Science.gov

Sample records for lethality screen reveals

  1. Synthetic lethal screening reveals FGFR as one of the combinatorial targets to overcome resistance to Met-targeted therapy.

    PubMed

    Kim, B; Wang, S; Lee, J M; Jeong, Y; Ahn, T; Son, D-S; Park, H W; Yoo, H-s; Song, Y-J; Lee, E; Oh, Y M; Lee, S B; Choi, J; Murray, J C; Zhou, Y; Song, P H; Kim, K-A; Weiner, L M

    2015-02-26

    Met is a receptor tyrosine kinase that promotes cancer progression. In addition, Met has been implicated in resistance of tumors to various targeted therapies such as epidermal growth factor receptor inhibitors in lung cancers, and has been prioritized as a key molecular target for cancer therapy. However, the underlying mechanism of resistance to Met-targeting drugs is poorly understood. Here, we describe screening of 1310 genes to search for key regulators related to drug resistance to an anti-Met therapeutic antibody (SAIT301) by using a small interfering RNA-based synthetic lethal screening method. We found that knockdown of 69 genes in Met-amplified MKN45 cells sensitized the antitumor activity of SAIT301. Pathway analysis of these 69 genes implicated fibroblast growth factor receptor (FGFR) as a key regulator for antiproliferative effects of Met-targeting drugs. Inhibition of FGFR3 increased target cell apoptosis through the suppression of Bcl-xL expression, followed by reduced cancer cell growth in the presence of Met-targeting drugs. Treatment of cells with the FGFR inhibitors substantially restored the efficacy of SAIT301 in SAIT301-resistant cells and enhanced the efficacy in SAIT301-sensitive cells. In addition to FGFR3, integrin β3 is another potential target for combination treatment with SAIT301. Suppression of integrin β3 decreased AKT phosphorylation in SAIT301-resistant cells and restored SAIT301 responsiveness in HCC1954 cells, which are resistant to SAIT301. Gene expression analysis using CCLE database shows that cancer cells with high levels of FGFR and integrin β3 are resistant to crizotinib treatment, suggesting that FGFR and integrin β3 could be used as predictive markers for Met-targeted therapy and provide a potential therapeutic option to overcome acquired and innate resistance for the Met-targeting drugs.

  2. A screen for F1 hybrid male rescue reveals no major-effect hybrid lethality loci in the Drosophila melanogaster autosomal genome.

    PubMed

    Cuykendall, Tawny N; Satyaki, P; Ji, Shuqing; Clay, Derek M; Edelman, Nathaniel B; Kimchy, Alexandra; Li, Ling-Hei; Nuzzo, Erin A; Parekh, Neil; Park, Suna; Barbash, Daniel A

    2014-10-27

    Hybrid sons between Drosophila melanogaster females and D. simulans males die as 3rd instar larvae. Two genes, D. melanogaster Hybrid male rescue (Hmr) on the X chromosome, and D. simulans Lethal hybrid rescue (Lhr) on chromosome II, interact to cause this lethality. Loss-of-function mutations in either gene suppress lethality, but several pieces of evidence suggest that additional factors are required for hybrid lethality. Here we screen the D. melanogaster autosomal genome by using the Bloomington Stock Center Deficiency kit to search for additional regions that can rescue hybrid male lethality. Our screen is designed to identify putative hybrid incompatibility (HI) genes similar to Hmr and Lhr which, when removed, are dominant suppressors of lethality. After screening 89% of the autosomal genome, we found no regions that rescue males to the adult stage. We did, however, identify several regions that rescue up to 13% of males to the pharate adult stage. This weak rescue suggests the presence of multiple minor-effect HI loci, but we were unable to map these loci to high resolution, presumably because weak rescue can be masked by genetic background effects. We attempted to test one candidate, the dosage compensation gene male specific lethal-3 (msl-3), by using RNA interference with short hairpin microRNA constructs targeted specifically against D. simulans msl-3 but failed to achieve knockdown, in part due to off-target effects. We conclude that the D. melanogaster autosomal genome likely does not contain additional major-effect HI loci. We also show that Hmr is insufficient to fully account for the lethality associated with the D. melanogaster X chromosome, suggesting that additional X-linked genes contribute to hybrid lethality.

  3. Actin Dosage Lethality Screening in Yeast Mediated by Selective Ploidy Ablation Reveals Links to Urmylation/Wobble Codon Recognition and Chromosome Stability

    PubMed Central

    Haarer, Brian; Mi-Mi, Lei; Cho, Jessica; Cortese, Matthew; Viggiano, Susan; Burke, Daniel; Amberg, David

    2013-01-01

    The actin cytoskeleton exists in a dynamic equilibrium with monomeric and filamentous states of its subunit protein actin. The spatial and temporal regulation of actin dynamics is critical to the many functions of actin. Actin levels are remarkably constant, suggesting that cells have evolved to function within a narrow range of actin concentrations. Here we report the results of screens in which we have increased actin levels in strains deleted for the ~4800 nonessential yeast genes using a technical advance called selective ploidy ablation. We detected 83 synthetic dosage interactions with actin, 78 resulted in reduced growth, whereas in 5 cases overexpression of actin suppressed the growth defects caused by the deleted genes. The genes were highly enriched in several classes, including transfer RNA wobble uridine modification, chromosome stability and segregation, cell growth, and cell division. We show that actin overexpression sequesters a limited pool of eEF1A, a bifunctional protein involved in aminoacyl-transfer RNA recruitment to the ribosome and actin filament cross-linking. Surprisingly, the largest class of genes is involved in chromosome stability and segregation. We show that actin mutants have chromosome segregation defects, suggesting a possible role in chromosome structure and function. Monomeric actin is a core component of the INO80 and SWR chromatin remodeling complexes and the NuA4 histone modification complex, and our results suggest these complexes may be sensitive to actin stoichiometry. We propose that the resulting effects on chromatin structure can lead to synergistic effects on chromosome stability in strains lacking genes important for chromosome maintenance. PMID:23450344

  4. A lethal combination for cancer cells: synthetic lethality screenings for drug discovery.

    PubMed

    Ferrari, Elisa; Lucca, Chiara; Foiani, Marco

    2010-11-01

    In recent years, cancer drug discovery has faced the challenging task of integrating the huge amount of information coming from the genomic studies with the need of developing highly selective target-based strategies within the context of tumour cells that experience massive genome instability. The combination between genetic and genomic technologies has been extremely useful and has contributed to efficiently transfer certain approaches typical of basic science to drug discover projects. An example comes from the synthetic lethal approaches, very powerful procedures that employ the rational used by geneticists working on model organisms. Applying the synthetic lethality (SL) screenings to anticancer therapy allows exploiting the typical features of tumour cells, such as genome instability, without changing them, as opposed to the conventional anticancer strategies that aim at counteracting the oncogenic signalling pathways. Recent and very encouraging clinical studies clearly show that certain promising anticancer compounds work through a synthetic lethal mechanism by targeting pathways that are specifically essential for the viability of cancer cells but not of normal cells. Herein we describe the rationale of the synthetic lethality approaches and the potential applications for anticancer therapy.

  5. Potential Clinical Uses of CDK Inhibitors: Lessons from Synthetic Lethality Screens.

    PubMed

    Vymětalová, Ladislava; Kryštof, Vladimír

    2015-11-01

    Developments in genetic and genomic technology have produced vast quantities of data that are gradually yielding new insights into fundamental cellular and molecular processes. In particular, they have revealed some differences between normal and transformed cells that could potentially be exploited to develop targeted, personalized cancer therapies with unprecedented efficiencies. This review summarizes recent findings from synthetic lethality (SL) screens against cyclin-dependent kinases (CDKs) that can be targeted with small molecule kinase inhibitors. SL screens can be used to identify cancers sensitive to CDK inhibitors. Several SL partners of specific CDKs have been identified, including MYC, K-Ras, VHL, PI3K, and PARP, all of which are discussed in the review. CDK inhibitors have been in clinical trials for nearly 20 years and it has become clear that effective therapy using these compounds will require careful selection of patients with respect to the specific molecular phenotype of their disease.

  6. Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras.

    PubMed

    Wang, Tim; Yu, Haiyan; Hughes, Nicholas W; Liu, Bingxu; Kendirli, Arek; Klein, Klara; Chen, Walter W; Lander, Eric S; Sabatini, David M

    2017-02-23

    The genetic dependencies of human cancers widely vary. Here, we catalog this heterogeneity and use it to identify functional gene interactions and genotype-dependent liabilities in cancer. By using genome-wide CRISPR-based screens, we generate a gene essentiality dataset across 14 human acute myeloid leukemia (AML) cell lines. Sets of genes with correlated patterns of essentiality across the lines reveal new gene relationships, the essential substrates of enzymes, and the molecular functions of uncharacterized proteins. Comparisons of differentially essential genes between Ras-dependent and -independent lines uncover synthetic lethal partners of oncogenic Ras. Screens in both human AML and engineered mouse pro-B cells converge on a surprisingly small number of genes in the Ras processing and MAPK pathways and pinpoint PREX1 as an AML-specific activator of MAPK signaling. Our findings suggest general strategies for defining mammalian gene networks and synthetic lethal interactions by exploiting the natural genetic and epigenetic diversity of human cancer cells.

  7. A mouse chromosome 4 balancer ENU-mutagenesis screen isolates eleven lethal lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ENU-mutagenesis is a powerful technique to identify genes regulating mammalian development. To functionally annotate the distal region of mouse chromosome 4, we performed an ENU-mutagenesis screen using a balancer chromosome targeted to this region of the genome. We isolated 11 lethal lines that map...

  8. A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor.

    PubMed

    Turner, Nicholas C; Lord, Christopher J; Iorns, Elizabeth; Brough, Rachel; Swift, Sally; Elliott, Richard; Rayter, Sydonia; Tutt, Andrew N; Ashworth, Alan

    2008-05-07

    Inhibitors of poly (ADP-ribose)-polymerase-1 (PARP) are highly lethal to cells with deficiencies in BRCA1, BRCA2 or other components of the homologous recombination pathway. This has led to PARP inhibitors entering clinical trials as a potential therapy for cancer in carriers of BRCA1 and BRCA2 mutations. To discover new determinants of sensitivity to these drugs, we performed a PARP-inhibitor synthetic lethal short interfering RNA (siRNA) screen. We identified a number of kinases whose silencing strongly sensitised to PARP inhibitor, including cyclin-dependent kinase 5 (CDK5), MAPK12, PLK3, PNKP, STK22c and STK36. How CDK5 silencing mediates sensitivity was investigated. Previously, CDK5 has been suggested to be active only in a neuronal context, but here we show that CDK5 is required in non-neuronal cells for the DNA-damage response and, in particular, intra-S and G(2)/M cell-cycle checkpoints. These results highlight the potential of synthetic lethal siRNA screens with chemical inhibitors to define new determinants of sensitivity and potential therapeutic targets.

  9. Synthetic lethal screening in the mammalian central nervous system identifies Gpx6 as a modulator of Huntington's disease.

    PubMed

    Shema, Reut; Kulicke, Ruth; Cowley, Glenn S; Stein, Rachael; Root, David E; Heiman, Myriam

    2015-01-06

    Huntington's disease, the most common inherited neurodegenerative disease, is characterized by a dramatic loss of deep-layer cortical and striatal neurons, as well as morbidity in midlife. Human genetic studies led to the identification of the causative gene, huntingtin. Recent genomic advances have also led to the identification of hundreds of potential interacting partners for huntingtin protein and many hypotheses as to the molecular mechanisms whereby mutant huntingtin leads to cellular dysfunction and death. However, the multitude of possible interacting partners and cellular pathways affected by mutant huntingtin has complicated efforts to understand the etiology of this disease, and to date no curative therapeutic exists. To address the general problem of identifying the disease-phenotype contributing genes from a large number of correlative studies, here we develop a synthetic lethal screening methodology for the mammalian central nervous system, called SLIC, for synthetic lethal in the central nervous system. Applying SLIC to the study of Huntington's disease, we identify the age-regulated glutathione peroxidase 6 (Gpx6) gene as a modulator of mutant huntingtin toxicity and show that overexpression of Gpx6 can dramatically alleviate both behavioral and molecular phenotypes associated with a mouse model of Huntington's disease. SLIC can, in principle, be used in the study of any neurodegenerative disease for which a mouse model exists, promising to reveal modulators of neurodegenerative disease in an unbiased fashion, akin to screens in simpler model organisms.

  10. In Silico Screening Identifies a Novel Potential PARP1 Inhibitor Targeting Synthetic Lethality in Cancer Treatment

    PubMed Central

    Li, Jian; Zhou, Nan; Cai, Peiling; Bao, Jinku

    2016-01-01

    Synthetic lethality describes situations in which defects in two different genes or pathways together result in cell death. This concept has been applied to drug development for cancer treatment, as represented by Poly (ADP-ribose) polymerase (PARPs) inhibitors. In the current study, we performed a computational screening to discover new PARP inhibitors. Among the 11,247 compounds analyzed, one natural product, ZINC67913374, stood out by its superior performance in the simulation analyses. Compared with the FDA approved PARP1 inhibitor, olaparib, our results demonstrated that the ZINC67913374 compound achieved a better grid score (−86.8) and amber score (−51.42). Molecular dynamics simulations suggested that the PARP1-ZINC67913374 complex was more stable than olaparib. The binding free energy for ZINC67913374 was −177.28 kJ/mol while that of olaparib was −159.16 kJ/mol. These results indicated ZINC67913374 bound to PARP1 with a higher affinity, which suggest ZINC67913374 has promising potential for cancer drug development. PMID:26907257

  11. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration.

    PubMed

    Albright, Thomas P; Mutiibwa, Denis; Gerson, Alexander R; Smith, Eric Krabbe; Talbot, William A; O'Neill, Jacqueline J; McKechnie, Andrew E; Wolf, Blair O

    2017-02-28

    Extreme high environmental temperatures produce a variety of consequences for wildlife, including mass die-offs. Heat waves are increasing in frequency, intensity, and extent, and are projected to increase further under climate change. However, the spatial and temporal dynamics of die-off risk are poorly understood. Here, we examine the effects of heat waves on evaporative water loss (EWL) and survival in five desert passerine birds across the southwestern United States using a combination of physiological data, mechanistically informed models, and hourly geospatial temperature data. We ask how rates of EWL vary with temperature across species; how frequently, over what areas, and how rapidly lethal dehydration occurs; how EWL and die-off risk vary with body mass; and how die-off risk is affected by climate warming. We find that smaller-bodied passerines are subject to higher rates of mass-specific EWL than larger-bodied counterparts and thus encounter potentially lethal conditions much more frequently, over shorter daily intervals, and over larger geographic areas. Warming by 4 °C greatly expands the extent, frequency, and intensity of dehydration risk, and introduces new threats for larger passerine birds, particularly those with limited geographic ranges. Our models reveal that increasing air temperatures and heat wave occurrence will potentially have important impacts on the water balance, daily activity, and geographic distribution of arid-zone birds. Impacts may be exacerbated by chronic effects and interactions with other environmental changes. This work underscores the importance of acute risks of high temperatures, particularly for small-bodied species, and suggests conservation of thermal refugia and water sources.

  12. NGS-based reverse genetic screen for common embryonic lethal mutations compromising fertility in livestock

    PubMed Central

    Charlier, Carole; Li, Wanbo; Harland, Chad; Littlejohn, Mathew; Coppieters, Wouter; Creagh, Frances; Davis, Steve; Druet, Tom; Faux, Pierre; Guillaume, François; Karim, Latifa; Keehan, Mike; Kadri, Naveen Kumar; Tamma, Nico; Spelman, Richard; Georges, Michel

    2016-01-01

    We herein report the result of a large-scale, next generation sequencing (NGS)-based screen for embryonic lethal (EL) mutations in Belgian beef and New Zealand dairy cattle. We estimated by simulation that cattle might carry, on average, ∼0.5 recessive EL mutations. We mined exome sequence data from >600 animals, and identified 1377 stop-gain, 3139 frame-shift, 1341 splice-site, 22,939 disruptive missense, 62,399 benign missense, and 92,163 synonymous variants. We show that cattle have a comparable load of loss-of-function (LoF) variants (defined as stop-gain, frame-shift, or splice-site variants) as humans despite having a more variable exome. We genotyped >40,000 animals for up to 296 LoF and 3483 disruptive missense, breed-specific variants. We identified candidate EL mutations based on the observation of a significant depletion in homozygotes. We estimated the proportion of EL mutations at 15% of tested LoF and 6% of tested disruptive missense variants. We confirmed the EL nature of nine candidate variants by genotyping 200 carrier × carrier trios, and demonstrating the absence of homozygous offspring. The nine identified EL mutations segregate at frequencies ranging from 1.2% to 6.6% in the studied populations and collectively account for the mortality of ∼0.6% of conceptuses. We show that EL mutations preferentially affect gene products fulfilling basic cellular functions. The resulting information will be useful to avoid at-risk matings, thereby improving fertility. PMID:27646536

  13. Lethality in PARP-1/Ku80 double mutant mice reveals physiologicalsynergy during early embryogenesis

    SciTech Connect

    Henrie, Melinda S.; Kurimasa, Akihiro; Burma, Sandeep; Menissier-de Murcia, Josiane; de Murcia, Gilbert; Li, Gloria C.; Chen,David J.

    2002-09-24

    Ku is an abundant heterodimeric nuclear protein, consisting of 70-kDa and 86-kDa tightly associated subunits that comprise the DNA binding component of DNA-dependent protein kinase. Poly(ADP)ribose polymerase-1 (PARP-1) is a 113-kDa protein that catalyzes the synthesis of poly(ADP-ribose) on target proteins. Both Ku and PARP-1 recognize and bind to DNA ends. Ku functions in the non-homologous end joining (NHEJ) repair pathway whereas PARP-1 functions in the single strand break repair and base excision repair (BER) pathways. Recent studies have revealed that PARP-1 and Ku80 interact in vitro. To determine whether the association of PARP-1 and Ku80 has any physiological significance or synergistic function in vivo, mice lacking both PARP-1 and Ku80 were generated. The resulting offspring died during embryonic development displaying abnormalities around the gastrulation stage. In addition, PARP-1-/-Ku80-/- cultured blastocysts had an increased level of apoptosis. These data suggest that the functions of both Ku80 and PARP-1 are essential for normal embryogenesis and that a loss of genomic integrity leading to cell death through apoptosis is likely the cause of the embryonic lethality observed in these mice.

  14. A Synthetic Lethal Screen Identifies a Role for Lin-44/Wnt in C. elegans Embryogenesis

    PubMed Central

    Hartin, Samantha N.; Hudson, Martin L.; Yingling, Curtis; Ackley, Brian D.

    2015-01-01

    Background The C. elegans proteins PTP-3/LAR-RPTP and SDN-1/Syndecan are conserved cell adhesion molecules. Loss-of-function (LOF) mutations in either ptp-3 or sdn-1 result in low penetrance embryonic developmental defects. Work from other systems has shown that syndecans can function as ligands for LAR receptors in vivo. We used double mutant analysis to test whether ptp-3 and sdn-1 function in a linear genetic pathway during C. elegans embryogenesis. Results We found animals with LOF in both sdn-1 and ptp-3 exhibited a highly penetrant synthetic lethality (SynLet), with only a small percentage of animals surviving to adulthood. Analysis of the survivors demonstrated that these animals had a synergistic increase in the penetrance of embryonic developmental defects. Together, these data strongly suggested PTP-3 and SDN-1 function in parallel during embryogenesis. We subsequently used RNAi to knockdown ~3,600 genes predicted to encode secreted and/or transmembrane molecules to identify genes that interacted with ptp-3 or sdn-1. We found that the Wnt ligand, lin-44, was SynLet with sdn-1, but not ptp-3. We used 4-dimensional time-lapse analysis to characterize the interaction between lin-44 and sdn-1. We found evidence that loss of lin-44 caused defects in the polarization and migration of endodermal precursors during gastrulation, a previously undescribed role for lin-44 that is strongly enhanced by the loss of sdn-1. Conclusions PTP-3 and SDN-1 function in compensatory pathways during C. elegans embryonic and larval development, as simultaneous loss of both genes has dire consequences for organismal survival. The Wnt ligand lin-44 contributes to the early stages of gastrulation in parallel to sdn-1, but in a genetic pathway with ptp-3. Overall, the SynLet phenotype provides a robust platform to identify ptp-3 and sdn-1 interacting genes, as well as other genes that function in development, yet might be missed in traditional forward genetic screens. PMID:25938228

  15. Knockdown of genes in the Toll pathway reveals new lethal RNA interference targets for insect pest control.

    PubMed

    Bingsohn, L; Knorr, E; Billion, A; Narva, K E; Vilcinskas, A

    2017-02-01

    RNA interference (RNAi) is a promising alternative strategy for ecologically friendly pest management. However, the identification of RNAi candidate genes is challenging owing to the absence of laboratory strains and the seasonality of most pest species. Tribolium castaneum is a well-established model, with a strong and robust RNAi response, which can be used as a high-throughput screening platform to identify potential RNAi target genes. Recently, the cactus gene was identified as a sensitive RNAi target for pest control. To explore whether the spectrum of promising RNAi targets can be expanded beyond those found by random large-scale screening, to encompass others identified using targeted knowledge-based approaches, we constructed a Cactus interaction network. We tested nine genes in this network and found that the delivery of double-stranded RNA corresponding to fusilli and cactin showed lethal effects. The silencing of cactin resulted in 100% lethality at every developmental stage from the larva to the adult. The knockdown of pelle, Dorsal-related immunity factor and short gastrulation reduced or even prevented egg hatching in the next generation. The combination of such targets with lethal and parental RNAi effects can now be tested against different pest species in field studies.

  16. A screen for dynein synthetic lethals in Aspergillus nidulans identifies spindle assembly checkpoint genes and other genes involved in mitosis.

    PubMed Central

    Efimov, V P; Morris, N R

    1998-01-01

    Cytoplasmic dynein is a ubiquitously expressed microtubule motor involved in vesicle transport, mitosis, nuclear migration, and spindle orientation. In the filamentous fungus Aspergillus nidulans, inactivation of cytoplasmic dynein, although not lethal, severely impairs nuclear migration. The role of dynein in mitosis and vesicle transport in this organism is unclear. To investigate the complete range of dynein function in A. nidulans, we searched for synthetic lethal mutations that significantly reduced growth in the absence of dynein but had little effect on their own. We isolated 19 sld (synthetic lethality without dynein) mutations in nine different genes. Mutations in two genes exacerbate the nuclear migration defect seen in the absence of dynein. Mutations in six other genes, including sldA and sldB, show a strong synthetic lethal interaction with a mutation in the mitotic kinesin bimC and, thus, are likely to play a role in mitosis. Mutations in sldA and sldB also confer hypersensitivity to the microtubule-destabilizing drug benomyl. sldA and sldB were cloned by complementation of their mutant phenotypes using an A. nidulans autonomously replicating vector. Sequencing revealed homology to the spindle assembly checkpoint genes BUB1 and BUB3 from Saccharomyces cerevisiae. Genetic interaction between dynein and spindle assembly checkpoint genes, as well as other mitotic genes, indicates that A. nidulans dynein plays a role in mitosis. We suggest a model for dynein motor action in A. nidulans that can explain dynein involvement in both mitosis and nuclear distribution. PMID:9584089

  17. Metagenomic Analysis of Cucumber RNA from East Timor Reveals an Aphid lethal paralysis virus Genome

    PubMed Central

    Maina, Solomon; Edwards, Owain R.; de Almeida, Luis; Ximenes, Abel

    2017-01-01

    ABSTRACT We present here the first complete genomic Aphid lethal paralysis virus (ALPV) sequence isolated from cucumber plant RNA from East Timor. We compare it with two complete ALPV genome sequences from China, and one each from Israel, South Africa, and the United States. It most closely resembled the Chinese isolate LGH genome. PMID:28082492

  18. Preventing lethal violence in schools: the case for entry-based weapons screening.

    PubMed

    Mawson, Anthony R; Lapsley, Peter M; Hoffman, Allan M; Guignard, John C

    2002-04-01

    Violence-related behavior in schools has declined in recent years, but the perception of risk remains high. Disturbingly high percentages of students and teachers report staying home out of fear, and many students bring weapons to school for protection. Current proposals for preventing school violence include punishing the violence-prone, expulsion for weapon carriers, and creating a culture of nonviolence through various behavioral methods like conflict resolution. None of these proposals address the issue of lethal violence and hence personal safety. The risk of lethal violence in schools (related mainly to firearms) could be substantially reduced by creating an effective barrier between firearms and people. This could be achieved by using entry-based weapons detection systems similar to those now used in airports and courts. Decreasing the risk and fear of violence by converting schools into weapons-free zones would also be expected to increase attendance and improve scholastic performance. Randomized, controlled studies should be undertaken to evaluate the efficacy and cost-effectiveness of entry-based weapons detection systems for achieving these outcomes.

  19. Genome-wide RNAi screen for synthetic lethal interactions with the C. elegans kinesin-5 homolog BMK-1

    PubMed Central

    Maia, André F.; Tanenbaum, Marvin E.; Galli, Matilde; Lelieveld, Daphne; Egan, David A.; Gassmann, Reto; Sunkel, Claudio E.; van den Heuvel, Sander; Medema, René H.

    2015-01-01

    Kinesins are a superfamily of microtubule-based molecular motors that perform various transport needs and have essential roles in cell division. Among these, the kinesin-5 family has been shown to play a major role in the formation and maintenance of the bipolar mitotic spindle. Moreover, recent work suggests that kinesin-5 motors may have additional roles. In contrast to most model organisms, the sole kinesin-5 gene in Caenorhabditis elegans, bmk-1, is not required for successful mitosis and animals lacking bmk-1 are viable and fertile. To gain insight into factors that may act redundantly with BMK-1 in spindle assembly and to identify possible additional cellular pathways involving BMK-1, we performed a synthetic lethal screen using the bmk-1 deletion allele ok391. We successfully knocked down 82% of the C. elegans genome using RNAi and assayed viability in bmk-1(ok391) and wild type strains using an automated high-throughput approach based on fluorescence microscopy. The dataset includes a final list of 37 synthetic lethal interactions whose further study is likely to provide insight into kinesin-5 function. PMID:25984351

  20. Identification of molecular vulnerabilities in human multiple myeloma cells by RNA interference lethality screening of the druggable genome.

    PubMed

    Tiedemann, Rodger E; Zhu, Yuan Xao; Schmidt, Jessica; Shi, Chang Xin; Sereduk, Chris; Yin, Hongwei; Mousses, Spyro; Stewart, A Keith

    2012-02-01

    Despite recent advances in targeted treatments for multiple myeloma, optimal molecular therapeutic targets have yet to be identified. To functionally identify critical molecular targets, we conducted a genome-scale lethality study in multiple myeloma cells using siRNAs. We validated the top 160 lethal hits with four siRNAs per gene in three multiple myeloma cell lines and two non-myeloma cell lines, cataloging a total of 57 potent multiple myeloma survival genes. We identified the Bcl2 family member MCL1 and several 26S proteasome subunits among the most important and selective multiple myeloma survival genes. These results provided biologic validation of our screening strategy. Other essential targets included genes involved in RNA splicing, ubiquitination, transcription, translation, and mitosis. Several of the multiple myeloma survival genes, especially MCL1, TNK2, CDK11, and WBSCR22, exhibited differential expression in primary plasma cells compared with other human primary somatic tissues. Overall, the most striking differential functional vulnerabilities between multiple myeloma and non-multiple myeloma cells were found to occur within the 20S proteasome subunits, MCL1, RRM1, USP8, and CKAP5. We propose that these genes should be investigated further as potential therapeutic targets in multiple myeloma.

  1. Synthetic Lethality Screen Identifies RPS6KA2 as Modifier of Epidermal Growth Factor Receptor Activity in Pancreatic Cancer12

    PubMed Central

    Milosevic, Nada; Kühnemuth, Benjamin; Mühlberg, Leonie; Ripka, Stefanie; Griesmann, Heidi; Lölkes, Carolin; Buchholz, Malte; Aust, Daniela; Pilarsky, Christian; Krug, Sebastian; Gress, Thomas; Michl, Patrick

    2013-01-01

    Pancreatic cancer is characterized by a high degree of resistance to chemotherapy. Epidermal growth factor receptor (EGFR) inhibition using the small-molecule inhibitor erlotinib was shown to provide a small survival benefit in a subgroup of patients. To identify kinases whose inhibition acts synergistically with erlotinib, we employed a kinome-wide small-interfering RNA (siRNA)-based loss-of-function screen in the presence of erlotinib. Of 779 tested kinases, we identified several targets whose inhibition acted synergistically lethal with EGFR inhibition by erlotinib, among them the S6 kinase ribosomal protein S6 kinase 2 (RPS6KA2)/ribosomal S6 kinase 3. Activated RPS6KA2 was expressed in approximately 40% of 123 human pancreatic cancer tissues. RPS6KA2 was shown to act downstream of EGFR/RAS/mitogen-activated protein kinase kinase (MEK)/extracellular-signal regulated kinase (ERK) signaling and was activated by EGF independently of the presence of KRAS mutations. Knockdown of RPS6KA2 by siRNA led to increased apoptosis only in the presence of erlotinib, whereas RPS6KA2 activation or overexpression rescued from erlotinib- and gemcitabine-induced apoptosis. This effect was at least in part mediated by downstream activation of ribosomal protein S6. Genetic as well as pharmacological inhibition of RPS6KA2 by the inhibitor BI-D1870 acted synergistically with erlotinib. By applying this synergistic lethality screen using a kinome-wide RNA interference-library approach, we identified RPS6KA2 as potential drug target whose inhibition synergistically enhanced the effect of erlotinib on tumor cell survival. This kinase therefore represents a promising drug candidate suitable for the development of novel inhibitors for pancreatic cancer therapy. PMID:24403857

  2. Biophysical analysis of a lethal laminin alpha-1 mutation reveals altered self-interaction.

    PubMed

    Patel, Trushar R; Nikodemus, Denise; Besong, Tabot M D; Reuten, Raphael; Meier, Markus; Harding, Stephen E; Winzor, Donald J; Koch, Manuel; Stetefeld, Jörg

    2016-01-01

    Laminins are key basement membrane molecules that influence several biological activities and are linked to a number of diseases. They are secreted as heterotrimeric proteins consisting of one α, one β, and one γ chain, followed by their assembly into a polymer-like sheet at the basement membrane. Using sedimentation velocity, dynamic light scattering, and surface plasmon resonance experiments, we studied self-association of three laminin (LM) N-terminal fragments α-1 (hLM α-1N), α-5 (hLM α-5N) and β-3 (hLM β-3N) originating from the short arms of the human laminin αβγ heterotrimer. Corresponding studies of the hLM α-1N C49S mutant, equivalent to the larval lethal C56S mutant in zebrafish, have shown that this mutation causes enhanced self-association behavior, an observation that provides a plausible explanation for the inability of laminin bearing this mutation to fulfill functional roles in vivo, and hence for the deleterious pathological consequences of the mutation on lens function.

  3. In vivo selection of lethal mutations reveals two functional domains in arginyl-tRNA synthetase.

    PubMed Central

    Geslain, R; Martin, F; Delagoutte, B; Cavarelli, J; Gangloff, J; Eriani, G

    2000-01-01

    Using random mutagenesis and a genetic screening in yeast, we isolated 26 mutations that inactivate Saccharomyces cerevisiae arginyl-tRNA synthetase (ArgRS). The mutations were identified and the kinetic parameters of the corresponding proteins were tested after purification of the expression products in Escherichia coli. The effects were interpreted in the light of the crystal structure of ArgRS. Eighteen functional residues were found around the arginine-binding pocket and eight others in the carboxy-terminal domain of the enzyme. Mutations of these residues all act by strongly impairing the rates of tRNA charging and arginine activation. Thus, ArgRS and tRNA(Arg) can be considered as a kind of ribonucleoprotein, where the tRNA, before being charged, is acting as a cofactor that activates the enzyme. Furthermore, by using different tRNA(Arg) isoacceptors and heterologous tRNA(Asp), we highlighted the crucial role of several residues of the carboxy-terminal domain in tRNA recognition and discrimination. PMID:10744027

  4. Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families

    PubMed Central

    Popovic, Ana; Hai, Tran; Tchigvintsev, Anatoly; Hajighasemi, Mahbod; Nocek, Boguslaw; Khusnutdinova, Anna N.; Brown, Greg; Glinos, Julia; Flick, Robert; Skarina, Tatiana; Chernikova, Tatyana N.; Yim, Veronica; Brüls, Thomas; Paslier, Denis Le; Yakimov, Michail M.; Joachimiak, Andrzej; Ferrer, Manuel; Golyshina, Olga V.; Savchenko, Alexei; Golyshin, Peter N.; Yakunin, Alexander F.

    2017-01-01

    Metagenomics has made accessible an enormous reserve of global biochemical diversity. To tap into this vast resource of novel enzymes, we have screened over one million clones from metagenome DNA libraries derived from sixteen different environments for carboxylesterase activity and identified 714 positive hits. We have validated the esterase activity of 80 selected genes, which belong to 17 different protein families including unknown and cyclase-like proteins. Three metagenomic enzymes exhibited lipase activity, and seven proteins showed polyester depolymerization activity against polylactic acid and polycaprolactone. Detailed biochemical characterization of four new enzymes revealed their substrate preference, whereas their catalytic residues were identified using site-directed mutagenesis. The crystal structure of the metal-ion dependent esterase MGS0169 from the amidohydrolase superfamily revealed a novel active site with a bound unknown ligand. Thus, activity-centered metagenomics has revealed diverse enzymes and novel families of microbial carboxylesterases, whose activity could not have been predicted using bioinformatics tools. PMID:28272521

  5. A synthetic lethal screen identifies SLK1, a novel protein kinase homolog implicated in yeast cell morphogenesis and cell growth.

