavrilova, Oksana; Weinstein, Lee S

    2012-09-01

    The G protein α-subunit G(s)α mediates receptor-stimulated cAMP generation. Heterozygous inactivating G(s)α mutations on the maternal allele result in obesity primarily due to reduced energy expenditure in Albright hereditary osteodystrophy patients and in mice. We previously showed that mice with central nervous system (CNS)-specific G(s)α deletion on the maternal allele (mBrGs KO) also develop severe obesity with reduced energy expenditure and that G(s)α is primarily expressed from the maternal allele in the paraventricular nucleus (PVN) of the hypothalamus, an important site of energy balance regulation. We now generated mice with PVN-specific G(s)α deficiency by mating Single-minded 1-cre and G(s)α-floxed mice. Homozygous G(s)α deletion produced early lethality. Heterozygotes with maternal G(s)α deletion (mPVNGsKO) also developed obesity and had small reductions in energy expenditure. However, this effect was much milder than that found in mBrGsKO mice and was more prominent in males. We previously showed mBrGsKO mice to have significant reductions in melanocortin receptor agonist-stimulated energy expenditure and now show that mBrGsKO mice have impaired cold-induced brown adipose tissue stimulation. In contrast, these effects were absent in mPVNGsKO mice. mPVNGsKO mice also had minimal effects on glucose metabolism as compared with mBrGsKO mice. Consistent with the presence of G(s)α imprinting, paternal heterozygotes showed no changes in energy or glucose metabolism. These results indicate that although G(s)α deficiency in PVN partially contributes to the metabolic phenotype resulting from maternal G(s)α mutations, G(s)α imprinting in other CNS regions is also important in mediating the CNS effects of G(s)α mutations on energy and glucose metabolism.

  15. Arabidopsis HSP90 protein modulates RPP4-mediated temperature-dependent cell death and defense responses.

    PubMed

    Bao, Fei; Huang, Xiaozhen; Zhu, Chipan; Zhang, Xiaoyan; Li, Xin; Yang, Shuhua

    2014-06-01

    Plant defense responses are regulated by temperature. In Arabidopsis, the chilling-sensitive mutant chs2-1 (rpp4-1d) contains a gain-of-function mutation in the TIR-NB-LRR (Toll and interleukin 1 receptor-nucleotide binding-leucine-rich repeat) gene, RPP4 (RECOGNITION OF PERONOSPORA PARASITICA 4), which leads to constitutive activation of the defense response at low temperatures. Here, we identified and characterized two suppressors of rpp4-1d from a genetic screen, hsp90.2 and hsp90.3, which carry point mutations in the cytosolic heat shock proteins HSP90.2 and HSP90.3, respectively. The hsp90 mutants suppressed the chilling sensitivity of rpp4-1d, including seedling lethality, activation of the defense responses and cell death under chilling stress. The hsp90 mutants exhibited compromised RPM1 (RESISTANCE TO PSEUDOMONAS MACULICOLA 1)-, RPS4 (RESISTANCE TO P. SYRINGAE 4)- and RPP4-mediated pathogen resistance. The wild-type RPP4 and the mutated form rpp4 could interact with HSP90 to form a protein complex. Furthermore, RPP4 and rpp4 proteins accumulated in the cytoplasm and nucleus at normal temperatures, whereas the nuclear accumulation of the mutated rpp4 was decreased at low temperatures. Genetic analysis of the intragenic suppressors of rpp4-1d revealed the important functions of the NB-ARC and LRR domains of RPP4 in temperature-dependent defense signaling. In addition, the rpp4-1d-induced chilling sensitivity was largely independent of the WRKY70 or MOS (modifier of snc1) genes. [Correction added after online publication 11 March 2013: the expansions of TIR-NB-LRR and RPS4 were amended] This study reveals that Arabidopsis HSP90 regulates RPP4-mediated temperature-dependent cell death and defense responses. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  16. Generation of the first Autosomal Dominant Osteopetrosis Type II (ADO2) disease models

    PubMed Central

    Alam, Imranul; Gray, Amie K.; Chu, Kang; Ichikawa, Shoji; Mohammad, Khalid S.; Capannolo, Marta; Capulli, Mattia; Maurizi, Antonio; Muraca, Maurizio; Teti, Anna; Econs, Michael J.; Fattore, Andrea Del

    2013-01-01

    Autosomal Dominant Osteopetrosis Type II (ADO2) is a heritable osteosclerotic disorder dependent on osteoclast impairment. In most patients it results from heterozygous missense mutations in the chloride channel 7 (CLCN7) gene, encoding for a 2Cl−/1H+ antiporter. By a knock-in strategy inserting a missense mutation in the Clcn7 gene, our two research groups independently generated mouse models of ADO2 on different genetic backgrounds carrying the homolog of the most frequent heterozygous mutation (p.G213R) in the Clcn7 gene found in humans. Our results demonstrate that the heterozygous model holds true presenting with higher bone mass, increased numbers of poorly resorbing osteoclasts and a lethal phenotype in the homozygous state. Considerable variability is observed in the heterozygous mice according with the mouse background, suggesting that modifier genes could influence the penetrance of the disease gene. PMID:24185277

  17. Characterization of a Novel MMS-Sensitive Allele of Schizosaccharomyces pombe mcm4+

    PubMed Central

    Ranatunga, Nimna S.; Forsburg, Susan L.

