Science.gov

Sample records for lethal systemic gram-negative

  1. Mice that exclusively express TLR4 on endothelial cells can efficiently clear a lethal systemic Gram-negative bacterial infection.

    PubMed

    Andonegui, Graciela; Zhou, Hong; Bullard, Daniel; Kelly, Margaret M; Mullaly, Sarah C; McDonald, Braedon; Long, Elizabeth M; Robbins, Stephen M; Kubes, Paul

    2009-07-01

    Recognition of LPS by TLR4 on immune sentinel cells such as macrophages is thought to be key to the recruitment of neutrophils to sites of infection with Gram-negative bacteria. To explore whether endothelial TLR4 plays a role in this process, we engineered and imaged mice that expressed TLR4 exclusively on endothelium (known herein as EndotheliumTLR4 mice). Local administration of LPS into tissue induced comparable neutrophil recruitment in EndotheliumTLR4 and wild-type mice. Following systemic LPS or intraperitoneal E. coli administration, most neutrophils were sequestered in the lungs of wild-type mice and did not accumulate at primary sites of infection. In contrast, EndotheliumTLR4 mice showed reduced pulmonary capillary neutrophil sequestration over the first 24 hours; as a result, they mobilized neutrophils to primary sites of infection, cleared bacteria, and resisted a dose of E. coli that killed 50% of wild-type mice in the first 48 hours. In fact, the only defect we detected in EndotheliumTLR4 mice was a failure to accumulate neutrophils in the lungs following intratracheal administration of LPS; this response required TLR4 on bone marrow-derived immune cells. Therefore, endothelial TLR4 functions as the primary intravascular sentinel system for detection of bacteria, whereas bone marrow-derived immune cells are critical for pathogen detection at barrier sites. Nonendothelial TLR4 contributes to failure to accumulate neutrophils at primary infection sites in a disseminated systemic infection.

  2. Fused-Ring Oxazolopyrrolopyridopyrimidine Systems with Gram-Negative Activity

    PubMed Central

    Chen, Yiyuan; Moloney, Jonathan G.; Christensen, Kirsten E.; Moloney, Mark G.

    2017-01-01

    Fused polyheterocyclic derivatives are available by annulation of a tetramate scaffold, and been shown to have antibacterial activity against a Gram-negative, but not a Gram-positive, bacterial strain. While the activity is not potent, these systems are structurally novel showing, in particular, a high level of polarity, and offer potential for the optimization of antibacterial activity. PMID:28098784

  3. Critical evaluation of the AutoMicrobic system gram-negative identification card for identification of glucose-nonfermenting gram-negative rods.

    PubMed Central

    Plorde, J J; Gates, J A; Carlson, L G; Tenover, F C

    1986-01-01

    During a 6-month study we critically evaluated the accuracy of the AutoMicrobic system Gram-Negative Identification Card (Vitek Systems, Inc., Hazelwood, Mo.) in identifying glucose-nonfermenting gram-negative bacilli by testing 419 selected isolates in parallel with a conventional reference method. Of 356 isolates included in the AutoMicrobic system profile, a total of 307 (86.2%) were correctly identified, 36 (10.1%) were not identified, and 13 (3.7%) were misidentified. Fifty-eight of 63 (92%) isolates not included in the profile were correctly reported as "unidentified organisms." Overall, if the first-choice identification was always accepted, only 18 (4.3%) isolates would have been incorrectly reported. When first-choice identifications appended with the special message "questionable biopattern" were rejected, and organisms were screened for characteristic odor and antimicrobial susceptibility before final acceptance of the AutoMicrobic system report, the number of misidentifications was reduced to 5 (1.2%). The average time to identification with the AutoMicrobic system Gram-Negative Identification Card was 15 h. This compares favorably with the 65 h required by the reference method. PMID:3517050

  4. Quorum-Sensing Signal-Response Systems in Gram-Negative Bacteria

    PubMed Central

    Papenfort, Kai; Bassler, Bonnie

    2016-01-01

    Abstract / Preface Bacteria use quorum sensing to orchestrate gene expression programmes that underlie collective behaviours. Quorum sensing relies on the production, release, detection and group-level response to extracellular signalling molecules, which are called autoinducers. Recent work has discovered new autoinducers in Gram-negative bacteria, shown how these molecules are recognized by cognate receptors, revealed new regulatory components that are embedded in canonical signalling circuits and identified novel regulatory network designs. In this Review we examine how, together, these features of quorum sensing signal–response systems combine to control collective behaviours in Gram-negative bacteria and we discuss the implications for host–microbial associations and antibacterial therapy. PMID:27510864

  5. Surface Organelles Assembled by Secretion Systems of Gram-Negative Bacteria: Diversity in Structure and Function

    PubMed Central

    Thanassi, David G.; Bliska, James B.; Christie, Peter J.

    2012-01-01

    Gram-negative bacteria express a wide variety of organelles on their cell surface. These surface structures may be the end products of secretion systems, such as the hair-like fibers assembled by the chaperone/usher and type IV pilus pathways, which generally function in adhesion to surfaces and bacterial-bacterial and bacterial-host interactions. Alternatively, the surface organelles may be integral components of the secretion machinery itself, such as the needle complex and pilus extensions formed by the type III and type IV secretion systems, which function in the delivery of bacterial effectors inside host cells. Bacterial surface structures perform functions critical for pathogenesis and have evolved to withstand forces exerted by the external environment and cope with defenses mounted by the host immune system. Given their essential roles in pathogenesis and exposed nature, bacterial surface structures also make attractive targets for therapeutic intervention. This review will describe the structure and function of surface organelles assembled by four different Gram-negative bacterial secretion systems: the chaperone/usher pathway, the type IV pilus pathway, and the type III and type IV secretion systems. PMID:22545799

  6. Surface organelles assembled by secretion systems of Gram-negative bacteria: diversity in structure and function.

    PubMed

    Thanassi, David G; Bliska, James B; Christie, Peter J

    2012-11-01

    Gram-negative bacteria express a wide variety of organelles on their cell surface. These surface structures may be the end products of secretion systems, such as the hair-like fibers assembled by the chaperone/usher (CU) and type IV pilus pathways, which generally function in adhesion to surfaces and bacterial-bacterial and bacterial-host interactions. Alternatively, the surface organelles may be integral components of the secretion machinery itself, such as the needle complex and pilus extensions formed by the type III and type IV secretion systems, which function in the delivery of bacterial effectors inside host cells. Bacterial surface structures perform functions critical for pathogenesis and have evolved to withstand forces exerted by the external environment and cope with defenses mounted by the host immune system. Given their essential roles in pathogenesis and exposed nature, bacterial surface structures also make attractive targets for therapeutic intervention. This review will describe the structure and function of surface organelles assembled by four different Gram-negative bacterial secretion systems: the CU pathway, the type IV pilus pathway, and the type III and type IV secretion systems. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Evaluation of the VITEK 2 System for Rapid Identification of Medically Relevant Gram-Negative Rods

    PubMed Central

    Funke, Guido; Monnet, Dominique; deBernardis, Chiara; von Graevenitz, Alexander; Freney, Jean

    1998-01-01

    The new VITEK 2 system (bioMérieux) was evaluated at two independent sites with the identification card for gram-negative bacilli (ID-GNB card). Of the 845 strains tested, which represented 70 different taxa belonging to either the family Enterobacteriaceae or the nonenteric bacilli, 716 (84.7%) were correctly identified at the species level. Thirty-two (3.8%) additional strains were identified to the species level after the performance of simple, rapid manual tests (oxidase, hemolysis, indole reaction, motility, and pigmentation). For 80 (9.5%) strains, these additional tests did not lead to an identification at the species level but the correct species identification was given among the organisms listed. Only 7 (0.8%) strains were misidentified, and 10 (1.2%) were not identified. Mistakes were randomly distributed over different taxa. Due to the new, more sensitive fluorescence-based technology of the VITEK 2 system, final results were available after 3 h. Since our evaluation was mainly a stress test, it is predicted that the VITEK 2 system in conjunction with the ID-GNB card would perform well under conditions of a routine clinical laboratory in identifying members of the family Enterobacteriaceae and selected species of nonenteric bacteria. This system is a promising, highly automated new tool for the rapid identification of gram-negative bacilli from human clinical specimens. PMID:9650942

  8. A General System for Studying Protein-Protein Interactions in Gram-Negative Bacteria

    SciTech Connect

    Pelletier, Dale A; Auberry, Deanna L; Buchanan, Michelle V; Cannon, Bill; Daly, Don S.; Doktycz, Mitchel John; Foote, Linda J; Hervey, IV, William Judson; Hooker, Brian; Hurst, Gregory {Greg} B; Kennel, Steve J; Lankford, Patricia K; Larimer, Frank W; Lu, Tse-Yuan S; McDonald, W Hayes; McKeown, Catherine K; Morrell-Falvey, Jennifer L; Owens, Elizabeth T; Schmoyer, Denise D; Shah, Manesh B; Wiley, Steven; Wang, Yisong; Gilmore, Jason

    2008-01-01

    Abstract One of the most promising methods for large-scale studies of protein interactions is isolation of an affinity-tagged protein with its in vivo interaction partners, followed by mass spectrometric identification of the copurified proteins. Previous studies have generated affinity-tagged proteins using genetic tools or cloning systems that are specific to a particular organism. To enable protein-protein interaction studies across a wider range of Gram-negative bacteria, we have developed a methodology based on expression of affinity-tagged bait proteins from a medium copy-number plasmid. This construct is based on a broad-host-range vector backbone (pBBR1MCS5). The vector has been modified to incorporate the Gateway DEST vector recombination region, to facilitate cloning and expression of fusion proteins bearing a variety of affinity, fluorescent, or other tags. We demonstrate this methodology by characterizing interactions among subunits of the DNA-dependent RNA polymerase complex in two metabolically versatile Gram-negative microbial species of environmental interest, Rhodopseudomonas palustris CGA010 and Shewanella oneidensis MR-1. Results compared favorably with those for both plasmid and chromosomally encoded affinity-tagged fusion proteins expressed in a model organism, Escherichia coli.

  9. Evaluation of the rapid NFT system for identification of gram-negative, nonfermenting rods.

    PubMed Central

    Appelbaum, P C; Leathers, D J

    1984-01-01

    This study evaluated the ability of the Rapid NFT system (API System SA, Montalieu-Vercieu, France) to accurately identify 262 clinically isolated, gram-negative, nonfermentative rods without additional tests. Identifications were classified as correct; low discrimination, with a spectrum of two or more possibilities (additional tests necessary for accurate identification); and incorrect. Correct identification rates were analyzed in two categories: (i) correct to species or biotype for all organism groups except Alcaligenes faecalis-odorans, Moraxella, Pseudomonas testosteroni-alcaligenes-pseudoalcaligenes, and Acinetobacter calcoaceticus biotype haemolyticus-alcaligenes (in this category, the latter four genus-biotype group identifications were taken as correct) and (ii) correct to species or biotype in all cases, including the above four groups. In category i, 87.4% of the strains were correctly identified, with 4.2% low discrimination and 8.4% incorrect. When the criteria of category ii were used, 71.8% of the strains were correctly identified, with 19.9% low discrimination. The Rapid NFT system provided excellent species identification of Pseudomonas and Flavobacterium spp., Bordetella bronchiseptica, and Achromobacter xylosoxidans strains. Within Acinetobacter calcoaceticus, differentiation between biotypes anitratus and lwoffi was satisfactory, but the system did not differentiate between biotypes haemolyticus and alcaligenes. Species resolution within the genera Moraxella and Alcaligenes was incomplete. All Alcaligenes faecalis strains were misidentified and accounted for 50% of misidentifications with the Rapid NFT system; however, these results may reflect taxonomic differences rather than true misidentifications. The Rapid NFT system is easy to inoculate and interpret and represents a worthwhile advance in the identification of gram-negative, nonfermentative rods. PMID:6490857

  10. Rapid and Specific Enrichment of Culturable Gram Negative Bacteria Using Non-Lethal Copper-Free Click Chemistry Coupled with Magnetic Beads Separation

    PubMed Central

    Fugier, Emilie; Dumont, Audrey; Malleron, Annie; Poquet, Enora; Mas Pons, Jordi; Baron, Aurélie; Vauzeilles, Boris; Dukan, Sam

    2015-01-01

    Currently, identification of pathogenic bacteria present at very low concentration requires a preliminary culture-based enrichment step. Many research efforts focus on the possibility to shorten this pre-enrichment step which is needed to reach the minimal number of cells that allows efficient identification. Rapid microbiological controls are a real public health issue and are required in food processing, water quality assessment or clinical pathology. Thus, the development of new methods for faster detection and isolation of pathogenic culturable bacteria is necessary. Here we describe a specific enrichment technique for culturable Gram negative bacteria, based on non-lethal click chemistry and the use of magnetic beads that allows fast detection and isolation. The assimilation and incorporation of an analog of Kdo, an essential component of lipopolysaccharides, possessing a bio-orthogonal azido function (Kdo-N3), allow functionalization of almost all Gram negative bacteria at the membrane level. Detection can be realized through strain-promoted azide-cyclooctyne cycloaddition, an example of click chemistry, which interestingly does not affect bacterial growth. Using E. coli as an example of Gram negative bacterium, we demonstrate the excellent specificity of the technique to detect culturable E. coli among bacterial mixtures also containing either dead E. coli, or live B. subtilis (as a model of microorganism not containing Kdo). Finally, in order to specifically isolate and concentrate culturable E. coli cells, we performed separation using magnetic beads in combination with click chemistry. This work highlights the efficiency of our technique to rapidly enrich and concentrate culturable Gram negative bacteria among other microorganisms that do not possess Kdo within their cell envelope. PMID:26061695

  11. A general system for studying protein-protein interactions in gram-negative bacteria

    SciTech Connect

    Pelletier, Dale A.; Hurst, G. B.; Foote, Linda J.; Lankford, Patricia K.; McKeown, Cathy K.; Lu, Tse-Yuan S.; Schmoyer, Denise D.; Shah, Manesh B.; Hervey IV, W. J.; McDonald, W. Hayes; Hooker, Brian S.; Cannon, William R.; Daly, Don S.; Gilmore, Jason M.; Wiley, H. S.; Auberry, Deanna L.; Wang, Yisong; Larimer, Frank; Kennel, S. J.; Doktycz, M. J.; Morrell-Falvey, Jennifer; Owens, Elizabeth T.; Buchanan, M. V.

    2008-08-01

    One of the most promising of the emerging methods for large-scale studies of interactions among proteins is co-isolation of an affinity-tagged protein and its interaction partners, followed by mass spectrometric identification of the co-purifying proteins. We describe a methodology for systematically identifying the proteins that interact with affinity-tagged “bait” proteins expressed from a medium copy plasmid, which are based on a broad host range (pBBR1MCS5) vector backbone that has been modified to incorporate the Gateway DEST plasmid multiple cloning region. This construct was designed to facilitate expression of fusion proteins bearing an affinity tag, across a range of Gram negative bacterial hosts. We demonstrate the performance of this methodology by characterizing interactions among subunits of the DNA-dependent RNA polymerase complex in two metabolically versatile Gram negative microbial species of environmental interest, Rhodopseudomonas palustris CGA010 and Shewanella oneidensis MR-1. Results from the RNA polymerase complex from these two species compared favorably with those for both plasmid- and chromosomally-encoded affinity-tagged fusion proteins expressed in a model organism, E. coli.

  12. Systemic Activation of TLR3-Dependent TRIF Signaling Confers Host Defense against Gram-Negative Bacteria in the Intestine.

    PubMed

    Ruiz, Jose; Kanagavelu, Saravana; Flores, Claudia; Romero, Laura; Riveron, Reldy; Shih, David Q; Fukata, Masayuki

    2015-01-01

    Recognition of Gram-negative bacteria by toll-like receptor (TLR)4 induces MyD88 and TRIF mediated responses. We have shown that TRIF-dependent responses play an important role in intestinal defense against Gram-negative enteropathogens. In the current study, we examined underlying mechanisms of how systemic TRIF activation enhances intestinal immune defense against Gram-negative bacteria. First we confirmed that the protective effect of poly I:C against enteric infection of mice with Yersinia enterocolitica was dependent on TLR3-mediated TRIF signaling by using TLR3-deficient mice. This protection was unique in TRIF-dependent TLR signaling because systemic stimulation of mice with agonists for TLR2 (Pam3CSK4) or TLR5 (flagellin) did not reduce mortality on Y. enterocolitica infection. Systemic administration of poly I:C mobilized CD11c+, F4/80+, and Gr-1(hi) cells from lamina propria and activated NK cells in the mesenteric lymph nodes (MLN) within 24 h. This innate immune cell rearrangement was type I IFN dependent and mediated through upregulation of TLR4 followed by CCR7 expression in these innate immune cells found in the intestinal mucosa. Poly I:C induced IFN-γ expression by NK cells in the MLN, which was mediated through type I IFNs and IL-12p40 from antigen presenting cells and consequent activation of STAT1 and STAT4 in NK cells. This formation of innate immunity significantly contributed to the elimination of bacteria in the MLN. Our results demonstrated an innate immune network in the intestine that can be established by systemic stimulation of TRIF, which provides a strong host defense against Gram-negative pathogens. The mechanism underlying TRIF-mediated protective immunity may be useful to develop novel therapies for enteric bacterial infection.

  13. Data on the standardization of a cyclohexanone-responsive expression system for Gram-negative bacteria.

    PubMed

    Benedetti, Ilaria; Nikel, Pablo I; de Lorenzo, Víctor

    2016-03-01

    Engineering of robust microbial cell factories requires the use of dedicated genetic tools somewhat different from those traditionally used for laboratory-adapted microorganisms. We have edited and formatted the ChnR/P chnB regulatory node of Acinetobacter johnsonii to ease the targeted engineering of ectopic gene expression in Gram-negative bacteria. The proposed compositional standard was thoroughly verified with a monomeric and superfolder green fluorescent protein (msf•GFP) in Escherichia coli. The expression data presented reflect a tightly controlled transcription initiation signal in response to cyclohexanone. Data in this article are related to the research paper "Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes" [1].

  14. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinical Aerobic Gram-Negative Bacterial Isolates.

    PubMed

    Faron, Matthew L; Buchan, Blake W; Hyke, Josh; Madisen, Neil; Lillie, Jennifer L; Granato, Paul A; Wilson, Deborah A; Procop, Gary W; Novak-Weekley, Susan; Marlowe, Elizabeth; Cumpio, Joven; Griego-Fullbright, Christen; Kindig, Sandra; Timm, Karen; Young, Stephen; Ledeboer, Nathan A

    2015-01-01

    The prompt and accurate identification of bacterial pathogens is fundamental to patient health and outcome. Recent advances in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) have revolutionized bacterial identification in the clinical laboratory, but uniform incorporation of this technology in the U.S. market has been delayed by a lack of FDA-cleared systems. In this study, we conducted a multicenter evaluation of the MALDI Biotyper CA (MBT-CA) System (Bruker Daltonics Inc, Billerica, MA) for the identification of aerobic gram-negative bacteria as part of a 510(k) submission to the FDA. A total of 2,263 aerobic gram negative bacterial isolates were tested representing 23 genera and 61 species. Isolates were collected from various clinical sources and results obtained from the MBT-CA System were compared to DNA sequencing and/or biochemical testing. Isolates that failed to report as a "high confidence species ID" [log(score) ≥2.00] were re-tested using an extraction method. The MBT-CA System identified 96.8% and 3.1% of isolates with either a "high confidence" or a "low confidence" [log(score) value between 1.70 and <2.00] species ID, respectively. Two isolates did not produce acceptable confidence scores after extraction. The MBT-CA System correctly identified 99.8% (2,258/2,263) to genus and 98.2% (2,222/2,263) to species level. These data demonstrate that the MBT-CA System provides accurate results for the identification of aerobic gram-negative bacteria.

  15. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinical Aerobic Gram-Negative Bacterial Isolates

    PubMed Central

    Faron, Matthew L.; Buchan, Blake W.; Hyke, Josh; Madisen, Neil; Lillie, Jennifer L.; Granato, Paul A.; Wilson, Deborah A.; Procop, Gary W.; Novak-Weekley, Susan; Marlowe, Elizabeth; Cumpio, Joven; Griego-Fullbright, Christen; Kindig, Sandra; Timm, Karen; Young, Stephen; Ledeboer, Nathan A.

    2015-01-01

    The prompt and accurate identification of bacterial pathogens is fundamental to patient health and outcome. Recent advances in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) have revolutionized bacterial identification in the clinical laboratory, but uniform incorporation of this technology in the U.S. market has been delayed by a lack of FDA-cleared systems. In this study, we conducted a multicenter evaluation of the MALDI Biotyper CA (MBT-CA) System (Bruker Daltonics Inc, Billerica, MA) for the identification of aerobic gram-negative bacteria as part of a 510(k) submission to the FDA. A total of 2,263 aerobic gram negative bacterial isolates were tested representing 23 genera and 61 species. Isolates were collected from various clinical sources and results obtained from the MBT-CA System were compared to DNA sequencing and/or biochemical testing. Isolates that failed to report as a "high confidence species ID" [log(score) ≥2.00] were re-tested using an extraction method. The MBT-CA System identified 96.8% and 3.1% of isolates with either a "high confidence" or a "low confidence" [log(score) value between 1.70 and <2.00] species ID, respectively. Two isolates did not produce acceptable confidence scores after extraction. The MBT-CA System correctly identified 99.8% (2,258/2,263) to genus and 98.2% (2,222/2,263) to species level. These data demonstrate that the MBT-CA System provides accurate results for the identification of aerobic gram-negative bacteria. PMID:26529504

  16. Evaluation of the API 20E system for the identification of gram-negative nonfermenters from animal origin.

    PubMed Central

    Devenish, J A; Barnum, D A

    1982-01-01

    The API 20E system was evaluated on isolates from animals of aerobic nonfermentative and cytochrome oxidase positive Gram-negative rods. An accuracy of identification of 80% (214/268 isolates) was achieved for those organisms included in the 1976-1977 API profile index. Members of the genera Pseudomonas and Acinetobacter were identified with 100% accuracy. Organisms not included in the API profile gave either an unacceptable profile number or were incorrectly identified as Moraxella spp. When the inoculum size was increased there was better identification. PMID:7042055

  17. Channel-tunnels: outer membrane components of type I secretion systems and multidrug efflux pumps of Gram-negative bacteria.

    PubMed

    Andersen, C

    2003-01-01

    For translocation across the cell envelope of Gram-negative bacteria, substances have to overcome two permeability barriers, the inner and outer membrane. Channel-tunnels are outer membrane proteins, which are central to two distinct export systems: the type I secretion system exporting proteins such as toxins or proteases, and efflux pumps discharging antibiotics, dyes, or heavy metals and thus mediating drug resistance. Protein secretion is driven by an inner membrane ATP-binding cassette (ABC) transporter while drug efflux occurs via an inner membrane proton antiporter. Both inner membrane transporters are associated with a periplasmic accessory protein that recruits an outer membrane channel-tunnel to form a functional export complex. Prototypes of these export systems are the hemolysin secretion system and the AcrAB/TolC drug efflux pump of Escherichia coli, which both employ TolC as an outer membrane component. Its remarkable conduit-like structure, protruding 100 A into the periplasmic space, reveals how both systems are capable of transporting substrates across both membranes directly from the cytosol into the external environment. Proteins of the channel-tunnel family are widespread within Gram-negative bacteria. Their involvement in drug resistance and in secretion of pathogenic factors makes them an interesting system for further studies. Understanding the mechanism of the different export apparatus could help to develop new drugs, which block the efflux pumps or the secretion system.

  18. Effect of Linezolid on the 50% Lethal Dose and 50% Protective Dose in Treatment of Infections by Gram-Negative Pathogens in Naive and Immunosuppressed Mice and on the Efficacy of Ciprofloxacin in an Acute Murine Model of Septicemia

    PubMed Central

    Marra, Andrea; Lamb, Lucinda; Medina, Ivette; George, David; Gibson, Glenn; Hardink, Joel; Rugg, Jady; Van Deusen, Jeffrey

    2012-01-01

    Murine models of infection were used to study the effect of linezolid on the virulence of Gram-negative bacteria and to assess potential pharmacodynamic interactions with ciprofloxacin in the treatment of these infections, prompted by observations from a recent clinical trial. Naive and immunosuppressed mice were challenged with Klebsiella pneumoniae 53A1109, K. pneumoniae GC6658, and Pseudomonas aeruginosa UC12120 in acute sepsis and pulmonary infection models, using different serial dilutions of these pathogens (groups of 8 animals each). Linezolid (100 mg/kg/dose) was administered orally at 0.5 and 4.0 h postchallenge in the sepsis model and at 4 h postchallenge followed by 2 days of twice-daily treatment in the pulmonary model. Further, ciprofloxacin alone and in combination with oral linezolid was investigated in the sepsis model. Survival was assessed for 4 and 10 days postchallenge in the systemic and respiratory models, respectively. The data were fitted to a nonlinear regression analysis to determine 50% lethal doses (LD50s) and 50% protective doses (PD50s). A clinically relevant, high-dose regimen of linezolid had no significant effect on LD50 in these models. This lack of effect was independent of immune status. A combination of oral ciprofloxacin with linezolid yielded lower PD50s than oral ciprofloxacin alone (ciprofloxacin in combination, 8.4 to 32.7 mg/kg; oral ciprofloxacin, 39.4 to 88.3 mg/kg). Linezolid did not improve the efficacy of subcutaneous ciprofloxacin (ciprofloxacin in combination, 2.0 to 2.4 mg/kg; subcutaneous ciprofloxacin, 2.0 to 2.8 mg/kg). In conclusion, linezolid does not seem to potentiate infections caused by Gram-negative pathogens or to interact antagonistically with ciprofloxacin. PMID:22710118

  19. Saponin promotes rapid identification and antimicrobial susceptibility profiling of Gram-positive and Gram-negative bacteria in blood cultures with the Vitek 2 system.

    PubMed

    Lupetti, A; Barnini, S; Morici, P; Ghelardi, E; Nibbering, P H; Campa, M

    2013-04-01

    The rapid identification and antimicrobial susceptibility testing (AST) of bacteria in clinical blood cultures is crucial to optimise antimicrobial therapy. A previous study involving small sample numbers revealed that the addition of saponin to blood cultures, further referred to as the new method, shortened considerably the turn-around time for the identification and AST of Gram-positive cocci as compared to the current method involving an overnight subculture. Here, we extend previous results and compare the identification and AST of blood cultures containing Gram-negative bacilli by the new and current methods. The identification and AST of 121 Gram-positive and 109 Gram-negative bacteria in clinical monomicrobial blood cultures by the new and current methods and, in the case of Gram-negative bacilli, by direct (no additions) inoculation into an automated system (rapid method) was assessed using the Vitek 2 system. Discrepancies between the results obtained with the different methods were solved by manual methods. The new method correctly identified 88 % of Gram-positive and 98 % of Gram-negative bacteria, and the rapid method correctly identified 94 % of Gram-negative bacteria. The AST for all antimicrobials by the new method were concordant with the current method for 55 % and correct for an additional 9 % of Gram-positive bacteria, and concordant with the current method for 62 % and correct for an additional 21 % of Gram-negative bacilli. The AST by the rapid method was concordant with the current method for 62 % and correct for an additional 12 % of Gram-negative bacilli. Together, saponin-treated monomicrobial blood cultures allow rapid and reliable identification and AST of Gram-positive and Gram-negative bacteria.

  20. Systems and methods for the secretion of recombinant proteins in gram negative bacteria

    SciTech Connect

    Withers, III, Sydnor T.; Dominguez, Miguel A; DeLisa, Matthew P.; Haitjema, Charles H.

    2016-08-09

    Disclosed herein are systems and methods for producing recombinant proteins utilizing mutant E. coli strains containing expression vectors carrying nucleic acids encoding the proteins, and secretory signal sequences to direct the secretion of the proteins to the culture medium. Host cells transformed with the expression vectors are also provided.

  1. Systems and methods for the secretion of recombinant proteins in gram negative bacteria

    DOEpatents

    Withers, III, Sydnor T.; Dominguez, Miguel A.; DeLisa, Matthew P.; Haitjema, Charles H.

    2017-02-21

    Disclosed herein are systems and methods for producing recombinant proteins utilizing mutant E. coli strains containing expression vectors carrying nucleic acids encoding the proteins, and secretory signal sequences to direct the secretion of the proteins to the culture medium. Host cells transformed with the expression vectors are also provided.

  2. Chemical resistance of the gram-negative bacteria to different sanitizers in a water purification system

    PubMed Central

    Mazzola, Priscila G; Martins, Alzira MS; Penna, Thereza CV

    2006-01-01

    Background Purified water for pharmaceutical purposes must be free of microbial contamination and pyrogens. Even with the additional sanitary and disinfecting treatments applied to the system (sequential operational stages), Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were isolated and identified from a thirteen-stage purification system. To evaluate the efficacy of the chemical agents used in the disinfecting process along with those used to adjust chemical characteristics of the system, over the identified bacteria, the kinetic parameter of killing time (D-value) necessary to inactivate 90% of the initial bioburden (decimal reduction time) was experimentally determined. Methods Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were called in house (wild) bacteria. Pseudomonas diminuta ATCC 11568, Pseudomonas alcaligenes INCQS , Pseudomonas aeruginosa ATCC 15442, Pseudomonas fluorescens ATCC 3178, Pseudomonas picketti ATCC 5031, Bacillus subtilis ATCC 937 and Escherichia coli ATCC 25922 were used as 'standard' bacteria to evaluate resistance at 25°C against either 0.5% citric acid, 0.5% hydrochloric acid, 70% ethanol, 0.5% sodium bisulfite, 0.4% sodium hydroxide, 0.5% sodium hypochlorite, or a mixture of 2.2% hydrogen peroxide (H2O2) and 0.45% peracetic acid. Results The efficacy of the sanitizers varied with concentration and contact time to reduce decimal logarithmic (log10) population (n cycles). To kill 90% of the initial population (or one log10 cycle), the necessary time (D-value) was for P. aeruginosa into: (i) 0.5% citric acid, D = 3.8 min; (ii) 0.5% hydrochloric acid, D = 6.9 min; (iii) 70% ethanol, D = 9.7 min; (iv) 0.5% sodium bisulfite, D = 5.3 min; (v) 0.4% sodium hydroxide, D = 14.2 min; (vi) 0.5% sodium hypochlorite

  3. Evaluation of the oxi/ferm tube system with selected Gram-negative bacteria.

    PubMed

    Oberhofer, T R; Rowen, J W; Cunningham, G F; Higbee, J W

    1977-12-01

    The Oxi/Ferm test system was evaluated for accuracy and reliability for identification of nonfermentative and oxidase-positive fermentative bacteria by using 375 bacterial strains obtained from stock culture and clinical specimens. The Oxi/Ferm system is a compartmentalized tube containing eight media to provide nine biochemical test results. When combined with the oxidase test, the results corresponding to the positive reactions are totaled and the composite number is located in the coding manual to identify the organisms. The 375 isolates studied were evaluated for accuracy of identification, using both the original and revised code manuals. In comparison with the conventional media used, there was 100% correlation in tests for hydrogen sulfide and indole production, over 96% for nitrogen gas, arginine, and urease, over 92% for xylose and dextrose oxidation, and less than 90% for citrate utilization and dextrose fermentation. There was an overall accuracy in identification of 89.3% using the original manual, with accuracy revised slightly upward to 90.7% using the revised manual. There was 100% accuracy in identification with 44.0% of the strains tested (11 species) using the original manual and with 66.1% (16 species) using the revised manual. Thirteen of the 40 original misidentifications and 14 of 35 revised misidentifications resulted from failure to code and were unidentifiable by Oxi/Ferm. The remainder were incorrectly identified or could not be differentiated from closely related strains. Eleven strains of Alcaligenes odorans were correctly identified using the original code, whereas no code was provided in the revised manual. The Oxi/Ferm system is both simple and rapid and is satisfactory for identification of the more common isolates.

  4. Killing of gram-negative bacteria by polymorphonuclear leukocytes: role of an O2-independent bactericidal system.

    PubMed

    Weiss, J; Victor, M; Stendhal, O; Elsbach, P

    1982-04-01

    Previous studies have suggested that a cationic bactericidal/permeability-increasing protein (BPI) present in both rabbit and human polymorphonuclear leukocytes is the principal O2-independent bactericidal agent of these cells toward several strains of Escherichia coli and Salmonella typhimurium (1978. J. Biol. Chem. 253: 2664--2672; 1979. J. Biol. Chem. 254: 11000--11009). To further evaluate the possible role of this protein in the killing of gram-negative bacteria by polymorphonuclear leukocytes, we have measured the bactericidal activity of intact rabbit peritoneal exudate leukocytes under aerobic or anaerobic conditions and of intact human leukocytes from a patient with chronic granulomatous disease. Anaerobic conditions were created by flushing the cells under a nitrogen stream. Effective removal of oxygen was demonstrated by the inability of nitrogen-flushed leukocytes to mount a respiratory burst (measured as increased conversion of 1-[14C]glucose leads to 14CO2 or by superoxide production) during bacterial ingestion. At a bacteria/leukocyte ratio of 10:1, killing of gram-positive, BPI-resistant, Staphylococcus epidermidis is markedly impaired in the absence of oxygen (76.4 +/- 3.3% killing in room air, 29.2 +/- 8.2% killing in nitrogen). Essentially all increased bacterial survival is intracellular. In contrast, both a nonopsonized rough strain (MR-10) and an opsonized smooth strain (MS) of S. typhimurium 395 are killed equally well in room air and nitrogen. A maximum of 70--80 MR-10 and 30--40 MS are killed per leukocyte either in the presence or absence of oxygen. There is no intracellular bacterial survival in either condition indicating that intracellular O2-independent bactericidal system(s) of rabbit polymorphonuclear leukocytes can at least match the leukocyte's ingestive capacity. Whole homogenates and crude acid extracts manifest similar bactericidal capacity toward S. typhimurium 395. This activity can be accounted for by the BPI content of these

  5. Killing of gram-negative bacteria by polymorphonuclear leukocytes: role of an O2-independent bactericidal system.

    PubMed Central

    Weiss, J; Victor, M; Stendhal, O; Elsbach, P

    1982-01-01

    Previous studies have suggested that a cationic bactericidal/permeability-increasing protein (BPI) present in both rabbit and human polymorphonuclear leukocytes is the principal O2-independent bactericidal agent of these cells toward several strains of Escherichia coli and Salmonella typhimurium (1978. J. Biol. Chem. 253: 2664--2672; 1979. J. Biol. Chem. 254: 11000--11009). To further evaluate the possible role of this protein in the killing of gram-negative bacteria by polymorphonuclear leukocytes, we have measured the bactericidal activity of intact rabbit peritoneal exudate leukocytes under aerobic or anaerobic conditions and of intact human leukocytes from a patient with chronic granulomatous disease. Anaerobic conditions were created by flushing the cells under a nitrogen stream. Effective removal of oxygen was demonstrated by the inability of nitrogen-flushed leukocytes to mount a respiratory burst (measured as increased conversion of 1-[14C]glucose leads to 14CO2 or by superoxide production) during bacterial ingestion. At a bacteria/leukocyte ratio of 10:1, killing of gram-positive, BPI-resistant, Staphylococcus epidermidis is markedly impaired in the absence of oxygen (76.4 +/- 3.3% killing in room air, 29.2 +/- 8.2% killing in nitrogen). Essentially all increased bacterial survival is intracellular. In contrast, both a nonopsonized rough strain (MR-10) and an opsonized smooth strain (MS) of S. typhimurium 395 are killed equally well in room air and nitrogen. A maximum of 70--80 MR-10 and 30--40 MS are killed per leukocyte either in the presence or absence of oxygen. There is no intracellular bacterial survival in either condition indicating that intracellular O2-independent bactericidal system(s) of rabbit polymorphonuclear leukocytes can at least match the leukocyte's ingestive capacity. Whole homogenates and crude acid extracts manifest similar bactericidal capacity toward S. typhimurium 395. This activity can be accounted for by the BPI content of these

  6. Novel insights in preventing Gram-negative bacterial infection in cirrhotic patients: review on the effects of GM-CSF in maintaining homeostasis of the immune system.

    PubMed

    Xu, Dong; Zhao, Manzhi; Song, Yuhu; Song, Jianxin; Huang, Yuancheng; Wang, Junshuai

    2015-01-01

    Cirrhotic patients with dysfunctional and/or low numbers of leukocytes are often infected with bacteria, especially Gram-negative bacteria, which is characterized by producing lipopolysaccharide (LPS). Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that influences the production, maturation, function, and survival of various immune cells. In this paper, we reviewed not only Toll-like receptors 4 (TLR4) signaling pathway and its immunological effect, but also the specific stimulating function and autocrine performance of GM-CSF on hematopoietic cells, as well as the recent discovery of innate response activator-B cells in protection against microbial sepsis and the direct LPS-TLR4 signaling on hematopoiesis. Thus we concluded that GM-CSF might play important roles in preventing Gram-negative bacterial infections in cirrhotic patients through maintaining immune system functions and homeostasis.

  7. Versatile plasmid-based expression systems for Gram-negative bacteria--General essentials exemplified with the bacterium Ralstonia eutropha H16.

    PubMed

    Gruber, Steffen; Schwab, Helmut; Koefinger, Petra

    2015-12-25

    The Gram-negative bacterium Escherichia coli is currently the most efficient and widely used prokaryotic host for recombinant protein and metabolite production. However, due to some limitations and to various interesting features of other Gram-negative bacteria efficient vector systems applicable to a broad range are desired. Basic building blocks for plasmid-based vectors include besides the need for a suitable selection marker in the first line a proper replication and maintenance system. In addition to these basic requirements, further elements are needed for Gram-negative bacteria beyond E. coli, such as Pseudomonas pudita, Ralstonia eutropha, Burkholderia glumae or Acinetobacter sp.. Established building blocks have to be adapted and new building blocks providing the desired functions need to be identified and exploited. This minireview addresses so far described and used genetic elements for broad host range replication, efficient plasmid maintenance, and conjugative plasmid transfer as well as expression elements and protein secretion signals. The industrially important bacterium R. eutropha H16 was chosen as a model organism to provide specific data on the effectivity and utility of building blocks based on such genetic elements.

  8. The Role of Bacterial Secretion Systems in the Virulence of Gram-Negative Airway Pathogens Associated with Cystic Fibrosis

    PubMed Central

    Depluverez, Sofie; Devos, Simon; Devreese, Bart

    2016-01-01

    Cystic fibrosis (CF) is the most common lethal inherited disorder in Caucasians. It is caused by mutation of the CF transmembrane conductance regulator (CFTR) gene. A defect in the CFTR ion channel causes a dramatic change in the composition of the airway surface fluid, leading to a highly viscous mucus layer. In healthy individuals, the majority of bacteria trapped in the mucus layer are removed and destroyed by mucociliary clearance. However, in the lungs of patients with CF, the mucociliary clearance is impaired due to dehydration of the airway surface fluid. As a consequence, patients with CF are highly susceptible to chronic or intermittent pulmonary infections, often causing extensive lung inflammation and damage, accompanied by a decreased life expectancy. This mini review will focus on the different secretion mechanisms used by the major bacterial CF pathogens to release virulence factors, their role in resistance and discusses the potential for therapeutically targeting secretion systems. PMID:27625638

  9. Evaluation of the Accelerate Pheno System for Fast Identification and Antimicrobial Susceptibility Testing from Positive Blood Cultures in Bloodstream Infections Caused by Gram-Negative Pathogens.

    PubMed

    Marschal, Matthias; Bachmaier, Johanna; Autenrieth, Ingo; Oberhettinger, Philipp; Willmann, Matthias; Peter, Silke

    2017-07-01

    Bloodstream infections (BSI) are an important cause of morbidity and mortality. Increasing rates of antimicrobial-resistant pathogens limit treatment options, prompting an empirical use of broad-range antibiotics. Fast and reliable diagnostic tools are needed to provide adequate therapy in a timely manner and to enable a de-escalation of treatment. The Accelerate Pheno system (Accelerate Diagnostics, USA) is a fully automated test system that performs both identification and antimicrobial susceptibility testing (AST) directly from positive blood cultures within approximately 7 h. In total, 115 episodes of BSI with Gram-negative bacteria were included in our study and compared to conventional culture-based methods. The Accelerate Pheno system correctly identified 88.7% (102 of 115) of all BSI episodes and 97.1% (102 of 105) of isolates that are covered by the system's identification panel. The Accelerate Pheno system generated an AST result for 91.3% (95 of 104) samples in which the Accelerate Pheno system identified a Gram-negative pathogen. The overall category agreement between the Accelerate Pheno system and culture-based AST was 96.4%, the rates for minor discrepancies 1.4%, major discrepancies 2.3%, and very major discrepancies 1.0%. Of note, ceftriaxone, piperacillin-tazobactam, and carbapenem resistance was correctly detected in blood culture specimens with extended-spectrum beta-lactamase-producing Escherichia coli (n = 7) and multidrug-resistant Pseudomonas aeruginosa (n = 3) strains. The utilization of the Accelerate Pheno system reduced the time to result for identification by 27.49 h (P < 0.0001) and for AST by 40.39 h (P < 0.0001) compared to culture-based methods in our laboratory setting. In conclusion, the Accelerate Pheno system provided fast, reliable results while significantly improving turnaround time in blood culture diagnostics of Gram-negative BSI. Copyright © 2017 American Society for Microbiology.

  10. Revisiting the Gram-negative lipoprotein paradigm.

    PubMed

    LoVullo, Eric D; Wright, Lori F; Isabella, Vincent; Huntley, Jason F; Pavelka, Martin S

    2015-05-01

    The processing of lipoproteins (Lpps) in Gram-negative bacteria is generally considered an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein N-acyltransferase. The mature lipoproteins are then sorted by the Lol system, with most Lpps inserted into the outer membrane (OM). We demonstrate here that the lnt gene is not essential to the Gram-negative pathogen Francisella tularensis subsp. tularensis strain Schu or to the live vaccine strain LVS. An LVS Δlnt mutant has a small-colony phenotype on sucrose medium and increased susceptibility to globomycin and rifampin. We provide data indicating that the OM lipoprotein Tul4A (LpnA) is diacylated but that it, and its paralog Tul4B (LpnB), still sort to the OM in the Δlnt mutant. We present a model in which the Lol sorting pathway of Francisella has a modified ABC transporter system that is capable of recognizing and sorting both triacylated and diacylated lipoproteins, and we show that this modified system is present in many other Gram-negative bacteria. We examined this model using Neisseria gonorrhoeae, which has the same Lol architecture as that of Francisella, and found that the lnt gene is not essential in this organism. This work suggests that Gram-negative bacteria fall into two groups, one in which full lipoprotein processing is essential and one in which the final acylation step is not essential, potentially due to the ability of the Lol sorting pathway in these bacteria to sort immature apolipoproteins to the OM. This paper describes the novel finding that the final stage in lipoprotein processing (normally considered an essential process) is not required by Francisella tularensis or Neisseria gonorrhoeae. The paper provides a potential reason for this and shows that it may be widespread in other Gram-negative bacteria. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Revisiting the Gram-Negative Lipoprotein Paradigm

    PubMed Central

    LoVullo, Eric D.; Wright, Lori F.; Isabella, Vincent; Huntley, Jason F.

    2015-01-01

    ABSTRACT The processing of lipoproteins (Lpps) in Gram-negative bacteria is generally considered an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein N-acyltransferase. The mature lipoproteins are then sorted by the Lol system, with most Lpps inserted into the outer membrane (OM). We demonstrate here that the lnt gene is not essential to the Gram-negative pathogen Francisella tularensis subsp. tularensis strain Schu or to the live vaccine strain LVS. An LVS Δlnt mutant has a small-colony phenotype on sucrose medium and increased susceptibility to globomycin and rifampin. We provide data indicating that the OM lipoprotein Tul4A (LpnA) is diacylated but that it, and its paralog Tul4B (LpnB), still sort to the OM in the Δlnt mutant. We present a model in which the Lol sorting pathway of Francisella has a modified ABC transporter system that is capable of recognizing and sorting both triacylated and diacylated lipoproteins, and we show that this modified system is present in many other Gram-negative bacteria. We examined this model using Neisseria gonorrhoeae, which has the same Lol architecture as that of Francisella, and found that the lnt gene is not essential in this organism. This work suggests that Gram-negative bacteria fall into two groups, one in which full lipoprotein processing is essential and one in which the final acylation step is not essential, potentially due to the ability of the Lol sorting pathway in these bacteria to sort immature apolipoproteins to the OM. IMPORTANCE This paper describes the novel finding that the final stage in lipoprotein processing (normally considered an essential process) is not required by Francisella tularensis or Neisseria gonorrhoeae. The paper provides a potential reason for this and shows that it may be widespread in other Gram-negative bacteria. PMID:25755189

  12. Gram-negative flagella glycosylation.

    PubMed

    Merino, Susana; Tomás, Juan M

    2014-02-19

    Protein glycosylation had been considered as an eccentricity of a few bacteria. However, through advances in analytical methods and genome sequencing, it is now established that bacteria possess both N-linked and O-linked glycosylation pathways. Both glycosylation pathways can modify multiple proteins, flagellins from Archaea and Eubacteria being one of these. Flagella O-glycosylation has been demonstrated in many polar flagellins from Gram-negative bacteria and in only the Gram-positive genera Clostridium and Listeria. Furthermore, O-glycosylation has also been demonstrated in a limited number of lateral flagellins. In this work, we revised the current advances in flagellar glycosylation from Gram-negative bacteria, focusing on the structural diversity of glycans, the O-linked pathway and the biological function of flagella glycosylation.

  13. Gram-Negative Flagella Glycosylation

    PubMed Central

    Merino, Susana; Tomás, Juan M.

    2014-01-01

    Protein glycosylation had been considered as an eccentricity of a few bacteria. However, through advances in analytical methods and genome sequencing, it is now established that bacteria possess both N-linked and O-linked glycosylation pathways. Both glycosylation pathways can modify multiple proteins, flagellins from Archaea and Eubacteria being one of these. Flagella O-glycosylation has been demonstrated in many polar flagellins from Gram-negative bacteria and in only the Gram-positive genera Clostridium and Listeria. Furthermore, O-glycosylation has also been demonstrated in a limited number of lateral flagellins. In this work, we revised the current advances in flagellar glycosylation from Gram-negative bacteria, focusing on the structural diversity of glycans, the O-linked pathway and the biological function of flagella glycosylation. PMID:24557579

  14. Differentiation of Gram-Negative, Nonfermentative Bacteria Isolated from Biofilters on the Basis of Fatty Acid Composition, Quinone System, and Physiological Reaction Profiles

    PubMed Central

    Lipski, André; Klatte, Stefan; Bendinger, Bernd; Altendorf, Karlheinz

    1992-01-01

    Gram-negative, nonfermentative bacteria isolated from biofilters for off-gas treatment of animal-rendering-plant emissions were differentiated by whole-cell fatty acid analysis, quinone analysis, and numerical taxonomy based on their physiological reaction profiles. The last system consisted of 60 physiological tests and was arranged as a microtest system on microtitration plates. Based on fatty acid analyses, 31 isolates were separated into six clusters and five single-member clusters. The isolates of two clusters were identified as Alcaligenes faecalis and Pseudomonas diminuta. The remaining nine clusters were characterized by their fatty acid profiles, quinone systems, and physiological reaction profiles. Clusters resulting from fatty acid analyses were compared with those resulting from physiological reaction profiles. Six clusters could be confirmed this way. The efficiency of the physiological test system was increased by the prearrangement of the isolates according to their quinone type. PMID:16348724

  15. Evaluation of the Phoenix 100 ID/AST system and NID panel for identification of Enterobacteriaceae, Vibrionaceae, and commonly isolated nonenteric gram-negative bacilli.

    PubMed

    O'Hara, Caroline M

    2006-03-01

    The Phoenix 100 ID/AST system (Becton Dickinson Co., Sparks, Md.) is an automated system for the identification and antimicrobial susceptibility testing of bacterial isolates. This system with its negative identification (NID) panel was evaluated for its accuracy in the identification of 507 isolates of the family Enterobacteriaceae, 57 other nonenteric gram-negative isolates that are commonly isolated in clinical microbiology laboratories, and 138 isolates of the family Vibrionaceae. All of the isolates had been characterized by using approximately 48 conventional tube biochemicals. Of the 507 isolates of the Enterobacteriaceae, 456 (89.9%) were correctly identified to the genus and species levels. The five isolates of Proteus penneri required an off-line indole test, as suggested by the system to differentiate them from Proteus vulgaris. The identifications of 20 (3.9%) isolates were correct to the genus level but incorrect at the species level. Two (0.4%) isolates were reported as "no identification." Misidentifications to the genus and species levels occurred for 29 (5.7%) isolates of the Enterobacteriaceae. These incorrect identifications were spread over 14 different genera. The most common error was the misidentification of Salmonella species. The shortest time for a correct identification was 2 h 8 min. The longest time was 12 h 27 min, for the identification of a Serratia marcescens isolate. Of the 57 isolates of nonenteric gram-negative bacilli (Acinetobacter, Aeromonas, Burkholderia, Plesiomonas, Pseudomonas, and Stenotrophomonas spp.), 48 (84.2%) were correctly identified to the genus and species levels and 7 (12.3%) were correctly identified to the genus level but not to the species level. The average time for a correct identification was 5 h 11 min. Of the Vibrionaceae spp., 123 (89.1%) were correctly identified at the end of the initial incubation period, which averaged 4 h. Based on the findings of this study, the Phoenix 100 ID/AST system NID panel

  16. Carbapenem-resistant Gram-negative bacteria – analysis of the data obtained through a mandatory reporting system in the Rhine-Main region, Germany, 2012–2015

    PubMed Central

    Heudorf, Ursel; Büttner, Barbara; Hauri, Anja M.; Heinmüller, Petra; Hunfeld, Klaus-Peter; Kaase, Martin; Kleinkauf, Niels; Albert-Braun, Sabine; Tessmann, Rolf; Kempf, Volkhard A. J.

    2016-01-01

    Background: Multidrug-resistant Gram-negative bacteria (MRGN) and the infections they cause are a serious threat and a challenge to the healthcare system. This particularly applies to carbapenem-resistant Gram-negative bacteria (CRGN). Currently, the introduction of a nationwide mandatory notification system for CRGN in Germany is under consideration. Against this background, this paper presents an analysis of the mandatory reporting system for CRGN in effect since November 2011 in the federal state of Hesse (Germany). Materials and methods: All carbapenem-resistant Gram-negative bacteria and the detected carbapenemases reported to the public health department of the city of Frankfurt am Main, Hesse, Germany, on the basis of the mandatory notification system were analyzed. Results: 827 CRGN cases were reported to the public health department of Frankfurt/Main between April 2012 and December 2015. The following bacterial species were reported: Pseudomonas spp. (n=268), Acinetobacter spp. (n=183), Klebsiella spp. (n=195), Enterobacter spp. (n=77), Escherichia coli (n=75) and others (n=29). Between 2012 and 2015, a reduction of the CRGN reports was noticed, mainly due to changes in the reporting of Pseudomonas spp. Between 2012 and 2015, the total number of notifications decreased slightly, although the number of reported CRGN in screening samples increased, thus giving no indication of a decreased testing frequency. For 10.5% of the patients, the place of residence was not Germany, 18.0% of the patients had previously stayed in hospitals abroad, often in countries with a high CRGN prevalence. CRGN bacteria were reported from all of Frankfurt’s hospitals, and 3.9% were reported from out-patient care facilities. Carbapenemases were detected and reported in 251 CRGN bacteria, including 73 OXA-48, 76 OXA-23, 56 NDM subtypes, and 21 KPC subtypes. There have been no major epidemiological signs of outbreak scenarios. Discussion: CRGN bacteria are already widespread in

  17. Evaluation of autoSCAN-W/A and the Vitek GNI+ AutoMicrobic system for identification of non-glucose-fermenting gram-negative bacilli.

    PubMed

    Sung, L L; Yang, D I; Hung, C C; Ho, H T

    2000-03-01

    The autoSCAN-W/A (W/A; Dade Behring Microscan Inc., West Sacramento, Calif.) and Vitek AutoMicrobic System (Vitek AMS; bioMérieux Vitek Systems, Inc., Hazelwood, Mo.) are both fully automated microbiology systems. We evaluated the accuracy of these two systems in identifying nonglucose-fermenting gram-negative bacilli. We used the W/A with conventional-panel Neg Combo type 12 and Vitek GNI+ identification systems. A total of 301 isolates from 25 different species were tested. Of these, 299 isolates were identified in the databases of both systems. The conventional biochemical methods were used for reference. The W/A correctly identified 215 isolates (71. 4%) to the species level at initial testing with a high probability of >/=85%. The Vitek GNI+ correctly identified 216 isolates (71.8%) to the species level at initial testing with a high probability of >/=90%. After additional testing that was recommended by the manufacturer's protocol, the correct identifications of the W/A and Vitek GNI+ improved to 96.0 and 92.3%, respectively. The major misidentified species were Sphingomonas paucimobilis and Agrobacterium radiobacter in the W/A system and Acinetobacter lwoffii, Chryseobacterium indologenes, and Comamonas acidovorans in the Vitek GNI+ system. The error rates were 4.0 and 7.6%, respectively. The overall accuracy for both systems was above 90% if the supplemental tests were applied. There was no significant difference in accuracy (P > 0.05) between the two systems.

  18. Pentamidine sensitizes Gram-negative pathogens to antibiotics and overcomes acquired colistin resistance.

    PubMed

    Stokes, Jonathan M; MacNair, Craig R; Ilyas, Bushra; French, Shawn; Côté, Jean-Philippe; Bouwman, Catrien; Farha, Maya A; Sieron, Arthur O; Whitfield, Chris; Coombes, Brian K; Brown, Eric D

    2017-03-06

    The increasing use of polymyxins(1) in addition to the dissemination of plasmid-borne colistin resistance threatens to cause a serious breach in our last line of defence against multidrug-resistant Gram-negative pathogens, and heralds the emergence of truly pan-resistant infections. Colistin resistance often arises through covalent modification of lipid A with cationic residues such as phosphoethanolamine-as is mediated by Mcr-1 (ref. 2)-which reduce the affinity of polymyxins for lipopolysaccharide(3). Thus, new strategies are needed to address the rapidly diminishing number of treatment options for Gram-negative infections(4). The difficulty in eradicating Gram-negative bacteria is largely due to their highly impermeable outer membrane, which serves as a barrier to many otherwise effective antibiotics(5). Here, we describe an unconventional screening platform designed to enrich for non-lethal, outer-membrane-active compounds with potential as adjuvants for conventional antibiotics. This approach identified the antiprotozoal drug pentamidine(6) as an effective perturbant of the Gram-negative outer membrane through its interaction with lipopolysaccharide. Pentamidine displayed synergy with antibiotics typically restricted to Gram-positive bacteria, yielding effective drug combinations with activity against a wide range of Gram-negative pathogens in vitro, and against systemic Acinetobacter baumannii infections in mice. Notably, the adjuvant activity of pentamidine persisted in polymyxin-resistant bacteria in vitro and in vivo. Overall, pentamidine and its structural analogues represent unexploited molecules for the treatment of Gram-negative infections, particularly those having acquired polymyxin resistance determinants.

  19. Quantitative turbidimetric assay of enzymatic gram-negative bacteria lysis.

    PubMed

    Levashov, Pavel A; Sedov, Sergey A; Shipovskov, Stepan; Belogurova, Natalia G; Levashov, Andrey V

    2010-03-01

    In this Technical Note, the quantitative turbidimetric assay for determination of the bacteriolytic activity of enzymes with gram-negative bacteria is proposed. The reactivity of hen white-egg lysozyme toward gram-negative E. coli intact cells was studied. It was found that the highest lysis rate occurred at pH 8.9 in the system containing 0.03 M NaCl. The mechanism of the reaction is discussed and applied for the quantitative evaluation of the reaction rate. The proposed method enables fast, reliable, and reproducible analysis of bacteriolytic activity of lysozyme with gram-negative bacteria.

  20. Crystal Structure of a Soluble Fragment of the Membrane Fusion Protein HlyD in a Type I Secretion System of Gram-Negative Bacteria.

    PubMed

    Kim, Jin-Sik; Song, Saemee; Lee, Minho; Lee, Seunghwa; Lee, Kangseok; Ha, Nam-Chul

    2016-03-01

    The protein toxin HlyA of Escherichia coli is exported without a periplasmic intermediate by the type I secretion system (T1SS). The T1SS is composed of an inner membrane ABC transporter HlyB, an outer-membrane channel protein TolC, and a membrane fusion protein HlyD. However, the assembly of the T1SS remains to be elucidated. In this study, we determine the crystal structure of a part of the C-terminal periplasmic domain of HlyD. The long α-helical domain consisting of three α helices and a lipoyl domain was identified in the crystal structure. Based on the HlyD structure, we modeled the hexameric assembly of HlyD with a long α-helical barrel, which formed a complex with TolC in an intermeshing cogwheel-to-cogwheel manner, as observed in tripartite RND-type drug efflux pumps. These observations provide a structural blueprint for understanding the type I secretion system in pathogenic Gram-negative bacteria.

  1. Gram-Negative Bacterial Wound Infections

    DTIC Science & Technology

    2015-05-01

    Award Number: W81XWH-12-2-0035 TITLE: Gram -Negative Bacterial Wound Infections PRINCIPAL INVESTIGATOR: Luis A. Actis CONTRACTING ORGANIZATION...DATE May 2015 2. REPORT TYPE Annual 3. DATES COVERED 1 May 2014 - 30 Apr 2015 4. TITLE AND SUBTITLE Gram -negative bacterial wound infections 5a...acquisition and biofilm functions expressed by Gram -negative pathogens play in the pathogenesis of severe infections in the Wounded Warrior because of

  2. Gram-Negative Bacterial Wound Infections

    DTIC Science & Technology

    2014-05-01

    1 AD_________________ Award Number: W81XWH-12-2-0035 TITLE: Gram -Negative Bacterial Wound...SUBTITLE Gram -negative bacterial wound infections 5a. CONTRACT NUMBER W81XWH-12-2-0035 5b. GRANT NUMBER W81XWH-12-2-0035 5c. PROGRAM...determine the role iron acquisition and biofilm functions expressed by Gram -negative pathogens play in the pathogenesis of severe infections in the

  3. Broad-host-range plasmids for red fluorescent protein labeling of gram-negative bacteria for use in the zebrafish model system.

    PubMed

    Singer, John T; Phennicie, Ryan T; Sullivan, Matthew J; Porter, Laura A; Shaffer, Valerie J; Kim, Carol H

    2010-06-01

    To observe real-time interactions between green fluorescent protein-labeled immune cells and invading bacteria in the zebrafish (Danio rerio), a series of plasmids was constructed for the red fluorescent protein (RFP) labeling of a variety of fish and human pathogens. The aim of this study was to create a collection of plasmids that would express RFP pigments both constitutively and under tac promoter regulation and that would be nontoxic and broadly transmissible to a variety of Gram-negative bacteria. DNA fragments encoding the RFP dimeric (d), monomeric (m), and tandem dimeric (td) derivatives d-Tomato, td-Tomato, m-Orange, and m-Cherry were cloned into the IncQ-based vector pMMB66EH in Escherichia coli. Plasmids were mobilized into recipient strains by conjugal mating. Pigment production was inducible in Escherichia coli, Pseudomonas aeruginosa, Edwardsiella tarda, and Vibrio (Listonella) anguillarum strains by isopropyl-beta-d-thiogalactopyranoside (IPTG) treatment. A spontaneous mutant exconjugant of P. aeruginosa PA14 was isolated that expressed td-Tomato constitutively. Complementation analysis revealed that the constitutive phenotype likely was due to a mutation in lacI(q) carried on pMMB66EH. DNA sequence analysis confirmed the presence of five transitions, four transversions, and a 2-bp addition within a 14-bp region of lacI. Vector DNA was purified from this constitutive mutant, and structural DNA sequences for RFP pigments were cloned into the constitutive vector. Exconjugants of P. aeruginosa, E. tarda, and V. anguillarum expressed all pigments in an IPTG-independent fashion. Results from zebrafish infectivity studies indicate that RFP-labeled pathogens will be useful for the study of real-time interactions between host cells of the innate immune system and the infecting pathogen.

  4. Comparative evaluation of the Vitek-2 Compact and Phoenix systems for rapid identification and antibiotic susceptibility testing directly from blood cultures of Gram-negative and Gram-positive isolates.

    PubMed

    Gherardi, Giovanni; Angeletti, Silvia; Panitti, Miriam; Pompilio, Arianna; Di Bonaventura, Giovanni; Crea, Francesca; Avola, Alessandra; Fico, Laura; Palazzo, Carlo; Sapia, Genoveffa Francesca; Visaggio, Daniela; Dicuonzo, Giordano

    2012-01-01

    We performed a comparative evaluation of the Vitek-2 Compact and Phoenix systems for direct identification and antimicrobial susceptibility testing (AST) from positive blood culture bottles in comparison to the standard methods. Overall, 139 monomicrobial blood cultures, comprising 91 Gram-negative and 48 Gram-positive isolates, were studied. Altogether, 100% and 92.3% of the Gram-negative isolates and 75% and 43.75% of the Gram-positive isolates showed concordant identification between the direct and the standard methods with Vitek and Phoenix, respectively. AST categorical agreements of 98.7% and 99% in Gram-negative and of 96.2% and 99.5% in Gram-positive isolates with Vitek and Phoenix, respectively, were observed. In conclusion, direct inoculation procedures for Gram-negative isolates showed an excellent performance with both automated systems, while for identification of Gram-positive isolates they proved to be less reliable, although Vitek provided acceptable results. This approach contributes to reducing the turnaround time to result of blood cultures, with a positive impact on patient care.

  5. Two-center collaborative evaluation of performance of the BD phoenix automated microbiology system for identification and antimicrobial susceptibility testing of gram-negative bacteria.

    PubMed

    Menozzi, Maria Grazia; Eigner, Ulrich; Covan, Silvia; Rossi, Sabina; Somenzi, Pietro; Dettori, Giuseppe; Chezzi, Carlo; Fahr, Anne-Marie

    2006-11-01

    The performance of the BD Phoenix Automated Microbiology System (BD Diagnostic Systems, Sparks, MD) was assessed for identification (ID) and antimicrobial susceptibility testing (AST) of the majority of clinically encountered bacterial isolates in a European collaborative two-center trial. A total of 494 bacterial isolates including various species of the Enterobacteriaceae and 110 nonfermentative gram-negative bacteria were investigated: of these, 385 were single patient isolates, and 109 were challenge strains tested at one center. The performance of the Phoenix extended-spectrum beta-lactamase (ESBL) test was also evaluated for 203 strains of Escherichia coli, Klebsiella pneumoniae, and Klebsiella oxytoca included in the study. Forty-two antimicrobial drugs were tested, including members of the following drug classes: aminoglycosides, beta-lactam antibiotics, beta-lactam/beta-lactamase inhibitors, carbapenems, cephems, monobactams, folate antagonists, quinolones, and others. Phoenix system ID results were compared to those of the laboratories' routine ID systems (API 20E and API CHE, ATB ID32E, ID32GN, and VITEK 2 [bioMérieux, Marcy l'Etoile, France]); Phoenix AST results were compared to those of frozen standard broth microdilution (SBM) panels according to NCCLS (now CLSI) guidelines (NCCLS document M100-S9, approved standard M7-A4). Discrepant results were repeated in duplicate. Concordant IDs of 98.4 and 99.1% were observed for the Enterobacteriaceae and the nonfermentative group, respectively. For AST results, the overall essential agreement was 94.2%; the category agreement was 97.3%; and the very major error rate, major error rate, and minor error rate were 1.6, 0.6, and 1.9%, respectively. In terms of ESBL detection, Phoenix results were 98.5% concordant with those of the reference system, with 98.0% sensitivity and 98.7% specificity. In conclusion, the Phoenix ID results showed high agreement with results of the systems to which they were being

  6. Two-Center Collaborative Evaluation of Performance of the BD Phoenix Automated Microbiology System for Identification and Antimicrobial Susceptibility Testing of Gram-Negative Bacteria▿

    PubMed Central

    Menozzi, Maria Grazia; Eigner, Ulrich; Covan, Silvia; Rossi, Sabina; Somenzi, Pietro; Dettori, Giuseppe; Chezzi, Carlo; Fahr, Anne-Marie

    2006-01-01

    The performance of the BD Phoenix Automated Microbiology System (BD Diagnostic Systems, Sparks, MD) was assessed for identification (ID) and antimicrobial susceptibility testing (AST) of the majority of clinically encountered bacterial isolates in a European collaborative two-center trial. A total of 494 bacterial isolates including various species of the Enterobacteriaceae and 110 nonfermentative gram-negative bacteria were investigated: of these, 385 were single patient isolates, and 109 were challenge strains tested at one center. The performance of the Phoenix extended-spectrum β-lactamase (ESBL) test was also evaluated for 203 strains of Escherichia coli, Klebsiella pneumoniae, and Klebsiella oxytoca included in the study. Forty-two antimicrobial drugs were tested, including members of the following drug classes: aminoglycosides, β-lactam antibiotics, β-lactam/β-lactamase inhibitors, carbapenems, cephems, monobactams, folate antagonists, quinolones, and others. Phoenix system ID results were compared to those of the laboratories' routine ID systems (API 20E and API CHE, ATB ID32E, ID32GN, and VITEK 2 [bioMérieux, Marcy l'Etoile, France]); Phoenix AST results were compared to those of frozen standard broth microdilution (SBM) panels according to NCCLS (now CLSI) guidelines (NCCLS document M100-S9, approved standard M7-A4). Discrepant results were repeated in duplicate. Concordant IDs of 98.4 and 99.1% were observed for the Enterobacteriaceae and the nonfermentative group, respectively. For AST results, the overall essential agreement was 94.2%; the category agreement was 97.3%; and the very major error rate, major error rate, and minor error rate were 1.6, 0.6, and 1.9%, respectively. In terms of ESBL detection, Phoenix results were 98.5% concordant with those of the reference system, with 98.0% sensitivity and 98.7% specificity. In conclusion, the Phoenix ID results showed high agreement with results of the systems to which they were being compared: the

  7. Comparative analysis of antibiotic resistance characteristics of Gram-negative bacteria isolated from laying hens and eggs in conventional and organic keeping systems in Bavaria, Germany.

    PubMed

    Schwaiger, K; Schmied, E-M V; Bauer, J

    2008-09-01

    By investigating the prevalence and resistance characteristics of Gram-negative bacteria from organic and conventional kept laying hens against 31 (Campylobacter: 29) different antibiotics using the microdilution method, we determined to what extent different keeping systems influence bacterial resistance patterns. For this purpose, samples from 10 organic and 10 conventional flocks in Bavaria (Germany) were investigated four times between January 2004 and April 2005. Altogether, 799 cloacal swabs and 800 eggs (contents and shells) were examined. The bacterial investigation performed with standardized cultural methods showed prevalence for all bacteria groups in about the same order of magnitude in the two different keeping systems: Salmonella spp. 3.5% (organic ([org])) versus 1.8% (conventional ([con])); Campylobacter spp. 34.8%(org) versus 29.0%(con) and E. coli 64.4%(org) versus 69.0%(con). Coliforms (Citrobacter, Enterobacter, Pantoea) were only isolated in single cases. In eggs, generally less bacteria were detected, predominantly Escherichia; Salmonella and Campylobacter were only scarcely isolated. Salmonella enterica ssp. enterica serovar Typhimurium (n=10) were resistant to up to nine, S. of the serogroup B (n=4) up to six antibiotics. All tested Salmonella (n=23) proved to be resistant to spectinomycin. Escherichia coli (n=257(org) and 276(con)) from organic layers showed significant lower resistance rates and higher rates of susceptible isolates to nine agents, namely amoxicillin/clavulanic acid, ampicillin, cefaclor, cefoxitin, cefuroxime, doxycycline, mezlocillin, neomycin and piperacillin. In contrast, only two antibiotics turned out to be more effective in conventional isolates (gentamicin and tobramycin). In the case of Campylobacter jejuni (n=118(org) and 99(con)), statistically significantly better rates were observed for isolates from organic flocks concerning imipenem and amoxicillin/clavulanic acid, whereas fosfomycin was more potent in

  8. Alternating electric fields combined with activated carbon for disinfection of Gram negative and Gram positive bacteria in fluidized bed electrode system.

    PubMed

    Racyte, Justina; Bernard, Séverine; Paulitsch-Fuchs, Astrid H; Yntema, Doekle R; Bruning, Harry; Rijnaarts, Huub H M

    2013-10-15

    Strong electric fields for disinfection of wastewaters have been employed already for several decades. An innovative approach combining low strength (7 V/cm) alternating electric fields with a granular activated carbon fluidized bed electrode (FBE) for disinfection was presented recently. For disinfection performance of FBE several pure microbial cultures were tested: Bacillus subtilis, Bacillus subtilis subsp. subtilis, Enterococcus faecalis as representatives from Gram positive bacteria and Erwinia carotovora, Pseudomonas luteola, Pseudomonas fluorescens and Escherichia coli YMc10 as representatives from Gram negative bacteria. The alternating electric field amplitude and shape were kept constant. Only the effect of alternating electric field frequency on disinfection performance was investigated. From the bacteria tested, the Gram negative strains were more susceptible and the Gram positive microorganisms were more resistant to FBE disinfection. The collected data indicate that the efficiency of disinfection is frequency and strain dependent. During 6 h of disinfection, the decrease above 2 Log units was achieved with P. luteola and E. coli at 10 kHz and at dual frequency shift keying (FSK) modulated signal with frequencies of 10 kHz and 140 kHz. FBE technology appears to offer a new way for selective bacterial disinfection, however further optimizations are needed on treatment duration, and energy input, to improve effectiveness.

  9. Comparison of Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometer to BD Phoenix Automated Microbiology System for Identification of Gram-Negative Bacilli▿

    PubMed Central

    Saffert, Ryan T.; Cunningham, Scott A.; Ihde, Sherry M.; Monson Jobe, Kristine E.; Mandrekar, Jayawant; Patel, Robin

    2011-01-01

    We compared the BD Phoenix automated microbiology system to the Bruker Biotyper (version 2.0) matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) system for identification of Gram-negative bacilli, using biochemical testing and/or genetic sequencing to resolve discordant results. The BD Phoenix correctly identified 363 (83%) and 330 (75%) isolates to the genus and species level, respectively. The Bruker Biotyper correctly identified 408 (93%) and 360 (82%) isolates to the genus and species level, respectively. The 440 isolates were grouped into common (308) and infrequent (132) isolates in the clinical laboratory. For the 308 common isolates, the BD Phoenix and Bruker Biotyper correctly identified 294 (95%) and 296 (96%) of the isolates to the genus level, respectively. For species identification, the BD Phoenix and Bruker Biotyper correctly identified 93% of the common isolates (285 and 286, respectively). In contrast, for the 132 infrequent isolates, the Bruker Biotyper correctly identified 112 (85%) and 74 (56%) isolates to the genus and species level, respectively, compared to the BD Phoenix, which identified only 69 (52%) and 45 (34%) isolates to the genus and species level, respectively. Statistically, the Bruker Biotyper overall outperformed the BD Phoenix for identification of Gram-negative bacilli to the genus (P < 0.0001) and species (P = 0.0005) level in this sample set. When isolates were categorized as common or infrequent isolates, there was statistically no difference between the instruments for identification of common Gram-negative bacilli (P > 0.05). However, the Bruker Biotyper outperformed the BD Phoenix for identification of infrequently isolated Gram-negative bacilli (P < 0.0001). PMID:21209160

  10. Comparison of Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometer to BD Phoenix automated microbiology system for identification of gram-negative bacilli.

    PubMed

    Saffert, Ryan T; Cunningham, Scott A; Ihde, Sherry M; Jobe, Kristine E Monson; Mandrekar, Jayawant; Patel, Robin

    2011-03-01

    We compared the BD Phoenix automated microbiology system to the Bruker Biotyper (version 2.0) matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) system for identification of gram-negative bacilli, using biochemical testing and/or genetic sequencing to resolve discordant results. The BD Phoenix correctly identified 363 (83%) and 330 (75%) isolates to the genus and species level, respectively. The Bruker Biotyper correctly identified 408 (93%) and 360 (82%) isolates to the genus and species level, respectively. The 440 isolates were grouped into common (308) and infrequent (132) isolates in the clinical laboratory. For the 308 common isolates, the BD Phoenix and Bruker Biotyper correctly identified 294 (95%) and 296 (96%) of the isolates to the genus level, respectively. For species identification, the BD Phoenix and Bruker Biotyper correctly identified 93% of the common isolates (285 and 286, respectively). In contrast, for the 132 infrequent isolates, the Bruker Biotyper correctly identified 112 (85%) and 74 (56%) isolates to the genus and species level, respectively, compared to the BD Phoenix, which identified only 69 (52%) and 45 (34%) isolates to the genus and species level, respectively. Statistically, the Bruker Biotyper overall outperformed the BD Phoenix for identification of gram-negative bacilli to the genus (P < 0.0001) and species (P = 0.0005) level in this sample set. When isolates were categorized as common or infrequent isolates, there was statistically no difference between the instruments for identification of common gram-negative bacilli (P > 0.05). However, the Bruker Biotyper outperformed the BD Phoenix for identification of infrequently isolated gram-negative bacilli (P < 0.0001).

  11. 16S rRNA gene sequencing versus the API 20 NE system and the VITEK 2 ID-GNB card for identification of nonfermenting Gram-negative bacteria in the clinical laboratory.

    PubMed

    Bosshard, P P; Zbinden, R; Abels, S; Böddinghaus, B; Altwegg, M; Böttger, E C

    2006-04-01

    Over a period of 26 months, we have evaluated in a prospective fashion the use of 16S rRNA gene sequencing as a means of identifying clinically relevant isolates of nonfermenting gram-negative bacilli (non-Pseudomonas aeruginosa) in the microbiology laboratory. The study was designed to compare phenotypic with molecular identification. Results of molecular analyses were compared with two commercially available identification systems (API 20 NE, VITEK 2 fluorescent card; bioMérieux, Marcy l'Etoile, France). By 16S rRNA gene sequence analyses, 92% of the isolates were assigned to species level and 8% to genus level. Using API 20 NE, 54% of the isolates were assigned to species and 7% to genus level, and 39% of the isolates could not be discriminated at any taxonomic level. The respective numbers for VITEK 2 were 53%, 1%, and 46%, respectively. Fifteen percent and 43% of the isolates corresponded to species not included in the API 20 NE and VITEK 2 databases, respectively. We conclude that 16S rRNA gene sequencing is an effective means for the identification of clinically relevant nonfermenting gram-negative bacilli. Based on our experience, we propose an algorithm for proper identification of nonfermenting gram-negative bacilli in the diagnostic laboratory.

  12. [Distribution of ubiquinones (coenzyme Q) in Gram negative bacillae].

    PubMed

    Denis, F A; D'Oultremont, P A; Debacq, J J; Cherel, J M; Brisou, J

    1975-01-01

    The coenzyme Q system was examined on 55 strains of Gram negative aerobic or facultatively anaerobic rods. No bacteria contain Co-Q7 nor Co-Q10. Ubiquinone Q8 predominates in Flavobacterium and in Enterobacteriaceae; Q9 was the only homolog found in the Pseudomonas, and predominates in the Acinetobacter.

  13. Revisiting the gram-negative lipoprotein paradigm

    USDA-ARS?s Scientific Manuscript database

    The processing of lipoproteins (lpps) in Gram-negative bacteria is generally considered to be an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein n-acyltransferase. The mature lipoproteins are then sorted...

  14. Development of rapid phenotypic system for the identification of Gram-negative oxidase-positive bacilli in resource-limited settings.

    PubMed

    Kazmi, Mahmooda; Khan, Adnan; Kazmi, Shahana Urooj

    2013-06-01

    Rapid and accurate identification of bacterial pathogens is a fundamental goal of clinical microbiology. The diagnosis and surveillance of diseases is dependent, to a great extent, on laboratory services, which cannot function without effective reliable reagents and diagnostics. Despite the advancement in microbiology diagnosis globally, resourcelimited countries still struggle to provide an acceptable diagnosis quality which helps in clinical disease management and improve their mortality and morbidity data. During this study an indigenous product, Quick Test Strip (QTS) NE, was developed for the rapid identification of biochemically slower group of Gram-negative oxidase-positive bacilli that covers 19 different bacterial genera. Some of the members belonging to these groups are well-established human pathogens, e.g. various species of Vibrio, Pseudomonas, Burkholderia, Aeromonas, Achromobacter and Stenotrophomonas. This study also evaluates the performance of QTS-NE by comparing with genotypic characterization methods. A total of 232 clinical and reference bacterial isolates were tested by three different methods. QTSNE provides 100 percent concordant results with other rapid identification and molecular characterization methods and confirms the potential to be used in clinical diagnosis.

  15. Anti-bacterial performance of azithromycin nanoparticles as colloidal drug delivery system against different gram-negative and gram-positive bacteria

    PubMed Central

    Azhdarzadeh, Morteza; Lotfipour, Farzaneh; Zakeri-Milani, Parvin; Mohammadi, Ghobad; Valizadeh, Hadi

    2012-01-01

    Purpose: Azithromycin (AZI) is a new macrolide antibiotic with a better activity against intracellular gram negative bacteria in comparison with Erythromycin. The purpose of this research was to prepare AZI nanoparticles (NPs) using PLGA polymer and to compare the effectiveness of prepared nanoparticles with untreated AZI solution. Methods: AZI NPs were prepared by Modified Quasi-Emulsion Solvent Diffusion method. The antibacterial activities of prepared NPs in comparison with AZI solution were assayed against indicator bacteria of Escherichia coli (PTCC 1330), Haemophilus influenzae (PTCC 1623) and Streptococcus pneumoniae (PTCC 1240) using agar well diffusion. Inhibition zone diameters (IZD) of nano-formulation were compared to the corresponding untreated AZI. Mean Inhibitory Concentration (MIC) values of AZI were also determined using serial dilution method in nutrient broth medium. Results: Mean IZD of nano-formulations for all indicator bacteria were significantly higher than that of untreated AZI (P<0.01). The enhanced antibacterial efficacy was more dominant in the gram positive species. The MIC values of NPs against the tested bacteria were reduced 8 times in comparison to those of untreated AZI. Conclusion: These results indicated an improved potency of AZI NPs which could be attributed to the modified surface characteristics as well as increased drug adsorption and uptake. PMID:24312766

  16. The lethality test system

    SciTech Connect

    Parsons, W.M.; Sims, J.R.; Parker, J.V.