    PubMed Central

    Costigan, C; Gehrung, S; Snyder, M

    1992-01-01

    The Saccharomyces cerevisiae SPA2 protein localizes at sites involved in polarized cell growth in budding cells and mating cells. spa2 mutants have defects in projection formation during mating but are healthy during vegetative growth. A synthetic lethal screen was devised to identify mutants that require the SPA2 gene for vegetative growth. One mutant, called slk-1 (for synthetic lethal kinase), has been characterized extensively. The SLK1 gene has been cloned, and sequence analysis predicts that the SLK1 protein is 1,478 amino acid residues in length. Approximately 300 amino acids at the carboxy terminus exhibit sequence similarity with the catalytic domains of protein kinases. Disruption mutations have been constructed in the SLK1 gene. slk1 null mutants cannot grow at 37 degrees C, but many cells can grow at 30, 24, and 17 degrees C. Dead slk1 mutant cells usually have aberrant cell morphologies, and many cells are very small, approximately one-half the diameter of wild-type cells. Surviving slk1 cells also exhibit morphogenic defects; these cells are impaired in their ability to form projections upon exposure to mating pheromones. During vegetative growth, a higher fraction of slk1 cells are unbudded compared with wild-type cells, and under nutrient limiting conditions, slk1 cells exhibit defects in cell cycle arrest. The different slk1 mutant defects are partially rescued by an extra copy of the SSD1/SRK1 gene. SSD1/SRK1 has been independently isolated as a suppressor of mutations in genes involved in growth control, sit4, pde2, bcy1, and ins1 (A. Sutton, D. Immanuel, and K.T. Arnat, Mol. Cell. Biol. 11:2133-2148, 1991; R.B. Wilson, A.A. Brenner, T.B. White, M.J. Engler, J.P. Gaughran, and K. Tatchell, Mol. Cell. Biol. 11:3369-3373, 1991). These data suggest that SLK1 plays a role in both cell morphogenesis and the control of cell growth. We speculate that SLK1 may be a regulatory link for these two cellular processes. Images PMID:1545797

  6. 2D NMR-spectroscopic screening reveals polyketides in ladybugs.

    PubMed

    Deyrup, Stephen T; Eckman, Laura E; McCarthy, Patrick H; Smedley, Scott R; Meinwald, Jerrold; Schroeder, Frank C

    2011-06-14

    Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature's cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior fractionation or isolation. Our screen led to discovery and subsequent isolation of two families of tricyclic pyrones in Delphastus catalinae, a tiny ladybird beetle that is employed commercially as a biological pest control agent. The D. catalinae pyrones are based on 23-carbon polyketide chains forming 1,11-dioxo-2,6,10-trioxaanthracene and 4,8-dioxo-1,9,13-trioxaanthracene derivatives, representing ring systems not previously found in nature. This study highlights the utility of 2D NMR-spectroscopic screening for exploring nature's structure space and suggests that insect metabolomes remain vastly underexplored.

  7. 2D NMR-spectroscopic screening reveals polyketides in ladybugs

    PubMed Central

    Deyrup, Stephen T.; Eckman, Laura E.; McCarthy, Patrick H.; Smedley, Scott R.; Meinwald, Jerrold; Schroeder, Frank C.

    2011-01-01

    Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature’s cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior fractionation or isolation. Our screen led to discovery and subsequent isolation of two families of tricyclic pyrones in Delphastus catalinae, a tiny ladybird beetle that is employed commercially as a biological pest control agent. The D. catalinae pyrones are based on 23-carbon polyketide chains forming 1,11-dioxo-2,6,10-trioxaanthracene and 4,8-dioxo-1,9,13-trioxaanthracene derivatives, representing ring systems not previously found in nature. This study highlights the utility of 2D NMR-spectroscopic screening for exploring nature’s structure space and suggests that insect metabolomes remain vastly underexplored. PMID:21646540

  8. Natural Product Screening Reveals Naphthoquinone Complex I Bypass Factors

    PubMed Central

    Mevers, Emily; Higgins, Kathleen W.; Fomina, Yevgenia; Zhang, Jianming; Mandinova, Anna; Newman, David; Shaw, Stanley Y.; Clardy, Jon; Mootha, Vamsi K.

    2016-01-01

    Deficiency of mitochondrial complex I is encountered in both rare and common diseases, but we have limited therapeutic options to treat this lesion to the oxidative phosphorylation system (OXPHOS). Idebenone and menadione are redox-active molecules capable of rescuing OXPHOS activity by engaging complex I-independent pathways of entry, often referred to as “complex I bypass.” In the present study, we created a cellular model of complex I deficiency by using CRISPR genome editing to knock out Ndufa9 in mouse myoblasts, and utilized this cell line to develop a high-throughput screening platform for novel complex I bypass factors. We screened a library of ~40,000 natural product extracts and performed bioassay-guided fractionation on a subset of the top scoring hits. We isolated four plant-derived 1,4-naphthoquinone complex I bypass factors with structural similarity to menadione: chimaphilin and 3-chloro-chimaphilin from Chimaphila umbellata and dehydro-α-lapachone and dehydroiso-α-lapachone from Stereospermum euphoroides. We also tested a small number of structurally related naphthoquinones from commercial sources and identified two additional compounds with complex I bypass activity: 2-methoxy-1,4-naphthoquinone and 2-methoxy-3-methyl-1,4,-naphthoquinone. The six novel complex I bypass factors reported here expand this class of molecules and will be useful as tool compounds for investigating complex I disease biology. PMID:27622560

  9. Natural Product Screening Reveals Naphthoquinone Complex I Bypass Factors.

    PubMed

    Vafai, Scott B; Mevers, Emily; Higgins, Kathleen W; Fomina, Yevgenia; Zhang, Jianming; Mandinova, Anna; Newman, David; Shaw, Stanley Y; Clardy, Jon; Mootha, Vamsi K

    2016-01-01

    Deficiency of mitochondrial complex I is encountered in both rare and common diseases, but we have limited therapeutic options to treat this lesion to the oxidative phosphorylation system (OXPHOS). Idebenone and menadione are redox-active molecules capable of rescuing OXPHOS activity by engaging complex I-independent pathways of entry, often referred to as "complex I bypass." In the present study, we created a cellular model of complex I deficiency by using CRISPR genome editing to knock out Ndufa9 in mouse myoblasts, and utilized this cell line to develop a high-throughput screening platform for novel complex I bypass factors. We screened a library of ~40,000 natural product extracts and performed bioassay-guided fractionation on a subset of the top scoring hits. We isolated four plant-derived 1,4-naphthoquinone complex I bypass factors with structural similarity to menadione: chimaphilin and 3-chloro-chimaphilin from Chimaphila umbellata and dehydro-α-lapachone and dehydroiso-α-lapachone from Stereospermum euphoroides. We also tested a small number of structurally related naphthoquinones from commercial sources and identified two additional compounds with complex I bypass activity: 2-methoxy-1,4-naphthoquinone and 2-methoxy-3-methyl-1,4,-naphthoquinone. The six novel complex I bypass factors reported here expand this class of molecules and will be useful as tool compounds for investigating complex I disease biology.

  10. A selective screen reveals discrete functional domains in Drosophila Nanos.

    PubMed Central

    Arrizabalaga, G; Lehmann, R

    1999-01-01

    The Drosophila protein Nanos encodes an evolutionarily conserved protein with two zinc finger motifs. In the embryo, Nanos protein function is required for establishment of the anterior-posterior body pattern and for the migration of primordial germ cells. During oogenesis, Nanos protein is involved in the establishment and maintenance of germ-line stem cells and the differentiation of oocyte precursor cells. To establish proper embryonic patterning, Nanos acts as a translational regulator of hunchback RNA. Nanos' targets for germ cell migration and development are not known. Here, we describe a selective genetic screen aimed at isolating new nanos alleles. The molecular and genetic analysis of 68 new alleles has allowed us to identify amino acids critical for nanos function. This analysis shows that the CCHC motifs, which coordinate two metal ions, are essential for all known functions of Nanos protein. Furthermore, a region C-terminal to the zinc fingers seems to constitute a novel functional domain within the Nanos protein. This "tail region" of Nanos is required for abdomen formation and germ cell migration, but not for oogenesis. PMID:10581288

  11. Sleeping Beauty screen reveals Pparg activation in metastatic prostate cancer.

    PubMed

    Ahmad, Imran; Mui, Ernest; Galbraith, Laura; Patel, Rachana; Tan, Ee Hong; Salji, Mark; Rust, Alistair G; Repiscak, Peter; Hedley, Ann; Markert, Elke; Loveridge, Carolyn; van der Weyden, Louise; Edwards, Joanne; Sansom, Owen J; Adams, David J; Leung, Hing Y

    2016-07-19

    Prostate cancer (CaP) is the most common adult male cancer in the developed world. The paucity of biomarkers to predict prostate tumor biology makes it important to identify key pathways that confer poor prognosis and guide potential targeted therapy. Using a murine forward mutagenesis screen in a Pten-null background, we identified peroxisome proliferator-activated receptor gamma (Pparg), encoding a ligand-activated transcription factor, as a promoter of metastatic CaP through activation of lipid signaling pathways, including up-regulation of lipid synthesis enzymes [fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY)]. Importantly, inhibition of PPARG suppressed tumor growth in vivo, with down-regulation of the lipid synthesis program. We show that elevated levels of PPARG strongly correlate with elevation of FASN in human CaP and that high levels of PPARG/FASN and PI3K/pAKT pathway activation confer a poor prognosis. These data suggest that CaP patients could be stratified in terms of PPARG/FASN and PTEN levels to identify patients with aggressive CaP who may respond favorably to PPARG/FASN inhibition.

  12. Sleeping Beauty screen reveals Pparg activation in metastatic prostate cancer

    PubMed Central

    Ahmad, Imran; Mui, Ernest; Galbraith, Laura; Patel, Rachana; Tan, Ee Hong; Salji, Mark; Rust, Alistair G.; Repiscak, Peter; Hedley, Ann; Markert, Elke; Loveridge, Carolyn; van der Weyden, Louise; Edwards, Joanne; Sansom, Owen J.; Adams, David J.; Leung, Hing Y.

    2016-01-01

    Prostate cancer (CaP) is the most common adult male cancer in the developed world. The paucity of biomarkers to predict prostate tumor biology makes it important to identify key pathways that confer poor prognosis and guide potential targeted therapy. Using a murine forward mutagenesis screen in a Pten-null background, we identified peroxisome proliferator-activated receptor gamma (Pparg), encoding a ligand-activated transcription factor, as a promoter of metastatic CaP through activation of lipid signaling pathways, including up-regulation of lipid synthesis enzymes [fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY)]. Importantly, inhibition of PPARG suppressed tumor growth in vivo, with down-regulation of the lipid synthesis program. We show that elevated levels of PPARG strongly correlate with elevation of FASN in human CaP and that high levels of PPARG/FASN and PI3K/pAKT pathway activation confer a poor prognosis. These data suggest that CaP patients could be stratified in terms of PPARG/FASN and PTEN levels to identify patients with aggressive CaP who may respond favorably to PPARG/FASN inhibition. PMID:27357679

  13. A Genetic Screen for High Copy Number Suppressors of the Synthetic Lethality Between elg1Δ and srs2Δ in Yeast

    PubMed Central

    Gazy, Inbal; Liefshitz, Batia; Bronstein, Alex; Parnas, Oren; Atias, Nir; Sharan, Roded; Kupiec, Martin

    2013-01-01

    Elg1 and Srs2 are two proteins involved in maintaining genome stability in yeast. After DNA damage, the homotrimeric clamp PCNA, which provides stability and processivity to DNA polymerases and serves as a docking platform for DNA repair enzymes, undergoes modification by the ubiquitin-like molecule SUMO. PCNA SUMOylation helps recruit Srs2 and Elg1 to the replication fork. In the absence of Elg1, both SUMOylated PCNA and Srs2 accumulate at the chromatin fraction, indicating that Elg1 is required for removing SUMOylated PCNA and Srs2 from DNA. Despite this interaction, which suggests that the two proteins work together, double mutants elg1Δ srs2Δ have severely impaired growth as haploids and exhibit synergistic sensitivity to DNA damage and a synergistic increase in gene conversion. In addition, diploid elg1Δ srs2Δ double mutants are dead, which implies that an essential function in the cell requires at least one of the two gene products for survival. To gain information about this essential function, we have carried out a high copy number suppressor screen to search for genes that, when overexpressed, suppress the synthetic lethality between elg1Δ and srs2Δ. We report the identification of 36 such genes, which are enriched for functions related to DNA- and chromatin-binding, chromatin packaging and modification, and mRNA export from the nucleus. PMID:23704284

  14. A translational murine model of sub-lethal intoxication with Shiga toxin 2 reveals novel ultrastructural findings in the brain striatum.

    PubMed

    Tironi-Farinati, Carla; Geoghegan, Patricia A; Cangelosi, Adriana; Pinto, Alipio; Loidl, C Fabian; Goldstein, Jorge

    2013-01-01

    Infection by Shiga toxin-producing Escherichia coli causes hemorrhagic colitis, hemolytic uremic syndrome (HUS), acute renal failure, and also central nervous system complications in around 30% of the children affected. Besides, neurological deficits are one of the most unrepairable and untreatable outcomes of HUS. Study of the striatum is relevant because basal ganglia are one of the brain areas most commonly affected in patients that have suffered from HUS and since the deleterious effects of a sub-lethal dose of Shiga toxin have never been studied in the striatum, the purpose of this study was to attempt to simulate an infection by Shiga toxin-producing E. coli in a murine model. To this end, intravenous administration of a sub-lethal dose of Shiga toxin 2 (0.5 ηg per mouse) was used and the correlation between neurological manifestations and ultrastructural changes in striatal brain cells was studied in detail. Neurological manifestations included significant motor behavior abnormalities in spontaneous motor activity, gait, pelvic elevation and hind limb activity eight days after administration of the toxin. Transmission electron microscopy revealed that the toxin caused early perivascular edema two days after administration, as well as significant damage in astrocytes four days after administration and significant damage in neurons and oligodendrocytes eight days after administration. Interrupted synapses and mast cell extravasation were also found eight days after administration of the toxin. We thus conclude that the chronological order of events observed in the striatum could explain the neurological disorders found eight days after administration of the toxin.

  15. A Translational Murine Model of Sub-Lethal Intoxication with Shiga Toxin 2 Reveals Novel Ultrastructural Findings in the Brain Striatum

    PubMed Central

    Tironi-Farinati, Carla; Geoghegan, Patricia A.; Cangelosi, Adriana; Pinto, Alipio; Loidl, C. Fabian; Goldstein, Jorge

    2013-01-01

    Infection by Shiga toxin-producing Escherichia coli causes hemorrhagic colitis, hemolytic uremic syndrome (HUS), acute renal failure, and also central nervous system complications in around 30% of the children affected. Besides, neurological deficits are one of the most unrepairable and untreatable outcomes of HUS. Study of the striatum is relevant because basal ganglia are one of the brain areas most commonly affected in patients that have suffered from HUS and since the deleterious effects of a sub-lethal dose of Shiga toxin have never been studied in the striatum, the purpose of this study was to attempt to simulate an infection by Shiga toxin-producing E. coli in a murine model. To this end, intravenous administration of a sub-lethal dose of Shiga toxin 2 (0.5 ηg per mouse) was used and the correlation between neurological manifestations and ultrastructural changes in striatal brain cells was studied in detail. Neurological manifestations included significant motor behavior abnormalities in spontaneous motor activity, gait, pelvic elevation and hind limb activity eight days after administration of the toxin. Transmission electron microscopy revealed that the toxin caused early perivascular edema two days after administration, as well as significant damage in astrocytes four days after administration and significant damage in neurons and oligodendrocytes eight days after administration. Interrupted synapses and mast cell extravasation were also found eight days after administration of the toxin. We thus conclude that the chronological order of events observed in the striatum could explain the neurological disorders found eight days after administration of the toxin. PMID:23383285

  16. Judged Lethality

    DTIC Science & Technology

    1980-12-01

    75 High Blood Pressure 535 89 17 538 76 Drug Abuse 1,020 1,371 19 95 80 Bronchitis 162 19 43 2,111 85 Pregnancy 67 24 13 787 250 Diabetes 487 101 52...Diseases 4 Mumps 3 Dental Problems 1 Always Overestimated High Blood Pressure 9 Alcoholism 6 Influenza 2 Note: Measles (8), tuberculosis (13), auto...statis- tical lethality rate and total number of people killed (cancer, strokes, heart attacks, emphysema, high blood pressure ) were rather accurately

  17. Physiological Stress Responses in Amphibian Larvae to Multiple Stressors Reveal Marked Anthropogenic Effects even below Lethal Levels.

    PubMed

    Burraco, Pablo; Gomez-Mestre, Ivan

    Natural and anthropogenic disturbances cause profound alterations in organisms, inducing physiological adjustments to avoid, reduce, or remedy the impact of disturbances. In vertebrates, the stress response is regulated via neuroendocrine pathways, including the hypothalamic-pituitary-interrenal axis that regulates the secretion of glucocorticoids. Glucocorticoids have cascading effects on multiple physiological pathways, affecting the metabolic rate, reactive oxygen species production, or immune system. Determining the extent to which natural and anthropogenic environmental factors induce stress responses in vertebrates is of great importance in ecology and conservation biology. Here we study the physiological stress response in spadefoot toad tadpoles (Pelobates cultripes) against three levels of a series of natural and anthropogenic stressors common to many aquatic systems: salinity (0, 6, and 9 ppt), herbicide (0, 1, and 2 mg/L acid equivalent of glyphosate), water acidity (pH 4.5, 7.0, and 9.5), predators (absent, native, and invasive), and temperature (21°, 25°, and 29°C). The physiological stress response was assessed examining corticosterone levels, standard metabolic rate, activity of antioxidant enzymes, oxidative cellular damage in lipids, and immunological status. We found that common stressors substantially altered the physiological state of tadpoles. In particular, salinity and herbicides cause dramatic physiological changes in tadpoles. Moreover, tadpoles reduced corticosterone levels in the presence of natural predators but did not do so against invasive predators, indicating a lack of innate recognition. Corticosterone and the antioxidant enzyme glutathione reductase were the most sensitive parameters to stress in this study. Anthropogenic perturbations of aquatic systems pose serious threats to larval amphibians even at nonlethal concentrations, judging from the marked physiological stress responses generated, and reveal the importance of

  18. Synthetic lethality screen identifies a novel yeast myosin I gene (MYO5): myosin I proteins are required for polarization of the actin cytoskeleton

    PubMed Central

    1996-01-01

    The organization of the actin cytoskeleton plays a critical role in cell physiology in motile and nonmotile organisms. Nonetheless, the function of the actin based motor molecules, members of the myosin superfamily, is not well understood. Deletion of MYO3, a yeast gene encoding a "classic" myosin I, has no detectable phenotype. We used a synthetic lethality screen to uncover genes whose functions might overlap with those of MYO3 and identified a second yeast myosin 1 gene, MYO5. MYO5 shows 86 and 62% identity to MYO3 across the motor and non- motor regions. Both genes contain an amino terminal motor domain, a neck region containing two IQ motifs, and a tail domain consisting of a positively charged region, a proline-rich region containing sequences implicated in ATP-insensitive actin binding, and an SH3 domain. Although myo5 deletion mutants have no detectable phenotype, yeast strains deleted for both MYO3 and MYO5 have severe defects in growth and actin cytoskeletal organization. Double deletion mutants also display phenotypes associated with actin disorganization including accumulation of intracellular membranes and vesicles, cell rounding, random bud site selection, sensitivity to high osmotic strength, and low pH as well as defects in chitin and cell wall deposition, invertase secretion, and fluid phase endocytosis. Indirect immunofluorescence studies using epitope-tagged Myo5p indicate that Myo5p is localized at actin patches. These results indicate that MYO3 and MYO5 encode classical myosin I proteins with overlapping functions and suggest a role for Myo3p and Myo5p in organization of the actin cytoskeleton of Saccharomyces cerevisiae. PMID:8682864

  19. Histopathology reveals correlative and unique phenotypes in a high-throughput mouse phenotyping screen.

    PubMed

    Adissu, Hibret A; Estabel, Jeanne; Sunter, David; Tuck, Elizabeth; Hooks, Yvette; Carragher, Damian M; Clarke, Kay; Karp, Natasha A; Newbigging, Susan; Jones, Nora; Morikawa, Lily; White, Jacqueline K; McKerlie, Colin

    2014-05-01

    The Mouse Genetics Project (MGP) at the Wellcome Trust Sanger Institute aims to generate and phenotype over 800 genetically modified mouse lines over the next 5 years to gain a better understanding of mammalian gene function and provide an invaluable resource to the scientific community for follow-up studies. Phenotyping includes the generation of a standardized biobank of paraffin-embedded tissues for each mouse line, but histopathology is not routinely performed. In collaboration with the Pathology Core of the Centre for Modeling Human Disease (CMHD) we report the utility of histopathology in a high-throughput primary phenotyping screen. Histopathology was assessed in an unbiased selection of 50 mouse lines with (n=30) or without (n=20) clinical phenotypes detected by the standard MGP primary phenotyping screen. Our findings revealed that histopathology added correlating morphological data in 19 of 30 lines (63.3%) in which the primary screen detected a phenotype. In addition, seven of the 50 lines (14%) presented significant histopathology findings that were not associated with or predicted by the standard primary screen. Three of these seven lines had no clinical phenotype detected by the standard primary screen. Incidental and strain-associated background lesions were present in all mutant lines with good concordance to wild-type controls. These findings demonstrate the complementary and unique contribution of histopathology to high-throughput primary phenotyping of mutant mice.

  20. A functional genomics screen in planarians reveals regulators of whole-brain regeneration

    PubMed Central

    Roberts-Galbraith, Rachel H; Brubacher, John L; Newmark, Phillip A

    2016-01-01

    Planarians regenerate all body parts after injury, including the central nervous system (CNS). We capitalized on this distinctive trait and completed a gene expression-guided functional screen to identify factors that regulate diverse aspects of neural regeneration in Schmidtea mediterranea. Our screen revealed molecules that influence neural cell fates, support the formation of a major connective hub, and promote reestablishment of chemosensory behavior. We also identified genes that encode signaling molecules with roles in head regeneration, including some that are produced in a previously uncharacterized parenchymal population of cells. Finally, we explored genes downregulated during planarian regeneration and characterized, for the first time, glial cells in the planarian CNS that respond to injury by repressing several transcripts. Collectively, our studies revealed diverse molecules and cell types that underlie an animal’s ability to regenerate its brain. DOI: http://dx.doi.org/10.7554/eLife.17002.001 PMID:27612384

  1. A functional genomics screen in planarians reveals regulators of whole-brain regeneration.

    PubMed

    Roberts-Galbraith, Rachel H; Brubacher, John L; Newmark, Phillip A

    2016-09-09

    Planarians regenerate all body parts after injury, including the central nervous system (CNS). We capitalized on this distinctive trait and completed a gene expression-guided functional screen to identify factors that regulate diverse aspects of neural regeneration in Schmidtea mediterranea. Our screen revealed molecules that influence neural cell fates, support the formation of a major connective hub, and promote reestablishment of chemosensory behavior. We also identified genes that encode signaling molecules with roles in head regeneration, including some that are produced in a previously uncharacterized parenchymal population of cells. Finally, we explored genes downregulated during planarian regeneration and characterized, for the first time, glial cells in the planarian CNS that respond to injury by repressing several transcripts. Collectively, our studies revealed diverse molecules and cell types that underlie an animal's ability to regenerate its brain.

  2. Cognitive-behavioral screening reveals prevalent impairment in a large multicenter ALS cohort

    PubMed Central

    Factor-Litvak, Pam; Goetz, Raymond; Lomen-Hoerth, Catherine; Nagy, Peter L.; Hupf, Jonathan; Singleton, Jessica; Woolley, Susan; Andrews, Howard; Heitzman, Daragh; Bedlack, Richard S.; Katz, Jonathan S.; Barohn, Richard J.; Sorenson, Eric J.; Oskarsson, Björn; Fernandes Filho, J. Americo M.; Kasarskis, Edward J.; Mozaffar, Tahseen; Rollins, Yvonne D.; Nations, Sharon P.; Swenson, Andrea J.; Koczon-Jaremko, Boguslawa A.; Mitsumoto, Hiroshi

    2016-01-01

    Objectives: To characterize the prevalence of cognitive and behavioral symptoms using a cognitive/behavioral screening battery in a large prospective multicenter study of amyotrophic lateral sclerosis (ALS). Methods: Two hundred seventy-four patients with ALS completed 2 validated cognitive screening tests and 2 validated behavioral interviews with accompanying caregivers. We examined the associations between cognitive and behavioral performance, demographic and clinical data, and C9orf72 mutation data. Results: Based on the ALS Cognitive Behavioral Screen cognitive score, 6.5% of the sample scored below the cutoff score for frontotemporal lobar dementia, 54.2% scored in a range consistent with ALS with mild cognitive impairment, and 39.2% scored in the normal range. The ALS Cognitive Behavioral Screen behavioral subscale identified 16.5% of the sample scoring below the dementia cutoff score, with an additional 14.1% scoring in the ALS behavioral impairment range, and 69.4% scoring in the normal range. Conclusions: This investigation revealed high levels of cognitive and behavioral impairment in patients with ALS within 18 months of symptom onset, comparable to prior investigations. This investigation illustrates the successful use and scientific value of adding a cognitive-behavioral screening tool in studies of motor neuron diseases, to provide neurologists with an efficient method to measure these common deficits and to understand how they relate to key clinical variables, when extensive neuropsychological examinations are unavailable. These tools, developed specifically for patients with motor impairment, may be particularly useful in patient populations with multiple sclerosis and Parkinson disease, who are known to have comorbid cognitive decline. PMID:26802094

  3. (1)H NMR-based metabolomics reveals sub-lethal toxicity of a mixture of diabetic and lipid-regulating pharmaceuticals on amphibian larvae.

    PubMed

    Melvin, Steven D; Habener, Leesa J; Leusch, Frederic D L; Carroll, Anthony R

    2017-03-01

    Pharmaceuticals are widely used for the treatment of various physical and psychological ailments. Due to incomplete removal during sewage treatment many pharmaceuticals are frequently detected in aquatic waterways at trace concentrations. The diversity of pharmaceutical contaminants and potential for complex mixtures to occur makes it very difficult to predict the toxicity of these compounds on wildlife, and robust methods are therefore needed to explore sub-lethal effects. Metabolic syndrome is one of the most widespread health concerns currently facing the human population, and various drugs, including anti-diabetic medications and lipid- and cholesterol-lowering fibrates and statins, are widely prescribed as treatment. In this study, we exposed striped marsh frog (Limnodynastes peronii) tadpoles to a mixture of the drugs metformin, atorvastatin and bezafibrate at 0.5, 5, 50 and 500μg/L to explore possible effects on growth and development, energy reserves (triglycerides and cholesterol), and profiles of small polar metabolites extracted from hepatic tissues. It was hypothesised that exposure would result in a general reduction in energy reserves, and that this would subsequently correspond with reduced growth and development. Responses differed from expected outcomes based on the known mechanisms of these compounds in humans, with no changes to hepatic triglycerides or cholesterol and a general increase in mass and condition with increasing exposure concentration. Deviation from the expected response patterns may be explained by differences in the receptivity or uptake of the compounds in non-mammalian species. Proton nuclear magnetic resonance ((1)H NMR) spectroscopy revealed evidence of broad metabolic dysregulation in exposed animals, and possible interaction between the solvent and mixture. Specifically, increased lactic acid and branched-chain amino acids were observed, with responses tending to follow a non-monotonic pattern. Overall, results demonstrate

  4. A High-Throughput Screen Reveals New Small-Molecule Activators and Inhibitors of Pantothenate Kinases

    PubMed Central

    2016-01-01

    Pantothenate kinase (PanK) is a regulatory enzyme that controls coenzyme A (CoA) biosynthesis. The association of PanK with neurodegeneration and diabetes suggests that chemical modifiers of PanK activity may be useful therapeutics. We performed a high throughput screen of >520000 compounds from the St. Jude compound library and identified new potent PanK inhibitors and activators with chemically tractable scaffolds. The HTS identified PanK inhibitors exemplified by the detailed characterization of a tricyclic compound (7) and a preliminary SAR. Biophysical studies reveal that the PanK inhibitor acts by binding to the ATP–enzyme complex. PMID:25569308

  5. Development of synthetic lethality anticancer therapeutics.

    PubMed

    Fang, Bingliang

    2014-10-09

    The concept of synthetic lethality (the creation of a lethal phenotype from the combined effects of mutations in two or more genes) has recently been exploited in various efforts to develop new genotype-selective anticancer therapeutics. These efforts include screening for novel anticancer agents, identifying novel therapeutic targets, characterizing mechanisms of resistance to targeted therapy, and improving efficacies through the rational design of combination therapy. This review discusses recent developments in synthetic lethality anticancer therapeutics, including poly ADP-ribose polymerase inhibitors for BRCA1- and BRCA2-mutant cancers, checkpoint inhibitors for p53 mutant cancers, and small molecule agents targeting RAS gene mutant cancers. Because cancers are caused by mutations in multiple genes and abnormalities in multiple signaling pathways, synthetic lethality for a specific tumor suppressor gene or oncogene is likely cell context-dependent. Delineation of the mechanisms underlying synthetic lethality and identification of treatment response biomarkers will be critical for the success of synthetic lethality anticancer therapy.

  6. Novel microscopy-based screening method reveals regulators of contact-dependent intercellular transfer

    PubMed Central

    Michael Frei, Dominik; Hodneland, Erlend; Rios-Mondragon, Ivan; Burtey, Anne; Neumann, Beate; Bulkescher, Jutta; Schölermann, Julia; Pepperkok, Rainer; Gerdes, Hans-Hermann; Kögel, Tanja

    2015-01-01

    Contact-dependent intercellular transfer (codeIT) of cellular constituents can have functional consequences for recipient cells, such as enhanced survival and drug resistance. Pathogenic viruses, prions and bacteria can also utilize this mechanism to spread to adjacent cells and potentially evade immune detection. However, little is known about the molecular mechanism underlying this intercellular transfer process. Here, we present a novel microscopy-based screening method to identify regulators and cargo of codeIT. Single donor cells, carrying fluorescently labelled endocytic organelles or proteins, are co-cultured with excess acceptor cells. CodeIT is quantified by confocal microscopy and image analysis in 3D, preserving spatial information. An siRNA-based screening using this method revealed the involvement of several myosins and small GTPases as codeIT regulators. Our data indicates that cellular protrusions and tubular recycling endosomes are important for codeIT. We automated image acquisition and analysis to facilitate large-scale chemical and genetic screening efforts to identify key regulators of codeIT. PMID:26271723

  7. Rapid ester biosynthesis screening reveals a high activity alcohol-O-acyltransferase (AATase) from tomato fruit.

    PubMed

    Lin, Jyun-Liang; Zhu, Jie; Wheeldon, Ian

    2016-05-01

    Ethyl and acetate esters are naturally produced in various yeasts, plants, and bacteria. The biosynthetic pathways that produce these esters share a common reaction step, the condensation of acetyl/acyl-CoA with an alcohol by alcohol-O-acetyl/acyltransferase (AATase). Recent metabolic engineering efforts exploit AATase activity to produce fatty acid ethyl esters as potential diesel fuel replacements as well as short- and medium-chain volatile esters as fragrance and flavor compounds. These efforts have been limited by the lack of a rapid screen to quantify ester biosynthesis. Enzyme engineering efforts have also been limited by the lack of a high throughput screen for AATase activity. Here, we developed a high throughput assay for AATase activity and used this assay to discover a high activity AATase from tomato fruit, Solanum lycopersicum (Atf-S.l). Atf1-S.l exhibited broad specificity towards acyl-CoAs with chain length from C4 to C10 and was specific towards 1-pentanol. The AATase screen also revealed new acyl-CoA substrate specificities for Atf1, Atf2, Eht1, and Eeb1 from Saccharomyces cerevisiae, and Atf-C.m from melon fruit, Cucumis melo, thus increasing the pool of characterized AATases that can be used in ester biosynthesis of ester-based fragrance and flavor compounds as well as fatty acid ethyl ester biofuels.

  8. Screening of a Haloferax volcanii Transposon Library Reveals Novel Motility and Adhesion Mutants.

    PubMed

    Legerme, Georgio; Yang, Evan; Esquivel, Rianne N; Kiljunen, Saija; Savilahti, Harri; Pohlschroder, Mechthild

    2016-11-26

    Archaea, like bacteria, use type IV pili to facilitate surface adhesion. Moreover, archaeal flagella-structures required for motility-share a common ancestry with type IV pili. While the characterization of archaeal homologs of bacterial type IV pilus biosynthesis components has revealed important aspects of flagellum and pilus biosynthesis and the mechanisms regulating motility and adhesion in archaea, many questions remain. Therefore, we screened a Haloferax volcanii transposon insertion library for motility mutants using motility plates and adhesion mutants, using an adapted air-liquid interface assay. Here, we identify 20 genes, previously unknown to affect motility or adhesion. These genes include potential novel regulatory genes that will help to unravel the mechanisms underpinning these processes. Both screens also identified distinct insertions within the genomic region lying between two chemotaxis genes, suggesting that chemotaxis not only plays a role in archaeal motility, but also in adhesion. Studying these genes, as well as hypothetical genes hvo_2512 and hvo_2876-also critical for both motility and adhesion-will likely elucidate how these two systems interact. Furthermore, this study underscores the usefulness of the transposon library to screen other archaeal cellular processes for specific phenotypic defects.

  9. Screening of a Haloferax volcanii Transposon Library Reveals Novel Motility and Adhesion Mutants

    PubMed Central

    Legerme, Georgio; Yang, Evan; Esquivel, Rianne N.; Kiljunen, Saija; Savilahti, Harri; Pohlschroder, Mechthild

    2016-01-01

    Archaea, like bacteria, use type IV pili to facilitate surface adhesion. Moreover, archaeal flagella—structures required for motility—share a common ancestry with type IV pili. While the characterization of archaeal homologs of bacterial type IV pilus biosynthesis components has revealed important aspects of flagellum and pilus biosynthesis and the mechanisms regulating motility and adhesion in archaea, many questions remain. Therefore, we screened a Haloferax volcanii transposon insertion library for motility mutants using motility plates and adhesion mutants, using an adapted air–liquid interface assay. Here, we identify 20 genes, previously unknown to affect motility or adhesion. These genes include potential novel regulatory genes that will help to unravel the mechanisms underpinning these processes. Both screens also identified distinct insertions within the genomic region lying between two chemotaxis genes, suggesting that chemotaxis not only plays a role in archaeal motility, but also in adhesion. Studying these genes, as well as hypothetical genes hvo_2512 and hvo_2876—also critical for both motility and adhesion—will likely elucidate how these two systems interact. Furthermore, this study underscores the usefulness of the transposon library to screen other archaeal cellular processes for specific phenotypic defects. PMID:27898036

  10. A temporal proteome dynamics study reveals the molecular basis of induced phenotypic resistance in Mycobacterium smegmatis at sub-lethal rifampicin concentrations

    PubMed Central

    Giddey, Alexander D.; de Kock, Elise; Nakedi, Kehilwe C.; Garnett, Shaun; Nel, Andrew J. M.; Soares, Nelson C.; Blackburn, Jonathan M.

