Sample records for lethal radiation damage

  1. The effect of lonidamine (LND) on radiation and thermal responses of human and rodent cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raaphorst, G.P.; Feeley, M.M.; Danjoux, C.E.

    1991-03-01

    Rodent and human cells were tested for response to Lonidamine (LND) (1-(2,4 dichlorobenzyl) 1-indazol-3-carboxylic acid) combined with radiation or hyperthermia. Lonidamine exposure before, during, and after irradiation caused varying degrees of inhibition of potentially lethal damage (PLD) repair which was cell line dependent. In human glioma, melanoma, squamous cell carcinoma, and fibroblasts, LND exposure did not inhibit or only partially inhibited repair of potentially lethal damage. LND up to 100 micrograms/ml produced only a low level of toxicity in these cells and only slightly inhibited glucose consumption at the maximum concentration. In human glioma cells, LND treatment alone did notmore » inhibit PLD repair, but when combined with hyperthermia treatment at moderate levels easily achievable in the clinic, there was complete inhibition of potentially lethal damage repair. These data suggest that LND effectiveness is cell type dependent. Combinations of LND, hyperthermia, and radiation may be effective in cancer therapy especially in tumors such as glioma in which repair of potentially lethal damage may be extensive.« less

  2. Biological damage induced by ionizing cosmic rays in dry Arabidopsis seeds.

    PubMed

    Kranz, A R; Bork, U; Bucker, H; Reitz, G

    1990-01-01

    In September 1987 dry seeds containing embryos of the crucifer plant Arabidopsis thaliana (L.) Heynh, were flown in orbit for 13 days on the Kosmos 1887 satellite. The seeds were fixed on CNd detectors and stored in units of Biorack type I/O. One unit was exposed inside, another one outside the satellite. The temperature profile of the flown seeds inside the satellite was simulated on earth in an identical backup control sample (BC). An additional control (SC) was studied with the original seeds sample. By use of the CNd-detector, HZE-tracks were measured with a PC-assisted microscope. The biological damages were investigated by growing the seeds under controlled climatic conditions. The following biological endpoints of the cosmic radiation damage were studied: germination, radicle length, sublethality, morphological aberrations, flower development, tumorization, embryo lethality inside the siliques. The summarized damage (D) and the mutation frequencies of embyronic lethal genes were calculated. The following results were obtained: the damages increase significantly in orbit at all biological endpoints; germination and fiowerings especially, as well as embryo lethality of fruits and lethal mutation frequency, were maximum mostly for HZE-hit seeds. Additionally, an increase of damage was observed for the seeds of the outside-exposed Biorack in comparison to the inside ones, which was probably caused by less radiation shielding and free space vacuum. The significance of the results obtained is discussed with respect to stress and risk and, thus, the quality of the RBE-factors and heavy ionizing radiation all needed for the very definition of radiation protection standards in space.

  3. The effect of hyperthermia on the radiation response of crypt cells in mouse jejunum

    NASA Technical Reports Server (NTRS)

    Wilson, J. D.

    1978-01-01

    The effect of hyperthermia and/or gamma-radiation on the survival of intestinal crypt cells was studied in BDF sub 1 mice using a microcolony assay. Hyperthermia treatments, which in themselves caused no detectable cell lethality, inhibited the capacity of crypt cells to repair sublethal radiation damage. In addition, heat applied either before or after single radiation exposures potentiated lethal damage to crypt cells; the degree of enhancement was dependent on the time interval between treatments. At the levels of heating employed, DNA synthesis in the intestinal epithelium was significantly reduced immediately following exposure, but returned rapidly to normal levels. No further disturbances in cellular kinetics were observed for up to 10 days after heating.

  4. Linear-quadratic dose kinetics or dose-dependent repair/misrepair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braby, L.A.; Nelson, J.M.

    1991-09-01

    Models for the response of cells exposed to low LET radiation can be grouped into three general types on the basis of assumptions about the nature of the interaction which results in the shoulder of the survival curve. The three forms of interaction are (1) sublethal damage becoming lethal, (2) potentially lethal damage becoming irreparable, and (3) potentially lethal damage saturating'' a repair system. The effects that these three forms of interaction would have on the results of specific types of experiments are investigated. Comparisons with experimental results indicate that only the second type is significant in determining the responsemore » of typical cultured mammalian cells. 5 refs., 2 figs.« less

  5. SCHISTOSOMIASIS: AGE OF SNAILS AND SUSCEPTIBILITY TO X-IRRADIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szumlewicz, A.P.

    1964-04-17

    Studies on sensitivity of Australorbis glabratus to x rays have defined the chronological and physiological age at which the snail is most sensitive to radiation damage. Results showed that the dose producing 50-percent mortality at 30 days after irradiation increased with age but that at 90 days it was practically constant from 2 to 210 days of age. In view of the avaiIable data on recovery from radiation damage caused by doses from 6000 to 9000 roentgens it is suggested that doses above those causing 50% lethality at 60 days but below those causing 50% lethality for 30 days shouldmore » be considered in setting up radiation barriers to cortrol snails in water-distribution systems. (auth)« less

  6. Deoxyribonucleoprotein structure and radiation injury - Cellular radiosensitivity is determined by LET-infinity-dependent DNA damage in hydrated deoxyribonucleoproteins and the extent of its repair

    NASA Technical Reports Server (NTRS)

    Lett, J. T.; Peters, E. L.

    1992-01-01

    Until recently, OH radicals formed in bulk nuclear water were believed to be the major causes of DNA damage that results in cell death, especially for sparsely ionizing radiations. That hypothesis has now been challenged, if not refuted. Lethal genomic DNA damage is determined mainly by energy deposition in deoxyribonucleoproteins, and their hydration shells, and charge (energy) transfer processes within those structures.

  7. Neoplastic cell transformation by high-LET radiation - Molecular mechanisms

    NASA Technical Reports Server (NTRS)

    Yang, Tracy Chui-Hsu; Craise, Laurie M.; Tobias, Cornelius A.; Mei, Man-Tong

    1989-01-01

    Quantitative data were collected on dose-response curves of cultured mouse-embryo cells (C3H10T1/2) irradiated with heavy ions of various charges and energies. Results suggests that two breaks formed on DNA within 80 A may cause cell transformation and that two DNA breaks formed within 20 A may be lethal. From results of experiments with restriction enzymes which produce DNA damages at specific sites, it was found that DNA double strand breaks are important primary lesions for radiogenic cell transformation and that blunt-ended double-strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship for high-LET radiation is similar to that for HGPRT locus mutation, chromosomal deletion, and cell transformation, indicating that common lesions may be involved in these radiation effects.

  8. Radiosensitizing effects of neem (Azadirachta indica) oil.

    PubMed

    Kumar, Ashok; Rao, A R; Kimura, H

    2002-02-01

    Radiosensitization by neem oil was studied using Balbc/3T3 cells and SCID cells. Neem oil enhanced the radiosensitivity of the cells when applied both during and after x-irradiation under aerobic conditions. Neem oil completely inhibited the repair of sublethal damage and potentially lethal damage repair in Balbc/3T3 cells. The cytofluorimeter data show that neem oil treatment before and after x-irradiation reduced the G(2) + M phase, thus inhibiting the expression of the radiation induced arrest of cells in the G(2) phase of the cell cycle. However, SCIK cells (derived from the SCID mouse), deficient in DSB repair, treated with neem oil did not show any enhancement in the radiosensitivity. There was no effect of neem oil on SLD repair or its inhibition in SCIK cells. These results suggest that neem oil enhanced the radiosensitivity of cells by interacting with residual damage after x-irradiation, thereby converting the sublethal damage or potentially lethal damage into lethal damage, inhibiting the double-strand break repair or reducing the G(2) phase of the cell cycle. Copyright 2002 John Wiley & Sons, Ltd.

  9. Consequences of Lethal-Whole-Body Gamma Radiation and Possible Ameliorative Role of Melatonin

    PubMed Central

    Mihandoost, Ehsan; Shirazi, Alireza; Mahdavi, Seied Rabie; Aliasgharzadeh, Akbar

    2014-01-01

    Gamma radiation induces the generation of free radicals, leading to serious cellular damages in biological systems. Radioprotectors act as prophylactic agents that are administered to shield normal cells and tissues from the deleterious effects of radiation. Melatonin synergistically acts as an immune-stimulator and antioxidant. We investigated the possible radioprotective role of melatonin (100 mg/kg i.p.) against lethal-whole-body radiation- (10 Gy) induced sickness, body weight loss, and mortality in rats. Results of the present study suggest that exposure to lethal-whole-body radiation incurred mortality, body weight loss, and apoptosis and it also depleted the immunity and the antioxidant status of the rats. Our results show that melatonin pretreatment provides protection against radiation induced mortality, oxidative stress, and immune-suppression. The melatonin pretreated irradiated rats showed less change in body weight as compared to radiation only group. On the other hand, melatonin appeared to have another radioprotective role, suggesting that melatonin may reduce apoptosis through a caspase-3-mediated pathway by blocking caspase-3 activity. PMID:25431791

  10. INTERACTION OF X AND ULTRAVIOLET RADIATION IN PRODUCTION OF RECESSIVE LETHALS IN DROSOPHILA MELANOGASTER (in Italian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicoletti, B.; Olivieri, G.

    1962-01-01

    The possibility that uv rays given to different biological systems before or after x rays could modify genetic or cytological effects is reviewed and discussed. Kaufmann and Hollaender's conclusions about the recovering effect of uv rays on chromosomal damage induced in Drosophila sperms by a pre-treatment of x rays are discussed and analyzed taking into accourt some general considerations. Preliminary results of similar experiments on the frequency of sex-linked recessive lethals induced after single and combined x + uv treatments in Drosophila sperms are reported. All our experiments indicate no effect of the uv treatment (at the given wave lengthsmore » and doses) in lowering the frequency of the x-ray-induced recessive lethals. On the contrary, there are some indications for a synergistic action between the two radiations. These results not in agreement with the generally accepted theory that uv rays do recover X-ray- induced chromosomal damages, could be expiained With the well established correlation between chromosomal rejoined breaks and genic mutations. (auth)« less

  11. Radiation induced failures of complementary metal oxide semiconductor containing pacemakers: a potentially lethal complication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewin, A.A.; Serago, C.F.; Schwade, J.G.

    1984-10-01

    New multi-programmable pacemakers frequently employ complementary metal oxide semiconductors (CMOS). This circuitry appears more sensitive to the effects of ionizing radiation when compared to the semiconductor circuits used in older pacemakers. A case of radiation induced runaway pacemaker in a CMOS device is described. Because of this and other recent reports of radiation therapy-induced CMOS type pacemaker failure, these pacemakers should not be irradiated. If necessary, the pacemaker can be shielded or moved to a site which can be shielded before institution of radiation therapy. This is done to prevent damage to the CMOS circuit and the life threatening arrythmiasmore » which may result from such damage.« less

  12. Technical report. The application of probability-generating functions to linear-quadratic radiation survival curves.

    PubMed

    Kendal, W S

    2000-04-01

    To illustrate how probability-generating functions (PGFs) can be employed to derive a simple probabilistic model for clonogenic survival after exposure to ionizing irradiation. Both repairable and irreparable radiation damage to DNA were assumed to occur by independent (Poisson) processes, at intensities proportional to the irradiation dose. Also, repairable damage was assumed to be either repaired or further (lethally) injured according to a third (Bernoulli) process, with the probability of lethal conversion being directly proportional to dose. Using the algebra of PGFs, these three processes were combined to yield a composite PGF that described the distribution of lethal DNA lesions in irradiated cells. The composite PGF characterized a Poisson distribution with mean, chiD+betaD2, where D was dose and alpha and beta were radiobiological constants. This distribution yielded the conventional linear-quadratic survival equation. To test the composite model, the derived distribution was used to predict the frequencies of multiple chromosomal aberrations in irradiated human lymphocytes. The predictions agreed well with observation. This probabilistic model was consistent with single-hit mechanisms, but it was not consistent with binary misrepair mechanisms. A stochastic model for radiation survival has been constructed from elementary PGFs that exactly yields the linear-quadratic relationship. This approach can be used to investigate other simple probabilistic survival models.

  13. Periscopic Spine Surgery

    DTIC Science & Technology

    2007-01-01

    radiation therapy In radiation therapy , the overarching goal is to deliver a lethal dose to the cancerous tissue while minimizing collateral damage to the ...Computer is shown in Figure 6. The exercise protocol is first parsed into a control mode based on the desired activation of configuration space variables...ABSTRACT In this paper, we present the design and implementation of a

  14. Deinococcus Mn2+ -Peptide Complex: A Novel Approach to Alphavirus Vaccine Development

    DTIC Science & Technology

    2016-08-05

    immunogenicity loss due to oxidative damage to the surface proteins at the high doses of radiation required for complete virus inactivation. Thus, we...bacteria Deinococcus radiodurans) in the present study which selectively protects proteins but not the nucleic acid from the radiation - induced...presence of MDP have significant epitope preservation even at supra-lethal doses of radiation . Irradiated viruses were found to be completely

  15. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation

    NASA Technical Reports Server (NTRS)

    Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)

    2000-01-01

    Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.

  16. The Evolving MCART Multimodal Imaging Core: Establishing a protocol for Computed Tomography and Echocardiography in the Rhesus macaque to perform longitudinal analysis of radiation-induced organ injury

    PubMed Central

    de Faria, Eduardo B.; Barrow, Kory R.; Ruehle, Bradley T.; Parker, Jordan T.; Swartz, Elisa; Taylor-Howell, Cheryl; Kieta, Kaitlyn M.; Lees, Cynthia J.; Sleeper, Meg M.; Dobbin, Travis; Baron, Adam D.; Mohindra, Pranshu; MacVittie, Thomas J.

    2015-01-01

    Computed Tomography (CT) and Echocardiography (EC) are two imaging modalities that produce critical longitudinal data that can be analyzed for radiation-induced organ-specific injury to the lung and heart. The Medical Countermeasures Against Radiological Threats (MCART) consortium has a well-established animal model research platform that includes nonhuman primate (NHP) models of the acute radiation syndrome and the delayed effects of acute radiation exposure. These models call for a definition of the latency, incidence, severity, duration, and resolution of different organ-specific radiation-induced subsyndromes. The pulmonary subsyndromes and cardiac effects are a pair of inter-dependent syndromes impacted by exposure to potentially lethal doses of radiation. Establishing a connection between these will reveal important information about their interaction and progression of injury and recovery. Herein, we demonstrate the use of CT and EC data in the rhesus macaque models to define delayed organ injury thereby establishing: a) consistent and reliable methodology to assess radiation-induced damage to the lung and heart, b) an extensive database in normal age-matched NHP for key primary and secondary endpoints, c) identified problematic variables in imaging techniques and proposed solutions to maintain data integrity and d) initiated longitudinal analysis of potentially lethal radiation-induced damage to the lung and heart. PMID:26425907

  17. Gamma rays induce DNA damage and oxidative stress associated with impaired growth and reproduction in the copepod Tigriopus japonicus.

    PubMed

    Han, Jeonghoon; Won, Eun-Ji; Lee, Bo-Young; Hwang, Un-Ki; Kim, Il-Chan; Yim, Joung Han; Leung, Kenneth Mei Yee; Lee, Yong Sung; Lee, Jae-Seong

    2014-07-01

    Nuclear radioisotope accidents are potentially ecologically devastating due to their impact on marine organisms. To examine the effects of exposure of a marine organism to radioisotopes, we irradiated the intertidal copepod Tigriopus japonicus with several doses of gamma radiation and analyzed the effects on mortality, fecundity, and molting by assessing antioxidant enzyme activities and gene expression patterns. No mortality was observed at 96h, even in response to exposure to a high dose (800Gy) of radiation, but mortality rate was significantly increased 120h (5 days) after exposure to 600 or 800Gy gamma ray radiation. We observed a dose-dependent reduction in fecundity of ovigerous females; even the group irradiated with 50Gy showed a significant reduction in fecundity, suggesting that gamma rays are likely to have a population level effect. In addition, we observed growth retardation, particularly at the nauplius stage, in individuals after gamma irradiation. In fact, nauplii irradiated with more than 200Gy, though able to molt to copepodite stage 1, did not develop into adults. Upon gamma radiation, T. japonicus showed a dose-dependent increase in reactive oxygen species (ROS) levels, the activities of several antioxidant enzymes, and expression of double-stranded DNA break damage genes (e.g. DNA-PK, Ku70, Ku80). At a low level (sub-lethal dose) of gamma irradiation, we found dose-dependent upregulation of p53, implying cellular damage in T. japonicus in response to sub-lethal doses of gamma irradiation, suggesting that T. japonicus is not susceptible to sub-lethal doses of gamma irradiation. Additionally, antioxidant genes, phase II enzyme (e.g. GSTs), and cellular chaperone genes (e.g. Hsps) that are involved in cellular defense mechanisms also showed the same expression patterns for sublethal doses of gamma irradiation (50-200Gy). These findings indicate that sublethal doses of gamma radiation can induce oxidative stress-mediated DNA damage and increase the expression of antioxidant enzymes and proteins with chaperone-related functions, thereby significantly affecting life history parameters such as fecundity and molting in the copepod T. japonicus. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Long-term hematopoietic stem cell damage in a murine model of the hematopoietic syndrome of the acute radiation syndrome.

    PubMed

    Chua, Hui Lin; Plett, P Artur; Sampson, Carol H; Joshi, Mandar; Tabbey, Rebeka; Katz, Barry P; MacVittie, Thomas J; Orschell, Christie M

    2012-10-01

    Residual bone marrow damage (RBMD) persists for years following exposure to radiation and is believed to be due to decreased self-renewal potential of radiation-damaged hematopoietic stem cells (HSC). Current literature has examined primarily sublethal doses of radiation and time points within a few months of exposure. In this study, the authors examined RBMD in mice surviving lethal doses of total body ionizing irradiation (TBI) in a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS). Survivors were analyzed at various time points up to 19 mo post-TBI for hematopoietic function. The competitive bone marrow (BM) repopulating potential of 150 purified c-Kit+ Sca-1+ lineage- CD150+ cells (KSLCD150+) remained severely deficient throughout the study compared to KSLCD150+ cells from non-TBI age-matched controls. The minimal engraftment from these TBI HSCs is predominantly myeloid, with minimal production of lymphocytes both in vitro and in vivo. All classes of blood cells as well as BM cellularity were significantly decreased in TBI mice, especially at later time points as mice aged. Primitive BM hematopoietic cells (KSLCD150+) displayed significantly increased cell cycling in TBI mice at all time points, which may be a physiological attempt to maintain HSC numbers in the post-irradiation state. Taken together, these data suggest that the increased cycling among primitive hematopoietic cells in survivors of lethal radiation may contribute to long-term HSC exhaustion and subsequent RBMD, exacerbated by the added insult of aging at later time points.

  19. Health Risk Evaluations for Ingestion Exposure of Humans to Polonium-210

    PubMed Central

    Scott, Bobby R.

    2007-01-01

    The incident in London during November 2006 involving a lethal intake by Mr. Alexander Litvinenko of the highly-radioactive, alpha-particles-emitting polonium-210 (Po-210) isotope, presumably via ingestion, sparked renewed interest in the area of Po-210 toxicity to humans. This paper is the result of assembling and interpreting existing Po-210 data within the context of what is considered a reliable risk model (hazard-function [HF] model) for characterizing the risk of death from deterministic effects of high alpha radiation doses and dose rates to body organs. The HF model was developed to address radiation exposure scenarios involving combined exposures to alpha, beta, and gamma radiations and can be used in circumstances where only one type of radiation is involved. Under a plausible but not yet validated set of assumptions and using available megabecquerel (Po-210) to gray dose-conversion factors, acute lethality risk vs. dose curves were developed for circumstances of ingestion exposure to Po-210 by humans. Initial risk calculations were carried out for a reference adult male human (a hypothetical 70-kg person). Results were then modified for application to all ages (except the in utero child) via the use of systemic Po-210 burden. Because of the unavailability of acute lethality data derived from human ingestions of high levels of Po-210, plausibility of risk calculations were evaluated based on data from studies of Po-210 injections in animals. The animal data, although limited, were found to be consistent with the theoretical risk calculations. Key findings are as follows: (1) ingestion (or inhalation) of a few tents of a milligram of Po-210 will likely be fatal to all exposed persons. (2) Lethal intakes are expected to involve fatal damage to the bone marrow which is likely to be compounded by damage caused by higher doses to other organs including the kidneys and liver. (3) Lethal intakes are expected to cause severe damage to the kidney, spleen, stomach, small and large intestines, lymph nodes, skin, and testes (males) in addition to the fatal damage to bone marrow. (4) The time distribution of deaths is expected to depend on the level of radioactivity ingested or inhaled, with deaths occurring within about a month after very high levels of radioactivity intake (e.g., systemic burdens > 1 MBq/kg-body-mass) and occurring over longer periods, possibly up to or exceeding a year for lower but lethal intakes (systemic burdens from 0.1 to 1.0 MBq/kg-body-mass). Below a systemic burden estimate of 0.02 MBq/kg-body-mass, deaths from deterministic effects are not expected to occur but the risk of cancer and for life shortening could be significant. New, funded experimental and modeling/theoretical research is needed to improve on these estimates. PMID:18648599

  20. Mitigation of radiation-induced hematopoietic injury by the polyphenolic acetate 7, 8-diacetoxy-4-methylthiocoumarin in mice

    PubMed Central

    Venkateswaran, Kavya; Shrivastava, Anju; Agrawala, Paban K.; Prasad, Ashok; Kalra, Namita; Pandey, Parvat R.; Manda, Kailash; Raj, Hanumantharao G.; Parmar, Virinder S.; Dwarakanath, Bilikere S.

    2016-01-01

    Protection of the hematopoietic system from radiation damage, and/or mitigation of hematopoietic injury are the two major strategies for developing medical countermeasure agents (MCM) to combat radiation-induced lethality. In the present study, we investigated the potential of 7, 8-diacetoxy-4-methylthiocoumarin (DAMTC) to ameliorate radiation-induced hematopoietic damage and the associated mortality following total body irradiation (TBI) in C57BL/6 mice. Administration of DAMTC 24 hours post TBI alleviated TBI-induced myelo-suppression and pancytopenia, by augmenting lymphocytes and WBCs in the peripheral blood of mice, while bone marrow (BM) cellularity was restored through enhanced proliferation of the stem cells. It stimulated multi-lineage expansion and differentiation of myeloid progenitors in the BM and induced proliferation of splenic progenitors thereby, facilitating hematopoietic re-population. DAMTC reduced the radiation-induced apoptotic and mitotic death in the hematopoietic compartment. Recruitment of pro-inflammatory M1 macrophages in spleen contributed to the immune-protection linked to the mitigation of hematopoietic injury. Recovery of the hematopoietic compartment correlated well with mitigation of mortality at a lethal dose of 9 Gy, leading to 80% animal survival. Present study establishes the potential of DAMTC to mitigate radiation-induced injury to the hematopoietic system by stimulating the re-population of stem cells from multiple lineages. PMID:27849061

  1. Effect of Rosiglitazone on Radiation Damage in Bone Marrow Hemopoiesis

    NASA Astrophysics Data System (ADS)

    Benkő, Klára; Pintye, Éva; Szabó, Boglárka; Géresi, Krisztina; Megyeri, Attila; Benkő, Ilona

    2008-12-01

    To study radiobiological effects and drugs, which can modify radiation injury, has an importance if we would like to avoid harmful effects of radiation due to emergency situations or treat patients with malignant diseases by radiotherapy. During the long treatment schedules patients may be treated by not only anticancer but many other drugs because of accompanying diseases. These drugs may also modify radiobiological effects. Rosiglitazone pre-treatment proved to be myeloprotective and accelerated recovery of 5-fluorouracil-damaged bone marrow in our previous experiments. Our new studies are designed to evaluate whether rosiglitazone has similar beneficial effects in radiation-damaged hemopoiesis. Bone marrow damage was precipitated by total body irradiation (TBI) using single increasing doses (2-10 Gy) of γ—irradiation in groups of mice. Lethality was well correlated with damage in hemopoiesis measured by cellularity of bone marrow (LD50 values were 4.8 and 5.3 gray respectively). Rosiglitazone, an insulin-sensitizing drug, had no significant effect on bone marrow cellularity. Insulin resistance associated with obesity or diabetes mellitus type 2 is intensively growing among cancer patients requiring some kind of radiotherapy. Therefore it is important to know whether drugs used for their therapy can modify radiation effects.

  2. Repair-dependent cell radiation survival and transformation: an integrated theory.

    PubMed

    Sutherland, John C

    2014-09-07

    The repair-dependent model of cell radiation survival is extended to include radiation-induced transformations. The probability of transformation is presumed to scale with the number of potentially lethal damages that are repaired in a surviving cell or the interactions of such damages. The theory predicts that at doses corresponding to high survival, the transformation frequency is the sum of simple polynomial functions of dose; linear, quadratic, etc, essentially as described in widely used linear-quadratic expressions. At high doses, corresponding to low survival, the ratio of transformed to surviving cells asymptotically approaches an upper limit. The low dose fundamental- and high dose plateau domains are separated by a downwardly concave transition region. Published transformation data for mammalian cells show the high-dose plateaus predicted by the repair-dependent model for both ultraviolet and ionizing radiation. For the neoplastic transformation experiments that were analyzed, the data can be fit with only the repair-dependent quadratic function. At low doses, the transformation frequency is strictly quadratic, but becomes sigmodial over a wider range of doses. Inclusion of data from the transition region in a traditional linear-quadratic analysis of neoplastic transformation frequency data can exaggerate the magnitude of, or create the appearance of, a linear component. Quantitative analysis of survival and transformation data shows good agreement for ultraviolet radiation; the shapes of the transformation components can be predicted from survival data. For ionizing radiations, both neutrons and x-rays, survival data overestimate the transforming ability for low to moderate doses. The presumed cause of this difference is that, unlike UV photons, a single x-ray or neutron may generate more than one lethal damage in a cell, so the distribution of such damages in the population is not accurately described by Poisson statistics. However, the complete sigmodial dose-response data for neoplastic transformations can be fit using the repair-dependent functions with all parameters determined only from transformation frequency data.

  3. Adaptive response in animals exposed to non-ionizing radiofrequency fields: some underlying mechanisms.

    PubMed

    Cao, Yi; Tong, Jian

    2014-04-22

    During the last few years, our research group has been investigating the phenomenon of adaptive response in animals exposed to non-ionizing radiofrequency fields. The results from several separate studies indicated a significant increase in survival, decreases in genetic damage as well as oxidative damage and, alterations in several cellular processes in mice pre-exposed to radiofrequency fields and subsequently subjected to sub-lethal or lethal doses of γ-radiation or injected with bleomycin, a radiomimetic chemical mutagen. These observations indicated the induction of adaptive response providing the animals the ability to resist subsequent damage. Similar studies conducted by independent researchers in mice and rats have supported our observation on increased survival. In this paper, we have presented a brief review of all of our own and other independent investigations on radiofrequency fields-induced adaptive response and some underlying mechanisms discussed.

  4. Adaptive Response in Animals Exposed to Non-Ionizing Radiofrequency Fields: Some Underlying Mechanisms

    PubMed Central

    Cao, Yi; Tong, Jian

    2014-01-01

    During the last few years, our research group has been investigating the phenomenon of adaptive response in animals exposed to non-ionizing radiofrequency fields. The results from several separate studies indicated a significant increase in survival, decreases in genetic damage as well as oxidative damage and, alterations in several cellular processes in mice pre-exposed to radiofrequency fields and subsequently subjected to sub-lethal or lethal doses of γ-radiation or injected with bleomycin, a radiomimetic chemical mutagen. These observations indicated the induction of adaptive response providing the animals the ability to resist subsequent damage. Similar studies conducted by independent researchers in mice and rats have supported our observation on increased survival. In this paper, we have presented a brief review of all of our own and other independent investigations on radiofrequency fields-induced adaptive response and some underlying mechanisms discussed. PMID:24758897

  5. Central nervous system radiation syndrome in mice from preferential 10B(n, alpha)7Li irradiation of brain vasculature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slatkin, D.N.; Stoner, R.D.; Rosander, K.M.

    1988-06-01

    Ionizing radiations were directed at the heads of anesthetized mice in doses that evoked the acute central nervous system (CNS) radiation syndrome. Irradiations were done using either a predominantly thermal neutron field at a nuclear reactor after intraperitoneal injection of 10B-enriched boric acid or 250-kilovolt-peak x-rays with and without previous intraperitoneal injection of equivalent unenriched boric acid. Since 10B concentrations were approximately equal to 3-fold higher in blood than in cerebral parenchyma during the reactor irradiations, more radiation from alpha and 7Li particles was absorbed by brain endothelial cells than by brain parenchymal cells. Comparison of the LD50 dose formore » CNS radiation lethality from the reactor experiments with the LD50 dose from the x-ray experiments gives results compatible with morphologic evidence that endothelial cell damage is a major determinant of acute lethality from the CNS radiation syndrome. It was also observed that boric acid is a low linear energy transfer radiation-enhancement agent in vivo.« less

  6. PARP inhibition as a prototype for synthetic lethal screens.

    PubMed

    Liu, Xuesong

    2013-01-01

    Although DNA damaging chemotherapy and radiation therapy remain the main stay of current treatments for cancer patient, these therapies usually have toxic side effect and narrow therapeutic window. One of the challenges in cancer drug discovery is how to identify drugs that selectively kill cancer cells while leaving the normal cell intact. Recently, synthetic lethality has been applied to cancer drug discovery in various settings, and has become a promising approach for identifying novel agents for the treatment of cancer. A prototypical example is the synthetic lethal interaction between PARP inhibition and BRCA deficiency. PARP inhibitors represent the most advanced clinical agents targeting specifically DNA repair mechanisms in cancer therapy. In this chapter, I will review the molecular mechanism for this synthetic lethality and the clinical applications for PARP inhibitors. I will also discuss the formats of synthetic lethal screens, current progress on the utilization of these screens, and some of the advantages and challenges of synthetic lethal screens in cancer drug discovery.

  7. Spectrum of complex DNA damages depends on the incident radiation

    NASA Astrophysics Data System (ADS)

    Hada, M.; Sutherland, B.

    Ionizing radiation induces clustered DNA damages in DNA-two or more abasic sites oxidized bases and strand breaks on opposite DNA strands within a few helical turns Clustered damages are considered to be difficult to repair and therefore potentially lethal and mutagenic damages Although induction of single strand breaks and isolated lesions has been studied extensively little is known of factors affecting induction of clusters other than double strand breaks DSB The aim of the present study was to determine whether the type of incident radiation could affect yield or spectra of specific clusters Genomic T7 DNA a simple 40 kbp linear blunt-ended molecule was irradiated in non-scavenging buffer conditions with Fe 970 MeV n Ti 980 MeV n C 293 MeV n Si 586 MeV n ions or protons 1 GeV n at the NASA Space Radiation Laboratory or with 100 kVp X-rays Irradiated DNA was treated with homogeneous Fpg or Nfo proteins or without enzyme treatment for DSB quantitation then electrophoresed in neutral agarose gels DSB Fpg-OxyPurine clusters and Nfo-Abasic clusters were quantified by number average length analysis The results show that the yields of all these complex damages depend on the incident radiation Although LETs are similar protons induced twice as many DSBs than did X-rays Further the spectrum of damage also depends on the radiation The yield damage Mbp Gy of all damages decreased with increasing linear energy transfer LET of the radiation The relative frequencies of DSBs to Abasic- and OxyBase clusters were higher

  8. Divergent Roles of RPA Homologs of the Model Archaeon Halobacterium salinarum in Survival of DNA Damage.

    PubMed

    Evans, Jessica J; Gygli, Patrick E; McCaskill, Julienne; DeVeaux, Linda C

    2018-04-20

    The haloarchaea are unusual in possessing genes for multiple homologs to the ubiquitous single-stranded DNA binding protein (SSB or replication protein A, RPA) found in all three domains of life. Halobacterium salinarum contains five homologs: two are eukaryotic in organization, two are prokaryotic and are encoded on the minichromosomes, and one is uniquely euryarchaeal. Radiation-resistant mutants previously isolated show upregulation of one of the eukaryotic-type RPA genes. Here, we have created deletions in the five RPA operons. These deletion mutants were exposed to DNA-damaging conditions: ionizing radiation, UV radiation, and mitomycin C. Deletion of the euryarchaeal homolog, although not lethal as in Haloferax volcanii , causes severe sensitivity to all of these agents. Deletion of the other RPA/SSB homologs imparts a variable sensitivity to these DNA-damaging agents, suggesting that the different RPA homologs have specialized roles depending on the type of genomic insult encountered.

  9. DNA damage and repair after high LET radiation

    NASA Astrophysics Data System (ADS)

    O'Neill, Peter; Cucinotta, Francis; Anderson, Jennifer

    Predictions from biophysical models of interactions of radiation tracks with cellular DNA indicate that clustered DNA damage sites, defined as two or more lesions formed within one or two helical turns of the DNA by passage of a single radiation track, are formed in mammalian cells. These complex DNA damage sites are regarded as a signature of ionizing radiation exposure particularly as the likelihood of clustered damage sites arising endogenously is low. For instance, it was predicted from biophysical modelling that 30-40% of low LET-induced double strand breaks (DSB), a form of clustered damage, are complex with the yield increasing to >90% for high LET radiation, consistent with the reduced reparability of DSB with increasing ionization density of the radiation. The question arises whether the increased biological effects such as mutagenesis, carcinogenesis and lethality is in part related to DNA damage complexity and/or spatial distribution of the damage sites, which may lead to small DNA fragments. With particle radiation it is also important to consider not only delta-rays which may cause clustered damaged sites and may be highly mutagenic but the non-random spatial distribution of DSB which may lead to deletions. In this overview I will concentrate on the molecular aspects of the variation of the complexity of DNA damage on radiation quality and the challenges this complexity presents the DNA damage repair pathways. I will draw on data from micro-irradiations which indicate that the repair of DSBs by non-homologous end joining is highly regulated with pathway choice and kinetics of repair dependent on the chemical complexity of the DSB. In summary the aim is to emphasis the link between the spatial distribution of energy deposition events related to the track, the molecular products formed and the consequence of damage complexity contributing to biological effects and to present some of the outstanding molecular challenges with particle radiation.

  10. Tissue responses to low protracted doses of high let radiations or photons - Early and late damage relevant to radio-protective countermeasures

    NASA Technical Reports Server (NTRS)

    Ainsworth, E. J.; Afzal, S. M. J.; Crouse, D. A.; Hanson, W. R.; Fry, R. J. M.

    1989-01-01

    Early and late murine tissue responses to single or fractionated low doses of heavy charged particles, fission-spectrum neutrons or gamma rays are considered. Damage to the hematopoietic system is emphasized, but results on acute lethality, host response to challenge with transplanted leukemia cells and life-shortening are presented. Recent studies on protection against early and late effects by aminothiols, prostaglandins, and other compounds are discussed.

  11. Novel Regenerative Peptide TP508 Mitigates Radiation-Induced Gastrointestinal Damage By Activating Stem Cells and Preserving Crypt Integrity

    PubMed Central

    Kantara, Carla; Moya, Stephanie M.; Houchen, Courtney W.; Umar, Shahid; Ullrich, Robert L.; Singh, Pomila; Carney, Darrell H.

    2015-01-01

    In recent years, increasing threats of radiation exposure and nuclear disasters have become a significant concern for the United States and countries worldwide. Exposure to high doses of radiation triggers a number of potentially lethal effects. Among the most severe is the gastrointestinal (GI) toxicity syndrome caused by the destruction of the intestinal barrier, resulting in bacterial translocation, systemic bacteremia, sepsis and death. The lack of effective radioprotective agents capable of mitigating radiation-induced damage has prompted a search for novel countermeasures that can mitigate the effects of radiation post-exposure, accelerate tissue repair in radiation-exposed individuals, and prevent mortality. We report that a single injection of regenerative peptide TP508 (rusalatide acetate, Chrysalin®) 24h after lethal radiation exposure (9Gy, LD100/15) appears to significantly increase survival and delay mortality by mitigating radiation-induced intestinal and colonic toxicity. TP508 treatment post-exposure prevents the disintegration of gastrointestinal crypts, stimulates the expression of adherens junction protein E-cadherin, activates crypt cell proliferation, and decreases apoptosis. TP508 post-exposure treatment also up-regulates the expression of DCLK1 and LGR5 markers of stem cells that have been shown to be responsible for maintaining and regenerating intestinal crypts. Thus, TP508 appears to mitigate the effects of GI toxicity by activating radioresistant stem cells and increasing the stemness potential of crypts to maintain and restore intestinal integrity. These results suggest that TP508 may be an effective emergency nuclear countermeasure that could be delivered within 24h post-exposure to increase survival and delay mortality, giving victims time to reach clinical sites for advanced medical treatment. PMID:26280221

  12. NORF5/HUG1 is a component of the MEC1-mediated checkpoint response to DNA damage and replication arrest in Saccharomyces cerevisiae.

    PubMed

    Basrai, M A; Velculescu, V E; Kinzler, K W; Hieter, P

    1999-10-01

    Analysis of global gene expression in Saccharomyces cerevisiae by the serial analysis of gene expression technique has permitted the identification of at least 302 previously unidentified transcripts from nonannotated open reading frames (NORFs). Transcription of one of these, NORF5/HUG1 (hydroxyurea and UV and gamma radiation induced), is induced by DNA damage, and this induction requires MEC1, a homolog of the ataxia telangiectasia mutated (ATM) gene. DNA damage-specific induction of HUG1, which is independent of the cell cycle stage, is due to the alleviation of repression by the Crt1p-Ssn6p-Tup1p complex. Overexpression of HUG1 is lethal in combination with a mec1 mutation in the presence of DNA damage or replication arrest, whereas a deletion of HUG1 rescues the lethality due to a mec1 null allele. HUG1 is the first example of a NORF with important biological functional properties and defines a novel component of the MEC1 checkpoint pathway.

  13. Concerted action of Nrf2-ARE pathway, MRN complex, HMGB1 and inflammatory cytokines - Implication in modification of radiation damage

    PubMed Central

    Anuranjani; Bala, Madhu

    2014-01-01

    Whole body exposure to low linear energy transfer (LET) ionizing radiations (IRs) damages vital intracellular bio-molecules leading to multiple cellular and tissue injuries as well as pathophysiologies such as inflammation, immunosuppression etc. Nearly 70% of damage is caused indirectly by radiolysis of intracellular water leading to formation of reactive oxygen species (ROS) and free radicals and producing a state of oxidative stress. The damage is also caused by direct ionization of biomolecules. The type of radiation injuries is dependent on the absorbed radiation dose. Sub-lethal IR dose produces more of DNA base damages, whereas higher doses produce more DNA single strand break (SSBs), and double strand breaks (DSBs). The Nrf2-ARE pathway is an important oxidative stress regulating pathway. The DNA DSBs repair regulated by MRN complex, immunomodulation and inflammation regulated by HMGB1 and various types of cytokines are some of the key pathways which interact with each other in a complex manner and modify the radiation response. Because the majority of radiation damage is via oxidative stress, it is essential to gain in depth understanding of the mechanisms of Nrf2-ARE pathway and understand its interactions with MRN complex, HMGB1 and cytokines to increase our understanding on the radiation responses. Such information is of tremendous help in development of medical radiation countermeasures, radioprotective drugs and therapeutics. Till date no approved and safe countermeasure is available for human use. This study reviews the Nrf2-ARE pathway and its crosstalk with MRN-complex, HMGB1 and cytokines (TNF-a, IL-6, IFN-? etc.). An attempt is also made to review the modification of some of these pathways in presence of selected antioxidant radioprotective compounds or herbal extracts. PMID:25009785

  14. TUBERCULOSIS AND LETHAL AS WELL AS SUBLETHAL WHOLE-BODY X-RAY IRRADIATION OF GUINEA PIGS (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabler, E.

    1964-02-01

    Lethally total-body-x-ray-irradiated (550 r) and simultaneously Tb- infected guinea pigs died earlier (1.5 to 3.2 days) than lethally irradiated control animals. A tuberculous focus formation could not be found microscopically or macroscopically in these guinea pigs or in sublethally irradiated and simultaneously infected animals. However, in tubcrculous control animals, which were killed at this time, specific foci could be found in liver, spleen, and lungs. Using sublethal irradiation (300 r) and simultaneous Tb inoculation half of the animals died a radiation death and the rest died of tuberculosis. It was found that 86.4% of the animals die a radiation deathmore » and 13.5% because of tuberculosis when irradiated sublethally 30 days after infection. The greatest tuberculosis foci in these animais appeared in lungs, spleen, and especially in the liver ( destroyed iiver''). Tuberculous giant cells of the Langhans-type were missing in case of irradiation and simultaneous tuberculosis. They appeared again about 20 to 30 days after irradiation. The native resistance to tuberculosis was very reduced in cases of simultaneous exposure; radioinduced cell shortage and cell damage permit tuberculous focus formation only after overcoming the acute radiation syndrome in case of sublethal irradiations. (auth)« less

  15. Measurements and simulations of microscopic damage to DNA in water by 30 keV electrons: A general approach applicable to other radiation sources and biological targets

    NASA Astrophysics Data System (ADS)

    Hahn, Marc Benjamin; Meyer, Susann; Kunte, Hans-Jörg; Solomun, Tihomir; Sturm, Heinz

    2017-05-01

    The determination of the microscopic dose-damage relationship for DNA in an aqueous environment is of a fundamental interest for dosimetry and applications in radiation therapy and protection. We combine geant4 particle-scattering simulations in water with calculations concerning the movement of biomolecules to obtain the energy deposit in the biologically relevant nanoscopic volume. We juxtaposition these results to the experimentally determined damage to obtain the dose-damage relationship at a molecular level. This approach is tested for an experimentally challenging system concerning the direct irradiation of plasmid DNA (pUC19) in water with electrons as primary particles. Here a microscopic target model for the plasmid DNA based on the relation of lineal energy and radiation quality is used to calculate the effective target volume. It was found that on average fewer than two ionizations within a 7.5-nm radius around the sugar-phosphate backbone are sufficient to cause a single strand break, with a corresponding median lethal energy deposit being E1 /2=6 ±4 eV. The presented method is applicable for ionizing radiation (e.g., γ rays, x rays, and electrons) and a variety of targets, such as DNA, proteins, or cells.

  16. Relative biological effectiveness for photons: implication of complex DNA double-strand breaks as critical lesions

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Fu, Qibin; Wang, Xudong; Liu, Feng; Yang, Gen; Luo, Chunxiong; Ouyang, Qi; Wang, Yugang

    2017-03-01

    Current knowledge in radiobiology ascribes the adverse biological effects of ionizing radiation primarily to the induction of DNA double-strand breaks (DSBs), which is supposed to be potentially lethal and may be converted to lethal damage due to misrepair. Soft and ultrasoft x-rays have been found to bear elevated biological effectiveness for cell killing compared with conventional x-rays or 60Co γ-rays. This phenomenon is qualitatively interpreted as the increased level of DSB induction for low energy photons, however, a thorough quantitative reasoning is lacking. Here, we systematically compared the relative biological effectiveness (RBE) with relative DSB induction for photons from several hundreds of eV up to MeV. Although there is an approximate two-fold increase in the yields of DSB for low energy photons found in our calculation and a large number of experimental measurements, it is far from enough to account for the three- to four-fold increase in RBE. Further theoretical investigations show that DSB complexity (additional single-strand breaks and base damage within 10 base pairs) increases notably for low energy photons, which largely reconciles the discrepancy between RBE and DSB induction. Our theoretical results are in line with accumulating experimental evidence that complex DSBs are refractory to repair machinery and may contribute predominantly to the formation of lethal damage.

  17. Imaging and radiation effects of gold nanoparticles in tumour cells

    PubMed Central

    McQuaid, Harold N.; Muir, Mark F.; Taggart, Laura E.; McMahon, Stephen J.; Coulter, Jonathan A.; Hyland, Wendy B.; Jain, Suneil; Butterworth, Karl T.; Schettino, Giuseppe; Prise, Kevin M.; Hirst, David G.; Botchway, Stanley W.; Currell, Fred J.

    2016-01-01

    Gold nanoparticle radiosensitization represents a novel technique in enhancement of ionising radiation dose and its effect on biological systems. Variation between theoretical predictions and experimental measurement is significant enough that the mechanism leading to an increase in cell killing and DNA damage is still not clear. We present the first experimental results that take into account both the measured biodistribution of gold nanoparticles at the cellular level and the range of the product electrons responsible for energy deposition. Combining synchrotron-generated monoenergetic X-rays, intracellular gold particle imaging and DNA damage assays, has enabled a DNA damage model to be generated that includes the production of intermediate electrons. We can therefore show for the first time good agreement between the prediction of biological outcomes from both the Local Effect Model and a DNA damage model with experimentally observed cell killing and DNA damage induction via the combination of X-rays and GNPs. However, the requirement of two distinct models as indicated by this mechanistic study, one for short-term DNA damage and another for cell survival, indicates that, at least for nanoparticle enhancement, it is not safe to equate the lethal lesions invoked in the local effect model with DNA damage events. PMID:26787230

  18. Mice Lacking RIP3 Kinase are not Protected from Acute Radiation Syndrome.

    PubMed

    Castle, Katherine D; Daniel, Andrea R; Moding, Everett J; Luo, Lixia; Lee, Chang-Lung; Kirsch, David G

    2018-06-01

    Exposure to high doses of ionizing radiation can cause lethal injury to normal tissue, thus inducing acute radiation syndrome. Acute radiation syndrome is caused by depletion of bone marrow cells (hematopoietic syndrome) and irreparable damage to the epithelial cells in the gastrointestinal tract (gastrointestinal syndrome). Although radiation initiates apoptosis in the hematopoietic and gastrointestinal compartments within the first few hours after exposure, alternative mechanisms of cell death may contribute to injury in these radiosensitive tissues. In this study, we utilized mice lacking a critical regulator of necroptosis, receptor interacting protein 3 (RIP3) kinase, to characterize the role of RIP3 in normal tissue toxicity after irradiation. Our results suggest that RIP3-mediated signaling is not a critical driver of acute radiation syndrome.

  19. Toxic properties of specific radiation determinant molecules, derived from radiated species

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Vecheslav; Kedar, Prasad; Casey, Rachael; Jones, Jeffrey

    Introduction: High doses of radiation induce the formation of radiation toxins in the organs of irradiated mammals. After whole body irradiation, cellular macromolecules and cell walls are damaged as a result of long-lived radiation-induced free radicals, reactive oxygen species, and fast, charged particles of radiation. High doses of radiation induce breaks in the chemical bonds of macromolecules and cross-linking reactions via chemically active processes. These processes result in the creation of novel modified macromolecules that possess specific toxic and antigenic properties defined by the type and dose of irradiation by which they are generated. Radiation toxins isolated from the lymph of irradiated animals are classified as hematotoxic, neurotoxic, and enteric non-bacterial (GI) radiation toxins, and they play an important role in the development of hematopoietic, cerebrovascular, and gastrointestinal acute radiation syndromes (ARS). Seven distinct toxins derived from post-irradiated animals have been designated as Specific Radiation Determinants (SRD): SRD-1 (neurotoxic radiation toxin generated by the cerebrovascular form of ARS), SRD-3 (enteric non-bacterial radiation toxins generated by the gastrointestinal form of ARS), and SRD-4 (hematotoxic radiation toxins generated by the hematological, bone marrow form of ARS). SRD-4 is further subdivided into four groups depending on the severity of the ARS induced: SRD-4/1, mild ARS; SRD-4/2, moderate ARS; SRD-4/3, severe ARS; and SRD-4/4, extremely severe ARS. The seventh SRD, SRD-2 is a toxic extract derived from animals suffering from a fourth form of ARS, as described in European literature and produces toxicity primarily in the autonimic nervous system. These radiation toxins have been shown to be responsible for the induction of important pathophysiological, immunological, and biochemical reactions in ARS. Materials and Methods: These studies incorporated the use of statistically significant numbers of a variety of animals. Lymphatic fluid was collected from the thoracic ducts of bovine species exposed to lethal doses of gamma radiation, and the SRDs were separated by size exclusion gel filtration and high-performance liquid chromatography. We compared the toxicity of isolated radiation toxins in a variety of animals. The clinical characteristics of ARS induced by intravenous or intra-muscular injections of radiation toxins were observed. Results: In radiation-na¨ animals (rats, rabbits, and sheep), toxicity was defined ıve by observing the timing and rate of lethality following injections with extracted radiation toxins (SRDs). Preparations of SRD-1 were injected intra-muscularly in doses of 5 or 10 mg/kg body weight. We observed the development of cerebrovascular ARS with 100% lethality at 10-30 minutes after injection. Analysis of the toxicity of different forms of radiation toxins showed that cerebrovascular neurotoxins possess the highest toxicity compared with other forms of radiation toxins. The other SRD's were also injected into radiation-naive animals and observed for subsequent toxicity/lethality, with the other SRDs producing less virulent forms of ARS. However, both the SRD-2- and SRD-3-injected animals also suffered lethality between 2 and 30 days post-injection. Conclusions: We have observed that radiation toxins are transported from the cells and tissues of irradiated organisms to the interstitial blood and lymphatic fluids, and that this migration of radiation toxins occurs hours after irradiation. Upon analysis of the results of our research and literature sources, we postulate that radiation toxins arise from the radiation-induced chemical modification of macromolecules resident in cell membranes and other cellular structures. Furthermore, we postulate that these altered macromolecules are not processed by antigen processing cells, but instead bind to class II MHC molecules and TCR-beta chains. This causes nonspecific activation of T cells, pro-inflammatory agents such as cytokines and isozymes of phospholipase A2 and phospholipase C, and platelet-activating factor. Longer-term effects induced by the altered macromolecules include the activation of cytotoxic T cells, which induces cytolysis in radiation-damaged cells. Activated CD8+ T cells produce tumor necrosis factor-B and additional cytokines. By these mechanisms, we postulate that radiation toxins generate the pathophysiological reactions associated with acute radiation syndromes.

  20. Serum microRNAs are early indicators of survival after radiation-induced hematopoietic injury

    PubMed Central

    Acharya, Sanket S.; Fendler, Wojciech; Watson, Jacqueline; Hamilton, Abigail; Pan, Yunfeng; Gaudiano, Emily; Moskwa, Patryk; Bhanja, Payel; Saha, Subhrajit; Guha, Chandan; Parmar, Kalindi; Chowdhury, Dipanjan

    2015-01-01

    Accidental radiation exposure is a threat to human health that necessitates effective clinical planning and diagnosis. Minimally invasive biomarkers that can predict long-term radiation injury are urgently needed for optimal management after a radiation accident. We have identified serum microRNA (miRNA) signatures that indicate long-term impact of total body irradiation (TBI) in mice when measured within 24 hours of exposure. Impact of TBI on the hematopoietic system was systematically assessed to determine a correlation of residual hematopoietic stem cells (HSCs) with increasing doses of radiation. Serum miRNA signatures distinguished untreated mice from animals exposed to radiation and correlated with the impact of radiation on HSCs. Mice exposed to sublethal (6.5 Gy) and lethal (8 Gy) doses of radiation were indistinguishable for 3 to 4 weeks after exposure. A serum miRNA signature detectable 24 hours after radiation exposure consistently segregated these two cohorts. Furthermore, using either a radioprotective agent before, or radiation mitigation after, lethal radiation, we determined that the serum miRNA signature correlated with the impact of radiation on animal health rather than the radiation dose. Last, using humanized mice that had been engrafted with human CD34+ HSCs, we determined that the serum miRNA signature indicated radiation-induced injury to the human bone marrow cells. Our data suggest that serum miRNAs can serve as functional dosimeters of radiation, representing a potential breakthrough in early assessment of radiation-induced hematopoietic damage and timely use of medical countermeasures to mitigate the long-term impact of radiation. PMID:25972001

  1. The lethal interaction of x ray and penicillin induced lesions following x-irradiation of Escherichia coli B/r in the presence of hypoxic cell sensitizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillies, N.E.; Obioha, F.I.

    When Escherichia coli B/r were x-irradiated under anoxia in the presence of different electron-affinic sensitizers and then incubated in broth containing penicillin (at a concentration that did not kill unirradiated cells) additional killing of the bacteria occurred provided the sensitizers were of relatively high lipophilicity. The overall effect was to increase the efficiency of these sensitizers. It is concluded that sensitizer-dependent latent radiation lesions(s) are produced in membrane components of the cell envelope that interact with damage caused by penicillin in the peptidoglycan layer and this causes the additional lethality.

  2. Clonogenicity of human leukemic cells protected from cell-lethal agents by heat shock protein 70

    PubMed Central

    Bases, Robert

    2005-01-01

    Pretreatment of human leukemia THP-1 cells with heat shock protein Hsp70 (Hsp70) protected them from the cell-lethal effects of the topoisomerase II inhibitor, lucanthone and from ionizing radiation. Cell viability was scored in clonogenic assays of single cells grown in liquid medium containing 0.5% methyl cellulose. Colonies were observed and rapidly scored after staining with the tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide. The frequency of abasic sites in the deoxyribonucleic acid (DNA) of THP-1 cells was reduced when these cells were treated with Hsp70. Hsp70 is presumed to have protected the cells by promoting repair of cell DNA, in agreement with previous studies that showed that Hsp70 enhanced base excision repair by purified enzymes. The shoulders of radiation dose-response curves were enhanced by pretreatment of cells with Hsp70 and, importantly, were reduced when cells were transfected with ribonucleic acid designed to silence Hsp70. Hsp70 influenced repair of sublethal damage after radiation. PMID:15832946

  3. Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice

    PubMed Central

    Rotolo, Jimmy; Stancevic, Branka; Zhang, Jianjun; Hua, Guoqiang; Fuller, John; Yin, Xianglei; Haimovitz-Friedman, Adriana; Kim, Kisu; Qian, Ming; Cardó-Vila, Marina; Fuks, Zvi; Pasqualini, Renata; Arap, Wadih; Kolesnick, Richard

    2012-01-01

    Radiation gastrointestinal (GI) syndrome is a major lethal toxicity that may occur after a radiation/nuclear incident. Currently, there are no prophylactic countermeasures against radiation GI syndrome lethality for first responders, military personnel, or remediation workers entering a contaminated area. The pathophysiology of this syndrome requires depletion of stem cell clonogens (SCCs) within the crypts of Lieberkühn, which are a subset of cells necessary for postinjury regeneration of gut epithelium. Recent evidence indicates that SCC depletion is not exclusively a result of DNA damage but is critically coupled to ceramide-induced endothelial cell apoptosis within the mucosal microvascular network. Here we show that ceramide generated on the surface of endothelium coalesces to form ceramide-rich platforms that transmit an apoptotic signal. Moreover, we report the generation of 2A2, an anti-ceramide monoclonal antibody that binds to ceramide to prevent platform formation on the surface of irradiated endothelial cells of the murine GI tract. Consequently, we found that 2A2 protected against endothelial apoptosis in the small intestinal lamina propria and facilitated recovery of crypt SCCs, preventing the death of mice from radiation GI syndrome after high radiation doses. As such, we suggest that 2A2 represents a prototype of a new class of anti-ceramide therapeutics and an effective countermeasure against radiation GI syndrome mortality. PMID:22466649

  4. A self-harm series and its relationship with childhood adversity among adolescents in mainland China: a cross-sectional study.

    PubMed

    Han, Azhu; Wang, Gengfu; Xu, Geng; Su, Puyu

    2018-02-01

    Self-harm (SH) is an emerging problem among Chinese adolescents. The present study aimed to measure the prevalence of SH behaviours and to explore the relationship between childhood adversity and different SH subtypes among Chinese adolescents. A total of 5726 middle school students were randomly selected in three cities of Anhui province, China, using a stratified cluster sampling method. SH was categorized into five subtypes (highly lethal self-harm, less lethal self-harm with visible tissue damage, self-harm without visible tissue damage, self-harmful behaviours with latency damage and psychological self-harm). Multivariate logistic regression was used to explore the relationships between childhood adversity and different subtypes of adolescent SH. The prevalence rates of highly lethal self-harm, less lethal self-harm with visible tissue damage, self-harm without visible tissue damage, self-harmful behaviours with latency damage and psychological self-harm were 6.1, 20.4, 32.0, 20.0 and 23.0%, respectively. Childhood sexual abuse and physical peer victimization were associated with each SH subtype with adjusted odds ratios (AORs) ranging from 1.23 to 1.76. Highly lethal self-harm was associated with childhood physical peer victimization, sexual abuse, emotional abuse, and emotional neglect. The less lethal SH subtypes (i.e., less lethal self-harm with visible tissue damage, self-harm without visible tissue damage, self-harmful behaviours with latency damage and psychological self-harm) were associated with childhood peer victimization, family life stress event scores and childhood sexual abuse. A high prevalence of SH exists among Chinese adolescents. The association of childhood adversity with SH merits serious attention in both future research and preventive interventions.

  5. Damage pattern as a function of radiation quality and other factors.

    PubMed

    Burkart, W; Jung, T; Frasch, G

    1999-01-01

    An understanding of damage pattern in critical cellular structures such as DNA is an important prerequisite for a mechanistic assessment of primary radiation damage, its possible repair, and the propagation of residual changes in somatic and germ cells as potential contributors to disease or ageing. Important quantitative insights have been made recently on the distribution in time and space of critical lesions from direct and indirect action of ionizing radiation on mammalian cells. When compared to damage from chemicals or from spontaneous degradation, e.g. depurination or base deamination in DNA, the potential of even low-LET radiation to create local hot spots of damage from single particle tracks is of utmost importance. This has important repercussions on inferences from critical biological effects at high dose and dose rate exposure situations to health risks at chronic, low-level exposures as experienced in environmental and controlled occupational settings. About 10,000 DNA lesions per human cell nucleus and day from spontaneous degradation and chemical attack cause no apparent effect, but a dose of 4 Gy translating into a similar number of direct and indirect DNA breaks induces acute lethality. Therefore, single lesions cannot explain the high efficiency of ionizing radiation in the induction of mutation, transformation and loss of proliferative capacity. Clustered damage leading to poorly repairable double-strand breaks or even more complex local DNA degradation, correlates better with fixed damage and critical biological endpoints. A comparison with other physical, chemical and biological agents indicates that ionizing radiation is indeed set apart from these by its unique micro- and nano-dosimetric traits. Only a few other agents such as bleomycin have a similar potential to cause complex damage from single events. However, in view of the multi-stage mechanism of carcinogenesis, it is still an open question whether dose-effect linearity for complex primary DNA damage and resulting fixed critical cellular lesions translate into linearity for radiation-induced cancer. To solve this enigma, a quantitative assessment of all genotoxic and harmful non-genotoxic agents affecting the human body would be needed.

  6. Caffeine-enhanced survival of radiation-sensitive, repair-deficient Chinese hamster cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utsumi, H.; Elkind, M.M.

    1983-11-01

    A clone of V79 Chinese hamster cells (V79-AL162/S-10) with unique properties has been isolated after a challenge of parental cells (V79-AL162) with 1 mM ouabain. Compared with parental cells, or with other clones isolated after the ouabain challenge, these cells form smaller colonies, are more sensitive to both x rays and fission-spectrum neutrons, and respond atypically to a postirradiation treatment with caffeine. Their enhanced response to x rays results mainly from a large reduction in the shoulder of their survival curve, probably because in late S phase, the most resistant phase in the cell cycle, the survival curve of thesemore » cells has a reduced shoulder width. Caffeine, and to a lesser extent theophylline, added to the colony-forming medium immediately after exposure appreciably increases the width of the shoulder of these sensitive cells, whereas caffeine has the opposite effect on the response of normal V79 cells. Thus the unique response of the V79-AL162/S-10 cells to a radiation posttreatment with caffeine (increased survival) results from a net increase in their ability to repair damage that is otherwise lethal; caffeine treatment ordinarly prevents normal V79 cells from repairing damage that is only potentially lethal.« less

  7. Action of caffeine on x-irradiated HeLa cells. VII. Evidence that caffeine enhances expression of potentially lethal radiation damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beetham, K.L.; Tolmach, L.J.

    1984-12-01

    HeLa cells irradiated with 2 Gy of 220-kV X rays suffer a 60-70% loss of colony-forming ability which is increased to 90% by postirradiation treatment with 10 mM caffeine for 6 hr. The detailed postirradiation patterns of cell death and sister-cell fusion in such cultures and in cultures in which the colony-forming ability was brought to about the same level by treatment with a larger (4 Gy) X-ray dose alone or by longer (48 hr) treatment with 10 mM caffeine alone were recorded by time-lapse cinemicrography. Because the patterns of cell death and fusion differ radically in irradiated and inmore » caffeine-treated cultures, the response of the additional cells killed by the combined treatment can be identified as X-ray induced rather than caffeine induced. The appearance of cultures after several days of incubation confirms the similarity of the post-treatment patterns of proliferation in cultures suffering enhanced killing to those occurring in cultures treated with larger doses of X rays alone. It is concluded that x rays do not sensitize cells to caffeine, but rather that caffeine enhanced the expression of potentially lethal radiation-induced damage.« less

  8. Theoretical models and simulation codes to investigate bystander effects and cellular communication at low doses

    NASA Astrophysics Data System (ADS)

    Ballarini, F.; Alloni, D.; Facoetti, A.; Mairani, A.; Nano, R.; Ottolenghi, A.

    Astronauts in space are continuously exposed to low doses of ionizing radiation from Galactic Cosmic Rays During the last ten years the effects of low radiation doses have been widely re-discussed following a large number of observations on the so-called non targeted effects in particular bystander effects The latter consist of induction of cytogenetic damage in cells not directly traversed by radiation most likely as a response to molecular messengers released by directly irradiated cells Bystander effects which are observed both for lethal endpoints e g clonogenic inactivation and apoptosis and for non-lethal ones e g mutations and neoplastic transformation tend to show non-linear dose responses This might have significant consequences in terms of low-dose risk which is generally calculated on the basis of the Linear No Threshold hypothesis Although the mechanisms underlying bystander effects are still largely unknown it is now clear that two types of cellular communication i e via gap junctions and or release of molecular messengers into the extracellular environment play a fundamental role Theoretical models and simulation codes can be of help in elucidating such mechanisms In the present paper we will review different available modelling approaches including one that is being developed at the University of Pavia The focus will be on the different assumptions adopted by the various authors and on the implications of such assumptions in terms of non-targeted radiobiological damage and more generally low-dose

  9. Insulin and insulin-like growth factor-1 (lGF-1) inhibit repair of potentially lethal radiation damage and chromosome aberrations and later DNA repair kinetics in plateau-phase A549 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayanth, V.R.; Belfi, C.A.; Swick, A.R.

    1995-08-01

    Plateau-phase A549 cells exhibit a high capacity for repair of potentially lethal radiation damage (PLD) when allowed to recover in their own spent medium. Addition of either insulin or insulin-like growth factor-1 (IGF-1) to the spent medium 60 to 120 min before irradiation significantly inhibits PLD repair. The 9-h recovery factor (survival with holding/survival without holding)is reduced from 10.8 {plus_minus} 0.7 to 3.4 {plus_minus}0.3 by insulin and to 3.0 {plus_minus} 0.4 by IGF-1. Neither growth factor alters the cell age distribution of the plateau-phase cells, increases the rate of incorporation of 5-bromo-2{prime}-deoxyuridine into DNA, or alters the extent of radiation-inducedmore » mitotic delay in cells subcultured immediately after irradiation. Both insulin and IGF-1 alter the kinetics for rejoining of DNA double-strand breaks (DSBs), slowing the fast component of rejoining significantly. However, these growth factors have no effect on the initial level of DSBs or on the percentage of residual unrejoined breaks at 120 min postirradiation. Both growth factors affect repair of lesions leading to dicentric, but not to acentric, chromosome aberrations significantly. In control cells (treated with phosphate-buffered saline, 90 min prior to irradiation), the half-time for disappearance of dicentrics was 4.1 h (3.4 to 5.1 h), and 47.1 {plus_minus} 3.7% of the residual damage remained at 24 h postirradiation. Insulin and IGF-1 increased the half-time for disappearance of dicentrics to 5.2 h (3.9 to 7.7 h) and 5.7 h (5.5 to 5.9 h), respectively, and increased residual damage to 56.1 {plus_minus}5.9% and 60.8 {plus_minus} 6.0%, respectively. Overall, these data show that insulin and IGF-1 inhibit PLD repair in A54j9 cells by mechanisms which are independent of changes in cell cycle parameters. The data suggest that the growth factors act by inducing changes in chromatin conformation which promote misrepair of radiation-damaged DNA. 49 refs., 5 figs., 4 tabs.« less

  10. RAD9-dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae.

    PubMed

    Siede, W; Friedberg, A S; Friedberg, E C

    1993-09-01

    Exposure of the yeast Saccharomyces cerevisiae to ultraviolet (UV) light, the UV-mimetic chemical 4-nitroquinoline-1-oxide (4NQO), or gamma radiation after release from G1 arrest induced by alpha factor results in delayed resumption of the cell cycle. As is the case with G2 arrest following ionizing radiation damage [Weinert, T. A. & Hartwell, L. H. (1988) Science 241, 317-322], the normal execution of DNA damage-induced G1 arrest depends on a functional yeast RAD9 gene. We suggest that the RAD9 gene product may interact with cellular components common to the G1/S and G2/M transition points in the cell cycle of this yeast. These observations define a checkpoint in the eukaryotic cell cycle that may facilitate the repair of lesions that are otherwise processed to lethal and/or mutagenic damage during DNA replication. This checkpoint apparently operates after the mating pheromone-induced G1 arrest point but prior to replicative DNA synthesis, S phase-associated maximal induction of histone H2A mRNA, and bud emergence.

  11. DNA Protection Protein, a Novel Mechanism of Radiation Tolerance: Lessons from Tardigrades

    PubMed Central

    Hashimoto, Takuma; Kunieda, Takekazu

    2017-01-01

    Genomic DNA stores all genetic information and is indispensable for maintenance of normal cellular activity and propagation. Radiation causes severe DNA lesions, including double-strand breaks, and leads to genome instability and even lethality. Regardless of the toxicity of radiation, some organisms exhibit extraordinary tolerance against radiation. These organisms are supposed to possess special mechanisms to mitigate radiation-induced DNA damages. Extensive study using radiotolerant bacteria suggested that effective protection of proteins and enhanced DNA repair system play important roles in tolerability against high-dose radiation. Recent studies using an extremotolerant animal, the tardigrade, provides new evidence that a tardigrade-unique DNA-associating protein, termed Dsup, suppresses the occurrence of DNA breaks by radiation in human-cultured cells. In this review, we provide a brief summary of the current knowledge on extremely radiotolerant animals, and present novel insights from the tardigrade research, which expand our understanding on molecular mechanism of exceptional radio-tolerability. PMID:28617314

  12. Blockade of TLR3 protects mice from lethal radiation-induced gastrointestinal syndrome

    PubMed Central

    Takemura, Naoki; Kawasaki, Takumi; Kunisawa, Jun; Sato, Shintaro; Lamichhane, Aayam; Kobiyama, Kouji; Aoshi, Taiki; Ito, Junichi; Mizuguchi, Kenji; Karuppuchamy, Thangaraj; Matsunaga, Kouta; Miyatake, Shoichiro; Mori, Nobuko; Tsujimura, Tohru; Satoh, Takashi; Kumagai, Yutaro; Kawai, Taro; Standley, Daron M.; Ishii, Ken J.; Kiyono, Hiroshi; Akira, Shizuo; Uematsu, Satoshi

    2014-01-01

    High-dose ionizing radiation induces severe DNA damage in the epithelial stem cells in small intestinal crypts and causes gastrointestinal syndrome (GIS). Although the tumour suppressor p53 is a primary factor inducing death of crypt cells with DNA damage, its essential role in maintaining genome stability means inhibiting p53 to prevent GIS is not a viable strategy. Here we show that the innate immune receptor Toll-like receptor 3 (TLR3) is critical for the pathogenesis of GIS. Tlr3−/− mice show substantial resistance to GIS owing to significantly reduced radiation-induced crypt cell death. Despite showing reduced crypt cell death, p53-dependent crypt cell death is not impaired in Tlr3−/− mice. p53-dependent crypt cell death causes leakage of cellular RNA, which induces extensive cell death via TLR3. An inhibitor of TLR3–RNA binding ameliorates GIS by reducing crypt cell death. Thus, we propose blocking TLR3 activation as a novel approach to treat GIS. PMID:24637670

  13. Survival efficacy of the PEGylated G-CSFs Maxy-G34 and neulasta in a mouse model of lethal H-ARS, and residual bone marrow damage in treated survivors.

    PubMed

    Chua, Hui Lin; Plett, P Artur; Sampson, Carol H; Katz, Barry P; Carnathan, Gilbert W; MacVittie, Thomas J; Lenden, Keith; Orschell, Christie M

    2014-01-01

    In an effort to expand the worldwide pool of available medical countermeasures (MCM) against radiation, the PEGylated G-CSF (PEG-G-CSF) molecules Neulasta and Maxy-G34, a novel PEG-G-CSF designed for increased half-life and enhanced activity compared to Neulasta, were examined in a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS), along with the lead MCM for licensure and stockpiling, G-CSF. Both PEG-G-CSFs were shown to retain significant survival efficacy when administered as a single dose 24 h post-exposure, compared to the 16 daily doses of G-CSF required for survival efficacy. Furthermore, 0.1 mg kg of either PEG-G-CSF affected survival of lethally-irradiated mice that was similar to a 10-fold higher dose. The one dose/low dose administration schedules are attractive attributes of radiation MCM given the logistical challenges of medical care in a mass casualty event. Maxy-G34-treated mice that survived H-ARS were examined for residual bone marrow damage (RBMD) up to 9 mo post-exposure. Despite differences in Sca-1 expression and cell cycle position in some hematopoietic progenitor phenotypes, Maxy-G34-treated mice exhibited the same degree of hematopoietic stem cell (HSC) insufficiency as vehicle-treated H-ARS survivors in competitive transplantation assays of 150 purified Sca-1+cKit+lin-CD150+cells. These data suggest that Maxy-G34, at the dose, schedule, and time frame examined, did not mitigate RBMD but significantly increased survival from H-ARS at one-tenth the dose previously tested, providing strong support for advanced development of Maxy-G34, as well as Neulasta, as MCM against radiation.

  14. Question of bone marrow stromal fibroblast traffic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloney, M.A.; Lamela, R.A.; Patt, H.M.

    Bone marrow stromal fibroblasts (CFU-F) normally do not exchange bone marrow sites in vivo. Restitution of the CFU-F after radiation damage is primarily recovery by the local fibroblasts from potentially lethal damage. Migration of stromal fibroblasts from shielded sites to an irradiated site makes a minimal contribution, if any, to CFU-F recovery. Determination of the relative contribution of donor stromal cells in bone marrow transplants by karyotyping the proliferating bone marrow stromal cells in vitro may not reflect the relative distribution of fibroblasts in the marrow. If there is residual damage to the host stromal fibroblasts from treatment before transplantation,more » these cells may not be able to proliferate in vitro. Therefore, an occasional transplanted fibroblast may contribute most of the metaphase figures scored for karyotype.« less

  15. Space radiation health research, 1991-1992

    NASA Technical Reports Server (NTRS)

    Jablin, M. H. (Compiler); Brooks, C. (Compiler); Ferraro, G. (Compiler); Dickson, K. J. (Compiler); Powers, J. V. (Compiler); Wallace-Robinson, J. (Compiler); Zafren, B. (Compiler)

    1993-01-01

    The present volume is a collection of 227 abstracts of radiation research sponsored by the NASA Space Radiation Health Program for the period 1991-1992. Each abstract has been categorized within one of three discipline areas: Physics, Biology and Risk Assessment. Topic areas within each discipline have been assigned as follows: Physics - Atomic Physics, Theory, Cosmic Ray and Astrophysics, Experimental, Environments and Environmental Models, Solar Activity and Prediction, Experiments, Radiation Transport and Shielding, Theory and Model Development, Experimental Studies, and Instrumentation. Biology - Biology, Molecular Biology, Cellular Radiation Biology, Transformation, Mutation, Lethality, Survival, DNA Damage and Repair, Tissue, Organs, and Organisms, In Vivo/In Vitro Systems, Carcinogenesis and Life Shortening, Cataractogenesis, Genetics/Developmental, Radioprotectants, Plants, and Other Effects. Risk Assessment - Risk Assessment, Radiation Health and Epidemiology, Space Flight Radiation Health Physics, Inter- and Intraspecies Extrapolation and Radiation Limits and Standards. Section I contains refereed journals; Section II contains reports/meetings. Keywords and author indices are provided. A collection of abstracts spanning the period 1986-1990 was previously issued as NASA Technical Memorandum 4270.

  16. RADIATION-INDUCED GENETIC DAMAGE IN THE MEXICAN TOAD (BUFO VALLICEPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, W.F.

    1960-10-01

    Lines of Mexican toads (Bufo valliceps) bearing x-ray induced genetic damage were established by mating normal females with males that had received gonadal x-ray doses ranging from 300 to 3000 r. Survival in the first generation was inversely proportional to dose,-as was expected. Toads of the 300-r and l000- r lines were inbred, and toads of these lines and of the 700-r line were outcrossed to normal ones. Two crosses were made between toads of the 500-r and 1000-r lines. Developmental abnormalities of various kinds appeared at life history stages rangthg from early embryonic development to post-metamorphic life in bothmore » inbred and outcross generations. These included abnormal gastrulation and neurulation, larval and post-metamorphic edema, abnormally positioned or missing limbs, optical deficiencies, prognathous jaw due to excessive elongation of the lower jaw, and melanin deficiency. The prognathous jaw, in its extreme expression, would probably be lethal in natural populations because of difficulty of feeding. The melanin deficiency, in its extreme expression, is lethal as metamorphosis fails to occur, and in lesser expression, it appears to be lethal or detrimental. The various abnormalities do not appear to be inherited in any simple way, but instead they vary in expression both within and between generations, possibly in relation to genotype and environment. (auth)« less

  17. Proceedings of the NATO Radiological Human Response Subject Matter Expert Review Meeting, 26 June 2008, Albuquerque, New Mexico, United States of America

    DTIC Science & Technology

    2009-08-01

    the proposed general casualty estimation process. The next two briefings described the technical details of the development and content of the...Forces Radiobiological Research Institute (AFRRI) Dr. Gene McClellan, Applied Research Associates (ARA) COL John Mercier, AFRRI Dr. Kyle Millage...marrow damage occurs; lethality ranges from LD50/60 to LD99/60; death occurs within 3.5 to 6 weeks with the radiation injury alone but is accelerated

  18. Fragmentation of DNA components by hyperthermal heavy ion (Ar+ and Xe+) impact in the condensed phase

    NASA Astrophysics Data System (ADS)

    Sarabipour, Sarvenaz; Sarvenaz Sarabipour, Ms; Michaud, Marc; Deng, Zongwu; Huels, Michael A.

    The overriding environmental factor that presently limits human endeavors in space is exposure to heavy ion radiation. While knowledge of its damage to living tissue is essential for radiation protection and risk estimates for astronauts, very little data exists at the molecular level regarding the nascent DNA damage by the primary particle track, or by secondary species during subsequent reaction cascades. This persistent lack of a basic understanding of nascent damage induced by such low dose, high LET radiation, introduces unacceptable errors in radiation risk estimates (based mainly on extrapolation from high dose, low LET radiation), particularly for long term exposure. Mutagenic effects induced by heavy ion radiation to cells are largely due to DNA damage by secondary transient species, i.e. secondary ballistic ions, electrons and radicals generated along the ion tracks; the secondary ions have hyperthermal energies up to several 100 eV, which they will deposit within a few nm in the surrounding medium; thus their LET is very high, and yields lethal clustered DNA lesions. We present measurements of molecular damage induced in films of DNA components by ions with precisely such low energies (1-100 eV) and compare results to conventional electron impact measurements. Experiments are conducted in UHV using a mass selected low energy ion source, and a high-resolution quadrupole MS to monitor ion yields desorbing from molecular films. Among the major fragments, NH4 + is identified in the desorption mass spectra of irradiated films of Adenine, Guanine, Cytosine, indicating efficient deamination; in cells this results in pre-mutagenic lesions. Experiments with 5-amino-Uracil, and comparison to previous results on uracil and thymine show that deamination is a key step in the NH4 + fragment formation. For Adenine, we also observe formation of amine aducts in the films, viz. amination of Adenine, and global fragmentation in all ion impact mass spectra, attributed mainly to kinetic & potential ion scattering.[Funded by NSERC and the Canadian Space Agency].

  19. Protective Effects of 2-Amino-5,6-dihydro-4H-1,3-thiazine and Its Derivative against Radiation-Induced Hematopoietic and Intestinal Injury in Mice.

    PubMed

    Li, Yuanyuan; Kong, Shaofan; Yang, Fujun; Xu, Wenqing

    2018-05-21

    Ionizing radiation (IR) acts as an external stimulating factor, when it acts on the body, it will activate NF- κ B and cause the up-regulation of inducible nitric oxide synthase (iNOS) and induce a large amount of nitric oxide (NO) production. NO and other reactive nitrogen and oxygen species (RNS and ROS) can cause damage to biological molecules and affect their physiological functions. Our study investigated the protective role of 2-amino-5,6-dihydro-4 H -1,3-thiazine hydrobromide (2-ADT) and 2-acetylamino-5,6-dihydro-4 H -1,3-thiazine hydrobromide (2-AADT), two nitric oxide synthase inhibitors, against radiation-induced hematopoietic and intestinal injury in mice. Pretreatment with 2-ADT and 2-AADT improved the survival of mice exposed to a lethal dose of radiation, especially, the survival rate of the 2-ADT 20 mg/kg group was significantly higher than that of the vehicle group ( p < 0.001). Our findings indicated that the radioprotective actions of 2-ADT and 2-AADT are achieved via accelerating hematopoietic system recovery, decreasing oxidative and nitrosative stress by enhancing the antioxidant defense system and reducing NO as well as peroxynitrite (ONOO − ) content, and mitigating the radiation-induced DNA damage evaluated by comet assay. These results suggest that 2-ADT and 2-AADT may have great application potential in ameliorating the damages of radiotherapy.

  20. Effect of electron beam and gamma radiation on drug-susceptible and drug-resitant listeria monocytogenes strains in salmon under different temperature.

    PubMed

    Skowron, Krzysztof; Grudlewska, Katarzyna; Gryń, Grzegorz; Skowron, Karolina Jadwiga; Świeca, Agnieszka; Paluszak, Zbigniew; Zimek, Zbigniew; Rafalski, Andrzej; Gospodarek-Komkowska, Eugenia

    2018-05-04

    To investigate the effect of gamma radiation and high energy electron beam doses on the inactivation of antibiotic-susceptible and antibiotic-resistant Listeria monocytogenes strains inoculated on the surface of raw salmon fillets stored at different temperature (-20°C, 4°C and 25°C). The population of bacteria strains resistance to penicillin, ampicillin, meropenem, erythromycin and trimethoprim-sulfamethoxazole was generated. When using gamma irradiation, the theoretical lethal dose ranged from 1.44 to 5.68 kGy and for electron beam the values ranged from 2.99 to 6.83 kGy. The theoretical lethal dose for both radiation methods was higher for antibiotic-resistant strains. Gamma radiation proved to be a more effective method for extending salmon fillet shelf-life. The evaluation of PFGE electrophoregram revealed that the repair of radiation-caused DNA damage occurred faster in antibiotic-resistant L. monocytogenes strains. The number of live L. monocytogenes cells, 40 hours after irradiation, also was higher in antibiotic-resistant strain suspension. The present study showed that gamma radiation was more effective in the elimination of the tested microorganisms and food preservation, than a high energy electron beam. The antibiotic-resistant L. monocytogenes strains were more resistant to both radiation methods. There are a lot of research on the effect of radiation on the number of bacteria in food products. However, there is almost no information about the effect of strain properties, such as drug susceptibility, virulence, etc., on their resistance to ionizing radiation. An increasing number of drug resistant bacterial strains isolated from food, encourages to take up this research subject. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Enhanced malignant transformation is accompanied by increased survival recovery after ionizing radiation in Chinese hamster embryo fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boothman, D.A.

    Transformed Chinese hamster embryo fibroblasts (CHEF), which gradually increase in tumor-forming ability in nude mice, were isolated from normal diploid CHEF/18 cells. Transformed CHEF cells (i.e., T30-4 > 21-2M3 > 21-2 > normal CHEF/18) showed gradual increases in potentially lethal damage (PLD) survival recovery. {beta}-Lapachone and camptothecin, modulators of topoisomerase I (Topo I) activity, not only prevented survival recovery in normal as well as in tumor cells, but enhanced unscheduled DNA synthesis. These seemingly conflicting results are due to the fact that Topo I activity can be modulated by inhibitors to convert single-stranded DNA lesions into double-stranded breaks. Increases inmore » unscheduled DNA synthesis may result from a continual supply of free ends, on which DNA repair processes may act. Altering Topo I activity with modulators appears to increase X-ray lethality via a DNA lesion modification suicide pathway. Cells down-regulate Topo I immediately after ionizing radiation to prevent Topo I-mediated lesion modification and to enhance survival recovery. 16 refs., 3 figs., 1 tab.« less

  2. Public acceptance of management methods under different human-wildlife conflict scenarios.

    PubMed

    Liordos, Vasilios; Kontsiotis, Vasileios J; Georgari, Marina; Baltzi, Kerasia; Baltzi, Ioanna

    2017-02-01

    Wildlife management seeks to minimise public controversy for successful application of wildlife control methods. Human dimensions research in wildlife seeks a better understanding of public preferences for effective human-wildlife conflict resolution. In face to face interviews, 630 adults in Greece were asked to rate on a 5-point Likert-like scale their acceptance of 3 management methods, i.e., do nothing, non-lethal control, and lethal control, in the context of 5 human-wildlife conflict scenarios: 1) corvids damage crops; 2) starlings damage crops; 3) starlings foul urban structures; 4) coypus damage crops; and 5) coypus transfer disease. Univariate GLMs determined occupation, hunting membership and their interaction as the stronger predictors of public acceptance, generating 4 stakeholder groups: the general public, farmers, hunters, and farmers-hunters. Differences in acceptance and consensus among stakeholder groups were assessed using the Potential for Conflict Index 2 (PCI 2 ). All 4 stakeholder groups agreed that doing nothing was unacceptable and non-lethal control acceptable in all 5 scenarios, with generally high consensus within and between groups. The lethal control method was more controversial and became increasingly more acceptable as the severity of scenarios was increased and between non-native and native species. Lethal control was unacceptable for the general public in all scenarios. Farmers accepted lethal methods in the corvids and starlings scenarios, were neutral in the coypus damage crops scenario, whereas they accepted lethal control when coypus transfer disease. Hunters' opinion was neutral in the corvids, starlings and coypus damage crops and starlings foul urban structures scenarios, but they accepted lethal methods in the coypus transfer disease scenario. Farmers-hunters considered lethal control acceptable in all 5 scenarios. Implications from this study could be used for designing a socio-ecological approach which incorporates wildlife management with public interests. The studied species have a wide distribution, therefore present findings might also prove useful elsewhere. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Anti-radiation vaccine: Immunologically-based Prophylaxis of Acute Toxic Radiation Syndromes Associated with Long-term Space Flight

    NASA Technical Reports Server (NTRS)

    Popov, Dmitri; Maliev, Vecheslav; Jones, Jeffrey; Casey, Rachael C.