    1986-11-01

    The Lethality Test System (LTS), presently under construction at Los Alamos, is an electromagnetic launcher facility designed to perform impact experiments at velocities up to 15 km/s. The launcher is a 25 mm round bore, plasma armature railgun extending 22 m in length. Preinjection is accomplished with a two-stage light gas gun capable of 7 km/s. The railgun power supply utilized traction motors, vacuum interrupters, and pulse transformers. The design of these traction motors, vacuum interrupters and pulse transformers are detailed.

  17. Gram-negative sepsis: a dilemma of modern medicine.

    PubMed Central

    Bone, R C

    1993-01-01

    Gram-negative sepsis is an increasingly common problem, with up to 300,000 cases occurring each year in the United States alone. Despite the ongoing development of new antibiotics, mortality from gram-negative sepsis remains unacceptably high. To stimulate earlier therapeutic intervention by physicians, a new set of broad definitions has been proposed to define the systemic inflammatory response characteristic of sepsis. In this review, the signs and symptoms of this progressive, injurious process are reviewed and its management is discussed, as are the mechanisms by which bacterial endotoxin triggers the biochemical events that lead to such serious complications as shock, adult respiratory distress syndrome, and disseminated intravascular coagulation. These events often occur even when appropriate antimicrobial therapy has been instituted. An increased understanding of the structure of endotoxin and its role in the development of sepsis, together with advances in hybridoma technology, has led to the development of monoclonal antibodies that bind to endotoxin and significantly attenuate its adverse effects. These agents promise to substantially reduce the morbidity and mortality associated with gram-negative sepsis. PMID:8457980

  18. The talking language in some major Gram-negative bacteria.

    PubMed

    Banerjee, Goutam; Ray, Arun Kumar

    2016-08-01

    Cell-cell interaction or quorum sensing (QS) is a vital biochemical/physiological process in bacteria that is required for various physiological functions, including nutrient uptake, competence development, biofilm formation, sporulation, as well as for toxin secretion. In natural environment, bacteria live in close association with other bacteria and interaction among them is crucial for survival. The QS-regulated gene expression in bacteria is a cell density-dependent process and the initiation process depends on the threshold level of the signaling molecule, N-acyl-homoserine lactone (AHL). The present review summarizes the QS signal and its respective circuit in Gram-negative bacteria. Most of the human pathogens belong to Gram-negative group, and only a few of them cause disease through QS system. Thus, inhibition of pathogenic bacteria is important. Use of antibiotics creates a selective pressure (antibiotics act as natural selection factor to promote one group of bacteria over another group) for emerging multidrug-resistant bacteria and will not be suitable for long-term use. The alternative process of inhibition of QS in bacteria using different natural and synthetic molecules is called quorum quenching. However, in the long run, QS inhibitors or blockers may also develop resistance, but obviously it will solve some sort of problems. In this review, we also have stated the mode of action of quorum-quenching molecule. The understanding of QS network in pathogenic Gram-negative bacteria will help us to solve many health-related problems in future.

  19. The Lethality Test System

    NASA Astrophysics Data System (ADS)

    Parsons, W. M.; Sims, J. R.; Parker, J. V.

    1986-11-01

    The Lethality Test System (LTS) under construction at Los Alamos is an electromagnetic launcher facility designed to perform impact experiments at velocities up to 15 km/sec. The launcher is a 25 mm round bore, plasma armature railgun 22 m in length. Preinjection is accomplished with a two-stage light gas gun capable of 7 km/sec. The railgun power supply utilizes traction motors, vacuum interrupters, and pulse transformers. An assembly of 28 traction motors, equipped with flywheels, stores approximately 80 MJ at 92 percent of full speed and energizes the primary windings of three pulse transformers at a current of 50 kA. At peak current an array of vacuum interrupters disconnects the transformer primary windings and forces the current to flow in the secondary windings. The secondary windings are connected to the railgun, and by staging the vacuum interrupter openings, a 1-1.3 MA ramped current waveform will be delivered to the railgun.

  20. Lethality test system

    SciTech Connect

    Parsons, W.M.; Sims, J.R.; Parker, J.V.

    1986-01-01

    The Lethality Test System (LTS), presently under construction at Los Alamos, is an electromagnetic launcher facility designed to perform impact experiments at velocities up to 15 km/s. The launcher is a 25 mm round bore, plasma armature railgun extending 22 m in length. Preinjection is accomplished with a two-stage gas gun capable of 7 km/s. The railgun power supply utilizes traction motors, vacuum interrupters, and pulse transformers. An assembly of 28 traction motors, equipped with flywheels, stores approximately 80 MJ at 92% of full speed and energizes the primary windings of three pulse transformers at a current of 50 kA. At peak current an array of vacuum interrupters disconnects the transformer primary windings and forces the current to flow in the secondary windings. The secondary windings are connected to the railgun, and by staging the vacuum interrupter openings, a 1 MA to 1.3 MA ramped current waveform will be delivered to the railgun.

  1. Molecular Organization of Gram-Negative Peptidoglycan

    SciTech Connect

    Gan, L.; Chen, S.; Jensen, G.J.

    2009-05-18

    The stress-bearing component of the bacterial cell wall--a multi-gigadalton bag-like molecule called the sacculus--is synthesized from peptidoglycan. Whereas the chemical composition and the 3-dimensional structure of the peptidoglycan subunit (in at least one conformation) are known, the architecture of the assembled sacculus is not. Four decades worth of biochemical and electron microscopy experiments have resulted in two leading 3-D peptidoglycan models: 'Layered' and 'Scaffold', in which the glycan strands are parallel and perpendicular to the cell surface, respectively. Here we resolved the basic architecture of purified, frozen-hydrated sacculi through electron cryotomography. In the Gram-negative sacculus, a single layer of glycans lie parallel to the cell surface, roughly perpendicular to the long axis of the cell, encircling the cell in a disorganized hoop-like fashion.

  2. Evaluation of the VITEK 2 System for the Identification and Susceptibility Testing of Three Species of Nonfermenting Gram-Negative Rods Frequently Isolated from Clinical Samples

    PubMed Central

    Joyanes, Providencia; del Carmen Conejo, María; Martínez-Martínez, Luis; Perea, Evelio J.

    2001-01-01

    VITEK 2 is a new automatic system for the identification and susceptibility testing of the most clinically important bacteria. In the present study 198 clinical isolates, including Pseudomonas aeruginosa (n = 146), Acinetobacter baumannii (n = 25), and Stenotrophomonas maltophilia (n = 27) were evaluated. Reference susceptibility testing of cefepime, cefotaxime, ceftazidime, ciprofloxacin, gentamicin, imipenem, meropenem, piperacillin, tobramycin, levofloxacin (only for P. aeruginosa), co-trimoxazole (only for S. maltophilia), and ampicillin-sulbactam and tetracycline (only for A. baumannii) was performed by microdilution (NCCLS guidelines). The VITEK 2 system correctly identified 91.6, 100, and 76% of P. aeruginosa, S. maltophilia, and A. baumannii isolates, respectively, within 3 h. The respective percentages of essential agreement (to within 1 twofold dilution) for P. aeruginosa and A. baumannii were 89.0 and 88.0% (cefepime), 91.1 and 100% (cefotaxime), 95.2 and 96.0% (ceftazidime), 98.6 and 100% (ciprofloxacin), 88.4 and 100% (gentamicin), 87.0 and 92.0% (imipenem), 85.0 and 88.0% (meropenem), 84.2 and 96.0% (piperacillin), and 97.3 and 80% (tobramycin). The essential agreement for levofloxacin against P. aeruginosa was 86.3%. The percentages of essential agreement for ampicillin-sulbactam and tetracycline against A. baumannii were 88.0 and 100%, respectively. Very major errors for P. aeruginosa (resistant by the reference method, susceptible with the VITEK 2 system [resistant to susceptible]) were noted for cefepime (0.7%), cefotaxime (0.7%), gentamicin (0.7%), imipenem (1.4%), levofloxacin (2.7%), and piperacillin (2.7%) and, for one strain of A. baumannii, for imipenem. Major errors (susceptible to resistant) were noted only for P. aeruginosa and cefepime (2.0%), ceftazidime (0.7%), and piperacillin (3.4%). Minor errors ranged from 0.0% for piperacillin to 22.6% for cefotaxime against P. aeruginosa and from 0.0% for piperacillin and ciprofloxacin to 20

  3. [Morphofunctional changes of BALB/c and C57BL/6 mice's immune system under chronic bacterial gram-negative endotoxicosis].

    PubMed

    Makarova, O V; Diatroptov, M E; Serebriakov, S N; Malaĭtsev, V V; Bogdanova, I M

    2012-01-01

    Chronic endotoxicosis was modeled by subcutaneous injection of the sepharose in complex with LPS. In these conditions we have studied morphofunctional changes of the immune system of BALB/c and C57Bl/6 mice, which are characterized by the different types of the immune response (Th2 type is predominant in BALB/c, Th1--in C57Bl/6). In the 1st-7th day t in the serum of BALB/c mice the endotoxin level increased in 21.3 times, in C57Bl/6--in 20.6 times. The endotoxin antibodies significantly decreased in 1th-7th days, on the 14th day it increased in the serum of both mice's strains. Morphofunctional changes of the immune system after chronic endotoxicosis were different in BALB/c and C57BI/6 mice. On the 1th day after injection of LPS and sepharose, in the thymus of C57Bl/6 mice the cortex layer was exhausted because of cell death, in the thymus of BALB/c mice II-III stages of accidental involution were developed. On the 7-14th day after injection of LPS and sepharose in the spleen of C57Bl/6 mice T- and B-zones were hyperplastic, however in spleen of BALB/c mice only T-zone were enlarged. After LPS and sepharose injection changes of cytokine production synthesized by KonA activated splenic cells were found out. In both strains the level of proinflammatory cytokines--TNFalpha and IL-1beta decreased, as well the Th1-cytokine IL-2. The production o fTh2-cytokine - IL-4, significantly decreased only in C57BI/6 mice. We suggest that damaging effect of LPS injection is determined by predominant Th2 or Th2 types of the immune response.

  4. Direct comparison of the BD phoenix system with the MicroScan WalkAway system for identification and antimicrobial susceptibility testing of Enterobacteriaceae and nonfermentative gram-negative organisms.

    PubMed

    Snyder, J W; Munier, G K; Johnson, C L

    2008-07-01

    The Phoenix automated microbiology system (BD Diagnostics, Sparks, MD) is designed for the rapid identification (ID) and antimicrobial susceptibility testing (AST) of clinically significant human bacterial pathogens. We evaluated the performance of the Phoenix instrument in comparison with that of the MicroScan WalkAway system (Dade Behring, West Sacramento, CA) in the ID and AST of gram-negative clinical strains and challenge isolates of Enterobacteriaceae (n = 150) and nonfermentative gram-negative bacilli (NFGNB; 45 clinical isolates and 8 challenge isolates). ID discrepancies were resolved with the API 20E and API 20NE conventional biochemical ID systems (bioMerieux, Durham, NC). The standard disk diffusion method was used to resolve discordant AST results. The overall percentages of agreement between the Phoenix ID results and the MicroScan results at the genus and species levels for clinical isolates of Enterobacteriaceae were 98.7 and 97.7%, respectively; following resolution with conventional biochemical testing, the accuracy of the Phoenix system was determined to be 100%. For NFGNB, the levels of agreement were 100 and 97.7%, respectively. Both systems incorrectly identified the majority of the uncommon nonfermentative nonpseudomonal challenge isolates recovered from cystic fibrosis patients; these isolates are not included in the databases of the respective systems. For AST of Enterobacteriaceae, the rate of complete agreement between the Phoenix results and the MicroScan results was 97%; the rates of very major, major, and minor errors were 0.3, 0.2, and 2.7%, respectively. For NFGNB, the rate of complete agreement between the Phoenix results and the MicroScan results was 89.1%; the rates of very major, major, and minor errors were 0, 0.5, and 7.7%, respectively. Following the confirmatory testing of nine clinical isolates initially screened by the MicroScan system as possible extended-spectrum-beta-lactamase (ESBL)-producing organisms (seven Klebsiella

  5. Genetic and functional characterization of a yet-unclassified rhizobial Dtr (DNA-transfer-and-replication) region from a ubiquitous plasmid conjugal system present in Sinorhizobium meliloti, in Sinorhizobium medicae, and in other nonrhizobial Gram-negative bacteria.

    PubMed

    Giusti, María de los Ángeles; Pistorio, Mariano; Lozano, Mauricio J; Tejerizo, Gonzalo A Torres; Salas, María Eugenia; Martini, María Carla; López, José Luis; Draghi, Walter O; Del Papa, María Florencia; Pérez-Mendoza, Daniel; Sanjuán, Juan; Lagares, Antonio

    2012-05-01

    Rhizobia are Gram-negative bacteria that live in soils and associate with leguminous plants to establish nitrogen-fixing symbioses. The ability of these bacteria to undergo horizontal gene transfer (HGT) is thought to be one of the main features to explain both the origin of their symbiotic life-style and the plasticity and dynamics of their genomes. In our laboratory we have previously characterized at the species level the non-pSym plasmid mobilome in Sinorhizobium meliloti, the symbiont of Medicago spp., and have found a high incidence of conjugal activity in many plasmids (Pistorio et al., 2008). In this work we characterized the Dtr (DNA-transfer-and-replication) region of one of those plasmids, pSmeLPU88b. This mobilization region was found to represent a previously unclassified Dtr type in rhizobia (hereafter type-IV), highly ubiquitous in S. meliloti and found in other genera of Gram-negative bacteria as well; including Agrobacterium, Ochrobactrum, and Chelativorans. The oriT of the type-IV Dtr described here could be located by function within a DNA fragment of 278 bp, between the divergent genes parA and mobC. The phylogenetic analysis of the cognate relaxase MobZ indicated that this protein groups close to the previously defined MOB(P3) and MOB(P4) type of enzymes, but is located in a separate and novel cluster that we have designated MOB(P0). Noteworthy, MOB(P0) and MOB(P4) relaxases were frequently associated with plasmids present in rhizospheric soil bacteria. A comparison of the nod-gene locations with the phylogenetic topology of the rhizobial relaxases revealed that the symbiotic genes are found on diverse plasmids bearing any of the four Dtr types, thus indicating that pSym plasmids are not specifically associated with any particular mobilization system. Finally, we demonstrated that the type-IV Dtr promoted the mobilization of plasmids from S. meliloti to Sinorhizobium medicae as well as from these rhizobia to other bacteria by means of their own

  6. Inhaled Antibiotics for Gram-Negative Respiratory Infections.

    PubMed

    Wenzler, Eric; Fraidenburg, Dustin R; Scardina, Tonya; Danziger, Larry H

    2016-07-01

    Gram-negative organisms comprise a large portion of the pathogens responsible for lower respiratory tract infections, especially those that are nosocomially acquired, and the rate of antibiotic resistance among these organisms continues to rise. Systemically administered antibiotics used to treat these infections often have poor penetration into the lung parenchyma and narrow therapeutic windows between efficacy and toxicity. The use of inhaled antibiotics allows for maximization of target site concentrations and optimization of pharmacokinetic/pharmacodynamic indices while minimizing systemic exposure and toxicity. This review is a comprehensive discussion of formulation and drug delivery aspects, in vitro and microbiological considerations, pharmacokinetics, and clinical outcomes with inhaled antibiotics as they apply to disease states other than cystic fibrosis. In reviewing the literature surrounding the use of inhaled antibiotics, we also highlight the complexities related to this route of administration and the shortcomings in the available evidence. The lack of novel anti-Gram-negative antibiotics in the developmental pipeline will encourage the innovative use of our existing agents, and the inhaled route is one that deserves to be further studied and adopted in the clinical arena. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Inhaled Antibiotics for Gram-Negative Respiratory Infections

    PubMed Central

    Fraidenburg, Dustin R.; Scardina, Tonya

    2016-01-01

    SUMMARY Gram-negative organisms comprise a large portion of the pathogens responsible for lower respiratory tract infections, especially those that are nosocomially acquired, and the rate of antibiotic resistance among these organisms continues to rise. Systemically administered antibiotics used to treat these infections often have poor penetration into the lung parenchyma and narrow therapeutic windows between efficacy and toxicity. The use of inhaled antibiotics allows for maximization of target site concentrations and optimization of pharmacokinetic/pharmacodynamic indices while minimizing systemic exposure and toxicity. This review is a comprehensive discussion of formulation and drug delivery aspects, in vitro and microbiological considerations, pharmacokinetics, and clinical outcomes with inhaled antibiotics as they apply to disease states other than cystic fibrosis. In reviewing the literature surrounding the use of inhaled antibiotics, we also highlight the complexities related to this route of administration and the shortcomings in the available evidence. The lack of novel anti-Gram-negative antibiotics in the developmental pipeline will encourage the innovative use of our existing agents, and the inhaled route is one that deserves to be further studied and adopted in the clinical arena. PMID:27226088

  8. Antibacterial clay against gram-negative antibiotic resistant bacteria.

    PubMed

    Zarate-Reyes, Luis; Lopez-Pacheco, Cynthia; Nieto-Camacho, Antonio; Palacios, Eduardo; Gómez-Vidales, Virginia; Kaufhold, Stephan; Ufer, Kristian; García Zepeda, Eduardo; Cervini-Silva, Javiera

    2017-09-01

    Antibiotic resistant bacteria persist throughout the world because they have evolved the ability to express various defense mechanisms to cope with antibiotics and the immune system; thus, low-cost strategies for the treatment of these bacteria are needed, such as the usage of environmental minerals. This paper reports the antimicrobial properties of a clay collected from Brunnenberg, Germany, that is composed of ferroan saponite with admixtures of quartz, feldspar and calcite as well as exposed or hidden (layered at inner regions) nano Fe(0). Based on the growth curves (log phase) of six antibiotic resistant bacteria (4 gram-negative and 2 gram-positive), we concluded that the clay acted as a bacteriostat; however, the clay was only active against the gram-negative bacteria (except for resilient Klebsiella pneumonia). The bacteriostatic mode of action was evidenced by the initial lack of Colony Forming Units on agar plates with growth registered afterward, certainly after 24h, and can be explained because interactions between membrane lipopolysaccharides and the siloxane surfaces of the clay. Labile or bioavailable Fe in the clay (extracted by EDTA or DFO-B) induced the quantitative production of HO as well as oxidative stress, which, nevertheless, did not account for by its bacteriostatic activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Direct inoculation method using BacT/ALERT 3D and BD Phoenix System allows rapid and accurate identification and susceptibility testing for both Gram-positive cocci and Gram-negative rods in aerobic blood cultures.

    PubMed

    Yonetani, Shota; Okazaki, Mitsuhiro; Araki, Koji; Makino, Hiroshi; Fukugawa, Yoko; Okuyama, Takahiro; Ohnishi, Hiroaki; Watanabe, Takashi

    2012-06-01

    This study describes a direct inoculation method using the automated BacT/ALERT 3D and the BD Phoenix System in combination for identification and susceptibility testing of isolates from positive blood cultures. Organism identification and susceptibility results were compared with the conventional method for 211 positive aerobic blood cultures. Of 110 Gram-positive cocci (GPCs), 98 (89.1%) isolates were correctly identified to the species level. Of 101 Gram-negative rods (GNRs), 98 (97.0%) isolates were correctly identified to the species level. The overall categorical agreement in antimicrobial susceptibility testing among the 110 GPCs was 92.7%, with 0.04% very major and 0.7% major error rates. The overall categorical agreement among 78 isolates of enterobacteria and 23 isolates of nonfermenters in GNRs was 99.5% and 91.1%, respectively, with no major errors identified. We conclude that, compared with previously reported direct inoculation methods, our method is superior in identification and susceptibility testing of GPCs.

  10. Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria.

    PubMed

    Whitney, J C; Howell, P L

    2013-02-01

    The biosynthesis and export of bacterial cell-surface polysaccharides is known to occur through several distinct mechanisms. Recent advances in the biochemistry and structural biology of several proteins in synthase-dependent polysaccharide secretion systems have identified key conserved components of this pathway in Gram-negative bacteria. These components include an inner-membrane-embedded polysaccharide synthase, a periplasmic tetratricopeptide repeat (TPR)-containing scaffold protein, and an outer-membrane β-barrel porin. There is also increasing evidence that many synthase-dependent systems are post-translationally regulated by the bacterial second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Here, we compare these core proteins in the context of the alginate, cellulose, and poly-β-D-N-acetylglucosamine (PNAG) secretion systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria

    PubMed Central

    Whitney, J.C.; Howell, P.L.

    2014-01-01

    The biosynthesis and export of bacterial cell-surface polysaccharides is known to occur through several distinct mechanisms. Recent advances in the biochemistry and structural biology of several proteins in synthase-dependent polysaccharide secretion systems have identified key conserved components of this pathway in Gram-negative bacteria. These components include an inner-membrane-embedded polysaccharide synthase, a periplasmic tetratricopeptide repeat (TPR)-containing scaffold protein, and an outer-membrane β-barrel porin. There is also increasing evidence that many synthase-dependent systems are post-translationally regulated by the bacterial second messenger bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP). Here, we compare these core proteins in the context of the alginate, cellulose, and poly-β-D-N-acetylglucosamine (PNAG) secretion systems. PMID:23117123

  12. Strategy for rapid identification and antibiotic susceptibility testing of gram-negative bacteria directly recovered from positive blood cultures using the Bruker MALDI Biotyper and the BD Phoenix system.

    PubMed

    Wimmer, Jana L; Long, S Wesley; Cernoch, Patricia; Land, Geoffrey A; Davis, James R; Musser, James M; Olsen, Randall J

    2012-07-01

    Decreasing the time to species identification and antibiotic susceptibility determination of strains recovered from patients with bacteremia significantly decreases morbidity and mortality. Herein, we validated a method to identify Gram-negative bacteria directly from positive blood culture medium using the Bruker MALDI Biotyper and to rapidly perform susceptibility testing using the BD Phoenix.

  13. Evaluation of the Bruker Biotyper and Vitek MS Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Systems for Identification of Nonfermenting Gram-Negative Bacilli Isolated from Cultures from Cystic Fibrosis Patients

    PubMed Central

    Marko, Daniel C.; Saffert, Ryan T.; Cunningham, Scott A.; Hyman, Jay; Walsh, John; Arbefeville, Sophie; Howard, Wanita; Pruessner, Jon; Safwat, Nedal; Cockerill, Franklin R.; Bossler, Aaron D.; Patel, Robin

    2012-01-01

    The Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) instruments were evaluated for the identification of nonfermenting Gram-negative bacilli (NFGNB) by a blinded comparison to conventional biochemical or molecular methods. Two hundred NFGNB that were recovered from cultures from cystic fibrosis patients in the University of Iowa Health Care (UIHC) Microbiology Laboratory between 1 January 2006 and 31 October 2010 were sent to Mayo Clinic for analysis with the Bruker Biotyper (software version 3.0) and to bioMérieux for testing with Vitek MS (SARAMIS database version 3.62). If two attempts at direct colony testing failed to provide an acceptable MALDI-TOF identification, an extraction procedure was performed. The MS identifications from both of these systems were provided to UIHC for comparison to the biochemical or molecular identification that had been reported in the patient record. Isolates with discordant results were analyzed by 16S rRNA gene sequencing at UIHC. After discrepancy testing, the Bruker Biotyper result agreed with the biochemical or molecular method, with 72.5% of isolates to the species level, 5.5% to the complex level, and 19% to the genus level (3% not identified). The level of agreement for Vitek MS was 80% species, 3.5% complex, 6% genus, and 3.5% family (7% not identified). Both MS systems provided rapid (≤3 min per isolate) and reliable identifications. The agreement of combined species/complex/genus-level identification with the reference method was higher for the Bruker Biotyper (97% versus 89.5%, P = 0.004) but required an extraction step more often. Species-level agreement with the reference method was similar for both MS systems (72.5% and 80%, P = 0.099). PMID:22495566

  14. [Endotoxin adsortion as adjuvant therapy in gram negative severe sepsis].

    PubMed

    Candel, F J; Martínez-Sagasti, F; Borges, M; Maseda, E; Herrera-Gutiérrez, M; Garnacho-Montero, J; Maynar, F J; Zaragoza, R; Mensa, J; Azanza, J R

    2010-09-01

    The mortality rate of severe sepsis and septic shock remains still high. Within the last years a better knowledge of its physiopathology and the implementation of a group of measures addressed to a fast identification and early treatment of the septic patients have proved to reduce mortality rate. Likewise, it continues being investigated in modulating the inflammatory response and limiting the harmful action of the bacterial products on the immune system. As a result of this research some endotoxin adsorber devices have been designed to control one of the most important targets that start the inflammatory cascade when gram negative microorganisms are involved.The usefulness that these endotoxin removal devices might have as adjuvant treatment in the Septic Syndrome and its applicability are reviewed in this paper. Likewise a profile of patient that might be to the benefit of this therapy is suggested according to the current knowledge.

  15. Rapid method for identification of gram-negative, nonfermentative bacilli.

    PubMed Central

    Otto, L A; Pickett, M J

    1976-01-01

    A rapid system (OA), based on oxidative attack of substrates, was developed for identification of gram-negative, nonfermentative bacillia (NFB). One hundred and twelve strains of NFB from 25 species (representing the genera Pseudomonas, Alcaligenes, Acinetobacter, Bordetella, Flavobacterium, Moraxella, and Xanthomonas) were assayed by OA, buffered single substrate, and oxidative/fermentative methods. The 38 substrates consisted of salts of organic acids, nitrogen-containing compounds, alcohols, and carbohydrates. Ninety-four percent of the test strains were identified by the OA method in 24 h, and 99% were identifiable in 48 h. Reproducibility was 99%. Correlation with buffered single substrate was 98% (all substrates) and 90% with the oxidative/fermentative method (carbohydrates only). Biochemical profiles of all strains are presented, as well as tables showing the most useful tests for identification. PMID:780371

  16. Widespread Fosfomycin Resistance in Gram-Negative Bacteria Attributable to the Chromosomal fosA Gene.

    PubMed

    Ito, Ryota; Mustapha, Mustapha M; Tomich, Adam D; Callaghan, Jake D; McElheny, Christi L; Mettus, Roberta T; Shanks, Robert M Q; Sluis-Cremer, Nicolas; Doi, Yohei

    2017-08-29

    Fosfomycin is a decades-old antibiotic which is being revisited because of its perceived activity against many extensively drug-resistant Gram-negative pathogens. FosA proteins are Mn(2+) and K(+)-dependent glutathione S-transferases which confer fosfomycin resistance in Gram-negative bacteria by conjugation of glutathione to the antibiotic. Plasmid-borne fosA variants have been reported in fosfomycin-resistant Escherichia coli strains. However, the prevalence and distribution of fosA in other Gram-negative bacteria are not known. We systematically surveyed the presence of fosA in Gram-negative bacteria in over 18,000 published genomes from 18 Gram-negative species and investigated their contribution to fosfomycin resistance. We show that FosA homologues are present in the majority of genomes in some species (e.g., Klebsiella spp., Enterobacter spp., Serratia marcescens, and Pseudomonas aeruginosa), whereas they are largely absent in others (e.g., E. coli, Acinetobacter baumannii, and Burkholderia cepacia). FosA proteins in different bacterial pathogens are highly divergent, but key amino acid residues in the active site are conserved. Chromosomal fosA genes conferred high-level fosfomycin resistance when expressed in E. coli, and deletion of chromosomal fosA in S. marcescens eliminated fosfomycin resistance. Our results indicate that FosA is encoded by clinically relevant Gram-negative species and contributes to intrinsic fosfomycin resistance.IMPORTANCE There is a critical need to identify alternate approaches to treat infections caused by extensively drug-resistant (XDR) Gram-negative bacteria. Fosfomycin is an old antibiotic which is routinely used for the treatment of urinary tract infections, although there is substantial interest in expanding its use to systemic infections caused by XDR Gram-negative bacteria. In this study, we show that fosA genes, which encode dimeric Mn(2+)- and K(+)-dependent glutathione S-transferase, are widely distributed in the

  17. Construction of p16Slux, a novel vector for improved bioluminescent labeling of gram-negative bacteria.

    PubMed

    Riedel, Christian U; Casey, Pat G; Mulcahy, Heidi; O'Gara, Fergal; Gahan, Cormac G M; Hill, Colin

    2007-11-01

    A novel vector has been constructed for the constitutive luminescent tagging of gram-negative bacteria by site-specific integration into the 16S locus of the bacterial chromosome. A number of gram-negative pathogens were successfully tagged using this vector, and the system was validated during murine infections of living animals.

  18. Solar System: Lethal billiards

    NASA Astrophysics Data System (ADS)

    Claeys, Philippe; Goderis, Steven

    2007-09-01

    A huge collision in the asteroid belt 160 million years ago sent fragments bagatelling around the inner Solar System. One piece might have caused the mass extinction that wiped out the dinosaurs 65 million years ago.

  19. Gram-Negative Bacterial Sensors for Eukaryotic Signal Molecules

    PubMed Central

    Lesouhaitier, Olivier; Veron, Wilfried; Chapalain, Annelise; Madi, Amar; Blier, Anne-Sophie; Dagorn, Audrey; Connil, Nathalie; Chevalier, Sylvie; Orange, Nicole; Feuilloley, Marc

    2009-01-01

    Ample evidence exists showing that eukaryotic signal molecules synthesized and released by the host can activate the virulence of opportunistic pathogens. The sensitivity of prokaryotes to host signal molecules requires the presence of bacterial sensors. These prokaryotic sensors, or receptors, have a double function: stereospecific recognition in a complex environment and transduction of the message in order to initiate bacterial physiological modifications. As messengers are generally unable to freely cross the bacterial membrane, they require either the presence of sensors anchored in the membrane or transporters allowing direct recognition inside the bacterial cytoplasm. Since the discovery of quorum sensing, it was established that the production of virulence factors by bacteria is tightly growth-phase regulated. It is now obvious that expression of bacterial virulence is also controlled by detection of the eukaryotic messengers released in the micro-environment as endocrine or neuro-endocrine modulators. In the presence of host physiological stress many eukaryotic factors are released and detected by Gram-negative bacteria which in return rapidly adapt their physiology. For instance, Pseudomonas aeruginosa can bind elements of the host immune system such as interferon-γ and dynorphin and then through quorum sensing circuitry enhance its virulence. Escherichia coli sensitivity to the neurohormones of the catecholamines family appears relayed by a recently identified bacterial adrenergic receptor. In the present review, we will describe the mechanisms by which various eukaryotic signal molecules produced by host may activate Gram-negative bacteria virulence. Particular attention will be paid to Pseudomonas, a genus whose representative species, P. aeruginosa, is a common opportunistic pathogen. The discussion will be particularly focused on the pivotal role played by these new types of pathogen sensors from the sensing to the transduction mechanism involved in

  20. Kinase activity profiling of gram-negative pneumonia.

    PubMed

    Hoogendijk, Arie J; Diks, Sander H; Peppelenbosch, Maikel P; Van Der Poll, Tom; Wieland, Catharina W

    2011-01-01

    Pneumonia is a severe disease with high morbidity and mortality. A major causative pathogen is the Gram-negative bacterium Klebsiella (K.) pneumoniae. Kinases play an integral role in the transduction of intracellular signaling cascades and regulate a diverse array of biological processes essential to immune cells. The current study explored signal transduction events during murine Gram-negative pneumonia using a systems biology approach. Kinase activity arrays enable the analysis of 1,024 consensus sequences of protein kinase substrates. Using a kinase activity array on whole lung lysates, cellular kinase activities were determined in a mouse model of K. pneumoniae pneumonia. Notable kinase activities also were validated with phospho-specific Western blots. On the basis of the profiling data, mitogen-activated protein kinase (MAPK) signaling via p42 mitogen-activated protein kinase (p42) and p38 mitogen-activated protein kinase (p38) and transforming growth factor β (TGFβ) activity were reduced during infection, whereas v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) (SRC) activity generally was enhanced. AKT signaling was represented in both metabolic and inflammatory (mitogen-activated protein kinase kinase 2 [MKK], apoptosis signal-regulating kinase/mitogen-activated protein kinase kinase kinase 5 [ASK] and v-raf murine sarcoma viral oncogene homolog B1 [b-RAF]) context. This study reaffirms the importance of classic inflammation pathways, such as MAPK and TGFβ signaling and reveals less known involvement of glycogen synthase kinase 3β (GSK-3β), AKT and SRC signaling cassettes in pneumonia.

  1. Growth ability of Gram negative bacteria in free-living amoebae.

    PubMed

    Zeybek, Zuhal; Binay, Ali Rıza

    2014-11-01

    When bacteria and free-living amoebae (FLAs) live both in natural waters and man-made aquatic systems, they constantly interact with each other. Some bacteria can survive and grow within FLAs. Therefore, it has recently been thought that FLAs play an important role in spreading pathogenic bacteria in aquatic systems. In this study we investigated the intracellular growing ability of 7 different Gram-negative bacteria (Pseudomonas fluorescens, Pseudomonas putida, Pasteurella pneumotropica, Aeromonas salmonicida, Legionella pneumophila serogroup 1, L. pneumophila serogroup 3, L. pneumophila serogroup 6) in four different FLA isolates (A1-A4). Among these, four bacterial isolates (P. fluorescens, P.putida, P.pneumotropica, A.salmonicida) and two free-living amoebae isolates (A3, A4) were isolated from the tap water in our city (Istanbul). It was found that 4 different Gram-negative bacteria could grow in A1, 2 different Gram-negative bacteria could grow in A2, 4 different Gram-negative bacteria could grow in A3, 1 Gram-negative bacterium could grow in A4. In conclusion, we think that this ability of growth could vary according to the characteristics of both bacteria and FLA isolates. Also, other factors such as environmental temperature, bacterial concentration, and extended incubation period may play a role in these interactions. This situation can be clarified with future studies.

  2. Silver enhances antibiotic activity against gram-negative bacteria.

    PubMed

    Morones-Ramirez, Jose Ruben; Winkler, Jonathan A; Spina, Catherine S; Collins, James J

    2013-06-19

    A declining pipeline of clinically useful antibiotics has made it imperative to develop more effective antimicrobial therapies, particularly against difficult-to-treat Gram-negative pathogens. Silver has been used as an antimicrobial since antiquity, yet its mechanism of action remains unclear. We show that silver disrupts multiple bacterial cellular processes, including disulfide bond formation, metabolism, and iron homeostasis. These changes lead to increased production of reactive oxygen species and increased membrane permeability of Gram-negative bacteria that can potentiate the activity of a broad range of antibiotics against Gram-negative bacteria in different metabolic states, as well as restore antibiotic susceptibility to a resistant bacterial strain. We show both in vitro and in a mouse model of urinary tract infection that the ability of silver to induce oxidative stress can be harnessed to potentiate antibiotic activity. Additionally, we demonstrate in vitro and in two different mouse models of peritonitis that silver sensitizes Gram-negative bacteria to the Gram-positive-specific antibiotic vancomycin, thereby expanding the antibacterial spectrum of this drug. Finally, we used silver and antibiotic combinations in vitro to eradicate bacterial persister cells, and show both in vitro and in a mouse biofilm infection model that silver can enhance antibacterial action against bacteria that produce biofilms. This work shows that silver can be used to enhance the action of existing antibiotics against Gram-negative bacteria, thus strengthening the antibiotic arsenal for fighting bacterial infections.

  3. Impact of fluoroquinolone resistance in Gram-negative bloodstream infections on healthcare utilization.

    PubMed

    Brigmon, M M; Bookstaver, P Brandon; Kohn, J; Albrecht, H; Al-Hasan, M N

    2015-09-01

    There has been a concerning increase in fluoroquinolone resistance among Gram-negative bloodstream isolates. This retrospective cohort study examines the implications of fluoroquinolone resistance on use of healthcare resources in patients with Gram-negative bloodstream infections (BSI). Hospitalized adults with first episodes of community-onset Gram-negative BSI from 2010 to 2012 at Palmetto Health Hospitals in Columbia, SC, USA were identified. Multivariate linear regression was used to examine risk factors for prolonged hospital length of stay (HLOS) in survivors of Gram-negative BSI. Among 474 unique patients, 384 (81%) and 90 (19%) had BSI due to fluoroquinolone-susceptible (FQ-S) and fluoroquinolone non-susceptible (FQ-NS) Gram-negative bacilli, respectively. The FQ-NS bloodstream isolates, particularly Escherichia coli, were more likely than FQ-S isolates to be multi-drug resistant (56% versus 6%, p < 0.001). Compared with patients with BSI due to FQ-S bloodstream isolates, those with FQ-NS isolates were more likely to receive inappropriate empirical antimicrobial therapy (26% versus 3%, p < 0.001), have longer mean HLOS (11.6 versus 9.3 days, p 0.03) and treatment duration with intravenous antibiotics during hospitalization (9.1 versus 7.1 days, p 0.001), and use outpatient intravenous antibiotics at hospital discharge (15% versus 8%, p 0.05). After adjustments in the multivariate model, inappropriate empirical antimicrobial therapy was an independent risk factor for prolonged HLOS in survivors of Gram-negative BSI (parameter estimate 3.65 days, 95% CI 0.43-6.86). Multi-drug resistance among FQ-NS bloodstream isolates limits both empirical and definitive antimicrobial treatment options and poses excessive burdens on the healthcare system.

  4. Insights into Newer Antimicrobial Agents Against Gram-negative Bacteria

    PubMed Central

    Taneja, Neelam; Kaur, Harsimran

    2016-01-01

    Currently, drug resistance, especially against cephalosporins and carbapenems, among gram-negative bacteria is an important challenge, which is further enhanced by the limited availability of drugs against these bugs. There are certain antibiotics (colistin, fosfomycin, temocillin, and rifampicin) that have been revived from the past to tackle the menace of superbugs, including members of Enterobacteriaceae, Acinetobacter species, and Pseudomonas species. Very few newer antibiotics have been added to the pool of existing drugs. There are still many antibiotics that are passing through various phases of clinical trials. The initiative of Infectious Disease Society of America to develop 10 novel antibiotics against gram-negative bacilli by 2020 is a step to fill the gap of limited availability of drugs. This review aims to provide insights into the current and newer drugs in pipeline for the treatment of gram-negative bacteria and also discusses the major challenging issues for their management. PMID:27013887

  5. Gram-negative and Gram-positive bacterial extracellular vesicles.

    PubMed

    Kim, Ji Hyun; Lee, Jaewook; Park, Jaesung; Gho, Yong Song

    2015-04-01

    Like mammalian cells, Gram-negative and Gram-positive bacteria release nano-sized membrane vesicles into the extracellular environment either in a constitutive manner or in a regulated manner. These bacterial extracellular vesicles are spherical bilayered proteolipids enriched with bioactive proteins, lipids, nucleic acids, and virulence factors. Recent progress in this field supports the critical pathophysiological functions of these vesicles in both bacteria-bacteria and bacteria-host interactions. This review provides an overview of the current understanding on Gram-negative and Gram-positive bacterial extracellular vesicles, especially regarding the biogenesis, components, and functions in poly-species communities. We hope that this review will stimulate additional research in this emerging field of bacterial extracellular vesicles and contribute to the development of extracellular vesicle-based diagnostic tools and effective vaccines against pathogenic Gram-negative and Gram-positive bacteria.

  6. Gram-negative bacteria can also form pellicles.

    PubMed

    Armitano, Joshua; Méjean, Vincent; Jourlin-Castelli, Cécile

    2014-12-01

    There is a growing interest in the bacterial pellicle, a biofilm floating at the air-liquid interface. Pellicles have been well studied in the Gram-positive bacterium Bacillus subtilis, but far less in Gram-negative bacteria, where pellicle studies have mostly focused on matrix components rather than on the regulatory cascades involved. Several Gram-negative bacteria, including pathogenic bacteria, have been shown to be able to form a pellicle under static conditions. Here, we summarize the growing body of knowledge about pellicle formation in Gram-negative bacteria, especially about the components of the pellicle matrix. We also propose that the pellicle is a specific biofilm, and that its formation involves particular processes. Since this lifestyle concerns a growing number of bacteria, its properties undoubtedly deserve further investigation.

  7. Multidrug-Resistant Gram-Negative Bacilli: Infection Control Implications.

    PubMed

    Adler, Amos; Friedman, N Deborah; Marchaim, Dror

    2016-12-01

    Antimicrobial resistance is a common iatrogenic complication of both modern life and medical care. Certain multidrug resistant and extensively drug resistant Gram-negative organisms pose the biggest challenges to health care today, predominantly owing to a lack of therapeutic options. Containing the spread of these organisms is challenging, and in reality, the application of multiple control measures during an evolving outbreak makes it difficult to measure the relative impact of each measure. This article reviews the usefulness of various infection control measures in containing the spread of multidrug-resistant Gram-negative bacilli. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Mechanisms of Antimicrobial Peptide Resistance in Gram-Negative Bacteria

    PubMed Central

    Band, Victor I.; Weiss, David S.

    2014-01-01

    Cationic antimicrobial peptides (CAMPs) are important innate immune defenses that inhibit colonization by pathogens and contribute to clearance of infections. Gram-negative bacterial pathogens are a major target, yet many of them have evolved mechanisms to resist these antimicrobials. These resistance mechanisms can be critical contributors to bacterial virulence and are often crucial for survival within the host. Here, we summarize methods used by Gram-negative bacteria to resist CAMPs. Understanding these mechanisms may lead to new therapeutic strategies against pathogens with extensive CAMP resistance. PMID:25927010

  9. Mechanisms of Antimicrobial Peptide Resistance in Gram-Negative Bacteria.

    PubMed

    Band, Victor I; Weiss, David S

    2015-03-01

    Cationic antimicrobial peptides (CAMPs) are important innate immune defenses that inhibit colonization by pathogens and contribute to clearance of infections. Gram-negative bacterial pathogens are a major target, yet many of them have evolved mechanisms to resist these antimicrobials. These resistance mechanisms can be critical contributors to bacterial virulence and are often crucial for survival within the host. Here, we summarize methods used by Gram-negative bacteria to resist CAMPs. Understanding these mechanisms may lead to new therapeutic strategies against pathogens with extensive CAMP resistance.

  10. Genome Sequences of Nine Gram-Negative Vaginal Bacterial Isolates

    PubMed Central

    Deitzler, Grace E.; Ruiz, Maria J.; Lu, Wendy; Weimer, Cory; Park, SoEun; Robinson, Lloyd S.; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka

    2016-01-01

    The vagina is home to a wide variety of bacteria that have great potential to impact human health. Here, we announce reference strains (now available through BEI Resources) and draft genome sequences for 9 Gram-negative vaginal isolates from the taxa Citrobacter, Klebsiella, Fusobacterium, Proteus, and Prevotella. PMID:27688330

  11. Bacteriocins from Gram-Negative Bacteria: A Classification?

    NASA Astrophysics Data System (ADS)

    Rebuffat, Sylvie

    Bacteria produce an arsenal of toxic peptides and proteins, which are termed bacteriocins and play a role in mediating the dynamics of microbial populations and communities. Bacteriocins from Gram-negative bacteria arise mainly from Enterobacteriaceae. They assemble into two main families: high molecular mass modular proteins (30-80 kDa) termed colicins and low molecular mass peptides (between 1 and 10 kDa) termed microcins. The production of colicins is mediated by the SOS response regulon, which plays a role in the response of many bacteria to DNA damages. Microcins are highly stable hydrophobic peptides that are produced under stress conditions, particularly nutrient depletion. Colicins and microcins are found essentially in Escherichia coli, but several other Gram-negative species also produce bacteriocin-like substances. This chapter presents the basis of a classification of colicins and microcins.

  12. [Detection of resistance phenotypes in gram-negative bacteria].

    PubMed

    Navarro, Ferran; Calvo, Jorge; Cantón, Rafael; Fernández-Cuenca, Felipe; Mirelis, Beatriz

    2011-01-01

    Detecting resistance in gram-negative microorganisms has a strong clinical and epidemiological impact, but there is still a great deal of debate about the most sensitive phenotypic method and whether in vitro susceptibility results should be interpreted. The present work reviews the phenotypes and mechanisms of resistance to beta-lactams, quinolones and aminoglycosides in gram-negative bacilli and also revises the different phenotypic methods used for their detection. A clinical interpretation of in vitro susceptibility results is also discussed. Extended-spectrum and inhibitor resistant beta-lactamases, AmpC type beta-lactamases and carbapenemases are thoroughly reviewed. As regards quinolones, the resistance mediated both by plasmids and by mutations in the DNA gyrase and the topoisomerase IV genes is also reviewed. This report includes resistance patterns to aminoglycosides caused by modifying enzymes. Phenotypic detection of beta-lactam resistance in Neisseria spp. and Haemophilus influenzae is also reviewed in a separate section.

  13. Gram-negative bacterial molecules associate with Alzheimer disease pathology

    PubMed Central

    Stamova, Boryana; Jin, Lee-Way; DeCarli, Charles; Phinney, Brett; Sharp, Frank R.

    2016-01-01

    Objective: We determined whether Gram-negative bacterial molecules are associated with Alzheimer disease (AD) neuropathology given that previous studies demonstrate Gram-negative Escherichia coli bacteria can form extracellular amyloid and Gram-negative bacteria have been reported as the predominant bacteria found in normal human brains. Methods: Brain samples from gray and white matter were studied from patients with AD (n = 24) and age-matched controls (n = 18). Lipopolysaccharide (LPS) and E coli K99 pili protein were evaluated by Western blots and immunocytochemistry. Human brain samples were assessed for E coli DNA followed by DNA sequencing. Results: LPS and E coli K99 were detected immunocytochemically in brain parenchyma and vessels in all AD and control brains. K99 levels measured using Western blots were greater in AD compared to control brains (p < 0.01) and K99 was localized to neuron-like cells in AD but not control brains. LPS levels were also greater in AD compared to control brain. LPS colocalized with Aβ1-40/42 in amyloid plaques and with Aβ1-40/42 around vessels in AD brains. DNA sequencing confirmed E coli DNA in human control and AD brains. Conclusions: E coli K99 and LPS levels were greater in AD compared to control brains. LPS colocalized with Aβ1-40/42 in amyloid plaques and around vessels in AD brain. The data show that Gram-negative bacterial molecules are associated with AD neuropathology. They are consistent with our LPS-ischemia-hypoxia rat model that produces myelin aggregates that colocalize with Aβ and resemble amyloid-like plaques. PMID:27784770

  14. Antimicrobial Photodynamic Therapy to Kill Gram-negative Bacteria

    PubMed Central

    Sperandio, Felipe F; Huang, Ying-Ying; Hamblin, Michael R

    2013-01-01

    Antimicrobial photodynamic therapy (PDT) or photodynamic inactivation (PDI) is a new promising strategy to eradicate pathogenic microorganisms such as Gram-positive and Gram-negative bacteria, yeasts and fungi. The search for new approaches that can kill bacteria but do not induce the appearance of undesired drug-resistant strains suggests that PDT may have advantages over traditional antibiotic therapy. PDT is a non-thermal photochemical reaction that involves the simultaneous presence of visible light, oxygen and a dye or photosensitizer (PS). Several PS have been studied for their ability to bind to bacteria and efficiently generate reactive oxygen species (ROS) upon photostimulation. ROS are formed through type I or II mechanisms and may inactivate several classes of microbial cells including Gram-negative bacteria such as Pseudomonas aeruginosa, which are typically characterized by an impermeable outer cell membrane that contains endotoxins and blocks antibiotics, dyes, and detergents, protecting the sensitive inner membrane and cell wall. This review covers significant peer-reviewed articles together with US and World patents that were filed within the past few years and that relate to the eradication of Gram-negative bacteria via PDI or PDT. It is organized mainly according to the nature of the PS involved and includes natural or synthetic food dyes; cationic dyes such as methylene blue and toluidine blue; tetrapyrrole derivatives such as phthalocyanines, chlorins, porphyrins, chlorophyll and bacteriochlorophyll derivatives; functionalized fullerenes; nanoparticles combined with different PS; other formulations designed to target PS to bacteria; photoactive materials and surfaces; conjugates between PS and polycationic polymers or antibodies; and permeabilizing agents such as EDTA, PMNP and CaCl2. The present review also covers the different laboratory animal models normally used to treat Gram-negative bacterial infections with antimicrobial PDT. PMID

  15. Gram-negative bacterial molecules associate with Alzheimer disease pathology.

    PubMed

    Zhan, Xinhua; Stamova, Boryana; Jin, Lee-Way; DeCarli, Charles; Phinney, Brett; Sharp, Frank R

    2016-11-29

    We determined whether Gram-negative bacterial molecules are associated with Alzheimer disease (AD) neuropathology given that previous studies demonstrate Gram-negative Escherichia coli bacteria can form extracellular amyloid and Gram-negative bacteria have been reported as the predominant bacteria found in normal human brains. Brain samples from gray and white matter were studied from patients with AD (n = 24) and age-matched controls (n = 18). Lipopolysaccharide (LPS) and E coli K99 pili protein were evaluated by Western blots and immunocytochemistry. Human brain samples were assessed for E coli DNA followed by DNA sequencing. LPS and E coli K99 were detected immunocytochemically in brain parenchyma and vessels in all AD and control brains. K99 levels measured using Western blots were greater in AD compared to control brains (p < 0.01) and K99 was localized to neuron-like cells in AD but not control brains. LPS levels were also greater in AD compared to control brain. LPS colocalized with Aβ1-40/42 in amyloid plaques and with Aβ1-40/42 around vessels in AD brains. DNA sequencing confirmed E coli DNA in human control and AD brains. E coli K99 and LPS levels were greater in AD compared to control brains. LPS colocalized with Aβ1-40/42 in amyloid plaques and around vessels in AD brain. The data show that Gram-negative bacterial molecules are associated with AD neuropathology. They are consistent with our LPS-ischemia-hypoxia rat model that produces myelin aggregates that colocalize with Aβ and resemble amyloid-like plaques. © 2016 American Academy of Neurology.

  16. Antimicrobial photodynamic therapy to kill Gram-negative bacteria.

    PubMed

    Sperandio, Felipe F; Huang, Ying-Ying; Hamblin, Michael R

    2013-08-01

    Antimicrobial photodynamic therapy (PDT) or photodynamic inactivation (PDI) is a new promising strategy to eradicate pathogenic microorganisms such as Gram-positive and Gram-negative bacteria, yeasts and fungi. The search for new approaches that can kill bacteria but do not induce the appearance of undesired drug-resistant strains suggests that PDT may have advantages over traditional antibiotic therapy. PDT is a non-thermal photochemical reaction that involves the simultaneous presence of visible light, oxygen and a dye or photosensitizer (PS). Several PS have been studied for their ability to bind to bacteria and efficiently generate reactive oxygen species (ROS) upon photo-stimulation. ROS are formed through type I or II mechanisms and may inactivate several classes of microbial cells including Gram-negative bacteria such as Pseudomonas aeruginosa, which are typically characterized by an impermeable outer cell membrane that contains endotoxins and blocks antibiotics, dyes, and detergents, protecting the sensitive inner membrane and cell wall. This review covers significant peer-reviewed articles together with US and World patents that were filed within the past few years and that relate to the eradication of Gram-negative bacteria via PDI or PDT. It is organized mainly according to the nature of the PS involved and includes natural or synthetic food dyes; cationic dyes such as methylene blue and toluidine blue; tetrapyrrole derivatives such as phthalocyanines, chlorins, porphyrins, chlorophyll and bacteriochlorophyll derivatives; functionalized fullerenes; nanoparticles combined with different PS; other formulations designed to target PS to bacteria; photoactive materials and surfaces; conjugates between PS and polycationic polymers or antibodies; and permeabilizing agents such as EDTA, PMNP and CaCl₂. The present review also covers the different laboratory animal models normally used to treat Gram-negative bacterial infections with antimicrobial PDT.

  17. [Effect of Gram-negative bacteria on fatty acids].

    PubMed

    Vuillemin, N; Dupeyron, C; Leluan, G; Bory, J

    1981-01-01

    The gram-negative bacteria investigated exert various effects on fatty acids. P. aeruginosa and A. calcoaceticus catabolize any of the fatty acids tested. S. marcescens is effective upon all fatty acids excepting butyric acid. The long chain fatty acids only are degraded by E. coli, meanwhile the other fatty acids present a bacteriostatic or bactericidal activity on it. The authors propose a simple and original method for testing the capability of degradation of fatty acids by some bacterial species.

  18. Multiple antibiotic resistance among gram negative bacteria isolated from poultry.

    PubMed

    Ansari, F A; Khatoon, H

    1994-03-01

    Gram negative bacteria, including species of Salmonella, Escherichia, Pseudomonas and Klebsiella, isolated from poultry, were screened for their resistance to the commonly used antibiotics: ampicillin, chloramphenicol, gentamycin, kanamycin, neomycin, polymyxin B, streptomycin and tetracycline. Of the 500 bacteria screened, 351 were found to be resistant to one or more antibiotics at the level of 50 micrograms/ml. Various patterns of antibiotic resistance observed during these studies have been reported.

  19. [The rise of resistant gram-negative bacteria].

    PubMed

    Kuijper, Ed J; van Dissel, Jaap T

    2010-01-01

    During the past few years there has been a global spread of resistant gram-negative bacteria that are insensitive to cephalosporins and carbapenems. Extended spectrum beta-lactamase (ESBL)-producing bacteria are capable of inactivating the newest generation of cephalosporins. It is notable that ESBL-producing bacteria are found predominantly outside the hospital situation in the environment, in food and in meat products, which leads to the presumption that the food chain is contributing to the rapid spread of these bacteria. Several types of carbapenemase-producing bacteria have been distinguished, of which the 'New Delhi metallo beta-lactamase 1 (NDM-1)' type seems to be prevalent in Asia outside the hospital situation in the community, and is now being transmitted to other continents as a result of migration and tourism. With the rise of ESBL- and carbapenemase-producing gram-negative bacteria (which are also often resistant to most other antibiotics) comes the very real concern that treatment of infections such as urinary tract infections that are currently simple to treat with common oral antibiotics will be problematic in the future. The widespread use of antibiotics in animal husbandry is an important factor in the problem of antibiotic resistance. Since economic motives are of importance, a coordinated approach from many parties concerned will be necessary, not just from the medical sector but also from the veterinary and agricultural world, and from food producers and pharmaceutical companies to combat the spread of multiresistant gram-negative bacteria effectively.

  20. INACTIVATION OF SOME SEMISYNTHETIC PENICILLINS BY GRAM-NEGATIVE BACILLI

    PubMed Central

    Sabath, Leon; Finland, Maxwell

    1963-01-01

    Sabath, Leon (Boston City Hospital, Boston, Mass.) and Maxwell Finland. Inactivation of some semisynthetic penicillins by gram-negative bacilli. J. Bacteriol. 85:314–321. 1963.—An agar diffusion method was used to test 55 strains of gram-negative bacilli for their ability to inactivate penicillin G, methicillin, biphenylpenicillin, oxacillin, and ampicillin; 26 strains inactivated one or more of them. All strains of Klebsiella-Aerobacter, nearly all of Escherichia coli, and some of Pseudomonas aeruginosa, but not those of Proteus or Salmonella, were active by this method. Penicillin G was inactivated by the largest number of strains, biphenylpenicillin and ampicillin by somewhat fewer, and oxacillin and methicillin by about half as many. When the five penicillins were incubated with four strains of different bacteria in broth at 37 C, all were inactivated to a considerable extent by all the strains, each penicillin to a different degree, but to about the same extent by all the strains. Adsorption alone did not account for the loss of activity. The results suggest that there are qualitative, as well as quantitative, differences among species or even strains of gram-negative bacilli in their ability to inactivate the various penicillins. Images PMID:13975857

  1. Host susceptibility to gram-negative pneumonia after lung contusion.

    PubMed

    Dolgachev, Vladislav A; Yu, Bi; Reinke, Julia M; Raghavendran, Krishnan; Hemmila, Mark R

    2012-03-01

    inflammatory cells necessary to combat gram-negative bacteria. This results in decreased bacterial clearance and increased mortality from pneumonia.

  2. Host susceptibility to gram-negative pneumonia after lung contusion

    PubMed Central

    Dolgachev, Vladislav A.; Yu, Bi; Reinke, Julia M.; Raghavendran, Krishnan; Hemmila, Mark R.

    2013-01-01

    acts to modulate the presence of inflammatory cells necessary to combat gram-negative bacteria. This results in decreased bacterial clearance and increased mortality from pneumonia. PMID:22491544

  3. Prediction of Fluoroquinolone Resistance in Gram-Negative Bacteria Causing Bloodstream Infections.

    PubMed

    Dan, Seejil; Shah, Ansal; Justo, Julie Ann; Bookstaver, P Brandon; Kohn, Joseph; Albrecht, Helmut; Al-Hasan, Majdi N

    2016-04-01

    Increasing rates of fluoroquinolone resistance (FQ-R) have limited empirical treatment options for Gram-negative infections, particularly in patients with severe beta-lactam allergy. This case-control study aims to develop a clinical risk score to predict the probability of FQ-R in Gram-negative bloodstream isolates. Adult patients with Gram-negative bloodstream infections (BSI) hospitalized at Palmetto Health System in Columbia, South Carolina, from 2010 to 2013 were identified. Multivariate logistic regression was used to identify independent risk factors for FQ-R. Point allocation in the fluoroquinolone resistance score (FQRS) was based on regression coefficients. Model discrimination was assessed by the area under receiver operating characteristic curve (AUC). Among 824 patients with Gram-negative BSI, 143 (17%) had BSI due to fluoroquinolone-nonsusceptible Gram-negative bacilli. Independent risk factors for FQ-R and point allocation in FQRS included male sex (adjusted odds ratio [aOR], 1.97; 95% confidence intervals [CI], 1.36 to 2.98; 1 point), diabetes mellitus (aOR, 1.54; 95% CI, 1.03 to 2.28; 1 point), residence at a skilled nursing facility (aOR, 2.28; 95% CI, 1.42 to 3.63; 2 points), outpatient procedure within 30 days (aOR, 3.68; 95% CI, 1.96 to 6.78; 3 points), prior fluoroquinolone use within 90 days (aOR, 7.87; 95% CI, 4.53 to 13.74; 5 points), or prior fluoroquinolone use within 91 to 180 days of BSI (aOR, 2.77; 95% CI, 1.17 to 6.16; 3 points). The AUC for both final logistic regression and FQRS models was 0.73. Patients with an FQRS of 0, 3, 5, or 8 had predicted probabilities of FQ-R of 6%, 22%, 39%, or 69%, respectively. The estimation of patient-specific risk of antimicrobial resistance using FQRS may improve empirical antimicrobial therapy and fluoroquinolone utilization in Gram-negative BSI. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Prediction of Fluoroquinolone Resistance in Gram-Negative Bacteria Causing Bloodstream Infections

    PubMed Central

    Dan, Seejil; Shah, Ansal; Justo, Julie Ann; Bookstaver, P. Brandon; Kohn, Joseph; Albrecht, Helmut

    2016-01-01

    Increasing rates of fluoroquinolone resistance (FQ-R) have limited empirical treatment options for Gram-negative infections, particularly in patients with severe beta-lactam allergy. This case-control study aims to develop a clinical risk score to predict the probability of FQ-R in Gram-negative bloodstream isolates. Adult patients with Gram-negative bloodstream infections (BSI) hospitalized at Palmetto Health System in Columbia, South Carolina, from 2010 to 2013 were identified. Multivariate logistic regression was used to identify independent risk factors for FQ-R. Point allocation in the fluoroquinolone resistance score (FQRS) was based on regression coefficients. Model discrimination was assessed by the area under receiver operating characteristic curve (AUC). Among 824 patients with Gram-negative BSI, 143 (17%) had BSI due to fluoroquinolone-nonsusceptible Gram-negative bacilli. Independent risk factors for FQ-R and point allocation in FQRS included male sex (adjusted odds ratio [aOR], 1.97; 95% confidence intervals [CI], 1.36 to 2.98; 1 point), diabetes mellitus (aOR, 1.54; 95% CI, 1.03 to 2.28; 1 point), residence at a skilled nursing facility (aOR, 2.28; 95% CI, 1.42 to 3.63; 2 points), outpatient procedure within 30 days (aOR, 3.68; 95% CI, 1.96 to 6.78; 3 points), prior fluoroquinolone use within 90 days (aOR, 7.87; 95% CI, 4.53 to 13.74; 5 points), or prior fluoroquinolone use within 91 to 180 days of BSI (aOR, 2.77; 95% CI, 1.17 to 6.16; 3 points). The AUC for both final logistic regression and FQRS models was 0.73. Patients with an FQRS of 0, 3, 5, or 8 had predicted probabilities of FQ-R of 6%, 22%, 39%, or 69%, respectively. The estimation of patient-specific risk of antimicrobial resistance using FQRS may improve empirical antimicrobial therapy and fluoroquinolone utilization in Gram-negative BSI. PMID:26833166

  5. Structure and evolution of the Ivy protein family, unexpected lysozyme inhibitors in Gram-negative bacteria

    PubMed Central

    Abergel, Chantal; Monchois, Vincent; Byrne, Deborah; Chenivesse, Sabine; Lembo, Frédérique; Lazzaroni, Jean-Claude; Claverie, Jean-Michel

    2007-01-01

    Part of an ancestral bactericidal system, vertebrate C-type lysozyme targets the peptidoglycan moiety of bacterial cell walls. We report the crystal structure of a protein inhibitor of C-type lysozyme, the Escherichia coli Ivy protein, alone and in complex with hen egg white lysozyme. Ivy exhibits a novel fold in which a protruding five-residue loop appears essential to its inhibitory effect. This feature guided the identification of Ivy orthologues in other Gram-negative bacteria. The structure of the evolutionary distant Pseudomonas aeruginosa Ivy orthologue was also determined in complex with hen egg white lysozyme, and its antilysozyme activity was confirmed. Ivy expression protects porous cell-wall E. coli mutants from the lytic effect of lysozyme, suggesting that it is a response against the permeabilizing effects of the innate vertebrate immune system. As such, Ivy acts as a virulence factor for a number of Gram-negative bacteria-infecting vertebrates. PMID:17405861

  6. Structure and evolution of the Ivy protein family, unexpected lysozyme inhibitors in Gram-negative bacteria.

    PubMed

    Abergel, Chantal; Monchois, Vincent; Byrne, Deborah; Chenivesse, Sabine; Lembo, Frédérique; Lazzaroni, Jean-Claude; Claverie, Jean-Michel

    2007-04-10

    Part of an ancestral bactericidal system, vertebrate C-type lysozyme targets the peptidoglycan moiety of bacterial cell walls. We report the crystal structure of a protein inhibitor of C-type lysozyme, the Escherichia coli Ivy protein, alone and in complex with hen egg white lysozyme. Ivy exhibits a novel fold in which a protruding five-residue loop appears essential to its inhibitory effect. This feature guided the identification of Ivy orthologues in other Gram-negative bacteria. The structure of the evolutionary distant Pseudomonas aeruginosa Ivy orthologue was also determined in complex with hen egg white lysozyme, and its antilysozyme activity was confirmed. Ivy expression protects porous cell-wall E. coli mutants from the lytic effect of lysozyme, suggesting that it is a response against the permeabilizing effects of the innate vertebrate immune system. As such, Ivy acts as a virulence factor for a number of Gram-negative bacteria-infecting vertebrates.

  7. [Diagnostic and therapeutic management of Gram-negative infections].

    PubMed

    Bassetti, Matteo; Repetto, Ernestina

    2008-04-01

    Among Gram negative bacteria, Pseudomonas aeruginosa, the extended spectrum beta-lactamases (ESBL)-producing strains, Acinetobacter spp, in particular the multiresistant Acinetobacter baumannii, and Stenotrophomonas maltophilia are the most implicated micrororganisms in the ever more increasing problem of bacterial resistance. Possible solutions have to be searched, on one hand, in the use of new drugs but, on the other hand, in the re-evaluation of those already available drugs, possibly considering a new role for old drugs such as colistine and fosfomycin. Concerning ESBL-producing strains, the most recent data provided by EARSS report, in Italy, an incidence rate of 10-25 percent. The insurgence of an infection sustained by an ESBL+ve strain is strictly related to some well known risk factors, like the hospital stay itself, the disease severity, the length of stay in ICU, intubation and mechanical ventilation, catheterization, urinary or artery, and the past exposure to antibiotics. The raise in ESBL producing strains is closely related to the increasing use of cephalosporins. In the setting of a Gram negative infection, the combination therapy guarantees a higher coverage by reducing insurgence of possible resistance mechanisms, possibly resulting synergistic, and allowing a de-escalation therapy, although to this latter other problems, such as tolerability, costs and compliance, can be related. Another basic aspect to take into account of, in order to achieve the maximal efficacy of the antibiotic treatment, is the right dosage. In the idea to look for the best approach for the antibiotic treatment of a severe infection in a hospital setting, when a Gram negative aetiology is implicated, it can be possibly presumed that the right way consists in avoiding inappropriate antibiotic therapies, making therapeutic choices based on guidelines resulted from local epidemiological data, initiating the therapy promptly, avoiding excessive use of antibiotics, possibly

  8. Emerging gram-negative infections in burn wounds.

    PubMed

    Azzopardi, Ernest A; Azzopardi, Sarah M; Boyce, Dean E; Dickson, William A

    2011-01-01

    Gram-negative infection remains a major contributor to morbidity, mortality, and cost of care. In the absence of comparative multinational epidemiological studies specific to burn patients, we sought to review literature trends in emerging Gram-negative burn wound infections within the past 60 years. Mapping trends in these organisms, although in a minority compared with the six "ESKAPE" pathogens currently being targeted by the Infectious Diseases Society of North America, would identify pathogens of increasing concern to burn physicians in the near future and develop patient profiles that may predict susceptibility to infection. Aeromonas hydrophila infection was identified as the emerging pathogen of note, constituting 76% of the identified publications. A. hydrophila constituted 96% of Aeromonas spp. isolates (mortality 10.7%). The following patient profile indicated predisposition to Aeromonas infection: mean age (mean 33.7 years, range 17 ≤ R ≤ 80, SD = 15.6); TBSA (mean 41.1%, range 8% ≤ R ≤ 80%, SD = 15.2); full-thickness skin burns (mean 27.7%, range 3% ≤ R ≤ 60%, SD = 16.6); and a male predominance (81.3%). Other pathogens included Stenotrophomonas maltophilia Vibrio spp., Chryseobacterium spp., Alcaligenes xylosoxidans, and Cedecia lapigei. Arresting the thermal injury by untreated water was the common predisposing factor. These emerging infections clearly constitute a minority of Gram-negative bacterial infections in burn patients at present. However, these are the infections most likely to pose significant clinical challenge because of the high prevalence of multidrug resistance, rapid acquisition of multidrug resistance, high mortality, and ubiquity in the natural environment. This article therefore presents a rationale for understanding and recognizing the role of these emerging infections in burn patients.

  9. Elasticity of the Rod-Shaped Gram-Negative Eubacteria

    NASA Astrophysics Data System (ADS)

    Boulbitch, A.; Quinn, B.; Pink, D.

    2000-12-01

    We report a theoretical calculation of the elasticity of the peptidoglycan network, the only stress-bearing part of rod-shaped Gram-negative eubacteria. The peptidoglycan network consists of elastic peptides and inextensible glycan strands, and it has been proposed that the latter form zigzag filaments along the circumference of the cylindrical bacterial shell. The zigzag geometry of the glycan strands gives rise to nonlinear elastic behavior. The four elastic moduli of the peptidoglycan network depend on its stressed state. For a bacterium under physiological conditions the elasticity is proportional to the bacterial turgor pressure. Our results are in good agreement with recent measurements.

  10. Characterization and identification of gram-negative, nonfermentative bacteria.

    PubMed Central

    Oberhofer, T R; Rowen, J W; Cunningham, G F

    1977-01-01

    The morphological and physiological characteristics of 593 strains of nonfermentative, gram-negative bacteria are described. A battery of 46 tests was used to identify and differentiate strains representing 8 genera and 31 species of named and group-designated bacteria. Seven selected amides and organic salts were closely examined to determine their usefulness, individually or as a battery, in characterizing and identifying the organisms. Of these, allantoin and acetamide showed the most promise in differentiating the more commonly occurring organisms from biochemically similar species. Susceptiblilty patterns to 12 antimicrobics also proved useful in differentiation, especially among atypical strains. PMID:845246

  11. Outer membrane protein biogenesis in Gram-negative bacteria

    PubMed Central

    Rollauer, Sarah E.; Sooreshjani, Moloud A.; Noinaj, Nicholas; Buchanan, Susan K.

    2015-01-01

    Gram-negative bacteria contain a double membrane which serves for both protection and for providing nutrients for viability. The outermost of these membranes is called the outer membrane (OM), and it contains a host of fully integrated membrane proteins which serve essential functions for the cell, including nutrient uptake, cell adhesion, cell signalling and waste export. For pathogenic strains, many of these outer membrane proteins (OMPs) also serve as virulence factors for nutrient scavenging and evasion of host defence mechanisms. OMPs are unique membrane proteins in that they have a β-barrel fold and can range in size from 8 to 26 strands, yet can still serve many different functions for the cell. Despite their essential roles in cell survival and virulence, the exact mechanism for the biogenesis of these OMPs into the OM has remained largely unknown. However, the past decade has witnessed significant progress towards unravelling the pathways and mechanisms necessary for moulding a nascent polypeptide into a functional OMP within the OM. Here, we will review some of these recent discoveries that have advanced our understanding of the biogenesis of OMPs in Gram-negative bacteria, starting with synthesis in the cytoplasm to folding and insertion into the OM. PMID:26370935

  12. The complete general secretory pathway in gram-negative bacteria.

    PubMed Central

    Pugsley, A P

    1993-01-01

    The unifying feature of all proteins that are transported out of the cytoplasm of gram-negative bacteria by the general secretory pathway (GSP) is the presence of a long stretch of predominantly hydrophobic amino acids, the signal sequence. The interaction between signal sequence-bearing proteins and the cytoplasmic membrane may be a spontaneous event driven by the electrochemical energy potential across the cytoplasmic membrane, leading to membrane integration. The translocation of large, hydrophilic polypeptide segments to the periplasmic side of this membrane almost always requires at least six different proteins encoded by the sec genes and is dependent on both ATP hydrolysis and the electrochemical energy potential. Signal peptidases process precursors with a single, amino-terminal signal sequence, allowing them to be released into the periplasm, where they may remain or whence they may be inserted into the outer membrane. Selected proteins may also be transported across this membrane for assembly into cell surface appendages or for release into the extracellular medium. Many bacteria secrete a variety of structurally different proteins by a common pathway, referred to here as the main terminal branch of the GSP. This recently discovered branch pathway comprises at least 14 gene products. Other, simpler terminal branches of the GSP are also used by gram-negative bacteria to secrete a more limited range of extracellular proteins. PMID:8096622

  13. Activity of the antiseptic polyhexanide against gram-negative bacteria.

    PubMed

    Fabry, Werner Hugo Karl; Kock, Hans-Jürgen; Vahlensieck, Winfried

    2014-04-01

    The activity of the antiseptic polyhexanide was tested against 250 gram-negative clinical isolates, that is, 50 isolates each of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Moraxella catarrhalis, and Haemophilus influenzae. Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) were determined by using a serial broth microdilution technique according to DIN 58940. Time-kill studies were performed for reference stains E. coli ATCC 25922, K. pneumoniae ATCC 4352, P. aeruginosa ATCC 15442, M. catarrhalis ATCC 43617, and H. influenzae ATCC 49247. All tested isolates had MICs and MBCs within a range of 1-32 mg/L and were regarded as susceptible to polyhexanide. The highest values were found for P. aeruginosa and H. influenzae with MICs and MBCs of 32 mg/L. Addition of up to 4% albumin to the test medium did not change MICs and MBCs. Time-kill studies of the reference strains showed reduction rates from 3 log10 colony forming units (CFU)/ml to more than 5 log10 CFU/ml for 200 and 400 mg/L polyhexanide within 5-30 min. Testing of polyhexanide in combination with antibiotics showed indifference with amoxicillin, cefotaxime, imipenem, gentamicin, and ciprofloxacin; no antagonism was found. As no resistance and no antagonism with antibiotics were detected, polyhexanide is regarded as suitable agent for topical eradication of gram-negative bacteria.

  14. Polyethyleneimine is an effective permeabilizer of gram-negative bacteria.

    PubMed

    Helander, I M; Alakomi, H L; Latva-Kala, K; Koski, P

    1997-10-01

    The effect of the polycation polyethyleneimine (PEI) on the permeability properties of the Gram-negative bacterial outer membrane was investigated using Escherichia coli, Pseudomonas aeruginosa and Salmonella typhimurium as target organisms. At concentrations of less than 20 micrograms ml-1, PEI increased the bacterial uptake of 1-N-phenylnaphthylamine, which is a hydrophobic probe whose quantum yield is greatly increased in a lipid environment, indicating increased hydrophobic permeation of the outer membrane by PEI. The effect of PEI was comparable to that brought about by the well-known permeabilizer EDTA. Permeabilization by PEI was retarded but not completely inhibited by millimolar concentrations of MgCl2. PEI also increased the susceptibility of the test species to the hydrophobic antibiotics clindamycin, erythromycin, fucidin, novobiocin and rifampicin, without being directly bactericidal. PEI sensitized the bacteria to the lytic action of the detergent SDS in assays where the bacteria were pretreated with PEI. In assays where PEI and SDS were simultaneously present, no sensitization was observed, indicating that PEI and SDS were inactivating each other. In addition, a sensitizing effect to the nonionic detergent Triton X-100 was observed for P. aeruginosa. In conclusion, PEI was shown to be a potent permeabilizer of the outer membrane of Gram-negative bacteria.

  15. Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens

    PubMed Central

    Casson, Cierra N.; Yu, Janet; Reyes, Valeria M.; Taschuk, Frances O.; Yadav, Anjana; Copenhaver, Alan M.; Nguyen, Hieu T.; Collman, Ronald G.; Shin, Sunny

    2015-01-01

    Inflammasomes are critical for host defense against bacterial pathogens. In murine macrophages infected by gram-negative bacteria, the canonical inflammasome activates caspase-1 to mediate pyroptotic cell death and release of IL-1 family cytokines. Additionally, a noncanonical inflammasome controlled by caspase-11 induces cell death and IL-1 release. However, humans do not encode caspase-11. Instead, humans encode two putative orthologs: caspase-4 and caspase-5. Whether either ortholog functions similar to caspase-11 is poorly defined. Therefore, we sought to define the inflammatory caspases in primary human macrophages that regulate inflammasome responses to gram-negative bacteria. We find that human macrophages activate inflammasomes specifically in response to diverse gram-negative bacterial pathogens that introduce bacterial products into the host cytosol using specialized secretion systems. In primary human macrophages, IL-1β secretion requires the caspase-1 inflammasome, whereas IL-1α release and cell death are caspase-1–independent. Instead, caspase-4 mediates IL-1α release and cell death. Our findings implicate human caspase-4 as a critical regulator of noncanonical inflammasome activation that initiates defense against bacterial pathogens in primary human macrophages. PMID:25964352

  16. Lipopolysaccharide-Trap-Fc, a Multifunctional Agent To Battle Gram-Negative Bacteria▿

    PubMed Central

    Groß, Philipp; Brandl, Katharina; Dierkes, Christine; Schölmerich, Jürgen; Salzberger, Bernd; Glück, Thomas; Falk, Werner

    2009-01-01

    The family of Toll-like receptors (TLRs) plays a pivotal role in host defense against pathogens. However, overstimulation of these receptors may lead to uncontrolled general inflammation and eventually to systemic organ dysfunction or failure. With the intent to control overwhelming inflammation during gram-negative bacterial sepsis, we constructed soluble fusion proteins of the lipopolysaccharide (LPS)-receptor complex to modulate TLR signaling in multiple ways. The extracellular domain of mouse TLR4 and mouse myeloid differentiation factor 2 (MD-2) fusions (LPS-Trap) were linked to human immunoglobulin G Fc domains (LPS-Trap-Fc). In addition to the ability to bind LPS or gram-negative bacteria and to inhibit interleukin-6 secretion of monocytic cells after LPS treatment, LPS-Trap-Fc was able to opsonize fluorescent Escherichia coli particles. This led to enhancement of phagocytosis by monocytic cells which was strictly dependent on the presence of the Fc region. Moreover, only LPS-Trap-Fc- and not LPS-Trap-coated bacteria were sensitized to complement killing. Therefore, LPS-Trap-Fc not only neutralizes LPS but also, after binding to bacteria, enhances phagocytosis and complement-mediated killing and could thus act as a multifunctional agent to fight gram-negative bacteria in vivo. PMID:19433546

  17. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria

    NASA Astrophysics Data System (ADS)

    Scorciapino, Mariano Andrea; Acosta-Gutierrez, Silvia; Benkerrou, Dehbia; D'Agostino, Tommaso; Malloci, Giuliano; Samanta, Susruta; Bodrenko, Igor; Ceccarelli, Matteo

    2017-03-01

    The increasing level of antibiotic resistance in Gram-negative bacteria, together with the lack of new potential drug scaffolds in the pipeline, make the problem of infectious diseases a global challenge for modern medicine. The main reason that Gram-negative bacteria are particularly challenging is the presence of an outer cell-protecting membrane, which is not present in Gram-positive species. Such an asymmetric bilayer is a highly effective barrier for polar molecules. Several protein systems are expressed in the outer membrane to control the internal concentration of both nutrients and noxious species, in particular: (i) water-filled channels that modulate the permeation of polar molecules and ions according to concentration gradients, and (ii) efflux pumps to actively expel toxic compounds. Thus, besides expressing specific enzymes for drugs degradation, Gram-negative bacteria can also resist by modulating the influx and efflux of antibiotics, keeping the internal concentration low. However, there are no direct and robust experimental methods capable of measuring the permeability of small molecules, thus severely limiting our knowledge of the molecular mechanisms that ultimately control the permeation of antibiotics through the outer membrane. This is the innovation gap to be filled for Gram-negative bacteria. This review is focused on the permeation of small molecules through porins, considered the main path for the entry of polar antibiotics into Gram-negative bacteria. A fundamental understanding of how these proteins are able to filter small molecules is a prerequisite to design/optimize antibacterials with improved permeation. The level of sophistication of modern molecular modeling algorithms and the advances in new computer hardware has made the simulation of such complex processes possible at the molecular level. In this work we aim to share our experience and perspectives in the context of a multidisciplinary extended collaboration within the IMI

  18. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria.