    2017-01-01

    In the last 40 years only one new antitubercular drug has been approved, whilst resistance to current drugs, including rifampicin, is spreading. Here, we used the model organism Mycobacterium smegmatis to study mechanisms of phenotypic mycobacterial resistance, employing quantitative mass spectrometry-based proteomics to investigate the temporal effects of sub-lethal concentrations of rifampicin on the mycobacterial proteome at time-points corresponding to early response, onset of bacteriostasis and early recovery. Across 18 samples, a total of 3,218 proteins were identified from 31,846 distinct peptides averaging 16,250 identified peptides per sample. We found evidence that two component signal transduction systems (e.g. MprA/MprB) play a major role during initial mycobacterial adaptive responses to sub-lethal rifampicin and that, after dampening an initial SOS response, the bacteria supress the DevR (DosR) regulon and also upregulate their transcriptional and translational machineries. Furthermore, we found a co-ordinated dysregulation in haeme and mycobactin synthesis. Finally, gradual upregulation of the M. smegmatis-specific rifampin ADP-ribosyl transferase was observed which, together with upregulation of transcriptional and translational machinery, likely explains recovery of normal growth. Overall, our data indicates that in mycobacteria, sub-lethal rifampicin triggers a concerted phenotypic response that contrasts significantly with that observed at higher antimicrobial doses. PMID:28262820

  11. Genetic Modifier Screens Reveal New Components that Interact with the Drosophila Dystroglycan-Dystrophin Complex

    PubMed Central

    Yatsenko, Andriy S.; Shcherbata, Halyna R.; Fischer, Karin A.; Maksymiv, Dariya V.; Chernyk, Yaroslava I.; Ruohola-Baker, Hannele

    2008-01-01

    The Dystroglycan-Dystrophin (Dg-Dys) complex has a capacity to transmit information from the extracellular matrix to the cytoskeleton inside the cell. It is proposed that this interaction is under tight regulation; however the signaling/regulatory components of Dg-Dys complex remain elusive. Understanding the regulation of the complex is critical since defects in this complex cause muscular dystrophy in humans. To reveal new regulators of the Dg-Dys complex, we used a model organism Drosophila melanogaster and performed genetic interaction screens to identify modifiers of Dg and Dys mutants in Drosophila wing veins. These mutant screens revealed that the Dg-Dys complex interacts with genes involved in muscle function and components of Notch, TGF-β and EGFR signaling pathways. In addition, components of pathways that are required for cellular and/or axonal migration through cytoskeletal regulation, such as Semaphorin-Plexin, Frazzled-Netrin and Slit-Robo pathways show interactions with Dys and/or Dg. These data suggest that the Dg-Dys complex and the other pathways regulating extracellular information transfer to the cytoskeletal dynamics are more intercalated than previously thought. PMID:18545683

  12. The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology

    PubMed Central

    Schmitt-Engel, Christian; Schultheis, Dorothea; Schwirz, Jonas; Ströhlein, Nadi; Troelenberg, Nicole; Majumdar, Upalparna; Dao, Van Anh; Grossmann, Daniela; Richter, Tobias; Tech, Maike; Dönitz, Jürgen; Gerischer, Lizzy; Theis, Mirko; Schild, Inga; Trauner, Jochen; Koniszewski, Nikolaus D. B.; Küster, Elke; Kittelmann, Sebastian; Hu, Yonggang; Lehmann, Sabrina; Siemanowski, Janna; Ulrich, Julia; Panfilio, Kristen A.; Schröder, Reinhard; Morgenstern, Burkhard; Stanke, Mario; Buchhholz, Frank; Frasch, Manfred; Roth, Siegfried; Wimmer, Ernst A.; Schoppmeier, Michael; Klingler, Martin; Bucher, Gregor

    2015-01-01

    Genetic screens are powerful tools to identify the genes required for a given biological process. However, for technical reasons, comprehensive screens have been restricted to very few model organisms. Therefore, although deep sequencing is revealing the genes of ever more insect species, the functional studies predominantly focus on candidate genes previously identified in Drosophila, which is biasing research towards conserved gene functions. RNAi screens in other organisms promise to reduce this bias. Here we present the results of the iBeetle screen, a large-scale, unbiased RNAi screen in the red flour beetle, Tribolium castaneum, which identifies gene functions in embryonic and postembryonic development, physiology and cell biology. The utility of Tribolium as a screening platform is demonstrated by the identification of genes involved in insect epithelial adhesion. This work transcends the restrictions of the candidate gene approach and opens fields of research not accessible in Drosophila. PMID:26215380

  13. The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology.

    PubMed

    Schmitt-Engel, Christian; Schultheis, Dorothea; Schwirz, Jonas; Ströhlein, Nadi; Troelenberg, Nicole; Majumdar, Upalparna; Dao, Van Anh; Grossmann, Daniela; Richter, Tobias; Tech, Maike; Dönitz, Jürgen; Gerischer, Lizzy; Theis, Mirko; Schild, Inga; Trauner, Jochen; Koniszewski, Nikolaus D B; Küster, Elke; Kittelmann, Sebastian; Hu, Yonggang; Lehmann, Sabrina; Siemanowski, Janna; Ulrich, Julia; Panfilio, Kristen A; Schröder, Reinhard; Morgenstern, Burkhard; Stanke, Mario; Buchhholz, Frank; Frasch, Manfred; Roth, Siegfried; Wimmer, Ernst A; Schoppmeier, Michael; Klingler, Martin; Bucher, Gregor

    2015-07-28

    Genetic screens are powerful tools to identify the genes required for a given biological process. However, for technical reasons, comprehensive screens have been restricted to very few model organisms. Therefore, although deep sequencing is revealing the genes of ever more insect species, the functional studies predominantly focus on candidate genes previously identified in Drosophila, which is biasing research towards conserved gene functions. RNAi screens in other organisms promise to reduce this bias. Here we present the results of the iBeetle screen, a large-scale, unbiased RNAi screen in the red flour beetle, Tribolium castaneum, which identifies gene functions in embryonic and postembryonic development, physiology and cell biology. The utility of Tribolium as a screening platform is demonstrated by the identification of genes involved in insect epithelial adhesion. This work transcends the restrictions of the candidate gene approach and opens fields of research not accessible in Drosophila.

  14. A forward genetic screen reveals essential and non-essential RNAi factors in Paramecium tetraurelia

    PubMed Central

    Marker, Simone; Carradec, Quentin; Tanty, Véronique; Arnaiz, Olivier; Meyer, Eric

    2014-01-01

    In most eukaryotes, small RNA-mediated gene silencing pathways form complex interacting networks. In the ciliate Paramecium tetraurelia, at least two RNA interference (RNAi) mechanisms coexist, involving distinct but overlapping sets of protein factors and producing different types of short interfering RNAs (siRNAs). One is specifically triggered by high-copy transgenes, and the other by feeding cells with double-stranded RNA (dsRNA)-producing bacteria. In this study, we designed a forward genetic screen for mutants deficient in dsRNA-induced silencing, and a powerful method to identify the relevant mutations by whole-genome sequencing. We present a set of 47 mutant alleles for five genes, revealing two previously unknown RNAi factors: a novel Paramecium-specific protein (Pds1) and a Cid1-like nucleotidyl transferase. Analyses of allelic diversity distinguish non-essential and essential genes and suggest that the screen is saturated for non-essential, single-copy genes. We show that non-essential genes are specifically involved in dsRNA-induced RNAi while essential ones are also involved in transgene-induced RNAi. One of the latter, the RNA-dependent RNA polymerase RDR2, is further shown to be required for all known types of siRNAs, as well as for sexual reproduction. These results open the way for the dissection of the genetic complexity, interconnection, mechanisms and natural functions of RNAi pathways in P. tetraurelia. PMID:24860163

  15. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease

    PubMed Central

    Potter, Paul K.; Bowl, Michael R.; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E.; Simon, Michelle M.; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V.; Law, Gemma; MacLaren, Robert E.; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H.; Foster, Russell G.; Jackson, Ian J.; Peirson, Stuart N.; Thakker, Rajesh V.; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M.; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D. M.

    2016-01-01

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss. PMID:27534441

  16. A forward genetic screen reveals essential and non-essential RNAi factors in Paramecium tetraurelia.

    PubMed

    Marker, Simone; Carradec, Quentin; Tanty, Véronique; Arnaiz, Olivier; Meyer, Eric

    2014-06-01

    In most eukaryotes, small RNA-mediated gene silencing pathways form complex interacting networks. In the ciliate Paramecium tetraurelia, at least two RNA interference (RNAi) mechanisms coexist, involving distinct but overlapping sets of protein factors and producing different types of short interfering RNAs (siRNAs). One is specifically triggered by high-copy transgenes, and the other by feeding cells with double-stranded RNA (dsRNA)-producing bacteria. In this study, we designed a forward genetic screen for mutants deficient in dsRNA-induced silencing, and a powerful method to identify the relevant mutations by whole-genome sequencing. We present a set of 47 mutant alleles for five genes, revealing two previously unknown RNAi factors: a novel Paramecium-specific protein (Pds1) and a Cid1-like nucleotidyl transferase. Analyses of allelic diversity distinguish non-essential and essential genes and suggest that the screen is saturated for non-essential, single-copy genes. We show that non-essential genes are specifically involved in dsRNA-induced RNAi while essential ones are also involved in transgene-induced RNAi. One of the latter, the RNA-dependent RNA polymerase RDR2, is further shown to be required for all known types of siRNAs, as well as for sexual reproduction. These results open the way for the dissection of the genetic complexity, interconnection, mechanisms and natural functions of RNAi pathways in P. tetraurelia.

  17. Genetic Screen Reveals the Role of Purine Metabolism in Staphylococcus aureus Persistence to Rifampicin

    PubMed Central

    Yee, Rebecca; Cui, Peng; Shi, Wanliang; Feng, Jie; Zhang, Ying

    2015-01-01

    Chronic infections with Staphylococcus aureus such as septicemia, osteomyelitis, endocarditis, and biofilm infections are difficult to treat because of persisters. Despite many efforts in understanding bacterial persistence, the mechanisms of persister formation in S. aureus remain elusive. Here, we performed a genome-wide screen of a transposon mutant library to study the molecular mechanisms involved in persistence of community-acquired S. aureus. Screening of the library for mutants defective in persistence or tolerance to rifampicin revealed many genes involved in metabolic pathways that are important for antibiotic persistence. In particular, the identified mutants belonged to metabolic pathways involved in carbohydrate, amino acid, lipid, vitamin and purine biosynthesis. Five mutants played a role in purine biosynthesis and two mutants, purB, an adenylosuccinate lyase, and purM, a phosphoribosylaminoimidazole synthetase, were selected for further confirmation. Mutants purB and purM showed defective persistence compared to the parental strain USA300 in multiple stress conditions including various antibiotics, low pH, and heat stress. The defect in persistence was restored by complementation with the wildtype purB and purM gene in the respective mutants. These findings provide new insights into the mechanisms of persistence in S. aureus and provide novel therapeutic targets for developing more effective treatment for persistent infections due to S. aureus. PMID:27025643

  18. Signatures of Crested Ibis MHC Revealed by Recombination Screening and Short-Reads Assembly Strategy

    PubMed Central

    Liu, Yuanhong; Xiong, Zijun; Fu, Dongke; Li, Bo; Wei, Shuguang; Xu, Xun; Li, Shengbin; Yuan, Hui

    2016-01-01

    Whole-genome shotgun (WGS) sequencing has become a routine method in genome research over the past decade. However, the assembly of highly polymorphic regions in WGS projects remains a challenge, especially for large genomes. Employing BAC library constructing, PCR screening and Sanger sequencing, traditional strategy is laborious and expensive, which hampers research on polymorphic genomic regions. As one of the most highly polymorphic regions, the major histocompatibility complex (MHC) plays a central role in the adaptive immunity of all jawed vertebrates. In this study, we introduced an efficient procedure based on recombination screening and short-reads assembly. With this procedure, we constructed a high quality 488-kb region of crested ibis MHC that consists of 3 superscaffolds and contains 50 genes. Our sequence showed comparable quality (97.29% identity) to traditional Sanger assembly, while the workload was reduced almost 7 times. Comparative study revealed distinctive features of crested ibis by exhibiting the COL11A2-BLA-BLB-BRD2 cluster and presenting both ADPRH and odorant receptor (OR) gene in the MHC region. Furthermore, the conservation of the BF-TAP1-TAP2 structure in crested ibis and other vertebrate lineages is interesting in light of the hypothesis that coevolution of functionally related genes in the primordial MHC is responsible for the appearance of the antigen presentation pathways at the birth of the adaptive immune system. PMID:27997612

  19. Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses

    PubMed Central

    Panavas, Tadas; Serviene, Elena; Brasher, Jeremy; Nagy, Peter D.

    2005-01-01

    Viruses are devastating pathogens of humans, animals, and plants. To further our understanding of how viruses use the resources of infected cells, we systematically tested the yeast single-gene-knockout library for the effect of each host gene on the replication of tomato bushy stunt virus (TBSV), a positive-strand RNA virus of plants. The genome-wide screen identified 96 host genes whose absence either reduced or increased the accumulation of the TBSV replicon. The identified genes are involved in the metabolism of nucleic acids, lipids, proteins, and other compounds and in protein targeting/transport. Comparison with published genome-wide screens reveals that the replication of TBSV and brome mosaic virus (BMV), which belongs to a different supergroup among plus-strand RNA viruses, is affected by vastly different yeast genes. Moreover, a set of yeast genes involved in vacuolar targeting of proteins and vesicle-mediated transport both affected replication of the TBSV replicon and enhanced the cytotoxicity of the Parkinson's disease-related α-synuclein when this protein was expressed in yeast. In addition, a set of host genes involved in ubiquitin-dependent protein catabolism affected both TBSV replication and the cytotoxicity of a mutant huntingtin protein, a candidate agent in Huntington's disease. This finding suggests that virus infection and disease-causing proteins might use or alter similar host pathways and may suggest connections between chronic diseases and prior virus infection. PMID:15883361

  20. Genome-wide siRNA screen reveals coupling between mitotic apoptosis and adaptation

    PubMed Central

    Díaz-Martínez, Laura A; Karamysheva, Zemfira N; Warrington, Ross; Li, Bing; Wei, Shuguang; Xie, Xian-Jin; Roth, Michael G; Yu, Hongtao

    2014-01-01

    The antimitotic anti-cancer drugs, including taxol, perturb spindle dynamics, and induce prolonged, spindle checkpoint-dependent mitotic arrest in cancer cells. These cells then either undergo apoptosis triggered by the intrinsic mitochondrial pathway or exit mitosis without proper cell division in an adaptation pathway. Using a genome-wide small interfering RNA (siRNA) screen in taxol-treated HeLa cells, we systematically identify components of the mitotic apoptosis and adaptation pathways. We show that the Mad2 inhibitor p31comet actively promotes mitotic adaptation through cyclin B1 degradation and has a minor separate function in suppressing apoptosis. Conversely, the pro-apoptotic Bcl2 family member, Noxa, is a critical initiator of mitotic cell death. Unexpectedly, the upstream components of the mitochondrial apoptosis pathway and the mitochondrial fission protein Drp1 contribute to mitotic adaption. Our results reveal crosstalk between the apoptosis and adaptation pathways during mitotic arrest. PMID:25024437

  1. Effects of β-glucan polysaccharide revealed by the dominant lethal assay and micronucleus assays, and reproductive performance of male mice exposed to cyclophosphamide.

    PubMed

    Oliveira, Rodrigo Juliano; Pesarini, João Renato; Sparça Salles, Maria José; Nakamura Kanno, Tatiane Yumi; Dos Santos Lourenço, Ana Carolina; da Silva Leite, Véssia; da Silva, Ariane Fernanda; Matiazi, Hevenilton José; Ribeiro, Lúcia Regina; Mantovani, Mário Sérgio

    2014-03-01

    β-glucan is a well-known polysaccharide for its chemopreventive effect. This study aimed to evaluate the chemopreventive ability of β-glucan in somatic and germ cells through the dominant lethal and micronucleus assays, and its influence on the reproductive performance of male mice exposed to cyclophosphamide. The results indicate that β-glucan is capable of preventing changes in DNA in both germ cells and somatic ones. Changes in germ cells were evaluated by the dominant lethal assay and showed damage reduction percentages of 46.46% and 43.79% for the doses of 100 and 150 mg/kg. For the somatic changes, evaluated by micronucleus assay in peripheral blood cells in the first week of treatment, damage reduction percentages from 80.63-116.32% were found. In the fifth and sixth weeks, the percentage ranged from 10.20-52.54% and -0.95-62.35%, respectively. Besides the chemopreventive efficiency it appears that the β-glucan, when combined with cyclophosphamide, is able to improve the reproductive performance of males verified by the significant reduction in rates of post-implantation losses and reabsorption in the mating of nulliparous females with males treated with cyclophosphamide.

  2. High-throughput sequencing of a 4.1 Mb linkage interval reveals FLVCR2 deletions and mutations in lethal cerebral vasculopathy.

    PubMed

    Thomas, Sophie; Encha-Razavi, Ferechté; Devisme, Louise; Etchevers, Heather; Bessieres-Grattagliano, Bettina; Goudefroye, Géraldine; Elkhartoufi, Nadia; Pateau, Emilie; Ichkou, Amale; Bonnière, Maryse; Marcorelle, Pascale; Parent, Philippe; Manouvrier, Sylvie; Holder, Muriel; Laquerrière, Annie; Loeuillet, Laurence; Roume, Joelle; Martinovic, Jelena; Mougou-Zerelli, Soumaya; Gonzales, Marie; Meyer, Vincent; Wessner, Marc; Feysot, Christine Bole; Nitschke, Patrick; Leticee, Nadia; Munnich, Arnold; Lyonnet, Stanislas; Wookey, Peter; Gyapay, Gabor; Foliguet, Bernard; Vekemans, Michel; Attié-Bitach, Tania

    2010-10-01

    Rare lethal disease gene identification remains a challenging issue, but it is amenable to new techniques in high-throughput sequencing (HTS). Cerebral proliferative glomeruloid vasculopathy (PGV), or Fowler syndrome, is a severe autosomal recessive disorder of brain angiogenesis, resulting in abnormally thickened and aberrant perforating vessels leading to hydranencephaly. In three multiplex consanguineous families, genome-wide SNP analysis identified a locus of 14 Mb on chromosome 14. In addition, 280 consecutive SNPs were identical in two Turkish families unknown to be related, suggesting a founder mutation reducing the interval to 4.1 Mb. To identify the causative gene, we then specifically enriched for this region with sequence capture and performed HTS in a proband of seven families. Due to technical constraints related to the disease, the average coverage was only 7×. Nonetheless, iterative bioinformatic analyses of the sequence data identified mutations and a large deletion in the FLVCR2 gene, encoding a 12 transmembrane domain-containing putative transporter. A striking absence of alpha-smooth muscle actin immunostaining in abnormal vessels in fetal PGV brains, suggests a deficit in pericytes, cells essential for capillary stabilization and remodeling during brain angiogenesis. This is the first lethal disease-causing gene to be identified by comprehensive HTS of an entire linkage interval.

  3. Effects of β-glucan polysaccharide revealed by the dominant lethal assay and micronucleus assays, and reproductive performance of male mice exposed to cyclophosphamide

    PubMed Central

    Oliveira, Rodrigo Juliano; Pesarini, João Renato; Sparça Salles, Maria José; Nakamura Kanno, Tatiane Yumi; dos Santos Lourenço, Ana Carolina; da Silva Leite, Véssia; da Silva, Ariane Fernanda; Matiazi, Hevenilton José; Ribeiro, Lúcia Regina; Mantovani, Mário Sérgio

    2014-01-01

    β-glucan is a well-known polysaccharide for its chemopreventive effect. This study aimed to evaluate the chemopreventive ability of β-glucan in somatic and germ cells through the dominant lethal and micronucleus assays, and its influence on the reproductive performance of male mice exposed to cyclophosphamide. The results indicate that β-glucan is capable of preventing changes in DNA in both germ cells and somatic ones. Changes in germ cells were evaluated by the dominant lethal assay and showed damage reduction percentages of 46.46% and 43.79% for the doses of 100 and 150 mg/kg. For the somatic changes, evaluated by micronucleus assay in peripheral blood cells in the first week of treatment, damage reduction percentages from 80.63–116.32% were found. In the fifth and sixth weeks, the percentage ranged from 10.20–52.54% and −0.95–62.35%, respectively. Besides the chemopreventive efficiency it appears that the β-glucan, when combined with cyclophosphamide, is able to improve the reproductive performance of males verified by the significant reduction in rates of post-implantation losses and reabsorption in the mating of nulliparous females with males treated with cyclophosphamide. PMID:24688298

  4. Human genome-wide RNAi screen reveals host factors required for enterovirus 71 replication

    PubMed Central

    Wu, Kan Xing; Phuektes, Patchara; Kumar, Pankaj; Goh, Germaine Yen Lin; Moreau, Dimitri; Chow, Vincent Tak Kwong; Bard, Frederic; Chu, Justin Jang Hann

    2016-01-01

    Enterovirus 71 (EV71) is a neurotropic enterovirus without antivirals or vaccine, and its host-pathogen interactions remain poorly understood. Here we use a human genome-wide RNAi screen to identify 256 host factors involved in EV71 replication in human rhabdomyosarcoma cells. Enrichment analyses reveal overrepresentation in processes like mitotic cell cycle and transcriptional regulation. We have carried out orthogonal experiments to characterize the roles of selected factors involved in cell cycle regulation and endoplasmatic reticulum-associated degradation. We demonstrate nuclear egress of CDK6 in EV71 infected cells, and identify CDK6 and AURKB as resistance factors. NGLY1, which co-localizes with EV71 replication complexes at the endoplasmatic reticulum, supports EV71 replication. We confirm importance of these factors for EV71 replication in a human neuronal cell line and for coxsackievirus A16 infection. A small molecule inhibitor of NGLY1 reduces EV71 replication. This study provides a comprehensive map of EV71 host factors and reveals potential antiviral targets. PMID:27748395

  5. Functional Screening of Hydrolytic Activities Reveals an Extremely Thermostable Cellulase from a Deep-Sea Archaeon

    PubMed Central

    Leis, Benedikt; Heinze, Simon; Angelov, Angel; Pham, Vu Thuy Trang; Thürmer, Andrea; Jebbar, Mohamed; Golyshin, Peter N.; Streit, Wolfgang R.; Daniel, Rolf; Liebl, Wolfgang

    2015-01-01

    Extreme habitats serve as a source of enzymes that are active under extreme conditions and are candidates for industrial applications. In this work, six large-insert mixed genomic libraries were screened for hydrolase activities in a broad temperature range (8–70°C). Among a variety of hydrolytic activities, one fosmid clone, derived from a library of pooled isolates of hyperthermophilic archaea from deep sea vents, displayed hydrolytic activity on carboxymethyl cellulose substrate plates at 70°C but not at lower temperatures. Sequence analysis of the fosmid insert revealed a gene encoding a novel glycoside hydrolase family 12 (GHF12) endo-1,4-β-glucanase, termed Cel12E. The enzyme shares 45% sequence identity with a protein from the archaeon Thermococcus sp. AM4 and displays a unique multidomain architecture. Biochemical characterization of Cel12E revealed a remarkably thermostable protein, which appears to be of archaeal origin. The enzyme displayed maximum activity at 92°C and was active on a variety of linear 1,4-β-glucans like carboxymethyl cellulose, β-glucan, lichenan, and phosphoric acid swollen cellulose. The protein is able to bind to various insoluble β-glucans. Product pattern analysis indicated that Cel12E is an endo-cleaving β-glucanase. Cel12E expands the toolbox of hyperthermostable archaeal cellulases with biotechnological potential. PMID:26191525

  6. Amoebae-Based Screening Reveals a Novel Family of Compounds Restricting Intracellular Legionella pneumophila.

    PubMed

    Harrison, Christopher F; Chiriano, Gianpaolo; Finsel, Ivo; Manske, Christian; Hoffmann, Christine; Steiner, Bernhard; Kranjc, Agata; Patthey-Vuadens, Ophelie; Kicka, Sébastien; Trofimov, Valentin; Ouertatani-Sakouhi, Hajer; Soldati, Thierry; Scapozza, Leonardo; Hilbi, Hubert

    2015-07-10

    The causative agent of Legionnaires' disease, Legionella pneumophila, grows in environmental amoebae and mammalian macrophages within a distinct compartment, the 'Legionella-containing vacuole' (LCV). Intracellular bacteria are protected from many antibiotics, and thus are notoriously difficult to eradicate. To identify novel compounds that restrict intracellular bacterial replication, we previously developed an assay based on a coculture of amoebae and GFP-producing L. pneumophila. This assay was used to screen a pathway-based, highly diverse chemical library, referred to as the Sinergia library. In this work, we chose to focus on a group of 11 hit compounds, the majority of which originated from the query molecule CN585, a compound that targets the protein phosphatase calcineurin. Further studies on 78 related compound variants revealed crucial structural attributes, namely a triple-ring scaffold with a central triazine moiety, substituted in positions 3 and 5 by two piperidine or pyrrolidine rings, and in position 1 by an amine group bearing a single aliphatic chain moiety. The most effective compound, ZINC00615682, inhibited intracellular replication of L. pneumophila with an IC50 of approximately 20 nM in Acanthamoeba castellanii and slightly less efficiently in Dictyostelium discoideum or macrophages. Pharmacological and genetic attempts to implicate calcineurin in the intracellular replication of L. pneumophila failed. Taken together, these results show that the amoebae-based screen and structure-activity relationship analysis is suitable for the identification of novel inhibitors of the intracellular replication of L. pneumophila. The most potent compound identified in this study targets (an) as yet unidentified host factor(s).

  7. Lethal Amanita species in China.

    PubMed

    Cai, Qing; Cui, Yang-Yang; Yang, Zhu L

    2016-09-01

    Lethal amanitas (Amanita sect. Phalloideae) cause many casualties worldwide. Recent molecular phylogenetic studies revealed diverse lethal Amanita spp. in China. Here a 5-gene phylogeny (nuc rDNA region encompassing the internal transcribed spacers 1 and 2 with the 5.8S rDNA, the D1-D3 domains of nuc 28S rDNA, and partial RNA polymerase II second largest subunit, translation elongation factor 1-α and β-tubulin genes) is used to investigate the phylogenetic lineages and species delimitation in this section. Thirteen species are recognized, including four new species, namely A. griseorosea, A. molliuscula, A. parviexitialis, and A. subfuliginea They are documented with morphological, multigene phylogenetic, and ecological evidence, line drawings, and photographs and compared with similar species. A key to the Chinese lethal Amanita species is provided.

  8. A Genetic Screen and Transcript Profiling Reveal a Shared Regulatory Program for Drosophila Linker Histone H1 and Chromatin Remodeler CHD1

    PubMed Central

    Kavi, Harsh; Lu, Xingwu; Xu, Na; Bartholdy, Boris A.; Vershilova, Elena; Skoultchi, Arthur I.; Fyodorov, Dmitry V.

    2015-01-01

    Chromatin structure and activity can be modified through ATP-dependent repositioning of nucleosomes and posttranslational modifications of core histone tails within nucleosome core particles and by deposition of linker histones into the oligonucleosome fiber. The linker histone H1 is essential in metazoans. It has a profound effect on organization of chromatin into higher-order structures and on recruitment of histone-modifying enzymes to chromatin. Here, we describe a genetic screen for modifiers of the lethal phenotype caused by depletion of H1 in Drosophila melanogaster. We identify 41 mis-expression alleles that enhance and 20 that suppress the effect of His1 depletion in vivo. Most of them are important for chromosome organization, transcriptional regulation, and cell signaling. Specifically, the reduced viability of H1-depleted animals is strongly suppressed by ubiquitous mis-expression of the ATP-dependent chromatin remodeling enzyme CHD1. Comparison of transcript profiles in H1-depleted and Chd1 null mutant larvae revealed that H1 and CHD1 have common transcriptional regulatory programs in vivo. H1 and CHD1 share roles in repression of numerous developmentally regulated and extracellular stimulus-responsive transcripts, including immunity-related and stress response-related genes. Thus, linker histone H1 participates in various regulatory programs in chromatin to alter gene expression. PMID:25628309

  9. The Structure of Mlc Titration Factor A (MtfA/YeeI) Reveals a Prototypical Zinc Metallopeptidase Related to Anthrax Lethal Factor

    PubMed Central

    Xu, Qingping; Göhler, Anna-Katharina; Kosfeld, Anne; Carlton, Dennis; Chiu, Hsiu-Ju; Klock, Heath E.; Knuth, Mark W.; Miller, Mitchell D.; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.

    2012-01-01

    MtfA of Escherichia coli (formerly YeeI) was previously identified as a regulator of the phosphoenolpyruvate (PEP)-dependent:glucose phosphotransferase system. MtfA homolog proteins are highly conserved, especially among beta- and gammaproteobacteria. We determined the crystal structures of the full-length MtfA apoenzyme from Klebsiella pneumoniae and its complex with zinc (holoenzyme) at 2.2 and 1.95 Å, respectively. MtfA contains a conserved H149E150XXH153+E212+Y205 metallopeptidase motif. The presence of zinc in the active site induces significant conformational changes in the region around Tyr205 compared to the conformation of the apoenzyme. Additionally, the zinc-bound MtfA structure is in a self-inhibitory conformation where a region that was disordered in the unliganded structure is now observed in the active site and a nonproductive state of the enzyme is formed. MtfA is related to the catalytic domain of the anthrax lethal factor and the Mop protein involved in the virulence of Vibrio cholerae, with conservation in both overall structure and in the residues around the active site. These results clearly provide support for MtfA as a prototypical zinc metallopeptidase (gluzincin clan). PMID:22467785

  10. A single-cell imaging screen reveals multiple effects of secreted small molecules on bacteria

    PubMed Central

    Salje, Jeanne

    2014-01-01

    Bacteria cells exist in close proximity to other cells of both the same and different species. Bacteria secrete a large number of different chemical species, and the local concentrations of these compounds at the surfaces of nearby cells may reach very high levels. It is fascinating to imagine how individual cells might sense and respond to the complex mix of signals at their surface. However, it is difficult to measure exactly what the local environmental composition looks like, or what the effects of individual compounds on nearby cells are. Here, an electron microscopy imaging screen was designed that would detect morphological changes induced by secreted small molecules. This differs from conventional approaches by detecting structural changes in individual cells rather than gene expression or growth rate changes at the population level. For example, one of the changes detected here was an increase in outer membrane vesicle production, which does not necessarily correspond to a change in gene expression. This initial study focussed on Pseudomonas aeruginosa, Escherichia coli, and Burkholderia dolosa, and revealed an intriguing range of effects of secreted small molecules on cells both within and between species. PMID:24910069

  11. Cln1 gene disruption in mice reveals a common pathogenic link between two of the most lethal childhood neurodegenerative lysosomal storage disorders

    PubMed Central

    Chandra, Goutam; Bagh, Maria B.; Peng, Shiyong; Saha, Arjun; Sarkar, Chinmoy; Moralle, Matthew; Zhang, Zhongjian; Mukherjee, Anil B.

    2015-01-01

    Neurodegeneration is a devastating manifestation in the majority of >50 lysosomal storage disorders (LSDs). Neuronal ceroid lipofuscinoses (NCLs) are the most common childhood neurodegenerative LSDs. Mutations in 13 different genes (called CLNs) underlie various types of NCLs, of which the infantile NCL (INCL) and congenital NCL (CNCL) are the most lethal. Although inactivating mutations in the CLN1 gene encoding palmitoyl-protein thioesterase-1 (PPT1) cause INCL, those in the CLN10 gene encoding cathepsin D (CD) underlie CNCL. PPT1 is a lysosomal thioesterase that cleaves the thioester linkage in S-acylated proteins required for their degradation by lysosomal hydrolases like CD. Thus, PPT1 deficiency causes lysosomal accumulation of these lipidated proteins (major constituents of ceroid) leading to INCL. We sought to determine whether there is a common pathogenic link between INCL and CNCL. Using biochemical, histological and confocal microscopic analyses of brain tissues and cells from Cln1−/− mice that mimic INCL, we uncovered that Cln10/CD is overexpressed. Although synthesized in the endoplasmic reticulum, the CD-precursor protein (pro-CD) is transported through endosome to the lysosome where it is proteolytically processed to enzymatically active-CD. We found that despite Cln10 overexpression, the maturation of pro-CD to enzymatically active-CD in lysosome was disrupted. This defect impaired lysosomal degradative function causing accumulation of undegraded cargo in lysosome leading to INCL. Notably, treatment of intact Cln1−/− mice as well as cultured brain cells derived from these animals with a thioesterase-mimetic small molecule, N-tert-butyl-hydroxylamine, ameliorated the CD-processing defect. Our findings are significant in that they define a pathway in which Cln1 mutations disrupt the maturation of a major degradative enzyme in lysosome contributing to neuropathology in INCL and suggest that lysosomal CD deficiency is a common pathogenic link

  12. High-content screening of natural products reveals novel nuclear export inhibitors.

    PubMed

    Cautain, Bastien; de Pedro, Nuria; Murillo Garzón, Virginia; Muñoz de Escalona, María; González Menéndez, Victor; Tormo, José R; Martin, Jesús; El Aouad, Noureddine; Reyes, Fernando; Asensio, Francisco; Genilloud, Olga; Vicente, Francisca; Link, Wolfgang

    2014-01-01

    Natural products are considered an extremely valuable source for the discovery of new drugs against diverse pathologies. As yet, we have only explored a fraction of the diversity of bioactive compounds, and opportunities for discovering new natural products leading to new drugs are huge. In the present study, U2nesRELOC, a previously established cell-based imaging assay, was employed to screen a collection of extracts of microbial origin for nuclear export inhibition activity. The fluorescent signal of untreated U2nesRELOC cells localizes predominantly to the cytoplasm. Upon treatment with the nuclear export inhibitor leptomycin B, the fluorescent-tagged reporter proteins appear as speckles in the nucleus. A proprietary collection of extracts from fungi, actinomycetes, and unicellular bacteria that covers an uncommonly broad chemical space was used to interrogate this nuclear export assay system. A two-step image-based analysis allowed us to identify 12 extracts with biological activities that are not associated with previously known active metabolites. The fractionation and structural elucidation of active compounds revealed several chemical structures with nuclear export inhibition activity. Here we show that substrates of the nuclear export receptor CRM1, such as Rev, FOXO3a and NF-κB, accumulate in the nucleus in the presence of the fungal metabolite MDN-0105 with an IC50 value of 3.4 µM. Many important processes in tumor formation and progression, as well as in many viral infections, critically depend on the nucleocytoplasmic trafficking of proteins and RNA molecules. Therefore, the disruption of nuclear export is emerging as a novel therapeutic approach with enormous clinical potential. Our work highlights the potential of applying high-throughput phenotypic imaging on natural product extracts to identify novel nuclear export inhibitors.