    2007-01-01

    Protecting crew from ionizing radiation is a key life sciences problem for long-duration space missions. The three major sources/types of radiation are found in space: galactic cosmic rays, trapped Van Allen belt radiation, and solar particle events. All present varying degrees of hazard to crews; however, exposure to high doses of any of these types of radiation ultimately induce both acute and long-term biological effects. High doses of space radiation can lead to the development of toxicity associated with the acute radiation syndrome (ARS) which could have significant mission impact, and even render the crew incapable of performing flight duties. The creation of efficient radiation protection technologies is considered an important target in space radiobiology, immunology, biochemistry and pharmacology. Two major mechanisms of cellular, organelle, and molecular destruction as a result of radiation exposure have been identified: 1) damage induced directly by incident radiation on the macromolecules they encounter and 2) radiolysis of water and generation of secondary free radicals and reactive oxygen species (ROS), which induce chemical bond breakage, molecular substitutions, and damage to biological molecules and membranes. Free-radical scavengers and antioxidants, which neutralize the damaging activities of ROS, are effective in reducing the impact of small to moderate doses of radiation. In the case of high doses of radiation, antioxidants alone may be inadequate as a radioprotective therapy. However, it remains a valuable component of a more holistic strategy of prophylaxis and therapy. High doses of radiation directly damage biological molecules and modify chemical bond, resulting in the main pathological processes that drive the development of acute radiation syndromes (ARS). Which of two types of radiation-induced cellular lethality that ultimately develops, apoptosis or necrosis, depends on the spectrum of incident radiation, dose, dose rate, and functional conditions of impacted cells/organisms. The administration of an experimental anti-radiation vaccine may provide an immunologically based, adjunct method of prevention or prophylaxis against clinical ARS. The administration of experimental anti-radiation serum (ARS) and the use of the blood dialysis methods, such as immune plasma-sorption, may assist in the clearance of radiation-specific toxins and may enhance established strategies for the mitigation of the biological effects leading to ARS, and should be evaluated for use on exploration-class space missions.

  4. Resistance of Bacillus subtilis Spore DNA to Lethal Ionizing Radiation Damage Relies Primarily on Spore Core Components and DNA Repair, with Minor Effects of Oxygen Radical Detoxification

    PubMed Central

    Raguse, Marina; Reitz, Günther; Okayasu, Ryuichi; Li, Zuofeng; Klein, Stuart; Setlow, Peter; Nicholson, Wayne L.

    2014-01-01

    The roles of various core components, including α/β/γ-type small acid-soluble spore proteins (SASP), dipicolinic acid (DPA), core water content, and DNA repair by apurinic/apyrimidinic (AP) endonucleases or nonhomologous end joining (NHEJ), in Bacillus subtilis spore resistance to different types of ionizing radiation including X rays, protons, and high-energy charged iron ions have been studied. Spores deficient in DNA repair by NHEJ or AP endonucleases, the oxidative stress response, or protection by major α/β-type SASP, DPA, and decreased core water content were significantly more sensitive to ionizing radiation than wild-type spores, with highest sensitivity to high-energy-charged iron ions. DNA repair via NHEJ and AP endonucleases appears to be the most important mechanism for spore resistance to ionizing radiation, whereas oxygen radical detoxification via the MrgA-mediated oxidative stress response or KatX catalase activity plays only a very minor role. Synergistic radioprotective effects of α/β-type but not γ-type SASP were also identified, indicating that α/β-type SASP's binding to spore DNA is important in preventing DNA damage due to reactive oxygen species generated by ionizing radiation. PMID:24123749

  5. Recovery from a near-lethal exposure to ultraviolet-C radiation in a scleractinian coral.

    PubMed

    Basti, David; Bricknell, Ian; Beane, Dawna; Bouchard, Deborah

    2009-04-01

    Hermatypic (reef building) corals live in an environment characterized by high ambient levels of photosynthetically active radiation (PAR) and ultraviolet radiation (UVR). Photoadaptive mechanisms have evolved to protect the sensitive cell structures of the host coral and their photosynthetic, endosymbiotic zooxanthellae. Environmental stressors may destabilize the coral-zooxanthellae system resulting in the expulsion of zooxanthellae and/or loss of photosynthetic pigment within zooxanthellae, causing a condition known as bleaching. It is estimated that 1% of the world's coral population is lost yearly, partly due to bleaching. Despite intensive research efforts, a single unified mechanism cannot explain this phenomenon. Although UVA and UVB cellular damage is well documented, UVC damage is rarely reported due to its almost complete absorption in the stratosphere. A small scale coral propagation system at the University of Maine was accidentally exposed to 15.5h of UVC radiation (253.7 nm) from a G15T8 germicidal lamp, resulting in a cumulative surface irradiance of 8.39 x 10(4) J m(-2). An experiment was designed to monitor the progression of UVC induced damage. Branch sections from affected scleractinian corals, Acropora yongei and Acropora formosa were submitted to histopathology to provide an historical record of tissue response. The death of gastrodermal cells and necrosis resulted in the release of intracellular zooxanthellae into the gastrovascular canals. Zooxanthellae were also injured as evidenced by pale coloration, increased vacuolization and loss of membrane integrity. The recovery of damaged coral tissue likely proceeds by re-epithelialization and zooxanthellae repopulation of gastrodermal cells by adjacent healthy tissue.

  6. Influence UHF radiation on the process of self-assembly and lethal effect of bacterial lipopolysaccharide

    NASA Astrophysics Data System (ADS)

    Brill, G. E.; Egorova, A. V.; Bugaeva, I. O.; Postnov, D. E.; Melnikov, A. G.; Ushakova, O. V.

    2018-04-01

    The influence of low-intensity electromagnetic radiation on the process of self-assembly, spectral-fluorescent characteristics and lethal effect of bacterial lipopolysaccharide (endotoxin) was performed. A solution of bacterial lipopolysaccharide exposed to electromagnetic waves with a frequency of 1 GHz, the power density of 0.1 μW/cm2 for 10 min. In experiments on a large group of control and irradiated mice, a comparative analysis of the estimated lethal dose of endotoxin was performed. It was proved that UHF radiation of certain parameters reduces the lethal effects of bacterial lipopolysaccharide on 26%.

  7. Long-term bioavailability of redox nanoparticles effectively reduces organ dysfunctions and death in whole-body irradiated mice.

    PubMed

    Feliciano, Chitho P; Tsuboi, Koji; Suzuki, Kenshi; Kimura, Hiroyuki; Nagasaki, Yukio

    2017-06-01

    Radioprotective agents have been developed to protect patients against the damaging and lethal effects of ionizing radiation. However, in addition to the intrinsic ability to target reactive oxygen species (ROS), the ability to retain a significant level of bioavailability is desirable in radioprotective agents because that would increase and prolong their radioprotective efficacy and improve its safety. Here, we report the development of a novel nanoparticle-based radioprotective agent with improved bioavailability, which suppressed the adverse effects typically associated with low-molecular-weight (LMW) antioxidants. We developed biocompatible and colloidally stable nanoparticles in which nitroxide radicals that were covalently conjugated (redox nanoparticles, RNP N ) effectively scavenged radiation-induced ROS with a characteristically prolonged bioavailability and tissue-residence time compared with that of conventional LMW antioxidants. The confinement of the nitroxide radicals in the RNP N core prevented its rapid metabolism and excretion out of the body. The nano-sized formulation prevented internalization of RNP N in healthy cells, thereby preserving the normal function of the redox reactions in the cell. This improved pharmacological performance dramatically reduced the radiation-induced organ dysfunctions and increased the survival time of the lethally irradiated mice when the nanoparticles were administered 3-24 h before whole-body irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Discrepancies between patterns of potentially lethal damage repair in the RIF-1 tumor system in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasey, J.S.; Nelson, N.J.

    1983-01-01

    Repair of potentially lethal damage (PLD) was studied in the RIF-1 tumor system in several different growth states in vivo. Exponentially growing, fed plateau, and unfed plateau cells in cell culture as well as small and large subcutaneous or intramuscular tumors were investigated. Large single doses of radiation followed by variable repair times as well as graded doses of radiation to generate survival curves immediately after irradiation or after full repair were investigated. All repair-promoting conditions studied in vitro (delayed subculture, exposure of cells to depleted growth medium after irradiation) increased surviving fraction after a single dose. The D/sub 0/more » of the cell survival curve was also increased by these procedures. No PLD repair was observed for any tumors irradiated in vivo and maintained in the animal for varying times prior to assay in vitro. The nearly 100% cell yield obtained when this tumor is prepared as a single-cell suspension for colony formation, the representative cell sample obtained, and the constant cell yield per gram as a function of time postirradiation suggest that this discrepancy is not an artifact of the assay system. The most logical explanation of these data and information on radiocurability of this neoplasm is that PLD repair, which is so frequently demonstrated in vitro, may not be a major factor in the radioresponse of this tumor when left in situ.« less

  9. Discrepancies between patterns of potentially lethal damage repair in the RIF-1 tumor system in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasey, J.S.; Nelson, N.J.

    1983-01-01

    Repair of potentially lethal damage (PLD) was studied in the RIF-1 tumor system in several different growth states in vivo and in vitro. Exponentially growing, fed plateau, and unfed plateau cells in cell culture as well as small and large subcutaneous or intramuscular tumors were investigated. Large single doses of radiation followed by variable repair times as well as graded doses of radiation to generate survival curves immediately after irradiation or after full repair were investigated. All repair-promoting conditions studied in vitro (delayed subculture, exposure of cells to depleted growth medium after irradiation) increased surviving fraction after a single dose.more » The D0 of the cell survival curve was also increased by these procedures. No PLD repair was observed for any tumors irradiated in vivo and maintained in the animal for varying times prior to assay in vitro. The nearly 100% cell yield obtained when this tumor is prepared as a single-cell suspension for colony formation, the representative cell sample obtained, and the constant cell yield per gram as a function of time postirradiation suggest that this discrepancy is not an artifact of the assay system. The most logical explanation of these data and information on radiocurability of this neoplasm is that PLD repair, which is so frequently demonstrated in vitro, may not be a major factor in the radioresponse of this tumor when left in situ.« less

  10. Soluble factor(s) from bone marrow cells can rescue lethally irradiated mice by protecting endogenous hematopoietic stem cells.

    PubMed

    Zhao, Yi; Zhan, Yuxia; Burke, Kathleen A; Anderson, W French

    2005-04-01

    Ionizing radiation-induced myeloablation can be rescued via bone marrow transplantation (BMT) or administration of cytokines if given within 2 hours after radiation exposure. There is no evidence for the existence of soluble factors that can rescue an animal after a lethal dose of radiation when administered several hours postradiation. We established a system that could test the possibility for the existence of soluble factors that could be used more than 2 hours postirradiation to rescue animals. Animals with an implanted TheraCyte immunoisolation device (TID) received lethal-dose radiation and then normal bone marrow Lin- cells were loaded into the device (thereby preventing direct interaction between donor and recipient cells). Animal survival was evaluated and stem cell activity was tested with secondary bone marrow transplantation and flow cytometry analysis. Donor cell gene expression of five antiapoptotic cytokines was examined. Bone marrow Lin- cells rescued lethally irradiated animals via soluble factor(s). Bone marrow cells from the rescued animals can rescue and repopulate secondary lethally irradiated animals. Within the first 6 hours post-lethal-dose radiation, there is no significant change of gene expression of the known radioprotective factors TPO, SCF, IL-3, Flt-3 ligand, and SDF-1. Hematopoietic stem cells can be protected in lethally irradiated animals by soluble factors produced by bone marrow Lin- cells.

  11. Deinococcus Mn2+-peptide complex: A novel approach to alphavirus vaccine development.

    PubMed

    Gayen, Manoshi; Gupta, Paridhi; Morazzani, Elaine M; Gaidamakova, Elena K; Knollmann-Ritschel, Barbara; Daly, Michael J; Glass, Pamela J; Maheshwari, Radha K

    2017-06-22

    Over the last ten years, Chikungunya virus (CHIKV), an Old World alphavirus has caused numerous outbreaks in Asian and European countries and the Americas, making it an emerging pathogen of great global health importance. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, on the other hand, has been developed as a bioweapon in the past due to its ease of preparation, aerosol dispersion and high lethality in aerosolized form. Currently, there are no FDA approved vaccines against these viruses. In this study, we used a novel approach to develop inactivated vaccines for VEEV and CHIKV by applying gamma-radiation together with a synthetic Mn-decapeptide-phosphate complex (MnDpPi), based on manganous-peptide-orthophosphate antioxidants accumulated in the extremely radiation-resistant bacterium Deinococcus radiodurans. Classical gamma-irradiated vaccine development approaches are limited by immunogenicity-loss due to oxidative damage to the surface proteins at the high doses of radiation required for complete virus-inactivation. However, addition of MnDpPi during irradiation process selectively protects proteins, but not the nucleic acids, from the radiation-induced oxidative damage, as required for safe and efficacious vaccine development. Previously, this approach was used to develop a bacterial vaccine. In the present study, we show that this approach can successfully be applied to protecting mice against viral infections. Irradiation of VEEV and CHIKV in the presence of MnDpPi resulted in substantial epitope preservation even at supra-lethal doses of gamma-rays (50,000Gy). Irradiated viruses were found to be completely inactivated and safe in vivo (neonatal mice). Upon immunization, VEEV inactivated in the presence of MnDpPi resulted in drastically improved protective efficacy. Thus, the MnDpPi-based gamma-inactivation approach described here can readily be applied to developing vaccines against any pathogen of interest in a fast and cost-effective manner. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. SURVIVAL EFFICACY OF THE PEGYLATED G-CSFS MAXY-G34 AND NEULASTA IN A MOUSE MODEL OF LETHAL H-ARS, AND RESIDUAL BONE MARROW DAMAGE IN TREATED SURVIVORS

    PubMed Central

    Chua, Hui Lin; Plett, P. Artur; Sampson, Carol H.; Katz, Barry P.; Carnathan, Gilbert W.; MacVittie, Thomas J.; Lenden, Keith; Orschell, Christie M.

    2013-01-01

    In an effort to expand the worldwide pool of available medical countermeasures (MCM) against radiation, the PEGylated G-CSF (PEG-G-CSF) molecules Neulasta and Maxy-G34, a novel PEG-G-CSF designed for increased half-life and enhanced activity compared to Neulasta, were examined in a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS), along with the lead MCM for licensure and stockpiling, G-CSF. Both PEG-G-CSFs were shown to retain significant survival efficacy when administered as a single dose 24hr post-exposure, compared to the 16 daily doses of G-CSF required for survival efficacy. Furthermore, 0.1 mg kg−1 of either PEG-G-CSF effected survival of lethally-irradiated mice that was similar to a 10-fold higher dose. The one dose/low dose administration schedules are attractive attributes of radiation MCM given the logistical challenges of medical care in a mass casualty event. Maxy-G34-treated mice that survived H-ARS were examined for residual bone marrow damage (RBMD) up to 9mo post-exposure. Despite differences in Sca-1 expression and cell cycle position in some hematopoietic progenitor phenotypes, Maxy-G34-treated mice exhibited the same degree of hematopoietic stem cell (HSC) insufficiency as vehicle treated H-ARS survivors in competitive transplantation assays of 150 purified Sca-1+cKit+lin-CD150+ cells. These data suggest that Maxy-G34, at the dose, schedule, and time frame examined, did not mitigate RBMD, but significantly increased survival from H-ARS at one-tenth the dose previously tested, providing strong support for advanced development of Maxy-G34, as well as Neulasta, as MCM against radiation. PMID:24276547

  13. NASA Models of Space Radiation Induced Cancer, Circulatory Disease, and Central Nervous System Effects

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Chappell, Lori J.; Kim, Myung-Hee Y.

    2013-01-01

    The risks of late effects from galactic cosmic rays (GCR) and solar particle events (SPE) are potentially a limitation to long-term space travel. The late effects of highest concern have significant lethality including cancer, effects to the central nervous system (CNS), and circulatory diseases (CD). For cancer and CD the use of age and gender specific models with uncertainty assessments based on human epidemiology data for low LET radiation combined with relative biological effectiveness factors (RBEs) and dose- and dose-rate reduction effectiveness factors (DDREF) to extrapolate these results to space radiation exposures is considered the current "state-of-the-art". The revised NASA Space Risk Model (NSRM-2014) is based on recent radio-epidemiology data for cancer and CD, however a key feature of the NSRM-2014 is the formulation of particle fluence and track structure based radiation quality factors for solid cancer and leukemia risk estimates, which are distinct from the ICRP quality factors, and shown to lead to smaller uncertainties in risk estimates. Many persons exposed to radiation on earth as well as astronauts are life-time never-smokers, which is estimated to significantly modify radiation cancer and CD risk estimates. A key feature of the NASA radiation protection model is the classification of radiation workers by smoking history in setting dose limits. Possible qualitative differences between GCR and low LET radiation increase uncertainties and are not included in previous risk estimates. Two important qualitative differences are emerging from research studies. The first is the increased lethality of tumors observed in animal models compared to low LET radiation or background tumors. The second are Non- Targeted Effects (NTE), which include bystander effects and genomic instability, which has been observed in cell and animal models of cancer risks. NTE's could lead to significant changes in RBE and DDREF estimates for GCR particles, and the potential effectiveness of radiation mitigator's. The NSRM- 2014 approaches to model radiation quality dependent lethality and NTE's will be described. CNS effects include both early changes that may occur during long space missions and late effects such as Alzheimer's disease (AD). AD effects 50% of the population above age 80-yr, is a degenerative disease that worsens with time after initial onset leading to death, and has no known cure. AD is difficult to detect at early stages and the small number of low LET epidemiology studies undertaken have not identified an association with low dose radiation. However experimental studies in mice suggest GCR may lead to early onset AD. We discuss modeling approaches to consider mechanisms whereby radiation would lead to earlier onset of occurrence of AD. Biomarkers of AD include amyloid beta (A(Beta)) plaques, and neurofibrillary tangles (NFT) made up of aggregates of the hyperphosphorylated form of the micro-tubule associated, tau protein. Related markers include synaptic degeneration, dentritic spine loss, and neuronal cell loss through apoptosis. Radiation may affect these processes by causing oxidative stress, aberrant signaling following DNA damage, and chronic neuroinflammation. Cell types to be considered in multi-scale models are neurons, astrocytes, and microglia. We developed biochemical and cell kinetics models of DNA damage signaling related to glycogen synthase kinase-3(Beta) (GSK3(Beta)) and neuroinflammation, and considered multi-scale modeling approaches to develop computer simulations of cell interactions and their relationships to A(Beta) plaques and NFTs. Comparison of model results to experimental data for the age specific development of A(Beta) plaques in transgenic mice will be discussed.

  14. Estimation of median human lethal radiation dose computed from data on occupants of reinforced concrete structures in Nagasaki, Japan.

    PubMed

    Levin, S G; Young, R W; Stohler, R L

    1992-11-01

    This paper presents an estimate of the median lethal dose for humans exposed to total-body irradiation and not subsequently treated for radiation sickness. The median lethal dose was estimated from calculated doses to young adults who were inside two reinforced concrete buildings that remained standing in Nagasaki after the atomic detonation. The individuals in this study, none of whom have previously had calculated doses, were identified from a detailed survey done previously. Radiation dose to the bone marrow, which was taken as the critical radiation site, was calculated for each individual by the Engineering Physics and Mathematics Division of the Oak Ridge National Laboratory using a new three-dimensional discrete-ordinates radiation transport code that was developed and validated for this study using the latest site geometry, radiation yield, and spectra data. The study cohort consisted of 75 individuals who either survived > 60 d or died between the second and 60th d postirradiation due to radiation injury, without burns or other serious injury. Median lethal dose estimates were calculated using both logarithmic (2.9 Gy) and linear (3.4 Gy) dose scales. Both calculations, which met statistical validity tests, support previous estimates of the median lethal dose based solely on human data, which cluster around 3 Gy.

  15. Possible role of gamma ray bursts on life extinction in the universe.

    PubMed

    Piran, Tsvi; Jimenez, Raul

    2014-12-05

    As a copious source of gamma rays, a nearby galactic gamma ray burst (GRB) can be a threat to life. Using recent determinations of the rate of GRBs, their luminosity function, and properties of their host galaxies, we estimate the probability that a life-threatening (lethal) GRB would take place. Amongst the different kinds of GRBs, long ones are most dangerous. There is a very good chance (but no certainty) that at least one lethal GRB took place during the past 5 gigayears close enough to Earth as to significantly damage life. There is a 50% chance that such a lethal GRB took place during the last 500×10^{6}  years, causing one of the major mass extinction events. Assuming that a similar level of radiation would be lethal to life on other exoplanets hosting life, we explore the potential effects of GRBs to life elsewhere in the Galaxy and the Universe. We find that the probability of a lethal GRB is much larger in the inner Milky Way (95% within a radius of 4 kpc from the galactic center), making it inhospitable to life. Only at the outskirts of the Milky Way, at more than 10 kpc from the galactic center, does this probability drop below 50%. When considering the Universe as a whole, the safest environments for life (similar to the one on Earth) are the lowest density regions in the outskirts of large galaxies, and life can exist in only ≈10% of galaxies. Remarkably, a cosmological constant is essential for such systems to exist. Furthermore, because of both the higher GRB rate and galaxies being smaller, life as it exists on Earth could not take place at z>0.5. Early life forms must have been much more resilient to radiation.

  16. Combining poly(ADP-ribose) polymerase 1 (PARP-1) inhibition and radiation in Ewing sarcoma results in lethal DNA damage

    PubMed Central

    Lee, Hae-June; Yoon, Changhwan; Schmidt, Benjamin; Park, Do Joong; Zhang, Alexia Y.; Erkizan, Hayriye V.; Toretsky, Jeffrey A.; Kirsch, David G.; Yoon, Sam S.

    2013-01-01

    Ewing sarcomas (ES) harbor a chromosomal translocation that fuses the EWS gene to an ETS transcription factor, most commonly FLI1. The EWS-FLI1 fusion acts in a positive feedback loop to maintain expression of poly(ADP-ribose) polymerase 1 (PARP-1), which is involved in repair of DNA damage. Here, we examine the effects of PARP-1 inhibition and radiation therapy (RT) on ES. In proliferation assays, the ES cell lines RD-ES and SK-N-MC were much more sensitive than non-ES cell lines to the PARP-1 inhibitor olaparib (Ola) (IC50 0.5–1 uM vs >5 uM) and to radiation (IC50 2–4 Gy vs >6 Gy). PARP-1 inhibition with shRNA or Ola sensitized ES cells but not non-ES cells to RT in both proliferation and colony formation assays. Using the Comet assay, radiation of ES cells with Ola, compared to without Ola, resulted in more DNA damage at 1 hr (mean tail moment 36–54 vs. 26–28) and sustained DNA damage at 24 hr (24–29 vs. 6–8). This DNA damage led to a 2.9–4.0 fold increase in apoptosis and a 1.6–2.4 fold increase in cell death. The effect of PARP-1 inhibition and RT on ES cells was lost when EWS-FLI1 was silenced by shRNA. A small dose of RT (4 Gy), when combined with PARP-1 inhibition, stopped growth of SK-N-MC flank tumors xenografts. In conclusion, PARP-1 inhibition in ES amplifies the level and duration of DNA damage caused by RT leading to synergistic increases in apoptosis and cell death in a EWS-FLI1 dependent manner. PMID:23966622

  17. Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors

    PubMed Central

    Green, Danielle E.; Rubin, Clinton T.

    2014-01-01

    The rising levels of radiation exposure, specifically for medical treatments and accidental exposures, have added great concern for the long term risks of bone fractures. Both the bone marrow and bone architecture are devastated following radiation exposure. Even sub-lethal doses cause a deficit to the bone marrow microenvironment, including a decline in hematopoietic cells, and this deficit occurs in a dose dependent fashion. Certain cell phenotypes though are more susceptible to radiation damage, with mesenchymal stem cells being more resilient than the hematopoietic stem cells. The decline in total bone marrow hematopoietic cells is accompanied with elevated adipocytes into the marrow cavity, thereby inhibiting hematopoiesis and recovery of the bone marrow microenvironment. Poor bone marrow is also associated with a decline in bone architectural quality. Therefore, the ability to maintain the bone marrow microenvironment would hinder much of the trabecular bone loss caused by radiation exposure, ultimately decreasing some comorbidities in patients exposed to radiation. PMID:24607941

  18. Loss of cellular transformation efficiency induced by DNA irradiation with low-energy (10 eV) electrons.

    PubMed

    Kouass Sahbani, Saloua; Sanche, Leon; Cloutier, Pierre; Bass, Andrew D; Hunting, Darel J

    2014-11-20

    Low energy electrons (LEEs) of energies less than 20 eV are generated in large quantities by ionizing radiation in biological matter. While LEEs are known to induce single (SSBs) and double strand breaks (DSBs) in DNA, their ability to inactivate cells by inducing nonreparable lethal damage has not yet been demonstrated. Here we observe the effect of LEEs on the functionality of DNA, by measuring the efficiency of transforming Escherichia coli with a [pGEM-3Zf (-)] plasmid irradiated with 10 eV electrons. Highly ordered DNA films were prepared on pyrolitic graphite by molecular self-assembly using 1,3-diaminopropane ions (Dap(2+)). The uniformity of these films permits the inactivation of approximately 50% of the plasmids compared to <10% using previous methods, which is sufficient for the subsequent determination of their functionality. Upon LEE irradiation, the fraction of functional plasmids decreased exponentially with increasing electron fluence, while LEE-induced isolated base damage, frank DSB, and non DSB-cluster damage increased linearly with fluence. While DSBs can be toxic, their levels were too low to explain the loss of plasmid functionality observed upon LEE irradiation. Similarly, non-DSB cluster damage, revealed by transforming cluster damage into DSBs by digestion with repair enzymes, also occurred relatively infrequently. The exact nature of the lethal damage remains unknown, but it is probably a form of compact cluster damage in which the lesions are too close to be revealed by purified repair enzymes. In addition, this damage is either not repaired or is misrepaired by E. coli, since it results in plasmid inactivation, when they contain an average of three lesions. Comparison with previous results from a similar experiment performed with γ-irradiated plasmids indicates that the type of clustered DNA lesions, created directly on cellular DNA by LEEs, may be more difficult to repair than those produced by other species from radiolysis.

  19. Stage-dependent teratogenic and lethal effects exerted by ultraviolet B radiation on Rhinella (Bufo) arenarum embryos.

    PubMed

    Castañaga, Luis A; Asorey, Cynthia M; Sandoval, María T; Pérez-Coll, Cristina S; Argibay, Teresa I; Herkovits, Jorge

    2009-02-01

    The adverse effects of ultraviolet B radiation from 547.2 to 30,096 J/m2 on morphogenesis, cell differentiation, and lethality of amphibian embryos at six developmental stages were evaluated from 24 up to 168 h postexposure. The ultraviolet B radiation lethal dose 10, 50, and 90 values were obtained for all developmental stages evaluated. The lethal dose 50 values, considered as the dose causing lethality in the 50% of the organisms exposed, in J/m2 at 168 h postexposure, ranged from 2,307 to 18,930; gill circulation and blastula were the most susceptible and resistant stages, respectively. Ultraviolet B radiation caused malformations in all developmental stages but was significantly more teratogenic at the gill circulation and complete operculum stages. Moreover, at the gill circulation stage, even the lowest dose (547.2 J/m2) resulted in malformations to 100% of embryos. The most common malformations were persistent yolk plug, bifid spine, reduced body size, delayed development, asymmetry, microcephaly and anencephaly, tail and body flexures toward the irradiated side, agenesia or partial gill development, abnormal pigment distribution, and hypermotility. The stage-dependent susceptibility to ultraviolet B radiation during amphibian embryogenesis could be explained in the framework of evoecotoxicology, considering ontogenic features as biomarkers of environmental signatures of living forms ancestors during the evolutionary process. The stage-dependent susceptibility to ultraviolet B radiation on Rhinella (Bufo) arenarum embryos for both lethal and teratogenic effects could contribute to a better understanding of the role of the increased ultraviolet B radiation on worldwide amphibian populations decline.

  20. C/EBPδ deficiency sensitizes mice to ionizing radiation-induced hematopoietic and intestinal injury.

    PubMed

    Pawar, Snehalata A; Shao, Lijian; Chang, Jianhui; Wang, Wenze; Pathak, Rupak; Zhu, Xiaoyan; Wang, Junru; Hendrickson, Howard; Boerma, Marjan; Sterneck, Esta; Zhou, Daohong; Hauer-Jensen, Martin

    2014-01-01

    Knowledge of the mechanisms involved in the radiation response is critical for developing interventions to mitigate radiation-induced injury to normal tissues. Exposure to radiation leads to increased oxidative stress, DNA-damage, genomic instability and inflammation. The transcription factor CCAAT/enhancer binding protein delta (Cebpd; C/EBPδ is implicated in regulation of these same processes, but its role in radiation response is not known. We investigated the role of C/EBPδ in radiation-induced hematopoietic and intestinal injury using a Cebpd knockout mouse model. Cebpd-/- mice showed increased lethality at 7.4 and 8.5 Gy total-body irradiation (TBI), compared to Cebpd+/+ mice. Two weeks after a 6 Gy dose of TBI, Cebpd-/- mice showed decreased recovery of white blood cells, neutrophils, platelets, myeloid cells and bone marrow mononuclear cells, decreased colony-forming ability of bone marrow progenitor cells, and increased apoptosis of hematopoietic progenitor and stem cells compared to Cebpd+/+ controls. Cebpd-/- mice exhibited a significant dose-dependent decrease in intestinal crypt survival and in plasma citrulline levels compared to Cebpd+/+ mice after exposure to radiation. This was accompanied by significantly decreased expression of γ-H2AX in Cebpd-/- intestinal crypts and villi at 1 h post-TBI, increased mitotic index at 24 h post-TBI, and increase in apoptosis in intestinal crypts and stromal cells of Cebpd-/- compared to Cebpd+/+ mice at 4 h post-irradiation. This study uncovers a novel biological function for C/EBPδ in promoting the response to radiation-induced DNA-damage and in protecting hematopoietic and intestinal tissues from radiation-induced injury.

  1. Radiation-Induced Immunogenic Modulation Enhances T-Cell Killing | Center for Cancer Research

    Cancer.gov

    For many types of cancer, including breast, lung, and prostate carcinomas, radiation therapy is the standard of care. However, limits placed on the tolerable levels of radiation exposure coupled with heterogeneity of biological tissue result in cases where not all tumor cells receive a lethal dose of radiation. Preclinical studies have shown that exposing tumor cells to lethal

  2. Prospects in the development of natural radioprotective therapeutics with anti-cancer properties from the plants of Uttarakhand region of India.

    PubMed

    Painuli, Sakshi; Kumar, Navin

    2016-03-01

    Radioprotective agents are substances those reduce the effects of radiation in healthy tissues while maintaining the sensitivity to radiation damage in tumor cells. Due to increased awareness about radioactive substances and their fatal effects on human health, radioprotective agents are now the topic of vivid research. Scavenging of free radicals is the most common mechanism in oncogenesis that plays an important role in protecting tissues from lethal effect of radiation exposure therefore radioprotectors are also good anti-cancer agents. There are numerous studies indicating plant-based therapeutics against cancer and radioprotection. Such plants could be further explored for developing them as promising natural radioprotectors with anti-cancer properties. This review systematically presents information on plants having radioprotective and anti-cancer properties. Copyright © 2016 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  3. Astrophysical and biological constraints on radiopanspermia.

    PubMed

    Secker, J; Wesson, P S; Lepock, J R

    1996-08-01

    We have carried out a series of calculations involving bacteria and viruses embedded in dust grains, which are ejected from our solar system by radiation pressure and travel through space to other star systems. Under many conditions this type of panspermia is impractical, primarily because the ultraviolet (UV) radiation of the present Sun inactivates the micro-organisms. However, if the organisms are shielded by an absorbing material like carbon and if ejection takes place in the red-giant phase of a one solar mass star like our Sun, there is a significant probability that the micro-organisms can reach another star system alive (i.e. with only sub-lethal damage from UV and ionizing radiation). In addition to panspermia with viable micro-organisms, it is possible to seed the Galaxy with inactivated ones whose DNA and RNA fragments may provide the initial information necessary to start biological evolution in favourable environments.

  4. Effect of caffeine on the expression of a major X-ray induced protein in human tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, E.N.; Boothman, D.A.

    1991-03-01

    We have examined the effect of caffeine on the concomitant processes of the repair of potentially lethal damage (PLD) and the synthesis of X-ray-induced proteins in the human malignant melanoma cell line, Ul-Mel. Caffeine administered at a dose of 5mM after X radiation not only inhibited PLD repair but also markedly reduced the level of XIP269, a major X-ray-induced protein whose expression has been shown to correlate with the capacity to repair PLD. The expression of the vast majority of other cellular proteins, including seven other X-ray-induced proteins, remained unchanged following caffeine treatment. A possible role for XIP269 in cellmore » cycle delay following DNA damage by X irradiation is discussed.« less

  5. Mutagenic effect of accelerated heavy ions on bacterial cells

    NASA Astrophysics Data System (ADS)

    Boreyko, A. V.; Krasavin, E. A.

    2011-11-01

    The heavy ion accelerators of the Joint Institute for Nuclear Research were used to study the regularities and mechanisms of formation of different types of mutations in prokaryote cells. The induction of direct (lac-, ton B-, col B) mutations for Esherichia coli cells and reverse his- → His+ mutations of Salmonella typhimurium, Bacillus subtilis cells under the action of radiation in a wide range of linear energy transfer (LET) was studied. The regularities of formation of gene and structural (tonB trp-) mutations for Esherichia coli bacteria under the action of accelerated heavy ions were studied. It was demonstrated that the rate of gene mutations as a function of the dose under the action of Γ rays and accelerated heavy ions is described by linear-quadratic functions. For structural mutations, linear "dose-effect" dependences are typical. The quadratic character of mutagenesis dose curves is determined by the "interaction" of two independent "hitting" events in the course of SOS repair of genetic structures. The conclusion made was that gene mutations under the action of accelerated heavy ions are induced by δ electron regions of charged particle tracks. The methods of SOS chromotest, SOS lux test, and λ prophage induction were used to study the regularities of SOS response of cells under the action of radiations in a wide LET range. The following proposition was substantiated: the molecular basis for formation of gene mutations are cluster single-strand DNA breaks, and that for structural mutations, double-strand DNA breaks. It was found out that the LET dependence of the relative biological efficiency of accelerated ions is described by curves with a local maximum. It was demonstrated that the biological efficiency of ionizing radiations with different physical characteristics on cells with different genotype, estimated by the lethal action, induction of gene and deletion mutations, precision excision of transposons, is determined by the specific features of energy transfer of the radiations that affect the character of induced DNA damage, and the efficiency inducible and constitutive cell repair systems. The growth of relative biological efficiency of heavy charged particles is determined by the growth of the damage yield of the DNA participating in the formation of radiation-induced effects, and higher efficiency of inducible repair systems. It was established that the LET value ( L max) for which the maximum (according to the applied irradiation criteria) coefficients of relative biological efficiency are observed varies depending on the character of the registered radiation induced effect. It was demonstrated that for gene mutations and induction of precision excision of mobile elements the values of L max are realized in a LET range of ≈20 keV/μm. For lethal effects of irradiation and induction of deletion mutations the value of L max is ≈ 100 and 50 keV/μm, respectively. The differences in the L max for the studied radiation gene effectis are determined by the different type of DNA damage participating in the mutation process. A molecular model of the formation of gene mutations in Escherichia coli cells under the action of ionizing radiation was proposed. Basic DNA radiation damage and main repair ways were considered in the framework of this model. The basis is the idea of the decisive role of mutagenic, error-prone, branch of SOS repair in fixing premutation DNA damage into point mutations. It was demonstrated that the central mechanism in this process is the formation of an inducible multi-enzymatic complex including the DNA polymerase V (Umu C), RecA-protease, SSB proteins, subunits of DNA polymerase III, performing erroneous DNA synthesis on the damaged matrix. A mathematical model of induction of gene mutations under ultraviolet cell irradiation was developed based on the molecular model.

  6. FIRST RESULTS ON X-RAY-INDUCED GENETIC DAMAGE IN ARTEMIA SALINA LEACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metalli, P.; Ballardin, E.

    1962-01-01

    Prophase oocytes of diploid and tetraploid pantenogenetic Antemia salina were x irradiated with 1000 r and damage was scored as oocyte or embryo lethal mutations at the first (X/sub 1/) and at the second (X/sub 2/) generations after irradiation. Dominant lethality shown at X/sub 1/ was much greater for the diploid strain than for the tetraploid; lethality observed at X/sub 2/ was increased with respect to X/sub 1/ in the diploid strain, while in the tetraploid it remained unmodified. (auth)

  7. Human Retinal Transmitochondrial Cybrids with J or H mtDNA Haplogroups Respond Differently to Ultraviolet Radiation: Implications for Retinal Diseases

    PubMed Central

    Malik, Deepika; Hsu, Tiffany; Falatoonzadeh, Payam; Cáceres-del-Carpio, Javier; Tarek, Mohamed; Chwa, Marilyn; Atilano, Shari R.; Ramirez, Claudio; Nesburn, Anthony B.; Boyer, David S.; Kuppermann, Baruch D.; Jazwinski, S. Michal; Miceli, Michael V.; Wallace, Douglas C.; Udar, Nitin; Kenney, M. Cristina

    2014-01-01

    Background It has been recognized that cells do not respond equally to ultraviolet (UV) radiation but it is not clear whether this is due to genetic, biochemical or structural differences of the cells. We have a novel cybrid (cytoplasmic hybrids) model that allows us to analyze the contribution of mitochondrial DNA (mtDNA) to cellular response after exposure to sub-lethal dose of UV. mtDNA can be classified into haplogroups as defined by accumulations of specific single nucleotide polymorphisms (SNPs). Recent studies have shown that J haplogroup is high risk for age-related macular degeneration while the H haplogroup is protective. This study investigates gene expression responses in J cybrids versus H cybrids after exposure to sub-lethal doses of UV-radiation. Methodology/Principal Findings Cybrids were created by fusing platelets isolated from subjects with either H (n = 3) or J (n = 3) haplogroups with mitochondria-free (Rho0) ARPE-19 cells. The H and J cybrids were cultured for 24 hours, treated with 10 mJ of UV-radiation and cultured for an additional 120 hours. Untreated and treated cybrids were analyzed for growth rates and gene expression profiles. The UV-treated and untreated J cybrids had higher growth rates compared to H cybrids. Before treatment, J cybrids showed lower expression levels for CFH, CD55, IL-33, TGF-A, EFEMP-1, RARA, BCL2L13 and BBC3. At 120 hours after UV-treatment, the J cybrids had decreased CFH, RARA and BBC3 levels but increased CD55, IL-33 and EFEMP-1 compared to UV-treated H cybrids. Conclusion/Significance In cells with identical nuclei, the cellular response to sub-lethal UV-radiation is mediated in part by the mtDNA haplogroup. This supports the hypothesis that differences in growth rates and expression levels of complement, inflammation and apoptosis genes may result from population-specific, hereditary SNP variations in mtDNA. Therefore, when analyzing UV-induced damage in tissues, the mtDNA haplogroup background may be important to consider. PMID:24919117

  8. Alteration/deficiency in activation-3 (Ada3) plays a critical role in maintaining genomic stability

    PubMed Central

    Mirza, Sameer; Katafiasz, Bryan J.; Kumar, Rakesh; Wang, Jun; Mohibi, Shakur; Jain, Smrati; Gurumurthy, Channabasavaiah Basavaraju; Pandita, Tej K.; Dave, Bhavana J.; Band, Hamid; Band, Vimla

    2012-01-01

    Cell cycle regulation and DNA repair following damage are essential for maintaining genome integrity. DNA damage activates checkpoints in order to repair damaged DNA prior to exit to the next phase of cell cycle. Recently, we have shown the role of Ada3, a component of various histone acetyltransferase complexes, in cell cycle regulation, and loss of Ada3 results in mouse embryonic lethality. Here, we used adenovirus-Cre-mediated Ada3 deletion in Ada3fl/fl mouse embryonic fibroblasts (MEFs) to assess the role of Ada3 in DNA damage response following exposure to ionizing radiation (IR). We report that Ada3 depletion was associated with increased levels of phospho-ATM (pATM), γH2AX, phospho-53BP1 (p53BP1) and phospho-RAD51 (pRAD51) in untreated cells; however, radiation response was intact in Ada3−/− cells. Notably, Ada3−/− cells exhibited a significant delay in disappearance of DNA damage foci for several critical proteins involved in the DNA repair process. Significantly, loss of Ada3 led to enhanced chromosomal aberrations, such as chromosome breaks, fragments, deletions and translocations, which further increased upon DNA damage. Notably, the total numbers of aberrations were more clearly observed in S-phase, as compared with G₁ or G₂ phases of cell cycle with IR. Lastly, comparison of DNA damage in Ada3fl/fl and Ada3−/− cells confirmed higher residual DNA damage in Ada3−/− cells, underscoring a critical role of Ada3 in the DNA repair process. Taken together, these findings provide evidence for a novel role for Ada3 in maintenance of the DNA repair process and genomic stability. PMID:23095635

  9. Radiation effects in Caenorhabditis elegans - Mutagenesis by high and low LET ionizing radiation

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Schubert, Wayne W.; Marshall, Tamara M.; Benton, Eric R.; Benton, Eugene V.

    1989-01-01

    The nematode C. elegans was used to measure the effectiveness of high-energy ionized particles in the induction of three types of genetic lesions. Recessive lethal mutations in a 40-map unit autosomal region, sterility, and X-chromosome nondisjunction or damage were investigated. Induction rates were measured as a function of linear energy transfer, LET(infinity), for nine ions of atomic nunmber 1-57 accelerated at the BEVALAC accelerator. Linear kinetics were observed for all three types of lesions within the dose/fluence ranges tested and were found to vary strongly as a function of particle LET(infinity). Relative biological effectiveness (RBE) values of up to 4.2 were measured, and action cross sections were calculated and compared to mutagenic responses in other systems.

  10. Action of caffeine on x-irradiated HeLa cells. V. Identity of the sector of cells that expresses potentially lethal damage in G/sub 1/ and G/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beetham, K.L.; Tolmach, L.J.

    1982-07-01

    When HeLa S3 cells are irradiated in early G/sub 1/ with 4 Gy of 220-kV x rays and are then incubated in growth medium containing up to 5 mM caffeine, survival is reduced (as reported previously), reaching a concentration-dependent plateau. Cell killing presumably occurs as a result of the fixation of a portion of the potentially lethal damage the cells contain. These cells respond to continued treatment with caffeine at concentrations greater than 2 mM during S, but less so than during G/sub 1/. When they reach G/sub 2/ arrest, however, extensive cell killing again occurs (reported previously), presumably alsomore » the result of potentially lethal damage fixation. G/sub 1/-irradiated cultures that are treated with caffeine either continuously at a concentration in the range 1 to 5 mM, or at 10 mM for 8 hr and subsequently with the low concentration, achieve the same survival level in G/sub 2/, provided that the potentially lethal damage is not repaired during G/sub 1/ and S. Repair seems to be completely inhibited in the presence of 3 to 4 mM caffeine. The results indicate that fixation of potentially lethal damage occurs in the same sector of cells in G/sub 1/ and G/sub 2/, suggesting that the same cellular lesion gives rise to cell killing in the two phases.« less

  11. Tissue responses to low protracted doses of high let radiations or photons: Early and late damage relevant to radio-protective countermeasures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ainsworth, E.J.; Afzal, S.M.J.; Crouse, D.A.

    1988-01-01

    Early and late murine tissue responses to single or fractionated low doses of heavy charged particles, fission-spectrum neutrons or gamma rays are considered. Damage to the hematopoietic system is emphasized, but results on acute lethality, host response to challenge with transplanted leukemia cells and life-shortening are presented. Low dose rates per fraction were used in some neutron experiments. Split-dose lethality studies (LD 50/30) with fission neutrons indicated greater accumulation of injury during a 9 fraction course (over 17 days) than was the case for ..gamma..-radiation. When total doses of 96 or 247 cGy of neutrons or ..gamma.. rays were givenmore » as a single dose or in 9 fractions, a significant sparing effect on femur CFU-S depression was observed for both radiation qualities during the first 11 days, but there was not an earlier return to normal with dose fractionation. During the 9 fraction sequence, a significant sparing effect of low dose rate on CFU-S depression was observed in both neutron and ..gamma..-irradiated mice. CFU-S content at the end of the fractionation sequence did not correlate with measured LD 50/30. Sustained depression of femur and spleen CFU-S and a significant thrombocytopenia were observed when a total neutron dose of 240 cGy was given in 72 fractions over 24 weeks at low dose rates. The temporal aspects of CFU-S repopulation were different after a single versus fractionated neutron doses. The sustained reduction in the size of the CFU-S population was accompanied by an increase in the fraction in DNA synthesis. The proliferation characteristics and effects of age were different for radial CFU-S population closely associated with bone, compared with the axial population that can be readily aspirated from the femur. In aged irradiated animals, the CFU-S proliferation/redistribution response to typhoid vaccine showed both an age and radiation effect. 63 refs., 6 figs., 7 tabs.« less

  12. Biophysical and biological factors determining the ability to achieve long-term cryobiological preservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazur, P.

    1997-12-01

    The BESTCapsule will maintain appropriate biological specimens for decades or centuries at cryogenic temperatures in the living state. Maintenance at temperatures below {approximately} {minus}140 C is not a problem. No ordinary chemical reactions in aqueous solutions can occur. The only source of damage will be the slow accumulation of physical damage to DNA from background ionizing radiation. But this source of damage should not become serious in less than a millennium. Rather, the main problem in cryopreservation is to devise procedures for cooling the biological specimens to {minus}196 C and returning them to normal temperatures without inflicting lethal injury. Regardlessmore » of the cell type, there are certain encompassing biophysical factors and constraints that determine whether they will survive or die during freezing and thawing. Superimposed on these may be special biological factors that apply to specific cell types. This paper will emphasize the former and give illustrative examples of the latter.« less

  13. Effects of microwave (2.45 GHz) irradiation on some biological characters of Salmonella typhimurium.

    PubMed

    Nasri, Kaouther; Daghfous, Douraid; Landoulsi, Ahmed

    2013-04-01

    The present study was carried out to evaluate the effects of sub-lethal doses of microwave radiation on some biological characteristics in Salmonella typhimurium. The aim was to show the relationship between this treatment and the development of radiotolerance in this pathogen because there is a need for more information on physiological responses of pathogens to sub-lethal doses of microwave radiation. So, the bacterial strain was treated with a dose of 3600J (40-s exposure with power P=90 W) to cause cellular damage. The results have shown that the exposure of bacteria to microwaves resulted in a significant inhibition of cellular growth. This treatment has notably increased the effectiveness of the most tested antibiotics by the amelioration or the appearance of sensitivity in exposed bacteria. Gas chromatography (GC) analysis was performed to demonstrate the modification of the fatty acids (FA) composition. Results obtained have shown that this treatment had a significant effect on the FA content with an increase of unsaturated FA percentage. The acquisition of sensitivity to the sodium deoxycholate and the significant increase in the amount of extracellular proteins in exposed bacteria has confirmed the weakening of the bacterial membrane by microwaves. This study represents one of the few demonstrating the modifications on the bacterial membrane as a cellular response to survive the non-ionising radiation stress. Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  14. Perspectives on the combination of radiotherapy and targeted therapy with DNA repair inhibitors in the treatment of pancreatic cancer

    PubMed Central

    Yang, Shih-Hung; Kuo, Ting-Chun; Wu, Hsu; Guo, Jhe-Cyuan; Hsu, Chiun; Hsu, Chih-Hung; Tien, Yu-Wen; Yeh, Kun-Huei; Cheng, Ann-Lii; Kuo, Sung-Hsin

    2016-01-01

    Pancreatic cancer is highly lethal. Current research that combines radiation with targeted therapy may dramatically improve prognosis. Cancerous cells are characterized by unstable genomes and activation of DNA repair pathways, which are indicated by increased phosphorylation of numerous factors, including H2AX, ATM, ATR, Chk1, Chk2, DNA-PKcs, Rad51, and Ku70/Ku80 heterodimers. Radiotherapy causes DNA damage. Cancer cells can be made more sensitive to the effects of radiation (radiosensitization) through inhibition of DNA repair pathways. The synergistic effects, of two or more combined non-lethal treatments, led to co-administration of chemotherapy and radiosensitization in BRCA-defective cells and patients, with promising results. ATM/Chk2 and ATR/Chk1 pathways are principal regulators of cell cycle arrest, following DNA double-strand or single-strand breaks. DNA double-stranded breaks activate DNA-dependent protein kinase, catalytic subunit (DNA-PKcs). It forms a holoenzyme with Ku70/Ku80 heterodimers, called DNA-PK, which catalyzes the joining of nonhomologous ends. This is the primary repair pathway utilized in human cells after exposure to ionizing radiation. Radiosensitization, induced by inhibitors of ATM, ATR, Chk1, Chk2, Wee1, PP2A, or DNA-PK, has been demonstrated in preclinical pancreatic cancer studies. Clinical trials are underway. Development of agents that inhibit DNA repair pathways to be clinically used in combination with radiotherapy is warranted for the treatment of pancreatic cancer. PMID:27621574

  15. The Effect of High-Dose Ionizing Radiation on the Isolated Photobiont of the Astrobiological Model Lichen Circinaria gyrosa

    NASA Astrophysics Data System (ADS)

    Meeßen, Joachim; Backhaus, Theresa; Brandt, Annette; Raguse, Marina; Böttger, Ute; de Vera, Jean-Pierre; de la Torre, Rosa

    2017-02-01

    Lichen symbioses between fungi and algae represent successful life strategies to colonize the most extreme terrestrial habitats. Consequently, space exposure and simulation experiments have demonstrated lichens' high capacity for survival, and thus, they have become models in astrobiological research with which to discern the limits and limitations of terrestrial life. In a series of ground-based irradiation experiments, the STARLIFE campaign investigated the resistance of astrobiological model organisms to galactic cosmic radiation, which is one of the lethal stressors of extraterrestrial environments. Since previous studies have identified that the alga is the more sensitive lichen symbiont, we chose the isolated photobiont Trebouxia sp. of the astrobiological model Circinaria gyrosa as a subject in the campaign. Therein, γ radiation was used to exemplify the deleterious effects of low linear energy transfer (LET) ionizing radiation at extremely high doses up to 113 kGy in the context of astrobiology. The effects were analyzed by chlorophyll a fluorescence of photosystem II (PSII), cultivation assays, live/dead staining and confocal laser scanning microscopy (CLSM), and Raman laser spectroscopy (RLS). The results demonstrate dose-dependent impairment of photosynthesis, the cessation of cell proliferation, cellular damage, a decrease in metabolic activity, and degradation of photosynthetic pigments. While previous investigations on other extraterrestrial stressors have demonstrated a high potential of resistance, results of this study reveal the limits of photobiont resistance to ionizing radiation and characterize γ radiation-induced damages. This study also supports parallel STARLIFE studies on the lichens Circinaria gyrosa and Xanthoria elegans, both of which harbor a Trebouxia sp. photobiont.

  16. Small-Molecule Inhibitors Targeting DNA Repair and DNA Repair Deficiency in Research and Cancer Therapy.

    PubMed

    Hengel, Sarah R; Spies, M Ashley; Spies, Maria

    2017-09-21

    To maintain stable genomes and to avoid cancer and aging, cells need to repair a multitude of deleterious DNA lesions, which arise constantly in every cell. Processes that support genome integrity in normal cells, however, allow cancer cells to develop resistance to radiation and DNA-damaging chemotherapeutics. Chemical inhibition of the key DNA repair proteins and pharmacologically induced synthetic lethality have become instrumental in both dissecting the complex DNA repair networks and as promising anticancer agents. The difficulty in capitalizing on synthetically lethal interactions in cancer cells is that many potential targets do not possess well-defined small-molecule binding determinates. In this review, we discuss several successful campaigns to identify and leverage small-molecule inhibitors of the DNA repair proteins, from PARP1, a paradigm case for clinically successful small-molecule inhibitors, to coveted new targets, such as RAD51 recombinase, RAD52 DNA repair protein, MRE11 nuclease, and WRN DNA helicase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Radiation-Induced Immunogenic Modulation Enhances T-Cell Killing | Center for Cancer Research

    Cancer.gov

    For many types of cancer, including breast, lung, and prostate carcinomas, radiation therapy is the standard of care. However, limits placed on the tolerable levels of radiation exposure coupled with heterogeneity of biological tissue result in cases where not all tumor cells receive a lethal dose of radiation. Preclinical studies have shown that exposing tumor cells to lethal doses of radiation can elicit cell death while inducing some antitumor immunity, described as immunogenic cell death (ICD). However, in a clinical setting, immune responses elicited by radiation alone rarely result in protective immunity, as tumor relapse often occurs.

  18. Delineating the requirements for spontaneous DNA damage resistance pathways in genome maintenance and viability in Saccharomyces cerevisiae.

    PubMed

    Morey, Natalie J; Doetsch, Paul W; Jinks-Robertson, Sue

    2003-06-01

    Cellular metabolic processes constantly generate reactive species that damage DNA. To counteract this relentless assault, cells have developed multiple pathways to resist damage. The base excision repair (BER) and nucleotide excision repair (NER) pathways remove damage whereas the recombination (REC) and postreplication repair (PRR) pathways bypass the damage, allowing deferred removal. Genetic studies in yeast indicate that these pathways can process a common spontaneous lesion(s), with mutational inactivation of any pathway increasing the burden on the remaining pathways. In this study, we examine the consequences of simultaneously compromising three or more of these pathways. Although the presence of a functional BER pathway alone is able to support haploid growth, retention of the NER, REC, or PRR pathway alone is not, indicating that BER is the key damage resistance pathway in yeast and may be responsible for the removal of the majority of either spontaneous DNA damage or specifically those lesions that are potentially lethal. In the diploid state, functional BER, NER, or REC alone can support growth, while PRR alone is insufficient for growth. In diploids, the presence of PRR alone may confer a lethal mutation load or, alternatively, PRR alone may be insufficient to deal with potentially lethal, replication-blocking lesions.

  19. Enhancement of IUdR Radiosensitization by Low-Energy Photons Results from Increased and Persistent DNA Damage.

    PubMed

    Bayart, Emilie; Pouzoulet, Frédéric; Calmels, Lucie; Dadoun, Jonathan; Allot, Fabien; Plagnard, Johann; Ravanat, Jean-Luc; Bridier, André; Denozière, Marc; Bourhis, Jean; Deutsch, Eric

    2017-01-01

    Low-energy X-rays induce Auger cascades by photoelectric absorption in iodine present in the DNA of cells labeled with 5-iodo-2'-deoxyuridine (IUdR). This photoactivation therapy results in enhanced cellular sensitivity to radiation which reaches its maximum with 50 keV photons. Synchrotron core facilities are the only way to generate such monochromatic beams. However, these structures are not adapted for the routine treatment of patients. In this study, we generated two beams emitting photon energy means of 42 and 50 keV respectively, from a conventional 225 kV X-ray source. Viability assays performed after pre-exposure to 10 μM of IUdR for 48h suggest that complex lethal damage is generated after low energy photons irradiation compared to 137Cs irradiation (662KeV). To further decipher the molecular mechanisms leading to IUdR-mediated radiosensitization, we analyzed the content of DNA damage-induced foci in two glioblastoma cell lines and showed that the decrease in survival under these conditions was correlated with an increase in the content of DNA damage-induced foci in cell lines. Moreover, the follow-up of repair kinetics of the induced double-strand breaks showed the maximum delay in cells labeled with IUdR and exposed to X-ray irradiation. Thus, there appears to be a direct relationship between the reduction of radiation survival parameters and the production of DNA damage with impaired repair of these breaks. These results further support the clinical potential use of a halogenated pyrimidine analog combined with low-energy X-ray therapy.

  20. Pharmacological countermeasures for the acute radiation syndrome.

    PubMed

    Xiao, Mang; Whitnall, Mark H

    2009-01-01

    The acute radiation syndrome (ARS) is defined as the signs and symptoms that occur within several months after exposure to ionizing radiation (IR). This syndrome develops after total- or partial-body irradiation at a relatively high dose (above about 1 Gy in humans) and dose rate. Normal tissue injuries induced by IR differ depending on the target organ and cell type. Organs and cells with high sensitivity to radiation include the skin, the hematopoietic system, the gut, the spermatogenic cells and the vascular system. Exposure to IR causes damage to DNA, protein, and lipids in mammalian cells, as well as increased mitochondria-dependent generation of reactive oxygen species (ROS), with subsequent cell cycle checkpoint arrest, apoptosis, and stress-related responses. DNA double strand breaks (DSBs) are a primary lethal lesion induced by IR. The cellular response to damage is complex and relies on simultaneous activation of a number of signaling networks. Among these, the activation of DNA non-homologous end-joining (NHEJ) and homologous recombination (HR), and signaling pathways containing ataxia telangiectasia mutated (ATM), play important roles. The transcription factor NFkappaB has emerged as a pro-survival actor in response to IR in ATM and p53-induced protein with a death domain (PIDD) cascades. Although radiation-induced ARS has been well documented at the clinical level, and mechanistic information is accumulating, successful prophylaxis and treatment for ARS is problematic, even with the use of supportive care and growth factors. There is a pressing need to develop radiation countermeasures that can be used both in the clinic, for small-scale incidents, and outside the clinic, in mass casualty scenarios. In this review we summarize recent information on intracellular and extracellular signaling pathways relevant to radiation countermeasure research.

  1. MASM, a Matrine Derivative, Offers Radioprotection by Modulating Lethal Total-Body Irradiation-Induced Multiple Signaling Pathways in Wistar Rats.

    PubMed

    Li, Jianzhong; Xu, Jing; Lu, Yiming; Qiu, Lei; Xu, Weiheng; Lu, Bin; Hu, Zhenlin; Chu, Zhiyong; Chai, Yifeng; Zhang, Junping

    2016-05-17

    Matrine is an alkaloid extracted from Sophora flavescens Ait and has many biological activities, such as anti-inflammatory, antitumor, anti-fibrosis, and immunosuppressive properties. In our previous studies, the matrine derivative MASM was synthesized and exhibited potent inhibitory activity against liver fibrosis. In this study, we mainly investigated its protection against lethal total-body irradiation (TBI) in rats. Administration of MASM reduced the radiation sickness characteristics and increased the 30-day survival of rats before or after lethal TBI. Ultrastructural observation illustrated that pretreatment of rats with MASM significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed that pretreatment with MASM had a dramatic effect on gene expression changes caused by TBI. Pretreatment with MASM prevented differential expression of 53% (765 genes) of 1445 differentially expressed genes induced by TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 21 pathways, such as metabolic pathways, pathways in cancer, and mitogen-activated protein kinase (MAPK) pathways. Our data indicated that pretreatment of rats with MASM modulated these pathways induced by TBI, suggesting that the pretreatment with MASM might provide the protective effects on lethal TBI mainly or partially through the modulation of these pathways, such as multiple MAPK pathways. Therefore, MASM has the potential to be used as an effective therapeutic or radioprotective agent to minimize irradiation damages and in combination with radiotherapy to improve the efficacy of cancer therapy.

  2. Toxic effects of combined effects of anthracene and UV radiation on Brachionus plicatilis

    NASA Astrophysics Data System (ADS)

    Gao, Ceng; Zhang, Xinxin; Xu, Ningning; Tang, Xuexi

    2017-05-01

    Anthracene is a typical polycyclic aromatic hydrocarbon, with photo activity, can absorb ultraviolet light a series of chemical reactions, aquatic organisms in the ecosystem has a potential light induced toxicity. In this paper, the effects of anthracene and UV radiation on the light-induced toxicity of Brachionus plicatilis were studied. The main methods and experimental results were as follows: (1) The semi-lethal concentration of anthracene in UV light was much lower than that in normal light, The rotifers have significant light-induced acute toxicity. (2) Under UV irradiation, anthracene could induce the increase of ROS and MDA content in B. plicatilis, and the activity of antioxidant enzymes in B. plicatilis significantly changed, Where SOD, GPx activity was induced within 24 hours of the beginning of the experiment. And the content of GPX and CAT was inhibited after 48 hours. Therefore, the anthracite stress induced by UV radiation could more strongly interfere with the ant oxidative metabolism of B. plicatilis, and more seriously cause oxidative damage, significant light-induced toxicity.

  3. Repairable-conditionally repairable damage model based on dual Poisson processes.

    PubMed

    Lind, B K; Persson, L M; Edgren, M R; Hedlöf, I; Brahme, A

    2003-09-01

    The advent of intensity-modulated radiation therapy makes it increasingly important to model the response accurately when large volumes of normal tissues are irradiated by controlled graded dose distributions aimed at maximizing tumor cure and minimizing normal tissue toxicity. The cell survival model proposed here is very useful and flexible for accurate description of the response of healthy tissues as well as tumors in classical and truly radiobiologically optimized radiation therapy. The repairable-conditionally repairable (RCR) model distinguishes between two different types of damage, namely the potentially repairable, which may also be lethal, i.e. if unrepaired or misrepaired, and the conditionally repairable, which may be repaired or may lead to apoptosis if it has not been repaired correctly. When potentially repairable damage is being repaired, for example by nonhomologous end joining, conditionally repairable damage may require in addition a high-fidelity correction by homologous repair. The induction of both types of damage is assumed to be described by Poisson statistics. The resultant cell survival expression has the unique ability to fit most experimental data well at low doses (the initial hypersensitive range), intermediate doses (on the shoulder of the survival curve), and high doses (on the quasi-exponential region of the survival curve). The complete Poisson expression can be approximated well by a simple bi-exponential cell survival expression, S(D) = e(-aD) + bDe(-cD), where the first term describes the survival of undamaged cells and the last term represents survival after complete repair of sublethal damage. The bi-exponential expression makes it easy to derive D(0), D(q), n and alpha, beta values to facilitate comparison with classical cell survival models.

  4. Microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Laissue, Jean A.; Lyubimova, Nadia; Wagner, Hans-Peter; Archer, David W.; Slatkin, Daniel N.; Di Michiel, Marco; Nemoz, Christian; Renier, Michel; Brauer, Elke; Spanne, Per O.; Gebbers, Jan-Olef; Dixon, Keith; Blattmann, Hans

    1999-10-01

    The central nervous system of vertebrates, even when immature, displays extraordinary resistance to damage by microscopically narrow, multiple, parallel, planar beams of x rays. Imminently lethal gliosarcomas in the brains of mature rats can be inhibited and ablated by such microbeams with little or no harm to mature brain tissues and neurological function. Potentially palliative, conventional wide-beam radiotherapy of malignant brain tumors in human infants under three years of age is so fraught with the danger of disrupting the functional maturation of immature brain tissues around the targeted tumor that it is implemented infrequently. Other kinds of therapy for such tumors are often inadequate. We suggest that microbeam radiation therapy (MRT) might help to alleviate the situation. Wiggler-generated synchrotron x-rays were first used for experimental microplanar beam (microbeam) radiation therapy (MRT) at Brookhaven National Laboratory's National Synchrotron Light Source in the early 1990s. We now describe the progress achieved in MRT research to date using immature and adult rats irradiated at the European Synchrotron Radiation Facility in Grenoble, France, and investigated thereafter at the Institute of Pathology of the University of Bern.

  5. Human radiation tolerance

    NASA Technical Reports Server (NTRS)

    Lushbaugh, C. C.

    1974-01-01

    The acute radiation syndrome in man is clinically bounded by death at high dose levels and by the prodromal syndrome of untoward physiological effects at minimal levels of clinically effective exposure. As in lower animals, man experiences principally three acute modes of death from radiation exposure (Bond et al., 1965). These are known collectively as the lethal radiation syndromes: central nervous system death, gastrointestinal death, and hematopoietic death. The effect of multiple exposure on lethality, the effect of multiple exposure on hematopoietic recovery, and quantitative aspects of cell and tissue repair are discussed.

  6. [Damage control in field surgery].

    PubMed

    Samokhvalov, I M; Manukovskiĭ, V A; Badalov, V I; Severin, V V; Golovko, K P; Denisenko, V V

    2011-09-01

    Damage control surgery (DCS) is an important option in the store of war surgery and surgery of trauma. The main purpose of our investigation was to specify the percentage of the injured who need DCS. We performed retrospective study of the patients in the combat operations in Chechnya (1994-2002) and in peacetime (2005-2010). Total lethality in group with the standard surgical approach was 62.3%. It was significantly higher than the lethality in group of patients who underwent DCS - 50.0% (p < 0.05). Thus, the experience of DCS in War Surgery Department confirms that DCS is perspective tendency in treatment of patients with severe and extremely severe trauma, and allows decreasing lethality in 12.3%.

  7. UVA photoactivation of DNA containing halogenated thiopyrimidines induces cytotoxic DNA lesions

    PubMed Central

    Brem, Reto; Zhang, Xiaohui; Xu, Yao-Zhong; Karran, Peter

    2015-01-01

    Photochemotherapy, the combination of a photosensitiser and ultraviolet (UV) or visible light, is an effective treatment for skin conditions including cancer. The high mutagenicity and non-selectivity of photochemotherapy regimes warrants the development of alternative approaches. We demonstrate that the thiopyrimidine nucleosides 5-bromo-4-thiodeoxyuridine (SBrdU) and 5-iodo-4-thiodeoxyuridine (SIdU) are incorporated into the DNA of cultured human and mouse cells where they synergistically sensitise killing by low doses of UVA radiation. The DNA halothiopyrimidine/UVA combinations induce DNA interstrand crosslinks, DNA-protein crosslinks, DNA strand breaks, nucleobase damage and lesions that resemble UV-induced pyrimidine(6-4)pyrimidone photoproducts. These are potentially lethal DNA lesions and cells defective in their repair are hypersensitive to killing by SBrdU/UVA and SIdU/UVA. DNA SIdU and SBrdU generate lethal DNA photodamage by partially distinct mechanisms that reflect the different photolabilities of their C–I and C–Br bonds. Although singlet oxygen is involved in photolesion formation, DNA SBrdU and SIdU photoactivation does not detectably increase DNA 8-oxoguanine levels. The absence of significant collateral damage to normal guanine suggests that UVA activation of DNA SIdU or SBrdU might offer a strategy to target hyperproliferative skin conditions that avoids the extensive formation of a known mutagenic DNA lesion. PMID:25747491

  8. MET inhibition overcomes radiation resistance of glioblastoma stem-like cells.

    PubMed

    De Bacco, Francesca; D'Ambrosio, Antonio; Casanova, Elena; Orzan, Francesca; Neggia, Roberta; Albano, Raffaella; Verginelli, Federica; Cominelli, Manuela; Poliani, Pietro L; Luraghi, Paolo; Reato, Gigliola; Pellegatta, Serena; Finocchiaro, Gaetano; Perera, Timothy; Garibaldi, Elisabetta; Gabriele, Pietro; Comoglio, Paolo M; Boccaccio, Carla

    2016-05-01

    Glioblastoma (GBM) contains stem-like cells (GSCs) known to be resistant to ionizing radiation and thus responsible for therapeutic failure and rapidly lethal tumor recurrence. It is known that GSC radioresistance relies on efficient activation of the DNA damage response, but the mechanisms linking this response with the stem status are still unclear. Here, we show that the MET receptor kinase, a functional marker of GSCs, is specifically expressed in a subset of radioresistant GSCs and overexpressed in human GBM recurring after radiotherapy. We elucidate that MET promotes GSC radioresistance through a novel mechanism, relying on AKT activity and leading to (i) sustained activation of Aurora kinase A, ATM kinase, and the downstream effectors of DNA repair, and (ii) phosphorylation and cytoplasmic retention of p21, which is associated with anti-apoptotic functions. We show that MET pharmacological inhibition causes DNA damage accumulation in irradiated GSCs and their depletion in vitro and in GBMs generated by GSC xenotransplantation. Preclinical evidence is thus provided that MET inhibitors can radiosensitize tumors and convert GSC-positive selection, induced by radiotherapy, into GSC eradication. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  9. Nanodosimetry of Low Energy (0.1 - 100 eV) Cation Damage to DNA

    NASA Astrophysics Data System (ADS)

    Sellami, L.; Martin, F.; Hunting, D.; Lacombe, S.; Huels, M. A.

    2004-03-01

    The importance of heavy ions in radiobiology is twofold: (1) they represent the most efficient and volume selective mode of radiotherapy of deep-seated and non-operable tumors, (2) in space environments, or at supersonic altitudes, the most lethal radiation consists of cosmic rays which have a high efficiency to induce clustered DNA lesions, mutations, and cancer. Thus, the study of their effects on DNA is essential for radiation risk assessment, dosimetry, and efficient use of hadrontherapy. Here, we investigate damage to DNA and its components, induced by heavy ion impact, via a novel ion-plasma method, which allows us to probe ion energy depositions in the 0.1-100 eV/nm range in nanoscopic biomolecular films. Cations are generated by electron impact in ultra pure gases (Ar, N2, CO, etc.), and are uniformly accelerated by grids towards the inside surface of a cylinder where an organic film was deposited. After ion irradiation at a specific energy and ion dose, the film is recovered and analyzed. For DNA, gel electrophoresis is used to quantify yields of single, double, and multiple strand breaks. For DNA components (mononucleotides), fragmentation and new products are measured by HPLC and MS.

  10. Probabilistic Model for Laser Damage to the Human Retina

    DTIC Science & Technology

    2012-03-01

    the beam. Power density may be measured in radiant exposure, J cm2 , or by irradiance , W cm2 . In the experimental database used in this study and...to quan- tify a binary response, either lethal or non-lethal, within a population such as insects or rats. In directed energy research, probit...value of the normalized Arrhenius damage integral. In a one-dimensional simulation, the source term is determined as a spatially averaged irradiance (W

  11. Challenges to Life on Mars --- Ecological Perspective

    NASA Astrophysics Data System (ADS)

    Sun, H.; McKay, C.; Friedmann, I.; McDonald, G.

    2003-12-01

    This talk will address the habitability of Mars by considering major environmental challenges against the tolerance limits of microorganisms from extreme terrestrial environments including the Antarctic desert and permafrost. At the planet surface, the combination of low atmospheric pressure (below the triple point of water), high fluxes of ultraviolet radiation, and one or more powerful oxidants are likely to create sterilizing conditions that will be a barrier to the colonization and dispersal of microorganisms. In the subsurface below, long-term survival is dependent upon the frequency and duration of warm, metabolically active periods that are needed to repair cellular damages. Low temperature itself does little harm to microorganisms, but a long dormant period will accrue lethal dosages of ionizing radiation and amino acid racemization. It is probable that within the depth range of current sampling technologies, there are no conditions for extant life, leaving organic or inorganic fossils as the only legitimate target in the search for life on Mars.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, R.J.; Qian, J.K.; Yang, G.H.

    Experiments were carried out on mice and the subjects irradiated for cancer therapy to evaluate the protective efficacy of a Chinese medicinal herb-compound (CMHC). The lethality and the degree of leucopenia caused by radiation in mice medicated with CMHC were significantly less in comparison with control mice (p less than 0.01 and p less than 0.001, respectively). CMHC significantly improved the WBC and the thrombocytes in irradiated workers (p less than 0.01 and p less than 0.001, respectively). The WBC count of 40 patients under radiotherapy while treated with CMHC recovered from 3450 +/- 77/c.mm to 5425 +/- 264/c.mm (pmore » less than 0.001); whereas, in the control group, without any medication, the WBC count dropped significantly (p less than 0.001). Our results revealed the applicabilities of CMHC in protection against radiation damage in spaceflight and in other fields.« less

  13. Tolerance to solar ultraviolet-B radiation in the citrus red mite, an upper surface user of host plant leaves.

    PubMed

    Fukaya, Midori; Uesugi, Ryuji; Ohashi, Hirokazu; Sakai, Yuta; Sudo, Masaaki; Kasai, Atsushi; Kishimoto, Hidenari; Osakabe, Masahiro

    2013-01-01

    Plant-dwelling mites are potentially exposed to solar ultraviolet-B (UVB) radiation that causes deleterious and often lethal effects, leading most mites to inhabit the lower (underside) leaf surfaces. However, in species of spider mite belonging to the Genus Panonychus, a substantial portion of individuals occur on upper leaf surfaces. We investigated whether the upper leaf surfaces of citrus trees are favorable for P. citri, and to what extent they are tolerant to UVB radiation. If eggs are not adequately protected from UVB damage, females may avoid ovipositing on the upper surfaces of sunny leaves. To test this, we conducted laboratory experiments using a UVB lamp, and semioutdoor manipulative experiments. As a result, P. citri eggs are tolerant to UVB. Field studies revealed that the ratio of eggs and adult females on upper leaf surfaces were larger for shaded than for sunny leaves. However, 64-89% of eggs hatched successfully even on sunny upper leaf surfaces. Nutritional evaluation revealed that whether on sunny or shaded leaves, in fecundity and juvenile development P. citri reaped the fitness benefits of upper leaf surfaces. Consequently, P. citri is tolerant to UVB damage, and inhabiting the upper surfaces of shaded leaves is advantageous to this mite. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  14. Imbibitional damage in conidia of the entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, and Metarhizium acridum

    USDA-ARS?s Scientific Manuscript database

    When dried organisms are immersed in water, rapid imbibition may cause severe damage to plasma membranes; in unicellular organisms, such damage is usually lethal. This study investigated effects of pre-immersion moisture levels and immersion temperature on imbibitional damage in three insect pathoge...

  15. Lethal and mutagenic effects of ion beams and γ-rays in Aspergillus oryzae.

    PubMed

    Toyoshima, Yoshiyuki; Takahashi, Akemi; Tanaka, Hisaki; Watanabe, Jun; Mogi, Yoshinobu; Yamazaki, Tatsuo; Hamada, Ryoko; Iwashita, Kazuhiro; Satoh, Katsuya; Narumi, Issay

    2012-12-01

    Aspergillus oryzae is a fungus that is used widely in traditional Japanese fermentation industries. In this study, the lethal and mutagenic effects of different linear energy transfer (LET) radiation in freeze-dried conidia of A. oryzae were investigated. The lethal effect, which was evaluated by a 90% lethal dose, was dependent on the LET value of the ionizing radiation. The most lethal ionizing radiation among that tested was (12)C(5+) ion beams with an LET of 121keV/μm. The (12)C(5+) ion beams had a 3.6-times higher lethal effect than low-LET (0.2keV/μm) γ-rays. The mutagenic effect was evaluated by the frequency of selenate resistant mutants. (12)C(6+) ion beams with an LET of 86keV/μm were the most effective in inducing selenate resistance. The mutant frequency following exposure to (12)C(6+) ion beams increased with an increase in dose and reached 3.47×10(-3) at 700Gy. In the dose range from 0 to 700Gy, (12)C(5+) ion beams were the second most effective in inducing selenate resistance, the mutant frequency of which reached a maximum peak (1.67×10(-3)) at 400Gy. To elucidate the characteristics of mutation induced by ionizing radiation, mutations in the sulphate permease gene (sB) and ATP sulfurylase gene (sC) loci, the loss of function of which results in a selenate resistant phenotype, were compared between (12)C(5+) ion beams and γ-rays. We detected all types of transversions and transitions. For frameshifts, the frequency of a +1 frameshift was the highest in all cases. Although the incidence of deletions >2bp was generally low, deletions >20bp were characteristic for (12)C(5+) ion beams. γ-rays had a tendency to generate mutants carrying a multitude of mutations in the same locus. Both forms of radiation also induced genome-wide large-scale mutations including chromosome rearrangements and large deletions. These results provide new basic insights into the mutation breeding of A. oryzae using ionizing radiation. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  16. Detoxification of Salmonella typhimurium lipopolysaccharide by ionizing radiation.

    PubMed

    Previte, J J; Chang, Y; el-Bisi, H M

    1967-05-01

    The efficiency of ionizing radiation in detoxifying the lethal determinant(s) of the lipopolysaccharide (LPS) of Salmonella typhimurium, S. enteritidis, and Escherichia coli in aqueous solution and associated with heat-killed S. typhimurium cells in suspension decreased with doses above 1 Mrad. The 50% end point of inactivation was more than 7.0 Mrad for heat-killed salmonellae and 4.8, 4.5, and 1.0 Mrad for the LPS of S. typhimurium, S. enteritidis, and E. coli, respectively. After exposure to 20 Mrad, S. typhimurium LPS retained a small portion of its lethal properties although the ld(50) was much greater than 9.5 mg per 20-g mouse. However, at -184 C, no inactivation of the lethal determinant(s) occurred after exposure to as much as 20 Mrad. This demonstrated the significance of the indirect effect and the mobility and formation of free radicals. At 22 C, the optical density at 400 mmu increased and the pH decreased with increasing radiation dose, but no qualitative changes were observed in the infrared spectrum. No change was observed in the pyrogenicity of S. typhimurium LPS; a slight decrease in antigenicity was revealed when 6 days, but not when 1 day, elapsed between vaccination and challenge in the mouse protection test. The results were interpreted as evidence of the existence of two or more lethal and antigenic determinants. The differential effect of radiation on these properties and on the pyrogenic component(s) probably are indicative of separate functional sites for lethal, antigenic, and pyrogenic activities.

  17. Contribution of UVB radiation to bacterial inactivation by natural sunlight.

    PubMed

    Oppezzo, Oscar J

    2012-10-03

    The contribution of different components of sunlight to the lethal action exerted by this radiation on bacteria was studied using Pseudomonas aeruginosa ATCC27853 as a model organism. When solar UVB was excluded from the incident radiation by filtering it through a naphthalene solution (cut off 327 nm), significant modifications were observed in the cell-death kinetics. These modifications were comparable to those expected for a reduction of 27-32% in the dose rate, according to the model used in the analysis of the survival curves, and were also observed when the effects of sunlight filtered through polyethylene terephthalate (cut off 331 nm) or polystyrene (cut off 298 nm) were compared. Viability of P. aeruginosa remained almost unchanged when the incident radiation was filtered through a sodium nitrite solution (cut off 406 nm) in order to exclude the UVA and UVB components of sunlight. Nevertheless, a delay in colony formation was detected in bacteria treated in this way, suggesting that a non-lethal effect was exerted by visible light. The results are not consistent with a generally accepted notion which attributes the lethal action of sunlight to the radiation with wavelengths above 320 nm. The characterization of UVB contribution to the lethal effect of sunlight on bacteria is relevant for understanding of the mechanism of cell death, and for improvement of dosimetry techniques and irradiation procedures. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Sub-Lethal Dose of Shiga Toxin 2 from Enterohemorrhagic Escherichia coli Affects Balance and Cerebellar Cytoarchitecture

    PubMed Central

    Pinto, Alipio; Cangelosi, Adriana; Geoghegan, Patricia A.; Tironi-Farinati, Carla; Brener, Gabriela J.; Goldstein, Jorge

    2016-01-01

    Shiga toxin producing Escherichia coli may damage the central nervous system before or concomitantly to manifested hemolytic–uremic syndrome symptoms. The cerebellum is frequently damaged during this syndrome, however, the deleterious effects of Shiga toxin 2 has never been integrally reported by ultrastructural, physiological and behavioral means. The aim of this study was to determine the cerebellar compromise after intravenous administration of a sub-lethal dose of Shiga toxin 2 by measuring the cerebellar blood–brain barrier permeability, behavioral task of cerebellar functionality (inclined plane test), and ultrastructural analysis (transmission electron microscope). Intravenous administration of vehicle (control group), sub-lethal dose of 0.5 and 1 ηg of Stx2 per mouse were tested for behavioral and ultrastructural studies. A set of three independent experiments were performed for each study (n = 6). Blood–brain barrier resulted damaged and consequently its permeability was significantly increased. Lower scores obtained in the inclined plane task denoted poor cerebellar functionality in comparison to their controls. The most significant lower score was obtained after 5 days of 1 ηg of toxin administration. Transmission electron microscope micrographs from the Stx2-treated groups showed neurons with a progressive neurodegenerative condition in a dose dependent manner. As sub-lethal intravenous Shiga toxin 2 altered the blood brain barrier permeability in the cerebellum the toxin penetrated the cerebellar parenchyma and produced cell damaged with significant functional implications in the test balance. PMID:26904009

  19. Beetroot (Beta vulgaris) rescues mice from γ-ray irradiation by accelerating hematopoiesis and curtailing immunosuppression.

    PubMed

    Cho, Jinhee; Bing, So Jin; Kim, Areum; Lee, Nam Ho; Byeon, Sang-Hee; Kim, Gi-Ok; Jee, Youngheun

    2017-12-01

    Beetroot [Beta vulgaris Linné (Chenopodiaceae)], a vegetable usually consumed as a food or a medicinal plant in Europe, has been reported to have antioxidant and anti-inflammatory properties. Since the lymphohematopoietic system is the most sensitive tissue to ionizing radiation, protecting it from radiation damage is one of the best ways to decrease detrimental effects from radiation exposure. In this study, we evaluated the radio-protective effects of beetroot in hematopoietic stem cells (HSCs) and progenitor cells. Beetroot extract was administered at a dose of 400 mg/mouse per os (p.o.) three times into C57BL/6 mice and, at day 10 after γ-ray irradiation, diverse molecular presentations were measured and compared against non-irradiated and irradiated mice with PBS treatments. Survival of beetroot-fed and unfed irradiated animal was also compared. Beetroot not only stimulated cell proliferation, but also minimized DNA damage of splenocytes. Beetroot also repopulated S-phase cells and increased Ki-67 or c-Kit positive cells in bone marrow. Moreover, beetroot-treated mice showed notable boosting of differentiation of HSCs into burst-forming units-erythroid along with increased production of IL-3. Also, beetroot-treated mice displayed enhancement in the level of hematocrit and hemoglobin as well as the number of red blood cell in peripheral blood. Beetroot diet improved survival rate of lethally exposed mice with a dose reduction factor (DRF) of 1.1. These results suggest that beetroot has the potency to preserve bone marrow integrity and stimulate the differentiation of HSCs against ionizing radiation.