    PubMed

    Scorciapino, Mariano Andrea; Acosta-Gutierrez, Silvia; Benkerrou, Dehbia; D'Agostino, Tommaso; Malloci, Giuliano; Samanta, Susruta; Bodrenko, Igor; Ceccarelli, Matteo

    2017-03-22

    The increasing level of antibiotic resistance in Gram-negative bacteria, together with the lack of new potential drug scaffolds in the pipeline, make the problem of infectious diseases a global challenge for modern medicine. The main reason that Gram-negative bacteria are particularly challenging is the presence of an outer cell-protecting membrane, which is not present in Gram-positive species. Such an asymmetric bilayer is a highly effective barrier for polar molecules. Several protein systems are expressed in the outer membrane to control the internal concentration of both nutrients and noxious species, in particular: (i) water-filled channels that modulate the permeation of polar molecules and ions according to concentration gradients, and (ii) efflux pumps to actively expel toxic compounds. Thus, besides expressing specific enzymes for drugs degradation, Gram-negative bacteria can also resist by modulating the influx and efflux of antibiotics, keeping the internal concentration low. However, there are no direct and robust experimental methods capable of measuring the permeability of small molecules, thus severely limiting our knowledge of the molecular mechanisms that ultimately control the permeation of antibiotics through the outer membrane. This is the innovation gap to be filled for Gram-negative bacteria. This review is focused on the permeation of small molecules through porins, considered the main path for the entry of polar antibiotics into Gram-negative bacteria. A fundamental understanding of how these proteins are able to filter small molecules is a prerequisite to design/optimize antibacterials with improved permeation. The level of sophistication of modern molecular modeling algorithms and the advances in new computer hardware has made the simulation of such complex processes possible at the molecular level. In this work we aim to share our experience and perspectives in the context of a multidisciplinary extended collaboration within the IMI

  19. Polymyxins: a new hope in combating Gram-negative superbugs?

    PubMed

    Velkov, Tony; Roberts, Kade D; Thompson, Philip E; Li, Jian

    2016-06-01

    Polymyxins have emerged as an important last-line of defense against Gram-negative 'superbugs'. Unfortunately, the effective use of polymyxins in the clinic has been hampered by their nephrotoxic side effects. Over the last 10 years various industry and academic groups across the globe have been trying to develop new polymyxins that are safer and more efficacious than the currently approved polymyxin B and colistin. However these drug discovery programs are yet to deliver a new and improved polymyxin drug into the clinic. In this piece we provide an overview of the current state of these polymyxin drug discovery programs from a medicinal chemistry perspective as well as some thoughts on how future drug discovery efforts may ultimately find success.

  20. Detection of pathogenic gram negative bacteria using infrared thermography

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Divya, M. P.; Bagavathiappan, S.; Thomas, Sabu; Philip, John

    2012-11-01

    Detection of viable bacteria is of prime importance in all fields of microbiology and biotechnology. Conventional methods of enumerating bacteria are often time consuming and labor-intensive. All living organisms generate heat due to metabolic activities and hence, measurement of heat energy is a viable tool for detection and quantification of bacteria. In this article, we employ a non-contact and real time method - infrared thermography (IRT) for measurement of temperature variations in four clinically significant gram negative pathogenic bacteria, viz. Vibrio cholerae, Vibrio mimicus, Proteus mirabilis and Pseudomonas aeruginosa. We observe that, the energy content, defined as the ratio of heat generated by bacterial metabolic activities to the heat lost from the liquid medium to the surrounding, vary linearly with the bacterial concentration in all the four pathogenic bacteria. The amount of energy content observed in different species is attributed to their metabolisms and morphologies that affect the convection velocity and hence heat transport in the medium.

  1. Marine Compounds with Therapeutic Potential in Gram-Negative Sepsis

    PubMed Central

    Solov’eva, Tamara; Davydova, Viktoria; Krasikova, Inna; Yermak, Irina

    2013-01-01

    This paper concerns the potential use of compounds, including lipid A, chitosan, and carrageenan, from marine sources as agents for treating endotoxemic complications from Gram-negative infections, such as sepsis and endotoxic shock. Lipid A, which can be isolated from various species of marine bacteria, is a potential antagonist of bacterial endotoxins (lipopolysaccharide (LPSs)). Chitosan is a widespread marine polysaccharide that is derived from chitin, the major component of crustacean shells. The potential of chitosan as an LPS-binding and endotoxin-neutralizing agent is also examined in this paper, including a discussion on the generation of hydrophobic chitosan derivatives to increase the binding affinity of chitosan to LPS. In addition, the ability of carrageenan, which is the polysaccharide of red alga, to decrease the toxicity of LPS is discussed. We also review data obtained using animal models that demonstrate the potency of carrageenan and chitosan as antiendotoxin agents. PMID:23783404

  2. Marine compounds with therapeutic potential in gram-negative sepsis.

    PubMed

    Solov'eva, Tamara; Davydova, Viktoria; Krasikova, Inna; Yermak, Irina

    2013-06-19

    This paper concerns the potential use of compounds, including lipid A, chitosan, and carrageenan, from marine sources as agents for treating endotoxemic complications from Gram-negative infections, such as sepsis and endotoxic shock. Lipid A, which can be isolated from various species of marine bacteria, is a potential antagonist of bacterial endotoxins (lipopolysaccharide (LPSs)). Chitosan is a widespread marine polysaccharide that is derived from chitin, the major component of crustacean shells. The potential of chitosan as an LPS-binding and endotoxin-neutralizing agent is also examined in this paper, including a discussion on the generation of hydrophobic chitosan derivatives to increase the binding affinity of chitosan to LPS. In addition, the ability of carrageenan, which is the polysaccharide of red alga, to decrease the toxicity of LPS is discussed. We also review data obtained using animal models that demonstrate the potency of carrageenan and chitosan as antiendotoxin agents.

  3. Performance of the Verigene Gram-negative blood culture assay for rapid detection of bacteria and resistance determinants.

    PubMed

    Dodémont, Magali; De Mendonça, Ricardo; Nonhoff, Claire; Roisin, Sandrine; Denis, Olivier

    2014-08-01

    Nonduplicate blood cultures that were positive for Gram-negative bacilli (n = 125) were tested by the Verigene Gram-negative blood culture (BC-GN) assay; 117 (90.7%) isolates were members of the panel. For identification and resistance markers, the agreements with routine methods were 97.4% (114/117) and 92.3% (12/13). The BC-GN assay is a rapid and accurate tool for the detection of pathogens from blood cultures and could be integrated alongside conventional systems to enable faster patient management, but the clinical benefits should be further evaluated.

  4. Burden of extensively drug-resistant and pandrug-resistant Gram-negative bacteria at a tertiary-care centre.

    PubMed

    Bhatt, Puneet; Tandel, Kundan; Shete, Vishal; Rathi, K R

    2015-11-01

    The emergence of resistance to multiple antimicrobial agents in Gram-negative bacteria is a significant threat to public health, as it restricts the armamentarium of the clinician against these infections. The aim of this study was to determine the burden of extensively drug-resistant (XDR) and pandrug-resistant (PDR) Gram-negative bacteria at a tertiary-care centre. Antimicrobial susceptibility testing of 1240 clinical isolates of Gram-negative bacteria obtained from various clinical samples during the study period was carried out by the Kirby-Bauer disc diffusion method. Minimum inhibitory concentration of all antibiotics including tigecycline and colistin was determined by Vitek-2 automated susceptibility testing system. Out of 1240 isolates of Gram-negative bacteria, 112 isolates (9%) were resistant to all the antibiotics tested by Kirby-Bauer disc diffusion method. This finding was corroborated by Vitek-2. In addition, Vitek-2 found that 67 isolates were resistant to all antibiotics except tigecycline and colistin. A total of 30 isolates were susceptible to only colistin, and four isolates were susceptible to only tigecycline. It was also found that six isolates (excluding five isolates of Proteus spp.) were resistant to both colistin and tigecycline. Thus, 101 (8.1%) out of 1240 isolates were XDR and 11 isolates (0.9%) were PDR. The findings of this study reveal increased burden of XDR and PDR Gram-negative bacteria in our centre. It also highlights the widespread dissemination of these bacteria in the community. This situation warrants the regular surveillance of antimicrobial resistance of Gram-negative bacteria and implementation of an efficient infection control program.

  5. Screening for Gram-negative bacteria: Impact of preanalytical parameters

    PubMed Central

    Warnke, Philipp; Johanna Pohl, Friederike Pola; Kundt, Guenther; Podbielski, Andreas

    2016-01-01

    Screening recommendations for multidrug-resistant Gram-negative bacteria comprise microbiological analyses from rectal swabs. However, essential specifications of the preanalytic steps of such screenings, i.e. the sampling technique, sampling devices and sampling site, are lacking. For standardized and optimum screening conditions these parameters are indispensable. Here, the optimum parameters were examined irrespective of the antibiotic resistance patterns of the target bacteria in order to establish a general basis for this type of screening. Swabs with rayon, polyurethane-cellular-foam and nylon-flocked tips were tested. Different sampling locations were evaluated, i.e. perianal, intraanal and deep intraanal. Subjects were swabbed and quantities of E. coli, K. pneumoniae, P. aeruginosa and A. baumannii were assessed. Overall prevalences of E. coli, K. pneumoniae, P. aeruginosa, and A. baumannii were 94%, 16%, 12%, and 2%, respectively. Bacterial recovery rates were independent from the sampling-timepoint during hospital stay. Polyurethane-cellular-foam or nylon-flocked swabs recovered significantly more bacteria as compared to rayon swabs. Intraanal swabbing resulted in significantly higher bacterial quantities as compared to perianal swabbing. In contrast, for the detection of A. baumannii, perianal swabbing seems more suitable than intraanal swabbing. Gender-related differences in bacterial recovery could be detected from perianal but not from intraanal swabs. PMID:27460776

  6. Gram-negative bacteremia: which empirical antibiotic therapy?

    PubMed

    Shoai Tehrani, M; Hajage, D; Fihman, V; Tankovic, J; Cau, S; Day, N; Visseaux, C; Carbonnelle, E; Kouatchet, A; Cattoir, V; Nhan, T X; Corvec, S; Jacquier, H; Jauréguy, F; Le Monnier, A; Morand, P; Zahar, J R

    2014-04-01

    Given the increasing frequency of cefotaxime-resistant strains, third-generation cephalosporins (3GC e.g. cefotaxime, ceftriaxone) might not be recommended any longer as empirical antibiotic therapy for community-acquired Gram-negative bacteremia (CA-GNB). We conducted a multicenter prospective descriptive study including patients with CA-GNB. Two hundred and nineteen patients were included. Escherichia coli and Pseudomonas aeruginosa were the most frequently isolated species in 63% (n=138) and 11% (n=24) of the cases, respectively. The prevalence of cefotaxime-resistance reached 18% (n=39) mostly due to intrinsic resistance (27 cases, 12%). The presence of invasive material (P<0.001), the origin of the patient (Paris region or West of France) (P=0.006), and home health care (P<0.001) were variables predicting resistant GNB. The negative predictive value for resistance in patients with invasive material coming from the West of France, or without invasive material and with home health care was 94%. The positive predictive value for patients with invasive material living in Paris, or without invasive material and with home health care only reached 58 and 54%, respectively. Using 3GC for CA-GNB due to cefotaxime-resistant strains was relatively frequent, ESBL-producing Enterobacteriaceae being rarely involved. Our study highlights the role of local epidemiology; before any changes to first-line antibiotic therapy, local epidemiological data should be taken into account. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. A Gestalt approach to Gram-negative entry.

    PubMed

    Silver, Lynn L

    2016-12-15

    A major obstacle confronting the discovery and development of new antibacterial agents to combat resistant Gram-negative (GN) organisms is the lack of a rational process for endowing compounds with properties that allow (or promote) entry into the bacterial cytoplasm. The major permeability difference between GN and Gram-positive (GP) bacteria is the GN outer membrane (OM) which is a permeability barrier itself and potentiates efflux pumps that expel compounds. Based on the fact that OM-permeable and efflux-deleted GNs are sensitive to many anti-GP drugs, recent efforts to approach the GN entry problem have focused on ways of avoiding efflux and transiting or compromising the OM, with the tacit assumption that this could allow entry of compounds into the GN cytoplasm. But bypassing the OM and efflux obstacles does not take into account the additional requirement of penetrating the cytoplasmic membrane (CM) whose sieving properties appear to be orthogonal to that of the OM. That is, tailoring compounds to transit the OM may well compromise their ability to enter the cytoplasm. Thus, a Gestalt approach to understanding the chemical requirements for GN entry seems a useful adjunct. This might consist of characterizing compounds which reach the cytoplasm, grouping (or binning) by routes of entry and formulating chemical 'rules' for those bins. This will require acquisition of data on large numbers of compounds, using non-activity-dependent methods of measuring accumulation in the cytoplasm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Engineering the protein folding landscape in gram-negative bacteria.

    PubMed

    Mansell, Thomas J; Fisher, Adam C; DeLisa, Matthew P

    2008-04-01

    Gram-negative bacteria, especially Escherichia coli, are often the preferred hosts for recombinant protein production because of their fast doubling times, ability to grow to high cell density, propensity for high recombinant protein titers and straightforward protein purification techniques. The utility of simple bacteria in such studies continues to improve as a result of an ever-increasing body of knowledge regarding their native protein biogenesis machinery. From translation on the ribosome to interaction with cytosolic accessory factors to transport across the inner membrane into the periplasmic space, cellular proteins interact with many different types of cellular machinery and each interaction can have a profound effect on the protein folding process. This review addresses key aspects of cellular protein folding, solubility and expression in E. coli with particular focus on the elegant biological machinery that orchestrates the transition from nascent polypeptide to folded, functional protein. Specifically highlighted are a variety of different techniques to intentionally alter the folding environment of the cell as a means to understand and engineer intracellular protein folding and stability.

  9. Binding of polymyxin B nonapeptide to gram-negative bacteria.

    PubMed Central

    Vaara, M; Viljanen, P

    1985-01-01

    The binding of the outer membrane-disorganizing peptide polymyxin B nonapeptide (PMBN) to gram-negative bacteria was studied by using tritium-labeled PMBN. Smooth Salmonella typhimurium had a binding capacity of ca. 6 nmol of PMBN per mg (dry weight) of bacteria, which corresponds to ca. 1 X 10(6) to 2 X 10(6) molecules of PMBN per single cell. The binding was of relatively high affinity (Kd, 1.3 microM). The isolated outer membrane of S. typhimurium bound ca. 100 nmol of PMBN per mg of outer membrane protein (Kd, 1.1 microM), whereas the cytoplasmic membrane bound 9 to 10 times less. Other bacteria which are susceptible to the action of PMBN (Escherichia coli strains, Pseudomonas aeruginosa, Haemophilus influenzae) also bound large amounts of PMBN. The S. typhimurium pmrA mutant, Neisseria gonorrhoeae, and Proteus mirabilis (all known as resistant to polymyxin and PMBN) bound 3.3, 4, and 12 times less than S. typhimurium, respectively. The binding of PMBN to S. typhimurium was effectively inhibited by low concentrations of polymyxin B, compound EM49 (octapeptin), polylysine, and protamine. Spermine, Ca2+, and Mg2+ also inhibited the PMBN binding although they were ca. 160, 700, and 2,400 times less active (based on molarity) than polymyxin B, respectively. No binding inhibition was found at the tested concentrations of streptomycin, tetralysine, spermidine, or cadaverine. PMID:2988430

  10. Integron-bearing Gram-negative bacteria in lake waters.

    PubMed

    Koczura, R; Semkowska, A; Mokracka, J

    2014-11-01

    The aim of the study was to determine the occurrence of integron-bearing Gram-negative bacteria in the water of four lakes located in Wielkopolski National Park, Poland. Altogether, 17 isolates harbouring class 1 or class 2 integrons were found. The integron-bearing bacteria were identified as Escherichia coli, Klebsiella pneumoniae, Pasteurella multocida and Aeromonas hydrophila. The variable regions of the class 1 integrons contained aadA1 and dfrA1-aadA1 gene cassettes, whereas class 2 integrons carried dfrA1-sat2-aadA1 gene cassette array. The isolates were resistant to 3-20 antimicrobials. One of them produced SHV-type extended-spectrum β-lactamase. Integrons play a major role in the spread of antibiotic resistance among bacteria. They are frequently found in clinical bacterial strains, but are also detected in environmental isolates in sites affected by anthropogenic pressure. Little is known, however, about the presence and characteristics of integrons in bacteria living in water environments in areas of nature preservation. To the best of our knowledge, this is the first study focused on detection and characterization of integrons in bacteria living in water ecosystems in a national park. © 2014 The Society for Applied Microbiology.

  11. Characterization of five novel endolysins from Gram-negative infecting bacteriophages.

    PubMed

    Walmagh, Maarten; Boczkowska, Barbara; Grymonprez, Barbara; Briers, Yves; Drulis-Kawa, Zuzanna; Lavigne, Rob

    2013-05-01

    We here characterize five globular endolysins, encoded by a set of Gram-negative infecting bacteriophages: BcepC6gp22 (Burkholderia cepacia phage BcepC6B), P2gp09 (Escherichia coli phage P2), PsP3gp10 (Salmonella enterica phage PsP3), K11gp3.5 and KP32gp15 (Klebsiella pneumoniae phages K11 and KP32, respectively). In silico, BcepC6gp22, P2gp10 and PsP3gp10 are predicted to possess lytic transglycosylase activity, whereas K11gp3.5 and KP32gp15 have putative amidase activity. All five endolysins show muralytic activity on the peptidoglycan of several Gram-negative bacterial species. In vitro, Pseudomonas aeruginosa PAO1 is clearly sensitive for the antibacterial action of the five endolysins in the presence of the outer membrane permeabilizer EDTA: reductions are ranging from 1.89 to 3.08 log units dependent on the endolysin. The predicted transglycosylases BcepC6gp22, P2gp10 and PsP3gp10 have a substantially higher muralytic and in vitro antibacterial activity compared to the predicted amidases K11gp3.5 and KP32gp15, highlighting the impact of the catalytic specificity on endolysin activity. Furthermore, initial data exclude the synergistic lethal effect of a combination of the predicted transglycosylase PsP3gp10 and the predicted amidase K11gp3.5 on PAO1. As these globular endolysins show a lower enzymatic and antibacterial activity, in comparison to modular endolysins, we suggest that the latter should be favored for antibacterial applications.

  12. Direct detection of lipid A on intact Gram-negative bacteria by MALDI-TOF mass spectrometry

    PubMed Central

    Larrouy-Maumus, Gerald; Clements, Abigail; Filloux, Alain; McCarthy, Ronan R.; Mostowy, Serge

    2016-01-01

    The purification and characterization of Gram-negative bacterial lipid A is tedious and time-consuming. Herein we report a rapid and sensitive method to identify lipid A directly on intact bacteria without any chemical treatment or purification, using an atypical solvent system to solubilize the matrix combined with MALDI-TOF mass spectrometry. PMID:26656001

  13. Complete Genome Sequence of Acidaminococcus intestini RYC-MR95, a Gram-Negative Bacterium from the Phylum Firmicutes

    PubMed Central

    D'Auria, Giuseppe; Galán, Juan-Carlos; Rodríguez-Alcayna, Manuel; Moya, Andrés; Baquero, Fernando; Latorre, Amparo

    2011-01-01

    Acidaminococcus intestini belongs to the family Acidaminococcaceae, order Selenomonadales, class Negativicutes, phylum Firmicutes. Negativicutes show the double-membrane system of Gram-negative bacteria, although their chromosomal backbone is closely related to that of Gram-positive bacteria of the phylum Firmicutes. The complete genome of a clinical A. intestini strain is here presented. PMID:22123762

  14. Utility of Prior Cultures in Predicting Antibiotic Resistance of Bloodstream Infections Due to Gram-negative Pathogens: A Multicenter Observational Cohort Study.

    PubMed

    MacFadden, Derek R; Coburn, Bryan; Shah, Nirav; Robicsek, Ari; Savage, Rachel; Elligsen, Marion; Daneman, Nick

    2017-08-12

    Appropriate empiric antibiotic therapy in patients with bloodstream infections due to Gram-negative pathogens can improve outcomes. We evaluated the utility of prior microbiologic results for guiding empiric treatment in Gram-negative bloodstream infections. We conducted a multi-center observational cohort study, in two large health systems in Canada and the United States, including 1,832 hospitalized patients with Gram-negative bloodstream infection (community, hospital, and ICU acquired) from April 2010 to March 2015. Among 1,832 patients with Gram-negative bloodstream infection, 28% (504/1,832) of patients had a documented prior Gram-negative organism from a non-screening culture within the previous 12 months. A most-recent prior Gram-negative organism resistant to a given antibiotic was strongly predictive of the current organism's resistance to the same antibiotic. The overall specificity was 0.92 (95%CI:0.91-0.93) and positive predictive value was 0.66 (95%CI:0.61-0.70) for predicting antibiotic resistance. Specificities and positive predictive values ranged from (0.77 to 0.98) and (0.43 to 0.78) across different antibiotics, organisms, and patient subgroups. Increasing time between cultures was associated with a decrease in positive predictive value but not specificity. An heuristic based on a prior resistant Gram-negative could have been applied to 1 in 4 patients, and in these patients would have changed therapy in 1 in 5. In patients with a bloodstream infection with a Gram-negative organism, identification of a most-recent prior Gram-negative organism resistant to a drug of interest (within the last 12 months) is highly specific for resistance and should preclude use of that antibiotic. Copyright © 2017. Published by Elsevier Ltd.

  15. [Left-sided endocarditis due to gram-negative bacilli: epidemiology and clinical characteristics].

    PubMed

    Noureddine, Mariam; de la Torre, Javier; Ivanova, Radka; Martínez, Francisco José; Lomas, Jose María; Plata, Antonio; Gálvez, Juan; Reguera, Jose María; Ruiz, Josefa; Hidalgo, Carmen; Luque, Rafael; García-López, María Victoria; de Alarcón, Arístides

    2011-04-01

    The aim of this study is to describe the epidemiological, clinical characteristics, and outcome of patients with left-side endocarditis caused by gram-negative bacteria. Prospective multicenter study of left-sided infective endocarditis reported in the Andalusian Cohort for the Study of Cardiovascular Infections between 1984 and 2008. Among the 961 endocarditis, 24 (2.5%) were caused by gram-negative bacilli. The most common pathogens were Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica. Native valves (85.7%) were mainly affected, most of them with previous valve damage (57%). Comorbidity was greater (90% vs 39%; P=.05) than in endocarditis due to other microorganism, the most frequent being, diabetes, hepatic cirrhosis and neoplasm. A previous manipulation was found in 47.6% of the cases, and 37% were considered hospital-acquired. Renal failure (41%), central nervous system involvement (33%) and ventricular dysfunction (45%) were the most frequent complications. Five cases (21%) required cardiac surgery, mostly due to ventricular dysfunction. More than 50% of cases were treated with aminoglycosides, but this did not lead to a better outcome or prognosis. Mortality (10 patients) was higher than that reported with other microorganisms (41% vs 35%; P=.05). Left-sided endocarditis due to gram-negative bacilli is a rare disease, which affects patients with major morbidities and often with a previous history of hospital manipulations. Cardiac, neurological and renal complications are frequent and associated with a high mortality. The association of aminoglycosides in the antimicrobial treatment did not involve a better outcome or prognosis. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  16. Hormone fatty acid modifications: gram negative bacteria and vertebrates demonstrate common structure and function.

    PubMed

    Tizzano, Marco; Sbarbati, Andrea

    2006-01-01

    Bacteria are known to regulate diverse physiological processes through a mechanism called quorum sensing (QS). Prokaryotes communicate by extracellular signalling compounds, i.e. autoinducers (acyl homoserine lactone, AHL of Gram negative bacteria) or pheromones (post-translationally modified peptides of Gram positive bacteria), which activate genetic pathways when they reach a sufficient concentration (QS). A large number of Gram-negative quorum-sensing systems studied so far utilize N-acyl homoserine lactones as signal molecules. In vertebrates small synthetic molecules called growth hormone secretagogues (GHSs) stimulate the release of growth hormone (GH) from the pituitary. GH release is stimulated by hypothalamic GH-releasing hormone (GHRH) and ghrelin (endogenous ligand of the GHS-receptor, GHS-R). Ghrelin is a 28-amino acid peptide, in which the serine-3 (Ser3) is n-octanoylated, and this modification is essential for ghrelin's activity. Ghrelin is the first known case of a peptide hormone modified by a fatty acid. The major active form of ghrelin is a 28-amino acid peptide with octanoylated Ser3; one of the more represented bacterial autoinducers is the N-Octanoyl-DL-homoserine lactone (C8-HL) molecule. The authors hypothesize that Gram-negative bacteria and vertebrates have a functional similarity in the search of food and an important structural homology of AHL and ghrelin for the highly conserved Serine-acylated motive in both molecules. Our suggestions could help one to understand the convergent origin and the biologic meaning of the Serine-acylated group in these organisms, a biologic meaning very important due to the high conservation in two kingdoms which are so different.

  17. Regulatory mechanisms differ in UMP kinases from gram-negative and gram-positive bacteria.

    PubMed

    Evrin, Cécile; Straut, Monica; Slavova-Azmanova, Neli; Bucurenci, Nadia; Onu, Adrian; Assairi, Liliane; Ionescu, Mihaela; Palibroda, Nicolae; Bârzu, Octavian; Gilles, Anne-Marie

    2007-03-09

    In this work, we examined the regulation by GTP and UTP of the UMP kinases from eight bacterial species. The enzyme from Gram-positive organisms exhibited cooperative kinetics with ATP as substrate. GTP decreased this cooperativity and increased the affinity for ATP. UTP had the opposite effect, as it decreased the enzyme affinity for ATP. The nucleotide analogs 5-bromo-UTP and 5-iodo-UTP were 5-10 times stronger inhibitors than the parent compound. On the other hand, UMP kinases from the Gram-negative organisms did not show cooperativity in substrate binding and catalysis. Activation by GTP resulted mainly from the reversal of inhibition caused by excess UMP, and inhibition by UTP was accompanied by a strong increase in the apparent K(m) for UMP. Altogether, these results indicate that, depending on the bacteria considered, GTP and UTP interact with different enzyme recognition sites. In Gram-positive bacteria, GTP and UTP bind to a single site or largely overlapping sites, shifting the T R equilibrium to either the R or T form, a scenario corresponding to almost all regulatory proteins, commonly called K systems. In Gram-negative organisms, the GTP-binding site corresponds to the unique allosteric site of the Gram-positive bacteria. In contrast, UTP interacts cooperatively with a site that overlaps the catalytic center, i.e. the UMP-binding site and part of the ATP-binding site. These characteristics make UTP an original regulator of UMP kinases from Gram-negative organisms, beyond the common scheme of allosteric control.

  18. Hemodialyzer Reuse and Gram-Negative Bloodstream Infections.

    PubMed

    Edens, Chris; Wong, Jacklyn; Lyman, Meghan; Rizzo, Kyle; Nguyen, Duc; Blain, Michela; Horwich-Scholefield, Sam; Moulton-Meissner, Heather; Epson, Erin; Rosenberg, Jon; Patel, Priti R

    2017-06-01

    Clusters of bloodstream infections caused by Burkholderia cepacia and Stenotrophomonas maltophilia are uncommon, but have been previously identified in hemodialysis centers that reprocessed dialyzers for reuse on patients. We investigated an outbreak of bloodstream infections caused by B cepacia and S maltophilia among hemodialysis patients in clinics of a dialysis organization. Outbreak investigation, including matched case-control study. Hemodialysis patients treated in multiple outpatient clinics owned by a dialysis organization. Main predictors were dialyzer reuse, dialyzer model, and dialyzer reprocessing practice. Case patients had a bloodstream infection caused by B cepacia or S maltophilia; controls were patients without infection dialyzed at the same clinic on the same day as a case; results of environmental cultures and organism typing. 17 cases (9 B cepacia and 8 S maltophilia bloodstream infections) occurred in 5 clinics owned by the same dialysis organization. Case patients were more likely to have received hemodialysis with a dialyzer that had been used more than 6 times (matched OR, 7.03; 95% CI, 1.38-69.76) and to have been dialyzed with a specific reusable dialyzer (Model R) with sealed ends (OR, 22.87; 95% CI, 4.49-∞). No major lapses during dialyzer reprocessing were identified that could explain the outbreak. B cepacia was isolated from samples collected from a dialyzer header-cleaning machine from a clinic with cases and was indistinguishable from a patient isolate collected from the same clinic, by pulsed-field gel electrophoresis. Gram-negative bacteria were isolated from 2 reused Model R dialyzers that had undergone the facility's reprocessing procedure. Limited statistical power and overmatching; few patient isolates and dialyzers available for testing. This outbreak was likely caused by contamination during reprocessing of reused dialyzers. Results of this and previous investigations demonstrate that exposing patients to reused dialyzers

  19. Increasing Resistance to Extended-Spectrum Cephalosporins, Fluoroquinolone, and Carbapenem in Gram-Negative Bacilli and the Emergence of Carbapenem Non-Susceptibility in Klebsiella pneumoniae: Analysis of Korean Antimicrobial Resistance Monitoring System (KARMS) Data From 2013 to 2015

    PubMed Central

    Kim, Dokyun; Ahn, Ji Young; Lee, Chae Hoon; Jang, Sook Jin; Yong, Dongeun; Jeong, Seok Hoon; Lee, Kyungwon

    2017-01-01

    Background National surveillance of antimicrobial resistance becomes more important for the control of antimicrobial resistance and determination of treatment guidelines. We analyzed Korean Antimicrobial Resistance Monitoring System (KARMS) data collected from 2013 to 2015. Methods Of the KARMS participants, 16 secondary or tertiary hospitals consecutively reported antimicrobial resistance rates from 2013 to 2015. Data from duplicate isolates and institutions with fewer than 20 isolates were excluded. To determine the long-term trends, previous KARMS data from 2004 to 2012 were also considered. Results The prevalence of methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium from 2013 to 2015 was 66–72% and 29–31%, respectively. The resistance rates of Escherichia coli to cefotaxime and cefepime gradually increased to 35% and 31%, respectively, and fluoroquinolone resistance reached 48% in 2015. The resistance rates of Klebsiella pneumoniae to cefotaxime, cefepime, and carbapenem were 38–41%, 33–41%, and <0.1–2%, respectively, from 2013 to 2015. The carbapenem susceptibility rates of E. coli and K. pneumoniae decreased from 100% and 99.3% in 2011 to 99.0% and 97.0% in 2015, respectively. The resistance rate of Pseudomonas aeruginosa to carbapenem increased to 35% and the prevalence of carbapenem-resistant Acinetobacter baumannii increased from 77% in 2013 to 85% in 2015. Conclusions Between 2013 and 2015, the resistance rates of E. coli to third- and fourth-generation cephalosporins increased continuously, while carbapenem-susceptibility gradually decreased, particularly in K. pneumoniae. The prevalence of carbapenem-resistant P. aeruginosa and A. baumannii increased significantly; therefore, few treatment options remain for these resistant strains. PMID:28224769

  20. Automated direct screening for resistance of Gram-negative blood cultures using the BD Kiestra WorkCell.

    PubMed

    Heather, C S; Maley, M

    2017-10-02

    Early detection of resistance in sepsis due to Gram-negative organisms may lead to improved outcomes by reducing the time to effective antibiotic therapy. Traditional methods of resistance detection require incubation times of 18 to 48 h to detect resistance. We have utilised automated specimen processing, digital imaging and zone size measurements in conjunction with direct disc susceptibility testing to develop a method for the rapid screening of Gram-negative blood culture isolates for resistance. Positive clinical blood cultures with Gram-negative organisms were prospectively identified and additional resistant mock specimens were prepared. Broth was plated and antibiotic-impregnated discs (ampicillin, ceftriaxone, piperacillin-tazobactam, meropenem, ciprofloxacin, gentamicin) were added. Plates were incubated, digitally imaged and zone sizes were measured using the BD Kiestra WorkCell laboratory automation system. Minimum, clinically useful, incubation times and optimised zone size cut-offs for resistance detection were determined. We included 187 blood cultures in the study. At 5 h of incubation, > 90% of plates yielded interpretable results. Using optimised zone size cut-offs, the sensitivity for resistance detection ranged from 87 to 100%, while the specificity ranged from 84.7 to 100%. The sensitivity and specificity for piperacillin-tazobactam resistance detection was consistently worse than for the other agents. Automated direct disc susceptibility screening is a rapid and sensitive tool for resistance detection in Gram-negative isolates from blood cultures for most of the agents tested.

  1. Immunogenomics for identification of disease resistance genes in pigs: a review focusing on Gram-negative bacilli

    PubMed Central

    2012-01-01

    Over the past years, infectious disease has caused enormous economic loss in pig industry. Among the pathogens, gram negative bacteria not only cause inflammation, but also cause different diseases and make the pigs more susceptible to virus infection. Vaccination, medication and elimination of sick pigs are major strategies of controlling disease. Genetic methods, such as selection of disease resistance in the pig, have not been widely used. Recently, the completion of the porcine whole genome sequencing has provided powerful tools to identify the genome regions that harboring genes controlling disease or immunity. Immunogenomics, which combines DNA variations, transcriptome, immune response, and QTL mapping data to illustrate the interactions between pathogen and host immune system, will be an effective genomics tool for identification of disease resistance genes in pigs. These genes will be potential targets for disease resistance in breeding programs. This paper reviewed the progress of disease resistance study in the pig focusing on Gram-negative bacilli. Major porcine Gram-negative bacilli and diseases, suggested candidate genes/pathways against porcine Gram-negative bacilli, and distributions of QTLs for immune capacity on pig chromosomes were summarized. Some tools for immunogenomics research were described. We conclude that integration of sequencing, whole genome associations, functional genomics studies, and immune response information is necessary to illustrate molecular mechanisms and key genes in disease resistance. PMID:23137309

  2. Systematic Review of Antibiotic Resistance Rates Among Gram-Negative Bacteria in Children With Sepsis in Resource-Limited Countries.

    PubMed

    Le Doare, Kirsty; Bielicki, Julia; Heath, Paul T; Sharland, Mike

    2015-03-01

    Gram-negative antimicrobial resistance (AMR) is of global concern, yet there are few reports from low- and low-middle-income countries, where antimicrobial choices are often limited. This study offers a systematic review of PubMed, Embase, and World Health Organization (WHO) regional databases of Gram-negative bacteremia in children in low- and low-middle-income countries reporting AMR since 2001. Data included 30 studies comprising 71 326 children, of whom 7056 had positive blood cultures, and Gram-negative organisms were isolated in 4710 (66.8%). In neonates, Klebsiella pneumoniae median resistance to ampicillin was 94% and cephalosporins 84% in Asia; 100% and 50% in Africa. Large regional variations in resistance rates to commonly prescribed antibiotics for Salmonella spp. were identified. Multidrug resistance (resistance to ampicillin, chloramphenicol, and cotrimoxazole) was present in 30% (interquartile range [IQR], 0-59.6) in Asia and 75% (IQR, 30-85.4) in Africa. There is a need for an international pediatric antimicrobial resistance surveillance system that collects local epidemiological data to improve the evidence base for the WHO guidance for childhood Gram-negative bacteremia. © The Author 2014. Published by Oxford University Press on behalf of the Pediatric Infectious Diseases Society. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria

    PubMed Central

    Roier, Sandro; Zingl, Franz G.; Cakar, Fatih; Durakovic, Sanel; Kohl, Paul; Eichmann, Thomas O.; Klug, Lisa; Gadermaier, Bernhard; Weinzerl, Katharina; Prassl, Ruth; Lass, Achim; Daum, Günther; Reidl, Joachim; Feldman, Mario F.; Schild, Stefan

    2016-01-01

    Bacterial outer membrane vesicles (OMVs) have important biological roles in pathogenesis and intercellular interactions, but a general mechanism of OMV formation is lacking. Here we show that the VacJ/Yrb ABC (ATP-binding cassette) transport system, a proposed phospholipid transporter, is involved in OMV formation. Deletion or repression of VacJ/Yrb increases OMV production in two distantly related Gram-negative bacteria, Haemophilus influenzae and Vibrio cholerae. Lipidome analyses demonstrate that OMVs from VacJ/Yrb-defective mutants in H. influenzae are enriched in phospholipids and certain fatty acids. Furthermore, we demonstrate that OMV production and regulation of the VacJ/Yrb ABC transport system respond to iron starvation. Our results suggest a new general mechanism of OMV biogenesis based on phospholipid accumulation in the outer leaflet of the outer membrane. This mechanism is highly conserved among Gram-negative bacteria, provides a means for regulation, can account for OMV formation under all growth conditions, and might have important pathophysiological roles in vivo. PMID:26806181

  4. Antimicrobial activity of octenidine against multidrug-resistant Gram-negative pathogens.

    PubMed

    Alvarez-Marin, R; Aires-de-Sousa, M; Nordmann, P; Kieffer, N; Poirel, L

    2017-08-19

    Multidrug-resistant (MR) Gram-negative (GN) pathogens pose a major and growing threat for healthcare systems, as therapy of infections is often limited due to the lack of available systemic antibiotics. Well-tolerated antiseptics, such as octenidine dihydrochloride (OCT), may be a very useful tool in infection control to reduce the dissemination of MRGN. This study aimed to investigate the bactericidal activity of OCT against international epidemic clones of MRGN. A set of five different species (Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Acinetobacter baumannii, and Pseudomonas aeruginosa) was studied to prove OCT efficacy without organic load, under "clean conditions" (0.3 g/L albumin) and under "dirty conditions" (3 g/L albumin + 3 mL/L defibrinated sheep blood), according to an official test norm (EN13727). We used five clonally unrelated isolates per species, including a susceptible wild-type strain, and four MRGN isolates, corresponding to either the 3MRGN or 4MRGN definition of multidrug resistance. A contact time of 1 min was fully effective for all isolates by using different OCT concentrations (0.01% and 0.05%), with a bacterial reduction factor of >5 log10 systematically observed. Growth kinetics were determined with two different wild-type strains (A. baumannii and K. pneumoniae), proving a time-dependent efficacy of OCT. These results highlight that OCT may be extremely useful to eradicate emerging highly resistant Gram-negative pathogens associated with nosocomial infections.

  5. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria.

    PubMed

    Roier, Sandro; Zingl, Franz G; Cakar, Fatih; Durakovic, Sanel; Kohl, Paul; Eichmann, Thomas O; Klug, Lisa; Gadermaier, Bernhard; Weinzerl, Katharina; Prassl, Ruth; Lass, Achim; Daum, Günther; Reidl, Joachim; Feldman, Mario F; Schild, Stefan

    2016-01-25

    Bacterial outer membrane vesicles (OMVs) have important biological roles in pathogenesis and intercellular interactions, but a general mechanism of OMV formation is lacking. Here we show that the VacJ/Yrb ABC (ATP-binding cassette) transport system, a proposed phospholipid transporter, is involved in OMV formation. Deletion or repression of VacJ/Yrb increases OMV production in two distantly related Gram-negative bacteria, Haemophilus influenzae and Vibrio cholerae. Lipidome analyses demonstrate that OMVs from VacJ/Yrb-defective mutants in H. influenzae are enriched in phospholipids and certain fatty acids. Furthermore, we demonstrate that OMV production and regulation of the VacJ/Yrb ABC transport system respond to iron starvation. Our results suggest a new general mechanism of OMV biogenesis based on phospholipid accumulation in the outer leaflet of the outer membrane. This mechanism is highly conserved among Gram-negative bacteria, provides a means for regulation, can account for OMV formation under all growth conditions, and might have important pathophysiological roles in vivo.

  6. Multidrug-resistant Gram-negative bacteria in solid organ transplant recipients with bacteremias.

    PubMed

    Wan, Q Q; Ye, Q F; Yuan, H

    2015-03-01

    Bloodstream infections (BSIs) remain as life-threatening complications and are associated with significant morbidity and mortality among solid organ transplant (SOT) recipients. Multidrug-resistant (MDR) Gram-negative bacteria can cause serious bacteremias in these recipients. Reviews have aimed to investigate MDR Gram-negative bacteremias; however, they were lacking in SOT recipients in the past. To better understand the characteristics of bacteremias due to MDR Gram-negative bacteria, optimize preventive and therapeutic strategies, and improve the outcomes of SOT recipients, this review summarize the epidemiology, clinical and laboratory characteristics, and explores the mechanisms, prevention, and treatment of MDR Gram-negative bacteria.

  7. Antibiotic Trends Amid Multidrug-Resistant Gram-Negative Infections in Intensive Care Units.

    PubMed

    Fowler, Leanne H; Lee, Susan

    2017-03-01

    Isolates from ICUs most commonly find multidrug-resistant (MDR) gram-negative bacteria. The purpose of this article is to discuss the significant impact MDR gram-negative infections are having on ICUs, the threat on health and mortality, and effective and new approaches aimed to combat MDR gram-negative infections in critically ill populations. Inappropriate antibiotic therapies for suspected or documented infections are the leading cause of the emergence of bacterial resistance. A variety of strategies are aimed at combatting this international burden via antibiotic stewardship programs. Studies are demonstrating promise against the virulence MDR gram-negative infections have posed.

  8. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance.

    PubMed

    Blair, Jessica M A; Richmond, Grace E; Piddock, Laura J V

    2014-01-01

    Gram-negative bacteria express a plethora of efflux pumps that are capable of transporting structurally varied molecules, including antibiotics, out of the bacterial cell. This efflux lowers the intracellular antibiotic concentration, allowing bacteria to survive at higher antibiotic concentrations. Overexpression of some efflux pumps can cause clinically relevant levels of antibiotic resistance in Gram-negative pathogens. This review discusses the role of efflux in resistance of clinical isolates of Gram-negative bacteria, the regulatory mechanisms that control efflux pump expression, the recent advances in our understanding of efflux pump structure and how inhibition of efflux is a promising future strategy for tackling multidrug resistance in Gram-negative pathogens.

  9. Fumaric Acid and Slightly Acidic Electrolyzed Water Inactivate Gram Positive and Gram Negative Foodborne Pathogens

    PubMed Central

    Tango, Charles Nkufi; Mansur, Ahmad Rois; Oh, Deog-Hwan

    2015-01-01

    Sanitizing effectiveness of slightly acidic electrolyzed water (SAEW) and fumaric acid (FA) at different dipping temperatures (25–60 °C), times (1–5 min), and concentrations (5–30 ppm for SAEW and 0.125%–0.5% for FA) on pure cultures of two Gram positive pathogens Staphylococcus aureus (SA) and Listeria monocytogenes (LM) and two Gram negative pathogens Escherichia coli O157:H7 (EC) and Salmonella Typhimurium (ST) was evaluated. FA (0.25%) showed the strongest sanitizing effect, demonstrating complete inactivation of EC, ST, and LM, while SA was reduced by 3.95–5.76 log CFU/mL at 25–60 °C, respectively, after 1 min of treatment. For SAEW, the complete inactivation was obtained when available chlorine concentration was increased to 20 ppm at 40 °C for 3 and 5 min. Moreover, Gram positive pathogens have been shown to resist to all treatment trends more than Gram negative pathogens throughout this experiment. Regardless of the different dipping temperatures, concentrations, and times, FA treatment was more effective than treatment with SAEW for reduction of foodborne pathogens. This study demonstrated that application of FA in food systems may be useful as a method for inactivation of foodborne pathogens. PMID:27682077

  10. Antimicrobial Peptides Targeting Gram-negative Pathogens, Produced and Delivered by Lactic Acid Bacteria

    PubMed Central

    Volzing, Katherine; Borrero, Juan; Sadowsky, Michael J.; Kaznessis, Yiannis N.

    2014-01-01

    We present results of tests with recombinant Lactococcus lactis that produce and secrete heterologous antimicrobial peptides with activity against Gram-negative pathogenic Escherichia coli and Salmonella. In an initial screening, the activities of numerous candidate antimicrobial peptides, made by solid state synthesis, were assessed against several indicator pathogenic E. coli and Salmonella strains. Peptides A3APO and Alyteserin were selected as top performers based on high antimicrobial activity against the pathogens tested and on significantly lower antimicrobial activity against L. lactis. Expression cassettes containing the signal peptide of the protein Usp45 fused to the codon optimized sequence of mature A3APO and Alyteserin were cloned under the control of a nisin-inducible promoter nisA and transformed into L. lactis IL1403. The resulting recombinant strains were induced to express and secrete both peptides. A3APO- and Alyteserin-containing supernatants from these recombinant L. lactis inhibited the growth of pathogenic E. coli and Salmonella by up to 20-fold, while maintaining the host’s viability. This system may serve as a model for the production and delivery of antimicrobial peptides by lactic acid bacteria to target Gram-negative pathogenic bacteria populations. PMID:23808914

  11. Cutting edge: natural DNA repetitive extragenic sequences from gram-negative pathogens strongly stimulate TLR9.

    PubMed

    Magnusson, Mattias; Tobes, Raquel; Sancho, Jaime; Pareja, Eduardo

    2007-07-01

    Bacterial DNA exerts immunostimulatory effects on mammalian cells via the intracellular TLR9. Although broad analysis of TLR9-mediated immunostimulatory potential of synthetic oligonucleotides has been developed, which kinds of natural bacterial DNA sequences are responsible for immunostimulation are not known. This work provides evidence that the natural DNA sequences named repetitive extragenic palindromic (REPs) sequences present in Gram-negative bacteria are able to produce innate immune system stimulation via TLR9. A strong induction of IFN-alpha production by REPs from Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, and Neisseria meningitidis was detected in splenocytes from 129 mice. In addition, the involvement of TLR9 in immune stimulation by REPs was confirmed using B6.129P2-Tlr9(tm1Aki) knockout mice. Considering the involvement of TLRs in Gram-negative septic shock, it is conceivable that REPs play a role in its pathogenesis. This study highlights REPs as a potential novel target in septic shock treatment.

  12. An O2-sensing stressosome from a Gram-negative bacterium.

    PubMed

    Jia, Xin; Wang, Jian-Bo; Rivera, Shannon; Duong, Duc; Weinert, Emily E

    2016-08-04

    Bacteria have evolved numerous pathways to sense and respond to changing environmental conditions, including, within Gram-positive bacteria, the stressosome complex that regulates transcription of general stress response genes. However, the signalling molecules recognized by Gram-positive stressosomes have yet to be identified, hindering our understanding of the signal transduction mechanism within the complex. Furthermore, an analogous pathway has yet to be described in Gram-negative bacteria. Here we characterize a putative stressosome from the Gram-negative bacterium Vibrio brasiliensis. The sensor protein RsbR binds haem and exhibits ligand-dependent control of the stressosome complex activity. Oxygen binding to the haem decreases activity, while ferrous RsbR results in increased activity, suggesting that the V. brasiliensis stressosome may be activated when the bacterium enters anaerobic growth conditions. The findings provide a model system for investigating ligand-dependent signalling within stressosome complexes, as well as insights into potential pathways controlled by oxygen-dependent signalling within Vibrio species.

  13. An O2-sensing stressosome from a Gram-negative bacterium

    PubMed Central

    Jia, Xin; Wang, Jian-bo; Rivera, Shannon; Duong, Duc; Weinert, Emily E.

    2016-01-01

    Bacteria have evolved numerous pathways to sense and respond to changing environmental conditions, including, within Gram-positive bacteria, the stressosome complex that regulates transcription of general stress response genes. However, the signalling molecules recognized by Gram-positive stressosomes have yet to be identified, hindering our understanding of the signal transduction mechanism within the complex. Furthermore, an analogous pathway has yet to be described in Gram-negative bacteria. Here we characterize a putative stressosome from the Gram-negative bacterium Vibrio brasiliensis. The sensor protein RsbR binds haem and exhibits ligand-dependent control of the stressosome complex activity. Oxygen binding to the haem decreases activity, while ferrous RsbR results in increased activity, suggesting that the V. brasiliensis stressosome may be activated when the bacterium enters anaerobic growth conditions. The findings provide a model system for investigating ligand-dependent signalling within stressosome complexes, as well as insights into potential pathways controlled by oxygen-dependent signalling within Vibrio species. PMID:27488264

  14. Fumaric Acid and Slightly Acidic Electrolyzed Water Inactivate Gram Positive and Gram Negative Foodborne Pathogens.

    PubMed

    Tango, Charles Nkufi; Mansur, Ahmad Rois; Oh, Deog-Hwan

    2015-02-12

    Sanitizing effectiveness of slightly acidic electrolyzed water (SAEW) and fumaric acid (FA) at different dipping temperatures (25-60 °C), times (1-5 min), and concentrations (5-30 ppm for SAEW and 0.125%-0.5% for FA) on pure cultures of two Gram positive pathogens Staphylococcus aureus (SA) and Listeria monocytogenes (LM) and two Gram negative pathogens Escherichia coli O157:H7 (EC) and Salmonella Typhimurium (ST) was evaluated. FA (0.25%) showed the strongest sanitizing effect, demonstrating complete inactivation of EC, ST, and LM, while SA was reduced by 3.95-5.76 log CFU/mL at 25-60 °C, respectively, after 1 min of treatment. For SAEW, the complete inactivation was obtained when available chlorine concentration was increased to 20 ppm at 40 °C for 3 and 5 min. Moreover, Gram positive pathogens have been shown to resist to all treatment trends more than Gram negative pathogens throughout this experiment. Regardless of the different dipping temperatures, concentrations, and times, FA treatment was more effective than treatment with SAEW for reduction of foodborne pathogens. This study demonstrated that application of FA in food systems may be useful as a method for inactivation of foodborne pathogens.

  15. [Nonfermentative gram-negative bacteria: isolation rates and antibiotic sensitivity].

    PubMed

    Bogomolova, N S; Bol'shakov, L V; Kuznetsova, S M; Oreshkina, T D

    2010-01-01

    The isolation rates of nonfermentative gram-negative bacteria (NFGNB) are analyzed in the inpatients treated at the B. V. Petrovsky Russian Surgery Research Center in 2005-2009 and antibiotic resistance trends in nosocomial strains of NFGNB are traced in the above period. The study of the etiological structure of nosocomial infections has shown that the past 2 years (2008 and 2009) were marked by a clear tendency for the preponderance of gram-positive coccal pathogens (46.8 and 53.9%) with a considerable (1.5-2-fold) reduction in the proportion of representatives of enterobacteria (31.5 and 24.5%) and NFGB (13.4 and 11.3%), but with an increase in the proportion of fungi up to 7.1 and 8.6%, respectively. Among the NFGNBs, P. aeruginosa remains ohe of the most common pathogens for nosocomial infections although its portion in the number of all etiologically significant microorganisms was substantially reduced (from 13% in 2005 to 4.6% in 2009). It continues to remain one of the most common causative agents for infections of the urinary tract (e.g., after renal transplantation) and upper and lower respiratory tract (e.g. nosocomial pneumonia) and for those developing after surgical interventions (postoperative wound suppuration discharged along the drainages, from a T-sized tube, etc.). Among the NFGNBs, Acinetobacter spp. was the second frequently isolated pathogen, the isolation rate for which also decreased from 7.9% in 2005 to 2.6% in 2009. Polymyxin B and carbapenems (imipenem, meropenem, and doripenem) showed the highest activity against the vast majority of the test strains; however, there was an absolutely clear declining trend in the proportion of carbapenem-sensitive strains among virtually all the NFGNBs under study. According to the proportion of imipenem-, meropenem-, and doripenem-sensitive nosocomial P. aeroginosa strains (66.7, 46.6, and 44.7%, respectively), doripenem had the least activity. Acinetobacter spp. strains sensitive to these drugs showed

  16. Lethality and Autonomous Systems: The Roboticist Demographic

    DTIC Science & Technology

    2008-01-01

    humanoid (22%), and other (23%); 9) Media Influence: only 18% said that media had a strong or very strong influence on their attitude to robots ...and whether certain emotions would be appropriate in a military robot . The Wars question was worded as follows: To what extent do you think ...Lethality and Autonomous Systems: The Roboticist Demographic Lilia V. Moshkina and Ronald C. Arkin Mobile Robot Laboratory, College of

  17. Manual and automated instrumentation for identification of Enterobacteriaceae and other aerobic gram-negative bacilli.

    PubMed

    O'hara, Caroline M

    2005-01-01

    Identification of gram-negative bacilli, both enteric and nonenteric, by conventional methods is not realistic for clinical microbiology laboratories performing routine cultures in today's world. The use of commercial kits, either manual or automated, to identify these organisms is a common practice. The advent of rapid or "spot" testing has eliminated the need for some commonly isolated organisms to be identified with the systems approach. Commercially available systems provide more in-depth identification to the species level as well as detect new and unusual strains. The answers obtained from these systems may not always be correct and must be interpreted with caution. The patient demographics, laboratory workload and work flow, and technologist's skill levels should dictate the system of choice. Cost considerations introduce another variable into the equation affecting choice. Each system has its own strengths and weaknesses, and each laboratory must decide on the level of sophistication that fulfills its particular needs.

  18. Manual and Automated Instrumentation for Identification of Enterobacteriaceae and Other Aerobic Gram-Negative Bacilli

    PubMed Central

    O'Hara, Caroline M.

    2005-01-01

    Identification of gram-negative bacilli, both enteric and nonenteric, by conventional methods is not realistic for clinical microbiology laboratories performing routine cultures in today's world. The use of commercial kits, either manual or automated, to identify these organisms is a common practice. The advent of rapid or “spot” testing has eliminated the need for some commonly isolated organisms to be identified with the systems approach. Commercially available systems provide more in-depth identification to the species level as well as detect new and unusual strains. The answers obtained from these systems may not always be correct and must be interpreted with caution. The patient demographics, laboratory workload and work flow, and technologist's skill levels should dictate the system of choice. Cost considerations introduce another variable into the equation affecting choice. Each system has its own strengths and weaknesses, and each laboratory must decide on the level of sophistication that fulfills its particular needs. PMID:15653824

  19. The Aspartate-Semialdehyde Dehydrogenase of Edwardsiella ictaluri and Its Use as Balanced-Lethal System in Fish Vaccinology

    PubMed Central

    Santander, Javier; Xin, Wei; Yang, Zhao; Curtiss, Roy

    2010-01-01

    asdA mutants of Gram-negative bacteria have an obligate requirement for diaminopimelic acid (DAP), which is an essential constituent of the peptidoglycan layer of the cell wall of these organisms. In environments deprived of DAP, i.e., animal tissues, they will undergo lysis. Deletion of the asdA gene has previously been exploited to develop antibiotic-sensitive strains of live attenuated recombinant bacterial vaccines. Introduction of an Asd+ plasmid into a ΔasdA mutant makes the bacterial strain plasmid-dependent. This dependence on the Asd+ plasmid vector creates a balanced-lethal complementation between the bacterial strain and the recombinant plasmid. E. ictaluri is an enteric Gram-negative fish pathogen that causes enteric septicemia in catfish. Because E. ictaluri is a nasal/oral invasive intracellular pathogen, this bacterium is a candidate to develop a bath/oral live recombinant attenuated Edwardsiella vaccine (RAEV) for the catfish aquaculture industry. As a first step to develop an antibiotic-sensitive RAEV strain, we characterized and deleted the E. ictaluri asdA gene. E. ictaluri ΔasdA01 mutants exhibit an absolute requirement for DAP to grow. The asdA gene of E. ictaluri was complemented by the asdA gene from Salmonella. Several Asd+ expression vectors with different origins of replication were transformed into E. ictaluri ΔasdA01. Asd+ vectors were compatible with the pEI1 and pEI2 E. ictaluri native plasmids. The balanced-lethal system was satisfactorily evaluated in vivo. Recombinant GFP, PspA, and LcrV proteins were synthesized by E. ictaluri ΔasdA01 harboring Asd+ plasmids. Here we constructed a balanced-lethal system, which is the first step to develop an antibiotic-sensitive RAEV for the aquaculture industry. PMID:21209920

  20. Proteomic profiling of Gram-negative bacterial outer membrane vesicles: Current perspectives.

    PubMed

    Lee, Jaewook; Kim, Oh Youn; Gho, Yong Song

    2016-10-01

    Outer membrane vesicles (OMVs) are extracellular vesicles derived from Gram-negative bacteria. Recent progress in the studies of Gram-negative bacterial extracellular vesicles implies that OMVs may function as intercellular communicasomes in bacteria-bacteria and bacteria-host interactions. Current MS-based high-throughput proteomic analyses of Gram-negative bacterial OMVs have identified thousands of vesicular proteins and provided clues to reveal the biogenesis and pathophysiological functions of Gram-negative bacterial OMVs. The future directions of proteomics of Gram-negative bacterial OMVs may include the isolation strategy of Gram-negative bacterial OMVs to thoroughly exclude nonvesicular contaminants and proteomics of Gram-negative bacterial OMVs derived from diverse conditions as well as body fluids of bacterium-infected hosts. We hope this review will shed light on future research in this emerging field of proteomics of extracellular vesicles derived from Gram-negative bacteria and contribute to the development of OMV-based diagnostic tools and effective vaccines.

  1. Essential Oils and Their Components as Modulators of Antibiotic Activity against Gram-Negative Bacteria

    PubMed Central

    Aelenei, Petruta; Miron, Anca; Trifan, Adriana; Bujor, Alexandra; Gille, Elvira; Aprotosoaie, Ana Clara

    2016-01-01

    Gram-negative bacteria cause infections that are difficult to treat due to the emergence of multidrug resistance. This review summarizes the current status of the studies investigating the capacity of essential oils and their components to modulate antibiotic activity against Gram-negative bacteria. Synergistic interactions are particularly discussed with reference to possible mechanisms by which essential oil constituents interact with antibiotics. Special emphasis is given to essential oils and volatile compounds that inhibit efflux pumps, thus reversing drug resistance in Gram-negative bacteria. In addition, indifference and antagonism between essential oils/volatile compounds and conventional antibiotics have also been reported. Overall, this literature review reveals that essential oils and their purified components enhance the efficacy of antibiotics against Gram-negative bacteria, being promising candidates for the development of new effective formulations against Gram-negative bacteria. PMID:28930130

  2. Potential strategies for the eradication of multidrug-resistant Gram-negative bacterial infections.

    PubMed

    Huwaitat, Rawan; McCloskey, Alice P; Gilmore, Brendan F; Laverty, Garry

    2016-07-01

    Antimicrobial resistance is one of the leading threats to society. The increasing burden of multidrug-resistant Gram-negative infection is particularly concerning as such bacteria are demonstrating resistance to nearly all currently licensed therapies. Various strategies have been hypothesized to treat multidrug-resistant Gram-negative infections including: targeting the Gram-negative outer membrane; neutralization of lipopolysaccharide; inhibition of bacterial efflux pumps and prevention of protein folding. Silver and silver nanoparticles, fusogenic liposomes and nanotubes are potential strategies for extending the activity of licensed, Gram-positive selective, antibiotics to Gram-negatives. This may serve as a strategy to fill the current void in pharmaceutical development in the short term. This review outlines the most promising strategies that could be implemented to solve the threat of multidrug-resistant Gram-negative infections.

  3. [Significance of efflux pumps in multidrug resistance of Gram-negative bacteria].

    PubMed

    Wiercińska, Olga; Chojecka, Agnieszka; Kanclerski, Krzysztof; Rőhm-Rodowald, Ewa; Jakimiak, Bożenna

    2015-01-01

    The phenomenon of multidrug. resistance of bacteria is a serious problem of modern medicine. This resistance largely is a consequence of abuse and improper use of antibacterial substances, especially antibiotics and chemotherapeutics in hospital settings. Multidrug resistance is caused by a number of interacting mechanisms of resistance. Recent studies have indicated that efflux pumps and systems of efflux pumps are an important determinant of this phenomenon. Contribute to this particular RND efflux systems of Gram-negative bacteria, which possess a wide range of substrates such as antibiotics, dyes, detergents, toxins and active substances of disinfectants and antiseptics. These transporters are usually encoded on bacterial chromosomes. Genes encoding efflux pumps' proteins may also be carried on plasmids and other mobile genetic elements. Such pumps are usually specific to a small group of substrates, but as an additional mechanism of resistance may contribute to the multidrug resistance.

  4. Subcellular localization of Gram-negative bacterial proteins using sparse learning.

    PubMed

    Zheng, Zhonglong; Yang, Jie

    2010-04-01

    One of the main challenges faced by biological applications is to predict protein subcellular localization in an automatic fashion accurately. To achieve this in these applications, a wide variety of machine learning methods have been proposed in recent years. Most of them focus on finding the optimal classification scheme and less of them take the simplifying the complexity of biological system into account. Traditionally such bio-data are analyzed by first performing a feature selection before classification. Motivated by CS (Compressive Sensing), we propose a method which performs locality preserving projection with a sparseness criterion such that the feature selection and dimension reduction are merged into one analysis. The proposed sparse method decreases the complexity of biological system, while increases protein subcellular localization accuracy. Experimental results are quite encouraging, indicating that the aforementioned sparse method is quite promising in dealing with complicated biological problems, such as predicting the subcellular localization of Gram-negative bacterial proteins.

  5. [Septic arthritis in two young children caused by unusual gram-negative pathogens].

    PubMed

    Bruijn, J; Verhage, J; Bosboom, R W; Brus, F

    2000-07-29

    Two children, a girl aged 2 years and a boy aged 10 months, were moderately ill with signs of inflammation of the left and the right knee, respectively. Both had had pharyngitis, and the boy also had paronychia of the right foot. The Gram preparation of synovial fluid showed Gram-positive cocci in the girl, while Kingella kingae was cultured. In the boy, a Moraxella was cultured from the synovial fluid using an aerobic blood culture system. Both recovered without sequelae after adequate antibiotic treatment. The micro-organisms cultured were Gram-negative bacteria, which are rarely seen in septic arthritis and are difficult to demonstrate. In young children, septic arthritis often presents with mild symptoms and inconclusive laboratory findings. Even if the Gram preparation of the synovial fluid shows no micro-organisms, unusual pathogens may be isolated by means of an aerobic blood culture system.

  6. Intrathecal or intraventricular therapy for post-neurosurgical Gram-negative meningitis: matched cohort study.

    PubMed

    Shofty, B; Neuberger, A; Naffaa, M E; Binawi, T; Babitch, T; Rappaport, Z H; Zaaroor, M; Sviri, G; Paul, M

    2016-01-01

    Gram-negative post-operative meningitis due to carbapenem-resistant bacteria (CR-GNPOM) is a dire complication of neurosurgical procedures. We performed a nested propensity-matched historical cohort study aimed at examining the possible benefit of intrathecal or intraventricular (IT/IV) antibiotic treatment for CR-GNPOM. We included consecutive adults with GNPOM in two centres between 2005 and 2014. Patients receiving combined systemic and IT/IV treatment were matched to patients receiving systemic treatment only. Matching was done based on the propensity of the patients to receive IT/IV treatment. We compared patient groups with 30-day mortality defined as the primary outcome. The cohort included 95 patients with GNPOM. Of them, 37 received IT/IV therapy in addition to systemic treatment (22 with colistin and 15 with amikacin), mostly as initial therapy, through indwelling cerebrospinal fluid drains. Variables associated with IT/IV therapy in the propensity score included no previous neurosurgery, time from admission to meningitis, presence of a urinary catheter and GNPOM caused by carbapenem-resistant Gram-negative bacteria. Following propensity matching, 23 patients given IT/IV therapy and 27 controls were analysed. Mortality was significantly lower with IT/IV therapy: 2/23 (8.7%) versus 9/27 (33.3%), propensity-adjusted OR 0.19, 95% CI 0.04-0.99. Death or neurological deterioration at 30 days, 14-day and in-hospital mortality were lower with IT/IV therapy (OR <0.4 for all) without statistically significant differences. Among patients discharged alive, those receiving IT/IV therapy did not experience more neurological deterioration. Serious adverse events with IT/IV therapy were not documented. Our results support the early use of IT antibiotic treatment for CR-GNPOM when a delivery method is available. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  7. Gram-Negative Marine Bacteria: Structural Features of Lipopolysaccharides and Their Relevance for Economically Important Diseases

    PubMed Central

    Anwar, Muhammad Ayaz; Choi, Sangdun

    2014-01-01

    Gram-negative marine bacteria can thrive in harsh oceanic conditions, partly because of the structural diversity of the cell wall and its components, particularly lipopolysaccharide (LPS). LPS is composed of three main parts, an O-antigen, lipid A, and a core region, all of which display immense structural variations among different bacterial species. These components not only provide cell integrity but also elicit an immune response in the host, which ranges from other marine organisms to humans. Toll-like receptor 4 and its homologs are the dedicated receptors that detect LPS and trigger the immune system to respond, often causing a wide variety of inflammatory diseases and even death. This review describes the structural organization of selected LPSes and their association with economically important diseases in marine organisms. In addition, the potential therapeutic use of LPS as an immune adjuvant in different diseases is highlighted. PMID:24796306

  8. Gram-negative marine bacteria: structural features of lipopolysaccharides and their relevance for economically important diseases.

    PubMed

    Anwar, Muhammad Ayaz; Choi, Sangdun

    2014-04-30

    Gram-negative marine bacteria can thrive in harsh oceanic conditions, partly because of the structural diversity of the cell wall and its components, particularly lipopolysaccharide (LPS). LPS is composed of three main parts, an O-antigen, lipid A, and a core region, all of which display immense structural variations among different bacterial species. These components not only provide cell integrity but also elicit an immune response in the host, which ranges from other marine organisms to humans. Toll-like receptor 4 and its homologs are the dedicated receptors that detect LPS and trigger the immune system to respond, often causing a wide variety of inflammatory diseases and even death. This review describes the structural organization of selected LPSes and their association with economically important diseases in marine organisms. In addition, the potential therapeutic use of LPS as an immune adjuvant in different diseases is highlighted.

  9. N-acyl homoserinelactone-mediated gene regulation in gram-negative bacteria.

    PubMed

    Eberl, L

    1999-12-01

    The view of bacteria as unicellular organisms has strong roots in the tradition of culturing bacteria in liquid media. However, in nature microbial activity is mainly associated with surfaces where bacteria form highly structured and cooperative consortia which are commonly referred to as biofilms. The ability of bacteria to organize structurally and to distribute metabolic activities between the different members of the consortium demands a high degree of coordinated cell-cell interaction. Recent work has established that many bacteria employ sophisticated intercellular communication systems that rely on small signal molecules to control the expression of multiple target genes. In Gram-negative bacteria, the most intensively investigated signal molecules are N-acyl-L-homoserine lactones (AHLs), which are utilized by the bacteria to monitor their own population densities in a process known as 'quorum sensing'. These density-dependent regulatory systems rely on two proteins, an AHL synthase, usually a member of the LuxI family of proteins, and an AHL receptor protein belonging to the LuxR family of transcriptional regulators. At low population densities cells produce a basal level of AHL via the activity of an AHL synthase. As the cell density increases, AHL accumulates in the growth medium. On reaching a critical threshold concentration, the AHL molecule binds to its cognate receptor which in turn leads to the induction/repression of AHL-regulated genes. To date, AHL-dependent quorum sensing circuits have been identified in a wide range of gram-negative bacteria where they regulate various functions including bioluminescence, plasmid conjugal transfer, biofilm formation, motility, antibiotic biosynthesis, and the production of virulence factors in plant and animal pathogens. Moreover, AHL signal molecules appear to play important roles in the ecology of complex consortia as they allow bacterial populations to interact with each other as well as with their

  10. Species distribution and antimicrobial susceptibility of gram-negative aerobic bacteria in hospitalized cancer patients

    PubMed Central

    Ashour, Hossam M; El-Sharif, Amany

    2009-01-01

    Background Nosocomial infections pose significant threats to hospitalized patients, especially the immunocompromised ones, such as cancer patients. Methods This study examined the microbial spectrum of gram-negative bacteria in various infection sites in patients with leukemia and solid tumors. The antimicrobial resistance patterns of the isolated bacteria were studied. Results The most frequently isolated gram-negative bacteria were Klebsiella pneumonia (31.2%) followed by Escherichia coli (22.2%). We report the isolation and identification of a number of less-frequent gram negative bacteria (Chromobacterium violacum, Burkholderia cepacia, Kluyvera ascorbata, Stenotrophomonas maltophilia, Yersinia pseudotuberculosis, and Salmonella arizona). Most of the gram-negative isolates from Respiratory Tract Infections (RTI), Gastro-intestinal Tract Infections (GITI), Urinary Tract Infections (UTI), and Bloodstream Infections (BSI) were obtained from leukemic patients. All gram-negative isolates from Skin Infections (SI) were obtained from solid-tumor patients. In both leukemic and solid-tumor patients, gram-negative bacteria causing UTI were mainly Escherichia coli and Klebsiella pneumoniae, while gram-negative bacteria causing RTI were mainly Klebsiella pneumoniae. Escherichia coli was the main gram-negative pathogen causing BSI in solid-tumor patients and GITI in leukemic patients. Isolates of Escherichia coli, Klebsiella, Enterobacter, Pseudomonas, and Acinetobacter species were resistant to most antibiotics tested. There was significant imipenem -resistance in Acinetobacter (40.9%), Pseudomonas (40%), and Enterobacter (22.2%) species, and noticeable imipinem-resistance in Klebsiella (13.9%) and Escherichia coli (8%). Conclusion This is the first study to report the evolution of imipenem-resistant gram-negative strains in Egypt. Mortality rates were higher in cancer patients with nosocomial Pseudomonas infections than any other bacterial infections. Policies restricting

  11. Teaching 'old' polymyxins new tricks: new-generation lipopeptides targeting gram-negative 'superbugs'.

    PubMed

    Velkov, Tony; Roberts, Kade D; Nation, Roger L; Wang, Jiping; Thompson, Philip E; Li, Jian

    2014-05-16

    The antimicrobial lipopeptides polymyxin B and E (colistin) are being used as a 'last-line' therapy for infections caused by multidrug-resistant Gram-negative pathogens. Polymyxin resistance implies a total lack of antibiotics for the treatment of life-threatening infections caused by the Gram-negative 'superbugs'. This report details the structure-activity relationships (SAR) based design, in toto synthesis, and preclinical evaluation of a series of novel polymyxin lipopeptides with better antibacterial activity against polymyxin-resistant Gram-negative bacteria.

  12. Permeability barrier of Gram-negative cell envelopes and approaches to bypass it

    SciTech Connect

    Zgurskaya, Helen I.; López, Cesar A.; Gnanakaran, Sandrasegaram

    2015-09-18

    Gram-negative bacteria are intrinsically resistant to many antibiotics. Species that have acquired multidrug resistance and cause infections that are effectively untreatable present a serious threat to public health. The problem is broadly recognized and tackled at both the fundamental and applied levels. This article summarizes current advances in understanding the molecular bases of the low permeability barrier of Gram-negative pathogens, which is the major obstacle in discovery and development of antibiotics effective against such pathogens. Gaps in knowledge and specific strategies to break this barrier and to achieve potent activities against difficult Gram-negative bacteria are also discussed.

  13. Ubiquitous and persistent Proteobacteria and other Gram-negative bacteria in drinking water.

    PubMed

    Vaz-Moreira, Ivone; Nunes, Olga C; Manaia, Célia M

    2017-05-15

    Drinking water comprises a complex microbiota, in part shaped by the disinfection and distribution systems. Gram-negative bacteria, mainly members of the phylum Proteobacteria, represent the most frequent bacteria in drinking water, and their ubiquity and physiological versatility raises questions about possible implications in human health. The first step to address this concern is the identification and characterization of such bacteria that is the first objective of this study, aiming at identifying ubiquitous or persistent Gram-negative bacteria, Proteobacteria or members of other phyla, isolated from tap water or from its source. >1000 bacterial isolates were characterized and identified, and a selected group (n=68) was further analyzed for the minimum inhibitory concentrations (MIC) to antibiotics (amoxicillin and gentamicin) and metals (copper and arsenite). Total DNA extracts of tap water were examined for the presence of putatively acquired antibiotic resistance or related genes (intI1, blaTEM, qnrS and sul1). The ubiquitous tap water genera comprised Proteobacteria of the class Alpha- (Blastomonas, Brevundimonas, Methylobacterium, Sphingobium, Sphingomonas), Beta- (Acidovorax, Ralstonia) and Gamma- (Acinetobacter and Pseudomonas). Persistent species were members of genera such as Aeromonas, Enterobacter or Dechloromonas. Ralstonia spp. showed the highest MIC values to gentamicin and Acinetobacter spp. to arsenite. The genes intI1, blaTEM or sul1 were detected, at densities lower than 2.3×10(5)copies/L, 2.4×10(4)copies/L and 4.6×10(2)copies/L, respectively, in most tap water samples. The presence of some bacterial groups, in particular of Beta- or Gammaproteobacteria (e.g. Ralstonia, Acinetobacter, Pseudomonas) in drinking water may deserve attention given their potential as reservoirs or carriers of resistance or as opportunistic pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Resistance-Nodulation-Division Multidrug Efflux Pumps in Gram-Negative Bacteria: Role in Virulence

    PubMed Central

    Fernando, Dinesh M.; Kumar, Ayush

    2013-01-01

    Resistance-Nodulation-Division (RND) efflux pumps are one of the most important determinants of multidrug resistance (MDR) in Gram-negative bacteria. With an ever increasing number of Gram-negative clinical isolates exhibiting MDR phenotypes as a result of the activity of RND pumps, it is clear that the design of novel effective clinical strategies against such pathogens must be grounded in a better understanding of these pumps, including their physiological roles. To this end, recent evidence suggests that RND pumps play an important role in the virulence of Gram-negative pathogens. In this review, we discuss the important role RND efflux pumps play in different facets of virulence including colonization, evasion of host defense mechanisms, and biofilm formation. These studies provide key insights that may ultimately be applied towards strategies used in the design of effective therapeutics against MDR Gram negative bacterial pathogens. PMID:27029297

  15. Resistance-Nodulation-Division Multidrug Efflux Pumps in Gram-Negative Bacteria: Role in Virulence.

    PubMed

    Fernando, Dinesh M; Kumar, Ayush

    2013-03-18

    Resistance-Nodulation-Division (RND) efflux pumps are one of the most important determinants of multidrug resistance (MDR) in Gram-negative bacteria. With an ever increasing number of Gram-negative clinical isolates exhibiting MDR phenotypes as a result of the activity of RND pumps, it is clear that the design of novel effective clinical strategies against such pathogens must be grounded in a better understanding of these pumps, including their physiological roles. To this end, recent evidence suggests that RND pumps play an important role in the virulence of Gram-negative pathogens. In this review, we discuss the important role RND efflux pumps play in different facets of virulence including colonization, evasion of host defense mechanisms, and biofilm formation. These studies provide key insights that may ultimately be applied towards strategies used in the design of effective therapeutics against MDR Gram negative bacterial pathogens.

  16. Antimicrobial Susceptibility as a Diagnostic Aid in the Identification of Nonfermenting Gram-Negative Bacteria

    PubMed Central

    Gilardi, G. L.

    1971-01-01

    Antimicrobial susceptibility data regarding nonfermentative, gram-negative bacteria (Pseudomonas, Alcaligenes, Acinetobacter, Moraxella, Flavobacterium) are presented showing that the antibiograms of most species examined can be used as an important auxillary aid in their differentiation. PMID:5132093

  17. Disinfection of gram-negative and gram-positive bacteria using DynaJets® hydrodynamic cavitating jets.

    PubMed

    Loraine, Gregory; Chahine, Georges; Hsiao, Chao-Tsung; Choi, Jin-Keun; Aley, Patrick

    2012-05-01

    Cavitating jet technologies (DynaJets®) were investigated as a means of disinfection of gram-negative Escherichia coli, Klebsiellapneumoniae, Pseudomonas syringae, and Pseudomonas aeruginosa, and gram-positive Bacillus subtilis. The hydrodynamic cavitating jets were found to be very effective in reducing the concentrations of all of these species. In general, the observed rates of disinfection of gram-negative species were higher than for gram-positive species. However, different gram-negative species also showed significant differences (P. syringae 6-log(10) reduction, P. aeruginosa 2-log(10) reduction) under the same conditions. Disinfection of E. coli repeatedly showed five orders of magnitude reduction in concentration within 45-60-min at low nozzle pressure (2.1 bar). Optimization of nozzle design and operating pressures increased disinfection rates per input energy by several orders of magnitude. The power efficiencies of the hydrodynamic cavitating jets were found to be 10-100 times greater than comparable ultrasonic systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Incidence of Carbapenem-Resistant Gram Negatives in Italian Transplant Recipients: A Nationwide Surveillance Study

    PubMed Central

    Lanini, Simone; Costa, Alessandro Nanni; Puro, Vincenzo; Procaccio, Francesco; Grossi, Paolo Antonio; Vespasiano, Francesca; Ricci, Andrea; Vesconi, Sergio; Ison, Michael G.; Carmeli, Yehuda; Ippolito, Giuseppe

    2015-01-01

    Background Bacterial infections remain a challenge to solid organ transplantation. Due to the alarming spread of carbapenem-resistant gram negative bacteria, these organisms have been frequently recognized as cause of severe infections in solid organ transplant recipients. Methods and Findings Between 15 May and 30 September 2012 we enrolled 887 solid organ transplant recipients in Italy with the aim to describe the epidemiology of gram negative bacteria spreading, to explore potential risk factors and to assess the effect of early isolation of gram negative bacteria on recipients’ mortality during the first 90 days after transplantation. During the study period 185 clinical isolates of gram negative bacteria were reported, for an incidence of 2.39 per 1000 recipient-days. Positive cultures for gram negative bacteria occurred early after transplantation (median time 26 days; incidence rate 4.33, 1.67 and 1.14 per 1,000 recipient-days in the first, second and third month after SOT, respectively). Forty-nine of these clinical isolates were due to carbapenem-resistant gram negative bacteria (26.5%; incidence 0.63 per 1000 recipient-days). Carbapenems resistance was particularly frequent among Klebsiella spp. isolates (49.1%). Recipients with longer hospital stay and those who received either heart or lung graft were at the highest risk of testing positive for any gram negative bacteria. Moreover recipients with longer hospital stay, lung recipients and those admitted to hospital for more than 48h before transplantation had the highest probability to have culture(s) positive for carbapenem-resistant gram negative bacteria. Forty-four organ recipients died (0.57 per 1000 recipient-days) during the study period. Recipients with at least one positive culture for carbapenem-resistant gram negative bacteria had a 10.23-fold higher mortality rate than those who did not. Conclusion The isolation of gram-negative bacteria is most frequent among recipient with hospital stays

  19. Monensin-based medium for determination of total gram-negative bacteria and Escherichia coli.

    PubMed Central

    Petzel, J P; Hartman, P A

    1985-01-01

    Plate count-monensin-KCl (PMK) agar, for enumeration of both gram-negative bacteria and Escherichia coli, is composed of (per liter) 23.5 g of plate count agar, 35 mg of monensin, 7.5 g of KCl, and 75 mg of 4-methylumbelliferyl-beta-D-glucuronide (MUG). Monensin was added after the medium was sterilized. The diluent of choice for use with PMK agar was 0.1% peptone (pH 6.8); other diluents were unsatisfactory. Gram-negative bacteria (selected for by the ionophore monensin) can be used to judge the general quality or sanitary history of a commodity. E. coli (differentiated by its ability to hydrolyze the fluorogenic compound MUG) can be used to assess the safety of a commodity in regard to the possible presence of enteric pathogens. Pure-culture studies demonstrated that monensin completely inhibited gram-positive bacteria and had little or no effect on gram-negative bacteria. When gram-negative bacteria were injured by one of several methods, a few species (including E. coli) became sensitive to monensin; this sensitivity was completely reversed in most instances by the inclusion of KCl in the medium. When PMK agar was tested with food and environmental samples, 96% of 535 isolates were gram negative; approximately 68% of colonies from nonselective medium were gram negative. PMK agar was more selective than two other media against gram-positive bacteria and was less inhibitory for gram-negative bacteria. However, with water samples, KCl had an inhibitory effect on gram-negative bacteria, and it should therefore be deleted from monensin-containing medium for water analysis.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3890742

  20. A Universal Culture Medium for Screening Polymyxin-Resistant Gram-Negative Isolates

    PubMed Central

    Jayol, Aurélie; Poirel, Laurent

    2016-01-01

    The colistin-containing SuperPolymyxin medium was developed for screening polymyxin-resistant Gram-negative bacteria. It was evaluated with 88 polymyxin-susceptible or polymyxin-resistant cultured Gram-negative isolates. Its sensitivity and specificity of detection were ca. 100%. The SuperPolymyxin medium is the first screening medium that is able to detect intrinsic and acquired polymyxin-resistant bacteria. PMID:26984971

  1. Fusobacterium nucleatum, the first Gram-negative bacterium demonstrated to produce polyglutamate.

    PubMed

    Candela, Thomas; Moya, Marie; Haustant, Michel; Fouet, Agnès

    2009-05-01

    Poly-gamma-glutamate has been described in many Gram-positive organisms. When anchored to the surface, it is a capsule and as such a virulence factor. Based on sequence similarities, few Gram-negative organisms have been suggested to synthesize poly-gamma-glutamate. For the first time, a Gram-negative bacterium, Fusobacterium nucleatum, is shown to produce and secrete poly-gamma-glutamate. Putative poly-gamma-glutamate-synthesizing genes from Gram-negative organisms have been compared with their Gram-positive homologs by in silico analysis, i.e., gene sequence and phylogenetic analysis. Clusters of three instead of four genes were highlighted by our screen. The products of the first two genes display similarity with their Gram-positive equivalents, yet the sequences from the Gram-negative organisms can be distinguished from those of the Gram-positives. Interestingly, the sequence of the predicted product of the third gene is conserved among Gram-negative bacteria but displays no similarity to that of either the third or fourth gene of the Gram-positive operons. It is suggested that, like for Gram-positive bacteria, poly-gamma-glutamate has a role in virulence for pathogens and one in survival for other Gram-negative bacteria.