  13. Hepatitis C virus screening to reveal a better picture of infection.

    PubMed

    Medici, Maria Cristina; Galli, Claudio; Calderaro, Adriana

    2015-06-01

    Antiviral therapy for hepatitis C virus (HCV) infection will be the next revolution in clinical virology. Sensible planning for treatment is needed, starting with population-screening policies ideally using the HCV core antigen. This will result in a more defined picture of the silent spread of HCV.

  14. A Chemical-Genomic Screen of Neglected Antibiotics Reveals Illicit Transport of Kasugamycin and Blasticidin S

    PubMed Central

    Shiver, Anthony L.; Kritikos, George; Li, Bo; Krogan, Nevan; Typas, Athanasios

    2016-01-01

    Fighting antibiotic resistance requires a deeper understanding of the genetic factors that determine the antibiotic susceptibility of bacteria. Here we describe a chemical-genomic screen in Escherichia coli K-12 that was designed to discover new aspects of antibiotic resistance by focusing on a set of 26 antibiotics and other stresses with poorly characterized mode-of-action and determinants of resistance. We show that the screen identifies new resistance determinants for these antibiotics including a common signature from two antimicrobials, kasugamycin and blasticidin S, used to treat crop diseases like rice blast and fire blight. Following this signature, we further investigated the mechanistic basis for susceptibility to kasugamycin and blasticidin S in E. coli using both genetic and biochemical approaches. We provide evidence that these compounds hijack an overlapping set of peptide ABC-importers to enter the bacterial cell. Loss of uptake may be an underappreciated mechanism for the development of kasugamycin resistance in bacterial plant pathogens. PMID:27355376

  15. Intoxication of a Young Girl Reveals the Pitfalls of GHB Rapid Screening.

    PubMed

    Franken, Linda G; Andrews, Louise M; Slooff, Valerie D; de Wildt, Saskia N; Koch, Birgit C P

    2016-02-01

    The authors discuss the case of a 14-year-old girl who was transferred to the ICU of our hospital with ethanol intoxication (3.3 g/L), loss of consciousness (E5M3V1), and severe amnesia on recovery that was suspected of gamma-hydroxybutyric acid (GHB) intoxication. STAT toxicology screening may be necessary, when sexual assault under GHB intoxication is suspected. Therefore, the initial analysis of a urine sample was performed with a new enzymatic assay analysis for GHB. The enzymatic assay reported a GHB concentration of 26 mg/L, which is above the cut-off value of 10 mg/L. This cut-off value is to differentiate endogenous and exogenous levels because low levels of GHB occur naturally in the body. However, confirmation of these results by gas chromatography, which is common practice to confirm a positive GHB, gave a negative result. This discrepancy is probably contributed to interference of ethanol with the assay. This is a substantial downside of the GHB rapid screening, since the combination of GHB and ethanol is common. It is therefore advised to confirm that the positive GHB results are lower than 50 mg/L by gas chromatography, when using the rapid screening. This way the false-positive results and consequent inappropriate social and legal actions may be avoided.

  16. A Whole Cell Pathway Screen Reveals Seven Novel Chemosensitizers to Combat Chloroquine Resistant Malaria

    PubMed Central

    Ch'ng, Jun-Hong; Mok, Sachel; Bozdech, Zbynek; Lear, Martin James; Boudhar, Aicha; Russell, Bruce; Nosten, Francois; Tan, Kevin Shyong-Wei

    2013-01-01

    Due to the widespread prevalence of resistant parasites, chloroquine (CQ) was removed from front-line antimalarial chemotherapy in the 1990s despite its initial promise of disease eradication. Since then, resistance-conferring mutations have been identified in transporters such as the PfCRT, that allow for the efflux of CQ from its primary site of action, the parasite digestive vacuole. Chemosensitizing/chemoreversing compounds interfere with the function of these transporters thereby sensitizing parasites to CQ once again. However, compounds identified thus far have disappointing in vivo efficacy and screening for alternative candidates is required to revive this strategy. In this study, we propose a simple and direct means to rapidly screen for such compounds using a fluorescent-tagged CQ molecule. When this screen was applied to a small library, seven novel chemosensitizers (octoclothepin, methiothepin, metergoline, loperamide, chlorprothixene, L-703,606 and mibefradil) were quickly elucidated, including two which showed greater potency than the classical chemosensitizers verapamil and desipramine. PMID:23615863

  17. Live imaging RNAi screen reveals genes essential for meiosis in mammalian oocytes.

    PubMed

    Pfender, Sybille; Kuznetsov, Vitaliy; Pasternak, Michał; Tischer, Thomas; Santhanam, Balaji; Schuh, Melina

    2015-08-13

    During fertilization, an egg and a sperm fuse to form a new embryo. Eggs develop from oocytes in a process called meiosis. Meiosis in human oocytes is highly error-prone, and defective eggs are the leading cause of pregnancy loss and several genetic disorders such as Down's syndrome. Which genes safeguard accurate progression through meiosis is largely unclear. Here we develop high-content phenotypic screening methods for the systematic identification of mammalian meiotic genes. We targeted 774 genes by RNA interference within follicle-enclosed mouse oocytes to block protein expression from an early stage of oocyte development onwards. We then analysed the function of several genes simultaneously by high-resolution imaging of chromosomes and microtubules in live oocytes and scored each oocyte quantitatively for 50 phenotypes, generating a comprehensive resource of meiotic gene function. The screen generated an unprecedented annotated data set of meiotic progression in 2,241 mammalian oocytes, which allowed us to analyse systematically which defects are linked to abnormal chromosome segregation during meiosis, identifying progression into anaphase with misaligned chromosomes as well as defects in spindle organization as risk factors. This study demonstrates how high-content screens can be performed in oocytes, and allows systematic studies of meiosis in mammals.

  18. Phenotypic screening reveals TNFR2 as a promising target for cancer immunotherapy

    PubMed Central

    Williams, Geoffrey S.; Mistry, Bina; Guillard, Sandrine; Ulrichsen, Jane Coates; Sandercock, Alan M.; Wang, Jun; González-Muñoz, Andrea; Parmentier, Julie; Black, Chelsea; Soden, Jo; Freeth, Jim; Jovanović, Jelena; Leyland, Rebecca; Al-Lamki, Rafia S.; Leishman, Andrew J.; Rust, Steven J.; Stewart, Ross; Jermutus, Lutz; Bradley, John R.; Bedian, Vahe; Valge-Archer, Viia; Minter, Ralph; Wilkinson, Robert W.

    2016-01-01

    Antibodies that target cell-surface molecules on T cells can enhance anti-tumor immune responses, resulting in sustained immune-mediated control of cancer. We set out to find new cancer immunotherapy targets by phenotypic screening on human regulatory T (Treg) cells and report the discovery of novel activators of tumor necrosis factor receptor 2 (TNFR2) and a potential role for this target in immunotherapy. A diverse phage display library was screened to find antibody mimetics with preferential binding to Treg cells, the most Treg-selective of which were all, without exception, found to bind specifically to TNFR2. A subset of these TNFR2 binders were found to agonise the receptor, inducing iκ-B degradation and NF-κB pathway signalling in vitro. TNFR2 was found to be expressed by tumor-infiltrating Treg cells, and to a lesser extent Teff cells, from three lung cancer patients, and a similar pattern was also observed in mice implanted with CT26 syngeneic tumors. In such animals, TNFR2-specific agonists inhibited tumor growth, enhanced tumor infiltration by CD8+ T cells and increased CD8+ T cell IFN-γ synthesis. Together, these data indicate a novel mechanism for TNF-α-independent TNFR2 agonism in cancer immunotherapy, and demonstrate the utility of target-agnostic screening in highlighting important targets during drug discovery. PMID:27626702

  19. DNA Elements Reducing Transcriptional Gene Silencing Revealed by a Novel Screening Strategy

    PubMed Central

    Ueno, Keiichiro; Ohashi, Yuko; Mitsuhara, Ichiro

    2013-01-01

    Transcriptional gene silencing (TGS)–a phenomenon observed in endogenous genes/transgenes in eukaryotes–is a huge hindrance to transgenic technology and occurs mainly when the genes involved share sequence homology in their promoter regions. TGS depends on chromosomal position, suggesting the existence of genomic elements that suppress TGS. However, no systematic approach to identify such DNA elements has yet been reported. Here, we developed a successful novel screening strategy to identify such elements (anti-silencing regions–ASRs), based on their ability to protect a flanked transgene from TGS. A silenced transgenic tobacco plant in which a subsequently introduced transgene undergoes obligatory promoter-homology dependent TGS in trans allowed the ability of DNA elements to prevent TGS to be used as the screening criterion. We also identified ASRs in a genomic library from a different plant species (Lotus japonicus: a perennial legume); the ASRs include portions of Ty1/copia retrotransposon-like and pararetrovirus-like sequences; the retrotransposon-like sequences also showed interspecies anti-TGS activity in a TGS-induction system in Arabidopsis. Anti-TGS elements could provide effective tools to reduce TGS and ensure proper regulation of transgene expression. Furthermore, the screening strategy described here will also facilitate the efficient identification of new classes of anti-TGS elements. PMID:23382937

  20. A High Throughput Phenotypic Screen of Cytotoxic T Lymphocyte Lytic Granule Exocytosis Reveals Candidate Immunosuppressants

    PubMed Central

    Zhao, Ziyan; Haynes, Mark K.; Ursu, Oleg; Edwards, Bruce S.; Sklar, Larry A.; Zweifach, Adam

    2015-01-01

    We screened the NIH’s Molecular Libraries Small Molecule Repository for inhibitors of cytotoxic T lymphocyte (CTL) lytic granule exocytosis by measuring binding of an antibody in the extracellular solution to a lysosomal membrane protein (LAMP-1) that is transferred to the plasma membrane by exocytosis. We used TALL-104 human leukemic CTLs stimulated with soluble chemicals. Using high-throughput cluster cytometry to screen 364202 compounds in 1536-well plate format, identifying 2404 initial hits. 161 were confirmed on retesting, and dose-response measurements were performed. 75 of those compounds were obtained, and 48 were confirmed active. Experiments were conducted to determine the molecular mechanism of action (MMOA) of the active compounds. Fifteen blocked increases in intracellular calcium >50%. Seven blocked phosphorylation of ERK by upstream MAP kinase kinases >50%. One completely blocked the activity of the calcium-dependent phosphatase calcineurin. None blocked ERK catalytic activity. Eight blocked more than one pathway. For eight compounds, we were unable to determine an MMOA. The activity of one of these compounds was confirmed from powder resupply. We conclude that a screen based on antibody binding to CTLs is a good means of identifying novel candidate immunosuppressants with either known or unknown MMOA. PMID:25381253

  1. Large pathogen screening reveals first report of Megaselia scalaris (Diptera: Phoridae) parasitizing Apis mellifera intermissa (Hymenoptera: Apidae).

    PubMed

    Menail, Ahmed Hichem; Piot, Niels; Meeus, Ivan; Smagghe, Guy; Loucif-Ayad, Wahida

    2016-06-01

    As it is most likely that global warming will also lead to a shift in pollinator-habitats northwards, the study of southern species becomes more and more important. Pathogen screenings in subspecies of Apis mellifera capable of withstanding higher temperatures, provide an insight into future pathogen host interactions. Screenings in different climate regions also provide a global perspective on the prevalence of certain pathogens. In this project, we performed a pathogen screening in Apis mellifera intermissa, a native subspecies of Algeria in northern Africa. Colonies were sampled from different areas in the region of Annaba over a period of two years. Several pathogens were detected, among them Apicystis bombi, Crithidia mellificae, Nosema ceranae, Paenibacillus larvae, Lake Sinai Virus, Sacbrood Virus and Deformed Wing Virus (DWV). Our screening also revealed a phoroid fly, Megaselia scalaris, parasitizing honey bee colonies, which we report here for the first time. In addition, we found DWV to be present in the adult flies and replicating virus in the larval stages of the fly, which could indicate that M. scalaris acts as a vector of DWV.

  2. Copper complexation screen reveals compounds with potent antibiotic properties against methicillin-resistant Staphylococcus aureus.

    PubMed

    Haeili, Mehri; Moore, Casey; Davis, Christopher J C; Cochran, James B; Shah, Santosh; Shrestha, Tej B; Zhang, Yaofang; Bossmann, Stefan H; Benjamin, William H; Kutsch, Olaf; Wolschendorf, Frank

    2014-07-01

    Macrophages take advantage of the antibacterial properties of copper ions in the killing of bacterial intruders. However, despite the importance of copper for innate immune functions, coordinated efforts to exploit copper ions for therapeutic interventions against bacterial infections are not yet in place. Here we report a novel high-throughput screening platform specifically developed for the discovery and characterization of compounds with copper-dependent antibacterial properties toward methicillin-resistant Staphylococcus aureus (MRSA). We detail how one of the identified compounds, glyoxal-bis(N4-methylthiosemicarbazone) (GTSM), exerts its potent strictly copper-dependent antibacterial properties on MRSA. Our data indicate that the activity of the GTSM-copper complex goes beyond the general antibacterial effects of accumulated copper ions and suggest that, in contrast to prevailing opinion, copper complexes can indeed exhibit species- and target-specific activities. Based on experimental evidence, we propose that copper ions impose structural changes upon binding to the otherwise inactive GTSM ligand and transfer antibacterial properties to the chelate. In turn, GTSM determines target specificity and utilizes a redox-sensitive release mechanism through which copper ions are deployed at or in close proximity to a putative target. According to our proof-of-concept screen, copper activation is not a rare event and even extends to already established drugs. Thus, copper-activated compounds could define a novel class of anti-MRSA agents that amplify copper-dependent innate immune functions of the host. To this end, we provide a blueprint for a high-throughput drug screening campaign which considers the antibacterial properties of copper ions at the host-pathogen interface.

  3. Misexpression screen in Drosophila melanogaster aiming to reveal novel factors involved in formation of body parts.

    PubMed

    Grieder, Nicole C; Charlafti, Ilias; Kloter, Urs; Jäckle, Herbert; Schäfer, Ulrich; Gehring, Walter J

    2007-04-01

    To identify novel factors that lead a fly imaginal disc to adopt its developmental fate, we carried out a modular dominant misexpression screen in imaginal discs. We have identified two factors that appear to change the fate of the respective body structure and appear to lead to the transformation of a body part. In one mutant line, notum tissue, normally derived from wing imaginal tissue, formed close to the site of the sternopleural bristles, which are leg disc derivatives. In the other line, the arista is transformed into a tubular structure, resembling an abnormal leg. We found that ectopic expression of abrupt was responsible for this potential transformation of the arista.

  4. Misexpression Screen in Drosophila melanogaster Aiming to Reveal Novel Factors Involved in Formation of Body Parts

    PubMed Central

    Grieder, Nicole C.; Charlafti, Ilias; Kloter, Urs; Jäckle, Herbert; Schäfer, Ulrich; Gehring, Walter J.

    2007-01-01

    To identify novel factors that lead a fly imaginal disc to adopt its developmental fate, we carried out a modular dominant misexpression screen in imaginal discs. We have identified two factors that appear to change the fate of the respective body structure and appear to lead to the transformation of a body part. In one mutant line, notum tissue, normally derived from wing imaginal tissue, formed close to the site of the sternopleural bristles, which are leg disc derivatives. In the other line, the arista is transformed into a tubular structure, resembling an abnormal leg. We found that ectopic expression of abrupt was responsible for this potential transformation of the arista. PMID:17179072

  5. Comparative genetic screens in human cells reveal new regulatory mechanisms in WNT signaling

    PubMed Central

    Lebensohn, Andres M; Dubey, Ramin; Neitzel, Leif R; Tacchelly-Benites, Ofelia; Yang, Eungi; Marceau, Caleb D; Davis, Eric M; Patel, Bhaven B; Bahrami-Nejad, Zahra; Travaglini, Kyle J; Ahmed, Yashi; Lee, Ethan; Carette, Jan E; Rohatgi, Rajat

    2016-01-01

    The comprehensive understanding of cellular signaling pathways remains a challenge due to multiple layers of regulation that may become evident only when the pathway is probed at different levels or critical nodes are eliminated. To discover regulatory mechanisms in canonical WNT signaling, we conducted a systematic forward genetic analysis through reporter-based screens in haploid human cells. Comparison of screens for negative, attenuating and positive regulators of WNT signaling, mediators of R-spondin-dependent signaling and suppressors of constitutive signaling induced by loss of the tumor suppressor adenomatous polyposis coli or casein kinase 1α uncovered new regulatory features at most levels of the pathway. These include a requirement for the transcription factor AP-4, a role for the DAX domain of AXIN2 in controlling β-catenin transcriptional activity, a contribution of glycophosphatidylinositol anchor biosynthesis and glypicans to R-spondin-potentiated WNT signaling, and two different mechanisms that regulate signaling when distinct components of the β-catenin destruction complex are lost. The conceptual and methodological framework we describe should enable the comprehensive understanding of other signaling systems. DOI: http://dx.doi.org/10.7554/eLife.21459.001 PMID:27996937

  6. A large scale screen reveals genes that mediate electrotaxis in Dictyostelium discoideum**

    PubMed Central

    Gao, Runchi; Zhao, Siwei; Jiang, Xupin; Sun, Yaohui; Zhao, Sanjun; Gao, Jing; Borleis, Jane; Willard, Stacey; Tang, Ming; Cai, Huaqing; Kamimura, Yoichiro; Huang, Yuesheng; Jiang, Jianxin; Huang, Zunxi; Mogilner, Alex; Pan, Tingrui; Devreotes, Peter N; Zhao, Min

    2015-01-01

    Directional cell migration in an electric field, a phenomenon called galvanotaxis or electrotaxis, occurs in many types of cells, and may play an important role in wound healing and development. Small extracellular electric fields can guide the migration of amoeboid cells, and here, we established a large-scale screening approach to search for mutants with electrotaxis phenotypes from a collection of 563 Dictyostelium discoideum strains with morphological defects. We identified 28 strains that were defective in electrotaxis and 10 strains with a slightly higher directional response. Using plasmid rescue followed by gene disruption, we identified some of the mutated genes, including some previously implicated in chemotaxis. Amongst these we studied PiaA, which encodes a critical component of TORC2, a kinase protein complex that transduces changes in motility by activating the kinase PKB (also known as Akt). Furthermore, we found that electrotaxis was decreased in mutants lacking gefA, rasC, rip3, lst8 or pkbR1, genes that encode other components of the TORC2-PKB pathway. Thus, we have developed a high-throughput screening technique that will be a useful tool to elucidate the molecular mechanisms of electrotaxis. PMID:26012633

  7. A Sleeping Beauty screen reveals NF-kB activation in CLL mouse model.

    PubMed

    Zanesi, Nicola; Balatti, Veronica; Riordan, Jesse; Burch, Aaron; Rizzotto, Lara; Palamarchuk, Alexey; Cascione, Luciano; Lagana, Alessandro; Dupuy, Adam J; Croce, Carlo M; Pekarsky, Yuri

    2013-05-23

    TCL1 oncogene is overexpressed in aggressive form of human chronic lymphocytic leukemia (CLL) and its dysregulation in mouse B cells causes a CD5-positive leukemia similar to the aggressive form of human CLLs. To identify oncogenes that cooperate with Tcl1, we performed genetic screen in Eμ-TCL1 mice using Sleeping Beauty transposon-mediated mutagenesis. Analysis of transposon common insertion sites identified 7 genes activated by transposon insertions. Overexpression of these genes in mouse CLL was confirmed by real time reverse transcription-polymerase chain reaction. Interestingly, the main known function of 4 of 7 genes (Nfkb1, Tab2, Map3K14, and Nfkbid) is participation in or activation of the nuclear factor-kB (NF-kB) pathway. In addition, activation of the NF-kB is 1 of main functions of Akt2, also identified in the screen. These findings demonstrate cooperation of Tcl1 and the NF-kB pathway in the pathogenesis of aggressive CLL. Identification cooperating cancer genes will result in the development of combinatorial therapies to treat CLL.

  8. Novel skin phenotypes revealed by a genome-wide mouse reverse genetic screen

    PubMed Central

    Liakath-Ali, Kifayathullah; Vancollie, Valerie E.; Heath, Emma; Smedley, Damian P.; Estabel, Jeanne; Sunter, David; DiTommaso, Tia; White, Jacqueline K.; Ramirez-Solis, Ramiro; Smyth, Ian; Steel, Karen P.; Watt, Fiona M.

    2014-01-01

    Permanent stop-and-shop large-scale mouse mutant resources provide an excellent platform to decipher tissue phenogenomics. Here we analyse skin from 538 knockout mouse mutants generated by the Sanger Institute Mouse Genetics Project. We optimize immunolabelling of tail epidermal wholemounts to allow systematic annotation of hair follicle, sebaceous gland and interfollicular epidermal abnormalities using ontology terms from the Mammalian Phenotype Ontology. Of the 50 mutants with an epidermal phenotype, 9 map to human genetic conditions with skin abnormalities. Some mutant genes are expressed in the skin, whereas others are not, indicating systemic effects. One phenotype is affected by diet and several are incompletely penetrant. In-depth analysis of three mutants, Krt76, Myo5a (a model of human Griscelli syndrome) and Mysm1, provides validation of the screen. Our study is the first large-scale genome-wide tissue phenotype screen from the International Knockout Mouse Consortium and provides an open access resource for the scientific community. PMID:24721909

  9. Screening bioactives reveals nanchangmycin as a broad spectrum antiviral active against Zika virus

    PubMed Central

    Rausch, Keiko; Hackett, Brent; Weinbren, Nathan; Reeder, Sophia; Sadovsky, Yoel; Hunter, Christopher; Schultz, David C.; Coyne, Carolyn; Cherry, Sara

    2017-01-01

    Zika virus is an emerging arthropod-borne flavivirus for which there are no vaccines or specific therapeutics. We screened a library of 2000 ‘bioactive’ compounds for their ability to block Zika virus infection in three distinct cell-types with two different strains of Zika virus. Using a microscopy-based assay, we validated 38 drugs that inhibited Zika virus infection, including FDA approved nucleoside analogs. Cells expressing high levels of the attachment factor AXL can be protected from infection with receptor tyrosine kinase inhibitors, while placental-derived cells that lack AXL expression are insensitive to this inhibition. Importantly, we identified nanchangmycin as a potent inhibitor of Zika virus entry across all cell types tested including physiologically relevant primary cells. Nanchanmycin was also active against other medically relevant viruses including West Nile, dengue, and chikungunya virus that use a similar route of entry. This study provides a resource of small molecules to study Zika virus pathogenesis. PMID:28099856

  10. Virtual Screening of DrugBank Reveals Two Drugs as New BCRP Inhibitors

    PubMed Central

    Montanari, Floriane; Cseke, Anna; Wlcek, Katrin; Ecker, Gerhard F.

    2016-01-01

    The breast cancer resistance protein (BCRP) is an ABC transporter playing a crucial role in the pharmacokinetics of drugs. The early identification of substrates and inhibitors of this efflux transporter can help to prevent or foresee drug-drug interactions. In this work, we built a ligand-based in silico classification model to predict the inhibitory potential of drugs toward BCRP. The model was applied as a virtual screening technique to identify potential inhibitors among the small-molecules subset of DrugBank. Ten compounds were selected and tested for their capacity to inhibit mitoxantrone efflux in BCRP-expressing PLB985 cells. Results identified cisapride (IC50 = 0.4 µM) and roflumilast (IC50 = 0.9 µM) as two new BCRP inhibitors. The in silico strategy proved useful to prefilter potential drug-drug interaction perpetrators among a database of small molecules and can reduce the amount of compounds to test. PMID:27401583

  11. RNAi screening reveals a large signaling network controlling the Golgi apparatus in human cells.

    PubMed

    Chia, Joanne; Goh, Germaine; Racine, Victor; Ng, Susanne; Kumar, Pankaj; Bard, Frederic

    2012-01-01

    The Golgi apparatus has many important physiological functions, including sorting of secretory cargo and biosynthesis of complex glycans. These functions depend on the intricate and compartmentalized organization of the Golgi apparatus. To investigate the mechanisms that regulate Golgi architecture, we developed a quantitative morphological assay using three different Golgi compartment markers and quantitative image analysis, and performed a kinome- and phosphatome-wide RNAi screen in HeLa cells. Depletion of 159 signaling genes, nearly 20% of genes assayed, induced strong and varied perturbations in Golgi morphology. Using bioinformatics data, a large regulatory network could be constructed. Specific subnetworks are involved in phosphoinositides regulation, acto-myosin dynamics and mitogen activated protein kinase signaling. Most gene depletion also affected Golgi functions, in particular glycan biosynthesis, suggesting that signaling cascades can control glycosylation directly at the Golgi level. Our results provide a genetic overview of the signaling pathways that control the Golgi apparatus in human cells.

  12. Virtual screening using combinatorial cyclic peptide libraries reveals protein interfaces readily targetable by cyclic peptides.

    PubMed

    Duffy, Fergal J; O'Donovan, Darragh; Devocelle, Marc; Moran, Niamh; O'Connell, David J; Shields, Denis C

    2015-03-23

    Protein-protein and protein-peptide interactions are responsible for the vast majority of biological functions in vivo, but targeting these interactions with small molecules has historically been difficult. What is required are efficient combined computational and experimental screening methods to choose among a number of potential protein interfaces worthy of targeting lead macrocyclic compounds for further investigation. To achieve this, we have generated combinatorial 3D virtual libraries of short disulfide-bonded peptides and compared them to pharmacophore models of important protein-protein and protein-peptide structures, including short linear motifs (SLiMs), protein-binding peptides, and turn structures at protein-protein interfaces, built from 3D models available in the Protein Data Bank. We prepared a total of 372 reference pharmacophores, which were matched against 108,659 multiconformer cyclic peptides. After normalization to exclude nonspecific cyclic peptides, the top hits notably are enriched for mimetics of turn structures, including a turn at the interaction surface of human α thrombin, and also feature several protein-binding peptides. The top cyclic peptide hits also cover the critical "hot spot" interaction sites predicted from the interaction crystal structure. We have validated our method by testing cyclic peptides predicted to inhibit thrombin, a key protein in the blood coagulation pathway of important therapeutic interest, identifying a cyclic peptide inhibitor with lead-like activity. We conclude that protein interfaces most readily targetable by cyclic peptides and related macrocyclic drugs may be identified computationally among a set of candidate interfaces, accelerating the choice of interfaces against which lead compounds may be screened.

  13. Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation

    PubMed Central

    Ambegaokar, Surendra S.; Jackson, George R.

    2011-01-01

    A functional genetic screen using loss-of-function and gain-of-function alleles was performed to identify modifiers of tau-induced neurotoxicity using the 2N/4R (full-length) isoform of wild-type human tau expressed in the fly retina. We previously reported eye pigment mutations, which create dysfunctional lysosomes, as potent modifiers; here, we report 37 additional genes identified from ∼1900 genes screened, including the kinases shaggy/GSK-3beta, par-1/MARK, CamKI and Mekk1. Tau acts synergistically with Mekk1 and p38 to down-regulate extracellular regulated kinase activity, with a corresponding decrease in AT8 immunoreactivity (pS202/T205), suggesting that tau can participate in signaling pathways to regulate its own kinases. Modifiers showed poor correlation with tau phosphorylation (using the AT8, 12E8 and AT270 epitopes); moreover, tested suppressors of wild-type tau were equally effective in suppressing toxicity of a phosphorylation-resistant S11A tau construct, demonstrating that changes in tau phosphorylation state are not required to suppress or enhance its toxicity. Genes related to autophagy, the cell cycle, RNA-associated proteins and chromatin-binding proteins constitute a large percentage of identified modifiers. Other functional categories identified include mitochondrial proteins, lipid trafficking, Golgi proteins, kinesins and dynein and the Hsp70/Hsp90-organizing protein (Hop). Network analysis uncovered several other genes highly associated with the functional modifiers, including genes related to the PI3K, Notch, BMP/TGF-β and Hedgehog pathways, and nuclear trafficking. Activity of GSK-3β is strongly upregulated due to TDP-43 expression, and reduced GSK-3β dosage is also a common suppressor of Aβ42 and TDP-43 toxicity. These findings suggest therapeutic targets other than mitigation of tau phosphorylation. PMID:21949350

  14. Data Mining of NCI’s Anticancer Screening Database Reveals Mitochondrial Complex I Inhibitors Cytotoxic to Leukemia Cell Lines

    PubMed Central

    Glover, Constance J.; Rabow, Alfred A.; Isgor, Yasemin G.; Shoemaker, Robert H.; Covell, David G.

    2007-01-01

    Mitochondria are principal mediators of apoptosis and thus can be considered molecular targets for new chemotherapeutic agents in the treatment of cancer. Inhibitors of mitochondrial complex I of the electron transport chain have been shown to induce apoptosis and exhibit antitumor activity. In an effort to find novel complex I inhibitors which exhibited anti-cancer activity in the NCI’s tumor cell line screen, we examined organized tumor cytotoxicity screening data available as SOM (self-organized maps) (http://spheroid.ncifcrf.gov) at the Developmental Therapeutics Program (DTP) of the National Cancer Institute (NCI). Our analysis focused on an SOM cluster comprised of compounds which included a number of known mitochondrial complex I (NADH:CoQ oxidoreductase) inhibitors. From these clusters ten compounds whose mechanism of action was unknown were tested for inhibition of complex I activity in bovine heart submitochondrial particles (SMP) resulting in the discovery that five of the ten compounds demonstrated significant inhibition with IC50's in the nM range for three of the five. Examination of screening profiles of the five inhibitors toward the NCI’s tumor cell lines revealed that they were cytotoxic to the leukemia subpanel (particularly K562 cells). Oxygen consumption experiments with permeabilized K562 cells revealed that the five most active compounds inhibited complex I activity in these cells in the same rank order and similar potency as determined with bovine heart SMP. Our findings thus fortify the appeal of mitochondrial Complex I as a possible anti-cancer molecular target and provide a data mining strategy for selecting candidate inhibitors for further testing. PMID:17109823

  15. Extensive screen for bacterial endosymbionts reveals taxon-specific distribution patterns among bees (Hymenoptera, Anthophila).

    PubMed

    Gerth, Michael; Saeed, Abiya; White, Jennifer A; Bleidorn, Christoph

    2015-06-01

    Bacterial endosymbionts play key roles in arthropod biology, ranging from beneficial mutualists to parasitic sex ratio manipulators. The number of described endosymbiotic bacterial taxa has accumulated continuously in recent years. While the understanding of arthropod-microbe interactions has advanced significantly, especially in model organisms, relatively little is known about symbiont distribution and effects in non-model organisms. As a first step to alleviate this gap in understanding, we performed an endosymbiont survey in bees (Anthophila), an ecologically and economically important group of hymenopterans. To this end, we sampled 170 bee species and screened by PCR for the presence of Wolbachia, Rickettsia, Arsenophonus and Cardinium. Detected strains were then further diagnosed by additional markers. Additionally, we tested if certain ecological traits, bee phylogeny or geographic origin of bees explain endosymbiont distribution. Our results indicate that supergroup A Wolbachia are very common in bees and that their distribution can be significantly correlated to both host ecology and phylogeny, although a distinction of these factors is not possible. Furthermore, bees from the same region (Old World or New World) are more likely to harbour identical Wolbachia strains than expected by chance. Other endosymbionts (Rickettsia, Arsenophonus) were less common, and specific to particular host taxa, suggesting that host phylogeny is a major predictor for endosymbiont distribution in bees.

  16. Functional screening of antibiotic resistance genes from human gut microbiota reveals a novel gene fusion.

    PubMed

    Cheng, Gong; Hu, Yongfei; Yin, Yeshi; Yang, Xi; Xiang, Chunsheng; Wang, Baohong; Chen, Yanfei; Yang, Fengling; Lei, Fang; Wu, Na; Lu, Na; Li, Jing; Chen, Quanze; Li, Lanjuan; Zhu, Baoli

    2012-11-01

    The human gut microbiota has a high density of bacteria that are considered a reservoir for antibiotic resistance genes (ARGs). In this study, one fosmid metagenomic library generated from the gut microbiota of four healthy humans was used to screen for ARGs against seven antibiotics. Eight new ARGs were obtained: one against amoxicillin, six against d-cycloserine, and one against kanamycin. The new amoxicillin resistance gene encodes a protein with 53% identity to a class D β-lactamase from Riemerella anatipestifer RA-GD. The six new d-cycloserine resistance genes encode proteins with 73-81% identity to known d-alanine-d-alanine ligases. The new kanamycin resistance gene encodes a protein of 274 amino acids with an N-terminus (amino acids 1-189) that has 42% identity to the 6'-aminoglycoside acetyltransferase [AAC(6')] from Enterococcus hirae and a C-terminus (amino acids 190-274) with 35% identity to a hypothetical protein from Clostridiales sp. SSC/2. A functional study on the novel kanamycin resistance gene showed that only the N-terminus conferred kanamycin resistance. Our results showed that functional metagenomics is a useful tool for the identification of new ARGs.

  17. Point mutation frequency in the FMR1 gene as revealed by fragile X syndrome screening.

    PubMed

    Handt, Maximilian; Epplen, Andrea; Hoffjan, Sabine; Mese, Kemal; Epplen, Jörg T; Dekomien, Gabriele

    2014-01-01

    Fragile X syndrome (FXS) is a common cause of intellectual disability, developmental delay and autism spectrum disorders. This syndrome is due to a functional loss of the FMR1 gene product FMRP, and, in most cases, it is caused by CGG repeat expansion in the FMR1 promoter. Yet, also other FMR1 mutations may cause a FXS-like phenotype. Since standard molecular testing does not include the analysis of the FMR1 coding region, the prevalence of point mutations causing FXS is not well known. Here, high resolution melting (HRM) was used to screen for FMR1 gene mutations in 508 males with clinical signs of mental retardation and developmental delay, but without CGG and GCC repeat expansions in the FMR1 gene and AFF2 genes, respectively. Sequence variations were identified by HRM analysis and verified by direct DNA sequencing. Two novel missense mutations (p.Gly482Ser in one patient and p.Arg534His in two unrelated patients), one intronic and two 3'-untranslated region (UTR) variations were identified in the FMR1 gene. Missense mutations in the FMR1 gene might account for a considerable proportion of cases in male patients with FXS-related symptoms, such as those linked to mental retardation and developmental delay.