  20. Gamma Radiation Reduced Toxicity of Azoxystrobin Tested on Artemia franciscana.

    PubMed

    Dvorak, P; Zdarsky, M; Benova, K; Falis, M; Tomko, M

    2016-06-01

    Fungicide azoxystrobin toxicity was monitored by means of a 96-h biotest with Artemia franciscana nauplius stages after exposure to solutions with concentrations of 0.2, 0.4, 0.6 and 0.8 mg L(-1) irradiated with (60)Co gamma radiation with doses of 1, 2.5, 5 and 10 kGy. The effects of ionization radiation on azoxystrobin toxicity were mainly manifested by a statistically significant reduction of lethality after 72- and 96-h exposure. A maximum reduction of lethality of 72 % was achieved using doses of 1-5 kGy for an azoxystrobin initial concentration of 0.4 mg L(-1) and after 72 h of exposure. At a 96-h exposure, a difference of lethal effects reached up to 70 % for a dose of 10 kGy. The observed effect of gamma ionizing radiation on azoxystrobin toxicity suggest that this approach can be applied as an alternative for a reduction of azoxystrobin residua in food.

  1. Radiation-induced hemopoietic death in mice as a function of photon energy and dose rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gengozian, N.; Taylor, T.; Jameson, H.

    1986-03-01

    Radiation-induced hemopoietic death was measured in mice exposed to photons of four different energies: 250-kVp X rays, /sup 60/Co gamma rays (1.25 MeV), and 6- and 25-MV photons from a linear accelerator. For each radiation source, the lethal dose which killed 50% of the population in 30 days (LD50/30) associated with the hemopoietic syndrome was determined in groups of mice exposed to graded doses from 600 to 1150 cGy at dose rates of 20, 40, and 80 cGy/min. The calculated LD50/30 values for 25 and 6 MV were significantly different from each other at all exposure rates while no differencemore » was observed between 6 MV and /sup 60/Co. Using /sup 60/Co gamma rays as the standard, the relative biologic effectiveness was as follows: 250 kVp greater than 25 MV greater than 6 MV = /sup 60/Co. The data suggest that there may be a greater damage to tissue within the marrow cavities following exposure to very high megavoltage radiation, a factor which must be considered with the increasing utilization of linear accelerators in the clinic and laboratory.« less

  2. Ionizing radiation as preconditioning against transient cerebral ischemia in rats.

    PubMed

    Kokošová, Natália; Danielisová, Viera; Smajda, Beňadik; Burda, Jozef

    2014-01-01

    Induction of ischemic tolerance (IT), the ability of an organism to survive an otherwise lethal ischemia, is the most effective known approach to preventing postischemic damage. IT can be induced by exposing animals to a broad range of stimuli. In this study we tried to induce IT of brain neurons using ionizing radiation (IR). A preconditioning (pre-C) dose of 10, 20, 30 or 50 Gy of gamma rays was used 2 days before an 8 min ischemia in adult male rats. Ischemia alone caused the degeneration of almost one half of neurons in CA1 region of hippocampus. However, a significant decrease of the number of degenerating neurons was observed after higher doses of radiation (30 and 50 Gy). Moreover, ischemia significantly impaired the spatial memory of rats as tested in Morris's water maze. In rats with a 50 Gy pre-C dose, the latency times were reduced to values close to the control level. Our study is the first to reveal that IR applied in sufficient doses can induce IT and thus allow pyramidal CA1 neurons to survive ischemia. In addition, we show that the beneficial effect of IR pre-C is proportional to the radiation dose.

  3. A Synthetic Lethal Screen Identifies DNA Repair Pathways that Sensitize Cancer Cells to Combined ATR Inhibition and Cisplatin Treatments

    PubMed Central

    Mohni, Kareem N.; Thompson, Petria S.; Luzwick, Jessica W.; Glick, Gloria G.; Pendleton, Christopher S.; Lehmann, Brian D.; Pietenpol, Jennifer A.; Cortez, David

    2015-01-01

    The DNA damage response kinase ATR may be a useful cancer therapeutic target. ATR inhibition synergizes with loss of ERCC1, ATM, XRCC1 and DNA damaging chemotherapy agents. Clinical trials have begun using ATR inhibitors in combination with cisplatin. Here we report the first synthetic lethality screen with a combination treatment of an ATR inhibitor (ATRi) and cisplatin. Combination treatment with ATRi/cisplatin is synthetically lethal with loss of the TLS polymerase ζ and 53BP1. Other DNA repair pathways including homologous recombination and mismatch repair do not exhibit synthetic lethal interactions with ATRi/cisplatin, even though loss of some of these repair pathways sensitizes cells to cisplatin as a single-agent. We also report that ATRi strongly synergizes with PARP inhibition, even in homologous recombination-proficient backgrounds. Lastly, ATR inhibitors were able to resensitize cisplatin-resistant cell lines to cisplatin. These data provide a comprehensive analysis of DNA repair pathways that exhibit synthetic lethality with ATR inhibitors when combined with cisplatin chemotherapy, and will help guide patient selection strategies as ATR inhibitors progress into the cancer clinic. PMID:25965342

  4. Radioprotective Effects of Gallic Acid in Mice

    PubMed Central

    Nair, Gopakumar Gopinathan

    2013-01-01

    Radioprotecting ability of the natural polyphenol, gallic acid (3,4,5-trihydroxybenzoic acid, GA), was investigated in Swiss albino mice. Oral administration of GA (100 mg/kg body weight), one hour prior to whole body gamma radiation exposure (2–8 Gy; 6 animals/group), reduced the radiation-induced cellular DNA damage in mouse peripheral blood leukocytes, bone marrow cells, and spleenocytes as revealed by comet assay. The GA administration also prevented the radiation-induced decrease in the levels of the antioxidant enzyme, glutathione peroxidise (GPx), and nonprotein thiol glutathione (GSH) and inhibited the peroxidation of membrane lipids in these animals. Exposure of mice to whole body gamma radiation also caused the formation of micronuclei in blood reticulocytes and chromosomal aberrations in bone marrow cells, and the administration of GA resulted in the inhibition of micronucleus formation and chromosomal aberrations. In irradiated animals, administration of GA elicited an enhancement in the rate of DNA repair process and a significant increase in endogenous spleen colony formation. The administration of GA also prevented the radiation-induced weight loss and mortality in animals (10 animals/group) exposed to lethal dose (10 Gy) of gamma radiation. (For every experiment unirradiated animals without GA administration were taken as normal control; specific dose (Gy) irradiated animals without GA administration serve as radiation control; and unirradiated GA treated animals were taken as drug alone control). PMID:24069607

  5. Gamma-Ray Bursts and the Earth: Exploration of Atmospheric, Biological, Climatic, and Biogeochemical Effects

    NASA Astrophysics Data System (ADS)

    Thomas, Brian C.; Melott, Adrian L.; Jackman, Charles H.; Laird, Claude M.; Medvedev, Mikhail V.; Stolarski, Richard S.; Gehrels, Neil; Cannizzo, John K.; Hogan, Daniel P.; Ejzak, Larissa M.

    2005-11-01

    Gamma-ray bursts (GRBs) are likely to have made a number of significant impacts on the Earth during the last billion years. The gamma radiation from a burst within a few kiloparsecs would quickly deplete much of the Earth's protective ozone layer, allowing an increase in solar UVB radiation reaching the surface. This radiation is harmful to life, damaging DNA and causing sunburn. In addition, NO2 produced in the atmosphere would cause a decrease in visible sunlight reaching the surface and could cause global cooling. Nitric acid rain could stress portions of the biosphere, but the increased nitrate deposition could be helpful to land plants. We have used a two-dimensional atmospheric model to investigate the effects on the Earth's atmosphere of GRBs delivering a range of fluences, at various latitudes, at the equinoxes and solstices, and at different times of day. We have estimated DNA damage levels caused by increased solar UVB radiation, reduction in solar visible light due to NO2 opacity, and deposition of nitrates through rainout of HNO3. For the ``typical'' nearest burst in the last billion years, we find globally averaged ozone depletion up to 38%. Localized depletion reaches as much as 74%. Significant global depletion (at least 10%) persists up to about 7 yr after the burst. Our results depend strongly on time of year and latitude over which the burst occurs. The impact scales with the total fluence of the GRB at the Earth but is insensitive to the time of day of the burst and its duration (1-1000 s). We find DNA damage of up to 16 times the normal annual global average, well above lethal levels for simple life forms such as phytoplankton. The greatest damage occurs at mid- to low latitudes. We find reductions in visible sunlight of a few percent, primarily in the polar regions. Nitrate deposition similar to or slightly greater than that currently caused by lightning is also observed, lasting several years. We discuss how these results support the hypothesis that the Late Ordovician mass extinction may have been initiated by a GRB.

  6. Rifaximin diminishes neutropenia following potentially lethal whole-body radiation.

    PubMed

    Jahraus, Christopher D; Schemera, Bettina; Rynders, Patricia; Ramos, Melissa; Powell, Charles; Faircloth, John; Brawner, William R

    2010-07-01

    Terrorist attacks involving radiological or nuclear weapons are a substantial geopolitical concern, given that large populations could be exposed to potentially lethal doses of radiation. Because of this, evaluating potential countermeasures against radiation-induced mortality is critical. Gut microflora are the most common source of systemic infection following exposure to lethal doses of whole-body radiation, suggesting that prophylactic antibiotic therapy may reduce mortality after radiation exposure. The chemical stability, easy administration and favorable tolerability profile of the non-systemic antibiotic, rifaximin, make it an ideal potential candidate for use as a countermeasure. This study evaluated the use of rifaximin as a countermeasure against low-to-intermediate-dose whole-body radiation in rodents. Female Wistar rats (8 weeks old) were irradiated with 550 cGy to the whole body and were evaluated for 30 d. Animals received methylcellulose, neomycin (179 mg/kg/d) or variably dosed rifaximin (150-2000 mg/kg/d) one hour after irradiation and daily throughout the study period. Clinical assessments (e.g. body weight) were made daily. On postirradiation day 30, blood samples were collected and a complete blood cell count was performed. Animals receiving high doses of rifaximin (i.e. 1000 or 2000 mg/kg/d) had a greater increase in weight from the day of irradiation to postirradiation day 30 compared with animals that received placebo or neomycin. For animals with an increase in average body weight from irradiation day within 80-110% of the group average, methylcellulose rendered an absolute neutrophil count (ANC) of 211, neomycin rendered an ANC of 334, rifaximin 300 mg/kg/d rendered an ANC of 582 and rifaximin 1000 mg/kg/d rendered an ANC of 854 (P = 0.05 for group comparison). Exposure to rifaximin after near-lethal whole-body radiation resulted in diminished levels of neutropenia.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yoo-Shin; Lee, Tae Hoon; O'Neill, Brian E., E-mail: BEOneill@houstonmethodist.org

    Non-lethal hyperthermia is used clinically as adjuvant treatment to radiation, with mixed results. Denaturation of protein during hyperthermia treatment is expected to synergize with radiation damage to cause cell cycle arrest and apoptosis. Alternatively, hyperthermia is known to cause tissue level changes in blood flow, increasing the oxygenation and radiosensitivity of often hypoxic tumors. In this study, we elucidate a third possibility, that hyperthermia alters cellular adhesion and mechanotransduction, with particular impact on the cancer stem cell population. We demonstrate that cell heating results in a robust but temporary loss of cancer cell aggressiveness and metastatic potential in mouse models.more » In vitro, this heating results in a temporary loss in cell mobility, adhesion, and proliferation. Our hypothesis is that the loss of cellular adhesion results in suppression of cancer stem cells and loss of tumor virulence and metastatic potential. Our study suggests that the metastatic potential of cancer is particularly reduced by the effects of heat on cellular adhesion and mechanotransduction. If true, this could help explain both the successes and failures of clinical hyperthermia, and suggest ways to target treatments to those who would most benefit. - Highlights: • Non-lethal hyperthermia treatment of cancer cells is shown to cause a reduction in rates of tumor initiation and metastasis. • Dynamic imaging of cells during heat treatment shows temporary changes in cell shape, cell migration, and cell proliferation. • Loss of adhesion may lead to the observed effect, which may disproportionately impact the tumor initiating cell fraction. • Loss or suppression of the tumor initiating cell fraction results in the observed loss of metastatic potential in vivo. • This result may lead to new approaches to synergizing hyperthermia with surgery, radiation, and chemotherapy.« less

  8. Radiation and inhibition of angiogenesis by canstatin synergize to induce HIF-1α–mediated tumor apoptotic switch

    PubMed Central

    Magnon, Claire; Opolon, Paule; Ricard, Marcel; Connault, Elisabeth; Ardouin, Patrice; Galaup, Ariane; Métivier, Didier; Bidart, Jean-Michel; Germain, Stéphane; Perricaudet, Michel; Schlumberger, Martin

    2007-01-01

    Tumor radioresponsiveness depends on endothelial cell death, which leads in turn to tumor hypoxia. Radiation-induced hypoxia was recently shown to trigger tumor radioresistance by activating angiogenesis through hypoxia-inducible factor 1–regulated (HIF-1–regulated) cytokines. We show here that combining targeted radioiodide therapy with angiogenic inhibitors, such as canstatin, enhances direct tumor cell apoptosis, thereby overcoming radio-induced HIF-1–dependent tumor survival pathways in vitro and in vivo. We found that following dual therapy, HIF-1α increases the activity of the canstatin-induced αvβ5 signaling tumor apoptotic pathway and concomitantly abrogates mitotic checkpoint and tetraploidy triggered by radiation. Apoptosis in conjunction with mitotic catastrophe leads to lethal tumor damage. We discovered that HIF-1 displays a radiosensitizing activity that is highly dependent on treatment modalities by regulating key apoptotic molecular pathways. Our findings therefore support a crucial role for angiogenesis inhibitors in shifting the fate of radiation-induced HIF-1α activity from hypoxia-induced tumor radioresistance to hypoxia-induced tumor apoptosis. This study provides a basis for developing new biology-based clinically relevant strategies to improve the efficacy of radiation oncology, using HIF-1 as an ally for cancer therapy. PMID:17557121

  9. Chloroquine Improves Survival and Hematopoietic Recovery After Lethal Low-Dose-Rate Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim Yiting; Hedayati, Mohammad; Merchant, Akil A.

    2012-11-01

    Purpose: We have previously shown that the antimalarial agent chloroquine can abrogate the lethal cellular effects of low-dose-rate (LDR) radiation in vitro, most likely by activating the ataxia-telangiectasia mutated (ATM) protein. Here, we demonstrate that chloroquine treatment also protects against lethal doses of LDR radiation in vivo. Methods and Materials: C57BL/6 mice were irradiated with a total of 12.8 Gy delivered at 9.4 cGy/hour. ATM null mice from the same background were used to determine the influence of ATM. Chloroquine was administered by two intraperitoneal injections of 59.4 {mu}g per 17 g of body weight, 24 hours and 4 hoursmore » before irradiation. Bone marrow cells isolated from tibia, fibula, and vertebral bones were transplanted into lethally irradiated CD45 congenic recipient mice by retroorbital injection. Chimerism was assessed by flow cytometry. In vitro methylcellulose colony-forming assay of whole bone marrow cells and fluorescence activated cell sorting analysis of lineage depleted cells were used to assess the effect of chloroquine on progenitor cells. Results: Mice pretreated with chloroquine before radiation exhibited a significantly higher survival rate than did mice treated with radiation alone (80% vs. 31%, p = 0.0026). Chloroquine administration before radiation did not affect the survival of ATM null mice (p = 0.86). Chloroquine also had a significant effect on the early engraftment of bone marrow cells from the irradiated donor mice 6 weeks after transplantation (4.2% vs. 0.4%, p = 0.015). Conclusion: Chloroquine administration before radiation had a significant effect on the survival of normal but not ATM null mice, strongly suggesting that the in vivo effect, like the in vitro effect, is also ATM dependent. Chloroquine improved the early engraftment of bone marrow cells from LDR-irradiated mice, presumably by protecting the progenitor cells from radiation injury. Chloroquine thus could serve as a very useful drug for protection against the harmful effects of LDR radiation.« less

  10. Further Characterization of the Mitigation of Radiation Lethality by Protective Wounding

    PubMed Central

    Dynlacht, Joseph R.; Garrett, Joy; Joel, Rebecca; Lane, Katharina; Mendonca, Marc S.; Orschell, Christie M.

    2017-01-01

    There continues to be a major effort in the United States to develop mitigators for the treatment of mass casualties that received high-intensity acute ionizing radiation exposures from the detonation of an improvised nuclear device during a radiological terrorist attack. The ideal countermeasure should be effective when administered after exposure, and over a wide range of absorbed doses. We have previously shown that the administration of a subcutaneous incision of a defined length, if administered within minutes after irradiation, protected young adult female C57BL/6 mice against radiation-induced lethality, and increased survival after total-body exposure to an LD50/30 X-ray dose from 50% to over 90%. We refer to this approach as “protective wounding”. In this article, we report on our efforts to further optimize, characterize and demonstrate the validity of the protective wounding response by comparing the response of female and male mice, varying the radiation dose, the size of the wound, and the timing of wounding with respect to administration of the radiation dose. Both male and female mice that received a subcutaneous incision after irradiation were significantly protected from radiation lethality. We observed that the extent of protection against lethality after an LD50/30 X-ray dose was independent of the size of the subcutaneous cut, and that a 3 mm subcutaneous incision is effective at enhancing the survival of mice exposed to a broad range of radiation doses (LD15–LD100). Over the range of 6.2–6.7 Gy, the increase in survival observed in mice that received an incision was associated with an enhanced recovery of hematopoiesis. The enhanced rate of recovery of hematopoiesis was preceded by an increase in the production of a select group of cytokines. Thus, a thorough knowledge of the timing of the cytokine cascade after wounding could aid in the development of novel pharmacological radiation countermeasures that can be administered several days after the actual radiation exposure. PMID:28437188

  11. Induction and repair of DNA strand breaks in bovine lens epithelial cells after high LET irradiation

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, C.; Heilmann, J.; Rink, H.

    The lens epithelium is the initiation site for the development of radiation induced cataracts. Radiation in the cortex and nucleus interacts with proteins, while in the epithelium, experimental results reveal mutagenic and cytotoxic effects. It is suggested that incorrectly repaired DNA damage may be lethal in terms of cellular reproduction and also may initiate the development of mutations or transformations in surviving cells. The occurrence of such genetically modified cells may lead to lens opacification. For a quantitative risk estimation for astronauts and space travelers it is necessary to know the relative biological effectiveness (RBE), because the spacial and temporal distribution of initial physical damage induced by cosmic radiation differ significantly from that of X-rays. RBEs for the induction of DNA strand breaks and the efficiency of repair of these breaks were measured in cultured diploid bovine lens epithelial cells exposed to different LET irradiation to either 300 kV X-rays or to heavy ions at the UNILAC accelerator at GSI. Accelerated ions from Z=8 (O) to Z=92 (U) were used. Strand breaks were measured by hydroxyapatite chromatography of alkaline unwound DNA (overall strand breaks). Results showed that DNA damage occurs as a function of dose, of kinetic energy and of LET. For particles having the same LET the severity of the DNA damage increases with dose. For a given particle dose, as the LET rises, the numbers of DNA strand breaks increase to a maximum and then reach a plateau or decrease. Repair kinetics depend on the fluence (irradiation dose). At any LET value, repair is much slower after heavy ion exposure than after X-irradiation. For ions with an LET of less than 10,000 keV μ -1 more than 90 percent of the strand breaks induced are repaired within 24 hours. At higher particle fluences, especially for low energetic particles with a very high local density of energy deposition within the particle track, a higher proportion of non-rejoined breaks is found, even after prolonged periods of incubation. At the highest LET value (16,300 keV μ -1 no significant repair is observed. These LET-dependencies are consistent with the current mechanistic model for radiation induced cataractogenesis which postulates that genomic damage to the surviving fraction of epithelial cells is responsible for lens opacification.

  12. Tissue responses to low protracted doses of high LET radiations or photons: Early and late damage relevant to radio-protective countermeasures

    NASA Astrophysics Data System (ADS)

    Ainsworth, E. J.; Afzal, S. M. J.; Crouse, D. A.; Hanson, W. R.; Fry, R. J. M.

    Early and late murine tissue responses to single or fractionated low doses of heavy charged particles, fission-spectrum neutrons or gamma rays are considered. Damage to the hematopoietic system is emphasized, but results on acute lethality, host response to challenge with transplanted leukemia cells and life-shortening are presented. Low dose rates per fraction were used in some neutron experiments. Split-dose lethality studies (LD 50/30) with fission neutrons indicated greater accumulation of injury during a 9 fraction course (over 17 days) than was the case for γ-radiation. When total doses of 96 or 247 cGy of neutrons or γ rays were given as a single dose or in 9 fractions, a significant sparing effect on femur CFU-S depression was observed for both radiation qualities during the first 11 days, but there was not an earlier return to normal with dose fractionation. During the 9 fraction sequence, a significant sparing effect of low dose rate on CFU-S depression was observed in both neutron and γ-irradiated mice. CFU-S content at the end of the fractionation sequence did not correlate with measured LD 50/30. Sustained depression of femur and spleen CFU-S and a significant thrombocytopenia were observed when a total neutron dose of 240 cGy was given in 72 fractions over 24 weeks at low dose rates. The temporal aspects of CFU-S repopulation were different after a single versus fractionated neutron doses. The sustained reduction in the size of the CFU-S population was accompanied by an increase in the fraction in DNA synthesis. The proliferation characteristics and effects of age were different for radial CFU-S population closely associated with bone, compared with the axial population that can be readily aspirated from the femur. In aged irradiated animals, the CFU-S proliferation/redistribution response to typhoid vaccine showed both an age and radiation effect. After high single doses of neutrons or γ rays, a significant age- and radiation-related deficiency in host defense mechanisms was detected by a shorter mean survival time following challenge with transplantable leukemia cells. Comparison of dose-response curves for life shortening after irradiation with fission-spectrum neutrons or high energy silicon particles indicated high initial slopes for both radiation qualities at low doses, but for higher doses of silicon, the effect per Gy decreased to a value similar to that for γ rays. The two component life-shortening curve for silicon particles has implications for the potential efficacy of radioprotectants. Recent studies on protection against early and late effects by aminothiols, prostaglandins, and other compounds are discussed.

  13. Inhibition of the RhoA GTPase Activity Increases Sensitivity of Melanoma Cells to UV Radiation Effects

    PubMed Central

    Espinha, Gisele; Osaki, Juliana Harumi; Costa, Erico Tosoni; Forti, Fabio Luis

    2016-01-01

    Ultraviolet radiation is the main cause of DNA damage to melanocytes and development of melanoma, one of the most lethal human cancers, which leads to metastasis due to uncontrolled cell proliferation and migration. These phenotypes are mediated by RhoA, a GTPase overexpressed or overactivated in highly aggressive metastatic tumors that plays regulatory roles in cell cycle progression and cytoskeleton remodeling. This work explores whether the effects of UV on DNA damage, motility, proliferation, and survival of human metastatic melanoma cells are mediated by the RhoA pathway. Mutant cells expressing dominant-negative (MeWo-RhoA-N19) or constitutively active RhoA (MeWo-RhoA-V14) were generated and subjected to UV radiation. A slight reduction in migration and invasion was observed in MeWo and MeWo-RhoA-V14 cells but not in MeWo-RhoA-N19 cells, which presented inefficient motility and invasiveness associated with stress fibers fragmentation. Proliferation and survival of RhoA-deficient cells were drastically reduced by UV compared to cells displaying normal or high RhoA activity, suggesting increased sensitivity to UV. Loss of RhoA activity also caused less efficient DNA repair, with elevated levels of DNA lesions such as strand breaks and cyclobutane pyrimidine dimers (CPDs). Thus, RhoA mediates genomic stability and represents a potential target for sensitizing metastatic tumors to genotoxic agents. PMID:26823948

  14. The Exploitation of Low-Energy Electrons in Cancer Treatment.

    PubMed

    Rezaee, Mohammad; Hill, Richard P; Jaffray, David A

    2017-08-01

    Given the distinct characteristics of low-energy electrons (LEEs), particularly at energies less than 30 eV, they can be applied to a wide range of therapeutic modalities to improve cancer treatment. LEEs have been shown to efficiently produce complex molecular damage resulting in substantial cellular toxicities. Since LEEs are produced in copious amounts from high-energy radiation beam, including photons, protons and ions; the control of LEE distribution can potentially enhance the therapeutic radio of such beams. LEEs can play a substantial role in the synergistic effect between radiation and chemotherapy, particularly halogenated and platinum-based anticancer drugs. Radiosensitizing entities containing atoms of high atomic number such as gold nanoparticles can be a source of LEE production if high-energy radiation interacts with them. This can provide a high local density of LEEs in a cell and produce cellular toxicity. Auger-electron-emitting radionuclides also create a high number of LEEs in each decay, which can induce lethal damage in a cell. Exploitation of LEEs in cancer treatment, however, faces a few challenges, such as dosimetry of LEEs and selective delivery of radiosensitizing and chemotherapeutic molecules close to cellular targets. This review first discusses the rationale for utilizing LEEs in cancer treatment by explaining their mechanism of action, describes theoretical and experimental studies at the molecular and cellular levels, then discusses strategies for achieving modification of the distribution and effectiveness of LEEs in cancerous tissue and their associated clinical benefit.

  15. Mechanism of Action for Anti-Radiation Vaccine in Reducing the Biological Impact of High-Dose Irradiation

    NASA Technical Reports Server (NTRS)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    2006-01-01

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. We partially analyzed the biochemical characteristics of the SRDs. The SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  16. Mechanism of action for anti-radiation vaccine in reducing the biological impact of high-dose gamma irradiation

    NASA Astrophysics Data System (ADS)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after high-dose gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naïve animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which they mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  17. Mechanism of Action for Anti-radiation Vaccine in Reducing the Biological Impact of High-dose Gamma Irradiation

    NASA Technical Reports Server (NTRS)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    2007-01-01

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  18. Gene interactions in the DNA damage-response pathway identified by genome-wide RNA-interference analysis of synthetic lethality

    PubMed Central

    van Haaften, Gijs; Vastenhouw, Nadine L.; Nollen, Ellen A. A.; Plasterk, Ronald H. A.; Tijsterman, Marcel

    2004-01-01

    Here, we describe a systematic search for synthetic gene interactions in a multicellular organism, the nematode Caenorhabditis elegans. We established a high-throughput method to determine synthetic gene interactions by genome-wide RNA interference and identified genes that are required to protect the germ line against DNA double-strand breaks. Besides known DNA-repair proteins such as the C. elegans orthologs of TopBP1, RPA2, and RAD51, eight genes previously unassociated with a double-strand-break response were identified. Knockdown of these genes increased sensitivity to ionizing radiation and camptothecin and resulted in increased chromosomal nondisjunction. All genes have human orthologs that may play a role in human carcinogenesis. PMID:15326288

  19. Is Radiation Dangerous?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    Radiation is all around us, ranging from the non-dangerous to the lethal. In this video, Fermilab’s Dr. Don Lincoln talks about radiation and gives you the real deal on whether it is dangerous or not.

  20. RADIATION INDUCED VIABILITY MUTATIONS IN THE HONEY BEE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W.R.

    The frequency of recessive detrimental mutations expressed in the haploid drone honey bee was investigated and compared with recessive and dominant lethal mutations detected in the haploid drone and diploid worker. A single queen was inseminated by a drone homozygous for three genetic markers. Viability of progeny was determined, and hybrid daughters bearing the genetic markers were stored in colonies. The spermatheca of the queen was then irradiated with 2600 r kvp x rays. Morphological defects and viability were studied in progeny and grand-progeny. A total of 92 pairs was tested during one season. Results showed that 60.8% of themore » sperm cells receiving radiation contained at least one or more dominant lethals. Correcting for the saturation effect on the assumption of independence of each dominant lethal, an average proportion of 0.94 dominant lethals were found per cell. The average reduction in embryonic viability was 28%. Forty per cent of the queens tested contained one or more recessive lethals. Corrections in procedure and plans for future work, as well as work in progress, are described. (H.M.G.)« less

  1. ATM inhibition induces synthetic lethality and enhances sensitivity of PTEN-deficient breast cancer cells to cisplatin.

    PubMed

    Li, Ke; Yan, Huaying; Guo, Wenhao; Tang, Mei; Zhao, Xinyu; Tong, Aiping; Peng, Yong; Li, Qintong; Yuan, Zhu

    2018-05-01

    PTEN deficiency often causes defects in DNA damage repair. Currently, effective therapies for breast cancer are lacking. ATM is an attractive target for cancer treatment. Previous studies suggested a synthetic lethality between PTEN and PARP. However, the synthetically lethal interaction between PTEN and ATM in breast cancer has not been reported. Moreover, the mechanism remains elusive. Here, using KU-60019, an ATM kinase inhibitor, we investigated ATM inhibition as a synthetically lethal strategy to target breast cancer cells with PTEN defects. We found that KU-60019 preferentially sensitizes PTEN-deficient MDA-MB-468 breast cancer cells to cisplatin, though it also slightly enhances sensitivity of PTEN wild-type breast cancer cells. The increased cytotoxic sensitivity is associated with apoptosis, as evidenced by flow cytometry and PARP cleavage. Additionally, the increase of DNA damage accumulation due to the decreased capability of DNA repair, as indicated by γ-H2AX and Rad51 foci, also contributed to this selective cytotoxicity. Mechanistically, compared with PTEN wild-type MDA-MB-231 cells, PTEN-deficient MDA-MB-468 cells have lower level of Rad51, higher ATM kinase activity, and display the elevated level of DNA damage. Moreover, these differences could be further enlarged by cisplatin. Our findings suggest that ATM is a promising target for PTEN-defective breast cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Increased Radioresistance to Lethal Doses of Gamma Rays in Mice and Rats after Exposure to Microwave Radiation Emitted by a GSM Mobile Phone Simulator

    PubMed Central

    Mortazavi, SMJ; Mosleh-Shirazi, MA; Tavassoli, AR; Taheri, M; Mehdizadeh, AR; Namazi, SAS; Jamali, A; Ghalandari, R; Bonyadi, S; Haghani, M; Shafie, M

    2013-01-01

    The aim of this study was to investigate the effect of pre-irradiation with microwaves on the induction of radioadaptive response. In the 1st phase of the study, 110 male mice were divided into 8 groups. The animals in these groups were exposed/sham-exposed to microwave, low dose rate gamma or both for 5 days. On day six, the animals were exposed to a lethal dose (LD). In the 2nd phase, 30 male rats were divided into 2 groups of 15 animals. The 1st group received microwave exposure. The 2nd group (controls) received the same LD but there was no treatment before the LD. On day 5, all animals were whole-body irradiated with the LD. Statistically significant differences between the survival rate of the mice only exposed to lethal dose of gamma radiation before irradiation with a lethal dose of gamma radiation with those of the animals pre-exposed to either microwave (p=0.02), low dose rate gamma (p=0.001) or both of these physical adapting doses (p=0.003) were observed. Likewise, a statistically significant difference between survival rates of the rats in control and test groups was observed. Altogether, these experiments showed that exposure to microwave radiation may induce a significant survival adaptive response. PMID:23930107

  3. The Toll-Like Receptor 5 Agonist Entolimod Mitigates Lethal Acute Radiation Syndrome in Non-Human Primates.

    PubMed

    Krivokrysenko, Vadim I; Toshkov, Ilia A; Gleiberman, Anatoli S; Krasnov, Peter; Shyshynova, Inna; Bespalov, Ivan; Maitra, Ratan K; Narizhneva, Natalya V; Singh, Vijay K; Whitnall, Mark H; Purmal, Andrei A; Shakhov, Alexander N; Gudkov, Andrei V; Feinstein, Elena

    2015-01-01

    There are currently no approved medical radiation countermeasures (MRC) to reduce the lethality of high-dose total body ionizing irradiation expected in nuclear emergencies. An ideal MRC would be effective even when administered well after radiation exposure and would counteract the effects of irradiation on the hematopoietic system and gastrointestinal tract that contribute to its lethality. Entolimod is a Toll-like receptor 5 agonist with demonstrated radioprotective/mitigative activity in rodents and radioprotective activity in non-human primates. Here, we report data from several exploratory studies conducted in lethally irradiated non-human primates (rhesus macaques) treated with a single intramuscular injection of entolimod (in the absence of intensive individualized supportive care) administered in a mitigative regimen, 1-48 hours after irradiation. Following exposure to LD50-70/40 of radiation, injection of efficacious doses of entolimod administered as late as 25 hours thereafter reduced the risk of mortality 2-3-fold, providing a statistically significant (P<0.01) absolute survival advantage of 40-60% compared to vehicle treatment. Similar magnitude of survival improvement was also achieved with drug delivered 48 hours after irradiation. Improved survival was accompanied by predominantly significant (P<0.05) effects of entolimod administration on accelerated morphological recovery of hematopoietic and immune system organs, decreased severity and duration of thrombocytopenia, anemia and neutropenia, and increased clonogenic potential of the bone marrow compared to control irradiated animals. Entolimod treatment also led to reduced apoptosis and accelerated crypt regeneration in the gastrointestinal tract. Together, these data indicate that entolimod is a highly promising potential life-saving treatment for victims of radiation disasters.

  4. DNA Double-Strand Break Repair as Determinant of Cellular Radiosensitivity to Killing and Target in Radiation Therapy

    PubMed Central

    Mladenov, Emil; Magin, Simon; Soni, Aashish; Iliakis, George

    2013-01-01

    Radiation therapy plays an important role in the management of a wide range of cancers. Besides innovations in the physical application of radiation dose, radiation therapy is likely to benefit from novel approaches exploiting differences in radiation response between normal and tumor cells. While ionizing radiation induces a variety of DNA lesions, including base damages and single-strand breaks, the DNA double-strand break (DSB) is widely considered as the lesion responsible not only for the aimed cell killing of tumor cells, but also for the general genomic instability that leads to the development of secondary cancers among normal cells. Homologous recombination repair (HRR), non-homologous end-joining (NHEJ), and alternative NHEJ, operating as a backup, are the major pathways utilized by cells for the processing of DSBs. Therefore, their function represents a major mechanism of radiation resistance in tumor cells. HRR is also required to overcome replication stress – a potent contributor to genomic instability that fuels cancer development. HRR and alternative NHEJ show strong cell-cycle dependency and are likely to benefit from radiation therapy mediated redistribution of tumor cells throughout the cell-cycle. Moreover, the synthetic lethality phenotype documented between HRR deficiency and PARP inhibition has opened new avenues for targeted therapies. These observations make HRR a particularly intriguing target for treatments aiming to improve the efficacy of radiation therapy. Here, we briefly describe the major pathways of DSB repair and review their possible contribution to cancer cell radioresistance. Finally, we discuss promising alternatives for targeting DSB repair to improve radiation therapy and cancer treatment. PMID:23675572

  5. [Injuries and fatalities caused by gas-/warning weapons].

    PubMed

    Maxeiner, H; Schneider, V

    1989-01-01

    Detailed report of 5 cases of violation with gas or warning firearms, 3 of them lethal. In one case a modified weapon (elongated barrel) and steel bullets were used, resulting in shot of the head with retained missile and lethal bleeding. In the other cases, regular weapons (8 or 9 mm cartridges) were used for contact shots; violation occurred only by the effect of powder gases. One of these cases was a suizide (lethal temporal gunshot), in the other cases shots by another person: a) shot against the arm with large soft-tissue damage (survived); b) and c) shot against the neck with exceeding rupture of the soft tissues, minimal damage of the neck arteries and in one cases bilateral tears of the hypopharynx. In this case a delayed death after primarily well operated injury occurred after 12 days by bleeding into the airways from ruptured external carotid artery.

  6. Recent Developments of the Local Effect Model (LEM) - Implications of clustered damage on cell transformation

    NASA Astrophysics Data System (ADS)

    Elsässer, Thilo

    Exposure to radiation of high-energy and highly charged ions (HZE) causes a major risk to human beings, since in long term space explorations about 10 protons per month and about one HZE particle per month hit each cell nucleus (1). Despite the larger number of light ions, the high ionisation power of HZE particles and its corresponding more complex damage represents a major hazard for astronauts. Therefore, in order to get a reasonable risk estimate, it is necessary to take into account the entire mixed radiation field. Frequently, neoplastic cell transformation serves as an indicator for the oncogenic potential of radiation exposure. It can be measured for a small number of ion and energy combinations. However, due to the complexity of the radiation field it is necessary to know the contribution to the radiation damage of each ion species for the entire range of energies. Therefore, a model is required which transfers the few experimental data to other particles with different LETs. We use the Local Effect Model (LEM) (2) with its cluster extension (3) to calculate the relative biological effectiveness (RBE) of neoplastic transformation. It was originally developed in the framework of hadrontherapy and is applicable for a large range of ions and energies. The input parameters for the model include the linear-quadratic parameters for the induction of lethal events as well as for the induction of transformation events per surviving cell. Both processes of cell inactivation and neoplastic transformation per viable cell are combined to eventually yield the RBE for cell transformation. We show that the Local Effect Model is capable of predicting the RBE of neoplastic cell transformation for a broad range of ions and energies. The comparison of experimental data (4) with model calculations shows a reasonable agreement. We find that the cluster extension results in a better representation of the measured RBE values. With this model it should be possible to better predict the risk of the complex mixed radiation field occurring in deep space. 1. F. A. Cucinotta and M. Durante, Lancet Oncol. 7, 431-435 (2006). 2. M. Scholz and G. Kraft, Radiat. Prot. Dosim. 52, 29-33 (1994). 3. Th. Els¨sser and M. Scholz, Radiat. Res. 167, 319-329 (2007). a 4. R. C. Miller, S. A. Marino, D. J. Brenner, S. G. Martin, M. Richards, G. Randers-Pehrson, and E. J. Hall, Radiat. Res. 142, 54-60 (1995).

  7. Sea Buckthorn Leaf Extract Protects Jejunum and Bone Marrow of (60)Cobalt-Gamma-Irradiated Mice by Regulating Apoptosis and Tissue Regeneration.

    PubMed

    Bala, Madhu; Gupta, Manish; Saini, Manu; Abdin, M Z; Prasad, Jagdish

    2015-01-01

    A single dose (30 mg/kg body weight) of standardized sea buckthorn leaf extract (SBL-1), administered 30 min before whole body (60)Co-gamma-irradiation (lethal dose, 10 Gy), protected >90% of mice population. The purpose of this study was to investigate the mechanism of action of SBL-1 on jejunum and bone marrow, quantify key bioactive compounds, and analyze chemical composition of SBL-1. Study with 9-week-old inbred male Swiss albino Strain 'A' mice demonstrated that SBL-1 treatment before (60)Co-gamma-irradiation (10 Gy) significantly (p < 0.05) countered radiation induced decreases in jejunum crypts (1.27-fold), villi number (1.41-fold), villus height (1.25-fold), villus cellularity (2.27-fold), cryptal Paneth cells (1.89-fold), and Bcl2 level (1.54-fold). It countered radiation induced increases in cryptal apoptotic cells (1.64-fold) and Bax levels (1.88-fold). It also countered radiation (2 Gy and 3 Gy) induced bone marrow apoptosis (1.59-fold and 1.85-fold) and micronuclei frequency (1.72-fold and 2.6-fold). SBL-1 rendered radiation protection by promoting cryptal stem cells proliferation, by regulating apoptosis, and by countering radiation induced chromosomal damage. Quercetin, Ellagic acid, Gallic acid, high contents polyphenols, tannins, and thiols detected in SBL-1 may have contributed to radiation protection by neutralization of radiation induced oxidative species, supporting stem cell proliferation and tissue regeneration.

  8. Oral PEG 15-20 protects the intestine against radiation : role of lipid rafts.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valuckaite, V.; Zaborina, O.; Long, J.

    Intestinal injury following abdominal radiation therapy or accidental exposure remains a significant clinical problem that can result in varying degrees of mucosal destruction such as ulceration, vascular sclerosis, intestinal wall fibrosis, loss of barrier function, and even lethal gut-derived sepsis. We determined the ability of a high-molecular-weight polyethylene glycol-based copolymer, PEG 15-20, to protect the intestine against the early and late effects of radiation in mice and rats and to determine its mechanism of action by examining cultured rat intestinal epithelia. Rats were exposed to fractionated radiation in an established model of intestinal injury, whereby an intestinal segment is surgicallymore » placed into the scrotum and radiated daily. Radiation injury score was decreased in a dose-dependent manner in rats gavaged with 0.5 or 2.0 g/kg per day of PEG 15-20 (n = 9-13/group, P < 0.005). Complementary studies were performed in a novel mouse model of abdominal radiation followed by intestinal inoculation with Pseudomonas aeruginosa (P. aeruginosa), a common pathogen that causes lethal gut-derived sepsis following radiation. Mice mortality was decreased by 40% in mice drinking 1% PEG 15-20 (n = 10/group, P < 0.001). Parallel studies were performed in cultured rat intestinal epithelial cells treated with PEG 15-20 before radiation. Results demonstrated that PEG 15-20 prevented radiation-induced intestinal injury in rats, prevented apoptosis and lethal sepsis attributable to P. aeruginosa in mice, and protected cultured intestinal epithelial cells from apoptosis and microbial adherence and possible invasion. PEG 15-20 appeared to exert its protective effect via its binding to lipid rafts by preventing their coalescence, a hallmark feature in intestinal epithelial cells exposed to radiation.« less

  9. Role of cellular communication in the pathways of radiation-induced biological damage

    NASA Astrophysics Data System (ADS)

    Ballarini, Francesca; Facoetti, Angelica; Mariotti, Luca; Nano, Rosanna; Ottolenghi, Andrea

    During the last decade, a large number of experimental studies on the so-called "non-targeted effects", in particular bystander effects, outlined that cellular communication plays a signifi- cant role in the pathways leading to radiation-induced biological damage. This might imply a paradigm shift in (low-dose) radiobiology, according to which one has to consider the response of groups of cells behaving like a population rather than single cells behaving as individuals. Furthermore, bystander effects, which are observed both for lethal endpoints (e.g. clonogenic inactivation and apoptosis) and for non-lethal ones (e.g. mutations and neoplastic transformation), tend to show non-linear dose responses characterized by a sharp increase followed by a plateau. This might have significant consequences in terms of low-dose risk, which is generally calculated on the basis of the "Linear No Threshold" hypothesis. Although it is known that two types of cellular communication (i.e. via gap junctions and/or molecular messengers diffusing in the extra-cellular environment, such as cytokines) play a major role, it is of utmost importance to better understand the underlying mechanisms, and how such mechanisms can be modulated by ionizing radiation. Though the "final" goal is to elucidate the in vivo scenario, in the meanwhile also in vitro studies can provide useful insights. In the present paper we will discuss key issues on the mechanisms underlying non-targeted effects and, more generally, cell communication, with focus on candidate molecular signals. Theoretical models and simulation codes can be of help in elucidating such mechanisms. In this framework, we will present a model and Monte Carlo code, under development at the University of Pavia, simulating the release, diffusion and internalization of candidate signals (typically cytokines) travelling in the extra-cellular environment, both by unirradiated (i.e., control) cells and by irradiated cells. The focus will be on the role of critical parameters such as the cell number and density, the amount of culture medium etc. Comparisons with ad hoc experimental data obtained in our laboratory will be presented, and possible implications in terms of low-dose risk assessment will be discussed. Work supported by the European Community (projects "RISC-RAD" and "NOTE") and the Italian Space Agency (project "MoMa/COUNT)

  10. SU-E-T-751: Three-Component Kinetic Model of Tumor Growth and Radiation Response for Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Y; Dahlman, E; Leder, K

    Purpose: To develop and study a kinetic model of tumor growth and its response to stereotactic radiosurgery (SRS) by assuming that the cells in irradiated tumor volume were made of three types. Methods: A set of ordinary differential equations (ODEs) were derived for three types of cells and a tumor growth rate. It is assumed that the cells were composed of actively proliferating cells, lethally damaged-dividing cells, and non-dividing cells. We modeled the tumor volume growth with a time-dependent growth rate to simulate the saturation of growth. After SRS, the proliferating cells were permanently damaged and converted to the lethallymore » damaged cells. The amount of damaged cells were estimated by the LQ-model. The damaged cells gradually stopped dividing/proliferating and died with a constant rate. The dead cells were cleared from their original location with a constant rate. The total tumor volume was the sum of the three components. The ODEs were numerically solved with appropriate initial conditions for a given dosage. The proposed model was used to model an animal experiment, for which the temporal change of a rhabdomyosarcoma tumor volume grown in a rat was measured with time resolution sufficient to test the model. Results: To fit the model to the experimental data, the following characteristics were needed with the model parameters. The α-value in the LQ-model was smaller than the commonly used value; furthermore, it decreased with increasing dose. At the same time, the tumor growth rate after SRS had to increase. Conclusions: The new 3-component model of tumor could simulate the experimental data very well. The current study suggested that the radiation sensitivity and the growth rate of the proliferating tumor cells may change after irradiation and it depended on the dosage used for SRS. These preliminary observations must be confirmed by future animal experiments.« less

  11. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals

    NASA Astrophysics Data System (ADS)

    Gauger, Tina; Konhauser, Kurt; Kappler, Andreas

    2016-04-01

    Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.

  12. The protein PprI provides protection against radiation injury in human and mouse cells

    PubMed Central

    Shi, Yi; Wu, Wei; Qiao, Huiping; Yue, Ling; Ren, Lili; Zhang, Shuyu; Yang, Wei; Yang, Zhanshan

    2016-01-01

    Severe acute radiation injuries are both very lethal and exceptionally difficult to treat. Though the radioresistant bacterium D. radiodurans was first characterized in 1956, genes and proteins key to its radioprotection have not yet to be applied in radiation injury therapy for humans. In this work, we express the D. radiodurans protein PprI in Pichia pastoris yeast cells transfected with the designed vector plasmid pHBM905A-pprI. We then treat human umbilical endothelial vein cells and BALB/c mouse cells with the yeast-derived PprI and elucidate the radioprotective effects the protein provides upon gamma irradiation. We see that PprI significantly increases the survival rate, antioxidant viability, and DNA-repair capacity in irradiated cells and decreases concomitant apoptosis rates and counts of damage-indicative γH2AX foci. Furthermore, we find that PprI reduces mortality and enhances bone marrow cell clone formation and white blood cell and platelet counts in irradiated mice. PprI also seems to alleviate pathological injuries to multiple organs and improve antioxidant viability in some tissues. Our results thus suggest that PprI has crucial radioprotective effects on irradiated human and mouse cells. PMID:27222438

  13. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals.

    PubMed

    Gauger, Tina; Konhauser, Kurt; Kappler, Andreas

    2016-04-01

    Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.

  14. Molecular Basis of Cardioprotective Effect of Antioxidant Vitamins in Myocardial Infarction

    PubMed Central

    Rodrigo, Ramón; Feliú, Felipe; Hasson, Daniel

    2013-01-01

    Acute myocardial infarction (AMI) is the leading cause of mortality worldwide. Major advances in the treatment of acute coronary syndromes and myocardial infarction, using cardiologic interventions, such as thrombolysis or percutaneous coronary angioplasty (PCA) have improved the clinical outcome of patients. Nevertheless, as a consequence of these procedures, the ischemic zone is reperfused, giving rise to a lethal reperfusion event accompanied by increased production of reactive oxygen species (oxidative stress). These reactive species attack biomolecules such as lipids, DNA, and proteins enhancing the previously established tissue damage, as well as triggering cell death pathways. Studies on animal models of AMI suggest that lethal reperfusion accounts for up to 50% of the final size of a myocardial infarct, a part of the damage likely to be prevented. Although a number of strategies have been aimed at to ameliorate lethal reperfusion injury, up to date the beneficial effects in clinical settings have been disappointing. The use of antioxidant vitamins could be a suitable strategy with this purpose. In this review, we propose a systematic approach to the molecular basis of the cardioprotective effect of antioxidant vitamins in myocardial ischemia-reperfusion injury that could offer a novel therapeutic opportunity against this oxidative tissue damage. PMID:23936799

  15. Mannan oligosaccharide requires functional ETC and TLR for biological radiation protection to normal cells.

    PubMed

    Sanguri, Sweta; Gupta, Damodar

    2018-06-27

    Low LET Ionizing radiation is known to alter intracellular redox balance by inducing free radical generation, which may cause oxidative modification of various cellular biomolecules. The extent of biomolecule-modifications/ damages and changes in vital processes (viz. cellular homeostasis, inter-/intra-cellular signaling, mitochondrial physiology/dynamics antioxidant defence systems) are crucial which in turn determine fate of cells. In the present study, we expended TLR expressing (normal/ transformed) and TLR null cells; and we have shown that mannan pretreatment in TLR expressing normal cells offers survival advantage against lethal doses of ionizing radiation. On the contrary, mannan pretreatment does not offer any protection against radiation to TLR null cells, NKE ρ° cells and transformed cells. In normal cells, abrupt decrease in mitochondrial membrane potential and endogenous ROS levels occurs following treatment with mannan. We intend to irradiate mannan-pretreated cells at a specific stage of perturbed mitochondrial functioning and ROS levels to comprehend if mannan pretreatment offers any survival advantage against radiation exposure to cells. Interestingly, pre-irradiation treatment of cells with mannan activates NFκB, p38 and JNK, alters mitochondrial physiology, increases expression of Cu/ZnSOD and MnSOD, minimizes oxidation of mitochondrial phospholipids and offers survival advantage in comparison to irradiated group, in TLR expressing normal cells. The study demonstrates that TLR and mitochondrial ETC functions are inevitable in radio-protective efficacy exhibited by mannan.

  16. Cancer radiotherapy based on femtosecond IR laser-beam filamentation yielding ultra-high dose rates and zero entrance dose.

    PubMed

    Meesat, Ridthee; Belmouaddine, Hakim; Allard, Jean-François; Tanguay-Renaud, Catherine; Lemay, Rosalie; Brastaviceanu, Tiberius; Tremblay, Luc; Paquette, Benoit; Wagner, J Richard; Jay-Gerin, Jean-Paul; Lepage, Martin; Huels, Michael A; Houde, Daniel

    2012-09-18

    Since the invention of cancer radiotherapy, its primary goal has been to maximize lethal radiation doses to the tumor volume while keeping the dose to surrounding healthy tissues at zero. Sadly, conventional radiation sources (γ or X rays, electrons) used for decades, including multiple or modulated beams, inevitably deposit the majority of their dose in front or behind the tumor, thus damaging healthy tissue and causing secondary cancers years after treatment. Even the most recent pioneering advances in costly proton or carbon ion therapies can not completely avoid dose buildup in front of the tumor volume. Here we show that this ultimate goal of radiotherapy is yet within our reach: Using intense ultra-short infrared laser pulses we can now deposit a very large energy dose at unprecedented microscopic dose rates (up to 10(11) Gy/s) deep inside an adjustable, well-controlled macroscopic volume, without any dose deposit in front or behind the target volume. Our infrared laser pulses produce high density avalanches of low energy electrons via laser filamentation, a phenomenon that results in a spatial energy density and temporal dose rate that both exceed by orders of magnitude any values previously reported even for the most intense clinical radiotherapy systems. Moreover, we show that (i) the type of final damage and its mechanisms in aqueous media, at the molecular and biomolecular level, is comparable to that of conventional ionizing radiation, and (ii) at the tumor tissue level in an animal cancer model, the laser irradiation method shows clear therapeutic benefits.

  17. Mitochondrial Cardiomyopathy Caused by Elevated Reactive Oxygen Species and Impaired Cardiomyocyte Proliferation.

    PubMed

    Zhang, Donghui; Li, Yifei; Heims-Waldron, Danielle; Bezzerides, Vassilios; Guatimosim, Silvia; Guo, Yuxuan; Gu, Fei; Zhou, Pingzhu; Lin, Zhiqiang; Ma, Qing; Liu, Jianming; Wang, Da-Zhi; Pu, William T

    2018-01-05

    Although mitochondrial diseases often cause abnormal myocardial development, the mechanisms by which mitochondria influence heart growth and function are poorly understood. To investigate these disease mechanisms, we studied a genetic model of mitochondrial dysfunction caused by inactivation of Tfam (transcription factor A, mitochondrial), a nuclear-encoded gene that is essential for mitochondrial gene transcription and mitochondrial DNA replication. Tfam inactivation by Nkx2.5 Cre caused mitochondrial dysfunction and embryonic lethal myocardial hypoplasia. Tfam inactivation was accompanied by elevated production of reactive oxygen species (ROS) and reduced cardiomyocyte proliferation. Mosaic embryonic Tfam inactivation confirmed that the block to cardiomyocyte proliferation was cell autonomous. Transcriptional profiling by RNA-seq demonstrated the activation of the DNA damage pathway. Pharmacological inhibition of ROS or the DNA damage response pathway restored cardiomyocyte proliferation in cultured fetal cardiomyocytes. Neonatal Tfam inactivation by AAV9-cTnT-Cre caused progressive, lethal dilated cardiomyopathy. Remarkably, postnatal Tfam inactivation and disruption of mitochondrial function did not impair cardiomyocyte maturation. Rather, it elevated ROS production, activated the DNA damage response pathway, and decreased cardiomyocyte proliferation. We identified a transient window during the first postnatal week when inhibition of ROS or the DNA damage response pathway ameliorated the detrimental effect of Tfam inactivation. Mitochondrial dysfunction caused by Tfam inactivation induced ROS production, activated the DNA damage response, and caused cardiomyocyte cell cycle arrest, ultimately resulting in lethal cardiomyopathy. Normal mitochondrial function was not required for cardiomyocyte maturation. Pharmacological inhibition of ROS or DNA damage response pathways is a potential strategy to prevent cardiac dysfunction caused by some forms of mitochondrial dysfunction. © 2017 American Heart Association, Inc.

  18. Protection of Melanized Cryptococcus neoformans from Lethal Dose Gamma Irradiation Involves Changes in Melanin's Chemical Structure and Paramagnetism

    PubMed Central

    Khajo, Abdelahad; Bryan, Ruth A.; Friedman, Matthew; Burger, Richard M.; Levitsky, Yan; Casadevall, Arturo; Magliozzo, Richard S.; Dadachova, Ekaterina

    2011-01-01

    Certain fungi thrive in highly radioactive environments including the defunct Chernobyl nuclear reactor. Cryptococcus neoformans (C. neoformans), which uses L-3,4-dihydroxyphenylalanine (L-DOPA) to produce melanin, was used here to investigate how gamma radiation under aqueous aerobic conditions affects the properties of melanin, with the aim of gaining insight into its radioprotective role. Exposure of melanized fungal cell in aqueous suspensions to doses of γ-radiation capable of killing 50 to 80% of the cells did not lead to a detectable loss of melanin integrity according to EPR spectra of melanin radicals. Moreover, upon UV-visible (Xe-lamp) illumination of melanized cells, the increase in radical population was unchanged after γ-irradiation. Gamma-irradiation of frozen cell suspensions and storage of samples for several days at 77 K however, produced melanin modification noted by a reduced radical population and reduced photoresponse. More direct evidence for structural modification of melanin came from the detection of soluble products with absorbance maxima near 260 nm in supernatants collected after γ-irradiation of cells and cell-free melanin. These products, which include thiobarbituric acid (TBA)-reactive aldehydes, were also generated by Fenton reagent treatment of cells and cell-free melanin. In an assay of melanin integrity based on the metal (Bi+3) binding capacity of cells, no detectable loss in binding was detected after γ-irradiation. Our results show that melanin in C. neoformans cells is susceptible to some damage by hydroxyl radical formed in lethal radioactive aqueous environments and serves a protective role in melanized fungi that involves sacrificial breakdown. PMID:21966422

  19. Executive functions and social cognition in highly lethal self-injuring patients with borderline personality disorder.

    PubMed

    Williams, Gregory E; Daros, Alexander R; Graves, Bryanna; McMain, Shelley F; Links, Paul S; Ruocco, Anthony C

    2015-04-01

    Risk for potentially lethal self-injurious behavior in borderline personality disorder (BPD) may be associated with deficits in neuropsychological functions and social cognition. In particular, individuals with BPD engaging in more medically damaging self-injurious behaviors may have more severe executive function deficits and altered emotion perception as compared to patients engaging in less lethal acts. In the current study, 58 patients with BPD reporting a lifetime history of self-injurious behavior were administered neuropsychological measures of response inhibition, planning and problem-solving,and tests of facial emotion recognition and discrimination. Patients who engaged in more medically lethal self-injurious behaviors reported engaging in impulsive behaviors more frequently and displayed neuropsychological deficits in problem-solving and response inhibition. They were also less accurate in recognizing happy facial expressions and in discerning subtle differences in emotional intensity in sad facial expressions. These findings suggest that patients with BPD that engage in more physically damaging self-injurious behaviors may have greater difficulties with behavioral control and employ less efficient problem-solving strategies. Problems in facial emotion recognition and discrimination may contribute to interpersonal difficulties in patients with BPD who self-injure. (c) 2015 APA, all rights reserved).

  20. Utilization of ICU Data to Improve 30 and 60 Day HENRE Mortality Models, Revision 1

    DTIC Science & Technology

    2017-05-12

    Acute Radiation Syndrome , Mortality, Burn Combined Injury, Lethality, Small Intestine, Ordinary...a large dose of radiation in a short period of time (high dose rate) causes acute radiation syndrome (ARS). Depending on the radiation dose, an...individual may experience the hematopoietic acute radiation syndrome (H-ARS) or the gastrointestinal acute radiation syndrome (GI-ARS) (reviewed in

  1. AS-2, a novel inhibitor of p53-dependent apoptosis, prevents apoptotic mitochondrial dysfunction in a transcription-independent manner and protects mice from a lethal dose of ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morita, Akinori, E-mail: morita@tokushima-u.ac.jp; Ariyasu, Shinya; Wang, Bing

    2014-08-08

    Highlights: • A bidentate HQ derivative, AS-2, suppresses p53-dependent apoptosis by DNA damage. • AS-2 does not significantly affect nuclear p53 response. • UV-excited blue emission of AS-2 clearly showed its extranuclear localization. • AS-2 prevents mitochondrial dysfunction despite the increase of mitochondrial p53. • AS-2 protects mice from a radiation dose that causes lethal hematopoietic syndrome. - Abstract: In a previous study, we reported that some tetradentate zinc(II) chelators inhibit p53 through the denaturation of its zinc-requiring structure but a chelator, Bispicen, a potent inhibitor of in vitro apoptosis, failed to show any efficient radioprotective effect against irradiated micemore » because the toxicity of the chelator to mice. The unsuitability of using tetradentate chelators as radioprotectors prompted us to undertake a more extensive search for p53-inhibiting agents that are weaker zinc(II) chelators and therefore less toxic. Here, we show that an 8-hydroxyquinoline (8HQ) derivative, AS-2, suppresses p53-dependent apoptosis through a transcription-independent mechanism. A mechanistic study using cells with different p53 characteristics revealed that the suppressive effect of AS-2 on apoptosis is specifically mediated through p53. In addition, AS-2 was less effective in preventing p53-mediated transcription-dependent events than pifithrin-μ (PFTμ), an inhibitor of transcription-independent apoptosis by p53. Fluorescence visualization of the extranuclear distribution of AS-2 also supports that it is ineffective on the transcription-dependent pathway. Further investigations revealed that AS-2 suppressed mitochondrial apoptotic events, such as the mitochondrial release of intermembrane proteins and the loss of mitochondrial membrane potential, although AS-2 resulted in an increase in the mitochondrial translocation of p53 as opposed to the decrease of cytosolic p53, and did not affect the apoptotic interaction of p53 with Bcl-2. AS-2 also protected mice that had been exposed to a lethal dose of ionizing radiation. Our findings indicate that some types of bidentate 8HQ chelators could serve as radioprotectors with no substantial toxicity in vivo.« less

  2. Induction and repair of DNA strand breaks in bovine lens epithelial cells after high LET irradiation

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, C.; Heilmann, J.; Rink, H.

    The lens epithelium is the initiation site for the development of radiation induced cataracts. While in the cortex and nucleus radiation interacts with proteins, experimental results from cultured lenses and lens epithelial cells demonstrate mutagenic and cytotoxic effects in the epithelium. It is suggested that incorrectly repaired DNA damage may be lethal in terms of cellular reproduction and also may initiate the development of mutations or transformations in surviving cells. The occurrence of such genetically modified cells may lead to lens opacification. For a quantitative risk estimation for astronauts and space travelers it is necessary to know the radiation's relative biological effectiveness (RBE), because cosmic rays differ significantly from X-rays. RBEs for the induction of DNA strand breaks and the efficiency of repair of these breaks were measured in cultured diploid bovine lens epithelial cells exposed to different LET irradiations. Irradiations were performed either with 300 kV X-rays or at the UNILAC accelerator at GSI. Accelerated ions from Z=8 (O) to Z=92 (U) were used. For strand break measurements hydroxyapatite chromatography of alka-line unwound DNA (overall strand breaks) and non-denaturing filter elution technique (double strand breaks) were applied. Experiments showed that DNA damage occurs as a function of dose, of kinetic energy and of LET. For particles having the same LET the severity of the DNA damage increases with dose. For a given particle dose, as the LET rises, the numbers of DNA strand breaks increase to a maximum and then reach a plateau or decrease. Repair kinetics depend on the fluence (irradiation dose). At any LET value, repair is much slower after heavy ion exposure than after X-irradiation. For ions with an LET of less than 10,000 keV/μm more than 90 percent of the strand breaks induced are repaired within 24 hours. At higher particle fluences, especially for low energetic particles with a very high local density of energy deposition within the particle track, a higher proportion of non-rejoined breaks is found, even after prolonged periods of incubation. At the highest LET value (16,300 keV/μm) no significant repair is observed. These observations are consistent with the current theory of the mechanism of radiation induced cataractogenesis which posts that genomic damage to the epithelial cells surviving the exposure is responsible for lens opacification.

  3. Radiation-induced DNA-protein cross-links: Mechanisms and biological significance.

    PubMed

    Nakano, Toshiaki; Xu, Xu; Salem, Amir M H; Shoulkamy, Mahmoud I; Ide, Hiroshi

    2017-06-01

    Ionizing radiation produces various DNA lesions such as base damage, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-protein cross-links (DPCs). Of these, the biological significance of DPCs remains elusive. In this article, we focus on radiation-induced DPCs and review the current understanding of their induction, properties, repair, and biological consequences. When cells are irradiated, the formation of base damage, SSBs, and DSBs are promoted in the presence of oxygen. Conversely, that of DPCs is promoted in the absence of oxygen, suggesting their importance in hypoxic cells, such as those present in tumors. DNA and protein radicals generated by hydroxyl radicals (i.e., indirect effect) are responsible for DPC formation. In addition, DPCs can also be formed from guanine radical cations generated by the direct effect. Actin, histones, and other proteins have been identified as cross-linked proteins. Also, covalent linkages between DNA and protein constituents such as thymine-lysine and guanine-lysine have been identified and their structures are proposed. In irradiated cells and tissues, DPCs are repaired in a biphasic manner, consisting of fast and slow components. The half-time for the fast component is 20min-2h and that for the slow component is 2-70h. Notably, radiation-induced DPCs are repaired more slowly than DSBs. Homologous recombination plays a pivotal role in the repair of radiation-induced DPCs as well as DSBs. Recently, a novel mechanism of DPC repair mediated by a DPC protease was reported, wherein the resulting DNA-peptide cross-links were bypassed by translesion synthesis. The replication and transcription of DPC-bearing reporter plasmids are inhibited in cells, suggesting that DPCs are potentially lethal lesions. However, whether DPCs are mutagenic and induce gross chromosomal alterations remains to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Whole body protection against lethal ionizing radiation in mice by REC-2001: a semi-purified fraction of Podophyllum hexandrum.

    PubMed

    Lata, M; Prasad, J; Singh, S; Kumar, R; Singh, L; Chaudhary, P; Arora, R; Chawla, R; Tyagi, S; Soni, N L; Sagar, R K; Devi, M; Sharma, R K; Puri, S C; Tripathi, R P

    2009-01-01

    The current study has concentrated on assessment of the radioprotective potential of REC-2001, a semi-purified fraction of rhizomes of Podophyllum hexandrum, in Swiss albino Strain 'A' mice exposed to 10 Gy whole-body gamma radiation. Animals were treated with 10 and 15 mg/kg b wt (i.p.) of REC-2001 1h prior to exposure to a lethal dose of gamma-radiation (10 Gy) and observed upto 30 days. For analysis of maximum tolerable dose (MTD), LD(50) and acute toxic dose, different concentrations of the extract were administered to animals and their mortality and morbidity status was observed upto 72 h and one week, respectively. Dose reduction factor (DRF) was determined by exposing REC-2001 pre-treated mice to supra-lethal doses of gamma-radiation. Endogenous spleen colony forming units (CFU), DNA strand breaks in thymocytes (alkaline halo assay) and lipid degradation was studied to understand the mechanism of radioprotection. A single dose of REC-2001 (10 and 15 mg/kg b wt i.p.) exhibited >90% survival in the pre-treated irradiated group versus no survival in radiation control group. Single doses of upto 75 mg/kg b wt (i.p.) did not cause any mortality (MTD) in mice. REC-2001, a dose of 90 mg/kg b wt, resulted in 50% mortality (LD(50)), while the LD(100) was 115 mg/kg b wt REC-2001 exhibited a DRF of 1.62. CFU counts in the REC-2001 treated group were found significantly high (5.33/spleen) as compared to controls. Exposure of thymocytes to 10 Gy radiation resulted in increased halo diameter (45+/-3 microm) in comparison to untreated controls (8+/-1 microm). REC-2001 administration (500 microg/ml) decreased the halo diameter to 15+/-2 microm. Radiation-induced lipid degradation was also inhibited by REC-2001. The present study has revealed that REC-2001 is a promising radioprotective fraction that can be effectively used against lethal doses of gamma-radiation after further investigations in higher animal models.

  5. Disease severity in a mouse model of ataxia telangiectasia is modulated by the DNA damage checkpoint gene Hus1

    PubMed Central

    Balmus, Gabriel; Zhu, Min; Mukherjee, Sucheta; Lyndaker, Amy M.; Hume, Kelly R.; Lee, Jaesung; Riccio, Mark L.; Reeves, Anthony P.; Sutter, Nathan B.; Noden, Drew M.; Peters, Rachel M.; Weiss, Robert S.

    2012-01-01

    The human genomic instability syndrome ataxia telangiectasia (A-T), caused by mutations in the gene encoding the DNA damage checkpoint kinase ATM, is characterized by multisystem defects including neurodegeneration, immunodeficiency and increased cancer predisposition. ATM is central to a pathway that responds to double-strand DNA breaks, whereas the related kinase ATR leads a parallel signaling cascade that is activated by replication stress. To dissect the physiological relationship between the ATM and ATR pathways, we generated mice defective for both. Because complete ATR pathway inactivation causes embryonic lethality, we weakened the ATR mechanism to different degrees by impairing HUS1, a member of the 911 complex that is required for efficient ATR signaling. Notably, simultaneous ATM and HUS1 defects caused synthetic lethality. Atm/Hus1 double-mutant embryos showed widespread apoptosis and died mid-gestationally. Despite the underlying DNA damage checkpoint defects, increased DNA damage signaling was observed, as evidenced by H2AX phosphorylation and p53 accumulation. A less severe Hus1 defect together with Atm loss resulted in partial embryonic lethality, with the surviving double-mutant mice showing synergistic increases in genomic instability and specific developmental defects, including dwarfism, craniofacial abnormalities and brachymesophalangy, phenotypes that are observed in several human genomic instability disorders. In addition to identifying tissue-specific consequences of checkpoint dysfunction, these data highlight a robust, cooperative configuration for the mammalian DNA damage response network and further suggest HUS1 and related genes in the ATR pathway as candidate modifiers of disease severity in A-T patients. PMID:22575700

  6. Damage control surgery in the abdomen: an approach for the management of severe injured patients.

    PubMed

    Germanos, Stylianos; Gourgiotis, Stavros; Villias, Constantinos; Bertucci, Marco; Dimopoulos, Nikitas; Salemis, Nikolaos

    2008-06-01

    Damage control is well established as a potentially life-saving procedure in a few selected critically injured patients. In these patients the 'lethal triad' of hypothermia, acidosis, and coagulopathy is presented as a vicious cycle that often can not be interrupted and which marks the limit of the patient's ability to cope with the physiological consequences of injury. The principles of damage control have led to improved survival and to stopped bleeding until the physiologic derangement has been restored and the patient could undergo a prolong operation for definitive repair. Although morbidity is remaining high, it is acceptable if it comes in exchange for improved survival. There are five critical decision-making stages of damage control: I, patient selection and decision to perform damage control; II, operation and intraoperative reassessment of laparotomy; III, resuscitation in the intensive care unit; IV, definitive procedures after returning to the operating room; and V, abdominal wall reconstruction. The purpose of this article is to review the physiology of the components of the 'lethal triad', the indication and principles of abdominal damage control of trauma patients, the reoperation time, and the pathophysiology of abdominal compartment syndrome.

  7. Induction and repair of DNA strand breaks in bovine lens epithelial cells after high LET irradiation.

    PubMed

    Baumstark-Khan, C; Heilmann, J; Rink, H

    2003-01-01

    The lens epithelium is the initiation site for the development of radiation induced cataracts. Radiation in the cortex and nucleus interacts with proteins, while in the epithelium, experimental results reveal mutagenic and cytotoxic effects. It is suggested that incorrectly repaired DNA damage may be lethal in terms of cellular reproduction and also may initiate the development of mutations or transformations in surviving cells. The occurrence of such genetically modified cells may lead to lens opacification. For a quantitative risk estimation for astronauts and space travelers it is necessary to know the relative biological effectiveness (RBE), because the spacial and temporal distribution of initial physical damage induced by cosmic radiation differ significantly from that of X-rays. RBEs for the induction of DNA strand breaks and the efficiency of repair of these breaks were measured in cultured diploid bovine lens epithelial cells exposed to different LET irradiation to either 300 kV X-rays or to heavy ions at the UNILAC accelerator at GSI. Accelerated ions from Z=8 (O) to Z=92 (U) were used. Strand breaks were measured by hydroxyapatite chromatography of alkaline unwound DNA (overall strand breaks). Results showed that DNA damage occurs as a function of dose, of kinetic energy and of LET. For particles having the same LET the severity of the DNA damage increases with dose. For a given particle dose, as the LET rises, the numbers of DNA strand breaks increase to a maximum and then reach a plateau or decrease. Repair kinetics depend on the fluence (irradiation dose). At any LET value, repair is much slower after heavy ion exposure than after X-irradiation. For ions with an LET of less than 10,000 keV micrometers-1 more than 90 percent of the strand breaks induced are repaired within 24 hours. At higher particle fluences, especially for low energetic particles with a very high local density of energy deposition within the particle track, a higher proportion of non-rejoined breaks is found, even after prolonged periods of incubation. At the highest LET value (16,300 keV micrometers-1) no significant repair is observed. These LET-dependencies are consistent with the current mechanistic model for radiation induced cataractogenesis which postulates that genomic damage to the surviving fraction of epithelial cells is responsible for lens opacification. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  8. Phosphorylation of the Mdm2 oncoprotein by the c-Abl tyrosine kinase regulates p53 tumor suppression and the radiosensitivity of mice.

    PubMed

    Carr, Michael I; Roderick, Justine E; Zhang, Hong; Woda, Bruce A; Kelliher, Michelle A; Jones, Stephen N

    2016-12-27

    The p53 tumor suppressor acts as a guardian of the genome by preventing the propagation of DNA damage-induced breaks and mutations to subsequent generations of cells. We have previously shown that phosphorylation of the Mdm2 oncoprotein at Ser394 by the ATM kinase is required for robust p53 stabilization and activation in cells treated with ionizing radiation, and that loss of Mdm2 Ser394 phosphorylation leads to spontaneous tumorigenesis and radioresistance in Mdm2 S394A mice. Previous in vitro data indicate that the c-Abl kinase phosphorylates Mdm2 at the neighboring residue (Tyr393) in response to DNA damage to regulate p53-dependent apoptosis. In this present study, we have generated an Mdm2 mutant mouse (Mdm2 Y393F ) to determine whether c-Abl phosphorylation of Mdm2 regulates the p53-mediated DNA damage response or p53 tumor suppression in vivo. The Mdm2 Y393F mice develop accelerated spontaneous and oncogene-induced tumors, yet display no defects in p53 stabilization and activity following acute genotoxic stress. Although apoptosis is unaltered in these mice, they recover more rapidly from radiation-induced bone marrow ablation and are more resistant to whole-body radiation-induced lethality. These data reveal an in vivo role for c-Abl phosphorylation of Mdm2 in regulation of p53 tumor suppression and bone marrow failure. However, c-Abl phosphorylation of Mdm2 Tyr393 appears to play a lesser role in governing Mdm2-p53 signaling than ATM phosphorylation of Mdm2 Ser394. Furthermore, the effects of these phosphorylation events on p53 regulation are not additive, as Mdm2 Y393F/S394A mice and Mdm2 S394A mice display similar phenotypes.

  9. Phosphorylation of the Mdm2 oncoprotein by the c-Abl tyrosine kinase regulates p53 tumor suppression and the radiosensitivity of mice

    PubMed Central

    Carr, Michael I.; Roderick, Justine E.; Zhang, Hong; Woda, Bruce A.; Kelliher, Michelle A.; Jones, Stephen N.

    2016-01-01

    The p53 tumor suppressor acts as a guardian of the genome by preventing the propagation of DNA damage-induced breaks and mutations to subsequent generations of cells. We have previously shown that phosphorylation of the Mdm2 oncoprotein at Ser394 by the ATM kinase is required for robust p53 stabilization and activation in cells treated with ionizing radiation, and that loss of Mdm2 Ser394 phosphorylation leads to spontaneous tumorigenesis and radioresistance in Mdm2S394A mice. Previous in vitro data indicate that the c-Abl kinase phosphorylates Mdm2 at the neighboring residue (Tyr393) in response to DNA damage to regulate p53-dependent apoptosis. In this present study, we have generated an Mdm2 mutant mouse (Mdm2Y393F) to determine whether c-Abl phosphorylation of Mdm2 regulates the p53-mediated DNA damage response or p53 tumor suppression in vivo. The Mdm2Y393F mice develop accelerated spontaneous and oncogene-induced tumors, yet display no defects in p53 stabilization and activity following acute genotoxic stress. Although apoptosis is unaltered in these mice, they recover more rapidly from radiation-induced bone marrow ablation and are more resistant to whole-body radiation-induced lethality. These data reveal an in vivo role for c-Abl phosphorylation of Mdm2 in regulation of p53 tumor suppression and bone marrow failure. However, c-Abl phosphorylation of Mdm2 Tyr393 appears to play a lesser role in governing Mdm2-p53 signaling than ATM phosphorylation of Mdm2 Ser394. Furthermore, the effects of these phosphorylation events on p53 regulation are not additive, as Mdm2Y393F/S394A mice and Mdm2S394A mice display similar phenotypes. PMID:27956626

  10. Bacterial and archaeal resistance to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Confalonieri, F.; Sommer, S.

    2011-01-01

    Organisms living in extreme environments must cope with large fluctuations of temperature, high levels of radiation and/or desiccation, conditions that can induce DNA damage ranging from base modifications to DNA double-strand breaks. The bacterium Deinococcus radiodurans is known for its resistance to extremely high doses of ionizing radiation and for its ability to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Recently, extreme ionizing radiation resistance was also generated by directed evolution of an apparently radiation-sensitive bacterial species, Escherichia coli. Radioresistant organisms are not only found among the Eubacteria but also among the Archaea that represent the third kingdom of life. They present a set of particular features that differentiate them from the Eubacteria and eukaryotes. Moreover, Archaea are often isolated from extreme environments where they live under severe conditions of temperature, pressure, pH, salts or toxic compounds that are lethal for the large majority of living organisms. Thus, Archaea offer the opportunity to understand how cells are able to cope with such harsh conditions. Among them, the halophilic archaeon Halobacterium sp and several Pyrococcus or Thermococcus species, such as Thermococcus gammatolerans, were also shown to display high level of radiation resistance. The dispersion, in the phylogenetic tree, of radioresistant prokaryotes suggests that they have independently acquired radioresistance. Different strategies were selected during evolution including several mechanisms of radiation byproduct detoxification and subtle cellular metabolism modifications to help cells recover from radiation-induced injuries, protection of proteins against oxidation, an efficient DNA repair tool box, an original pathway of DNA double-strand break repair, a condensed nucleoid that may prevent the dispersion of the DNA fragments and specific radiation-induced proteins involved in radioresistance. Here, we compare mechanisms and discuss hypotheses suggested to contribute to radioresistance in several Archaea and Eubacteria.

  11. The effect of ultraviolet radiation on the pathogenesis of Candida albicans in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denkins, Y.M.

    1991-01-01

    This dissertation addresses questions concerning the effects of UV radiation on the pathogenesis of opportunistic fungal pathogens such as Candida albicans. UV radiation decreased the survival of Candida-infected mice; however, no correlation was found between suppression of the delayed type hypersensitivity (DTH) response and the course of lethal infection. This suggested that DTH was not protective against lethal disease with this organism. UV radiation also changed the persistence of the organism in the internal organs. UV-irradiated, infected animals had increased numbers of Candida in their kidneys compared to non-irradiated mice. Sensitization prior to UV irradiation aided clearance of the organismmore » from the kidneys of UV-irradiated mice. These data show that UV radiation suppresses cell-mediated immunity to Candida albicans in mice and increases mortality of Candida-infected mice. Moreover, the data suggest that an increase in environmental UV radiation could increase the severity of pathogenic infections.« less

  12. An oral Hemokine™, α-methylhydrocinnamate, enhances myeloid and neutrophil recovery following irradiation in vivo

    PubMed Central

    Faller, Douglas V.; Castaneda, Serguei A.; Zhou, Daohong; Vedamony, Merriline; Newburger, Peter E.; White, Gary L.; Kosanke, Stanley; Plett, P. Artur; Orschell, Christie M.; Boosalis, Michael S.; Perrine, Susan P.

    2017-01-01

    An oral therapeutic which reduces duration of cytopenias and is active following accidental radiation exposures is an unmet need in radiation countermeasures. Alpha methylhydrocinnamate (ST7) prolongs STAT-5 phosphorylation, reduces growth-factor dependency of multi-lineage cell lines, and stimulates erythropoiesis. Here, ST7 and its isomers were studied for their effects on myeloid progenitors and hematopoietic stem cells (HSCs) following radiation, in nonhuman primates, and murine irradiation models. Addition of ST7 or ST7-S increased CFU-GM production by 1.7-fold (p<0.001), reduced neutrophil apoptosis comparable to G-CSF, and enhanced HSC survival post-radiation by 2-fold, (p=0.028). ST7 and ST7-S administered in normal baboons increased ANC and platelet counts by 50–400%. In sub-lethally-irradiated mice, ANC nadir remained >200/mm3 and neutropenia recovered in 6 days with ST7 treatment and 18 days in controls (p<0.05). In lethally-irradiated mice, marrow pathology at 15 days was hypocellular (10% cellularity) in controls, but normal (55–75% cellularity) with complete neutrophil maturation with ST7-S treatment. Following lethal irradiation, ST7, given orally for 4 days, reduced mortality, with 30% survival in ST7-animals vs 8% in controls, (p<0.05). Collectively, the studies indicate that ST7 and ST7-S enhance myeloid recovery post-radiation and merit further evaluation to accelerate hematologic recovery in conditions of radiation-related and other marrow hypoplasias. PMID:27888688

  13. Mitigative Effects of a Combination of Multiple Pharmaceutical Drugs on the Survival of Mice Exposed to Lethal Ionizing Radiation.

    PubMed

    Hirouchi, Tokuhisa; Ito, Koichi; Nakano, Manabu; Monzen, Satoru; Yoshino, Hironori; Chiba, Mitsuru; Hazawa, Masaharu; Nakano, Akira; Ishikawa, Junya; Yamaguchi, Masaru; Tanaka, Kimio; Kashiwakura, Ikuo

    2015-01-01

    It is important to establish an easy-to-use therapeutic protocol for the emergency medical care of patients involved in radiation accidents to reduce the radiation-related casualties. The present study aimed to establish an optimum therapeutic protocol using currently approved pharmaceutical drugs to increase the survival of victims exposed to lethal radiation. Different combinations of four drugs-recombinant human erythropoietin (EPO), granulocyte-colony stimulating factor (G-CSF), c-mpl receptor agonist romiplostim (RP) and nandrolone decanoate (ND)-were administered to mice within 2 h after exposure to a lethal 7 Gy dose of γ-irradiation. On day 30 after irradiation, the condition of the mice was analyzed using various hematological parameters, such as the number of peripheral blood cells, bone marrow cells, hematopoietic progenitor cells and the expression of cell surface antigens. Approximately 10% of the untreated irradiated control mice survived for 21 days, but all of the control mice died by day 30. The combined administration of G-CSF, EPO and RP for five days immediately after irradiation led to a complete survival of the irradiated mice until day 30. However, the treatment with G-CSF, EPO and RP with ND led to only 75% survival at day 30. The hematological analyses showed that the numbers of almost all of hematopoietic cells in the surviving mice treated with effective medications recovered to the levels of non-irradiated mice. The present findings show that the combination of G-CSF, EPO and RP may be a useful countermeasure for victims exposed to accidental lethal irradiation.

  14. Sea Buckthorn Leaf Extract Protects Jejunum and Bone Marrow of 60Cobalt-Gamma-Irradiated Mice by Regulating Apoptosis and Tissue Regeneration

    PubMed Central

    Gupta, Manish; Saini, Manu; Abdin, M. Z.; Prasad, Jagdish

    2015-01-01

    A single dose (30 mg/kg body weight) of standardized sea buckthorn leaf extract (SBL-1), administered 30 min before whole body 60Co-gamma-irradiation (lethal dose, 10 Gy), protected >90% of mice population. The purpose of this study was to investigate the mechanism of action of SBL-1 on jejunum and bone marrow, quantify key bioactive compounds, and analyze chemical composition of SBL-1. Study with 9-week-old inbred male Swiss albino Strain ‘A' mice demonstrated that SBL-1 treatment before 60Co-gamma-irradiation (10 Gy) significantly (p < 0.05) countered radiation induced decreases in jejunum crypts (1.27-fold), villi number (1.41-fold), villus height (1.25-fold), villus cellularity (2.27-fold), cryptal Paneth cells (1.89-fold), and Bcl2 level (1.54-fold). It countered radiation induced increases in cryptal apoptotic cells (1.64-fold) and Bax levels (1.88-fold). It also countered radiation (2 Gy and 3 Gy) induced bone marrow apoptosis (1.59-fold and 1.85-fold) and micronuclei frequency (1.72-fold and 2.6-fold). SBL-1 rendered radiation protection by promoting cryptal stem cells proliferation, by regulating apoptosis, and by countering radiation induced chromosomal damage. Quercetin, Ellagic acid, Gallic acid, high contents polyphenols, tannins, and thiols detected in SBL-1 may have contributed to radiation protection by neutralization of radiation induced oxidative species, supporting stem cell proliferation and tissue regeneration. PMID:26421051

  15. Effects of UVB radiation on grazing of two cladocerans from high-altitude Andean lakes

    PubMed Central

    Rejas, Danny

    2017-01-01

    Climate change and water extraction may result in increased exposition of the biota to ultraviolet-B radiation (UVB) in high-altitude Andean lakes. Although exposition to lethal doses in these lakes is unlikely, sub-lethal UVB doses may have strong impacts in key compartments such as zooplankton. Here, we aimed at determining the effect of sub-lethal UVB doses on filtration rates of two cladoceran species (Daphnia pulicaria and Ceriodaphnia dubia). We firstly estimated the Incipient Limiting Concentration (ILC) and the Gut Passage Time (GPT) for both species. Thereafter we exposed clones of each species to four increasing UVB doses (treatments): i) DUV-0 (Control), ii) DUV-1 (0.02 MJ m2), iii) DUV-2 (0.03 MJ m2) and iv) DUV-3 (0.15 MJ m2); and estimated their filtration rates using fluorescent micro-spheres. Our results suggest that increasing sub-lethal doses of UVB radiation may strongly disturb the structure and functioning of high-altitude Andean lakes. Filtration rates of D. pulicaria were not affected by the lowest dose applied (DUV-1), but decreased by 50% in treatments DUV-2 and DUV-3. Filtration rates for C. dubia were reduced by more than 80% in treatments DUV-1 and DUV-2 and 100% of mortality occurred at the highest UVB dose applied (DUV-3). PMID:28379975

  16. Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.