  2. Positive correlations between presence of gram negative enteric rods and Porphyromonas gingivalis in subgingival plaque.

    PubMed

    Ardila, Carlos M; López, Mayra A; Guzmán, Isabel C

    2011-01-01

    The association between Gram negative enteric rods and Porphyromonas gingivalis in periodontal diseases has received little attention in the literature. Thus, the aim of this study was to investigate the associations between Gram negative enteric rods, Porphyromonas gingivalis and clinical parameters of periodontal disease. The prevalence of Gram-negative enteric rods and P. gingivalis were examined in patients with chronic periodontitis. Chi-square and Mann-Whitney tests were used to determine differences in clinical variables versus the presence or absence of both microorganisms. Correlations of both organisms and clinical data were determined using Spearman rank correlation coefficient. Gram-negative enteric rods and P. gingivalis were detected in 20 (26.3%) and 51 (67.1%) subjects, respectively. A total 17 (22.4%) individuals harbored both microorganisms studied. There were significantly positive correlations between enteric rods and presence of P. gingivalis (r=0.531, P<.0001). Both microorganisms were significantly and positively correlated with probing depth, clinical attachment level and bleeding on probing (P<0.0001). The mean probing depth (mm) of the sampled sites was significantly deeper in patients with presence of P. gingivalis and Gram-negative enteric rods. This study suggests that the presence of Gram negative enteric rods and P. gingivalis is related to adverse periodontal conditions. These results could have an impact on periodontal treatment and should be taken into account in the mechanical and antimicrobial treatment of periodontal disease in some populations.

  3. Widespread Fosfomycin Resistance in Gram-Negative Bacteria Attributable to the Chromosomal fosA Gene

    PubMed Central

    Ito, Ryota; Tomich, Adam D.; Callaghan, Jake D.; McElheny, Christi L.; Mettus, Roberta T.; Sluis-Cremer, Nicolas

    2017-01-01

    ABSTRACT Fosfomycin is a decades-old antibiotic which is being revisited because of its perceived activity against many extensively drug-resistant Gram-negative pathogens. FosA proteins are Mn2+ and K+-dependent glutathione S-transferases which confer fosfomycin resistance in Gram-negative bacteria by conjugation of glutathione to the antibiotic. Plasmid-borne fosA variants have been reported in fosfomycin-resistant Escherichia coli strains. However, the prevalence and distribution of fosA in other Gram-negative bacteria are not known. We systematically surveyed the presence of fosA in Gram-negative bacteria in over 18,000 published genomes from 18 Gram-negative species and investigated their contribution to fosfomycin resistance. We show that FosA homologues are present in the majority of genomes in some species (e.g., Klebsiella spp., Enterobacter spp., Serratia marcescens, and Pseudomonas aeruginosa), whereas they are largely absent in others (e.g., E. coli, Acinetobacter baumannii, and Burkholderia cepacia). FosA proteins in different bacterial pathogens are highly divergent, but key amino acid residues in the active site are conserved. Chromosomal fosA genes conferred high-level fosfomycin resistance when expressed in E. coli, and deletion of chromosomal fosA in S. marcescens eliminated fosfomycin resistance. Our results indicate that FosA is encoded by clinically relevant Gram-negative species and contributes to intrinsic fosfomycin resistance. PMID:28851843

  4. Structural insights into quinolone antibiotic resistance mediated by pentapeptide repeat proteins: conserved surface loops direct the activity of a Qnr protein from a Gram-negative bacterium

    PubMed Central

    Xiong, Xiaoli; Bromley, Elizabeth H. C.; Oelschlaeger, Peter; Woolfson, Derek N.; Spencer, James

    2011-01-01

    Quinolones inhibit bacterial type II DNA topoisomerases (e.g. DNA gyrase) and are among the most important antibiotics in current use. However, their efficacy is now being threatened by various plasmid-mediated resistance determinants. Of these, the pentapeptide repeat-containing (PRP) Qnr proteins are believed to act as DNA mimics and are particularly prevalent in Gram-negative bacteria. Predicted Qnr-like proteins are also present in numerous environmental bacteria. Here, we demonstrate that one such, Aeromonas hydrophila AhQnr, is soluble, stable, and relieves quinolone inhibition of Escherichia coli DNA gyrase, thus providing an appropriate model system for Gram-negative Qnr proteins. The AhQnr crystal structure, the first for any Gram-negative Qnr, reveals two prominent loops (1 and 2) that project from the PRP structure. Deletion mutagenesis demonstrates that both contribute to protection of E. coli DNA gyrase from quinolones. Sequence comparisons indicate that these are likely to be present across the full range of Gram-negative Qnr proteins. On this basis we present a model for the AhQnr:DNA gyrase interaction where loop1 interacts with the gyrase A ‘tower’ and loop2 with the gyrase B TOPRIM domains. We propose this to be a general mechanism directing the interactions of Qnr proteins with DNA gyrase in Gram-negative bacteria. PMID:21227918

  5. Appropriate initial antibiotic therapy in hospitalized patients with gram-negative infections: systematic review and meta-analysis.

    PubMed

    Raman, Gowri; Avendano, Esther; Berger, Samantha; Menon, Vandana

    2015-09-30

    The rapid global spread of multi-resistant bacteria and loss of antibiotic effectiveness increases the risk of initial inappropriate antibiotic therapy (IAT) and poses a serious threat to patient safety. We conducted a systematic review and meta-analysis of published studies to summarize the effect of appropriate antibiotic therapy (AAT) or IAT against gram-negative bacterial infections in the hospital setting. MEDLINE, EMBASE, and Cochrane CENTRAL databases were searched until May 2014 to identify English-language studies examining use of AAT or IAT in hospitalized patients with Gram-negative pathogens. Outcomes of interest included mortality, clinical cure, cost, and length of stay. Citations and eligible full-text articles were screened in duplicate. Random effect models meta-analysis was used. Fifty-seven studies in 60 publications were eligible. AAT was associated with lower risk of mortality (unadjusted summary odds ratio [OR] 0.38, 95 % confidence interval [CI] 0.30-0.47, 39 studies, 5809 patients) and treatment failure (OR 0.22, 95 % CI 0.14-0.35; 3 studies, 283 patients). Conversely, IAT increased risk of mortality (unadjusted summary OR 2.66, 95 % CI 2.12-3.35; 39 studies, 5809 patients). In meta-analyses of adjusted data, AAT was associated with lower risk of mortality (adjusted summary OR 0.43, 95 % CI 0.23-0.83; 6 studies, 1409 patients). Conversely, IAT increased risk of mortality (adjusted summary OR 3.30, 95 % CI 2.42-4.49; 16 studies, 2493 patients). A limited number of studies suggested higher cost and longer hospital stay with IAT. There was considerable heterogeneity in the definition of AAT or IAT, pathogens studied, and outcomes assessed. Using a large set of studies we found that IAT is associated with a number of serious consequences,including an increased risk of hospital mortality. Infections caused by drug-resistant, Gram-negative organisms represent a considerable financial burden to healthcare systems due to the increased costs

  6. Alternative periplasmic copper-resistance mechanisms in Gram negative bacteria.

    PubMed

    Pontel, Lucas B; Soncini, Fernando C

    2009-07-01

    Bacteria have evolved different systems to tightly control both cytosolic and envelope copper concentration to fulfil their requirements and at the same time, avoid copper toxicity. We have previously demonstrated that, as in Escherichia coli, the Salmonella cue system protects the cytosol from copper excess. On the other hand, and even though Salmonella lacks the CusCFBA periplasmic copper efflux system, it can support higher copper concentrations than E. coli under anaerobic conditions. Here we show that the Salmonella cue regulon is also responsible for the control of copper toxicity in anaerobiosis. We establish that resistance in this condition requires a novel CueR-controlled gene named cueP. A DeltacueP mutant is highly susceptible to copper in the absence of oxygen, but shows a faint phenotype in aerobic conditions unless other copper-resistance genes are also deleted, resembling the E. coli CusCFBA behaviour. Species that contain a cueP homologue under CueR regulation have no functional CusR/CusS-dependent Cus-coding operon. Conversely, species that carry a CusR/CusS-regulated cus operon have no cueP homologues. Even more, we show that the CueR-controlled cueP expression increases copper resistance of a Deltacus E. coli. We posit that CueP can functionally replace the Cus complex for periplasmic copper resistance, in particular under anaerobic conditions.

  7. Spontaneous gram-negative bacillary meningitis in adult patients: characteristics and outcome

    PubMed Central

    2013-01-01

    Background Spontaneous meningitis caused by gram-negative bacilli in adult patients is uncommon and poorly characterized. Our objective is to describe and compare the characteristics and the outcome of adult patients with spontaneous gram-negative bacilli meningitis (GNBM) and spontaneous meningitis due to other pathogens. Methods Prospective single hospital-based observational cohort study conducted between 1982 and 2006 in a university tertiary hospital in Barcelona (Spain). The Main Outcome Measure: In-hospital mortality. Results Gram-negative bacilli meningitis was diagnosed in 40 (7%) of 544 episodes of spontaneous acute bacterial meningitis. The most common pathogens were Escherichia coli and Pseudomonas species. On admission, characteristics associated with spontaneous gram-negative bacilli meningitis by multivariate modeling were advanced age, history of cancer, nosocomial acquisition of infection, urinary tract infection as distant focus of infection, absence of rash, hypotension, and a high cerebrospinal fluid white-cell count. Nine (23%) episodes were acquired in the hospital and they were most commonly caused by Pseudomonas. The in-hospital mortality rate was 53%. The mortality rate was higher among patients with Gram-negative bacillary meningitis than among those with other bacterial meningitis and their risk of death was twenty times higher than among patients infected with Neisseria meningitidis (odds ratio 20.47; 95% confidence interval 4.03-103.93; p<0.001). Conclusions Gram-negative bacilli cause 9% of spontaneous bacterial meningitis of known etiology in adults. Characteristics associated with GNBM include advanced age, history of cancer, nosocomial acquisition, and urinary tract infection as distant focus of infection. The mortality rate is higher among patients with gram-negative bacillary meningitis than among those with other bacterial meningitides. PMID:24079517

  8. Colistin: an antibiotic and its role in multiresistant Gram-negative infections.

    PubMed

    Loho, Tonny; Dharmayanti, Anti

    2015-04-01

    Increasing number of infection cases caused by multiresistant Gram-negative bacteria or multidrug resistant organism (MDRO) has become a major problem worldwide since there have been a lot of resistance to many classes of antibiotics. Mutant isolates such as fluoroquinolone-resistant and -lactamase-resistant bacteria have been commonly found, particularly in intensive care unit (ICU). During the last two decades, there has been no study of developing antibiotics in search of discovering new type of antibiotics; meanwhile, the resistance of Gram-negative bacteria or MDRO to antibiotics is increasing. Colistin or polymyxin E is an old antibiotic, which has been used since 1959 for treating infection caused by Gram-negative MDRO. It was revealed that colistin has side effects of nephrotoxicity and neurotoxicity; therefore, the use of this antibiotic was stopped and it was replaced by other antibiotics which were effective and were considered safer at that time. There is an increasing number of infections with multi-resistant Gram-negative (MDRO) against the available antibiotics and the availability of alternative antibiotics has not been satisfying; therefore, microbiologists are searching back to the old option, which has been proven to be effective against multi-resistant Gram-negative bacteria, the old antibiotic that has been long forgotten, i.e. colistin, as an alternative treatment against Gram-negative MDRO. It is expected that colistin may have essential and reliable role as future antibiotics for treatment of multi-resistant Gram-negative infections and as an alternative of antibiotics that have been available so far.

  9. Appraising Contemporary Strategies to Combat Multidrug Resistant Gram-Negative Bacterial Infections–Proceedings and Data From the Gram-Negative Resistance Summit

    PubMed Central

    Golan, Yoav; Micek, Scott T.; Shorr, Andrew F.; Restrepo, Marcos I.

    2011-01-01

    The emerging problem of antibiotic resistance, especially among Gram-negative bacteria (GNB), has become a serious threat to global public health. Very few new antibacterial classes with activity against antibiotic-resistant GNB have been brought to market. Renewed and growing attention to the development of novel compounds targeting antibiotic-resistant GNB, as well as a better understanding of strategies aimed at preventing the spread of resistant bacterial strains and preserving the efficacy of existing antibiotic agents, has occurred. The Gram-Negative Resistance Summit convened national opinion leaders for the purpose of analyzing current literature, epidemiologic trends, clinical trial data, therapeutic options, and treatment guidelines related to the management of antibiotic-resistant GNB infections. After an in-depth analysis, the Summit investigators were surveyed with regard to 4 clinical practice statements. The results then were compared with the same survey completed by 138 infectious disease and critical care physicians and are the basis of this article. PMID:21868447

  10. Intrathecal/intraventricular colistin in external ventricular device-related infections by multi-drug resistant Gram negative bacteria: case reports and review.

    PubMed

    Bargiacchi, O; Rossati, A; Car, P; Brustia, D; Brondolo, R; Rosa, F; Garavelli, P L; De Rosa, F G

    2014-10-01

    We report three cases of external ventricular derivation infections caused by multidrug-resistant Gram-negative rods and treated successfully with intraventricular colistin. The intrathecal or intraventricular use of colistin have been reported in more than 100 cases without any consensus on dosage, duration and type (monotherapy or combination therapy) of treatment. Based on our comprehensive review of the relevant literature relating to both clinical and pharmacokinetic data, we conclude that the intrathecal/intraventricular administration of colistin is a safe and effective option to treat central nervous system infections caused by multidrug-resistant Gram-negative bacteria.

  11. Current epidemiology of resistance among Gram-negative bacilli in pediatric patients in Turkey.

    PubMed

    Aykac, Kubra; Ozsurekci, Yasemin; Tanir Basaranoglu, Sevgen; Akin, Mustafa Senol; Cengiz, Ali Bulent; Bicakcigil, Asiye; Sancak, Banu; Kara, Ates; Ceyhan, Mehmet

    2017-08-10

    The increasing incidence of infections caused by drug-resistant Gram-negative organisms has led to a reemergence in worldwide. This study attempted to investigate the changes in resistance of Gram-negative bacteria to different classes of antibiotics and treatment options in invasive infections. We performed this study retrospectively between January 2012 and January 2017 in our tertiary care university hospital. A total of 302 patients with Gram-negative bacterial bacteremia and meningitis were defined. Demographic, clinical and microbiological features of patients were evaluated. A total of 302 patients with Gram-negative bacterial infection, which were diagnosed as bacteremia (n=274, 90.7%) and meningitis (n=28, 9.3%) were investigated. Klebsiella spp. was the most frequent agent with rate of 119 (%39.4), followed by Escherichia coli 67 (%22.2), Pseudomonas spp. 41 (13.6%), Acinetobacter spp. 42 (13.9%), and Enterobacter spp. 33 (10.9%). Totally, 115 (38.1%) multidrug-resistance (MDR), 63 (20.9%) extensively drug-resistant (XDR), and 6 (2%) pandrug-resistance (PDR) bacteria were detected. Over the years, peak antibiotic resistance has occurred in 2013 with the increase in the following years. Our data indicate that the resistance pattern of Gram-negative bacteria may change over the years in hospital settings. Therefore, the active surveillance of resistance pattern of microorganisms is needed for better management of infections caused by highly resistant bacteria. Copyright © 2017. Published by Elsevier Ltd.

  12. Gram negative shuttle BAC vector for heterologous expression of metagenomic libraries.

    PubMed

    Kakirde, Kavita S; Wild, Jadwiga; Godiska, Ronald; Mead, David A; Wiggins, Andrew G; Goodman, Robert M; Szybalski, Waclaw; Liles, Mark R

    2011-04-15

    Bacterial artificial chromosome (BAC) vectors enable stable cloning of large DNA fragments from single genomes or microbial assemblages. A novel shuttle BAC vector was constructed that permits replication of BAC clones in diverse Gram-negative species. The "Gram-negative shuttle BAC" vector (pGNS-BAC) uses the F replicon for stable single-copy replication in E. coli and the broad-host-range RK2 mini-replicon for high-copy replication in diverse Gram-negative bacteria. As with other BAC vectors containing the oriV origin, this vector is capable of an arabinose-inducible increase in plasmid copy number. Resistance to both gentamicin and chloramphenicol is encoded on pGNS-BAC, permitting selection for the plasmid in diverse bacterial species. The oriT from an IncP plasmid was cloned into pGNS-BAC to enable conjugal transfer, thereby allowing both electroporation and conjugation of pGNS-BAC DNA into bacterial hosts. A soil metagenomic library was constructed in pGNS-BAC-1 (the first version of the vector, lacking gentamicin resistance and oriT), and recombinant clones were demonstrated to replicate in diverse Gram-negative hosts, including Escherichia coli, Pseudomonas spp., Salmonella enterica, Serratia marcescens, Vibrio vulnificus and Enterobacter nimipressuralis. This shuttle BAC vector can be utilized to clone genomic DNA from diverse sources, and then transfer it into diverse Gram-negative bacterial species to facilitate heterologous expression of recombinant pathways.

  13. Rapid diagnosis of gram negative pneumonia by assay of endotoxin in bronchoalveolar lavage fluid.

    PubMed Central

    Pugin, J; Auckenthaler, R; Delaspre, O; van Gessel, E; Suter, P M

    1992-01-01

    BACKGROUND: Diagnosis of ventilator associated pneumonia can be made by quantitative cultures of bronchoalveolar lavage fluid or of protected specimen brushings, though cultures require 24-48 hours to provide results. In 80% of cases aerobic Gram negative bacteria are the cause. METHODS: A rapid diagnostic method of assessing the endotoxin content of lavage fluid by Limulus assay is described. Forty samples of lavage fluid were obtained from patients with multiple trauma requiring mechanical ventilation for a prolonged period. Pneumonia was diagnosed on the basis of clinical, radiological, and bacteriological findings, including quantitative cultures of lavage fluid. RESULTS: A relation was observed between the concentration of endotoxin in lavage fluid and the quantity of Gram negative bacteria. The median endotoxin content of lavage fluid in Gram negative bacterial pneumonia was 15 endotoxin units (EU)/ml; the range observed in individual patients was 6 to > 150 EU/ml. In patients with pneumonia due to Gram positive cocci and in non-infected patients the median endotoxin level was 0.17 (range < or = 0.06 to 2) EU/ml. An endotoxin level greater than or equal to 6 EU/ml distinguished patients with Gram negative bacterial pneumonia from colonised patients and from those with pneumonia due to Gram positive cocci. CONCLUSION: The measurement of endotoxin in lavage fluid is a rapid (less than two hours) and accurate diagnostic method. It should allow specific and early treatment of Gram negative bacterial pneumonia. PMID:1412100

  14. Design, synthesis and biological evaluation of monobactams as antibacterial agents against gram-negative bacteria.

    PubMed

    Fu, Hai-Gen; Hu, Xin-Xin; Li, Cong-Ran; Li, Ying-Hong; Wang, Yan-Xiang; Jiang, Jian-Dong; Bi, Chong-Wen; Tang, Sheng; You, Xue-Fu; Song, Dan-Qing

    2016-03-03

    A series of monobactam derivatives were prepared and evaluated for their antibacterial activities against susceptible and resistant Gram-negative strains, taking Aztreonam and BAL30072 as the leads. Six conjugates (12a-f) bearing PIH-like siderophore moieties were created to enhance the bactericidal activities against Gram-negative bacteria based on Trojan Horse strategy, and all of them displayed potencies against susceptible Gram-negative strains with MIC ≤ 8 μg/mL. SAR revealed that the polar substituents on the oxime side chain were beneficial for activities against resistant Gram-negative bacteria. Compounds 19c and 33a-b exhibited the promising potencies against ESBLs-producing E. coli and Klebsiella pneumoniae with MICs ranging from 2 μg/mL to 8 μg/mL. These results offered powerful information for further strategic optimization in search of the antibacterial candidates against MDR Gram-negative bacteria.

  15. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers.

    PubMed

    Lam, Shu J; O'Brien-Simpson, Neil M; Pantarat, Namfon; Sulistio, Adrian; Wong, Edgar H H; Chen, Yu-Yen; Lenzo, Jason C; Holden, James A; Blencowe, Anton; Reynolds, Eric C; Qiao, Greg G

    2016-09-12

    With the recent emergence of reports on resistant Gram-negative 'superbugs', infections caused by multidrug-resistant (MDR) Gram-negative bacteria have been named as one of the most urgent global health threats due to the lack of effective and biocompatible drugs. Here, we show that a class of antimicrobial agents, termed 'structurally nanoengineered antimicrobial peptide polymers' (SNAPPs) exhibit sub-μM activity against all Gram-negative bacteria tested, including ESKAPE and colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. SNAPPs are highly effective in combating CMDR Acinetobacter baumannii infections in vivo, the first example of a synthetic antimicrobial polymer with CMDR Gram-negative pathogen efficacy. Furthermore, we did not observe any resistance acquisition by A. baumannii (including the CMDR strain) to SNAPPs. Comprehensive analyses using a range of microscopy and (bio)assay techniques revealed that the antimicrobial activity of SNAPPs proceeds via a multimodal mechanism of bacterial cell death by outer membrane destabilization, unregulated ion movement across the cytoplasmic membrane and induction of the apoptotic-like death pathway, possibly accounting for why we did not observe resistance to SNAPPs in CMDR bacteria. Overall, SNAPPs show great promise as low-cost and effective antimicrobial agents and may represent a weapon in combating the growing threat of MDR Gram-negative bacteria.

  16. Cefazolin loaded chitosan nanoparticles to cure multi drug resistant Gram-negative pathogens.

    PubMed

    Jamil, Bushra; Habib, Huma; Abbasi, Shahid; Nasir, Habib; Rahman, Abdur; Rehman, Asma; Bokhari, Habib; Imran, Muhammad

    2016-01-20

    Antibiotic resistance against Gram-negative microbes is considered as an alarming phenomenon that needs to be addressed urgently to develop better therapeutic solutions. The aim of the present research work was to investigate and develop cefazolin loaded chitosan nanoparticles (CSNPs) as a potential tool against multidrug resistant pathogens. Empty and drug loaded CSNPs were prepared by ionic gelation method. It was observed by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) based studies that CSNPs were less than 100 nm in size and displayed homogeneity both in shape and size. Encapsulation of cefazolin has not increased the size of nano systems. Zeta sizer results revealed that both systems have positive zeta potential of more or less +50 mV, thus contributing towards a stable formulation. Encapsulation efficiency was directly proportional to the increase in the concentration of antibiotic (28-62%). Furthermore, growth kinetics study had demonstrated excellent antimicrobial potential of cefazolin loaded CSNPs against multi drug resistant Klebsiella pneumoniae, Pseudomonas aeroginosa and Extended Spectrum Beta Lactamase (ESBL) positive Escherichia coli. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Autotransporter-based cell surface display in Gram-negative bacteria.

    PubMed

    Nicolay, Toon; Vanderleyden, Jos; Spaepen, Stijn

    2015-02-01

    Cell surface display of proteins can be used for several biotechnological applications such as the screening of protein libraries, whole cell biocatalysis and live vaccine development. Amongst all secretion systems and surface appendages of Gram-negative bacteria, the autotransporter secretion pathway holds great potential for surface display because of its modular structure and apparent simplicity. Autotransporters are polypeptides made up of an N-terminal signal peptide, a secreted or surface-displayed passenger domain and a membrane-anchored C-terminal translocation unit. Genetic replacement of the passenger domain allows for the surface display of heterologous passengers. An autotransporter-based surface expression module essentially consists of an application-dependent promoter system, a signal peptide, a passenger domain of interest and the autotransporter translocation unit. The passenger domain needs to be compatible with surface translocation although till now no general rules have been determined to test this compatibility. The autotransporter technology for surface display of heterologous passenger domains is critically discussed for various applications.

  18. Exploiting Quorum Sensing Interfering Strategies in Gram-Negative Bacteria for the Enhancement of Environmental Applications

    PubMed Central

    Zhang, Weiwei; Li, Chenghua

    2016-01-01

    Quorum sensing (QS) is a widespread intercellular form of communication to coordinate physiological processes and cooperative activities of bacteria at the population level, and it depends on the production, secretion, and detection of small diffusible autoinducers, such as acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer 2. In this review, the function of QS autoinducers of gram-negative bacteria in different aspects of wastewater treatment systems is examined. Based on research primarily performed over the past 10 years, QS involvement in the formation of biofilm and aerobic granules and changes of the microbial community and degradation/transformation pathways is discussed. In particular, the QS pathway in the role of bacterial infections and disease prevention in aquaculture is addressed. Interference of QS autoinducer-regulated pathways is considered potential treatment for a variety of environmentally related problems. This review is expected to serve as a stepping stone for further study and development strategies based on the mediation of QS-regulated pathways to enhance applications in both wastewater treatment systems and aquaculture. PMID:26779175

  19. [Evolution of antimicrobial resistance in Gram negative bacilli from intensive care units in Colombia].

    PubMed

    Hernández-Gómez, Cristhian; Blanco, Víctor M; Motoa, Gabriel; Correa, Adriana; Vallejo, Marta; Villegas, María Virginia

    2014-04-01

    The continuous evolution of antimicrobial resistance poses a major threat to public health worldwide. Molecular biology techniques have been integrated to epidemiological surveillance systems to improve the control strategies of this phenomenon. To describe the phenotypic and molecular profiles of the most important Gram negative bacilli from intensive care units in 23 Colombian hospitals during the study period 2009-2012. A descriptive study was conducted in 23 hospitals belonging to the Colombian Nosocomial Resistance Study Group. A total of 38.048 bacterial isolates were analyzed using WHONET over a four-year period. The antimicrobial resistant profiles were described for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii . Polymerase chain reaction was performed in 1.248 strains to detect the most clinically relevant carbapenemases. Escherichia coli was the most frequently isolated organism (mean=14.8%). Frequency of K. pneumoniae increased significantly from 11% in 2009 to 15% in 2012 (p<0.001). All screened isolates had rising trends of multidrug-resistant profiles. KPC ( Klebsiella pneumoniae carbapenemase) was detected in 68.4% of K. pneumoniae isolates while VIM (Verona integron-encoded metallo-betalactamase) was present in 46.5% of them. In this study, an increase in the trend of multidrug-resistant organisms and a wide distribution of carbapenemases was observed. The integration of molecular biology to surveillance systems allowed the compilation of this data, which will aid in the construction of guidelines on antimicrobial stewardship for prevention in Colombia.

  20. Effect of betamethasone in combination with antibiotics on gram positive and gram negative bacteria.

    PubMed

    Artini, M; Papa, R; Cellini, A; Tilotta, M; Barbato, G; Koverech, A; Selan, L

    2014-01-01

    Betamethasone is an anti-inflammatory steroid drug used in cases of anaphylactic and allergic reactions, of Alzheimer and Addison diseases and in soft tissue injuries. It modulates gene expression for anti-inflammatory activity suppressing the immune system response. This latter effect might decrease the effectiveness of immune system response against microbial infections. Corticosteroids, in fact, mask some symptoms of infection and during their use superimposed infections may occur. Thus, the use of glucocorticoids in patients with sepsis remains extremely controversial. In this study we analyzed the in vitro effect of a commercial formulation of betamethasone (Bentelan) on several Gram positive and Gram negative bacteria of clinical relevance. It was found to be an inhibitor of the growth of most of the strains examined. Also the effect of betamethasone in combination with some classes of antibiotics was evaluated. Antibiotic-steroid combination therapy is, in such cases, superior to antibiotic-alone treatment to impair bacterial growths. Such effect was essentially not at all observable on Staphylococcus aureus or Coagulase Negative Staphylococci (CoNS).

  1. Molecular basis of active copper resistance mechanisms in Gram-negative bacteria.

    PubMed

    Bondarczuk, Kinga; Piotrowska-Seget, Zofia

    2013-12-01

    Copper is a metallic element that is crucial for cell metabolism; however, in extended concentrations, it is toxic for all living organisms. The dual nature of copper has forced organisms, including bacteria, to keep a tight hold on cellular copper content. This challenge has led to the evolution of complex mechanisms that on one hand enable them to deliver the essential element and on the other to protect cells against its toxicity. Such mechanisms have been found in both eukaryotic and prokaryotic cells. In bacteria a number of different systems such as extra- and intracellular sequestration, enzymatic detoxification, and metal removal from the cell enabling them to survive in the presence of high concentration of copper have been identified. Gram-negative bacteria, due to their additional compartment, need to deal with both cytoplasmic and periplasmic copper. Therefore, these bacteria have evolved intricate and precisely regulated systems which interact with each other. In this review the active mechanisms of copper resistance at their molecular level are discussed.

  2. [Antimicrobial therapy in severe infections with multidrug-resistant Gram-negative bacterias].

    PubMed

    Duszyńska, Wiesława

    2010-01-01

    Multidrug-resistant Gram-negative bacteria pose a serious and rapidly emerging threat to patients in healthcare settings, and are especially prevalent and problematic in intensive therapy units. Recently, the emergence of pandrug-resistance in Gram-negative bacteria poses additional concerns. This review examines the clinical impact and epidemiology of multidrug-resistant Gram-negative bacteria as a cause of increased morbidity and mortality among ITU patients. Beta-lactamases, cephalosporinases and carbapenemases play the most important role in resistance to antibiotics. Despite the tendency to increased resistance, carbapenems administered by continuous infusion remain the most effective drugs in severe sepsis. Drug concentration monitoring, albeit rarely used in practice, is necessary to ensure an effective therapeutic effect.

  3. Antimicrobial lipopeptide tridecaptin A1 selectively binds to Gram-negative lipid II

    PubMed Central

    Cochrane, Stephen A.; Findlay, Brandon; Bakhtiary, Alireza; Acedo, Jeella Z.; Rodriguez-Lopez, Eva M.; Mercier, Pascal; Vederas, John C.

    2016-01-01

    Tridecaptin A1 (TriA1) is a nonribosomal lipopeptide with selective antimicrobial activity against Gram-negative bacteria. Here we show that TriA1 exerts its bactericidal effect by binding to the bacterial cell-wall precursor lipid II on the inner membrane, disrupting the proton motive force. Biochemical and biophysical assays show that binding to the Gram-negative variant of lipid II is required for membrane disruption and that only the proton gradient is dispersed. The NMR solution structure of TriA1 in dodecylphosphocholine micelles with lipid II has been determined, and molecular modeling was used to provide a structural model of the TriA1–lipid II complex. These results suggest that TriA1 kills Gram-negative bacteria by a mechanism of action using a lipid-II–binding motif. PMID:27688760

  4. Antimicrobial lipopeptide tridecaptin A1 selectively binds to Gram-negative lipid II.

    PubMed

    Cochrane, Stephen A; Findlay, Brandon; Bakhtiary, Alireza; Acedo, Jeella Z; Rodriguez-Lopez, Eva M; Mercier, Pascal; Vederas, John C

    2016-10-11

    Tridecaptin A1 (TriA1) is a nonribosomal lipopeptide with selective antimicrobial activity against Gram-negative bacteria. Here we show that TriA1 exerts its bactericidal effect by binding to the bacterial cell-wall precursor lipid II on the inner membrane, disrupting the proton motive force. Biochemical and biophysical assays show that binding to the Gram-negative variant of lipid II is required for membrane disruption and that only the proton gradient is dispersed. The NMR solution structure of TriA1 in dodecylphosphocholine micelles with lipid II has been determined, and molecular modeling was used to provide a structural model of the TriA1-lipid II complex. These results suggest that TriA1 kills Gram-negative bacteria by a mechanism of action using a lipid-II-binding motif.

  5. Combination Therapy for Treatment of Infections with Gram-Negative Bacteria

    PubMed Central

    Cosgrove, Sara E.; Maragakis, Lisa L.

    2012-01-01

    Summary: Combination antibiotic therapy for invasive infections with Gram-negative bacteria is employed in many health care facilities, especially for certain subgroups of patients, including those with neutropenia, those with infections caused by Pseudomonas aeruginosa, those with ventilator-associated pneumonia, and the severely ill. An argument can be made for empiric combination therapy, as we are witnessing a rise in infections caused by multidrug-resistant Gram-negative organisms. The wisdom of continued combination therapy after an organism is isolated and antimicrobial susceptibility data are known, however, is more controversial. The available evidence suggests that the greatest benefit of combination antibiotic therapy stems from the increased likelihood of choosing an effective agent during empiric therapy, rather than exploitation of in vitro synergy or the prevention of resistance during definitive treatment. In this review, we summarize the available data comparing monotherapy versus combination antimicrobial therapy for the treatment of infections with Gram-negative bacteria. PMID:22763634

  6. Bacteriocins active against multi-resistant gram negative bacteria implicated in nosocomial infections.

    PubMed

    Ghodhbane, Hanen; Elaidi, Sabrine; Sabatier, Jean-Marc; Achour, Sami; Benhmida, Jeannette; Regaya, Imed

    2015-01-01

    Multiresistant Gram-negative bacteria are the prime mover of nosocomial infections. Some are naturally resistant to antibiotics, their genetic makes them insensitive to certain families of antibiotics and they transmit these resistors to their offspring. Moreover, when bacteria are subjected to antibiotics, they eventually develop resistance against drugs to which they were previously sensitive. In recent years, many bacteriocins active against gram-negative bacteria have been identified proving their efficacy in treating infections. While further investigation remains necessary before the possibilities for bacteriocins in clinical practice can be described more fully, this review provides an overview of bacteriocins acting on the most common infectious gram negative bacteria (Klebsiella, Acinetobacter, Pseudomonas aeruginosa and E. coli).

  7. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria?

    PubMed Central

    Exner, Martin; Bhattacharya, Sanjay; Christiansen, Bärbel; Gebel, Jürgen; Goroncy-Bermes, Peter; Hartemann, Philippe; Heeg, Peter; Ilschner, Carola; Kramer, Axel; Larson, Elaine; Merkens, Wolfgang; Mielke, Martin; Oltmanns, Peter; Ross, Birgit; Rotter, Manfred; Schmithausen, Ricarda Maria; Sonntag, Hans-Günther; Trautmann, Matthias

    2017-01-01

    In the past years infections caused by multidrug-resistant Gram-negative bacteria have dramatically increased in all parts of the world. This consensus paper is based on presentations, subsequent discussions and an appraisal of current literature by a panel of international experts invited by the Rudolf Schülke Stiftung, Hamburg. It deals with the epidemiology and the inherent properties of Gram-negative bacteria, elucidating the patterns of the spread of antibiotic resistance, highlighting reservoirs as well as transmission pathways and risk factors for infection, mortality, treatment and prevention options as well as the consequences of their prevalence in livestock. Following a global, One Health approach and based on the evaluation of the existing knowledge about these pathogens, this paper gives recommendations for prevention and infection control measures as well as proposals for various target groups to tackle the threats posed by Gram-negative bacteria and prevent the spread and emergence of new antibiotic resistances. PMID:28451516

  8. [Estimation of abundance dynamics of gram-negative bacteria in soil].

    PubMed

    Polianskaia, L M; Ivanov, K E; Guzev, V S; Zviagintsev, D G

    2008-01-01

    Bacterial succession in soil was studied for two variants of initiation (moistening and moistening with addition of glucose). To determine the numbers of viable gram-negative bacteria, the modified nalidixic acid method was applied. The numbers of gram-negative bacteria revealed by this method were 2 to 3.5 times higher than those determined by the traditional method. In a developing community, the highest total bacterial numbers were observed on day 7; afterwards their numbers decreased and stabilized at a level exceeding four- to fivefold the initial one. In both experimental variants, the highest numbers of viable gram-negative bacteria were revealed on day 15 (75-85% of the total bacterial numbers). Morphology of these bacteria suggests their classification as cytophagas (chitinophagas) utilizing chitin from the dead fungal mycelium.

  9. Physical methods to quantify small antibiotic molecules uptake into Gram-negative bacteria.

    PubMed

    Winterhalter, Mathias; Ceccarelli, Matteo

    2015-09-01

    The development of antibiotics against Gram-negative bacteria is a challenge: any active compound must cross the outer cell envelope composed of a hydrophilic highly charged lipopolysaccharide layer followed by a tight hydrophobic layer containing water filled gates called porins to reach the hydrophilic periplasmic space and depending on the target with the further need to cross the hydrophobic inner membrane. In addition to a possible rapid enzymatic deactivation efflux pumps shuffle compounds back outside. The resulting low permeability of cell envelope requires high dose and leads therefore to toxicity problems. Despite its relevance the permeability barrier in Gram-negative bacteria is not well understood partially caused by the lack of appropriate direct assays. Here we give a brief introduction on current available techniques to quantify passive diffusion of small hydrophilic molecules into Gram-negative bacteria.

  10. Multidrug resistance in hydrocarbon-tolerant Gram-positive and Gram-negative bacteria.

    PubMed

    Stancu, Mihaela Marilena; Grifoll, Magdalena

    2011-01-01

    New Gram-positive and Gram-negative bacteria were isolated from Poeni oily sludge, using enrichment procedures. The six Gram-positive strains belong to Bacillus, Lysinibacillus and Rhodococcus genera. The eight Gram-negative strains belong to Shewanella, Aeromonas, Pseudomonas and Klebsiella genera. Isolated bacterial strains were tolerant to saturated (i.e., n-hexane, n-heptane, n-decane, n-pentadecane, n-hexadecane, cyclohexane), monoaromatic (i.e., benzene, toluene, styrene, xylene isomers, ethylbenzene, propylbenzene) and polyaromatic (i.e., naphthalene, 2-methylnaphthalene, fluorene) hydrocarbons, and also resistant to different antimicrobial agents (i.e., ampicillin, kanamycin, rhodamine 6G, crystal violet, malachite green, sodium dodecyl sulfate). The presence of hydrophilic antibiotics like ampicillin or kanamycin in liquid LB-Mg medium has no effects on Gram-positive and Gram-negative bacteria resistance to toxic compounds. The results indicated that Gram-negative bacteria are less sensitive to toxic compounds than Gram-positive bacteria, except one bacteria belonging to Lysinibacillus genus. There were observed cellular and molecular modifications induced by ampicillin or kanamycin to isolated bacterial strains. Gram-negative bacteria possessed between two and four catabolic genes (alkB, alkM, alkB/alkB1, todC1, xylM, PAH dioxygenase, catechol 2,3-dioxygenase), compared with Gram-positive bacteria (except one bacteria belonging to Bacillus genus) which possessed one catabolic gene (alkB/alkB1). Transporter genes (HAE1, acrAB) were detected only in Gram-negative bacteria.

  11. Infections Caused by Resistant Gram-Negative Bacteria: Epidemiology and Management.

    PubMed

    Kaye, Keith S; Pogue, Jason M

    2015-10-01

    Infections caused by resistant gram-negative bacteria are becoming increasingly prevalent and now constitute a serious threat to public health worldwide because they are difficult to treat and are associated with high morbidity and mortality rates. In the United States, there has been a steady increase since 2000 in rates of extended-spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii, particularly among hospitalized patients with intraabdominal infections, urinary tract infections, ventilator-associated pneumonia, and bacteremia. Colonization with resistant gram-negative bacteria is common among residents in long-term care facilities (particularly those residents with an indwelling device), and these facilities are considered important originating sources of such strains for hospitals. Antibiotic resistance is associated with a substantial clinical and economic burden, including increased mortality, greater hospital and antibiotic costs, and longer stays in hospitals and intensive care units. Control of resistant gram-negative infections requires a comprehensive approach, including strategies for risk factor identification, detection and identification of resistant organisms, and implementation of infection-control and prevention strategies. In treating resistant gram-negative infections, a review of surveillance data and hospital-specific antibiograms, including resistance patterns within local institutions, and consideration of patient characteristics are helpful in guiding the choice of empiric therapy. Although only a few agents are available with activity against resistant gram-negative organisms, two recently released β-lactam/β-lactamase inhibitor combinations - ceftolozane/tazobactam and ceftazidime/avibactam - have promising activity against these organisms. In this article, we review the epidemiology, risk factors, and

  12. A traceless reversible polymeric colistin prodrug to combat multidrug-resistant (MDR) gram-negative bacteria.

    PubMed

    Zhu, Chongyu; Schneider, Elena K; Wang, Jiping; Kempe, Kristian; Wilson, Paul; Velkov, Tony; Li, Jian; Davis, Thomas P; Whittaker, Michael R; Haddleton, David M

    2017-02-05

    Colistin methanesulfonate (CMS) is the only prodrug of colistin available for clinical use for the treatment of infections caused by multidrug-resistant (MDR) Gram-negative bacteria. Owing to its slow and variable release, an alternative is urgently required to improve effectiveness. Herein we describe a PEGylated colistin prodrug whereby the PEG is attached via a cleavable linker (col-aaPEG) introducing an acetic acid terminated poly (ethylene glycol) methyl ether (aaPEG) onto the Thr residue of colistin. Due to the labile ester containing link, this prodrug is converted back into active colistin in vitro within 24h. Compared to CMS, it showed a similar or better antimicrobial performance against two MDR isolates of Pseudomonas aeruginosa and Acinetobacter baumannii through in vitro disk diffusion, broth dilution and time-kill studies. In a mouse infection model, col-aaPEG displayed acceptable bacterial killing against P. aeruginosa ATCC 27853 and no nephrotoxicity was found after systemic administration, suggesting it to be a potential alternative for CMS.

  13. Functional characterization of Gram-negative bacteria from different genera as multiplex cadmium biosensors.

    PubMed

    Bereza-Malcolm, Lara; Aracic, Sanja; Kannan, Ruban; Mann, Gülay; Franks, Ashley E

    2017-08-15

    Widespread presence of cadmium in soil and water systems is a consequence of industrial and agricultural processes. Subsequent accumulation of cadmium in food and drinking water can result in accidental consumption of dangerous concentrations. As such, cadmium environmental contamination poses a significant threat to human health. Development of microbial biosensors, as a novel alternative method for in situ cadmium detection, may reduce human exposure by complementing traditional analytical methods. In this study, a multiplex cadmium biosensing construct was assembled by cloning a single-output cadmium biosensor element, cadRgfp, and a constitutively expressed mrfp1 onto a broad-host range vector. Incorporation of the duplex fluorescent output [green and red fluorescence proteins] allowed measurement of biosensor functionality and viability. The biosensor construct was tested in several Gram-negative bacteria including Pseudomonas, Shewanella and Enterobacter. The multiplex cadmium biosensors were responsive to cadmium concentrations ranging from 0.01 to 10µgml(-1), as well as several other heavy metals, including arsenic, mercury and lead at similar concentrations. The biosensors were also responsive within 20-40min following exposure to 3µgml(-1) cadmium. This study highlights the importance of testing biosensor constructs, developed using synthetic biology principles, in different bacterial genera. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Forming cross-linked peptidoglycan from synthetic gram-negative Lipid II.

    PubMed

    Lebar, Matthew D; Lupoli, Tania J; Tsukamoto, Hirokazu; May, Janine M; Walker, Suzanne; Kahne, Daniel

    2013-03-27

    The bacterial cell wall precursor, Lipid II, has a highly conserved structure among different organisms except for differences in the amino acid sequence of the peptide side chain. Here, we report an efficient and flexible synthesis of the canonical Lipid II precursor required for the assembly of Gram-negative peptidoglycan (PG). We use a rapid LC/MS assay to analyze PG glycosyltransfer (PGT) and transpeptidase (TP) activities of Escherichia coli penicillin binding proteins PBP1A and PBP1B and show that the native m-DAP residue in the peptide side chain of Lipid II is required in order for TP-catalyzed peptide cross-linking to occur in vitro. Comparison of PG produced from synthetic canonical E. coli Lipid II with PG isolated from E. coli cells demonstrates that we can produce PG in vitro that resembles native structure. This work provides the tools necessary for reconstituting cell wall synthesis, an essential cellular process and major antibiotic target, in a purified system.

  15. Computational prediction of type III and IV secreted effectors in Gram-negative bacteria

    SciTech Connect

    McDermott, Jason E.; Corrigan, Abigail L.; Peterson, Elena S.; Oehmen, Christopher S.; Niemann, George; Cambronne, Eric; Sharp, Danna; Adkins, Joshua N.; Samudrala, Ram; Heffron, Fred

    2011-01-01

    In this review, we provide an overview of the methods employed by four recent papers that described novel methods for computational prediction of secreted effectors from type III and IV secretion systems in Gram-negative bacteria. The results of the studies in terms of performance at accurately predicting secreted effectors and similarities found between secretion signals that may reflect biologically relevant features for recognition. We discuss the web-based tools for secreted effector prediction described in these studies and announce the availability of our tool, the SIEVEserver (http://www.biopilot.org). Finally, we assess the accuracy of the three type III effector prediction methods on a small set of proteins not known prior to the development of these tools that we have recently discovered and validated using both experimental and computational approaches. Our comparison shows that all methods use similar approaches and, in general arrive at similar conclusions. We discuss the possibility of an order-dependent motif in the secretion signal, which was a point of disagreement in the studies. Our results show that there may be classes of effectors in which the signal has a loosely defined motif, and others in which secretion is dependent only on compositional biases. Computational prediction of secreted effectors from protein sequences represents an important step toward better understanding the interaction between pathogens and hosts.

  16. Energy-dependent motion of TonB in the Gram-negative bacterial inner membrane.

    PubMed

    Jordan, Lorne D; Zhou, Yongyao; Smallwood, Chuck R; Lill, Yoriko; Ritchie, Ken; Yip, Wai Tak; Newton, Salete M; Klebba, Phillip E

    2013-07-09

    Gram-negative bacteria acquire iron with TonB-dependent uptake systems. The TonB-ExbBD inner membrane complex is hypothesized to transfer energy to outer membrane (OM) iron transporters. Fluorescence microscopic characterization of green fluorescent protein (GFP)-TonB hybrid proteins revealed an unexpected, restricted localization of TonB in the cell envelope. Fluorescence polarization measurements demonstrated motion of TonB in living cells, which likely was rotation. By determining the anisotropy of GFP-TonB in the absence and presence of inhibitors, we saw the dependence of its motion on electrochemical force and on the actions of ExbBD. We observed higher anisotropy for GFP-TonB in energy-depleted cells and lower values in bacteria lacking ExbBD. However, the metabolic inhibitors did not change the anisotropy of GFP-TonB in ΔexbBD cells. These findings demonstrate that TonB undergoes energized motion in the bacterial cell envelope and that ExbBD couples this activity to the electrochemical gradient. The results portray TonB as an energized entity in a regular array underlying the OM bilayer, which promotes metal uptake through OM transporters by a rotational mechanism.

  17. Energy-dependent motion of TonB in the Gram-negative bacterial inner membrane

    PubMed Central

    Jordan, Lorne D.; Zhou, Yongyao; Smallwood, Chuck R.; Lill, Yoriko; Ritchie, Ken; Yip, Wai Tak; Newton, Salete M.; Klebba, Phillip E.

    2013-01-01

    Gram-negative bacteria acquire iron with TonB-dependent uptake systems. The TonB–ExbBD inner membrane complex is hypothesized to transfer energy to outer membrane (OM) iron transporters. Fluorescence microscopic characterization of green fluorescent protein (GFP)-TonB hybrid proteins revealed an unexpected, restricted localization of TonB in the cell envelope. Fluorescence polarization measurements demonstrated motion of TonB in living cells, which likely was rotation. By determining the anisotropy of GFP-TonB in the absence and presence of inhibitors, we saw the dependence of its motion on electrochemical force and on the actions of ExbBD. We observed higher anisotropy for GFP-TonB in energy-depleted cells and lower values in bacteria lacking ExbBD. However, the metabolic inhibitors did not change the anisotropy of GFP-TonB in ΔexbBD cells. These findings demonstrate that TonB undergoes energized motion in the bacterial cell envelope and that ExbBD couples this activity to the electrochemical gradient. The results portray TonB as an energized entity in a regular array underlying the OM bilayer, which promotes metal uptake through OM transporters by a rotational mechanism. PMID:23798405

  18. Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria.

    PubMed

    Tamboli, Dhawal P; Lee, Dae Sung

    2013-09-15

    The development of eco-friendly and reliable processes for the synthesis of nanoparticles has attracted considerable interest in nanotechnology. In this study, an extracellular enzyme system of a newly isolated microorganism, Exiguobacterium sp. KNU1, was used for the reduction of AgNO₃ solutions to silver nanoparticles (AgNPs). The extracellularly biosynthesized AgNPs were characterized by UV-vis spectroscopy, Fourier transform infra-red spectroscopy and transmission electron microscopy. The AgNPs were approximately 30 nm (range 5-50 nm) in size, well-dispersed and spherical. The AgNPs were evaluated for their antimicrobial effects on different gram negative and gram positive bacteria using the minimum inhibitory concentration method. Reasonable antimicrobial activity against Salmonella typhimurium, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus was observed. The morphological changes occurred in all the microorganisms tested. In particular, E. coli exhibited DNA fragmentation after being treated with the AgNPs. Finally, the mechanism for their bactericidal activity was proposed according to the results of scanning electron microscopy and single cell gel electrophoresis.

  19. A thermophilic gram-negative nitrate-reducing bacterium, Calditerrivibrio nitroreducens, exhibiting electricity generation capability.

    PubMed

    Fu, Qian; Kobayashi, Hajime; Kawaguchi, Hideo; Wakayama, Tatsuki; Maeda, Haruo; Sato, Kozo

    2013-01-01

    To exploit the potential diversity of thermophilic exoelectrogens, two-chamber microbial fuel cells (MFCs) were inoculated with thermophilic anaerobic digester sludge and operated at 55 °C without supplementing with exogenous redox mediator. The MFC generated a maximum power density of 823 mW m(-2) after 200 h of operation. Molecular phylogenetic analyses suggested that the microbial population on the anode was dominated by a species closely related to a thermophilic nitrate-reducing bacterium Calditerrivibrio nitroreducens, for which a strain (Yu37-1) has been isolated in pure culture. Thus, a pure culture of the C. nitroreducens strain Yu37-1 was inoculated into MFC to examine the electricity generation capability. Without an exogenous mediator, MFCs stably produced electricity with a maximum power density of 272 mW m(-2) for >400 h of operation. The MFC current recovered to the original level within few hours after medium replacement, suggesting that the electricity generation was caused by the anodic microorganisms. Cyclic voltammetry indicated that redox systems (E3 and Ec) with similar potentials (-0.14 and -0.17 V) made the main contributions to the exoelectrogenic activities of the sludge-derived consortium and C. nitroreducens Yu37-1, respectively. This study undertook the bioelectrochemical characterization of C. nitroreducens as the first example of a thermophilic Gram-negative exoelectrogen.

  20. [Antimicrobial resistance of Gram negative bacilli isolated from tertiary-care hospitals in Colombia].

    PubMed

    Briceño, David Felipe; Correa, Adriana; Valencia, Carlos; Torres, Julián Andrés; Pacheco, Robinson; Montealegre, María Camila; Ospina, Diego; Villegas, María Virginia

    2010-01-01

    Antimicrobial resistance has been identified as one of the major public health problems worldwide. To facilitate its control, bacterial resistance levels must be monitored permanently by effective surveillance systems. To describe the antimicrobial resistance patterns of Gram negative bacilli in Colombian hospitals over a 3-year period. This descriptive study used the bacterial susceptibility profiles provided by 14 tertiary-care hospitals belonging to the Colombian Nosocomial Resistance Study Group. The hospitals were located in 7 major cities in Colombia, and provided records over the period January 2006 to December 2008. Using WHONET 5.4, the antimicrobial resistance patterns were described for the Enterobacteriaceae (Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae) and non-fermenters (Pseudomonas aeruginosa and Acinetobacter baumannii). Comparisons were made in the bacterial responses to selected antibiotics in samples from general wards and from adult intensive care units. The antimicrobial resistance frequencies of several Enterobacteriaceae species showed a decreasing trend. In contrast, P. aeruginosa was demonstrated to be a multidrug-resistance organism with increasing resistance frequencies. These data emphasize the importance of surveillance programs in detecting presence of multidrug-resistant organisms. This information will aid the implementation of protocols aimed to strengthen the infection control strategies and antibiotic stewardship in each hospital.

  1. Coprinopsis cinerea intracellular lactonases hydrolyze quorum sensing molecules of Gram-negative bacteria.

    PubMed

    Stöckli, Martina; Lin, Chia-Wei; Sieber, Ramon; Plaza, David F; Ohm, Robin A; Künzler, Markus

    2017-05-01

    Biofilm formation on fungal hyphae and production of antifungal molecules are strategies of bacteria in their competition with fungi for nutrients. Since these strategies are often coordinated and under control of quorum sensing by the bacteria, interference with this bacterial communication system can be used as a counter-strategy by the fungi in this competition. Hydrolysis of N-acyl-homoserine lactones (HSL), a quorum sensing molecule used by Gram-negative bacteria, by fungal cultures has been demonstrated. However, the enzymes that are responsible for this activity, have not been identified. In this study, we identified and characterized two paralogous HSL hydrolyzing enzymes from the coprophilous fungus Coprinopsis cinerea. The C. cinerea HSL lactonases belong to the metallo-β-lactamase family and show sequence homology to and a similar biochemical activity as the well characterized lactonase AiiA from Bacillus thuringiensis. We show that the fungal lactonases, similar to the bacterial enzymes, are kept intracellularly and act as a sink for the bacterial quorum sensing signals both in C. cinerea and in Saccharomyces cerevisiae expressing C. cinerea lactonases, due to the ability of these signal molecules to diffuse over the fungal cell wall and plasma membrane. The two isogenes coding for the C. cinerea HSL lactonases are arranged in the genome as a tandem repeat and expressed preferentially in vegetative mycelium. The occurrence of orthologous genes in genomes of other basidiomycetes appears to correlate with a saprotrophic lifestyle. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Harpins, multifunctional proteins secreted by gram-negative plant-pathogenic bacteria.

    PubMed

    Choi, Min-Seon; Kim, Wooki; Lee, Chanhui; Oh, Chang-Sik

    2013-10-01

    Harpins are glycine-rich and heat-stable proteins that are secreted through type III secretion system in gram-negative plant-pathogenic bacteria. Many studies show that these proteins are mostly targeted to the extracellular space of plant tissues, unlike bacterial effector proteins that act inside the plant cells. Over the two decades since the first harpin of pathogen origin, HrpN of Erwinia amylovora, was reported in 1992 as a cell-free elicitor of hypersensitive response (HR), diverse functional aspects of harpins have been determined. Some harpins were shown to have virulence activity, probably because of their involvement in the translocation of effector proteins into plant cytoplasm. Based on this function, harpins are now considered to be translocators. Their abilities of pore formation in the artificial membrane, binding to lipid components, and oligomerization are consistent with this idea. When harpins are applied to plants directly or expressed in plant cells, these proteins trigger diverse beneficial responses such as induction of defense responses against diverse pathogens and insects and enhancement of plant growth. Therefore, in this review, we will summarize the functions of harpins as virulence factors (or translocators) of bacterial pathogens, elicitors of HR and immune responses, and plant growth enhancers.

  3. Small-Molecule Inhibitors of Gram-Negative Lipoprotein Trafficking Discovered by Phenotypic Screening

    PubMed Central

    Fleming, Paul R.; MacCormack, Kathleen; McLaughlin, Robert E.; Whiteaker, James D.; Narita, Shin-ichiro; Mori, Makiko; Tokuda, Hajime; Miller, Alita A.

    2015-01-01

    In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy. PMID:25583975

  4. Validation of Vitek 2 nonfermenting gram-negative cards and Vitek 2 version 4.02 software for identification and antimicrobial susceptibility testing of nonfermenting gram-negative rods from patients with cystic fibrosis.

    PubMed

    Otto-Karg, Ines; Jandl, Stefanie; Müller, Tobias; Stirzel, Beate; Frosch, Matthias; Hebestreit, Helge; Abele-Horn, Marianne

    2009-10-01

    Accurate identification and antimicrobial susceptibility testing (AST) of nonfermenters from cystic fibrosis patients are essential for appropriate antimicrobial treatment. This study examined the ability of the newly designed Vitek 2 nonfermenting gram-negative card (NGNC) (new gram-negative identification card; bioMérieux, Marcy-l'Etoile, France) to identify nonfermenting gram-negative rods from cystic fibrosis patients in comparison to reference methods and the accuracy of the new Vitek 2 version 4.02 software for AST compared to the broth microdilution method. Two hundred twenty-four strains for identification and 138 strains for AST were investigated. The Vitek 2 NGNC identified 211 (94.1%) of the nonfermenters correctly. Among morphologically atypical microorganisms, five strains were misidentified and eight strains were determined with low discrimination, requiring additional tests which raised the correct identification rate to 97.8%. Regarding AST, the overall essential agreement of Vitek 2 was 97.6%, and the overall categorical agreement was 92.9%. Minor errors were found in 5.1% of strains, and major and very major errors were found in 1.6% and 0.3% of strains, respectively. In conclusion, the Vitek NGNC appears to be a reliable method for identification of morphologically typical nonfermenters and is an improvement over the API NE system and the Vitek 2 GNC database version 4.01. However, classification in morphologically atypical nonfermenters must be interpreted with care to avoid misidentification. Moreover, the new Vitek 2 version 4.02 software showed good results for AST and is suitable for routine clinical use. More work is needed for the reliable testing of strains whose MICs are close to the breakpoints.

  5. Validation of Vitek 2 Nonfermenting Gram-Negative Cards and Vitek 2 Version 4.02 Software for Identification and Antimicrobial Susceptibility Testing of Nonfermenting Gram-Negative Rods from Patients with Cystic Fibrosis▿

    PubMed Central

    Otto-Karg, Ines; Jandl, Stefanie; Müller, Tobias; Stirzel, Beate; Frosch, Matthias; Hebestreit, Helge; Abele-Horn, Marianne

    2009-01-01

    Accurate identification and antimicrobial susceptibility testing (AST) of nonfermenters from cystic fibrosis patients are essential for appropriate antimicrobial treatment. This study examined the ability of the newly designed Vitek 2 nonfermenting gram-negative card (NGNC) (new gram-negative identification card; bioMérieux, Marcy-l'Ètoile, France) to identify nonfermenting gram-negative rods from cystic fibrosis patients in comparison to reference methods and the accuracy of the new Vitek 2 version 4.02 software for AST compared to the broth microdilution method. Two hundred twenty-four strains for identification and 138 strains for AST were investigated. The Vitek 2 NGNC identified 211 (94.1%) of the nonfermenters correctly. Among morphologically atypical microorganisms, five strains were misidentified and eight strains were determined with low discrimination, requiring additional tests which raised the correct identification rate to 97.8%. Regarding AST, the overall essential agreement of Vitek 2 was 97.6%, and the overall categorical agreement was 92.9%. Minor errors were found in 5.1% of strains, and major and very major errors were found in 1.6% and 0.3% of strains, respectively. In conclusion, the Vitek NGNC appears to be a reliable method for identification of morphologically typical nonfermenters and is an improvement over the API NE system and the Vitek 2 GNC database version 4.01. However, classification in morphologically atypical nonfermenters must be interpreted with care to avoid misidentification. Moreover, the new Vitek 2 version 4.02 software showed good results for AST and is suitable for routine clinical use. More work is needed for the reliable testing of strains whose MICs are close to the breakpoints. PMID:19710272

  6. How Porin Heterogeneity and Trade-Offs Affect the Antibiotic Susceptibility of Gram-Negative Bacteria

    PubMed Central

    Ferenci, Thomas; Phan, Katherine

    2015-01-01

    Variations in porin proteins are common in Gram-negative pathogens. Altered or absent porins reduce access of polar antibiotics across the outer membrane and can thus contribute to antibiotic resistance. Reduced permeability has a cost however, in lowering access to nutrients. This trade-off between permeability and nutritional competence is the source of considerable natural variation in porin gate-keeping. Mutational changes in this trade-off are frequently selected, so susceptibility to detergents and antibiotics is polymorphic in environmental isolates as well as pathogens. Understanding the mechanism, costs and heterogeneity of antibiotic exclusion by porins will be crucial in combating Gram negative infections. PMID:26506392

  7. Antibacterial activities of Emblica officinalis and Coriandrum sativum against Gram negative urinary pathogens.

    PubMed

    Saeed, Sabahat; Tariq, Perween

    2007-01-01

    Present investigation is focused on antibacterial potential of aqueous infusions and aqueous decoctions of Emblica officinalis (amla) and Coriandrum sativum (coriander) against 345 bacterial isolates belonging to 6 different genera of Gram negative bacterial population isolated from urine specimens by employing well diffusion technique. Aqueous infusion and decoction of Emblica officinalis exhibited potent antibacterial activity against Escherichia coli (270), Klebsiella pneumoniae (51), K. ozaenae (3), Proteus mirabilis (5), Pseudomonas aeruginosa (10), Salmonella typhi (1), S. paratyphi A (2), S. paratyphi B (1) and Serratia marcescens (2) but did not show any antibacterial activity against Gram negative urinary pathogens.

  8. Fluorogenic substrates for differentiation of gram-negative nonfermentative and oxidase-positive fermentative bacteria.

    PubMed Central

    Kämpfer, P; Kulies, I; Dott, W

    1992-01-01

    A total of 803 strains of gram-negative nonfermentative and oxidase-positive fermentative bacteria (38 taxa) were investigated for their ability to hydrolyze 53 different fluorogenic 4-methylumbelliferyl- and beta-naphthylamide-linked substrates within 6 h of incubation. The hydrolysis of 16 fluorogenic substrates showed high separation index values among the tested taxa, was reproducible, and showed good agreement with data in the literature. In combination with other biochemical tests (like carbon substrate utilization tests and classical biochemical tests), hydrolysis profiles can improve the differentiation of gram-negative nonfermentative and oxidase-positive fermentative bacteria. PMID:1624555

  9. How Porin Heterogeneity and Trade-Offs Affect the Antibiotic Susceptibility of Gram-Negative Bacteria.

    PubMed

    Ferenci, Thomas; Phan, Katherine

    2015-10-21

    Variations in porin proteins are common in Gram-negative pathogens. Altered or absent porins reduce access of polar antibiotics across the outer membrane and can thus contribute to antibiotic resistance. Reduced permeability has a cost however, in lowering access to nutrients. This trade-off between permeability and nutritional competence is the source of considerable natural variation in porin gate-keeping. Mutational changes in this trade-off are frequently selected, so susceptibility to detergents and antibiotics is polymorphic in environmental isolates as well as pathogens. Understanding the mechanism, costs and heterogeneity of antibiotic exclusion by porins will be crucial in combating Gram negative infections.

  10. Evolution of β-lactams resistance in Gram-negative bacteria in Tunisia.

    PubMed

    Chouchani, Chedly; Marrakchi, Rim; El Salabi, Allaaeddin

    2011-08-01

    Antimicrobial resistance is a major health problem worldwide, but marked variations in the resistance profiles of bacterial pathogens are found between countries and in different patient settings. In Tunisia, the strikingly high prevalence of resistance of bacteria to penicillins and cephalorosporins drugs including fourth generation in clinical isolates of Gram negative bacteria has been reported. During 30 years, the emerging problem of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates is substantial, and some unique enzymes have been found. Recently, evidence that Gram-negative bacteria are resistant to nearly all available antimicrobial agents, including carbapenems, have emerged.

  11. Susceptibility of Multidrug-Resistant Gram-Negative Urine Isolates to Oral Antibiotics

    PubMed Central

    Zucchi, Paola C.; Chen, Alice; Raux, Brian R.; Kirby, James E.; McCoy, Christopher; Eliopoulos, George M.

    2016-01-01

    Increasing resistance among Gram-negative uropathogens limits treatment options, and susceptibility data for multidrug-resistant isolates are limited. We assessed the activity of five oral agents against 91 multidrug-resistant Gram-negative urine isolates that were collected from emergency department/hospitalized patients. Fosfomycin and nitrofurantoin were most active (>75% susceptibility). Susceptibilities to sulfamethoxazole-trimethoprim, ciprofloxacin, and ampicillin were ≤40%; empirical use of these agents likely provides inadequate coverage in areas with a high prevalence of multidrug-resistant uropathogens. PMID:26883704

  12. ASD-GFP vectors for in vivo expression technology in Pseudomonas aeruginosa and other gram-negative bacteria.

    PubMed

    Handfield, M; Schweizer, H P; Mahan, M J; Sanschagrin, F; Hoang, T; Levesque, R C

    1998-02-01

    We describe the construction of promoter probe vectors designed for identification of bacterial genes induced in vitro and/or in vivo and for measurement of gene expression levels for in vivo expression technology. These plasmids use the Pseudomonas aeruginosa aspartate beta-semialdehyde dehydrogenase (asd) gene as a selectable marker and beta-galactosidase (pIVPRO, 10.88 kb) or mutant green fluorescent protein with enhanced fluorescence properties (mut3GFP, pIVET-GFP, 5.48 kb) as reporter gene systems. The proposed strategies can be adapted for use in most Gram-negative bacteria.

  13. Use of Antibiotics Reserved for Resistant Gram-Negative Infections at Freestanding U.S. Children's Hospitals from 2004 to 2014.

    PubMed

    Jelic, Monika; Adler, Amanda L; Miles-Jay, Arianna; Weissman, Scott J; Kronman, Matthew P; Zerr, Danielle M

    2016-08-01

    We used the Pediatric Health Information System database to assess the use of antibiotics reserved for the treatment of resistant Gram-negative infections in children from 2004 to 2014. Overall, use of these agents increased in children from 2004 to 2007 and subsequently decreased. Infect Control Hosp Epidemiol 2016:37:967-970.

  14. Systems biology-guided identification of synthetic lethal gene pairs and its potential use to discover antibiotic combinations

    PubMed Central

    Aziz, Ramy K.; Monk, Jonathan M.; Lewis, Robert M.; In Loh, Suh; Mishra, Arti; Abhay Nagle, Amrita; Satyanarayana, Chitkala; Dhakshinamoorthy, Saravanakumar; Luche, Michele; Kitchen, Douglas B.; Andrews, Kathleen A.; Fong, Nicole L.; Li, Howard J.; Palsson, Bernhard O.; Charusanti, Pep

    2015-01-01

    Mathematical models of metabolism from bacterial systems biology have proven their utility across multiple fields, for example metabolic engineering, growth phenotype simulation, and biological discovery. The usefulness of the models stems from their ability to compute a link between genotype and phenotype, but their ability to accurately simulate gene-gene interactions has not been investigated extensively. Here we assess how accurately a metabolic model for Escherichia coli computes one particular type of gene-gene interaction, synthetic lethality, and find that the accuracy rate is between 25% and 43%. The most common failure modes were incorrect computation of single gene essentiality and biological information that was missing from the model. Moreover, we performed virtual and biological screening against several synthetic lethal pairs to explore whether two-compound formulations could be found that inhibit the growth of Gram-negative bacteria. One set of molecules was identified that, depending on the concentrations, inhibits E. coli and S. enterica serovar Typhimurium in an additive or antagonistic manner. These findings pinpoint specific ways in which to improve the predictive ability of metabolic models, and highlight one potential application of systems biology to drug discovery and translational medicine. PMID:26531810

  15. Emergence of Carbapenem Resistant Non-Fermenting Gram-Negative Bacilli Isolated in an ICU of a Tertiary Care Hospital

    PubMed Central

    Agarwal, Sonika; Khanduri, Sushant; Gupta, Shalini

    2017-01-01

    Introduction The emergence and spread of Multi-Drug Resistant (MDR) Non-Fermenting Gram-Negative Bacilli (NFGNB) in Intensive Care Units (ICU) and their genetic potential to transmit diverse antibiotic resistance regardless of their ability to ferment glucose poses a major threat in hospitals. The complex interplay of clonal spread, persistence, transmission of resistance elements and cell-cell interaction leads to the difficulty in controlling infections caused by these multi drug-resistant strains. Among non-fermenting Gram-negative rods, the most clinically significant species Pseudomonas aeruginosa, Acinetobacter baumannii and Stenotrophomonas maltophilia are increasingly acquiring resistant to carbapenems. Carbapenems once considered as a backbone of treatment of life threatening infections appears to be broken as the resistance to carbapenems is on rise. Aim To document the prevalence of carbapenem resistance in non-fermenting Gram-negative bacilli isolated from patients with respiratory tract infections in the ICU of Himalayan Institute of Medical Sciences, Dehradun. Materials and Methods This is a cross-sectional study conducted in ICU patients between October 2015 to March 2016. A total of 366 lower respiratory tract samples were collected from 356 patients with clinical evidence of lower respiratory tract infections in form of Endotracheal (ET) aspirate, Tracheal Tube (TT) aspirate and Bronchoalveolar Lavage (BAL) specimen. Organism identification and the susceptibility testing was done by using an automated system VITEK 2. Results Out of 366 samples received 99 NFGNB were isolated and most common sample was ET aspirate sample 256 (64.5%). Acinetobacter baumannii was the most common NFGNB isolated 63 (63.63%) followed by Pseudomonas aeruginosa 25 (25.25%), Elizabethkingia meningoseptica seven (7.07%) and Strenotrophomonas maltophilia four (4.04%). We observed that 90.5% Acinetobacter baumannii were resistant to imipenem and 95.2% resistant to meropenem

  16. Control of emergence of multi-resistant gram-negative bacilli by exclusive use of amikacin.

    PubMed

    Ruiz-Palacios, G M; Ponce de Leon, S; Sifuentes, J; Ponce de Leon, S; Calva, J J; Huazano, F; Ontiveros, C; Ojeda, F; Bobadilla, M

    1986-06-30

    Results of a three-year prospective study of amikacin as the only aminoglycoside used at the Instituto Nacional de la Nutrición "Salvador Zubirán" are presented. During the initial three-month baseline period, resistance to amikacin, gentamicin, and tobramycin among 870 gram-negative bacterial isolates was 3.2 percent, 17.4 percent, and 11.2 percent, respectively. In this period, the overall consumption of aminoglycosides was 69 percent for gentamicin, 30.5 percent for amikacin, and 0.5 percent for tobramycin. In the following period of exclusive amikacin use, sensitivity patterns of 9,344 gram-negative strains isolated over three years were recorded. During this period, amikacin constituted 99.3 percent of all aminoglycosides used. The percentage of gentamicin-resistant gram-negative strains declined to 7.4 percent (p less than 0.0001), whereas the percentage of amikacin-resistant strains did not change significantly. Quarterly trend analysis of aminoglycoside-resistant strains also demonstrated a significant decrease in gentamicin resistance (p less than 0.005) and an overall steady state of amikacin resistance. It is concluded that the exclusive use of amikacin was not accompanied by a significant increase in amikacin resistance during a three-year period, and may even lead to a decrease in resistance to gentamicin and tobramycin among most gram-negative organisms.

  17. Chloramphenicol – A Potent Armament Against Multi-Drug Resistant (MDR) Gram Negative Bacilli?

    PubMed Central

    2016-01-01

    Introduction Multidrug-resistant gram-negative bacteria cause infections which are hard to treat and cause high morbidity and mortality. Due to limited therapeutic options there is a renewed interest upon older antimicrobials which had fallen into disuse as a result of toxic side effects. One such antibiotic is chloramphenicol which was sidelined due to reports linking its use with the development of aplastic anaemia. Aim A study was conducted to evaluate the susceptibility of chloramphenicol in light of the emerging problem of multi-drug resistant gram negative bacteria (MDR GNB). Materials and Methods A total of 483 MDR GNB of the 650 consecutive Gram Negative Bacteria isolated from various clinical samples of patients admitted at a tertiary care hospital in Jaipur between January-June 2014 were screened for chloramphenicol susceptibility by the disc diffusion method as per CLSI guidelines. Results The MDR GNB isolates were obtained from 217 (45%) urine, 163 (34%) from respiratory samples, 52(11%) from pus, 42 (9%) from blood and 9 (2%) from body fluids. A 68% of the MDR GNB isolates were found to be sensitive to chloramphenicol. Conclusion Clinicians should always check for the local susceptibility of Gram-negative bacteria to chloramphenicol. This antibiotic has a potential to play a role in the therapeutic management of infections due to MDR GNB pathogens. PMID:27042458

  18. Antibiotic-resistant gram negative bacilli in meals delivered at a general hospital, Italy.

    PubMed

    Plano, Maria Rosa Anna; Di Noto, Anna Maria; Firenze, Alberto; Sciortino, Sonia; Mammina, Caterina

    2009-01-01

    This study aimed at detecting the presence of antibiotic-resistant Gram-negatives in samples of meals delivered at the University General Hospital of Palermo, Italy. Antibiotic resistant Gram negatives were isolated in July-September 2007 ffrom cold dishes and food contact surfaces and utensils. Bacterial strains were submitted to susceptibility test and subtyped by random amplification of polymorphic DNA (RAPD). Forty-six of 55 (83.6%) food samples and 14 of 17 (82.3%) environmental swabs were culture positive for Gram negative bacilli resistant to at least one group of antibacterial drugs. A total of 134 antibiotic resistant strains, 51 fermenters and 83 non-fermenters, were recovered. Fermenters and non-fermenters showed frequencies as high as 97.8% of resistance to two or more groups of antibiotics and non fermenters were 28.9% resistant to more than three groups. Molecular typing detected 34 different profiles among the fermenters and 68 among the non-fermenters. Antibiotic resistance was very common among both fermenters and non-fermenters. However, the wide heterogeneity of RAPD patterns seems to support a prominent role of cross-contamination rather than a clonal expansion of a few resistant isolates. A contribution of commensal Gram negatives colonizing foods to a common bacterial resistance pool should not been overlooked.

  19. Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria.

    PubMed

    Briers, Yves; Lavigne, Rob

    2015-01-01

    The emergence and spread of antibiotic-resistant bacteria drives the search for novel classes of antibiotics to replenish our armamentarium against bacterial infections. This is particularly critical for Gram-negative pathogens, which are intrinsically resistant to many existing classes of antibiotics due to the presence of a protective outer membrane. In addition, the antibiotics development pipeline is mainly oriented to Gram-positive pathogens such as methicillin-resistant Staphylococcus aureus. A promising novel class of antibacterials is endolysins. These enzymes encoded by bacterial viruses hydrolyze the peptidoglycan layer with high efficiency, resulting in abrupt osmotic lysis and cell death. Their potential as novel antibacterials to treat Gram-positive bacteria has been extensively demonstrated; however, the Gram-negative outer membrane has presented a formidable barrier for the use of endolysins against Gram-negatives until recently. This review reports on the most recent advances in the development of endolysins to kill Gram-negative species with a special focus on endolysin-engineered Artilysins(®).

  20. Preparation, gram-negative antibacterial activity, and hydrolytic stability of novel siderophore-conjugated monocarbam diols.

    PubMed

    Flanagan, Mark E; Brickner, Steven J; Lall, Manjinder; Casavant, Jeffrey; Deschenes, Laura; Finegan, Steven M; George, David M; Granskog, Karl; Hardink, Joel R; Huband, Michael D; Hoang, Thuy; Lamb, Lucinda; Marra, Andrea; Mitton-Fry, Mark; Mueller, John P; Mullins, Lisa M; Noe, Mark C; O'Donnell, John P; Pattavina, David; Penzien, Joseph B; Schuff, Brandon P; Sun, Jianmin; Whipple, David A; Young, Jennifer; Gootz, Thomas D

    2011-05-12

    A novel series of monocarbam compounds exhibiting promising antibacterial activity against multidrug resistant Gram-negative microorganisms is reported, along with the synthesis of one such molecule MC-1 (1). Also reported are structure-activity relationships associated with the in vitro and in vivo efficacy of 1 and related analogues in addition to the hydrolytic stability of such compounds and possible implications thereof.

  1. Pyridone Methylsulfone Hydroxamate LpxC Inhibitors for the Treatment of Serious Gram-Negative Infections

    SciTech Connect

    Montgomery, Justin I.; Brown, Matthew F.; Reilly, Usa; Price, Loren M.; Abramite, Joseph A.; Arcari, Joel; Barham, Rose; Che, Ye; Chen, Jinshan Michael; Chung, Seung Won; Collantes, Elizabeth M.; Desbonnet, Charlene; Doroski, Matthew; Doty, Jonathan; Engtrakul, Juntyma J.; Harris, Thomas M.; Huband, Michael; Knafels, John D.; Leach, Karen L.; Liu, Shenping; Marfat, Anthony; McAllister, Laura; McElroy, Eric; Menard, Carol A.; Mitton-Fry, Mark; Mullins, Lisa; Noe, Mark C.; O’Donnell, John; Oliver, Robert; Penzien, Joseph; Plummer, Mark; Shanmugasundaram, Veerabahu; Thoma, Christy; Tomaras, Andrew P.; Uccello, Daniel P.; Vaz, Alfin; Wishka, Donn G.