  18. Functional genomic screening reveals asparagine dependence as a metabolic vulnerability in sarcoma

    PubMed Central

    Hettmer, Simone; Schinzel, Anna C; Tchessalova, Daria; Schneider, Michaela; Parker, Christina L; Bronson, Roderick T; Richards, Nigel GJ; Hahn, William C; Wagers, Amy J

    2015-01-01

    Current therapies for sarcomas are often inadequate. This study sought to identify actionable gene targets by selective targeting of the molecular networks that support sarcoma cell proliferation. Silencing of asparagine synthetase (ASNS), an amidotransferase that converts aspartate into asparagine, produced the strongest inhibitory effect on sarcoma growth in a functional genomic screen of mouse sarcomas generated by oncogenic Kras and disruption of Cdkn2a. ASNS silencing in mouse and human sarcoma cell lines reduced the percentage of S phase cells and impeded new polypeptide synthesis. These effects of ASNS silencing were reversed by exogenous supplementation with asparagine. Also, asparagine depletion via the ASNS inhibitor amino sulfoximine 5 (AS5) or asparaginase inhibited mouse and human sarcoma growth in vitro, and genetic silencing of ASNS in mouse sarcoma cells combined with depletion of plasma asparagine inhibited tumor growth in vivo. Asparagine reliance of sarcoma cells may represent a metabolic vulnerability with potential anti-sarcoma therapeutic value. DOI: http://dx.doi.org/10.7554/eLife.09436.001 PMID:26499495

  19. Drug screening on Hutchinson Gilford progeria pluripotent stem cells reveals aminopyrimidines as new modulators of farnesylation.

    PubMed

    Blondel, S; Egesipe, A-L; Picardi, P; Jaskowiak, A-L; Notarnicola, M; Ragot, J; Tournois, J; Le Corf, A; Brinon, B; Poydenot, P; Georges, P; Navarro, C; Pitrez, P R; Ferreira, L; Bollot, G; Bauvais, C; Laustriat, D; Mejat, A; De Sandre-Giovannoli, A; Levy, N; Bifulco, M; Peschanski, M; Nissan, X

    2016-02-18

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by a dramatic appearance of premature aging. HGPS is due to a single-base substitution in exon 11 of the LMNA gene (c.1824C>T) leading to the production of a toxic form of the prelamin A protein called progerin. Because farnesylation process had been shown to control progerin toxicity, in this study we have developed a screening method permitting to identify new pharmacological inhibitors of farnesylation. For this, we have used the unique potential of pluripotent stem cells to have access to an unlimited and relevant biological resource and test 21,608 small molecules. This study identified several compounds, called monoaminopyrimidines, which target two key enzymes of the farnesylation process, farnesyl pyrophosphate synthase and farnesyl transferase, and rescue in vitro phenotypes associated with HGPS. Our results opens up new therapeutic possibilities for the treatment of HGPS by identifying a new family of protein farnesylation inhibitors, and which may also be applicable to cancers and diseases associated with mutations that involve farnesylated proteins.

  20. Population Screening Using Sewage Reveals Pan-Resistant Bacteria in Hospital and Community Samples

    PubMed Central

    Mileguir, Fernando; Azar, Roberto; Smollan, Gill; Belausov, Natasha; Rahav, Galia; Shamiss, Ari; Mendelson, Ella; Keller, Nathan

    2016-01-01

    The presence of pan-resistant bacteria worldwide possesses a threat to global health. It is difficult to evaluate the extent of carriage of resistant bacteria in the population. Sewage sampling is a possible way to monitor populations. We evaluated the presence of pan-resistant bacteria in Israeli sewage collected from all over Israel, by modifying the pour plate method for heterotrophic plate count technique using commercial selective agar plates. This method enables convenient and fast sewage sampling and detection. We found that sewage in Israel contains multiple pan-resistant bacteria including carbapenemase resistant Enterobacteriacae carrying blaKPC and blaNDM-1, MRSA and VRE. blaKPC carrying Klebsiella pneumonia and Enterobacter cloacae were the most common Enterobacteriacae drug resistant bacteria found in the sewage locations we sampled. Klebsiella pneumonia, Enterobacter spp., Escherichia coli and Citrobacter spp. were the 4 main CRE isolated from Israeli sewage and also from clinical samples in our clinical microbiology laboratory. Hospitals and Community sewage had similar percentage of positive samplings for blaKPC and blaNDM-1. VRE was found to be more abundant in sewage in Israel than MRSA but there were more locations positive for MRSA and VRE bacteria in Hospital sewage than in the Community. Therefore, our upgrade of the pour plate method for heterotrophic plate count technique using commercial selective agar plates can be a useful tool for routine screening and monitoring of the population for pan-resistant bacteria using sewage. PMID:27780222

  1. Mutational screening of the RB1 gene in Italian patients with retinoblastoma reveals 11 novel mutations.

    PubMed

    Sampieri, Katia; Hadjistilianou, Theodora; Mari, Francesca; Speciale, Caterina; Mencarelli, Maria Antonietta; Cetta, Francesco; Manoukian, Siranoush; Peissel, Bernard; Giachino, Daniela; Pasini, Barbara; Acquaviva, Antonio; Caporossi, Aldo; Frezzotti, Renato; Renieri, Alessandra; Bruttini, Mirella

    2006-01-01

    Retinoblastoma (RB, OMIM#180200) is the most common intraocular tumour in infancy and early childhood. Constituent mutations in the RB1 gene predispose individuals to RB development. We performed a mutational screening of the RB1 gene in Italian patients affected by RB referred to the Medical Genetics of the University of Siena. In 35 unrelated patients, we identified germline RB1 mutations in 6 out of 9 familial cases (66%) and in 7 out of 26 with no family history of RB (27%). Using the single-strand conformational polymorphism (SSCP) technique, 11 novel mutations were detected, including 3 nonsense, 5 frameshift and 4 splice-site mutations. Only two of these mutations (1 splice site and 1 missense) were previously reported. The mutation spectrum reflects the published literature, encompassing predominately nonsense or frameshift and splicing mutations. RB1 germline mutation was detected in 37% of our cases. Gross rearrangements outside the investigated region, altered DNA methylation, or mutations in non-coding regions, may be the cause of disease in the remainder of the patients. Some cases, e.g. a case of incomplete penetrance, or variable expressivity ranging from retinoma to multiple tumours, are discussed in detail. In addition, a case of pre-conception genetic counselling resolved by rescue of banked cordonal blood of the affected deceased child is described.

  2. Genetic Signature of Histiocytic Sarcoma Revealed by a Sleeping Beauty Transposon Genetic Screen in Mice

    PubMed Central

    Been, Raha A.; Linden, Michael A.; Hager, Courtney J.; DeCoursin, Krista J.; Abrahante, Juan E.; Landman, Sean R.; Steinbach, Michael; Sarver, Aaron L.; Largaespada, David A.; Starr, Timothy K.

    2014-01-01

    Histiocytic sarcoma is a rare, aggressive neoplasm that responds poorly to therapy. Histiocytic sarcoma is thought to arise from macrophage precursor cells via genetic changes that are largely undefined. To improve our understanding of the etiology of histiocytic sarcoma we conducted a forward genetic screen in mice using the Sleeping Beauty transposon as a mutagen to identify genetic drivers of histiocytic sarcoma. Sleeping Beauty mutagenesis was targeted to myeloid lineage cells using the Lysozyme2 promoter. Mice with activated Sleeping Beauty mutagenesis had significantly shortened lifespan and the majority of these mice developed tumors resembling human histiocytic sarcoma. Analysis of transposon insertions identified 27 common insertion sites containing 28 candidate cancer genes. Several of these genes are known drivers of hematological neoplasms, like Raf1, Fli1, and Mitf, while others are well-known cancer genes, including Nf1, Myc, Jak2, and Pten. Importantly, several new potential drivers of histiocytic sarcoma were identified and could serve as targets for therapy for histiocytic sarcoma patients. PMID:24827933

  3. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells

    PubMed Central

    Kraehling, Jan R.; Chidlow, John H.; Rajagopal, Chitra; Sugiyama, Michael G.; Fowler, Joseph W.; Lee, Monica Y.; Zhang, Xinbo; Ramírez, Cristina M.; Park, Eon Joo; Tao, Bo; Chen, Keyang; Kuruvilla, Leena; Larriveé, Bruno; Folta-Stogniew, Ewa; Ola, Roxana; Rotllan, Noemi; Zhou, Wenping; Nagle, Michael W.; Herz, Joachim; Williams, Kevin Jon; Eichmann, Anne; Lee, Warren L.; Fernández-Hernando, Carlos; Sessa, William C.

    2016-01-01

    In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL. PMID:27869117

  4. A complete Rab screening reveals novel insights in Weibel-Palade body exocytosis.

    PubMed

    Zografou, Sofia; Basagiannis, Dimitris; Papafotika, Alexandra; Shirakawa, Ryutaro; Horiuchi, Hisanori; Auerbach, Daniel; Fukuda, Mitsunori; Christoforidis, Savvas

    2012-10-15

    Weibel-Palade bodies (WPBs) are endothelial-cell-specific organelles that, upon fusion with the plasma membrane, release cargo molecules that are essential in blood vessel abnormalities, such as thrombosis and inflammation, as well as in angiogenesis. Despite the importance of WPBs, the basic mechanisms that mediate their secretion are only poorly understood. Rab GTPases play fundamental role in the trafficking of intracellular organelles. Yet, the only known WPB-associated Rabs are Rab27a and Rab3d. To determine the full spectrum of WPB-associated Rabs we performed a complete Rab screening by analysing the localisation of all Rabs in WPBs and their involvement in the secretory process in endothelial cells. Apart from Rab3 and Rab27, we identified three additional Rabs, Rab15 (a previously reported endocytic Rab), Rab33 and Rab37, on the WPB limiting membrane. A knockdown approach using siRNAs showed that among these five WPB Rabs only Rab3, Rab27 and Rab15 are required for exocytosis. Intriguingly, we found that Rab15 cooperates with Rab27a in WPB secretion. Furthermore, a specific effector of Rab27, Munc13-4, appears to be also an effector of Rab15 and is required for WPB exocytosis. These data indicate that WPB secretion requires the coordinated function of a specific group of Rabs and that, among them, Rab27a and Rab15, as well as their effector Munc13-4, cooperate to drive exocytosis.

  5. Haploid Genetic Screen Reveals a Profound and Direct Dependence on Cholesterol for Hantavirus Membrane Fusion

    PubMed Central

    Kleinfelter, Lara M.; Jangra, Rohit K.; Jae, Lucas T.; Herbert, Andrew S.; Mittler, Eva; Stiles, Katie M.; Wirchnianski, Ariel S.; Kielian, Margaret; Brummelkamp, Thijn R.

    2015-01-01

    ABSTRACT Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) in the Old World and a highly fatal hantavirus cardiopulmonary syndrome (HCPS) in the New World. No vaccines or antiviral therapies are currently available to prevent or treat hantavirus disease, and gaps in our understanding of how hantaviruses enter cells challenge the search for therapeutics. We performed a haploid genetic screen in human cells to identify host factors required for entry by Andes virus, a highly virulent New World hantavirus. We found that multiple genes involved in cholesterol sensing, regulation, and biosynthesis, including key components of the sterol response element-binding protein (SREBP) pathway, are critical for Andes virus entry. Genetic or pharmacological disruption of the membrane-bound transcription factor peptidase/site-1 protease (MBTPS1/S1P), an SREBP control element, dramatically reduced infection by virulent hantaviruses of both the Old World and New World clades but not by rhabdoviruses or alphaviruses, indicating that this pathway is broadly, but selectively, required by hantaviruses. These results could be fully explained as arising from the modest depletion of cellular membrane cholesterol that accompanied S1P disruption. Mechanistic studies of cells and with protein-free liposomes suggested that high levels of cholesterol are specifically needed for hantavirus membrane fusion. Taken together, our results indicate that the profound dependence on target membrane cholesterol is a fundamental, and unusual, biophysical property of hantavirus glycoprotein-membrane interactions during entry. PMID:26126854

  6. Functional mutagenesis screens reveal the 'cap structure' formation in disulfide-bridge free TASK channels.

    PubMed

    Goldstein, Matthias; Rinné, Susanne; Kiper, Aytug K; Ramírez, David; Netter, Michael F; Bustos, Daniel; Ortiz-Bonnin, Beatriz; González, Wendy; Decher, Niels

    2016-01-22

    Two-pore-domain potassium (K2P) channels have a large extracellular cap structure formed by two M1-P1 linkers, containing a cysteine for dimerization. However, this cysteine is not present in the TASK-1/3/5 subfamily. The functional role of the cap is poorly understood and it remained unclear whether K2P channels assemble in the domain-swapped orientation or not. Functional alanine-mutagenesis screens of TASK-1 and TRAAK were used to build an in silico model of the TASK-1 cap. According to our data the cap structure of disulfide-bridge free TASK channels is similar to that of other K2P channels and is most likely assembled in the domain-swapped orientation. As the conserved cysteine is not essential for functional expression of all K2P channels tested, we propose that hydrophobic residues at the inner leaflets of the cap domains can interact with each other and that this way of stabilizing the cap is most likely conserved among K2P channels.

  7. Lethality Rate Estimation and Testing Procedures

    DTIC Science & Technology

    1989-09-11

    AUTHOR(S) Steven W. Rust, Paul I. Feder, Frederick R. Todt, Ronald L. Joiner Ila. TYPE OF REPORT 13b, IME .OVFRE 8 14. ATE OF PORT (VeerMontl.vay) 15...GD, and VX Administered Topically to Rabbits " (MREF Protocol 21, May 1985) to compare liquid or powder experimental decontaminants against the dual...chemical surety materick (CSM). The standardized screen is based on a lethality endpoint in laboratory albino rabbits . An essential aspect of this testing

  8. Lethal multiple pterygium syndrome

    PubMed Central

    Joshi, Tulika; Noor, Nazia Nagori; Kural, Moolraj; Tripathi, Amita

    2016-01-01

    The multiple pterygium syndrome is consist of wide range of fetal malformations which have a genetic linkage. A defect in embryonic acetylcholine receptor which can be inherited as autosomal recessive, autosomal dominant, or X-linked fashion is the cause of this syndrome. We present a sporadic case of lethal multiple pterygium syndrome. PMID:27843868

  9. Screening of Escherichia coli Species Biodiversity Reveals New Biofilm-Associated Antiadhesion Polysaccharides

    PubMed Central

    Rendueles, Olaya; Travier, Laetitia; Latour-Lambert, Patricia; Fontaine, Thierry; Magnus, Julie; Denamur, Erick; Ghigo, Jean-Marc

    2011-01-01

    ABSTRACT Bacterial biofilms often form multispecies communities in which complex but ill-understood competition and cooperation interactions occur. In light of the profound physiological modifications associated with this lifestyle, we hypothesized that the biofilm environment might represent an untapped source of natural bioactive molecules interfering with bacterial adhesion or biofilm formation. We produced cell-free solutions extracted from in vitro mature biofilms formed by 122 natural Escherichia coli isolates, and we screened these biofilm extracts for antiadhesion molecules active on a panel of Gram-positive and Gram-negative bacteria. Using this approach, we showed that 20% of the tested biofilm extracts contained molecules that antagonize bacterial growth or adhesion. We characterized a compound, produced by a commensal animal E. coli strain, for which activity is detected only in biofilm extract. Biochemical and genetic analyses showed that this compound corresponds to a new type of released high-molecular-weight polysaccharide whose biofilm-associated production is regulated by the RfaH protein. We demonstrated that the antiadhesion activity of this polysaccharide was restricted to Gram-positive bacteria and that its production reduced susceptibility to invasion and provided rapid exclusion of Staphylococcus aureus from mixed E. coli and S. aureus biofilms. Our results therefore demonstrate that biofilms contain molecules that contribute to the dynamics of mixed bacterial communities and that are not or only poorly detected in unconcentrated planktonic supernatants. Systematic identification of these compounds could lead to strategies that limit pathogen surface colonization and reduce the burden associated with the development of bacterial biofilms on medical devices. PMID:21558434

  10. Novel Two-Step Hierarchical Screening of Mutant Pools Reveals Mutants under Selection in Chicks

    PubMed Central

    Yang, Hee-Jeong; Bogomolnaya, Lydia M.; Elfenbein, Johanna R.; Endicott-Yazdani, Tiana; Reynolds, M. Megan; Porwollik, Steffen; Cheng, Pui; Xia, Xiao-Qin

    2016-01-01

    Contaminated chicken/egg products are major sources of human salmonellosis, yet the strategies used by Salmonella to colonize chickens are poorly understood. We applied a novel two-step hierarchical procedure to identify new genes important for colonization and persistence of Salmonella enterica serotype Typhimurium in chickens. A library of 182 S. Typhimurium mutants each containing a targeted deletion of a group of contiguous genes (for a total of 2,069 genes deleted) was used to identify regions under selection at 1, 3, and 9 days postinfection in chicks. Mutants in 11 regions were under selection at all assayed times (colonization mutants), and mutants in 15 regions were under selection only at day 9 (persistence mutants). We assembled a pool of 92 mutants, each deleted for a single gene, representing nearly all genes in nine regions under selection. Twelve single gene deletion mutants were under selection in this assay, and we confirmed 6 of 9 of these candidate mutants via competitive infections and complementation analysis in chicks. STM0580, STM1295, STM1297, STM3612, STM3615, and STM3734 are needed for Salmonella to colonize and persist in chicks and were not previously associated with this ability. One of these key genes, STM1297 (selD), is required for anaerobic growth and supports the ability to utilize formate under these conditions, suggesting that metabolism of formate is important during infection. We report a hierarchical screening strategy to interrogate large portions of the genome during infection of animals using pools of mutants of low complexity. Using this strategy, we identified six genes not previously known to be needed during infection in chicks, and one of these (STM1297) suggests an important role for formate metabolism during infection. PMID:26857572

  11. A Genetic Mosaic Screen Reveals Ecdysone-Responsive Genes Regulating Drosophila Oogenesis

    PubMed Central

    Ables, Elizabeth T.; Hwang, Grace H.; Finger, Danielle S.; Hinnant, Taylor D.; Drummond-Barbosa, Daniela

    2016-01-01

    Multiple aspects of Drosophila oogenesis, including germline stem cell activity, germ cell differentiation, and follicle survival, are regulated by the steroid hormone ecdysone. While the transcriptional targets of ecdysone signaling during development have been studied extensively, targets in the ovary remain largely unknown. Early studies of salivary gland polytene chromosomes led to a model in which ecdysone stimulates a hierarchical transcriptional cascade, wherein a core group of ecdysone-sensitive transcription factors induce tissue-specific responses by activating secondary branches of transcriptional targets. More recently, genome-wide approaches have identified hundreds of putative ecdysone-responsive targets. Determining whether these putative targets represent bona fide targets in vivo, however, requires that they be tested via traditional mutant analysis in a cell-type specific fashion. To investigate the molecular mechanisms whereby ecdysone signaling regulates oogenesis, we used genetic mosaic analysis to screen putative ecdysone-responsive genes for novel roles in the control of the earliest steps of oogenesis. We identified a cohort of genes required for stem cell maintenance, stem and progenitor cell proliferation, and follicle encapsulation, growth, and survival. These genes encode transcription factors, chromatin modulators, and factors required for RNA transport, stability, and ribosome biogenesis, suggesting that ecdysone might control a wide range of molecular processes during oogenesis. Our results suggest that, although ecdysone target genes are known to have cell type-specific roles, many ecdysone response genes that control larval or pupal cell types at developmental transitions are used reiteratively in the adult ovary. These results provide novel insights into the molecular mechanisms by which ecdysone signaling controls oogenesis, laying new ground for future studies. PMID:27226164

  12. Novel Two-Step Hierarchical Screening of Mutant Pools Reveals Mutants under Selection in Chicks.

    PubMed

    Yang, Hee-Jeong; Bogomolnaya, Lydia M; Elfenbein, Johanna R; Endicott-Yazdani, Tiana; Reynolds, M Megan; Porwollik, Steffen; Cheng, Pui; Xia, Xiao-Qin; McClelland, Michael; Andrews-Polymenis, Helene

    2016-04-01

    Contaminated chicken/egg products are major sources of human salmonellosis, yet the strategies used by Salmonella to colonize chickens are poorly understood. We applied a novel two-step hierarchical procedure to identify new genes important for colonization and persistence of Salmonella enterica serotype Typhimurium in chickens. A library of 182 S. Typhimurium mutants each containing a targeted deletion of a group of contiguous genes (for a total of 2,069 genes deleted) was used to identify regions under selection at 1, 3, and 9 days postinfection in chicks. Mutants in 11 regions were under selection at all assayed times (colonization mutants), and mutants in 15 regions were under selection only at day 9 (persistence mutants). We assembled a pool of 92 mutants, each deleted for a single gene, representing nearly all genes in nine regions under selection. Twelve single gene deletion mutants were under selection in this assay, and we confirmed 6 of 9 of these candidate mutants via competitive infections and complementation analysis in chicks. STM0580, STM1295, STM1297, STM3612, STM3615, and STM3734 are needed for Salmonella to colonize and persist in chicks and were not previously associated with this ability. One of these key genes, STM1297 (selD), is required for anaerobic growth and supports the ability to utilize formate under these conditions, suggesting that metabolism of formate is important during infection. We report a hierarchical screening strategy to interrogate large portions of the genome during infection of animals using pools of mutants of low complexity. Using this strategy, we identified six genes not previously known to be needed during infection in chicks, and one of these (STM1297) suggests an important role for formate metabolism during infection.

  13. Genome-Wide Screen Reveals sec21 Mutants of Saccharomyces cerevisiae Are Methotrexate-Resistant

    PubMed Central

    Wong, Lai H.; Flibotte, Stephane; Sinha, Sunita; Chiang, Jennifer; Giaever, Guri; Nislow, Corey

    2017-01-01

    Drug resistance is a consequence of how most modern medicines work. Drugs exert pressure on cells that causes death or the evolution of resistance. Indeed, highly specific drugs are rendered ineffective by a single DNA mutation. In this study, we apply the drug methotrexate, which is widely used in cancer and rheumatoid arthritis, and perform evolution experiments on Baker’s yeast to ask the different ways in which cells become drug resistant. Because of the conserved nature of biological pathways between yeast and man, our results can inform how the same mechanism may operate to render human cells resistant to treatment. Exposure of cells to small molecules and drug therapies imposes a strong selective pressure. As a result, cells rapidly acquire mutations in order to survive. These include resistant variants of the drug target as well as those that modulate drug transport and detoxification. To systematically explore how cells acquire drug resistance in an unbiased manner, rapid cost-effective approaches are required. Methotrexate, as one of the first rationally designed anticancer drugs, has served as a prototypic example of such acquired resistance. Known methotrexate resistance mechanisms include mutations that increase expression of the dihydrofolate reductase (DHFR) target as well as those that maintain function yet reduce the drug’s binding affinity. Recent evidence suggests that target-independent, epistatic mutations can also result in resistance to methotrexate. Currently, however, the relative contribution of such unlinked resistance mutations is not well understood. To address this issue, we took advantage of Saccharomyces cerevisiae as a model eukaryotic system that combined with whole-genome sequencing and a rapid screening methodology, allowed the identification of causative mutations that modulate resistance to methotrexate. We found a recurrent missense mutation in SEC21 (orthologous to human COPG1), which we confirmed in 10 de novo

  14. Transcriptional role of cyclin D1 in development revealed by a “genetic-proteomic” screen

    PubMed Central

    Bienvenu, Frédéric; Jirawatnotai, Siwanon; Elias, Joshua E.; Meyer, Clifford A.; Mizeracka, Karolina; Marson, Alexander; Frampton, Garrett M.; Cole, Megan F.; Odom, Duncan T.; Odajima, Junko; Geng, Yan; Zagozdzon, Agnieszka; Jecrois, Marie; Young, Richard A.; Liu, X. Shirley; Cepko, Constance L.; Gygi, Steven P.; Sicinski, Piotr

    2010-01-01

    Cyclin D1 belongs to the core cell cycle machinery, and it is frequently overexpressed in human cancers1,2. The full repertoire of cyclin D1 functions in normal development and in oncogenesis is currently unclear. Here we developed FLAG- and HA-tagged cyclin D1 knock-in mouse strains that allowed high-throughput mass spectrometry approach to search for cyclin D1-binding proteins in different mouse organs. In addition to cell cycle partners, we observed several proteins involved in transcription. Genome-wide location (ChIP-chip) analyses revealed that during mouse development cyclin D1 occupies promoters of abundantly expressed genes. In particular, we found that in developing mouse retinas – an organ that critically requires cyclin D1 function3,4 – cyclin D1 binds the upstream regulatory region of the Notch1 gene where it serves to recruit CBP histone acetyltransferase. Genetic ablation of cyclin D1 resulted in decreased CBP recruitment, decreased histone acetylation of the Notch1 promoter region, and led to decreased levels of the Notch transcript and protein in cyclin D1-null retinas. Transduction of an activated allele of Notch1 into cyclin D1−/− retinas increased proliferation of retinal progenitor cells, indicating that upregulating Notch1 signaling alleviates the phenotype of cyclin D1-deficiency. These studies reveal that in addition to its well-established cell cycle roles, cyclin D1 plays an in vivo transcriptional function in mouse development. Our approach, which we term “genetic-proteomic” can be used to study the in vivo function of essentially any protein. PMID:20090754

  15. Synthetic lethal interactions for the development of cancer therapeutics: biological and methodological advancements.

    PubMed

    Mizuarai, Shinji; Kotani, Hidehito

    2010-12-01

    Synthetic lethal interaction is defined as a combination of two mutations that is lethal when present in the same cell; each individual mutation is non-lethal. Synthetic lethal interactions attract attention in cancer research fields since the discovery of synthetic lethal genes with either oncogenes or tumor suppressor genes (TSGs) provides novel cancer therapeutic targets. Due to the selective lethal effect on cancer cells harboring specific genetic alterations, it is expected that targeting synthetic lethal genes would provide wider therapeutic windows compared with cytotoxic chemotherapeutics. Here, we review the current status of the application of synthetic lethal screening in cancer research fields from biological and methodological viewpoints. Very recent studies seeking to identify synthetic lethal genes with K-RAS and p53, which are known to be the most frequently occurring oncogenes and TSGs, respectively, are introduced. Among the accumulating amount of research on synthetic lethal interactions, the synthetic lethality between BRCA1/2 and PARP1 inhibition has been clinically proven. Thus, both preclinical and clinical data showing a preferential anti-tumor effect on BRCA1/2 deficient tumors by a PARP1 inhibitor are the best examples of the synthetic lethal approach of cancer therapeutics. Finally, methodological progress regarding synthetic lethal screening, including barcode shRNA screening and in vivo synthetic lethal screening, is described. Given the fact that an increasing number of synthetic lethal genes for major cancerous genes have been validated in preclinical studies, this intriguing approach awaits clinical verification of preferential benefits for cancer patients with specific genetic alterations as a clear predictive factor for tumor response.

  16. A Chemogenomic Screen Reveals Novel Snf1p/AMPK Independent Regulators of Acetyl-CoA Carboxylase.

    PubMed

    Bozaquel-Morais, Bruno L; Madeira, Juliana B; Venâncio, Thiago M; Pacheco-Rosa, Thiago; Masuda, Claudio A; Montero-Lomeli, Monica

    2017-01-01

    Acetyl-CoA carboxylase (Acc1p) is a key enzyme in fatty acid biosynthesis and is essential for cell viability. To discover new regulators of its activity, we screened a Saccharomyces cerevisiae deletion library for increased sensitivity to soraphen A, a potent Acc1p inhibitor. The hits identified in the screen (118 hits) were filtered using a chemical-phenotype map to exclude those associated with pleiotropic drug resistance. This enabled the identification of 82 ORFs that are genetic interactors of Acc1p. The main functional clusters represented by these hits were "transcriptional regulation", "protein post-translational modifications" and "lipid metabolism". Further investigation of the "transcriptional regulation" cluster revealed that soraphen A sensitivity is poorly correlated with ACC1 transcript levels. We also studied the three top unknown ORFs that affected soraphen A sensitivity: SOR1 (YDL129W), SOR2 (YIL092W) and SOR3 (YJR039W). Since the C18/C16 ratio of lipid acyl lengths reflects Acc1p activity levels, we evaluated this ratio in the three mutants. Deletion of SOR2 and SOR3 led to reduced acyl lengths, suggesting that Acc1p is indeed down-regulated in these strains. Also, these mutants showed no differences in Snf1p/AMPK activation status and deletion of SNF1 in these backgrounds did not revert soraphen A sensitivity completely. Furthermore, plasmid maintenance was reduced in sor2Δ strain and this trait was shared with 18 other soraphen A sensitive hits. In summary, our screen uncovered novel Acc1p Snf1p/AMPK-independent regulators.

  17. A Chemogenomic Screen Reveals Novel Snf1p/AMPK Independent Regulators of Acetyl-CoA Carboxylase

    PubMed Central

    Bozaquel-Morais, Bruno L.; Madeira, Juliana B.; Venâncio, Thiago M.; Pacheco-Rosa, Thiago; Masuda, Claudio A.; Montero-Lomeli, Monica

    2017-01-01

    Acetyl-CoA carboxylase (Acc1p) is a key enzyme in fatty acid biosynthesis and is essential for cell viability. To discover new regulators of its activity, we screened a Saccharomyces cerevisiae deletion library for increased sensitivity to soraphen A, a potent Acc1p inhibitor. The hits identified in the screen (118 hits) were filtered using a chemical-phenotype map to exclude those associated with pleiotropic drug resistance. This enabled the identification of 82 ORFs that are genetic interactors of Acc1p. The main functional clusters represented by these hits were “transcriptional regulation”, “protein post-translational modifications” and “lipid metabolism”. Further investigation of the “transcriptional regulation” cluster revealed that soraphen A sensitivity is poorly correlated with ACC1 transcript levels. We also studied the three top unknown ORFs that affected soraphen A sensitivity: SOR1 (YDL129W), SOR2 (YIL092W) and SOR3 (YJR039W). Since the C18/C16 ratio of lipid acyl lengths reflects Acc1p activity levels, we evaluated this ratio in the three mutants. Deletion of SOR2 and SOR3 led to reduced acyl lengths, suggesting that Acc1p is indeed down-regulated in these strains. Also, these mutants showed no differences in Snf1p/AMPK activation status and deletion of SNF1 in these backgrounds did not revert soraphen A sensitivity completely. Furthermore, plasmid maintenance was reduced in sor2Δ strain and this trait was shared with 18 other soraphen A sensitive hits. In summary, our screen uncovered novel Acc1p Snf1p/AMPK-independent regulators. PMID:28076367

  18. Screen of Non-annotated Small Secreted Proteins of Pseudomonas syringae Reveals a Virulence Factor That Inhibits Tomato Immune Proteases

    PubMed Central

    Shindo, Takayuki; Kaschani, Farnusch; Kovács, Judit; Tian, Fang; Kourelis, Jiorgos; Hong, Tram Ngoc; Colby, Tom; Shabab, Mohammed; Chawla, Rohini; Kumari, Selva; Ilyas, Muhammad; Hörger, Anja C.; Alfano, James R.; van der Hoorn, Renier A. L.

    2016-01-01

    Pseudomonas syringae pv. tomato DC3000 (PtoDC3000) is an extracellular model plant pathogen, yet its potential to produce secreted effectors that manipulate the apoplast has been under investigated. Here we identified 131 candidate small, secreted, non-annotated proteins from the PtoDC3000 genome, most of which are common to Pseudomonas species and potentially expressed during apoplastic colonization. We produced 43 of these proteins through a custom-made gateway-compatible expression system for extracellular bacterial proteins, and screened them for their ability to inhibit the secreted immune protease C14 of tomato using competitive activity-based protein profiling. This screen revealed C14-inhibiting protein-1 (Cip1), which contains motifs of the chagasin-like protease inhibitors. Cip1 mutants are less virulent on tomato, demonstrating the importance of this effector in apoplastic immunity. Cip1 also inhibits immune protease Pip1, which is known to suppress PtoDC3000 infection, but has a lower affinity for its close homolog Rcr3, explaining why this protein is not recognized in tomato plants carrying the Cf-2 resistance gene, which uses Rcr3 as a co-receptor to detect pathogen-derived protease inhibitors. Thus, this approach uncovered a protease inhibitor of P. syringae, indicating that also P. syringae secretes effectors that selectively target apoplastic host proteases of tomato, similar to tomato pathogenic fungi, oomycetes and nematodes. PMID:27603016

  19. A genome-wide screen reveals a role for microRNA-1 in modulating cardiac cell polarity.

    PubMed

    King, Isabelle N; Qian, Li; Liang, Jianping; Huang, Yu; Shieh, Joseph T C; Kwon, Chulan; Srivastava, Deepak

    2011-04-19

    Many molecular pathways involved in heart disease have their roots in evolutionarily ancient developmental programs that depend critically on gene dosage and timing. MicroRNAs (miRNAs) modulate gene dosage posttranscriptionally, and among these, the muscle-specific miR-1 is particularly important for developing and maintaining somatic/skeletal and cardiac muscle. To identify pathways regulated by miR-1, we performed a forward genetic screen in Drosophila using wing-vein patterning as a biological assay. We identified several unexpected genes that genetically interacted with dmiR-1, one of which was kayak, encodes a developmentally regulated transcription factor. Additional studies directed at this genetic relationship revealed a previously unappreciated function of dmiR-1 in regulating the polarity of cardiac progenitor cells. The mammalian ortholog of kayak, c-Fos, was dysregulated in hearts of gain- or loss-of-function miR-1 mutant mice in a stress-dependent manner. These findings illustrate the power of Drosophila-based screens to find points of intersection between miRNAs and conserved pathways in mammals.