    PubMed

    Hirsch, Matthew L; Fagan, B Matthew; Dumitru, Raluca; Bower, Jacquelyn J; Yadav, Swati; Porteus, Matthew H; Pevny, Larysa H; Samulski, R Jude

    2011-01-01

    Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.

  17. Targeting the DNA damage response in oncology: past, present and future perspectives.

    PubMed

    Basu, Bristi; Yap, Timothy A; Molife, L Rhoda; de Bono, Johann S

    2012-05-01

    The success of poly(ADP-ribose) polymerase inhibition in BRCA1 or BRCA2 deficient tumors as an anticancer strategy provided proof-of-concept for a synthetic lethality approach in oncology. There is therefore now active interest in expanding this approach to include other agents targeting the DNA damage response (DDR). We review lessons learnt from the development of inhibitors against DNA damage response mechanisms and envision the future of DNA repair inhibition in oncology. Preclinical synthetic lethality screens may potentially identify the best combinations of DNA-damaging drugs with inhibitors of DNA repair and the DDR or two agents acting within the DDR. Efforts are currently being made to establish robust and cost-effective assays that may be implemented within appropriate time-scales in parallel with future clinical studies. Detection of relevant mutations in a high-throughput manner, such as with next-generation sequencing for genes implicated in homologous recombination, including BRCA1, BRCA2, and ataxia telangiectasia mutated is anticipated. Novel approaches targeting the DDR are currently being evaluated and inhibitors of ATM, RAD51 and DNA-dependent protein kinase are now in early drug discovery and development. There remains great enthusiasm in oncology practice for pursuing the strategy of synthetic lethality. The future development of antitumor agents targeting the DDR should include detailed correlative biomarker work within early phase clinical studies wherever possible, with clear attempts to identify doses at which robust target modulation is observed.

  18. The prolonged gastrointestinal syndrome in rhesus macaques: the relationship between gastrointestinal, hematopoietic, and delayed multi-organ sequelae following acute, potentially lethal, partial-body irradiation.

    PubMed

    MacVittie, Thomas J; Bennett, Alexander; Booth, Catherine; Garofalo, Michael; Tudor, Gregory; Ward, Amanda; Shea-Donohue, Terez; Gelfond, Daniel; McFarland, Emylee; Jackson, William; Lu, Wei; Farese, Ann M

    2012-10-01

    The dose response relationship for the acute gastrointestinal syndrome following total-body irradiation prevents analysis of the full recovery and damage to the gastrointestinal system, since all animals succumb to the subsequent 100% lethal hematopoietic syndrome. A partial-body irradiation model with 5% bone marrow sparing was established to investigate the prolonged effects of high-dose radiation on the gastrointestinal system, as well as the concomitant hematopoietic syndrome and other multi-organ injury including the lung. Herein, cellular and clinical parameters link acute and delayed coincident sequelae to radiation dose and time course post-exposure. Male rhesus Macaca mulatta were exposed to partial-body irradiation with 5% bone marrow (tibiae, ankles, feet) sparing using 6 MV linear accelerator photons at a dose rate of 0.80 Gy min(-1) to midline tissue (thorax) doses in the exposure range of 9.0 to 12.5 Gy. Following irradiation, all animals were monitored for multiple organ-specific parameters for 180 d. Animals were administered medical management including administration of intravenous fluids, antiemetics, prophylactic antibiotics, blood transfusions, antidiarrheals, supplemental nutrition, and analgesics. The primary endpoint was survival at 15, 60, or 180 d post-exposure. Secondary endpoints included evaluation of dehydration, diarrhea, hematologic parameters, respiratory distress, histology of small and large intestine, lung radiographs, and mean survival time of decedents. Dose- and time-dependent mortality defined several organ-specific sequelae, with LD50/15 of 11.95 Gy, LD50/60 of 11.01 Gy, and LD50/180 of 9.73 Gy for respective acute gastrointestinal, combined hematopoietic and gastrointestinal, and multi-organ delayed injury to include the lung. This model allows analysis of concomitant multi-organ sequelae, thus providing a link between acute and delayed radiation effects. Specific and multi-organ medical countermeasures can be assessed for efficacy and interaction during the concomitant evolution of acute and delayed key organ-specific subsyndromes.

  19. The utilization of Habrobracon and artemia as experimental materials in bioastronautic studies

    NASA Technical Reports Server (NTRS)

    Grosch, D. S.

    1972-01-01

    In the reproductive performance of female braconids striking contrasts were revealed between the results from the actual biosatellite flight and those from experiments when the recovered vehicle was subjected to the forces of simulated launching and recovery. Second week decreases in egg production due to the radiation damage of cells in mitosis were minimized for the females irradiated during space flight. It was demonstrated that females irradiated for two days during orbital flight laid as many eggs during the second week as the unirradiated ground-based controls. After the 10th day their oviposition records exceeded control values. The hatchability of eggs deposited by Biosatellite II females was excellent. Explanations were sought for the space flight's cancellation of the characteristic radiation-induced decrease in egg production, and for the exceptionally good hatchability of eggs derived from most of the cell types in the irradiated ovarioles. Eggs from only two classes of cells showed enhanced embryonic lethality: those poised in meiotic metaphase during their mother's orbital flight, and those from oocytes beginning vitellogenesis.

  20. The radiobiology of laser-driven particle beams: focus on sub-lethal responses of normal human cells

    NASA Astrophysics Data System (ADS)

    Manti, L.; Perozziello, F. M.; Borghesi, M.; Candiano, G.; Chaudhary, P.; Cirrone, G. A. P.; Doria, D.; Gwynne, D.; Leanza, R.; Prise, K. M.; Romagnani, L.; Romano, F.; Scuderi, V.; Tramontana, A.

    2017-03-01

    Accelerated proton beams have become increasingly common for treating cancer. The need for cost and size reduction of particle accelerating machines has led to the pioneering investigation of optical ion acceleration techniques based on laser-plasma interactions as a possible alternative. Laser-matter interaction can produce extremely pulsed particle bursts of ultra-high dose rates (>= 109 Gy/s), largely exceeding those currently used in conventional proton therapy. Since biological effects of ionizing radiation are strongly affected by the spatio-temporal distribution of DNA-damaging events, the unprecedented physical features of such beams may modify cellular and tissue radiosensitivity to unexplored extents. Hence, clinical applications of laser-generated particles need thorough assessment of their radiobiological effectiveness. To date, the majority of studies have either used rodent cell lines or have focussed on cancer cell killing being local tumour control the main objective of radiotherapy. Conversely, very little data exist on sub-lethal cellular effects, of relevance to normal tissue integrity and secondary cancers, such as premature cellular senescence. Here, we discuss ultra-high dose rate radiobiology and present preliminary data obtained in normal human cells following irradiation by laser-accelerated protons at the LULI PICO2000 facility at Laser Lab Europe, France.

  1. Inhibition of BRCA2 and Thymidylate Synthase Creates Multidrug Sensitive Tumor Cells via the Induction of Combined "Complementary Lethality".

    PubMed

    Rytelewski, Mateusz; Ferguson, Peter J; Maleki Vareki, Saman; Figueredo, Rene; Vincent, Mark; Koropatnick, James

    2013-03-12

    A high mutation rate leading to tumor cell heterogeneity is a driver of malignancy in human cancers. Paradoxically, however, genomic instability can also render tumors vulnerable to therapeutic attack. Thus, targeting DNA repair may induce an intolerable level of DNA damage in tumor cells. BRCA2 mediates homologous recombination repair, and BRCA2 polymorphisms increase cancer risk. However, tumors with BRCA2 mutations respond better to chemotherapy and are associated with improved patient prognosis. Thymidylate synthase (TS) is also involved in DNA maintenance and generates cellular thymidylate. We determined that antisense downregulation of BRCA2 synergistically potentiated drugs with mechanisms of action related to BRCA2 function (cisplatin, melphalan), a phenomenon we named "complementary lethality." TS knockdown induced complementary lethality to TS-targeting drugs (5-FUdR and pemetrexed) but not DNA cross-linking agents. Combined targeting of BRCA2 and TS induced complementary lethality to both DNA-damaging and TS-targeting agents, thus creating multidrug sensitive tumors. In addition, we demonstrated for the first time that simultaneous downregulation of both targets induced combined complementary lethality to multiple mechanistically different drugs in the same cell population. In this study, we propose and define the concept of "complementary lethality" and show that actively targeting BRCA2 and TS is of potential therapeutic benefit in multidrug treatment of human tumors. This work has contributed to the development of a BRCA2-targeting antisense oligdeoxynucleotide (ASO) "BR-1" which we will test in vivo in combination with our TS-targeting ASO "SARI 83" and attempt early clinical trials in the future.Molecular Therapy - Nucleic Acids (2013) 2, e78; doi:10.1038/mtna.2013.7 published online 12 March 2013.

  2. Nuclear apoJ: A low dose radiation inducible regulator of cell death. Final report for period September 15, 1998 - September 14, 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aronow, Bruce J.

    2002-04-19

    This project was based on preliminary data that was published by Dr. Boothman (Yang et al. 2000) which indicated a strong induction of apoJ gene expression, increased secretion of the protein, and accumulation of an apparently somewhat different form of the apoJ protein in the nucleus of MCF-7 breast carcinoma cells undergoing response to DNA damage. A clone expressing apoJ protein was isolated that was capable of interacting with Ku80, a component of the double strand break repair complex that is essential for the successful repair of rearranging immunoglobulin and T-cell receptor genes as evidenced by failure to produce maturemore » B and T cells in the absence of Ku70. ApoJ clones isolated and characterized by Dr. Boothman bound strongly to a Ku-70 ''bait'' protein. Over-expression of these same clones in a cell line was capable of killing the cell. ApoJ is very strongly induced in many instances of programmed cell death and has been proposed repeatedly to play some sort of effector role in the process. Our principle hypothesis for this study was that the strong induction of the apoJ gene and the particular expression of a nuclear form of the protein was potentially a causal factor in the decision point made by the cell as it attempts to repair double-strand breakage based DNA damage. The hypothesis was that if sufficiently high damage occurred, it would be deleterious to maintain the cell's viability through continued DNA repair. One method to inhibit DNA repair might be by inhibiting proteins such as Ku-70 that are necessary for double-strand break repair. If apoJ does play a critical role in tipping the decision balance over to cell death, we reasoned that deficiency of apoJ would cause increased accumulation of cells with DNA damage and that this might decrease cell death in response to DNA damage and increase tumor occurrence rates. To test this hypothesis and its potential implications, we exposed wildtype and apoJ deficient animals that we constructed through gene targeting to increasing levels of ionizing radiation from a Cesium source. Data gathered under the support of this grant application initially indicated that apoJ deficient animals were more resistant to radiation, but as we accumulated more and more data points and covered a tighter exposure range, the genotype-based differences became insignificant. However, the possibility existed that because mortality based radiation-resistance could be attributable to mechanism for which nuclear apoJ was not rate determining, we maintained a very large of colony of apoJ knockout and wildtype animals in both the C57/B16 and Cv129 strain backgrounds that were exposed to sub-lethal levels of ionizing radiation to monitor for the occurrence of tumors. These animals were allowed to fully recover and age normally in either germ free or normal animal housing. Our results demonstrated no significant differences between wildtype and apoJ knockout animals over a period that extended up to 30 months for individual animals. We recorded similar weight gain, a relatively low mortality rate, and a similar mixture and rate of sarcoma and adenocarcinomas after surviving the initial ionizing radiation exposures. Thus we conclude that apoJ gene function, which was totally eliminated by our gene targeting, did not influence radiation sensitivity or serve as a tumor suppressor in response to DNA damage.« less

  3. Was skin cancer a selective force for black pigmentation in early hominin evolution?

    PubMed Central

    Greaves, Mel

    2014-01-01

    Melanin provides a crucial filter for solar UV radiation and its genetically determined variation influences both skin pigmentation and risk of cancer. Genetic evidence suggests that the acquisition of a highly stable melanocortin 1 receptor allele promoting black pigmentation arose around the time of savannah colonization by hominins at some 1–2 Ma. The adaptive significance of dark skin is generally believed to be protection from UV damage but the pathologies that might have had a deleterious impact on survival and/or reproductive fitness, though much debated, are uncertain. Here, I suggest that data on age-associated cancer incidence and lethality in albinos living at low latitudes in both Africa and Central America support the contention that skin cancer could have provided a potent selective force for the emergence of black skin in early hominins. PMID:24573849

  4. Utilization of ICU Data to Improve 30 and 60 Day Mortality Models

    DTIC Science & Technology

    2017-01-06

    Acute Radiation Syndrome , Mortality, Burn Combined Injury, Lethality, Small Intestine, Ordinary Differential...short period of time (high dose rate) causes acute radiation syndrome (ARS). Depending on the radiation dose, an individual may experience the...hematopoietic acute radiation syndrome (H-ARS) or the gastrointestinal acute radiation syndrome (GI-ARS) (reviewed in Maciàă I Garau et al., 2011). For acute

  5. Radiation-induced hematopoietic myelosuppression and genotoxicity get significantly countered by active principles of Podophyllum hexandrum: A study in strain 'A' mice.

    PubMed

    Verma, Savita; Gupta, Manju Lata

    2015-01-01

    To investigate the protective role of a novel formulation, prepared by a combination of three active principles isolated from Podophyllum hexandrum (G-002M), against radiation- mediated hematopoietic suppression and cytogenetic aberrations in lethally irradiated mice. G-002M, a combination of podophyllotoxin, podophyllotoxin-β-D glucoside and rutin, was administered intramuscularly in mice (- 1 h) to radiation (9 Gy) exposure. The animals were autopsied at different time intervals for further studies. Loss of bone marrow progenitor cells, altered myeloid/erythroid ratio, serum erythropoietin and pancytopenia in irradiated mice was found significantly (p < 0.001) ameliorated in G-002M pre-administered mice within 30 d. Bcl-2 (B-cell lymphoma 2) and BAX (Bcl-2-associated X) protein expression was also positively (p < 0.001) countered in these mice. Chromosomal aberrations in 30 d were found remarkably (p < 0.001) reduced in marrow of G-002M pretreated mice. Accelerated antioxidants, reduced DNA damage, stimulated lymphocyte proliferation and minimal cellular atrophy in spleen were some of the other key features observed in G-002M administered mice. Reduction in hematopoietic aplasia and chromosomal aberrations, besides, early recovery in bone marrow and spleen of G-002M pretreated mice, could be attributed to its free radical scavenging, DNA protecting and apoptotic proteins modulating ability against radiation.

  6. 11th International Conference of Radiation Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-07-18

    Topics discussed in the conference included the following: Radiation Physics, Radiation Chemistry and modelling--Radiation physics and dosimetry; Electron transfer in biological media; Radiation chemistry; Biophysical and biochemical modelling; Mechanisms of DNA damage; Assays of DNA damage; Energy deposition in micro volumes; Photo-effects; Special techniques and technologies; Oxidative damage. Molecular and cellular effects-- Photobiology; Cell cycle effects; DNA damage: Strand breaks; DNA damage: Bases; DNA damage Non-targeted; DNA damage: other; Chromosome aberrations: clonal; Chromosomal aberrations: non-clonal; Interactions: Heat/Radiation/Drugs; Biochemical effects; Protein expression; Gene induction; Co-operative effects; ``Bystander'' effects; Oxidative stress effects; Recovery from radiation damage. DNA damage and repair -- DNAmore » repair genes; DNA repair deficient diseases; DNA repair enzymology; Epigenetic effects on repair; and Ataxia and ATM.« less

  7. GUCY2C Signaling Opposes the Acute Radiation-Induced GI Syndrome.

    PubMed

    Li, Peng; Wuthrick, Evan; Rappaport, Jeff A; Kraft, Crystal; Lin, Jieru E; Marszalowicz, Glen; Snook, Adam E; Zhan, Tingting; Hyslop, Terry M; Waldman, Scott A

    2017-09-15

    High doses of ionizing radiation induce acute damage to epithelial cells of the gastrointestinal (GI) tract, mediating toxicities restricting the therapeutic efficacy of radiation in cancer and morbidity and mortality in nuclear disasters. No approved prophylaxis or therapy exists for these toxicities, in part reflecting an incomplete understanding of mechanisms contributing to the acute radiation-induced GI syndrome (RIGS). Guanylate cyclase C (GUCY2C) and its hormones guanylin and uroguanylin have recently emerged as one paracrine axis defending intestinal mucosal integrity against mutational, chemical, and inflammatory injury. Here, we reveal a role for the GUCY2C paracrine axis in compensatory mechanisms opposing RIGS. Eliminating GUCY2C signaling exacerbated RIGS, amplifying radiation-induced mortality, weight loss, mucosal bleeding, debilitation, and intestinal dysfunction. Durable expression of GUCY2C, guanylin, and uroguanylin mRNA and protein by intestinal epithelial cells was preserved following lethal irradiation inducing RIGS. Oral delivery of the heat-stable enterotoxin (ST), an exogenous GUCY2C ligand, opposed RIGS, a process requiring p53 activation mediated by dissociation from MDM2. In turn, p53 activation prevented cell death by selectively limiting mitotic catastrophe, but not apoptosis. These studies reveal a role for the GUCY2C paracrine hormone axis as a novel compensatory mechanism opposing RIGS, and they highlight the potential of oral GUCY2C agonists (Linzess; Trulance) to prevent and treat RIGS in cancer therapy and nuclear disasters. Cancer Res; 77(18); 5095-106. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Expression of the cloned ColE1 kil gene in normal and Kilr Escherichia coli.

    PubMed Central

    Altieri, M; Suit, J L; Fan, M L; Luria, S E

    1986-01-01

    The kil gene of the ColE1 plasmid was cloned under control of the lac promoter. Its expression under this promoter gave rise to the same pattern of bacterial cell damage and lethality as that which accompanies induction of the kil gene in the colicin operon by mitomycin C. This confirms that cell damage after induction is solely due to expression of kil and is independent of the cea or imm gene products. Escherichia coli derivatives resistant to the lethal effects of kil gene expression under either the normal or the lac promoter were isolated and found to fall into several classes, some of which were altered in sensitivity to agents that affect the bacterial envelope. PMID:2946661

  9. Sub-lethal radiation enhances anti-tumor immunotherapy in a transgenic mouse model of pancreatic cancer

    PubMed Central

    Cao, Zhu Alexander; Daniel, Dylan; Hanahan, Douglas

    2002-01-01

    Background It is not uncommon to observe circulating tumor antigen-specific T lymphocytes in cancer patients despite a lack of significant infiltration and destruction of their tumors. Thus, an important goal for tumor immunotherapy is to identify ways to modulate in vivo anti-tumor immunity to achieve clinical efficacy. We investigate this proposition in a spontaneous mouse tumor model, Rip1-Tag2. Methods Experimental therapies were carried out in two distinctive trial designs, intended to either intervene in the explosive growth of small tumors, or regress bulky end-stage tumors. Rip1-Tag2 mice received a single transfer of splenocytes from Tag-specific, CD4+ T cell receptor transgenic mice, a single sub-lethal radiation, or a combination therapy in which the lymphocyte transfer was preceded by the sub-lethal radiation. Tumor burden, the extent of lymphocyte infiltration into solid tumors and host survival were used to assess the efficacy of these therapeutic approaches. Results In either intervention or regression, the transfer of Tag-specific T cells alone did not result in significant lymphocyte infiltration into solid tumors, not did it affect tumor growth or host survival. In contrast, the combination therapy resulted in significant reduction in tumor burden, increase in lymphocyte infiltration into solid tumors, and extension of survival. Conclusions The results indicate that certain types of solid tumors may be intrinsically resistant to infiltration and destruction by tumor-specific T lymphocytes. Our data suggest that such resistance can be disrupted by sub-lethal radiation. The combinatorial approach presented here merits consideration in the design of clinical trials aimed to achieve T cell-mediated anti-tumor immunity. PMID:12019035

  10. An oral HemokineTM, α-methylhydrocinnamate, enhances myeloid and neutrophil recovery following irradiation in vivo.

    PubMed

    Faller, Douglas V; Castaneda, Serguei A; Zhou, Daohong; Vedamony, Merriline; Newburger, Peter E; White, Gary L; Kosanke, Stanley; Plett, P Artur; Orschell, Christie M; Boosalis, Michael S; Perrine, Susan P

    2017-03-01

    An oral therapeutic which reduces duration of cytopenias and is active following accidental radiation exposures is an unmet need in radiation countermeasures. Alpha methylhydrocinnamate (ST7) prolongs STAT-5 phosphorylation, reduces growth-factor dependency of multi-lineage cell lines, and stimulates erythropoiesis. Here, ST7 and its isomers were studied for their effects on myeloid progenitors and hematopoietic stem cells (HSCs) following radiation, in nonhuman primates, and murine irradiation models. Addition of ST7 or ST7-S increased CFU-GM production by 1.7-fold (p<0.001), reduced neutrophil apoptosis comparable to G-CSF, and enhanced HSC survival post-radiation by 2-fold, (p=0.028). ST7 and ST7-S administered in normal baboons increased ANC and platelet counts by 50-400%. In sub-lethally-irradiated mice, ANC nadir remained >200/mm 3 and neutropenia recovered in 6days with ST7 treatment and 18days in controls (p<0.05). In lethally-irradiated mice, marrow pathology at 15days was hypocellular (10% cellularity) in controls, but normal (55-75% cellularity) with complete neutrophil maturation with ST7-S treatment. Following lethal irradiation, ST7, given orally for 4days, reduced mortality, with 30% survival in ST7-animals vs 8% in controls, (p<0.05). Collectively, the studies indicate that ST7 and ST7-S enhance myeloid recovery post-radiation and merit further evaluation to accelerate hematologic recovery in conditions of radiation-related and other marrow hypoplasias. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.

    1994-01-01

    Quantitative assessment of the heritable somatic effects of ionizing radiation exposures has relied upon the assumption that radiation-induced lesions were 'fixed' in the DNA prior to the first postirradiation mitosis. Lesion conversion was thought to occur during the initial round of DNA replication or as a consequence of error-prone enzymatic processing of lesions. The standard experimental protocols for the assessment of a variety of radiation-induced endpoints (cell death, specific locus mutations, neoplastic transformation and chromosome aberrations) evaluate these various endpoints at a single snapshot in time. In contrast with the aforementioned approaches, some studies have specifically assessed radiation effects as a function of time following exposure. Evidence has accumulated in support of the hypothesis that radiation exposure induces a persistent destabilization of the genome. This instability has been observed as a delayed expression of lethal mutations, as an enhanced rate of accumulation of non-lethal heritable alterations, and as a progressive intraclonal chromosomal heterogeneity. The genetic controls and biochemical mechanisms underlying radiation-induced genomic instability have not yet been delineated. The aim is to integrate the accumulated evidence that suggests that radiation exposure has a persistent effect on the stability of the mammalian genome.

  12. Leukemia and other cancers following radiation treatment of pelvic disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.G.

    1977-04-01

    Follow-up studies of patients treated for cancer of the cervix with radiotherapy have shown such women to be at little or no increased risk of leukemia subsequent to the radiation exposure. However, women exposed to lower doses of radiation in the pelvic area, in the induction of an artificial menopause, appear to show increased risks of both leukemia and cancers of those sites directly in the radiation field. The studies of these two types of radiation exposure are reviewed. The findings may possibly be reconciled with each other on the basis of the distribution of radiation dose to the bonemore » marrow. Irradiation for cancer of the cervix delivers radiation doses to a small portion of the marrow which are probably lethal for most marrow cells. The mean dose to cells distant from the cervix may be too small to produce a detectable increase in leukemia incidence. The lower and more uniformly distributed radiation dose used to induce an artificial menopause will be less lethal for marrow cells and may consequently deliver a higher ''effective'' marrow dose to surviving cells, resulting in an increased leukemia risk.« less

  13. Identifying and managing radiation damage during in situ transmission x-ray microscopy of Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Nelson, Johanna; Yang, Yuan; Misra, Sumohan; Andrews, Joy C.; Cui, Yi; Toney, Michael F.

    2013-09-01

    Radiation damage is a topic typically sidestepped in formal discussions of characterization techniques utilizing ionizing radiation. Nevertheless, such damage is critical to consider when planning and performing experiments requiring large radiation doses or radiation sensitive samples. High resolution, in situ transmission X-ray microscopy of Li-ion batteries involves both large X-ray doses and radiation sensitive samples. To successfully identify changes over time solely due to an applied current, the effects of radiation damage must be identified and avoided. Although radiation damage is often significantly sample and instrument dependent, the general procedure to identify and minimize damage is transferable. Here we outline our method of determining and managing the radiation damage observed in lithium sulfur batteries during in situ X-ray imaging on the transmission X-ray microscope at Stanford Synchrotron Radiation Lightsource.

  14. Correlation of Particle Traversals with Clonogenic Survival Using Cell-Fluorescent Ion Track Hybrid Detector.

    PubMed

    Dokic, Ivana; Niklas, Martin; Zimmermann, Ferdinand; Mairani, Andrea; Seidel, Philipp; Krunic, Damir; Jäkel, Oliver; Debus, Jürgen; Greilich, Steffen; Abdollahi, Amir

    2015-01-01

    Development of novel approaches linking the physical characteristics of particles with biological responses are of high relevance for the field of particle therapy. In radiobiology, the clonogenic survival of cells is considered the gold standard assay for the assessment of cellular sensitivity to ionizing radiation. Toward further development of next generation biodosimeters in particle therapy, cell-fluorescent ion track hybrid detector (Cell-FIT-HD) was recently engineered by our group and successfully employed to study physical particle track information in correlation with irradiation-induced DNA damage in cell nuclei. In this work, we investigated the feasibility of Cell-FIT-HD as a tool to study the effects of clinical beams on cellular clonogenic survival. Tumor cells were grown on the fluorescent nuclear track detector as cell culture, mimicking the standard procedures for clonogenic assay. Cell-FIT-HD was used to detect the spatial distribution of particle tracks within colony-initiating cells. The physical data were associated with radiation-induced foci as surrogates for DNA double-strand breaks, the hallmark of radiation-induced cell lethality. Long-term cell fate was monitored to determine the ability of cells to form colonies. We report the first successful detection of particle traversal within colony-initiating cells at subcellular resolution using Cell-FIT-HD.

  15. Role of the Pseudomonas quinolone signal (PQS) in sensitising Pseudomonas aeruginosa to UVA radiation.

    PubMed

    Pezzoni, Magdalena; Meichtry, Martín; Pizarro, Ramón A; Costa, Cristina S

    2015-01-01

    One of the main stress factors that bacteria face in the environment is solar ultraviolet-A (UVA) radiation, which leads to lethal effects through oxidative damage. The aim of this work was to investigate the role of 2-heptyl-3-hydroxi-4-quinolone (the Pseudomonas quinolone signal or PQS) in the response of Pseudomonas aeruginosa to UVA radiation. PQS is an intercellular quorum sensing signal associated to membrane vesicles which, among other functions, regulates genes related to iron acquisition, forms stable complexes with iron and participates in oxidative phenomena. UVA exposure of the wild-type PAO1 strain and a pqsA mutant unable to produce PQS revealed a sensitising role for this signal. Research into the mechanism involved in this phenomenon revealed that catalase, an essential factor in the UVA defence, is not related to PQS-mediated UVA sensitivity. Absorption of UVA by PQS produced its own photo-degradation, oxidation of the probe 2',7'- dichlorodihydrofluorescein and generation of singlet oxygen and superoxide anion, suggesting that this signal could be acting as an endogenous photosensitiser. The results presented in this study could explain the high sensitivity to UVA of P. aeruginosa when compared to enteric bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight.

    PubMed

    Nicholson, Wayne L; Schuerger, Andrew C; Setlow, Peter

    2005-04-01

    The environment in space and on planets such as Mars can be lethal to microorganisms because of the high vacuum and high solar radiation flux, in particular UV radiation, in such environments. Spores of various Bacillus species are among the organisms most resistant to the lethal effects of high vacuum and UV radiation, and as a consequence are of major concern for planetary contamination via unmanned spacecraft or even natural processes. This review focuses on the spores of various Bacillus species: (i) their mechanisms of UV resistance; (ii) their survival in unmanned spacecraft, space flight and simulated space flight and Martian conditions; (iii) the UV flux in space and on Mars; (iv) factors affecting spore survival in such high UV flux environments.

  17. Katz model prediction of Caenorhabditis elegans mutagenesis on STS-42

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Katz, Robert; Badhwar, Gautam D.

    1992-01-01

    Response parameters that describe the production of recessive lethal mutations in C. elegans from ionizing radiation are obtained with the Katz track structure model. The authors used models of the space radiation environment and radiation transport to predict and discuss mutation rates for C. elegans on the IML-1 experiment aboard STS-42.

  18. [Mutagenic and antimutagenic properties of bemitil].

    PubMed

    Seredenin, S B; Bobkov, Iu G; Durnev, A D; Dubovskaia, O Iu

    1986-07-01

    Complex research of the genetic activity of a new 2-mercaptobenzimidazole derivative bemythyl has shown that the drug failed to induce recessive, age-related lethal mutations in drosophila, dominant lethal mutations in germ mammalian cells and chromosomal damage in murine bone marrow cells and human peripheral blood cell cultures. The experiments on mice have demonstrated that therapeutic bemythyl doses caused a two-fold decrease in the level of aberrant cells induced by alkylating agents--fotrin and fopurin.

  19. The Fanconi anemia protein interaction network: casting a wide net.

    PubMed

    Rego, Meghan A; Kolling, Frederick W; Howlett, Niall G

    2009-07-31

    It has long been hypothesized that a defect in the repair of damaged DNA is central to the etiology of Fanconi anemia (FA). Indeed, an increased sensitivity of FA patient-derived cells to the lethal effects of various forms of DNA damaging agents was described over three decades ago [A.J. Fornace, Jr., J.B. Little, R.R. Weichselbaum, DNA repair in a Fanconi's anemia fibroblast cell strain, Biochim. Biophys. Acta 561 (1979) 99-109; Y. Fujiwara, M. Tatsumi, Repair of mitomycin C damage to DNA in mammalian cells and its impairment in Fanconi's anemia cells, Biochem. Biophys. Res. Commun. 66 (1975) 592-598; A.J. Rainbow, M. Howes, Defective repair of ultraviolet- and gamma-ray-damaged DNA in Fanconi's anaemia, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 31 (1977) 191-195]. Furthermore, the cytological hallmark of FA, the DNA crosslink-induced radial chromosome formation, exemplifies an innate impairment in the repair of these particularly cytotoxic DNA lesions [A.D. Auerbach, Fanconi anemia diagnosis and the diepoxybutane (DEB) test, Exp. Hematol. 21 (1993) 731-733]. Precisely defining the collective role of the FA proteins in DNA repair, however, continues to be one of the most enigmatic and challenging questions in the FA field. The first six identified FA proteins (A, C, E, F, G, and D2) harbored no recognizable enzymatic features, precluding association with a specific metabolic process. Consequently, our knowledge of the role of the FA proteins in the DNA damage response has been gleaned primarily through biochemical association studies with non-FA proteins. Here, we provide a chronological discourse of the major FA protein interaction network discoveries, with particular emphasis on the DNA damage response, that have defined our current understanding of the molecular basis of FA.

  20. Filgrastim Improves Survival in Lethally Irradiated Nonhuman Primates

    PubMed Central

    Farese, Ann M.; Cohen, Melanie V.; Katz, Barry P.; Smith, Cassandra P.; Gibbs, Allison; Cohen, Daniel M.; MacVittie, Thomas J.

    2015-01-01

    Treatment of individuals exposed to potentially lethal doses of radiation is of paramount concern to health professionals and government agencies. We evaluated the efficacy of filgrastim to increase survival of nonhuman primates (NHP) exposed to an approximate mid-lethal dose (LD50/60) (7.50 Gy) of LINAC-derived photon radiation. Prior to total-body irradiation (TBI), nonhuman primates were randomized to either a control (n =22) or filgrastim-treated (n =24) cohorts. Filgrastim (10 μg/kg/d) was administered beginning 1 day after TBI and continued daily until the absolute neutrophil count (ANC) was >1,000/μL for 3 consecutive days. All nonhuman primates received medical management as per protocol. The primary end point was all cause overall mortality over the 60 day in-life study. Secondary end points included mean survival time of decedents and all hematologic-related parameters. Filgrastim significantly (P < 0.004) reduced 60 day overall mortality [20.8% (5/24)] compared to the controls [59.1% (13/22)]. Filgrastim significantly decreased the duration of neutropenia, but did not affect the absolute neutrophil count nadir. Febrile neutropenia (ANC <500/μL and body temperature ≥103°F) was experienced by 90.9% (20/22) of controls compared to 79.2% (19/24) of filgrastim-treated animals (P = 0.418). Survival was significantly increased by 38.3% over controls. Filgrastim, administered at this dose and schedule, effectively mitigated the lethality of the hematopoietic subsyndrome of the acute radiation syndrome. PMID:23210705

  1. Inviability of a DNA2 deletion mutant is due to the DNA damage checkpoint.

    PubMed

    Budd, Martin E; Antoshechkin, Igor A; Reis, Clara; Wold, Barbara J; Campbell, Judith L

    2011-05-15

    Dna2 is a dual polarity exo/endonuclease, and 5' to 3' DNA helicase involved in Okazaki Fragment Processing (OFP) and Double-Strand Break (DSB) Repair. In yeast, DNA2 is an essential gene, as expected for a DNA replication protein. Suppression of the lethality of dna2Δ mutants has been found to occur by two mechanisms: overexpression of RAD27 (scFEN1) , encoding a 5' to 3' exo/endo nuclease that processes Okazaki fragments (OFs) for ligation, or deletion of PIF1, a 5' to 3' helicase involved in mitochondrial recombination, telomerase inhibition and OFP. Mapping of a novel, spontaneously arising suppressor of dna2Δ now reveals that mutation of rad9 and double mutation of rad9 mrc1 can also suppress the lethality of dna2Δ mutants. Interaction of dna2Δ and DNA damage checkpoint mutations provides insight as to why dna2Δ is lethal but rad27Δ is not, even though evidence shows that Rad27 (ScFEN1) processes most of the Okazaki fragments, while Dna2 processes only a subset.

  2. Lethal cellular changes induced by near ultraviolet radiation.

    PubMed

    Tyrrell, R M

    1979-01-01

    There is clear evidence that significant quantities of lesions are induced in DNA by near-UV radiation and that these lesions, although susceptible to repair, may lead to cell death because of the simultaneous disruption of DNA repair systems by the same wavelengths. No particular DNA lesion can be linked to cell death in wild type strains. However, there are good grounds for speculating that a type of near-UV lesion exists which is rapidly "fixed" as a lethal event in cells as a result of the oxygen-dependent disruption of repair. There is a strong indication that the relative ability of various near-UV wavelengths to sensitize cells to heat, chemicals or other radiations is directly related to their efficiency in disrupting DNA repair systems in general. Some important specific questions remain. For example, it is important to ask why breaks formed at 365 nm and 405 nm, although apparently requiring a pol dependent pathway for their repair, do not produce the predicted lethal biological action in the strains tested. In general terms it is hoped to provide more comprehensive physico-chemical data in support of, or contradicting, the proposed model.

  3. EFFECTS OF GAMMA RADIATION ON TWO DECAPOD CRUSTACEANS, PALAEMONETES PUGIO AND UCA PUGNAX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rees, G.H.

    1962-03-01

    Experiments are described that were undertaken with the objective of determining the lethal dosages of gamma radiation, particularly the doses at which 50% succumb (LD/sub 50/), for 2 decapod crustaceans. (Pub. Health Eng. Abstr.)

  4. Oxidative stress in freshwater fish, Labeo rohita as a biomarker of malathion exposure.

    PubMed

    Patil, Vineetkumar K; David, Muniswamy

    2013-12-01

    This study examined the effect of lethal (4.5 μg/l) and sublethal (0.45 μg/l) malathion levels on oxidative stress responses of the freshwater edible fish, Labeo rohita. Fish were exposed to lethal (1-4 days) and sublethal (1, 5, 10, and 15 days) periods. In the present study, catalase and protease activity, hydrogen peroxide, malondialdehyde, protein carbonyls, and free amino acids levels increased in the gill, liver, and kidney tissues of fish exposed to lethal and sublethal concentrations of malathion except protein content. Time- and concentration-dependent induction/reduction of the above parameters by lethal and sublethal concentrations of malathion was observed in the tissues (the gill, liver, and kidney) of L. rohita. Thus, the results clearly infer oxidative damage and decline in antioxidant defense due to malathion-induced oxidative stress.

  5. Gamma Radiation Induces Micronucleated Reticulocytes in 3-D Bone Marrow Bioreactors in Vitro

    PubMed Central

    Sun, Hongliang; Dertinger, Stephen D.; Hyrien, Ollivier; David Wu, J. H.; Chen, Yuhchyau

    2009-01-01

    Radiation injury to the bone marrow is potentially lethal due to the potent DNA-damaging effects on cells of the hematopoietic system, including bone marrow stem cell, progenitor, and the precursor cell populations. Investigation of radiation genotoxic effects on bone marrow progenitor/precursor cells has been challenged by the lack of optimal in vitro surrogate organ culture systems, and the overall difficulty to sustain lineage-specific proliferation and differentiation of hematopoiesis in vitro. We report the investigation of radiation genotoxic effects in bone marrow cultures of C57Bl/6 mice established in 3-D bioreactors, which sustain long-term bone marrow cultures. For these studies, genotoxicity is measured by the induction of micronucleated reticulocytes (MN-RET). The kinetics and dose-response relationship of MN-RET induction in response to gamma-radiation of bioreactor-maintained bone marrow cultures are presented. Our data showed that 3-D long-term bone marrow cultures had sustained erythropoiesis capable of generating reticulocytes up to 8 weeks. The peak time-interval of viable cell output and percentage of reticulocytes increased steadily and reached the initial peak between the 14th to 21st days after inoculations. This was followed by a rebound or staying relatively constant until week 8. The percentage of MN-RET reached the maximum between 24 and 32 hours post 1 Gy gamma-ray. There was a near linear MN-RET induction by gamma radiation from 0 Gy to 1.0 Gy, followed by an attenuated increase to 1.5 – 2.0 Gy. The MN-RET response showed a downtrend beyond 2 Gy. Our data suggest that bone marrow culture in the 3-D bioreactor may be a useful organ culture system for the investigation of radiation genotoxic effect in vitro. PMID:19786117

  6. Electron beam induced radiation damage in the catalyst layer of a proton exchange membrane fuel cell.

    PubMed

    He, Qianping; Chen, Jihua; Keffer, David J; Joy, David C

    2014-01-01

    Electron microscopy is an essential tool for the evaluation of microstructure and properties of the catalyst layer (CL) of proton exchange membrane fuel cells (PEMFCs). However, electron microscopy has one unavoidable drawback, which is radiation damage. Samples suffer temporary or permanent change of the surface or bulk structure under radiation damage, which can cause ambiguity in the characterization of the sample. To better understand the mechanism of radiation damage of CL samples and to be able to separate the morphological features intrinsic to the material from the consequences of electron radiation damage, a series of experiments based on high-angle annular dark-field-scanning transmission scanning microscope (HAADF-STEM), energy filtering transmission scanning microscope (EFTEM), and electron energy loss spectrum (EELS) are conducted. It is observed that for thin samples (0.3-1 times λ), increasing the incident beam energy can mitigate the radiation damage. Platinum nanoparticles in the CL sample facilitate the radiation damage. The radiation damage of the catalyst sample starts from the interface of Pt/C or defective thin edge and primarily occurs in the form of mass loss accompanied by atomic displacement and edge curl. These results provide important insights on the mechanism of CL radiation damage. Possible strategies of mitigating the radiation damage are provided. © 2013 Wiley Periodicals, Inc.

  7. Improving proton therapy by metal-containing nanoparticles: nanoscale insights

    PubMed Central

    Schlathölter, Thomas; Eustache, Pierre; Porcel, Erika; Salado, Daniela; Stefancikova, Lenka; Tillement, Olivier; Lux, Francois; Mowat, Pierre; Biegun, Aleksandra K; van Goethem, Marc-Jan; Remita, Hynd; Lacombe, Sandrine

    2016-01-01

    The use of nanoparticles to enhance the effect of radiation-based cancer treatments is a growing field of study and recently, even nanoparticle-induced improvement of proton therapy performance has been investigated. Aiming at a clinical implementation of this approach, it is essential to characterize the mechanisms underlying the synergistic effects of nanoparticles combined with proton irradiation. In this study, we investigated the effect of platinum- and gadolinium-based nanoparticles on the nanoscale damage induced by a proton beam of therapeutically relevant energy (150 MeV) using plasmid DNA molecular probe. Two conditions of irradiation (0.44 and 3.6 keV/μm) were considered to mimic the beam properties at the entrance and at the end of the proton track. We demonstrate that the two metal-containing nanoparticles amplify, in particular, the induction of nanosize damages (>2 nm) which are most lethal for cells. More importantly, this effect is even more pronounced at the end of the proton track. This work gives a new insight into the underlying mechanisms on the nanoscale and indicates that the addition of metal-based nanoparticles is a promising strategy not only to increase the cell killing action of fast protons, but also to improve tumor targeting. PMID:27143877

  8. Non-Lethal Weapons The Use Radiofrequency/Microwave Energy for Stunning/Immobilization

    DTIC Science & Technology

    2008-11-26

    0.75 to 1 GHz RF fields on skeletal muscle contraction using fixed frequencies and just recently implementing frequency sweep paradigms; 4) initiation...This basic research initiative is geared ultimately toward developing effective and safe non-lethal technologies that alter skeletal muscle ... contraction and/or neural functioning via radiofrequency (RF)/microwave (MW) electromagnetic radiation. Major accomplishments included 1) near completion of

  9. Non-Lethal Weapons for Use Rediofrequency/Microwave Energy for Stunning/Immobilization

    DTIC Science & Technology

    2008-11-14

    of 0.75 to 1 GHz RF fields on skeletal muscle contraction using fixed frequencies and just recently implementing frequency sweep paradigms; (4...This basic research initiative is geared ultimately toward developing effective and safe non-lethal technologies that alter skeletal muscle ... contraction and/or neural functioning via radiofrequency (RF)/microwave (MW) electromagnetic radiation. Major accomplishments included: (1) near completion of

  10. Predictions for Radiation Shielding Materials

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.

    2002-01-01

    Radiation from galactic cosmic rays (GCR) and solar particle events (SPE) is a serious hazard to humans and electronic instruments during space travel, particularly on prolonged missions outside the Earth s magnetic fields. Galactic cosmic radiation (GCR) is composed of approx. 98% nucleons and approx. 2% electrons and positrons. Although cosmic ray heavy ions are 1-2% of the fluence, these energetic heavy nuclei (HZE) contribute 50% of the long-term dose. These unusually high specific ionizations pose a significant health hazard acting as carcinogens and also causing microelectronics damage inside spacecraft and high-flying aircraft. These HZE ions are of concern for radiation protection and radiation shielding technology, because gross rearrangements and mutations and deletions in DNA are expected. Calculations have shown that HZE particles have a strong preference for interaction with light nuclei. The best shield for this radiation would be liquid hydrogen, which is totally impractical. For this reason, hydrogen-containing polymers make the most effective practical shields. Shielding is required during missions in Earth orbit and possibly for frequent flying at high altitude because of the broad GCR spectrum and during a passage into deep space and LunarMars habitation because of the protracted exposure encountered on a long space mission. An additional hazard comes from solar particle events (SPEs) which are mostly energetic protons that can produce heavy ion secondaries as well as neutrons in materials. These events occur at unpredictable times and can deliver a potentially lethal dose within several hours to an unshielded human. Radiation protection for humans requires safety in short-term missions and maintaining career exposure limits within acceptable levels on future long-term exploration missions. The selection of shield materials can alter the protection of humans by an order of magnitude. If improperly selected, shielding materials can actually increase radiation damage due to penetration properties and nuclear fragmentation. Protecting space-borne microelectronics from single event upsets (SEUs) by transmitted radiation will benefit system reliability and system design cost by using optimal shield materials. Long-term missions on the surface of the Moon or Mars will require the construction of habitats to protect humans during their stay. One approach to the construction is to make structural materials from lunar or Martian regolith using a polymeric material as a binder. The hydrogen-containing polymers are considerably more effective for radiation protection than the regolith, but the combination minimizes the amount of polymer to be transported. We have made composites of simulated lunar regolith with two different polymers, LaRC-SI, a high-performance polyimide thermoset, and polyethylene, a thermoplastic.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, T.B.; Madonna, G.S.; Ledney, G.D.

    Increased susceptibility to bacterial infection, probably by translocation from the intestinal flora, can be a lethal complication for 2-3 weeks after exposure to ionizing radiation. Antibiotics alone do not provide adequate therapy for induced infections in neutropenic mice. Because some substances that are derived from bacterial cell walls activate macrophages and stimulate nonspecific resistance to infection, such agents might be used to prevent or treat postirradiation infections. In this study, a cell-wall glycolipid, trehalose dimycolate (TDM), was evaluated together with a third-generation cephalosporin, ceftriaxone, for their separate and combined effects on survival of B6D2F1 female mice that were exposed tomore » the sublethal dose of 7.0 Gy Co radiation and challenged s.c. with lethal doses of Klebsiella pneumoniae. A single injection of TDM inoculated i.p. 1 hr postirradiation increased 30-day survival to 80% after a lethal challenge by K. pneumoniae 4 days later. When the challenge dose of K. pneumoniae was increased to 5000 Ld 50/30 on Day 4, all mice died.« less

  12. Protective effect of medroxyprogesterone acetate plus testosterone against radiation-induced damage to the reproductive function of male rats and their offspring.

    PubMed

    Jégou, B; Velez de la Calle, J F; Bauché, F

    1991-10-01

    This study attempted to protect spermatogenesis and the reproductive performance of rats against the effects of acute scrotal exposure to x-rays. Daily subcutaneous injections of medroxyprogesterone acetate (8 mg/kg) plus testosterone (1 mg/kg) (MT group) were administered for 55 days (experiment A) or 15 days (experiment B). The rats were irradiated (3 grays) on the last day of MT pretreatment (MTX group). In both experiments, on days 1 and 130 posttreatment, rats from each of the four groups (control, x-irradiated, MT, and MTX groups) were killed to measure the weight of the reproductive organs and the number of epididymal spermatozoa. Breeding was started 3 days posttreatment by housing all males from the four groups each with two virgin females for six successive periods of 19 days, separated by a period of 2 days. The percentage of fertile males, the litter size, postimplantation losses, and dominant lethal mutations were calculated. In experiment A, in the last fertility trial, animals of both sexes were selected at random from the progeny of each group (F1). When they were adults, their fertility was tested in a mating trial. A fertility trial was also performed with the F2 males. Our data essentially reveal that (i) in addition to their adverse quantitative effects on spermatogenesis, x-rays also produce a significant increase in dominant lethal mutations in all germ cell classes, including stem spermatogonia; (ii) the F1 and F2 male descendants of irradiated male rats provoked abnormal rates of postimplantation losses in their female mates; (iii) the short as well as the long MT pretreatment protects testicular function of irradiated rats; and (iv) in experiment A, MT pretreatment totally prevented qualitative damage to spermatozoa and protected the descendants of the irradiated animals against altered spermatogenesis as well as against genetic damage in germ cells. In conclusion, pretreatment with MT, even for a short period of time, offers a method for potentially reducing the toxic and genotoxic effects of irradiation on the male reproductive system.

  13. Protective effect of medroxyprogesterone acetate plus testosterone against radiation-induced damage to the reproductive function of male rats and their offspring.

    PubMed Central

    Jégou, B; Velez de la Calle, J F; Bauché, F

    1991-01-01

    This study attempted to protect spermatogenesis and the reproductive performance of rats against the effects of acute scrotal exposure to x-rays. Daily subcutaneous injections of medroxyprogesterone acetate (8 mg/kg) plus testosterone (1 mg/kg) (MT group) were administered for 55 days (experiment A) or 15 days (experiment B). The rats were irradiated (3 grays) on the last day of MT pretreatment (MTX group). In both experiments, on days 1 and 130 posttreatment, rats from each of the four groups (control, x-irradiated, MT, and MTX groups) were killed to measure the weight of the reproductive organs and the number of epididymal spermatozoa. Breeding was started 3 days posttreatment by housing all males from the four groups each with two virgin females for six successive periods of 19 days, separated by a period of 2 days. The percentage of fertile males, the litter size, postimplantation losses, and dominant lethal mutations were calculated. In experiment A, in the last fertility trial, animals of both sexes were selected at random from the progeny of each group (F1). When they were adults, their fertility was tested in a mating trial. A fertility trial was also performed with the F2 males. Our data essentially reveal that (i) in addition to their adverse quantitative effects on spermatogenesis, x-rays also produce a significant increase in dominant lethal mutations in all germ cell classes, including stem spermatogonia; (ii) the F1 and F2 male descendants of irradiated male rats provoked abnormal rates of postimplantation losses in their female mates; (iii) the short as well as the long MT pretreatment protects testicular function of irradiated rats; and (iv) in experiment A, MT pretreatment totally prevented qualitative damage to spermatozoa and protected the descendants of the irradiated animals against altered spermatogenesis as well as against genetic damage in germ cells. In conclusion, pretreatment with MT, even for a short period of time, offers a method for potentially reducing the toxic and genotoxic effects of irradiation on the male reproductive system. PMID:1833765

  14. WE-H-BRA-07: Mechanistic Modelling of the Relative Biological Effectiveness of Heavy Charged Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, S; Queen’s University, Belfast, Belfast; McNamara, A

    2016-06-15

    Purpose Uncertainty in the Relative Biological Effectiveness (RBE) of heavy charged particles compared to photons remains one of the major uncertainties in particle therapy. As RBEs depend strongly on clinical variables such as tissue type, dose, and radiation quality, more accurate individualised models are needed to fully optimise treatments. MethodsWe have developed a model of DNA damage and repair following X-ray irradiation in a number of settings, incorporating mechanistic descriptions of DNA repair pathways, geometric effects on DNA repair, cell cycle effects and cell death. Our model has previously been shown to accurately predict a range of biological endpoints includingmore » chromosome aberrations, mutations, and cell death. This model was combined with nanodosimetric models of individual ion tracks to calculate the additional probability of lethal damage forming within a single track. These lethal damage probabilities can be used to predict survival and RBE for cells irradiated with ions of different Linear Energy Transfer (LET). ResultsBy combining the X-ray response model with nanodosimetry information, predictions of RBE can be made without cell-line specific fitting. The model’s RBE predictions were found to agree well with empirical proton RBE models (Mean absolute difference between models of 1.9% and 1.8% for cells with α/β ratios of 9 and 1.4, respectively, for LETs between 0 and 15 keV/µm). The model also accurately recovers the impact of high-LET carbon ion exposures, showing both the reduced efficacy of ions at extremely high LET, as well as the impact of defects in non-homologous end joining on RBE values in Chinese Hamster Ovary cells.ConclusionOur model is predicts RBE without the inclusion of empirical LET fitting parameters for a range of experimental conditions. This approach has the potential to deliver improved personalisation of particle therapy, with future developments allowing for the calculation of individualised RBEs. SJM is supported by a Marie Curie International Outgoing Fellowship from the European Commission’s FP7 program (EC FP7 MC-IOF-623630)« less

  15. Radiation hepatology of the rat: The effects of the proliferation stimulus induced by subtotal hepatectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geraci, J.P.; Mariano, M.S.

    1994-11-01

    The effect of an 80 to 90% hepatectomy in stimulating proliferation immediately after irradiation of the liver was studied. A dose of 15 Gy was not lethal for animals with intact livers, but all animals with subtotal hepatectomies exposed to this dose died from apparent liver failure 28 to 60 days after exposure. To elucidate the mechanism for this mortality, plasma aspartate aminotransferase, retention of intravenous injected rose bengal, liver weight and liver hydroxyproline content were measured 0 to 90 days after 15 Gy irradiation of the liver to determine temporal changes in necrosis, function, mass and fibrosis, respectively, inmore » animals with either intact livers or livers with subtotal resection. Irradiation of the liver had no significant effect on these parameters in animals with intact livers. In subtotally hepatectomized animals the same radiation dose that suppressed liver mass restoration significantly increased hepatocyte necrosis within 7 days, which was followed by increased liver hydroxyproline concentration and hepatic dysfunction. This radiation-induced temporal change in hepatic dysfunction correlated with increased concentration of hydroxyproline but not with liver mass, indicating that liver fibrosis was the cause of hepatic dysfunction. Since similar sequelae are produced in intact livers after higher doses and longer intervals after irradiation, the proliferation stimulus induced by partial hepatectomy must accelerate the expression of damage and lower the radiation tolerance of the liver. However, in subtotally hepatectomized animals radiation-induced hepatocyte necrosis precedes fibrosis, whereas the reverse is normally true for animals with intact livers. 35 refs., 5 figs.« less

  16. Protection against gamma-radiation injury by protein tyrosine phosphatase 1B.

    PubMed

    Mojena, Marina; Pimentel-Santillana, María; Povo-Retana, Adrián; Fernández-García, Victoria; González-Ramos, Silvia; Rada, Patricia; Tejedor, Alberto; Rico, Daniel; Martín-Sanz, Paloma; Valverde, Angela M; Boscá, Lisardo

    2018-07-01

    Protein tyrosine phosphatase 1B (PTP1B) is widely expressed in mammalian tissues, in particular in immune cells, and plays a pleiotropic role in dephosphorylating many substrates. Moreover, PTP1B expression is enhanced in response to pro-inflammatory stimuli and to different cell stressors. Taking advantage of the use of mice deficient in PTP1B we have investigated the effect of γ-radiation in these animals and found enhanced lethality and decreased respiratory exchange ratio vs. the corresponding wild type animals. Using bone-marrow derived macrophages and mouse embryonic fibroblasts (MEFs) from wild-type and PTP1B-deficient mice, we observed a differential response to various cell stressors. PTP1B-deficient macrophages exhibited an enhanced response to γ-radiation, UV-light, LPS and S-nitroso-glutathione. Macrophages exposed to γ-radiation show DNA damage and fragmentation, increased ROS production, a lack in GSH elevation and enhanced acidic β-galactosidase activity. Interestingly, these differences were not observed in MEFs. Differential gene expression analysis of WT and KO macrophages revealed that the main pathways affected after irradiation were an up-regulation of protein secretion, TGF-β signaling and angiogenesis among other, and downregulation of Myc targets and Hedgehog signaling. These results demonstrate a key role for PTP1B in the protection against the cytotoxicity of irradiation in intact animal and in macrophages, which might be therapeutically relevant. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Biological Effects of Directed Energy

    NASA Astrophysics Data System (ADS)

    Dayton, Thomas; Beason, Charles; Hitt, M. K.; Rogers, Walter; Cook, Michael

    2002-11-01

    This Final Report summarizes the biological effects research conducted by Veridian Engineering personnel under contract F41624-96-C-9009 in support of the Air Force Research Laboratory's Radio Frequency Radiation Branch from April 1997 to April 2002. Biological effects research and consultation were provided in five major areas: Active Denial System (also known as Vehicle Mounted Active Denial System), radio frequency radiation (RFR) health and safety, non-lethal weapon biological effects research, the newly formed Joint Non-Lethal Weapons Human Effects Center of Excellence, and Biotechnology. The report is organized by research efforts within the major research areas, providing title, objective, a brief description, relevance to the AF or DoD, funding, and products.

  18. Simultaneous Near-Infrared Radiant Heating and UV Radiation for Inactivating Escherichia coli O157:H7 and Salmonella enterica Serovar Typhimurium in Powdered Red Pepper (Capsicum annuum L.)

    PubMed Central

    Ha, Jae-Won

    2013-01-01

    This study was conducted to investigate the efficacy of the simultaneous application of near-infrared (NIR) heating and UV irradiation for reducing populations of food-borne pathogens, including Salmonella enterica serovar Typhimurium and Escherichia coli O157:H7 in red pepper powder and to clarify the mechanisms of the lethal effect of the NIR-UV combined treatment. Also, the effect of the combination treatment on quality was determined by measuring changes in color and pungency constituents. Simultaneous NIR-UV combined treatment for 5 min achieved 3.34- and 2.78-log CFU reductions in S. Typhimurium and E. coli O157:H7, respectively, which involved 1.86- and 1.31-log CFU reductions, respectively, which were attributed to the synergistic effect. Through qualitative and quantitative analyses, damage to the cell envelope was identified as the main factor contributing to the synergistic lethal effect of NIR-UV combined treatment. Color values and capsaicin and dihydrocapsaicin content of NIR-UV simultaneously treated red pepper powder were not significantly (P > 0.05) different from those of untreated samples. These results suggest that simultaneous application of NIR and UV treatment can be effectively used to control food-borne pathogens in powdered red pepper without affecting quality. PMID:23956394

  19. Simultaneous near-infrared radiant heating and UV radiation for inactivating Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in powdered red pepper (Capsicum annuum L.).

    PubMed

    Ha, Jae-Won; Kang, Dong-Hyun

    2013-11-01

    This study was conducted to investigate the efficacy of the simultaneous application of near-infrared (NIR) heating and UV irradiation for reducing populations of food-borne pathogens, including Salmonella enterica serovar Typhimurium and Escherichia coli O157:H7 in red pepper powder and to clarify the mechanisms of the lethal effect of the NIR-UV combined treatment. Also, the effect of the combination treatment on quality was determined by measuring changes in color and pungency constituents. Simultaneous NIR-UV combined treatment for 5 min achieved 3.34- and 2.78-log CFU reductions in S. Typhimurium and E. coli O157:H7, respectively, which involved 1.86- and 1.31-log CFU reductions, respectively, which were attributed to the synergistic effect. Through qualitative and quantitative analyses, damage to the cell envelope was identified as the main factor contributing to the synergistic lethal effect of NIR-UV combined treatment. Color values and capsaicin and dihydrocapsaicin content of NIR-UV simultaneously treated red pepper powder were not significantly (P > 0.05) different from those of untreated samples. These results suggest that simultaneous application of NIR and UV treatment can be effectively used to control food-borne pathogens in powdered red pepper without affecting quality.

  20. Identification of heavy-ion radiation-induced microRNAs in rice

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Liang, Shujian; Hang, Xiaoming; Xiang, Yingxia; Cheng, Zhenlong; Li, Wenjian; Shi, Jinming; Huang, Lei; Sun, Yeqing

    2011-03-01

    MicroRNAs (miRNAs) are a family of small non-coding RNAs, which play significant roles in regulating development and stress responses in plant. As an excellent model organism for studying the effects of environmental stress, rice has been used to assess the damage of the space radiation environment for decades. Heavy-ions radiation show higher relative biological effectiveness compared to other cosmic-rays radiation. To identify the specific miRNAs that underlie biological effects of heavy-ion radiation, the germinated seeds of rice were exposed to 1 Gy, 10 Gy and 20 Gy dose of 12C heavy-ion radiation, respectively. Analysis of phenotype indicated that 20 Gy dose of heavy-ion radiation was the semi-lethal dose of rice seedling. The microarray of μparaflo™ chip was employed to monitor the expression profiles of miRNAs in rice (Oryza sativa) under 20 Gy dose of radiation stress. miR164a, miR164c, miR164d and miR156a-j were identified as heavy-ion radiation-induced miRNAs. miR164 and miR156 family were increased in all three exposed samples by using quantitative real-time PCR (qRT-RCP). As targets of miR156 and miR164, SQUAMOSA PROMOTER BINDING-LIKE (SPL) transcription factors and NAM/ATAF/CUC (NAC) transcription factors expression were down-regulated correlating with an up-regulated level of the regulated miRNAs. Since SPL transcription factors and NAC transcription factors regulated growth and development of plant, we used 2-dimension electrophoresis (2-DE) gel to analyze changes of functional proteins in 20 Gy exposed samples. It was evident that both the height and survival rates of seedlings were markedly decreased. The abundance of some developmentally regulated proteins was also changed. To our knowledge, this study is the first to report heavy-ion radiation stress responsive miRNAs in plant. Moreover, our findings are important to understand the molecular mechanism of space biology.

  1. Practical Advice on Calculating Confidence Intervals for Radioprotection Effects and Reducing Animal Numbers in Radiation Countermeasure Experiments

    PubMed Central

    Landes, Reid D.; Lensing, Shelly Y.; Kodell, Ralph L.; Hauer-Jensen, Martin

    2014-01-01

    The dose of a substance that causes death in P% of a population is called an LDP, where LD stands for lethal dose. In radiation research, a common LDP of interest is the radiation dose that kills 50% of the population by a specified time, i.e., lethal dose 50 or LD50. When comparing LD50 between two populations, relative potency is the parameter of interest. In radiation research, this is commonly known as the dose reduction factor (DRF). Unfortunately, statistical inference on dose reduction factor is seldom reported. We illustrate how to calculate confidence intervals for dose reduction factor, which may then be used for statistical inference. Further, most dose reduction factor experiments use hundreds, rather than tens of animals. Through better dosing strategies and the use of a recently available sample size formula, we also show how animal numbers may be reduced while maintaining high statistical power. The illustrations center on realistic examples comparing LD50 values between a radiation countermeasure group and a radiation-only control. We also provide easy-to-use spreadsheets for sample size calculations and confidence interval calculations, as well as SAS® and R code for the latter. PMID:24164553

  2. Ricin crosses polarized human intestinal cells and intestines of ricin-gavaged mice without evident damage and then disseminates to mouse kidneys.

    PubMed

    Flora, Alyssa D; Teel, Louise D; Smith, Mark A; Sinclair, James F; Melton-Celsa, Angela R; O'Brien, Alison D

    2013-01-01

    Ricin is a potent toxin found in the beans of Ricinus communis and is often lethal for animals and humans when aerosolized or injected and causes significant morbidity and occasional death when ingested. Ricin has been proposed as a bioweapon because of its lethal properties, environmental stability, and accessibility. In oral intoxication, the process by which the toxin transits across intestinal mucosa is not completely understood. To address this question, we assessed the impact of ricin on the gastrointestinal tract and organs of mice after dissemination of toxin from the gut. We first showed that ricin adhered in a specific pattern to human small bowel intestinal sections, the site within the mouse gut in which a variable degree of damage has been reported by others. We then monitored the movement of ricin across polarized human HCT-8 intestinal monolayers grown in transwell inserts and in HCT-8 cell organoids. We observed that, in both systems, ricin trafficked through the cells without apparent damage until 24 hours post intoxication. We delivered a lethal dose of purified fluorescently-labeled ricin to mice by oral gavage and followed transit of the toxin from the gastrointestinal tracts to the internal organs by in vivo imaging of whole animals over time and ex vivo imaging of organs at various time points. In addition, we harvested organs from unlabeled ricin-gavaged mice and assessed them for the presence of ricin and for histological damage. Finally, we compared serum chemistry values from buffer-treated versus ricin-intoxicated animals. We conclude that ricin transverses human intestinal cells and mouse intestinal cells in situ prior to any indication of enterocyte damage and that ricin rapidly reaches the kidneys of intoxicated mice. We also propose that mice intoxicated orally with ricin likely die from distributive shock.

  3. Ricin Crosses Polarized Human Intestinal Cells and Intestines of Ricin-Gavaged Mice without Evident Damage and Then Disseminates to Mouse Kidneys

    PubMed Central

    Flora, Alyssa D.; Teel, Louise D.; Smith, Mark A.; Sinclair, James F.; Melton-Celsa, Angela R.; O’Brien, Alison D.

    2013-01-01

    Ricin is a potent toxin found in the beans of Ricinus communis and is often lethal for animals and humans when aerosolized or injected and causes significant morbidity and occasional death when ingested. Ricin has been proposed as a bioweapon because of its lethal properties, environmental stability, and accessibility. In oral intoxication, the process by which the toxin transits across intestinal mucosa is not completely understood. To address this question, we assessed the impact of ricin on the gastrointestinal tract and organs of mice after dissemination of toxin from the gut. We first showed that ricin adhered in a specific pattern to human small bowel intestinal sections, the site within the mouse gut in which a variable degree of damage has been reported by others. We then monitored the movement of ricin across polarized human HCT-8 intestinal monolayers grown in transwell inserts and in HCT-8 cell organoids. We observed that, in both systems, ricin trafficked through the cells without apparent damage until 24 hours post intoxication. We delivered a lethal dose of purified fluorescently-labeled ricin to mice by oral gavage and followed transit of the toxin from the gastrointestinal tracts to the internal organs by in vivo imaging of whole animals over time and ex vivo imaging of organs at various time points. In addition, we harvested organs from unlabeled ricin-gavaged mice and assessed them for the presence of ricin and for histological damage. Finally, we compared serum chemistry values from buffer-treated versus ricin-intoxicated animals. We conclude that ricin transverses human intestinal cells and mouse intestinal cells in situ prior to any indication of enterocyte damage and that ricin rapidly reaches the kidneys of intoxicated mice. We also propose that mice intoxicated orally with ricin likely die from distributive shock. PMID:23874986

  4. A nonhuman primate model of the hematopoietic acute radiation syndrome plus medical management.

    PubMed

    Farese, Ann M; Cohen, Melanie V; Katz, Barry P; Smith, Cassandra P; Jackson, William; Cohen, Daniel M; MacVittie, Thomas J

    2012-10-01

    The development of medical countermeasures against the hematopoietic subsyndrome of the acute radiation syndrome requires well characterized and validated animal models. The model must define the radiation dose- and time-dependent relationships for mortality and major signs of morbidity to include other organ damage that may contribute to morbidity and mortality. Herein, the authors define these parameters for a nonhuman primate exposed to total body radiation and administered medical management. A blinded, randomized study (n = 48 rhesus macaques) determined the lethal dose-response relationship using bilateral 6 MV linear accelerator photon radiation to doses in the range of 7.20 to 8.90 Gy at 0.80 Gy min(-1). Following irradiation, animals were monitored for complete bloodcounts, body weight, temperature, diarrhea, and hydration status for 60 d. Animals were administered medical management consisting of intravenous fluids, prophylactic antibiotics, blood transfusions, anti-diarrheals, analgesics, and nutrition. The primary endpoint was survival at 60 d post-irradiation; secondary endpoints included hematopoietic-related parameters, number of transfusions, incidence of documented infection, febrile neutropenia, severity of diarrhea, mean survival time of decedents, and tissue histology. The study defined an LD30/60 of 7.06 Gy, LD50/60 of 7.52 Gy, and an LD70/60 of 7.99 Gy with a relatively steep slope of 1.13 probits per linear dose. This study establishes a rhesus macaque model of the hematopoietic acute radiation syndrome and shows the marked effect of medical management on increased survival and overall mean survival time for decedents. Furthermore, following a nuclear terrorist event, medical management may be the only treatment administered at its optimal schedule.

  5. In vivo postirradiation protection by a vitamin E analog, alpha-TMG.

    PubMed

    Satyamitra, Merriline; Uma Devi, P; Murase, Hironobu; Kagiya, V T

    2003-12-01

    The water-soluble vitamin E derivative alpha-TMG is an excellent radical scavenger. A dose of 600 mg/kg TMG significantly reduced radiation clastogenicity in mouse bone marrow when administered after irradiation. The present study was aimed at investigating the radioprotective effect of postirradiation treatment with alpha-TMG against a range of whole-body lethal (8.5-12 Gy) and sublethal (1-5 Gy) doses of radiation in adult Swiss albino mice. Protection against lethal irradiation was evaluated from 30-day mouse survival and against sublethal doses was assessed from micronuclei and chromosomal aberrations in the bone marrow 24 h after irradiation. An intraperitoneal injection of 600 mg/kg TMG within 10 min of lethal irradiation increased survival, giving a dose modification factor (DMF) of 1.09. TMG at doses of 400 mg/kg and 600 mg/kg significantly reduced the percentage of aberrant metaphases, the different types of aberrations, and the number of micronucleated erythrocytes. DMFs of 1.22 and 1.48 for percentage aberrant metaphases and 1.6 and 1.98 for micronuclei were obtained for 400 mg/kg and 600 mg/kg TMG, respectively. No drug toxicity was observed at these doses. The effectiveness of TMG when administered postirradiation suggests its possible utility for protection against unplanned radiation exposures.

  6. A new hand-held microfluidic cytometer for evaluating irradiation damage by analysis of the damaged cells distribution.

    PubMed

    Wang, Junsheng; Fan, Zhiqiang; Zhao, Yile; Song, Younan; Chu, Hui; Song, Wendong; Song, Yongxin; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2016-03-17

    Space radiation brings uneven damages to cells. The detection of the distribution of cell damage plays a very important role in radiation medicine and the related research. In this paper, a new hand-held microfluidic flow cytometer was developed to evaluate the degree of radiation damage of cells. The device we propose overcomes the shortcomings (e.g., large volume and high cost) of commercial flow cytometers and can evaluate the radiation damage of cells accurately and quickly with potential for onsite applications. The distribution of radiation-damaged cells is analyzed by a simultaneous detection of immunofluorescence intensity of γ-H2AX and resistance pulse sensor (RPS) signal. The γ-H2AX fluorescence intensity provides information of the degree of radiation damage in cells. The ratio of the number of cells with γ-H2AX fluorescence signals to the total numbers of cells detected by RPS indicates the percentage of the cells that are damaged by radiation. The comparison experiment between the developed hand-held microfluidic flow cytometer and a commercial confocal microscope indicates a consistent and comparable detection performance.

  7. A new hand-held microfluidic cytometer for evaluating irradiation damage by analysis of the damaged cells distribution

    NASA Astrophysics Data System (ADS)

    Wang, Junsheng; Fan, Zhiqiang; Zhao, Yile; Song, Younan; Chu, Hui; Song, Wendong; Song, Yongxin; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2016-03-01

    Space radiation brings uneven damages to cells. The detection of the distribution of cell damage plays a very important role in radiation medicine and the related research. In this paper, a new hand-held microfluidic flow cytometer was developed to evaluate the degree of radiation damage of cells. The device we propose overcomes the shortcomings (e.g., large volume and high cost) of commercial flow cytometers and can evaluate the radiation damage of cells accurately and quickly with potential for onsite applications. The distribution of radiation-damaged cells is analyzed by a simultaneous detection of immunofluorescence intensity of γ-H2AX and resistance pulse sensor (RPS) signal. The γ-H2AX fluorescence intensity provides information of the degree of radiation damage in cells. The ratio of the number of cells with γ-H2AX fluorescence signals to the total numbers of cells detected by RPS indicates the percentage of the cells that are damaged by radiation. The comparison experiment between the developed hand-held microfluidic flow cytometer and a commercial confocal microscope indicates a consistent and comparable detection performance.

  8. Radiation damage to macromolecules: kill or cure?

    PubMed

    Garman, Elspeth F; Weik, Martin

    2015-03-01

    Radiation damage induced by X-ray beams during macromolecular diffraction experiments remains an issue of concern in structural biology. While advances in our understanding of this phenomenon, driven in part by a series of workshops in this area, undoubtedly have been and are still being made, there are still questions to be answered. Eight papers in this volume give a flavour of ongoing investigations, addressing various issues. These range over: a proposed new metric derived from atomic B-factors for identifying potentially damaged amino acid residues, a study of the relative damage susceptibility of protein and DNA in a DNA/protein complex, a report of an indication of specific radiation damage to a protein determined from data collected using an X-ray free-electron laser (FEL), an account of the challenges in FEL raw diffraction data analysis, an exploration of the possibilities of using radiation damage induced phasing to solve structures using FELs, simulations of radiation damage as a function of FEL temporal pulse profiles, results on the influence of radiation damage during scanning X-ray diffraction measurements and, lastly, consideration of strategies for minimizing radiation damage during SAXS experiments. In this short introduction, these contributions are briefly placed in the context of other current work on radiation damage in the field.

  9. ATR Kinase Inhibition Protects Non-cycling Cells from the Lethal Effects of DNA Damage and Transcription Stress*

    PubMed Central

    Kemp, Michael G.; Sancar, Aziz

    2016-01-01

    ATR (ataxia telangiectasia and Rad-3-related) is a protein kinase that maintains genome stability and halts cell cycle phase transitions in response to DNA lesions that block DNA polymerase movement. These DNA replication-associated features of ATR function have led to the emergence of ATR kinase inhibitors as potential adjuvants for DNA-damaging cancer chemotherapeutics. However, whether ATR affects the genotoxic stress response in non-replicating, non-cycling cells is currently unknown. We therefore used chemical inhibition of ATR kinase activity to examine the role of ATR in quiescent human cells. Although ATR inhibition had no obvious effects on the viability of non-cycling cells, inhibition of ATR partially protected non-replicating cells from the lethal effects of UV and UV mimetics. Analyses of various DNA damage response signaling pathways demonstrated that ATR inhibition reduced the activation of apoptotic signaling by these agents in non-cycling cells. The pro-apoptosis/cell death function of ATR is likely due to transcription stress because the lethal effects of compounds that block RNA polymerase movement were reduced in the presence of an ATR inhibitor. These results therefore suggest that whereas DNA polymerase stalling at DNA lesions activates ATR to protect cell viability and prevent apoptosis, the stalling of RNA polymerases instead activates ATR to induce an apoptotic form of cell death in non-cycling cells. These results have important implications regarding the use of ATR inhibitors in cancer chemotherapy regimens. PMID:26940878

  10. Injury Risk Assessment of Non-Lethal Projectile Head Impacts

    PubMed Central

    Oukara, Amar; Nsiampa, Nestor; Robbe, Cyril; Papy, Alexandre

    2014-01-01

    Kinetic energy non-lethal projectiles are used to impart sufficient effect onto a person in order to deter uncivil or hazardous behavior with a low probability of permanent injury. Since their first use, real cases indicate that the injuries inflicted by such projectiles may be irreversible and sometimes lead to death, especially for the head impacts. Given the high velocities and the low masses involved in such impacts, the assessment approaches proposed in automotive crash tests and sports may not be appropriate. Therefore, there is a need of a specific approach to assess the lethality of these projectiles. In this framework, some recent research data referred in this article as “force wall approach” suggest the use of three lesional thresholds (unconsciousness, meningeal damages and bone damages) that depend on the intracranial pressure. Three corresponding critical impact forces are determined for a reference projectile. Based on the principle that equal rigid wall maximal impact forces will produce equal damage on the head, these limits can be determined for any other projectile. In order to validate the consistence of this innovative method, it is necessary to compare the results with other existing assessment methods. This paper proposes a comparison between the “force wall approach” and two different head models. The first one is a numerical model (Strasbourg University Finite Element Head Model-SUFEHM) from Strasbourg University; the second one is a mechanical surrogate (Ballistics Load Sensing Headform-BLSH) from Biokinetics. PMID:25400712

  11. Raster microdiffraction with synchrotron radiation of hydrated biopolymers with nanometre step-resolution: case study of starch granules

    PubMed Central

    Riekel, C.; Burghammer, M.; Davies, R. J.; Di Cola, E.; König, C.; Lemke, H.T.; Putaux, J.-L.; Schöder, S.

    2010-01-01

    X-ray radiation damage propagation is explored for hydrated starch granules in order to reduce the step resolution in raster-microdiffraction experiments to the nanometre range. Radiation damage was induced by synchrotron radiation microbeams of 5, 1 and 0.3 µm size with ∼0.1 nm wavelength in B-type potato, Canna edulis and Phajus grandifolius starch granules. A total loss of crystallinity of granules immersed in water was found at a dose of ∼1.3 photons nm−3. The temperature dependence of radiation damage suggests that primary radiation damage prevails up to about 120 K while secondary radiation damage becomes effective at higher temperatures. Primary radiation damage remains confined to the beam track at 100 K. Propagation of radiation damage beyond the beam track at room temperature is assumed to be due to reactive species generated principally by water radiolysis induced by photoelectrons. By careful dose selection during data collection, raster scans with 500 nm step-resolution could be performed for granules immersed in water. PMID:20975219

  12. Ethylhexylglycerin Impairs Membrane Integrity and Enhances the Lethal Effect of Phenoxyethanol

    PubMed Central

    Langsrud, Solveig; Steinhauer, Katrin; Lüthje, Sonja; Weber, Klaus; Goroncy-Bermes, Peter; Holck, Askild L.

    2016-01-01

    Preservatives are added to cosmetics to protect the consumers from infections and prevent product spoilage. The concentration of preservatives should be kept as low as possible and this can be achieved by adding potentiating agents. The aim of the study was to investigate the mechanisms behind potentiation of the bactericidal effect of a commonly used preservative, 2-phenoxyethanol (PE), by the potentiating agent ethylhexylglycerin (EHG). Sub-lethal concentrations of EHG (0.075%) and PE (0.675%) in combination led to rapid killing of E. coli (> 5 log reduction of cfu after 30 min), leakage of cellular constituents, disruption of the energy metabolism, morphological deformities of cells and condensation of DNA. Used alone, EHG disrupted the membrane integrity even at low concentrations. In conclusion, sub-lethal concentrations of EHG potentiate the effect of PE through damage of the cell membrane integrity. Thus, adding EHG to PE in a 1:9 ratio has a similar effect on membrane damage and bacterial viability as doubling the concentration of PE. This study provides insight about the mechanism of action of a strong potentiating agent, EHG, which is commonly used in cosmetics together with PE. PMID:27783695

  13. Evaluation of the performance of three elastomers for non-lethal projectile applications

    NASA Astrophysics Data System (ADS)

    Thota, N.; Epaarachchi, J.; Lau, K. T.

    2015-09-01

    Less lethal kinetic ammunitions with soft noses such as eXact iMpact 1006, National Sports Spartan and B&T have been commonly used by military and law enforcement officers in the situations where lethal force is not warranted. In order to explore new materials to be used as nose in such ammunitions, a scholastic study using finite element simulations has been carried out to evaluate the effectiveness of two rubber like elastomers and a polyolefinic foam (low density, highly compressible, stiff and closed cell type of thermos plastic elastomer). State-of-the art thorax surrogate MTHOTA has been employed for the evaluation of blunt thoracic trauma. Force-rigid wall method was employed for the evaluation of head damage curves for each material. XM 1006 has been used as the benchmark projectile for the purpose of comparison. Both blunt thoracic trauma and head damage criterion point of view, both rubbers (R1 and R2) have yielded high values of VCmax and peak impact force. Polyolefinic foam (F1) considered in the study has yielded very promising VCmax values and very less peak impact force when compared with those of bench mark projectile XM 1006.

  14. Genomic and proteomic evidences unravel the UV-resistome of the poly-extremophile Acinetobacter sp. Ver3

    PubMed Central

    Kurth, Daniel; Belfiore, Carolina; Gorriti, Marta F.; Cortez, Néstor; Farias, María E.; Albarracín, Virginia H.

    2015-01-01

    Ultraviolet radiation can damage biomolecules, with detrimental or even lethal effects for life. Even though lower wavelengths are filtered by the ozone layer, a significant amount of harmful UV-B and UV-A radiation reach Earth’s surface, particularly in high altitude environments. high-altitude Andean lakes (HAALs) are a group of disperse shallow lakes and salterns, located at the Dry Central Andes region in South America at altitudes above 3,000 m. As it is considered one of the highest UV-exposed environments, HAAL microbes constitute model systems to study UV-resistance mechanisms in environmental bacteria at various complexity levels. Herein, we present the genome sequence of Acinetobacter sp. Ver3, a gammaproteobacterium isolated from Lake Verde (4,400 m), together with further experimental evidence supporting the phenomenological observations regarding this bacterium ability to cope with increased UV-induced DNA damage. Comparison with the genomes of other Acinetobacter strains highlighted a number of unique genes, such as a novel cryptochrome. Proteomic profiling of UV-exposed cells identified up-regulated proteins such as a specific cytoplasmic catalase, a putative regulator, and proteins associated to amino acid and protein synthesis. Down-regulated proteins were related to several energy-generating pathways such as glycolysis, beta-oxidation of fatty acids, and electronic respiratory chain. To the best of our knowledge, this is the first report on a genome from a polyextremophilic Acinetobacter strain. From the genomic and proteomic data, an “UV-resistome” was defined, encompassing the genes that would support the outstanding UV-resistance of this strain. PMID:25954258

  15. Genomic and proteomic evidences unravel the UV-resistome of the poly-extremophile Acinetobacter sp. Ver3.

    PubMed

    Kurth, Daniel; Belfiore, Carolina; Gorriti, Marta F; Cortez, Néstor; Farias, María E; Albarracín, Virginia H

    2015-01-01

    Ultraviolet radiation can damage biomolecules, with detrimental or even lethal effects for life. Even though lower wavelengths are filtered by the ozone layer, a significant amount of harmful UV-B and UV-A radiation reach Earth's surface, particularly in high altitude environments. high-altitude Andean lakes (HAALs) are a group of disperse shallow lakes and salterns, located at the Dry Central Andes region in South America at altitudes above 3,000 m. As it is considered one of the highest UV-exposed environments, HAAL microbes constitute model systems to study UV-resistance mechanisms in environmental bacteria at various complexity levels. Herein, we present the genome sequence of Acinetobacter sp. Ver3, a gammaproteobacterium isolated from Lake Verde (4,400 m), together with further experimental evidence supporting the phenomenological observations regarding this bacterium ability to cope with increased UV-induced DNA damage. Comparison with the genomes of other Acinetobacter strains highlighted a number of unique genes, such as a novel cryptochrome. Proteomic profiling of UV-exposed cells identified up-regulated proteins such as a specific cytoplasmic catalase, a putative regulator, and proteins associated to amino acid and protein synthesis. Down-regulated proteins were related to several energy-generating pathways such as glycolysis, beta-oxidation of fatty acids, and electronic respiratory chain. To the best of our knowledge, this is the first report on a genome from a polyextremophilic Acinetobacter strain. From the genomic and proteomic data, an "UV-resistome" was defined, encompassing the genes that would support the outstanding UV-resistance of this strain.