    2012-11-09

    The synthesis and biological activity of a new series of LpxC inhibitors represented by pyridone methylsulfone hydroxamate 2a is presented. Members of this series have improved solubility and free fraction when compared to compounds in the previously described biphenyl methylsulfone hydroxamate series, and they maintain superior Gram-negative antibacterial activity to comparator agents.

  2. Concomitant detection of biofilm and metallo-beta-lactamases production in gram-negative bacilli.

    PubMed

    Singhai, Monil; Rawat, Vinita; Goyal, Rajeev

    2013-01-01

    Carbapenems are mainstay of treating serious multidrug resistant gram-negative biofilm-based infections. However, recent emergence of metallo-beta-lactamases (MbL) producing gram-negative bacilli in different parts of world may be related to gain of virulence factors associated with biofilm production. To explore the association of MbL and biofilm production in various gram-negative bacilli. In this study, 110 non-repetitive ceftazidime resistant gram-negative bacilli were evaluated for biofilm and MβL production. Biofilm forming ability of isolates obtained from various specimens was tested by the tube method. Disks of ceftazidime (30 μg) and ceftazidime with ethylenediaminetetraacetic acid (30 μg + 750 μg, prepared in house) for MβL detection were used. Chi-square test was used to study the association between biofilm and MβL production. P value <0.05 was considered significant. 88 (80%) bacilli had shown biofilm producing ability. The association of biofilm and MβL was significant in cases of non-fermenters as compared to enterobacteriaceae members. The particular combination of virulence factors (biofilm and MβL) in bacteria may be a species specific effect which needs to be investigated at molecular level in detail. This may help in designing newer therapies based on interference with biofilm formation and thus countering clinical episodes of antibiotic resistance.

  3. Persistence of associated gram-negative bacteria in experimental actinomycotic lesions in mice.

    PubMed Central

    Jordan, H V; Kelly, D M

    1983-01-01

    Mixed actinomycotic infections were established in a susceptible weanling mouse model by using combinations of Actinomyces israelii and Eikenella corrodens or A. israelii and Actinobacillus actinomycetemcomitans. Acute lesions caused by either of the gram-negative organisms alone were resolved within a few weeks; however, these organisms persisted up to 3 months in chronic lesions in combination with A. israelii. PMID:6341251

  4. A bivalent cationic dye enabling selective photo-inactivation against Gram-negative bacteria.

    PubMed

    Li, Ke; Zhang, Yang-Yang; Jiang, Guo-Yu; Hou, Yuan-Jun; Zhang, Bao-Wen; Zhou, Qian-Xiong; Wang, Xue-Song

    2015-05-07

    A piperazine-modified Crystal Violet was found to be able to selectively inactivate Gram-negative bacteria upon visible light irradiation but left Gram-positive bacteria less damaged, which can serve as a blueprint for the development of novel narrow-spectrum agents to replenish the current arsenal of photodynamic antimicrobial chemotherapy (PACT).

  5. Emerging issues in gram-negative bacterial resistance: an update for the practicing clinician.

    PubMed

    Vasoo, Shawn; Barreto, Jason N; Tosh, Pritish K

    2015-03-01

    The rapid and global spread of antimicrobial-resistant organisms in recent years has been unprecedented. Although resistant gram-positive infections have been concerning to clinicians, the increasing incidence of antibiotic-resistant gram-negative infections has become the most pressing issue in bacterial resistance. Indiscriminate antimicrobial use in humans and animals coupled with increased global connectivity facilitated the transmission of gram-negative infections harboring extended-spectrum β-lactamases in the 1990s. Carbapenemase-producing Enterobacteriaceae, such as those containing Klebsiella pneumoniae carbapenemases and New Delhi metallo-β-lactamases, have been the latest scourge since the late 1990s to 2000s. Besides β-lactam resistance, these gram-negative infections are often resistant to multiple drug classes, including fluoroquinolones, which are commonly used to treat community-onset infections. In certain geographic locales, these pathogens, which have been typically associated with health care-associated infections, are disseminating into the community, posing a significant dilemma for clinicians treating community-onset infections. In this Concise Review, we summarize emerging trends in antimicrobial resistance. We also review the current knowledge on the detection, treatment, and prevention of infection with these organisms, with a focus on the carbapenemase-producing gram-negative bacilli. Finally, we discuss emerging therapies and areas that need further research and effort to stem the spread of antimicrobial resistance.

  6. Antimicrobial Resistance in the Intensive Care Unit: A Focus on Gram-Negative Bacterial Infections.

    PubMed

    MacVane, Shawn H

    2017-01-01

    Bacterial infections are a frequent cause of hospitalization, and nosocomial infections are an increasingly common condition, particularly within the acute/critical care setting. Infection control practices and new antimicrobial development have primarily focused on gram-positive bacteria; however, in recent years, the incidence of infections caused by gram-negative bacteria has risen considerably in intensive care units. Infections caused by multidrug-resistant (MDR) gram-negative organisms are associated with high morbidity and mortality, with significant direct and indirect costs resulting from prolonged hospitalizations due to antibiotic treatment failures. Of particular concern is the increasing prevalence of antimicrobial resistance to β-lactam antibiotics (including carbapenems) among Pseudomonas aeruginosa and Acinetobacter baumannii and, recently, among pathogens of the Enterobacteriaceae family. Treatment options for infections caused by these pathogens are limited. Antimicrobial stewardship programs focus on optimizing the appropriate use of currently available antimicrobial agents with the goals of improving outcomes for patients with infections caused by MDR gram-negative organisms, slowing the progression of antimicrobial resistance, and reducing hospital costs. Newly approved treatment options are available, such as β-lactam/β-lactamase inhibitor combinations, which significantly extend the armamentarium against MDR gram-negative bacteria.

  7. Array based detection of antibiotic resistance genes in Gram negative bacteria isolated from retail poultry meat in the UK and Ireland.

    PubMed

    McNeece, Grainne; Naughton, Violetta; Woodward, Martin J; Dooley, James S G; Naughton, Patrick J

    2014-06-02

    The use of antibiotics in birds and animals intended for human consumption within the European Union (EU) and elsewhere has been subject to regulation prohibiting the use of antimicrobials as growth promoters and the use of last resort antibiotics in an attempt to reduce the spread of multi-resistant Gram negative bacteria. Given the inexorable spread of antibiotic resistance there is an increasing need for improved monitoring of our food. Using selective media, Gram negative bacteria were isolated from retail chicken of UK-Intensively reared (n=27), Irish-Intensively reared (n=19) and UK-Free range (n=30) origin and subjected to an oligonucleotide based array system for the detection of 47 clinically relevant antibiotic resistance genes (ARGs) and two integrase genes. High incidences of β-lactamase genes were noted in all sample types, acc (67%), cmy (80%), fox (55%) and tem (40%) while chloramphenicol resistant determinants were detected in bacteria from the UK poultry portions and were absent in bacteria from the Irish samples. Denaturing Gradient Gel Electrophoresis (DGGE) was used to qualitatively analyse the Gram negative population in the samples and showed the expected diversity based on band stabbing and DNA sequencing. The array system proved to be a quick method for the detection of antibiotic resistance gene (ARG) burden within a mixed Gram negative bacterial population.

  8. Increase in Antibiotic-Resistant Gram-Negative Bacterial Infections in Febrile Neutropenic Children

    PubMed Central

    2016-01-01

    Background The incidence of bacteremia caused by Gram-negative bacteria has increased recently in febrile neutropenic patients with the increase of antibiotic-resistant Gram-negative bacterial infections. This study aimed to identify the distribution of causative bacteria and the proportion of antibiotic-resistant bacteria in bacteremia diagnosed in febrile neutropenic children. Materials and Methods The medical records of febrile neutropenic children diagnosed with bacteremia between 2010 and 2014 were retrospectively reviewed. The causative bacteria and proportion of antibiotic-resistant bacteria were investigated and compared yearly during the study period. The clinical impact of antibiotic-resistant bacterial infections was also determined. Results A total of 336 bacteremia episodes were identified. During the entire study period, 181 (53.9%) and 155 (46.1%) episodes were caused by Gram-negative and Gram-positive bacteria, respectively. Viridans streptococci (25.9%), Klebsiella spp. (16.7%), and Escherichia coli (16.4%) were the most frequent causative bacteria. The overall distribution of causative bacteria was not significantly different annually. Antibiotic-resistant bacteria were identified in 85 (25.3%) episodes, and the proportion of antibiotic-resistant bacteria was not significantly different annually. Extended-spectrum β-lactamase-producing E. coli and Klebsiella spp. were most common among antibiotic-resistant Gram-negative bacteria, and they accounted for 30.6% (n = 34) of the identified E. coli and K. pneumoniae. Methicillin-resistant coagulase-negative staphylococci were most common among antibiotic-resistant Gram-positive bacteria, and it accounted for 88.5% (n = 23) of the identified coagulase-negative staphylococci. Antibiotic-resistant bacterial infections, especially antibiotic-resistant Gram-negative bacterial infections, caused significantly higher mortality due to bacteremia compared with non-antibiotic-resistant bacterial infections (P <0

  9. Effectiveness of oral antibiotics for definitive therapy of Gram-negative bloodstream infections.

    PubMed

    Kutob, Leila F; Justo, Julie Ann; Bookstaver, P Brandon; Kohn, Joseph; Albrecht, Helmut; Al-Hasan, Majdi N

    2016-11-01

    There is paucity of data evaluating intravenous-to-oral antibiotic switch options for Gram-negative bloodstream infections (BSIs). This retrospective cohort study examined the effectiveness of oral antibiotics for definitive treatment of Gram-negative BSI. Patients with Gram-negative BSI hospitalised for <14 days at Palmetto Health Hospitals in Columbia, SC, from 1 January 2010 through 31 December 2013 and discharged on oral antibiotics were included in this study. The cohort was stratified into three groups based on bioavailability of oral antibiotics prescribed (high, ≥95%; moderate, 75-94%; and low, <75%). Kaplan-Meier analysis and multivariate Cox proportional hazards regression were used to examine treatment failure. Among the 362 patients, high, moderate and low bioavailability oral antibiotics were prescribed to 106, 179 and 77 patients, respectively, for definitive therapy of Gram-negative BSI. Mean patient age was 63 years, 217 (59.9%) were women and 254 (70.2%) had a urinary source of infection. Treatment failure rates were 2%, 12% and 14% in patients receiving oral antibiotics with high, moderate and low bioavailability, respectively (P = 0.02). Risk of treatment failure in the multivariate Cox model was higher in patients receiving antibiotics with moderate [adjusted hazard ratio (aHR) = 5.9, 95% CI 1.6-38.5; P = 0.005] and low bioavailability (aHR = 7.7, 95% CI 1.9-51.5; P = 0.003) compared with those receiving oral antimicrobial agents with high bioavailability. These data demonstrate the effectiveness of oral antibiotics with high bioavailability for definitive therapy of Gram-negative BSI. Risk of treatment failure increases as bioavailability of the oral regimen declines.

  10. Evaluation of Quinolone Resistance in Gram Negative Bacilli Isolated from Community- and Hospital-Acquired Infections

    PubMed Central

    Bastopcu, Ayse; Yazgi, Halil; Uyanik, M. Hamidullah; Ayyildiz, Ahmet

    2008-01-01

    Objective: Gram negative bacilli are among the most important microbial agents involved in both hospital- and community-acquired infections. The quinolones are preferred antibacterial agents for the treatment of both community- and hospital-acquired urinary tract infections caused by gram negative bacilli because of their strong antibacterial effects, and because they can be administered both orally and parenterally. In this study, it was aimed to determine the sensitivity of gram negative bacteria isolated from both hospital- and community-acquired infections, to quinolones. Materials and Methods: Bacterial strains used in this study were isolated from pathologic samples of patients who were treated in different clinics or who were admitted to the polyclinics of Atatürk University Research Hospitals. Susceptibility to ciprofloxacin, levofloxacin, ofloxacin and norfloxacin was assessed for all strains included in the study via the Kirby-Bauer disk diffusion method according to CLSI criteria. Results: Of the 205 strains tested, 116 (56.5%) were from community-acquired infections, and 89 (43.5%) were from hospital-acquired infections. Resistance rates of community-origin strains against ciprofloxacin, ofloxacin and levofloxacin were 25%, whereas they were 26.7% against norfloxacin. Ciprofloxacin was the most effective quinolone (65.2%) against hospital-origin strains. E. coli was the most commonly isolated etiological agent from both community- and hospital-acquired infections. Conclusion: In this study, resistance to quinolones was observed for gram negative bacilli isolated from both hospital- and community-acquired infections, with the exception of community-acquired Salmonella and Shigella. Thus, these drugs should not be used empirically in the treatment of infections caused by gram negative bacilli, and susceptibility test results should be considered when planning therapy. PMID:25610028

  11. Results after late polymicrobial, gram-negative, and methicillin-resistant infections in knee arthroplasty.

    PubMed

    Cordero-Ampuero, José; Esteban, Jaime; García-Rey, Eduardo

    2010-05-01

    Previous studies of knee arthroplasty infections caused by high-virulence organisms suggest poor outcomes. Polymicrobial and Gram-negative infections are less studied. This study compared the results of treatment of knee arthroplasty infections by single versus polymicrobial isolates, Gram-positive versus Gram-negative, and methicillin-resistant versus -sensitive Staphylococci. We prospectively followed 47 patients with late knee arthroplasty infections. The mean age was 72 years (range, 20-87 years). The treatment protocol included two-stage exchange and a combination of two oral antibiotics given for 6 months. Minimum followup was 1 year (average, 4.8 +/- 3 years; range, 1-12 years). Control of the infection was judged by absence of clinical, serologic, and radiologic signs of infection. The functional outcome was evaluated by Knee Society score at the last followup. Infection was controlled in all 15 patients with polymicrobial and in 28 of 32 (88%) with monomicrobial infections, in eight of nine patients with Gram-negative and in 35 of 38 (92%) with Gram-positive isolates. Control was also achieved in 22 of 25 patients (88%) infected by methicillin-resistant Staphylococci and in 14 of 14 by methicillin-sensitive Staphylococci. The Knee Society scores averaged 81-63 in patients with polymicrobial infections and were higher than in monomicrobial infections (75-52). The mean KSS was 85-59 in Gram-negative infections compared to 75-55 in Gram-positive infections. The mean KSS was similar in methicillin-resistant (78-54) and methicillin-sensitive Staphylococci (73-56) infections. Polymicrobial and Gram-negative infections can be controlled in late knee arthroplasty infections. On the other hand, infections by methicillin-resistant Staphylococci are less likely to be controlled by the regimens we used. Level II, prognostic study. See Guidelines for Authors for a complete description of levels of evidence.

  12. Identification of a New Lipoprotein Export Signal in Gram-Negative Bacteria

    PubMed Central

    Lauber, Frédéric; Cornelis, Guy Richard

    2016-01-01

    ABSTRACT Bacteria of the phylum Bacteroidetes, including commensal organisms and opportunistic pathogens, harbor abundant surface-exposed multiprotein membrane complexes (Sus-like systems) involved in carbohydrate acquisition. These complexes have been mostly linked to commensalism, and in some instances, they have also been shown to play a role in pathogenesis. Sus-like systems are mainly composed of lipoproteins anchored to the outer membrane and facing the external milieu. This lipoprotein localization is uncommon in most studied Gram-negative bacteria, while it is widespread in Bacteroidetes. Little is known about how these complexes assemble and particularly about how lipoproteins reach the bacterial surface. Here, by bioinformatic analyses, we identify a lipoprotein export signal (LES) at the N termini of surface-exposed lipoproteins of the human pathogen Capnocytophaga canimorsus corresponding to K-(D/E)2 or Q-A-(D/E)2. We show that, when introduced in sialidase SiaC, an intracellular lipoprotein, this signal is sufficient to target the protein to the cell surface. Mutational analysis of the LES in this reporter system showed that the amino acid composition, position of the signal sequence, and global charge are critical for lipoprotein surface transport. These findings were further confirmed by the analysis of the LES of mucinase MucG, a naturally surface-exposed C. canimorsus lipoprotein. Furthermore, we identify a LES in Bacteroides fragilis and Flavobacterium johnsoniae surface lipoproteins that allow C. canimorsus surface protein exposure, thus suggesting that Bacteroidetes share a new bacterial lipoprotein export pathway that flips lipoproteins across the outer membrane. PMID:27795390

  13. Antibiotic resistance of gram-negative bacilli isolated from pediatric patients with nosocomial bloodstream infections in a Mexican tertiary care hospital.

    PubMed

    Ares, Miguel Ángel; Alcántar-Curiel, Maria Dolores; Jiménez-Galicia, César; Rios-Sarabia, Nora; Pacheco, Sabino; De la Cruz, Miguel Ángel

    2013-01-01

    Gram-negative bacilli are the most common bacteria causing nosocomial bloodstream infections (NBSIs) in Latin American countries. The antibiotic resistance profiles of Gram-negative bacilli isolated from blood cultures in pediatric patients with NBSIs over a 3-year period in a tertiary care pediatric hospital in Mexico City were determined using the VITEK-2 system. Sixteen antibiotics were tested to ascertain the resistance rate and the minimum inhibitory concentration using the Clinical Laboratory Standards Institute (CLSI) broth micro-dilution method as a reference. A total of 931 isolates were recovered from 847 clinically significant episodes of NBSI. Of these, 477 (51.2%) were caused by Gram-negative bacilli. The most common Gram-negative bacilli found were Klebsiella pneumoniae (30.4%), Escherichia coli (18.9%), Enterobacter cloacae (15.1%), Pseudomonas aeruginosa (9.9%), and Acinetobacter baumannii (4.6%). More than 45 and 60% of the K. pneumoniae and E. coli isolates, respectively, were resistant to cephalosporins, and 64% of the E. coli isolates were resistant to fluoroquinolones. A. baumannii exhibited low rates of resistance to antibiotics tested. In the E. cloacae and P. aeruginosa isolates, no rates of resistance higher than 38% were observed. In this study, we found that the proportion of NBSIs due to antibiotic-resistant organisms is increasing in a tertiary care pediatric hospital of Mexico.

  14. Neutrophil function in gram-negative rod bacteremia. The interaction between phagocytic cells, infecting organisms, and humoral factors.

    PubMed Central

    Weinstein, R J; Young, L S

    1976-01-01

    To assess the phagocytic and bactericidal function of neutrophils in the acute stages of gram-negative rod bacteremia, cells from 30 nonleukopenic patients were studied in a test system utilizing plasma obtained simultaneously with culture-positive blood, the autologous infecting strain, and two laboratory test strains of Staphylococcus aureus and Pseudomonas aeruginosa. Results were compared to those obtained with normal neutrophils and plasma. Patient and control plasma were simultaneously tested with each source of phagocytic cells to localize any abnormalities. Four patients had a defect against their infecting strain, 33% of the inoculum phagocytized and killed versus 80% by controls. In these cases differences were localized to the patients' plasma, as normal plasma tested with patients' cells reversed the defect. Thus, four patients had impaired opsonization when compared to normal controls, but we also observed that 11 of 30 bacteremic isolates, all Escherichia coli, showed absolute or relative resistance to phagocytosis in the patient and control assay system. No intrinsic granulocyte killing abnormalities were noted. There was poor correlation between results obtained with infecting strains compared to laboratory test organisms. We conclude that in patients without evidence of an inherited neutrophil bactericidal disorder, recurrent infection, or treatment with cytotoxic drugs, intrinsic bactericidal defects are uncommon at the onset of gram-negative bacteremia, and impaired opsonization is the most commonly encountered cause of neutrophil dysfunction. PMID:819460

  15. [Antimicrobial resistance in gram negative bacteria isolated from intensive care units of Colombian hospitals, WHONET 2003, 2004 and 2005].

    PubMed

    Miranda, María Consuelo; Pérez, Federico; Zuluaga, Tania; Olivera, María del Rosario; Correa, Adriana; Reyes, Sandra Lorena; Villegas, Maria Virginia

    2006-09-01

    Surveillance systems play a key role in the detection and control of bacterial resistance. It is necessary to constantly collect information from all institutions because the mechanisms of bacterial resistance can operate in different ways between countries, cities and even in hospitals in the same area. Therefore local information is important in order to learn about bacterial behaviour and design appropriate interventions for each institution. Between January 2003 and December 2004, the Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM) developed a surveillance project in 10 tertiary hospitals in 6 cities of Colombia. Describe the trends of antibiotic resistance among the isolates of Escherichia coli, Klebsiella pneumoniae, Pseudomona aeruginosa, Acinetobacter baumannii and Enterobacter cloacae, five of the most prevalent nosocomial Gram negative pathogens. The susceptibility tests were performed by automated methods in 9 hospitals and by Kirby Bauer in 1 hospital. Antibiotics with known activity against Gram negatives, according to the Clinical Laboratory Standards Institute guidelines, were selected. The laboratories performed internal and external quality controls. During the study period, the information was downloaded monthly from the databases of each microbiology laboratory and sent to CIDEIM where it was centralized in a database using the system WHONET 5.3. The high resistance rates reported especially for A. baumannii, evidenced the presence of multidrug resistant bacteria in both ICUs and wards at every studied institution. The creation of a national surveillance network to improve our capabilities to detect, follow up, and control the antibiotic resistance in Colombia is urgently needed.

  16. Predictive factors for the development of central line-associated bloodstream infection due to gram-negative bacteria in intensive care unit patients after surgery.

    PubMed

    Sreeramoju, Pranavi V; Tolentino, Jocelyn; Garcia-Houchins, Sylvia; Weber, Stephen G

    2008-01-01

    To examine the relative proportions of central line-associated bloodstream infection (BSI) due to gram-negative bacteria and due to gram-positive bacteria among patients who had undergone surgery and patients who had not. The study also evaluated clinical predictive factors and unadjusted outcomes associated with central line-associated BSI caused by gram-negative bacteria in the postoperative period. Observational, case-control study based on a retrospective review of medical records. University of Chicago Medical Center, a 500-bed tertiary care center located on Chicago's south side. Adult intensive care unit (ICU) patients who developed central line-associated BSI. There were a total of 142 adult patients who met the Centers for Disease Control and Prevention National Nosocomial Infection Surveillance System definition for central line-associated BSI. Of those, 66 patients (46.5%) had infections due to gram-positive bacteria, 49 patients (34.5%) had infections due to gram-negative bacteria, 23 patients (16.2%) had infections due to yeast, and 4 patients (2.8%) had mixed infections. Patients who underwent surgery were more likely to develop central line-associated BSI due to gram-negative bacteria within 28 days of the surgery, compared with patients who had not had surgery recently (57.6% vs 27.3%; P= .002). On multivariable logistic regression analysis, diabetes mellitus (adjusted odds ratio [OR], 4.6 [95% CI, 1.2-18.1]; P= .03) and the presence of hypotension at the time of the first blood culture positive for a pathogen (adjusted OR, 9.8 [95% CI, 2.5-39.1]; P= .001) were found to be independently predictive of central line-associated BSI caused by gram-negative bacteria. Unadjusted outcomes were not different in the group with BSI due to gram-negative pathogens, compared to the group with BSI due to gram-positive pathogens. Clinicians caring for critically ill patients after surgery should be especially concerned about the possibility of central line

  17. Ligand-free palladium-mediated site-specific protein labeling inside gram-negative bacterial pathogens.

    PubMed

    Li, Jie; Lin, Shixian; Wang, Jie; Jia, Shang; Yang, Maiyun; Hao, Ziyang; Zhang, Xiaoyu; Chen, Peng R

    2013-05-15

    Palladium, a key transition metal in advancing modern organic synthesis, mediates diverse chemical conversions including many carbon-carbon bond formation reactions between organic compounds. However, expanding palladium chemistry for conjugation of biomolecules such as proteins, particularly within their native cellular context, is still in its infancy. Here we report the site-specific protein labeling inside pathogenic Gram-negative bacterial cells via a ligand-free palladium-mediated cross-coupling reaction. Two rationally designed pyrrolysine analogues bearing an aliphatic alkyne or an iodophenyl handle were first encoded in different enteric bacteria, which offered two facial handles for palladium-mediated Sonogashira coupling reaction on proteins within these pathogens. A GFP-based bioorthogonal reaction screening system was then developed, allowing evaluation of both the efficiency and the biocompatibilty of various palladium reagents in promoting protein-small molecule conjugation. The identified simple compound-Pd(NO3)2 exhibited high efficiency and biocompatibility for site-specific labeling of proteins in vitro and inside living E. coli cells. This Pd-mediated protein coupling method was further utilized to label and visualize a Type-III Secretion (T3S) toxin-OspF in Shigella cells. Our strategy may be generally applicable for imaging and tracking various virulence proteins within Gram-negative bacterial pathogens.

  18. Essential oils from Moroccan plants as potential chemosensitisers restoring antibiotic activity in resistant Gram-negative bacteria.

    PubMed

    Fadli, Mariam; Chevalier, Jacqueline; Saad, Asmaa; Mezrioui, Nour-Eddine; Hassani, Lahcen; Pages, Jean-Marie

    2011-10-01

    Bacterial drug resistance is a worrying public health problem. Antibiotic efflux is a major non-specific resistance mechanism used by bacteria, and efflux pumps are involved in the low-level susceptibility of various important Gram-negative pathogens. Use of molecules that can block bacterial pumps is an attractive strategy, but several studies report only partial efficacy owing to limits of these molecules (stability, selectivity, bioavailability, toxicity, etc.). The objective of this study was to search for natural sources of molecules able to inhibit efflux pump systems of resistant Gram-negative bacteria (Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Salmonella enterica serotype Typhimurium and Pseudomonas aeruginosa). The results indicate that the studied essential oils exhibit interesting activity against the tested bacteria. This activity was significantly enhanced in the presence of an efflux pump inhibitor such as phenylalanine arginyl β-naphthylamide (PAβN). The role of lipopolysaccharide (LPS) structure in the effect of essential oils was also reported in Salmonella LPS deep-rough mutants. In addition, essential oils of Thymus maroccanus and Thymus broussonetii, used at a low concentration (a fraction of the minimum inhibitory concentration), are able to significantly increase chloramphenicol susceptibility of several resistant isolates. These results demonstrate that these essential oils can alter efflux pump activity and may be attractive candidates to develop new drugs for chemosensitising multidrug-resistant strains to clinically used antibiotics.

  19. The antibacterial activity of geranium oil against Gram-negative bacteria isolated from difficult-to-heal wounds.

    PubMed

    Sienkiewicz, Monika; Poznańska-Kurowska, Katarzyna; Kaszuba, Andrzej; Kowalczyk, Edward

    2014-08-01

    Hard-to-heal wounds represent a significant problem to patients, health care professionals, and health care system. They can be formed as a result of mechanical injuries and burns, and any co-existing chronic disease increases the risk of their emergence. Diabetics are at a greater risk of developing chronic wounds because of poor circulation, slow healing times, vascular disease and neuropathy. The aim of this study was to determine the antimicrobial activity of geranium oil against Gram-negative bacterial clinical strains. Clinical strains were isolated from patients with difficult-to-treat wounds and a comprehensive evaluation of their sensitivity to antibiotics was carried out. The constituents of geranium oil were specified by GC-FID-MS analysis. The micro-dilution broth method was used to check the inhibition of microbial growth at various concentrations of geranium oil. The tested geranium oil was efficacious against Gram-negative pathogens responsible for problems with wound treatment. The results suggest that geranium oil may be considered an effective component of therapy in the case of frequent recurrences of infections caused by resistant pathogens. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  20. Complete genome sequence and cell structure of Limnochorda pilosa, a Gram-negative spore former within the phylum Firmicutes.

    PubMed

    Watanabe, Miho; Kojima, Hisaya; Fukui, Manabu

    2016-01-06

    Limnochorda pilosa is a pleomorphic facultative anaerobe and the sole species in the class Limnochordia, which has tentatively been placed in the phylum Firmicutes. In the present study, the complete genome sequence of L. pilosa HC45T was obtained and analyzed. The genome size was 3.82 Mbp and the G+C content was 69.73%. Phylogenetic analyses based on the 30S-50S ribosomal proteins and 23S rRNA gene consistently indicated that L. pilosa is phylogenetically isolated from the other members of the phylum Firmicutes. Ultrastructural observation revealed that L. pilosa possesses a Gram-negative-type cell wall and the capacity to form endospores. Accordingly, the L. pilosa genome has characteristics that are specific to Gram-negative bacteria and contains many genes that are involved in sporulation. On the other hand, several sporulation genes were absent in L. pilosa genome although they have been regarded as essential for endospore-forming system of the phylum Firmicutes. The gyrB gene of L. pilosa possesses an intein sequence. The genome has a high percentage of GTG start codons and lacks several conserved genes related to cell division.

  1. Legionella and other gram-negative bacteria in potable water from various rural and urban sources.

    PubMed

    Stojek, Nimfa; Dutkiewicz, Jacek

    2006-01-01

    A total of 107 potable water samples were collected from various rural and urban sources located in the Lublin region (eastern Poland). 54 samples from rural sources comprised 32 samples of untreated well water and 22 samples of treated (chlorinated) tap water from rural dwellings distributed by the municipal water supply system (MWSS). 53 samples of treated water from urban sources were supplied by the city of Lublin MWSS. They comprised: 11 samples of tap water from offices and shops, 8 samples of tap water from dwellings, 19 samples from showerheads in health care units, and 15 samples from the outlets of medical appliances used for hydrotherapy in a rehabilitation centre. Water samples were examined for the presence and species composition of Legionella, Yersinia, Gram-negative bacteria belonging to family Enterobacteriaceae (GNB-E) and Gram-negative bacteria not belonging to family Enterobacteriaceae (GNB-NE), by filtering through cellulose filters and culture on respectively GVPC, CIN, EMB and tryptic soya agar media. Legionella was recovered from samples of well water, tap water from rural dwellings, tap water from urban dwellings, and water from medical appliances - with the isolation frequency of 27.8-50.0 %, and the low concentrations ranging from 0.7-13.3 x 10 (1) cfu/l. No Legionella strains were detected in tap water from offices and shops, and in water from showerheads in health care units. Strains of the Legionella pneumophila types 2-14 predominated, forming 89.9 % of total Legionella isolates, while other species of Legionella formed 10.1 %. Neither Legionella pneumophila type 1 strains nor Yersinia strains were isolated from the examined water samples. The isolation frequency and mean concentration of GNB-E in water samples from rural sources was significantly greater than in water samples from urban sources (respectively 61.1 % vs. 20.8 %, 17.1 vs. 3.4 x 10(1) cfu/l, p < 0.001). Isolation frequency of GNB-NE in water samples from rural sources

  2. Prior statin use and 90-day mortality in Gram-negative and Gram-positive bloodstream infection: a prospective observational study.

    PubMed

    Mehl, A; Harthug, S; Lydersen, S; Paulsen, J; Åsvold, B O; Solligård, E; Damås, J K; Edna, T-H

    2015-03-01

    In several studies on patients with bloodstream infection (BSI), prior use of statins has been associated with improved survival. Gram-positive and Gram-negative bacteria alert the innate immune system in different ways. We, therefore, studied whether the relation between prior statin use and 90-day total mortality differed between Gram-positive and Gram-negative BSI. We conducted a prospective observational cohort study of 1,408 adults with BSI admitted to Levanger Hospital between January 1, 2002, and December 31, 2011. Data on the use of statins and other medications at admission, comorbidities, functional status, treatment, and outcome were obtained from the patients' hospital records. The relation of statin use with 90-day mortality differed between Gram-negative and Gram-positive BSI (p-value for interaction 0.01). Among patients with Gram-negative BSI, statin users had significantly lower 90-day total mortality [odds ratio (OR) 0.42, 95 % confidence interval (CI) 0.23-0.75, p = 0.003]. The association remained essentially unchanged after adjusting for the effect of sex, age, functional status before the infection, and underlying diseases that were considered confounders (adjusted OR 0.38, 95 % CI 0.20-0.72, p = 0.003). A similar analysis of patients with Gram-positive BSI showed no association of statin use with mortality (adjusted OR 1.22, 95 % CI 0.69-2.17, p = 0.49). The present study suggests that prior statin use is associated with a lower 90-day total mortality in Gram-negative BSI, but not in Gram-positive BSI.

  3. Multi-drug resistant gram negative infections and use of intravenous polymyxin B in critically ill children of developing country: retrospective cohort study.

    PubMed

    Siddiqui, Naveed-ur-Rehman; Qamar, Farah Naz; Jurair, Humaira; Haque, Anwarul

    2014-11-28

    Patients in pediatric intensive care Units (PICU) are susceptible to infections with antibiotic resistant organisms which increase the morbidity, mortality and cost of care. To describe the clinical characteristics and mortality in patients with Multi-Drug Resistant (MDR) gram negative organisms. We also report safety of Polymyxin B use in these patients. Files of patients admitted in PICU of Aga Khan University Hospital, from January 2010 to December 2011, one month to 15 years of age were reviewed. Demographic and clinical features of patients with MDR gram negative infections, antibiotic susceptibility pattern of isolates, discharge disposition and adverse effects of Polymyxin B were recorded. A total of 44.8/1000(36/803) admitted patients developed MDR gram negative infections, of which 47.2%(17/36) were male, with mean age of 3.4 yrs(+/-4.16). Acinetobacter Species (25.5%) was the most frequently isolated MDR organisms followed by Klebsiella Pneumoniae (17%). Sensitivity of isolates was 100% to Polymyxin B, followed by Imipenem (50%), and piperacillin/tazobactem (45%). The crude mortality rate of patients with MDR gram negative infections was 44.4% (16/36). Fourteen of 36 patients received Polymyxin B and 57.1%; (8/14) of them were cured. Nephrotoxicity was observed in 21.4% (3/14) cases, none of the patients showed signs of neuropathy. Our study highlights high rates of Carbapenem resistant gram negative isolates, leading to increasing use of Polymyxin B as the only drug to combat against these critically ill children. Therefore, we emphasizeon Stewardship of Antibiotics and continuous surveillance system as strategies in overall management of these critically ill children.

  4. Bacteremic complications of intravascular catheter tip colonization with Gram-negative micro-organisms in patients without preceding bacteremia.

    PubMed

    van Eck van der Sluijs, A; Oosterheert, J J; Ekkelenkamp, M B; Hoepelman, I M; Peters, Edgar J G

    2012-06-01

    Although Gram-negative micro-organisms are frequently associated with catheter-related bloodstream infections, the prognostic value and clinical implication of a positive catheter tip culture with Gram-negative micro-organisms without preceding bacteremia remains unclear. We determined the outcomes of patients with intravascular catheters colonized with these micro-organisms, without preceding positive blood cultures, and identified risk factors for the development of subsequent Gram-negative bacteremia. All patients with positive intravascular catheter tip cultures with Gram-negative micro-organisms at the University Medical Center, Utrecht, The Netherlands, between 2005 and 2009, were retrospectively studied. Patients with Gram-negative bacteremia within 48 h before catheter removal were excluded. The main outcome measure was bacteremia with Gram-negative micro-organisms. Other endpoints were length of the hospital stay, in-hospital mortality, secondary complications of Gram-negative bacteremia, and duration of intensive care admission. A total of 280 catheters from 248 patients were colonized with Gram-negative micro-organisms. Sixty-seven cases were excluded because of preceding positive blood cultures, leaving 213 catheter tips from 181 patients for analysis. In 40 (19%) cases, subsequent Gram-negative bacteremia developed. In multivariate analysis, arterial catheters were independently associated with subsequent Gram-negative bacteremia (odds ratio [OR] = 5.00, 95% confidence interval [CI]: 1.20-20.92), as was selective decontamination of the digestive tract (SDD) (OR = 2.47, 95% CI: 1.07-5.69). Gram-negative bacteremia in patients who received SDD was predominantly caused by cefotaxime (part of the SDD)-resistant organisms. Mortality was significantly higher in the group with subsequent Gram-negative bacteremia (35% versus 20%, OR = 2.12, 95% CI: 1.00-4.49). Patients with a catheter tip colonized with Gram-negative micro-organisms had a high chance of

  5. Rapid testing using the Verigene Gram-negative blood culture nucleic acid test in combination with antimicrobial stewardship intervention against Gram-negative bacteremia.

    PubMed

    Bork, Jacqueline T; Leekha, Surbhi; Heil, Emily L; Zhao, LiCheng; Badamas, Rilwan; Johnson, J Kristie

    2015-03-01

    Rapid identification of microorganisms and antimicrobial resistance is paramount for targeted treatment in serious bloodstream infections (BSI). The Verigene Gram-negative blood culture nucleic acid test (BC-GN) is a multiplex, automated molecular diagnostic test for identification of eight Gram-negative (GN) organisms and resistance markers from blood culture with a turnaround time of approximately 2 h. Clinical isolates from adult patients at the University Maryland Medical Center with GN bacteremia from 1 January 2012 to 30 June 2012 were included in this study. Blood culture bottles were spiked with clinical isolates, allowed to incubate, and processed by BC-GN. A diagnostic evaluation was performed. In addition, a theoretical evaluation of time to effective and optimal antibiotic was performed, comparing actual antibiotic administration times from chart review ("control") to theoretical administration times based on BC-GN reporting and antimicrobial stewardship team (AST) review ("intervention"). For organisms detected by the assay, BC-GN correctly identified 95.6% (131/137), with a sensitivity of 97.1% (95% confidence interval [CI], 90.7 to 98.4%) and a specificity of 99.5% (95% CI, 98.8 to 99.8%). CTX-M and OXA resistance determinants were both detected. Allowing 12 h from Gram stain for antibiotic implementation, the intervention group had a significantly shorter duration to both effective (3.3 versus 7.0 h; P < 0.01) and optimal (23.5 versus 41.8 h; P < 0.01) antibiotic therapy. BC-GN with AST intervention can potentially decrease time to both effective and optimal antibiotic therapy in GN BSI.

  6. Rapid Testing Using the Verigene Gram-Negative Blood Culture Nucleic Acid Test in Combination with Antimicrobial Stewardship Intervention against Gram-Negative Bacteremia

    PubMed Central

    Leekha, Surbhi; Heil, Emily L.; Zhao, LiCheng; Badamas, Rilwan; Johnson, J. Kristie

    2014-01-01

    Rapid identification of microorganisms and antimicrobial resistance is paramount for targeted treatment in serious bloodstream infections (BSI). The Verigene Gram-negative blood culture nucleic acid test (BC-GN) is a multiplex, automated molecular diagnostic test for identification of eight Gram-negative (GN) organisms and resistance markers from blood culture with a turnaround time of approximately 2 h. Clinical isolates from adult patients at the University Maryland Medical Center with GN bacteremia from 1 January 2012 to 30 June 2012 were included in this study. Blood culture bottles were spiked with clinical isolates, allowed to incubate, and processed by BC-GN. A diagnostic evaluation was performed. In addition, a theoretical evaluation of time to effective and optimal antibiotic was performed, comparing actual antibiotic administration times from chart review (“control”) to theoretical administration times based on BC-GN reporting and antimicrobial stewardship team (AST) review (“intervention”). For organisms detected by the assay, BC-GN correctly identified 95.6% (131/137), with a sensitivity of 97.1% (95% confidence interval [CI], 90.7 to 98.4%) and a specificity of 99.5% (95% CI, 98.8 to 99.8%). CTX-M and OXA resistance determinants were both detected. Allowing 12 h from Gram stain for antibiotic implementation, the intervention group had a significantly shorter duration to both effective (3.3 versus 7.0 h; P < 0.01) and optimal (23.5 versus 41.8 h; P < 0.01) antibiotic therapy. BC-GN with AST intervention can potentially decrease time to both effective and optimal antibiotic therapy in GN BSI. PMID:25547353

  7. Antibiotic-non-antibiotic combinations for combating extremely drug-resistant Gram-negative 'superbugs'.

    PubMed

    Schneider, Elena K; Reyes-Ortega, Felisa; Velkov, Tony; Li, Jian

    2017-02-28

    The emergence of antimicrobial resistance of Gram-negative pathogens has become a worldwide crisis. The status quo for combating resistance is to employ synergistic combinations of antibiotics. Faced with this fast-approaching post-antibiotic era, it is critical that we devise strategies to prolong and maximize the clinical efficacy of existing antibiotics. Unfortunately, reports of extremely drug-resistant (XDR) Gram-negative pathogens have become more common. Combining antibiotics such as polymyxin B or the broad-spectrum tetracycline and minocycline with various FDA-approved non-antibiotic drugs have emerged as a novel combination strategy against otherwise untreatable XDR pathogens. This review surveys the available literature on the potential benefits of employing antibiotic-non-antibiotic drug combination therapy. The apex of this review highlights the clinical utility of this novel therapeutic strategy for combating infections caused by 'superbugs'.

  8. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria.

    PubMed

    Arzanlou, Mohsen; Chai, Wern Chern; Venter, Henrietta

    2017-02-28

    Gram-negative bacteria are responsible for a large proportion of antimicrobial-resistant infections in humans and animals. Among this class of bacteria are also some of the most successful environmental organisms. Part of this success is their adaptability to a variety of different niches, their intrinsic resistance to antimicrobial drugs and their ability to rapidly acquire resistance mechanisms. These mechanisms of resistance are not exclusive and the interplay of several mechanisms causes high levels of resistance. In this review, we explore the molecular mechanisms underlying resistance in Gram-negative organisms and how these different mechanisms enable them to survive many different stress conditions. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Epidemiology of gentamicin-resistant, gram-negative bacillary colonization in a spinal cord injury unit.

    PubMed Central

    Shlaes, D M; Currie, C A; Rotter, G; Eanes, M; Floyd, R

    1983-01-01

    A prospective epidemiological survey of a spinal cord injury unit for gentamicin-resistant, gram-negative bacilli was undertaken. The initial survey of the unit suggested a low level of cross-infection involving Pseudomonas aeruginosa and Providencia stuartii. However, a longitudinal study of new admissions revealed that only 13 of 52 nosocomial acquisitions could be considered to be due to cross colonization. Comparison of data on antibiotic use did not suggest selective pressure for resistant endogenous flora. Nosocomial acquisition was directly related to the length of the hospital stay. Antibiotic susceptibility testing of gentamicin-resistant, gram-negative bacilli showed only minor differences between nosocomial isolates and those present during the initial survey. Of the usual antimicrobial agents, amikacin, carbenicillin, and cefoxitin were the most active against all organisms, with the exception of Serratia spp. Of the new beta-lactams, ceftazidime and imipemide (N-formimidoyl thienamycin) were most active. PMID:6619279

  10. Influence of Antibiotic Pressure on Five Plasmid-based Bioluminescent Gram-negative Bacterial Strains.

    PubMed

    Wang, Xiwen; Chi, Hang; Li, Qianxue; Li, Wenliang; Li, Jiakuan; Li, Bo; Gao, Weicun; Zhang, Da; Sun, Yu; Yi, Le; Qu, Han; Wang, Yutian; Li, Zhiping; Xia, Zhiping

    2017-08-08

    The present study aims to develop five Gram-negative bacteria expressing bacterial luciferase for use to evaluate the influence of different antibiotics on bacterial bioluminescence. The pBBR-lux plasmid was introduced into five Gram-negative bacteria; the bioluminescent signals and colony-forming unit (CFU)/ml of all the bioluminescent strains were monitored with six antibiotics at various concentrations. Dose-dependent bioluminescence signals can be used for rapid bacterial antibiotic susceptibility test (AST). All five bioluminescent bacterial strains have similar bioluminescence and CFU enhancement at sub-minimum inhibitory concentration (MIC) of six different antibiotics. The bioluminescent signals and CFU enhancement at sub-MIC antibiotic concentrations should be of value in the research of new antibiotic drugs and bioluminescent imaging.

  11. MEDIUM FOR DIFFERENTIATING THE GRAM-NEGATIVE, NONFERMENTING BACILLI OF MEDICAL INTEREST

    PubMed Central

    Sellers, Walter

    1964-01-01

    Sellers, Walter (U.S. Air Force School of Aerospace Medicine, Brooks Air Force Base, Tex.). Medium for differentiating the gram-negative, nonfermenting bacilli of medical interest. J. Bacteriol. 87:46–48. 1964.—An agar-slant medium is described for differentiating gram-negative, nonfermenting bacilli of medical interest. Differences in the ability of bacilli to grow anaerobically in the presence of nitrate, to produce pH changes, to produce N2 from nitrite and nitrate (singly and in combination), to fluoresce, and to oxidize a drop of glucose solution to acid in the presence of high peptone concentrations were used in the development of the medium. Organisms differentiated by the medium include Pseudomonas aeruginosa, Bacterium anitratum, Mima polymorpha, and Vibrio alcaligenes or Alcaligenes faecalis. PMID:14102872

  12. Envelope control of outer membrane vesicle production in Gram-negative bacteria.

    PubMed

    Schwechheimer, Carmen; Sullivan, Claretta J; Kuehn, Meta J

    2013-05-07

    All Gram-negative bacteria studied to date have been shown to produce outer membrane vesicles (OMVs), which are budded, released spheres of outer membrane with periplasmic content. OMVs have been implicated in the delivery of virulence factors in pathogenesis. However, OMVs also benefit nonpathogenic species by delivering degradative enzymes to defend an ecological niche against competing bacterial species, and they can serve as an envelope stress response. Despite these important roles, very little is known about the mechanism of production of OMVs. Here we review the advantage of vesiculation, particularly in a nonpathogenic context, as well as the hurdles that have to be overcome in Gram-negative envelope architecture before a vesicle can form and bud. Lastly, we address the question of whether OMV production is a stochastic or regulated process.

  13. Carbapenemase-producing Gram-negative bacteria: current epidemics, antimicrobial susceptibility and treatment options.

    PubMed

    Jean, Shio-Shin; Lee, Wen-Sen; Lam, Carlos; Hsu, Chin-Wang; Chen, Ray-Jade; Hsueh, Po-Ren

    2015-01-01

    Carbapenemases, with versatile hydrolytic capacity against β-lactams, are now an important cause of resistance of Gram-negative bacteria. The genes encoding for the acquired carbapenemases are associated with a high potential for dissemination. In addition, infections due to Gram-negative bacteria with acquired carbapenemase production would lead to high clinical mortality rates. Of the acquired carbapenemases, Klebsiella pneumoniae carbapenemase (Ambler class A), Verona integron-encoded metallo-β-lactamase (Ambler class B), New Delhi metallo-β-lactamase (Ambler class B) and many OXA enzymes (OXA-23-like, OXA-24-like, OXA-48-like, OXA-58-like, class D) are considered to be responsible for the worldwide resistance epidemics. As compared with monotherapy with colistin or tigecycline, combination therapy has been shown to effectively lower case-fatality rates. However, development of new antibiotics is crucial in the present pandrug-resistant era.

  14. New plate medium for screening and presumptive identification of gram-negative urinary tract pathogens.

    PubMed Central

    Thaller, M C; Berlutti, F; Dainelli, B; Pezzi, R

    1988-01-01

    A new selective, differential plating medium to screen the common gram-negative urinary tract pathogens is described. The medium combines adonitol fermentation, phenylalanine deaminase, and beta-glucuronidase tests and allows the indole and cytochrome oxidase tests to be performed directly from the plates. High-level agreement with individual conventional tests was recorded in comparative studies with 504 cultures of gram-negative rods. There was 100% agreement, except for the Providencia spp. indole spot test (61.6% agreement). Adonitol fermentation by Providencia species could not be determined. Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa were identified with a high efficiency (100, 85.7, 83.5, and 100% agreement, respectively) without further testing. There was 96% overall agreement for the 267 infected urine samples tested. PMID:3366875

  15. Susceptibility of Gram-negative bacteria to isepamicin: a systematic review.

    PubMed

    Falagas, Matthew E; Karageorgopoulos, Drosos E; Georgantzi, Georgia G; Sun, Chunguang; Wang, Rui; Rafailidis, Petros I

    2012-02-01

    We sought to review the potential role of isepamicin against infections with contemporary Gram-negative bacteria. We searched PubMed and Scopus databases to identify relevant microbiological and clinical studies published between 2000 and 2010, and we retrieved 11 and three studies, respectively. A total of 4901 isolates were examined in the in vitro studies. Isepamicin had higher in vitro activity compared with amikacin in four studies, was as active as amikacin in six studies and in the remaining study both were inactive. Regarding specifically the studies that included multidrug-resistant bacteria, isepamicin appeared superior to amikacin in two studies, as active as amikacin in one study and both did not exhibit activity in one study. In the clinical studies, isepamicin was as active as amikacin for the treatment of 55 children with urinary tract infections. In conclusion, isepamicin might be active in vitro against Gram-negative bacteria with resistance to amikacin and other aminoglycosides.

  16. Antibacterial activities of β-glucan (laminaran) against gram-negative and gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Chamidah, A.; Hardoko, Prihanto, A. A.

    2017-05-01

    This study aimed to determine the antibacterial activity of β-Glucan (laminaran) of LAE and LME extracts from brown algae Sargassum crassifolium using HPMS and Ultrasonication against Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) and Gram-negative bacteria (Salmonella typhimurium and Escherichia coli). The highest antibacterial activities of LME extract obtained using the HPMS method against Gram-positive bacteria (B. subtilis and S. aureus) were at 18:10 and 18.80 mm. The ultrasonication method showed a lower inhibition trend than the HPMS method, with MIC and MBC values of 250 mg/ml and 2-8 CFU/ml, respectively, in all Gram-negative and Gram-positive bacteria. The results showed that LME extract at a concentration of 250 mg/mL is bacteriostatic against Gram-positive and -negative bacteria.

  17. Gram-Negative Bacteria Produce Membrane Vesicles Which Are Capable of Killing Other Bacteria

    PubMed Central

    Li, Zusheng; Clarke, Anthony J.; Beveridge, Terry J.

    1998-01-01

    Naturally produced membrane vesicles (MVs), isolated from 15 strains of gram-negative bacteria (Citrobacter, Enterobacter, Escherichia, Klebsiella, Morganella, Proteus, Salmonella, and Shigella strains), lysed many gram-positive (including Mycobacterium) and gram-negative cultures. Peptidoglycan zymograms suggested that MVs contained peptidoglycan hydrolases, and electron microscopy revealed that the murein sacculi were digested, confirming a previous modus operandi (J. L. Kadurugamuwa and T. J. Beveridge, J. Bacteriol. 174:2767–2774, 1996). MV-sensitive bacteria possessed A1α, A4α, A1γ, A2α, and A4γ peptidoglycan chemotypes, whereas A3α, A3β, A3γ, A4β, B1α, and B1β chemotypes were not affected. Pseudomonas aeruginosa PAO1 vesicles possessed the most lytic activity. PMID:9765585

  18. Surface-Exposed Lipoproteins: An Emerging Secretion Phenomenon in Gram-Negative Bacteria.

    PubMed

    Wilson, Marlena M; Bernstein, Harris D

    2016-03-01

    Bacterial lipoproteins are hydrophilic proteins that are anchored to a cell membrane by N-terminally linked fatty acids. It is widely believed that nearly all lipoproteins produced by Gram-negative bacteria are either retained in the inner membrane (IM) or transferred to the inner leaflet of the outer membrane (OM). Lipoproteins that are exposed on the cell surface have also been reported but are generally considered to be rare. Results from a variety of recent studies, however, now suggest that the prevalence of surface-exposed lipoproteins has been underestimated. In this review we describe the evidence that the surface exposure of lipoproteins in Gram-negative bacteria is a widespread phenomenon and discuss possible mechanisms by which these proteins might be transported across the OM. Published by Elsevier Ltd.

  19. Trojan Horse Antibiotics—A Novel Way to Circumvent Gram-Negative Bacterial Resistance?

    PubMed Central

    Tillotson, Glenn S.

    2016-01-01

    Antibiotic resistance has been emerged as a major global health problem. In particular, gram-negative species pose a significant clinical challenge as bacteria develop or acquire more resistance mechanisms. Often, these bacteria possess multiple resistance mechanisms, thus nullifying most of the major classes of drugs. Novel approaches to this issue are urgently required. However, the challenges of developing new agents are immense. Introducing novel agents is fraught with hurdles, thus adapting known antibiotic classes by altering their chemical structure could be a way forward. A chemical addition to existing antibiotics known as a siderophore could be a solution to the gram-negative resistance issue. Siderophore molecules rely on the bacterial innate need for iron ions and thus can utilize a Trojan Horse approach to gain access to the bacterial cell. The current approaches to using this potential method are reviewed. PMID:27773991

  20. Gram-negative infections in pediatric and neonatal intensive care units of Latin America.

    PubMed

    Berezin, Eitan N; Solórzano, Fortino

    2014-08-13

    In order to review the epidemiology of Gram-negative infections in the pediatric and neonatal intensive care units (PICUs and NICUs) of Latin America a systematic search of PubMed and targeted search of SciELO was performed to identify relevant articles published since 2005. Independent cohort data indicated that overall infection rates were higher in Latin American PICUs and NICUs versus developed countries (range, 5%-37% vs 6%-15%, respectively). Approximately one third of Latin American patients with an acquired PICU or NICU infection died, and crude mortality was higher among extremely low-birth-weight infants and those with an infection caused by Gram-negative bacteria. In studies reporting > 100 isolates, the frequency of Gram-negative pathogens varied from 31% (Colombia) to 63% (Mexico), with Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli the predominant pathogens in almost all countries, and Acinetobacter spp. and Serratia spp. isolated sporadically. The activity of quinolones and third-generation cephalosporins against P. aeruginosa, Acinetobacter spp., and Enterobacteria was seriously compromised, coincident with a high prevalence of circulating extended-spectrum β-lactamases. Furthermore, we identified two observational studies conducted in Chile and Brazil reporting infections by P. aeruginosa and Acinetobacter baumannii in PICUs, demonstrating resistance to carbapenems, and two outbreaks of carbapenem-resistant K. pneumoniae in Colombia and Brazil. The endemicity of multidrug-resistant Gram-negative infections in Latin American PICUs and NICUs is punctuated by intermittent clonal outbreaks. The problem may be alleviated by ensuring ICUs are less crowded, increasing staffing levels of better-trained health care personnel, and implementing antimicrobial stewardship and surveillance programs.

  1. Molecular studies neglect apparently gram-negative populations in the human gut microbiota.

    PubMed

    Hugon, Perrine; Lagier, Jean-Christophe; Robert, Catherine; Lepolard, Catherine; Papazian, Laurent; Musso, Didier; Vialettes, Bernard; Raoult, Didier

    2013-10-01

    Studying the relationships between gut microbiota, human health, and diseases is a major challenge that generates contradictory results. Most studies draw conclusions about the gut repertoire using a single biased metagenomics approach. We analyzed 16 different stool samples collected from healthy subjects who were from different areas, had metabolic disorders, were immunocompromised, or were treated with antibiotics at the time of the stool collection. The analyses performed included Gram staining, flow cytometry, transmission electron microscopy (TEM), quantitative real-time PCR (qPCR) of the Bacteroidetes and Firmicutes phyla, and pyrosequencing of the 16S rRNA gene amplicons targeting the V6 region. We quantified 10(10) prokaryotes per gram of feces, which is less than was previously described. The Mann-Whitney test revealed that Gram-negative proportions of the prokaryotes obtained by Gram staining, TEM, and pyrosequencing differed according to the analysis used, with Gram-negative prokaryotes yielding median percentages of 70.6%, 31.0%, and 16.4%, respectively. A comparison of TEM and pyrosequencing analyses highlighted a difference of 14.6% in the identification of Gram-negative prokaryotes, and a Spearman test showed a tendency toward correlation, albeit not significant, in the Gram-negative/Gram-positive prokaryote ratio (ρ = 0.3282, P = 0.2146). In contrast, when comparing the qPCR and pyrosequencing results, a significant correlation was found for the Bacteroidetes/Firmicutes ratio (ρ = 0.6057, P = 0.0130). Our study showed that the entire diversity of the human gut microbiota remains unknown because different techniques generate extremely different results. We found that to assess the overall composition of bacterial communities, multiple techniques must be combined. The biases that exist for each technique may be useful in exploring the major discrepancies in molecular studies.

  2. Diversity and assessment of potential risk factors of Gram-negative isolates associated with French cheeses.

    PubMed

    Coton, Monika; Delbés-Paus, Céline; Irlinger, Françoise; Desmasures, Nathalie; Le Fleche, Anne; Stahl, Valérie; Montel, Marie-Christine; Coton, Emmanuel

    2012-02-01

    The goal of this study was to identify at the species level a large collection of Gram-negative dairy bacteria isolated from milks or semi-hard and soft, smear-ripened cheeses (cheese core or surface samples) from different regions of France. The isolates were then assessed for two risk factors, antibiotic resistance and volatile and non-volatile biogenic amine production in vitro. In total, 173 Gram-negative isolates were identified by rrs and/or rpoB gene sequencing. A large biodiversity was observed with nearly half of all Gram-negative isolates belonging to the Enterobacteriaceae family. Overall, 26 different genera represented by 68 species including potential new species were identified among the studied Gram-negative isolates for both surface and milk or cheese core samples. The most frequently isolated genera corresponded to Pseudomonas, Proteus, Psychrobacter, Halomonas and Serratia and represented almost 54% of the dairy collection. After Pseudomonas, Chryseobacterium, Enterobacter and Stenotrophomonas were the most frequently isolated genera found in cheese core and milk samples while Proteus, Psychrobacter, Halomonas and Serratia were the most frequently isolated genera among surface samples. Antibiotic resistance profiles indicated that resistances to the aminosid, imipemen and quinolon were relatively low while more than half of all tested isolates were resistant to antibiotics belonging to the monobactam, cephem, fosfomycin, colistin, phenicol, sulfamid and some from the penam families. Thirty-six% of isolates were negative for in vitro biogenic amine production. Among biogenic amine-producers, cadaverine was the most frequently produced followed by isoamylamine, histamine and putrescine. Only low levels (<75 mg/l) of tyramine were detected in vitro.

  3. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma

    PubMed Central

    Mai-Prochnow, Anne; Clauson, Maryse; Hong, Jungmi; Murphy, Anthony B.

    2016-01-01

    Cold atmospheric-pressure plasma (CAP) is a relatively new method being investigated for antimicrobial activity. However, the exact mode of action is still being explored. Here we report that CAP efficacy is directly correlated to bacterial cell wall thickness in several species. Biofilms of Gram positive Bacillus subtilis, possessing a 55.4 nm cell wall, showed the highest resistance to CAP, with less than one log10 reduction after 10 min treatment. In contrast, biofilms of Gram negative Pseudomonas aeruginosa, possessing only a 2.4 nm cell wall, were almost completely eradicated using the same treatment conditions. Planktonic cultures of Gram negative Pseudomonas libanensis also had a higher log10 reduction than Gram positive Staphylococcus epidermidis. Mixed species biofilms of P. aeruginosa and S. epidermidis showed a similar trend of Gram positive bacteria being more resistant to CAP treatment. However, when grown in co-culture, Gram negative P. aeruginosa was more resistant to CAP overall than as a mono-species biofilm. Emission spectra indicated OH and O, capable of structural cell wall bond breakage, were present in the plasma. This study indicates that cell wall thickness correlates with CAP inactivation times of bacteria, but cell membranes and biofilm matrix are also likely to play a role. PMID:27934958

  4. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma.

    PubMed

    Mai-Prochnow, Anne; Clauson, Maryse; Hong, Jungmi; Murphy, Anthony B

    2016-12-09

    Cold atmospheric-pressure plasma (CAP) is a relatively new method being investigated for antimicrobial activity. However, the exact mode of action is still being explored. Here we report that CAP efficacy is directly correlated to bacterial cell wall thickness in several species. Biofilms of Gram positive Bacillus subtilis, possessing a 55.4 nm cell wall, showed the highest resistance to CAP, with less than one log10 reduction after 10 min treatment. In contrast, biofilms of Gram negative Pseudomonas aeruginosa, possessing only a 2.4 nm cell wall, were almost completely eradicated using the same treatment conditions. Planktonic cultures of Gram negative Pseudomonas libanensis also had a higher log10 reduction than Gram positive Staphylococcus epidermidis. Mixed species biofilms of P. aeruginosa and S. epidermidis showed a similar trend of Gram positive bacteria being more resistant to CAP treatment. However, when grown in co-culture, Gram negative P. aeruginosa was more resistant to CAP overall than as a mono-species biofilm. Emission spectra indicated OH and O, capable of structural cell wall bond breakage, were present in the plasma. This study indicates that cell wall thickness correlates with CAP inactivation times of bacteria, but cell membranes and biofilm matrix are also likely to play a role.

  5. New insight on antimicrobial therapy adjustment strategies for gram-negative bacterial infection

    PubMed Central

    Du, Wei; Chen, Hong; Xiao, Shuzhen; Tang, Wei; Shi, Guochao

    2017-01-01

    Abstract Gram-negative bacterial infections, especially multidrug-resistant (MDR) bacterial infection, are becoming a serious threat to public health. Although it is widely accepted that both appropriate initial empirical therapy and targeted therapy are important, but for patients needing therapy adjustment, few studies have explored whether adjustment strategy based on microbiologic susceptibility test (MST) brings better outcome compared with empirical adjustment. A total of 320 patients with gram-negative bacterial infection (airway, blood, or pleural effusion) were selected and a prospective cohort study was conducted. Baseline characteristics and outcomes (microbiologic, clinical, and economic) were documented during follow-up. MDR and nosocomial infections were common among subjects. Initial therapies consistent with MST could result in reduced in-hospital mortality, treatment failure rate, infection-related death, percentages of patients needing therapy adjustment, and daily hospitalization cost with increased successful treatment rate compared with inconsistent with MST, and microbiologic outcomes were also better with appropriate therapies. For patients needing therapy adjustment, relying on MST gained no significant benefit on mortality, clinical, or microbiologic outcomes compared with depending on clinical experience. But for patients with MDR infection, adjustment relying on MST gained more benefit than non-MDR infection. Appropriate initial therapy significantly improved the prognosis of patients with gram-negative bacterial infections, but improvement was not that obvious for patients needing therapy adjustment which was based on MST compared with clinical experience, and more beneficial effects of adjustment relying on MST were obtained for patients with MDR bacterial infection. PMID:28353572

  6. Weakening Effect of Cell Permeabilizers on Gram-Negative Bacteria Causing Biodeterioration

    PubMed Central

    Alakomi, H.-L.; Paananen, A.; Suihko, M.-L.; Helander, I. M.; Saarela, M.

    2006-01-01

    Gram-negative bacteria play an important role in the formation and stabilization of biofilm structures on stone surfaces. Therefore, the control of growth of gram-negative bacteria offers a way to diminish biodeterioration of stone materials. The effect of potential permeabilizers on the outer membrane (OM) properties of gram-negative bacteria was investigated and further characterized. In addition, efficacy of the agents in enhancing the activity of a biocide (benzalkonium chloride) was assessed. EDTA, polyethylenimine (PEI), and succimer (meso-2,3-dimercaptosuccinic) were shown to be efficient permeabilizers of the members of Pseudomonas and Stenotrophomonas genera, as indicated by an increase in the uptake of a hydrophobic probe (1-N-phenylnaphthylamine) and sensitization to hydrophobic antibiotics. Visualization of Pseudomonas cells treated with EDTA or PEI by atomic force microscopy revealed damage in the outer membrane structure. PEI especially increased the surface area and bulges of the cells. Topographic images of EDTA-treated cells were compatible with events assigned for the effect of EDTA on outer membranes, i.e., release of lipopolysaccharide and disintegration of OM structure. In addition, the effect of EDTA treatment was visualized in phase-contrast images as large areas with varying hydrophilicity on cell surfaces. In liquid culture tests, EDTA and PEI supplementation enhanced the activity of benzalkonium chloride toward the target strains. Use of permeabilizers in biocide formulations would enable the use of decreased concentrations of the active biocide ingredient, thereby providing environmentally friendlier products. PMID:16820461

  7. Weakening effect of cell permeabilizers on gram-negative bacteria causing biodeterioration.

    PubMed

    Alakomi, H-L; Paananen, A; Suihko, M-L; Helander, I M; Saarela, M

    2006-07-01

    Gram-negative bacteria play an important role in the formation and stabilization of biofilm structures on stone surfaces. Therefore, the control of growth of gram-negative bacteria offers a way to diminish biodeterioration of stone materials. The effect of potential permeabilizers on the outer membrane (OM) properties of gram-negative bacteria was investigated and further characterized. In addition, efficacy of the agents in enhancing the activity of a biocide (benzalkonium chloride) was assessed. EDTA, polyethylenimine (PEI), and succimer (meso-2,3-dimercaptosuccinic) were shown to be efficient permeabilizers of the members of Pseudomonas and Stenotrophomonas genera, as indicated by an increase in the uptake of a hydrophobic probe (1-N-phenylnaphthylamine) and sensitization to hydrophobic antibiotics. Visualization of Pseudomonas cells treated with EDTA or PEI by atomic force microscopy revealed damage in the outer membrane structure. PEI especially increased the surface area and bulges of the cells. Topographic images of EDTA-treated cells were compatible with events assigned for the effect of EDTA on outer membranes, i.e., release of lipopolysaccharide and disintegration of OM structure. In addition, the effect of EDTA treatment was visualized in phase-contrast images as large areas with varying hydrophilicity on cell surfaces. In liquid culture tests, EDTA and PEI supplementation enhanced the activity of benzalkonium chloride toward the target strains. Use of permeabilizers in biocide formulations would enable the use of decreased concentrations of the active biocide ingredient, thereby providing environmentally friendlier products.

  8. Strategies for the use of bacteriocins in Gram-negative bacteria: relevance in food microbiology.

    PubMed

    Prudêncio, Cláudia Vieira; Dos Santos, Miriam Teresinha; Vanetti, Maria Cristina Dantas

    2015-09-01

    Bacteriocins are ribosomally synthesized peptides that have bacteriostatic or bactericidal effects on other bacteria. The use of bacteriocins has emerged as an important strategy to increase food security and to minimize the incidence of foodborne diseases, due to its minimal impact on the nutritional and sensory properties of food products. Gram-negative bacteria are naturally resistant to the action of bacteriocins produced by Gram-positive bacteria, which are widely explored in foods. However, these microorganisms can be sensitized by mild treatments, such as the use of chelating agents, by treatment with plant essential oils or by physical treatments such as heating, freezing or high pressure processing. This sensitization is important in food microbiology, because most pathogens that cause foodborne diseases are Gram-negative bacteria. However, the effectiveness of these treatments is influenced by several factors, such as pH, temperature, the composition of the food and target microbiota. In this review, we comment on the main methods used for the sensitization of Gram-negative bacteria, especially Salmonella, to improve the action of bacteriocins produced by Gram-positive bacteria.

  9. Cloning and characterization of a Streptomyces antibioticus ATCC11891 cyclophilin related to Gram negative bacteria cyclophilins.

    PubMed

    Manteca, Angel; Kamphausen, Thilo; Fanghanel, Jorg; Fischer, Gunter; Sanchez, Jesus

    2004-08-13

    Cyclophilins are folding helper enzymes and represent a family of the enzyme class of peptidyl-prolyl cis-trans isomerases. Here, we report the molecular cloning and biochemical characterization of SanCyp18, an 18-kDa cyclophilin from Streptomyces antibioticus ATCC11891 located in the cytoplasm and constitutively expressed during development. Amino acid sequence analysis revealed a much higher homology to cyclophilins from Gram negative bacteria than to known cyclophilins from Streptomyces or other Gram positive bacteria. SanCyp18 is inhibited weakly by CsA, with a K(i) value of 21 microM, similar to cyclophilins from Gram negative bacteria. However, this value is more than 20-fold higher than the K(i) values reported for cyclophilins from other Gram positive bacteria, which makes SanCyp18 unique within this group. The presence of SanCyp18 in Streptomyces is likely due to horizontal gene transmission from Gram-negative bacteria to Streptomyces.

  10. Gram-negative antibiotic resistance: there is a price to pay

    PubMed Central

    Slama, Thomas G

    2008-01-01

    Resistance rates are increasing among several problematic Gram-negative pathogens that are often responsible for serious nosocomial infections, including Acinetobacter spp., Pseudomonas aeruginosa, and (because of their production of extended-spectrum β-lactamase) Enterobacteriaceae. The presence of multiresistant strains of these organisms has been associated with prolonged hospital stays, higher health care costs, and increased mortality, particularly when initial antibiotic therapy does not provide coverage of the causative pathogen. Conversely, with high rates of appropriate initial antibiotic therapy, infections caused by multiresistant Gram-negative pathogens do not negatively influence patient outcomes or costs. Taken together, these observations underscore the importance of a 'hit hard and hit fast' approach to treating serious nosocomial infections, particularly when it is suspected that multiresistant pathogens are responsible. They also point to the need for a multidisciplinary effort to combat resistance, which should include improved antimicrobial stewardship, increased resources for infection control, and development of new antimicrobial agents with activity against multiresistant Gram-negative pathogens. PMID:18495061

  11. Multiple Responses of Gram-Positive and Gram-Negative Bacteria to Mixture of Hydrocarbons

    PubMed Central

    Marilena Lăzăroaie, Mihaela

    2010-01-01

    Most of our knowledge about pollutants and the way they are biodegraded in the environment has previously been shaped by laboratory studies using hydrocarbon-degrading bacterial strains isolated from polluted sites. In present study Gram-positive (Mycobacterium sp. IBBPo1, Oerskovia sp. IBBPo2, Corynebacterium sp. IBBPo3) and Gram-negative (Chryseomonas sp. IBBPo7, Pseudomonas sp. IBBPo10, Burkholderia sp. IBBPo12) bacteria, isolated from oily sludge, were found to be able to tolerate pure and mixture of saturated hydrocarbons, as well as pure and mixture of monoaromatic and polyaromatic hydrocarbons. Isolated Gram-negative bacteria were more tolerant to mixture of saturated (n-hexane, n-hexadecane, cyclohexane), monoaromatic (benzene, toluene, ethylbenzene) and polyaromatic (naphthalene, 2-methylnaphthalene, fluorene) hydrocarbons than Gram-positive bacteria. There were observed cellular and molecular modifications induced by mixture of saturated, monoaromatic and polyaromatic hydrocarbons to Gram-positive and Gram-negative bacteria. These modifications differ from one strain to another and even for the same bacterial strain, according to the nature of hydrophobic substrate. PMID:24031541

  12. The emerging threat of multidrug-resistant Gram-negative bacteria in urology.

    PubMed

    Zowawi, Hosam M; Harris, Patrick N A; Roberts, Matthew J; Tambyah, Paul A; Schembri, Mark A; Pezzani, M Diletta; Williamson, Deborah A; Paterson, David L

    2015-10-01

    Antibiotic resistance in Gram-negative uropathogens is a major global concern. Worldwide, the prevalence of Enterobacteriaceae that produce extended-spectrum β-lactamase or carbapenemase enzymes continues to increase at alarming rates. Likewise, resistance to other antimicrobial agents including aminoglycosides, sulphonamides and fluoroquinolones is also escalating rapidly. Bacterial resistance has major implications for urological practice, particularly in relation to catheter-associated urinary tract infections (UTIs) and infectious complications following transrectal-ultrasonography-guided biopsy of the prostate or urological surgery. Although some new drugs with activity against Gram-negative bacteria with highly resistant phenotypes will become available in the near future, the existence of a single agent with activity against the great diversity of resistance is unlikely. Responding to the challenges of Gram-negative resistance will require a multifaceted approach including considered use of current antimicrobial agents, improved diagnostics (including the rapid detection of resistance) and surveillance, better adherence to basic measures of infection prevention, development of new antibiotics and research into non-antibiotic treatment and preventive strategies.

  13. Synergistic action of Galleria mellonella anionic peptide 2 and lysozyme against Gram-negative bacteria.

    PubMed

    Zdybicka-Barabas, Agnieszka; Mak, Pawel; Klys, Anna; Skrzypiec, Krzysztof; Mendyk, Ewaryst; Fiołka, Marta J; Cytryńska, Małgorzata

    2012-11-01

    Lysozyme and antimicrobial peptides are key factors of the humoral immune response in insects. In the present work lysozyme and anionic defense peptide (GMAP2) were isolated from the hemolymph of the greater wax moth Galleria mellonella and their antibacterial activity was investigated. Adsorption of G. mellonella lysozyme on the cell surface of Gram-positive and Gram-negative bacteria was demonstrated using immunoblotting with anti-G. mellonella lysozyme antibodies. Lysozyme effectively inhibited the growth of selected Gram-positive bacteria, which was accompanied by serious alterations of the cell surface, as revealed by atomic force microscopy (AFM) imaging. G. mellonella lysozyme used in concentrations found in the hemolymph of naive and immunized larvae, perforated also the Escherichia coli cell membrane and the level of such perforation was considerably increased by GMAP2. GMAP2 used alone did not perforate E. coli cells nor influence lysozyme muramidase activity. However, the peptide induced a decrease in the turgor pressure of the bacterial cell. Moreover, in the samples of bacteria treated with a mixture of lysozyme and GMAP2 the sodium chloride crystals were found, suggesting disturbance of ion transport across the membrane leading to cell disruption. These results clearly indicated the synergistic action of G. mellonella lysozyme and anionic peptide 2 against Gram-negative bacteria. The reported results suggested that, thanks to immune factors constitutively present in hemolymph, G. mellonella larvae are to some extent protected against infection caused by Gram-negative bacteria.

  14. Impact of antibiotic resistance in gram-negative bacilli on empirical and definitive antibiotic therapy.

    PubMed

    Paterson, David L

    2008-09-15

    Serious infections with gram-negative pathogens continue to be associated with considerable mortality. Increasing antibiotic resistance in organisms such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae is contributing to difficulties with choosing antibiotics to prescribe for these infections. Optimization of therapy against these organisms starts with the initial empirical antibiotic choice. Surveillance data and hospital or unit antibiograms may inform this decision, although individualization of the initial regimen on the basis of prior antibiotic use and prior isolation of resistant pathogens may be more important. Combinations of antibiotics are often required empirically, and "combination antibiograms" may need to be developed for this purpose. Preliminary data suggest that extending the time over which a dose of antipseudomonal beta-lactam antibiotics is infused may improve clinical outcomes; however, this idea remains to be confirmed in randomized trials. The role of direct susceptibility testing in aiding more-rapid initiation of appropriate antibiotic therapy is also being studied. When identification and susceptibility testing is complete, the antibiotic regimen for infections due to gram-negative pathogens can be "fine tuned." On some occasions, this fine tuning necessitates the introduction of "salvage" antibiotics, such as colistin or tigecycline; on others, it necessitates de-escalation and early termination of therapy. The lack of new antibiotic options against gram-negative pathogens underscores the need for optimization of current therapies and prevention of the spread of these organisms.

  15. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma

    NASA Astrophysics Data System (ADS)

    Mai-Prochnow, Anne; Clauson, Maryse; Hong, Jungmi; Murphy, Anthony B.

    2016-12-01

    Cold atmospheric-pressure plasma (CAP) is a relatively new method being investigated for antimicrobial activity. However, the exact mode of action is still being explored. Here we report that CAP efficacy is directly correlated to bacterial cell wall thickness in several species. Biofilms of Gram positive Bacillus subtilis, possessing a 55.4 nm cell wall, showed the highest resistance to CAP, with less than one log10 reduction after 10 min treatment. In contrast, biofilms of Gram negative Pseudomonas aeruginosa, possessing only a 2.4 nm cell wall, were almost completely eradicated using the same treatment conditions. Planktonic cultures of Gram negative Pseudomonas libanensis also had a higher log10 reduction than Gram positive Staphylococcus epidermidis. Mixed species biofilms of P. aeruginosa and S. epidermidis showed a similar trend of Gram positive bacteria being more resistant to CAP treatment. However, when grown in co-culture, Gram negative P. aeruginosa was more resistant to CAP overall than as a mono-species biofilm. Emission spectra indicated OH and O, capable of structural cell wall bond breakage, were present in the plasma. This study indicates that cell wall thickness correlates with CAP inactivation times of bacteria, but cell membranes and biofilm matrix are also likely to play a role.

  16. Gram-negative intestinal indigenous microbiota from two Siluriform fishes in a tropical reservoir

    PubMed Central

    Duarte, Silvana; Silva, Flávia Cristina de Paula e; Zauli, Danielle Alves Gomes; Nicoli, Jacques Robert; Araújo, Francisco Gerson

    2014-01-01

    The Gram-negative intestinal microbiota of Hypostomus auroguttatus and Pimelodus maculatus, a detritivorous and an omnivorous fish species, respectively, were compared between fishes from the reservoir and the stretch of the river below the dam of the Funil hydroelectric plant, Rio de Janeiro, Brazil. Four selective culture media were used under aerobic and two under anaerobic conditions. The omnivorous species had microbiota with higher population levels compared to the detritivorous species. The number of morphotypes and population levels of total bacteria, vibrio and Bacteroides tended to be higher in summer and autumn in the reservoir, and not different in the river. The number of morphotypes of enterobacteria and total bacteria were higher in the lotic environment compared with the lentic one. The bacteria Aeromonas hydrophila and Plesiomonas shigelloides and the obligate anaerobic Fusobacterium mortiferum were the most frequently identified microorganisms in the intestine of both H. auroguttatus and P. maculatus. Both season and habitat influenced the Gram-negative intestinal microbiota of H. auroguttatus and P. maculatus. Environmental factors influenced the Gram-negative intestinal microbiota of both species with possible impact on the interrelationship between the fishes and their digestive ecosystem, although the gut microbiota composition of fishes may result from host-specific selective pressures within the gut. PMID:25763032

  17. Molecular analysis of antimicrobial resistance in gram-negative bacteria isolated from fish farms in Egypt.

    PubMed

    Ishida, Yojiro; Ahmed, Ashraf M; Mahfouz, Nadia B; Kimura, Tomomi; El-Khodery, Sabry A; Moawad, Amgad A; Shimamoto, Tadashi

    2010-06-01

    As little is known about antimicrobial resistance genes in fish farms, this study was conducted to monitor the incidence and prevalence of a wide range of antimicrobial resistance genes in Gram-negative bacteria isolated from water samples taken from fish farms in the northern part of Egypt. Ninety-one out of two hundred seventy-four (33.2%) non-repetitive isolates of Gram-negative bacteria showed multidrug resistance phenotypes and harbored at least one antimicrobial resistance gene. PCR and DNA sequencing results showed that 72 (26.3%) isolates contain tetracycline resistance genes and 19 (6.9%) isolates were positive for class 1 integrons with 12 different gene cassettes. The beta-lactamase-encoding genes were identified in 14 (5.1%) isolates. The plasmid-mediated quinolone resistance genes, qnr and aac(6')-Ib-cr, were identified in 16 (5.8%) and 3 (1.1%) isolates, respectively. Finally, the florphenicol resistance gene, floR, was identified in four (1.5%) isolates. To the best of our knowledge, this is the first report for molecular characterization of antimicrobial resistance in Gram-negative bacteria isolated from fish farms in Africa.