  20. In Vivo Screening Using Transgenic Zebrafish Embryos Reveals New Effects of HDAC Inhibitors Trichostatin A and Valproic Acid on Organogenesis

    PubMed Central

    Li, Ling; Bonneton, François; Tohme, Marie; Bernard, Laure; Chen, Xiao Yong; Laudet, Vincent

    2016-01-01

    The effects of endocrine disrupting chemicals (EDCs) on reproduction are well known, whereas their developmental effects are much less characterized. However, exposure to endocrine disruptors during organogenesis may lead to deleterious and permanent problems later in life. Zebrafish (Danio rerio) transgenic lines expressing the green fluorescent protein (GFP) in specific organs and tissues are powerful tools to uncover developmental defects elicited by EDCs. Here, we used seven transgenic lines to visualize in vivo whether a series of EDCs and other pharmaceutical compounds can alter organogenesis in zebrafish. We used transgenic lines expressing GFP in pancreas, liver, blood vessels, inner ear, nervous system, pharyngeal tooth and pectoral fins. This screen revealed that four of the tested chemicals have detectable effects on different organs, which shows that the range of effects elicited by EDCs is wider than anticipated. The endocrine disruptor tetrabromobisphenol-A (TBBPA), as well as the three drugs diclofenac, trichostatin A (TSA) and valproic acid (VPA) induced abnormalities in the embryonic vascular system of zebrafish. Moreover, TSA and VPA induced specific alterations during the development of pancreas, an observation that was confirmed by in situ hybridization with specific markers. Developmental delays were also induced by TSA and VPA in the liver and in pharyngeal teeth, resulting in smaller organ size. Our results show that EDCs can induce a large range of developmental alterations during embryogenesis of zebrafish and establish GFP transgenic lines as powerful tools to screen for EDCs effects in vivo. PMID:26900852

  1. Screening for hydrolytic enzymes reveals Ayr1p as a novel triacylglycerol lipase in Saccharomyces cerevisiae.

    PubMed

    Ploier, Birgit; Scharwey, Melanie; Koch, Barbara; Schmidt, Claudia; Schatte, Jessica; Rechberger, Gerald; Kollroser, Manfred; Hermetter, Albin; Daum, Günther

    2013-12-13

    Saccharomyces cerevisiae, as well as other eukaryotes, preserves fatty acids and sterols in a biologically inert form, as triacylglycerols and steryl esters. The major triacylglycerol lipases of the yeast S. cerevisiae identified so far are Tgl3p, Tgl4p, and Tgl5p (Athenstaedt, K., and Daum, G. (2003) YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J. Biol. Chem. 278, 23317-23323; Athenstaedt, K., and Daum, G. (2005) Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae, are localized to lipid particles. J. Biol. Chem. 280, 37301-37309). We observed that upon cultivation on oleic acid, triacylglycerol mobilization did not come to a halt in a yeast strain deficient in all currently known triacylglycerol lipases, indicating the presence of additional not yet characterized lipases/esterases. Functional proteome analysis using lipase and esterase inhibitors revealed a subset of candidate genes for yet unknown hydrolytic enzymes on peroxisomes and lipid droplets. Based on the conserved GXSXG lipase motif, putative functions, and subcellular localizations, a selected number of candidates were characterized by enzyme assays in vitro, gene expression analysis, non-polar lipid analysis, and in vivo triacylglycerol mobilization assays. These investigations led to the identification of Ayr1p as a novel triacylglycerol lipase of yeast lipid droplets and confirmed the hydrolytic potential of the peroxisomal Lpx1p in vivo. Based on these results, we discuss a possible link between lipid storage, lipid mobilization, and peroxisomal utilization of fatty acids as a carbon source.

  2. Genus-Wide Screening Reveals Four Distinct Types of Structural Plastid Genome Organization in Pelargonium (Geraniaceae)

    PubMed Central

    Röschenbleck, Joachim; Weinl, Stefan; Kudla, Jörg; Müller, Kai F.

    2017-01-01

    Geraniaceae are known for their unusual plastid genomes (plastomes), with the genus Pelargonium being most conspicuous with regard to plastome size and gene organization as judged by the sequenced plastomes of P. x hortorum and P. alternans. However, the hybrid origin of P. x hortorum and the uncertain phylogenetic position of P. alternans obscure the events that led to these extraordinary plastomes. Here, we examine all plastid reconfiguration hotspots for 60 Pelargonium species across all subgenera using a PCR and sequencing approach. Our reconstruction of the rearrangement history revealed four distinct plastome types. The ancestral plastome configuration in the two subgenera Magnipetala and Pelargonium is consistent with that of the P. alternans plastome, whereas that of the subgenus Parvulipetala deviates from this organization by one synapomorphic inversion in the trnNGUU–ndhF region. The plastome of P. x hortorum resembles those of one group of the subgenus Paucisignata, but differs from a second group by another inversion in the psaI–psaJ region. The number of microstructural changes and amount of repetitive DNA are generally elevated in all inverted regions. Nucleotide substitution rates correlate positively with the number of indels in all regions across the different subgenera. We also observed lineage- and species-specific changes in the gene content, including gene duplications and fragmentations. For example, the plastid rbcL–psaI region of Pelargonium contains a highly variable accD-like region. Our results suggest alternative evolutionary paths under possibly changing modes of plastid transmission and indicate the non-functionalization of the plastid accD gene in Pelargonium. PMID:28172771

  3. Selective MS screening reveals a sex pheromone in Caenorhabditis briggsae and species-specificity in indole ascaroside signalling.

    PubMed

    Dong, Chuanfu; Dolke, Franziska; von Reuss, Stephan H

    2016-08-14

    The indole ascarosides (icas) represent a highly potent class of nematode-derived modular signalling components that integrate structural inputs from amino acid, carbohydrate, and fatty acid metabolism. Comparative analysis of the crude exo-metabolome of hermaphroditic Caenorhabditis briggsae using a highly sensitive mass spectrometric screen reveals an indole ascaroside blend dominated by two new components. The structures of isolated icas#2 and icas#6.2 were determined by NMR spectroscopy and confirmed by total synthesis and chemical correlation. Low atto- to femtomolar amounts of icas#2 and icas#6.2 act in synergism to attract males indicating a function as sex pheromone. Comparative analysis of 14 Caenorhabditis species further demonstrates that species-specific indole ascaroside biosynthesis is highly conserved in the Elegans group. Functional characterization of the dominating indole ascarosides icas#2, icas#3, and icas#9 reveals a high degree of species-specificity and considerable variability with respect to gender-specificity, thus, confirming that indole ascarosides modulate different biological functions within the Elegans group. Although the nematode response was usually most pronounced towards conspecific signals, Caenorhabditis brenneri, the only species of the Elegans group that does not produce any indole ascarosides, exhibits a robust response to icas#2 suggesting the potential for interspecies interactions.

  4. The lethality test system

    SciTech Connect

    Parsons, W.M.; Sims, J.R.; Parker, J.V.

    1986-11-01

    The Lethality Test System (LTS), presently under construction at Los Alamos, is an electromagnetic launcher facility designed to perform impact experiments at velocities up to 15 km/s. The launcher is a 25 mm round bore, plasma armature railgun extending 22 m in length. Preinjection is accomplished with a two-stage light gas gun capable of 7 km/s. The railgun power supply utilized traction motors, vacuum interrupters, and pulse transformers. The design of these traction motors, vacuum interrupters and pulse transformers are detailed.

  5. Focused screening of mitochondrial metabolism reveals a crucial role for a tumor suppressor Hbp1 in ovarian reserve

    PubMed Central

    Dong, Z; Huang, M; Liu, Z; Xie, P; Dong, Y; Wu, X; Qu, Z; Shen, B; Huang, X; Zhang, T; Li, J; Liu, J; Yanase, T; Zhou, C; Xu, Y

    2016-01-01

    Granulosa cells (GCs) are tightly associated with fertility and the fate of ovarian follicles. Mitochondria are the central executers of apoptosis. However, the genetic basis underlying mitochondrial modulation in GCs during the ovarian development is poorly understood. Here, CRISPR/Cas9-mediated genetic screening was used to identify genes conferring mitochondrial metabolism in human GCs. The results uncovered roles for several tumor suppressors, including HBP1, in the augmentation of mitochondrial function. Focused analysis revealed that high-mobility group (HMG)-box transcription factor 1 (Hbp1) levels regulate mitochondrial biogenesis, which is associated with global changes in transcription including Tfam. The systemic or granulosa-specific but not oocyte-specific ablation of Hbp1 promoted follicle growth and oocyte production, and is associated with the reduced apoptotic signals in mouse GCs. Consistent with increased mitochondrial function and attenuated GC apoptosis, the regulation of Hbp1 conferred substantial protection of ovarian reserve. Thus, the results of the present study provide a critical target to understand the control of the reproductive lifespan. PMID:27206316

  6. Chemical genetic screen in fission yeast reveals roles for vacuolar acidification, mitochondrial fission, and cellular GMP levels in lifespan extension.

    PubMed

    Stephan, Jessica; Franke, Jacqueline; Ehrenhofer-Murray, Ann E

    2013-08-01

    The discovery that genetic mutations in several cellular pathways can increase lifespan has lent support to the notion that pharmacological inhibition of aging pathways can be used to extend lifespan and to slow the onset of age-related diseases. However, so far, only few compounds with such activities have been described. Here, we have conducted a chemical genetic screen for compounds that cause the extension of chronological lifespan of Schizosaccharomyces pombe. We have characterized eight natural products with such activities, which has allowed us to uncover so far unknown anti-aging pathways in S. pombe. The ionophores monensin and nigericin extended lifespan by affecting vacuolar acidification, and this effect depended on the presence of the vacuolar ATPase (V-ATPase) subunits Vma1 and Vma3. Furthermore, prostaglandin J₂ displayed anti-aging properties due to the inhibition of mitochondrial fission, and its effect on longevity required the mitochondrial fission protein Dnm1 as well as the G-protein-coupled glucose receptor Git3. Also, two compounds that inhibit guanosine monophosphate (GMP) synthesis, mycophenolic acid (MPA) and acivicin, caused lifespan extension, indicating that an imbalance in guanine nucleotide levels impinges upon longevity. We furthermore have identified diindolylmethane (DIM), tschimganine, and the compound mixture mangosteen as inhibiting aging. Taken together, these results reveal unanticipated anti-aging activities for several phytochemicals and open up opportunities for the development of novel anti-aging therapies.

  7. Functional drug screening reveals anticonvulsants as enhancers of mTOR-independent autophagic killing of Mycobacterium tuberculosis through inositol depletion.

    PubMed

    Schiebler, Mark; Brown, Karen; Hegyi, Krisztina; Newton, Sandra M; Renna, Maurizio; Hepburn, Lucy; Klapholz, Catherine; Coulter, Sarah; Obregón-Henao, Andres; Henao Tamayo, Marcela; Basaraba, Randall; Kampmann, Beate; Henry, Katherine M; Burgon, Joseph; Renshaw, Stephen A; Fleming, Angeleen; Kay, Robert R; Anderson, Karen E; Hawkins, Phillip T; Ordway, Diane J; Rubinsztein, David C; Floto, Rodrigo Andres

    2015-02-01

    Mycobacterium tuberculosis (MTB) remains a major challenge to global health made worse by the spread of multidrug resistance. We therefore examined whether stimulating intracellular killing of mycobacteria through pharmacological enhancement of macroautophagy might provide a novel therapeutic strategy. Despite the resistance of MTB to killing by basal autophagy, cell-based screening of FDA-approved drugs revealed two anticonvulsants, carbamazepine and valproic acid, that were able to stimulate autophagic killing of intracellular M. tuberculosis within primary human macrophages at concentrations achievable in humans. Using a zebrafish model, we show that carbamazepine can stimulate autophagy in vivo and enhance clearance of M. marinum, while in mice infected with a highly virulent multidrug-resistant MTB strain, carbamazepine treatment reduced bacterial burden, improved lung pathology and stimulated adaptive immunity. We show that carbamazepine induces antimicrobial autophagy through a novel, evolutionarily conserved, mTOR-independent pathway controlled by cellular depletion of myo-inositol. While strain-specific differences in susceptibility to in vivo carbamazepine treatment may exist, autophagy enhancement by repurposed drugs provides an easily implementable potential therapy for the treatment of multidrug-resistant mycobacterial infection.

  8. Establishing Genetic Interactions by a Synthetic Dosage Lethality Phenotype

    PubMed Central

    Kroll, E. S.; Hyland, K. M.; Hieter, P.; Li, J. J.

    1996-01-01

    We have devised a genetic screen, termed synthetic dosage lethality, in which a cloned ``reference'' gene is inducibly overexpressed in a set of mutant strains carrying potential ``target'' mutations. To test the specificity of the method, two reference genes, CTF13, encoding a centromere binding protein, and ORC6, encoding a subunit of the origin of replication binding complex, were overexpressed in a large collection of mutants defective in either chromosome segregation or replication. CTF13 overexpression caused synthetic dosage lethality in combination with ctf14-42 (cbf2, ndc10), ctf17-61 (chl4), ctf19-58 and ctf19-26. ORC6 overexpression caused synthetic dosage lethality in combination with cdc2-1, cdc6-1, cdc14-1, cdc16-1 and cdc46-1. These relationships reflect specific interactions, as overexpression of CTF13 caused lethality in kinetochore mutants and overexpression of ORC6 caused lethality in replication mutants. In contrast, only one case of dosage suppression was observed. We suggest that synthetic dosage lethality identifies a broad spectrum of interacting mutations and is of general utility in detecting specific genetic interactions using a cloned wild-type gene as a starting point. Furthermore, synthetic dosage lethality is easily adapted to the study of cloned genes in other organisms. PMID:8722765

  9. Lethality test system

    SciTech Connect

    Parsons, W.M.; Sims, J.R.; Parker, J.V.

    1986-01-01

    The Lethality Test System (LTS), presently under construction at Los Alamos, is an electromagnetic launcher facility designed to perform impact experiments at velocities up to 15 km/s. The launcher is a 25 mm round bore, plasma armature railgun extending 22 m in length. Preinjection is accomplished with a two-stage gas gun capable of 7 km/s. The railgun power supply utilizes traction motors, vacuum interrupters, and pulse transformers. An assembly of 28 traction motors, equipped with flywheels, stores approximately 80 MJ at 92% of full speed and energizes the primary windings of three pulse transformers at a current of 50 kA. At peak current an array of vacuum interrupters disconnects the transformer primary windings and forces the current to flow in the secondary windings. The secondary windings are connected to the railgun, and by staging the vacuum interrupter openings, a 1 MA to 1.3 MA ramped current waveform will be delivered to the railgun.

  10. The Lethality Test System

    NASA Astrophysics Data System (ADS)

    Parsons, W. M.; Sims, J. R.; Parker, J. V.

    1986-11-01

    The Lethality Test System (LTS) under construction at Los Alamos is an electromagnetic launcher facility designed to perform impact experiments at velocities up to 15 km/sec. The launcher is a 25 mm round bore, plasma armature railgun 22 m in length. Preinjection is accomplished with a two-stage light gas gun capable of 7 km/sec. The railgun power supply utilizes traction motors, vacuum interrupters, and pulse transformers. An assembly of 28 traction motors, equipped with flywheels, stores approximately 80 MJ at 92 percent of full speed and energizes the primary windings of three pulse transformers at a current of 50 kA. At peak current an array of vacuum interrupters disconnects the transformer primary windings and forces the current to flow in the secondary windings. The secondary windings are connected to the railgun, and by staging the vacuum interrupter openings, a 1-1.3 MA ramped current waveform will be delivered to the railgun.

  11. SCREENING FOR REFERRAL BY A SPORTS PHYSICAL THERAPIST REVEALS AN EFFORT THROMBOSIS IN A COLLEGIATE PITCHER: A CASE REPORT

    PubMed Central

    Pinerola, Jase; Ogle, Karen Craig; Wallmann, Harvey W.

    2016-01-01

    ABSTRACT Background and Purpose Screening for referral, regardless of setting, is the responsibility of all physical therapists. A serious condition that sports physical therapists may encounter is upper extremity (UE) deep venous thrombosis (DVT), which can result in the important and sometimes fatal complication of pulmonary embolism. Case Description A 22 year-old male right-hand dominant collegiate pitcher was referred for physical therapist evaluation and treatment secondary to acute right UE pain and swelling. The athlete described the onset of these symptoms as insidious, denying any form of trauma. The athlete had undergone testing, which included UE Doppler ultrasound of the bilateral UE veins and a computed tomography (CT) scan of the chest without contrast; both of which were deemed negative. He was subsequently diagnosed with thoracic outlet syndrome and referred to the team physical therapist. After examination, the physical therapist hypothesized the athlete was presenting with a possible vascular compromise. Findings leading to this decision were: 1) insidious onset, 2) inability to account for the athlete's pain with ROM, strength, neurological, or provocation testing, 3) significant swelling of the right UE (arm and forearm), 4) increased discomfort with palpation in the supraclavicular region, and 5) history of strenuous UE use. Outcomes The athlete was referred back to the orthopedist. A venogram CT was ordered, which revealed an axillary and subclavian DVT and the presence of venous collaterals. The athlete was referred to a vascular surgeon who performed a right first rib removal. The athlete was able to complete post-operative rehabilitation and successfully return to competitive throwing the following spring. Discussion The delay in the initial diagnosis may have been due to the vague symptomology associated with venous complications and negative findings upon initial diagnostic testing. Conclusion This case report highlights the importance

  12. Heterogeneity of Lethals in a "Simple" Lethal Complementation Group

    PubMed Central

    Janca, Frank C.; Woloshyn, Effie P.; Nash, David

    1986-01-01

    Of 24 ethyl methanesulphonate-induced, recessive-lethal mutations in the region 9E1-9F13 of the X chromosome of Drosophila melanogaster , eight fall into a typically homogeneous lethal complementation group associated with the raspberry (ras) locus. Mutations in this group have previously been shown to be pleiotropic, affecting not only ras but also two other genetic entities, gua1 and pur1, which yield auxotrophic mutations.—The eight new mutations have been characterized phenotypically in double heterozygotes with gua1, pur1 and ras mutations. Despite their homogeneity in lethal complementation tests, the mutations prove quite diverse. For example, two mutations have little or no effect on eye color in double heterozygotes with ras2 . The differences between the lethals are allele-specific and cannot be explained as a trivial outcome of a hypomorphic series.—Taken alone, the lethal complementation studies mask the complexity of the locus and the diversity of its recessive lethal alleles. By extension, we argue that the general use of lethal saturation studies provides an unduly simplified image of genetic organization. We suggest that the reason why recessive lethal mutations rarely present complex complementation patterns is that complex loci tend to produce mutations that affect several subfunctions. PMID:3080355

  13. Evaluation of lethal and non-lethal sampling methods for the detection of white sturgeon iridovirus infection in white sturgeon, Acipenser transmontanus (Richardson).

    PubMed

    Drennan, J D; Lapatra, S E; Samson, C A; Ireland, S; Eversman, K F; Cain, K D

    2007-06-01

    Pectoral fin tissue of white sturgeon was investigated as a potential non-lethal sample source for the detection of white sturgeon iridovirus (WSIV) infection. Histopathology and polymerase chain reaction (PCR) results using fin tissue were compared with the standard lethal histopathology sampling method that utilizes head tissue. Tissues for each of the three sampling methods were collected weekly for 8 weeks from individual sturgeon undergoing an experimental cohabitation challenge with fish infected with the Abernathy isolate of WSIV. Non-lethal fin histopathological evaluation did not reveal infection during the first 3 weeks of sampling, while non-lethal PCR and the lethal method were variable. However, all three sampling methods were equally capable of identifying infection from 4 to 8 weeks post-exposure. Of the survivors tested, all were negative by PCR and the lethal method, and only one fish was identified as being positive by non-lethal fin histopathology. In another experiment, all three sampling methods were applied to asymptomatic WSIV carriers in a case study conducted at the Kootenai Tribal Sturgeon Conservation Hatchery. Results showed that both lethal and non-lethal fin histopathology were equally effective in detecting infection, but PCR was unable to identify this strain of WSIV. Depending on the virus isolate, these results suggest that non-lethal sampling of fin tissue (histopathology or PCR) is comparable with the lethal sampling method at identifying WSIV infection once infection is established, and under certain circumstances may provide an alternative to lethal sampling.

  14. Microfluidic Screening Reveals Heparan Sulfate Enhances Human Mesenchymal Stem Cell Growth by Modulating Fibroblast Growth Factor-2 Transport.

    PubMed

    Titmarsh, Drew M; Tan, Clarissa L L; Glass, Nick R; Nurcombe, Victor; Cooper-White, Justin J; Cool, Simon M

    2017-04-01

    Cost-effective expansion of human mesenchymal stem/stromal cells (hMSCs) remains a key challenge for their widespread clinical deployment. Fibroblast growth factor-2 (FGF-2) is a key hMSC mitogen often supplemented to increase hMSC growth rates. However, hMSCs also produce endogenous FGF-2, which critically interacts with cell surface heparan sulfate (HS). We assessed the interplay of FGF-2 with a heparan sulfate variant (HS8) engineered to bind FGF-2 and potentiate its activity. Bone marrow-derived hMSCs were screened in perfused microbioreactor arrays (MBAs), showing that HS8 (50 μg/ml) increased hMSC proliferation and cell number after 3 days, with an effect equivalent to FGF-2 (50 ng/ml). In combination, the effects of HS8 and FGF-2 were additive. Differential cell responses, from upstream to downstream culture chambers under constant flow of media in the MBA, provided insights into modulation of FGF-2 transport by HS8. HS8 treatment induced proliferation mainly in the downstream chambers, suggesting a requirement for endogenous FGF-2 accumulation, whereas responses to FGF-2 occurred primarily in the upstream chambers. Adding HS8 along with FGF-2, however, maximized the range of FGF-2 effectiveness. Measurements of FGF-2 in static cultures then revealed that this was because HS8 caused increased endogenous FGF-2 production and liberated FGF-2 from the cell surface into the supernatant. HS8 also sustained levels of supplemented FGF-2 available over 3 days. These results suggest HS8 enhances hMSC proliferation and expansion by leveraging endogenous FGF-2 production and maximizing the effect of supplemented FGF-2. This is an exciting strategy for cost-effective expansion of hMSCs. Stem Cells Translational Medicine 2017;6:1178-1190.

  15. A binding hotspot in Trypanosoma cruzi histidyl-tRNA synthetase revealed by fragment-based crystallographic cocktail screens

    PubMed Central

    Koh, Cho Yeow; Kallur Siddaramaiah, Latha; Ranade, Ranae M.; Nguyen, Jasmine; Jian, Tengyue; Zhang, Zhongsheng; Gillespie, J. Robert; Buckner, Frederick S.; Verlinde, Christophe L. M. J.; Fan, Erkang; Hol, Wim G. J.

    2015-01-01

    American trypanosomiasis, commonly known as Chagas disease, is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. The chronic form of the infection often causes debilitating morbidity and mortality. However, the current treatment for the disease is typically inadequate owing to drug toxicity and poor efficacy, necessitating a continual effort to discover and develop new antiparasitic therapeutic agents. The structure of T. cruzi histidyl-tRNA synthetase (HisRS), a validated drug target, has previously been reported. Based on this structure and those of human cytosolic HisRS, opportunities for the development of specific inhibitors were identified. Here, efforts are reported to identify small molecules that bind to T. cruzi HisRS through fragment-based crystallographic screening in order to arrive at chemical starting points for the development of specific inhibitors. T. cruzi HisRS was soaked into 68 different cocktails from the Medical Structural Genomics of Pathogenic Protozoa (MSGPP) fragment library and diffraction data were collected to identify bound fragments after soaking. A total of 15 fragments were identified, all bound to the same site on the protein, revealing a fragment-binding hotspot adjacent to the ATP-binding pocket. On the basis of the initial hits, the design of reactive fragments targeting the hotspot which would be simultaneously covalently linked to a cysteine residue present only in trypanosomatid HisRS was initiated. Inhibition of T. cruzi HisRS was observed with the resultant reactive fragments and the anticipated binding mode was confirmed crystallo­graphically. These results form a platform for the development of future generations of selective inhibitors for trypanosomatid HisRS. PMID:26249349

  16. Antimicrobial, antitumor and brine shrimp lethality assay of Ranunculus arvensis L. extracts.

    PubMed

    Bhatti, Muhammad Zeeshan; Ali, Amjad; Saeed, Asma; Saeed, Ahmad; Malik, Salman Akbar

    2015-05-01

    To investigate the antitumor activity, brine shrimp lethality assay, antibacterial and antifungal activity of Methanol Extract (ME), Water Extract (WE), Acetone Extract (AE), Chloroform Extract (CE), Methanol-Water Extract (MWE), Methanol-Acetone Extract (MAE), Methanol-Chloroform Extract (MCE) of Ranunculus arvensis (L.). Antitumor activity was evaluated with Agrobacterium tumefaciens (At10) induced potato disc assay. Cytotoxicity was evaluated with brine shrimp lethality assay. Antibacterial activity was evaluated with six bacterial strains including Escherichia coli, Enterobacter aerogenes, Bordetella bronchiseptica, Klebsiella pneumoniae, Micrococcus luteus and Streptococcus anginosus and antifungal screening was done against five fungal strains including Aspergillus niger, A. flavus, A. fumigates, Fusarium solani and Mucor species by using disc diffusion method. Best antitumor activity was obtained with ME and WE, having highest IC50 values 20.27 ± 1.62 and 93.01 ± 1.33μg/disc. Brine shrimp lethality assay showed LC50 values of AE, MAE and ME were obtained as 384.66 ± 9.42μg/ml, 724.11 ± 8.01μg/ml and 978.7 ±8.01 μg/ml respectively. WE of R. arvensis revealed weak antimicrobial result against the tested microorganisms. On the other hand, the antifungal activity of the plant extracts was found to be insignificant. These findings demonstrate that extracts of R. arvensis possesses significant antitumor activity. Further extensive study is necessary to assess the therapeutic potential of the plant.

  17. Potential lethal and non-lethal effects of predators on dispersal of spider mites.

    PubMed

    Otsuki, Hatsune; Yano, Shuichi

    2014-11-01

    Predators can affect prey dispersal lethally by direct consumption or non-lethally by making prey hesitate to disperse. These lethal and non-lethal effects are detectable only in systems where prey can disperse between multiple patches. However, most studies have drawn their conclusions concerning the ability of predatory mites to suppress spider mites based on observations of their interactions on a single patch or on heavily infested host plants where spider mites could hardly disperse toward intact patches. In these systems, specialist predatory mites that penetrate protective webs produced by spider mites quickly suppress the spider mites, whereas generalist predators that cannot penetrate the webs were ineffective. By using a connected patch system, we revealed that a generalist ant, Pristomyrmex punctatus Mayr (Hymenoptera: Formicidae), effectively prevented dispersal of spider mites, Tetranychus kanzawai Kishida (Acari: Tetranychidae), by directly consuming dispersing individuals. We also revealed that a generalist predatory mite, Euseius sojaensis Ehara (Acari: Phytoseiidae), prevented between-patch dispersal of T. kanzawai by making them hesitate to disperse. In contrast, a specialist phytoseiid predatory mite, Neoseiulus womersleyi Schicha, allowed spider mites to escape an initial patch, increasing the number of colonized patches within the system. Our results suggest that ants and generalist predatory mites can effectively suppress Tetranychus species under some conditions, and should receive more attention as agents for conservation biological control in agroecosystems.

  18. Virtual screening using MTiOpenScreen and PyRx 0,8 revealed ZINC95486216 as a human acetylcholinesterase inhibitor candidate

    NASA Astrophysics Data System (ADS)

    Sulistyo Dwi K., P.; Arindra Trisna, W.; Vindri Catur P., W.; Wijayanti, Erna; Ichsan, Mochammad

    2016-03-01

    One of the efforts to prevent Alzheimer's disease becomes more severe is by inhibiting the activity of Human acetylcholinesterase enzyme (PDB ID: 4BDT). In this study, virtual screening againts 885 natural compounds from AfroDB has been done using MTIOpenScreen and this step has been successful in identifying ZINC15121024 (-12,9) and ZINC95486216 (-12,7) as the top rank compounds. This data then strengthened by the results of second docking step using Autodock software that has been integrated in PyRx 0.8 software. From this stage, ZINC95486216 (-11,3 kcal/mol) is a compound with the most negative binding affinity compared with four Alzheimer's drugs that have been officially used to date including Rivastigmine (-6,3 Kcal/mol), Donepenzil (-7.9 kcal/mol), Galantamine (-8.4 kcal/mol), and Huprine W (-7.3 kcal/mol). In addition, based on the results of the 2D and 3D visualization using LigPlus and PyMol softwares, respectively, known that the five compounds above are equally capable of binding to several amino acids (Trp 286, Phe295, and Tyr341) located in the active site of Human Acetylcholinesterase enzyme.

  19. Proteomic screening of variola virus reveals a unique NF-kappaB inhibitor that is highly conserved among pathogenic orthopoxviruses.

    PubMed

    Mohamed, Mohamed R; Rahman, Masmudur M; Lanchbury, Jerry S; Shattuck, Donna; Neff, Chris; Dufford, Max; van Buuren, Nick; Fagan, Katharine; Barry, Michele; Smith, Scott; Damon, Inger; McFadden, Grant

    2009-06-02

    Identification of the binary interactions between viral and host proteins has become a valuable tool for investigating viral tropism and pathogenesis. Here, we present the first systematic protein interaction screening of the unique variola virus proteome by using yeast 2-hybrid screening against a variety of human cDNA libraries. Several protein-protein interactions were identified, including an interaction between variola G1R, an ankryin/F-box containing protein, and human nuclear factor kappa-B1 (NF-kappaB1)/p105. This represents the first direct interaction between a pathogen-encoded protein and NF-kappaB1/p105. Orthologs of G1R are present in a variety of pathogenic orthopoxviruses, but not in vaccinia virus, and expression of any one of these viral proteins blocks NF-kappaB signaling in human cells. Thus, proteomic screening of variola virus has the potential to uncover modulators of the human innate antiviral responses.

  20. Identification of genes important for cutaneous function revealed by a large scale reverse genetic screen in the mouse.

    PubMed

    DiTommaso, Tia; Jones, Lynelle K; Cottle, Denny L; Gerdin, Anna-Karin; Vancollie, Valerie E; Watt, Fiona M; Ramirez-Solis, Ramiro; Bradley, Allan; Steel, Karen P; Sundberg, John P; White, Jacqueline K; Smyth, Ian M

    2014-10-01

    The skin is a highly regenerative organ which plays critical roles in protecting the body and sensing its environment. Consequently, morbidity and mortality associated with skin defects represent a significant health issue. To identify genes important in skin development and homeostasis, we have applied a high throughput, multi-parameter phenotype screen to the conditional targeted mutant mice generated by the Wellcome Trust Sanger Institute's Mouse Genetics Project (Sanger-MGP). A total of 562 different mouse lines were subjected to a variety of tests assessing cutaneous expression, macroscopic clinical disease, histological change, hair follicle cycling, and aberrant marker expression. Cutaneous lesions were associated with mutations in 23 different genes. Many of these were not previously associated with skin disease in the organ (Mysm1, Vangl1, Trpc4ap, Nom1, Sparc, Farp2, and Prkab1), while others were ascribed new cutaneous functions on the basis of the screening approach (Krt76, Lrig1, Myo5a, Nsun2, and Nf1). The integration of these skin specific screening protocols into the Sanger-MGP primary phenotyping pipelines marks the largest reported reverse genetic screen undertaken in any organ and defines approaches to maximise the productivity of future projects of this nature, while flagging genes for further characterisation.

  1. High-Throughput Screening Reveals Alsterpaullone, 2-Cyanoethyl as a Potent p27Kip1 Transcriptional Inhibitor

    PubMed Central

    Walters, Brandon J.; Lin, Wenwei; Diao, Shiyong; Brimble, Mark; Iconaru, Luigi I.; Dearman, Jennifer; Goktug, Asli; Chen, Taosheng; Zuo, Jian

    2014-01-01

    p27Kip1 is a cell cycle inhibitor that prevents cyclin dependent kinase (CDK)/cyclin complexes from phosphorylating their targets. p27Kip1 is a known tumor suppressor, as the germline loss of p27Kip1 results in sporadic pituitary formation in aged rodents, and its presence in human cancers is indicative of a poor prognosis. In addition to its role in cancer, loss of p27Kip1 results in regenerative phenotypes in some tissues and maintenance of stem cell pluripotency, suggesting that p27Kip1 inhibitors could be beneficial for tissue regeneration. Because p27Kip1 is an intrinsically disordered protein, identifying direct inhibitors of the p27Kip1 protein is difficult. Therefore, we pursued a high-throughput screening strategy to identify novel p27Kip1 transcriptional inhibitors. We utilized a luciferase reporter plasmid driven by the p27Kip1 promoter to transiently transfect HeLa cells and used cyclohexamide as a positive control for non-specific inhibition. We screened a “bioactive” library consisting of 8,904 (4,359 unique) compounds, of which 830 are Food and Drug Administration (FDA) approved. From this screen, we successfully identified 111 primary hits with inhibitory effect against the promoter of p27Kip1. These hits were further refined using a battery of secondary screens. Here we report four novel p27Kip1 transcriptional inhibitors, and further demonstrate that our most potent hit compound (IC50 = 200 nM) Alsterpaullone 2-cyanoethyl, inhibits p27Kip1 transcription by preventing FoxO3a from binding to the p27Kip1 promoter. This screen represents one of the first attempts to identify inhibitors of p27Kip1 and may prove useful for future tissue regeneration studies. PMID:24646893

  2. In vitro screening of compounds against laboratory and field isolates of human hookworm reveals quantitative differences in anthelmintic susceptibility.

    PubMed

    Treger, Rebecca S; Otchere, Joseph; Keil, Martin F; Quagraine, Josephine E; Rai, Ganesha; Mott, Bryan T; Humphries, Debbie L; Wilson, Michael; Cappello, Michael; Vermeire, Jon J

    2014-01-01

    A panel of 80 compounds was screened for anthelmintic activity against a laboratory strain of Ancylostoma ceylanicum and field isolates of hookworm obtained from school children in the Kintampo North District of the Brong Ahafo Region of Ghana. Although the laboratory strain of A. ceylanicum was more susceptible to the compounds tested than the field isolates of hookworm, a twofold increase in compound concentration resulted in comparable egg hatch percent inhibition for select compounds. These data provide evidence that the efficacy of anthelmintic compounds may be species-dependent and that field and laboratory strains of hookworm differ in their sensitivities to the anthelmintics tested. These data also suggest that both compound concentration and hookworm species must be considered when screening to identify novel anthelmintic compounds.

  3. High throughput flow cytometry screening reveals a novel role for JAM-A as a cancer stem cell maintenance factor

    PubMed Central

    Lathia, Justin D.; Li, Meizhang; Sinyuk, Maksim; Alvarado, Alvaro G.; Flavahan, William A.; Stoltz, Kevin; Rosager, Ann Mari; Hale, James; Hitomi, Masahiro; Gallagher, Joseph; Wu, Qiulian; Martin, Jody; Vidal, Jason G.; Nakano, Ichiro; Dahlrot, Rikke H.; Hansen, Steinbjørn; McLendon, Roger E.; Sloan, Andrew E.; Bao, Shideng; Hjelmeland, Anita B.; Carson, Christian T.; Naik, Ulhas P.; Kristensen, Bjarne; Rich, Jeremy N.