  16. AMBIENT SOLAR UV RADIATION CAUSES MORTALITY IN LARVAE OF THREE SPECIES OF RANA

    EPA Science Inventory

    Recent reports concerning the lethal effects of solar ultraviolet-B (UV-B) radiation on amphibians suggest that this stressor has the potential to impact some amphibian populations. In this study embryos and larvae of three anuran species, Rana pipiens, R. clamitans, and R. septe...

  17. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis

    PubMed Central

    2013-01-01

    Background In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Results Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof1/+; mnkp6/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. Conclusion mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry out the interaction of MOF with the known components of the DNA damage pathway. PMID:23347679

  18. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis.

    PubMed

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Chowdhury, Debabani Roy; Bhadra, Utpal; Pal-Bhadra, Manika

    2013-01-24

    In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof¹/+; mnkp⁶/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry out the interaction of MOF with the known components of the DNA damage pathway.

  19. Stromal Progenitor Cells in Mitigation of Non-Hematopoietic Radiation Injuries

    PubMed Central

    Kulkarni, Shilpa; Wang, Timothy C.; Guha, Chandan

    2016-01-01

    Purpose of review Therapeutic exposure to high doses of radiation can severely impair organ function due to ablation of stem cells. Normal tissue injury is a dose-limiting toxicity for radiation therapy (RT). Although advances in the delivery of high precision conformal RT has increased normal tissue sparing, mitigating and therapeutic strategies that could alleviate early and chronic radiation effects are urgently needed in order to deliver curative doses of RT, especially in abdominal, pelvic and thoracic malignancies. Radiation-induced gastrointestinal injury is also a major cause of lethality from accidental or intentional exposure to whole body irradiation in the case of nuclear accidents or terrorism. This review examines the therapeutic options for mitigation of non-hematopoietic radiation injuries. Recent findings We have developed stem cell based therapies for the mitigation of acute radiation syndrome (ARS) and radiation-induced gastrointestinal syndrome (RIGS). This is a promising option because of the robustness of standardized isolation and transplantation of stromal cells protocols, and their ability to support and replace radiation-damaged stem cells and stem cell niche. Stromal progenitor cells (SPC) represent a unique multipotent and heterogeneous cell population with regenerative, immunosuppressive, anti-inflammatory, and wound healing properties. SPC are also known to secrete various key cytokines and growth factors such as platelet derived growth factors (PDGF), keratinocyte growth factor (KGF), R-spondins (Rspo), and may consequently exert their regenerative effects via paracrine function. Additionally, secretory vesicles such as exosomes or microparticles can potentially be a cell-free alternative replacing the cell transplant in some cases. Summary This review highlights the beneficial effects of SPC on tissue regeneration with their ability to (a) target the irradiated tissues, (b) recruit host stromal cells, (c) regenerate endothelium and epithelium, (d) and secrete regenerative and immunomodulatory paracrine signals to control inflammation, ulceration, wound healing and fibrosis. PMID:28462013

  20. [Chlorophyll mutations induced by gamma radiation in Phaseolus vulgaris L].

    PubMed

    Meoño, M E

    1975-07-01

    In a study of chlorophyll mutants of Phaseolus vulgaris L. through Co60 gamma radiation, five types of mutants, classified as albino, cream, yellow, yellow-green and light green were obtained; all were lethal; their segregation was always proportionally lower than the Mendelian. Gamma radiation-induced mutations in black beans do not depart significantly from those obtained elsewhere in barley and wheat.

  1. Alpha-Recoil Damage Annealing Effecfs on Zircon Crystallinity and He Diffusivity: Improving Damage-Diffusivity Models

    NASA Astrophysics Data System (ADS)

    Thurston, O. G.; Guenthner, W.; Garver, J. I.

    2017-12-01

    The effects of radiation damage on He diffusion in zircon has been a major research focus in thermochronology over the past decade. In the zircon-He system, alpha-recoil damage effects He diffusivity in two ways: a decrease in He diffusivity at low radiation damage levels, and an increase in He diffusivity at high radiation damage levels. The radiation damage accumulation process within zircon is well understood; however, the kinetics of annealing of alpha-recoil damage at geologic timescales as they pertain to damage-diffusivity models, and for metamict zircon (i.e. transition from crystalline to amorphous glass via damage accumulation), has not been well constrained. This study aims to develop a more complete model that describes the annealing kinetics for zircon grains with a broad range of pre-annealing, alpha-induced radiation damage. A suite of zircon grains from the Lucerne pluton, ME were chosen for this study due to their simple thermal history (monotonic cooling), notable range of effective uranium (eU, eU = [U] +0.235*[Th]) (15 - 34,239 ppm eU), and large range of radiation damage as measured by Raman shift from crystalline (>1005 cm-1) to metamict (<1000 cm-1). The zircon grains selected represent the full range of eU and radiation damage present in the pluton. The zircon grains were first mapped for overall crystallinity using Raman spectroscopy, then annealed at different time-temperature (t-T) schedules from 1 hr to 24 hrs at temperatures ranging from 700-1100 °C, followed by remapping with Raman spectroscopy to track the total Raman shift for each t-T step. The temperature window selected is at the "roll-over" point established in prior studies (Zhang et al., 2000), at which most laboratory annealing occurs. Our data show that high radiation damage zircon grains show larger Raman shifts than low radiation damage zircon grains when exposed to the same t-T step. The high damage zircon grains typically show a Raman shift of 4 cm-1 toward crystalline, while low radiation damage grains show a shift of 2 cm-1. These shifts suggest that the annealing process occurs at a faster rate in high damage zircon grains, and slower rates in more crystalline grains. That is, the initial level of radiation damage prior to annealing must be considered in damage-diffusivity models that contain thermal histories from zircon-He dates.

  2. alpha-Galactosylceramide (AGL-517) treatment protects mice from lethal irradiation.

    PubMed

    Inoue, H; Koezuka, Y; Nishi, N; Osawa, M; Motoki, K; Kobayashi, E; Kabaya, K; Obuchi, M; Fukushima, H; Mori, K J

    1997-08-01

    AGL-517 (AGL) has an alpha-galactosylceramide structure and is a derivative of agelasphin-9b, which in turn is isolated from Agelas mauritianus and has immunomodulating activity. When administered before irradiation, AGL has been found to increase survival rates in lethally irradiated mice. In this study, we found that a single injection of AGL administered within 2 hours of lethal irradiation resulted in the long-term survival of mice without bone marrow transplantation. Peripheral blood hematology showed that AGL administration accelerated the recovery of hematopoietic parameters, including reticulocytes and red and white blood cells. Recovery of platelets was moderate. In addition, AGL significantly increased the number of endogenous colony forming units-spleen (E-CFU-S). AGL itself displayed no colony-stimulating activity, but AGL-stimulated spleen cell-conditioned medium (AGL-SCM) promoted the proliferation and differentiation of bone marrow mononuclear cells from normal mice and Lin marrow cells from 5-fluorouracil (5-FU)-treated mice. Using suitable assay systems, we analyzed cytokines in AGL-SCM and found significant increases in stem cell factor (SCF), interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-6 levels compared with control SCM. Additionally, using immunoenzymetric assays, we assessed serum levels of these factors in AGL-treated mice after lethal irradiation. The serum concentrations of IL-3, GM-CSF, and IL-6 were substantially elevated, the maximum levels being reached within 2 hours of injection. Despite inducing the in vitro increase in SCF, AGL did not elevate serum SCF levels. However, certain levels of SCF (approximately 5 ng/mL) were detected in mouse serum regardless of irradiation or AGL treatment. When irradiated mice were given a cytokine cocktail composed of recombinant murine (rm) IL-3, rmGM-CSF, and recombinant human (rh) IL-6 three times a day for 6 days (1 microg of each factor per mouse per day) starting 2 hours after irradiation, 60% of the mice achieved 50-day survival. The radioprotective effect of AGL can be attributed, in part, to the cooperative effect of the cytokines induced by AGL in vivo. These findings suggest that AGL may be a useful in treating radiation-induced hematopoietic damage.

  3. Automated medial axis seeding and guided evolutionary simulated annealing for optimization of gamma knife radiosurgery treatment plans

    NASA Astrophysics Data System (ADS)

    Zhang, Pengpeng

    The Leksell Gamma KnifeRTM (LGK) is a tool for providing accurate stereotactic radiosurgical treatment of brain lesions, especially tumors. Currently, the treatment planning team "forward" plans radiation treatment parameters while viewing a series of 2D MR scans. This primarily manual process is cumbersome and time consuming because the difficulty in visualizing the large search space for the radiation parameters (i.e., shot overlap, number, location, size, and weight). I hypothesize that a computer-aided "inverse" planning procedure that utilizes tumor geometry and treatment goals could significantly improve the planning process and therapeutic outcome of LGK radiosurgery. My basic observation is that the treatment team is best at identification of the location of the lesion and prescribing a lethal, yet safe, radiation dose. The treatment planning computer is best at determining both the 3D tumor geometry and optimal LGK shot parameters necessary to deliver a desirable dose pattern to the tumor while sparing adjacent normal tissue. My treatment planning procedure asks the neurosurgeon to identify the tumor and critical structures in MR images and the oncologist to prescribe a tumoricidal radiation dose. Computer-assistance begins with geometric modeling of the 3D tumor's medial axis properties. This begins with a new algorithm, a Gradient-Phase Plot (G-P Plot) decomposition of the tumor object's medial axis. I have found that medial axis seeding, while insufficient in most cases to produce an acceptable treatment plan, greatly reduces the solution space for Guided Evolutionary Simulated Annealing (GESA) treatment plan optimization by specifying an initial estimate for shot number, size, and location, but not weight. They are used to generate multiple initial plans which become initial seed plans for GESA. The shot location and weight parameters evolve and compete in the GESA procedure. The GESA objective function optimizes tumor irradiation (i.e., as close to the prescribed dose as possible) and minimizes normal tissue and critical structure damage. In tests of five patient data sets (4 acoustic neuromas and 1 meningioma), the G-P Plot/GESA-generated treatment plans improved conformality of the lethal dose to the tumor, required no human interaction, improved dose homogeneity, suggested use of fewer shots, and reduced treatment administration time.

  4. Measurements of DNA Damage and Repair in Bacillus anthracis Sterne Spores by UV Radiation

    DTIC Science & Technology

    2014-09-18

    MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION...AFIT-ENP-T-14-S-01 MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION THESIS Presented to the... DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION Chelsea C. Marcum, BS Approved

  5. Evolution of radiation resistance in a complex microenvironment

    NASA Astrophysics Data System (ADS)

    Kim, So Hyun; Austin, Robert; Mehta, Monal; Kahn, Atif

    2013-03-01

    Radiation treatment responses in brain cancers are typically associated with short progression-free intervals in highly lethal malignancies such as glioblastomas. Even as patients routinely progress through second and third line salvage therapies, which are usually empirically selected, surprisingly little information exists on how cancer cells evolve resistance. We will present experimental results showing how in the presence of complex radiation gradients evolution of resistance to radiation occurs. Sponsored by the NCI/NIH Physical Sciences Oncology Centers

  6. Low-dose environmental radiation, DNA damage, and cancer: the possible contribution of psychological factors.

    PubMed

    Cwikel, Julie G; Gidron, Yori; Quastel, Michael

    2010-01-01

    Radiation causes DNA damage, increases risk of cancer, and is associated with psychological stress responses. This article proposes an evidence-based integrative model in which psychological factors could interact with radiation by either augmenting or moderating the adverse effects of radiation on DNA integrity and eventual tumorigenesis. Based on a review of the literature, we demonstrate the following: (1) the effects of low-dose radiation exposures on DNA integrity and on tumorigenesis; (2) the effects of low-dose radiation exposure on psychological distress; (3) the relationship between psychological factors and DNA damage; and (4) the possibility that psychological stress augments and that psychological resource variables moderate radiation-induced DNA damage and risk of cancer. The additional contribution of psychological processes to radiation-DNA damage-cancer relationships needs further study, and if verified, has clinical implications.

  7. Immunotherapy of acute radiation syndromes with antiradiation gamma G globulin.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Vecheslav; Casey, Rachael; Jones, Jeffrey; Kedar, Prasad

    Introduction: If an immunotherapy treatment approach to treatment of acute radiation syndromes (ARS) were to be developed; consideration could be given to neutralization of radiation toxins (Specific Radiation Determinants- SRD) by specific antiradiation antibodies. To accomplish this objective, irradiated animals were injected with a preparation of antiradiation immunoglobulin G (IgG) obtained from hyperimmune donors. Radiation-indeced toxins that we call Specific Radiation Determinants (SRD) possess toxic (neurotoxic, haemotoxic and enterotoxic) characteristics as well as specific antigenic properties that combined with the direct physiochemical direct radiation damage, induce the development of many of the pathological processes associated with ARS. We tested several specific hyperimmune IgG preparations against these radiation toxins and observed that their toxic properties were neutralized by specific antiradiation IgGs. Material and Methods: Rabbits were inoculated with SRD radiation toxins to induce hyperimmune serum. The hyperimmune serum was pooled from several animals, purified, and concentrated. Enzyme-linked immunosorbent assays of the hyperimmune serum revealed high titers of IgG with specific binding to radiation toxins. The antiradiation IgG preparation was injected into laboratory animals one hour before and three hours after irradiation, and was evaluated for its ability to protect inoculated animals against the development of acute radiation syndromes. Results: Animals that were inoculated with specific antiradiation antibodies before receiving lethal irradiation at LD 100/30 exhibited 60-75% survival rate at 30 days, whereas all control animals expired by 30 days following exposure. These inoculated animals also exhibited markedly reduced clinical symptoms of ARS, even those that did not survive irradiation. Discussion: The results of our experiments demonstrate that rabbit hyperimmune serum directed against SRD toxins afford significant, albeit incomplete, protection against high doses of radiation. In comparison, the mortality rate of irradiated control animals was 100% in the same time period. The mortality rates of hyperimmune serum-treated animals varied in different groups of animals and different forms of ARS; however, significant radioprotection was observed in each group treated with IgGs activated against specific radiation toxins.

  8. dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants.

    PubMed

    Williams, Lindsey N; Marjavaara, Lisette; Knowels, Gary M; Schultz, Eric M; Fox, Edward J; Chabes, Andrei; Herr, Alan J

    2015-05-12

    Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 (dun1Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1Δ) and radiation sensitive (Rad) 9 (rad9Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1Δ but not rad9Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.

  9. Beliefs and attitudes toward lethal management of deer in Cuyahoga Valley National Park

    USGS Publications Warehouse

    Fulton, D.C.; Skerl, K.; Shank, E.M.; Lime, D.W.

    2004-01-01

    We used the theory of reasoned action to help understand attitudes and beliefs about lethal management of deer (Odocoileus virginianus) in Cuyahoga Valley National Park (CVNP), Ohio. We used a mail-back survey to collect data from Ohio residents in the surrounding 9-county area. Two strata were defined: residents <10 km from CVNP (near n = 369) and residents =10 km from CVNP (far n = 312). Respondents indicated that lethal control of deer was acceptable (near 71%??4.7%, far 62%??5.5%) and taking no action to reduce deer populations was unacceptable (near 75%??4.5%, far 72%??5.1%). Beliefs about outcomes of lethal control and evaluation of those outcomes proved to be strong predictors of the acceptability of lethal control of deer in CVNP. Lethal control was more acceptable if it was done to prevent severe consequences for humans (e.g., spread of disease, car collisions) or the natural environment (e.g., maintain a healthy deer herd) than to prevent negative aesthetic impacts or personal property damage. Results from the study can be used to assist managers at CVNP as they make decisions regarding alternatives for deer management in the park and to inform others managing abundant deer populations of socially relevant impacts of management actions.

  10. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    PubMed

    Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-12-22

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.

  11. Radiation-Induced Liver Damage: Correlation of Histopathology with Hepatobiliary Magnetic Resonance Imaging, a Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidensticker, Max, E-mail: max.seidensticker@med.ovgu.de; Burak, Miroslaw; Kalinski, Thomas

    PurposeRadiotherapy of liver malignancies shows promising results (radioembolization, stereotactic irradiation, interstitial brachytherapy). Regardless of the route of application, a certain amount of nontumorous liver parenchyma will be collaterally damaged by radiation. The functional reserve may be significantly reduced with an impact on further treatment planning. Monitoring of radiation-induced liver damage by imaging is neither established nor validated. We performed an analysis to correlate the histopathological presence of radiation-induced liver damage with functional magnetic resonance imaging (MRI) utilizing hepatobiliary contrast media (Gd-BOPTA).MethodsPatients undergoing local high-dose-rate brachytherapy for whom a follow-up hepatobiliary MRI within 120 days after radiotherapy as well as an evaluablemore » liver biopsy from radiation-exposed liver tissue within 7 days before MRI were retrospectively identified. Planning computed tomography (CT)/dosimetry was merged to the CT-documentation of the liver biopsy and to the MRI. Presence/absence of radiation-induced liver damage (histopathology) and Gd-BOPTA uptake (MRI) as well as the dose applied during brachytherapy at the site of tissue sampling was determined.ResultsFourteen biopsies from eight patients were evaluated. In all cases with histopathological evidence of radiation-induced liver damage (n = 11), no uptake of Gd-BOPTA was seen. In the remaining three, cases no radiation-induced liver damage but Gd-BOPTA uptake was seen. Presence of radiation-induced liver damage and absence of Gd-BOPTA uptake was correlated with a former high-dose exposition.ConclusionsAbsence of hepatobiliary MRI contrast media uptake in radiation-exposed liver parenchyma may indicate radiation-induced liver damage. Confirmatory studies are warranted.« less

  12. RADIATION INDUCED VIABILITY MUTATIONS IN THE HONEY BEE. Progress Report for 1961 and Renewal Proposal of Contract for 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W.R.

    The spectrum of viability mutations ranging from dominant lethals to detrimentals in haploids that resulted from irradiating semen from a single haploid male was studied in the honey bee. From the decrease in viability of diploid progeny following irradiation of the spermatheca of the parental queen, it was calculated that one or more dominant lethals were induced in 60.8% of the sperm cells. In a separate test using the same dosage on an unrelated queen 60.9% dominant lethals were found. Recessive mutations and mutants with incomplete dominance were detected in haploid progeny of F-1 queens. (M.C.G.)

  13. Targeting DNA double strand break repair with hyperthermia and DNA-PKcs inhibition to enhance the effect of radiation treatment.

    PubMed

    van Oorschot, Bregje; Granata, Giovanna; Di Franco, Simone; Ten Cate, Rosemarie; Rodermond, Hans M; Todaro, Matilde; Medema, Jan Paul; Franken, Nicolaas A P

    2016-10-04

    Radiotherapy is based on the induction of lethal DNA damage, primarily DNA double-strand breaks (DSB). Efficient DSB repair via Non-Homologous End Joining or Homologous Recombination can therefore undermine the efficacy of radiotherapy. By suppressing DNA-DSB repair with hyperthermia (HT) and DNA-PKcs inhibitor NU7441 (DNA-PKcsi), we aim to enhance the effect of radiation.The sensitizing effect of HT for 1 hour at 42°C and DNA-PKcsi [1 μM] to radiation treatment was investigated in cervical and breast cancer cells, primary breast cancer sphere cells (BCSCs) enriched for cancer stem cells, and in an in vivo human tumor model. A significant radio-enhancement effect was observed for all cell types when DNA-PKcsi and HT were applied separately, and when both were combined, HT and DNA-PKcsi enhanced radio-sensitivity to an even greater extent. Strikingly, combined treatment resulted in significantly lower survival rates, 2 to 2.5 fold increase in apoptosis, more residual DNA-DSB 6 h post treatment and a G2-phase arrest. In addition, tumor growth analysis in vivo showed significant reduction in tumor growth and elevated caspase-3 activity when radiation was combined with HT and DNA-PKcsi compared to radiation alone. Importantly, no toxic side effects of HT or DNA-PKcsi were found.In conclusion, inhibiting DNA-DSB repair using HT and DNA-PKcsi before radiotherapy leads to enhanced cytotoxicity in cancer cells. This effect was even noticed in the more radio-resistant BCSCs, which are clearly sensitized by combined treatment. Therefore, the addition of HT and DNA-PKcsi to conventional radiotherapy is promising and might contribute to more efficient tumor control and patient outcome.

  14. Dietary Pectin Increases Intestinal Crypt Stem Cell Survival following Radiation Injury.

    PubMed

    Sureban, Sripathi M; May, Randal; Qu, Dongfeng; Chandrakesan, Parthasarathy; Weygant, Nathaniel; Ali, Naushad; Lightfoot, Stan A; Ding, Kai; Umar, Shahid; Schlosser, Michael J; Houchen, Courtney W

    2015-01-01

    Gastrointestinal (GI) mucosal damage is a devastating adverse effect of radiation therapy. We have recently reported that expression of Dclk1, a Tuft cell and tumor stem cell (TSC) marker, 24h after high dose total-body gamma-IR (TBI) can be used as a surrogate marker for crypt survival. Dietary pectin has been demonstrated to possess chemopreventive properties, whereas its radioprotective property has not been studied. The aim of this study was to determine the effects of dietary pectin on ionizing radiation (IR)-induced intestinal stem cell (ISC) deletion, crypt and overall survival following lethal TBI. C57BL/6 mice received a 6% pectin diet and 0.5% pectin drinking water (pre-IR mice received pectin one week before TBI until death; post-IR mice received pectin after TBI until death). Animals were exposed to TBI (14 Gy) and euthanized at 24 and 84h post-IR to assess ISC deletion and crypt survival respectively. Animals were also subjected to overall survival studies following TBI. In pre-IR treatment group, we observed a three-fold increase in ISC/crypt survival, a two-fold increase in Dclk1+ stem cells, increased overall survival (median 10d vs. 7d), and increased expression of Dclk1, Msi1, Lgr5, Bmi1, and Notch1 (in small intestine) post-TBI in pectin treated mice compared to controls. We also observed increased survival of mice treated with pectin (post-IR) compared to controls. Dietary pectin is a radioprotective agent; prevents IR-induced deletion of potential reserve ISCs; facilitates crypt regeneration; and ultimately promotes overall survival. Given the anti-cancer activity of pectin, our data support a potential role for dietary pectin as an agent that can be administered to patients receiving radiation therapy to protect against radiation-induces mucositis.

  15. Genotoxic and cytotoxic effects of X-ray on buccal epithelial cells following panoramic radiography: A pediatric study

    PubMed Central

    Agarwal, Poonam; Vinuth, Dhundanalli puttalingaiah; Haranal, Shashidevi; Thippanna, Chandrashekar K.; Naresh, Nitesh; Moger, Ganapathi

    2015-01-01

    Background: Ionizing radiation is a potent mutagenic agent capable of inducing both mutation and chromosomal aberrations. Non-lethal doses of ionizing radiation may induce genomic instability favoring carcinogenesis. In spite of their mutagenic potential, this kind of radiation is an important tool for diagnosis of the disease and is used in medical and dental practice. It has been believed that the number of micronucleus and increased frequency of other nuclear alterations, including karyorrhexis, condensed chromatin and pyknosis, are related to the increasing effects of carcinogens. Many approaches and techniques have been developed for the monitoring of human populations exposed to various mutagens, but the analysis of micronuclei (MN) has become a standard approach for the assessment of chromosomal damage in human populations. Aim: To assess the effects of radiation exposure from panoramic radiography on the buccal epithelial cells (BECs) of pediatric patients. Materials and Methods: The study included 20 pediatric patients who had to undergo panoramic radiography for further dental treatment. Exfoliated BECs were obtained and examined immediately before and 10 days after radiation exposure. The cells were stained using rapid Papanicolaou (PAP) kit. Evaluation for MN and nuclear alterations was carried out by an oral pathologist and data were statistically analyzed using the “t” test. Results: The mean number of MN in the BECs before exposure of pediatric patients to panoramic radiography was 4.25 and after exposure was 4.40. This difference was not found to be statistically significant (P < 0.0001). However, the mean nuclear alterations of 8.70 and 15.75 before and after exposure were statistically significant (P < 0.0001). Conclusion: Panoramic radiographs can induce cytotoxicity but not genotoxic effects in buccal mucosal cells. Hence, dental radiographs should be prescribed only when deemed indispensable. PMID:26229246

  16. Acute systemic DNA damage in youth does not impair immune defense with aging.

    PubMed

    Pugh, Jason L; Foster, Sarah A; Sukhina, Alona S; Petravic, Janka; Uhrlaub, Jennifer L; Padilla-Torres, Jose; Hayashi, Tomonori; Nakachi, Kei; Smithey, Megan J; Nikolich-Žugich, Janko

    2016-08-01

    Aging-related decline in immunity is believed to be the main driver behind decreased vaccine efficacy and reduced resistance to infections in older adults. Unrepaired DNA damage is known to precipitate cellular senescence, which was hypothesized to be the underlying cause of certain age-related phenotypes. Consistent with this, some hallmarks of immune aging were more prevalent in individuals exposed to whole-body irradiation (WBI), which leaves no anatomical repository of undamaged hematopoietic cells. To decisively test whether and to what extent WBI in youth will leave a mark on the immune system as it ages, we exposed young male C57BL/6 mice to sublethal WBI (0.5-4 Gy), mimicking human survivor exposure during nuclear catastrophe. We followed lymphocyte homeostasis thorough the lifespan, response to vaccination, and ability to resist lethal viral challenge in the old age. None of the irradiated groups showed significant differences compared with mock-irradiated (0 Gy) animals for the parameters measured. Even the mice that received the highest dose of sublethal WBI in youth (4 Gy) exhibited equilibrated lymphocyte homeostasis, robust T- and B-cell responses to live attenuated West Nile virus (WNV) vaccine and full survival following vaccination upon lethal WNV challenge. Therefore, a single dose of nonlethal WBI in youth, resulting in widespread DNA damage and repopulation stress in hematopoietic cells, leaves no significant trace of increased immune aging in a lethal vaccine challenge model. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  17. Tumor-volume simulation during radiotherapy for head-and-neck cancer using a four-level cell population model.

    PubMed

    Chvetsov, Alexei V; Dong, Lei; Palta, Jantinder R; Amdur, Robert J

    2009-10-01

    To develop a fast computational radiobiologic model for quantitative analysis of tumor volume during fractionated radiotherapy. The tumor-volume model can be useful for optimizing image-guidance protocols and four-dimensional treatment simulations in proton therapy that is highly sensitive to physiologic changes. The analysis is performed using two approximations: (1) tumor volume is a linear function of total cell number and (2) tumor-cell population is separated into four subpopulations: oxygenated viable cells, oxygenated lethally damaged cells, hypoxic viable cells, and hypoxic lethally damaged cells. An exponential decay model is used for disintegration and removal of oxygenated lethally damaged cells from the tumor. We tested our model on daily volumetric imaging data available for 14 head-and-neck cancer patients treated with an integrated computed tomography/linear accelerator system. A simulation based on the averaged values of radiobiologic parameters was able to describe eight cases during the entire treatment and four cases partially (50% of treatment time) with a maximum 20% error. The largest discrepancies between the model and clinical data were obtained for small tumors, which may be explained by larger errors in the manual tumor volume delineation procedure. Our results indicate that the change in gross tumor volume for head-and-neck cancer can be adequately described by a relatively simple radiobiologic model. In future research, we propose to study the variation of model parameters by fitting to clinical data for a cohort of patients with head-and-neck cancer and other tumors. The potential impact of other processes, like concurrent chemotherapy, on tumor volume should be evaluated.

  18. Periodic annealing of radiation damage in GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Loo, R. Y.; Knechtli, R. C.; Kamath, G. S.

    1980-01-01

    Continuous annealing of GaAs solar cells is compared with periodic annealing to determine their relative effectiveness in minimizing proton radiation damage. It is concluded that continuous annealing of the cells in space at 150 C can effectively reduce the proton radiation damage to the GaAs solar cells. Periodic annealing is most effective if it can be initiated at relatively low fluences (approximating continuous annealing), especially if low temperatures of less than 200 C are to be used. If annealing is started only after the fluence of the damaging protons has accumulated to a high value 10 to the 11th power sq/pcm), effective annealing is still possible at relatively high temperatures. Finally, since electron radiation damage anneals even more easily than proton radiation damage, substantial improvements in GaAs solar cell life can be achieved by incorporating the proper annealing capabilities in solar panels for practical space missions where both electron and proton radiation damage have to be minimized.

  19. Dose-Rate Dependence of High-Dose Health Effects in Humans from Photon Radiation with Application to Radiological Terrorism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strom, Daniel J.

    2005-01-14

    In 1981, as part of a symposium entitled ''The Control of Exposure of the Public to Ionizing Radiation in the Event of Accident or Attack,'' Lushbaugh, H?bner, and Fry published a paper examining ''radiation tolerance'' of various human health endpoints as a function of dose rate. This paper may not have received the notice it warrants. The health endpoints examined by Lushbaugh et al. were the lethal dose that will kill 50% of people within 60 days of exposure without medical care (LD50/60); severe bone marrow damage in healthy men; severe bone marrow damage in leukemia patients; temporary sterility (azoospermia);more » reduced male fertility; and late effects such as cancer. Their analysis was grounded in extensive clinical experience and anchored to a few selected data points, and based on the 1968 dose-rate dependence theory of J.L. Bateman. The Lushbaugh et al. paper did not give predictive equations for the relationships, although they were implied in the text, and the relationships were presented in a non-intuitive way. This work derives the parameters needed in Bateman's equation for each health endpoint, tabulates the results, and plots them in a more conventional manner on logarithmic scales. The results give a quantitative indication of how the human organism can tolerate more radiation dose when it is delivered at lower dose rates. For example, the LD50/60 increases from about 3 grays (300 rads) when given at very high dose rates to over 10 grays (1,000 rads) when given at much lower dose rates over periods of several months. The latter figure is borne out by the case of an individual who survived for at least 19 years after receiving doses in the range of 9 to 17 grays (900-1700 rads) over 106 days. The Lushbaugh et al. work shows the importance of sheltering when confronted with long-term exposure to radiological contamination such as would be expected from a radiological dispersion event, reactor accident, or ground-level nuclear explosion.« less

  20. Measurement of radiation damage on an epoxy-based optical glue

    NASA Astrophysics Data System (ADS)

    Huang, H. C.; Peng, K. C.; Sahu, S. K.; Ueno, K.; Chang, Y. H.; Wang, C. H.; Hou, W. S.

    1997-02-01

    We measured the radiation damage on an optical glue called Eccobond-24, which is a candidate for CsI and BGO crystal calorimeters of the BELLE detector of the KEK B-factory. Absorption spectrophotometry in the range 300-800 nm was used to monitor the radiation damage. The maximum equivalent dose was 1.64 Mrad. The glue shows effects of damage, but is acceptable for the radiation level in the above-mentioned experiment.

  1. Thermal annealing of natural, radiation-damaged pyrochlore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zietlow, Peter; Beirau, Tobias; Mihailova, Boriana

    Abstract Radiation damage in minerals is caused by the α-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400–1000 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia [6.4 wt% Th, 23.1·10

  2. Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation

    NASA Technical Reports Server (NTRS)

    Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan

    2002-01-01

    Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.

  3. KatG, the Bifunctional Catalase of Xanthomonas citri subsp. citri, Responds to Hydrogen Peroxide and Contributes to Epiphytic Survival on Citrus Leaves.

    PubMed

    Tondo, María Laura; Delprato, María Laura; Kraiselburd, Ivana; Fernández Zenoff, María Verónica; Farías, María Eugenia; Orellano, Elena G

    2016-01-01

    Xanthomonas citri subsp. citri (Xcc) is the bacterium responsible for citrus canker. This bacterium is exposed to reactive oxygen species (ROS) at different points during its life cycle, including those normally produced by aerobic respiration or upon exposition to ultraviolet (UV) radiation. Moreover, ROS are key components of the host immune response. Among enzymatic ROS-detoxifying mechanisms, catalases eliminate H2O2, avoiding the potential damage caused by this specie. Xcc genome includes four catalase genes. In this work, we studied the physiological role of KatG, the only bifunctional catalase of Xcc, through the construction and characterization of a modified strain (XcckatG), carrying an insertional mutation in the katG gene. First, we evaluated the involvement of KatG in the bacterial adaptive response to H2O2. XcckatG cultures exhibited lower catalase activity than those of the wild-type strain, and this activity was not induced upon treatment with sub-lethal doses of H2O2. Moreover, the KatG-deficient mutant exhibited decreased tolerance to H2O2 toxicity compared to wild-type cells and accumulated high intracellular levels of peroxides upon exposure to sub-lethal concentrations of H2O2. To further study the role of KatG in Xcc physiology, we evaluated bacterial survival upon exposure to UV-A or UV-B radiation. In both conditions, XcckatG showed a high mortality in comparison to Xcc wild-type. Finally, we studied the development of bacterial biofilms. While structured biofilms were observed for the Xcc wild-type, the development of these structures was impaired for XcckatG. Based on these results, we demonstrated that KatG is responsible for Xcc adaptive response to H2O2 and a key component of the bacterial response to oxidative stress. Moreover, this enzyme plays an important role during Xcc epiphytic survival, being essential for biofilm formation and UV resistance.

  4. KatG, the Bifunctional Catalase of Xanthomonas citri subsp. citri, Responds to Hydrogen Peroxide and Contributes to Epiphytic Survival on Citrus Leaves

    PubMed Central

    Tondo, María Laura; Delprato, María Laura; Kraiselburd, Ivana; Fernández Zenoff, María Verónica; Farías, María Eugenia; Orellano, Elena G.

    2016-01-01

    Xanthomonas citri subsp. citri (Xcc) is the bacterium responsible for citrus canker. This bacterium is exposed to reactive oxygen species (ROS) at different points during its life cycle, including those normally produced by aerobic respiration or upon exposition to ultraviolet (UV) radiation. Moreover, ROS are key components of the host immune response. Among enzymatic ROS-detoxifying mechanisms, catalases eliminate H2O2, avoiding the potential damage caused by this specie. Xcc genome includes four catalase genes. In this work, we studied the physiological role of KatG, the only bifunctional catalase of Xcc, through the construction and characterization of a modified strain (XcckatG), carrying an insertional mutation in the katG gene. First, we evaluated the involvement of KatG in the bacterial adaptive response to H2O2. XcckatG cultures exhibited lower catalase activity than those of the wild-type strain, and this activity was not induced upon treatment with sub-lethal doses of H2O2. Moreover, the KatG-deficient mutant exhibited decreased tolerance to H2O2 toxicity compared to wild-type cells and accumulated high intracellular levels of peroxides upon exposure to sub-lethal concentrations of H2O2. To further study the role of KatG in Xcc physiology, we evaluated bacterial survival upon exposure to UV-A or UV-B radiation. In both conditions, XcckatG showed a high mortality in comparison to Xcc wild-type. Finally, we studied the development of bacterial biofilms. While structured biofilms were observed for the Xcc wild-type, the development of these structures was impaired for XcckatG. Based on these results, we demonstrated that KatG is responsible for Xcc adaptive response to H2O2 and a key component of the bacterial response to oxidative stress. Moreover, this enzyme plays an important role during Xcc epiphytic survival, being essential for biofilm formation and UV resistance. PMID:26990197

  5. NanOx, a new model to predict cell survival in the context of particle therapy

    NASA Astrophysics Data System (ADS)

    Cunha, M.; Monini, C.; Testa, E.; Beuve, M.

    2017-02-01

    Particle therapy is increasingly attractive for the treatment of tumors and the number of facilities offering it is rising worldwide. Due to the well-known enhanced effectiveness of ions, it is of utmost importance to plan treatments with great care to ensure tumor killing and healthy tissues sparing. Hence, the accurate quantification of the relative biological effectiveness (RBE) of ions, used in the calculation of the biological dose, is critical. Nevertheless, the RBE is a complex function of many parameters and its determination requires modeling. The approaches currently used have allowed particle therapy to thrive, but still show some shortcomings. We present herein a short description of a new theoretical framework, NanOx, to calculate cell survival in the context of particle therapy. It gathers principles from existing approaches, while addressing some of their weaknesses. NanOx is a multiscale model that takes the stochastic nature of radiation at nanometric and micrometric scales fully into account, integrating also the chemical aspects of radiation-matter interaction. The latter are included in the model by means of a chemical specific energy, determined from the production of reactive chemical species induced by irradiation. Such a production represents the accumulation of oxidative stress and sublethal damage in the cell, potentially generating non-local lethal events in NanOx. The complementary local lethal events occur in a very localized region and can, alone, lead to cell death. Both these classes of events contribute to cell death. The comparison between experimental data and model predictions for the V79 cell line show a good agreement. In particular, the dependence of the typical shoulders of cell survival curves on linear energy transfer are well described, but also the effectiveness of different ions, including the overkill effect. These results required the adjustment of a number of parameters compatible with the application of the model in a clinical scenario thereby showing the potential of NanOx. Said parameters are discussed in detail in this paper.

  6. NanOx, a new model to predict cell survival in the context of particle therapy.

    PubMed

    Cunha, M; Monini, C; Testa, E; Beuve, M

    2017-02-21

    Particle therapy is increasingly attractive for the treatment of tumors and the number of facilities offering it is rising worldwide. Due to the well-known enhanced effectiveness of ions, it is of utmost importance to plan treatments with great care to ensure tumor killing and healthy tissues sparing. Hence, the accurate quantification of the relative biological effectiveness (RBE) of ions, used in the calculation of the biological dose, is critical. Nevertheless, the RBE is a complex function of many parameters and its determination requires modeling. The approaches currently used have allowed particle therapy to thrive, but still show some shortcomings. We present herein a short description of a new theoretical framework, NanOx, to calculate cell survival in the context of particle therapy. It gathers principles from existing approaches, while addressing some of their weaknesses. NanOx is a multiscale model that takes the stochastic nature of radiation at nanometric and micrometric scales fully into account, integrating also the chemical aspects of radiation-matter interaction. The latter are included in the model by means of a chemical specific energy, determined from the production of reactive chemical species induced by irradiation. Such a production represents the accumulation of oxidative stress and sublethal damage in the cell, potentially generating non-local lethal events in NanOx. The complementary local lethal events occur in a very localized region and can, alone, lead to cell death. Both these classes of events contribute to cell death. The comparison between experimental data and model predictions for the V79 cell line show a good agreement. In particular, the dependence of the typical shoulders of cell survival curves on linear energy transfer are well described, but also the effectiveness of different ions, including the overkill effect. These results required the adjustment of a number of parameters compatible with the application of the model in a clinical scenario thereby showing the potential of NanOx. Said parameters are discussed in detail in this paper.

  7. The genotoxic effects of the imidacloprid-based insecticide formulation Glacoxan Imida on Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae).

    PubMed

    Pérez-Iglesias, J M; Ruiz de Arcaute, C; Nikoloff, N; Dury, L; Soloneski, S; Natale, G S; Larramendy, M L

    2014-06-01

    The neonicotinoid insecticide imidacloprid (IMI) affects the insect central nervous system and is successfully applied to control pests for a variety of agricultural crops. In the current study, acute toxicity and genotoxicity of the IMI-containing commercial formulation insecticide Glacoxan Imida (35 percent IMI) was evaluated on Hypsiboas pulchellus (Anura: Hylidae) tadpoles exposed under laboratory conditions. A lethal effect was evaluated as the end point for lethality, whereas micronucleus (MN) frequency and DNA single-strand breaks evaluated by the single cell gel electrophoresis (SCGE) assay were employed as end points for genotoxicity. Sublethal end points were assayed within the 12.5-37.5mg/L IMI concentration range. Experiments were performed on tadpoles at stage 36 (range, 35-37) according to the classification proposed by Gosner. Lethality studies revealed an LC50 96h value of 52.622mg/L IMI. Increased frequency of MNs was only observed when 25.0mg/L was assayed for 96h, whereas no other nuclear abnormalities were induced. Increase of the genetic damage index was observed at 48h of treatment within the 12.5-37.5mg/L concentration range, whereas an increased frequency of DNA damage was observed only in tadpoles treated with 37.5mg/L IMI for 96h. This study represents the first evidence of the acute lethal and genotoxic effects exerted by IMI on tadpoles of an amphibian species native to Argentina under laboratory conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Chronic Exposure of Corals to Fine Sediments: Lethal and Sub-Lethal Impacts

    PubMed Central

    Flores, Florita; Hoogenboom, Mia O.; Smith, Luke D.; Cooper, Timothy F.; Abrego, David; Negri, Andrew P.

    2012-01-01

    Understanding the sedimentation and turbidity thresholds for corals is critical in assessing the potential impacts of dredging projects in tropical marine systems. In this study, we exposed two species of coral sampled from offshore locations to six levels of total suspended solids (TSS) for 16 weeks in the laboratory, including a 4 week recovery period. Dose-response relationships were developed to quantify the lethal and sub-lethal thresholds of sedimentation and turbidity for the corals. The sediment treatments affected the horizontal foliaceous species (Montipora aequituberculata) more than the upright branching species (Acropora millepora). The lowest sediment treatments that caused full colony mortality were 30 mg l−1 TSS (25 mg cm−2 day−1) for M. aequituberculata and 100 mg l−1 TSS (83 mg cm−2 day−1) for A. millepora after 12 weeks. Coral mortality generally took longer than 4 weeks and was closely related to sediment accumulation on the surface of the corals. While measurements of damage to photosystem II in the symbionts and reductions in lipid content and growth indicated sub-lethal responses in surviving corals, the most reliable predictor of coral mortality in this experiment was long-term sediment accumulation on coral tissue. PMID:22662225

  9. Severe acute radiation syndrome: treatment of a lethally 60Co-source irradiated accident victim in China with HLA-mismatched peripheral blood stem cell transplantation and mesenchymal stem cells.

    PubMed

    Guo, Mei; Dong, Zheng; Qiao, Jianhui; Yu, Changlin; Sun, Qiyun; Hu, Kaixun; Liu, Guangxian; Wei, Li; Yao, Bo; Man, Qiuhong; Sun, Xuedong; Liu, Zhiqing; Song, Zhiwu; Yu, Chengze; Chen, Ying; Luo, Qingliang; Liu, Sugang; Ai, Hui-Sheng

    2014-03-01

    This is a case report of a 32-year-old man exposed to a total body dose of 14.5 Gy γ-radiation in a lethal (60)Co-source irradiation accident in 2008 in China. Frequent nausea, vomiting and marked neutropenia and lymphopenia were observed from 30 min to 45 h after exposure. HLA-mismatched peripheral blood stem cell transplantation combined with infusion of mesenchymal stem cells was used at Day 7. Rapid hematopoietic recovery, stable donor engraftment and healing of radioactive skin ulceration were achieved during Days 18-36. The patient finally developed intestinal obstruction and died of multi-organ failure on Day 62, although intestinal obstruction was successfully released by emergency bowel resection.

  10. Effects of β-glucan polysaccharide revealed by the dominant lethal assay and micronucleus assays, and reproductive performance of male mice exposed to cyclophosphamide

    PubMed Central

    Oliveira, Rodrigo Juliano; Pesarini, João Renato; Sparça Salles, Maria José; Nakamura Kanno, Tatiane Yumi; dos Santos Lourenço, Ana Carolina; da Silva Leite, Véssia; da Silva, Ariane Fernanda; Matiazi, Hevenilton José; Ribeiro, Lúcia Regina; Mantovani, Mário Sérgio

    2014-01-01

    β-glucan is a well-known polysaccharide for its chemopreventive effect. This study aimed to evaluate the chemopreventive ability of β-glucan in somatic and germ cells through the dominant lethal and micronucleus assays, and its influence on the reproductive performance of male mice exposed to cyclophosphamide. The results indicate that β-glucan is capable of preventing changes in DNA in both germ cells and somatic ones. Changes in germ cells were evaluated by the dominant lethal assay and showed damage reduction percentages of 46.46% and 43.79% for the doses of 100 and 150 mg/kg. For the somatic changes, evaluated by micronucleus assay in peripheral blood cells in the first week of treatment, damage reduction percentages from 80.63–116.32% were found. In the fifth and sixth weeks, the percentage ranged from 10.20–52.54% and −0.95–62.35%, respectively. Besides the chemopreventive efficiency it appears that the β-glucan, when combined with cyclophosphamide, is able to improve the reproductive performance of males verified by the significant reduction in rates of post-implantation losses and reabsorption in the mating of nulliparous females with males treated with cyclophosphamide. PMID:24688298

  11. Effects of β-glucan polysaccharide revealed by the dominant lethal assay and micronucleus assays, and reproductive performance of male mice exposed to cyclophosphamide.

    PubMed

    Oliveira, Rodrigo Juliano; Pesarini, João Renato; Sparça Salles, Maria José; Nakamura Kanno, Tatiane Yumi; Dos Santos Lourenço, Ana Carolina; da Silva Leite, Véssia; da Silva, Ariane Fernanda; Matiazi, Hevenilton José; Ribeiro, Lúcia Regina; Mantovani, Mário Sérgio

    2014-03-01

    β-glucan is a well-known polysaccharide for its chemopreventive effect. This study aimed to evaluate the chemopreventive ability of β-glucan in somatic and germ cells through the dominant lethal and micronucleus assays, and its influence on the reproductive performance of male mice exposed to cyclophosphamide. The results indicate that β-glucan is capable of preventing changes in DNA in both germ cells and somatic ones. Changes in germ cells were evaluated by the dominant lethal assay and showed damage reduction percentages of 46.46% and 43.79% for the doses of 100 and 150 mg/kg. For the somatic changes, evaluated by micronucleus assay in peripheral blood cells in the first week of treatment, damage reduction percentages from 80.63-116.32% were found. In the fifth and sixth weeks, the percentage ranged from 10.20-52.54% and -0.95-62.35%, respectively. Besides the chemopreventive efficiency it appears that the β-glucan, when combined with cyclophosphamide, is able to improve the reproductive performance of males verified by the significant reduction in rates of post-implantation losses and reabsorption in the mating of nulliparous females with males treated with cyclophosphamide.

  12. Radiation damage limits to XPCS studies of protein dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vodnala, Preeti, E-mail: preeti.vodnala@gmail.com; Karunaratne, Nuwan; Lurio, Laurence

    2016-07-27

    The limitations to x-ray photon correlation spectroscopy (XPCS) imposed by radiation damage have been evaluated for suspensions of alpha crystallin. We find that the threshold for radiation damage to the measured protein diffusion rate is significantly lower than the threshold for damage to the protein structure. We provide damage thresholds beyond which the measured diffusion coeffcients have been modified using both XPCS and dynamic light scattering (DLS).

  13. Sustained Radiosensitization of Hypoxic Glioma Cells after Oxygen Pretreatment in an Animal Model of Glioblastoma and In Vitro Models of Tumor Hypoxia

    PubMed Central

    Clarke, Ryon H.; Moosa, Shayan; Anzivino, Matthew; Wang, Yi; Floyd, Desiree Hunt; Purow, Benjamin W.; Lee, Kevin S.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common and lethal form of brain cancer and these tumors are highly resistant to chemo- and radiotherapy. Radioresistance is thought to result from a paucity of molecular oxygen in hypoxic tumor regions, resulting in reduced DNA damage and enhanced cellular defense mechanisms. Efforts to counteract tumor hypoxia during radiotherapy are limited by an attendant increase in the sensitivity of healthy brain tissue to radiation. However, the presence of heightened levels of molecular oxygen during radiotherapy, while conventionally deemed critical for adjuvant oxygen therapy to sensitize hypoxic tumor tissue, might not actually be necessary. We evaluated the concept that pre-treating tumor tissue by transiently elevating tissue oxygenation prior to radiation exposure could increase the efficacy of radiotherapy, even when radiotherapy is administered after the return of tumor tissue oxygen to hypoxic baseline levels. Using nude mice bearing intracranial U87-luciferase xenografts, and in vitro models of tumor hypoxia, the efficacy of oxygen pretreatment for producing radiosensitization was tested. Oxygen-induced radiosensitization of tumor tissue was observed in GBM xenografts, as seen by suppression of tumor growth and increased survival. Additionally, rodent and human glioma cells, and human glioma stem cells, exhibited prolonged enhanced vulnerability to radiation after oxygen pretreatment in vitro, even when radiation was delivered under hypoxic conditions. Over-expression of HIF-1α reduced this radiosensitization, indicating that this effect is mediated, in part, via a change in HIF-1-dependent mechanisms. Importantly, an identical duration of transient hyperoxic exposure does not sensitize normal human astrocytes to radiation in vitro. Taken together, these results indicate that briefly pre-treating tumors with elevated levels of oxygen prior to radiotherapy may represent a means for selectively targeting radiation-resistant hypoxic cancer cells, and could serve as a safe and effective adjuvant to radiation therapy for patients with GBM. PMID:25350400

  14. Survival and DNA Damage in Plant Seeds Exposed for 558 and 682 Days outside the International Space Station

    NASA Astrophysics Data System (ADS)

    Tepfer, David; Leach, Sydney

    2017-03-01

    For life to survive outside the biosphere, it must be protected from UV light and other radiation by exterior shielding or through sufficient inherent resistance to survive without protection. We tested the plausibility of inherent resistance in plant seeds, reporting in a previous paper that Arabidopsis thaliana and tobacco (Nicotiana tabacum) seeds exposed for 558 days outside the International Space Station (ISS) germinated and developed into fertile plants after return to Earth. We have now measured structural genetic damage in tobacco seeds from this EXPOSE-E experiment by quantitatively amplifying a segment of an antibiotic resistance gene, nptII, inserted into the chloroplast genome. We also assessed the survival of the antibiotic resistance encoded by nptII, using marker rescue in a soil bacterium. Chloroplast DNA damage occurred, but morphological mutants were not detected among the survivors. In a second, longer mission (EXPOSE-R), a nearly lethal exposure was received by Arabidopsis seeds. Comparison between a ground simulation, lacking UV<200nm, and fully exposed seeds in space indicated severe damage from these short wavelengths and again suggested that DNA degradation was not limiting seed survival. To test UV resistance in long-lived, larger seeds, we exposed Arabidopsis, tobacco, and morning glory seeds in the laboratory to doses of UV254nm, ranging as high as 2420 MJ m-2. Morning glory seeds resisted this maximum dose, which killed tobacco and Arabidopsis. We thus confirm that a naked plant seed could survive UV exposures during direct transfer from Mars to Earth and suggest that seeds with a more protective seed coat (e.g., morning glory) should survive much longer space travel.

  15. Intestinal radiation injury: the lower bowel syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, M.F.; Ruemmler, P.S.; Beamer, J.L.

    1975-01-01

    Newborn, weanling, and adult rats were gavaged with the strong beta emitting nuclide complex ruthenium-106/rhodium-106. The LD/sub 50/ doses obtained were 2, 20, and 9 mCi/kg. Average survival times were 10, 4.5, and 8.4 days respectively. Deaths of weanlings and adults were caused by damage to the large bowel but damage to the lower ileum caused by incorporation of /sup 106/Ru into the epithelium was usually more severe than large bowel injury in the neonates. Beagle dogs given /sup 106/Ru per os showed an LD/sub 50/ of approximately 3.7 mCi/kg, and an average survival time of about 15 days. Themore » symptoms exhibited by this large animal species differed markedly from that seen in rodents, being expressed mainly by vomiting, anorexia, and a bloody diarrhea that often persisted for 3 or 4 weeks after /sup 106/Ru ingestion. Damage to the colon was severe, consisting of a flattening of the mucosa, and a complete loss of glandular structures. In the animals that survived high doses a chronic ulcerative colitis persisted which showed little tendency to repair during the 60 day observation period. These results indicate that the radiosensitivity of the G.I. tract to ingested ''non-absorbed'' radionuclide is dependent on both age, and the passage time of the contents through the gastrointestinal tract; damage being confined almost exclusively to the lower bowel. Further, they suggest that the response of a large animal, and perhaps man, to an ingested lethal dose of a nuclide may be very different than has been observed in small animals.« less

  16. The Hematopoietic Syndrome of the Acute Radiation Syndrome in Rhesus Macaques: A Systematic Review of the Lethal Dose Response Relationship.

    PubMed

    MacVittie, Thomas J; Farese, Ann M; Jackson, William

    2015-11-01

    Well characterized animal models that mimic the human response to potentially lethal doses of radiation are required to assess the efficacy of medical countermeasures under the criteria of the U.S. Food and Drug Administration "animal rule." Development of a model requires the determination of the radiation dose response relationship and time course of mortality and morbidity across the hematopoietic acute radiation syndrome. The nonhuman primate, rhesus macaque, is a relevant animal model that may be used to determine the efficacy of medical countermeasures to mitigate major signs of morbidity and mortality at selected lethal doses of total body irradiation. A systematic review of relevant studies that determined the dose response relationship for the hematopoietic acute radiation syndrome in the rhesus macaque relative to radiation quality, dose rate, and exposure uniformity has never been performed. The selection of data cohorts was made from the following sources: Ovid Medline (1957-present), PubMed (1954-present), AGRICOLA (1976-present), Web of Science (1954-present), and U.S. HHS REPORT (2002 to present). The following terms were used: Rhesus, total body-irradiation, total body x irradiation, TBI, irradiation, gamma radiation, hematopoiesis, LD50/60, Macaca mulatta, whole-body irradiation, nonhuman primate, NHP, monkey, primates, hematopoietic radiation syndrome, mortality, and nuclear radiation. The reference lists of all studies, published and unpublished, were reviewed for additional studies. The total number of hits across all search sites was 3,001. There were a number of referenced, unpublished, non-peer reviewed government reports that were unavailable for review. Fifteen studies, 11 primary (n = 863) and four secondary (n = 153) studies [n = 1,016 total nonhuman primates (NHP), rhesus Macaca mulatta] were evaluated to provide an informative and consistent review. The dose response relationships (DRRs) were determined for uniform or non-uniform total body irradiation (TBI) with 250 kVp or 2 MeV x radiation, Co gamma radiation and reactor- and nuclear weapon-derived mixed gamma: neutron-radiation, delivered at various dose rates from a total body, bilateral, rotational, or unilateral exposure aspect. The DRRs established by a probit analysis vs. linear dose relationship were characterized by two main parameters or dependent variables: a slope and LD50/30. Respective LD50/30 values for studies that used 250 kVp x radiation (five primary studies combined, n = 338), 2 MeV x radiation, Co gamma radiation, and steady-state reactor-derived mixed gamma:neutron radiation for total body uniform exposures were 521 rad [498, 542], 671 rad [632, 715], 644 rad [613, 678], and 385 rad [357, 413]. The respective slopes were steep and ranged from 0.738 to 1.316. The DRR, LD50/30 values and slopes were also determined for total body, non-uniform, unilateral, pulse-rate exposures of mixed gamma:neutron radiation derived at reactor and nuclear weapon detonations. The LD50/30 values were, respectively, 395 rad [337, 432] and 412 rad [359, 460]. Secondary data sets of limited studies that did not describe a DRR were used to support the mid-to-high lethal dose range for the H-ARS and the threshold dose range for the concurrent acute GI ARS. The available evidence provided a reliable and extensive database that characterized the DRR for the H-ARS in young rhesus macaques exposed to 250 kVp uniform total body x radiation without the benefit of medical management. A less substantial but consistent database demonstrated the DRR for total body exposure of differing radiation quality, dose rate and non-uniform exposure. The DRR for the H-ARS is characterized by steep slopes and relative LD50/30 values that reflect the radiation quality, exposure aspect, and dose rate over a range in time from 1954-2012.

  17. A Topical Mitochondria-Targeted Redox Cycling Nitroxide Mitigates Oxidative Stress Induced Skin Damage

    PubMed Central

    Brand, Rhonda M.; Epperly, Michael W.; Stottlemyer, J. Mark; Skoda, Erin M.; Gao, Xiang; Li, Song; Huq, Saiful; Wipf, Peter; Kagan, Valerian E.; Greenberger, Joel S.; Falo, Louis D.

    2017-01-01

    Skin is the largest human organ and provides a first line of defense that includes physical, chemical, and immune mechanisms to combat environmental stress. Radiation is a prevalent environmental stressor. Radiation induced skin damage ranges from photoaging and cutaneous carcinogenesis from UV exposure, to treatment-limiting radiation dermatitis associated with radiotherapy, to cutaneous radiation syndrome, a frequently fatal consequence of exposures from nuclear accidents. The major mechanism of skin injury common to these exposures is radiation induced oxidative stress. Efforts to prevent or mitigate radiation damage have included development of antioxidants capable of reducing reactive oxygen species (ROS). Mitochondria are particularly susceptible to oxidative stress, and mitochondrial dependent apoptosis plays a major role in radiation induced tissue damage. We reasoned that targeting a redox cycling nitroxide to mitochondria could prevent ROS accumulation, limiting downstream oxidative damage and preserving mitochondrial function. Here we show that in both mouse and human skin, topical application of a mitochondrial targeted antioxidant prevents and mitigates radiation induced skin damage characterized by clinical dermatitis, loss of barrier function, inflammation, and fibrosis. Further, damage mitigation is associated with reduced apoptosis, preservation of the skin’s antioxidant capacity, and reduction of irreversible DNA and protein oxidation associated with oxidative stress. PMID:27794421

  18. A pharmacological screen for compounds that rescue the developmental lethality of a Drosophila ATM mutant.

    PubMed

    Rimkus, Stacey A; Wassarman, David A

    2018-01-01

    Ataxia-telangiectasia (A-T) is a neurodegenerative disease caused by mutation of the A-T mutated (ATM) gene. ATM encodes a protein kinase that is activated by DNA damage and phosphorylates many proteins, including those involved in DNA repair, cell cycle control, and apoptosis. Characteristic biological and molecular functions of ATM observed in mammals are conserved in Drosophila melanogaster. As an example, conditional loss-of-function ATM alleles in flies cause progressive neurodegeneration through activation of the innate immune response. However, unlike in mammals, null alleles of ATM in flies cause lethality during development. With the goals of understanding biological and molecular roles of ATM in a whole animal and identifying candidate therapeutics for A-T, we performed a screen of 2400 compounds, including FDA-approved drugs, natural products, and bioactive compounds, for modifiers of the developmental lethality caused by a temperature-sensitive ATM allele (ATM8) that has reduced kinase activity at non-permissive temperatures. Ten compounds reproducibly suppressed the developmental lethality of ATM8 flies, including Ronnel, which is an organophosphate. Ronnel and other suppressor compounds are known to cause mitochondrial dysfunction or to inhibit the enzyme acetylcholinesterase, which controls the levels of the neurotransmitter acetylcholine, suggesting that detrimental consequences of reduced ATM kinase activity can be rescued by inhibiting the function of mitochondria or increasing acetylcholine levels. We carried out further studies of Ronnel because, unlike the other compounds that suppressed the developmental lethality of homozygous ATM8 flies, Ronnel was toxic to the development of heterozygous ATM8 flies. Ronnel did not affect the innate immune response of ATM8 flies, and it further increased the already high levels of DNA damage in brains of ATM8 flies, but its effects were not harmful to the lifespan of rescued ATM8 flies. These results provide new leads for understanding the biological and molecular roles of ATM and for the treatment of A-T.

  19. Theoretical Evaluation of the Radiation Hazards from Cosmic Rays Within Space Vehicles

    NASA Technical Reports Server (NTRS)

    Katz, Robert

    1998-01-01

    We may summarize our efforts as follows: a. Improvement of our calculations of the radial dose distribution from delta rays ejected in the passage of heavy ions through matter through the application of new data to a previous calculation by Kobetich and Katz (1968). Supplementing this calculation, we have found the radial distribution of electron energy spectra and the radial distribution of microdosimetric quantities (Cucinotta et al, 1996, 1997). b. Extension of the Katz model of cellular survival to bacteria, to lethal mutations in C. Elegans in vivo, to mutation induction in vitro, to thindown in radiobiology (observed experimentally at GSI, Darmstadt, and there called "Darmstadt hooks", predicted by Katz theory years before GSI was constructed). c. Coupling the Katz theory of RBE to the NASA theory of the diffusion of heavy ion beams in matter to yield predictions of the effects for monoenergetic heavy ion beams as well as range modulated beams used for cancer therapy. Here we have directed attention to the role of "ion-kill" (the effects produced by heavy ions passing through the nucleus of a cell), responsible for increased RBE, decreased OER, and reduced repair. We predict that the use of beams of heavy ions in cancer therapy will create late effect problems for fractionated therapy. We highlight also the damage by "ion-kill", from single heavy ions in the cosmic rays, to the central nervous system in space flight. d. The coupling of Katz theory and the NASA theory of heavy ion diffusion and penetration through matter, and knowledge of the space radiation environment, has been applied to design of shielding, to the cell damage in space flight.

  20. [An investigation on self-harm episodes and their relationship with suicidal psychology and behaviors in 2713 college students].

    PubMed

    Su, Pu-Yu; Hao, Jia-Hu; Huang, Zhao-Hui; Tao, Fang-Biao

    2010-11-01

    To investigate the episodes and influencing factors on self-harm and to explore the relationship between self-harm episodes and suicidal psychology and behaviors in college students. Four universities were selected using cluster sampling method in Anqing city and Chaohu city. Totally, 2713 college students completed this survey. Data were analyzed by Pearson Chi-square and logistic regression. In the last six months, rates of highly lethal self-harm, less lethal self-harm with visible tissue damage, self-injury without visible tissue damage, self-harmful behaviors with latency damage, other self-harmful behaviors with menticide were 1.9%, 5.5%, 15.3%, 21.2% and 17.0% respectively. The total rate of self-harm was 31.3%. 73.1% of the students with self harmful experiences had the above mentioned behaviors more than 3 times in the last six months. The top 3 reasons for taking self-harm actions were: having learning problems (43.1%), failed love affairs (25.0%) and having conflicts with others (23.9%). There were different influencing factors among different kinds of self-harm episodes. Depression was the risk factor of self-harm. The higher score of having high self-esteem was the protective factor of all kinds of self-harm actions except highly lethal ones. Higher score of difficulties in identifying feelings was one of the risk factors. The rates of suicidal psychology and behaviors in students with self-harm were significantly higher than those in students without those behaviors. Result from linear χ(2) test indicated that the graveness of tissue damage of self-harm was higher along with the rates of suicidal psychology and behaviors (P < 0.01). Among 2713 college students, about 1/3 adolescents having experienced self-harm in the last 6 months, many with repeated ones. Depression and difficulties in identifying feelings were the two risk factors while self-esteem was the protective factor related to most of the self-harm cases.

  1. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Carter, J. R., Jr.; Tada, H. Y.

    1973-01-01

    A method is presented for predicting the degradation of a solar array in a space radiation environment. Solar cell technology which emphasizes the cell parameters that degrade in a radiation environment, is discussed along with the experimental techniques used in the evaluation of radiation effects. Other topics discussed include: theoretical aspects of radiation damage, methods for developing relative damage coefficients, nature of the space radiation environment, method of calculating equivalent fluence from electron and proton energy spectrums and relative damage coefficients, and comparison of flight data with estimated degradation.

  2. Mechanisms of Radiation Induced Effects in Carbon Nanotubes

    DTIC Science & Technology

    2016-10-01

    the defect types created for both ionizing and non-ionizing particles under exposure to high total ionization and displacement damage doses. Carbon...and displacement damage doses. Additionally, the radiation effects on CNT carrier transport parameters (mobility, lifetime, conductivity) have been...thermal oxidation. 2. Radiation Testing of SWCNTs 2.1 Displacement Damage Dose Effects as a Function of SWCNT Electronic-Type Displacement damage does

  3. Radioprotection of intestinal stem cells and whole body radiation lethality from photons and neutrons by prostaglandins along or in combination with WR-2721. Technical report 24 Feb 86-30 Sep 89

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, W.R.

    1990-12-01

    Prostaglandins (PGs) have been shown to protect the gastrointestinal and hematopoietic cell renewal systems from some degree of radiation damage. The mechanism(s) to account for these observations are unknown. Based on preliminary evidence that PGs varied in the degree to which they afforded protection of intestinal stem cells, we studied protection by several PGs and their analogues. The most protective PGs found to date were 16,16 dm PGE2, misoprostol, a PGE1 analogues, and iloprost, a PGI2 analogue. The relative degrees of protection were 400%, 700% and 800% above control values at a dose of 13.5 137 Cs gamma radiation. Thesemore » three PGs were used for subsequent studies. Iloprost is a stable PG at room temperature and was found to be protective given orally. In addition to radioprotection of the intestinal stem cells, these Pgs increased the LD50/6, LD50/30 and animal longevity through both the gastrointestinal and hematopoietic syndromes. Misoprostol protected the gut from JANUS neutrons and increased animal longevity following neutron irradiation. Although the mechanism for PG-induced radioprotection is unknown, it appears to be different compared to the widely studied amino thiol, WR-2721. Evidence to support this contention came from data showing that all these analogues were additive to the protective effect of Wr-2721.« less

  4. Relative biological effectiveness (RBE) of 210Po alpha-particles versus X-rays on lethality in bovine endothelial cells.

    PubMed

    Thomas, P A; Tracy, B L; Ping, T; Wickstrom, M; Sidhu, N; Hiebert, L

    2003-02-01

    Alpha-radiation from polonium-210 ((210)Po) can elevate background radiation dose by an order of magnitude in people consuming large quantities of meat and seafood, particularly caribou and reindeer. Because up to 50% of the ingested (210)Po body burden is initially found in the blood, a primary target for the short range alpha-particles is the endothelial cells lining the blood vessels. This study examined the relative biological effectiveness (RBE) of (210)Po alpha-particles versus 250 kVp X-rays in producing injury to cultured bovine aortic endothelial cells. Radiation effects on cells were measured in four different ways: the percentage viable cells by trypan blue dye exclusion, the number of live cells, the lactate dehydrogenase (LDH) release to medium and the ability to form colonies (clonogenic survival). Comparison of dose-response curves yielded RBE values of 13.1+/-2.5 (SEM) for cell viability, 10.3+/-1.0 for live cell number and 11.1+/-3.0 for LDH activity. The RBE values for clonogenic survival were 14.0+/-1.0 based on the ratio of the initial slopes of the dose-response curves and 13.1, 9.9 and 7.7 for 50, 10 and 1% survival rate, respectively. At X-ray doses <0.25 Gy, a pronounced stimulatory effect on proliferation was noted. Exposure to (210)Po alpha-particles was seven to 14 times more effective than X-ray exposure in causing endothelial cell damage.

  5. Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements.

    PubMed

    Warkentin, Matthew; Thorne, Robert E

    2010-10-01

    The temperature-dependence of radiation damage to thaumatin crystals between T = 300 and 100 K is reported. The amount of damage for a given dose decreases sharply as the temperature decreases from 300 to 220 K and then decreases more gradually on further cooling below the protein-solvent glass transition. Two regimes of temperature-activated behavior were observed. At temperatures above ∼200 K the activation energy of 18.0 kJ mol(-1) indicates that radiation damage is dominated by diffusive motions in the protein and solvent. At temperatures below ∼200 K the activation energy is only 1.00 kJ mol(-1), which is of the order of the thermal energy. Similar activation energies describe the temperature-dependence of radiation damage to a variety of solvent-free small-molecule organic crystals over the temperature range T = 300-80 K. It is suggested that radiation damage in this regime is vibrationally assisted and that the freezing-out of amino-acid scale vibrations contributes to the very weak temperature-dependence of radiation damage below ∼80 K. Analysis using the radiation-damage model of Blake and Phillips [Blake & Phillips (1962), Biological Effects of Ionizing Radiation at the Molecular Level, pp. 183-191] indicates that large-scale conformational and molecular motions are frozen out below T = 200 K but become increasingly prevalent and make an increasing contribution to damage at higher temperatures. Possible alternative mechanisms for radiation damage involving the formation of hydrogen-gas bubbles are discussed and discounted. These results have implications for mechanistic studies of proteins and for studies of the protein glass transition. They also suggest that data collection at T ≃ 220 K may provide a viable alternative for structure determination when cooling-induced disorder at T = 100 is excessive.

  6. More human, more humane: a new approach for testing airborne pollutants.

    PubMed

    Potera, Carol

    2007-03-01

    People not only inhale airborne contaminants but also absorb them through the skin. Both routes can set off localized toxic reactions or damage internal organs such as the liver, kidney, and brain. Conventional tests of the toxicity of gases and vapors, in which laboratory animals are exposed to lethal or sub-lethal doses of chemicals, have been criticized as expensive, unethical, inhumane, and time-consuming. Now researchers at the University of New South Wales (UNSW) in Sydney, Australia, have developed an animal-free alternative that uses human cells to test the effects of exposure to airborne toxicants.

  7. Silencing of human DNA polymerase λ causes replication stress and is synthetically lethal with an impaired S phase checkpoint

    PubMed Central

    Zucca, Elisa; Bertoletti, Federica; Wimmer, Ursula; Ferrari, Elena; Mazzini, Giuliano; Khoronenkova, Svetlana; Grosse, Nicole; van Loon, Barbara; Dianov, Grigory; Hübscher, Ulrich; Maga, Giovanni

    2013-01-01

    Human DNA polymerase (pol) λ functions in base excision repair and non-homologous end joining. We have previously shown that DNA pol λ is involved in accurate bypass of the two frequent oxidative lesions, 7,8-dihydro-8-oxoguanine and 1,2-dihydro-2-oxoadenine during the S phase. However, nothing is known so far about the relationship of DNA pol λ with the S phase DNA damage response checkpoint. Here, we show that a knockdown of DNA pol λ, but not of its close homologue DNA pol β, results in replication fork stress and activates the S phase checkpoint, slowing S phase progression in different human cancer cell lines. We furthermore show that DNA pol λ protects cells from oxidative DNA damage and also functions in rescuing stalled replication forks. Its absence becomes lethal for a cell when a functional checkpoint is missing, suggesting a DNA synthesis deficiency. Our results provide the first evidence, to our knowledge, that DNA pol λ is required for cell cycle progression and is functionally connected to the S phase DNA damage response machinery in cancer cells. PMID:23118481

  8. [Assessment of impacts of combined treatment of solid urban waste landfill leachate and sewage on aquatic biota].

    PubMed

    Mannarino, Camille Ferreira; Moreira, Josino Costa; Ferreira, João Alberto; Arias, Ana Rosa Linde

    2013-11-01

    The impact on tilapia fish of combined treatment of landfill leachate and domestic sewage was monitored in a waste treatment plant that operated on a pilot scale using the activated sludge process. Biomarkers of sub-lethal toxicity were used to indicate the possibility of damage to organisms due to interaction with pollutants. The concentration of metallothioneins did not indicate the increased presence of metals in fish exposed than in control groups. Acetylcholinesterase enzyme activity was inhibited in only one of the exposed groups, indicating the possible presence of organophosphate and/or carbamate pesticides in treated effluent. The PAHs used as biomarkers (naphthalene, pyrene, benzo(a)pyrene and 1-hydroxypyrene) indicated that exposed fish had a greater absorption of PAHs than control groups of fish, indicating the likely presence of these compounds in at least one of the combined treatment effluents. The frequencies of micronuclei and other erythrocytic nuclear abnormalities also indicate greater genotoxic damage in cells of organisms exposed than in control groups. The use of biomarkers proved to be important to permit an evaluation of sub-lethal damage present in organisms exposed to the pollution source studied.

  9. Treatment of Irradiated Mice with High-Dose Ascorbic Acid Reduced Lethality

    PubMed Central

    Sato, Tomohito; Kinoshita, Manabu; Yamamoto, Tetsuo; Ito, Masataka; Nishida, Takafumi; Takeuchi, Masaru; Saitoh, Daizoh; Seki, Shuhji; Mukai, Yasuo

    2015-01-01

    Ascorbic acid is an effective antioxidant and free radical scavenger. Therefore, it is expected that ascorbic acid should act as a radioprotectant. We investigated the effects of post-radiation treatment with ascorbic acid on mouse survival. Mice received whole body irradiation (WBI) followed by intraperitoneal administration of ascorbic acid. Administration of 3 g/kg of ascorbic acid immediately after exposure significantly increased mouse survival after WBI at 7 to 8 Gy. However, administration of less than 3 g/kg of ascorbic acid was ineffective, and 4 or more g/kg was harmful to the mice. Post-exposure treatment with 3 g/kg of ascorbic acid reduced radiation-induced apoptosis in bone marrow cells and restored hematopoietic function. Treatment with ascorbic acid (3 g/kg) up to 24 h (1, 6, 12, or 24 h) after WBI at 7.5 Gy effectively improved mouse survival; however, treatments beyond 36 h were ineffective. Two treatments with ascorbic acid (1.5 g/kg × 2, immediately and 24 h after radiation, 3 g/kg in total) also improved mouse survival after WBI at 7.5 Gy, accompanied with suppression of radiation-induced free radical metabolites. In conclusion, administration of high-dose ascorbic acid might reduce radiation lethality in mice even after exposure. PMID:25651298

  10. [Blocking 1800 MHz mobile phone radiation-induced reactive oxygen species production and DNA damage in lens epithelial cells by noise magnetic fields].

    PubMed

    Wu, Wei; Yao, Ke; Wang, Kai-jun; Lu, De-qiang; He, Ji-liang; Xu, Li-hong; Sun, Wen-jun

    2008-01-01

    To investigate whether the exposure to the electromagnetic noise can block reactive oxygen species (ROS) production and DNA damage of lens epithelial cells induced by 1800 MHz mobile phone radiation. The DCFH-DA method and comet assay were used respectively to detect the intracellular ROS and DNA damage of cultured human lens epithelial cells induced by 4 W/kg 1800 MHz mobile phone radiation or/and 2 muT electromagnetic noise for 24 h intermittently. 1800 MHz mobile phone radiation at 4 W/kg for 24 h increased intracellular ROS and DNA damage significantly (P<0.05). However, the ROS level and DNA damage of mobile phone radiation plus noise group were not significant enhanced (P>0.05) as compared to sham exposure group. Electromagnetic noise can block intracellular ROS production and DNA damage of human lens epithelial cells induced by 1800 MHz mobile phone radiation.

  11. Use of irradiation for the treatment of various animal feed products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ley, F.J.

    1972-11-01

    Results are summarized from investigations on the use of ionizing radiations for the sterilization of pathogenic microorganisms in animal feeds. Data are reported from stadies on the lethal radiation dose for various strains of Salmonella, Bacillus anthracis, and various strains of Enterobacteriaceae, the effects of doses of 0.8 Mrad to 5 Mrad radiation on the wholesomeness of various protein concentrates used in animal feeds; the radiopreservation of meats used in animal diets; and the cost of radiation processing for extension of the storage life of animal feeds. (16 references). (C.H.)

  12. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis

    PubMed Central

    Shim, Grace; Ricoul, Michelle; Hempel, William M.; Azzam, Edouard I.; Sabatier, Laure

    2014-01-01

    It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis. PMID:24486376

  13. EXPERIMENTAL STUDIES ON THE PROTECTIVE EFFECT OF SEVERAL PHARMACOLOGICAL AGENTS AGAINST X-IRRADIATION (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakudo, Y.

    The protective effects of several pharmacological agents against lethal radiation effects were tested in mice. Noradrenaline, phenylephrine, naphazoline, tetrahydrozoline, and methoxamine markedly reduced radiation mortality when injected 5 min before exposure. Adrenaline and phenylethylamine had little protective effect, while ephedrine had no effect. Cocain was moderately effective, while caffein had little effect. (C.H.)

  14. Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts

    DOE PAGES

    Woodson, Jesse D.; Joens, Matthew S.; Sinson, Andrew B.; ...

    2015-10-23

    Energy production by chloroplasts and mitochondria causes constant oxidative damage. A functioning photosynthetic cell requires quality-control mechanisms to turn over and degrade chloroplasts damaged by reactive oxygen species (ROS). Here in this study, we generated a conditionally lethal Arabidopsis mutant that accumulated excess protoporphyrin IX in the chloroplast and produced singlet oxygen. Damaged chloroplasts were subsequently ubiquitinated and selectively degraded. A genetic screen identified the plant U-box 4 (PUB4) E3 ubiquitin ligase as being necessary for this process. pub4-6 mutants had defects in stress adaptation and longevity. As a result, we have identified a signal that leads to the targetedmore » removal of ROS-overproducing chloroplasts.« less

  15. Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodson, Jesse D.; Joens, Matthew S.; Sinson, Andrew B.

    Energy production by chloroplasts and mitochondria causes constant oxidative damage. A functioning photosynthetic cell requires quality-control mechanisms to turn over and degrade chloroplasts damaged by reactive oxygen species (ROS). Here in this study, we generated a conditionally lethal Arabidopsis mutant that accumulated excess protoporphyrin IX in the chloroplast and produced singlet oxygen. Damaged chloroplasts were subsequently ubiquitinated and selectively degraded. A genetic screen identified the plant U-box 4 (PUB4) E3 ubiquitin ligase as being necessary for this process. pub4-6 mutants had defects in stress adaptation and longevity. As a result, we have identified a signal that leads to the targetedmore » removal of ROS-overproducing chloroplasts.« less

  16. Temperature Dependence of Irradiation Damage to Polythene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TODD, G.; WILD, G. A.

    1963-07-13

    Comparison of measurements of radiation damage to polythene exposed to a 4.3-Mev linear accelerator and in a reactor led to the conclusion that radiation damage of polythene is temperature dependent. Applications of radiation in raising or lowering the elastic modulus of polythene are suggested. (C.H.)

  17. Inactivation of NADPH oxidases NOX4 and NOX5 protects human primary fibroblasts from ionizing radiation-induced DNA damage.

    PubMed

    Weyemi, Urbain; Redon, Christophe E; Aziz, Towqir; Choudhuri, Rohini; Maeda, Daisuke; Parekh, Palak R; Bonner, Michael Y; Arbiser, Jack L; Bonner, William M

    2015-03-01

    Human exposure to ionizing radiation from medical procedures has increased sharply in the last three decades. Recent epidemiological studies suggest a direct relationship between exposure to ionizing radiation and health problems, including cancer incidence. Therefore, minimizing the impact of radiation exposure in patients has become a priority in the development of future clinical practices. Crucial players in radiation-induced DNA damage include reactive oxygen species (ROS), but the sources of these have remained elusive. To the best of our knowledge, we show here for the first time that two members of the ROS-generating NADPH oxidase family (NOXs), NOX4 and NOX5, are involved in radiation-induced DNA damage. Depleting these two NOXs in human primary fibroblasts resulted in reduced levels of DNA damage as measured by levels of radiation-induced foci, a marker of DNA double-strand breaks (DSBs) and the comet assay coupled with increased cell survival. NOX involvement was substantiated with fulvene-5, a NOXs-specific inhibitor. Moreover, fulvene-5 mitigated radiation-induced DNA damage in human peripheral blood mononuclear cells ex vivo. Our results provide evidence that the inactivation of NOXs protects cells from radiation-induced DNA damage and cell death. These findings suggest that NOXs inhibition may be considered as a future pharmacological target to help minimize the negative effects of radiation exposure for millions of patients each year.

  18. Inactivation of NADPH Oxidases NOX4 and NOX5 Protects Human Primary Fibroblasts from Ionizing Radiation-Induced DNA Damage

    PubMed Central

    Weyemi, Urbain; Redon, Christophe E.; Aziz, Towqir; Choudhuri, Rohini; Maeda, Daisuke; Parekh, Palak R.; Bonner, Michael Y.; Arbiser, Jack L.; Bonner, William M.

    2015-01-01

    Human exposure to ionizing radiation from medical procedures has increased sharply in the last three decades. Recent epidemiological studies suggest a direct relationship between exposure to ionizing radiation and health problems, including cancer incidence. Therefore, minimizing the impact of radiation exposure in patients has become a priority in the development of future clinical practices. Crucial players in radiation-induced DNA damage include reactive oxygen species (ROS), but the sources of these have remained elusive. To the best of our knowledge, we show here for the first time that two members of the ROS-generating NADPH oxidase family (NOXs), NOX4 and NOX5, are involved in radiation-induced DNA damage. Depleting these two NOXs in human primary fibroblasts resulted in reduced levels of DNA damage as measured by levels of radiation-induced foci, a marker of DNA double-strand breaks (DSBs) and the comet assay coupled with increased cell survival. NOX involvement was substantiated with fulvene-5, a NOXs-specific inhibitor. Moreover, fulvene-5 mitigated radiation-induced DNA damage in human peripheral blood mononuclear cells ex vivo. Our results provide evidence that the inactivation of NOXs protects cells from radiation-induced DNA damage and cell death. These findings suggest that NOXs inhibition may be considered as a future pharmacological target to help minimize the negative effects of radiation exposure for millions of patients each year. PMID:25706776

  19. The ability of filgrastim to mitigate mortality following LD50/60 total-body irradiation is administration time-dependent.

    PubMed

    Farese, Ann M; Brown, Cassandra R; Smith, Cassandra P; Gibbs, Allison M; Katz, Barry P; Johnson, Cynthia S; Prado, Karl L; MacVittie, Thomas J

    2014-01-01

    The identification of the optimal administration schedule for an effective medical countermeasure is critical for the effective treatment of individuals exposed to potentially lethal doses of radiation. The efficacy of filgrastim (Neupogen®), a potential medical countermeasure, to improve survival when initiated at 48 h following total body irradiation in a non-human primate model of the hematopoietic syndrome of the acute radiation syndrome was investigated. Animals were exposed to total body irradiation, antero-posterior exposure, total midline tissue dose of 7.5 Gy, (target lethal dose 50/60) delivered at 0.80 Gy min, using linear accelerator-derived 6 MV photons. All animals were administered medical management. Following irradiation on day 0, filgrastim (10 μg kg d) or the control (5% dextrose in water) was administered subcutaneously daily through effect (absolute neutrophil count ≥ 1,000 cells μL for three consecutive days). The study (n = 80) was powered to demonstrate a 25% improvement in survival following the administration of filgrastim or control beginning at 48 ± 4 h post-irradiation. Survival analysis was conducted on the intention-to-treat population using a two-tailed null hypothesis at a 5% significance level. Filgrastim, initiated 48 h after irradiation, did not improve survival (2.5% increase, p = 0.8230). These data demonstrate that efficacy of a countermeasure to mitigate lethality in the hematopoietic syndrome of the acute radiation syndrome can be dependent on the interval between irradiation and administration of the medical countermeasure.

  20. An Oxygenated and Transportable Machine Perfusion System Fully Rescues Liver Grafts Exposed to Lethal Ischemic Damage in a Pig Model of DCD Liver Transplantation.