  18. Gram-Negative Infections in Adult Intensive Care Units of Latin America and the Caribbean

    PubMed Central

    Luna, Carlos M.; Rodriguez-Noriega, Eduardo; Bavestrello, Luis; Guzmán-Blanco, Manuel

    2014-01-01

    This review summarizes recent epidemiology of Gram-negative infections in selected countries from Latin American and Caribbean adult intensive care units (ICUs). A systematic search of the biomedical literature (PubMed) was performed to identify articles published over the last decade. Where appropriate, data also were collected from the reference list of published articles, health departments of specific countries, and registries. Independent cohort data from all countries (Argentina, Brazil, Chile, Colombia, Cuba, Mexico, Trinidad and Tobago, and Venezuela) signified a high rate of ICU infections (prevalence: Argentina, 24%; Brazil, 57%). Gram-negative pathogens, predominantly Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli, accounted for >50% of ICU infections, which were often complicated by the presence of multidrug-resistant strains and clonal outbreaks. Empirical use of antimicrobial agents was identified as a strong risk factor for resistance development and excessive mortality. Infection control strategies utilizing hygiene measures and antimicrobial stewardship programs reduced the rate of device-associated infections. To mitigate the poor health outcomes associated with infections by multidrug-resistant Gram-negative bacteria, urgent focus must be placed on infection control strategies and local surveillance programs. PMID:25525515

  19. Prior colonization is associated with increased risk of antibiotic-resistant Gram-negative bacteremia in cancer patients.

    PubMed

    Hess, Aaron S; Kleinberg, Michael; Sorkin, John D; Netzer, Giora; Johnson, Jennifer K; Shardell, Michelle; Thom, Kerri A; Harris, Anthony D; Roghmann, Mary-Claire

    2014-05-01

    We hypothesized that prior colonization with antibiotic-resistant Gram-negative bacteria is associated with increased risk of subsequent antibiotic-resistant Gram-negative bacteremia among cancer patients. We performed a matched case-control study. Cases were cancer patients with a blood culture positive for antibiotic-resistant Gram-negative bacteria. Controls were cancer patients with a blood culture not positive for antibiotic-resistant Gram-negative bacteria. Prior colonization was defined as any antibiotic-resistant Gram-negative bacteria in surveillance or non-sterile-site cultures obtained 2-365 days before the bacteremia. Thirty-two (37%) of 86 cases and 27 (8%) of 323 matched controls were previously colonized by any antibiotic-resistant Gram-negative bacteria. Prior colonization was strongly associated with antibiotic-resistant Gram-negative bacteremia (odds ratio [OR] 7.2, 95% confidence interval [CI] 3.5-14.7) after controlling for recent treatment with piperacillin-tazobactam (OR 2.5, 95% CI 1.3-4.8). In these patients with suspected bacteremia, prior cultures may predict increased risk of antibiotic-resistant Gram-negative bacteremia. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Enhanced susceptibility of mice to combinations of delta 9-tetrahydrocannabinol and live or killed gram-negative bacteria.

    PubMed Central

    Bradley, S G; Munson, A E; Dewey, W L; Harris, L S

    1977-01-01

    Combinations of delta 9-tetrahydrocannabinol (delta 9-THC) and bacterial endotoxin were shown to be hyperadditively toxic for mice. A variety of purified lipopolysaccharide (LPS) preparations elicted enhanced mortality in combination with delta 9-THC. Escherichia coli O26:B6 LPS (Boivin preparation) at an essentially nonlethal dose of 2.5 mg/kg reduced the dose of delta 9-THC required to kill 50% of the treated mice from ca. 350 to 150 mg/kg. Inbred BALB, DBA, and C3H/HeCr mice, noninbred ICR mice, and hybrid CDF1 and BDF1 mice were hyperreactive to combinations of delta 9-THC and LPS. Moreover, a variety of heat-killed intestinal and gram-negative bacteria, live E. coli, and complexes of lipid A with a variety of proteins substituted for LPS in the synergistic toxicity of LPS and delta 9-THC. Extracts of marijuana also elicited hyperreactivity to LPS. The hyperadditive lethality of combinations of delta 9-THC and LPS was markedly less in mice rendered refractory to LPS or delta 9-THC by repeated administration of LPS or delta 9-THC, respectively. PMID:330405

  1. Hematopoietic but Not Endothelial Cell MyD88 Contributes to Host Defense during Gram-negative Pneumonia Derived Sepsis

    PubMed Central

    van Lieshout, Miriam H. P.; Anas, Adam A.; Florquin, Sandrine; Hou, Baidong; van't Veer, Cornelis; de Vos, Alex F.; van der Poll, Tom

    2014-01-01

    Klebsiella pneumoniae is an important cause of sepsis. The common Toll-like receptor adapter myeloid differentiation primary response gene (MyD)88 is crucial for host defense against Klebsiella. Here we investigated the role of MyD88 in myeloid and endothelial cells during Klebsiella pneumosepsis. Mice deficient for MyD88 in myeloid (LysM-Myd88−/−) and myeloid plus endothelial (Tie2-Myd88−/−) cells showed enhanced lethality and bacterial growth. Tie2-Myd88−/− mice reconstituted with control bone marrow, representing mice with a selective MyD88 deficiency in endothelial cells, showed an unremarkable antibacterial defense. Myeloid or endothelial cell MyD88 deficiency did not impact on lung pathology or distant organ injury during late stage sepsis, while LysM-Myd88−/− mice demonstrated a strongly attenuated inflammatory response in the airways early after infection. These data suggest that myeloid but not endothelial MyD88 is important for host defense during gram-negative pneumonia derived sepsis. PMID:25254554

  2. [Structural features and functional mechanism of TonB in some Gram-negative bacteria-A review].

    PubMed

    Liao, Hebin; Liu, Mafeng; Cheng, Anchun

    2015-05-04

    TonB systems of gram-negative bacteria play an important role in transportation of nutriment from outside environments. TonB systems consist of plasma membrane proteins ExbB-ExbD and periplasmic protein TonB, which provide the energy to TonB-dependent receptors to transport substrates. These substrates include iron, hemin, vitamin B12, carbohydrate and some transition metal elements. The energy supporting function of TonB relies on its special structure which contains N-terminal domain for fixation, flexible periplasmic linker Pro-rich domain and C-terminal domain for contacting receptors. The precise mechanism of TonB system is not fully understood though its structural was studied a lot. To provide insights into direction for further research of TonB, we reviewed the TonB-dependent substrates uptake, structural features, functional mechanism and expression regulation of TonB.

  3. Results after Late Polymicrobial, Gram-negative, and Methicillin-resistant Infections in Knee Arthroplasty

    PubMed Central

    Esteban, Jaime; García-Rey, Eduardo

    2010-01-01

    Background Previous studies of knee arthroplasty infections caused by high-virulence organisms suggest poor outcomes. Polymicrobial and Gram-negative infections are less studied. Questions/purposes This study compared the results of treatment of knee arthroplasty infections by single versus polymicrobial isolates, Gram-positive versus Gram-negative, and methicillin-resistant versus -sensitive Staphylococci. Methods We prospectively followed 47 patients with late knee arthroplasty infections. The mean age was 72 years (range, 20–87 years). The treatment protocol included two-stage exchange and a combination of two oral antibiotics given for 6 months. Minimum followup was 1 year (average, 4.8 ± 3 years; range, 1–12 years). Control of the infection was judged by absence of clinical, serologic, and radiologic signs of infection. The functional outcome was evaluated by Knee Society score at the last followup. Results Infection was controlled in all 15 patients with polymicrobial and in 28 of 32 (88%) with monomicrobial infections, in eight of nine patients with Gram-negative and in 35 of 38 (92%) with Gram-positive isolates. Control was also achieved in 22 of 25 patients (88%) infected by methicillin-resistant Staphylococci and in 14 of 14 by methicillin-sensitive Staphylococci. The Knee Society scores averaged 81-63 in patients with polymicrobial infections and were higher than in monomicrobial infections (75-52). The mean KSS was 85-59 in Gram-negative infections compared to 75-55 in Gram-positive infections. The mean KSS was similar in methicillin-resistant (78-54) and methicillin-sensitive Staphylococci (73-56) infections. Conclusions Polymicrobial and Gram-negative infections can be controlled in late knee arthroplasty infections. On the other hand, infections by methicillin-resistant Staphylococci are less likely to be controlled by the regimens we used. Level of Evidence Level II, prognostic study. See Guidelines for Authors for a complete

  4. Genotypic Identification of AmpC β-Lactamases Production in Gram-Negative Bacilli Isolates

    PubMed Central

    Wassef, Mona; Behiry, Iman; Younan, Mariam; El Guindy, Nancy; Mostafa, Sally; Abada, Emad

    2014-01-01

    Background: AmpC type β-lactamases are commonly isolated from extended-spectrum Cephalosporin-resistant Gram-negative bacteria. Also, resistance appeared in bacterial species not naturally producing AmpC enzymes. Therefore, a standard test for the detection of the plasmid-mediated AmpC enzyme and new breakpoints for extended spectrum Cephalosporins are urgently necessary. Objectives: To detect plasmid and chromosomal mediated AmpC-β-lactamases in Gram negative bacteria in community and hospital acquired infections. Materials and Methods: 1073 Gram negative clinical isolates were identified by the conventional methods and were screened for AmpC production using Cefoxitin discs. Confirmatory phenotypic identifications were done for the Cefoxitin-resistant isolates using Boronic Acid for combined and double disc synergy tests, Cloxacillin based double disc synergy test, and induction tests. The genotypic identification of plasmid-mediated AmpC was done using multiplex PCR. ESBL production was also screened by discs of Ceftazidime and Cefotaxime with and without Clavulanic Acid (10 μg). Results: The AmpC-producing isolates among all identified Gram negative bacilli were 5.8% (62/1073) as detected by screening disc diffusion methods, where 72% were positive for AmpC by combined disc method (Cefotetan and Boronic Acid), 56.5% were positive by each of Boronic Acid and Cloxacillin double disc synergy tests, 35.5% were positive by the induction test, and 25.8% were plasmid-mediated AmpC β-lactamase producers by the multiplex PCR. Plasmid-mediated AmpC genes retrieved, belonged to the families (MOX, FOX, EBC and CIT). ESBL producers were found in 26 (41.9%) isolates, 15 (57%) of which also produced AmpC. Isolates caused hospital acquired infections were (53/62); of which (39/62) were AmpC producers. While only (8/62) of the isolates caused community-acquired infections, were AmpC producers, and (1.6%) (1/62) were non AmpC producer. Conclusions: The AmpC

  5. Genotypic Identification of AmpC β-Lactamases Production in Gram-Negative Bacilli Isolates.

    PubMed

    Wassef, Mona; Behiry, Iman; Younan, Mariam; El Guindy, Nancy; Mostafa, Sally; Abada, Emad

    2014-01-01

    AmpC type β-lactamases are commonly isolated from extended-spectrum Cephalosporin-resistant Gram-negative bacteria. Also, resistance appeared in bacterial species not naturally producing AmpC enzymes. Therefore, a standard test for the detection of the plasmid-mediated AmpC enzyme and new breakpoints for extended spectrum Cephalosporins are urgently necessary. To detect plasmid and chromosomal mediated AmpC-β-lactamases in Gram negative bacteria in community and hospital acquired infections. 1073 Gram negative clinical isolates were identified by the conventional methods and were screened for AmpC production using Cefoxitin discs. Confirmatory phenotypic identifications were done for the Cefoxitin-resistant isolates using Boronic Acid for combined and double disc synergy tests, Cloxacillin based double disc synergy test, and induction tests. The genotypic identification of plasmid-mediated AmpC was done using multiplex PCR. ESBL production was also screened by discs of Ceftazidime and Cefotaxime with and without Clavulanic Acid (10 μg). The AmpC-producing isolates among all identified Gram negative bacilli were 5.8% (62/1073) as detected by screening disc diffusion methods, where 72% were positive for AmpC by combined disc method (Cefotetan and Boronic Acid), 56.5% were positive by each of Boronic Acid and Cloxacillin double disc synergy tests, 35.5% were positive by the induction test, and 25.8% were plasmid-mediated AmpC β-lactamase producers by the multiplex PCR. Plasmid-mediated AmpC genes retrieved, belonged to the families (MOX, FOX, EBC and CIT). ESBL producers were found in 26 (41.9%) isolates, 15 (57%) of which also produced AmpC. Isolates caused hospital acquired infections were (53/62); of which (39/62) were AmpC producers. While only (8/62) of the isolates caused community-acquired infections, were AmpC producers, and (1.6%) (1/62) were non AmpC producer. The AmpC β-lactamases detection tests had to be included in the routine microbiology workup of

  6. Survival and detection of coliforms, Enterobacteriaceae, and gram-negative bacteria in Greek yogurt.

    PubMed

    Hervert, C J; Martin, N H; Boor, K J; Wiedmann, M

    2017-02-01

    Despite the widespread use of coliforms as indicator bacteria, increasing evidence suggests that the Enterobacteriaceae (EB) and total gram-negative groups more accurately reflect the hygienic status of high-temperature, short-time pasteurized milk and processing environments. If introduced into milk as postpasteurization contamination, these bacteria may grow to high levels and produce a wide range of sensory-related defects. However, limited information is available on the use and survival of bacterial hygiene indicators in dairy products outside of pasteurized fluid milk and cheese. The goal of this study was to (1) provide information on the survival of a diverse set of bacterial hygiene indicators in the low pH environment of Greek yogurt, (2) compare traditional and alternative detection methods for their ability to detect bacterial hygiene indicators in Greek yogurt, and (3) offer insight into optimal hygiene indicator groups for use in low-pH fermented dairy products. To this end, we screened 64 bacterial isolates, representing 24 dairy-relevant genera, for survival and detection in Greek yogurt using 5 testing methods. Before testing, isolates were inoculated into plain, 0% fat Greek yogurt (pH 4.35 to 4.65), followed by a 12-h hold period at 4 ± 1°C. Yogurts were subsequently tested using Coliform Petrifilm (3M, St. Paul, MN) to detect coliforms; Enterobacteriaceae Petrifilm (3M), violet red bile glucose agar and the D-Count (bioMérieux, Marcy-l'Étoile, France) to detect EB; and crystal violet tetrazolium agar (CVTA) to detect total gram-negative bacteria. Overall, the non-EB gram-negative isolates showed significantly larger log reductions 12 h after inoculation into Greek yogurt (based on bacterial numbers recovered on CVTA) compared with the coliform and noncoliform EB isolates tested. The methods evaluated varied in their ability to detect different microbial hygiene indicators in Greek yogurt. Crystal violet tetrazolium agar detected the highest

  7. Identification of a New Lipoprotein Export Signal in Gram-Negative Bacteria.

    PubMed

    Lauber, Frédéric; Cornelis, Guy Richard; Renzi, Francesco

    2016-10-25

    Bacteria of the phylum Bacteroidetes, including commensal organisms and opportunistic pathogens, harbor abundant surface-exposed multiprotein membrane complexes (Sus-like systems) involved in carbohydrate acquisition. These complexes have been mostly linked to commensalism, and in some instances, they have also been shown to play a role in pathogenesis. Sus-like systems are mainly composed of lipoproteins anchored to the outer membrane and facing the external milieu. This lipoprotein localization is uncommon in most studied Gram-negative bacteria, while it is widespread in Bacteroidetes Little is known about how these complexes assemble and particularly about how lipoproteins reach the bacterial surface. Here, by bioinformatic analyses, we identify a lipoprotein export signal (LES) at the N termini of surface-exposed lipoproteins of the human pathogen Capnocytophaga canimorsus corresponding to K-(D/E)2 or Q-A-(D/E)2 We show that, when introduced in sialidase SiaC, an intracellular lipoprotein, this signal is sufficient to target the protein to the cell surface. Mutational analysis of the LES in this reporter system showed that the amino acid composition, position of the signal sequence, and global charge are critical for lipoprotein surface transport. These findings were further confirmed by the analysis of the LES of mucinase MucG, a naturally surface-exposed C. canimorsus lipoprotein. Furthermore, we identify a LES in Bacteroides fragilis and Flavobacterium johnsoniae surface lipoproteins that allow C. canimorsus surface protein exposure, thus suggesting that Bacteroidetes share a new bacterial lipoprotein export pathway that flips lipoproteins across the outer membrane. Bacteria of the phylum Bacteroidetes are important human commensals and pathogens. Understanding their biology is therefore a key question for human health. A main feature of these bacteria is the presence of abundant lipoproteins at their surface that play a role in nutrient acquisition. To

  8. Acquisition of multidrug-resistant gram-negative bacteria: incidence and risk factors within a long-term care population.

    PubMed

    O'Fallon, Erin; Kandel, Ruth; Kandell, Ruth; Schreiber, Robert; D'Agata, Erika M C

    2010-11-01

    An improved understanding of the transmission dynamics of multidrug-resistant (MDR) gram-negative bacteria and the mechanism of acquisition in long-term care facilities (LTCFs) could aid in the development of prevention strategies specific to LTCFs. We thus investigated the incidence of acquisition of these pathogens among an LTCF population. Prospective cohort study. Three separate wards at a 600-bed LTCF in metropolitan Boston, Massachusetts, during the period October 31, 2006, through October 22, 2007. One hundred seventy-two LTCF residents. A series of rectal samples were cultured to determine acquisition of MDR gram-negative bacteria, defined as absence of MDR gram-negative bacterial colonization at baseline and de novo recovery of MDR gram-negative bacteria from a follow-up culture. Molecular typing was performed to identify genetically linked strains. A nested matched case-control study was performed to identify risk factors associated with acquisition. Among 135 residents for whom at least 1 follow-up culture was performed, 52 (39%) acquired at least 1 MDR gram-negative organism during the study period. Thirty-two residents (62%) had not been colonized at baseline and had acquired at least 1 MDR gram-negative species at follow-up culture, and 20 residents (38%) were colonized at baseline and had acquired at least 1 MDR gram-negative species at follow-up culture. The most common coresistance pattern was resistance to extended-spectrum penicillins, ciprofloxacin, and gentamicin (57 isolates [42.5%]). Genetically related strains of MDR gram-negative bacteria were identified among multiple residents and between roommates. On conditional logistic regression analysis, antibiotic exposure during the study period was significantly associated with acquisition of MDR gram-negative bacteria (odds ratio, 5.6 [95% confidence interval, 1.1-28.7]; P = .04). Acquisition of MDR gram-negative bacteria occurred frequently through resident-to-resident transmission. Existing

  9. [Characteristics of epidemiology and antimicrobial resistance of gram-negative bacterial bloodstream infections in children].

    PubMed

    Dong, L; Zhang, X Y; Li, C C; Li, Z; Xia, Y Q

    2017-09-02

    Objective: To study the epidemiology and antimicrobial resistance of Gram-negative bacterial bloodstream infections in children, and to guide the choice of antimicrobials and the control of nosocomial infection. Method: Clinical data, bacteriology and antimicrobial susceptibility test results were collected retrospectively in hospitalized children who were diagnosed with gram-negative bacterial bloodstream infections in Yuying Children's Hospital of Wenzhou Medical University from January, 2010 to December, 2015. Result: A total of 399 cases (253 male and 146 female) were identified. The age ranged from 16 hours to 16 years (median age 10.1 months). The majority of cases were collected from division of neonatology (n=261, 65.4%), followed by 31 cases (7.8%) from pediatric intensive care unit and 29 cases (7.3%) from Gastroenterology Department; 275 cases (68.9%) had underlying diseases, mainly including preterm birth(n=172), neonatal respiratory distress syndrome(n=67) and newborn asphyxia(n=53). Eighty cases had received invasive procedures and 20 had surgical operation; 149 cases (37.3%) were community-acquired and 250 cases (62.7%) were hospital acquired. Fifty cases had complications, among those, 40 cases had septic shock, 32 cases had multiple organ dysfunction syndrome and 7 cases had disseminated intravascular coagulation; 288 cases were cured, 48 improved, 17 gave up treatment and discharged, and 46 died; totally 408 strains were isolated from 399 children, including Enterobacteriaceae (346, 84.8%), non-fermentative Gram-negative bacteria (49, 12.0%) and other gram-negative bacteria (13, 3.2%). The resistance rates of Escherichia coli (n=175) and Klebsiella pneumoniae (n=106) to carbapenems, β-lactams enzyme and its inhibitors, amikacin and cefoxitin were all lower than 10%. Totally 245 multi-drug resistant strains (60.1%) were isolated, including 225 strains of Enterobacteriaceae and 18 strains of non-fermentative Gram-negative bacteria (P<0.01) . Nine

  10. Positive predictive values of the International Classification of Diseases, 10th revision diagnoses of Gram-negative septicemia/sepsis and urosepsis for presence of Gram-negative bacteremia.

    PubMed

    Søgaard, Kirstine Kobberøe; Thomsen, Reimar Wernich; Schønheyder, Henrik Carl; Søgaard, Mette

    2015-01-01

    Health care databases are a valuable resource for infectious disease epidemiology if diagnoses are accurately coded. We examined the ability of diagnostic coding to accurately identify Gram-negative bacteremia. We randomly selected 100 patients among 1,703 patients recorded in the Danish National Patient Register with a diagnosis of either "septicemia/sepsis due to other Gram-negative organisms" (International Classification of Diseases, 10th revision [ICD-10] code A41.5) or "urosepsis" (ICD-10 code A41.9B) who had been admitted at Aalborg University Hospital, Denmark between 1994 and 2012. We estimated the positive predictive value (PPV) of these diagnoses for presence of Gram-negative bacteremia, using microbiological results from blood cultures as standard reference. Complementary clinical information was obtained from the medical records. Of the 100 patients registered with Gram-negative septicemia/sepsis or urosepsis, 72 had blood culture confirmed Gram-negative bacteremia, four patients had monomicrobial Gram-positive bacteremia, 21 patients had a negative blood culture, and three had no blood culture taken. The overall PPV of a blood culture confirmed Gram-negative bacteremia diagnosis was 72% (95% confidence interval [CI]: 62%-81%); for ICD-10 code A41.5 it was 86% (95% CI: 74%-94%) and for ICD-10 code A41.9B it was 55% (95% CI: 39%-70%). The highest PPV was achieved for diagnoses registered in the most recent calendar period (2009-2012) and for secondary discharge diagnoses. Our findings indicated good agreement between ICD-10 code A41.5 "septicemia/sepsis due to other Gram-negative organisms" and Gram-negative bacteremia, whereas ICD-10 code A41.9B "urosepsis" was not suited for identification of Gram-negative bacteremia.

  11. Evaluation of CHROMagar Orientation for differentiation and presumptive identification of gram-negative bacilli and Enterococcus species.

    PubMed Central

    Merlino, J; Siarakas, S; Robertson, G J; Funnell, G R; Gottlieb, T; Bradbury, R

    1996-01-01

    A new chromogenic plate medium, CHROMagar Orientation, was evaluated for use in the differentiation and presumptive identification of gram-negative bacilli and Enterococcus species by a multipoint inoculation (replicator) technique. In this study, 1,404 gram-negative bacilli and 74 enterococcal isolates were tested on CHROMagar Orientation. Six control American Type Culture Collection strains were also included with the testing to ensure quality control of the media. Of the Escherichia coli isolates (n = 588) tested, 99.3% produced a pink-to-red color. Only in four isolates that were O-nitrophenyl-beta-D-galactopyranoside (ONPG) negative did this result differ. Proteus mirabilis and P. vulgaris were well differentiated on this medium. P. mirabilis (n = 184) produced a clear colony with diffusible brown pigment around the periphery. By contrast, 15 of 16 P. vulgaris isolates produced bluish-green colonies with a slight brown background. All Aeromonas hydrophila isolates (n = 26) tested produced clear to pink colonies at 35 to 37 degrees C. This colony color changed to blue after 2 to 3 h of incubation at room temperature. A. hydrophila exhibited stronger color and better growth at 30 degrees C. Serratia marcescens (n = 29) demonstrated an aqua blue color that deepened to a darker blue when exposed to room temperature. All enterococcal isolates (n = 74) resulted in a blue color and gave pinpoint colonies on purity subcultures at 35 to 37 degrees C after 18 h of incubation. Similarity in color resulted in failure to discriminate accurately between Klebsiella, Enterobacter, and Citrobacter species. However, these species could be readily differentiated from other members of the family Enterobacteriaceae. Pseudomonas aeruginosa (n = 151) was easily differentiated from members of the Enterobacteriaceae but was less easily distinguishable from other gram-negative nonmembers of the Enterobacteriaceae. The medium was found to facilitate easy visual detection of mixed

  12. Comparison of rapid NFT and API 20E with conventional methods for identification of gram-negative nonfermentative bacilli from pharmaceuticals and cosmetics.

    PubMed Central

    Palmieri, M J; Carito, S L; Meyer, R F

    1988-01-01

    The accuracy of the Rapid NFT and the API 20E identification systems was evaluated by comparing them with conventional biochemical methods for the identification of gram-negative, nonfermentative bacilli. The organisms were recovered from preserved, nonsterile pharmaceutical and cosmetic products. A total of 123 test isolates that are commonly encountered in these products were used. By using the criteria of accurate and reliable identification without employing additional tests, Rapid NFT was found to be more accurate after 48 h of incubation than API 20E for characterizing isolates to the species level. Therefore, close agreement between NFT and conventional methods for identification of industrial gram-negative isolates provides evidence that the Rapid NFT system is an improved and rapid method for identifying these organisms to the species level with minimal use of supplementary tests. PMID:3214161

  13. Enhanced visible light photocatalytic disinfection of gram negative, pathogenic Escherichia coli bacteria with Ag/TiV oxide nanoparticles.

    PubMed

    Nair, Ranjith G; Roy, Jetendra Kumar; Samdarshi, S K; Mukherjee, A K

    2011-08-01

    Silver sensitized titanium vanadium mixed Ag/TiV oxide photocatalyst was synthesized using sol-gel technique. The catalyst was characterized using XRD, SEM, EDAX, HRTEM, UV-DRS, XPS, and PL analysis which reveal the formation of a predominantly rutile mixed phase nanoparticles of 25-30 nm crystallite size. The catalyst showed a marked red-shift in the absorption spectrum compared to Degussa P25. It exhibited a remarkable enhancement in the visible light photocatalytic activity in inactivating Escherichia coli, a gram-negative pathogenic bacterium, too. The conclusions are supported by a comparison with an identically synthesized TiV oxide sample. A microbicidal photonic efficiency (MPE) has been defined and a method for its determination has been proposed to facilitate quantification of the performance of the photocatalyst and the disinfection system taking into account the response of the catalyst to the radiation intensity.

  14. Peptidoglycan-associated lipoprotein (Pal) of Gram-negative bacteria: function, structure, role in pathogenesis and potential application in immunoprophylaxis.

    PubMed

    Godlewska, Renata; Wiśniewska, Katarzyna; Pietras, Zbigniew; Jagusztyn-Krynicka, Elzbieta Katarzyna

    2009-09-01

    The protein Pal (peptidoglycan-associated lipoprotein) is anchored in the outer membrane (OM) of Gram-negative bacteria and interacts with Tol proteins. Tol-Pal proteins form two complexes: the first is composed of three inner membrane Tol proteins (TolA, TolQ and TolR); the second consists of the TolB and Pal proteins linked to the cell's OM. These complexes interact with one another forming a multiprotein membrane-spanning system. It has recently been demonstrated that Pal is essential for bacterial survival and pathogenesis, although its role in virulence has not been clearly defined. This review summarizes the available data concerning the structure and function of Pal and its role in pathogenesis.

  15. Antimicrobial-resistant Gram-negative bacteria in febrile neutropenic patients with cancer: current epidemiology and clinical impact.

    PubMed

    Trecarichi, Enrico M; Tumbarello, Mario

    2014-04-01

    In the recent years, several studies involving cancer patients have demonstrated a clear trend in the epidemiology of bacterial infections showing a shift in the prevalence from Gram-positive to Gram-negative bacteria and the extensive emergence of antimicrobial-resistant strains among Gram-negatives isolated from the blood. The aim of this systematic review was to examine the recent trends in epidemiology and antimicrobial resistance in Gram-negatives recovered from neutropenic cancer patients, with particular emphasis on the impact of antimicrobial resistance on the clinical outcome of severe infections caused by such microorganisms. Overall, from 2007 to date, the rate of Gram-negative bacteria recovery ranged from 24.7 to 75.8% (mean 51.3%) in cancer patient cohorts. Escherichia coli represented the most common species (mean frequency of isolation 32.1%) among the Gram-negatives, followed by Pseudomonas aeruginosa (mean frequency of isolation 20.1%). An increasing frequency of Acinetobacter spp. and Stenotrophomonas maltophilia was also reported. Increased rates of multidrug-resistant Gram-negative strains have been highlighted among Enterobacteriaceae and nonfermenting Gram-negative rods, despite discontinuation of fluoroquinolone-based antibacterial prophylaxis for neutropenic patients. In addition, antimicrobial resistance and/or the inadequacy of empirical antibiotic treatment have been frequently linked to a worse outcome in cancer patients with bloodstream infections caused by Gram-negative isolates. Sound knowledge of the local distribution of pathogens and their susceptibility patterns and prompt initiation of effective antimicrobial treatment for severe infections caused by Gram-negative bacteria are essential in cancer patients.

  16. Co-existence of Legionella and other Gram-negative bacteria in potable water from various rural and urban sources.

    PubMed

    Stojek, Nimfa Maria; Dutkiewicz, Jacek

    2011-01-01

    A total of 320 potable water samples were collected from various rural and urban sources located in the Lublin region of eastern Poland. They comprised: 55 samples of treated (chlorinated) tap water from rural dwellings distributed by the municipal water supply system (MWSS), 111 samples of treated tap water from urban dwellings distributed by the MWSS, 45 samples of untreated well water from household wells and 109 samples from private water supply systems (PWSS) distributing untreated well water. Water samples were examined for the presence and species composition of Legionella, Yersinia, Gram-negative bacteria belonging to family Enterobacteriaceae (GNB-E) and Gram-negative bacteria not belonging to the family Enterobacteriaceae (GNB-NE), by filtering through cellulose filters and culture on respectively GVPC, CIN, EMB and tryptic soya agar media. The occurrence of Legionella in the samples taken from the outlets of the urban MWSS was high (77.5%), and significantly greater compared to frequencies noted in rural MWSS (7.3%), and samples of well water from household wells (28.9%) and PWSS (13.8%) (p<0.001). Strains L. pneumophila serogroups 2-14, L. pneumophila serogroup 1 and Legionella spp. (species other than L. pneumophila) formed respectively 64.3%, 17.5%, and 18.2% of total isolates from urban MWSS, 100%, 0, and 0 of those from rural MWSS, 69.2%, 7.7%, and 23.1% of those from household wells, and 66.7%, 0, and 33.3% of those from PWSS. The concentration of Legionella strains in the positive samples from urban MWSS exceeded the threshold limit value of 100 cfu/100 ml in 86.1%, while in the other sources this value was not exceeded. No Yersinia strains were isolated from the examined water samples. Altogether 8 species or genera of Gram-negative bacteria belonging to Enterobacteriaceae family (GNB-E) and 10 species or genera of Gram-negative bacteria not belonging to the Enterobacteriaceae family (GNB-NE) were found in the examined samples. In the MWSS

  17. Low antibiotic resistance among anaerobic Gram-negative bacteria in periodontitis 5 years following metronidazole therapy.

    PubMed

    Dahlen, G; Preus, H R

    2017-02-01

    The objective of this study was to assess antibiotic susceptibility among predominant Gram-negative anaerobic bacteria isolated from periodontitis patients who 5 years prior had been subject to mechanical therapy with or without adjunctive metronidazole. One pooled sample was taken from the 5 deepest sites of each of 161 patients that completed the 5 year follow-up after therapy. The samples were analyzed by culture. A total number of 85 anaerobic strains were isolated from the predominant subgingival flora of 65/161 patient samples, identified, and tested for antibiotic susceptibility by MIC determination. E-tests against metronidazole, penicillin, amoxicillin, amoxicillin + clavulanic acid and clindamycin were employed. The 73/85 strains were Gram-negative rods (21 Porphyromonas spp., 22 Prevotella/Bacteroides spp., 23 Fusobacterium/Filifactor spp., 3 Campylobacter spp. and 4 Tannerella forsythia). These were all isolated from the treated patients irrespective of therapy procedures (+/-metronidazole) 5 years prior. Three strains (Bifidobacterium spp., Propionibacterium propionicum, Parvimonas micra) showed MIC values for metronidazole over the European Committee on Antimicrobial Susceptibility Testing break point of >4 μg/mL. All Porphyromonas and Tannerella strains were highly susceptible. Metronidazole resistant Gram-negative strains were not found, while a few showed resistance against beta-lactam antibiotics. In this population of 161 patients who had been subject to mechanical periodontal therapy with or without adjunct metronidazole 5 years prior, no cultivable antibiotic resistant anaerobes were found in the predominant subgingival microbiota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Emergence of multidrug-resistant NDM-1-producing Gram-negative bacteria in Bangladesh.

    PubMed

    Islam, M A; Talukdar, P K; Hoque, A; Huq, M; Nabi, A; Ahmed, D; Talukder, K A; Pietroni, M A C; Hays, J P; Cravioto, A; Endtz, H P

    2012-10-01

    The main objective of this study was to investigate the prevalence of bla (NDM-1) in Gram-negative bacteria in Bangladesh. In October 2010 at the International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B) laboratories, 1,816 consecutive clinical samples were tested for imipenem-resistant Gram-negative organisms. Imipenem-resistant isolates were tested for the bla (NDM-1) gene. Among 403 isolates, 14 (3.5 %) were positive for bla (NDM-1), and the predominant species were Klebsiella pneumoniae, Acinetobacter baumannii, and Escherichia coli. All bla (NDM-1)-positive isolates were resistant to multiple antibiotics. Among β-lactamase genes, bla (CTX-M-1-group) was detected in ten isolates (eight bla (CTX-M-15)), bla (OXA-1-group) in six, bla (TEM) in nine, bla (SHV) in seven, and bla (VIM) and bla (CMY) in two isolates each. The 16S rRNA methylase gene, armA, was detected in five K. pneumoniae isolates and in one E. coli isolate. rmtB and rmtC were detected in a Citrobacter freundii and two K. pneumoniae isolates, respectively. qnr genes were detected in two K. pneumoniae isolates (one qnrB and one qnrS) and in an E. coli isolate (qnrA). Transferable plasmids (60-100 MDa) carrying bla (NDM-1) were detected in 7 of the 11 plasmid-containing isolates. Pulsed-field gel electrophoresis (PFGE) analysis grouped K. pneumoniae isolates into three clusters, while E. coli isolates differed significantly from each other. This study reports that approximately 3.5 % of Gram-negative clinical isolates in Bangladesh are NDM-1-producing.

  19. Mid-infrared spectroscopic assessment of nanotoxicity in gram-negative vs. gram-positive bacteria.

    PubMed

    Heys, Kelly A; Riding, Matthew J; Strong, Rebecca J; Shore, Richard F; Pereira, M Glória; Jones, Kevin C; Semple, Kirk T; Martin, Francis L

    2014-03-07

    Nanoparticles appear to induce toxic effects through a variety of mechanisms including generation of reactive oxygen species (ROS), physical contact with the cell membrane and indirect catalysis due to remnants from manufacture. The development and subsequent increasing usage of nanomaterials has highlighted a growing need to characterize and assess the toxicity of nanoparticles, particularly those that may have detrimental health effects such as carbon-based nanomaterials (CBNs). Due to interactions of nanoparticles with some reagents, many traditional toxicity tests are unsuitable for use with CBNs. Infrared (IR) spectroscopy is a non-destructive, high throughput technique, which is unhindered by such problems. We explored the application of IR spectroscopy to investigate the effects of CBNs on Gram-negative (Pseudomonas fluorescens) and Gram-positive (Mycobacterium vanbaalenii PYR-1) bacteria. Two types of IR spectroscopy were compared: attenuated total reflection Fourier-transform infrared (ATR-FTIR) and synchrotron radiation-based FTIR (SR-FTIR) spectroscopy. This showed that Gram-positive and Gram-negative bacteria exhibit differing alterations when exposed to CBNs. Gram-positive bacteria appear more resistant to these agents and this may be due to the protection afforded by their more sturdy cell wall. Markers of exposure also vary according to Gram status; Amide II was consistently altered in Gram-negative bacteria and carbohydrate altered in Gram-positive bacteria. ATR-FTIR and SR-FTIR spectroscopy could both be applied to extract biochemical alterations induced by each CBN that were consistent across the two bacterial species; these may represent potential biomarkers of nanoparticle-induced alterations. Vibrational spectroscopy approaches may provide a novel means of fingerprinting the effects of CBNs in target cells.

  20. Isolation and Chemical Characterization of Lipid A from Gram-negative Bacteria

    PubMed Central

    Henderson, Jeremy C.; O'Brien, John P.; Brodbelt, Jennifer S.; Trent, M. Stephen

    2013-01-01

    Lipopolysaccharide (LPS) is the major cell surface molecule of gram-negative bacteria, deposited on the outer leaflet of the outer membrane bilayer. LPS can be subdivided into three domains: the distal O-polysaccharide, a core oligosaccharide, and the lipid A domain consisting of a lipid A molecular species and 3-deoxy-D-manno-oct-2-ulosonic acid residues (Kdo). The lipid A domain is the only component essential for bacterial cell survival. Following its synthesis, lipid A is chemically modified in response to environmental stresses such as pH or temperature, to promote resistance to antibiotic compounds, and to evade recognition by mediators of the host innate immune response. The following protocol details the small- and large-scale isolation of lipid A from gram-negative bacteria. Isolated material is then chemically characterized by thin layer chromatography (TLC) or mass-spectrometry (MS). In addition to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS, we also describe tandem MS protocols for analyzing lipid A molecular species using electrospray ionization (ESI) coupled to collision induced dissociation (CID) and newly employed ultraviolet photodissociation (UVPD) methods. Our MS protocols allow for unequivocal determination of chemical structure, paramount to characterization of lipid A molecules that contain unique or novel chemical modifications. We also describe the radioisotopic labeling, and subsequent isolation, of lipid A from bacterial cells for analysis by TLC. Relative to MS-based protocols, TLC provides a more economical and rapid characterization method, but cannot be used to unambiguously assign lipid A chemical structures without the use of standards of known chemical structure. Over the last two decades isolation and characterization of lipid A has led to numerous exciting discoveries that have improved our understanding of the physiology of gram-negative bacteria, mechanisms of antibiotic resistance, the human innate

  1. Restrictive antibiotic stewardship associated with reduced hospital mortality in gram-negative infection.

    PubMed

    Ritchie, N D; Irvine, S C; Helps, A; Robb, F; Jones, B L; Seaton, R A

    2017-03-01

    : Antimicrobial stewardship has an important role in the control of Clostridium difficile infection (CDI) and antibiotic resistance. An important component of UK stewardship interventions is the restriction of broad-spectrum beta-lactam antibiotics and promotion of agents associated with a lower risk of CDI such as gentamicin. While the introduction of restrictive antibiotic guidance has been associated with improvements in CDI and antimicrobial resistance, evidence of the effect on outcome following severe infection is lacking. : In 2008, Glasgow hospitals introduced a restrictive antibiotic guideline. A retrospective before/after study assessed outcome following Gram-negative bacteraemia in the 2-year period around implementation. : Introduction of restrictive antibiotic guidelines was associated with a reduction in utilization of ceftriaxone and co-amoxiclav and an increase in amoxicillin and gentamicin. Approximately 1593 episodes of bacteremia were included in the study. The mortality over 1-year following Gram-negative bacteraemia was lower in the period following guideline implementation (RR 0.852, P  = 0.045). There was no evidence of a difference in secondary outcomes including ITU admission, length of stay, readmission, recurrence of bacteraemia and need for renal replacement therapy. There was a fall in CDI (RR 0.571, P  = 0.014) and a reduction in bacterial resistance to ceftriaxone and co-amoxiclav but no evidence of an increase in gentamicin resistance after guideline implementation. : Restrictive antibiotic guidelines were associated with a reduction in CDI and bacterial resistance but no evidence of adverse outcomes following Gram-negative bacteraemia. There was a small reduction in one year mortality.

  2. Effect of Spaceflight on Ability of Monocytes To Respond to Endotoxins of Gram-Negative Bacteria▿

    PubMed Central

    Kaur, Indreshpal; Simons, Elizabeth R.; Kapadia, Asha S.; Ott, C. Mark; Pierson, Duane L.

    2008-01-01

    Astronauts live and work in relatively crowded, confined environments on the Space Shuttle and the International Space Station. They experience a unique set of stressors that contribute to a diminishment of many immune responses. This study investigated the ability of the shuttle crew members' monocytes to respond to gram-negative endotoxin that they could encounter during infections. Blood specimens were collected from 20 crew members and 15 control subjects 10 days before launch, 3 to 4 h after landing, and 15 days after landing and from crew members during their annual medical examination at 6 to 12 months after landing. When challenged with gram-negative endotoxin, the crew member's monocytes collected at all three time points produced lower levels of interleukin-6 (IL-6) and IL-1β and higher levels of IL-1ra and IL-8 compared to those of control subjects. Cytokines were assessed by measuring the number of cells positive for intracellular cytokines. These values returned to normal 6 to 12 months after landing, except for IL-1ra, which was still higher (five- to sixfold) than in controls. This phenomenon was accompanied by an increased expression of Toll-like receptor 4 and decreased expression of CD14 on the crew members' monocytes at all time points. There were also increased levels of the lipopolysaccharide binding protein in the plasma of the crew members 3 to 4 h and 15 days after landing. This study shows that spaceflight-associated factors (in-flight and preflight) modulate the response of monocytes to gram-negative endotoxins. PMID:18768671

  3. Outer-inner membrane vesicles naturally secreted by gram-negative pathogenic bacteria.

    PubMed

    Pérez-Cruz, Carla; Delgado, Lidia; López-Iglesias, Carmen; Mercade, Elena

    2015-01-01

    Outer-inner membrane vesicles (O-IMVs) were recently described as a new type of membrane vesicle secreted by the Antarctic bacterium Shewanella vesiculosa M7T. Their formation is characterized by the protrusion of both outer and plasma membranes, which pulls cytoplasmic components into the vesicles. To demonstrate that this is not a singular phenomenon in a bacterium occurring in an extreme environment, the identification of O-IMVs in pathogenic bacteria was undertaken. With this aim, a structural study by Transmission Electron Microscopy (TEM) and Cryo-transmission electron microscopy (Cryo-TEM) was carried out, confirming that O-IMVs are also secreted by Gram-negative pathogenic bacteria such as Neisseria gonorrhoeae, Pseudomonas aeruginosa PAO1 and Acinetobacter baumannii AB41, in which they represent between 0.23% and 1.2% of total vesicles produced. DNA and ATP, which are components solely found in the cell cytoplasm, were identified within membrane vesicles of these strains. The presence of DNA inside the O-IMVs produced by N. gonorrhoeae was confirmed by gold DNA immunolabeling with a specific monoclonal IgM against double-stranded DNA. A proteomic analysis of N. gonorrhoeae-derived membrane vesicles identified proteins from the cytoplasm and plasma membrane. This confirmation of O-IMV extends the hitherto uniform definition of membrane vesicles in Gram-negative bacteria and explains the presence of components in membrane vesicles such as DNA, cytoplasmic and inner membrane proteins, as well as ATP, detected for the first time. The production of these O-IMVs by pathogenic Gram-negative bacteria opens up new areas of study related to their involvement in lateral gene transfer, the transfer of cytoplasmic proteins, as well as the functionality and role of ATP detected in these new vesicles.

  4. Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria.

    PubMed

    Tängdén, Thomas

    2014-05-01

    Combination antibiotic therapy for Gram-negative sepsis is controversial. The present review provides a brief summary of the existing knowledge on combination therapy for severe infections with multidrug-resistant Pseudomonas spp., Acinetobacter spp., and Enterobacteriaceae. Empirical combination antibiotic therapy is recommended for severe sepsis and septic shock to reduce mortality related to inappropriate antibiotic treatment. Because definitive combination therapy has not been proven superior to monotherapy in meta-analyses, it is generally advised to de-escalate antibiotic therapy when the antibiotic susceptibility profile is known, although it cannot be excluded that some subgroups of patients might still benefit from continued combination therapy. Definitive combination therapy is recommended for carbapenemase-producing Enterobacteriaceae and should also be considered for severe infections with Pseudomonas and Acinetobacter spp. when beta-lactams cannot be used. Because resistance to broad-spectrum beta-lactams is increasing in Gram-negative bacteria and because no new antibiotics are expected to become available in the near future, the antibacterial potential of combination therapy should be further explored. In vitro data suggest that combinations can be effective even if the bacteria are resistant to the individual antibiotics, although existing evidence is insufficient to support the choice of combinations and explain the synergistic effects observed. In vitro models can be used to screen for effective combinations that can later be validated in animal or clinical studies. Further, in the absence of clinical evidence, in vitro data might be useful in supporting therapeutic decisions for severe infections with multidrug-resistant Gram-negative bacteria.

  5. In Vitro Antibacterial Activity of Several Plant Extracts and Oils against Some Gram-Negative Bacteria

    PubMed Central

    Al-Mariri, Ayman; Safi, Mazen

    2014-01-01

    Background: Medicinal plants are considered new resources for producing agents that could act as alternatives to antibiotics in the treatment of antibiotic-resistant bacteria. The aim of this study was to evaluate the antibacterial activity of 28 plant extracts and oils against four Gram-negative bacterial species. Methods: Experimental, in vitro, evaluation of the activities of 28 plant extracts and oils as well as some antibiotics against E. coli O157:H7, Yersinia enterocolitica O9, Proteus spp., and Klebsiella pneumoniae was performed. The activity against 15 isolates of each bacterium was determined by disc diffusion method at a concentration of 5%. Microdilution susceptibility assay was used in order to determine the minimal inhibitory concentrations (MICs) of the plant extracts, oils, and antibiotics. Results: Among the evaluated herbs, only Origanum syriacum L., Thymus syriacus Boiss., Syzygium aromaticum L., Juniperus foetidissima Wild, Allium sativum L., Myristica fragrans Houtt, and Cinnamomum zeylanicum L. essential oils and Laurus nobilis L. plant extract showed anti-bacterial activity. The MIC50 values of these products against the Gram-negative organisms varied from 1.5 (Proteus spp. and K. pneumoniae( and 6.25 µl/ml (Yersinia enterocolitica O9 ) to 12.5 µl/ml (E. coli O:157). Conclusion: Among the studied essential oils, O. syriacum L., T. syriacus Boiss., C. zeylanicum L., and S. aromaticum L. essential oils were the most effective. Moreover, Cephalosporin and Ciprofloxacin were the most effective antibiotics against almost all the studied bacteria. Therefore, O. syriacum L., T. syriacus Boiss., C. zeylanicum L., and S. aromaticum L. could act as bactericidal agents against Gram-negative bacteria. PMID:24453392

  6. Clinical Features and Risk Factors for Development of Breakthrough Gram-Negative Bacteremia during Carbapenem Therapy.

    PubMed

    Lee, Ji-Yong; Kang, Cheol-In; Ko, Jae-Hoon; Lee, Woo Joo; Seok, Hye-Ri; Park, Ga Eun; Cho, Sun Young; Ha, Young Eun; Chung, Doo Ryeon; Lee, Nam Yong; Peck, Kyong Ran; Song, Jae-Hoon

    2016-11-01

    With the increasing use of carbapenems, carbapenem-resistant Gram-negative bacteria have become a major concern in health care-associated infections. The present study was performed to evaluate the clinical and microbiological features of breakthrough Gram-negative bacteremia (GNB) during carbapenem therapy and to assess risk factors for development of breakthrough GNB. A case-control study was performed at a tertiary hospital from 2005 to 2014. Case patients were defined as individuals whose blood cultures grew Gram-negative bacteria while the patients were receiving carbapenems for at least 48 h before breakthrough GNB. Age-, sex-, and date-matched controls were selected from patients who received carbapenem for at least 48 h and did not develop breakthrough GNB during carbapenem treatment. A total of 101 cases of breakthrough GNB were identified and compared to 100 controls. The causative microorganisms for breakthrough GNB were Stenotrophomonas maltophilia (n = 33), Acinetobacter baumannii (n = 32), Pseudomonas aeruginosa (n = 21), and others (n = 15). Approximately 90% of S. maltophilia isolates were susceptible to levofloxacin and trimethoprim-sulfamethoxazole. The most common infection types were primary bacteremia (38.6%) and respiratory infections (35.6%). More than half of the patients died within a week after bacteremia, and the 30-day mortality rate was 70.3%. In a multivariate analysis, a longer hospital stay, hematologic malignancy, persistent neutropenia, immunosuppressant use, and previous colonization by causative microorganisms were significantly associated with breakthrough GNB. Our data suggest that S. maltophilia, A. baumannii, and P. aeruginosa are the major pathogens of breakthrough GNB during carbapenem therapy, in association with a longer hospital stay, hematologic malignancy, persistent neutropenia, immunosuppressant use, and previous colonization. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Surveillance and correlation of antibiotic prescription and resistance of Gram-negative bacteria in Singaporean hospitals.

    PubMed

    Hsu, Li-Yang; Tan, Thean-Yen; Tam, Vincent H; Kwa, Andrea; Fisher, Dale Andrew; Koh, Tse-Hsien

    2010-03-01

    A surveillance study was performed in four Singapore public hospitals from 2006 to 2008 to determine the correlation between antibiotic prescription and Gram-negative bacterial antimicrobial resistance. Targeted organisms included ceftriaxone- and ciprofloxacin-resistant Escherichia coli and Klebsiella pneumoniae, as well as imipenem-resistant Pseudomonas aeruginosa and Acinetobacter spp. Antibiotic prescription data were collated in the WHO anatomical therapeutic chemical (ATC)/defined daily dose (DDD) format, while antibiotic resistance was expressed as incidence density adjusted for total inpatient-days every quarter. Individual trends were determined by linear regression, while possible associations between antibiotic prescription and resistance were evaluated via cross-correlation analysis. Results over 3 years indicated significantly rising incidence densities of ceftriaxone- and ciprofloxacin-resistant E. coli and imipenem-resistant Acinetobacter spp. (blood isolates only). Antimicrobial-resistant Klebsiella pneumoniae rates declined. The prescription rates of piperacillin-tazobactam, ertapenem, meropenem, ciprofloxacin, and levofloxacin increased significantly, while imipenem and moxifloxacin prescription decreased. Cross-correlation analysis demonstrated possible associations between prescription of fluoroquinolones and ciprofloxacin-resistant E. coli (R(2) = 0.46), fluoroquinolones and ceftriaxone-resistant E. coli (R(2) = 0.47), and carbapenems and imipenem-resistant Acinetobacter spp. (R(2) = 0.48), all at zero time lag. Changes in meropenem prescription were associated with a similar trend in imipenem-resistant Acinetobacter blood isolates after a 3-month time lag. No correlation was found between cephalosporin use and resistance. In conclusion, our data demonstrated correlation between prescription of and Gram-negative bacterial resistance to several, but not all, key antimicrobial agents in Singapore hospitals. In areas where Gram-negative bacterial

  8. Oral care and oropharyngeal and tracheal colonization by Gram-negative pathogens in children.

    PubMed

    Kusahara, Denise Miyuki; Friedlander, Lais Tambelli; Peterlini, Maria Angélica Sorgini; Pedreira, Mavilde Luz Gonçalves

    2012-01-01

    Critical care nursing interventions to oral care can reduce microorganisms in the oropharynx available for translocation. To analyse the effect of 0·12% chlorhexidine digluconate on the colonization of oropharyngeal and tracheal secretions by Gram-negative pathogens in mechanically ventilated children. A randomized, controlled and double-blinded study was performed in the paediatric intensive care unit (PICU) of a Brazilian university hospital. Exclusion criteria included child age under 28 days, pneumonia diagnosis at admission, use of tracheostomy, PICU length of stay (LOS) less than 48 h and refusal to participate. Children were randomly allocated to the interventional group (IG), in which oral care with chlorhexidine was administered, or to the placebo group (PG), which received oral care without antiseptic use. The data were analysed through Pearson's χ(2) test, Fisher's exact and ANOVA tests with significance levels set at 0·05. The demographic characteristics of the 74 children were not statistically different between groups. No between-group differences in oropharyx colonization by Gram-negative pathogens were identified (p = 0·316). Pathogens were isolated in the tracheal secretions of two (10·0%) children in the PG and four (19·0%) children in the IG (p = 0·355). The use of chlorhexidine did not significantly influence the colonization of oropharyngeal and tracheal secretions by Gram-negative pathogens of the studied sample. This study demonstrated no influence of a specific antiseptic agent on colonization profile of mechanically ventilated children in PICU. Further research in this field is necessary to promote evidence-based nursing practice on oral care of critically ill children. © 2012 The Authors. Nursing in Critical Care © 2012 British Association of Critical Care Nurses.

  9. Multicenter evaluation of the Verigene Gram-negative blood culture nucleic acid test for rapid detection of bacteria and resistance determinants in positive blood cultures.

    PubMed

    Uno, Naoki; Suzuki, Hiromichi; Yamakawa, Hiromi; Yamada, Maiko; Yaguchi, Yuji; Notake, Shigeyuki; Tamai, Kiyoko; Yanagisawa, Hideji; Misawa, Shigeki; Yanagihara, Katsunori

    2015-12-01

    The Verigene Gram-Negative Blood Culture Nucleic Acid Test (BC-GN) is a microarray-based assay that enables rapid detection of 9 common Gram-negative bacteria and 6 resistance determinants directly from positive blood cultures. We compared the performance of BC-GN with currently used automated systems, testing 141 clinical blood cultures and 205 spiked blood cultures. For identification of BC-GN target organisms in clinical and spiked blood cultures, the BC-GN assay showed 98.5% (130/132) and 98.9% (182/184) concordance, respectively. Of 140 resistance genes positively detected in clinical and spiked blood cultures with the BC-GN test, 139 (99.3%) were confirmed by PCR, and the detection results were consistent with the resistance phenotypes observed. The BC-GN assay, thus, can potentially improve care for sepsis patients by enabling timely detection and targeted antimicrobial therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions

    PubMed Central

    Schwechheimer, Carmen; Kuehn, Meta J.

    2017-01-01

    Outer-membrane vesicles (OMVs) are spherical buds of the outer membrane filled with periplasmic content and are commonly produced by Gram-negative bacteria. The production of OMVs allows bacteria to interact with their environment, and OMVs have been found to mediate diverse functions, including promoting pathogenesis, enabling bacterial survival during stress conditions and regulating microbial interactions within bacterial communities. Additionally, because of this functional versatility, researchers have begun to explore OMVs as a platform for bioengineering applications. In this Review, we discuss recent advances in the study of OMVs, focusing on new insights into the mechanisms of biogenesis and the functions of these vesicles. PMID:26373371

  11. Role of Gram-Negative Bacteria and Their Endotoxins in Rat Death after Heat Stress,

    DTIC Science & Technology

    1981-02-26

    PERIOD COVERED S Role of Gram-Negative Bacteria and their Endotoxins in Rat Death after Heat Stress tle 6. PERFORMING ORG. REPORT NUMBER M 4/81 S7...AUTHOR(e) . CONTRACT OR GRANT NUMBER(&) D. A. DuBose, K. Basamania, L. Maglione , and J. Rowlands 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM...Block 20, ,if diffrent from Rejlgir )ll’..;’ J.- : m NIA :’" EB I ] 18. SUPPLEMENTARY NOTES A N/A IS. KEY WORDS (Continue on reverse side if necessary

  12. The Outer Membrane of Gram-negative Bacteria: Lipid A Isolation and Characterization

    PubMed Central

    Needham, Brittany D.; Brodbelt, Jennifer S.; Trent, M. Stephen

    2016-01-01

    Summary The isolation and characterization of the lipid A domain of lipopolysaccharide (LPS) are important methodologies utilized to gain understanding of the Gram-negative cell envelope. Here, we describe protocols often employed by our laboratory for small- and large-scale isolation of lipid A from bacterial cells. Additionally, we describe various methodologies including isolation of radiolabeled lipid A, thin layer chromatography, and various mass spectrometry methods. Tandem mass spectrometry is an integral tool for the structural characterization of lipid A molecules, and both coventional collision induced dissociation (CID) and new ultraviolet photodissociation (UVPD) methods are described. PMID:23299739

  13. Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria

    PubMed Central

    Berne, Cécile; Ducret, Adrien; Hardy, Gail G; Brun, Yves V.

    2015-01-01

    During the first step of biofilm formation, initial attachment is dictated by physicochemical and electrostatic interactions between the surface and the bacterial envelope. Depending upon the nature of these interactions, attachment can be transient or permanent. To achieve irreversible attachment, bacterial cells have developed a series of surface adhesins promoting specific or non-specific adhesion under various environmental conditions. This chapter will review the recent advances in our understanding of the secretion, assembly and regulation of the bacterial adhesins during biofilm formation with a particular emphasis on the fimbrial, non-fimbrial and discrete polysaccharide adhesins in Gram-negative bacteria. PMID:26350310

  14. Prostate abscess: MRSA spreading its influence into Gram-negative territory: case report and literature review.

    PubMed

    Deshpande, Aartee; Haleblian, George; Rapose, Alwyn

    2013-03-25

    Prostate abscess is a rare complication of an ascending urinary tract infection (UTI). Its incidence has reduced secondary to routine and early use of antibiotics for treatment of UTIs. Prostate abscess has been reported in patients with uncontrolled diabetes, prolonged indwelling urinary catheters, prostate biopsy or other instrumentation of lower urinary tract. Prostate abscess is most commonly associated with Gram-negative bacteria. Staphylococcus aureus is rarely implicated and has been reported in patients with underlying risk factors like long-term or uncontrolled diabetes, intravenous drug abuse or bacteraemia. We present a rare case of prostate abscess due to methicillin resistant S aureus without obvious risk factors.

  15. Polymicrobial tenosynovitis with Pasteurella multocida and other gram negative bacilli after a Siberian tiger bite.

    PubMed

    Isotalo, P A; Edgar, D; Toye, B

    2000-11-01

    Mammalian bites present a considerable clinical problem because they are often associated with bacterial infections. Pasteurella multocida is a microorganism that commonly infects both canine and small feline bites. Zoonotic infections developing after large feline bites have been recognised, although their reports are limited. We describe a 35 year old man who was bitten by a Siberian tiger and who developed infectious tenosynovitis secondary to P multocida, Bergeyella (Weeksella) zoohelcum, and Gram negative bacteria most like CDC group EF-4b and comamonas species. The latter three bacteria have not been isolated previously from large feline bite wounds.

  16. Resistance to aminoglycoside antibiotics of gram-negative bacilli isolated in Canadian hospitals.

    PubMed Central

    Duncan, I B; Cheung, E Y; Haldane, E V; Jackson, F L; McNaughton, R D; Morisset, R A; Noble, M A; Rennie, R P; Ronald, A R; Smith, J A

    1981-01-01

    A survey was made of the frequency of resistance to amikacin, gentamicin and tobramycin among aerobic gram-negative bacilli isolated over a 4-week period in 1979 at six large, geographically separated Canadian hospitals. In the entire series of 4407 isolates the frequency of resistance was 2.5% to amikacin, 8.1% to gentamicin, 5.9% to tobramycin and 1.7% to all three. Most (81%) of the resistant bacteria were acquired by the patients after admission to hospital. The frequency of resistance to the three aminoglycoside antibiotics in each hospital largely reflected the local rate of cross-infection by endemic strains of resistant bacteria. PMID:7237336

  17. Polymicrobial infections involving clinically relevant Gram-negative bacteria and fungi.

    PubMed

    Dhamgaye, Sanjiveeni; Qu, Yue; Peleg, Anton Y

    2016-12-01

    Interactions between fungi and bacteria and their relevance to human health and disease have recently attracted increased attention in biomedical fields. Emerging evidence shows that bacteria and fungi can have synergistic or antagonistic interactions, each with important implications for human colonization and disease. It is now appreciated that some of these interactions may be strategic and helps promote the survival of one or both microorganisms within the host. This review will shed light on clinically relevant interactions between fungi and Gram-negative bacteria. Mechanism of interaction, host immune responses, and preventive measures will also be reviewed. © 2016 John Wiley & Sons Ltd.

  18. Teaching ‘Old’ Polymyxins New Tricks: New-Generation Lipopeptides Targeting Gram-Negative ‘Superbugs’

    PubMed Central

    2015-01-01

    The antimicrobial lipopeptides polymyxin B and E (colistin) are being used as a ‘last-line’ therapy for infections caused by multidrug-resistant Gram-negative pathogens. Polymyxin resistance implies a total lack of antibiotics for the treatment of life-threatening infections caused by the Gram-negative ‘superbugs’. This report details the structure–activity relationships (SAR) based design, in toto synthesis, and preclinical evaluation of a series of novel polymyxin lipopeptides with better antibacterial activity against polymyxin-resistant Gram-negative bacteria. PMID:24601489

  19. Random transposon vectors pUTTns for the markerless integration of exogenous genes into gram-negative eubacteria chromosomes.

    PubMed

    Li, Rong; Wang, Guangli; Shen, Bin; Wang, Rong; Song, Yao; Li, Shunpeng; Jiang, Jiandong

    2009-11-01

    A set of random transposon vectors pUTTns that facilitates the markerless integration of new functions into the chromosome of gram-negative bacteria has been developed. The vectors, which are derived from mini-Tn5 transposons, are located on a R6K-based suicide delivery plasmid that provides the IS50(R) transposase tnp gene in cis, but they are external to the mobile element. The vectors' conjugal transfer to recipients is mediated by RP4 mobilization functions in the donor. Internal to the mini-Tn5 element is a cassette that contains a selectable antibiotic resistance marker (kanamycin, chloramphenicol, or tetracycline resistance gene), a counter-selectable marker (sacB), a 430-bp repeat of the sacB gene 3' end acted as the directly-repeated (DR) sequence, and modified multiple cloning sites (MCS). After two total rounds of transposon integration and recombination between the two DRs, only the exogenous DNA inserted into the MCS (passenger genes) and a single 430-bp scar sacBDR fragment remained in the chromosome after excision. The utility of these vectors was demonstrated by integrating the organophosphorus insecticide hydrolase gene (mpd) into the chromosome of Escherichia, Pseudomonas, Sphingomonas, and Paracoccus species. Sequential integration of another organophosphorus insecticide hydrolase gene (oph) into the previously engineered bacteria, without bringing any selectable markers, was also successful. These engineered bacteria were relatively stable. Cell viability and original degrading characteristics were not affected compared with the original recipients. This shows that the developed system is very useful for the markerless integration of exogenous genes into the chromosome of gram-negative eubacteria.

  20. Multidrug Resistance in Quinolone-Resistant Gram-Negative Bacteria Isolated from Hospital Effluent and the Municipal Wastewater Treatment Plant.

    PubMed

    Vaz-Moreira, Ivone; Varela, Ana Rita; Pereira, Thamiris V; Fochat, Romário C; Manaia, Célia M

    2016-03-01

    This study is aimed to assess if hospital effluents represent an important supplier of multidrug-resistant (MDR) Gram-negative bacteria that, being discharged in the municipal collector, may be disseminated in the environment and bypassed in water quality control systems. From a set of 101 non-Escherichia coli Gram-negative bacteria with reduced susceptibility to quinolones, was selected a group of isolates comprised by those with the highest indices of MDR (defined as nonsusceptibility to at least one agent in six or more antimicrobial categories, MDR ≥6) or resistance to meropenem or ceftazidime (n = 25). The isolates were identified and characterized for antibiotic resistance phenotype, plasmid-mediated quinolone resistance (PMQR) genes, and other genetic elements and conjugative capacity. The isolates with highest MDR indices were mainly from hospital effluent and comprised ubiquitous bacterial groups of the class Gammaproteobacteria, of the genera Aeromonas, Acinetobacter, Citrobacter, Enterobacter, Klebsiella, and Pseudomonas, and of the class Flavobacteriia, of the genera Chryseobacterium and Myroides. In this group of 25 strains, 19 identified as Gammaproteobacteria harbored at least one PMQR gene (aac(6')-Ib-cr, qnrB, qnrS, or oqxAB) or a class 1 integron gene cassette encoding aminoglycoside, sulfonamide, or carbapenem resistance. Most of the E. coli J53 transconjugants with acquired antibiotic resistance resulted from conjugation with Enterobacteriaceae. These transconjugants demonstrated acquired resistance to a maximum of five classes of antibiotics, one or more PMQR genes and/or a class 1 integron gene cassette. This study shows that ubiquitous bacteria, other than those monitored in water quality controls, are important vectors of antibiotic resistance and can be disseminated from hospital effluent to aquatic environments. This information is relevant to support management options aiming at the control of this public health problem.

  1. Presence and antimicrobial profile of gram-negative facultative anaerobe rods in patients with chronic periodontitis and gingivitis.

    PubMed

    Gamboa, Fredy; García, Dabeiba-Adriana; Acosta, Adriana; Mizrahi, Deborah; Paz, Andreína; Martínez, Diana; Arévalo, Azucena; Aristizabal, Fabio; Abba, Martín

    2013-01-01

    Chronic periodontitis is a multifactorial infectious disease associated with Gram-negative anaerobes which are part of the subgingival microflora. In recent years, studies have been conducted to assess the presence of Gram-negative facultative anaerobes (Enterobacteriaceae) and their participation in the development and progression of chronic periodontitis. The aim of this study was to determine the presence of Enterobacteriaceae in patients with chronic periodontitis and gingivitis and to assess antimicrobial susceptibility of clinical isolates. A descriptive, observational study was performed including 64 patients with chronic periodontitis and 22 patients with gingivitis. Microbiological samples were taken from the gingival sulcus using paper points, which then were placed in thioglycollate broth. Samples were incubated for 4 hours at 37 degrees C and finally replated on MacConkey agar Bacteria were identified using the API-20E system (Biomerieux, France) and antimicrobial susceptibility was determined using the disk diffusion method. The evaluation of samples showed presence of 29 enterobacterial species distributed as follows: 7 in the group with gingivitis and 22 in the group with chronic periodontitis. In the chronic periodontitis group the most common species were: K. oxytoca n = 5, S. liquefaciens n = 4 and K. pneumoniae and E. coli with n = 3. The gingivitis group had the highest frequency of Erwinia sp. (n = 2). Clinical isolates showed very low sensitivity levels to beta-lactam ampicillin and amoxicillin/ clavulanic acid, 17.2% and 27.6% respectively, and higher sensitivity levels to ciprofloxacin (96.6%), amikacin (79.3%), gentamicin (68.9%) and ceftazidime, ceftriaxone, kanamycin and trimethoprimsulfa (65.5%). In conclusion, the existence of a high frequency of enterobacteria in patients with chronic periodontitis and gingivitis shows that periodontologists should pay greater attention to prevention protocols, and develop mechanical and antimicrobial

  2. Comparison of killing of gram-negative and gram-positive bacteria by pure singlet oxygen. [Salmonella typhimurium; Escherichia coli; Sarcina lutea; Staphylococcus aureus; Streptococcus lactis; Streptococcus faecalis

    SciTech Connect

    Dahl, T.A.; Midden, W.R. ); Hartman, P.E. )

    1989-04-01

    Gram-negative and gram-positive bacteria were found to display different sensitivities to pure singlet oxygen generated outside of cells. Killing curves for Salmonella typhimurium and Escherichia coli strains were indicative of multihit killing, whereas curves for Sarcina lutea, Staphylococcus aureus, Streptococcus lactis, and Streptococcus faecalis exhibited single-hit kinetics. The S. typhimurium deep rough strain TA1975, which lacks nearly all of the cell wall lipopolysaccharide coat and manifests concomitant enhancement of penetration by some exogenous substances, responded to singlet oxygen with initially faster inactivation than did the S. typhimurium wild-type strain, although the maximum rates of killing appeared to be quite similar. The structure of the cell wall thus plays an important role in susceptibility to singlet oxygen. The outer membrane-lipopolysaccharide portion of the gram-negative cell wall initially protects the bacteria from extracellular singlet oxygen, although it may also serve as a source for secondary reaction products which accentuate the rates of cell killing. S. typhimurium and E. coli strains lacking the cellular antioxidant, glutathione, showed no difference from strains containing glutathione in response to the toxic effects of singlet oxygen. Strains of Sarcina lutea and Staphylococcus aureus that contained carotenoids, however, were far more resistant to singlet oxygen lethality than were both carotenoidless mutants of the same species and other gram-positive species lacking high levels of protective carotenoids.

  3. The two peptide lantibiotic lacticin 3147 acts synergistically with polymyxin to inhibit Gram negative bacteria

    PubMed Central

    2013-01-01

    Background The emergence of bacterial drug resistance encourages the re-evaluation of the potential of existing antimicrobials. Lantibiotics are post-translationally modified, ribosomally synthesised antimicrobial peptides with a broad spectrum antimicrobial activity. Here, we focussed on expanding the potential of lacticin 3147, one of the most studied lantibiotics and one which possesses potent activity against a wide range of Gram positive species including many nosocomial pathogens. More specifically, our aim was to investigate if lacticin 3147 activity could be enhanced when combined with a range of different clinical antibiotics. Results Initial screening revealed that polymyxin B and polymyxin E (colistin) exhibited synergistic activity with lacticin 3147. Checkerboard assays were performed against a number of strains, including both Gram positive and Gram negative species. The resultant fractional inhibitory concentration (FIC) index values established that, while partial synergy was detected against Gram positive targets, synergy was obvious against Gram negative species, including Cronobacter and E. coli. Conclusions Combining lacticin 3147 with low levels of a polymyxin could provide a means of broadening target specificity of the lantibiotic, while also reducing polymyxin use due to the lower concentrations required as a result of synergy. PMID:24069959

  4. Gram-Negative Bacteria That Produce Carbapenemases Causing Death Attributed to Recent Foreign Hospitalization

    PubMed Central

    Ahmed-Bentley, Jasmine; Chandran, A. Uma; Joffe, A. Mark; French, Desiree; Peirano, Gisele

    2013-01-01

    Overseas travel, as a risk factor for the acquisition of infections due to antimicrobial-resistant organisms, has recently been linked to carbapenemase-producing Gram-negative bacteria. Multiresistant Klebsiella pneumoniae, Escherichia coli, and Acinetobacter baumannii strains were isolated from a wound of a Canadian patient with a recent history of hospitalization in India. This resulted in the initiation of outbreak management that included surveillance cultures. Epidemiological and molecular investigations showed that NDM-1-producing K. pneumoniae ST16 and OXA-23-producing A. baumannii ST10 strains were transmitted to 5 other patients, resulting in the colonization of 4 patients and the death of 1 patient due to septic shock caused by the OXA-23-producing A. baumannii strain. The high rate of false positivity of the screening cultures resulted in additional workloads and increased costs for infection control and clinical laboratory work. We believe that this is the first report of an infection with carbapenemase-producing Gram-negative bacteria resulting in death attributed to a patient with recent foreign hospitalization. We recommend routine rectal and wound screening for colonization with multiresistant bacteria for patients who have recently been admitted to hospitals outside Canada. PMID:23612195

  5. Nitric oxide synthase-dependent immune response against gram negative bacteria in a crustacean, Litopenaeus vannamei.

    PubMed

    Rodríguez-Ramos, Tania; Carpio, Yamila; Bolívar, Jorge; Gómez, Leonardo; Estrada, Mario Pablo; Pendón, Carlos

    2016-03-01

    Nitric oxide (NO) is a short-lived radical generated by nitric oxide synthases (NOS). NO is involved in a variety of functions in invertebrates, including host defense. In previous studies, we isolated and sequenced for the first time the NOS gene from hemocytes of Panulirus argus, demonstrating the inducibility of this enzyme by lipopolysaccharide in vitro e in vivo. Hyperimmune serum was obtained from rabbits immunized with a P. argus -NOS fragment of 31 kDa produced in Escherichia coli, which specifically detected the recombinant polypeptide and the endogenous NOS from lobster hemocytes by western blotting and immunofluorescence. In the present work, we demonstrate that the hyperimmune serum obtained against P. argus NOS also recognizes Litopenaeus vannamei NOS in hemocytes by western blotting and immunofluorescence. Our data also show that while the hemolymph of L. vannamei has a strong antibacterial activity against the Gram negative bacteria Aeromonas hydrophila, the administration of the anti NOS serum reduce the natural bacterial clearance. These results strongly suggest that NOS is required for the shrimp immune defense toward Gram negative bacteria. Therefore, the monitoring of induction of NOS could be an important tool for testing immunity in shrimp farming. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The Multidrug-Resistant Gram-negative Superbugs Threat Require Intelligent Use of the Last Weapon.

    PubMed

    Deris, Zakuan Zainy

    2015-09-01

    The global emergence and dissemination of multidrug-resistant Gram-negative superbugs, particularly carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae, lead to the limited effectiveness of antibiotics for treating nosocomial infections. In most cases, polymyxins are the last resort therapy, and these antibiotics must be used intelligently to prolong their efficacy in clinical practice. Polymyxin B and colistin (polymyxin E) were introduced prior to modern drug regulation, and the majority of the 'old' drug information is unreliable. Recent pharmacokinetic data do not support the renal dose adjustment of intravenous (IV) polymyxin B as suggested by the manufacturer, and this drug must be scaled by the total body weight. Whereas IV colistin is formulated as an inactive prodrug, colistin methanesulfonate (CMS) has different pharmacokinetic profiles than polymyxin B. To achieve maximum efficacy, CMS should be administered as a loading dose scaled to body weight and a maintenance dose according to the renal profiles. Polymyxin combination therapy is suggested due to a sub-therapeutic plasma concentration in a significant proportion of patients and a high incidence of polymyxin hetero-resistance among Gram-negative superbugs. In conclusion, polymyxins must be reserved as a last resort and should be wisely used when truly indicated.

  7. Broad Specificity Efflux pumps and Their Role in Multidrug Resistance of Gram Negative Bacteria

    PubMed Central

    Nikaido, Hiroshi; Pagès, Jean-Marie

    2013-01-01

    Antibiotic resistance mechanisms reported in Gram-negative bacteria are producing a worldwide health problem. The continuous dissemination of «multi-drug resistant» (MDR) bacteria drastically reduces the efficacy of our antibiotic “arsenal” and consequently increases the frequency of therapeutic failure. In MDR bacteria, the over-expression of efflux pumps that expel structurally-unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibiotics. During the last decade, several clinical data indicate an increasing involvement of efflux pumps in the emergence and dissemination of resistant Gram-negative bacteria. It is necessary to clearly define the molecular, functional and genetic bases of the efflux pump in order to understand the translocation of antibiotic molecules through the efflux transporter. The recent investigation on the efflux pump AcrB at its structural and physiological level, including the identification of drug affinity sites and kinetic parameters for various antibiotics, may open the way to rationally develop an improved new generation of antibacterial agents as well as efflux inhibitors in order to efficiently combat efflux-based resistance mechanisms. PMID:21707670

  8. [Detection of endotoxins of Gram-negative bacteria on the basis of electromagnetic radiation frequency spectrum].

    PubMed

    Likhoded, V G; Kuleshova, N V; Sergieva, N V; Konev, Iu V; Trubnikova, I A; Sudzhian, E V

    2007-01-01

    Method of Gram-negative bacteria endotoxins detection on the basis of their own spectrum of electromagnetic radiation frequency was developed. Frequency spectrum typical for chemotype Re glycolipid, which is a part of lypopolysaccharides in the majority of Gram-negative bacteria, was used. Two devices--"Mini- Expert-DT" (manufactured by IMEDIS, Moscow) and "Bicom" (manufactured by Regumed, Germany)--were used as generators of electromagnetic radiation. Detection of endotoxin using these devices was performed by electropuncture vegetative resonance test. Immunoenzyme reaction with antibodies to chemotype Re glycolipid was used during analysis of preparations for assessment of resonance-frequency method specificity. The study showed that resonance-frequency method can detect lypopolysaccharides of different enterobacteria in quantities up to 0.1 pg as well as bacteria which contain lypopolysaccharides. At the same time, this method does not detect such bacteria as Staphylococcus aureus, Bifidobacterium spp., Lactobacillus spp., and Candida albicans. The method does not require preliminary processing of blood samples and can be used for diagnostics of endotoxinemia, and detection of endotoxins in blood samples or injection solutions.

  9. Proteolytic activity and fatal gram-negative sepsis in burned mice: effect of exogenous proteinase inhibition.

    PubMed Central

    Neely, A N; Miller, R G; Holder, I A

    1994-01-01

    Circulating proteolytic activity (PA) increases following burn or surgical trauma. Challenging traumatized mice with the yeast Candida albicans further increases PA. Once a PA threshold has been passed, mortality increases as PA increases. The purposes of this study were to determine (i) if gram-negative bacterial challenge affects circulating PA and mortality as Candida challenge does and (ii) if proteinase inhibitor treatment with aprotinin, antithrombin III, and alpha 1-proteinase inhibitor decreases circulating PA and increases the survival of burned mice infected with a bacterium. For all bacteria tested (Proteus mirabilis, Pseudomonas aeruginosa, and Klebsiella pneumoniae), burn plus challenge significantly elevated PA and mortality above levels in mice that were only burned or only challenged. Quantitative culture counts indicated that the mice died of sepsis. Proteinase inhibitor treatment of mice burned and challenged with K. pneumoniae significantly decreased circulating PA, decreased the hepatic microbial load, and increased survival. Hence, in traumatized mice challenged with either C. albicans or gram-negative bacteria, a relationship exists between proteolytic load and subsequent septic death. Parallels between these animal studies and human studies are discussed. PMID:8188336

  10. Multidrug resistant gram-negative bacteria in clinical isolates from Karachi.

    PubMed

    Saeed, Asma; Khatoon, Hajra; Ansari, Fasihuddin Ahmed

    2009-01-01

    A total of 54 gram-negative bacteria obtained from various pathological labs and hospitals of Karachi were screened for their resistance to ampicillin, chloramphenicol, gentamycin, kanamycin, neomycin, streptomycin and tetracycline antibiotics. Of the 54 bacteria, 50 were resistant to one or more antibiotics. Among the resistant bacteria, 13 out of 28 were found to transfer their resistances by conjugation. This indicates that at least 46% of clinical gram-negative bacteria in Karachi possess various types of transferable R plasmids, such as pAK5, pAK9, pAK10, pAK11, pAK12, pAK13, pAK14, pAK15, pAK16, pAK17, pAK18, pAK19, pAK20 and pAK21. The non-conjugative R plasmids included pMT14 and pZ26. Only pAK15 showed 26% segregation even after 20 consecutive transfers in plain broth (spontaneous segregation) whereas only pAK15 and pAK16 showed any significant loss of their markers in curing by acridine orange. The stability of R plasmids is more dangerous from clinical point of view.