    2014-01-01

    Summary Stem cells reside in niches that regulate the balance between self-renewal and differentiation. The identity of a stem cell is linked with the ability to interact with its niche through adhesion mechanisms. To identify targets that disrupt cancer stem cell (CSC) adhesion, we performed a flow cytometry screen on patient derived glioblastoma (GBM) cells and identified junctional adhesion molecule-A (JAM-A) as a CSC adhesion mechanism essential for self-renewal and tumor growth. JAM-A was dispensable for normal neural stem/progenitor cell (NPC) function and JAM-A expression was reduced in normal brain versus GBM. Targeting JAM-A compromises the self-renewal of CSCs. JAM-A expression negatively correlated to GBM patient prognosis. Our results demonstrate that novel GBM targeting strategies can be identified through screening adhesion receptors and JAM-A represents a novel mechanism for niche driven CSC maintenance. PMID:24373972

  4. Syn-Lethality: An Integrative Knowledge Base of Synthetic Lethality towards Discovery of Selective Anticancer Therapies

    PubMed Central

    Li, Xue-juan; Mishra, Shital K.; Wu, Min; Zhang, Fan

    2014-01-01

    Synthetic lethality (SL) is a novel strategy for anticancer therapies, whereby mutations of two genes will kill a cell but mutation of a single gene will not. Therefore, a cancer-specific mutation combined with a drug-induced mutation, if they have SL interactions, will selectively kill cancer cells. While numerous SL interactions have been identified in yeast, only a few have been known in human. There is a pressing need to systematically discover and understand SL interactions specific to human cancer. In this paper, we present Syn-Lethality, the first integrative knowledge base of SL that is dedicated to human cancer. It integrates experimentally discovered and verified human SL gene pairs into a network, associated with annotations of gene function, pathway, and molecular mechanisms. It also includes yeast SL genes from high-throughput screenings which are mapped to orthologous human genes. Such an integrative knowledge base, organized as a relational database with user interface for searching and network visualization, will greatly expedite the discovery of novel anticancer drug targets based on synthetic lethality interactions. The database can be downloaded as a stand-alone Java application. PMID:24864230

  5. Proteomic screening of variola virus reveals a unique NF-κB inhibitor that is highly conserved among pathogenic orthopoxviruses

    PubMed Central

    Mohamed, Mohamed R.; Rahman, Masmudur M.; Lanchbury, Jerry S.; Shattuck, Donna; Neff, Chris; Dufford, Max; van Buuren, Nick; Fagan, Katharine; Barry, Michele; Smith, Scott; Damon, Inger; McFadden, Grant

    2009-01-01

    Identification of the binary interactions between viral and host proteins has become a valuable tool for investigating viral tropism and pathogenesis. Here, we present the first systematic protein interaction screening of the unique variola virus proteome by using yeast 2-hybrid screening against a variety of human cDNA libraries. Several protein–protein interactions were identified, including an interaction between variola G1R, an ankryin/F-box containing protein, and human nuclear factor kappa-B1 (NF-κB1)/p105. This represents the first direct interaction between a pathogen-encoded protein and NF-κB1/p105. Orthologs of G1R are present in a variety of pathogenic orthopoxviruses, but not in vaccinia virus, and expression of any one of these viral proteins blocks NF-κB signaling in human cells. Thus, proteomic screening of variola virus has the potential to uncover modulators of the human innate antiviral responses. PMID:19451633

  6. Pan-neuronal screening in Caenorhabditis elegans reveals asymmetric dynamics of AWC neurons is critical for thermal avoidance behavior

    PubMed Central

    Kotera, Ippei; Tran, Nhat Anh; Fu, Donald; Kim, Jimmy HJ; Byrne Rodgers, Jarlath; Ryu, William S

    2016-01-01

    Understanding neural functions inevitably involves arguments traversing multiple levels of hierarchy in biological systems. However, finding new components or mechanisms of such systems is extremely time-consuming due to the low efficiency of currently available functional screening techniques. To overcome such obstacles, we utilize pan-neuronal calcium imaging to broadly screen the activity of the C. elegans nervous system in response to thermal stimuli. A single pass of the screening procedure can identify much of the previously reported thermosensory circuitry as well as identify several unreported thermosensory neurons. Among the newly discovered neural functions, we investigated in detail the role of the AWCOFF neuron in thermal nociception. Combining functional calcium imaging and behavioral assays, we show that AWCOFF is essential for avoidance behavior following noxious heat stimulation by modifying the forward-to-reversal behavioral transition rate. We also show that the AWCOFF signals adapt to repeated noxious thermal stimuli and quantify the corresponding behavioral adaptation. DOI: http://dx.doi.org/10.7554/eLife.19021.001 PMID:27849153

  7. A cell protection screen reveals potent inhibitors of multiple stages of the hepatitis C virus life cycle

    PubMed Central

    Chockalingam, Karuppiah; Simeon, Rudo L.; Rice, Charles M.; Chen, Zhilei

    2010-01-01

    The hepatitis C virus (HCV) life cycle involves multiple steps, but most current drug candidates target only viral replication. The inability to systematically discover inhibitors targeting multiple steps of the HCV life cycle has hampered antiviral development. We present a simple screen for HCV antivirals based on the alleviation of HCV-mediated cytopathic effect in an engineered cell line—n4mBid. This approach obviates the need for a secondary screen to avoid cytotoxic false-positive hits. Application of our screen to 1280 compounds, many in clinical trials or approved for therapeutic use, yielded >200 hits. Of the 55 leading hits, 47 inhibited one or more aspects of the HCV life cycle by >40%. Six compounds blocked HCV entry to levels similar to an antibody (JS-81) targeting the HCV entry receptor CD81. Seven hits inhibited HCV replication and/or infectious virus production by >100-fold, with one (quinidine) inhibiting infectious virus production by 450-fold relative to HCV replication levels. This approach is simple and inexpensive and should enable the rapid discovery of new classes of HCV life cycle inhibitors. PMID:20142494

  8. Inhibitors of the Metalloproteinase Anthrax Lethal Factor

    PubMed Central

    Goldberg, Allison B.; Turk, Benjamin E.

    2016-01-01

    Bacillus anthracis, a rod shaped, spore forming, gram positive bacteria, is the etiological agent of anthrax. B. anthracis virulence is partly attributable to two secreted bipartite protein toxins, which act inside host cells to disrupt signaling pathways important for host defense against infection. These toxins may also directly contribute to mortality in late stage infection. The zinc-dependent metalloproteinase anthrax lethal factor (LF) is a critical component of one of these protein toxins and a prime target for inhibitor development to produce anthrax therapeutics. Here, we describe recent efforts to identify specific and potent LF inhibitors. Derivatization of peptide substrate analogs bearing zinc-binding groups has produced potent and specific LF inhibitors, and X-ray crystallography of LF-inhibitor complexes has provided insight into features required for high affinity binding. Novel inhibitor scaffolds have been identified through several approaches, including fragment-based drug discovery, virtual screening, and high-throughput screening of diverse compound libraries. Lastly, efforts to discover LF inhibitors have led to the development of new screening strategies, such as the use of full-length proteins as substrates, that may prove useful for other proteases as well. Overall, these efforts have led to a collection of chemically and mechanistically diverse molecules capable of inhibiting LF activity in vitro and in cells, as well as in animal models of anthrax infection. PMID:27072692

  9. A systematic High-Content Screening microscopy approach reveals key roles for Rab33b, OATL1 and Myo6 in nanoparticle trafficking in HeLa cells

    PubMed Central

    Panarella, Angela; Bexiga, Mariana G.; Galea, George; O’ Neill, Elaine D.; Salvati, Anna; Dawson, Kenneth A.; Simpson, Jeremy C.

    2016-01-01

    Synthetic nanoparticles are promising tools for imaging and drug delivery; however the molecular details of cellular internalization and trafficking await full characterization. Current knowledge suggests that following endocytosis most nanoparticles pass from endosomes to lysosomes. In order to design effective drug delivery strategies that can use the endocytic pathway, or by-pass lysosomal accumulation, a comprehensive understanding of nanoparticle uptake and trafficking mechanisms is therefore fundamental. Here we describe and apply an RNA interference-based high-content screening microscopy strategy to assess the intracellular trafficking of fluorescently-labeled polystyrene nanoparticles in HeLa cells. We screened a total of 408 genes involved in cytoskeleton and membrane function, revealing roles for myosin VI, Rab33b and OATL1 in this process. This work provides the first systematic large-scale quantitative assessment of the proteins responsible for nanoparticle trafficking in cells, paving the way for subsequent genome-wide studies. PMID:27374232

  10. A High Throughput Phenotypic Screening reveals compounds that counteract premature osteogenic differentiation of HGPS iPS-derived mesenchymal stem cells

    PubMed Central

    Lo Cicero, Alessandra; Jaskowiak, Anne-Laure; Egesipe, Anne-Laure; Tournois, Johana; Brinon, Benjamin; Pitrez, Patricia R.; Ferreira, Lino; de Sandre-Giovannoli, Annachiara; Levy, Nicolas; Nissan, Xavier

    2016-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process and, among these, all-trans retinoic acid and 13-cis-retinoic acid, that also decreased progerin expression. This study highlights the potential of high-throughput drug screening using HGPS iPS-derived cells, in order to find therapeutic compounds for HGPS and, potentially, for other aging-related disorders. PMID:27739443

  11. A High Throughput Phenotypic Screening reveals compounds that counteract premature osteogenic differentiation of HGPS iPS-derived mesenchymal stem cells.

    PubMed

    Lo Cicero, Alessandra; Jaskowiak, Anne-Laure; Egesipe, Anne-Laure; Tournois, Johana; Brinon, Benjamin; Pitrez, Patricia R; Ferreira, Lino; de Sandre-Giovannoli, Annachiara; Levy, Nicolas; Nissan, Xavier

    2016-10-14

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process and, among these, all-trans retinoic acid and 13-cis-retinoic acid, that also decreased progerin expression. This study highlights the potential of high-throughput drug screening using HGPS iPS-derived cells, in order to find therapeutic compounds for HGPS and, potentially, for other aging-related disorders.

  12. Zebrafish embryo screen for mycobacterial genes involved in the initiation of granuloma formation reveals a newly identified ESX-1 component.

    PubMed

    Stoop, Esther J M; Schipper, Tim; Rosendahl Huber, Sietske K; Nezhinsky, Alexander E; Verbeek, Fons J; Gurcha, Sudagar S; Besra, Gurdyal S; Vandenbroucke-Grauls, Christina M J E; Bitter, Wilbert; van der Sar, Astrid M

    2011-07-01

    The hallmark of tuberculosis (TB) is the formation of granulomas, which are clusters of infected macrophages surrounded by additional macrophages, neutrophils and lymphocytes. Although it has long been thought that granulomas are beneficial for the host, there is evidence that mycobacteria also promote the formation of these structures. In this study, we aimed to identify new mycobacterial factors involved in the initial stages of granuloma formation. We exploited the zebrafish embryo Mycobacterium marinum infection model to study initiation of granuloma formation and developed an in vivo screen to select for random M. marinum mutants that were unable to induce granuloma formation efficiently. Upon screening 200 mutants, three mutants repeatedly initiated reduced granuloma formation. One of the mutants was found to be defective in the espL gene, which is located in the ESX-1 cluster. The ESX-1 cluster is disrupted in the Mycobacterium bovis BCG vaccine strain and encodes a specialized secretion system known to be important for granuloma formation and virulence. Although espL has not been implicated in protein secretion before, we observed a strong effect on the secretion of the ESX-1 substrates ESAT-6 and EspE. We conclude that our zebrafish embryo M. marinum screen is a useful tool to identify mycobacterial genes involved in the initial stages of granuloma formation and that we have identified a new component of the ESX-1 secretion system. We are confident that our approach will contribute to the knowledge of mycobacterial virulence and could be helpful for the development of new TB vaccines.

  13. 'In-Format' screening of a novel bispecific antibody format reveals significant potency improvements relative to unformatted molecules.

    PubMed

    Scott, Martin J; Lee, Jennifer A; Wake, Matthew S; Batt, Kelly V; Wattam, Trevor A; Hiles, Ian D; Batuwangala, Thil D; Ashman, Claire I; Steward, Michael

    2017-01-01

    Bispecific antibodies (BsAbs) are emerging as an important class of biopharmaceutical. The majority of BsAbs are created from conventional antibodies or fragments engineered into more complex configurations. A recurring challenge in their development, however, is the identification of components that are optimised for inclusion in the final format in order to deliver both efficacy and robust biophysical properties. Using a modular BsAb format, the mAb-dAb, we assessed whether an 'in-format' screening approach, designed to select format-compatible domain antibodies, could expedite lead discovery. Human nerve growth factor (NGF) was selected as an antigen to validate the approach; domain antibody (dAb) libraries were screened, panels of binders identified, and binding affinities and potencies compared for selected dAbs and corresponding mAb-dAbs. A number of dAbs that exhibited high potency (IC50) when assessed in-format were identified. In contrast, the corresponding dAb monomers had ∼1000-fold lower potency than the formatted dAbs; such dAb monomers would therefore have been omitted from further characterization. Subsequent stoichiometric analyses of mAb-dAbs bound to NGF, or an additional target antigen (vascular endothelial growth factor), suggested different target binding modes; this indicates that the observed potency improvements cannot be attributed simply to an avidity effect offered by the mAb-dAb format. We conclude that, for certain antigens, screening naïve selection outputs directly in-format enables the identification of a subset of format-compatible dAbs, and that this offers substantial benefits in terms of molecular properties and development time.

  14. Brain transcriptome-wide screen for HIV-1 Nef protein interaction partners reveals various membrane-associated proteins.

    PubMed

    Kammula, Ellen C; Mötter, Jessica; Gorgels, Alexandra; Jonas, Esther; Hoffmann, Silke; Willbold, Dieter

    2012-01-01

    HIV-1 Nef protein contributes essentially to the pathology of AIDS by a variety of protein-protein-interactions within the host cell. The versatile functionality of Nef is partially attributed to different conformational states and posttranslational modifications, such as myristoylation. Up to now, many interaction partners of Nef have been identified using classical yeast two-hybrid screens. Such screens rely on transcriptional activation of reporter genes in the nucleus to detect interactions. Thus, the identification of Nef interaction partners that are integral membrane proteins, membrane-associated proteins or other proteins that do not translocate into the nucleus is hampered. In the present study, a split-ubiquitin based yeast two-hybrid screen was used to identify novel membrane-localized interaction partners of Nef. More than 80% of the hereby identified interaction partners of Nef are transmembrane proteins. The identified hits are GPM6B, GPM6A, BAP31, TSPAN7, CYB5B, CD320/TCblR, VSIG4, PMEPA1, OCIAD1, ITGB1, CHN1, PH4, CLDN10, HSPA9, APR-3, PEBP1 and B3GNT, which are involved in diverse cellular processes like signaling, apoptosis, neurogenesis, cell adhesion and protein trafficking or quality control. For a subfraction of the hereby identified proteins we present data supporting their direct interaction with HIV-1 Nef. We discuss the results with respect to many phenotypes observed in HIV infected cells and patients. The identified Nef interaction partners may help to further elucidate the molecular basis of HIV-related diseases.

  15. High-throughput screening of FDA-approved drugs using oxygen biosensor plates reveals secondary mitofunctional effects

    PubMed Central

    Sahdeo, Sunil; Tomilov, Alexey; Komachi, Kelly; Iwahashi, Christine; Datta, Sandipan; Hughes, Owen; Hagerman, Paul; Cortopassi, Gino

    2014-01-01

    Repurposing of FDA-approved drugs with effects on mitochondrial function might shorten the critical path to mitochondrial disease drug development. We improved a biosensor-based assay of mitochondrial O2 consumption, and identified mitofunctional defects in cell models of LHON and FXTAS. Using this platform, we screened a 1600-compound library of clinically used drugs. The assay identified drugs known to affect mitochondrial function, such as metformin and decoquinate. We also identified several drugs not previously known to affect mitochondrial respiration including acarbose, metaraminol, gallamine triethiodide, and acamprosate. These previously unknown ‘mitoactives’ represent novel links to targets for mitochondrial regulation and potentially therapy, for mitochondrial disease. PMID:25034306

  16. Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition.

    PubMed

    Sadaie, Mahito; Dillon, Christian; Narita, Masako; Narita, Masashi; Young, Andrew R J; Cairney, Claire J; Godwin, Lauren S; Torrance, Christopher J; Bennett, Dorothy C; Keith, W Nicol; Narita, Masashi

    2015-09-01

    Cellular senescence is a widespread stress response and is widely considered to be an alternative cancer therapeutic goal. Unlike apoptosis, senescence is composed of a diverse set of subphenotypes, depending on which of its associated effector programs are engaged. Here we establish a simple and sensitive cell-based prosenescence screen with detailed validation assays. We characterize the screen using a focused tool compound kinase inhibitor library. We identify a series of compounds that induce different types of senescence, including a unique phenotype associated with irregularly shaped nuclei and the progressive accumulation of G1 tetraploidy in human diploid fibroblasts. Downstream analyses show that all of the compounds that induce tetraploid senescence inhibit Aurora kinase B (AURKB). AURKB is the catalytic component of the chromosome passenger complex, which is involved in correct chromosome alignment and segregation, the spindle assembly checkpoint, and cytokinesis. Although aberrant mitosis and senescence have been linked, a specific characterization of AURKB in the context of senescence is still required. This proof-of-principle study suggests that our protocol is capable of amplifying tetraploid senescence, which can be observed in only a small population of oncogenic RAS-induced senescence, and provides additional justification for AURKB as a cancer therapeutic target.

  17. A screening for suppressor mutants reveals components involved in the blue light-inhibited sexual filamentation in Cryptococcus neoformans.

    PubMed

    Yeh, Yu-Ling; Lin, Yu-Sheng; Su, Bei-Jia; Shen, Wei-Chiang

    2009-01-01

    Blue light regulates diverse physiological and developmental processes in fungi. Our prior studies demonstrated that the evolutionally conserved Cwc1 and Cwc2 proteins mediate the blue light-inhibited sexual filamentation in Cryptococcus neoformans. To characterize the putative domains of the Cwc1 and Cwc2 proteins, we generated partially deleted versions of these genes under the GPD1 promoter and examined their effects. The results confirmed that LOV and PAS domains are essential for the function of the Cwc1 protein, and the PAS domain and zinc finger DNA-binding motif are also crucial for the Cwc2 protein. To further understand how light inhibits filamentous growth, a genome wide mutant screening was conducted to identify genes important for this process. Mutants which suppressed the light-dependent CWC1 overexpression phenotype and restored mating filamentation were identified. In the one with fully restored filamentation, the T-DNA was found to disrupt the expression of the CWC2 gene. Additionally, a mediator component, the SSN8 gene, known to involve in transcriptional regulation was also identified. Our results demonstrate that Cwc1 and Cwc2 are two central regulators of the C. neoformans photoresponses and the roles of other components identified in the screen are under investigation.

  18. Screening for Active Small Molecules in Mitochondrial Complex I Deficient Patient's Fibroblasts, Reveals AICAR as the Most Beneficial Compound

    PubMed Central

    Weissman, Sarah; Link, Gabriela; Wikstrom, Jakob D.; Saada, Ann

    2011-01-01

    Congenital deficiency of the mitochondrial respiratory chain complex I (CI) is a common defect of oxidative phosphorylation (OXPHOS). Despite major advances in the biochemical and molecular diagnostics and the deciphering of CI structure, function assembly and pathomechanism, there is currently no satisfactory cure for patients with mitochondrial complex I defects. Small molecules provide one feasible therapeutic option, however their use has not been systematically evaluated using a standardized experimental system. In order to evaluate potentially therapeutic compounds, we set up a relatively simple system measuring different parameters using only a small amount of patient's fibroblasts, in glucose free medium, where growth is highly OXPOS dependent. Ten different compounds were screened using fibroblasts derived from seven CI patients, harboring different mutations. 5-Aminoimidazole-4-carboxamide ribotide (AICAR) was found to be the most beneficial compound improving growth and ATP content while decreasing ROS production. AICAR also increased mitochondrial biogenesis without altering mitochondrial membrane potential (Δψ). Fluorescence microscopy data supported increased mitochondrial biogenesis and activation of the AMP activated protein kinase (AMPK). Other compounds such as; bezafibrate and oltipraz were rated as favorable while polyphenolic phytochemicals (resverastrol, grape seed extract, genistein and epigallocatechin gallate) were found not significant or detrimental. Although the results have to be verified by more thorough investigation of additional OXPHOS parameters, preliminary rapid screening of potential therapeutic compounds in individual patient's fibroblasts could direct and advance personalized medical treatment. PMID:22046392

  19. High content screening of a kinase-focused library reveals compounds broadly-active against dengue viruses.

    PubMed

    Cruz, Deu John M; Koishi, Andrea Cristine; Taniguchi, Juliana Bosso; Li, Xiaolan; Milan Bonotto, Rafaela; No, Joo Hwan; Kim, Keum Hyun; Baek, Sungmin; Kim, Hee Young; Windisch, Marc Peter; Pamplona Mosimann, Ana Luiza; de Borba, Luana; Liuzzi, Michel; Hansen, Michael Adsetts Edberg; Duarte dos Santos, Claudia Nunes; Freitas-Junior, Lucio Holanda

    2013-01-01

    Dengue virus is a mosquito-borne flavivirus that has a large impact in global health. It is considered as one of the medically important arboviruses, and developing a preventive or therapeutic solution remains a top priority in the medical and scientific community. Drug discovery programs for potential dengue antivirals have increased dramatically over the last decade, largely in part to the introduction of high-throughput assays. In this study, we have developed an image-based dengue high-throughput/high-content assay (HT/HCA) using an innovative computer vision approach to screen a kinase-focused library for anti-dengue compounds. Using this dengue HT/HCA, we identified a group of compounds with a 4-(1-aminoethyl)-N-methylthiazol-2-amine as a common core structure that inhibits dengue viral infection in a human liver-derived cell line (Huh-7.5 cells). Compounds CND1201, CND1203 and CND1243 exhibited strong antiviral activities against all four dengue serotypes. Plaque reduction and time-of-addition assays suggests that these compounds interfere with the late stage of viral infection cycle. These findings demonstrate that our image-based dengue HT/HCA is a reliable tool that can be used to screen various chemical libraries for potential dengue antiviral candidates.

  20. A systematic RNAi synthetic interaction screen reveals a link between p53 and snoRNP assembly.

    PubMed

    Krastev, Dragomir B; Slabicki, Mikolaj; Paszkowski-Rogacz, Maciej; Hubner, Nina C; Junqueira, Magno; Shevchenko, Andrej; Mann, Matthias; Neugebauer, Karla M; Buchholz, Frank

    2011-06-05

    TP53 (tumour protein 53) is one of the most frequently mutated genes in human cancer and its role during cellular transformation has been studied extensively. However, the homeostatic functions of p53 are less well understood. Here, we explore the molecular dependency network of TP53 through an RNAi-mediated synthetic interaction screen employing two HCT116 isogenic cell lines and a genome-scale endoribonuclease-prepared short interfering RNA library. We identify a variety of TP53 synthetic interactions unmasking the complex connections of p53 to cellular physiology and growth control. Molecular dissection of the TP53 synthetic interaction with UNRIP indicates an enhanced dependency of TP53-negative cells on small nucleolar ribonucleoprotein (snoRNP) assembly. This dependency is mediated by the snoRNP chaperone gene NOLC1 (also known as NOPP140), which we identify as a physiological p53 target gene. This unanticipated function of TP53 in snoRNP assembly highlights the potential of RNAi-mediated synthetic interaction screens to dissect molecular pathways of tumour suppressor genes.

  1. A forward genetic screen reveals novel independent regulators of ULBP1, an activating ligand for natural killer cells

    PubMed Central

    Gowen, Benjamin G; Chim, Bryan; Marceau, Caleb D; Greene, Trever T; Burr, Patrick; Gonzalez, Jeanmarie R; Hesser, Charles R; Dietzen, Peter A; Russell, Teal; Iannello, Alexandre; Coscoy, Laurent; Sentman, Charles L; Carette, Jan E; Muljo, Stefan A; Raulet, David H

    2015-01-01

    Recognition and elimination of tumor cells by the immune system is crucial for limiting tumor growth. Natural killer (NK) cells become activated when the receptor NKG2D is engaged by ligands that are frequently upregulated in primary tumors and on cancer cell lines. However, the molecular mechanisms driving NKG2D ligand expression on tumor cells are not well defined. Using a forward genetic screen in a tumor-derived human cell line, we identified several novel factors supporting expression of the NKG2D ligand ULBP1. Our results show stepwise contributions of independent pathways working at multiple stages of ULBP1 biogenesis. Deeper investigation of selected hits from the screen showed that the transcription factor ATF4 drives ULBP1 gene expression in cancer cell lines, while the RNA-binding protein RBM4 supports ULBP1 expression by suppressing a novel alternatively spliced isoform of ULBP1 mRNA. These findings offer insight into the stress pathways that alert the immune system to danger. DOI: http://dx.doi.org/10.7554/eLife.08474.001 PMID:26565589

  2. Hidden drivers of low-dose pharmaceutical pollutant mixtures revealed by the novel GSA-QHTS screening method

    PubMed Central

    Rodea-Palomares, Ismael; Gonzalez-Pleiter, Miguel; Gonzalo, Soledad; Rosal, Roberto; Leganes, Francisco; Sabater, Sergi; Casellas, Maria; Muñoz-Carpena, Rafael; Fernández-Piñas, Francisca

    2016-01-01

    The ecological impacts of emerging pollutants such as pharmaceuticals are not well understood. The lack of experimental approaches for the identification of pollutant effects in realistic settings (that is, low doses, complex mixtures, and variable environmental conditions) supports the widespread perception that these effects are often unpredictable. To address this, we developed a novel screening method (GSA-QHTS) that couples the computational power of global sensitivity analysis (GSA) with the experimental efficiency of quantitative high-throughput screening (QHTS). We present a case study where GSA-QHTS allowed for the identification of the main pharmaceutical pollutants (and their interactions), driving biological effects of low-dose complex mixtures at the microbial population level. The QHTS experiments involved the integrated analysis of nearly 2700 observations from an array of 180 unique low-dose mixtures, representing the most complex and data-rich experimental mixture effect assessment of main pharmaceutical pollutants to date. An ecological scaling-up experiment confirmed that this subset of pollutants also affects typical freshwater microbial community assemblages. Contrary to our expectations and challenging established scientific opinion, the bioactivity of the mixtures was not predicted by the null mixture models, and the main drivers that were identified by GSA-QHTS were overlooked by the current effect assessment scheme. Our results suggest that current chemical effect assessment methods overlook a substantial number of ecologically dangerous chemical pollutants and introduce a new operational framework for their systematic identification. PMID:27617294

  3. A Genomewide Screen for Tolerance to Cationic Drugs Reveals Genes Important for Potassium Homeostasis in Saccharomyces cerevisiae ▿ †

    PubMed Central

    Barreto, Lina; Canadell, David; Petrezsélyová, Silvia; Navarrete, Clara; Marešová, Lydie; Peréz-Valle, Jorge; Herrera, Rito; Olier, Iván; Giraldo, Jesús; Sychrová, Hana; Yenush, Lynne; Ramos, José; Ariño, Joaquín

    2011-01-01

    Potassium homeostasis is crucial for living cells. In the yeast Saccharomyces cerevisiae, the uptake of potassium is driven by the electrochemical gradient generated by the Pma1 H+-ATPase, and this process represents a major consumer of the gradient. We considered that any mutation resulting in an alteration of the electrochemical gradient could give rise to anomalous sensitivity to any cationic drug independently of its toxicity mechanism. Here, we describe a genomewide screen for mutants that present altered tolerance to hygromycin B, spermine, and tetramethylammonium. Two hundred twenty-six mutant strains displayed altered tolerance to all three drugs (202 hypersensitive and 24 hypertolerant), and more than 50% presented a strong or moderate growth defect at a limiting potassium concentration (1 mM). Functional groups such as protein kinases and phosphatases, intracellular trafficking, transcription, or cell cycle and DNA processing were enriched. Essentially, our screen has identified a substantial number of genes that were not previously described to play a direct or indirect role in potassium homeostasis. A subset of 27 representative mutants were selected and subjected to diverse biochemical tests that, in some cases, allowed us to postulate the basis for the observed phenotypes. PMID:21724935

  4. Hidden drivers of low-dose pharmaceutical pollutant mixtures revealed by the novel GSA-QHTS screening method.

    PubMed

    Rodea-Palomares, Ismael; Gonzalez-Pleiter, Miguel; Gonzalo, Soledad; Rosal, Roberto; Leganes, Francisco; Sabater, Sergi; Casellas, Maria; Muñoz-Carpena, Rafael; Fernández-Piñas, Francisca

    2016-09-01

    The ecological impacts of emerging pollutants such as pharmaceuticals are not well understood. The lack of experimental approaches for the identification of pollutant effects in realistic settings (that is, low doses, complex mixtures, and variable environmental conditions) supports the widespread perception that these effects are often unpredictable. To address this, we developed a novel screening method (GSA-QHTS) that couples the computational power of global sensitivity analysis (GSA) with the experimental efficiency of quantitative high-throughput screening (QHTS). We present a case study where GSA-QHTS allowed for the identification of the main pharmaceutical pollutants (and their interactions), driving biological effects of low-dose complex mixtures at the microbial population level. The QHTS experiments involved the integrated analysis of nearly 2700 observations from an array of 180 unique low-dose mixtures, representing the most complex and data-rich experimental mixture effect assessment of main pharmaceutical pollutants to date. An ecological scaling-up experiment confirmed that this subset of pollutants also affects typical freshwater microbial community assemblages. Contrary to our expectations and challenging established scientific opinion, the bioactivity of the mixtures was not predicted by the null mixture models, and the main drivers that were identified by GSA-QHTS were overlooked by the current effect assessment scheme. Our results suggest that current chemical effect assessment methods overlook a substantial number of ecologically dangerous chemical pollutants and introduce a new operational framework for their systematic identification.

  5. A direct pre-screen for marine bacteria producing compounds inhibiting quorum sensing reveals diverse planktonic bacteria that are bioactive.

    PubMed

    Linthorne, Jamie S; Chang, Barbara J; Flematti, Gavin R; Ghisalberti, Emilio L; Sutton, David C

    2015-02-01

    A promising new strategy in antibacterial research is inhibition of the bacterial communication system termed quorum sensing. In this study, a novel and rapid pre-screening method was developed to detect the production of chemical inhibitors of this system (quorum-quenching compounds) by bacteria isolated from marine and estuarine waters. This method involves direct screening of mixed populations on an agar plate, facilitating specific isolation of bioactive colonies. The assay showed that between 4 and 46 % of culturable bacteria from various samples were bioactive, and of the 95 selectively isolated bacteria, 93.7 % inhibited Vibrio harveyi bioluminescence without inhibiting growth, indicating potential production of quorum-quenching compounds. Of the active isolates, 21 % showed further activity against quorum-sensing-regulated pigment production by Serratia marcescens. The majority of bioactive isolates were identified by 16S ribosomal DNA (rDNA) amplification and sequencing as belonging to the genera Vibrio and Pseudoalteromonas. Extracts of two strongly bioactive Pseudoalteromonas isolates (K1 and B2) were quantitatively assessed for inhibition of growth and quorum-sensing-regulated processes in V. harveyi, S. marcescens and Chromobacterium violaceum. Extracts of the isolates reduced V. harveyi bioluminescence by as much as 98 % and C. violaceum pigment production by 36 % at concentrations which had no adverse effect on growth. The activity found in the extracts indicated that the isolates may produce quorum-quenching compounds. This study further supports the suggestion that quorum quenching may be a common attribute among culturable planktonic marine and estuarine bacteria.

  6. Genome-wide siRNA screen reveals amino acid starvation-induced autophagy requires SCOC and WAC

    PubMed Central

    McKnight, Nicole C; Jefferies, Harold B J; Alemu, Endalkachew A; Saunders, Rebecca E; Howell, Michael; Johansen, Terje; Tooze, Sharon A

    2012-01-01

    Autophagy is a catabolic process by which cytoplasmic components are sequestered and transported by autophagosomes to lysosomes for degradation, enabling recycling of these components and providing cells with amino acids during starvation. It is a highly regulated process and its deregulation contributes to multiple diseases. Despite its importance in cell homeostasis, autophagy is not fully understood. To find new proteins that modulate starvation-induced autophagy, we performed a genome-wide siRNA screen in a stable human cell line expressing GFP–LC3, the marker-protein for autophagosomes. Using stringent validation criteria, our screen identified nine novel autophagy regulators. Among the hits required for autophagosome formation are SCOC (short coiled-coil protein), a Golgi protein, which interacts with fasciculation and elongation protein zeta 1 (FEZ1), an ULK1-binding protein. SCOC forms a starvation-sensitive trimeric complex with UVRAG (UV radiation resistance associated gene) and FEZ1 and may regulate ULK1 and Beclin 1 complex activities. A second candidate WAC is required for starvation-induced autophagy but also acts as a potential negative regulator of the ubiquitin-proteasome system. The identification of these novel regulatory proteins with diverse functions in autophagy contributes towards a fuller understanding of autophagosome formation. PMID:22354037

  7. Molecular screening for Midichloria in hard and soft ticks reveals variable prevalence levels and bacterial loads in different tick species.

    PubMed

    Cafiso, Alessandra; Bazzocchi, Chiara; De Marco, Leone; Opara, Maxwell N; Sassera, Davide; Plantard, Olivier

    2016-10-01

    Candidatus Midichloria mitochondrii, symbiont of the sheep tick Ixodes ricinus, was the first described member of the family Candidatus Midichloriaceae, order Rickettsiales. Recent reports are expanding our view of this family, now including numerous bacteria of great biological and medical interest, indicating a widespread distribution with an increasing range of hosts, with ticks being strongly represented. Here we present a molecular screening of 17 tick species, detecting and quantifying bacteria of the family Midichloriaceae in seven of them, including the first report of a representative of this family in a soft tick species (Argasidae), Ornithodoros maritimus. Based on sequence identity and phylogenetic analysis we propose that all these bacterial symbionts of ticks could be members of the genus Midichloria. The performed screening highlights different prevalence levels and variable bacterial loads in different tick species including one, Ixodes aulacodi, where the bacterium is present in all examined individuals, like in I. ricinus. This result prompts us to hypothesize different roles of Midichloria bacteria in different tick species.

  8. High-throughput functional screening reveals low frequency of antibiotic resistance genes in DNA recovered from the Upper Mississippi River.