    PubMed

    Compagnon, Philippe; Levesque, Eric; Hentati, Hassen; Disabato, Mara; Calderaro, Julien; Feray, Cyrille; Corlu, Anne; Cohen, José Laurent; Ben Mosbah, Ismail; Azoulay, Daniel

    2017-07-01

    Control of warm ischemia (WI) lesions that occur with donation after circulatory death (DCD) would significantly increase the donor pool for liver transplantation. We aimed to determine whether a novel, oxygenated and hypothermic machine perfusion device (HMP Airdrive system) improves the quality of livers derived from DCDs using a large animal model. Cardiac arrest was induced in female large white pigs by intravenous injection of potassium chloride. After 60 minutes of WI, livers were flushed in situ with histidine-tryptophan-ketoglutarate and subsequently preserved either by simple cold storage (WI-SCS group) or HMP (WI-HMP group) using Belzer-MPS solution. Liver grafts procured from heart-beating donors and preserved by SCS served as controls. After 4 hours of preservation, all livers were transplanted. All recipients in WI-SCS group died within 6 hours after transplantation. In contrast, the HMP device fully protected the liver against lethal ischemia/reperfusion injury, allowing 100% survival rate. A postreperfusion syndrome was observed in all animals of the WI-SCS group but none of the control or WI-HMP groups. After reperfusion, HMP-preserved livers functioned better and showed less hepatocellular and endothelial cell injury, in agreement with better-preserved liver histology relative to WI-SCS group. In addition to improved energy metabolism, this protective effect was associated with an attenuation of inflammatory response, oxidative load, endoplasmic reticulum stress, mitochondrial damage, and apoptosis. This study demonstrates for the first time the efficacy of the HMP Airdrive system to protect liver grafts from lethal ischemic damage before transplantation in a clinically relevant DCD model.

  1. Modeling Space Radiation with Radiomimetic Agent Bleomycin

    NASA Technical Reports Server (NTRS)

    Lu, Tao

    2017-01-01

    Space radiation consists of proton and helium from solar particle events (SPE) and high energy heavy ions from galactic cosmic ray (GCR). This mixture of radiation with particles at different energy levels has different effects on biological systems. Currently, majority studies of radiation effects on human were based on single-source radiation due to the limitation of available method to model effects of space radiation on living organisms. While NASA Space Radiation Laboratory is working on advanced switches to make it possible to have a mixed field radiation with particles of different energies, the radiation source will be limited. Development of an easily available experimental model for studying effects of mixed field radiation could greatly speed up our progress in our understanding the molecular mechanisms of damage and responses from exposure to space radiation, and facilitate the discovery of protection and countermeasures against space radiation, which is critical for the mission to Mars. Bleomycin, a radiomimetic agent, has been widely used to study radiation induced DNA damage and cellular responses. Previously, bleomycin was often compared to low low Linear Energy Transfer (LET) gamma radiation without defined characteristics. Our recent work demonstrated that bleomycin could induce complex clustered DNA damage in human fibroblasts that is similar to DNA damage induced by high LET radiation. These type of DNA damage is difficult to repair and can be visualized by gamma-H2Ax staining weeks after the initial insult. The survival ratio between early and late plating of human fibroblasts after bleomycin treatment is between low LET and high LET radiation. Our results suggest that bleomycin induces DNA damage and other cellular stresses resembling those resulted from mixed field radiation with both low and high LET particles. We hypothesize that bleomycin could be used to mimic space radiation in biological systems. Potential advantages and limitations of using bleomycin to treat biological specimen as an easily available model to study effects of space radiation on biological systems and to develop countermeasures for space radiation associated risks will be discussed.

  2. [The distribution of radiation-induced breaks in the chromosomes of irradiated subjects].

    PubMed

    Shemetun, O V; Pidlins'ka, M A; Shemetun, H M

    2000-01-01

    Distribution of radiation-induced breakpoints in chromosomes and its bands in persons recovered from acute radiation sickness and personnel from Chernobyl NPP were investigated using G-banding staining. The frequency of damaged bands and breakpoints in groups exposed to radiation was significantly higher as compared with the control group. It was shown that in exposed to radiation persons damage depends on its length. Most frequently damaged bands in the observed groups were determined. The G-negative bands and telomeres of chromosomes were more sensitive to radiation.

  3. THE METABOLIC RESPONSE TO RADIATION IN THE PRIMATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, C.G.

    1959-10-31

    At present there is little information available concerning the metabolism of man following exposure to ionizing radiation in the lethal range. Reference is made in vague terms to the maintenance of fluid and electrolytes, the administration of a bland diet, intravenous glucose, salines etc., with little experimental evidence from primate studies to indicate the benefit of these modes of therapy. It is felt, therefore, that results of metabolic studies made in sub-human primates will be of therapeutic interest. Adult monkeys of both sexes were exposed to whole-body irradiation with x and gamma rays. The absorbed doses were in the sub-lethalmore » and lower lethal range for monkeys (400 to 500 r), and were administered at rates varying from 7 to 124 r/min. Observations were made on eleven monkeys that were kept in metabolic cages before and after irradiation. The derangement of metabolism consequent to irradiation was studied. After physioiogical recovery of eight surviving animals, the experiment was repeated using identical dietary intake and experimental technique but omitting irradiation. Comparisons were then raade between the results of the irradiation study and those obtained after physiological recovery. Data are presented on the clinical physiology of representative animals, including data on body weights, food and fluid intakes, urine and faecal outputs, insensible losses, metabolic rates, balances of water, nitrogen and electrolytes, nitrogen utilization, and caloric intakes. It is concluded that the metabolic response to radiation injury in the lethal range does not differ qualitatively in the primate from that of any injury and that the irradiated primate is not at a disadvantage until the time of anabolic response. At that time the tissues responsible for normal reparative processes, themselves injured by the radiation, are no longer able to perform normal restorative functions, the resultant catabolism being in excess of that from equivalent injury from other causes. The implications of these studies on the clinical nutrition of the human exposed to sublethal doses of radiation are considered. (C.H.)« less

  4. Self-Healing of Proton Damage in Lithium Niobite LiNbO2

    NASA Astrophysics Data System (ADS)

    Shank, Joshua C.; Tellekamp, M. Brooks; Zhang, En Xia; Bennett, W. Geoff; McCurdy, Michael W.; Fleetwood, Daniel M.; Alles, Michael L.; Schrimpf, Ronald D.; Doolittle, W. Alan

    2015-04-01

    Proton radiation damage and short-term annealing are investigated for lithium niobite (LiNbO2) mixed electronic-ionic memristors. Radiation damage and short-term annealing were characterized using Electrochemical Impedance Spectroscopy (EIS) to determine changes in the device resistance and the lithium ion mobility. The radiation damage resulted in a 0.48% change in the resistance at a fluence of 1014 cm-2. In-situ short-term annealing at room temperature reduced the net detrimental effect of the damage with a time constant of about 9 minutes. The radiation damage mechanism is attributed predominantly to displacement damage at the niobium and oxygen sites trapping lithium ions that are responsible for induced polarization within the material. Short term annealing is attributed to room temperature thermal annealing of these defects, freeing the highly mobile lithium ions.

  5. [Effects of radiation exposure on human body].

    PubMed

    Kamiya, Kenji; Sasatani, Megumi

    2012-03-01

    There are two types of radiation health effect; acute disorder and late on-set disorder. Acute disorder is a deterministic effect that the symptoms appear by exposure above a threshold. Tissues and cells that compose the human body have different radiation sensitivity respectively, and the symptoms appear in order, from highly radiosensitive tissues. The clinical symptoms of acute disorder begin with a decrease in lymphocytes, and then the symptoms appear such as alopecia, skin erythema, hematopoietic damage, gastrointestinal damage, central nervous system damage with increasing radiation dose. Regarding the late on-set disorder, a predominant health effect is the cancer among the symptoms of such as cancer, non-cancer disease and genetic effect. Cancer and genetic effect are recognized as stochastic effects without the threshold. When radiation dose is equal to or more than 100 mSv, it is observed that the cancer risk by radiation exposure increases linearly with an increase in dose. On the other hand, the risk of developing cancer through low-dose radiation exposure, less 100 mSv, has not yet been clarified scientifically. Although uncertainty still remains regarding low level risk estimation, ICRP propound LNT model and conduct radiation protection in accordance with LNT model in the low-dose and low-dose rate radiation from a position of radiation protection. Meanwhile, the mechanism of radiation damage has been gradually clarified. The initial event of radiation-induced diseases is thought to be the damage to genome such as radiation-induced DNA double-strand breaks. Recently, it is clarified that our cells could recognize genome damage and induce the diverse cell response to maintain genome integrity. This phenomenon is called DNA damage response which induces the cell cycle arrest, DNA repair, apoptosis, cell senescence and so on. These responses act in the direction to maintain genome integrity against genome damage, however, the death of large number of cells results in acute disorder, and then DNA mis-repair and mutation is speculated to cause cancer. The extent to which this kind of cellular response could reduce the low-dose radiation risk is a major challenge for future research.

  6. Loss of the Mono-ADP-ribosyltransferase, Tiparp, Increases Sensitivity to Dioxin-induced Steatohepatitis and Lethality*

    PubMed Central

    Ahmed, Shaimaa; Bott, Debbie; Gomez, Alvin; Tamblyn, Laura; Rasheed, Adil; Cho, Tiffany; MacPherson, Laura; Sugamori, Kim S.; Yang, Yang; Grant, Denis M.; Cummins, Carolyn L.; Matthews, Jason

    2015-01-01

    The aryl hydrocarbon receptor (AHR) mediates the toxic effects of the environmental contaminant dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDD). Dioxin causes a range of toxic responses, including hepatic damage, steatohepatitis, and a lethal wasting syndrome; however, the mechanisms are still unknown. Here, we show that the loss of TCDD-inducible poly(ADP-ribose) polymerase (Tiparp), an ADP-ribosyltransferase and AHR repressor, increases sensitivity to dioxin-induced toxicity, steatohepatitis, and lethality. Tiparp−/− mice given a single injection of 100 μg/kg dioxin did not survive beyond day 5; all Tiparp+/+ mice survived the 30-day treatment. Dioxin-treated Tiparp−/− mice exhibited increased liver steatosis and hepatotoxicity. Tiparp ADP-ribosylated AHR but not its dimerization partner, the AHR nuclear translocator, and the repressive effects of TIPARP on AHR were reversed by the macrodomain containing mono-ADP-ribosylase MACROD1 but not MACROD2. These results reveal previously unidentified roles for Tiparp, MacroD1, and ADP-ribosylation in AHR-mediated steatohepatitis and lethality in response to dioxin. PMID:25975270

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Se-Chul; Park, Jeong-Mi; Jang, Hong-Seok

    Captopril, an inhibitor of angiotensin I converting enzyme, has been shown to modify radiation damage and prevent radiation injury of normal tissue in rats and pigs. The present study was carried out to determine whether captopril would reduce radiation changes in the proximal small bowel in mice. Mice were subjected to whole body irradiation with 9 Gy or 15 Gy. Captopril was administered in drinking water at a regimen of 62.5 mg/kg/day (captopril group I) and 125 mg/kg/day (captopril group II), continuously from 7 days before irradiation to the end of each designed experiment. The jejunal damage was evaluated microscopicallymore » by crypt count per circumference and by histologic damage grading. Crypt number in the sham-irradiated control was 133 {plus_minus} 6.8/circumference. In both captopril group I and II, crypt numbers and histologic scores were not significantly different from those in the normal group. The 9 Gy and 15 Gy radiation alone groups showed significantly lower crypt counts and histologic scores compared with the sham-irradiated control group (p<0.05). The groups exposed to 9 Gy radiation plus captopril I and II showed significantly higher crypt counts and lower histologic damage scores on the third day, and lower histologic damage scores on the fifth day compared with the 9 Gy radiation alone group (p<0.05). The 15 Gy radiation plus captopril I and II groups had significantly higher crypt counts and lower histologic damage scores on the third day than those of the 15 Gy radiation alone group (p<0.05). All mice of the 15 Gy radiation group succumbed to intestinal radiation death. Our results suggest that captopril provides protection from acute radiation damage to the jejunal mucosa in mice. 28 refs., 5 figs., 4 tabs.« less

  8. Protective effects of S+ ketamine and atropine against lethality and brain damage during soman-induced status epilepticus in guinea-pigs.

    PubMed

    Dorandeu, Frederic; Baille, Valerie; Mikler, John; Testylier, Guy; Lallement, Guy; Sawyer, Thomas; Carpentier, Pierre

    2007-05-20

    Soman poisoning is known to induce full-blown tonic-clonic seizures, status epilepticus (SE), seizure-related brain damage (SRBD) and lethality. Previous studies in guinea-pigs have shown that racemic ketamine (KET), with atropine sulfate (AS), is very effective in preventing death, stopping seizures and protecting sensitive brain areas when given up to 1h after a supra-lethal challenge of soman. The active ketamine isomer, S(+) ketamine (S-KET), is more potent than the racemic mixture and it also induces less side-effects. To confirm the efficacy of KET and to evaluate the potential of S-KET for delayed medical treatment of soman-induced SE, we studied different S-KET dose regimens using the same paradigm used with KET. Guinea-pigs received pyridostigmine (26 microg/kg, IM) 30min before soman (62 microg/kg, 2 LD(50), IM), followed by therapy consisting of atropine methyl nitrate (AMN) (4 mg/kg, IM) 1min following soman exposure. S-KET, with AS (10mg/kg), was then administered IM at different times after the onset of seizures, starting at 1h post-soman exposure. The protective efficacy of S-KET proved to be comparable to KET against lethality and SRBD, but at doses two to three times lower. As with KET, delaying treatment by 2h post-poisoning greatly reduced efficacy. Conditions that may have led to an increased S-KET brain concentration (increased doses or number of injections, adjunct treatment with the oxime HI-6) did not prove to be beneficial. In summary, these observations confirm that ketamine, either racemic or S-KET, in association with AS and possibly other drugs, could be highly effective in the delayed treatment of severe soman intoxication.

  9. Melatonin Role in Ameliorating Radiation-induced Skin Damage: From Theory to Practice (A Review of Literature).

    PubMed

    Abbaszadeh, A; Haddadi, G H; Haddadi, Z

    2017-06-01

    Normal skin is composed of epidermis and dermis. Skin is susceptible to radiation damage because it is a continuously renewing organ containing rapidly proliferating mature cells. Radiation burn is a damage to the skin or other biological tissues caused by exposure to radiofrequency energy or ionizing radiation. Acute skin reaction is the most frequently occurring side effect of radiation therapy. Generally, any chemical/biological agent given before or at the time of irradiation to prevent or ameliorate damage to normal tissues is called a radioprotector. Melatonin is a highly lipophilic substance that easily penetrates organic membranes and therefore is able to protect important intracellular structures including mitochondria and DNA against oxidative damage directly at the sites where such a kind of damage would occur. Melatonin leads to an increase in the molecular level of some important antioxidative enzymes such as superoxide, dismotase and glutation-peroxidase, and also a reduction in synthetic activity of nitric oxide. There is a large body of evidence which proves the efficacy of Melatonin in ameliorating UV and X ray-induced skin damage. We propose that, in the future, Melatonin would improve the therapeutic ratio in radiation oncology and ameliorate skin damage more effectively when administered in optimal and non-toxic doses.

  10. Melatonin Role in Ameliorating Radiation-induced Skin Damage: From Theory to Practice (A Review of Literature)

    PubMed Central

    Abbaszadeh, A.; Haddadi, G.H.; Haddadi, Z.

    2017-01-01

    Normal skin is composed of epidermis and dermis. Skin is susceptible to radiation damage because it is a continuously renewing organ containing rapidly proliferating mature cells. Radiation burn is a damage to the skin or other biological tissues caused by exposure to radiofrequency energy or ionizing radiation. Acute skin reaction is the most frequently occurring side effect of radiation therapy. Generally, any chemical/biological agent given before or at the time of irradiation to prevent or ameliorate damage to normal tissues is called a radioprotector. Melatonin is a highly lipophilic substance that easily penetrates organic membranes and therefore is able to protect important intracellular structures including mitochondria and DNA against oxidative damage directly at the sites where such a kind of damage would occur. Melatonin leads to an increase in the molecular level of some important antioxidative enzymes such as superoxide, dismotase and glutation-peroxidase, and also a reduction in synthetic activity of nitric oxide. There is a large body of evidence which proves the efficacy of Melatonin in ameliorating UV and X ray-induced skin damage. We propose that, in the future, Melatonin would improve the therapeutic ratio in radiation oncology and ameliorate skin damage more effectively when administered in optimal and non-toxic doses. PMID:28580334

  11. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  12. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours

    PubMed Central

    Xu, Hong; Di Antonio, Marco; McKinney, Steven; Mathew, Veena; Ho, Brandon; O'Neil, Nigel J.; Santos, Nancy Dos; Silvester, Jennifer; Wei, Vivien; Garcia, Jessica; Kabeer, Farhia; Lai, Daniel; Soriano, Priscilla; Banáth, Judit; Chiu, Derek S.; Yap, Damian; Le, Daniel D.; Ye, Frank B.; Zhang, Anni; Thu, Kelsie; Soong, John; Lin, Shu-chuan; Tsai, Angela Hsin Chin; Osako, Tomo; Algara, Teresa; Saunders, Darren N.; Wong, Jason; Xian, Jian; Bally, Marcel B.; Brenton, James D.; Brown, Grant W.; Shah, Sohrab P.; Cescon, David; Mak, Tak W.; Caldas, Carlos; Stirling, Peter C.; Hieter, Phil; Balasubramanian, Shankar; Aparicio, Samuel

    2017-01-01

    G-quadruplex DNAs form four-stranded helical structures and are proposed to play key roles in different cellular processes. Targeting G-quadruplex DNAs for cancer treatment is a very promising prospect. Here, we show that CX-5461 is a G-quadruplex stabilizer, with specific toxicity against BRCA deficiencies in cancer cells and polyclonal patient-derived xenograft models, including tumours resistant to PARP inhibition. Exposure to CX-5461, and its related drug CX-3543, blocks replication forks and induces ssDNA gaps or breaks. The BRCA and NHEJ pathways are required for the repair of CX-5461 and CX-3543-induced DNA damage and failure to do so leads to lethality. These data strengthen the concept of G4 targeting as a therapeutic approach, specifically for targeting HR and NHEJ deficient cancers and other tumours deficient for DNA damage repair. CX-5461 is now in advanced phase I clinical trial for patients with BRCA1/2 deficient tumours (Canadian trial, NCT02719977, opened May 2016). PMID:28211448

  13. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours.

    PubMed

    Xu, Hong; Di Antonio, Marco; McKinney, Steven; Mathew, Veena; Ho, Brandon; O'Neil, Nigel J; Santos, Nancy Dos; Silvester, Jennifer; Wei, Vivien; Garcia, Jessica; Kabeer, Farhia; Lai, Daniel; Soriano, Priscilla; Banáth, Judit; Chiu, Derek S; Yap, Damian; Le, Daniel D; Ye, Frank B; Zhang, Anni; Thu, Kelsie; Soong, John; Lin, Shu-Chuan; Tsai, Angela Hsin Chin; Osako, Tomo; Algara, Teresa; Saunders, Darren N; Wong, Jason; Xian, Jian; Bally, Marcel B; Brenton, James D; Brown, Grant W; Shah, Sohrab P; Cescon, David; Mak, Tak W; Caldas, Carlos; Stirling, Peter C; Hieter, Phil; Balasubramanian, Shankar; Aparicio, Samuel

    2017-02-17

    G-quadruplex DNAs form four-stranded helical structures and are proposed to play key roles in different cellular processes. Targeting G-quadruplex DNAs for cancer treatment is a very promising prospect. Here, we show that CX-5461 is a G-quadruplex stabilizer, with specific toxicity against BRCA deficiencies in cancer cells and polyclonal patient-derived xenograft models, including tumours resistant to PARP inhibition. Exposure to CX-5461, and its related drug CX-3543, blocks replication forks and induces ssDNA gaps or breaks. The BRCA and NHEJ pathways are required for the repair of CX-5461 and CX-3543-induced DNA damage and failure to do so leads to lethality. These data strengthen the concept of G4 targeting as a therapeutic approach, specifically for targeting HR and NHEJ deficient cancers and other tumours deficient for DNA damage repair. CX-5461 is now in advanced phase I clinical trial for patients with BRCA1/2 deficient tumours (Canadian trial, NCT02719977, opened May 2016).

  14. Hypericum perforatum Reduces Paracetamol-Induced Hepatotoxicity and Lethality in Mice by Modulating Inflammation and Oxidative Stress.

    PubMed

    Hohmann, Miriam S N; Cardoso, Renato D R; Fattori, Victor; Arakawa, Nilton S; Tomaz, José C; Lopes, Norberto P; Casagrande, Rubia; Verri, Waldiceu A

    2015-07-01

    Hypericum perforatum is a medicinal plant with anti-inflammatory and antioxidant properties, which is commercially available for therapeutic use in Brazil. Herein the effect of H. perforatum extract on paracetamol (acetaminophen)-induced hepatotoxicity, lethality, inflammation, and oxidative stress in male swiss mice were investigated. HPLC analysis demonstrated the presence of rutin, quercetin, hypericin, pseudohypericin, and hyperforin in H. perforatum extract. Paracetamol (0.15-3.0 g/kg, p.o.) induced dose-dependent mortality. The sub-maximal lethal dose of paracetamol (1.5 g/kg, p.o.) was chosen for the experiments in the study. H. perforatum (30-300 mg/kg, i.p.) dose-dependently reduced paracetamol-induced lethality. Paracetamol-induced increase in plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) concentrations, and hepatic myeloperoxidase activity, IL-1β, TNF-α, and IFN-γ concentrations as well as decreased reduced glutathione (GSH) concentrations and capacity to reduce 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate radical cation; ABTS˙(+) ) were inhibited by H. perforatum (300 mg/kg, i.p.) treatment. Therefore, H. perforatum protects mice against paracetamol-induced lethality and liver damage. This effect seems to be related to the reduction of paracetamol-induced cytokine production, neutrophil recruitment, and oxidative stress. Copyright © 2015 John Wiley & Sons, Ltd.

  15. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia

    PubMed Central

    Periasamy, Sivakumar; Avram, Dorina; McCabe, Amanda; MacNamara, Katherine C.; Sellati, Timothy J.; Harton, Jonathan A.

    2016-01-01

    Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection. PMID:27015566

  16. PARP inhibitors--current status and the walk towards early breast cancer.

    PubMed

    Glendenning, Jennifer; Tutt, Andrew

    2011-10-01

    Epithelial carcinomas in general arise as a result of the acquisition of and selection for multiple mutations in a parental somatic cell clone within the tissues of the primary organ of origin. In the last two decades genome caretakers, which function in key areas of DNA damage response, have been recognized as important tumour suppressor genes. Inactivating mutations in these genes occur both as germline and/or somatic mutations with increasing evidence of epigenetic silencing as an additional cause of loss of function. In any event, loss of function in a tumour cell pre-cursor clone leads to accelerated mutation acquisition and underpins the aetiology of the tumour. With increasing understanding of the complex network that is the DNA damage response, signaling pathways already recognized to be central to the establishment of the cancer phenotype are gaining additional roles as controllers of DNA repair. This has relevance to identification of wider populations of patients with tumours susceptible to approaches that target DNA repair deficiency. These have classically been with DNA damaging chemotherapy but the recently developed small molecule inhibitors of DNA repair enzymes such as Poly-ADP polymerases PARP-1 and PARP-2 have been shown to target tumour deficiencies in DNA repair as well sensitizing to DNA damaging therapeutics such as radiation and chemotherapy. Early phase trials with efficacy endpoints have been presented for the PARP inhibitors AG014699, olaparib, veliparib, iniparib and MK4827. The results of the first phase II trials exploring monotherapy PARP inhibitor strategies, which are based on revisiting the concept of synthetic lethality, have emerged and are reviewed herein. The clinical trials that have or are exploring combinations with DNA damaging therapy in these contexts are discussed with particular reference to breast cancer, as are biomarkers that have been proposed and are being investigated to develop optimal drug schedule and patient selection criteria for these DNA repair targeting approaches. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Formation of Clustered DNA Damage after High-LET Irradiation: A Review

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Georgakilas, Alexandros G.

    2008-01-01

    Radiation can cause as well as cure cancer. The risk of developing radiation-induced cancer has traditionally been estimated from cancer incidence among survivors of the atomic bombs in Hiroshima and Nagasaki. These data provide the best estimate of human cancer risk over the dose range for low linear energy transfer (LET) radiations, such as X- or gamma-rays. The situation of estimating the real biological effects becomes even more difficult in the case of high LET particles encountered in space or as the result of domestic exposure to particles from radon gas emitters or other radioactive emitters like uranium-238. Complex DNA damage, i.e., the signature of high-LET radiations comprises by closely spaced DNA lesions forming a cluster of DNA damage. The two basic groups of complex DNA damage are double strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions (OCDL). Theoretical analysis and experimental evidence suggest there is increased complexity and severity of complex DNA damage with increasing LET (linear energy transfer) and a high mutagenic or carcinogenic potential. Data available on the formation of clustered DNA damage (DSBs and OCDL) by high-LET radiations are often controversial suggesting a variable response to dose and type of radiation. The chemical nature and cellular repair mechanisms of complex DNA damage have been much less characterized than those of isolated DNA lesions like an oxidized base or a single strand break especially in the case of high-LET radiation. This review will focus on the induction of clustered DNA damage by high-LET radiations presenting the earlier and recent relative data.

  18. Ceramide induced mitophagy and tumor suppression

    PubMed Central

    Dany, Mohammed; Ogretmen, Besim

    2015-01-01

    Sphingolipids are bioactive lipid effectors, which are involved in the regulation of various cellular signaling pathways. Sphingolipids play essential roles in controlling cell inflammation, proliferation, death, migration, senescence, metastasis and autophagy. Alterations in sphingolipid metabolism has been also implicated in many human cancers. Macroautophagy (referred to here as autophagy) is a form of nonselective sequestering of cytosolic materials by double membrane structures, autophagosomes, which can be either protective or lethal for cells. Ceramide, a central molecule of sphingolipid metabolism is involved in the regulation of autophagy at various levels, including the induction of lethal mitophagy, a selective autophagy process to target and eliminate damaged mitochondria. In this review, we focused on recent studies with regard to the regulation of autophagy, in particular lethal mitophagy, by ceramide, and aimed at providing discussion points for various context-dependent roles and mechanisms of action of ceramide in controlling mitophagy. PMID:25634657

  19. DNA double-strand break response in stem cells: mechanisms to maintain genomic integrity.

    PubMed

    Nagaria, Pratik; Robert, Carine; Rassool, Feyruz V

    2013-02-01

    Embryonic stem cells (ESCs) represent the point of origin of all cells in a given organism and must protect their genomes from both endogenous and exogenous genotoxic stress. DNA double-strand breaks (DSBs) are one of the most lethal forms of damage, and failure to adequately repair DSBs would not only compromise the ability of SCs to self-renew and differentiate, but will also lead to genomic instability and disease. Herein, we describe the mechanisms by which ESCs respond to DSB-inducing agents such as reactive oxygen species (ROS) and ionizing radiation, compared to somatic cells. We will also discuss whether the DSB response is fully reprogrammed in induced pluripotent stem cells (iPSCs) and the role of the DNA damage response (DDR) in the reprogramming of these cells. ESCs have distinct mechanisms to protect themselves against DSBs and oxidative stress compared to somatic cells. The response to damage and stress is crucial for the maintenance of self-renewal and differentiation capacity in SCs. iPSCs appear to reprogram some of the responses to genotoxic stress. However, it remains to be determined if iPSCs also retain some DDR characteristics of the somatic cells of origin. The mechanisms regulating the genomic integrity in ESCs and iPSCs are critical for its safe use in regenerative medicine and may shed light on the pathways and factors that maintain genomic stability, preventing diseases such as cancer. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. The studies and legislation on radiation disinfestation, Taiwan

    NASA Astrophysics Data System (ADS)

    Fu, Ying-Kai; Chang, Ming-Shia; Hu, Tsan

    The studies of radiation disinfestation at the Institute of Nuclear Energy Research cover four harmful cereal insects, tobacco beetles, and dry beam insects etc. The four most harmful insects of stored rice in Taiwan are Sitophilus zeamais Mostschulsky. Rhyzopertha dominica F. Tribolitum custaneum Herbst, and Sitotroga cerealella Oliver. Adults, eggs or larvae of these insect pests were irradiated by 60Co gamma rays. The results show that 400 Gy of gamma irradiation could completely control these four species of pests in stored rice. Tobacco beetle ( Lasioderma serricorne F.) is the most serious pest of stored tobaccos in Taiwan. The aim of this study is to use 60Co gamma ray irradiation to control tabacco beetles of stored tobaccos. The results are (1) the sterility dose of adults irradiated by 60Co gamma rays is 96 Gy, with an immediate lethal dose of 5 kGy and a total death 18 days post-irradiation at 2 kGy; (2) the immediate lethal dose of larvae is 4 kGy, with a nonemerging dose of 2 kGy; (3) adults could not emerge from the pupae irradiated by 60Co gamma rays at 2 kGy; (4) larvae could not be hatched from the oval stage irradiated by 250 Gy. In conclusion, 60Co gamma ray irradiation of 2 kGy could be applied to stored tobaccos to control tobacco beetles with total disinfestation of larvae and adults and complete nonappearence of F 1 generation 18 days post-irradiation. The cowpea weevil ( Callosobruchus chinensis L.) was one of the most serious pests of stored dry beans in Taiwan. It caused damage during larval stage. Treatment of gamma irradiation with 10 Gy to eggs of the cowpea weevil prevented their hatching; a dose of 20 Gy applied to larvae prevented their development. The sterility dosage aginst the pupae and adult were 20 and 50 Gy, respectively. It is concluded that a 50 Gy gamma irradiation could be applied to stored dry beans to control the cowpea weevils. The food irradiation legislation has been approved by the Department of Health, Taiwan, R.O.C. in January 1983, not only on sprout inhibition on potatoes, sweat potatoes, shallot, onions, garlic within 150 Gy, radurization on papaya, mango within 1.5 kGy, but also on radiation disinfestation on rice, tobacco with 1 kGy and small red bean, mungbean within 200 Gy. The prospects for the radiation disinfestation are very promising and bright in Taiwan, R.O.C. and all preparation are being made to adopt this technology from research to commercial scale.

  1. Radiation-Induced Hemopoietic and Immune Dysfunction

    DTIC Science & Technology

    1991-06-01

    the dog. Culture conditions were studied and optimized, and marrow cells were transplanted into otherwise lethally irradiated dogs to investigate stem ... cell survival in long- term cultures. Engraftment was observed only with short-term marrow cultures.

  2. Exposure to Sub-lethal 2,4-Dichlorophenoxyacetic Acid Arrests Cell Division and Alters Cell Surface Properties in Escherichia coli.

    PubMed

    Bhat, Supriya V; Kamencic, Belma; Körnig, André; Shahina, Zinnat; Dahms, Tanya E S

    2018-01-01

    Escherichia coli is a robust, easily adaptable and culturable bacterium in vitro , and a model bacterium for studying the impact of xenobiotics in the environment. We have used correlative atomic force - laser scanning confocal microscopy (AFM-LSCM) to characterize the mechanisms of cellular response to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). One of the most extensively used herbicides world-wide, 2,4-D is known to cause hazardous effects in diverse non-target organisms. Sub-lethal concentrations of 2,4-D caused DNA damage in E. coli WM1074 during short exposure periods which increased significantly over time. In response to 2,4-D, FtsZ and FtsA relocalized within seconds, coinciding with the complete inhibition of cell septation and cell elongation. Exposure to 2,4-D also resulted in increased activation of the SOS response. Changes to cell division were accompanied by concomitant changes to surface roughness, elasticity and adhesion in a time-dependent manner. This is the first study describing the mechanistic details of 2,4-D at sub-lethal levels in bacteria. Our study suggests that 2,4-D arrests E. coli cell division within seconds after exposure by disrupting the divisome complex, facilitated by dissipation of membrane potential. Over longer exposures, 2,4-D causes filamentation as a result of an SOS response to oxidative stress induced DNA damage.

  3. Time scales of radiation damage decay in four optical materials

    NASA Astrophysics Data System (ADS)

    Grupp, Frank; Geis, Norbert; Katterloher, Reinhard; Bender, Ralf

    2017-09-01

    In the framework of the qualification campaigns for the near infrared spectrometer and photometer instrument (NISP) on board the ESA/EUCLID satellite six optical materials where characterized with respect to their transmission losses after a radiation dose representing the mission exposure to high energy particles in the outer Lagrange point L2. Data was taken between 500 and 2000nm on six 25mm thick coated probes. Thickness and coating being representative for the NISP flight configuration. With this paper we present results owing up the radiation damage shown in [1]. We where able to follow up the decay of the radiation damage over almost one year under ambient conditions. This allows us to distinguish between curing effects that happen on different time-scales. As for some of the materials no radiation damage and thus no curing was detected, all materials that showed significant radiation damage in the measured passband showed two clearly distinguished time scales of curing. Up to 70% of the transmission losses cured on half decay time scales of several tens of days, while the rest of the damage cures on time scales of years.

  4. Molecular dynamics study of radiation damage and microstructure evolution of zigzag single-walled carbon nanotubes under carbon ion incidence

    NASA Astrophysics Data System (ADS)

    Li, Huan; Tang, Xiaobin; Chen, Feida; Huang, Hai; Liu, Jian; Chen, Da

    2016-07-01

    The radiation damage and microstructure evolution of different zigzag single-walled carbon nanotubes (SWCNTs) were investigated under incident carbon ion by molecular dynamics (MD) simulations. The radiation damage of SWCNTs under incident carbon ion with energy ranging from 25 eV to 1 keV at 300 K showed many differences at different incident sites, and the defect production increased to the maximum value with the increase in incident ion energy, and slightly decreased but stayed fairly stable within the majority of the energy range. The maximum damage of SWCNTs appeared when the incident ion energy reached 200 eV and the level of damage was directly proportional to incident ion fluence. The radiation damage was also studied at 100 K and 700 K and the defect production decreased distinctly with rising temperature because radiation-induced defects would anneal and recombine by saturating dangling bonds and reconstructing carbon network at the higher temperature. Furthermore, the stability of a large-diameter tube surpassed that of a thin one under the same radiation environments.

  5. Identification of Granulocyte Colony-Stimulating Factor and Interleukin-6 as Candidate Biomarkers of CBLB502 Efficacy as a Medical Radiation Countermeasure

    PubMed Central

    Krivokrysenko, Vadim I.; Shakhov, Alexander N.; Singh, Vijay K.; Bone, Frederick; Kononov, Yevgeniy; Shyshynova, Inna; Cheney, Alec; Maitra, Ratan K.; Purmal, Andrei; Whitnall, Mark H.; Feinstein, Elena

    2012-01-01

    Given an ever-increasing risk of nuclear and radiological emergencies, there is a critical need for development of medical radiation countermeasures (MRCs) that are safe, easily administered, and effective in preventing and/or mitigating the potentially lethal tissue damage caused by acute high-dose radiation exposure. Because the efficacy of MRCs for this indication cannot be ethically tested in humans, development of such drugs is guided by the Food and Drug Administration's Animal Efficacy Rule. According to this rule, human efficacious doses can be projected from experimentally established animal efficacious doses based on the equivalence of the drug's effects on efficacy biomarkers in the respective species. Therefore, identification of efficacy biomarkers is critically important for drug development under the Animal Efficacy Rule. CBLB502 is a truncated derivative of the Salmonella flagellin protein that acts by triggering Toll-like receptor 5 (TLR5) signaling and is currently under development as a MRC. Here, we report identification of two cytokines, granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6), as candidate biomarkers of CBLB502's radioprotective/mitigative efficacy. Induction of both G-CSF and IL-6 by CBLB502 1) is strictly TLR5-dependent, 2) occurs in a CBLB502 dose-dependent manner within its efficacious dose range in both nonirradiated and irradiated mammals, including nonhuman primates, and 3) is critically important for the ability of CBLB502 to rescue irradiated animals from death. After evaluation of CBLB502 effects on G-CSF and IL-6 levels in humans, these biomarkers will be useful for accurate prediction of human efficacious CBLB502 doses, a key step in the development of this prospective radiation countermeasure. PMID:22837010

  6. Sodium orthovanadate (vanadate), a potent mitigator of radiation-induced damage to the hematopoietic system in mice

    PubMed Central

    Wang, Bing; Tanaka, Kaoru; Morita, Akinori; Ninomiya, Yasuharu; Maruyama, Kouichi; Fujita, Kazuko; Hosoi, Yoshio; Nenoi, Mitsuru

    2013-01-01

    Previous in vitro and in vivo studies have shown that sodium orthovanadate (vanadate), an inorganic vanadium compound, could effectively suppress radiation-induced p53-mediated apoptosis via both transcription-dependent and transcription-independent pathways. As a potent radiation protector administered at a dose of 20 mg/kg body weight (20 mg/kg) prior to total body irradiation (TBI) by intra-peritoneal (ip) injection, it completely protected mice from hematopoietic syndrome and partially from gastrointestinal syndrome. In the present study, radiation mitigation effects from vanadate were investigated by ip injection of vanadate after TBI in mice. Results showed that a single administration of vanadate at a dose of 20 mg/kg markedly improved the 30-day survival rate and the peripheral blood hemogram, relieved bone marrow aplasia and decreased occurrence of the bone marrow micronucleated erythrocytes in the surviving animals. The dose reduction factor was 1.2 when a single dose of 20 mg/kg was administered 15 min after TBI in mice using the 30-day survival test as the endpoint. Results also showed that either doubling the vanadate dose (40 mg/kg) in a single administration or continuing the vanadate treatment (after a single administration at 20 mg/kg) from the following day at a dose of 5 mg/kg per day for 4 consecutive days further significantly improved the efficacy for rescuing bone marrow failure in the 30-day survival test. Taken together, these findings indicate that vanadate would be a potent mitigator suppressing the acute lethality (hematopoietic syndrome) and minimizing the detrimental effects (anhematopoiesis and delayed genotoxic effects) induced by TBI in mice. PMID:23349341

  7. Cross-Linking Interferes With Assessing Sulfur Mustard-Induced DNA Damage in Human Peripheral Blood Lymphocytes Using the Comet Assay

    DTIC Science & Technology

    2004-01-01

    of SM to impede the migration of H,0 2 -damaged mal ian cell lethality with bifunctional alkylating agents . Chemr. Biol. Iriterui. 38:75-86.DNA is an...3100 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010-5400 N-3 position of adenine, and alkylation leads to depurination of Sulfur...mustard (SM) is a blistering agent that produces DNA DNA strands. Subsequent breakage of phosphodiester bonds at strand breaks. To detect SM-induced DNA

  8. CLOSE AIR SUPPORT (CAS) FOR COUNTERINSURGENCY (COIN) AND THE UPWARD TRAJECTORY OF UNMANNED AIRCRAFT SYSTEMS (UAS): NAVIGATING THE UNDISCOVERED DOMAIN

    DTIC Science & Technology

    2015-10-01

    collateral damage. Further mitigating collateral damage, “…the SDB Focused Lethality Munition (FLM) variant incorporates a carbon fiber composite ...Effectiveness Modern attack helicopters execute the CAS mission with various standoff weapons. RW assets are slow moving and susceptible to MANPADS and...small arms fire, and attack helicopters used for CAS are primarily in a medium or low threat environment where enemy air defenses are weak or not

  9. Clonal Evaluation of Prostate Cancer by ERG/SPINK1 Status to Improve Prognosis Prediction

    DTIC Science & Technology

    2016-10-01

    clinical oncology , cancer genetics, genomic science/bioinformatics, clinical pathology, social and behavioral sciences, and bioethics in order to...Interpret and translate sequence variants into clinical oncology setting; 5) Assess and evaluate costs associated with clinical sequencing. Role...Lethal Prostate Cancer Goal(s): Radiation Therapy Oncology Group (RTOG) 96-01 represents a phase III trial of of salvage radiation therapy (RT) alone

  10. The use of the SRIM code for calculation of radiation damage induced by neutrons

    NASA Astrophysics Data System (ADS)

    Mohammadi, A.; Hamidi, S.; Asadabad, Mohsen Asadi

    2017-12-01

    Materials subjected to neutron irradiation will being evolve to structural changes by the displacement cascades initiated by nuclear reaction. This study discusses a methodology to compute primary knock-on atoms or PKAs information that lead to radiation damage. A program AMTRACK has been developed for assessing of the PKAs information. This software determines the specifications of recoil atoms (using PTRAC card of MCNPX code) and also the kinematics of interactions. The deterministic method was used for verification of the results of (MCNPX+AMTRACK). The SRIM (formely TRIM) code is capable to compute neutron radiation damage. The PKAs information was extracted by AMTRACK program, which can be used as an input of SRIM codes for systematic analysis of primary radiation damage. Then the Bushehr Nuclear Power Plant (BNPP) radiation damage on reactor pressure vessel is calculated.

  11. DNA Damage Repair and the Emerging Role of Poly(ADP-ribose) Polymerase Inhibition in Cancer Therapeutics.

    PubMed

    Rabenau, Karen; Hofstatter, Erin

    2016-07-01

    As a result of improved understanding of DNA repair mechanisms, poly(ADP-ribose) polymerase inhibitors (PARPi) are increasingly recognized to play an important therapeutic role in the treatment of cancer. The aim of this article is to provide a review of PARPi function in DNA damage repair and synthetic lethality and to demonstrate how these mechanisms can be exploited to provide new PARPi-based therapies to patients with solid tumors. Literature from a range of sources, including PubMed and MEDLINE, were searched to identify recent reports regarding DNA damage repair and PARPi. DNA damage repair is central to cellular viability. The family of poly(ADP-ribose) polymerase proteins play multiple intracellular roles in DNA repair, but function primarily in the resolution of repair of single-strand DNA breaks. Insights through the discovery of germline BRCA1/2 mutations led to the understanding of synthetic lethality and the potential therapeutic role of PARPi in the treatment of cancer. Further understanding of DNA damage repair and the concept of BRCA-like tumors have catalyzed PARPi clinical investigation in multiple oncologic settings. PARPi hold great promise in the treatment of solid tumors, both as monotherapy and in combination with other cancer therapeutics. Multiple PARPi clinical trials are currently underway. Further understanding of aberrant DNA repair mechanisms in the germline and in the tumor genome will allow clinicians and researchers to apply PARPi most strategically in the era of personalized medicine. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.

  12. Radioprotection by polysaccharides alone and in combination with aminothiols

    NASA Astrophysics Data System (ADS)

    Patchen, Myra L.; Macvittie, Thomas J.; Solberg, Brian D.; D'Alesandro, Michele M.; Brook, Itzhak

    We demonstrated that glucan, a beta-1,3 polysaccharide immunomodulator, enhances survival of mice when administered before radiation exposure. Glucan's prophylactic survival-enhancing effects are mediated by several mechanisms including (1) increasing macrophage-mediated resistance to potentially lethal postirradiation opportunistic infections, (2) increasing the Do of hematopoietic progenitor cells, and (3) accelerating hematopoietic reconstitution. In addition, even when administered shortly after some otherwise lethal doses of radiation, glucan increases survival. Glucan's therapeutic survival-enhancing effects are also mediated through its ability to enhance macrophage function and to accelerate hematopoietic reconstitution; glucan's therapeutic potential, however, is ultimately dependent on the survival of a critical number of hematopoietic stem cells capable of responding to glucan's stimulatory effects. Preirradiation administration of the traditional aminothiol radioprotectants WR-2721 and WR-3689 has been previously demonstrated to be an extremely effective means to increase hematopoietic stem cell survival. Therapeutic glucan treatment administered in combination with preirradiation WR-2721 or WR-3689 treatment synergistically increases both hematopoietic reconstitution and survival. Such combined modality treatments offer new promise in treating acute radiation injury.

  13. Clustered DNA damages induced by high and low LET radiation, including heavy ions

    NASA Technical Reports Server (NTRS)

    Sutherland, B. M.; Bennett, P. V.; Schenk, H.; Sidorkina, O.; Laval, J.; Trunk, J.; Monteleone, D.; Sutherland, J.; Lowenstein, D. I. (Principal Investigator)

    2001-01-01

    Clustered DNA damages--here defined as two or more lesions (strand breaks, oxidized purines, oxidized pyrimidines or abasic sites) within a few helical turns--have been postulated as difficult to repair accurately, and thus highly significant biological lesions. Further, attempted repair of clusters may produce double strand breaks (DSBs). However, until recently, there was no way to measure ionizing radiation-induced clustered damages, except DSB. We recently described an approach for measuring classes of clustered damages (oxidized purine clusters, oxidized pyrimidine clusters, abasic clusters, along with DSB). We showed that ionizing radiation (gamma rays and Fe ions, 1 GeV/amu) does induce such clusters in genomic DNA in solution and in human cells. These studies also showed that each damage cluster results from one radiation hit (and its track), thus indicating that they can be induced by very low doses of radiation, i.e. two independent hits are not required for cluster induction. Further, among all complex damages, double strand breaks comprise--at most-- 20%, with the other clustered damages being at least 80%.

  14. Four-year post-exposure assay of vegetation surrounding project pinstripe: demonstration of the utility of delayed damage appraisals. [Larrea divaricata, Ephedra funerea, Atriplex confertifolia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ragsdale, H.L.; Rhoads, W.A.

    1974-01-01

    This report illustrates the feasibility of using temporally-delayed vegetation assays to determine radiation damage, by documenting the radiation damage resulting from the accidental venting of radioactive materials during Project Pinstripe, Frenchman's Flat, Nevada Test Site, in April, 1966. Evidence of desert shrub radiation damage was first observed and photographed, in April, 1968. Systematic study of the vegetation was initiated in October, 1970, and evidence of radiation damage documented over 72.9 hectares adjacent to the vent. Beta doses were estimated at 15--21 krads based on gamma exposure dose measurements. The minimum beta dose estimate was substantially greater than the theoretical lethalmore » dose for the shrub, Larrea divaricata. Radiation damage to the shrubs, Larrea divaricata, Ephedra funerea, and Atriplex confertifolia was expressed as differential bud mortality, partial death of shrub crowns with and without crown regrowth, and total shrub crown death without crown regrowth. Each of the shrub populations was statistically different from its control population with respect to the distribution of individuals among damage classes. Generally, damage patterns were similar to those observed at two previously-studied Plowshare events.« less

  15. Interplay of space radiation and microgravity in DNA damage and DNA damage response.

    PubMed

    Moreno-Villanueva, María; Wong, Michael; Lu, Tao; Zhang, Ye; Wu, Honglu

    2017-01-01

    In space, multiple unique environmental factors, particularly microgravity and space radiation, pose constant threat to the DNA integrity of living organisms. Specifically, space radiation can cause damage to DNA directly, through the interaction of charged particles with the DNA molecules themselves, or indirectly through the production of free radicals. Although organisms have evolved strategies on Earth to confront such damage, space environmental conditions, especially microgravity, can impact DNA repair resulting in accumulation of severe DNA lesions. Ultimately these lesions, namely double strand breaks, chromosome aberrations, micronucleus formation, or mutations, can increase the risk for adverse health effects, such as cancer. How spaceflight factors affect DNA damage and the DNA damage response has been investigated since the early days of the human space program. Over the years, these experiments have been conducted either in space or using ground-based analogs. This review summarizes the evidence for DNA damage induction by space radiation and/or microgravity as well as spaceflight-related impacts on the DNA damage response. The review also discusses the conflicting results from studies aimed at addressing the question of potential synergies between microgravity and radiation with regard to DNA damage and cellular repair processes. We conclude that further experiments need to be performed in the true space environment in order to address this critical question.

  16. FURTHER INVESTIGATIONS OF THE CHEMOTHERAPY OF RADIATION SICKNESS IN EXPERIMENTS ON MONKEYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumanian, M.A.

    1958-01-01

    >The rational use of chemotherapy in the treatment of radiation siekness prevents the development of postradiational bacteremia and the transformation of a latent chronic dysentery in monkeys into a clinically apparent acute form of the disease. Chemotherapy has a favorable effect on the outcome of radiation sickness in monkeys, preserving the lives of a large proportion of the animals even when exposed to an absolute lethal dose of x rays. Streptomycin in the principal therapeutic program suggested for radiation sickness can be replaced by other antibiotics, albomycin and colimycin, or by the sulfonamide drug phthalylsulfathiazole. (auth)

  17. RADIATION DAMAGE IN REACTOR MATERIALS. Proceedings of the Symposium on Radiation Damage in Solids and Reactor Materials Held in Venice, 7-11 May 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1964-10-31

    Thirty papers and 3 reviews of papers and panel discussions presented at the Symposium on Radiation Damage in Solids and Reactor Materials are given. Eighteen papers were previously abstracted for NSA. Separate abstracts were prepared for the remaining 15 papers. (M.C.G.)

  18. On the radiation damage characterization of candidate first wall materials in a fusion reactor using various molten salts

    NASA Astrophysics Data System (ADS)

    Übeyli, Mustafa

    2006-12-01

    Evaluating radiation damage characteristics of structural materials considered to be used in fusion reactors is very crucial. In fusion reactors, the highest material damage occurs in the first wall because it will be exposed to the highest neutron, gamma ray and charged particle currents produced in the fusion chamber. This damage reduces the lifetime of the first wall material and leads to frequent replacement of this material during the reactor operation period. In order to decrease operational cost of a fusion reactor, lifetime of the first wall material should be extended to reactor's lifetime. Using a protective flowing liquid wall between the plasma and first wall can decrease the radiation damage on first wall and extend its lifetime to the reactor's lifetime. In this study, radiation damage characterization of various low activation materials used as first wall material in a magnetic fusion reactor blanket using a liquid wall was made. Various coolants (Flibe, Flibe + 4% mol ThF 4, Flibe + 8% mol ThF 4, Li 20Sn 80) were used to investigate their effect on the radiation damage of first wall materials. Calculations were carried out by using the code Scale4.3 to solve Boltzmann neutron transport equation. Numerical results brought out that the ferritic steel with Flibe based coolants showed the best performance with respect to radiation damage.

  19. Radiation damage to nucleoprotein complexes in macromolecular crystallography

    DOE PAGES

    Bury, Charles; Garman, Elspeth F.; Ginn, Helen Mary; ...

    2015-01-30

    Significant progress has been made in macromolecular crystallography over recent years in both the understanding and mitigation of X-ray induced radiation damage when collecting diffraction data from crystalline proteins. Despite the large field that is productively engaged in the study of radiation chemistry of nucleic acids, particularly of DNA, there are currently very few X-ray crystallographic studies on radiation damage mechanisms in nucleic acids. Quantitative comparison of damage to protein and DNA crystals separately is challenging, but many of the issues are circumvented by studying pre-formed biological nucleoprotein complexes where direct comparison of each component can be made under themore » same controlled conditions. A model protein–DNA complex C.Esp1396I is employed to investigate specific damage mechanisms for protein and DNA in a biologically relevant complex over a large dose range (2.07–44.63 MGy). In order to allow a quantitative analysis of radiation damage sites from a complex series of macromolecular diffraction data, a computational method has been developed that is generally applicable to the field. Typical specific damage was observed for both the protein on particular amino acids and for the DNA on, for example, the cleavage of base-sugar N 1—C and sugar-phosphate C—O bonds. Strikingly the DNA component was determined to be far more resistant to specific damage than the protein for the investigated dose range. We observed the protein at low doses and found that they were susceptible to radiation damage while the DNA was far more resistant, damage only being observed at significantly higher doses.« less

  20. Acute radiation risk models

    NASA Astrophysics Data System (ADS)

    Smirnova, Olga

    Biologically motivated mathematical models, which describe the dynamics of the major hematopoietic lineages (the thrombocytopoietic, lymphocytopoietic, granulocytopoietic, and erythropoietic systems) in acutely/chronically irradiated humans are developed. These models are implemented as systems of nonlinear differential equations, which variables and constant parameters have clear biological meaning. It is shown that the developed models are capable of reproducing clinical data on the dynamics of these systems in humans exposed to acute radiation in the result of incidents and accidents, as well as in humans exposed to low-level chronic radiation. Moreover, the averaged value of the "lethal" dose rates of chronic irradiation evaluated within models of these four major hematopoietic lineages coincides with the real minimal dose rate of lethal chronic irradiation. The demonstrated ability of the models of the human thrombocytopoietic, lymphocytopoietic, granulocytopoietic, and erythropoietic systems to predict the dynamical response of these systems to acute/chronic irradiation in wide ranges of doses and dose rates implies that these mathematical models form an universal tool for the investigation and prediction of the dynamics of the major human hematopoietic lineages for a vast pattern of irradiation scenarios. In particular, these models could be applied for the radiation risk assessment for health of astronauts exposed to space radiation during long-term space missions, such as voyages to Mars or Lunar colonies, as well as for health of people exposed to acute/chronic irradiation due to environmental radiological events.

  1. MUTYH mediates the toxicity of combined DNA 6-thioguanine and UVA radiation.

    PubMed

    Grasso, Francesca; Ruggieri, Vitalba; De Luca, Gabriele; Leopardi, Paola; Mancuso, Maria Teresa; Casorelli, Ida; Pichierri, Pietro; Karran, Peter; Bignami, Margherita

    2015-04-10

    The therapeutic thiopurines, including the immunosuppressant azathioprine (Aza) cause the accumulation of the UVA photosensitizer 6-thioguanine (6-TG) in the DNA of the patients' cells. DNA 6-TG and UVA are synergistically cytotoxic and their interaction causes oxidative damage. The MUTYH DNA glycosylase participates in the base excision repair of oxidized DNA bases. Using Mutyh-nullmouse fibroblasts (MEFs) we examined whether MUTYH provides protection against the lethal effects of combined DNA 6-TG/UVA. Surprisingly, Mutyh-null MEFs were more resistant than wild-type MEFs, despite accumulating higher levels of DNA 8-oxo-7,8-dihydroguanine (8-oxoG).Their enhanced 6-TG/UVA resistance reflected the absence of the MUTYH protein and MEFs expressing enzymatically-dead human variants were as sensitive as wild-type cells. Consistent with their enhanced resistance, Mutyh-null cells sustained fewer DNA strand breaks and lower levels of chromosomal damage after 6-TG/UVA. Although 6-TG/UVA treatment caused early checkpoint activation irrespective of the MUTYH status, Mutyh-null cells failed to arrest in S-phase at late time points. MUTYH-dependent toxicity was also apparent in vivo. Mutyh-/- mice survived better than wild-type during a 12-month chronicexposure to Aza/UVA treatments that significantly increased levels of skin DNA 8-oxoG. Two squamous cell skin carcinomas arose in Aza/UVA treated Mutyh-/- mice whereas similarly treated wild-type animals remained tumor-free.

  2. Evaluation of γ-radiation-induced DNA damage in two species of bivalves and their relative sensitivity using comet assay.

    PubMed

    Praveen Kumar, M K; Shyama, S K; Sonaye, B S; Naik, U Roshini; Kadam, S B; Bipin, P D; D'costa, A; Chaubey, R C

    2014-05-01

    Ionizing radiation is known to induce genetic damage in diverse groups of organisms. Under accidental situations, large quantities of radioactive elements get released into the environment and radiation emitted from these radionuclides may adversely affect both the man and the non-human biota. The present study is aimed (a) to know the genotoxic effect of gamma radiation on aquatic fauna employing two species of selected bivalves, (b) to evaluate the possible use of 'Comet assay' for detecting genetic damage in haemocytes of bivalves as a biomarker for environmental biomonitoring and also (c) to compare the relative sensitivity of two species of bivalves viz. Paphia malabarica and Meretrix casta to gamma radiation. The comet assays was optimized and validated using different concentrations (18, 32 and 56 mg/L) of ethyl methanesulfonate (EMS), a direct-acting reference genotoxic agent, to which the bivalves were exposed for various times (24, 48 and 72 h). Bivalves were irradiated (single acute exposure) with 5 different doses (viz. 2, 4, 6, 8 and 10 Gy) of gamma radiation and their genotoxic effects on the haemocytes were studied using the comet assay. Haemolymph was collected from the adductor muscle at 24, 48 and 72 h of both EMS-exposed and irradiated bivalves and comet assay was carried out using standard protocol. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA damage at different concentrations of EMS and all the doses of gamma radiation as compared to controls in both bivalve species. This showed a dose-dependent increase of genetic damage induced in bivalves by EMS as well as gamma radiation. Further, the highest DNA damage was observed at 24h. The damage gradually decreased with time, i.e. was smaller at 48 and 72 h than at 24h post irradiation in both species of bivalves. This may indicate repair of the damaged DNA and/or loss of heavily damaged cells as the post irradiation time advanced. The present study reveals that gamma radiation induces single strand breaks in DNA as measured by alkaline comet assay in bivalves and comet assay serves as a sensitive and rapid method to detect genotoxicity of gamma radiation. This study further indicates that both M. casta and P. malabarica exhibit almost identical sensitivity to gamma radiation as measured by DNA damage. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Effects of different levels of vitamin C on UV radiation-induced DNA damage

    NASA Astrophysics Data System (ADS)

    Zhou, Dianfeng; Heng, Hang; Ji, Kang; Ke, Weizhong

    2005-05-01

    The Raman spectra of DNA in different levels of vitamin C with 10- and 30-min ultraviolet (UV) radiations were reported. The intensity of UV radiation was 18.68 W/m2. The experimental results proved that vitamin C could alone prevent UV radiation from damaging DNA, but the effects depended on the concentration of vitamin C. When the concentration of vitamin C was about 0.08-0.4 mmol/L, vitamin C decreased UV radiation-induced DNA's damage. When the concentration of vitamin C exceeded 0.4 mmol/L, vitamin C accelerated DNA's damage instead. Maybe the reason is that when DNA in aqueous solution is radiated by UV, free radicals come into being, and vitamin C can scavenge free radicals, so vitamin C in lower concentration can protect DNA. The quantity of free radicals is finite, when vitamin C is superfluous, free radicals have been scavenged absolutely and vitamin C is residual. Vitamin C is a strong reductant. When the mixture of DNA and residual vitamin C is radiated by UV, vitamin C reacts with DNA. The more residual vitamin C and the longer time of UV radiation, the more DNA is damaged.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warkentin, Matthew, E-mail: maw64@cornell.edu; Thorne, Robert E.

    Radiation damage to protein crystals exhibits two regimes of temperature-activated behavior between T = 300 and 100 K, with a crossover at the protein glass transition near 200 K. These results have implications for mechanistic studies of proteins and for structure determination when cooling to T = 100 K creates excessive disorder. The temperature-dependence of radiation damage to thaumatin crystals between T = 300 and 100 K is reported. The amount of damage for a given dose decreases sharply as the temperature decreases from 300 to 220 K and then decreases more gradually on further cooling below the protein-solvent glassmore » transition. Two regimes of temperature-activated behavior were observed. At temperatures above ∼200 K the activation energy of 18.0 kJ mol{sup −1} indicates that radiation damage is dominated by diffusive motions in the protein and solvent. At temperatures below ∼200 K the activation energy is only 1.00 kJ mol{sup −1}, which is of the order of the thermal energy. Similar activation energies describe the temperature-dependence of radiation damage to a variety of solvent-free small-molecule organic crystals over the temperature range T = 300–80 K. It is suggested that radiation damage in this regime is vibrationally assisted and that the freezing-out of amino-acid scale vibrations contributes to the very weak temperature-dependence of radiation damage below ∼80 K. Analysis using the radiation-damage model of Blake and Phillips [Blake & Phillips (1962 ▶), Biological Effects of Ionizing Radiation at the Molecular Level, pp. 183–191] indicates that large-scale conformational and molecular motions are frozen out below T = 200 K but become increasingly prevalent and make an increasing contribution to damage at higher temperatures. Possible alternative mechanisms for radiation damage involving the formation of hydrogen-gas bubbles are discussed and discounted. These results have implications for mechanistic studies of proteins and for studies of the protein glass transition. They also suggest that data collection at T ≃ 220 K may provide a viable alternative for structure determination when cooling-induced disorder at T = 100 is excessive.« less

  5. Photoprotection beyond ultraviolet radiation--effective sun protection has to include protection against infrared A radiation-induced skin damage.

    PubMed

    Schroeder, P; Calles, C; Benesova, T; Macaluso, F; Krutmann, J

    2010-01-01

    Solar radiation is well known to damage human skin, for example by causing premature skin ageing (i.e. photoageing). We have recently learned that this damage does not result from ultraviolet (UV) radiation alone, but also from longer wavelengths, in particular near-infrared radiation (IRA radiation, 760-1,440 nm). IRA radiation accounts for more than one third of the solar energy that reaches human skin. While infrared radiation of longer wavelengths (IRB and IRC) does not penetrate deeply into the skin, more than 65% of the shorter wavelength (IRA) reaches the dermis. IRA radiation has been demonstrated to alter the collagen equilibrium of the dermal extracellular matrix in at least two ways: (a) by leading to an increased expression of the collagen-degrading enzyme matrix metalloproteinase 1, and (b) by decreasing the de novo synthesis of the collagen itself. IRA radiation exposure therefore induces similar biological effects to UV radiation, but the underlying mechanisms are substantially different, specifically, the cellular response to IRA irradiation involves the mitochondrial electron transport chain. Effective sun protection requires specific strategies to prevent IRA radiation-induced skin damage. 2010 S. Karger AG, Basel.

  6. Advances in prevention of radiation damage to visceral and solid organs in patients requiring radiation therapy of the trunk.

    PubMed

    Ritter, E F; Lee, C G; Tyler, D; Ferraro, F; Whiddon, C; Rudner, A M; Scully, S

    1997-02-01

    As a part of multimodality therapy, many patients with tumors of the trunk receive radiation therapy. The major morbidity of this therapy is often secondary to incidental radiation damage to tissues adjacent to treatment areas. We detail our use of saline breast implants placed in polyglycolic acid mesh sheets to displace visceral and solid organs away from the radiation field. Analysis of CT scans and dose volume histograms reveal that this technique successfully displaces uninvolved organs away from the radiation fields, thereby minimizing the radiation dose to such organs and tissues. We believe this is a safe and efficacious method to prevent radiation damage to visceral and solid organs adjacent to trunk tumor sites.

  7. Evaluation of genotoxicity of the acute gamma radiation on earthworm Eisenia fetida using single cell gel electrophoresis technique (Comet assay).

    PubMed

    Sowmithra, K; Shetty, N J; Jha, S K; Chaubey, R C

    2015-12-01

    Earthworms (Eisenia fetida) most suitable biological indicators of radioactive pollution. Radiation-induced lesions in DNA can be considered to be molecular markers for early effects of ionizing radiation. Gamma radiation produces a wide spectrum of DNA. Some of these lesions, i.e., DNA strand breaks and alkali labile sites can be detected by the single-cell gel electrophoresis (SCGE) or comet assay by measuring the migration of DNA from immobilized nuclear DNA. E. fetida were exposed to different doses of gamma radiation, i.e., 1, 5, 10, 20, 30, 40 and 50Gy, and comet assay was performed for all the doses along with control at 1, 3 and 5h post irradiation to evaluate the genotoxicity of gamma radiation in this organism. The DNA damage was measured as percentage of comet tail DNA. A significant increase in DNA damage was observed in samples exposed to 5Gy and above, and the increase in DNA damage was dose dependent i.e., DNA damage was increased with increased doses of radiation. The highest DNA damage was noticed at 1h post irradiation and gradually decreased with time, i.e., at 3 and 5h post irradiation. The present study reveals that gamma radiation induces DNA damage in E. fetida and the comet assay is a sensitive and rapid method for its detection to detect genotoxicity of gamma radiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Israel: Background and U.S. Relations

    DTIC Science & Technology

    2014-07-31

    59 End- Use Monitoring...conflict on July 6-7, 2014. Israel began a ground operation in Gaza on July 17 with the stated objective of destroying tunnels used by militants to...means of close-quarters combat (including the use of improvised explosive devices, or IEDs) have proven substantially lethal and damaging. According

  9. The ability of filgrastim to mitigate mortality following LD50/60 total-body irradiation is administration time-dependent

    PubMed Central

    Farese, AM; Brown, CR; Smith, CP; Gibbs, AM; Katz, B P; Johnson, CS; Prado, K; MacVittie, TJ

    2013-01-01

    The identification of the optimal administration schedule for an effective medical countermeasure is critical for the effective treatment of individuals exposed to potentially lethal doses of radiation. The efficacy of filgrastim (Neupogen®), a potential medical countermeasure, to improve survival when initiated at 48 hours following total body irradiation in a nonhuman primate model of the hematopoietic syndrome of the acute radiation syndrome was investigated. Animals were exposed to total body irradiation, antero-posterior exposure, total midline tissue dose of 7.5 Gray, (target lethal dose 50/60) delivered at 0.80 Gray minute-1, using linear accelerator-derived 6 Megavolt photons. All animals were administered medical management. Following irradiation on day 0, filgrastim (10 μg kg day-1) or the control (5% dextrose in water) was administered subcutaneously, daily through effect (absolute neutrophil count ≥ 1,000 cells μL-1 for 3 consecutive days). The study (n = 80) was powered to demonstrate a 25% improvement in survival following the administration of filgrastim or control beginning at 48 ± 4 hours post-irradiation. Survival analysis was conducted on the intention-to-treat population using a two-tailed null hypothesis at a 5% significance level. Filgrastim, initiated 48 hours after irradiation, did not improve survival (2.5% increase, P = 0.8230). These data demonstrate that efficacy of a countermeasure to mitigate lethality in the hematopoietic syndrome of the acute radiation syndrome can be dependent on the interval between irradiation and administration of the medical countermeasure. PMID:24276548

  10. The Role of Gap Junction Communication and Oxidative Stress in the Propagation of Toxic Effects among High-Dose α-Particle-Irradiated Human Cells

    PubMed Central

    Autsavapromporn, Narongchai; de Toledo, Sonia M.; Little, John B.; Jay-Gerin, Jean-Paul; Harris, Andrew L.; Azzam, Edouard I.

    2011-01-01

    We investigated the roles of gap junction communication and oxidative stress in modulating potentially lethal damage repair in human fibroblast cultures exposed to doses of α particles or γ rays that targeted all cells in the cultures. As expected, α particles were more effective than γ rays at inducing cell killing; further, holding γ-irradiated cells in the confluent state for several hours after irradiation promoted increased survival and decreased chromosomal damage. However, maintaining α-particle-irradiated cells in the confluent state for various times prior to subculture resulted in increased rather than decreased lethality and was associated with persistent DNA damage and increased protein oxidation and lipid peroxidation. Inhibiting gap junction communication with 18-α-glycyrrhetinic acid or by knockdown of connexin43, a constitutive protein of junctional channels in these cells, protected against the toxic effects in α-particle-irradiated cell cultures during confluent holding. Upregulation of antioxidant defense by ectopic overexpression of glutathione peroxidase protected against cell killing by α particles when cells were analyzed shortly after exposure. However, it did not attenuate the decrease in survival during confluent holding. Together, these findings indicate that the damaging effect of α particles results in oxidative stress, and the toxic effects in the hours after irradiation are amplified by intercellular communication, but the communicated molecule(s) is unlikely to be a substrate of glutathione peroxidase. PMID:21388278

  11. [Mechanisms of electromagnetic radiation damaging male reproduction].

    PubMed

    Xue, Lei; Chen, Hao-Yu; Wang, Shui-Ming

    2012-08-01

    More and more evidence from over 50 years of researches on the effects of electromagnetic radiation on male reproduction show that a certain dose of electromagnetic radiation obviously damages male reproduction, particularly the structure and function of spermatogenic cells. The mechanisms of the injury may be associated with energy dysmetabolism, lipid peroxidation, abnormal expressions of apoptosis-related genes and proteins, and DNA damage.

  12. Carbon monoxide-induced suspended animation protects against hypoxic damage in Caenorhabditis elegans

    PubMed Central

    Nystul, Todd G.; Roth, Mark B.

    2004-01-01

    Oxygen deprivation is a major cause of cellular damage and death. Here we demonstrate that Caenorhabditis elegans embryos, which can survive both in anoxia (<0.001 kPa O2) by entering into suspended animation and in mild hypoxia (0.25-1 kPa O2) through a hypoxia-inducible factor 1-mediated response, cannot survive in intermediate concentrations of oxygen, between 0.01 and 0.1 kPa O2. Moreover, we show that carbon monoxide can protect C. elegans embryos against hypoxic damage in this sensitive range. Carbon monoxide can also rescue the hypoxia-sensitive mutant hif-1(ia04) from lethality in hypoxia. This work defines the oxygen tensions over which hypoxic damage occurs in C. elegans embryos and demonstrates that carbon monoxide can prevent this damage by inducing suspended animation. PMID:15184665

  13. Why is intracellular ice lethal? A microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum

    PubMed Central

    Wesley-Smith, James; Walters, Christina; Pammenter, N. W.

    2015-01-01

    Background and Aims Conservation of the genetic diversity afforded by recalcitrant seeds is achieved by cryopreservation, in which excised embryonic axes (or, where possible, embryos) are treated and stored at temperatures lower than −180 °C using liquid nitrogen. It has previously been shown that intracellular ice forms in rapidly cooled embryonic axes of Acer saccharinum (silver maple) but this is not necessarily lethal when ice crystals are small. This study seeks to understand the nature and extent of damage from intracellular ice, and the course of recovery and regrowth in surviving tissues. Methods Embryonic axes of A. saccharinum, not subjected to dehydration or cryoprotection treatments (water content was 1·9 g H2O g−1 dry mass), were cooled to liquid nitrogen temperatures using two methods: plunging into nitrogen slush to achieve a cooling rate of 97 °C s−1 or programmed cooling at 3·3 °C s−1. Samples were thawed rapidly (177 °C s−1) and cell structure was examined microscopically immediately, and at intervals up to 72 h in vitro. Survival was assessed after 4 weeks in vitro. Axes were processed conventionally for optical microscopy and ultrastructural examination. Key Results Immediately following thaw after cryogenic exposure, cells from axes did not show signs of damage at an ultrastructural level. Signs that cells had been damaged were apparent after several hours of in vitro culture and appeared as autophagic decomposition. In surviving tissues, dead cells were sloughed off and pockets of living cells were the origin of regrowth. In roots, regrowth occurred from the ground meristem and procambium, not the distal meristem, which became lethally damaged. Regrowth of shoots occurred from isolated pockets of surviving cells of peripheral and pith meristems. The size of these pockets may determine the possibility for, the extent of and the vigour of regrowth. Conclusions Autophagic degradation and ultimately autolysis of cells following cryo-exposure and formation of small (0·2–0·4 µm) intracellular ice crystals challenges current ideas that ice causes immediate physical damage to cells. Instead, freezing stress may induce a signal for programmed cell death (PCD). Cells that form more ice crystals during cooling have faster PCD responses. PMID:25808653

  14. X-ray photoelectron and mass spectroscopic study of electron irradiation and thermal stability of polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Pepper, Stephen V.

    1990-01-01

    Polytetrafluoroethylene (PTFE) was subjected to 3 keV electron bombardment and then heated in vacuum to 300 C. The behavior of the material as a function of radiation dose and temperature was studied by X-ray photoelectron spectroscopy (XPS) of the surface and mass spectroscopy of the species evolved. A quantitative comparison of the radiation dose rate with that in other reported studies showed that, for a given total dose, the damage observed by XPS is greater for higher dose rates. Lightly damaged material heated to 300 C evolved saturated fluorocarbon species, whereas unsaturated fluorocarbon species evolved from heavily damaged material. After heating the heavily damaged material, those features in the XPS that were associated with damage diminished, giving the appearance that the radiation damage annealed. The apparent annealing of the radiation damage was found to be due to the covering of the network by saturated fragments that easily diffused through the decomposed material to the surface region upon heating.

  15. Raman study of radiation-damaged zircon under hydrostatic compression

    NASA Astrophysics Data System (ADS)

    Nasdala, Lutz; Miletich, Ronald; Ruschel, Katja; Váczi, Tamás

    2008-12-01

    Pressure-induced changes of Raman band parameters of four natural, gem-quality zircon samples with different degrees of self-irradiation damage, and synthetic ZrSiO4 without radiation damage, have been studied under hydrostatic compression in a diamond anvil cell up to ~10 GPa. Radiation-damaged zircon shows similar up-shifts of internal SiO4 stretching modes at elevated pressures as non-damaged ZrSiO4. Only minor changes of band-widths were observed in all cases. This makes it possible to estimate the degree of radiation damage from the width of the ν3(SiO4) band of zircon inclusions in situ, almost independent from potential “fossilized pressures” or compressive strain acting on the inclusions. An application is the non-destructive analysis of gemstones such as corundum or spinel: broadened Raman bands are a reliable indicator of self-irradiation damage in zircon inclusions, whose presence allows one to exclude artificial color enhancement by high-temperature treatment of the specimen.

  16. Electron-beam induced damage in thin insulating films on compound semiconductors. M.S. Thesis, 1988

    NASA Technical Reports Server (NTRS)

    Pantic, Dragan M.

    1989-01-01

    Phosphorus rich plasma enhanced chemical vapor deposition (PECVD) of silicon nitride and silicon dioxide films on n-type indium phosphide (InP) substrates were exposed to electron-beam irradiation in the 5 to 40 keV range for the purpose of characterizing the damage induced in the dielectric. The electron-beam exposure was on the range of 10(exp -7) to 10(exp -3) C/sq cm. The damage to the devices was characterized by capacitance-voltage (C-V) measurements of the metal insulator semiconductor (MIS) capacitors. These results were compared to results obtained for radiation damage of thermal silicon dioxide on silicon (Si) MOS capacitors with similar exposures. The radiation induced damage in the PECVD silicon nitride films on InP was successfully annealed out in an hydrogen/nitrogen (H2/N2) ambient at 400 C for 15 min. The PECVD silicon dioxide films on InP had the least radiation damage, while the thermal silicon dioxide films on Si had the most radiation damage.

  17. Radiation dose rate affects the radiosensitization of MCF-7 and HeLa cell lines to X-rays induced by dextran-coated iron oxide nanoparticles.

    PubMed

    Khoshgard, Karim; Kiani, Parvaneh; Haghparast, Abbas; Hosseinzadeh, Leila; Eivazi, Mohammad Taghi

    2017-08-01

    The aim of radiotherapy is to deliver lethal damage to cancerous tissue while preserving adjacent normal tissues. Radiation absorbed dose of the tumoral cells can increase when high atomic nanoparticles are present in them during irradiation. Also, the dose rate is an important aspect in radiation effects that determines the biological results of a given dose. This in vitro study investigated the dose-rate effect on the induced radiosensitivity by dextran-coated iron oxide in cancer cells. HeLa and MCF-7 cells were cultured in vitro and incubated with different concentrations of dextran-coated iron oxide nanoparticles. They were then irradiated with 6 MV photons at dose rates of 43, 185 and 370 cGy/min. The MTT test was used to obtain the cells' survival after 48 h of irradiations. Incubating the cells with the nanoparticles at concentrations of 10, 40 and 80 μg/ml showed no significant cytotoxicity effect. Dextran-coated iron oxide nanoparticles showed more radiosensitivity effect by increasing the dose rate and nanoparticles concentration. Radiosensitization enhancement factors of MCF-7 and HeLa cells at a dose-rate of 370 cGy/min and nanoparticles' concentration of 80 μg/ml were 1.21 ± 0.06 and 1.19 ± 0.04, respectively. Increasing the dose rate of 6 MV photons irradiation in MCF-7 and HeLa cells increases the radiosensitization induced by the dextran-coated iron nanoparticles in these cells.

  18. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis

    PubMed Central

    Mavragani, Ifigeneia V.; Nikitaki, Zacharenia; Souli, Maria P.; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy

    2017-01-01

    Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair. PMID:28718816

  19. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis.

    PubMed

    Mavragani, Ifigeneia V; Nikitaki, Zacharenia; Souli, Maria P; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy; Georgakilas, Alexandros G

    2017-07-18

    Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15-20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent "danger" signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.

  20. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources.

    PubMed

    Loch, R A; Sobierajski, R; Louis, E; Bosgra, J; Bijkerk, F

    2012-12-17

    The single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly used multilayer optics and propose new material combinations selected for a high damage threshold. Our study demonstrates that the damage thresholds of multilayer optics can vary over a large range of incidence fluences and can be as high as several hundreds of mJ/cm(2). This strongly suggests that multilayer mirrors are serious candidates for damage resistant optics. Especially, multilayer optics based on Li(2)O spacers are very promising for use in current and future short-wavelength radiation sources.

  1. The effect of radiation on the long term productivity of a plant based CELSS

    NASA Technical Reports Server (NTRS)

    Thompson, B. G.; Lake, B. H.

    1987-01-01

    Mutations occur at a higher rate in space than under terrestrial conditions, primarily due to an increase in radiation levels. These mutations may effect the productivity of plants found in a controlled ecological life support system (CELSS). Computer simulations of plants with different ploidies, modes of reproduction, lethality thresholds, viability thresholds and susceptibilities to radiation induced mutations were performed under space normal and solar flare conditions. These simulations identified plant characteristics that would enable plants to retain high productivities over time in a CELSS.

  2. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation.

    PubMed

    Tokuyama, Yuka; Furusawa, Yoshiya; Ide, Hiroshi; Yasui, Akira; Terato, Hiroaki

    2015-05-01

    Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm(-1), respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  3. [Pulse-modulated Electromagnetic Radiation of Extremely High Frequencies Protects Cellular DNA against Damaging Effect of Physico-Chemical Factors in vitro].

    PubMed

    Gapeyev, A B; Lukyanova, N A

    2015-01-01

    Using a comet assay technique, we investigated protective effects of. extremely high frequency electromagnetic radiation in combination with the damaging effect of X-ray irradiation, the effect of damaging agents hydrogen peroxide and methyl methanesulfonate on DNA in mouse whole blood leukocytes. It was shown that the preliminary exposure of the cells to low intensity pulse-modulated electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, 20-min exposure, modulation frequencies of 1 and 16 Hz) caused protective effects decreasing the DNA damage by 20-45%. The efficacy of pulse-modulated electromagnetic radiation depended on the type of genotoxic agent and increased in a row methyl methanesulfonate--X-rays--hydrogen peroxide. Continuous electromagnetic radiation was ineffective. The mechanisms of protective effects may be connected with an induction of the adaptive response by nanomolar concentrations of reactive oxygen species formed by pulse-modulated electromagnetic radiation.

  4. Modeling and Measuring the Effects of Radiation Damage Annealing on Helium Diffusion Kinetics in Apatite

    NASA Astrophysics Data System (ADS)

    Willett, C. D.; Fox, M.; Shuster, D. L.

    2016-12-01

    Understanding helium diffusion kinetics in apatite is critical for the accurate interpretation of (U-Th)/He thermochronometric data. This problem is complicated by the observation that helium diffusivity is not a simple function of temperature, but may evolve as a function of damage to the apatite crystal lattice resulting from alpha recoil. This `radiation damage' increases as a function of the amount of radiometric parent products, or effective uranium concentration, and time, but decreases due to thermal annealing of damage, necessitating a detailed understanding of radiation damage production and annealing in cases of burial heating over geologic timescales. Published observations [1,2] suggest that annealing rates of damage caused by alpha recoil and fission tracks in apatite differ. Existing models, however, assume the diffusion kinetics resulting from the two sources of damage are identical [3], demonstrating the need for further investigation of these damage sources. We present modeling and experimental work designed to interrogate the effects of radiation damage and its annealing on helium diffusion kinetics in apatite. Using previously published results [4] that investigated the effects of annealing temperature and duration on measured helium diffusivity, we fit a set of functions that are then integrated into a numerical model that tracks the evolution of radiation damage and apparent (U-Th)/He age. We compare the results of this model calibration to existing models [3]. In addition, we present data from two suites of diffusion experiments. The first suite, intended to test the published methodology and results, uses Durango apatite, while the second uses Sierran (CA) granite as a first test to determine if apatite of varying chemistry and age responds differently to the thermal annealing of radiation damage. Ultimately, the updated model and experimental results will benefit the interpretation of the effects of radiation damage accumulation and annealing in apatite and expand the range of geologic settings that can be studied using low-temperature thermochronology. References: [1] Fox, M., Shuster, D. (2014), EPSL 397, 174-183; [2] Gautheron, C. et al. (2013), Chem. Geol. 351, 257-267; [3] Flowers, R. et al. (2009), GCA 73, 2347-2365; [4] Shuster, D., Farley, K. (2009), GCA 73, 6183-6196.

  5. Conformational variation of proteins at room temperature is not dominated by radiation damage

    DOE PAGES

    Russi, Silvia; González, Ana; Kenner, Lillian R.; ...

    2017-01-01

    Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature havemore » not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins ( T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 10 7 Gy at 100 K and 10 5 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. Lastly, this analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite radiation damage, and not as a result thereof.« less

  6. Conformational variation of proteins at room temperature is not dominated by radiation damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russi, Silvia; González, Ana; Kenner, Lillian R.

    Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature havemore » not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins ( T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 10 7 Gy at 100 K and 10 5 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. Lastly, this analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite radiation damage, and not as a result thereof.« less

  7. HDAC4 and HDAC6 sustain DNA double strand break repair and stem-like phenotype by promoting radioresistance in glioblastoma cells.

    PubMed

    Marampon, Francesco; Megiorni, Francesca; Camero, Simona; Crescioli, Clara; McDowell, Heather P; Sferra, Roberta; Vetuschi, Antonella; Pompili, Simona; Ventura, Luca; De Felice, Francesca; Tombolini, Vincenzo; Dominici, Carlo; Maggio, Roberto; Festuccia, Claudio; Gravina, Giovanni Luca

    2017-07-01

    The role of histone deacetylase (HDAC) 4 and 6 in glioblastoma (GBM) radioresistance was investigated. We found that tumor samples from 31 GBM patients, who underwent temozolomide and radiotherapy combined treatment, showed HDAC4 and HDAC6 expression in 93.5% and 96.7% of cases, respectively. Retrospective clinical data analysis demonstrated that high-intensity HDAC4 and/or HDAC6 immunostaining was predictive of poor clinical outcome. In vitro experiments revealed that short hairpin RNA-mediated silencing of HDAC4 or HDAC6 radiosensitized U87MG and U251MG GBM cell lines by promoting DNA double-strand break (DSBs) accumulation and by affecting DSBs repair molecular machinery. We found that HDAC6 knock-down predisposes to radiation therapy-induced U251MG apoptosis- and U87MG autophagy-mediated cell death. HDAC4 silencing promoted radiation therapy-induced senescence, independently by the cellular context. Finally, we showed that p53 WT expression contributed to the radiotherapy lethal effects and that HDAC4 or HDAC6 sustained GBM stem-like radioresistant phenotype. Altogether, these observations suggest that HDAC4 and HDAC6 are guardians of irradiation-induced DNA damages and stemness, thus promoting radioresistance, and may represent potential prognostic markers and therapeutic targets in GBM. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Development of A Novel Murine Model of Combined Radiation and Peripheral Tissue Trauma Injuries

    PubMed Central

    Antonic, Vlado; Jackson, Isabel L.; Ganga, Gurung; Shea-Donohue, Terez; Vujaskovic, Zeljko

    2017-01-01

    Detonation of a 10-kiloton nuclear bomb in an urban setting would result in >1 million casualties, the majority of which would present with combined injuries. Combined injuries, such as peripheral tissue trauma and radiation exposure, trigger inflammatory events that lead to multiple organ dysfunction (MOD) and death, with gastrointestinal (GI) and pulmonary involvement playing crucial roles. The objective of this study was to develop an animal model of combined injuries, peripheral tissue trauma (TBX animal model) combined with total body irradiation with 5% bone marrow shielding (TBI/BM5) to investigate if peripheral tissue trauma contributes to reduced survival. Male C57BL/6J mice were exposed to TBX10%, irradiation (TBI/BM5), or combined injuries (TBX10% + TBI/BM5). Experiments were conducted to evaluate mortality at day 7 after TBI/BM5. Serial euthanasia was performed at day 1, 3 and 6 or 7 after TBI/BM5 to evaluate the time course of pathophysiologic processes in combined injuries. Functional tests were performed to assess pulmonary function and GI motility. Postmortem samples of lungs and jejunum were collected to assess tissue damage. Results indicated higher lethality and shorter survival in the TBX10% +T BI/BM5 group than in the TBX10% or TBI/BM5 groups (day 1 vs. day 7 and 6, respectively). TBI/BM5 alone had no effects on the lungs but significantly impaired GI function at day 6. As expected, in the animals that received severe trauma (TBX10%), we observed impairment in lung function and delay in GI transit in the first 3 days, effects that decreased at later time points. Trauma combined with radiation (TBX10% + TBI/BM5) significantly augmented impairment of the lung and GI function in comparison to TBX10% and TBI/BM5 groups at 24 h. Histologic evaluation indicated that combined injuries caused greater tissue damage in the intestines in TBX10% + TBI/BM5 group when compared to other groups. We describe here the first combined tissue trauma/radiation injury model that will allow conduction of mechanistic studies to identify new therapeutic targets and serve as a platform for testing novel therapeutic interventions. PMID:28118112

  9. Electromagnetic pulse (EMP) coupling codes for use with the vulnerability/lethality (VIL) taxonomy. Final report, June-October 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mar, M.H.