  11. Probing the Penetration of Antimicrobial Polymyxin Lipopeptides into Gram-Negative Bacteria

    PubMed Central

    2015-01-01

    The dry antibiotic development pipeline coupled with the emergence of multidrug resistant Gram-negative ‘superbugs’ has driven the revival of the polymyxin lipopeptide antibiotics. Polymyxin resistance implies a total lack of antibiotics for the treatment of life-threatening infections. The lack of molecular imaging probes that possess native polymyxin-like antibacterial activity is a barrier to understanding the resistance mechanisms and the development of a new generation of polymyxin lipopeptides. Here we report the regioselective modification of the polymyxin B core scaffold at the N-terminus with the dansyl fluorophore to generate an active probe that mimics polymyxin B pharmacologically. Time-lapse laser scanning confocal microscopy imaging of the penetration of probe (1) into Gram-negative bacterial cells revealed that the probe initially accumulates in the outer membrane and subsequently penetrates into the inner membrane and finally the cytoplasm. The implementation of this polymyxin-mimetic probe will advance the development of platforms for the discovery of novel polymyxin lipopeptides with efficacy against polymyxin-resistant strains. PMID:24635310

  12. Antimicrobial resistance of gram-negative bacteria isolated from foods in Mexico.

    PubMed

    Wood, L V; Morgan, D R; DuPont, H L

    1983-10-01

    When trimethoprim-sulfamethoxazole was given to US travelers in Mexico to prevent diarrheal illness, high-level resistance to the drug emerged [2], although in previous studies such resistance had not been observed among enteric flora following administration of trimethoprim-sulfamethoxazole as prophylaxis against urinary tract infection [3]. Since food has been shown to be an important vehicle of transmission of travelers' diarrhea, food samples were examined for the presence of drug-resistant bacteria to explain the acquisition of high-level resistance among enteric flora of individuals taking antibiotics as prophylaxis against traveler's diarrhea. Of 34 strains of ETEC isolated from US students in Guadalajara, Mexico, who had acute gastroenteritis, one was resistant to trimethoprim and one was resistant to trimethoprim-sulfamethoxazole. Eight of the ETEC strains tested demonstrated multiple drug resistance. Twenty-two of 149 isolates from food produced enterotoxin. Only one isolate, which was nontoxigenic, was resistant to trimethoprim, and no coliforms were resistant to trimethoprim-sulfamethoxazole; however, 16 isolates demonstrated multiple drug resistance. Of 235 gram-negative organisms recovered from frozen food samples grown on antibiotic-containing media and tested for enterotoxin production, no isolates were enterotoxigenic. Thirty-four isolates were resistant to trimethoprim, 15 were resistant to trimethoprim-sulfamethoxazole, and 33 demonstrated multiple resistance. Multiple drug resistance was demonstrated among gram-negative organisms isolated from patients' stools and foods in Mexico.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. [Broad-spectrum beta-lactamases in Gram-negative bacteria].

    PubMed

    Sundsfjord, Arnfinn; Simonsen, Gunnar Skov; Haldorsen, Bjørg; Lundblad, Eirik Wasmuth; Samuelsen, Orjan

    2008-12-04

    beta-lactams are our most valuable and frequently used antibiotics. Resistance towards them, in both Gram-positive and Gram-negative bacteria, challenges their antimicrobial effect. beta-lactamases are the most important resistance mechanism against beta-lactams in Gram-negative bacteria. This review is based on literature retrieved through a non-systematic search of Pubmed (with the terms "ESBL", "AmpC", and "carbapenemases"), as well as the authors' own research experience. We now observe a global dissemination of particularly broad spectrum beta-lactamases; extended-spectrum beta-lactamases (ESBLs), plasmid-mediated AmpC, and carbapenemases. These beta-lactamases are hosted by multidrug-resistant clones of Enterobacteriaceae, Pseudomonas aeruginosa with few, if any, therapeutic alternatives. We have observed that this pandemic has reached Norway with an increase in ESBL-producing Escherichia coli in particular, but also pan-resistant carbapenemase-producing K. pneumoniae, P. aeruginosa OG A. baumannii during the last years. The latter ones have been associated with import after hospitalization abroad, but this situation may change due to the epidemic potential of these resistant clones. Rapid diagnostic service and targeted infection control measures are important to prevent them from spreading.

  14. METABOLIC PROPERTIES OF SOME L FORMS DERIVED FROM GRAM-POSITIVE AND GRAM-NEGATIVE BACTERIA.

    PubMed

    WEIBULL, C; GYLLANG, H

    1965-06-01

    Weibull Claes (Central Bacteriological Laboratory of Stockholm City, Stockholm, Sweden), and Hans Gyllang. Metabolic properties of some L forms derived from gram-positive and gram-negative bacteria. J. Bacteriol. 89:1443-1447. 1965.-L forms of two gram-positive bacteria, a staphylococcus and a diphtheroid, were found to be devoid of catalase and cytochromes, whereas the normal bacteria from which these L forms were derived contained large amounts of these enzymes. On the other hand, L forms of a gram-negative bacterium, Proteus mirabilis, contained the same cytochromes as normal Proteus bacteria. (Previous investigations showed that normal cells and L forms of P. mirabilis contain approximately the same amounts of catalase.) The respiratory quotients (Q(O2)) of all L forms studied were much lower than those of the corresponding normal bacteria. The conversion of the normal organisms into L forms did not markedly affect their growth rate, measured as the time required for doubling the bacterial mass during the exponential-growth phase.

  15. Prevalence and emergence of carbapenemases-producing Gram-negative bacteria in Mediterranean basin.

    PubMed

    Mathlouthi, Najla; Al-Bayssari, Charbel; Bakour, Sofiane; Rolain, Jean Marc; Chouchani, Chedly

    2017-02-01

    The emergence and the global spread of carbapenemases concern to health services worldwide. Their celestial rise among Gram-negative bacilli has challenged both the scientific and pharmaceutical sectors. Indeed, infections caused by these bacteria have limited treatment options and have been associated with high mortality and morbidity rates. Carbapenemase producers are mainly identified among Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii and still mostly in hospital settings and rarely in the community. They are closely related to KPC, VIM, IMP, NDM, and OXA-48 types. The encoding genes are mostly plasmid located and associated with various mobile genetic elements. The Mediterranean area is of interest due to a great diversity and population mixing. The prevalence of carbapenemases is particularly high and variant among countries, partially depending on the population exchange relationship between the regions and the possible reservoirs of each carbapenemase. This review described the epidemiology of carbapenemases in this region of the world highlighting the worrisome situation and the need to screen and detect these enzymes to prevent and control their dissemination especially as it is clear that very few novel antibiotics will be introduced in the next few years, making the dissemination of carbapenem-resistant Gram-negative bacteria of crucial importance worldwide.

  16. EXTENDED-SPECTRUM BETA-LACTAMASE PRODUCING GRAM NEGATIVE BACTERIA IN IRAN: A REVIEW

    PubMed Central

    Leylabadlo, Hamed Ebrahimzadeh; Pourlak, Tala; bialvaei, Abed Zahedi; Aghazadeh, Mohammad; Asgharzadeh, Mohammad; Kafil, Hossein Samadi

    2017-01-01

    Background: The emergence and spread of extended spectrum β-lactamase (ESBL)-producing Gram- negative bacteria (GNB), particularly in Enterobacteriaceae, Acinetobacter baumannii, and Pseudomonas aeruginosa, have increased all over the world. ESBLs are characterized by their ability to hydrolyze β-lactams, early cephalosporins, oxyimino-thiazolyl cephalosporins, and monobactams, but not cephamycins or carbapenems. The rate of nosocomial infections caused by ESBL-producing GNB in Asia Pacific has increased and several studies have identified their prevalence in the region. The aim of this study is to review the prevalence of ESBL-producing GNB in the West Asia and the Middle East with a particular focus on Iran. Materials and Methods: The available evidence from various studies (Microbia and clinical studies, retrieved from the PubMed, and Scopus databases) regarding the ESBL producing Gram negative bacteria in Iran were evaluated. Results: In almost all parts of the country, high resistance has been observed, especially in the central part of Iran. Up to 89.8% Escherichia coli, 72.1% Klebsiella pneumonia, 84.2% Acinetobacter baumannii, and 83.8% Pseudomonas aeruginosa isolates are ESBL positive. Conclusion: The present study showed the increasing prevalence of ESBLs in different regions of Iran, which could be useful to strategic policy towards reducing reduce their prevalence. PMID:28670639

  17. PSORT-B: Improving protein subcellular localization prediction for Gram-negative bacteria.

    PubMed

    Gardy, Jennifer L; Spencer, Cory; Wang, Ke; Ester, Martin; Tusnády, Gábor E; Simon, István; Hua, Sujun; deFays, Katalin; Lambert, Christophe; Nakai, Kenta; Brinkman, Fiona S L

    2003-07-01

    Automated prediction of bacterial protein subcellular localization is an important tool for genome annotation and drug discovery. PSORT has been one of the most widely used computational methods for such bacterial protein analysis; however, it has not been updated since it was introduced in 1991. In addition, neither PSORT nor any of the other computational methods available make predictions for all five of the localization sites characteristic of Gram-negative bacteria. Here we present PSORT-B, an updated version of PSORT for Gram-negative bacteria, which is available as a web-based application at http://www.psort.org. PSORT-B examines a given protein sequence for amino acid composition, similarity to proteins of known localization, presence of a signal peptide, transmembrane alpha-helices and motifs corresponding to specific localizations. A probabilistic method integrates these analyses, returning a list of five possible localization sites with associated probability scores. PSORT-B, designed to favor high precision (specificity) over high recall (sensitivity), attained an overall precision of 97% and recall of 75% in 5-fold cross-validation tests, using a dataset we developed of 1443 proteins of experimentally known localization. This dataset, the largest of its kind, is freely available, along with the PSORT-B source code (under GNU General Public License).

  18. Membrane-Active Macromolecules Resensitize NDM-1 Gram-Negative Clinical Isolates to Tetracycline Antibiotics

    PubMed Central

    Uppu, Divakara S. S. M.; Manjunath, Goutham B.; Yarlagadda, Venkateswarlu; Kaviyil, Jyothi E.; Ravikumar, Raju; Paramanandham, Krishnamoorthy; Shome, Bibek R.; Haldar, Jayanta

    2015-01-01

    Gram-negative ‘superbugs’ such as New Delhi metallo-beta-lactamase-1 (blaNDM-1) producing pathogens have become world’s major public health threats. Development of molecular strategies that can rehabilitate the ‘old antibiotics’ and halt the antibiotic resistance is a promising approach to target them. We report membrane-active macromolecules (MAMs) that restore the antibacterial efficacy (enhancement by >80-1250 fold) of tetracycline antibiotics towards blaNDM-1 Klebsiella pneumonia and blaNDM-1 Escherichia coli clinical isolates. Organismic studies showed that bacteria had an increased and faster uptake of tetracycline in the presence of MAMs which is attributed to the mechanism of re-sensitization. Moreover, bacteria did not develop resistance to MAMs and MAMs stalled the development of bacterial resistance to tetracycline. MAMs displayed membrane-active properties such as dissipation of membrane potential and membrane-permeabilization that enabled higher uptake of tetracycline in bacteria. In-vivo toxicity studies displayed good safety profiles and preliminary in-vivo antibacterial efficacy studies showed that mice treated with MAMs in combination with antibiotics had significantly decreased bacterial burden compared to the untreated mice. This report of re-instating the efficacy of the antibiotics towards blaNDM-1 pathogens using membrane-active molecules advocates their potential for synergistic co-delivery of antibiotics to combat Gram-negative superbugs. PMID:25789871

  19. Occurrence of gram-negative bacteria in drinking water undergoing softening treatment.

    PubMed

    Romano, G; Stampi, S; Zanetti, F; De Luca, G; Tonelli, E

    1997-08-01

    A study was carried out on the presence of Gram-negative bacteria in the municipal waters of Bologna (Italy) undergoing softening using domestic ion exchangers with an automatic disinfection mechanism. The softening process was seen to cause a 15 fold increase in 22 degrees C and 36 degrees C heterotrophic plate counts. There was a 30 fold increase in Gram-negative bacteria and their number correlated directly with temperature and inversely with active residual chlorine. Organic matter had no effect on bacterial growth. The most commonly found bacteria were various species of Pseudomonas (87.6%) (Ps. acidovorans, Ps. denitrificans, Ps. fluorescens and Ps. testosteroni) followed by Aeromonas hydrophila (5.6%) and Stenotrophomonas (Xantomonas) maltophilia (3.8% in outgoing water). Pseudomonas aeruginosa (present in 5.6% of incoming water samples and 0.4% of outgoing water) and Yersinia enterocolitica (present in 4.3% of incoming water samples and 1.1% of outgoing water) did not find favorable conditions for growth on the ion exchange resins.

  20. Fluorescence studies of gram-positive and gram-negative bacteria

    NASA Astrophysics Data System (ADS)

    Blust, Brittni

    2012-02-01

    Autofluorescence is a relatively unexplored technique for identification. It is nondestructive, noncontact, fast, and has the potential to be integrated in small handheld devices. On the other hand, the autofluorescent signal is sometimes very week, or it can be overwhelmed by the emission of a surrounding medium. We are exploring the possibility to develop an optical method for identification of the Gram-type of bacterial cultures based on the autofluorescence. We have enhanced the detectivity of a standard fluorimeter using combination of bandpass and long pass filters. In this particular study, we are investigating if the previously observed difference in the autofluorescent spectra of Gram-positive and Gram-negative bacteria is dependent on the age of the culture. We have selected two types of bacteria, Kocuria rhizophila and Alcagenes faecalis, and we have monitored in equal time intervals of their development the autofluorescence spectra. The stages of development were monitored separately by measuring the turbidity and creating a growth curve. The goal of this study is to find out if the previously observed difference in the autofluorescence spectra of Gram-positive and Gram-negative bacteria is dependent on the stage of the development of the bacterial culture.

  1. Ciprofloxacin-resistant gram-negative bacilli in the fecal microflora of children.

    PubMed

    Qin, Xuan; Razia, Yasmin; Johnson, James R; Stapp, Jennifer R; Boster, Daniel R; Tsosie, Treva; Smith, Donna L; Braden, Christopher R; Gay, Kathryn; Angulo, Frederick J; Tarr, Phillip I

    2006-10-01

    The extent to which antibiotic-resistant bacteria are excreted by humans who have not been exposed to antibiotics is not known. Children, who rarely receive fluoroquinolones, provide opportunities to assess the frequency of fecal excretion by fluoroquinolone-naïve hosts of fluoroquinolone-resistant gram-negative bacilli. Fresh nondiarrheal stools from children were processed by screening them on agar containing ciprofloxacin to recover ciprofloxacin-resistant gram-negative bacilli. Resistant isolates were identified, and ciprofloxacin MICs were determined. Resistant Escherichia coli isolates were also analyzed for urovirulence-associated loci. Thirteen (2.9%) of 455 stools yielded ciprofloxacin-resistant E. coli (seven children), Stenotrophomonas maltophilia (four children), and Achromobacter xylosoxidans and Enterobacter aerogenes (one child each). Neither the subjects themselves nor members of their households used fluoroquinolones in the 4 weeks preceding collection. Six of the seven resistant E. coli isolates belonged to phylogenetic groups B2 and D, in which extraintestinal pathogenic E. coli bacteria are frequently found. All resistant E. coli isolates contained at least three putative E. coli virulence loci. Most ciprofloxacin-resistant bacteria were resistant to additional antibiotics. Potentially pathogenic bacteria that are resistant to therapeutically important antimicrobial agents are excreted by some humans, despite these persons' lack of exposure to the particular drugs. The sources of these resistant organisms are unknown. This underrecognized reservoir of drug-resistant potential pathogens poses public health challenges.

  2. Inhibitory effect of short cationic homopeptides against Gram-negative bacteria.

    PubMed

    Carvajal-Rondanelli, Patricio; Aróstica, Mónica; Marshall, Sergio Hernan; Albericio, Fernando; Álvarez, Claudio Andrés; Ojeda, Claudia; Aguilar, Luis Felipe; Guzmán, Fanny

    2016-06-01

    Previous work demonstrated that Lys homopeptides with an odd number of residues (9, 11 and 13) were capable of inhibiting the growth of Gram-positive bacteria in a broader spectrum and more efficiently than those with an even number of Lys residues or Arg homopeptides of the same size. Indeed, all Gram-positive bacteria tested were totally inhibited by 11-residue Lys homopeptides. In the present work, a wide variety of Gram-negative bacteria were used to evaluate the inhibitory activity of chemically synthesized homopeptides of L-Lys and L-Arg ranging from 7 to 14 residues. Gram-negative bacteria were comparatively more resistant than Gram-positive bacteria to Lys homopeptides with an odd number of residues, but exhibited a similar inhibition pattern than on Gram-positive bacteria. CD spectra for the odd-numbered Lys homopeptides in anionic lipid dimyristoylphosphatidylglycerol, and Escherichia coli membrane extract increased polyproline II content, as compared to those measured in phosphate buffer solution. Lys and Arg homopeptides were covalently linked to rhodamine to visualize the peptide interactions with E. coli cells using confocal laser scanning microscopy. Analysis of Z-stack images showed that Arg homopeptides indeed appear to be localized intracellularly, while the Lys homopeptide is localized exclusively on the plasma membrane. Moreover, these Lys homopeptides induced membrane disruption since the Sytox fluorophore was able to bind to the DNA in E. coli cultures.

  3. Capillary electrophoresis for fast detection of heterogeneous population in colistin-resistant Gram-negative bacteria.

    PubMed

    Sautrey, Guillaume; Duval, Raphaël E; Chevalley, Alicia; Fontanay, Stéphane; Clarot, Igor

    2015-10-01

    It has been shown that diverse strains of bacteria can be separated according to their characteristic surface properties by means of CE. We employed here this analytical technique to the study of colistin-resistance in Gram-negative bacteria, which involves the selection of mutants with modified outer membrane composition resulting in changes of surface cell properties. In the same way as with molecular entities, we performed firstly the validation of an ITP-based CE method for three common pathogenic Gram-negative bacteria namely Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Secondly, we compared the electrophoretic profiles of bacterial samples from a colistin-susceptible clinical isolate of K. pneumoniae and from the corresponding colistin-resistant derivative. By a simple CE run taking a few minutes, the coexistence of several bacterial subpopulations in the colistin-resistant derivative was clearly evidenced. This work encourages further research that would allow applications of CE in clinical laboratory for a daily monitoring of bacterial population in cared patients when "last-chance" colistin treatment is initiated against multidrug-resistant bacteria.

  4. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria.

    PubMed

    Nikaido, Hiroshi; Pagès, Jean-Marie

    2012-03-01

    Antibiotic resistance mechanisms reported in Gram-negative bacteria are causing a worldwide health problem. The continuous dissemination of 'multidrug-resistant' (MDR) bacteria drastically reduces the efficacy of our antibiotic 'arsenal' and consequently increases the frequency of therapeutic failure. In MDR bacteria, the overexpression of efflux pumps that expel structurally unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibiotics. During the last decade, several clinical data have indicated an increasing involvement of efflux pumps in the emergence and dissemination of resistant Gram-negative bacteria. It is necessary to clearly define the molecular, functional and genetic bases of the efflux pump in order to understand the translocation of antibiotic molecules through the efflux transporter. The recent investigation on the efflux pump AcrB at its structural and physiological levels, including the identification of drug affinity sites and kinetic parameters for various antibiotics, may pave the way towards the rational development of an improved new generation of antibacterial agents as well as efflux inhibitors in order to efficiently combat efflux-based resistance mechanisms.

  5. Correction: Membrane-active macromolecules resensitize NDM-1 gram-negative clinical isolates to tetracycline antibiotics.

    PubMed

    Uppu, Divakara S S M; Manjunath, Goutham B; Yarlagadda, Venkateswarlu; Kaviyil, Jyothi E; Ravikumar, Raju; Paramanandham, Krishnamoorthy; Shome, Bibek R; Haldar, Jayanta

    2015-01-01

    Gram-negative 'superbugs' such as New Delhi metallo-beta-lactamase-1 (blaNDM-1) producing pathogens have become world's major public health threats. Development of molecular strategies that can rehabilitate the 'old antibiotics' and halt the antibiotic resistance is a promising approach to target them. We report membrane-active macromolecules (MAMs)that restore the antibacterial efficacy (enhancement by >80-1250 fold) of tetracycline antibiotics towards blaNDM-1 Klebsiella pneumonia and blaNDM-1 Escherichia coli clinical isolates.Organismic studies showed that bacteria had an increased and faster uptake of tetracyclinein the presence of MAMs which is attributed to the mechanism of re-sensitization. Moreover,bacteria did not develop resistance to MAMs and MAMs stalled the development of bacterial resistance to tetracycline. MAMs displayed membrane-active properties such as dissipation of membrane potential and membrane-permeabilization that enabled higher uptake of tetracycline in bacteria. In-vivo toxicity studies displayed good safety profiles and preliminary in-vivo antibacterial efficacy studies showed that mice treated with MAMs in combination with antibiotics had significantly decreased bacterial burden compared to the untreated mice. This report of re-instating the efficacy of the antibiotics towards blaNDM-1 pathogens using membrane-active molecules advocates their potential for synergistic co-delivery of antibiotics to combat Gram-negative superbugs.

  6. Preparation of Membrane Models of Gram-Negative Bacteria and Their Interaction with Antimicrobial Peptides Studied by CD and NMR.

    PubMed

    Hicks, Rickey

    2017-01-01

    The antibiotic activity of antimicrobial peptides is generally derived via some type of disruption of the cell membrane(s). The most common models used to mimic the properties of bacterial membranes consist of mixtures of various zwitterionic and anionic phospholipids. This approach works reasonably well for Gram-positive bacteria. However, since the membranes of Gram-negative bacteria contain lipopolysaccharides, as well as zwitterionic and anionic phospholipids, a more complex model is required to simulate the outer membrane of Gram-negative bacteria. Herein we present a protocol for the preparation of models of the outer membranes of the Gram-negative bacteria Klebsiella pneumoniae and Pseudomonas aeruginosa. This protocol can be used to prepare models of other Gram-negative bacteria provided the strain-specific lipopolysaccharides are available.

  7. Optimizing Antibiotic Dosing Strategies for the Treatment of Gram-negative Infections in the Era of Resistance.

    PubMed

    Monogue, Marguerite L; Kuti, Joseph L; Nicolau, David P

    2016-01-01

    Gram-negative organisms are an increasing source of concern within the healthcare setting due to their common presence as a cause of infection and emerging resistance to current therapies. However, current antimicrobial dosing recommendations may be insufficient for the treatment of gram-negative infections. Applying knowledge of an antibiotic's pharmacokinetic/pharmacodynamic profile when designing a dosing regimen leads to a greater likelihood of achieving optimal exposure, including against gram-negative pathogens with higher MICs. Additionally, administering antibiotics directly to the site of infection, such as via aerosolization for pneumonia, is another method to achieve optimized drug exposure at the site of infection. Incorporating these treatment strategies into clinical practice will assist antimicrobial stewardship programs in successfully treating gram-negative infections.

  8. Wounds caused by corn-harvesting machines: an unusual source of infection due to gram-negative bacilli.

    PubMed

    Agger, W A; Cogbill, T H; Busch, H; Landercasper, J; Callister, S M

    1986-01-01

    The infectious complications in 23 patients with mutilating wounds due to trauma during corn harvesting were compared with those in 41 patients with factory-related hand injuries of similar severity. Initial cultures revealed bacterial growth in 89% of the agricultural wounds and in 63% of the factory wounds. A mean of 3.8 initial bacterial species were isolated per corn-harvesting wound vs. 0.9 species per factory wound. Gram-negative rods were recovered from 81% of the agricultural wounds; the commonest of these organisms were Enterobacter species and Xanthomonas maltophilia. Only 7% of factory-wound cultures grew gram-negative rods. Osteomyelitis, all with gram-negative rods, developed in five (22%) of the patients with farm injuries but did not occur in patients with factory wounds. More gram-negative rods were recovered from environmental cultures of corn-harvesting machines and corn plants than from those of factory machinery.

  9. Transcriptomic response of immune signalling pathways in intestinal epithelial cells exposed to lipopolysaccharides, Gram-negative bacteria or potentially probiotic microbes.

    PubMed

    Audy, J; Mathieu, O; Belvis, J; Tompkins, T A

    2012-12-01

    In order to understand the appropriate use of potentially probiotic Gram-positive microbes through their introduction in the gut microbiome, it is necessary to understand the influence of individual bacteria on the host-response system at a cellular level. In the present study, we have shown that lipopolysaccharides, flagellated Gram-negative bacteria, potentially probiotic Gram-positive bacteria and yeast interact differently with human intestinal epithelial cells with a custom-designed expression microarray evaluating 17 specific host-response pathways. Only lipopolysaccharides and flagellated Gram-negative bacteria induced inflammatory response, while a subset of Gram-positive microbes had anti-inflammatory potential. The main outcome from the study was the differential regulation of the central mitogen-activated protein kinase signalling pathway by these Gram-positive microbes versus commensal/pathogenic Gram-negative bacteria. The microarray was efficient to highlight the impact of individual bacteria on the response of intestinal epithelial cells, but quantitative real-time polymerase chain reaction validation demonstrated some underestimation for down-regulated genes by the microarray. This immune array will allow us to better understand the mechanisms underlying microbe-induced host immune responses.

  10. Antibacterial activity of positive and negative polarity low-voltage pulsed current (LVPC) on six typical Gram-positive and Gram-negative bacterial pathogens of chronic wounds.

    PubMed

    Daeschlein, Georg; Assadian, Ojan; Kloth, Luther C; Meinl, Christina; Ney, Frank; Kramer, Axel

    2007-01-01

    The positive effect of electrical stimulation (ES) on wound healing has been shown in vitro and in vivo. On the basis of increased blood flow, protein denaturation, and stimulation of cellular defense, an antibacterial effect of ES is to be expected. Although the antibacterial effect of ES already has been demonstrated in vitro, little attention has been paid to the direct antibacterial effect of changing polarity of the applied current. The aim of this study was to investigate the antibacterial effect of positive and negative monophasic low-voltage pulsed current on typical Gram-positive and Gram-negative pathogens of chronic wounds. Using the Dermapulse-System, three Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and three Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia faecium) organisms were tested against positive and negative polarity low voltage pulsed current. All tested organisms were significantly reduced by ES. The reduction differed significantly between positive polarity and control and negative polarity and control, with the highest log10 reduction factor (RF) achieved with positive polarity. Using positive polarity, the maximum RF was measured for E. coli (median log10 RF 0.83; 25th percentile 0.59, 75th percentile 0.98) and the lowest for S. epidermidis (median log10 RF 0.20; 25th percentile 0.17, 75th percentile 0.24). Yet, there was no significant difference with positive ES against Gram-positive or Gram-negative organisms.

  11. Normalization of the increased translocation of endotoxin from gram negative enterobacteria (leaky gut) is accompanied by a remission of chronic fatigue syndrome.

    PubMed

    Maes, Michael; Coucke, Francis; Leunis, Jean-Claude

    2007-12-01

    There is now evidence that chronic fatigue syndrome (CFS) is accompanied by an increased translocation of endotoxins from gram-negative enterobacteria through the gut wall, as demonstrated by increased prevalences and median values for serum IgM and IgA against the endotoxins of gram-negative enterobacteria. This condition can also be described as increased gut permeability or leaky gut and indicates intestinal mucosal dysfunction (IMD). Here we report a case of a 13 year old girl with CFS who showed very high values for serum IgM against the LPS of some enterobacteria and signs of oxidative and nitrosative stress, activation of the inflammatory response system, and IgG3 subclass deficiency. Upon treatment with specific antioxidants and a "leaky gut diet", which both aim to treat increased gut permeability, and immunoglobins intravenously, the increased translocation of the LPS of gram negative enterobacteria normalized and this normalization was accompanied by a complete remission of the CFS symptoms.

  12. Discovery of Novel Pyridone-Conjugated Monosulfactams as Potent and Broad-Spectrum Antibiotics for Multidrug-Resistant Gram-Negative Infections.

    PubMed

    Tan, Liang; Tao, Yunliang; Wang, Ting; Zou, Feng; Zhang, Shuhua; Kou, Qunhuan; Niu, Ao; Chen, Qian; Chu, Wenjing; Chen, Xiaoyan; Wang, Haidong; Yang, Yushe

    2017-04-13

    Conjugating a siderophore to an antibiotic is a promising strategy to overcome the permeability-mediated resistance of Gram-negative pathogens. On the basis of the structure of BAL30072, novel pyridone-conjugated monosulfactams incorporating diverse substituents into the methylene linker between the 1,3-dihydroxypyridin-4(1H)-one and the aminothiazole oxime were designed and synthesized. Structure-activity relationship studies revealed that a variety of substituents were tolerated, with isopropyl (compound 12c) and methylthiomethyl (compound 16a) showing the best efficacy against multidrug-resistant (MDR) Gram-negative pathogens. In addition, compound 12c exhibits a good free fraction rate in an in vitro human plasma protein binding test, along with a low clearance and favorable plasma exposure in vivo. In a murine systemic infection model with MDR Klebsiella pneumoniae, compound 12c shows an ED50 of 10.20 mg/kg. Taken together, the results indicate that compound 12c is a promising drug candidate for the treatment of serious infections caused by MDR Gram-negative pathogens.

  13. Cell lysis and DNA extraction of gram-positive and gram-negative bacteria from whole blood in a disposable microfluidic chip.

    PubMed

    Mahalanabis, Madhumita; Al-Muayad, Hussam; Kulinski, M Dominika; Altman, Dave; Klapperich, Catherine M

    2009-10-07

    Sepsis caused by gram positive and gram negative bacteria is the leading cause of death in noncoronary ICUs and the tenth leading cause of death in the United States. We have developed a microfluidic sample preparation platform for rapid on-chip detection of infectious organisms for point-of-care diagnostics. The microfluidic chips are made of a robust thermoplastic and can be easily multiplexed for high throughput applications. Bacteria are lysed on-chip via hybrid chemical/mechanical method. Once lysed, the bacterial DNA is isolated using a microscale silica bead/polymer composite solid-phase-extraction (SPE) column. Lysis was confirmed using off-chip real time PCR. We isolated and detected both gram-negative (Escherichia coli) and gram-positive (Bacillussubtilis and Enterococcus faecalis) bacterial genomic DNA from microliter scale spiked whole human blood samples. The system performs better for gram-negative bacteria than it does for gram-positive bacteria, with limits of detection at 10(2) CFU/ml and 10(3)-10(4) CFU/ml, respectively. Total extraction times are less than one hour and can be further decreased by altering the channel geometry and pumping configuration.

  14. Macrophage migration inhibitory factor deficiency is associated with impaired killing of gram-negative bacteria by macrophages and increased susceptibility to Klebsiella pneumoniae sepsis.

    PubMed

    Roger, Thierry; Delaloye, Julie; Chanson, Anne-Laure; Giddey, Marlyse; Le Roy, Didier; Calandra, Thierry

    2013-01-15

    The cytokine macrophage migration inhibitory factor (MIF) is an important component of the early proinflammatory response of the innate immune system. However, the antimicrobial defense mechanisms mediated by MIF remain fairly mysterious. In the present study, we examined whether MIF controls bacterial uptake and clearance by professional phagocytes, using wild-type and MIF-deficient macrophages. MIF deficiency did not affect bacterial phagocytosis, but it strongly impaired the killing of gram-negative bacteria by macrophages and host defenses against gram-negative bacterial infection, as shown by increased mortality in a Klebsiella pneumonia model. Consistent with MIF's regulatory role of Toll-like 4 expression in macrophages, MIF-deficient cells stimulated with lipopolysaccharide or Escherichia coli exhibited reduced nuclear factor κB activity and tumor necrosis factor (TNF) production. Addition of recombinant MIF or TNF corrected the killing defect of MIF-deficient macrophages. Together, these data show that MIF is a key mediator of host responses against gram-negative bacteria, acting in part via a modulation of bacterial killing by macrophages.

  15. Amino acid addition to Vibrio cholerae LPS establishes a link between surface remodeling in gram-positive and gram-negative bacteria.

    PubMed

    Hankins, Jessica V; Madsen, James A; Giles, David K; Brodbelt, Jennifer S; Trent, M Stephen

    2012-05-29

    Historically, the O1 El Tor and classical biotypes of Vibrio cholerae have been differentiated by their resistance to the antimicrobial peptide polymyxin B. However, the molecular mechanisms associated with this phenotypic distinction have remained a mystery for 50 y. Both gram-negative and gram-positive bacteria modify their cell wall components with amine-containing substituents to reduce the net negative charge of the bacterial surface, thereby promoting cationic antimicrobial peptide resistance. In the present study, we demonstrate that V. cholerae modify the lipid A anchor of LPS with glycine and diglycine residues. This previously uncharacterized lipid A modification confers polymyxin resistance in V. cholerae El Tor, requiring three V. cholerae proteins: Vc1577 (AlmG), Vc1578 (AlmF), and Vc1579 (AlmE). Interestingly, the protein machinery required for glycine addition is reminiscent of the gram-positive system responsible for D-alanylation of teichoic acids. Such machinery was not thought to be used by gram-negative organisms. V. cholerae O1 El Tor mutants lacking genes involved in transferring glycine to LPS showed a 100-fold increase in sensitivity to polymyxin B. This work reveals a unique lipid A modification and demonstrates a charge-based remodeling strategy shared between gram-positive and gram-negative organisms.

  16. Appropriateness of gram-negative agent use at a tertiary care hospital in the setting of significant antimicrobial resistance.

    PubMed

    Vora, Neil M; Kubin, Christine J; Furuya, E Yoko

    2015-01-01

    Background.  Practicing antimicrobial stewardship in the setting of widespread antimicrobial resistance among gram-negative bacilli, particularly in urban areas, is challenging. Methods.  We conducted a retrospective cross-sectional study at a tertiary care hospital with an established antimicrobial stewardship program in New York, New York to determine appropriateness of use of gram-negative antimicrobials and to identify factors associated with suboptimal antimicrobial use. Adult inpatients who received gram-negative agents on 2 dates, 1 June 2010 or 1 December 2010, were identified through pharmacy records. Clinical data were collected for each patient. Use of gram-negative agents was deemed optimal or suboptimal through chart review and according to hospital guidelines. Data were compared using χ(2) or Fischer's exact test for categorical variables and Student t test or Mann-Whitney U test for continuous variables. Results.  A total of 356 patients were included who received 422 gram-negative agents. Administration was deemed suboptimal in 26% of instances, with the most common reason being spectrum of activity too broad. In multivariable analysis, being in an intensive care unit (adjusted odds ratio [aOR], .49; 95% confidence interval [CI], .29-.84), having an infectious diseases consultation within the previous 7 days (aOR, .52; 95% CI, .28-.98), and having a history of multidrug-resistant gram-negative bacilli within the past year (aOR, .24; 95% CI, .09-.65) were associated with optimal gram-negative agent use. Beta-lactam/beta-lactamase inhibitor combination drug use (aOR, 2.6; 95% CI, 1.35-5.16) was associated with suboptimal use. Conclusions.  Gram-negative agents were used too broadly despite numerous antimicrobial stewardship program activities.

  17. Characterization of carbapenem-resistant Gram-negative bacteria from Tamil Nadu.

    PubMed

    Nachimuthu, Ramesh; Subramani, Ramkumar; Maray, Suresh; Gothandam, K M; Sivamangala, Karthikeyan; Manohar, Prasanth; Bozdogan, Bülent

    2016-10-01

    Carbapenem resistance is disseminating worldwide among Gram-negative bacteria. The aim of this study was to identify carbapenem-resistance level and to determine the mechanism of carbapenem resistance among clinical isolates from two centres in Tamil Nadu. In the present study, a total of 93 Gram-negative isolates, which is found to be resistant to carbapenem by disk diffusion test in two centres, were included. All isolates are identified at species level by 16S rRNA sequencing. Minimal inhibitory concentrations (MICs) of isolates for Meropenem were tested by agar dilution method. Presence of blaOXA, blaNDM, blaVIM, blaIMP and blaKPC genes was tested by PCR in all isolates. Amplicons were sequenced for confirmation of the genes. Among 93 isolates, 48 (%52) were Escherichia coli, 10 (%11) Klebsiella pneumoniae, nine (%10) Pseudomonas aeruginosa. Minimal inhibitory concentration results showed that of 93 suspected carbapenem-resistant isolates, 27 had meropenem MICs ≥ 2 μg/ml. The MIC range, MIC50 and MIC90 were < 0.06 to >128 μg/ml, 0.12 and 16 μg/ml, respectively. Fig. 1 . Among meropenem-resistant isolates, E. coli were the most common (9/48, 22%), followed by K. pneumoniae (7/9, 77%), P. aeruginosa (6/10, 60%), Acinetobacter baumannii (2/2, 100%), Enterobacter hormaechei (2/3, 67%) and one Providencia rettgeri (1/1, 100%). PCR results showed that 16 of 93 carried blaNDM, three oxa181, and one imp4. Among blaNDM carriers, nine were E. coli, four Klebsiella pneumoniae, two E. hormaechei and one P. rettgeri. Three K. pneumoniae were OXA-181 carriers. The only imp4 carrier was P. aeruginosa. A total of seven carbapenem-resistant isolates were negatives by PCR for the genes studied. All carbapenem-resistance gene-positive isolates had meropenem MICs >2 μg/ml. Our results confirm the dissemination of NDM and emergence of OXA-181 beta-lactamase among Gram-negative bacteria in South India. This study showed the emergence of NDM producer in clinical

  18. An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue.

    PubMed

    Becerra, Sandra C; Roy, Daniel C; Sanchez, Carlos J; Christy, Robert J; Burmeister, David M

    2016-04-12

    Bacterial infections are a common clinical problem in both acute and chronic wounds. With growing concerns over antibiotic resistance, treatment of bacterial infections should only occur after positive diagnosis. Currently, diagnosis is delayed due to lengthy culturing methods which may also fail to identify the presence of bacteria. While newer costly bacterial identification methods are being explored, a simple and inexpensive diagnostic tool would aid in immediate and accurate treatments for bacterial infections. Histologically, hematoxylin and eosin (H&E) and Gram stains have been employed, but are far from optimal when analyzing tissue samples due to non-specific staining. The goal of the current study was to develop a modification of the Gram stain that enhances the contrast between bacteria and host tissue. A modified Gram stain was developed and tested as an alternative to Gram stain that improves the contrast between Gram positive bacteria, Gram negative bacteria and host tissue. Initially, clinically relevant strains of Pseudomonas aeruginosa and Staphylococcus aureus were visualized in vitro and in biopsies of infected, porcine burns using routine Gram stain, and immunohistochemistry techniques involving bacterial strain-specific fluorescent antibodies as validation tools. H&E and Gram stain of serial biopsy sections were then compared to a modification of the Gram stain incorporating a counterstain that highlights collagen found in tissue. The modified Gram stain clearly identified both Gram positive and Gram negative bacteria, and when compared to H&E or Gram stain alone provided excellent contrast between bacteria and non-viable burn eschar. Moreover, when applied to surgical biopsies from patients that underwent burn debridement this technique was able to clearly detect bacterial morphology within host tissue. We describe a modification of the Gram stain that provides improved contrast of Gram positive and Gram negative microorganisms within host

  19. Molecular characterization of antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Egypt.

    PubMed

    Ahmed, Ashraf M; Shimamoto, Tadashi

    2011-05-01

    The aim of this study was to characterize the genetic basis of multidrug resistance in Gram-negative bacteria isolated from bovine mastitis cases in Egypt. Multidrug resistance phenotypes were found in 34 of 112 (30.4%) Gram-negative bacterial isolates, which harbored at least one antimicrobial resistance gene. The most prevalent multidrug-resistant (MDR) species were Enterobacter cloacae (8 isolates, 7.1%), Klebsiella pneumoniae (7 isolates, 6.3%), Klebsiella oxytoca (7 isolates, 6.3%), Escherichia coli (5 isolates, 4.5%), and Citrobacter freundii (3 isolates, 2.7%). The most commonly observed resistance phenotypes were against ampicillin (97.0%), streptomycin (94.1%), tetracycline (91.2%), trimethoprim-sulfamethoxazole (88.2%), nalidixic acid (85.3%), and chloramphenicol (76.5%). Class 1 integrons were detected in 28 (25.0%) isolates. The gene cassettes within class 1 integrons included those encoding resistance to trimethoprim (dfrA1, dfrA5, dfrA7, dfrA12, dfrA15, dfrA17, and dfrA25), aminoglycosides (aadA1, aadA2, aadA5, aadA7, aadA12, aadA22, and aac(3)-Id), chloramphenicol (cmlA), erythromycin (ereA2), and rifampicin (arr-3). Class 2 integrons were identified in 6 isolates (5.4%) with three different profiles. Furthermore, the β-lactamase encoding genes, bla(TEM), bla(SHV), bla(CTX-M), and bla(OXA), the plasmid-mediated quinolone resistance genes, qnr and aac(6)-Ib-cr, and the florfenicol resistance gene, floR, were also identified. To the best of our knowledge, the results identified class 2 integrons, qnr and aac(6)-Ib-cr from cases of mastitis for the first time. This is the first report of molecular characterization for antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Africa.

  20. Sanitizing Effect of Ethanol Against Biofilms Formed by Three Gram-Negative Pathogenic Bacteria.

    PubMed

    Park, Han-Saem; Ham, Youngseok; Shin, Keum; Kim, Yeong-Suk; Kim, Tae-Jong

    2015-07-01

    Sanitizing effect of ethanol on a Yersinia enterocolitica biofilm was evaluated in terms of biomass removal and bactericidal activity. We found that 40 % ethanol was most effective for biofilm biomass removal; however, no significant difference was observed in bactericidal activity between treatment with 40 and 70 % ethanol. This unexpected low ethanol concentration requirement for biomass removal was confirmed using biofilms of two additional pathogenic bacteria, Aeromonas hydrophila and Xanthomonas oryzae. Although only three pathogenic Gram-negative bacteria were tested and the biofilm in nature was different from the biofilm in this study, the results in this study suggested the possible re-evaluation of the effective sanitizing ethanol concentration 70 %, which is the concentration commonly employed for sanitization, on bacteria in a biofilm.

  1. Antiseptic and antibiotic resistance in Gram-negative bacteria causing urinary tract infection.

    PubMed Central

    Stickler, D J; Thomas, B

    1980-01-01

    A collection of 802 isolates of Gram-negative bacteria causing urinary tract infections was made from general practice, antenatal clinics, and local hospitals. The organisms were tested for their sensitivity to chlorhexidine, cetrimide, glutaraldehyde, phenyl mercuric nitrate, a phenolic formulation, and a proprietary antiseptic containing a mixture of picloxydine, octyl phenoxy polyethoxyethanol, and benzalkonium chloride. Escherichia coli, the major species isolated, proved to be uniformly sensitive to these agents. Approximately 10% of the total number of isolates, however, exhibited a degree of resistance to the cationic agents. These resistant organisms were members of the genera Proteus, Providencia, and Pseudomonas; they were also generally resistant to five, six, or seven antibiotics. It is proposed therefore that an antiseptic policy which involves the intensive use of cationic antiseptics might lead to the selection of a flora of notoriously drug-resistant species. PMID:6769972

  2. Comparison anti-bacterial effect of silver/polystyrene nanocomposites on gram negative and positive bacteria

    NASA Astrophysics Data System (ADS)

    Kazemi, Akhtarolmolook; Raftari, Maryam; Tollabimazraehno, Sajjad; Mahdavi, Mohammad; Irajizad, Azam

    2012-02-01

    Silver nanoparticles/polystyrene nanocomposites were prepared via casting the solution of polystyrene in a mixture of carbon tetrachloride and acetone containing silver nanoparticles. Colloidal silver nanoparticles in acetone were synthesized by pulsed laser ablation (PLA) of pure bulk silver. Casting the colloidal silver nanoparticles in a solution of polystyrene results in a yellowish transparent polymeric sheet. TEM images show rather spherical nanoparticles with mean diameter of 5 nm. Ag/PS nanocomposites were characterized by UV-VIS spectroscopy. In this study, we also investigated the antimicrobial activity of silver nanocomposites against Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus) as a model for Gram negative and Gram positive bacteria. Antibacterial tests were performed against E. coli and S.aureus, on LB agar plates containing different amount of nanoparticles. Our results showed at all these concentrations, the nanoparticles caused a growth delay of E. coli, increasing the concentration of nanoparticles increased this growth delay.

  3. FGL chaperone-assembled fimbrial polyadhesins: anti-immune armament of Gram-negative bacterial pathogens.

    PubMed

    Zavialov, Anton; Zav'yalova, Galina; Korpela, Timo; Zav'yalov, Vladimir

    2007-07-01

    This review summarizes the current knowledge on the structure, function, assembly, and biomedical applications of the family of adhesive fimbrial organelles assembled on the surface of Gram-negative pathogens via the FGL chaperone/usher pathway. Recent studies revealed the unique structural and functional properties of these organelles, distinguishing them from a related family, FGS chaperone-assembled adhesive pili. The FGL chaperone-assembled organelles consist of linear polymers of one or two types of protein subunits, each possessing one or two independent adhesive sites specific to different host cell receptors. This structural organization enables these fimbrial organelles to function as polyadhesins. Fimbrial polyadhesins may ensure polyvalent fastening of bacteria to the host cells, aggregating their receptors and triggering subversive signals that allow pathogens to evade immune defense. The FGL chaperone-assembled fimbrial polyadhesins are attractive targets for vaccine and drug design.

  4. Gram-negative bacilli as nontransient flora on the hands of hospital personnel.

    PubMed

    Guenthner, S H; Hendley, J O; Wenzel, R P

    1987-03-01

    The possibility that gram-negative bacilli (GNB) are part of the nontransient flora on hands was examined by using a broth rinse technique to detect low titers of GNB after a hygienic hand wash with soap and water. A total of 100 nurses who had direct patient contact and 40 controls without patient contact had a similar rate of recovery of GNB (46 and 55%, respectively). GNB persisted on the hands of 10 nurses throughout five successive hand washes with soap and water. Hand cultures were obtained daily from 12 nurses before and after a work shift in a surgical intensive care unit. GNB were recovered from 57% of individuals before patient contact and from only 24% after the work shift. Nontransient GNB on the hands of hospital personnel are a potential reservoir for hospital strains, and patient contact is not an obvious source for the acquisition of nontransient GNB.

  5. High dose of tigecycline for extremely resistant Gram-negative pneumonia: yes, we can

    PubMed Central

    2014-01-01

    Few antimicrobials are currently active to treat infections caused by extremely resistant Gram-negative bacilli (ERGNB), which represent a serious global public health concern. Tigecycline, which covers the majority of these ERGNB (with the exception of Pseudomonas aeruginosa), is not currently approved for hospital-acquired pneumonia, and several meta-analyses have suggested an increased risk of death in patients receiving this antibiotic. Other studies suggest that the use of high-dose tigecycline may represent an alternative in daily practice. De Pascale and colleagues report that the clinical cure rate in patients with ventilator-associated pneumonia is significantly higher with a high dose of tigecycline than with the conventional dose, although mortality was unaffected. This high dose is safe; no patients required discontinuation or dose reduction. PMID:25043402

  6. Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture.

    PubMed

    Turner, Robert D; Hurd, Alexander F; Cadby, Ashley; Hobbs, Jamie K; Foster, Simon J

    2013-01-01

    Cellular integrity and morphology of most bacteria is maintained by cell wall peptidoglycan, the target of antibiotics essential in modern healthcare. It consists of glycan strands, cross-linked by peptides, whose arrangement determines cell shape, prevents lysis due to turgor pressure and yet remains dynamic to allow insertion of new material, and hence growth. The cellular architecture and insertion pattern of peptidoglycan have remained elusive. Here we determine the peptidoglycan architecture and dynamics during growth in rod-shaped Gram-negative bacteria. Peptidoglycan is made up of circumferentially oriented bands of material interspersed with a more porous network. Super-resolution fluorescence microscopy reveals an unexpected discontinuous, patchy synthesis pattern. We present a consolidated model of growth via architecture-regulated insertion, where we propose only the more porous regions of the peptidoglycan network that are permissive for synthesis.

  7. DNA/Ag Nanoparticles as Antibacterial Agents against Gram-Negative Bacteria

    PubMed Central

    Takeshima, Tomomi; Tada, Yuya; Sakaguchi, Norihito; Watari, Fumio; Fugetsu, Bunshi

    2015-01-01

    Silver (Ag) nanoparticles were produced using DNA extracted from salmon milt as templates. Particles spherical in shape with an average diameter smaller than 10 nm were obtained. The nanoparticles consisted of Ag as the core with an outermost thin layer of DNA. The DNA/Ag hybrid nanoparticles were immobilized over the surface of cotton based fabrics and their antibacterial efficiency was evaluated using E. coli as the typical Gram-negative bacteria. The antibacterial experiments were performed according to the Antibacterial Standard of Japanese Association for the Functional Evaluation of Textiles. The fabrics modified with DNA/Ag nanoparticles showed a high enough inhibitory and killing efficiency against E. coli at a concentration of Ag ≥ 10 ppm. PMID:28347012

  8. Effect of biliary obstruction on a gram-negative bacteremic challenge: a preliminary report

    SciTech Connect

    Scott-Conner, C.E.; Bernstein, J.M.; Scher, K.S.; Mack, M.E.

    1986-06-01

    Alterations in the sequestration and destruction of bacteria were studied after 10 days of biliary obstruction. Intraperitoneal injection of radiolabeled Escherichia coli was used to study bacterial localization in rats 10 days after common duct ligation and transection or sham celiotomy. Animals were sacrificed 4 hours later and uptake by liver, spleen, lung, and kidney were studied with a scintillation counter. No significant difference in localization between the two groups was noted. Bacteremia was induced in a second set of animals and quantitative bacterial organ cultures were performed. Significantly more viable organisms were identified in lung, liver, and kidney of animals that underwent common duct ligation and transection, when compared with controls that underwent sham celiotomy. This suggests that there is a defect in bacterial killing after 10 days of biliary obstruction. The inability to effectively clear and kill gram-negative bacteria in patients with biliary obstruction may account for some of the clinical complications seen in this patient population.

  9. T-mod pathway, a reduced sequence for identification of gram-negative urinary tract pathogens.

    PubMed Central

    Berlutti, F; Thaller, M C; Dainelli, B; Pezzi, R

    1989-01-01

    In this paper, we describe a reduced sequence of identification that includes T-mod medium, a selective and differential isolation medium which allows accurate presumptive identification of the most common gram-negative bacteria encountered in urine samples. The present study, performed on bacteria isolated from 1,762 independent urine samples, has shown that a few selected tests (lysine and ornithine decarboxylase, urease and trehalose fermentation tests) improve the identification accuracy of T-mod, making it possible both to identify the less frequent species and to prevent some misidentifications of Klebsiella pneumoniae and Proteus mirabilis. The proposed work flow agreed with conventional identification protocols to a 99.3% extent and allowed identification of 87.4% of the isolates directly from the primary plate, 11.4% after 1 to 3 additional tests, and 1.2% after an identification gallery. PMID:2768451

  10. Healthcare-associated Gram-negative bloodstream infections: antibiotic resistance and predictors of mortality.

    PubMed

    Ergönül, Ö; Aydin, M; Azap, A; Başaran, S; Tekin, S; Kaya, Ş; Gülsün, S; Yörük, G; Kurşun, E; Yeşilkaya, A; Şimşek, F; Yılmaz, E; Bilgin, H; Hatipoğlu, Ç; Cabadak, H; Tezer, Y; Togan, T; Karaoğlan, I; İnan, A; Engin, A; Alışkan, H E; Yavuz, S Ş; Erdinç, Ş; Mulazimoglu, L; Azap, Ö; Can, F; Akalın, H; Timurkaynak, F

    2016-12-01

    This article describes the prevalence of antibiotic resistance and predictors of mortality for healthcare-associated (HA) Gram-negative bloodstream infections (GN-BSI). In total, 831 cases of HA GN-BSI from 17 intensive care units in different centres in Turkey were included; the all-cause mortality rate was 44%. Carbapenem resistance in Klebsiella pneumoniae was 38%, and the colistin resistance rate was 6%. Multi-variate analysis showed that age >70 years [odds ratio (OR) 2, 95% confidence interval (CI) 1.22-3.51], central venous catheter use (OR 2.1, 95% CI 1.09-4.07), ventilator-associated pneumonia (OR 1.9, 95% CI 1.1-3.16), carbapenem resistance (OR 1.8, 95% CI 1.11-2.95) and APACHE II score (OR 1.1, 95% CI 1.07-1.13) were significantly associated with mortality.

  11. DNA/Ag Nanoparticles as Antibacterial Agents against Gram-Negative Bacteria.

    PubMed

    Takeshima, Tomomi; Tada, Yuya; Sakaguchi, Norihito; Watari, Fumio; Fugetsu, Bunshi

    2015-03-03

    Silver (Ag) nanoparticles were produced using DNA extracted from salmon milt as templates. Particles spherical in shape with an average diameter smaller than 10 nm were obtained. The nanoparticles consisted of Ag as the core with an outermost thin layer of DNA. The DNA/Ag hybrid nanoparticles were immobilized over the surface of cotton based fabrics and their antibacterial efficiency was evaluated using E. coli as the typical Gram-negative bacteria. The antibacterial experiments were performed according to the Antibacterial Standard of Japanese Association for the Functional Evaluation of Textiles. The fabrics modified with DNA/Ag nanoparticles showed a high enough inhibitory and killing efficiency against E. coli at a concentration of Ag ≥ 10 ppm.

  12. Plasmid-Mediated Antibiotic Resistance and Virulence in Gram-negatives: the Klebsiella pneumoniae Paradigm

    PubMed Central

    Ramirez, Maria S.; Traglia, German M.; Lin, David L.; Tran, Tung; Tolmasky, Marcelo E.

    2015-01-01

    Summary Plasmids harbor genes coding for specific functions including virulence factors and antibiotic resistance that permit bacteria to survive the hostile environment found in the host and resist treatment. Together with other genetic elements such as integrons and transposons, and using a variety of mechanisms, plasmids participate in the dissemination of these traits resulting in the virtual elimination of barriers among different kinds of bacteria. In this article we review the current information about physiology and role in virulence and antibiotic resistance of plasmids from the gram-negative opportunistic pathogen Klebsiella pneumoniae. This bacterium has acquired multidrug resistance and is the causative agent of serious communityand hospital-acquired infections. It is also included in the recently defined ESKAPE group of bacteria that cause most of US hospital infections. PMID:25705573

  13. Motuporamine Derivatives as Antimicrobial Agents and Antibiotic Enhancers against Resistant Gram-Negative Bacteria.

    PubMed

    Borselli, Diane; Blanchet, Marine; Bolla, Jean-Michel; Muth, Aaron; Skruber, Kristen; Phanstiel, Otto; Brunel, Jean Michel

    2017-02-01

    Dihydromotuporamine C and its derivatives were evaluated for their in vitro antimicrobial activities and antibiotic enhancement properties against Gram-negative bacteria and clinical isolates. The mechanism of action of one of these derivatives, MOTU-N44, was investigated against Enterobacter aerogenes by using fluorescent dyes to evaluate outer-membrane depolarization and permeabilization. Its efficiency correlated with inhibition of dye transport, thus suggesting that these molecules inhibit drug transporters by de-energization of the efflux pump rather than by direct interaction of the molecule with the pump. This suggests that depowering the efflux pump provides another strategy to address antibiotic resistance. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  14. Antibacterial properties of sophorolipid-modified gold surfaces against Gram positive and Gram negative pathogens.

    PubMed

    Valotteau, Claire; Banat, Ibrahim M; Mitchell, Christopher A; Lydon, Helen; Marchant, Roger; Babonneau, Florence; Pradier, Claire-Marie; Baccile, Niki; Humblot, Vincent

    2017-09-01

    Sophorolipids are bioderived glycolipids displaying interesting antimicrobial properties. We show that they can be used to develop biocidal monolayers against Listeria ivanovii, a Gram-positive bacterium. The present work points out the dependence between the surface density and the antibacterial activity of grafted sophorolipids. It also emphasizes the broad spectrum of activity of these coatings, demonstrating their potential against both Gram-positive strains (Enteroccocus faecalis, Staphylococcus epidermidis, Streptococcus pyogenes) and Gram-negative strains (Escherichia coli, Pseudomonas aeruginosa and Salmonella typhymurium). After exposure to sophorolipids grafted onto gold, all these bacterial strains show a significant reduction in viability resulting from membrane damage as evidenced by fluorescent labelling and SEM-FEG analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Pneumonia and meningitis caused by a new nonfermentative unknown gram-negative bacterium.

    PubMed Central

    Casalta, J P; Peloux, Y; Raoult, D; Brunet, P; Gallais, H

    1989-01-01

    Seven isolates of an unclassified bacterium resembling Flavobacterium spp. were characterized by growth requirements, microscopic examination, biochemical characteristics, antimicrobial susceptibility tests, protein profile analysis, and serologic data. The unclassified isolates were differentiated from Flavobacterium meningosepticum, Flavobacterium odoratum, Flavobacterium balustinum, Flavobacterium strain IIb, Chromobacterium violaceum, Aquaspirillum serpens, and Pseudomonas spp. The bacterium was a gram-negative rod with a polar flagellum. Protein profile analysis demonstrated two major protein bands present in the unclassified isolates that were absent from the Flavobacterium and Pseudomonas controls but present in the Aquaspirillum and Chromobacterium controls. However, no serologic cross-reactions were observed. Our results showed that the unclassified bacterium was distinct from any previously known genus of bacterium. Images PMID:2504766

  16. A model of a transmembrane drug-efflux pump from Gram-negative bacteria.

    PubMed

    Fernandez-Recio, Juan; Walas, Fabien; Federici, Luca; Venkatesh Pratap, J; Bavro, Vassiliy N; Miguel, Ricardo Nunez; Mizuguchi, Kenji; Luisi, Ben

    2004-12-03

    In Gram-negative bacteria, drug resistance is due in part to the activity of transmembrane efflux-pumps, which are composed of three types of proteins. A representative pump from Escherichia coli is an assembly of the trimeric outer-membrane protein TolC, which is an allosteric channel, the trimeric inner-membrane proton-antiporter AcrB, and the periplasmic protein, AcrA. The pump displaces drugs vectorially from the bacterium using proton electrochemical force. Crystal structures are available for TolC and AcrB from E. coli, and for the AcrA homologue MexA from Pseudomonas aeruginosa. Based on homology modelling and molecular docking, we show how AcrA, AcrB and TolC might assemble to form a tripartite pump, and how allostery may occur during transport.

  17. Determining the Localization of Carbohydrate Active Enzymes Within Gram-Negative Bacteria.

    PubMed

    McLean, Richard; Inglis, G Douglas; Mosimann, Steven C; Uwiera, Richard R E; Abbott, D Wade

    2017-01-01

    Investigating the subcellular location of secreted proteins is valuable for illuminating their biological function. Although several bioinformatics programs currently exist to predict the destination of a trafficked protein using its signal peptide sequence, these programs have limited accuracy and often require experimental validation. Here, we present a systematic method to fractionate gram-negative cells and characterize the subcellular localization of secreted carbohydrate active enzymes (CAZymes). This method involves four parallel approaches that reveal the relative abundance of protein within the cytoplasm, periplasm, outer membrane, and extracellular environment. Cytoplasmic and periplasmic proteins are fractionated by lysis and osmotic shock, respectively. Outer membrane bound proteins are determined by comparing cells before and after exoproteolytic digestion. Extracellularly secreted proteins are collected from the media and concentrated. These four different fractionations can then be probed for the presence and quantity of target proteins using immunochemical methods such as Western blots and ELISAs, or enzyme activity assays.

  18. Antibiotics and the mechanics of cellular bulging in gram-negative bacteria

    NASA Astrophysics Data System (ADS)

    Daly, K.; Wingreen, Ned S.; Mukhopahyay, Ranjan

    2010-03-01

    For most bacteria, the cell wall, consisting of a cross-linked polymer network, is the primary stress-bearing structure. Due to the high osmotic pressure difference across the cell membrane, the presence of the cell wall is essential for cell stability. Recent experiments have addressed the effect of cell-wall defects induced by antibiotics such as vancomycin, and find that in Gram-negative bacteria, antibiotics can lead to pronounced bulging of the cell membrane and eventually to lysis. Here we address the mechanics of bulging and its relationship to cell-wall defects. We estimate the critical defect size for bulging and discuss the biological implications of our results. We also discuss the relevance of our physical model to blebbing and vesiculation in eukaryotic cells.

  19. Structural Insights Lead to a Negamycin Analogue with Improved Antimicrobial Activity against Gram-Negative Pathogens

    PubMed Central

    2015-01-01

    Negamycin is a natural product with antibacterial activity against a broad range of Gram-negative pathogens. Recent revelation of its ribosomal binding site and mode of inhibition has reinvigorated efforts to identify improved analogues with clinical potential. Translation-inhibitory potency and antimicrobial activity upon modification of different moieties of negamycin were in line with its observed ribosomal binding conformation, reaffirming stringent structural requirements for activity. However, substitutions on the N6 amine were tolerated and led to N6-(3-aminopropyl)-negamycin (31f), an analogue showing 4-fold improvement in antibacterial activity against key bacterial pathogens. This represents the most potent negamycin derivative to date and may be a stepping stone toward clinical development of this novel antibacterial class. PMID:26288696

  20. Metallo-beta-lactamases as emerging resistance determinants in Gram-negative pathogens: open issues.

    PubMed

    Cornaglia, Giuseppe; Akova, Murat; Amicosante, Gianfranco; Cantón, Rafael; Cauda, Roberto; Docquier, Jean-Denis; Edelstein, Mikhail; Frère, Jean-Marie; Fuzi, Miklós; Galleni, Moreno; Giamarellou, Helen; Gniadkowski, Marek; Koncan, Raffaella; Libisch, Balázs; Luzzaro, Francesco; Miriagou, Vivi; Navarro, Ferran; Nordmann, Patrice; Pagani, Laura; Peixe, Luisa; Poirel, Laurent; Souli, Maria; Tacconelli, Evelina; Vatopoulos, Alkiviadis; Rossolini, Gian Maria

    2007-04-01

    The rapid spread of acquired metallo-beta-lactamases (MBLs) among major Gram-negative pathogens is a matter of particular concern worldwide and primarily in Europe, one of first continents where the emergence of acquired MBLs has been reported and possibly the geographical area where the increasing diversity of these enzymes and the number of bacterial species affected are most impressive. This spread has not been paralleled by accuracy/standardisation of detection methods, completeness of epidemiological knowledge or a clear understanding of what MBL production entails in terms of clinical impact, hospital infection control and antimicrobial chemotherapy. A number of European experts in the field met to review the current knowledge on this phenomenon, to point out open issues and to reinforce and relate to one another the existing activities set forth by research institutes, scientific societies and European Union-driven networks.

  1. Localization of Somatic Antigen on Gram-Negative Bacteria by Electron Microscopy

    PubMed Central

    Shands, J. W.

    1965-01-01

    Shands, J. W. (University of Florida, Gainesville). Localization of somatic antigen on gram-negative bacteria by electron microscopy. J. Bacteriol. 90:266–270. 1965.—Antisera specific for the somatic antigens of Salmonella typhimurium and Escherichia coli O113 were prepared, and globulins isolated from these antisera were labeled with ferritin. Micrographs of labeled, sectioned bacteria show that somatic antigen is located in considerable quantities on the surface of the bacteria, and, furthermore, that it can extend up to 150 mμ beyond the confines of the cell wall. The arrangement of the ferritin on the bacteria suggests that the antigenic sites are located on fibrillar structures. Images PMID:16562028

  2. [The identification of nonfermentative gram-negative bacteria. Experiences with 676 apyocyaninogenic strains (author's transl)].

    PubMed

    Berger, U; Piotrowski, H D

    1981-02-01

    During a period of 16 months 1757 strains of nonfermentative gram-negative rods have been isolated from clinical material. Of the, 1205 (69%) were P. aeruginosa, 124 (10%) of which failed to produce pyocyanin. The apyocyaninogenic strains as well as the remaining 552 isolates were differentiated by steps according to a diagnostic scheme developed by us. For identification of species two or three steps were needed. By this procedure, 530 of the 552 strains could be assigned to nineteen species within the genera Pseudomonas, Achromobacter, Alcaligenes, Flavobacterium, Agrobacterium and Acinetobacter. 17 strains could not be identified below the genus level, one strain belonged to CDC-group VE-2 and four strains were not identifiable. 72% of the 552 strains belonged to only four species: Pseudomonas putida, P. maltophilia, Acinetobacter lwoffii and A. anitratus.

  3. Multidrug-resistant Gram-negative bacteria: a product of globalization.

    PubMed

    Hawkey, P M

    2015-04-01

    Global trade and mobility of people has increased rapidly over the last 20 years. This has had profound consequences for the evolution and the movement of antibiotic resistance genes. There is increasing exposure of populations all around the world to resistant bacteria arising in the emerging economies. Arguably the most important development of the last two decades in the field of antibiotic resistance is the emergence and spread of extended-spectrum β-lactamases (ESBLs) of the CTX-M group. A consequence of the very high rates of ESBL production among Enterobacteriaceae in Asian countries is that there is a substantial use of carbapenem antibiotics, resulting in the emergence of plasmid-mediated resistance to carbapenems. This article reviews the emergence and spread of multidrug-resistant Gram-negative bacteria, focuses on three particular carbapenemases--imipenem carbapenemases, Klebsiella pneumoniae carbapenemase, and New Delhi metallo-β-lactamase--and highlights the importance of control of antibiotic use.

  4. Gram-positive and gram-negative bacterial toxins in sepsis: a brief review.

    PubMed

    Ramachandran, Girish

    2014-01-01

    Bacterial sepsis is a major cause of fatality worldwide. Sepsis is a multi-step process that involves an uncontrolled inflammatory response by the host cells that may result in multi organ failure and death. Both gram-negative and gram-positive bacteria play a major role in causing sepsis. These bacteria produce a range of virulence factors that enable them to escape the immune defenses and disseminate to remote organs, and toxins that interact with host cells via specific receptors on the cell surface and trigger a dysregulated immune response. Over the past decade, our understanding of toxins has markedly improved, allowing for new therapeutic strategies to be developed. This review summarizes some of these toxins and their role in sepsis.

  5. Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria.

    PubMed

    Poole, Keith

    2012-05-01

    Bacteria encounter a myriad of potentially growth-compromising conditions in nature and in hosts of pathogenic bacteria. These 'stresses' typically elicit protective and/or adaptive responses that serve to enhance bacterial survivability. Because they impact upon many of the same cellular components and processes that are targeted by antimicrobials, adaptive stress responses can influence antimicrobial susceptibility. In targeting and interfering with key cellular processes, antimicrobials themselves are 'stressors' to which protective stress responses have also evolved. Cellular responses to nutrient limitation (nutrient stress), oxidative and nitrosative stress, cell envelope damage (envelope stress), antimicrobial exposure and other growth-compromising stresses, have all been linked to the development of antimicrobial resistance in Gram-negative bacteria - resulting from the stimulation of protective changes to cell physiology, activation of resistance mechanisms, promotion of resistant lifestyles (biofilms), and induction of resistance mutations.

  6. Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture

    PubMed Central

    Turner, Robert D.; Hurd, Alexander F.; Cadby, Ashley; Hobbs, Jamie K.; Foster, Simon J.

    2013-01-01

    Cellular integrity and morphology of most bacteria is maintained by cell wall peptidoglycan, the target of antibiotics essential in modern healthcare. It consists of glycan strands, cross-linked by peptides, whose arrangement determines cell shape, prevents lysis due to turgor pressure and yet remains dynamic to allow insertion of new material, and hence growth. The cellular architecture and insertion pattern of peptidoglycan have remained elusive. Here we determine the peptidoglycan architecture and dynamics during growth in rod-shaped Gram-negative bacteria. Peptidoglycan is made up of circumferentially oriented bands of material interspersed with a more porous network. Super-resolution fluorescence microscopy reveals an unexpected discontinuous, patchy synthesis pattern. We present a consolidated model of growth via architecture-regulated insertion, where we propose only the more porous regions of the peptidoglycan network that are permissive for synthesis. PMID:23422664

  7. Efficacy of surface disinfectant cleaners against emerging highly resistant gram-negative bacteria

    PubMed Central

    2014-01-01

    Background Worldwide, the emergence of multidrug-resistant gram-negative bacteria is a clinical problem. Surface disinfectant cleaners (SDCs) that are effective against these bacteria are needed for use in high risk areas around patients and on multi-touch surfaces. We determined the efficacy of several SDCs against clinically relevant bacterial species with and without common types of multidrug resistance. Methods Bacteria species used were ATCC strains; clinical isolates classified as antibiotic-susceptible; and multi-resistant clinical isolates from Klebsiella oxytoca, Klebsiella pneumoniae, and Serratia marcescens (all OXA-48 and KPC-2); Acinetobacter baumannii (OXA-23); Pseudomonas aeruginosa (VIM-1); and Achromobacter xylosoxidans (ATCC strain). Experiments were carried out according to EN 13727:2012 in quadruplicate under dirty conditions. The five evaluated SDCs were based on alcohol and an amphoteric substance (AAS), an oxygen-releaser (OR), surface-active substances (SAS), or surface-active-substances plus aldehydes (SASA; two formulations). Bactericidal concentrations of SDCs were determined at two different contact times. Efficacy was defined as a log10 ≥ 5 reduction in bacterial cell count. Results SDCs based on AAS, OR, and SAS were effective against all six species irrespective of the degree of multi-resistance. The SASA formulations were effective against the bacteria irrespective of degree of multi-resistance except for one of the four P. aeruginosa isolates (VIM-1). We found no general correlation between SDC efficacy and degree of antibiotic resistance. Conclusions SDCs were generally effective against gram-negative bacteria with and without multidrug resistance. SDCs are therefore suitable for surface disinfection in the immediate proximity of patients. Single bacterial isolates, however, might have reduced susceptibility to selected biocidal agents. PMID:24885029

  8. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    SciTech Connect

    Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; Ciesielski, Filip; Kuzmenko, Ivan; Holt, Stephen A.; Lakey, Jeremy H.

    2014-12-09

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.

  9. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    DOE PAGES

    Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; ...

    2014-12-09

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutronmore » reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less

  10. Altered ketone body metabolism during gram-negative sepsis in the rat.

    PubMed

    Lanza-Jacoby, S; Rosato, E; Braccia, G; Tabares, A

    1990-11-01

    To investigate why blood ketone bodies are depressed during sepsis, the production and utilization of ketone bodies was studied in fasted control, fasted, Escherichia coli-treated, fed control, and fed E coli-treated rats. Gram-negative sepsis was induced by intravenous (IV) injection of 8 x 10(7) live colonies of E coli per 100 g body weight. Food was removed from the fasted rats after E coli injection. Fed rats were infused intragastrically with a nutritionally adequate diet for 5 days before inducing sepsis. Twenty-four hours after E coli injection, blood ketone bodies were reduced in fasted septic rats and fed septic rats compared with their respective control rats. Ketogenesis and oxidation of labeled palmitate was not altered in hepatocytes from fasted E coli-treated rats. Yet, ketogenesis declined significantly in hepatocytes from fed E coli-treated rats. Oxidation of labeled palmitate was also significantly reduced in hepatocytes from fed E coli-treated rats. Utilization of ketone bodies as measured by the incorporation of [3-14C]beta-hydroxybutyrate into CO2, increased over threefold in the diaphragm, 12% in the heart, and 19% in the kidneys from the fasted E coli-treated rats. In the fed state, incorporation of [3-14C]beta-hydroxybutyrate into CO2 was elevated fivefold in the heart, fourfold in the diaphragm, and over threefold in the kidneys from the septic rats. These results suggest that in the fasted state, plasma ketone bodies remain low during gram-negative sepsis because peripheral tissues use more ketone bodies and because liver ketogenesis is not increased to compensate for the increased utilization. In the fed state, the reduction in blood ketone bodies appears to be attributed to both impaired ketogenic capacity and increased peripheral utilization.

  11. Influence of bentonite particles on representative gram negative and gram positive bacterial deposition in porous media.

    PubMed

    Yang, Haiyan; Tong, Meiping; Kim, Hyunjung

    2012-11-06

    The significance of clay particles on the transport and deposition kinetics of bacteria in irregular quartz sand was examined by direct comparison of both breakthrough curves and retained profiles with clay particles in bacteria suspension versus those without clay particles. Two representative cell types, Gram-negative strain E. coli DH5α and Gram-positive strain Bacillus subtilis were utilized to systematically determine the influence of clay particles (bentonite) on cell transport behavior. Packed column experiments for both cell types were conducted in both NaCl (5 and 25 mM ionic strengths) and CaCl(2) (5 mM ionic strength) solutions at pH 6.0. The breakthrough plateaus with bentonite in solutions (30 mg L(-1) and 50 mg L(-1)) were lower than those without bentonite for both cell types under all examined conditions, indicating that bentonite in solutions decreased cell transport in porous media regardless of cell types (Gram-negative or Gram-positive) and solution chemistry (ionic strength and ion valence). The enhanced cell deposition with bentonite particles was mainly observed at segments near to column inlet, retained profiles for both cell types with bentonite particles were therefore steeper relative to those without bentonite. The increased cell deposition with bentonite observed in NaCl solutions was attributed to the codeposition of bacteria with bentonite particles whereas, in addition to codeposition of bacteria with bentonite, the bacteria-bentonite-bacteria cluster formed in suspensions also contributed to the increased deposition of bacteria with bentonite in CaCl(2) solution.

  12. Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions

    PubMed Central

    Amachawadi, Raghavendra G.; Renter, David G.; Volkova, Victoriya V.

    2016-01-01

    Antimicrobial treatments result in the host’s enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-Test® following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: β-lactams (specifically, ampicillin and ceftriaxone E-Test®), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n≥30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment

  13. Efficacy of surface disinfectant cleaners against emerging highly resistant gram-negative bacteria.

    PubMed

    Reichel, Mirja; Schlicht, Anastasija; Ostermeyer, Christiane; Kampf, Günter

    2014-05-28

    Worldwide, the emergence of multidrug-resistant gram-negative bacteria is a clinical problem. Surface disinfectant cleaners (SDCs) that are effective against these bacteria are needed for use in high risk areas around patients and on multi-touch surfaces. We determined the efficacy of several SDCs against clinically relevant bacterial species with and without common types of multidrug resistance. Bacteria species used were ATCC strains; clinical isolates classified as antibiotic-susceptible; and multi-resistant clinical isolates from Klebsiella oxytoca, Klebsiella pneumoniae, and Serratia marcescens (all OXA-48 and KPC-2); Acinetobacter baumannii (OXA-23); Pseudomonas aeruginosa (VIM-1); and Achromobacter xylosoxidans (ATCC strain). Experiments were carried out according to EN 13727:2012 in quadruplicate under dirty conditions. The five evaluated SDCs were based on alcohol and an amphoteric substance (AAS), an oxygen-releaser (OR), surface-active substances (SAS), or surface-active-substances plus aldehydes (SASA; two formulations). Bactericidal concentrations of SDCs were determined at two different contact times. Efficacy was defined as a log10 ≥ 5 reduction in bacterial cell count. SDCs based on AAS, OR, and SAS were effective against all six species irrespective of the degree of multi-resistance. The SASA formulations were effective against the bacteria irrespective of degree of multi-resistance except for one of the four P. aeruginosa isolates (VIM-1). We found no general correlation between SDC efficacy and degree of antibiotic resistance. SDCs were generally effective against gram-negative bacteria with and without multidrug resistance. SDCs are therefore suitable for surface disinfection in the immediate proximity of patients. Single bacterial isolates, however, might have reduced susceptibility to selected biocidal agents.

  14. Summer Peaks in the Incidences of Gram-Negative Bacterial Infection Among Hospitalized Patients.

    PubMed

    Perencevich, Eli N; McGregor, Jessina C; Shardell, Michelle; Furuno, Jon P; Harris, Anthony D; Morris, J Glenn; Fisman, David N; Johnson, Judith A

    2008-12-01

    Recognition of seasonal trends in hospital infections may improve diagnosis, use of empirical therapy, and infection prevention interventions. There are very few data available regarding the seasonal variability of these infections. We quantified the seasonal variation in the incidences of hospital infection caused by common bacterial pathogens and estimated the association between temperature changes and infection rates. A cohort of all adult patients admitted to the University of Maryland Medical Center during the period from 1998 through 2005 was analyzed. Time-series analyses were used to estimate the association of the number of infections per month caused by Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacter cloacae, Escherichia coli, Staphylococcus aureus, and enterococci with season and temperature, while controlling for long-term trends. There were 218,594 admissions to the index hospital, and analysis of 26,624 unique clinical cultures that grew the organisms of interest identified increases in the mean monthly rates of infection caused by P. aeruginosa (28% of isolates recovered; P ! .01), E. cloacae (46%; P ! .01), E. coli (12%; P ! .01), and A. baumannii (21%; Pp.06). For each 10 degrees F increase, we observed a 17% increase in the monthly rates of infection caused by P. aeruginosa (Pp.01) and A. baumanii (Pp.05). Significantly higher rates of gram-negative infection were observed during the summer months, compared with other seasons. For some pathogens, higher temperatures were associated with higher infection rates, independent of seasonality. These findings have important implications for infection prevention, such as enhanced surveillance during the warmer months, and for choice of empirical antimicrobial therapy among hospitalized adults. Future, quasi-experimental investigations of gram-negative infection prevention initiatives should control for seasonal variation.