    2016-01-01

    The minichromosome maintenance (MCM) complex is the conserved helicase motor of the eukaryotic replication fork. Mutations in the Mcm4 subunit are associated with replication stress and double strand breaks in multiple systems. In this work, we characterize a new temperature-sensitive allele of Schizosaccharomyces pombe mcm4+. Uniquely among known mcm4 alleles, this mutation causes sensitivity to the alkylation damaging agent methyl methanesulfonate (MMS). Even in the absence of treatment or temperature shift, mcm4-c106 cells show increased repair foci of RPA and Rad52, and require the damage checkpoint for viability, indicating genome stress. The mcm4-c106 mutant is synthetically lethal with mutations disrupting fork protection complex (FPC) proteins Swi1 and Swi3. Surprisingly, we found that the deletion of rif1+ suppressed the MMS-sensitive phenotype without affecting temperature sensitivity. Together, these data suggest that mcm4-c106 destabilizes replisome structure. PMID:27473316

  18. Radiation effects in nematodes: Results from IML-1 experiments

    NASA Technical Reports Server (NTRS)

    Nelson, G. A.; Schubert, W. W.; Kazarians, G. A.; Richards, G. F.; Benton, E. V.; Benton, E. R.; Henke, R.

    1994-01-01

    The nematode Caenorhabditis elegans was exposed to natural space radiation using the ESA biorack facility aboard Spacelab on International Microgravity Laboratory 1, STS-42. For the major experimental objective dormant animals were suspended in buffer or on agar or immobilized next to CR-39 plastic nuclear track detectors to correlate fluence of HZE particles with genetic events. This configuration was used to isolate mutations in a set of 350 essential genes as well as in the unc-22 structural gene. From flight samples 13 mutants in the unc-22 gene were isolated along with 53 lethal mutations from autosomal regions balanced by a translocation eT1(III;V). Preliminary analysis suggests that mutants from worms correlated with specific cosmic ray tracks may have a higher proportion of rearrangements than those isolated from tube cultures on a randomly sampled basis. Flight sample mutation rate was approximately 8-fold higher than ground controls which exhibited laboratory spontaneous frequencies.

  19. The nonreceptor protein tyrosine phosphatase corkscrew functions in multiple receptor tyrosine kinase pathways in Drosophila.

    PubMed

    Perkins, L A; Johnson, M R; Melnick, M B; Perrimon, N

    1996-11-25

    Corkscrew (csw) encodes a nonreceptor protein tyrosine phosphatase (PTPase) that has been implicated in signaling from the Torso receptor tyrosine kinase (RTK). csw mutations, unlike tor mutations, are associated with zygotic lethality, indicating that Csw plays additional roles during development. We have conducted a detailed phenotypic analysis of csw mutations to identify these additional functions of Csw. Our results indicate that Csw operates positively downstream of other Drosophila RTKs such as the Drosophila epidermal growth factor receptor (DER), the fibroblast growth factor receptor (Breathless), and likely other RTKs. This model is substantiated by specific dosage interactions between csw and DER. It is proposed that Csw is part of the evolutionarily conserved "signaling cassette" that operates downstream of all RTKs. In support of this hypothesis, we demonstrate that SHP-2, a vertebrate PTPase similar to Csw and previously implicated in RTK signaling, encodes the functional vertebrate homologue of Csw.

  20. Protective effect of medroxyprogesterone acetate plus testosterone against radiation-induced damage to the reproductive function of male rats and their offspring.

    PubMed

    Jégou, B; Velez de la Calle, J F; Bauché, F

    1991-10-01

    This study attempted to protect spermatogenesis and the reproductive performance of rats against the effects of acute scrotal exposure to x-rays. Daily subcutaneous injections of medroxyprogesterone acetate (8 mg/kg) plus testosterone (1 mg/kg) (MT group) were administered for 55 days (experiment A) or 15 days (experiment B). The rats were irradiated (3 grays) on the last day of MT pretreatment (MTX group). In both experiments, on days 1 and 130 posttreatment, rats from each of the four groups (control, x-irradiated, MT, and MTX groups) were killed to measure the weight of the reproductive organs and the number of epididymal spermatozoa. Breeding was started 3 days posttreatment by housing all males from the four groups each with two virgin females for six successive periods of 19 days, separated by a period of 2 days. The percentage of fertile males, the litter size, postimplantation losses, and dominant lethal mutations were calculated. In experiment A, in the last fertility trial, animals of both sexes were selected at random from the progeny of each group (F1). When they were adults, their fertility was tested in a mating trial. A fertility trial was also performed with the F2 males. Our data essentially reveal that (i) in addition to their adverse quantitative effects on spermatogenesis, x-rays also produce a significant increase in dominant lethal mutations in all germ cell classes, including stem spermatogonia; (ii) the F1 and F2 male descendants of irradiated male rats provoked abnormal rates of postimplantation losses in their female mates; (iii) the short as well as the long MT pretreatment protects testicular function of irradiated rats; and (iv) in experiment A, MT pretreatment totally prevented qualitative damage to spermatozoa and protected the descendants of the irradiated animals against altered spermatogenesis as well as against genetic damage in germ cells. In conclusion, pretreatment with MT, even for a short period of time, offers a method for potentially reducing the toxic and genotoxic effects of irradiation on the male reproductive system.

Top