    1995-07-01

    Based on the vulnerability Lethality (V/L) taxonomy developed by the Ballistic Vulnerability Lethality Division (BVLD) of the Survivability Lethality Analysis Directorate (SLAD), a nuclear electromagnetic pulse (EMP) coupling V/L analysis taxonomy has been developed. A nuclear EMP threat to a military system can be divided into two levels: (1) coupling to a system level through a cable, antenna, or aperture; and (2) the component level. This report will focus on the initial condition, which includes threat definition and target description, as well as the mapping process from the initial condition to damaged components state. EMP coupling analysis at a systemmore » level is used to accomplish this. This report introduces the nature of EMP threat, interaction between the threat and target, and how the output of EMP coupling analysis at a system level becomes the input to the component level analysis. Many different tools (EMP coupling codes) will be discussed for the mapping process, which correponds to the physics of phenomenology. This EMP coupling V/L taxonomy and the models identified in this report will provide the tools necessary to conduct basic V/L analysis of EMP coupling.« less

  10. Soft X-Ray Microscopy Radiation Damage On Fixed Cells Investigated With Synchrotron Radiation FTIR Microscopy.

    PubMed

    Gianoncelli, A; Vaccari, L; Kourousias, G; Cassese, D; Bedolla, D E; Kenig, S; Storici, P; Lazzarino, M; Kiskinova, M

    2015-05-14

    Radiation damage of biological samples remains a limiting factor in high resolution X-ray microscopy (XRM). Several studies have attempted to evaluate the extent and the effects of radiation damage, proposing strategies to minimise or prevent it. The present work aims to assess the impact of soft X-rays on formalin fixed cells on a systematic manner. The novelty of this approach resides on investigating the radiation damage not only with XRM, as often reported in relevant literature on the topic, but by coupling it with two additional independent non-destructive microscopy methods: Atomic Force Microscopy (AFM) and FTIR Microscopy (FTIRM). Human Embryonic Kidney 293 cells were exposed to different radiation doses at 1 keV. In order to reveal possible morphological and biochemical changes, the irradiated cells were systematically analysed with AFM and FTIRM before and after. Results reveal that while cell morphology is not substantially affected, cellular biochemical profile changes significantly and progressively when increasing dose, resulting in a severe breakdown of the covalent bonding network. This information impacts most soft XRM studies on fixed cells and adds an in-depth understanding of the radiation damage for developing better prevention strategies.

  11. Soft X-Ray Microscopy Radiation Damage On Fixed Cells Investigated With Synchrotron Radiation FTIR Microscopy

    PubMed Central

    Gianoncelli, A.; Vaccari, L.; Kourousias, G.; Cassese, D.; Bedolla, D. E.; Kenig, S.; Storici, P.; Lazzarino, M.; Kiskinova, M.

    2015-01-01

    Radiation damage of biological samples remains a limiting factor in high resolution X-ray microscopy (XRM). Several studies have attempted to evaluate the extent and the effects of radiation damage, proposing strategies to minimise or prevent it. The present work aims to assess the impact of soft X-rays on formalin fixed cells on a systematic manner. The novelty of this approach resides on investigating the radiation damage not only with XRM, as often reported in relevant literature on the topic, but by coupling it with two additional independent non-destructive microscopy methods: Atomic Force Microscopy (AFM) and FTIR Microscopy (FTIRM). Human Embryonic Kidney 293 cells were exposed to different radiation doses at 1 keV. In order to reveal possible morphological and biochemical changes, the irradiated cells were systematically analysed with AFM and FTIRM before and after. Results reveal that while cell morphology is not substantially affected, cellular biochemical profile changes significantly and progressively when increasing dose, resulting in a severe breakdown of the covalent bonding network. This information impacts most soft XRM studies on fixed cells and adds an in-depth understanding of the radiation damage for developing better prevention strategies. PMID:25974639

  12. Managing Radiation Degradation of CCDs on the Chandra X-Ray Observatory--III

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Aldcroft, Thomas L.; Blackwell, William C.; Bucher, Sabina L.; Chappell, Jon H.; DePasquale, Joseph M.; Grant, Catherine E.; Juda, Michael; Martin, Eric R.; Minow, Joseph I.; hide

    2007-01-01

    The CCDs on the Chandra X-ray Observatory are vulnerable to radiation damage from low-energy protons scattered off the telescope's mirrors onto the focal plane. Following unexpected damage incurred early in the mission, the Chandra team developed, implemented, and maintains a radiation-protection program. This program--involving scheduled radiation safing during radiation-belt passes, intervention based upon real-time space-weather conditions and radiation-environment modeling, and on-board radiation monitoring with autonomous radiation safing--has successfully managed the radiation damage to the CCDs. Since implementing the program, the charge-transfer inefficiency (CTI) has increased at an average annual rate of only 3.2x 10(exp -6) (2.3 percent) for the front-illuminated CCDs and 1.0x10(exp -6) (6.7 percent) for the back-illuminated CCDs. This paper describes the current status of the Chandra radiation-management program, emphasizing enhancements implemented since the previous papers.

  13. The influence of neutron radiation damage on the optical properties of plastic scintillator UPS 923A

    NASA Astrophysics Data System (ADS)

    Mthembu, Skhathisomusa; Davydov, Yuri; Baranov, Vladimir; Mellado Garcia, Bruce; Mdhluli, Joyful; Sideras-Haddad, Elias

    2017-09-01

    Plastic scintillators are vital in the reconstruction of hadronic particle energy and tracks resulting from the collision of high energy particles in the Large Hadron Collider (LHC) at CERN. These plastic scintillators are exposed to harsh radiation environments and are susceptible to radiation damage. The effects of radiation damage on the transmittance, luminescence and light yield of Ukraine polystyrene-based scintillator UPS 923A were studied. Samples were irradiated with fast neutrons, of varying energies and fluences, using the IBR-2 reactor FLNP (Frank Laboratory for Nuclear Problems) at the Joint Institute for Nuclear Research. Results show a small change in the transmittance of the higher energy visible spectrum, and a noticeable change in the light yield of the samples as a result of the damage. There is no change observed on the luminescence as a result of radiation damage at studied fluences. The doses and uences of the neutrons shall be increased and changes in optical properties as a result of the radiation shall be further studied.

  14. Opportunities for nutritional amelioration of radiation-induced cellular damage

    NASA Technical Reports Server (NTRS)

    Turner, Nancy D.; Braby, Leslie A.; Ford, John; Lupton, Joanne R.

    2002-01-01

    The closed environment and limited evasive capabilities inherent in space flight cause astronauts to be exposed to many potential harmful agents (chemical contaminants in the environment and cosmic radiation exposure). Current power systems used to achieve space flight are prohibitively expensive for supporting the weight requirements to fully shield astronauts from cosmic radiation. Therefore, radiation poses a major, currently unresolvable risk for astronauts, especially for long-duration space flights. The major detrimental radiation effects that are of primary concern for long-duration space flights are damage to the lens of the eye, damage to the immune system, damage to the central nervous system, and cancer. In addition to the direct damage to biological molecules in cells, radiation exposure induces oxidative damage. Many natural antioxidants, whether consumed before or after radiation exposure, are able to confer some level of radioprotection. In addition to achieving beneficial effects from long-known antioxidants such as vitamins E and C and folic acid, some protection is conferred by several recently discovered antioxidant molecules, such as flavonoids, epigallocatechin, and other polyphenols. Somewhat counterintuitive is the protection provided by diets containing elevated levels of omega-3 polyunsaturated fatty acids, considering they are thought to be prone to peroxidation. Even with the information we have at our disposal, it will be difficult to predict the types of dietary modifications that can best reduce the risk of radiation exposure to astronauts, those living on Earth, or those enduring diagnostic or therapeutic radiation exposure. Much more work must be done in humans, whether on Earth or, preferably, in space, before we are able to make concrete recommendations.

  15. Simulated microgravity influenced the expression of DNA damage repair genes

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Yeqing; Jiawei, Liu; Wang, Ting

    2016-07-01

    Ionizing radiation and microgravity were considered to be the most important stress factors of space environmental the respective study of the biological effects of the radiation and microgravity carried out earlier, but the interaction of the effects of radiation with microgravity started later, and due to difference of the materials and methods the result of this experiment were not consistent. To further investigate the influence of microgravity on the expression of the radiation damage repair genes, the seed of Arabidopsis (Col) and its gravity-insensitive mutant (PIN2) were exposed to 0.1Gy of the dose of energetic carbon-ion beam radiation (LET = 30KeV / μm), and the germinated seed were than fixed in the 3D random positioning apparatus immediately for a 10-day simulated microgravity. By measuring the deflection angle of root tip and the changes of the expression of Ku70 and RAD51 protein, we investigated the impact of microgravity effect on radiation damage repair systems. The results shown that radiation, microgravity and microgravity with radiation could increase the angle of the root of the Col significantly, but no obvious effect on PIN2 type. The radiation could increase the expression of Ku70 significantly in both Col and PIN2, microgravity does not affect the expression, but the microgravity with radiation could decrease the expression of Ku70. This result shown that the microgravity could influence the radiation damage repair systems in molecular level. Moreover, our findings were important to understand the molecular mechanism of the impact of microgravity effect on radiation damage repair systems in vivo.

  16. Feasibility of OCT to detect radiation-induced esophageal damage in small animal models (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jelvehgaran, Pouya; Alderliesten, Tanja; Salguero, Javier; Borst, Gerben; Song, Ji-Ying; van Leeuwen, Ton G.; de Boer, Johannes F.; de Bruin, Daniel M.; van Herk, Marcel B.

    2016-03-01

    Lung cancer survival is poor and radiotherapy patients often suffer serious treatment side effects. The esophagus is particularly sensitive leading to reduced food intake or even fistula formation. Only few direct techniques exist to measure radiation-induced esophageal damage, for which knowledge is needed to improve the balance between risk of tumor recurrence and complications. Optical coherence tomography (OCT) is a minimally-invasive imaging technique that obtains cross-sectional, high-resolution (1-10µm) images and is capable of scanning the esophageal wall up to 2-3mm depth. In this study we investigated the feasibility of OCT to detect esophageal radiation damage in mice. In total 30 mice were included in 4 study groups (1 main and 3 control groups). Mice underwent cone-beam CT imaging for initial setup assessment and dose planning followed by single-fraction dose delivery of 4, 10, 16, and 20Gy on 5mm spots, spaced 10mm apart. Mice were repeatedly imaged using OCT: pre-irradiation and up to 3 months post-irradiation. The control groups received either OCT only, irradiation only, or were sham-operated. We used histopathology as gold standard for radiation-induced damage diagnosis. The study showed edema in both the main and OCT-only groups. Furthermore, radiation-induced damage was primarily found in the highest dose region (distal esophagus). Based on the histopathology reports we were able to identify the radiation-induced damage in the OCT images as a change in tissue scattering related to the type of induced damage. This finding indicates the feasibility and thereby the potentially promising role of OCT in radiation-induced esophageal damage assessment.

  17. DNA Damage by Ionizing Radiation: Tandem Double Lesions by Charged Particles

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Wang, Dunyou; Dateo, Christopher E.

    2005-01-01

    Oxidative damages by ionizing radiation are the source of radiation-induced carcinogenesis, damage to the central nervous system, lowering of the immune response, as well as other radiation-induced damages to human health. Monte Carlo track simulations and kinetic modeling of radiation damages to the DNA employ available molecular and cellular data to simulate the biological effect of high and low LET radiation io the DNA. While the simulations predict single and double strand breaks and base damages, so far all complex lesions are the result of stochastic coincidence from independent processes. Tandem double lesions have not yet been taken into account. Unlike the standard double lesions that are produced by two separate attacks by charged particles or radicals, tandem double lesions are produced by one single attack. The standard double lesions dominate at the high dosage regime. On the other hand, tandem double lesions do not depend on stochastic coincidences and become important at the low dosage regime of particular interest to NASA. Tandem double lesions by hydroxyl radical attack of guanine in isolated DNA have been reported at a dosage of radiation as low as 10 Gy. The formation of two tandem base lesions was found to be linear with the applied doses, a characteristic of tandem lesions. However, tandem double lesions from attack by a charged particle have not been reported.

  18. Radioresistance of GGG Sequences to Prompt Strand Break Formation from Direct-Type Radiation Damage

    PubMed Central

    Black, Paul J.; Miller, Adam S.; Hayes, Jeffrey J.

    2016-01-01

    Purpose As humans, we are constantly exposed to ionizing radiation from natural, man-made and cosmic sources which can damage DNA, leading to deleterious effects including cancer incidence. In this work we introduce a method to monitor strand breaks resulting from damage due to the direct effect of ionizing radiation and provide evidence for sequence-dependent effects leading to strand breaks. Materials and methods To analyze only DNA strand breaks caused by radiation damage due to the direct effect of ionizing radiation, we combined an established technique to generate dehydrated DNA samples with a technique to analyze single strand breaks on short oligonucleotide sequences via denaturing gel electrophoresis. Results We find that direct damage primarily results in a reduced number of strand breaks in guanine triplet regions (GGG) when compared to isolated guanine (G) bases with identical flanking base context. In addition, we observe strand break behavior possibly indicative of protection of guanine bases when flanked by pyrimidines, and sensitization of guanine to strand break when flanked by adenine (A) bases in both isolated G and GGG cases. Conclusions These observations provide insight into the strand break behavior in GGG regions damaged via the direct effect of ionizing radiation. In addition, this could be indicative of DNA sequences that are naturally more susceptible to strand break due to the direct effect of ionizing radiation. PMID:27349757

  19. Occurrence and mobility of mercury in groundwater: Chapter 5

    USGS Publications Warehouse

    Barringer, Julia L.; Szabo, Zoltan; Reilly, Pamela A.; Bradley, Paul M.

    2013-01-01

    Mercury (Hg) has long been identified as an element that is injurious, even lethal, to living organisms. Exposure to its inorganic form, mainly from elemental Hg (Hg(0)) vapor (Fitzgerald & Lamborg, 2007) can cause damage to respiratory, neural, and renal systems (Hutton, 1987; USEPA, 2012; WHO, 2012). The organic form, methylmercury (CH3Hg+; MeHg), is substantially more toxic than the inorganic form (Fitzgerald & Lamborg, 2007). Methylmercury attacks the nervous system and exposure can prove lethal, as demonstrated by well-known incidents such as those in 1956 in Minimata, Japan (Harada, 1995), and 1971 in rural Iraq (Bakir et al., 1973), where, in the former, industrial release of MeHg into coastal waters severely tainted the fish caught and eaten by the local population, and in the latter, grain seed treated with an organic mercurial fungicide was not planted, but eaten in bread instead. Resultant deaths are not known with certainty but have been estimated at about 100 and 500, respectively (Hutton, 1987). Absent such lethal accidents, human exposure to MeHg comes mainly from ingestion of piscivorous fish in which MeHg has accumulated, with potential fetal damage ascribed to high fish diets during their mothers’ pregnancies (USEPA, 2001). Lesser human exposure occurs through ingestion of drinking water (USEPA, 2001), where concentrations of total Hg (THg; inorganic plus organic forms) typically are in the low nanograms-per-liter range[1] - , particularly from many groundwater sources, and concentrations at the microgram-per-liter level are rare.

  20. Wolf management in the 21st century: From public input to sterilization

    USGS Publications Warehouse

    Mech, L.D.; Fritts, S.H.; Nelson, M.E.

    1996-01-01

    Human-population increase and land development portend increasing conflict with large predators. Concurrently, changes and diversification of human attitudes are bringing increased disagreement about wildlife management. Animal-rights advocacy resulting from urbanization of human populations conflicts with traditional wildlife management. These forces focus more on wolves than on other wildlife because of strong public and media interest in wolves. Thus wolf management in the future will come under even greater public scrutiny, involve more public input, and may have greater restrictions imposed on it. This will lead to increased complexity in wolf management including more zoning, more experimentation with lethal and non-lethal capture techniques and alternate methods of alleviating damage to pets, livestock, and large ungulate herds, and greater public and private subsidy of wolf damage. One form of non-lethal control of wolf populations that may hold some promise is direct sterilization of males to reduce the biotic potential of the wolf population. Experimental vasectomy of five wild male wolves from four packs in Minnesota indicates that sterile males will continue to hold mates and territories, which would be necessary if sterilization is to be a viable technique for assisting with population control. If sterile males held territories but failed to produce pups, such territories might contain only about a third the number of wolves as fertile pack territories. Because wolves are long-lived in unexploited populations and their territories are large, direct sterilization of relatively few animals each year might significantly reduce populations.

  1. Exposure to Sub-lethal 2,4-Dichlorophenoxyacetic Acid Arrests Cell Division and Alters Cell Surface Properties in Escherichia coli

    PubMed Central

    Bhat, Supriya V.; Kamencic, Belma; Körnig, André; Shahina, Zinnat; Dahms, Tanya E. S.

    2018-01-01

    Escherichia coli is a robust, easily adaptable and culturable bacterium in vitro, and a model bacterium for studying the impact of xenobiotics in the environment. We have used correlative atomic force – laser scanning confocal microscopy (AFM-LSCM) to characterize the mechanisms of cellular response to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). One of the most extensively used herbicides world-wide, 2,4-D is known to cause hazardous effects in diverse non-target organisms. Sub-lethal concentrations of 2,4-D caused DNA damage in E. coli WM1074 during short exposure periods which increased significantly over time. In response to 2,4-D, FtsZ and FtsA relocalized within seconds, coinciding with the complete inhibition of cell septation and cell elongation. Exposure to 2,4-D also resulted in increased activation of the SOS response. Changes to cell division were accompanied by concomitant changes to surface roughness, elasticity and adhesion in a time-dependent manner. This is the first study describing the mechanistic details of 2,4-D at sub-lethal levels in bacteria. Our study suggests that 2,4-D arrests E. coli cell division within seconds after exposure by disrupting the divisome complex, facilitated by dissipation of membrane potential. Over longer exposures, 2,4-D causes filamentation as a result of an SOS response to oxidative stress induced DNA damage. PMID:29472899

  2. UV Radiation Damage and Bacterial DNA Repair Systems

    ERIC Educational Resources Information Center

    Zion, Michal; Guy, Daniel; Yarom, Ruth; Slesak, Michaela

    2006-01-01

    This paper reports on a simple hands-on laboratory procedure for high school students in studying both radiation damage and DNA repair systems in bacteria. The sensitivity to ultra-violet (UV) radiation of both "Escherichia coli" and "Serratia marcescens" is tested by radiating them for varying time periods. Two growth temperatures are used in…

  3. Use of Displacement Damage Dose in an Engineering Model of GaAs Solar Cell Radiation Damage

    NASA Technical Reports Server (NTRS)

    Morton, T. L.; Chock, R.; Long, K. J.; Bailey, S.; Messenger, S. R.; Walters, R. J.; Summers, G. P.

    2005-01-01

    Current methods for calculating damage to solar cells are well documented in the GaAs Solar Cell Radiation Handbook (JPL 96-9). An alternative, the displacement damage dose (D(sub d)) method, has been developed by Summers, et al. This method is currently being implemented in the SAVANT computer program.

  4. The cytotoxic mechanism of karlotoxin 2 (KmTx 2) from Karlodinium veneficum (Dinophyceae)

    PubMed Central

    Deeds, Jonathan R.; Hoesch, Robert E.; Place, Allen R.; Kao, Joseph P.Y.

    2015-01-01

    This study demonstrates that the polyketide toxin karlotoxin 2 (KmTx 2) produced by Karlodinium veneficum, a dinoflagellate associated with fish kills in temperate estuaries worldwide, alters vertebrate cell membrane permeability. Microfluorimetric and electrophysiological measurements were used to determine that vertebrate cellular toxicity occurs through non-selective permeabilization of plasma membranes, leading to osmotic cell lysis. Previous studies showed that KmTx 2 is lethal to fish at naturally-occurring concentrations measured during fish kills, while sub-lethal doses severely damage gill epithelia. This study provides a mechanistic explanation for the association between K. veneficum blooms and fish kills that has long been observed in temperate estuaries worldwide. PMID:25546005

  5. Medical Managment of the Acute Radiation Syndrome: Recommendations of the Strategic National Stockpile Radiation Working Group

    DTIC Science & Technology

    2004-06-15

    Women† Precautions G-CSF or filgrastim Subcutaneous administration of 5 g/kg of body weight per day, continued until ANC 1.0 109 cells/L...lymphohematopoietic elements. Several studies have indicated that administra- tion of antibiotics reduces mortality rates in irradiated dogs in the...hematopoiesis of normal dogs and on hematopoietic recovery after otherwise lethal total body irradiation. Blood. 1989;74:1308-13. [PMID: 2475186] 10

  6. Radiation lethality in the opossum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, N.; Bushong, S.C.; North, L.B.

    1976-12-01

    Groups of male opossum (Didelphis virginiana) at 6 months of age were exposed to 350, 500, 550, 600, 650, 700, and 750 rad of whole-body /sup 60/Co radiation at a midline dose rate of 125 rad/min. The 30-day LD/sub 50/ was 511 rad with 95% confidence limits of 454 to 576 rad. The overall mean survival time was 17.9 days and the highest incidence of death occurred on the 16th day.

  7. PARTIAL-BODY RADIATIONS OF QUEEN HONEY BEES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W.R.

    1964-10-31

    By shielding abdominal segments III through V queen honey bees survived otherwise lethal doses of x radiation. In contrast, irradiating only segments III through V with 10,000 r killed all queens within three weeks, as did wholebody irradiations. Lead shields that protect segments III through V and permit irradiating either the spermatozoa in the spermatheca or the oogonia of the ovary with higher doses than could otherwise be adminlstered are described. (auth)

  8. Effect of MeV Electron Radiation on Europa’s Surface Ice Analogs

    NASA Astrophysics Data System (ADS)

    Gudipati, Murthy; Henderson, Bryana; Bateman, Fred

    2017-10-01

    MeV electrons that impact Europa’s trailing hemisphere and cause both physical and chemical alteration of the surface and near-surface. The trailing hemisphere receives far lower fluxes above 25 MeV as compared with lower energy particles, but can cause significant chemical and physical modifications at these energies. With NASA's planned Europa Clipper mission and a Europa Lander Concept on the horizon, it is critical to understand and quantify the effect of Europa’s radiation environment on the surface and near surface.Electrons penetrate through ice by far the deepest at any given energy compared to protons and ions, making the role of electrons very important to understand. In addition, secondary radiation - Bremsstrahlung, in X-ray wavelengths - is generated during high-energy particle penetration through solids. Secondary X-rays are equally lethal to life and penetrate even deeper than electrons, making the cumulative effect of radiation on damaging organic matter on the near surface of Europa a complex process that could have effects several meters below Europa’s surface. Other physical properties such as coloration could be caused by radiation.In order to quantify this effect under realistic Europa trailing hemisphere conditions, we devised, built, tested, and obtained preliminary results using our ICE-HEART instrument prototype totally funded by JPL’s internal competition funding for Research and Technology Development. Our Ice Chamber for Europa High-Energy Electron And Radiation-Environment Testing (ICE-HEART) operates at ~100 K. We have also implemented a magnet that is used to remove primary electrons subsequent to passing through an ice column, in order to determine the flux of secondary X-radiation and its penetration through ice.Some of the first results from these studies will be presented and their relevance to understand physical and chemical properties of Europa’s trailing hemisphere surface.This work has been carried out at Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration, and funded by JPL’s R&TD Program and NASA Solar System Workings Program.

  9. Targeting glioma stem cells enhances anti-tumor effect of boron neutron capture therapy

    PubMed Central

    Sun, Ting; Li, Yanyan; Huang, Yulun; Zhang, Zizhu; Yang, Weilian; Du, Ziwei; Zhou, Youxin

    2016-01-01

    The uptake of (10)boron by tumor cells plays an important role for cell damage in boron neutron capture therapy (BNCT). CD133 is frequently expressed in the membrane of glioma stem cells (GSCs), resistant to radiotherapy and chemotherapy, and represents a potential therapeutic target. To increase (10)boron uptake in GSCs, we created a polyamido amine dendrimer, conjugated CD133 monoclonal antibodies, encapsulating mercaptoundecahydrododecaborate (BSH) in void spaces, and monitored the uptake of the bioconjugate nanoparticles by GSCs in vitro and in vivo. Fluorescence microscopy showed the specific uptake of the bioconjugate nanoparticles by CD133-positive GSCs. Treatment with the biconjugate nanoparticles resulted in a significant lethal effect after neutron radiation due to efficient and CD133-independent cellular targeting and uptake in CD133-expressing GSCs. A significantly longer survival occurred in combination with the biconjugate nanoparticles and BSH compared with BSH alone in human intracranial GBM models employing CD133-positive GSCs xenografts. Our data demonstrated that this bioconjugate nanoparticle targets human CD133-positive GSCs and is a potential boron agent in BNCT. PMID:27191269

  10. Targeting glioma stem cells enhances anti-tumor effect of boron neutron capture therapy.

    PubMed

    Sun, Ting; Li, Yanyan; Huang, Yulun; Zhang, Zizhu; Yang, Weilian; Du, Ziwei; Zhou, Youxin

    2016-07-12

    The uptake of (10)boron by tumor cells plays an important role for cell damage in boron neutron capture therapy (BNCT). CD133 is frequently expressed in the membrane of glioma stem cells (GSCs), resistant to radiotherapy and chemotherapy, and represents a potential therapeutic target. To increase (10)boron uptake in GSCs, we created a polyamido amine dendrimer, conjugated CD133 monoclonal antibodies, encapsulating mercaptoundecahydrododecaborate (BSH) in void spaces, and monitored the uptake of the bioconjugate nanoparticles by GSCs in vitro and in vivo. Fluorescence microscopy showed the specific uptake of the bioconjugate nanoparticles by CD133-positive GSCs. Treatment with the biconjugate nanoparticles resulted in a significant lethal effect after neutron radiation due to efficient and CD133-independent cellular targeting and uptake in CD133-expressing GSCs. A significantly longer survival occurred in combination with the biconjugate nanoparticles and BSH compared with BSH alone in human intracranial GBM models employing CD133-positive GSCs xenografts. Our data demonstrated that this bioconjugate nanoparticle targets human CD133-positive GSCs and is a potential boron agent in BNCT.

  11. EXPRESSION OF INDUCIBLE HSP70 ENHANCES THE PROLIFERATION OF MCF-7 BREAST CANCER CELLS AND PROTECTS AGAINST THE CYTOTOXIC EFFECTS OF HYPERTHERMIA

    EPA Science Inventory

    Heat shock proteins (HSPs) are ubiquitous proteins that are induced following exposure to sub-lethal heat shock, are highly conserved during evolution and protect cells from damage through their function as molecular chaperones. Some cancers demonstrate elevated levels of Hsp70 ...

  12. ASSESSING THE INFLUENCE OF PLANT GROWTH REGULATOR HERBICIDE VAPOR DRIFT ON ARTHROPOD COMMUNITIES IN FIELD CROP AGRO-ECOSYSTEMS

    EPA Science Inventory

    Sub-lethal herbicide damage is likely to have negative consequences for plant health. This in turn could lead to positive or negative effects on insects. Plants that are not healthy may not provide the best floral resources for pollinators, potentially further stressing hon...

  13. Hemolysis-induced lethality involves inflammasome activation by heme

    PubMed Central

    Dutra, Fabianno F.; Alves, Letícia S.; Rodrigues, Danielle; Fernandez, Patricia L.; de Oliveira, Rosane B.; Golenbock, Douglas T.; Zamboni, Dario S.; Bozza, Marcelo T.

    2014-01-01

    The increase of extracellular heme is a hallmark of hemolysis or extensive cell damage. Heme has prooxidant, cytotoxic, and inflammatory effects, playing a central role in the pathogenesis of malaria, sepsis, and sickle cell disease. However, the mechanisms by which heme is sensed by innate immune cells contributing to these diseases are not fully characterized. We found that heme, but not porphyrins without iron, activated LPS-primed macrophages promoting the processing of IL-1β dependent on nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3). The activation of NLRP3 by heme required spleen tyrosine kinase, NADPH oxidase-2, mitochondrial reactive oxygen species, and K+ efflux, whereas it was independent of heme internalization, lysosomal damage, ATP release, the purinergic receptor P2X7, and cell death. Importantly, our results indicated the participation of macrophages, NLRP3 inflammasome components, and IL-1R in the lethality caused by sterile hemolysis. Thus, understanding the molecular pathways affected by heme in innate immune cells might prove useful to identify new therapeutic targets for diseases that have heme release. PMID:25225402

  14. Hemolysis-induced lethality involves inflammasome activation by heme.

    PubMed

    Dutra, Fabianno F; Alves, Letícia S; Rodrigues, Danielle; Fernandez, Patricia L; de Oliveira, Rosane B; Golenbock, Douglas T; Zamboni, Dario S; Bozza, Marcelo T

    2014-09-30

    The increase of extracellular heme is a hallmark of hemolysis or extensive cell damage. Heme has prooxidant, cytotoxic, and inflammatory effects, playing a central role in the pathogenesis of malaria, sepsis, and sickle cell disease. However, the mechanisms by which heme is sensed by innate immune cells contributing to these diseases are not fully characterized. We found that heme, but not porphyrins without iron, activated LPS-primed macrophages promoting the processing of IL-1β dependent on nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3). The activation of NLRP3 by heme required spleen tyrosine kinase, NADPH oxidase-2, mitochondrial reactive oxygen species, and K(+) efflux, whereas it was independent of heme internalization, lysosomal damage, ATP release, the purinergic receptor P2X7, and cell death. Importantly, our results indicated the participation of macrophages, NLRP3 inflammasome components, and IL-1R in the lethality caused by sterile hemolysis. Thus, understanding the molecular pathways affected by heme in innate immune cells might prove useful to identify new therapeutic targets for diseases that have heme release.

  15. Substantial changes in hemocyte parameters of Manila clam Ruditapes philippinarum two years after the Hebei Spirit oil spill off the west coast of Korea.

    PubMed

    Hong, Hyun-Ki; Donaghy, Ludovic; Kang, Chang-Keun; Kang, Hyun-Sil; Lee, Hee-Jung; Park, Heung-Sik; Choi, Kwang-Sik

    2016-07-15

    Two years after the Hebei Spirit oil spill occurred off the west coast of Korea, we determined sub-lethal effects of the spilled oil on hemocyte parameters of Ruditapes philippinarum in the damaged areas. Clams in the spilled sites displayed unusually high proportion of granulocytes, which may result in higher phagocytosis capacity and reactive oxygen species production. Hemocytes in clams from the polluted sites also displayed less DNA damage and mortality than in the control site, possibly due to a faster phagocytosis of the impaired cells. Glycogen, the major energetic reserve, was depleted in clams from the spilled sites, potentially due to energetic consumption for maintenance of a large pool of granulocytes, detoxification processes and oxidative stress. Modified hemocyte parameters in clams in the spilled area, may reflect sub-lethal physiological stresses caused by the residual oils in the sediment, in conjunction with environmental modifications such as food availability and pathogens pattern. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Visualizing the Search for Radiation-damaged DNA Bases in Real Time.

    PubMed

    Lee, Andrea J; Wallace, Susan S

    2016-11-01

    The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.

  17. Visualizing the search for radiation-damaged DNA bases in real time

    NASA Astrophysics Data System (ADS)

    Lee, Andrea J.; Wallace, Susan S.

    2016-11-01

    The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.

  18. [Dynamic model of seasonal breeding rodent pest population controlled with short-acting sterilant].

    PubMed

    Liu, Han-wu; Jin, Zhen; Zhang, Feng-qin; Li, Qiu-ying

    2013-04-01

    Rodent pests bring great damage to human beings, while rodenticide and sterilant can be used to control the pests. After ingesting sterilant, rodent pests lose their fertility, but in some cases, the sterile individuals may gain their fertility again, produce offspring, and enlarge population size. In this paper, the dynamic models of rodent pest population under lethal control and shortacting contraception control were formulated, and, with the prerequisite of the seasonal breeding of rodent pest population, the models were used to regularly analyze their behaviors and the effects of the contraception rate, lethal rate, control interval, and sterilant valid period on the dynamics of the pest population. The results showed that larger contraception rate and lethal rate and shorter control interval could have better control effect, making the controlled population become smaller and even died out. Short-acting sterilant limited the control effect. At the later period of breeding season, the rodent pest population controlled with short-acting sterilant would have a weak recovery.

  19. Relieved residual damage in the hematopoietic system of mice rescued by radiation-induced adaptive response (Yonezawa Effect)

    PubMed Central

    Wang, Bing; Tanaka, Kaoru; Ninomiya, Yasuharu; Maruyama, Kouichi; VarèS, Guillaume; Eguchi-Kasai, Kiyomi; Nenoi, Mitsuru

    2013-01-01

    Existence of adaptive response (AR) was previously demonstrated in C57BL/6J mice. Irradiations were performed by delivering a priming low dose of X-rays (0.50 Gy) in combination with a challenge high dose of accelerated carbon or neon ion particles. AR was characterized by significantly decreased mortality in the 30-day survival test. This mouse AR model (‘Yonezawa Effect’) was originally established by using X-rays as both the priming and challenge irradiations. The underlying mechanism was due to radio-resistance occurring in blood-forming tissues. In this study, we verified the existence of AR and further investigated residual damage in the hematopoietic system in surviving animals. Results showed that the priming low dose of X-rays could relieve the detrimental effects on the hematopoietic system. We observed both an improvement in the blood platelet count and the ratio of polychromatic erythrocytes (PCEs) to the sum of PCEs and normochromatic erythrocytes (NCEs) and a marked reduction of the incidences of micronucleated PCEs and micronucleated NCEs. These findings suggest that the priming low dose of low linear energy transfer (LET) X-rays induced a protective effect on the hematopoietic system, which may play an important role in both rescue from acute lethal damage (mouse killing) and prevention of late detrimental consequences (residual anhematopoiesis and delayed genotoxic effects) caused by exposure to a high challenge dose from low-LET (X-ray) or high-LET (carbon and neon ion) irradiations. These findings provide new knowledge of the characterization of the Yonezawa Effect by providing new insight into the mechanistic study of AR in vivo. PMID:22923746

  20. Sulfur compounds in therapy: Radiation-protective agents, amphetamines, and mucopolysaccharide sulfation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foye, W.O.

    1992-09-01

    Sulfur-containing compounds have been used in the search for whole-body radiation-protective compounds, in the design of amphetamine derivatives that retain appetite-suppressive effects but lack most behavioral effects characteristic of amphetamines, and in the search for the cause of kidney stone formation in recurrently stoneforming patients. Organic synthetic procedures were used to prepare radiation-protective compounds having a variety of sulfur-containing functional groups, and to prepare amphetamine derivatives having electron-attracting sulfur functions. In the case of the kidney stone causation research, isolation of urinary mucopolysaccharides (MPS) from recurrently stoneforming patients was carried out and the extent of sulfation of the MPS wasmore » determined by electrophoresis. Whole-body radiation-protective agents with a high degree of protection against lethal doses of gamma-radiation in mice were found in a series of quinolinium and pyridinium bis(methylthio) and methylthio amino derivatives. Mechanism studies showed that the copper complexes of these agents mimicked the beneficial action of superoxide dismutase. Electron-attracting sulfur-containing functions on amphetamine nitrogen, as well as 4'-amino nitrogen provided amphetamine derivatives with good appetite-suppressant effects and few or no adverse behavioral effects. Higher than normal levels of sulfation of the urinary MPS of stone formers suggested a cause for recurrent kidney stone formation. A sulfation inhibitor was found to prevent recurrence of stone formation and inhibit growth of existing stones. The inclusion of various sulfur-containing functions in organic molecules yielded compounds having whole-body radiation protection from lethal doses of gamma-radiation in animals. The presence of electron-attracting sulfur functions in amphetamine gave derivatives that retained appetite-suppressant effects and eliminated most adverse behavioral effects.« less

  1. [Damage control in trauma patients with hemodynamic instability].

    PubMed

    Müller, Thorben; Doll, Dietrich; Kliebe, Frank; Ruchholtz, Steffen; Kühne, Christian

    2010-10-01

    The term "Damage-control" is borrowed from naval terminology. It means the initial control of a damaged ship. Because of the lethal triad in multiple injured patients the classical concept of definitive surgically therapy in the acute phase of the injury has a high rate of complications such as exsanguination, sepsis, heart failure and multiple organ failure. The core idea of the damage control concept was to minimize the additional trauma by surgical operations in these critical patients in the first phase. This means temporary control of a hemorrhage and measures for stopping abdominal contamination. After 24 - 48 hours in the intensive care unit and correction of physiological disturbances further interventions are performed for definitively treatment of the injuries. Summarized, the damage control strategy comprises an abbreviated operation, intensive care unit resuscitation, and a return to the operating room for the definitive operation after hemodynamic stabilisation of the patient. © Georg Thieme Verlag Stuttgart · New York.

  2. The impact of solar UV radiation on the early biosphere

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    2007-08-01

    Stratospheric ozone, photochemically produced from atmospheric oxygen, is a protective filter of the Earth's atmosphere by absorbing most of the biologically harmful UV radiation of our sun in the UV-C (190-280 nm) and short wavelength-region of the UV-B (280-315 nm). Numerous lines of isotopic and geologic evidence suggest that the Archean atmosphere was essentially anoxic. As a result the column abundance of ozone would have been insufficient to affect the surface UV radiation environment. Thus, as well as UV-B radiation, UV-C radiation would have penetrated to the Earth's surface with its associated biological consequences. The history of this ultraviolet stress for the early Earth has been determined from theoretical data and data obtained in Earth orbit on the inactivation of Bacillus subtilis spores under a simulated ozone layer of different thicknesses. Although the UV-C and UV-B regions contribute only 2 % of the entire solar extraterrestrial irradiance, photobiological experiments in space have demonstrated a high mutagenicity and lethality of this UV range to living organisms. The reason for these severe effects of extraterrestrial solar UV radiation - compared to conditions on present-day Earth - lies in the absorption characteristics of the DNA, which is the decisive target for inactivation and mutation induction at this UV range. Being a strong mutagen, UV-radiation is considered as a powerful promoter of biological evolution on the one hand, one the other hand, it may have deleterious consequences to individual cells and organisms, e.g. by causing inactivation, mutations or cancer induction. In response to potential harmful effects of environmental UV radiation, life on Earth has developed several strategies of survival, either avoiding exposure to UV radiation or restoring UV damage. Mechanisms of avoidance of exposure to UV radiation include (i) moving away from the UV radiation into shadowed areas, which requires the development of UV radiation sensing mechanisms; (ii) application of external shielding, such as covering by mud, sand or rock material; (iii) development of intrinsic UV screening pigments, such as tanning, inductive flavonoid production of plants, intracellular mycosporin production in cyanobacteria, (iv) accumulation of antioxidants and quenching substances. However, if UV damage has been induced - in spite of all avoidance efforts, organisms may restore their functionality by numerous repair processes. Repair pathways of a rich diversity and functional universality include (i) direct repair with the reversal of photochemical abnormalities, e.g. in the DNA; (ii) recombination repair removing the UV-induced abnormality by homologous recombination; and (iii) excision repair, where the section of the DNA strand containing the abnormality is removed and a repair patch is synthesized using the intact strand as a template. In addition to efficient repair systems for radiation-induced DNA injury, life has developed a variety of defense mechanisms, such as the increase in the production of stress proteins and the activation of the immune defence system. Some of these capacities have certainly already been evolved in the early biosphere, when it was exposed to the extended UV-spectrum of the sun. Only since the early Proterozoic, due to a rapid rise in the atmospheric oxygen concentration and consequently a photochemical built up of the stratospheric ozone layer, a more moderate UV radiation climate prevailed with wavelengths shorter than 295 nm being effectively cut off.

  3. He diffusion in zircon: Observations from (U-Th)/He age suites and 4He diffusion experiments and implications for radiation damage and anisotropic effects

    NASA Astrophysics Data System (ADS)

    Guenthner, W. R.; Reiners, P. W.

    2009-12-01

    Despite widespread use of zircon (U-Th)/He thermochronometry in many geologic applications, our understanding of the kinetics of He diffusion in this system is rudimentary. Previous studies have shown that both radiation damage and crystallographic anisotropy may strongly influence diffusion kinetics and ages. We present observations of zircon He ages from multiple single-grain analyses from both detrital and bedrock suites from a wide variety of locations, showing relationships consistent with effects arising from the interaction of radiation damage and anisotropy. Individual zircons in each suite have experienced the same post-depositional or exhumational t-T history but grains appear to have experienced differential He loss that is correlated with effective uranium (eU) content, a proxy for the relative extent of radiation damage within each suite. Several suites of zircons heated to partial resetting upon burial or that have experienced slow cooling show positive correlations between age and eU. Examples of partially reset detrital samples include Cretaceous Sevier foreland basin sandstones buried to ~6-8 km depth, with ages ranging from 88-309 Ma across an eU range of 215-1453 ppm, and Apennines and Olympics greywackes heated to >~120 °C, showing similar trends. Some slowly-cooled bedrock samples also show positive age-eU correlations, suggesting increasing closure temperature with higher extents of radiation damage. Conversely, zircons from cratonal bedrock samples with high levels of radiation damage—measured as accumulated alpha dosage (in this case >~10^18 α/g)—generally show negative age-eU correlations. We interpret these contrasting age-eU relationships as a manifestation of the interaction of radiation damage and anisotropic diffusion: at low damage, He diffusivity is relatively high and preferentially through c-axis-parallel channels. As suggested by Farley (2007), however, with increasing damage, channels are progressively blocked and He diffusivity decreases. Eventually, a crystal reaches a threshold level (>~10^18 α/g ) wherein radiation damage is so extensive that damage zones become interconnected and He diffusivity increases once again. In order to evaluate these assertions, we conducted a series of step-heating experiments on several pairs of zircon slabs. Individual slabs were crystallographically oriented either orthogonal or parallel to the c-axis and each pair possessed varying degrees of radiation damage. Results from these experiments provide new closure temperature estimates, explain age-eU correlations within a data set, and allow us to construct diffusion models that more accurately describe the t-T history of a given sample.

  4. Skin welding using pulsed laser radiation and a dye

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Walsh, Joseph T., Jr.

    1998-07-01

    Previous skin welding studies have used continuous wave (CW) delivery of radiation. However, heat diffusion during irradiation prevents strong welds from being achieved without creating large zones of thermal damage to surrounding tissue. This damage may prevent normal wound healing. Strong welds and minimal thermal damage can be achieved by introducing a dye and delivering the radiation in a pulsed mode. Two-cm-long, full-thickness incisions were made in guinea pig skin. India ink was used as an absorber, and egg white albumin was used as an adhesive. A 5-mm-diameter spot of CW, 1.06-micrometer Nd:YAG laser radiation was scanned over the weld site, producing 100 millisecond pulses. The cooling time between scans and number of scans was varied. Thermal damage zones were measured using a transmission polarizing microscope to identify birefringence changes in tissue. Tensile strengths were measured using a tensiometer. For pulsed welding and long cooling times, weld strengths of 2.4 kg/cm2 were measured, and thermal damage to the epidermis was limited to approximately 500 micrometers. With CW welding, comparable weld strengths resulted in approximately 2700 micrometer of thermal damage. CW laser radiation weld strengths were only 0.6 kg/cm2 when thermal damage in the epidermis was limited to approximately 500 micrometers.

  5. Electron beam induced damage in PECVD Si3N4 and SiO2 films on InP

    NASA Technical Reports Server (NTRS)

    Pantic, Dragan M.; Kapoor, Vik J.; Young, Paul G.; Williams, Wallace D.; Dickman, John E.

    1990-01-01

    Phosphorus rich plasma enhanced chemical vapor deposition (PECVD) of silicon nitride and silicon dioxide films on n-type indium phosphide (InP) substrates were exposed to electron beam irradiation in the 5 to 40 keV range for the purpose of characterizing the damage induced in the dielectic. The electron beam exposure was on the range of 10(exp -7) to 10(exp -3) C/sq cm. The damage to the devices was characterized by capacitance-voltage (C-V) measurements of the metal insulator semiconductor (MIS) capacitors. These results were compared to results obtained for radiation damage of thermal silicon dioxide on silicon (Si) MOS capacitors with similar exposures. The radiation induced damage in the PECVD silicon nitride films on InP was successfully annealed out in an hydrogen/nitrogen (H2/N2) ambient at 400 C for 15 min. The PECVD silicon dioxide films on InP had the least radiation damage, while the thermal silicon dioxide films on Si had the most radiation damage.

  6. Interactive lethal and mutagenic effects of ultraviolet light and bleomycin in yeast: synergism or antagonism?

    PubMed

    Lillo, O L; Severgnini, A A; Nunes, E M

    1997-11-01

    The mutagenic interactions of ultraviolet light and bleomycin in haploid populations of Saccharomyces cerevisiae were analyzed. Survival and mutation frequency as a function of different bleomycin concentrations after one conditioning dose of UV radiation were determined. Furthermore, corresponding interaction functions and sensitization factors were calculated. A synergistic interaction between UV light and bleomycin was shown for both lethal and mutagenic events when the cells were in nutrient broth during the treatments. Conversely, the interaction between UV light and bleomycin was antagonistic when the cells were in deionized water during the treatment. The magnitude of lethal and mutagenic interactions depends on dose, and thus presumably on the number of lesions. The observed interactions between UV light and bleomycin suggest that the mechanism that is most likely involved is the induction of repair systems with different error probabilities during the delay of cell division.

  7. Standard sub-thermoneutral caging temperature influences radiosensitivity of hematopoietic stem and progenitor cells.

    PubMed

    Povinelli, Benjamin J; Kokolus, Kathleen M; Eng, Jason W-L; Dougher, Christopher W; Curtin, Leslie; Capitano, Maegan L; Sailsbury-Ruf, Christi T; Repasky, Elizabeth A; Nemeth, Michael J

    2015-01-01

    The production of new blood cells relies on a hierarchical network of hematopoietic stem and progenitor cells (HSPCs). To maintain lifelong hematopoiesis, HSPCs must be protected from ionizing radiation or other cytotoxic agents. For many years, murine models have been a valuable source of information regarding factors that either enhance or reduce the survival of HSPCs after exposure of marrow to ionizing radiation. In a recent series of studies, however, it has become clear that housing-related factors such as the cool room temperature required for laboratory mice can exert a surprising influence on the outcome of experiments. Here we report that the mild, but chronic cold-stress endured by mice housed under these conditions exerts a protective effect on HSPCs after both non-lethal and lethal doses of total body irradiation (TBI). Alleviation of this cold-stress by housing mice at a thermoneutral temperature (30°C) resulted in significantly greater baseline radiosensitivity to a lethal dose of TBI with more HSPCs from mice housed at thermoneutral temperature undergoing apoptosis following non-lethal TBI. Cold-stressed mice have elevated levels of norepinephrine, a key molecule of the sympathetic nervous system that binds to β-adrenergic receptors. We show that blocking this signaling pathway in vivo through use of the β-blocker propanolol completely mitigates the protective effect of cold-stress on HSPC apoptosis. Collectively this study demonstrates that chronic stress endured by the standard housing conditions of laboratory mice increases the resistance of HSPCs to TBI-induced apoptosis through a mechanism that depends upon β-adrenergic signaling. Since β-blockers are commonly prescribed to a wide variety of patients, this information could be important when predicting the clinical impact of HSPC sensitivity to TBI.

  8. Standard Sub-Thermoneutral Caging Temperature Influences Radiosensitivity of Hematopoietic Stem and Progenitor Cells

    PubMed Central

    Eng, Jason W.-L.; Dougher, Christopher W.; Curtin, Leslie; Capitano, Maegan L.; Sailsbury-Ruf, Christi T.; Repasky, Elizabeth A.; Nemeth, Michael J.

    2015-01-01

    The production of new blood cells relies on a hierarchical network of hematopoietic stem and progenitor cells (HSPCs). To maintain lifelong hematopoiesis, HSPCs must be protected from ionizing radiation or other cytotoxic agents. For many years, murine models have been a valuable source of information regarding factors that either enhance or reduce the survival of HSPCs after exposure of marrow to ionizing radiation. In a recent series of studies, however, it has become clear that housing-related factors such as the cool room temperature required for laboratory mice can exert a surprising influence on the outcome of experiments. Here we report that the mild, but chronic cold-stress endured by mice housed under these conditions exerts a protective effect on HSPCs after both non-lethal and lethal doses of total body irradiation (TBI). Alleviation of this cold-stress by housing mice at a thermoneutral temperature (30°C) resulted in significantly greater baseline radiosensitivity to a lethal dose of TBI with more HSPCs from mice housed at thermoneutral temperature undergoing apoptosis following non-lethal TBI. Cold-stressed mice have elevated levels of norepinephrine, a key molecule of the sympathetic nervous system that binds to β-adrenergic receptors. We show that blocking this signaling pathway in vivo through use of the β-blocker propanolol completely mitigates the protective effect of cold-stress on HSPC apoptosis. Collectively this study demonstrates that chronic stress endured by the standard housing conditions of laboratory mice increases the resistance of HSPCs to TBI-induced apoptosis through a mechanism that depends upon β-adrenergic signaling. Since β-blockers are commonly prescribed to a wide variety of patients, this information could be important when predicting the clinical impact of HSPC sensitivity to TBI. PMID:25793392

  9. Exposure to low UVA doses increases KatA and KatB catalase activities, and confers cross-protection against subsequent oxidative injuries in Pseudomonas aeruginosa.

    PubMed

    Pezzoni, Magdalena; Tribelli, Paula M; Pizarro, Ramón A; López, Nancy I; Costa, Cristina S

    2016-05-01

    Solar UVA radiation is one of the main environmental stress factors for Pseudomonas aeruginosa. Exposure to high UVA doses produces lethal effects by the action of the reactive oxygen species (ROS) it generates. P. aeruginosa has several enzymes, including KatA and KatB catalases, which provide detoxification of ROS. We have previously demonstrated that KatA is essential in defending P. aeruginosa against high UVA doses. In order to analyse the mechanisms involved in the adaptation of this micro-organism to UVA, we investigated the effect of exposure to low UVA doses on KatA and KatB activities, and the physiological consequences. Exposure to UVA induced total catalase activity; assays with non-denaturing polyacrylamide gels showed that both KatA and KatB activities were increased by radiation. This regulation occurred at the transcriptional level and depended, at least partly, on the increase in H2O2 levels. We demonstrated that exposure to low UVA produced a protective effect against subsequent lethal doses of UVA, sodium hypochlorite and H2O2. Protection against lethal UVA depends on katA, whilst protection against sodium hypochlorite depends on katB, demonstrating that different mechanisms are involved in the defence against these oxidative agents, although both genes can be involved in the global cellular response. Conversely, protection against lethal doses of H2O2 could depend on induction of both genes and/or (an)other defensive factor(s). A better understanding of the adaptive response of P. aeruginosa to UVA is relevant from an ecological standpoint and for improving disinfection strategies that employ UVA or solar irradiation.

  10. Closure of laryngotracheal cavity and tracheostomy for intractable aspiration secondary to radiation encephalopathy or radiation damage of cranial nerve after radiotherapy of nasopharyngeal carcinoma.

    PubMed

    Qu, Shenhong; Su, Zhengzhong; He, Xiaoguang; Li, Min; Li, Tianying

    2006-09-01

    Closure of the laryngotracheal cavity and tracheostomy is especially suitable for intractable aspiration secondary to radiation encephalopathy or damage of cranial nerve after radiation for nasopharyngeal carcinoma (NPC). To investigate the clinical value, technique, indications and contraindications of closure of the laryngotracheal cavity and tracheostomy for intractable aspiration secondary to radiation encephalopathy (REP) or radiation damage of cranial nerve after radiotherapy of NPC. Thirty patients, suffering from intractable aspiration secondary to radiotherapy for nasopharyngeal carcinoma, were treated with closure of the laryngotracheal cavity and tracheostomy and were observed for at least 1 year. Intractable aspiration and dyspnea were completely eradicated in all patients. The quality of their life was greatly improved.

  11. Backgrounds, radiation damage, and spacecraft orbits

    NASA Astrophysics Data System (ADS)

    Grant, Catherine E.; Miller, Eric D.; Bautz, Mark W.

    2017-08-01

    The scientific utility of any space-based observatory can be limited by the on-orbit charged particle background and the radiation-induced damage. All existing and proposed missions have had to make choices about orbit selection, trading off the radiation environment against other factors. We present simulations from ESA’s SPace ENVironment Information System (SPENVIS) of the radiation environment for spacecraft in a variety of orbits, from Low Earth Orbit (LEO) at multiple inclinations to High Earth Orbit (HEO) to Earth-Sun L2 orbit. We summarize how different orbits change the charged particle background and the radiation damage to the instrument. We also discuss the limitations of SPENVIS simulations, particularly outside the Earth’s trapped radiation and point to new resources attempting to address those limitations.

  12. HOST-PARASITE FACTORS IN GROUP A STREPTOCOCCAL INFECTIONS

    PubMed Central

    Watson, Dennis W.

    1960-01-01

    The factors present in streptococcal lesion extracts (SLE) which enhanced the lethal and tissue-damaging properties of Gram-negative bacterial endotoxins and streptolysin O were identified with the scarlet fever group of toxins. Toxic manifestations attributed to this group of toxins included lethality, cardiotoxic and other tissue damage, enhancement of toxicity, and pyrogenicity. Of these, the measurement of febrile response in American Dutch rabbits was the most useful parameter of toxicity. In rabbits, repeated daily intravenous injections of 0.125 Lf of a purified erythrogenic toxin immunizes specifically against the pyrogenic activity; this technique was used to type the toxins and to distinguish them from exogenous and endogenous pyrogens; non-specific pyrogens, such as streptococcal endotoxin, were not found in SLE. All types of the Lancefield Group A streptococci tested produced one or or more immunologically distinct toxins in vivo in contrast to Groups B and C which did not produce them; toxins A and B, previously distinguished by neutralization of rash-inducing activity in the skin, were produced in vivo. The A toxin was the most common, as indicated by its presence in extracts prepared with Types 28, 12, 17, and 10 (NY-5); B toxin was found in 10 (NY-5) and 19. A new toxin, designated C, was obtained from a Type 18. In American Dutch rabbits, purified toxin at a concentration of 15 Lf (900,000 STD) neither gave a Dick test nor prepared the skin for the local Shwartzman reaction; by this route, however, in contrast to classical endotoxins, they enhance the lethal and tissue-damaging properties of sublethal doses of these and other toxins. These properties of the immunologic distinct exotoxins as demonstrated in American Dutch rabbits suggest by analogy their importance in the pathogenesis of streptococcal disease in man. Evidence that might implicate them in sequelae, in addition to scarlet fever, is discussed. PMID:13783427

  13. Lysosome and Phagosome Stability in Lethal Cell Injury

    PubMed Central

    Hawkins, Hal K.; Ericsson, Jan L. E.; Biberfeld, Peter; Trump, Benjamin F.

    1972-01-01

    In two types of cell injury in a tissue culture system, the possibility was tested that lysosome rupture may be a lethal cellular reaction to injury, and thus an important general cause of irreversibility of damage in injured tissue. Prior labeling of secondary lysosomes with the fluorochrome acridine orange, or with ferritin, was used to trace changes in lysosomes after applying an injury. The metabolic inhibitors iodoacetate and cyanide were used together to block the cell's energy supply, or attachment of antiserum and subsequent complement attack were used to damage the surface membrane, producing rapid loss of cell volume control. Living cells were studied by time-lapse phase-contrast cinemicrography and fluorescence microscopy, and samples were fixed at intervals for electron microscopy. The cytolytic action of complement was lethal to sensitized cells within 2 hours, but results showed that lysosomes did not rupture for approximately 4 hours and in fact did not release the fluorescent dye until after reaching the postmortem necrotic phase of injury. Cells treated with metabolic inhibitors also showed irreversible alterations, while lysosomes remained intact and retained the ferritin marker. The fluorochrome marker, acridine orange, escaped from lysosomes early after metabolic injury, but the significance of this observation is not clear. The results are interpreted as evidence against the concept that lysosome rupture threatens the survival of injured cells. The original suicide bag mechanism of cell damage thus is apparently not operative in the systems studied. Lysosomes appear to be relatively stable organelles which, following injury of the types studied, burst only after cell death, acting then as scavengers which help to clear cellular debris. ImagesFigs 5-7Fig 18Fig 19Fig 20Figs 21-23Fig 8Fig 9Fig 10Fig 11Figs 24-27Fig 12Figs 13 and 14Fig 1Fig 2Fig 3Fig 4Fig 15Fig 16Fig 17 PMID:4340333

  14. Modelling and Holographic Visualization of Space Radiation-Induced DNA Damage

    NASA Technical Reports Server (NTRS)

    Plante, Ianik

    2017-01-01

    Space radiation is composed by a mixture of ions of different energies. Among these, heavy inos are of particular importance because their health effects are poorly understood. In. the recent years, a software named RITRACKS (Relativistic Ion Tracks) was developed to simulate the detailed radiation track structure, several DNA models and DNA damage. As the DNA structure is complex due to packing, it is difficult to the damage using a regular computer screen.

  15. Forecasting of the performance of MOS device for space applications

    NASA Technical Reports Server (NTRS)

    Fang, P. H.

    1971-01-01

    Analysis of radiation damage of MOSFET data from Explorer 34 (IMP-F), and radiation damage characteristics of MOSFET with boron diffused between a silicon semiconductor and silicon oxide are considered. The first subject is an interpretation of the discrepancy between the space data and the laboratory data. The second subject is an attempt to analyze the radiation damage characteristic of MOSFET when there is modification of electrical properties in the gate oxide region.

  16. Integrated molecular analysis indicates undetectable change in DNA damage in mice after continuous irradiation at ~ 400-fold natural background radiation.

    PubMed

    Olipitz, Werner; Wiktor-Brown, Dominika; Shuga, Joe; Pang, Bo; McFaline, Jose; Lonkar, Pallavi; Thomas, Aline; Mutamba, James T; Greenberger, Joel S; Samson, Leona D; Dedon, Peter C; Yanch, Jacquelyn C; Engelward, Bevin P

    2012-08-01

    In the event of a nuclear accident, people are exposed to elevated levels of continuous low dose-rate radiation. Nevertheless, most of the literature describes the biological effects of acute radiation. DNA damage and mutations are well established for their carcinogenic effects. We assessed several key markers of DNA damage and DNA damage responses in mice exposed to low dose-rate radiation to reveal potential genotoxic effects associated with low dose-rate radiation. We studied low dose-rate radiation using a variable low dose-rate irradiator consisting of flood phantoms filled with 125Iodine-containing buffer. Mice were exposed to 0.0002 cGy/min (~ 400-fold background radiation) continuously over 5 weeks. We assessed base lesions, micronuclei, homologous recombination (HR; using fluorescent yellow direct repeat mice), and transcript levels for several radiation-sensitive genes. We did not observe any changes in the levels of the DNA nucleobase damage products hypoxanthine, 8-oxo-7,8-dihydroguanine, 1,N6-ethenoadenine, or 3,N4-ethenocytosine above background levels under low dose-rate conditions. The micronucleus assay revealed no evidence that low dose-rate radiation induced DNA fragmentation, and there was no evidence of double strand break-induced HR. Furthermore, low dose-rate radiation did not induce Cdkn1a, Gadd45a, Mdm2, Atm, or Dbd2. Importantly, the same total dose, when delivered acutely, induced micronuclei and transcriptional responses. These results demonstrate in an in vivo animal model that lowering the dose-rate suppresses the potentially deleterious impact of radiation and calls attention to the need for a deeper understanding of the biological impact of low dose-rate radiation.

  17. Damage to DNA caused by UV-B radiation in the desert cyanobacterium Scytonema javanicum and the effects of exogenous chemicals on the process.

    PubMed

    Wang, Gaohong; Deng, Songqiang; Li, Cheng; Liu, Yongding; Chen, Lanzhou; Hu, Chaozhen

    2012-07-01

    Radiation with UV-B increased the damage to DNA in Scytonema javanicum, a desert-dwelling soil microorganism, and the level of damage varied with the intensity of UV-B radiation and duration of exposure. Production of reactive oxygen species (ROS) also increased because of the radiation. Different exogenous chemicals (ascorbate acid, ASC; N-acetylcysteine, NAC; glyphosate, GPS; and 2-methyl-4-chlorophenoxyacetic acid, MCPA-Na) differed in their effect on the extent of DNA damage and ROS production: whereas NAC and ASC protected the DNA from damage and resulted in reduced ROS production, the herbicides (GPS and MCPA-Na) increased the extent of damage, lowered the rate of photosynthesis, and differed in their effect on ROS production. The chemicals probably have different mechanisms to exercise their effects: NAC and ASC probably function as antioxidant agents or as precursors of other antioxidant molecules that protect the DNA and photosynthetic apparatus directly from the ROS produced as a result of UV-B radiation, and GPS and MCPA-Na probably disrupt the normal metabolism in S. javanicum to induce the leaking of ROS into the photosynthetic electron transfer pathway following UV-B radiation, and thereby damage the DNA. Such mechanisms have serious implications for the use of environment-friendly herbicides, which, because they can destroy DNA, may prove harmful to soil microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Neutron radiation damage studies in the structural materials of a 500 MWe fast breeder reactor using DPA cross-sections from ENDF / B-VII.1

    NASA Astrophysics Data System (ADS)

    Saha, Uttiyoarnab; Devan, K.; Bachchan, Abhitab; Pandikumar, G.; Ganesan, S.

    2018-04-01

    The radiation damage in the structural materials of a 500 MWe Indian prototype fast breeder reactor (PFBR) is re-assessed by computing the neutron displacement per atom (dpa) cross-sections from the recent nuclear data library evaluated by the USA, ENDF / B-VII.1, wherein revisions were taken place in the new evaluations of basic nuclear data because of using the state-of-the-art neutron cross-section experiments, nuclear model-based predictions and modern data evaluation techniques. An indigenous computer code, computation of radiation damage (CRaD), is developed at our centre to compute primary-knock-on atom (PKA) spectra and displacement cross-sections of materials both in point-wise and any chosen group structure from the evaluated nuclear data libraries. The new radiation damage model, athermal recombination-corrected displacement per atom (arc-dpa), developed based on molecular dynamics simulations is also incorporated in our study. This work is the result of our earlier initiatives to overcome some of the limitations experienced while using codes like RECOIL, SPECTER and NJOY 2016, to estimate radiation damage. Agreement of CRaD results with other codes and ASTM standard for Fe dpa cross-section is found good. The present estimate of total dpa in D-9 steel of PFBR necessitates renormalisation of experimental correlations of dpa and radiation damage to ensure consistency of damage prediction with ENDF / B-VII.1 library.

  19. Methodology trends on gamma and electron radiation damage simulation studies in solids under high fluency irradiation environments

    NASA Astrophysics Data System (ADS)

    Cruz Inclán, Carlos M.; González Lazo, Eduardo; Rodríguez Rodríguez, Arturo; Guzmán Martínez, Fernando; Abreu Alfonso, Yamiel; Piñera Hernández, Ibrahin; Leyva Fabelo, Antonio

    2017-09-01

    The present work deals with the numerical simulation of gamma and electron radiation damage processes under high brightness and radiation particle fluency on regard to two new radiation induced atom displacement processes, which concern with both, the Monte Carlo Method based numerical simulation of the occurrence of atom displacement process as a result of gamma and electron interactions and transport in a solid matrix and the atom displacement threshold energies calculated by Molecular Dynamic methodologies. The two new radiation damage processes here considered in the framework of high brightness and particle fluency irradiation conditions are: 1) The radiation induced atom displacement processes due to a single primary knockout atom excitation in a defective target crystal matrix increasing its defect concentrations (vacancies, interstitials and Frenkel pairs) as a result of a severe and progressive material radiation damage and 2) The occurrence of atom displacements related to multiple primary knockout atom excitations for the same or different atomic species in an perfect target crystal matrix due to subsequent electron elastic atomic scattering in the same atomic neighborhood during a crystal lattice relaxation time. In the present work a review numeral simulation attempts of these two new radiation damage processes are presented, starting from the former developed algorithms and codes for Monte Carlo simulation of atom displacements induced by electron and gamma in

  20. Insulin-Like Growth Factor 1 Mitigates Hematopoietic Toxicity After Lethal Total Body Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Dunhua; Deoliveira, Divino; Kang, Yubin

    2013-03-15

    Purpose: To investigate whether and how insulin-like growth factor 1 (IGF-1) mitigates hematopoietic toxicity after total body irradiation. Methods and Materials: BALB/c mice were irradiated with a lethal dose of radiation (7.5 Gy) and treated with IGF-1 at a dose of 100 μg/dose intravenously once a day for 5 consecutive days starting within 1 hour after exposure. Survival and hematopoietic recovery were monitored. The mechanisms by which IGF-1 promotes hematopoietic recovery were also studied by use of an in vitro culture system. Results: IGF-1 protected 8 of 20 mice (40%) from lethal irradiation, whereas only 2 of 20 mice (10%) inmore » the saline control group survived for more than 100 days after irradiation. A single dose of IGF-1 (500 μg) was as effective as daily dosing for 5 days. Positive effects were noted even when the initiation of treatment was delayed as long as 6 hours after irradiation. In comparison with the saline control group, treatment with IGF-1 significantly accelerated the recovery of both platelets and red blood cells in peripheral blood, total cell numbers, hematopoietic stem cells, and progenitor cells in the bone marrow when measured at day 14 after irradiation. IGF-1 protected both hematopoietic stem cells and progenitor cells from radiation-induced apoptosis and cell death. In addition, IGF-1 was able to facilitate the proliferation and differentiation of nonirradiated and irradiated hematopoietic progenitor cells. Conclusions: IGF-1 mitigates radiation-induced hematopoietic toxicity through protecting hematopoietic stem cells and progenitor cells from apoptosis and enhancing proliferation and differentiation of the surviving hematopoietic progenitor cells.« less

  1. Thrombomodulin Contributes to Gamma Tocotrienol-Mediated Lethality Protection and Hematopoietic Cell Recovery in Irradiated Mice

    PubMed Central

    Pathak, Rupak; Shao, Lijian; Ghosh, Sanchita P.; Zhou, Daohong; Boerma, Marjan; Weiler, Hartmut; Hauer-Jensen, Martin

    2015-01-01

    Systemic administration of recombinant thrombomodulin (TM) confers radiation protection partly by accelerating hematopoietic recovery. The uniquely potent radioprotector gamma tocotrienol (GT3), in addition to being a strong antioxidant, inhibits the enzyme hydroxy-methyl-glutaryl-coenzyme A reductase (HMGCR) and thereby likely modulates the expression of TM. We hypothesized that the mechanism underlying the exceptional radioprotective properties of GT3 partly depends on the presence of endothelial TM. In vitro studies confirmed that ionizing radiation suppresses endothelial TM (about 40% at 4 hr after 5 Gy γ-irradiation) and that GT3 induces TM expression (about 2 fold at the mRNA level after 5 μM GT3 treatment for 4 hr). In vivo survival studies showed that GT3 was significantly more effective as a radioprotector in TM wild type (TM+/+) mice than in mice with low TM function (TMPro/-). After exposure to 9 Gy TBI, GT3 pre-treatment conferred 85% survival in TM+/+ mice compared to only 50% in TMPro/-. Thus, GT3-mediated radiation lethality protection is partly dependent on endothelial TM. Significant post-TBI recovery of hematopoietic cells, particularly leukocytes, was observed in TM+/+ mice (p = 0.003), but not in TMPro/- mice, despite the fact that GT3 induced higher levels of granulocyte colony stimulating factor (G-CSF) in TMPro/- mice (p = 0.0001). These data demonstrate a critical, G-CSF-independent, role for endothelial TM in GT3-mediated lethality protection and hematopoietic recovery after exposure to TBI and may point to new strategies to enhance the efficacy of current medical countermeasures in radiological/nuclear emergencies. PMID:25860286

  2. Impact of Abbreviated Filgrastim Schedule on Survival and Hematopoietic Recovery after Irradiation in Four Mouse Strains with Different Radiosensitivity

    PubMed Central

    Satyamitra, Merriline; Kumar, Vidya P.; Biswas, Shukla; Cary, Lynnette; Dickson, Leonora; Venkataraman, Srinivasan; Ghosh, Sanchita P.

    2017-01-01

    Filgrastim (Neupogen®, granulocyte-colony stimulating factor) is among the few countermeasures recommended for management of patients in the event of lethal total-body irradiation. Despite the plethora of studies using filgrastim as a radiation countermeasure, relatively little is known about the optimal dose schedule of filgrastim to mitigate radiation lethality. We evaluated the efficacy of filgrastim in improving 30-day survival of CD2F1 mice irradiated with a lethal dose (LD70/30) in the AFRRI cobalt-60 facility. We tested different schedules of 1, 3, 5,10 or 16 once-daily injections of filgrastim initiated one day after irradiation. Time optimization studies with filgrastim treatment were also performed, beginning 6–48 h postirradiation. Maximum survival was observed with 3 daily doses of 0.17 mg/kg filgrastim. Survival efficacy of the 3-day treatment was compared against the conventional 16-day filgrastim treatment after irradiation in four mouse strains with varying radiation sensitivities: C3H/HeN, C57BL/6, B6C3F1 and CD2F1. Blood indices, bone marrow histopathology and colony forming unit assays were also evaluated. Filgrastim significantly increased 30-day survival (P < 0.001) with a 3-day treatment compared to 16-day treatment. Filgrastim did not prevent cytopenia nadirs, but facilitated faster recovery of white blood cells, neutrophils, red blood cells, platelets, lymphocytes and hematocrits in all four strains. Accelerated hematopoietic recovery was also reflected in faster bone marrow reconstitution and significant increase in hematopoietic progenitors (P < 0.001) in all four mouse strains. These data indicate that prompt and abbreviated filgrastim treatment has potential benefit for triage in the event of a radiological incident for treating acute hematopoietic syndrome. PMID:28362168

  3. Solar Irradiance Changes And Photobiological Effects At Earth's Surface Following Astrophysical Ionizing Radiation Events

    NASA Astrophysics Data System (ADS)

    Thomas, Brian; Neale, Patrick

    2016-01-01

    Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth for decades. Although there is some direct biological damage on the surface from redistributed radiation several studies have indicated that the greatest long term threat is from ozone depletion and subsequent heightened solar ultraviolet (UV) radiation. It is known that organisms exposed to this irradiation experience harmful effects such as sunburn and even direct damage to DNA, proteins, or other cellular structures. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In the present work, we employed a radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light). Using biological weighting functions we have considered a wide range of effects, including: erythema and skin cancer in humans; inhibition of photosynthesis in the diatom Phaeodactylum sp. and dinoflagellate Prorocentrum micans inhibition of carbon fixation in Antarctic phytoplankton; inhibition of growth of oat (Avena sativa L. cv. Otana) seedlings; and cataracts. We found that past work overestimated UVB irradiance, but that relative estimates for increase in exposure to DNA damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in very limited geographical areas; instead we found a net increase for most of the modeled time-space region. This result has implications for proposed climate changes associated with ionizing radiation events.

  4. Survival and DNA Damage in Plant Seeds Exposed for 558 and 682 Days outside the International Space Station.

    PubMed

    Tepfer, David; Leach, Sydney

    2017-03-01

    For life to survive outside the biosphere, it must be protected from UV light and other radiation by exterior shielding or through sufficient inherent resistance to survive without protection. We tested the plausibility of inherent resistance in plant seeds, reporting in a previous paper that Arabidopsis thaliana and tobacco (Nicotiana tabacum) seeds exposed for 558 days outside the International Space Station (ISS) germinated and developed into fertile plants after return to Earth. We have now measured structural genetic damage in tobacco seeds from this EXPOSE-E experiment by quantitatively amplifying a segment of an antibiotic resistance gene, nptII, inserted into the chloroplast genome. We also assessed the survival of the antibiotic resistance encoded by nptII, using marker rescue in a soil bacterium. Chloroplast DNA damage occurred, but morphological mutants were not detected among the survivors. In a second, longer mission (EXPOSE-R), a nearly lethal exposure was received by Arabidopsis seeds. Comparison between a ground simulation, lacking UV <200nm , and fully exposed seeds in space indicated severe damage from these short wavelengths and again suggested that DNA degradation was not limiting seed survival. To test UV resistance in long-lived, larger seeds, we exposed Arabidopsis, tobacco, and morning glory seeds in the laboratory to doses of UV 254nm , ranging as high as 2420 MJ m -2 . Morning glory seeds resisted this maximum dose, which killed tobacco and Arabidopsis. We thus confirm that a naked plant seed could survive UV exposures during direct transfer from Mars to Earth and suggest that seeds with a more protective seed coat (e.g., morning glory) should survive much longer space travel. Key Words: UV light-Flavonoids-Sinapate-DNA degradation-Arabidopsis-Tobacco-Seeds-Space-International Space Station-EXPOSE-E-EXPOSE-R. Astrobiology 17, 205-215.

  5. Survival and DNA Damage in Plant Seeds Exposed for 558 and 682 Days outside the International Space Station

    PubMed Central

    Leach, Sydney

    2017-01-01

    Abstract For life to survive outside the biosphere, it must be protected from UV light and other radiation by exterior shielding or through sufficient inherent resistance to survive without protection. We tested the plausibility of inherent resistance in plant seeds, reporting in a previous paper that Arabidopsis thaliana and tobacco (Nicotiana tabacum) seeds exposed for 558 days outside the International Space Station (ISS) germinated and developed into fertile plants after return to Earth. We have now measured structural genetic damage in tobacco seeds from this EXPOSE-E experiment by quantitatively amplifying a segment of an antibiotic resistance gene, nptII, inserted into the chloroplast genome. We also assessed the survival of the antibiotic resistance encoded by nptII, using marker rescue in a soil bacterium. Chloroplast DNA damage occurred, but morphological mutants were not detected among the survivors. In a second, longer mission (EXPOSE-R), a nearly lethal exposure was received by Arabidopsis seeds. Comparison between a ground simulation, lacking UV<200nm, and fully exposed seeds in space indicated severe damage from these short wavelengths and again suggested that DNA degradation was not limiting seed survival. To test UV resistance in long-lived, larger seeds, we exposed Arabidopsis, tobacco, and morning glory seeds in the laboratory to doses of UV254nm, ranging as high as 2420 MJ m−2. Morning glory seeds resisted this maximum dose, which killed tobacco and Arabidopsis. We thus confirm that a naked plant seed could survive UV exposures during direct transfer from Mars to Earth and suggest that seeds with a more protective seed coat (e.g., morning glory) should survive much longer space travel. Key Words: UV light—Flavonoids—Sinapate—DNA degradation—Arabidopsis—Tobacco—Seeds—Space—International Space Station—EXPOSE-E—EXPOSE-R. Astrobiology 17, 205–215. PMID:28263676

  6. Radioprotective effect of a metalloporphyrin compound in rat eye model.

    PubMed

    Mao, X W; Crapo, J D; Mekonnen, T; Lindsey, N; Martinez, P; Gridley, D S; Slater, J M

    2009-01-01

    The purpose of this study was to evaluate the efficacy of the antioxidant Mn (III) tetrakis (N-ethylpyridinium-2-yl) porphyrin (MnTE-2-PyP) in protecting ocular tissue and retinal microvasculature from radiation damage. 75 rats were treated with Mn TE-2-PyP at 2.5 micro g/injection into one eye an hour before proton irradiation. The radiation was delivered in a single fraction to total doses of 8 Gray (Gy) or 28 Gy; Rats were sacrificed 3 days and 3, 6, 9, and 12 months thereafter for histology and quantification of photoreceptor cell populations and retinal capillary changes. By 6 months following radiation, there was significant loss of retinal outer and inner nuclear layers in eyes receiving radiation only (8 and 28 Gy) (p < 0.05) compared to their controls and to the eyes of rats treated with radiation plus metalloporphyrin. Retinal microvessel length density decreased significantly 6 months following 28 Gy (p < 0.05) compared to their controls and to MnTE-2-PyP treated rats. By 12 months following irradiation, irradiated eyes showed extensive damage to the photoreceptor layer, whereas the eyes of animals receiving radiation plus MnTE-2-PyP showed almost no morphological damage. MnTE-2-PyP treatment also suppressed radiation-induced apoptosis in our study. These results demonstrated that MnTE-2-PyP protected both photoreceptors and retinal capillaries from radiation damage, suggesting that this metalloporphyrin antioxidant is effective in regulating the damage induced by proton radiation.

  7. [Tanning lamp radiation-induced photochemical retinal damage].

    PubMed

    Volkov, V V; Kharitonova, N N; Mal'tsev, D S

    2014-01-01

    On the basis of original clinical research a rare case of bilateral retinal damage due to tanning lamp radiation exposure is presented. Along with significant decrease of visual acuity and light sensitivity of central visual field as well as color vision impairment, bilateral macular dystrophy was found during an ophthalmoscopy and confirmed by optical coherent tomography and fluorescent angiography. Intensive retinoprotective, vascular, and antioxidant therapy was effective and led to functional improvement and stabilization of the pathologic process associated with photochemical retinal damage. A brief review of literature compares mechanisms of retinal damage by either short or long-wave near visible radiation.

  8. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together, oral supplementation with antioxidants appears to be an effective approach for the radioprotection of hematopoietic cells against the cell killing effects of radiation, and for improving survival in irradiated animals. Preliminary data suggest similar antioxidant protective effects for animals exposed to potentially lethal doses of proton radiation. Studies were also performed to determine whether dietary antioxidants could affect the incidence rates of malignancies in CBA mice exposed to 300 cGy proton (1 GeV/n) radiation or 50 cGy iron ion (1 GeV/n) radiation [9]. Two antioxidant formulations were utilized in these studies; an AOX formulation containing the mixture of antioxidant agents developed from our previous studies and an antioxidant dietary formulation containing the soybean-derived protease inhibitor known as the Bowman-Birk inhibitor (BBI). BBI was evaluated in the form of BBI Concentrate (BBIC), which is the form of BBI utilized in human trials. BBIC has been utilized in human trials since 1992, as described [10]. The major finding in the long-term animal studies was that there was a reduced risk of malignant lymphoma in mice exposed to space radiations and maintained on diets containing the antioxidant formulations. In addition, the two different dietary countermeasures also reduced the yields of a variety of different rare tumor types, arising from both epithelial and connective tissue cells, observed in the animals exposed to space radiation. REFERENCES [1] Guan J. et al (2004) Radiation Research 162, 572-579. [2] Wan X.S. et al (2005) Radiation Research 163, 364-368. [3] Wan X.S. et al (2005) Radiation Research 163, 232-240. [4] Guan J. et al (2006) Radiation Research 165, 373-378. [5] Wan X.S. et al (2006) International Journal of Radiation Oncology, Biology, Physics 64, 1475-1481. [6] Kennedy A.R. et al (2006) Radiation Research 166, 327-332. [7] Kennedy A.R. et al (2007) Radiation & Environmental Biophysics 46(2), 201-3. [8]Wambi, C., Sanzari, J., Wan, X.S., Nuth, M., Davis, J., Ko, Y.-H., Sayers, C.M., Baran, M., Ware, J.H. and Kennedy, A.R. Dietary antioxidants protect hematopoietic cells and improve animal survival following total body irradiation. Radiation Res. (in press) [9] Kennedy, A.R., Davis, J.G., Carlton, W. and Ware, J.H. Effects of dietary antioxidant supplementation on the development of malignancies and other neoplastic lesions in mice exposed to proton or iron ion radiation. Radiation Res. (submitted) [10] Kennedy, A.R. The Status of Human Trials Utilizing Bowman-Birk Inhibitor Concentrate from Soybeans. In: Soy in Health and Disease Prevention, edited by Michihiro Sugano, CRC Press Press LLC, Boca Raton, Florida, Chapter 12, pp. 207-223, 2005. ACKNOWLEDGEMENTS; This work was supported by the National Space Biomedical Research Institute through NASA NCC 9-58.

  9. Biochemical and genotoxic response of naphthalene to fingerlings of milkfish Chanos chanos.

    PubMed

    Palanikumar, L; Kumaraguru, A K; Ramakritinan, C M

    2013-09-01

    The present study investigated the acute toxicity, sub-lethal toxicity and biochemical response of naphthalene in fingerlings of milkfish Chanos chanos. The 96 h acute toxicity LC50 values for C. chanos exposed to naphthalene was 5.18 μg l(-1). The estimated no observed effect concentration and lowest observed effect concentration values for naphthalene in C. chanos were 0.42 and 0.69 μg l(-1) respectively for 30 days. The estimated maximum allowable toxicant concentration for naphthalene was 0.53 μg l(-1). Biochemical enzyme markers such as lipid peroxidation, catalase, glutathione S transferase and reduced glutathione were measured in gills and liver tissues of C. chanos exposed to sub-lethal concentrations of naphthalene. Fluctuation in lipid peroxidation and catalase level suggests that naphthalene concentrations play a vital role in induction of oxidative stress in fish. Induction of reduced glutathione level and inhibition of glutathione S-transferase level was observed in naphthalene exposed C. chanos suggesting that there may be enhanced oxidative damage due to free radicals. Increasing concentration increases in number of nuclear abnormalities. The formation of micronuclei and binucleated micronuclei induction by naphthalene confirm its genotoxic potential. The highest levels of DNA damage (% tail length) were observed at 1.24 μg l(-1) of naphthalene. The study suggests that biochemical enzymes, nuclear abnormalities and DNA damage index can serve as a biological marker for naphthalene contamination.