  15. Adenosine A2B Receptor Deficiency Promotes Host Defenses against Gram-Negative Bacterial Pneumonia

    PubMed Central

    Barletta, Kathryn E.; Cagnina, R. Elaine; Burdick, Marie D.; Linden, Joel

    2012-01-01

    Rationale: Activation of the adenosine A2B receptor (A2BR) promotes antiinflammatory effects in diverse biological settings, but the role of this receptor in antimicrobial host defense in the lung has not been established. Gram-negative bacillary pneumonia is a common and serious illness associated with high morbidity and mortality, the treatment of which is complicated by increasing rates of antibiotic resistance. Objectives: To test the hypothesis that absence of adenosine A2B receptor signaling promotes host defense against bacterial pneumonia. Methods: We used a model of Klebsiella pneumoniae pneumonia in wild-type mice and mice with targeted deletion of the A2BR. Host responses were compared in vivo and leukocyte responses to the bacteria were examined in vitro. Measurements and Main Results: A2BR–/– mice demonstrated enhanced bacterial clearance from the lung and improved survival after infection with K. pneumoniae compared with wild-type controls, an effect that was mediated by bone marrow–derived cells. Leukocyte recruitment to the lungs and expression of inflammatory cytokines did not differ between A2BR–/– and wild-type mice, but A2BR–/– neutrophils exhibited sixfold greater bactericidal activity and enhanced production of neutrophil extracellular traps compared with wild-type neutrophils when incubated with K. pneumoniae. Consistent with this finding, bronchoalveolar lavage fluid from A2BR–/– mice with Klebsiella pneumonia contained more extracellular DNA compared with wild-type mice with pneumonia. Conclusions: These data suggest that the absence of A2BR signaling enhances antimicrobial activity in gram-negative bacterial pneumonia. PMID:22997203

  16. Structural Modifications of Bacterial Lipopolysaccharide that Facilitate Gram-Negative Bacteria Evasion of Host Innate Immunity

    PubMed Central

    Matsuura, Motohiro

    2013-01-01

    Bacterial lipopolysaccharide (LPS), a cell wall component characteristic of Gram-negative bacteria, is a representative pathogen-associated molecular pattern that allows mammalian cells to recognize bacterial invasion and trigger innate immune responses. The polysaccharide moiety of LPS primary plays protective roles for bacteria such as prevention from complement attacks or camouflage with common host carbohydrate residues. The lipid moiety, termed lipid A, is recognized by the Toll-like receptor 4 (TLR4)/MD-2 complex, which transduces signals for activation of host innate immunity. The basic structure of lipid A is a glucosamine disaccharide substituted by phosphate groups and acyl groups. Lipid A with six acyl groups (hexa-acylated form) has been indicated to be a strong stimulator of the TLR4/MD-2 complex. This type of lipid A is conserved among a wide variety of Gram-negative bacteria, and those bacteria are easily recognized by host cells for activation of defensive innate immune responses. Modifications of the lipid A structure to less-acylated forms have been observed in some bacterial species, and those forms are poor stimulators of the TLR4/MD-2 complex. Such modifications are thought to facilitate bacterial evasion of host innate immunity, thereby enhancing pathogenicity. This hypothesis is supported by studies of Yersinia pestis LPS, which contains hexa-acylated lipid A when the bacterium grows at 27°C (the temperature of the vector flea), and shifts to contain less-acylated forms when grown at the human body temperature of 37°C. This alteration of lipid A forms following transmission of Y. pestis from fleas to humans contributes predominantly to the virulence of this bacterium over other virulence factors. A similar role for less-acylated lipid A forms has been indicated in some other bacterial species, such as Francisella tularensis, Helicobacter pylori, and Porphyromonas gingivalis, and further studies to explore this concept are expected. PMID

  17. Perceiving the chemical language of Gram-negative bacteria: listening by high-resolution mass spectrometry.

    PubMed

    Cataldi, Tommaso R I; Bianco, Giuliana; Fonseca, Juliano; Schmitt-Kopplin, Philippe

    2013-01-01

    Gram-negative bacteria use N-acylhomoserine lactones (AHLs) as their command language to coordinate population behavior during invasion and colonization of higher organisms. Although many different bacterial bioreporters are available for AHLs monitoring, in which a phenotypic response, e.g. bioluminescence, violacin production, and β-galactosidase activity, is exploited, mass spectrometry (MS) is the most versatile detector for rapid analysis of AHLs in complex microbial samples, with or without prior separation steps. In this paper we critically review recent advances in the application of high-resolution MS to analysis of the quorum sensing (QS) signaling molecules used by Gram-negative bacteria, with much emphasis on AHLs. A critical review of the use of bioreporters in the study of AHLs is followed by a short methodological survey of the capabilities of high-resolution mass spectrometry (HRMS), including Fourier-transform ion cyclotron resonance (FTICR) MS and quadrupole time-of-flight (qTOF) MS. Use of infusion electrospray ultrahigh-resolution FTICR MS (12 Tesla) enables accurate mass measurements for determination of the elemental formulas of AHLs in Acidovorax sp. N35 and Burkholderia ubonensis AB030584. Results obtained by coupling liquid chromatography with a hybrid quadrupole linear ion trap-FTICR mass spectrometer (LC-LTQ-FTICRMS, 7-T) for characterization of acylated homoserine lactones in the human pathogen Pseudomonas aeruginosa are presented. UPLC-ESI-qTOF MS has also proved to be suitable for identification of 3O-C(10)HSL in Pseudomonas putida IsoF cell culture supernatant. Aspects of sample preparation and the avoidance of analytical pitfalls are also emphasized.

  18. Inhibition of CEA release from epithelial cells by lipid A of Gram-negative bacteria.

    PubMed

    Naghibalhossaini, Fakhraddin; Sayadi, Khatere; Jaberie, Hajar; Bazargani, Abdollah; Eftekhar, Ebrahim; Hosseinzadeh, Massood

    2015-09-01

    A number of bacterial species, both pathogenic and non-pathogenic, use the human CEACAM family members as receptors for internalization into epithelial cells. The GPI-linked CEA and CEACAM6 might play a role in the innate immune defense, protecting the colon from microbial invasion. Previous studies showed that CEA is released from epithelial cells by an endogenous GPI-PLD enzyme. GPI-PLD activity was reported to be inhibited by several synthetic and natural forms of lipid A. We hypothesized that CEA engagement by Gram-negative bacteria might attenuate CEA release from epithelial cells and that this might facilitate bacterial colonization. We tested the hypothesis by examining the effect of Escherichia coli on CEA release from colorectal cancer cells in a co-culture experiment. A subconfluent monolayer culture of colorectal cancer cells (LS-180, Caco-2 and HT29/219) was incubated with E. coli. While there was a significant reduction in CEA secretion from LS-180 and HT29/219 cells, we found only a small reduction of CEA shedding from Caco-2 cells compared to the level from the untreated control cells. Furthermore, lipid A treatment of LS-180 cells inhibited CEA release from the cells in a dosedependent manner. Western blot analysis of total lysates showed that CEA expression levels in cells co-cultured with bacteria did not differ from those in untreated control cells. These results suggest that lipid A of Gram-negative bacteria might play a role in preventing the release of CEA from mucosal surfaces and promote mucosal colonization by bacteria.

  19. Detection of RTX toxin genes in gram-negative bacteria with a set of specific probes.

    PubMed Central

    Kuhnert, P; Heyberger-Meyer, B; Burnens, A P; Nicolet, J; Frey, J

    1997-01-01

    The family of RTX (RTX representing repeats in the structural toxin) toxins is composed of several protein toxins with a characteristic nonapeptide glycine-rich repeat motif. Most of its members were shown to have cytolytic activity. By comparing the genetic relationships of the RTX toxin genes we established a set of 10 gene probes to be used for screening as-yet-unknown RTX toxin genes in bacterial species. The probes include parts of apxIA, apxIIA, and apxIIIA from Actinobacillus pleuropneumoniae, cyaA from Bordetella pertusis, frpA from Neisseria meningitidis, prtC from Erwinia chrysanthemi, hlyA and elyA from Escherichia coli, aaltA from Actinobacillus actinomycetemcomitans and lktA from Pasteurella haemolytica. A panel of pathogenic and nonpathogenic gram-negative bacteria were investigated for the presence of RTX toxin genes. The probes detected all known genes for RTX toxins. Moreover, we found potential RTX toxin genes in several pathogenic bacterial species for which no such toxins are known yet. This indicates that RTX or RTX-like toxins are widely distributed among pathogenic gram-negative bacteria. The probes generated by PCR and the hybridization method were optimized to allow broad-range screening for RTX toxin genes in one step. This included the binding of unlabelled probes to a nylon filter and subsequent hybridization of the filter with labelled genomic DNA of the strain to be tested. The method constitutes a powerful tool for the assessment of the potential pathogenicity of poorly characterized strains intended to be used in biotechnological applications. Moreover, it is useful for the detection of already-known or new RTX toxin genes in bacteria of medical importance. PMID:9172345

  20. Comparative Evaluation of Four Phenotypic Tests for Detection of Carbapenemase-Producing Gram-Negative Bacteria

    PubMed Central

    Noël, Audrey; Berhin, Catherine; Hoebeke, Martin; Bouchahrouf, Warda; Yunus, Sami; Bogaerts, Pierre; Glupczynski, Youri

    2016-01-01

    ABSTRACT Four screening assays aimed for rapid detection of carbapenemase production from Gram-negative bacterial isolates, i.e., the Neo-Rapid Carb kit (Rosco Diagnostica A/S), the Rapidec Carba NP test (bioMérieux SA), the β Carba test (Bio-Rad Laboratories N.V.), and a homemade electrochemical assay (BYG Carba test) were evaluated against a panel comprising 328 clinical isolates (Enterobacteriaceae [n = 198] and nonfermentative Gram-negative bacilli [n = 130]) with previously characterized resistance mechanisms to carbapenems. Among Enterobacteriaceae isolates, the BYG Carba test and the β Carba test showed excellent sensitivities (respectively, 100% and 97.3%) and specificities (respectively, 98.9% and 97.7%). The two other assays yielded poorer performances with sensitivity and specificity of 91.9% and 83.9% for the Rapidec Carba NP test and of 89.2% and 89.7% for the Neo-Rapid Carb kit, respectively. Among Pseudomonas spp., sensitivities and specificities ranged, respectively, from 87.3% to 92.7% and from 88.2% to 94.1%. Finally, all tests performed poorly against Acinetobacter spp., with sensitivities and specificities, respectively, ranging from 27.3% to 75.8% and from 75 to 100%. Among commercially available assays, the β Carba test appeared to be the most convenient for routine use and showed the best overall performances, especially against OXA-48-like producers. The excellent performance of the BYG Carba test against Enterobacteriaceae was confirmed (100% sensitivity and 98.9% specificity). PMID:27927915

  1. Structural Modifications of Bacterial Lipopolysaccharide that Facilitate Gram-Negative Bacteria Evasion of Host Innate Immunity.

    PubMed

    Matsuura, Motohiro

    2013-01-01

    Bacterial lipopolysaccharide (LPS), a cell wall component characteristic of Gram-negative bacteria, is a representative pathogen-associated molecular pattern that allows mammalian cells to recognize bacterial invasion and trigger innate immune responses. The polysaccharide moiety of LPS primary plays protective roles for bacteria such as prevention from complement attacks or camouflage with common host carbohydrate residues. The lipid moiety, termed lipid A, is recognized by the Toll-like receptor 4 (TLR4)/MD-2 complex, which transduces signals for activation of host innate immunity. The basic structure of lipid A is a glucosamine disaccharide substituted by phosphate groups and acyl groups. Lipid A with six acyl groups (hexa-acylated form) has been indicated to be a strong stimulator of the TLR4/MD-2 complex. This type of lipid A is conserved among a wide variety of Gram-negative bacteria, and those bacteria are easily recognized by host cells for activation of defensive innate immune responses. Modifications of the lipid A structure to less-acylated forms have been observed in some bacterial species, and those forms are poor stimulators of the TLR4/MD-2 complex. Such modifications are thought to facilitate bacterial evasion of host innate immunity, thereby enhancing pathogenicity. This hypothesis is supported by studies of Yersinia pestis LPS, which contains hexa-acylated lipid A when the bacterium grows at 27°C (the temperature of the vector flea), and shifts to contain less-acylated forms when grown at the human body temperature of 37°C. This alteration of lipid A forms following transmission of Y. pestis from fleas to humans contributes predominantly to the virulence of this bacterium over other virulence factors. A similar role for less-acylated lipid A forms has been indicated in some other bacterial species, such as Francisella tularensis, Helicobacter pylori, and Porphyromonas gingivalis, and further studies to explore this concept are expected.

  2. Understanding Gram-negative Central Line-Associated Blood Stream Infection in a Surgical Trauma ICU.

    PubMed

    Duane, Therese M; Kikhia, Rashid M; Wolfe, Luke G; Ober, Janis; Tessier, Jeffrey M

    2015-08-01

    The purpose of this study was to review central line-associated blood stream infection (CLABSI) data from a surgical trauma intensive care unit to better understand patient risk factors, pathogens, and treatment interventions. We performed a retrospective review of all surgical ICU patients who met the Centers for Disease Control definition for Gram-negative CLABSI from 2006 through 2013. Demographics, pathogens, interventions, and outcomes were evaluated. A total of 40 patients were included with an average age of 49.9 ± 19 years and 72.5 per cent male. The average length of central venous line (CVL) was 11 ± 5.9 days with average time from line placement to positive culture 9.4 ± 6.8 days. Most common organisms were Enterobacter species (37.5%) with 17.8 per cent of all cultured organisms considered multidrug resistant. Piperacillin-tazobactam (67.5%) was the most commonly used antibiotic. Overall mortality rate was 22.5 per cent. A total of 11 patients who developed a recurrence did so at 10.7 ± 8 days and were similar to those without recurrence. Predominant pathogens associated with surgical trauma intensive care unit CLABSI in this study are different from those Gram-negative bacteria associated with published studies in the general hospital population. Further investigation into risk factors for infection and relapse is important to minimize such consequences. Understanding appropriate line placement and use as well as clarifying optimal duration of therapy is integral in improving outcomes.

  3. Silver resistance in Gram-negative bacteria: a dissection of endogenous and exogenous mechanisms

    PubMed Central

    Randall, Christopher P.; Gupta, Arya; Jackson, Nicole; Busse, David; O'Neill, Alex J.

    2015-01-01

    Objectives To gain a more detailed understanding of endogenous (mutational) and exogenous (horizontally acquired) resistance to silver in Gram-negative pathogens, with an emphasis on clarifying the genetic bases for resistance. Methods A suite of microbiological and molecular genetic techniques was employed to select and characterize endogenous and exogenous silver resistance in several Gram-negative species. Results In Escherichia coli, endogenous resistance arose after 6 days of exposure to silver, a consequence of two point mutations that were both necessary and sufficient for the phenotype. These mutations, in ompR and cusS, respectively conferred loss of the OmpC/F porins and derepression of the CusCFBA efflux transporter, both phenotypic changes previously linked to reduced intracellular accumulation of silver. Exogenous resistance involved derepression of the SilCFBA efflux transporter as a consequence of mutation in silS, but was additionally contingent on expression of the periplasmic silver-sequestration protein SilE. Silver resistance could be selected at high frequency (>10−9) from Enterobacteriaceae lacking OmpC/F porins or harbouring the sil operon and both endogenous and exogenous resistance were associated with modest fitness costs in vitro. Conclusions Both endogenous and exogenous silver resistance are dependent on the derepressed expression of closely related efflux transporters and are therefore mechanistically similar phenotypes. The ease with which silver resistance can become selected in some bacterial pathogens in vitro suggests that there would be benefit in improved surveillance for silver-resistant isolates in the clinic, along with greater control over use of silver-containing products, in order to best preserve the clinical utility of silver. PMID:25567964

  4. Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact.

    PubMed

    Mukerji, Shewli; O'Dea, Mark; Barton, Mary; Kirkwood, Roy; Lee, Terence; Abraham, Sam

    2017-02-28

    Gram-negative bacteria are known to cause severe infections in both humans and animals. Antimicrobial resistance (AMR) in Gram-negative bacteria is a major challenge in the treatment of clinical infections globally due to the propensity of these organisms to rapidly develop resistance against antimicrobials in use. In addition, Gram-negative bacteria possess highly efficient mechanisms through which the AMR can be disseminated between pathogenic and commensal bacteria of the same or different species. These unique traits of Gram-negative bacteria have resulted in evolution of Gram-negative bacterial strains demonstrating resistance to multiple classes of antimicrobials. The evergrowing resistance issue has not only resulted in limitation of treatment options but also led to increased treatment costs and mortality rates in humans and animals. With few or no new antimicrobials in production to combat severe life-threatening infections, AMR has been described as the one of the most severe, long-term threats to human health. Aside from overuse and misuse of antimicrobials in humans, another factor that has exacerbated the emergence of AMR in Gram-negative bacteria is the veterinary use of antimicrobials that belong to the same classes considered to be critically important for treating serious life-threatening infections in humans. Despite the fact that development of AMR dates back to before the introduction of antimicrobials, the recent surge in the resistance towards all available critically important antimicrobials has emerged as a major public health issue. This review thus focuses on discussing the development, transmission and public health impact of AMR in Gram-negative bacteria in animals.

  5. [Current detection rates of multiresistant gram negative bacteria (3MRGN, 4MRGN) in patients with chronic leg ulcers].

    PubMed

    Jockenhöfer, F; Gollnick, H; Herberger, K; Isbary, G; Renner, R; Stücker, M; Valesky, E; Wollina, U; Weichenthal, M; Karrer, S; Ross, B; Heintschel von Heinegg, E; Dissemond, J

    2014-11-01

    Due to the increasing problem of antibiotic resistance in gram-negative pathogens, the Commission for Hospital Hygiene and Infection Prevention (KRINKO) decided to establish a new clinically oriented definition of multi-resistance. Gram-negative pathogens with a multidrug-resistance (MRGN) are divided into those with resistance to three (3MRGN) or four (4MRGN) antibiotic groups. In this multicenter study which was done in ten dermatological wound clinics, the bacteriological swabs from up to 100 patients with chronic leg ulcers per center were analyzed according to the current classification KRINKO and evaluated. Overall, the results of 970 patients (553 women, 417 men) could be evaluated. We found 681 gram-positive and 1155 gram-negative bacteria. Pseudomonas aeruginosa was with a detection-rate of 31.1% the most frequent gram-negative pathogen, followed by Proteus mirabilis with 13.7% and various enterobacteria with 28.6%. According to the current KRINKO classification,eight patients with 4MRGN and 34 patients with 3MRGN could be identified. Our results demonstrate the current spectrum of bacteria in patients with chronic leg ulcers with a variety of gram-negative pathogens, some of which are classified as multi-drug resistant. As a clinical consequence some of the patients require individualized preventive measures and therapy.

  6. Impact of a hospital-wide antibiotic restriction policy program on the resistance rates of nosocomial Gram-negative bacteria.

    PubMed

    Antoniadou, Anastasia; Kanellakopoulou, Kyriaki; Kanellopoulou, Maria; Polemis, Michael; Koratzanis, George; Papademetriou, Evangelia; Poulakou, Garyfalia; Giannitsioti, Efthimia; Souli, Maria; Vatopoulos, Alkiviadis; Giamarellou, Helen

    2013-06-01

    To evaluate the impact of an antibiotic restriction policy on antibiotic consumption and Gram-negative resistance rates, in an environment of antibiotic overconsumption and increasing resistance rates for nosocomial pathogens. The study was a 'before and after' trial of 18-month duration; the antibiotic restriction policy program was implemented in 1998-2000 and was based on a government program addressed by the Ministry of Health to public hospitals on a national basis. This included prescribing of all newer antibiotics on an order form, auditing of the order forms and consultation with infectious diseases (ID) specialists, dispensing of treatment and prophylaxis guidelines, feedback, and face-to-face education. Antibiotic consumption and Gram-negative resistance rates were recorded before and after the intervention. Despite the addition of a new 40-bed ID department in the hospital during the 'after' period, the consumption of restricted antibiotics was significantly reduced by 42% (and their cost by 31%). Gram-negative resistance rates for Pseudomonas, Klebsiella, and Enterobacter, serving as index microorganisms for Gram-negative nosocomial pathogens, were significantly reduced during the 'after' period, even against antibiotics for which there was an increase in consumption. Multidisciplinary restriction programs can reduce antibiotic consumption and Gram-negative resistance rates in the hospital setting.

  7. Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria.

    PubMed

    El Salabi, Allaaeddin; Walsh, Timothey R; Chouchani, Chedly

    2013-05-01

    Infectious diseases due to Gram-negative bacteria are a leading cause of morbidity and mortality worldwide. Antimicrobial agents represent one major therapeutic tools implicated to treat these infections. The misuse of antimicrobial agents has resulted in the emergence of resistant strains of Gram-negatives in particular Enterobacteriaceae and non-fermenters; they have an effect not only on a human but on the public health when bacteria use the resistance mechanisms to spread in the hospital environment and to the community outside the hospitals by means of mobile genetic elements. Gram-negative bacteria have become increasingly resistant to antimicrobial agents. They have developed several mechanisms by which they can withstand to antimicrobials, these mechanisms include the production of Extended-spectrum β-lactamases (ESBLs) and carbapenemases, furthermore, Gram-negative bacteria are now capable of spreading such resistance between members of the family Enterobacteriaceae and non-fermenters using mobile genetic elements as vehicles for such resistance mechanisms rendering antibiotics useless. Therefore, addressing the issue of mechanisms of antimicrobial resistance is considered one of most urgent priorities. This review will help to illustrate different resistance mechanisms; ESBLs, carbapenemases encoded by genes carried by mobile genetic elements, which are used by Gram-negative bacteria to escape antimicrobial effect.

  8. Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC

    PubMed Central

    Lemaître, Nadine; Liang, Xiaofei; Najeeb, Javaria; Lee, Chul-Jin; Titecat, Marie; Leteurtre, Emmanuelle; Simonet, Michel; Toone, Eric J.

    2017-01-01

    ABSTRACT The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effective in vitro against a broad panel of Gram-negative clinical isolates, including several multiresistant and extremely drug-resistant strains involved in nosocomial infections. Furthermore, LPC-069 is curative in a murine model of one of the most severe human diseases, bubonic plague, which is caused by the Gram-negative bacterium Yersinia pestis. Our results demonstrate the safety and efficacy of LpxC inhibitors as a new class of antibiotic against fatal infections caused by extremely virulent pathogens. The present findings also highlight the potential of LpxC inhibitors for clinical development as therapeutics for infections caused by multidrug-resistant bacteria. PMID:28743813

  9. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria.

    PubMed

    Uppu, Divakara S S M; Konai, Mohini M; Sarkar, Paramita; Samaddar, Sandip; Fensterseifer, Isabel C M; Farias-Junior, Celio; Krishnamoorthy, Paramanandam; Shome, Bibek R; Franco, Octávio L; Haldar, Jayanta

    2017-01-01

    Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin) to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells). The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC) clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS) of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms) and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections.

  10. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria

    PubMed Central

    Uppu, Divakara S. S. M.; Konai, Mohini M.; Sarkar, Paramita; Samaddar, Sandip; Fensterseifer, Isabel C. M.; Farias-Junior, Celio; Krishnamoorthy, Paramanandam; Shome, Bibek R.; Franco, Octávio L.

    2017-01-01

    Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin) to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells). The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC) clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS) of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms) and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections. PMID:28837596

  11. [Evaluation of API 20 NE (version 6.0) in rare Gram-negative non-glucose-fermenting bacilli].

    PubMed

    Vay, C; Almuzara, M; Mattera, J; de Mier, C; Famiglietti, A

    2003-01-01

    The ability of the API 20 NE method (6.0 version, bio-Mérieux, Marcy L'Etoile, France) to identify 188 strains of gram negative nonfermentative bacilli (NFB) was evaluated (Fenazinic pigment producing Pseudomonas aeruginosa and Acinetobacter spp. were excluded). These were isolated from patients treated at the Hospital de Clínicas José de San Martín of the University of Buenos Aires during the period 1996-2001. Strains were identified according to the Schreckenberger P testing method. Out of 188 NFB strains, 175 (93.09%) were correctly identified by the API 20 NE method at the genus and species level (IC95 = 88.47-96.27) while 61 (32.45%) required additional testing for correct identification. Thirteen strains (6.91%; IC95 3.73-11.53) could not be correctly identified and none of them were classified as "non identified". The API 20 NE method is a practical, easy to handle, fast and useful system for the identification of NFB since conventional manual methods take longer and require many biochemical, enzymatic and physiological tests which are sometimes not available depending on the size and capability of the laboratory. Although it is easy to handle, the API 20 NE identification system must be interpreted by an expert microbiologist who must compare the results obtained by this system with the information provided by the distinctive cultures and mobility patterns of these organisms.

  12. The Drosophila Prosecretory Transcription Factor dimmed Is Dynamically Regulated in Adult Enteroendocrine Cells and Protects Against Gram-Negative Infection.

    PubMed

    Beebe, Katherine; Park, Dongkook; Taghert, Paul H; Micchelli, Craig A

    2015-05-20

    The endocrine system employs peptide hormone signals to translate environmental changes into physiological responses. The diffuse endocrine system embedded in the gastrointestinal barrier epithelium is one of the largest and most diverse endocrine tissues. Furthermore, it is the only endocrine tissue in direct physical contact with the microbial environment of the gut lumen. However, it remains unclear how this sensory epithelium responds to specific pathogenic challenges in a dynamic and regulated manner. We demonstrate that the enteroendocrine cells of the adult Drosophila melanogaster midgut display a transient, sensitive, and systemic induction of the prosecretory factor dimmed (dimm) in response to the Gram-negative pathogen Pseudomonas entomophila (Pe). In enteroendocrine cells, dimm controls the levels of the targets Phm, dcat-4, and the peptide hormone, Allatostatin A. Finally, we identify dimm as a host factor that protects against Pe infection and controls the expression of antimicrobial peptides. We propose that dimm provides "gain" in enteroendocrine output during the adaptive response to episodic pathogen exposure. Copyright © 2015 Beebe et al.

  13. Physico-Chemical-Managed Killing of Penicillin-Resistant Static and Growing Gram-Positive and Gram-Negative Vegetative Bacteria

    NASA Technical Reports Server (NTRS)

    Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor); Farris, III, Alex F. (Inventor)

    2012-01-01

    Systems and methods for the use of compounds from the Hofmeister series coupled with specific pH and temperature to provide rapid physico-chemical-managed killing of penicillin-resistant static and growing Gram-positive and Gram-negative vegetative bacteria. The systems and methods represent the more general physico-chemical enhancement of susceptibility for a wide range of pathological macromolecular targets to clinical management by establishing the reactivity of those targets to topically applied drugs or anti-toxins.

  14. Carbapenem-Resistant Non-Glucose-Fermenting Gram-Negative Bacilli: the Missing Piece to the Puzzle

    PubMed Central

    Gniadek, Thomas J.; Carroll, Karen C.

    2016-01-01

    The non-glucose-fermenting Gram-negative bacilli Pseudomonas aeruginosa and Acinetobacter baumannii are increasingly acquiring carbapenem resistance. Given their intrinsic antibiotic resistance, this can cause extremely difficult-to-treat infections. Additionally, resistance gene transfer can occur between Gram-negative species, regardless of their ability to ferment glucose. Thus, the acquisition of carbapenemase genes by these organisms increases the risk of carbapenemase spread in general. Ultimately, infection control practitioners and clinical microbiologists need to work together to determine the risk carried by carbapenem-resistant non-glucose-fermenting Gram-negative bacilli (CR-NF) in their institution and what methods should be considered for surveillance and detection of CR-NF. PMID:26912753

  15. Review of studies of the impact on Gram-negative bacterial resistance on outcomes in the intensive care unit.

    PubMed

    Shorr, Andrew F

    2009-04-01

    To review studies addressing mortality, length of stay (LOS), and cost of resistant Gram-negative bacterial infections in the intensive care unit (ICU). A qualitative review of published studies identified through PubMed search was performed. Study exclusion criteria were population <40 adults or <39% of cases in the ICU. Criteria for judging study quality were prospective analysis, multicenter study, author-specified diagnostic criteria, appropriate control group defined as patients with infections caused by susceptible bacteria, adjustments for confounding factors, and use of cost. Twenty-one original studies and a meta-analysis, which included three of the original studies, were identified. Infections caused by mixed resistant Gram-negative bacteria, extended-spectrum beta-lactamase-producing Enterobacteriaceae, multidrug-resistant Pseudomonas aeruginosa, and Acinetobacter species were generally associated with increased mortality and LOS, especially in univariate analyses. Economic analyses performed in eight studies indicated that these resistant Gram-negative infections were also associated with increased patient charges or hospital costs. Associations sometimes disappeared in multivariate analyses after adjusting for variables significant in univariate analyses. The collective findings of the studies in this review suggested that Gram-negative bacterial resistance increases the burden in the ICU as measured by mortality, LOS, and charges. More prospective studies are needed to explore methods for combating Gram-negative resistance, including prevention, education, and better antimicrobial therapy. For example, well-designed research is needed to determine the cost-effectiveness of appropriate empiric therapy with broad-spectrum agents active against resistant Gram-negative bacteria followed by de-escalation.

  16. Unraveling the Differences between Gram-Positive and Gram-Negative Probiotics in Modulating Protective Immunity to Enteric Infections

    PubMed Central

    Kandasamy, Sukumar; Vlasova, Anastasia N.; Fischer, David D.; Chattha, Kuldeep S.; Shao, Lulu; Kumar, Anand; Langel, Stephanie N.; Rauf, Abdul; Huang, Huang-Chi; Rajashekara, Gireesh; Saif, Linda J.

    2017-01-01

    The role of intestinal microbiota and probiotics in prevention and treatment of infectious diseases, including diarrheal diseases in children and animal models, is increasingly recognized. Intestinal commensals play a major role in development of the immune system in neonates and in shaping host immune responses to pathogens. Lactobacilli spp. and Escherichia coli Nissle 1917 are two probiotics that are commonly used in children to treat various medical conditions including human rotavirus diarrhea and inflammatory bowel disease. Although the health benefits of probiotics have been confirmed, the specific effects of these established Gram-positive (G+) and Gram-negative (G−) probiotics in modulating immunity against pathogens and disease are largely undefined. In this review, we discuss the differences between G+ and G− probiotics/commensals in modulating the dynamics of selected infectious diseases and host immunity. These probiotics modulate the pathogenesis of infectious diseases and protective immunity against pathogens in a species- and strain-specific manner. Collectively, it appears that the selected G− probiotic is more effective than the various tested G+ probiotics in enhancing protective immunity against rotavirus in the gnotobiotic piglet model. PMID:28396664

  17. The Drosophila melanogaster Toll Pathway Participates in Resistance to Infection by the Gram-Negative Human Pathogen Pseudomonas aeruginosa

    PubMed Central

    Lau, Gee W.; Goumnerov, Boyan C.; Walendziewicz, Cynthia L.; Hewitson, Jennifer; Xiao, Wenzhong; Mahajan-Miklos, Shalina; Tompkins, Ronald G.; Perkins, Lizabeth A.; Rahme, Laurence G.

    2003-01-01

    Pseudomonas aeruginosa is a gram-negative pathogen that infects immunocompromised and cystic fibrosis patients. The molecular basis of the host-P. aeruginosa interaction and the effect of specific P. aeruginosa virulence factors on various components of the innate immunity pathways are largely unknown. We examine interactions between P. aeruginosa virulence factors and components of innate immunity response in the Drosophila melanogaster model system to reveal the importance of the Toll signaling pathway in resistance to infection by the P. aeruginosa human isolate PA14. Using the two PA14-isogenic mutants plcS and dsbA, we show that Drosophila loss-of-function mutants of Spatzle, the extracellular ligand of Toll, and Dorsal and Dif, two NF-κB-like transcription factors, allow increased P. aeruginosa infectivity within fly tissues. In contrast, a constitutively active Toll mutant and a loss-of-function mutant of Cactus, an IκB-like factor that inhibits the Toll signaling, reduce infectivity. Our finding that Dorsal activity is required to restrict P. aeruginosa infectivity in Drosophila provides direct in vivo evidence for Dorsal function in adult fly immunity. Additionally, our results provide the basis for future studies into interactions between P. aeruginosa virulence factors and components of the Toll signaling pathway, which is functionally conserved between flies and humans. PMID:12819096

  18. Synergic bactericidal effects of reduced graphene oxide and silver nanoparticles against Gram-positive and Gram-negative bacteria.

    PubMed

    Prasad, Karthika; Lekshmi, G S; Ostrikov, Kola; Lussini, Vanessa; Blinco, James; Mohandas, Mandhakini; Vasilev, Krasimir; Bottle, Steven; Bazaka, Kateryna; Ostrikov, Kostya

    2017-05-08

    Reduced graphene oxide (rGO) is a promising antibacterial material, the efficacy of which can be further enhanced by the addition of silver nanoparticles (nAg). In this study, the mechanisms of antibacterial activity of rGO-nAg nanocomposite against several important human pathogenic multi-drug resistant bacteria, namely Gram-positive coccal Staphylococcus aureus and Gram-negative rod-shaped Escherichia coli and Proteus mirabilis are investigated. At the same concentration (100 µg/ml), rGO-nAg nanocomposite was significantly more effective against all three pathogens than either rGO or nAg. The nanocomposite was equally active against P. mirabilis and S. aureus as systemic antibiotic nitrofurantoin, and significantly more effective against E. coli. Importantly, the inhibition was much faster in the case of rGO-nAg nanocomposite compared to nitrofurantoin, attributed to the synergistic effects of rGO-nAg mediated contact killing and oxidative stress. This study may provide new insights for the better understanding of antibacterial actions of rGO-nAg nanocomposite and for the better designing of graphene-based antibiotics or other biomedical applications.

  19. Inhibition of various gram-positive and gram- negative bacteria growth on selenium nanoparticle coated paper towels

    PubMed Central

    Wang, Qi; Larese-Casanova, Philip; Webster, Thomas J

    2015-01-01

    There are wide spread bacterial contamination issues on various paper products, such as paper towels hanging in sink splash zones or those used to clean surfaces, filter papers used in water and air purifying systems, and wrappings used in the food industry; such contamination may lead to the potential spread of bacteria and consequent severe health concerns. In this study, selenium nanoparticles were coated on normal paper towel surfaces through a quick precipitation method, introducing antibacterial properties to the paper towels in a healthy way. Their effectiveness at preventing biofilm formation was tested in bacterial assays involving Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus epidermidis. The results showed significant and continuous bacteria inhibition with about a 90% reduction from 24 to 72 hours for gram-positive bacteria including S. aureus and S. epidermidis. The selenium coated paper towels also showed significant inhibition of gram-negative bacteria like P. aeruginosa and E. coli growth at about 57% and 84%, respectively, after 72 hours of treatment. Therefore, this study established a promising selenium-based antibacterial strategy to prevent bacterial growth on paper products, which may lead to the avoidance of bacteria spreading and consequent severe health concerns. PMID:25926733

  20. Inhibition of various gram-positive and gram-negative bacteria growth on selenium nanoparticle coated paper towels.

    PubMed

    Wang, Qi; Larese-Casanova, Philip; Webster, Thomas J

    2015-01-01

    There are wide spread bacterial contamination issues on various paper products, such as paper towels hanging in sink splash zones or those used to clean surfaces, filter papers used in water and air purifying systems, and wrappings used in the food industry; such contamination may lead to the potential spread of bacteria and consequent severe health concerns. In this study, selenium nanoparticles were coated on normal paper towel surfaces through a quick precipitation method, introducing antibacterial properties to the paper towels in a healthy way. Their effectiveness at preventing biofilm formation was tested in bacterial assays involving Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus epidermidis. The results showed significant and continuous bacteria inhibition with about a 90% reduction from 24 to 72 hours for gram-positive bacteria including S. aureus and S. epidermidis. The selenium coated paper towels also showed significant inhibition of gram-negative bacteria like P. aeruginosa and E. coli growth at about 57% and 84%, respectively, after 72 hours of treatment. Therefore, this study established a promising selenium-based antibacterial strategy to prevent bacterial growth on paper products, which may lead to the avoidance of bacteria spreading and consequent severe health concerns.

  1. Evaluation of the Rapidec Carba NP Test Kit for Detection of Carbapenemase-Producing Gram-Negative Bacteria.

    PubMed

    Garg, Atul; Garg, Jaya; Upadhyay, G C; Agarwal, Anurag; Bhattacharjee, Amitabha

    2015-12-01

    Recently, bioMérieux, France, introduced the Rapidec Carba NP test kit for rapid detection of carbapenemase-producing Gram-negative bacteria. This kit was evaluated in this study, and we report sensitivity, specificity, and positive and negative predictive values of 92.6%, 96.2%, 95.83%, and 92.6%, respectively. The test was easy to perform and interpret and relatively inexpensive ($5/Rs 300 per test) and provides a practical solution for early detection of carbapenemase-producing, multidrug-resistant Gram-negative bacteria.

  2. [Carbapenemases in gram-negative bacteria. Current data and trends of resistance resulting from the work of national reference centres].

    PubMed

    Kaase, M

    2012-11-01

    The spread of carbapenemase-producing gram-negative bacteria is one of the major challenges of the present. Since 2009, the National Reference Laboratory for gram-negative nosocomial pathogens has observed the molecular epidemiology of carbapenemases in Germany. In 2011, 1,454 referred bacterial isolates were tested for the presence of carbapenemases. Carbapenemase was found in 34.4% of Enterobacteriaceae isolates, in 19.9% of Pseudomonas aeruginosa isolates and in 96.3% of Acinetobacter baumannii isolates. The most frequent carbapenemases in Enterobacteriaceae were OXA-48, KPC and VIM-1; in P. aeruginosa it was VIM-2 and in A. baumannii OXA-23.

  3. Epidemiology and Management of Emerging Drug-Resistant Gram-Negative Bacteria: Extended-Spectrum β-Lactamases and Beyond.

    PubMed

    Boyle, Daniel P; Zembower, Teresa R

    2015-11-01

    Worldwide prevalence of antimicrobial resistance is rapidly increasing, primarily a result of antibiotic misuse in the medical community. Resistant infections involving the urinary tract are typically caused by gram-negative bacteria. When treating these infections, clinicians have few effective antimicrobials to choose from and many are associated with significant adverse effects. There are now situations when clinicians are tasked with managing infections from pan-resistant organisms; thus, it is of paramount importance that spread of resistance be controlled. This review discusses common gram-negative resistance classes, highlighting the mechanisms of resistance, risk factors, type of infections, treatment, and outcomes associated with each class.

  4. Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response

    PubMed Central

    McBroom, Amanda J; Kuehn, Meta J

    2007-01-01

    Conditions that impair protein folding in the Gram-negative bacterial envelope cause stress. The destabilizing effects of stress in this compartment are recognized and countered by a number of signal transduction mechanisms. Data presented here reveal another facet of the complex bacterial stress response, release of outer membrane vesicles. Native vesicles are composed of outer membrane and periplasmic material, and they are released from the bacterial surface without loss of membrane integrity. Here we demonstrate that the quantity of vesicle release correlates directly with the level of protein accumulation in the cell envelope. Accumulation of material occurs under stress, and is exacerbated upon impairment of the normal housekeeping and stress-responsive mechanisms of the cell. Mutations that cause increased vesiculation enhance bacterial survival upon challenge with stressing agents or accumulation of toxic misfolded proteins. Preferential packaging of a misfolded protein mimic into vesicles for removal indicates that the vesiculation process can act to selectively eliminate unwanted material. Our results demonstrate that production of bacterial outer membrane vesicles is a fully independent, general envelope stress response. In addition to identifying a novel mechanism for alleviating stress, this work provides physiological relevance for vesicle production as a protective mechanism. PMID:17163978

  5. Plasmid-mediated transfer of the bla(NDM-1) gene in Gram-negative rods.

    PubMed

    Potron, Anaïs; Poirel, Laurent; Nordmann, Patrice

    2011-11-01

    The latest threat of multidrug-resistant Gram-negative bacteria corresponds to the emergence of carbapenemase NDM-1 (New Delhi metallo-β-lactamase) producers, mostly in Enterobacteriacae. Five bla(NDM) (-1) -positive plasmids of different incompatibility groups (IncL/M, FII, A/C and two untypeable plasmids) from clinical Enterobacteriaceae were evaluated for conjugation properties and host specificity. Successful conjugative transfers were obtained using all tested enterobacterial species as recipients (Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium and Proteus mirabilis) and all plasmid types. Conjugation frequencies varied from 1 × 10(-4) to 6 × 10(-8) transconjugants per donor. Higher conjugation rates were obtained for two plasmids at 30 °C compared with that observed at 25 and 37 °C. Carbapenems used as selector did not lead to higher conjugation frequencies. None of the five plasmids was transferable to Acinetobacter baumannii or Pseudomonas aeruginosa by conjugation. This work underlines how efficient the spread of the carbapenemase bla(NDM) (-1) gene could be among Enterobacteriaceae.

  6. Evaluation of brilliance CRE agar for the detection of carbapenem-resistant gram-negative bacteria.

    PubMed

    Bracco, Silvia; Migliavacca, Roberta; Pini, Beatrice; Corbo, Nicoletta; Nucleo, Elisabetta; Brigante, Gioconda; Piazza, Aurora; Micheletti, Piero; Luzzaro, Francesco

    2013-04-01

    The aim of this work was to evaluate the performance of the new chromogenic medium BrillianceTM CREAgar (Thermo Fisher Scientific) for determining the limit of detection of carbapenem-resistant enterobacteria (CRE). A total of 70 clinical isolates were studied. Of these, 30 were well-characterized CRE, including Klebsiella pneumoniae strains producing KPC-, VIM-, and OXA-type enzymes, VIM-positive Enterobacter cloacae and Escherichia coli, NDM-positive E. coli, and enterobacterial isolates characterized by porin loss associated with ESBL production or AmpC hyperproduction. Ten carbapenem-resistant non-fermentative isolates were also included as well as 30 carbapenem-susceptible isolates. Carbapenem-resistant strains were inoculated at three different concentrations onto Brilliance CRE Agar (from 1.5x101 CFU/ml up to 1.5x104 CFU/ml) whereas carbapenem-susceptible isolates were inoculated at a concentration of 1.5x102 CFU/ml. The medium sustained the growth of carbapenem-resistant isolates, showing detection limits from 1.5x101 CFU/ml (in 31/40 cases) to 1.5x104 CFU/ml. No growth was observed with carbapenem-sensitive control strains. Our results indicate that the Brilliance CRE Agar allows the growth of carbapenem-resistant isolates with low detection limits and could represent a useful screening medium for both enterobacteria and non-fermentative Gram-negative strains resistant to carbapenems.

  7. Computational assessment of the stiffness of the Gram-negative bacterial cell wall

    NASA Astrophysics Data System (ADS)

    Sinha, Sandhya; Zhao, Yao; Huang, K. C.

    2010-03-01

    The bacterial cytoplasm exists in a state of constant metabolic activity, leading to a turgor pressure across the membrane that measures an atmosphere or more. For most bacteria, the peptidoglycan cell wall bears this stress and is also a primary determinant of the cell's shape. In this work, we investigate how the elastic properties of Gram-negative cell walls emerge from the molecular organization of the peptidoglycan network by studying the structure of a mechanical model of the cell wall under the computational application of several types of strain. Experimental evidence has suggested that the Young's modulus of the cell wall increases nonlinearly with the turgor pressure. We have conducted simulations to determine what intrinsic physical characteristics of the molecular components of the cell wall, including bending, tension, and anisotropy, are necessary and sufficient for recapitulating the nonlinear rise in stiffness. Furthermore, we have modeled the effect of missing springs on the elastic response of the cell-wall network to bridge the gap between molecular organization and a continuum model of cell-wall elasticity.

  8. High-resolution architecture of Gram-negative bacterial cell wall

    NASA Astrophysics Data System (ADS)

    Touhami, Ahmed; Dutcher, John

    2011-10-01

    The major structural component of bacterial cell walls is the peptidoglycan sacculus, which is one of nature's strongest and largest macromolecules that maintains the large internal pressure within the cell while allowing the transport of molecules into and out of the cell and cell growth. The three-dimensional structure of this unique biopolymer is controversial, and two models have been proposed: the planar model, in which the glycan strands lie in the plane of the cell surface, and the scaold model, in which the glycan strands lie perpendicular to the cell surface. We have used atomic force microscopy to investigate the high resolution structure of isolated, intact sacculi of Escherichia coli K12 bacteria. Atomic force microscopy-single molecule force spectroscopy was performed on single sacculi exposed to the tAmiB enzyme which cleaves the peptide-glycan bonds. Surprisingly, the measurements revealed individual strands of up to 250 nm in length. This finding combined with high resolution AFM images recorded on hydrated sacculi provide evidence for the validity of the planar model for the peptidoglycan structure in Gram-negative bacteria.

  9. Structural engineering of a phage lysin that targets Gram-negative pathogens

    SciTech Connect

    Lukacik, Petra; Barnard, Travis J.; Keller, Paul W.; Chaturvedi, Kaveri S.; Seddiki, Nadir; Fairman, James W.; Noinaj, Nicholas; Kirby, Tara L.; Henderson, Jeffrey P.; Steven, Alasdair C.; Hinnebusch, B. Joseph; Buchanan, Susan K.

    2012-11-13

    Bacterial pathogens are becoming increasingly resistant to antibiotics. As an alternative therapeutic strategy, phage therapy reagents containing purified viral lysins have been developed against Gram-positive organisms but not against Gram-negative organisms due to the inability of these types of drugs to cross the bacterial outer membrane. We solved the crystal structures of a Yersinia pestis outer membrane transporter called FyuA and a bacterial toxin called pesticin that targets this transporter. FyuA is a {beta}-barrel membrane protein belonging to the family of TonB dependent transporters, whereas pesticin is a soluble protein with two domains, one that binds to FyuA and another that is structurally similar to phage T4 lysozyme. The structure of pesticin allowed us to design a phage therapy reagent comprised of the FyuA binding domain of pesticin fused to the N-terminus of T4 lysozyme. This hybrid toxin kills specific Yersinia and pathogenic E. coli strains and, importantly, can evade the pesticin immunity protein (Pim) giving it a distinct advantage over pesticin. Furthermore, because FyuA is required for virulence and is more common in pathogenic bacteria, the hybrid toxin also has the advantage of targeting primarily disease-causing bacteria rather than indiscriminately eliminating natural gut flora.

  10. Cytokine profile in severe Gram-positive and Gram-negative abdominal sepsis.

    PubMed

    Surbatovic, Maja; Popovic, Nada; Vojvodic, Danilo; Milosevic, Ivan; Acimovic, Gordana; Stojicic, Milan; Veljovic, Milic; Jevdjic, Jasna; Djordjevic, Dragan; Radakovic, Sonja

    2015-06-16

    Sepsis is a principal cause of death in critical care units worldwide and consumes considerable healthcare resources. The aim of our study was to determine whether the early cytokine profile can discriminate between Gram-positive and Gram-negative bacteraemia (GPB and GNB, respectively) and to assess the prognostic value regarding outcome in critically ill patients with severe abdominal sepsis. The outcome measure was hospital mortality. Blood samples were obtained from 165 adult patients with confirmed severe abdominal sepsis. Levels of the proinflammatory mediators TNF-α, IL-8, IL-12 and IFN-γ and the anti-inflammatory mediators IL-1ra, IL-4, IL-10 and TGF-β1 were determined and correlated with the nature of the bacteria isolated from the blood culture and outcome. The cytokine profile in our study indicated that the TNF-α levels were 2-fold, IL-8 were 3.3-fold, IFN-γ were 13-fold, IL-1ra were 1.05-fold, IL-4 were 1.4-fold and IL-10 were 1.83-fold higher in the GNB group compared with the GPB group. The TNF-α levels were 4.7-fold, IL-8 were 4.6-fold, IL-1ra were 1.5-fold and IL-10 were 3.3-fold higher in the non-survivors compared with the survivors.

  11. Interfacial charge transfer between CdTe quantum dots and Gram negative vs. Gram positive bacteria.

    SciTech Connect

    Dumas, E.; Gao, C.; Suffern, D.; Bradforth, S. E.; Dimitrejevic, N. M.; Nadeau, J. L.; McGill Univ.; Univ. of Southern California

    2010-01-01

    Oxidative toxicity of semiconductor and metal nanomaterials to cells has been well established. However, it may result from many different mechanisms, some requiring direct cell contact and others resulting from the diffusion of reactive species in solution. Published results are contradictory due to differences in particle preparation, bacterial strain, and experimental conditions. It has been recently found that C{sub 60} nanoparticles can cause direct oxidative damage to bacterial proteins and membranes, including causing a loss of cell membrane potential (depolarization). However, this did not correlate with toxicity. In this study we perform a similar analysis using fluorescent CdTe quantum dots, adapting our tools to make use of the particles fluorescence. We find that two Gram positive strains show direct electron transfer to CdTe, resulting in changes in CdTe fluorescence lifetimes. These two strains also show changes in membrane potential upon nanoparticle binding. Two Gram negative strains do not show these effects - nevertheless, they are over 10-fold more sensitive to CdTe than the Gram positives. We find subtoxic levels of Cd{sup 2+} release from the particles upon irradiation of the particles, but significant production of hydroxyl radicals, suggesting that the latter is a major source of toxicity. These results help establish mechanisms of toxicity and also provide caveats for use of certain reporter dyes with fluorescent nanoparticles which will be of use to anyone performing these assays. The findings also suggest future avenues of inquiry into electron transfer processes between nanomaterials and bacteria.

  12. Tetracycline improved the efficiency of other antimicrobials against Gram-negative multidrug-resistant bacteria.

    PubMed

    Mawabo, Isabelle K; Noumedem, Jaurès A K; Kuiate, Jules R; Kuete, Victor

    2015-01-01

    Treatment of infectious diseases with antimicrobials constituted a great achievement in the history of medicine. Unfortunately, the emergence of resistant strains of bacteria to all classes of antimicrobials limited their efficacy. The present study was aimed at evaluating the effect of combinations of antibiotics on multi-drug resistant Gram-negative (MDRGN) bacteria. A liquid micro-broth dilution method was used to evaluate the antibacterial activity of 10 different classes of antimicrobials on 20 bacterial strains belonging to six different species. The antimicrobials were associated with phenylalanine β-naphthylamide (PAβN), an efflux pump inhibitor, and with other antimicrobials at their sub-inhibitory concentrations. The effectiveness of each combination was monitored using the minimal inhibitory concentration (MIC) and the fractional inhibitory concentration (FIC). Most of the antimicrobials tested showed low antibacterial activity with a MIC value of 128 mg/L on a majority of the bacterial strains, justifying their multidrug-resistant (MDR) profile. Synergistic effects were mostly observed (FIC≤0.5) when ampicillin (AMP), cloxacillin (CLX), erythromycin (ERY), chloramphenicol (CHL), kanamycin (KAN) and streptomycin (STR) were combined with tetracycline (TET) at the sub-inhibitory concentration of MIC/5 or MIC/10. The results of the present work suggest that the association of several antimicrobials with TET could improve the fight against MDRGN bacterial species.

  13. Low-dose polymyxin: an option for therapy of Gram-negative sepsis.

    PubMed

    Harm, Stephan; Gabor, Franz; Hartmann, Jens

    2016-05-01

    Endotoxins are the major components of the outer membrane of most Gram-negative bacteria and are one of the main targets in inflammatory diseases. The presence of endotoxins in blood can provoke septic shock in case of pronounced immune response. Here we show in vitro inactivation of endotoxins by polymyxin B (PMB). The inflammatory activity of the LPS-PMB complex in blood was examined in vitro in freshly drawn blood samples. Plasma protein binding of PMB was determined by ultracentrifugation using membranes with different molecular cut-offs, and PMB clearance during dialysis was calculated after in vitro experiments using the AV1000S filter. The formed LPS-PMB complex has lower inflammatory activity in blood, which results in highly reduced cytokine secretion. According to in vitro measurements, the appropriate plasma level of PMB for LPS inactivation is between 100 and 200 ng/ml. Furthermore, the combination of cytokine removal by adsorbent treatment with LPS inactivation by PMB dosage leads to strong suppression of inflammatory effects in blood in an in vitro model. Inactivation of endotoxins by low-dose intravenous PMB infusion or infusion into the extracorporeal circuit during blood purification can be applied to overcome the urgent need for endotoxin elimination not only in treatment of sepsis, but also in liver failure. © The Author(s) 2016.

  14. TRIF-dependent innate immune activation is critical for survival to neonatal gram-negative sepsis.

    PubMed

    Cuenca, Alex G; Joiner, Dallas N; Gentile, Lori F; Cuenca, Angela L; Wynn, James L; Kelly-Scumpia, Kindra M; Scumpia, Philip O; Behrns, Kevin E; Efron, Philip A; Nacionales, Dina; Lui, Chao; Wallet, Shannon M; Reeves, Westley H; Mathews, Clayton E; Moldawer, Lyle L

    2015-02-01

    Current evidence suggests that neonatal immunity is functionally distinct from adults. Although TLR signaling through the adaptor protein, MyD88, has been shown to be critical for survival to sepsis in adults, little is known about the role of MyD88 or TRIF in neonatal sepsis. We demonstrate that TRIF(-/-) but not MyD88(-/-) neonates are highly susceptible to Escherichia coli peritonitis and bacteremia. This was associated with decreased innate immune recruitment and function. Importantly, we found that the reverse was true in adults that MyD88(-/-) but not TRIF(-/-) or wild-type adults are susceptible to E. coli peritonitis and bacteremia. In addition, we demonstrate that TRIF but not MyD88 signaling is critical for the TLR4 protective adjuvant effect we have previously demonstrated. These data suggest a differential requirement for the survival of neonates versus adults to Gram-negative infection, and that modulation of TRIF in neonates can be used to augment survival to neonatal sepsis. Copyright © 2015 by The American Association of Immunologists, Inc.

  15. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates

    PubMed Central

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    Aim/Background: The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Materials and Methods: Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. Results: The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. Conclusions: The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants’ potential for developing new antimicrobials. PMID:27366345

  16. Antibacterial effect of ultrafine nanodiamond against gram-negative bacteria Escherichia coli.

    PubMed

    Chatterjee, Anindita; Perevedentseva, Elena; Jani, Mona; Cheng, Chih-Yuan; Ye, Ying-Siou; Chung, Pei-Hua; Cheng, Chia-Liang

    2015-05-01

    We investigate the antibacterial effect of ultrafine nanodiamond particles with an average size of 5 nm against the gram-negative bacteria Escherichia coli (E. coli). UV-visible, Raman spectroscopy, and scanning electron microscopy (SEM) have been employed to elucidate the nature of the interaction. The influence on bacterial growth was monitored by measuring optical densities of E. coli at 600 nm as a function of time in the presence of carboxylated nanodiamond (cND) particles (100 μg/ml ) in highly nutritious liquid Luria-Bertani medium. The SEM images prove that cND particles are attached to the bacterial cell wall surface and some portion of the bacterial cell wall undergoes destruction. Due to the change of the protein structure on the bacterial wall, a small Raman shift in the region of 1400 to 1700 cm⁻¹ was observed when E. coli interacted with cNDs. Raman mapping images show strong evidence of cND attachment at the bacterial cell wall surface. Electrotransformation of E. coli with a fluorescent protein markers experiment demonstrated that the interaction mechanisms are different for E. coli treated with cND particles, E. coli by lysozyme treatment, and E. coli that suffer lysis.

  17. Low-dose polymyxin: an option for therapy of Gram-negative sepsis

    PubMed Central

    Gabor, Franz; Hartmann, Jens

    2016-01-01

    Endotoxins are the major components of the outer membrane of most Gram-negative bacteria and are one of the main targets in inflammatory diseases. The presence of endotoxins in blood can provoke septic shock in case of pronounced immune response. Here we show in vitro inactivation of endotoxins by polymyxin B (PMB). The inflammatory activity of the LPS–PMB complex in blood was examined in vitro in freshly drawn blood samples. Plasma protein binding of PMB was determined by ultracentrifugation using membranes with different molecular cut-offs, and PMB clearance during dialysis was calculated after in vitro experiments using the AV1000S filter. The formed LPS–PMB complex has lower inflammatory activity in blood, which results in highly reduced cytokine secretion. According to in vitro measurements, the appropriate plasma level of PMB for LPS inactivation is between 100 and 200 ng/ml. Furthermore, the combination of cytokine removal by adsorbent treatment with LPS inactivation by PMB dosage leads to strong suppression of inflammatory effects in blood in an in vitro model. Inactivation of endotoxins by low-dose intravenous PMB infusion or infusion into the extracorporeal circuit during blood purification can be applied to overcome the urgent need for endotoxin elimination not only in treatment of sepsis, but also in liver failure. PMID:26993088

  18. Co-Colonization with Multiple Different Species of Multidrug-Resistant Gram-Negative Bacteria

    PubMed Central

    Snyder, Graham M.; O’Fallon, Erin; D’Agata, Erika M. C.

    2010-01-01

    Background The characteristics of co-colonization with multiple different species of multidrug-resistant gram-negative bacteria (MDRGN) have not been fully elucidated. Quantifying the prevalence of co-colonization and those patients at higher risk of co-colonization may have important implications for strategies aimed at limiting the spread of MDRGN. Methods To determine the prevalence of MDRGN colonization, rectal swabs were obtained from 212 residents residing in a 600-bed long-term care facility. Co-colonization was defined as colonization with ≥ 2 different MDRGN species. Co-colonized residents were compared to residents colonized with a single MDRGN species to identify factors associated with an increased risk for co-colonization. Molecular typing was performed to determine the contribution of cross-transmission to the co-colonized state. Results A total of 53 (25%) residents were colonized with ≥ 1 MDRGN. Among these, 11 (21%) were colonized with ≥ 2 different species of MDRGN. A global deterioration score of ≥ 5 representing advanced dementia and an increased requirement for assistance from healthcare workers, was significantly associated with co-colonization (P = 0.05). Clonally-related MDRGN strains were identified among 7 (64%) co-colonized residents. Conclusions The prevalence of co-colonization with ≥ 2 different MDRGN is substantial. Cross-transmission of MDRGN is a major contributor to the co-colonized state. PMID:21492962

  19. Chitosan Augments Photodynamic Inactivation of Gram-Positive and Gram-Negative Bacteria▿†

    PubMed Central

    Tsai, Tsuimin; Chien, Hsiung-Fei; Wang, Tze-Hsien; Huang, Ching-Tsan; Ker, Yaw-Bee; Chen, Chin-Tin

    2011-01-01

    Antimicrobial photodynamic inactivation (PDI) was shown to be a promising treatment modality for microbial infections. This study explores the effect of chitosan, a polycationic biopolymer, in increasing the PDI efficacy against Gram-positive bacteria, including Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes, and methicillin-resistant S. aureus (MRSA), as well as the Gram-negative bacteria Pseudomonas aeruginosa and Acinetobacter baumannii. Chitosan at <0.1% was included in the antibacterial process either by coincubation with hematoporphyrin (Hp) and subjection to light exposure to induce the PDI effect or by addition after PDI and further incubation for 30 min. Under conditions in which Hp-PDI killed the microbe on a 2- to 4-log scale, treatment with chitosan at concentrations of as low as 0.025% for a further 30 min completely eradicated the bacteria (which were originally at ∼108 CFU/ml). Similar results were also found with toluidine blue O (TBO)-mediated PDI in planktonic and biofilm cells. However, without PDI treatment, chitosan alone did not exert significant antimicrobial activity with 30 min of incubation, suggesting that the potentiated effect of chitosan worked after the bacterial damage induced by PDI. Further studies indicated that the potentiated PDI effect of chitosan was related to the level of PDI damage and the deacetylation level of the chitosan. These results indicate that the combination of PDI and chitosan is quite promising for eradicating microbial infections. PMID:21282440

  20. Antibacterial action of a novel functionalized chitosan-arginine against gram-negative bacteria

    PubMed Central

    Tang, Hong; Zhang, Peng; Kieft, Thomas L.; Ryan, Shannon J.; Baker, Shenda M.; Wiesmann, William P.; Rogelj, Snezna

    2010-01-01

    The antimicrobial activity of chitosan and chitosan derivatives has been well established. However, although several mechanisms have been proposed, the exact mode of action is still unclear. Here we report on the investigation of antibacterial activity and the antibacterial mode of action of a novel water-soluble chitosan derivative, arginine-functionalized chitosan, on the gram-negative bacteria Pseudomonas fluorescens and Escherichia coli. Two different arginine-functionalized chitosans (6% arginine-substituted and 30% arginine-substituted) each strongly inhibited P. fluorescens and E. coli growth. Time-dependent killing efficacy experiments showed that 5000 mg L-1 of 6% substituted and 30% substituted chitosan-arginine killed 2.7 logs and 4.5 logs of P. fluorescens, and 4.8 logs and 4.6 logs of E. coli in 4 h, respectively. At low concentrations, the 6% substituted chitosan-arginine was more effective in inhibiting cell growth even though the 30% substituted chitosan-arginine appeared to be more effective in permeabilizing the cell membranes of both P. fluorescens and E. coli. Studies using fluorescent probes, 1-N-phenylnaphthylamine (NPN), nile red (NR) and propidium iodide (PI), and field emission scanning electron microscopy (FESEM) suggest that chitosan-arginine's antibacterial activity is, at least in part, due to its interaction with the cell membrane, in which it increases membrane permeability. PMID:20060936

  1. [Desiccated rattlesnake capsules: a potential source of gram-negative bacterial infection].

    PubMed

    Márquez-Dávila, G; Martínez-Barreda, C; Suárez-Ramírez, I

    1991-01-01

    The ingestion of rattlesnake powder capsules is frequent in Mexico in view of their alleged curative properties in various diseases, among them different malignancies. Based on previous reports showing both bacteremia and septicemia in patients with malignant diseases ingesting such capsules, we conducted a study to evaluate the presence of microorganisms in 16 different preparations of rattlesnake powder capsules, obtained in six different cities of our country. We found that all the samples were significantly contaminated with gram-negative coliform bacteria: Escherichia coli, Klebsiella pneumoniae, Enterobacter agglomerans, E. cloacae, Salmonella arizona and Salmonella of groups B, E4 and G. Eighty one percent of the capsules were contaminated with Salmonella sp. The most frequent was S. arizona with a natural reservoir in snakes. Contamination was probably derived from both the flesh of the snake and fecal contamination during the domestic preparation of the powder to produce the capsules. These data, together with those previously published regarding bacteremia and septicemia derived from the ingestion of the capsules, suggests that there is danger in their use.

  2. [News of antibiotic resistance among Gram-negative bacilli in Algeria].

    PubMed

    Baba Ahmed-Kazi Tani, Z; Arlet, G

    2014-06-01

    Antibiotic resistance has become a major public health problem in Algeria. Indeed the past decade, we have seen a significant increase in resistance to antibiotics especially in Gram-negative bacilli. Resistance to β-lactams in enterobacteria is dominated by the production of ESBL CTX-M-3 and CTX-M-15. The strains producing these enzymes are often the cause of potentially serious infections in both hospital and community settings. Identified plasmid cephalosporinases are CMY-2, CMY-12 and DHA-1. The isolation of strains of Enterobacteriaceae and Pseudomonas aeruginosa producing carbapenemases is rare in Algeria. Some Enterobacteriaceae producing OXA-48 or VIM-19 have been reported; so far, only VIM-2 has been identified in P. aeruginosa. However, the situation regarding the strains of Acinetobacter baumannii resistant to carbapenemases seems to be more disturbing. The carbapenemase OXA-23 is the most common and seems to be endemic in the north. The carbapenemase NDM-1 has also been identified. Resistance to aminoglycosides is marked by the identification armA gene associated with blaCTX-M genes in strains of Salmonella sp. Several other resistance genes have been identified sporadically in strains of Enterobacteriaceae, P. aeruginosa and A. baumannii. Resistance genes to fluoroquinolones are more recent identification in Algeria. The most common are the Qnr determinants followed by the bifunctional enzyme AAC[6']-Ib-cr. Resistance to sulfonamides and trimethoprim was also reported in Enterobacteriaceae strains in the west of the country.

  3. Membrane permeabilization of colistin toward pan-drug resistant Gram-negative isolates.

    PubMed

    Mohamed, Yasmine Fathy; Abou-Shleib, Hamida Moustafa; Khalil, Amal Mohamed; El-Guink, Nadia Mohamed; El-Nakeeb, Moustafa Ahmed

    2016-01-01

    Pan-drug resistant Gram-negative bacteria, being resistant to most available antibiotics, represent a huge threat to the medical community. Colistin is considered the last therapeutic option for patients in hospital settings. Thus, we were concerned in this study to demonstrate the membrane permeabilizing activity of colistin focusing on investigating its efficiency toward those pan-drug resistant isolates which represent a critical situation. We determined the killing dynamics of colistin against pan-drug resistant isolates. The permeability alteration was confirmed by different techniques as: leakage, electron microscopy and construction of an artificial membrane model; liposomes. Moreover, selectivity of colistin against microbial cells was also elucidated. Colistin was proved to be rapid bactericidal against pan-drug resistant isolates. It interacts with the outer bacterial membrane leading to deformation of its outline, pore formation, leakage of internal contents, cell lysis and finally death. Furthermore, variations in membrane composition of eukaryotic and microbial cells provide a key for colistin selectivity toward bacterial cells. Colistin selectively alters membrane permeability of pan-drug resistant isolates which leads to cell lysis. Colistin was proved to be an efficient last line treatment for pan-drug resistant infections which are hard to treat. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  4. Sorption of lead onto two gram-negative marine bacteria in seawater

    USGS Publications Warehouse

    Harvey, Ronald W.; Leckie, James O.

    1985-01-01

    Laboratory adsorption experiments performed at environmentally significant lead (Pb) and cell concentrations indicate that the marine bacteria examined have significant binding capacities for Pb. However, the behavior governing Pb sorption onto gram-negative bacteria in seawater may be quite complex. The sorption kinetics appear to involve two distinct phases, i.e., a rapid removal of Pb from solution within the first few minutes, followed by a slow but nearly constant removal over many hours. Also, the average binding coefficient, calculated for Pb sorption onto bacteria and a measure of binding intensity, increases with decreasing sorption density (amounts of bacteria-associated Pb per unit bacterial surface) at low cell concentrations (105 cells ml−1), but decreases with decreasing sorption density at higher cell concentrations (107 cells ml−1). The latter effect is apparently due to the production of significant amounts of extra-cellular organics at high cell concentrations that compete directly with bacterial surfaces for available lead. Lead toxicity and active uptake by marine bacteria did not appear significant at the Pb concentrations used.

  5. Induction of gram-negative bacterial growth by neurochemical containing banana (Musa x paradisiaca) extracts.

    PubMed

    Lyte, M

    1997-09-15

    Bananas contain large quantities of neurochemicals. Extracts from the peel and pulp of bananas in increasing stages of ripening were prepared and evaluated for their ability to modulate the growth of non-pathogenic and pathogenic bacteria. Extracts from the peel, and to a much lesser degree the pulp, increased the growth of Gram-negative bacterial strains Escherichia coli O157:H7, Shigella flexneri, Enterobacter cloacae and Salmonella typhimurium, as well as two non-pathogenic E. coli strains, in direct relation to the content of norepinephrine and dopamine, but not serotonin. The growth of Gram-positive bacteria was not altered by any of the extracts. Supplementation of vehicle and pulp cultures with norepinephrine or dopamine yielded growth equivalent to peel cultures. Total organic analysis of extracts further demonstrated that the differential effects of peel and pulp on bacterial growth was not nutritionally based, but due to norepinephrine and dopamine. These results suggest that neurochemicals contained within foodstuffs may influence the growth of pathogenic and indigenous bacteria through direct neurochemical-bacterial interactions.

  6. Antibiotic Susceptibility Testing of the Gram-Negative Bacteria Based on Flow Cytometry

    PubMed Central

    Saint-Ruf, Claude; Crussard, Steve; Franceschi, Christine; Orenga, Sylvain; Ouattara, Jasmine; Ramjeet, Mahendrasingh; Surre, Jérémy; Matic, Ivan

    2016-01-01

    Rapidly treating infections with adequate antibiotics is of major importance. This requires a fast and accurate determination of the antibiotic susceptibility of bacterial pathogens. The most frequently used methods are slow because they are based on the measurement of growth inhibition. Faster methods, such as PCR-based detection of determinants of antibiotic resistance, do not always provide relevant information on susceptibility, particularly that which is not genetically based. Consequently, new methods, such as the detection of changes in bacterial physiology caused by antibiotics using flow cytometry and fluorescent viability markers, are being explored. In this study, we assessed whether Alexa Fluor® 633 Hydrazide (AFH), which targets carbonyl groups, can be used for antibiotic susceptibility testing. Carbonylation of cellular macromolecules, which increases in antibiotic-treated cells, is a particularly appropriate to assess for this purpose because it is irreversible. We tested the susceptibility of clinical isolates of Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to antibiotics from the three classes: β-lactams, aminoglycosides, and fluoroquinolones. In addition to AFH, we used TO-PRO®-3, which enters cells with damaged membranes and binds to DNA, and DiBAC4 (3), which enters cells with depolarized membranes. We also monitored antibiotic-induced morphological alterations of bacterial cells by analyzing light scattering signals. Although all tested dyes and light scattering signals allowed for the detection of antibiotic-sensitive cells, AFH proved to be the most suitable for the fast and reliable detection of antibiotic susceptibility. PMID:27507962

  7. Use of DNA probes to study tetracycline resistance determinants in gram-negative bacteria from swine

    SciTech Connect

    Lee, C.Y.

    1989-01-01

    Specific {sup 32}P-labeled DNA probes were prepared and used to evaluate the distribution of tetracycline resistance determinants carried by gram-negative enteric bacteria isolated from pigs in 3 swine herds with different histories of antibiotic exposure. Plasmid DNA, ranging in size from 2.1 to 186 Kb, was observed in over 84% of 114 isolates studied. Two of 78 tetracycline resistant strains did not harbor plasmids. The DNA probes were isolated from plasmids pSL18, pRT29/Tn10, pBR322 and pSL106, respectively, and they represented class A, B, C and D tetracycline resistance determinants. Hybridization conditions using 0.5X SSPE at 65{degrees}C minimize cross-hybridization between the different class of tetracycline resistance genes. Cross-hybridization between class A and class C determinants could be distinguished by simultaneous comparison of the intensity of their hybridization signals. Plasmids from over 44% of the tetracycline resistant isolates did not hybridize to DNA probes for the determinants tested. Class B determinant occurred more frequently than class A or C. None of the isolates hybridized with the class D probe.

  8. Development of Quorum-Based Anti-Virulence Therapeutics Targeting Gram-Negative Bacterial Pathogens

    PubMed Central

    Tay, Song Buck; Yew, Wen Shan

    2013-01-01

    Quorum sensing is a cell density-dependent signaling phenomenon used by bacteria for coordination of population-wide phenotypes, such as expression of virulence genes, antibiotic resistance and biofilm formation. Lately, disruption of bacterial communication has emerged as an anti-virulence strategy with enormous therapeutic potential given the increasing incidences of drug resistance in pathogenic bacteria. The quorum quenching therapeutic approach promises a lower risk of resistance development, since interference with virulence generally does not affect the growth and fitness of the bacteria and, hence, does not exert an associated selection pressure for drug-resistant strains. With better understanding of bacterial communication networks and mechanisms, many quorum quenching methods have been developed against various clinically significant bacterial pathogens. In particular, Gram-negative bacteria are an important group of pathogens, because, collectively, they are responsible for the majority of hospital-acquired infections. Here, we discuss the current understanding of existing quorum sensing mechanisms and present important inhibitory strategies that have been developed against this group of pathogenic bacteria. PMID:23939429

  9. Infection-related hemolysis and susceptibility to Gram-negative bacterial co-infection

    PubMed Central

    Orf, Katharine; Cunnington, Aubrey J.

    2015-01-01

    Increased susceptibility to co-infection with enteric Gram-negative bacteria, particularly non-typhoidal Salmonella, is reported in malaria and Oroya fever (Bartonella bacilliformis infection), and can lead to increased mortality. Accumulating epidemiological evidence indicates a causal association with risk of bacterial co-infection, rather than just co-incidence of common risk factors. Both malaria and Oroya fever are characterized by hemolysis, and observations in humans and animal models suggest that hemolysis causes the susceptibility to bacterial co-infection. Evidence from animal models implicates hemolysis in the impairment of a variety of host defense mechanisms, including macrophage dysfunction, neutrophil dysfunction, and impairment of adaptive immune responses. One mechanism supported by evidence from animal models and human data, is the induction of heme oxygenase-1 in bone marrow, which impairs the ability of developing neutrophils to mount a competent oxidative burst. As a result, dysfunctional neutrophils become a new niche for replication of intracellular bacteria. Here we critically appraise and summarize the key evidence for mechanisms which may contribute to these very specific combinations of co-infections, and propose interventions to ameliorate this risk. PMID:26175727

  10. Toll-like receptor 4 decoy, TOY, attenuates gram-negative bacterial sepsis.

    PubMed

    Jung, Keehoon; Lee, Jung-Eun; Kim, Hak-Zoo; Kim, Ho Min; Park, Beom Seok; Hwang, Seong-Ik; Lee, Jie-Oh; Kim, Sun Chang; Koh, Gou Young

    2009-10-09

    Lipopolysaccharide (LPS), the Gram-negative bacterial outer membrane glycolipid, induces sepsis through its interaction with myeloid differentiation protein-2 (MD-2) and Toll-like receptor 4 (TLR4). To block interaction between LPS/MD-2 complex and TLR4, we designed and generated soluble fusion proteins capable of binding MD-2, dubbed TLR4 decoy receptor (TOY) using 'the Hybrid leucine-rich repeats (LRR) technique'. TOY contains the MD-2 binding ectodomain of TLR4, the LRR motif of hagfish variable lymphocyte receptor (VLR), and the Fc domain of IgG1 to make it soluble, productive, and functional. TOY exhibited strong binding to MD-2, but not to the extracellular matrix (ECM), resulting in a favorable pharmacokinetic profile in vivo. TOY significantly extended the lifespan, when administered in either preventive or therapeutic manners, in both the LPS- and cecal ligation/puncture-induced sepsis models in mice. TOY markedly attenuated LPS-triggered NF-kappaB activation, secretion of proinflammatory cytokines, and thrombus formation in multiple organs. Taken together, the targeting strategy for sequestration of LPS/MD-2 complex using the decoy receptor TOY is effective in treating LPS- and bacteria-induced sepsis; furthermore, the strategy used in TOY development can be applied to the generation of other novel decoy receptor proteins.

  11. Synthesis of a polymyxin derivative for photolabeling studies in the gram-negative bacterium Escherichia coli.

    PubMed

    van der Meijden, Benjamin; Robinson, John A

    2015-03-01

    The antimicrobial activity of polymyxins against Gram-negative bacteria has been known for several decades, but the mechanism of action leading to cell death has not been fully explored. A key step after binding of the antibiotic to lipopolysaccharide (LPS) exposed at the cell surface is 'self-promoted uptake' across the outer membrane (OM), in which the antibiotic traverses the asymmetric LPS-phospholipid bilayer before reaching the periplasm and finally targeting and disrupting the bacterial phospholipid inner membrane. The work described here was prompted by the hypothesis that polymyxins might interact with proteins in the OM, as part of their self-promoted uptake and permeabilizing effects. One way to test this is through photolabeling experiments. We describe the design and synthesis of a photoprobe based upon polymyxin B, containing photoleucine and an N-acyl group with a terminal alkyne suitable for coupling to a biotin tag using click chemistry. The resulting photoprobe retains potent antimicrobial activity, and in initial photolabeling experiments with Escherichia coli ATCC25922 is shown to photolabel several OM proteins. This photoprobe might be a valuable tool in more detailed studies on the mechanism of action of this family of antibiotics.

  12. Resistant gram-negative infections in the outpatient setting in Latin America.

    PubMed

    Salles, M J C; Zurita, J; Mejía, C; Villegas, M V

    2013-12-01

    Latin America has a high rate of community-associated infections caused by multidrug-resistant Enterobacteriaceae relative to other world regions. A review of the literature over the last 10 years indicates that urinary tract infections (UTIs) by Escherichia coli, and intra-abdominal infections (IAIs) by E. coli and Klebsiella pneumoniae, were characterized by high rates of resistance to trimethoprim/sulfamethoxazole, quinolones, and second-generation cephalosporins, and by low levels of resistance to aminoglycosides, nitrofurantoin, and fosfomycin. In addition, preliminary data indicate an increase in IAIs by Enterobacteriaceae producing extended-spectrum β-lactamases, with reduced susceptibilities to third- and fourth-generation cephalosporins. Primary-care physicians in Latin America should recognize the public health threat associated with UTIs and IAIs by resistant Gram-negative bacteria. As the number of therapeutic options become limited, we recommend that antimicrobial prescribing be guided by infection severity, established patient risk factors for multidrug-resistant infections, acquaintance with local antimicrobial susceptibility data, and culture collection.

  13. Crystal structure of levansucrase from the Gram-negative bacterium Gluconacetobacter diazotrophicus

    PubMed Central

    2005-01-01

    The endophytic Gram-negative bacterium Gluconacetobacter diazotrophicus SRT4 secretes a constitutively expressed levansucrase (LsdA, EC 2.4.1.10), which converts sucrose into fructooligosaccharides and levan. The enzyme is included in GH (glycoside hydrolase) family 68 of the sequence-based classification of glycosidases. The three-dimensional structure of LsdA has been determined by X-ray crystallography at a resolution of 2.5 Å (1 Å=0.1 nm). The structure was solved by molecular replacement using the homologous Bacillus subtilis (Bs) levansucrase (Protein Data Bank accession code 1OYG) as a search model. LsdA displays a five-bladed β-propeller architecture, where the catalytic residues that are responsible for sucrose hydrolysis are perfectly superimposable with the equivalent residues of the Bs homologue. The comparison of both structures, the mutagenesis data and the analysis of GH68 family multiple sequences alignment show a strong conservation of the sucrose hydrolytic machinery among levansucrases and also a structural equivalence of the Bs levansucrase Ca2+-binding site to the LsdA Cys339–Cys395 disulphide bridge, suggesting similar fold-stabilizing roles. Despite the strong conservation of the sucrose-recognition site observed in LsdA, Bs levansucrase and GH32 family Thermotoga maritima invertase, structural differences appear around residues involved in the transfructosylation reaction. PMID:15869470

  14. Identification of gram-negative and gram-positive bacteria by fluorescence studies

    NASA Astrophysics Data System (ADS)

    Demchak, Jonathan; Calabrese, Joseph; Tzolov, Marian

    2011-03-01

    Several type strains of bacteria including Vibrio fischeri, Azotobacter vinelandii, Enterobacter cloacae, and Corynebacterium xerosis, were cultured in the laboratory following standard diagnostic protocol based on their individual metabolic strategies. The bacterial cultures were not further treated and they were studied in their pristine state (pure culture - axenic). The fluorescent studies were applied using a continuous wave and a pulsed excitation light sources. Emission and excitation spectra were recorded for the continuous wave excitation and they all show similar spectral features with the exception of the gram positive bacteria showing vibronic structures. The vibrational modes involved in these vibronic bands have energy typical for carbon-carbon vibrations. The fluorescence is quenched