  10. Medical Management of the Acute Radiation Syndrome: Recommendations of the Strategic National Stockpile Radiation Working Group

    DTIC Science & Technology

    2004-06-15

    Precautions G-CSF or filgrastim Subcutaneous administration of 5 g/kg of body weight per day, continued until ANC 1.0 109 cells/L Subcutaneous...lymphohematopoietic elements. Several studies have indicated that administra- tion of antibiotics reduces mortality rates in irradiated dogs in the LD50/30...hematopoiesis of normal dogs and on hematopoietic recovery after otherwise lethal total body irradiation. Blood. 1989;74:1308-13. [PMID: 2475186] 10. Farese AM

  11. DNA Damage Signals and Space Radiation Risk

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  12. Simulation of radiation damage in minerals by sequential ion irradiations

    NASA Astrophysics Data System (ADS)

    Nakasuga, W. M.; Li, W.; Ewing, R. C.

    2015-12-01

    Radiation effects due to α-decay of U and Th and spontaneous fission of 238U control the production and recovery of the radiation-induced structure of minerals, as well as the diffusion of elements through the mineral host. However, details of how the damage microstructure is produced and annealed remain unknown. Our recent ion beam experiments demonstrate that ionizing radiation from the α-particle recovers the damage structure. Thus, the damage structure is not only the result of the thermal hisotry of the sample, but also of the complex interaction between ionizing and ballistic damage mechanisms. By combining ion irradiations with transmission electron microscopy (TEM), we have simulated the damage produced by α-decay and fission. The α-particle induced annealing has been simulated by in situ TEM observation of consecutive ion-irradiations: i.) 1 MeV Kr2+ (simulating 70 keV α-recoils induced damage), ii.) followed by 400 keV He+ (simulating 4.5 MeV α-particle induced annealing). Thus, in addition to the well-established effects of thermal annealing, the α-particle annealing effects, as evidenced by partical recrystallization of the originally, fully-amorphous apatite upon the α-particle irriadations, should also be considered when evaluating diffusion and release of elements, such as He. In addition, the fission track annealing has been simulated by a new sample preparation method that allows for direct observation of radiation damage recovery at each point along the length of latent tracks created by 80 MeV Xe ions (a typical fission fragment). The initial, rapid reduction in etched track length during isothermal annealing is explained by the rapid annealing of those sections of the track with smaller diameters, as observed directly by in situ TEM. In summary, the atomic-scale investigation of radiation damage in minerals is critical to understanding of the influence of raidation damage on diffusion and kinetics that are fundamental to geochronology.

  13. Biological responses of Habrobracon to spaceflight.

    PubMed

    von Borstel, R C; Smith, R H; Whiting, A R; Grosch, D S

    1970-01-01

    Since the interaction of the parasitic wasp Habrobracon with the space environment could not be prejudged, we decided to test approximately 30 different parameters of a genetic, mutational, biochemical, behavioral, and physiological character in the one spaceflight we had at our disposal. These parameters were examined at six different exposures of gamma-radiation (including 0 dose) in flight, resulting in about 180 different endpoints in all. The most profound effects of spaceflight in conjunction with radiation were decreased hatchability and enhanced fecundity of eggs exposed to spaceflight at different stages of oogenesis. The interpretation we favor is that these two endpoints are reflections of chromosomal non-disjunction in the former case and inhibition of cell division in the latter. Our most comprehensive study of mutagenesis was on sperm, where dominant lethality, recessive lethality, translocations, and visible mutations were assayed; the only effect found was a threefold enhancement of the recessive lethal mutation frequency in the non-irradiated sperm in the orbited Habrobracon males. Behavioral and biochemical differences were found. Mating activity of orbited males was severely disrupted and xanthine dehydrogenase activity was sharply decreased in the irradiated flight animals, an unexpected observation. Postflight experiments were like the ground-based control experiments in all aspects but one. Under conditions of vibration similar to those encountered during the launch and re-entry, the mutation frequency in the sperm increased by a factor of three over that of the non-vibrated control.

  14. Understanding radiation damage on sub-cellular scale using RADAMOL simulation tool

    NASA Astrophysics Data System (ADS)

    Štěpán, Václav; Davídková, Marie

    2016-11-01

    We present an overview of the biophysical model RADAMOL developed as a Monte Carlo simulation tool for physical, physico-chemical and chemical stages of ionizing radiation action. Direct and indirect radiation damage by 10 keV electrons, and protons and alpha particles with energies from 1 MeV up to 30 MeV to a free DNA oligomer or DNA in the complex with lac repressor protein is analyzed. The role of radiation type and energy, oxygen concentration and DNA interaction with proteins on yields and distributions of primary biomolecular damage is demonstrated and discussed.

  15. Hypoxia Potentiates the Radiation-Sensitizing Effect of Olaparib in Human Non-Small Cell Lung Cancer Xenografts by Contextual Synthetic Lethality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yanyan; Verbiest, Tom; Devery, Aoife M.

    Purpose: Poly(ADP-ribose) polymerase (PARP) inhibitors potentiate radiation therapy in preclinical models of human non-small cell lung cancer (NSCLC) and other types of cancer. However, the mechanisms underlying radiosensitization in vivo are incompletely understood. Herein, we investigated the impact of hypoxia on radiosensitization by the PARP inhibitor olaparib in human NSCLC xenograft models. Methods and Materials: NSCLC Calu-6 and Calu-3 cells were irradiated in the presence of olaparib or vehicle under normoxic (21% O{sub 2}) or hypoxic (1% O{sub 2}) conditions. In vitro radiosensitivity was assessed by clonogenic survival assay and γH2AX foci assay. Established Calu-6 and Calu-3 subcutaneous xenografts were treated with olaparib (50 mg/kg, dailymore » for 3 days), radiation (10 Gy), or both. Tumors (n=3/group) were collected 24 or 72 hours after the first treatment. Immunohistochemistry was performed to assess hypoxia (carbonic anhydrase IX [CA9]), vessels (CD31), DNA double strand breaks (DSB) (γH2AX), and apoptosis (cleaved caspase 3 [CC3]). The remaining xenografts (n=6/group) were monitored for tumor growth. Results: In vitro, olaparib showed a greater radiation-sensitizing effect in Calu-3 and Calu-6 cells in hypoxic conditions (1% O{sub 2}). In vivo, Calu-3 tumors were well-oxygenated, whereas Calu-6 tumors had extensive regions of hypoxia associated with down-regulation of the homologous recombination protein RAD51. Olaparib treatment increased unrepaired DNA DSB (P<.001) and apoptosis (P<.001) in hypoxic cells of Calu-6 tumors following radiation, whereas it had no significant effect on radiation-induced DNA damage response in nonhypoxic cells of Calu-6 tumors or in the tumor cells of well-oxygenated Calu-3 tumors. Consequently, olaparib significantly increased radiation-induced growth inhibition in Calu-6 tumors (P<.001) but not in Calu-3 tumors. Conclusions: Our data suggest that hypoxia potentiates the radiation-sensitizing effects of olaparib by contextual synthetic killing, and that tumor hypoxia may be a potential biomarker for selecting patients who may get the greatest benefit from the addition of olaparib to radiation therapy.« less

  16. The Earth Could Burn.

    ERIC Educational Resources Information Center

    Yarrow, Ruth

    1982-01-01

    Environmental educators are worried about the ultimate ecological threat--nuclear war, which could burn thousands of square miles, sterilize the soil, destroy 70 percent of the ozone layer letting in lethal ultraviolet rays, and cause severe radiation sickness. Educators must inform themselves, teach others, contact government representatives, and…

  17. DETECTION OF LOW DOSE RADIATION-AND CHEMICALLY-INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAYS

    EPA Science Inventory

    Rapid, sensitive and simple assays for radiation- and chemically-induced DNA damage can be of significant benefit to a number of fields including radiation biology, clinical research, and environmental monitoring. Although temperature-induced DNA strand separation has been use...

  18. Utilizing the Deep Space Gateway to Characterize DNA Damage Due to Space Radiation and Repair Mechanisms

    NASA Astrophysics Data System (ADS)

    Zea, L.; Niederwieser, T.; Anthony, J.; Stodieck, L.

    2018-02-01

    The radiation environment experienced in the Deep Space Gateway enables the interrogation of DNA damage and repair mechanisms, which may serve to determine the likelihood and consequence of the high radiation risk to prolonged human presence beyond LEO.

  19. An Enhancing Effect of Gold Nanoparticles on the Lethal Action of 2450 MHz Electromagnetic Radiation in Microwave Oven

    PubMed Central

    Mollazadeh-Moghaddam, Kamyar; Moradi, Bardia Varasteh; Dolatabadi-Bazaz, Reza; Shakibae, Mojtaba; Shahverdi, Ahmad Reza

    2011-01-01

    Today, there is an increasing interest in the use of metal nanoparticles in health sciences. Amongst all nanoparticles, the gold nanoparticles have been known to kill the cancer cells under hyperthermic condition by near-infrared frequency electromagnetic waves. On the other hand, although there are different physiochemical methods for disinfection of microbial pollution, however applications of irradiated gold nanoparticles against microorganisms have not yet been investigated. In this study, gold nanoparticles were prepared using D-glucose and characterized (particle size <26 nm). In the next step, the enhancing effect of the non toxic level of gold nanoparticles (50 µg/mL) on the antimicrobial activity of 2450 MHz electromagnetic radiation generated at a microwave oven operated at low power (100 W), was investigated by time-kill course assay against Staphylococcus aureus (S.aureus) ATCC 29737. The results showed that application of gold nanoparticles can enhance the lethal effect of low power microwave in a very short exposure time (5 s). PMID:23407707

  20. DNA Damage and Repair in Human Cancer: Molecular Mechanisms and Contribution to Therapy-Related Leukemias

    PubMed Central

    Casorelli, Ida; Bossa, Cecilia; Bignami, Margherita

    2012-01-01

    Most antitumour therapies damage tumour cell DNA either directly or indirectly. Without repair, damage can result in genetic instability and eventually cancer. The strong association between the lack of DNA damage repair, mutations and cancer is dramatically demonstrated by a number of cancer-prone human syndromes, such as xeroderma pigmentosum, ataxia-telangiectasia and Fanconi anemia. Notably, DNA damage responses, and particularly DNA repair, influence the outcome of therapy. Because DNA repair normally excises lethal DNA lesions, it is intuitive that efficient repair will contribute to intrinsic drug resistance. Unexpectedly, a paradoxical relationship between DNA mismatch repair and drug sensitivity has been revealed by model studies in cell lines. This suggests that connections between DNA repair mechanism efficiency and tumour therapy might be more complex. Here, we review the evidence for the contribution of carcinogenic properties of several drugs as well as of alterations in specific mechanisms involved in drug-induced DNA damage response and repair in the pathogenesis of therapy-related cancers. PMID:23066388

  1. The Future of the South Atlantic Anomaly and Implications for Radiation Damage in Space

    NASA Technical Reports Server (NTRS)

    Heirtzler, J. R.; Smith, David E. (Technical Monitor)

    2000-01-01

    South Atlantic Anomaly of the geomagnetic field plays a dominant role in where radiation damage occurs in near Earth orbits. The historic and recent variations of the geomagnetic field in the South Atlantic are used to estimate the extent of the South Atlantic Anomaly until the year 2000. This projection indicates that radiation damage to spacecraft and humans in space will greatly increase and cover a much larger geographic area than present.

  2. Computational modelling of the cerebral cortical microvasculature: effect of x-ray microbeams versus broad beam irradiation

    NASA Astrophysics Data System (ADS)

    Merrem, A.; Bartzsch, S.; Laissue, J.; Oelfke, U.

    2017-05-01

    Microbeam Radiation Therapy is an innovative pre-clinical strategy which uses arrays of parallel, tens of micrometres wide kilo-voltage photon beams to treat tumours. These x-ray beams are typically generated on a synchrotron source. It was shown that these beam geometries allow exceptional normal tissue sparing from radiation damage while still being effective in tumour ablation. A final biological explanation for this enhanced therapeutic ratio has still not been found, some experimental data support an important role of the vasculature. In this work, the effect of microbeams on a normal microvascular network of the cerebral cortex was assessed in computer simulations and compared to the effect of homogeneous, seamless exposures at equal energy absorption. The anatomy of a cerebral microvascular network and the inflicted radiation damage were simulated to closely mimic experimental data using a novel probabilistic model of radiation damage to blood vessels. It was found that the spatial dose fractionation by microbeam arrays significantly decreased the vascular damage. The higher the peak-to-valley dose ratio, the more pronounced the sparing effect. Simulations of the radiation damage as a function of morphological parameters of the vascular network demonstrated that the distribution of blood vessel radii is a key parameter determining both the overall radiation damage of the vasculature and the dose-dependent differential effect of microbeam irradiation.

  3. Unraveling Fungal Radiation Resistance Regulatory Networks through the Genome-Wide Transcriptome and Genetic Analyses of Cryptococcus neoformans

    PubMed Central

    Jung, Kwang-Woo; Yang, Dong-Hoon; Kim, Min-Kyu; Seo, Ho Seong

    2016-01-01

    ABSTRACT The basidiomycetous fungus Cryptococcus neoformans has been known to be highly radiation resistant and has been found in fatal radioactive environments such as the damaged nuclear reactor at Chernobyl. To elucidate the mechanisms underlying the radiation resistance phenotype of C. neoformans, we identified genes affected by gamma radiation through genome-wide transcriptome analysis and characterized their functions. We found that genes involved in DNA damage repair systems were upregulated in response to gamma radiation. Particularly, deletion of recombinase RAD51 and two DNA-dependent ATPase genes, RAD54 and RDH54, increased cellular susceptibility to both gamma radiation and DNA-damaging agents. A variety of oxidative stress response genes were also upregulated. Among them, sulfiredoxin contributed to gamma radiation resistance in a peroxiredoxin/thioredoxin-independent manner. Furthermore, we found that genes involved in molecular chaperone expression, ubiquitination systems, and autophagy were induced, whereas genes involved in the biosynthesis of proteins and fatty acids/sterols were downregulated. Most importantly, we discovered a number of novel C. neoformans genes, the expression of which was modulated by gamma radiation exposure, and their deletion rendered cells susceptible to gamma radiation exposure, as well as DNA damage insults. Among these genes, we found that a unique transcription factor containing the basic leucine zipper domain, named Bdr1, served as a regulator of the gamma radiation resistance of C. neoformans by controlling expression of DNA repair genes, and its expression was regulated by the evolutionarily conserved DNA damage response protein kinase Rad53. Taken together, the current transcriptome and functional analyses contribute to the understanding of the unique molecular mechanism of the radiation-resistant fungus C. neoformans. PMID:27899501

  4. Environment of Space Interactions with Space Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The primary product of this research project was a computer program named SAVANT. This program uses the Displacement Damage Dose (DDD) method of calculating radiation damage to solar cells. This calculation method was developed at the Naval Research Laboratory, and uses fundamental physical properties of the solar cell materials to predict radiation damage to the solar cells. This means that fewer experimental measurements are required to characterize the radiation damage to the cells, which results in a substantial cost savings to qualify solar cells for orbital missions. In addition, the DDD method makes it easier to characterize cells that are already being used, but have not been fully tested using the older technique of characterizing radiation damage. The computer program combines an orbit generator with NASA's AP-8 and AE-8 models of trapped protons and electrons. This allows the user to specify an orbit, and the program will calculate how the spacecraft moves during the mission, and the radiation environment that it encounters. With the spectrum of the particles, the program calculates how they would slow down while traversing the coverglass, and provides a slowed-down spectrum.

  5. Burst annealing of high temperature GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Brothers, P. R.; Horne, W. E.

    1991-01-01

    One of the major limitations of solar cells in space power systems is their vulnerability to radiation damage. One solution to this problem is to periodically heat the cells to anneal the radiation damage. Annealing was demonstrated with silicon cells. The obstacle to annealing of GaAs cells was their susceptibility to thermal damage at the temperatures required to completely anneal the radiation damage. GaAs cells with high temperature contacts and encapsulation were developed. The cells tested are designed for concentrator use at 30 suns AMO. The circular active area is 2.5 mm in diameter for an area of 0.05 sq cm. Typical one sun AMO efficiency of these cells is over 18 percent. The cells were demonstrated to be resistant to damage after thermal excursions in excess of 600 C. This high temperature tolerance should allow these cells to survive the annealing of radiation damage. A limited set of experiments were devised to investigate the feasibility of annealing these high temperature cells. The effect of repeated cycles of electron and proton irradiation was tested. The damage mechanisms were analyzed. Limitations in annealing recovery suggested improvements in cell design for more complete recovery. These preliminary experiments also indicate the need for further study to isolate damage mechanisms. The primary objective of the experiments was to demonstrate and quantify the annealing behavior of high temperature GaAs cells. Secondary objectives were to measure the radiation degradation and to determine the effect of repeated irradiation and anneal cycles.

  6. A Binary-Encounter-Bethe Approach to Simulate DNA Damage by the Direct Effect

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2013-01-01

    The DNA damage is of crucial importance in the understanding of the effects of ionizing radiation. The main mechanisms of DNA damage are by the direct effect of radiation (e.g. direct ionization) and by indirect effect (e.g. damage by.OH radicals created by the radiolysis of water). Despite years of research in this area, many questions on the formation of DNA damage remains. To refine existing DNA damage models, an approach based on the Binary-Encounter-Bethe (BEB) model was developed[1]. This model calculates differential cross sections for ionization of the molecular orbitals of the DNA bases, sugars and phosphates using the electron binding energy, the mean kinetic energy and the occupancy number of the orbital. This cross section has an analytic form which is quite convenient to use and allows the sampling of the energy loss occurring during an ionization event. To simulate the radiation track structure, the code RITRACKS developed at the NASA Johnson Space Center is used[2]. This code calculates all the energy deposition events and the formation of the radiolytic species by the ion and the secondary electrons as well. We have also developed a technique to use the integrated BEB cross section for the bases, sugar and phosphates in the radiation transport code RITRACKS. These techniques should allow the simulation of DNA damage by ionizing radiation, and understanding of the formation of double-strand breaks caused by clustered damage in different conditions.

  7. A Green's Function Approach to Simulate DNA Damage by the Indirect Effect

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cicinotta, Francis A.

    2013-01-01

    The DNA damage is of fundamental importance in the understanding of the effects of ionizing radiation. DNA is damaged by the direct effect of radiation (e.g. direct ionization) and by indirect effect (e.g. damage by.OH radicals created by the radiolysis of water). Despite years of research, many questions on the DNA damage by ionizing radiation remains. In the recent years, the Green's functions of the diffusion equation (GFDE) have been used extensively in biochemistry [1], notably to simulate biochemical networks in time and space [2]. In our future work on DNA damage, we wish to use an approach based on the GFDE to refine existing models on the indirect effect of ionizing radiation on DNA. To do so, we will use the code RITRACKS [3] developed at the NASA Johnson Space Center to simulate the radiation track structure and calculate the position of radiolytic species after irradiation. We have also recently developed an efficient Monte-Carlo sampling algorithm for the GFDE of reversible reactions with an intermediate state [4], which can be modified and adapted to simulate DNA damage by free radicals. To do so, we will use the known reaction rate constants between radicals (OH, eaq, H,...) and the DNA bases, sugars and phosphates and use the sampling algorithms to simulate the diffusion of free radicals and chemical reactions with DNA. These techniques should help the understanding of the contribution of the indirect effect in the formation of DNA damage and double-strand breaks.

  8. Dye-Assisted Laser Skin Closure with Pulsed Radiation: An In Vitro Study of Weld Strength and Thermal Damage

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Walsh, Joseph T.

    1998-10-01

    Previous laser skin welding studies have used continuous wave delivery of radiation. However, heat diffusion during irradiation prevents strong welds from being achieved without creating large zones of thermal damage. Previously published results indicate that a thermal damage zone in skin greater than 200 micrometers may prevent normal wound healing. We proposed that both strong welds and minimal thermal damage can be achieved by introducing a dye and delivering the radiation in a series of sufficiently short pulses. Two-cm-long incisions were made in guinea pig skin, in vitro. India ink and egg white (albumin) were applied to the wound edges to enhance radiation absorption and to close the wound, respectively. Continuous wave (cw), 1.06 micrometers , Nd:yttrium-aluminum-garnet laser radiation was scanned over the weld producing approximately 100 ms pulses. The cooling time between scans and the number of scans was varied. The thermal damage zone at the weld edges was measured using a transmission polarizing light microscope. The tensile strength of the welds was measured using a tensiometer. For pulsed welding and long cooling times between pulses (8 s), weld strengths of 2.4 +/- 0.9 kg/cm2 were measured, and lateral thermal damage at the epidermis was limited to 500 +/- 150 micrometers . With cw welding, comparable weld strengths produced 2700 +/- 300 micrometers of lateral thermal damage. The cw weld strengths were only 0.6 +/- 0.3 kg/cm2 for thermal damage zones comparable to pulsed welding.

  9. PARP1 inhibitor olaparib (Lynparza) exerts synthetic lethal effect against ligase 4-deficient melanomas

    PubMed Central

    Czyż, Małgorzata; Toma, Monika; Gajos-Michniewicz, Anna; Majchrzak, Kinga; Hoser, Grazyna; Szemraj, Janusz; Nieborowska-Skorska, Margaret; Cheng, Phil; Gritsyuk, Daniel; Levesque, Mitchell; Dummer, Reinhard; Sliwinski, Tomasz; Skorski, Tomasz

    2016-01-01

    Cancer including melanoma may be “addicted” to double strand break (DSB) repair and targeting this process could sensitize them to the lethal effect of DNA damage. PARP1 exerts an important impact on DSB repair as it binds to both single- and double- strand breaks. PARP1 inhibitors might be highly effective drugs triggering synthetic lethality in patients whose tumors have germline or somatic defects in DNA repair genes. We hypothesized that PARP1-dependent synthetic lethality could be induced in melanoma cells displaying downregulation of DSB repair genes. We observed that PARP1 inhibitor olaparib sensitized melanomas with reduced expression of DNA ligase 4 (LIG4) to an alkylatimg agent dacarbazine (DTIC) treatment in vitro, while normal melanocytes remained intact. PARP1 inhibition caused accumulation of DSBs, which was associated with apoptosis in LIG4 deficient melanoma cells. Our hypothesis that olaparib is synthetic lethal with LIG4 deficiency in melanoma cells was supported by selective anti-tumor effects of olaparib used either alone or in combination with dacarbazine (DTIC) in LIG4 deficient, but not LIG4 proficient cells. In addition, olaparib combined with DTIC inhibited the growth of LIG4 deficient human melanoma xenografts. This work for the first time demonstrates the effectiveness of a combination of PARP1 inhibitor olaparib and alkylating agent DTIC for treating LIG4 deficient melanomas. In addition, analysis of the TCGA and transcriptome microarray databases revealed numerous individual melanoma samples potentially displaying specific defects in DSB repair pathways, which may predispose them to synthetic lethality triggered by PARP1 inhibitor combined with a cytotoxic drug. PMID:27705909

  10. Method for microbeam radiation therapy

    DOEpatents

    Slatkin, Daniel N.; Dilmanian, F. Avraham; Spanne, Per O.

    1994-01-01

    A method of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation, in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue.

  11. Method for microbeam radiation therapy

    DOEpatents

    Slatkin, D.N.; Dilmanian, F.A.; Spanne, P.O.

    1994-08-16

    A method is disclosed of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation. The dose is in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue. No Drawings

  12. Unmanned Air Vehicle/Remotely Piloted Vehicle Analysis for Lethal UAV/ RPV

    DTIC Science & Technology

    1993-09-01

    taking the output power at a relatively low speed from the camshaft which is gear-driven at half the crankshaft RPM [Ref. 6]. there engine is a four...from the top of a tree , from over a steep cliff, or other perilous terrain. In addition, parachute landings invariably take their toll in vehicle damage

  13. Chemical Protection Against Radiation Damage

    ERIC Educational Resources Information Center

    Campaigne, Ernest

    1969-01-01

    Discusses potential war time and medical uses for chemical compounds giving protection against radiation damage. Describes compounds known to protect, research aimed at discovering such compounds, and problems of toxicity. (EB)

  14. Advances in Radiation Mutagenesis through Studies on Drosophila

    DOE R&D Accomplishments Database

    Muller, H. J.

    1958-06-01

    The approximately linear relation between radiation dose and induced lethals known for Drosophila spermatozoa, is now extended to spermatids. Data are included regarding oogonia. The linearity principle has been confined for minute structural changes in sperm as multi-hit events, on about the 1.5 power of the dose, long known for spermatozoa, is now extended to spermatids and late oocytes, for relatively short exposures. are found to allow union of broken chromosomes. Therefore, the frequencies are lower for more dispersed exposures of varies with lethals induced in late oocytes follow the same frequency pattern and there fore are multi-hit events. Yet han spermatozoan irradiation that two broken ends derived from nonreciprocal. The following is the order of decreasing radiation mutability of different stages found by ourselves and others: spermatids, spermatozoa in females, spermatozoa 0 to 1 day before ejaculation, earlier spermatozoa, late oocytes, gonia of either sex. Lethal frequencies for these stages range over approximately an order of magnitude, gross structural changes far more widely. Of potential usefulness is our extension of genesis by anoxia, known for spermatozoa in adult males, to those in pupal males and in females, to sperion is especially marked but the increase caused by substituting oxygen for air is less marked, perhaps because of enzymatic differences. In contrast, the induction of gross structural changes in oocytes, but not in spermatids, is markedly reduced by oxygen post-treatment; it is increased by dehydration. The efficacy of induction of structural changes by treatment of spermatozoa, whether with radiation or chemical mutagen, is correlated with the conditions of sperm utilization and egg production. Improving our perspective on radiation effects, some 800,000 offspring have been scored for spontaneous visible mutations of 13 specific loci. The average point-mutation rate was 0.5 to 1.0 per locus among 10/sup 5/ germ cells. Most mutation occurred in peri- fertilization stages. All loci studied mutated from one to nine times. Loci mutating oftener spontaneously also gave more radiation mutation, in other studies, Spectra of individual loci prove similar for spontaneous and induced mutation. Studies on back-mutation also showed similarity of spontaneous and radiation mutations. The doubling dose for back-mutations of forked induced in spermatozoa was several hundred roentgens, gonia at diverse loci. Recent analyses of human mutational load lead to mutation-rate estimated like those earlier based on extrapolations from Drosophila, thus supporting the significance for man of the present studies. (auth)

  15. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...

  16. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENNTIAL FLUORESENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposures...

  17. MUTYH mediates the toxicity of combined DNA 6-thioguanine and UVA radiation

    PubMed Central

    De Luca, Gabriele; Leopardi, Paola; Mancuso, Maria Teresa; Casorelli, Ida; Pichierri, Pietro; Karran, Peter; Bignami, Margherita

    2015-01-01

    The therapeutic thiopurines, including the immunosuppressant azathioprine (Aza) cause the accumulation of the UVA photosensitizer 6-thioguanine (6-TG) in the DNA of the patients' cells. DNA 6-TG and UVA are synergistically cytotoxic and their interaction causes oxidative damage. The MUTYH DNA glycosylase participates in the base excision repair of oxidized DNA bases. Using Mutyh-nullmouse fibroblasts (MEFs) we examined whether MUTYH provides protection against the lethal effects of combined DNA 6-TG/UVA. Surprisingly, Mutyh-null MEFs were more resistant than wild-type MEFs, despite accumulating higher levels of DNA 8-oxo-7,8-dihydroguanine (8-oxoG). Their enhanced 6-TG/UVA resistance reflected the absence of the MUTYH protein and MEFs expressing enzymatically-dead human variants were as sensitive as wild-type cells. Consistent with their enhanced resistance, Mutyh-null cells sustained fewer DNA strand breaks and lower levels of chromosomal damage after 6-TG/UVA. Although 6-TG/UVA treatment caused early checkpoint activation irrespective of the MUTYH status, Mutyh-null cells failed to arrest in S-phase at late time points. MUTYH-dependent toxicity was also apparent in vivo. Mutyh−/−mice survived better than wild-type during a 12-month chronicexposure to Aza/UVA treatments that significantly increased levels of skin DNA 8-oxoG. Two squamous cell skin carcinomas arose in Aza/UVA treated Mutyh−/− mice whereas similarly treated wild-type animals remained tumor-free. PMID:25638157

  18. Natural history of thyroid cancer [Review].

    PubMed

    Takano, Toru

    2017-03-31

    Thyroid cancers have long been considered to arise in middle age and, after their repeated proliferation, resulting in further damage to the genome, they progress to more aggressive and lethal cancers. However, in 2014, some studies were reported that might lead to a marked change in our understanding of the natural history of thyroid cancer. A high prevalence of papillary carcinoma in the young suggested that the first initiation of thyroid cancer is likely to occur in the infantile period. Such a conclusion was also supported by a very slow growth rate of papillary microcarcinomas (PMCs) in an observation trial. The proliferation rate of PMCs was negatively correlated with the age, and surgery to remove PMCs did not contribute to reduce mortality from thyroid cancer. These findings strongly suggested the existence of self-limiting cancers, which are truly malignant but do not progress to lethal cancers, for the first time in human history. The early detection of self-limiting cancers results in overdiagnosis. Ultrasonographic screening of the thyroid in the young should be avoided. Lethal thyroid cancers, whose origin is still unknown, appear suddenly after middle age. In the elderly, thyroid cancers are a mixture of self-limiting and lethal cancers; thus, when thyroid cancer is detected, careful follow-up with examination of its growth rate is required.

  19. Immunopathology of highly virulent pathogens: insights from Ebola virus.

    PubMed

    Zampieri, Carisa A; Sullivan, Nancy J; Nabel, Gary J

    2007-11-01

    Ebola virus is a highly virulent pathogen capable of inducing a frequently lethal hemorrhagic fever syndrome. Accumulating evidence indicates that the virus actively subverts both innate and adaptive immune responses and triggers harmful inflammatory responses as it inflicts direct tissue damage. The host immune system is ultimately overwhelmed by a combination of inflammatory factors and virus-induced cell damage, particularly in the liver and vasculature, often leading to death from septic shock. We summarize the mechanisms of immune dysregulation and virus-mediated cell damage in Ebola virus-infected patients. Future approaches to prevention and treatment of infection will be guided by answers to unresolved questions about interspecies transmission, molecular mechanisms of pathogenesis, and protective adaptive and innate immune responses to Ebola virus.

  20. Solar wind radiation damage effects in lunar material

    NASA Technical Reports Server (NTRS)

    Hapke, B.; Cohen, A. J.; Cassidy, W. A.

    1971-01-01

    The research on solar wind radiation damage and other effects in lunar samples which was conducted to understand the optical properties of lunar materials is reported. Papers presented include: solar radiation effects in lunar samples, albedo of the moon, radiation effects in lunar crystalline rocks, valence states of 3rd transition elements in Apollo 11 and 12 rocks, and trace ferric iron in lunar and meteoritic titanaugites.

  1. Establishing RIPDLIPI Lethality Tables for the General Population

    DTIC Science & Technology

    2018-02-01

    Bibliography Anno, G. et al. (2003). “Dose response relationships for acute ionizing-radiation lethality”. In: Health Physics 84.5, pp. 565–575...The new LUTs were created using a plugin to HENRE ( Health Effects from Nuclear and Radiological Environments; (Oldson et al., 2017). HENRE includes

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, Shinji; Ozaki, Masayori; Suzuki, Keiko

    Long-term administration of ({minus})-epigallocatechin 3-O-gallate (EGCG) to mice through drinking water prevented radiation-induced increase of lipid peroxides in liver and significantly prolonged life span after lethal whole-body X-irradiation. The result indicates validity of this green-tea component as an orally active radio-protector of very low toxicity.

  3. Radiation Tolerance of 65nm CMOS Transistors

    DOE PAGES

    Krohn, M.; Bentele, B.; Christian, D. C.; ...

    2015-12-11

    We report on the effects of ionizing radiation on 65 nm CMOS transistors held at approximately -20°C during irradiation. The pattern of damage observed after a total dose of 1 Grad is similar to damage reported in room temperature exposures, but we observe less damage than was observed at room temperature.

  4. Assessment of rat optic nerve damage due to microbeam radiation therapy in the treatment of glioblastomas.

    PubMed

    Mohamed, A; Worobec, S; Schultke, E

    2008-01-01

    Glioblastomas are the most common and aggressive subtype of human primary brain tumors. Due to their uncontrolled cellular proliferation, intense invasion, and lack of apoptosis, they are extremely difficult to treat. Currently, different approaches such as surgery, chemotherapy and radiation therapy have been employed as possible treatments however thus far; these treatments are not curative. Currently, microbeam radiation therapy (MRT) is being trialed in animal models of malignant brain tumors (rats) to aid in treatment. Some of the protocols tested have been shown to significantly increase survival rates. However, due to the high x-ray doses uses in MRT, the surrounding tissue of the targeted Glioblastomas may be irreversibly damaged. In previous studies, lens damage and clouding of the cornea have been observed in microbeam exposed eyes. However, to date no studies have assessed optic nerve damage. Therefore, this study examines the potential rat optic nerve damage following exposure to microbeam radiation therapy in the treatment of Glioblastomas. Although there appears to be no significant damage to the optic nerve, slight inflammation was observed within the extra ocular muscle.

  5. Chronic intermittent hypobaric hypoxia attenuates radiation induced heart damage in rats.

    PubMed

    Wang, Jun; Wu, Yajing; Yuan, Fang; Liu, Yixian; Wang, Xuefeng; Cao, Feng; Zhang, Yi; Wang, Sheng

    2016-09-01

    Radiation-induced heart damage (RIHD) is becoming an increasing concern for patients and clinicians due to the use of radiotherapy for thoracic tumor. Chronic intermittent hypobaric hypoxia (CIHH) preconditioning has been documented to exert a cardioprotective effect. Here we hypothesized that CIHH was capable of attenuating functional and structural damage in a rat model of RIHD. Male adult Sprague-Dawley rats were randomly divided into 4 groups: control, radiation, CIHH and CIHH plus radiation. Cardiac function was measured using Langendorff perfusion in in vitro rat hearts. Cardiac fibrosis, oxidative stress and endoplasmic reticulum stress (ERS) was assessed by quantitative analysis of protein expression. No significant difference between any two groups was observed in baseline cardiac function as assessed by left ventricular end diastolic pressure (LVEDP), left ventricular developing pressure (LVDP) and the derivative of left ventricular pressure (±LVdp/dt). When challenged by ischemia/reperfusion, LVEDP was increased but LVDP and ±LVdp/dt was decreased significantly in radiation group compared with controls, accompanied by an enlarged infarct size and decreased coronary flow. Importantly, CIHH dramatically improved radiation-induced damage of cardiac function and blunted radiation-induced cardiac fibrosis in the perivascular and interstitial area. Furthermore, CIHH abrogated radiation-induced increase in malondialdehyde and enhanced total superoxide dismutase activity, as well as downregulated expression levels of ERS markers like GRP78 and CHOP. CIHH pretreatment alleviated radiation-induced damage of cardiac function and fibrosis. Such a protective effect was closely associated with suppression of oxidative stress and ERS responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Intermittent Astrophysical Radiation Sources and Terrestrial Life

    NASA Astrophysics Data System (ADS)

    Melott, Adrian

    2013-04-01

    Terrestrial life is exposed to a variety of radiation sources. Astrophysical observations suggest that strong excursions in cosmic ray flux and spectral hardness are expected. Gamma-ray bursts and supernovae are expected to irradiate the atmosphere with keV to GeV photons at irregular intervals. Supernovae will produce large cosmic ray excursions, with time development varying with distance from the event. Large fluxes of keV to MeV protons from the Sun pose a strong threat to electromagnetic technology. The terrestrial record shows cosmogenic isotope excursions which are consistent with major solar proton events, and there are observations of G-stars suggesting that the rate of such events may be much higher than previously assumed. In addition there are unknown and unexplained astronomical transients which may indicate new classes of events. The Sun, supernovae, and gamma-ray bursts are all capable of producing lethal fluences, and some are expected on intervals of 10^8 years or so. The history of life on Earth is filled with mass extinctions at a variety of levels of intensity. Most are not understood. Astrophysical radiation may play a role, particularly from large increases in muon irradiation on the ground, and changes in atmospheric chemistry which deplete ozone, admitting increased solar UVB. UVB is strongly absorbed by DNA and proteins, and breaks the chemical bonds---it is a known carcinogen. High muon fluxes will also be damaging to such molecules, but experiments are needed to pin down the rate. Solar proton events which are not directly dangerous for the biota may nevertheless pose a major threat to modern electromagnetic technology through direct impact on satellites and magnetic induction of large currents in power grids, disabling transformers. We will look at the kind of events that are expected on timescales from human to geological, and their likely consequences.

  7. Longitudinal diffusion tensor magnetic resonance imaging study of radiation-induced white matter damage in a rat model.

    PubMed

    Wang, Silun; Wu, Ed X; Qiu, Deqiang; Leung, Lucullus H T; Lau, Ho-Fai; Khong, Pek-Lan

    2009-02-01

    Radiation-induced white matter (WM) damage is a major side effect of whole brain irradiation among childhood cancer survivors. We evaluate longitudinally the diffusion characteristics of the late radiation-induced WM damage in a rat model after 25 and 30 Gy irradiation to the hemibrain at 8 time points from 2 to 48 weeks postradiation. We hypothesize that diffusion tensor magnetic resonance imaging (DTI) indices including fractional anisotropy (FA), trace, axial diffusivity (lambda(//)), and radial diffusivity (lambda( perpendicular)) can accurately detect and monitor the histopathologic changes of radiation-induced WM damage, measured at the EC, and that these changes are dose and time dependent. Results showed a progressive reduction of FA, which was driven by reduction in lambda(//) from 4 to 40 weeks postradiation, and an increase in lambda( perpendicular) with return to baseline in lambda(//) at 48 weeks postradiation. Histologic evaluation of irradiated WM showed reactive astrogliosis from 4 weeks postradiation with reversal at 36 weeks, and demyelination, axonal degeneration, and necrosis at 48 weeks postradiation. Moreover, changes in lambda(//) correlated with reactive astrogliosis (P < 0.01) and lambda( perpendicular) correlated with demyelination (P < 0.01). Higher radiation dose (30 Gy) induced earlier and more severe histologic changes than lower radiation dose (25 Gy), and these differences were reflected by the magnitude of changes in lambda(//) and lambda( perpendicular). DTI indices reflected the histopathologic changes of WM damage and our results support the use of DTI as a biomarker to noninvasively monitor radiation-induced WM damage.

  8. Why is intracellular ice lethal? A microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum.

    PubMed

    Wesley-Smith, James; Walters, Christina; Pammenter, N W; Berjak, Patricia

    2015-05-01

    Conservation of the genetic diversity afforded by recalcitrant seeds is achieved by cryopreservation, in which excised embryonic axes (or, where possible, embryos) are treated and stored at temperatures lower than -180 °C using liquid nitrogen. It has previously been shown that intracellular ice forms in rapidly cooled embryonic axes of Acer saccharinum (silver maple) but this is not necessarily lethal when ice crystals are small. This study seeks to understand the nature and extent of damage from intracellular ice, and the course of recovery and regrowth in surviving tissues. Embryonic axes of A. saccharinum, not subjected to dehydration or cryoprotection treatments (water content was 1·9 g H2O g(-1) dry mass), were cooled to liquid nitrogen temperatures using two methods: plunging into nitrogen slush to achieve a cooling rate of 97 °C s(-1) or programmed cooling at 3·3 °C s(-1). Samples were thawed rapidly (177 °C s(-1)) and cell structure was examined microscopically immediately, and at intervals up to 72 h in vitro. Survival was assessed after 4 weeks in vitro. Axes were processed conventionally for optical microscopy and ultrastructural examination. Immediately following thaw after cryogenic exposure, cells from axes did not show signs of damage at an ultrastructural level. Signs that cells had been damaged were apparent after several hours of in vitro culture and appeared as autophagic decomposition. In surviving tissues, dead cells were sloughed off and pockets of living cells were the origin of regrowth. In roots, regrowth occurred from the ground meristem and procambium, not the distal meristem, which became lethally damaged. Regrowth of shoots occurred from isolated pockets of surviving cells of peripheral and pith meristems. The size of these pockets may determine the possibility for, the extent of and the vigour of regrowth. Autophagic degradation and ultimately autolysis of cells following cryo-exposure and formation of small (0·2-0·4 µm) intracellular ice crystals challenges current ideas that ice causes immediate physical damage to cells. Instead, freezing stress may induce a signal for programmed cell death (PCD). Cells that form more ice crystals during cooling have faster PCD responses. Published by Oxford University Press on behalf of the Annals of Botany Company 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  9. Cytoplasmic localization of Hug1p, a negative regulator of the MEC1 pathway, coincides with the compartmentalization of Rnr2p–Rnr4p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ainsworth, William B.; Hughes, Bridget Todd; Au, Wei Chun

    2013-10-04

    Highlights: •Hug1p overexpression sensitizes wild-type cells to DNA damage and hydroxyurea (HU). •Expression of Hug1p in response to HU treatment is delayed relative to Rnr3p. •MEC1 pathway genes are required for cytoplasmic localization of Hug1p. •Hug1p subcellular compartmentalization to the cytoplasm coincides with Rnr2p–Rnr4p. -- Abstract: The evolutionarily conserved MEC1 checkpoint pathway mediates cell cycle arrest and induction of genes including the RNR (Ribonucleotide reductase) genes and HUG1 (Hydroxyurea, ultraviolet, and gamma radiation) in response to DNA damage and replication arrest. Rnr complex activity is in part controlled by cytoplasmic localization of the Rnr2p–Rnr4p subunits and inactivation of negative regulatorsmore » Sml1p and Dif1p upon DNA damage and hydroxyurea (HU) treatment. We previously showed that a deletion of HUG1 rescues lethality of mec1Δ and suppresses dun1Δ strains. In this study, multiple approaches demonstrate the regulatory response of Hug1p to DNA damage and HU treatment and support its role as a negative effector of the MEC1 pathway. Consistent with our hypothesis, wild-type cells are sensitive to DNA damage and HU when HUG1 is overexpressed. A Hug1 polyclonal antiserum reveals that HUG1 encodes a protein in budding yeast and its MEC1-dependent expression is delayed compared to the rapid induction of Rnr3p in response to HU treatment. Cell biology and subcellular fractionation experiments show localization of Hug1p-GFP to the cytoplasm upon HU treatment. The cytoplasmic localization of Hug1p-GFP is dependent on MEC1 pathway genes and coincides with the cytoplasmic localization of Rnr2p–Rnr4p. Taken together, the genetic interactions, gene expression, and localization studies support a novel role for Hug1p as a negative regulator of the MEC1 checkpoint response through its compartmentalization with Rnr2p–Rnr4p.« less

  10. Evaluation of less-lethal characteristics of a chemical delivery system for use by prison and corrections departments

    NASA Astrophysics Data System (ADS)

    Cuadros, Jaime H.

    1998-12-01

    The use of high pressure water streams to disperse crowds, in general, and to subdue unruly individuals in a prison environment has been shown to be an effective way to reduce the severity of the confrontations among the inmates and guards. The less lethal chemical delivery system (Hydro-Force) disperses chemicals, such as oleoresin capsicum or 'pepper spray' (OC), in the high pressure water stream. The high pressure water stream is aimed to impact the target individuals. A close miss overhead is still very effective as the water mixture can 'ran' on them and soak the target individuals. The effect of the OC is multiplied by the whole body exposure with excellent results in stopping any undesirable behavior of the target individuals, without bodily contact or struggle with the guards. The possibility of producing blunt trauma damage by the impact of the water stream, at close range, was a concern to be investigated. The water stream can be considered as a special fluid kinetic energy projectile. At impact, the kinetic energy of the mass and velocity of the stream of water is dissipated and its momentum is transferred to the target. The purpose of this cursory study is to evaluate whether the physiological effects of this impact is below the threshold of damage or lethality. Comparisons are made, where the two crucial elements, the force coupled to the target and the duration of its application, in order to establish the probably level of blunt trauma associated with the use of the water jet.

  11. Antibiotics induce redox-related physiological alterations as part of their lethality

    PubMed Central

    Dwyer, Daniel J.; Belenky, Peter A.; Yang, Jason H.; MacDonald, I. Cody; Martell, Jeffrey D.; Takahashi, Noriko; Chan, Clement T. Y.; Lobritz, Michael A.; Braff, Dana; Schwarz, Eric G.; Ye, Jonathan D.; Pati, Mekhala; Vercruysse, Maarten; Ralifo, Paul S.; Allison, Kyle R.; Khalil, Ahmad S.; Ting, Alice Y.; Walker, Graham C.; Collins, James J.

    2014-01-01

    Deeper understanding of antibiotic-induced physiological responses is critical to identifying means for enhancing our current antibiotic arsenal. Bactericidal antibiotics with diverse targets have been hypothesized to kill bacteria, in part by inducing production of damaging reactive species. This notion has been supported by many groups but has been challenged recently. Here we robustly test the hypothesis using biochemical, enzymatic, and biophysical assays along with genetic and phenotypic experiments. We first used a novel intracellular H2O2 sensor, together with a chemically diverse panel of fluorescent dyes sensitive to an array of reactive species to demonstrate that antibiotics broadly induce redox stress. Subsequent gene-expression analyses reveal that complex antibiotic-induced oxidative stress responses are distinct from canonical responses generated by supraphysiological levels of H2O2. We next developed a method to quantify cellular respiration dynamically and found that bactericidal antibiotics elevate oxygen consumption, indicating significant alterations to bacterial redox physiology. We further show that overexpression of catalase or DNA mismatch repair enzyme, MutS, and antioxidant pretreatment limit antibiotic lethality, indicating that reactive oxygen species causatively contribute to antibiotic killing. Critically, the killing efficacy of antibiotics was diminished under strict anaerobic conditions but could be enhanced by exposure to molecular oxygen or by the addition of alternative electron acceptors, indicating that environmental factors play a role in killing cells physiologically primed for death. This work provides direct evidence that, downstream of their target-specific interactions, bactericidal antibiotics induce complex redox alterations that contribute to cellular damage and death, thus supporting an evolving, expanded model of antibiotic lethality. PMID:24803433

  12. A Translational Murine Model of Sub-Lethal Intoxication with Shiga Toxin 2 Reveals Novel Ultrastructural Findings in the Brain Striatum

    PubMed Central

    Tironi-Farinati, Carla; Geoghegan, Patricia A.; Cangelosi, Adriana; Pinto, Alipio; Loidl, C. Fabian; Goldstein, Jorge

    2013-01-01

    Infection by Shiga toxin-producing Escherichia coli causes hemorrhagic colitis, hemolytic uremic syndrome (HUS), acute renal failure, and also central nervous system complications in around 30% of the children affected. Besides, neurological deficits are one of the most unrepairable and untreatable outcomes of HUS. Study of the striatum is relevant because basal ganglia are one of the brain areas most commonly affected in patients that have suffered from HUS and since the deleterious effects of a sub-lethal dose of Shiga toxin have never been studied in the striatum, the purpose of this study was to attempt to simulate an infection by Shiga toxin-producing E. coli in a murine model. To this end, intravenous administration of a sub-lethal dose of Shiga toxin 2 (0.5 ηg per mouse) was used and the correlation between neurological manifestations and ultrastructural changes in striatal brain cells was studied in detail. Neurological manifestations included significant motor behavior abnormalities in spontaneous motor activity, gait, pelvic elevation and hind limb activity eight days after administration of the toxin. Transmission electron microscopy revealed that the toxin caused early perivascular edema two days after administration, as well as significant damage in astrocytes four days after administration and significant damage in neurons and oligodendrocytes eight days after administration. Interrupted synapses and mast cell extravasation were also found eight days after administration of the toxin. We thus conclude that the chronological order of events observed in the striatum could explain the neurological disorders found eight days after administration of the toxin. PMID:23383285

  13. Study of crosslinking onset and hydrogen annealing of ultra-high molecular weight polyethylene irradiated with high-energy protons

    NASA Astrophysics Data System (ADS)

    Wilson, John Ford

    1997-09-01

    Ultra high molecular weight polyethylene (UHMW-PE) is used extensively in hip and knee endoprostheses. Radiation damage from the sterilization of these endoprostheses prior to surgical insertion results in polymer crosslinking and decreased oxidative stability. The motivation for this study was to determine if UHMW-PE could be crosslinked by low dose proton irradiation with minimal radiation damage and its subsequent deleterious effects. I found that low dose proton irradiation and post irradiation hydrogen annealing did crosslink UHMW-PE and limit post irradiation oxidation. Crosslinking onset was investigated for UHMW-PE irradiated with 2.6 and 30 MeV H+ ions at low doses from 5.7 × 1011-2.3 × 1014 ions/cm2. Crosslinking was determined from gel permeation chromatography (GPC) of 1,2,4 trichlorobenzene sol fractions and increased with dose. Fourier transform infrared spectroscopy (FTIR) showed irradiation resulted in increased free radicals confirmed from increased carbonyl groups. Radiation damage, especially at the highest doses observed, also showed up in carbon double bonds and increased methyl end groups. Hydrogen annealing after ion irradiation resulted in 40- 50% decrease in FTIR absorption associated with carbonyl. The hydrogen annealing prevented further oxidation after aging for 1024 hours at 80oC. Hydrogen annealing was successful in healing radiation damage through reacting with the free radicals generated during proton irradiation. Polyethylenes, polyesters, and polyamides are used in diverse applications by the medical profession in the treatment of orthopedic impairments and cardiovascular disease and for neural implants. These artificial implants are sterilized with gamma irradiation prior to surgery and the resulting radiation damage can lead to accelerated deterioration of the implant properties. The findings in this study will greatly impact the continued use of these materials through the elimination of many problems associated with radiation damage from sterilization. The higher energy transfer for proton compared to gamma irradiation greatly accelerated the radiation damage. Radiation damage increased linearly with dose over the range of doses examined. These results were consistent with findings from earlier researchers of gamma irradiation of polyethylene.

  14. Report on the Study of Radiation Damage in Calcium Fluoride and Magnesium Fluoride Crystals for use in Excimer Laser Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1999-10-04

    A study was performed to investigate the effects of radiation damage in calcium fluoride and magnesium fluoride crystals caused by gamma rays and UV photons from excimer lasers. The purpose was to study and correlate the damage caused by these two different mechanisms in various types of material used for fabricating optical elements in high power excimer lasers and lens systems of lithography tools. These optical systems are easily damaged by the laser itself, and it is necessary to use only the most radiation resistant materials for certain key elements. It was found that a clear correlation exists between the,more » radiation induced damage caused by high energy gamma rays and that produced by UV photons from the excimer laser. This correlation allows a simple procedure to be developed to select the most radiation resistant material at the ingot level, which would be later used to fabricate various components of the optical system. This avoids incurring the additional cost of fabricating actual optical elements with material that would later be damaged under prolonged use. The result of this screening procedure can result in a considerable savings in the overall cost of the lens and laser system.« less

  15. Track structure based modelling of light ion radiation effects on nuclear and mitochondrial DNA

    NASA Astrophysics Data System (ADS)

    Schmitt, Elke; Ottolenghi, Andrea; Dingfelder, Michael; Friedland, Werner; Kundrat, Pavel; Baiocco, Giorgio

    2016-07-01

    Space radiation risk assessment is of great importance for manned spaceflights in order to estimate risks and to develop counter-measures to reduce them. Biophysical simulations with PARTRAC can help greatly to improve the understanding of initial biological response to ionizing radiation. Results from modelling radiation quality dependent DNA damage and repair mechanisms up to chromosomal aberrations (e.g. dicentrics) can be used to predict radiation effects depending on the kind of mixed radiation field exposure. Especially dicentric yields can serve as a biomarker for an increased risk due to radiation and hence as an indicator for the effectiveness of the used shielding. PARTRAC [1] is a multi-scale biophysical research MC code for track structure based initial DNA damage and damage response modelling. It integrates physics, radiochemistry, detailed nuclear DNA structure and molecular biology of DNA repair by NHEJ-pathway to assess radiation effects on cellular level [2]. Ongoing experiments with quasi-homogeneously distributed compared to sub-micrometre focused bunches of protons, lithium and carbon ions allow a separation of effects due to DNA damage complexity on nanometre scale from damage clustering on (sub-) micrometre scale [3, 4]. These data provide an unprecedented benchmark for the DNA damage response model in PARTRAC and help understand the mechanisms leading to cell killing and chromosomal aberrations (e.g. dicentrics) induction. A large part of space radiation is due to a mixed ion field of high energy protons and few heavier ions that can be only partly absorbed by the shielding. Radiation damage induced by low-energy ions significantly contributes to the high relative biological efficiency (RBE) of ion beams around Bragg peak regions. For slow light ions the physical cross section data basis in PARTRAC has been extended to investigate radiation quality effects in the Bragg peak region [5]. The resulting range and LET values agree with ICRU data and SRIM calculations. Preliminary studies regarding the biological endpoints DSB (cluster) and chromosomal aberrations have been performed for selected light ions up to neon. Validation with experimental data as well as further calculations are underway and final results will be presented at the meeting. Mitochondrial alterations have been implicated in radiation-induced cardiovascular effects. To extend the applicability of PARTRAC biophysical tool towards effects on mitochondria, the nuclear DNA and chromatin as the primary target of radiation has been complemented by a model of mitochondrial DNA (mtDNA) to mimic a coronary cell with thousand mitochondria contained in the cytoplasm. Induced mtDNA damage (SSB, DSB) has been scored for 60Co photons and 5 MeV alpha-particle irradiation, assuming alternative radical scavenging capacities within the mitochondria. While direct radiation effects in mtDNA are identical to nuclear DNA, indirect effects in mtDNA are in general larger due to lower scavenging and the lack of DNA-protecting histones. These simulations complement the scarce experimental data on radiation-induced mtDNA damage and help elucidate the relative roles of initial mtDNA versus nuclear DNA damage and of pathways that amplify their respective effects. Ongoing and planned developments of PARTRAC include coupling with a radiation transport code and track-structure based calculations of cell killing for RBE studies on macroscopic scales within a mixed ion field. [1] Friedland, Dingfelder et al. (2011): "Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC", Mutat. Res. 711, 28-40 [2] Friedland et al. (2013): "Track structure based modelling of chromosome aberrations after photon and alpha-particle irradiation", Mutat. Res. 756, 213-223 [3] Schmid, Friedland et al. (2015): "Sub-micrometer 20 MeV protons or 45 MeV lithium spot irradiation enhances yields of dicentric chromosomes due to clustering of DNA double-strand breaks", Mutat. Res. 793, 30-40 [4] Friedland, Schmitt, Kundrat (2015): "Modelling Proton bunches focussed to submicrometre scales: Low-LET Radiation damage in high-LET-like spatial structure", Radiat. Prot. Dosim. 166, 34-37 [5] Schmitt, Friedland, Kundrat, Dingfelder, Ottolenghi (2015): "Cross section scaling for track structure simulations of low-energy ions in liquid water", Radiat. Prot. Dosim. 166, 15-18} Supported by the European Atomic Energy Community's Seventh Framework Programme (FP7/2007-2011) under grant agreement no 249689 "DoReMi" and the German Federal Ministry on Education and Research (KVSF-Projekt "LET-Verbund").

  16. Computational Model of the Modulation of Gene Expression Following DNA Damage

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Dicello, J. F.; Nikjoo, H.; Cherubini, R.

    2002-01-01

    High linear energy transfer (LET) radiation, such as heavy ions or neutrons, has an increased biological effectiveness compared to X rays for gene mutation, genomic instability, and carcinogenesis. In the traditional paradigm, mutations or chromosomal aberrations are causative of late effects. However, in recent years experimental evidence has demonstrated the important role of the description of the modification of gene expression by radiation in understanding the mechanisms of radiation action. In this report, approaches are discussed to the mathematical description of mRNA and protein expression kinetics following DNA damage. Several hypotheses for models of radiation modulation of protein expression are discussed including possible non-linear processes that evolve from the linear dose responses that follow the initial DNA damage produced by radiation.

  17. Unraveling Fungal Radiation Resistance Regulatory Networks through the Genome-Wide Transcriptome and Genetic Analyses of Cryptococcus neoformans.

    PubMed

    Jung, Kwang-Woo; Yang, Dong-Hoon; Kim, Min-Kyu; Seo, Ho Seong; Lim, Sangyong; Bahn, Yong-Sun

    2016-11-29

    The basidiomycetous fungus Cryptococcus neoformans has been known to be highly radiation resistant and has been found in fatal radioactive environments such as the damaged nuclear reactor at Chernobyl. To elucidate the mechanisms underlying the radiation resistance phenotype of C. neoformans, we identified genes affected by gamma radiation through genome-wide transcriptome analysis and characterized their functions. We found that genes involved in DNA damage repair systems were upregulated in response to gamma radiation. Particularly, deletion of recombinase RAD51 and two DNA-dependent ATPase genes, RAD54 and RDH54, increased cellular susceptibility to both gamma radiation and DNA-damaging agents. A variety of oxidative stress response genes were also upregulated. Among them, sulfiredoxin contributed to gamma radiation resistance in a peroxiredoxin/thioredoxin-independent manner. Furthermore, we found that genes involved in molecular chaperone expression, ubiquitination systems, and autophagy were induced, whereas genes involved in the biosynthesis of proteins and fatty acids/sterols were downregulated. Most importantly, we discovered a number of novel C. neoformans genes, the expression of which was modulated by gamma radiation exposure, and their deletion rendered cells susceptible to gamma radiation exposure, as well as DNA damage insults. Among these genes, we found that a unique transcription factor containing the basic leucine zipper domain, named Bdr1, served as a regulator of the gamma radiation resistance of C. neoformans by controlling expression of DNA repair genes, and its expression was regulated by the evolutionarily conserved DNA damage response protein kinase Rad53. Taken together, the current transcriptome and functional analyses contribute to the understanding of the unique molecular mechanism of the radiation-resistant fungus C. neoformans IMPORTANCE: Although there are no natural environments under intense radiation, some living organisms have been found to show high radiation resistance. Organisms harboring the ability of radiation resistance have unique regulatory networks to overcome this stress. Cryptococcus neoformans is one of the radiation-resistant fungi and is found in highly radioactive environments. However, it remains elusive how radiation-resistant eukaryotic microorganisms work differentially from radiation-sensitive ones. Here, we performed transcriptome analysis of C. neoformans to explore gene expression profiles after gamma radiation exposure and functionally characterized some of identified radiation resistance genes. Notably, we identified a novel regulator of radiation resistance, named Bdr1 (a bZIP TF for DNA damage response 1), which is a transcription factor (TF) that is not closely homologous to any known TF and is transcriptionally controlled by the Rad53 kinase. Therefore, our work could shed light on understanding not only the radiation response but also the radiation resistance mechanism of C. neoformans. Copyright © 2016 Jung et al.

  18. Biodamage via shock waves initiated by irradiation with ions.

    PubMed

    Surdutovich, Eugene; Yakubovich, Alexander V; Solov'yov, Andrey V

    2013-01-01

    Radiation damage following the ionising radiation of tissue has different scenarios and mechanisms depending on the projectiles or radiation modality. We investigate the radiation damage effects due to shock waves produced by ions. We analyse the strength of the shock wave capable of directly producing DNA strand breaks and, depending on the ion's linear energy transfer, estimate the radius from the ion's path, within which DNA damage by the shock wave mechanism is dominant. At much smaller values of linear energy transfer, the shock waves turn out to be instrumental in propagating reactive species formed close to the ion's path to large distances, successfully competing with diffusion.

  19. A Review: Some biological effects of high LET radiations

    NASA Technical Reports Server (NTRS)

    Wiley, A., Jr.

    1972-01-01

    There are qualitative and quantitative differences in the biological damage observed after exposure to high LET radiation as compared to that caused by low LET radiations. This review is concerned with these differences, which are ultimately reflected at the biochemical, cellular and even whole animal levels. In general, high LET radiations seem to produce biochemical damage which is more severe and possibly less repairable. Experimental data for those effects are presented in terms of biochemical RBE's with consideration of both early and late manifestations. An LET independent process by which significant biochemical damage may result from protons, neutrons and negative pion mesons is discussed.

  20. Disclosure of the oscillations in kinetics of the reactor pressure vessel steel damage at fast neutron intensity decreasing

    NASA Astrophysics Data System (ADS)

    Krasikov, E.; Nikolaenko, V.

    2017-01-01

    Fast neutron intensity influence on reactor materials radiation damage is a critically important question in the problem of the correct use of the accelerated irradiation tests data for substantiation of the materials workability in real irradiation conditions that is low neutron intensity. Investigations of the fast neutron intensity (flux) influence on radiation damage and experimental data scattering reveal the existence of non-monotonous sections in kinetics of the reactor pressure vessels (RPV) steel damage. Discovery of the oscillations as indicator of the self-organization processes presence give reasons for new ways searching on reactor pressure vessel (RPV) steel radiation stability increasing and attempt of the self-restoring metal elaboration. Revealing of the wavelike process in the form of non monotonous parts of the kinetics of radiation embrittlement testifies that periodic transformation of the structure take place. This fact actualizes the problem of more precise definition of the RPV materials radiation embrittlement mechanisms and gives reasons for search of the ways to manage the radiation stability (nanostructuring and so on to stimulate the radiation defects annihilation), development of the means for creating of more stableness self recovering smart materials.

  1. Cell damage caused by ultraviolet B radiation in the desert cyanobacterium Phormidium tenue and its recovery process.

    PubMed

    Wang, Gaohong; Deng, Songqiang; Liu, Jiafeng; Ye, Chaoran; Zhou, Xiangjun; Chen, Lanzhou

    2017-10-01

    Phormidium tenue, a cyanobacterium that grows in the topsoil of biological soil crusts (BSCs), has the highest recovery rate among desert crust cyanobacteria after exposure to ultraviolet B (UV-B) radiation. However, the mechanism underlying its recovery process is unclear. To address this issue, we measured chlorophyll a fluorescence, generation of reactive oxygen species (ROS), lipid peroxidation, and repair of DNA breakage in P. tenue following exposure to UV-B. We found that UV-B radiation at all doses tested reduced photosynthesis and induced cell damage in P. tenue. However, P. tenue responded to UV-B radiation by rapidly reducing photosynthetic activity, which protects the cell by leaking less ROS. Antioxidant enzymes, DNA damage repair systems, and UV absorbing pigments were then induced to mitigate the damage caused by UV-B radiation. The addition of exogenous antioxidant chemicals ascorbate and N-acetylcysteine also mitigated the harmful effects caused by UV-B radiation and enhanced the recovery process. These chemicals could aid in the resistance of P. tenue to the exposure of intense UV-B radiation in desertified areas when inoculated onto the sand surface to form artificial algal crusts. Copyright © 2017. Published by Elsevier Inc.

  2. Manhattan transfer: lethal radiation, bone marrow transplantation, and the birth of stem cell biology, ca. 1942-1961.

    PubMed

    Kraft, Alison

    2009-01-01

    This study investigates how, in the late 1940s and 1950s, fears of nuclear accidents and nuclear warfare shaped postwar radiobiology. The new and intense forms of radiation generated by nuclear reactor technology, and which would be released in the event of a nuclear war, created concerns about a public-health hazard unprecedented in form and scale. Fears of inadvertent exposure to acute and potentially lethal radiation launched a search for anti-radiation therapies, out of which emerged the new technique of bone marrow transplantation (BMT). This study analyzes the use of BMT first as a research tool to explore the biological effects of ionizing radiation, and then as an adjunct to radiotherapy for the treatment of cancer. In highlighting how BMT became the province of different research and clinical constituencies, this study develops an understanding of the forces and contingencies that shaped its development. Exploring the emergence of BMT and the uses to which it was put, it reveals that BMT remained a technique in the making -- unstable and far from standardized, even as it became both a widely used research tool and rapidly made its way into the clinic. More broadly, it casts new light on one route through which the Manhattan Project influenced postwar radiobiology; it also affords new insights into one means by which radiobiology came to serve the interests of the Cold War state. In its focus on BMT this paper provides a new perspective on the evolving relationship between radiobiology and biomedicine in the postwar period.

  3. Influence of rpoS mutations on the response of Salmonella enterica serovar Typhimurium to solar radiation.

    PubMed

    Oppezzo, Oscar J; Costa, Cristina S; Pizarro, Ramón A

    2011-01-10

    Salmonella enterica serovar Typhimurium is an important pathogen, and exhibits considerable resistance to the lethal effects of solar radiation. To evaluate the involvement of the RpoS transcription factor in the defense mechanisms of this organism, the sunlight response of a wild type strain (ATCC14028) was compared with that of an rpoS mutant, which exhibited increased sensitivity. Kinetics of cell death was complex in both strains, probably due to the presence of a variety of targets for the radiation. When ultraviolet radiation was excluded from the incident sunlight, lethal effects were abolished independently of the allelic state of rpoS. Reduction of oxygen concentration in the irradiation medium provided moderate protection to ATCC14028, but notably improved survival of the mutant. Similar assays were developed with another S. enterica strain (DA1468), which is a derivative of strain LT2 and produces low levels of RpoS. In this strain the loss of viability reveals the dependence on solar ultraviolet and oxygen concentration found for ATCC14028, but radiation resistance was slightly reduced. Increased sensitivity was observed in an rpoS mutant derived from DA1468, indicating that RpoS functions related to photoprotection are conserved in this strain. In addition, notable differences in the shape of the survival curves obtained for mutants derived from ATCC14028 and DA1468 were found, suggesting that genes beyond RpoS control are relevant in the sunlight response of these mutants. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Redox-Modulated Phenomena and Radiation Therapy: The Central Role of Superoxide Dismutases

    PubMed Central

    Holley, Aaron K.; Miao, Lu; St. Clair, Daret K.

    2014-01-01

    Abstract Significance: Ionizing radiation is a vital component in the oncologist's arsenal for the treatment of cancer. Approximately 50% of all cancer patients will receive some form of radiation therapy as part of their treatment regimen. DNA is considered the major cellular target of ionizing radiation and can be damaged directly by radiation or indirectly through reactive oxygen species (ROS) formed from the radiolysis of water, enzyme-mediated ROS production, and ROS resulting from altered aerobic metabolism. Recent Advances: ROS are produced as a byproduct of oxygen metabolism, and superoxide dismutases (SODs) are the chief scavengers. ROS contribute to the radioresponsiveness of normal and tumor tissues, and SODs modulate the radioresponsiveness of tissues, thus affecting the efficacy of radiotherapy. Critical Issues: Despite its prevalent use, radiation therapy suffers from certain limitations that diminish its effectiveness, including tumor hypoxia and normal tissue damage. Oxygen is important for the stabilization of radiation-induced DNA damage, and tumor hypoxia dramatically decreases radiation efficacy. Therefore, auxiliary therapies are needed to increase the effectiveness of radiation therapy against tumor tissues while minimizing normal tissue injury. Future Directions: Because of the importance of ROS in the response of normal and cancer tissues to ionizing radiation, methods that differentially modulate the ROS scavenging ability of cells may prove to be an important method to increase the radiation response in cancer tissues and simultaneously mitigate the damaging effects of ionizing radiation on normal tissues. Altering the expression or activity of SODs may prove valuable in maximizing the overall effectiveness of ionizing radiation. Antioxid. Redox Signal. 20, 1567–1589. PMID:24094070

  5. Evaluation of preventive effect of shilajit on radiation-induced apoptosis on ovaries.

    PubMed

    Kececi, Mete; Akpolat, Meryem; Gulle, Kanat; Gencer, Ercan; Sahbaz, Ahmet

    2016-06-01

    Canc er is the second leading cause of death in children in developed countries and most of childhood malignancies can be treated with chemo-radiotherapy. Although radiation therapy is a successful treatment modality in cancer patients, it has various adverse effects. Especially the gonads are very sensitive and prone to radiation-related damage. Radiation impairs the ovaries by triggering apoptosis of follicular cells and chromosomal damage and oxidative stress. Shilajit, a traditional medicinal agent in India, Russia, and other parts of the world, contains various antioxidant agents and has ovogenic effects. To evaluate the ability of shilajit to prevent radiation-induced ovarian damage. Forty Wistar albino female rats were divided into four groups as: Control group, shilajit group, radiation only group, and radiation + shilajit group. Four days after radiation exposure, the rats were sacrificed and the ovaries were removed and evaluated immuno-histopathologically. There was a statistically significant difference in follicle counts (primordial, primary, preantral, antral, and atretic follicles) between the groups (p < 0.001). Almost all follicles at all stages were atretic in the radiation only group whereas normal-looking primordial follicles were detected in the radiation + shilajit group. In radiation + shilajit group, p53, Bax and caspase 3 expression was less intense than that in the radiation only group follicles. This is the first reported study evaluating the effects of shilajit on radiation-related ovarian damage prevention. Shilajit decreased the expression of p53, Bax, and caspase 3, thereby blocking the apoptotic pathways. Shilajit was found to be especially protective of primordial follicles.

  6. Radiation-induced cardiomyopathy as a function of radiation beam gating to the cardiac cycle

    NASA Astrophysics Data System (ADS)

    Gladstone, David J.; Flanagan, Michael F.; Southworth, Jean B.; Hadley, Vaughn; Thibualt, Melissa Wei; Hug, Eugen B.; Hoopes, P. Jack

    2004-04-01

    Portions of the heart are often unavoidably included in the primary treatment volume during thoracic radiotherapy, and radiation-induced heart disease has been observed as a treatment-related complication. Such complications have been observed in humans following radiation therapy for Hodgkin's disease and treatment of the left breast for carcinoma. Recent attempts have been made to prevent re-stenosis following angioplasty procedures using external beam irradiation. These attempts were not successful, however, due to the large volume of heart included in the treatment field and subsequent cardiac morbidity. We suggest a mechanism for sparing the heart from radiation damage by synchronizing the radiation beam with the cardiac cycle and delivering radiation only when the heart is in a relatively hypoxic state. We present data from a rat model testing this hypothesis and show that radiation damage to the heart can be altered by synchronizing the radiation beam with the cardiac cycle. This technique may be useful in reducing radiation damage to the heart secondary to treatment for diseases such as Hodgkin's disease and breast cancer.

  7. Evaluation of DNA damage induced by gamma radiation in gill and muscle tissues of Cyprinus carpio and their relative sensitivity.

    PubMed

    M K, Praveen Kumar; Shyama, Soorambail K; D'Costa, Avelyno; Kadam, Samit B; Sonaye, Bhagatsingh Harisingh; Chaubey, Ramesh Chandra

    2017-10-01

    The effect of radiation on the aquatic environment is of major concern in recent years. Limited data is available on the genotoxicity of gamma radiation on different tissues of aquatic organisms. Hence, the present investigation was carried out to study the DNA damage induced by gamma radiation in the gill and muscle tissues and their relative sensitivity using the comet assay in the freshwater teleost fish, common carp (Cyprinus carpio). The comet assay was optimized and validated in common carp using cyclophosphamide (CP), a reference genotoxic agent. The fish were exposed (acute) to various doses of gamma radiation (2, 4, 6, 8 and 10Gy) and samplings (gill and muscle tissue) were done at regular intervals (24, 48 and 72h) to assess the DNA damage. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA for all doses of gamma radiation in both tissues. We also observed a dose-related increase and a time-dependent decrease of DNA damage. In comparison, DNA damage showed different sensitivity among the tissues at different doses. This shows that a particular dose may have different effects on different tissues which could be due to physiological factors of the particular tissue. Our study also suggests that the gills and muscle of fish are sensitive and reliable tissues for evaluating the genotoxic effects of reference and environmental agents, using the comet assay. Copyright © 2017. Published by Elsevier Inc.

  8. Electronic effects in high-energy radiation damage in tungsten

    DOE PAGES

    Zarkadoula, Eva; Duffy, Dorothy M.; Nordlund, Kai; ...

    2015-03-13

    Even though the effects of the electronic excitations during high-energy radiation damage processes are not currently understood, it is shown that their role in the interaction of radiation with matter is important. We perform molecular dynamics simulations of high-energy collision cascades in bcc-tungsten using the coupled two-temperature molecular dynamics (2T-MD) model that incorporates both the effects of electronic stopping and electron–phonon interaction. We compare the combination of these effects on the induced damage with only the effect of electronic stopping, and conclude in several novel insights. In the 2T-MD model, the electron–phonon coupling results in less damage production in themore » molten region and in faster relaxation of the damage at short times. We show these two effects lead to a significantly smaller amount of the final damage at longer times.« less

  9. Co-expression of antioxidant enzymes with expression of p53, DNA repair, and heat shock protein genes in the gamma ray-irradiated hermaphroditic fish Kryptolebias marmoratus larvae.

    PubMed

    Rhee, Jae-Sung; Kim, Bo-Mi; Kim, Ryeo-Ok; Seo, Jung Soo; Kim, Il-Chan; Lee, Young-Mi; Lee, Jae-Seong

    2013-09-15

    To investigate effects of gamma ray irradiation in the hermaphroditic fish, Kryptolebias marmoratus larvae, we checked expression of p53, DNA repair, and heat shock protein genes with several antioxidant enzyme activities by quantitative real-time RT-PCR and biochemical methods in response to different doses of gamma radiation. As a result, the level of gamma radiation-induced DNA damage was initiated after 4Gy of radiation, and biochemical and molecular damage became substantial from 8Gy. In particular, several DNA repair mechanism-related genes were significantly modulated in the 6Gy gamma radiation-exposed fish larvae, suggesting that upregulation of such DNA repair genes was closely associated with cell survival after gamma irradiation. The mRNA expression of p53 and most hsps was also significantly upregulated at high doses of gamma radiation related to cellular damage. This finding indicates that gamma radiation can induce oxidative stress with associated antioxidant enzyme activities, and linked to modulation of the expression of DNA repair-related genes as one of the defense mechanisms against radiation damage. This study provides a better understanding of the molecular mode of action of defense mechanisms upon gamma radiation in fish larvae. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Ferulic acid (FA) abrogates γ-radiation induced oxidative stress and DNA damage by up-regulating nuclear translocation of Nrf2 and activation of NHEJ pathway.

    PubMed

    Das, Ujjal; Manna, Krishnendu; Khan, Amitava; Sinha, Mahuya; Biswas, Sushobhan; Sengupta, Aaveri; Chakraborty, Anindita; Dey, Sanjit

    2017-01-01

    The present study was aimed to evaluate the radioprotective effect of ferulic acid (FA), a naturally occurring plant flavonoid in terms of DNA damage and damage related alterations of repair pathways by gamma radiation. FA was administered at a dose of 50 mg/kg body weight for five consecutive days prior to exposing the swiss albino mice to a single dose of 10 Gy gamma radiation. Ionising radiation induces oxidative damage manifested by decreased expression of Cu, Zn-SOD (SOD stands for super oxide dismutase), Mn-SOD and catalase. Gamma radiation promulgated reactive oxygen species (ROS) mediated DNA damage and modified repair pathways. ROS enhanced nuclear translocation of p53, activated ATM (ataxia telangiectasia-mutated protein), increased expression of GADD45a (growth arrest and DNA-damage-inducible protein) gene and inactivated Non homologous end joining (NHEJ) repair pathway. The comet formation in irradiated mice peripheral blood mononuclear cells (PBMC) reiterated the DNA damage in IR exposed groups. FA pretreatment significantly prevented the comet formation and regulated the nuclear translocation of p53, inhibited ATM activation and expression of GADD45a gene. FA promoted the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and activated NHEJ repair pathway to overcome ROS mediated oxidative stress and DNA damage. Therefore, the current study stated that FA can challenge the oxidative stress by (i) inducing nuclear translocation of Nrf2, (ii) scavenging ROS, and (iii) activating NHEJ DNA repair process.

  11. Radiation damage free ghost diffraction with atomic resolution

    DOE PAGES

    Li, Zheng; Medvedev, Nikita; Chapman, Henry N.; ...

    2017-12-21

    The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less

  12. Radiation damage free ghost diffraction with atomic resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zheng; Medvedev, Nikita; Chapman, Henry N.

    The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less

  13. A 3-D QSAR-BASED IDENTIFICATION ALGORITHM FOR POTENTIAL ESTROGEN RECEPTOR LIGANDS

    EPA Science Inventory

    Recent reports concerning the lethal effects of solar ultraviolet-B (UV-B) radiation on amphibians suggest that this stressor has the potential to impact some amphibian populations. In this study embryos and larvae of three anuran species, Rana pipiens, R. clamitans, and R. septe...

  14. Chromosome thripsis by DNA double strand break clusters causes enhanced cell lethality, chromosomal translocations and 53BP1-recruitment

    PubMed Central

    Schipler, Agnes; Mladenova, Veronika; Soni, Aashish; Nikolov, Vladimir; Saha, Janapriya; Mladenov, Emil; Iliakis, George

    2016-01-01

    Chromosome translocations are hallmark of cancer and of radiation-induced cell killing, reflecting joining of incongruent DNA-ends that alter the genome. Translocation-formation requires DNA end-joining mechanisms and incompletely characterized, permissive chromatin conditions. We show that chromatin destabilization by clusters of DNA double-strand-breaks (DSBs) generated by the I-SceI meganuclease at multiple, appropriately engineered genomic sites, compromises c-NHEJ and markedly increases cell killing and translocation-formation compared to single-DSBs. Translocation-formation from DSB-clusters utilizes Parp1 activity, implicating alt-EJ in their formation. Immunofluorescence experiments show that single-DSBs and DSB-clusters uniformly provoke the formation of single γ-H2AX foci, suggesting similar activation of early DNA damage response (DDR). Live-cell imaging also shows similar single-focus recruitment of the early-response protein MDC1, to single-DSBs and DSB-clusters. Notably, the late DDR protein, 53BP1 shows in live-cell imaging strikingly stronger recruitment to DSB-clusters as compared to single-DSBs. This is the first report that chromatin thripsis, in the form of engineered DSB-clusters, compromises first-line DSB-repair pathways, allowing alt-EJ to function as rescuing-backup. DSB-cluster-formation is indirectly linked to the increased biological effectiveness of high ionization-density radiations, such as the alpha-particles emitted by radon gas or the heavy-ions utilized in cancer therapy. Our observations provide the first direct mechanistic explanation for this long-known effect. PMID:27257076

  15. Thermal stability of electron-irradiated poly(tetrafluoroethylene) - X-ray photoelectron and mass spectroscopic study

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Pepper, Stephen V.

    1990-01-01

    Polytetrafluoroethylene (PTFE) was subjected to 3 keV electron bombardment and then heated in vacuum to 300 C. The behavior of the material as a function of radiation dose and temperature was studied by X-ray photoelectron spectroscopy (XPS) of the surface and mass spectroscopy of the species evolved. Lightly damaged material heated to 300 C evolved saturated fluorocarbon species, whereas unsaturated fluorocarbon species were evolved from heavily damaged material. After heating the heavily damaged material, those features in the XPS spectrum that were associated with damage diminished, giving the appearance that the radiation damage had annealed. The observations were interpreted by incorporating mass transport of severed chain fragments and thermal decomposition of severely damaged material into the branched and cross-linked network model of irradiated PTFE. The apparent annealing of the radiation damage was due to covering of the network by saturated fragments that easily diffused through the decomposed material to the surface region upon heating.

  16. Undulator Radiation Damage Experience at LCLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuhn, H. D.; Field, C.; Mao, S.

    2015-01-06

    The SLAC National Accelerator Laboratory has been running the Linac Coherent Light Source (LCLS), the first x-ray Free Electron Laser since 2009. Undulator magnet damage from radiation, produced by the electron beam traveling through the 133-m long straight vacuum tube, has been and is a concern. A damage measurement experiment has been performed in 2007 in order to obtain dose versus damage calibrations. Radiation reduction and detection devices have been integrated into the LCLS undulator system. The accumulated radiation dose rate was continuously monitored and recorded. In addition, undulator segments have been routinely removed from the beamline to be checkedmore » for magnetic (50 ppm, rms) and mechanic (about 0.25 µm, rms) changes. A reduction in strength of the undulator segments is being observed, at a level, which is now clearly above the noise. Recently, potential sources for the observed integrated radiation levels have been investigated. The paper discusses the results of these investigation as well as comparison between observed damage and measured dose accumulations and discusses, briefly, strategies for the new LCLS-II upgrade, which will be operating at more than 300 times larger beam rate.« less

  17. Designing Trojan Horses | Center for Cancer Research

    Cancer.gov

    Waging battle against cancer cells without inflicting damage on normal tissue has long been a goal for cancer treatment. A new type of drug called immunotoxins may help make this goal a reality. Much like the Greeks used a wooden horse to get soldiers inside the gates of Troy, immunotoxins use clever genetic engineering to get a lethal toxin inside cancer cells. Each

  18. Precision Strike Annual Programs Review

    DTIC Science & Technology

    2009-03-11

    Deceleration and Stabilization Subsystem Squib Fire Unit Thermal Battery Electronic Safe and Arm Device Air Data Sensor Main ChargeControl Actuator Power ...platforms, and ground teams. • Powered , maneuverable, small, lightweight, accurate and lethal, with reduced risk of collateral damage. Raytheon Missile...requirements evolve, so will capability • Builds on powerful infrastructure • “Color of Money” timing is very different Traditional Approach Traditional IOC

  19. Aircraft Survivability: Vulnerability Reduction, Spring 2006

    DTIC Science & Technology

    2006-01-01

    selected small arms, rocket propelled grenades, and shoulder-fired missiles will be presented. Figure 1 and Figure 2 illustrate previous demonstrations...lethality. Hands-on experience will be provided with threat munitions and missiles , test articles, damaged-air- craft hardware, live fire...non-linear effects of scale and operational environment. Current Efforts In the structures S&T program at the US Army Aviation and Missile Research

  20. Local inflammation, lethality and cytokine release in mice injected with Bothrops atrox venom.

    PubMed Central

    Barros, S F; Friedlanskaia, I; Petricevich, V L; Kipnis, T L

    1998-01-01

    We have provided evidence that: (a) lethality of mice to crude Bothrops venom varies according the isogenic strain (A/J > C57Bl/6 > A/Sn > BALB/c > C3H/HePas > DBA/2 > C3H/He); (b)BALB/c mice (LD50=100.0 microg) were injected i.p. with 50 microg of venom produced IL-6, IL-10, INF-gamma, TNF-alpha and NO in the serum. In vitro the cells from the mice injected and challenged with the venom only released IL-10 while peritoneal macrophages released IL-10, INF-gamma and less amounts of IL-6; (c) establishment of local inflammation and necrosis induced by the venom, coincides with the peaks of TNF-alpha, IFN-gamma and NO and the damage was neutralized when the venom was incubated with a monoclonal antibody against a 60 kDa haemorrhagic factor. These results suggest that susceptibility to Bothrops atrox venom is genetically dependent but MHC independent; that IL-6, IL-10, TNF-alpha, IFN-gamma and NO can be involved in the mediation of tissue damage; and that the major venom component inducers of the lesions are haemorrhagins. PMID:9883969

Top