    PubMed

    Staley, Christopher; Gould, Trevor J; Wang, Ping; Phillips, Jane; Cotner, James B; Sadowsky, Michael J

    2015-09-01

    In this study, we determined the frequency of antibiotic resistance genes (ARGs) in the Upper Mississippi River using a high-throughput, functional, metagenomic screening procedure. Fosmid libraries containing ∼10,000 clones were screened for resistance to ampicillin, cephalothin, kanamycin, and tetracycline. We hypothesized that nutrient concentrations, land cover type, and taxonomic community composition may select for ARGs. Resistance to ampicillin, cephalothin, and kanamycin was low (<1.00%), and no resistance to tetracycline was detected. Ammonium and total dissolved solids (TDS) concentrations were correlated with kanamycin and cephalothin resistances (r=0.617 and -0.449, P=0.002 and 0.036, respectively). Cephalothin resistance was also positively correlated with the percentage of forested land cover (r=0.444, P=0.039). Only the candidate division OD1, among 35 phyla identified, was correlated with ampicillin resistance (r=0.456, P=0.033), suggesting that minority members of the community may be responsible for dissemination of ARGs in this ecosystem. Results of this study suggest that ammonium and TDS may be involved in a complex selection process for ARGs. Furthermore, we suggest that minority species, potentially contributed in low numbers from sediment and biofilm reservoirs, may be the primary carriers of ARGs in this riverine system.

  9. A mosaic genetic screen reveals distinct roles for trithorax and polycomb group genes in Drosophila eye development.

    PubMed Central

    Janody, Florence; Lee, Jeffrey D; Jahren, Neal; Hazelett, Dennis J; Benlali, Aude; Miura, Grant I; Draskovic, Irena; Treisman, Jessica E

    2004-01-01

    The wave of differentiation that traverses the Drosophila eye disc requires rapid transitions in gene expression that are controlled by a number of signaling molecules also required in other developmental processes. We have used a mosaic genetic screen to systematically identify autosomal genes required for the normal pattern of photoreceptor differentiation, independent of their requirements for viability. In addition to genes known to be important for eye development and to known and novel components of the Hedgehog, Decapentaplegic, Wingless, Epidermal growth factor receptor, and Notch signaling pathways, we identified several members of the Polycomb and trithorax classes of genes encoding general transcriptional regulators. Mutations in these genes disrupt the transitions between zones along the anterior-posterior axis of the eye disc that express different combinations of transcription factors. Different trithorax group genes have very different mutant phenotypes, indicating that target genes differ in their requirements for chromatin remodeling, histone modification, and coactivation factors. PMID:15020417

  10. Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production.

    PubMed

    Özaydın, Bilge; Burd, Helcio; Lee, Taek Soon; Keasling, Jay D

    2013-01-01

    Beside their essential cellular functions, isoprenoids have value as pharmaceuticals, nutriceuticals, pesticides, and fuel alternatives. Engineering microorganisms for production of isoprenoids is relatively easy, sustainable, and cost effective in comparison to chemical synthesis or extraction from natural producers. We introduced genes encoding carotenoid biosynthetic enzymes into the haploid yeast deletion collection to identify gene deletions that improved isoprenoid production. Deletions that showed significant improvement in carotenoid production were further screened for production of bisabolene, an isoprenoid alternative to petroleum-derived diesel. Combining those deletions with other mevalonate pathway modifications increased production of bisabolene from 40mg/L to 800mg/L in shake-flask cultures. In a fermentation process, this engineered strain produced 5.2g/L of bisabolene.

  11. Systematic E2 screening reveals a UBE2D-RNF138-CtIP axis promoting DNA repair

    PubMed Central

    Sczaniecka-Clift, Matylda; Coates, Julia; Jhujh, Satpal; Demir, Mukerrem; Cornwell, Matthew; Beli, Petra; Jackson, Stephen P

    2016-01-01

    Ubiquitylation is crucial for proper cellular responses to DNA double-strand breaks (DSBs). If unrepaired, these highly cytotoxic lesions cause genome instability, tumourigenesis, neurodegeneration or premature ageing. Here, we conduct a comprehensive, multilayered screen to systematically profile all human ubiquitin E2-enzymes for impacts on cellular DSB responses. Applying a widely applicable approach, we use an exemplary E2 family, UBE2Ds, to identify ubiquitylation-cascade components downstream of E2s. Thus, we uncover the nuclear E3-ligase RNF138 as a key homologous recombination (HR)-promoting factor that functions with UBE2Ds in cells. Mechanistically, UBE2Ds and RNF138 accumulate at DNA-damage sites and act at early resection stages by promoting CtIP ubiquitylation and accrual. This work supplies insights into regulation of DSB repair by HR. Moreover, it provides a rich information resource on E2s that can be exploited by follow-on studies. PMID:26502057

  12. Screening Active Compounds from Garcinia Species Native to China Reveals Novel Compounds Targeting the STAT/JAK Signaling Pathway.

    PubMed

    Xu, Linfeng; Lao, Yuanzhi; Zhao, Yanhui; Qin, Jian; Fu, Wenwei; Zhang, Yingjia; Xu, Hongxi

    2015-01-01

    Natural compounds from medicinal plants are important resources for drug development. In a panel of human tumor cells, we screened a library of the natural products from Garcinia species which have anticancer potential to identify new potential therapeutic leads and discovered that caged xanthones were highly effective at suppressing multiple cancer cell lines. Their anticancer activities mainly depended on apoptosis pathways. For compounds in sensitive cancer line, their mechanisms of mode of action were evaluated. 33-Hydroxyepigambogic acid and 35-hydroxyepigambogic acid exhibited about 1 μM IC50 values against JAK2/JAK3 kinases and less than 1 μM IC50 values against NCI-H1650 cell which autocrined IL-6. Thus these two compounds provided a new antitumor molecular scaffold. Our report describes 33-hydroxyepigambogic acid and 35-hydroxyepigambogic acid that inhibited NCI-H1650 cell growth by suppressing constitutive STAT3 activation via direct inhibition of JAK kinase activity.

  13. Functional Genomic Screening Reveals Splicing of the EWS-FLI1 Fusion Transcript as a Vulnerability in Ewing Sarcoma.

    PubMed

    Grohar, Patrick J; Kim, Suntae; Rangel Rivera, Guillermo O; Sen, Nirmalya; Haddock, Sara; Harlow, Matt L; Maloney, Nichole K; Zhu, Jack; O'Neill, Maura; Jones, Tamara L; Huppi, Konrad; Grandin, Magdalena; Gehlhaus, Kristen; Klumpp-Thomas, Carleen A; Buehler, Eugen; Helman, Lee J; Martin, Scott E; Caplen, Natasha J

    2016-01-26

    Ewing sarcoma cells depend on the EWS-FLI1 fusion transcription factor for cell survival. Using an assay of EWS-FLI1 activity and genome-wide RNAi screening, we have identified proteins required for the processing of the EWS-FLI1 pre-mRNA. We show that Ewing sarcoma cells harboring a genomic breakpoint that retains exon 8 of EWSR1 require the RNA-binding protein HNRNPH1 to express in-frame EWS-FLI1. We also demonstrate the sensitivity of EWS-FLI1 fusion transcripts to the loss of function of the U2 snRNP component, SF3B1. Disrupted splicing of the EWS-FLI1 transcript alters EWS-FLI1 protein expression and EWS-FLI1-driven expression. Our results show that the processing of the EWS-FLI1 fusion RNA is a potentially targetable vulnerability in Ewing sarcoma cells.

  14. Genomic library screening for viruses from the human dental plaque revealed pathogen-specific lytic phage sequences.

    PubMed

    Al-Jarbou, Ahmed Nasser

    2012-01-01

    Bacterial pathogenesis presents an astounding arsenal of virulence factors that allow them to conquer many different niches throughout the course of infection. Principally fascinating is the fact that some bacterial species are able to induce different diseases by expression of different combinations of virulence factors. Nevertheless, studies aiming at screening for the presence of bacteriophages in humans have been limited. Such screening procedures would eventually lead to identification of phage-encoded properties that impart increased bacterial fitness and/or virulence in a particular niche, and hence, would potentially be used to reverse the course of bacterial infections. As the human oral cavity represents a rich and dynamic ecosystem for several upper respiratory tract pathogens. However, little is known about virus diversity in human dental plaque which is an important reservoir. We applied the culture-independent approach to characterize virus diversity in human dental plaque making a library from a virus DNA fraction amplified using a multiple displacement method and sequenced 80 clones. The resulting sequence showed 44% significant identities to GenBank databases by TBLASTX analysis. TBLAST homology comparisons showed that 66% was viral; 18% eukarya; 10% bacterial; 6% mobile elements. These sequences were sorted into 6 contigs and 45 single sequences in which 4 contigs and a single sequence showed significant identity to a small region of a putative prophage in the Corynebacterium diphtheria genome. These findings interestingly highlight the uniqueness of over half of the sequences, whilst the dominance of a pathogen-specific prophage sequences imply their role in virulence.

  15. High throughput, colorimetric screening of microbial ester biosynthesis reveals high ethyl acetate production from Kluyveromyces marxianus on C5, C6, and C12 carbon sources.

    PubMed

    Löbs, Ann-Kathrin; Lin, Jyun-Liang; Cook, Megan; Wheeldon, Ian

    2016-10-01

    Advances in genome and metabolic pathway engineering have enabled large combinatorial libraries of mutant microbial hosts for chemical biosynthesis. Despite these advances, strain development is often limited by the lack of high throughput functional assays for effective library screening. Recent synthetic biology efforts have engineered microbes that synthesize acetyl and acyl esters and many yeasts naturally produce esters to significant titers. Short and medium chain volatile esters have value as fragrance and flavor compounds, while long chain acyl esters are potential replacements for diesel fuel. Here, we developed a biotechnology method for the rapid screening of microbial ester biosynthesis. Using a colorimetric reaction scheme, esters extracted from fermentation broth were quantitatively converted to a ferric hydroxamate complex with strong absorbance at 520 nm. The assay was validated for ethyl acetate, ethyl butyrate, isoamyl acetate, ethyl hexanoate, and ethyl octanoate, and achieved a z-factor of 0.77. Screening of ethyl acetate production from a combinatorial library of four Kluyveromyces marxianus strains on seven carbon sources revealed ethyl acetate biosynthesis from C5, C6, and C12 sugars. This newly adapted method rapidly identified novel properties of K. marxianus metabolism and promises to advance high throughput microbial strain engineering for ester biosynthesis.

  16. The Rorschach Suicide Constellation: assessing various degrees of lethality.

    PubMed

    Fowler, J C; Piers, C; Hilsenroth, M J; Holdwick, D J; Padawer, J R

    2001-04-01

    In this article we examine the relation between the Rorschach Comprehensive System's Suicide Constellation (S-CON; Exner, 1993; Exner & Wiley, 1977) and lethality of suicide attempts during the course of patients' hospitalization at the Austen Riggs Center (Stockbridge, MA). Patient records were rated as nonsuicidal (n = 37), parasuicidal (n = 37), or near-lethal (n = 30) based on the presence and lethality of self-destructive acts. Diagnostic efficiency statistics utilizing a cutoff score of 7 or more positive indicators successfully predicted which patients would engage in near-lethal suicidal activity relative to parasuicidal patients (overall correct classification rate [OCC] = .79), nonsuicidal inpatients (OCC = .79), and college students (OCC = .89). Although these predictions were influenced by relatively high base rates in the hospital population (14.5%), base rate estimates were calculated for other hypothetical populations revealing different prediction estimates that should be considered when judging the relative efficacy of the S-CON. Logistic regression analysis revealed that an S-CON score of 7 or more was the sole predictor of near-lethal suicide attempts among 9 psychiatric and demographic variables.

  17. Biochemical evaluation of virtual screening methods reveals a cell-active inhibitor of the cancer-promoting phosphatases of regenerating liver.

    PubMed

    Hoeger, Birgit; Diether, Maren; Ballester, Pedro J; Köhn, Maja

    2014-12-17

    Computationally supported development of small molecule inhibitors has successfully been applied to protein tyrosine phosphatases in the past, revealing a number of cell-active compounds. Similar approaches have also been used to screen for small molecule inhibitors for the cancer-related phosphatases of regenerating liver (PRL) family. Still, selective and cell-active compounds are of limited availability. Since especially PRL-3 remains an attractive drug target due to its clear role in cancer metastasis, such compounds are highly demanded. In this study, we investigated various virtual screening approaches for their applicability to identify novel small molecule entities for PRL-3 as target. Biochemical evaluation of purchasable compounds revealed ligand-based approaches as well suited for this target, compared to docking-based techniques that did not perform well in this context. The best hit of this study, a 2-cyano-2-ene-ester and hence a novel chemotype targeting the PRLs, was further optimized by a structure-activity-relationship (SAR) study, leading to a low micromolar PRL inhibitor with acceptable selectivity over other protein tyrosine phosphatases. The compound is active in cells, as shown by its ability to specifically revert PRL-3 induced cell migration, and exhibits similar effects on PRL-1 and PRL-2. It is furthermore suitable for fluorescence microscopy applications, and it is commercially available. These features make it the only purchasable, cell-active and acceptably selective PRL inhibitor to date that can be used in various cellular applications.

  18. An siRNA screen for ATG protein depletion reveals the extent of the unconventional functions of the autophagy proteome in virus replication

    PubMed Central

    Mauthe, Mario; Langereis, Martijn; Jones, Alex; Omta, Wienand; Tooze, Sharon A.; Stork, Björn; Paludan, Søren Riis; Ahola, Tero; Egan, Dave; de Haan, Cornelis; van Kuppeveld, Frank

    2016-01-01

    Autophagy is a catabolic process regulated by the orchestrated action of the autophagy-related (ATG) proteins. Recent work indicates that some of the ATG proteins also have autophagy-independent roles. Using an unbiased siRNA screen approach, we explored the extent of these unconventional functions of ATG proteins. We determined the effects of the depletion of each ATG proteome component on the replication of six different viruses. Our screen reveals that up to 36% of the ATG proteins significantly alter the replication of at least one virus in an unconventional fashion. Detailed analysis of two candidates revealed an undocumented role for ATG13 and FIP200 in picornavirus replication that is independent of their function in autophagy as part of the ULK complex. The high numbers of unveiled ATG gene-specific and pathogen-specific functions of the ATG proteins calls for caution in the interpretation of data, which rely solely on the depletion of a single ATG protein to specifically ablate autophagy. PMID:27573464

  19. RNAi screening reveals requirement for host cell secretory pathway in infection by diverse families of negative-strand RNA viruses

    PubMed Central

    Panda, Debasis; Das, Anshuman; Dinh, Phat X.; Subramaniam, Sakthivel; Nayak, Debasis; Barrows, Nicholas J.; Pearson, James L.; Thompson, Jesse; Kelly, David L.; Ladunga, Istvan; Pattnaik, Asit K.

    2011-01-01

    Negative-strand (NS) RNA viruses comprise many pathogens that cause serious diseases in humans and animals. Despite their clinical importance, little is known about the host factors required for their infection. Using vesicular stomatitis virus (VSV), a prototypic NS RNA virus in the family Rhabdoviridae, we conducted a human genome-wide siRNA screen and identified 72 host genes required for viral infection. Many of these identified genes were also required for infection by two other NS RNA viruses, the lymphocytic choriomeningitis virus of the Arenaviridae family and human parainfluenza virus type 3 of the Paramyxoviridae family. Genes affecting different stages of VSV infection, such as entry/uncoating, gene expression, and assembly/release, were identified. Depletion of the proteins of the coatomer complex I or its upstream effectors ARF1 or GBF1 led to detection of reduced levels of VSV RNA. Coatomer complex I was also required for infection of lymphocytic choriomeningitis virus and human parainfluenza virus type 3. These results highlight the evolutionarily conserved requirements for gene expression of diverse families of NS RNA viruses and demonstrate the involvement of host cell secretory pathway in the process. PMID:22065774

  20. A screen for constituents of motor control and decision making in Drosophila reveals visual distance-estimation neurons

    PubMed Central

    Triphan, Tilman; Nern, Aljoscha; Roberts, Sonia F.; Korff, Wyatt; Naiman, Daniel Q.; Strauss, Roland

    2016-01-01

    Climbing over chasms larger than step size is vital to fruit flies, since foraging and mating are achieved while walking. Flies avoid futile climbing attempts by processing parallax-motion vision to estimate gap width. To identify neuronal substrates of climbing control, we screened a large collection of fly lines with temporarily inactivated neuronal populations in a novel high-throughput assay described here. The observed climbing phenotypes were classified; lines in each group are reported. Selected lines were further analysed by high-resolution video cinematography. One striking class of flies attempts to climb chasms of unsurmountable width; expression analysis guided us to C2 optic-lobe interneurons. Inactivation of C2 or the closely related C3 neurons with highly specific intersectional driver lines consistently reproduced hyperactive climbing whereas strong or weak artificial depolarization of C2/C3 neurons strongly or mildly decreased climbing frequency. Contrast-manipulation experiments support our conclusion that C2/C3 neurons are part of the distance-evaluation system. PMID:27255169

  1. A screen for constituents of motor control and decision making in Drosophila reveals visual distance-estimation neurons.

    PubMed

    Triphan, Tilman; Nern, Aljoscha; Roberts, Sonia F; Korff, Wyatt; Naiman, Daniel Q; Strauss, Roland

    2016-06-03

    Climbing over chasms larger than step size is vital to fruit flies, since foraging and mating are achieved while walking. Flies avoid futile climbing attempts by processing parallax-motion vision to estimate gap width. To identify neuronal substrates of climbing control, we screened a large collection of fly lines with temporarily inactivated neuronal populations in a novel high-throughput assay described here. The observed climbing phenotypes were classified; lines in each group are reported. Selected lines were further analysed by high-resolution video cinematography. One striking class of flies attempts to climb chasms of unsurmountable width; expression analysis guided us to C2 optic-lobe interneurons. Inactivation of C2 or the closely related C3 neurons with highly specific intersectional driver lines consistently reproduced hyperactive climbing whereas strong or weak artificial depolarization of C2/C3 neurons strongly or mildly decreased climbing frequency. Contrast-manipulation experiments support our conclusion that C2/C3 neurons are part of the distance-evaluation system.

  2. A Genetic Screen Reveals Novel Targets to Render Pseudomonas aeruginosa Sensitive to Lysozyme and Cell Wall-Targeting Antibiotics

    PubMed Central

    Lee, Kang-Mu; Lee, Keehoon; Go, Junhyeok; Park, In Ho; Shin, Jeon-Soo; Choi, Jae Young; Kim, Hyun Jik; Yoon, Sang Sun

    2017-01-01

    Pseudomonas aeruginosa is capable of establishing airway infections. Human airway mucus contains a large amount of lysozyme, which hydrolyzes bacterial cell walls. P. aeruginosa, however, is known to be resistant to lysozyme. Here, we performed a genetic screen using a mutant library of PAO1, a prototype P. aeruginosa strain, and identified two mutants (ΔbamB and ΔfabY) that exhibited decrease in survival after lysozyme treatment. The bamB and fabY genes encode an outer membrane assembly protein and a fatty acid synthesis enzyme, respectively. These two mutants displayed retarded growth in the airway mucus secretion (AMS). In addition, these mutants exhibited reduced virulence and compromised survival fitness in two different in vivo infection models. The mutants also showed susceptibility to several antibiotics. Especially, ΔbamB mutant was very sensitive to vancomycin, ampicillin, and ceftazidime that target cell wall synthesis. The ΔfabY displayed compromised membrane integrity. In conclusion, this study uncovered a common aspect of two different P. aeruginosa mutants with pleiotropic phenotypes, and suggests that BamB and FabY could be novel potential drug targets for the treatment of P. aeruginosa infection. PMID:28299285

  3. Histochemical screening, metabolite profiling and expression analysis reveal Rosaceae roots as the site of flavan-3-ol biosynthesis.

    PubMed

    Hoffmann, T; Friedlhuber, R; Steinhauser, C; Tittel, I; Skowranek, K; Schwab, W; Fischer, T C

    2012-01-01

    Histochemical screening of 30 Rosaceae genera representing all classic subfamilies demonstrated flavan-3-ols (catechins) as general secondary metabolites in roots of Rosaceae. Semi-quantitative LC-MS analyses confirmed the presence of catechin, epicatechin and various dimeric flavan-3-ols (also representing higher polymeric proanthocyanidins) as prominent polyphenols in root tips of Fragaria (strawberry), Malus (apple), Rosa (rose), Pyrus (pear) and Prunus (plum). Distinct patterns of flavan-3-ol distribution at the cellular level were found in strawberry (Fragaria × ananassa) and apple (Malus × domestica) root tips. The calyptras (root caps) showed the most prominent flavan-3-ol staining for these two genera. Border cells of Fragaria and Malus, as first demonstrated here for Rosaceae, were also found to contain flavan-3-ols. Transcript analyses with cDNA demonstrated root expression of known flavonoid genes expressed in the respective fruits and leaves. Primarily, this proves in situ biosynthesis of flavan-3-ols in these roots. Knowledge of the distinct cellular distribution patterns and their in situ biosynthesis in roots provides a basis for analysis of the functional roles of Rosaceae root flavan-3-ols.

  4. High-Content Genome-Wide RNAi Screen Reveals CCR3 as a Key Mediator of Neuronal Cell Death

    PubMed Central

    Wang, Huaishan; Sherbini, Omar; Ling-lin Pai, Emily; Kwon, Ji-Sun; He, Wei; Wang, Hong; Chi, Zhikai; Xu, Jinchong; Jiang, Haisong; Andrabi, Shaida A.

    2016-01-01

    Neuronal loss caused by ischemic injury, trauma, or disease can lead to devastating consequences for the individual. With the goal of limiting neuronal loss, a number of cell death pathways have been studied, but there may be additional contributors to neuronal death that are yet unknown. To identify previously unknown cell death mediators, we performed a high-content genome-wide screening of short, interfering RNA (siRNA) with an siRNA library in murine neural stem cells after exposure to N-methyl-N-nitroso-N′-nitroguanidine (MNNG), which leads to DNA damage and cell death. Eighty genes were identified as key mediators for cell death. Among them, 14 are known cell death mediators and 66 have not previously been linked to cell death pathways. Using an integrated approach with functional and bioinformatics analysis, we provide possible molecular networks, interconnected pathways, and/or protein complexes that may participate in cell death. Of the 66 genes, we selected CCR3 for further evaluation and found that CCR3 is a mediator of neuronal injury. CCR3 inhibition or deletion protects murine cortical cultures from oxygen-glucose deprivation–induced cell death, and CCR3 deletion in mice provides protection from ischemia in vivo. Taken together, our findings suggest that CCR3 is a previously unknown mediator of cell death. Future identification of the neural cell death network in which CCR3 participates will enhance our understanding of the molecular mechanisms of neural cell death. PMID:27822494

  5. A targeted glycan-related gene screen reveals heparan sulfate proteoglycan sulfation regulates WNT and BMP trans-synaptic signaling.

    PubMed

    Dani, Neil; Nahm, Minyeop; Lee, Seungbok; Broadie, Kendal

    2012-01-01

    A Drosophila transgenic RNAi screen targeting the glycan genome, including all N/O/GAG-glycan biosynthesis/modification enzymes and glycan-binding lectins, was conducted to discover novel glycan functions in synaptogenesis. As proof-of-product, we characterized functionally paired heparan sulfate (HS) 6-O-sulfotransferase (hs6st) and sulfatase (sulf1), which bidirectionally control HS proteoglycan (HSPG) sulfation. RNAi knockdown of hs6st and sulf1 causes opposite effects on functional synapse development, with decreased (hs6st) and increased (sulf1) neurotransmission strength confirmed in null mutants. HSPG co-receptors for WNT and BMP intercellular signaling, Dally-like Protein and Syndecan, are differentially misregulated in the synaptomatrix of these mutants. Consistently, hs6st and sulf1 nulls differentially elevate both WNT (Wingless; Wg) and BMP (Glass Bottom Boat; Gbb) ligand abundance in the synaptomatrix. Anterograde Wg signaling via Wg receptor dFrizzled2 C-terminus nuclear import and retrograde Gbb signaling via synaptic MAD phosphorylation and nuclear import are differentially activated in hs6st and sulf1 mutants. Consequently, transcriptional control of presynaptic glutamate release machinery and postsynaptic glutamate receptors is bidirectionally altered in hs6st and sulf1 mutants, explaining the bidirectional change in synaptic functional strength. Genetic correction of the altered WNT/BMP signaling restores normal synaptic development in both mutant conditions, proving that altered trans-synaptic signaling causes functional differentiation defects.

  6. Screening of spider mites (Acari: Tetranychidae) for reproductive endosymbionts reveals links between co-infection and evolutionary history

    PubMed Central

    Zhang, Yan-Kai; Chen, Ya-Ting; Yang, Kun; Qiao, Ge-Xia; Hong, Xiao-Yue

    2016-01-01

    Reproductive endosymbionts have been shown to have wide-ranging effects on many aspects of their hosts’ biology. A first step to understanding how these endosymbionts interact with their hosts is to determine their incidences. Here, we screened for four reproductive endosymbionts (Wolbachia, Cardinium, Spiroplasma and Rickettsia) in 28 populations of spider mites (Acari: Tetranychidae) representing 12 species. Each of the four endosymbionts were identified in at least some of the tested specimens, and their infection patterns showed variations at the species-level and population-level, suggesting their distributions can be correlated with both the phylogeny and ecology of the hosts. Co-infections of unrelated bacteria, especially double infections of Wolbachia and Cardinium within the same individuals were common. Spiroplasma and Rickettsia infections were specific to particular host species, respectively. Further, the evolutionary histories of these endosymbionts were inferred by comparing the phylogenies of them and their hosts. These findings can help to clarify the interactions between endosymbionts and arthropods. PMID:27291078

  7. A Genetic Screen Reveals Novel Targets to Render Pseudomonas aeruginosa Sensitive to Lysozyme and Cell Wall-Targeting Antibiotics.

    PubMed

    Lee, Kang-Mu; Lee, Keehoon; Go, Junhyeok; Park, In Ho; Shin, Jeon-Soo; Choi, Jae Young; Kim, Hyun Jik; Yoon, Sang Sun

    2017-01-01

    Pseudomonas aeruginosa is capable of establishing airway infections. Human airway mucus contains a large amount of lysozyme, which hydrolyzes bacterial cell walls. P. aeruginosa, however, is known to be resistant to lysozyme. Here, we performed a genetic screen using a mutant library of PAO1, a prototype P. aeruginosa strain, and identified two mutants (ΔbamB and ΔfabY) that exhibited decrease in survival after lysozyme treatment. The bamB and fabY genes encode an outer membrane assembly protein and a fatty acid synthesis enzyme, respectively. These two mutants displayed retarded growth in the airway mucus secretion (AMS). In addition, these mutants exhibited reduced virulence and compromised survival fitness in two different in vivo infection models. The mutants also showed susceptibility to several antibiotics. Especially, ΔbamB mutant was very sensitive to vancomycin, ampicillin, and ceftazidime that target cell wall synthesis. The ΔfabY displayed compromised membrane integrity. In conclusion, this study uncovered a common aspect of two different P. aeruginosa mutants with pleiotropic phenotypes, and suggests that BamB and FabY could be novel potential drug targets for the treatment of P. aeruginosa infection.

  8. An immune escape screen reveals Cdc42 as regulator of cancer susceptibility to lymphocyte-mediated tumor suppression.

    PubMed

    Marques, Celio A; Hähnel, Patricia S; Wölfel, Catherine; Thaler, Sonja; Huber, Christoph; Theobald, Matthias; Schuler, Martin

    2008-02-01

    Adoptive cellular immunotherapy inducing a graft-versus-tumor (GVT) effect is the therapeutic mainstay of allogeneic hematopoietic stem cell transplantation (ASCT) for high-risk leukemias. Autologous immunotherapies using vaccines or adoptive transfer of ex vivo-manipulated lymphocytes are clinically explored in patients with various cancer entities. Main reason for failure of ASCT and cancer immunotherapy is progression of the underlying malignancy, which is more prevalent in patients with advanced disease. Elucidating the molecular mechanisms contributing to immune escape will help to develop strategies for the improvement of immunologic cancer treatment. To this end, we have undertaken functional screening and expression cloning of factors mediating resistance to antigen-specific cytotoxic T lymphocytes (CTLs). We have identified Cdc42, a GTPase regulating actin dynamics and growth factor signaling that is highly expressed in invasive cancers, as determinator of cancer cell susceptibility to antigen-specific CTLs in vitro and adoptively transferred immune effectors in vivo. Cdc42 prevents CTL-induced apoptosis via mitogen-activated protein kinase (MAPK) signaling and posttranscriptional stabilization of Bcl-2. Pharmacologic inhibition of MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK) overcomes Cdc42-mediated immunoresistance and activation of Bcl-2 in vivo. In conclusion, Cdc42 signaling contributes to immune escape of cancer. Targeting Cdc42 may improve the efficacy of cancer immunotherapies.

  9. Genome-wide siRNA Screening at Biosafety Level 4 Reveals a Crucial Role for Fibrillarin in Henipavirus Infection.

    PubMed

    Deffrasnes, Celine; Marsh, Glenn A; Foo, Chwan Hong; Rootes, Christina L; Gould, Cathryn M; Grusovin, Julian; Monaghan, Paul; Lo, Michael K; Tompkins, S Mark; Adams, Timothy E; Lowenthal, John W; Simpson, Kaylene J; Stewart, Cameron R; Bean, Andrew G D; Wang, Lin-Fa

    2016-03-01

    Hendra and Nipah viruses (genus Henipavirus, family Paramyxoviridae) are highly pathogenic bat-borne viruses. The need for high biocontainment when studying henipaviruses has hindered the development of therapeutics and knowledge of the viral infection cycle. We have performed a genome-wide siRNA screen at biosafety level 4 that identified 585 human proteins required for henipavirus infection. The host protein with the largest impact was fibrillarin, a nucleolar methyltransferase that was also required by measles, mumps and respiratory syncytial viruses for infection. While not required for cell entry, henipavirus RNA and protein syntheses were greatly impaired in cells lacking fibrillarin, indicating a crucial role in the RNA replication phase of infection. During infection, the Hendra virus matrix protein co-localized with fibrillarin in cell nucleoli, and co-associated as a complex in pulldown studies, while its nuclear import was unaffected in fibrillarin-depleted cells. Mutagenesis studies showed that the methyltransferase activity of fibrillarin was required for henipavirus infection, suggesting that this enzyme could be targeted therapeutically to combat henipavirus infections.

  10. Genome-wide siRNA Screening at Biosafety Level 4 Reveals a Crucial Role for Fibrillarin in Henipavirus Infection

    PubMed Central

    Foo, Chwan Hong; Rootes, Christina L.; Gould, Cathryn M.; Grusovin, Julian; Monaghan, Paul; Lo, Michael K.; Tompkins, S. Mark; Adams, Timothy E.; Lowenthal, John W.; Simpson, Kaylene J.; Stewart, Cameron R.; Bean, Andrew G. D.; Wang, Lin-Fa

    2016-01-01

    Hendra and Nipah viruses (genus Henipavirus, family Paramyxoviridae) are highly pathogenic bat-borne viruses. The need for high biocontainment when studying henipaviruses has hindered the development of therapeutics and knowledge of the viral infection cycle. We have performed a genome-wide siRNA screen at biosafety level 4 that identified 585 human proteins required for henipavirus infection. The host protein with the largest impact was fibrillarin, a nucleolar methyltransferase that was also required by measles, mumps and respiratory syncytial viruses for infection. While not required for cell entry, henipavirus RNA and protein syntheses were greatly impaired in cells lacking fibrillarin, indicating a crucial role in the RNA replication phase of infection. During infection, the Hendra virus matrix protein co-localized with fibrillarin in cell nucleoli, and co-associated as a complex in pulldown studies, while its nuclear import was unaffected in fibrillarin-depleted cells. Mutagenesis studies showed that the methyltransferase activity of fibrillarin was required for henipavirus infection, suggesting that this enzyme could be targeted therapeutically to combat henipavirus infections. PMID:27010548

  11. A genome-scale screen reveals context-dependent ovarian cancer sensitivity to miRNA overexpression.

    PubMed

    Shields, Benjamin B; Pecot, Chad V; Gao, Hua; McMillan, Elizabeth; Potts, Malia; Nagel, Christa; Purinton, Scott; Wang, Ying; Ivan, Cristina; Kim, Hyun Seok; Borkowski, Robert J; Khan, Shaheen; Rodriguez-Aguayo, Cristian; Lopez-Berestein, Gabriel; Lea, Jayanthi; Gazdar, Adi; Baggerly, Keith A; Sood, Anil K; White, Michael A

    2015-12-11

    Large-scale molecular annotation of epithelial ovarian cancer (EOC) indicates remarkable heterogeneity in the etiology of that disease. This diversity presents a significant obstacle against intervention target discovery. However, inactivation of miRNA biogenesis is commonly associated with advanced disease. Thus, restoration of miRNA activity may represent a common vulnerability among diverse EOC oncogenotypes. To test this, we employed genome-scale, gain-of-function, miRNA mimic toxicity screens in a large, diverse spectrum of EOC cell lines. We found that all cell lines responded to at least some miRNA mimics, but that the nature of the miRNA mimics provoking a response was highly selective within the panel. These selective toxicity profiles were leveraged to define modes of action and molecular response indicators for miRNA mimics with tumor-suppressive characteristics in vivo. A mechanistic principle emerging from this analysis was sensitivity of EOC to miRNA-mediated release of cell fate specification programs, loss of which may be a prerequisite for development of this disease.

  12. An extracellular biochemical screen reveals that FLRTs and Unc5s mediate neuronal subtype recognition in the retina

    PubMed Central

    Visser, Jasper J; Cheng, Yolanda; Perry, Steven C; Chastain, Andrew Benjamin; Parsa, Bayan; Masri, Shatha S; Ray, Thomas A; Kay, Jeremy N; Wojtowicz, Woj M

    2015-01-01

    In the inner plexiform layer (IPL) of the mouse retina, ~70 neuronal subtypes organize their neurites into an intricate laminar structure that underlies visual processing. To find recognition proteins involved in lamination, we utilized microarray data from 13 subtypes to identify differentially-expressed extracellular proteins and performed a high-throughput biochemical screen. We identified ~50 previously-unknown receptor-ligand pairs, including new interactions among members of the FLRT and Unc5 families. These proteins show laminar-restricted IPL localization and induce attraction and/or repulsion of retinal neurites in culture, placing them in an ideal position to mediate laminar targeting. Consistent with a repulsive role in arbor lamination, we observed complementary expression patterns for one interaction pair, FLRT2-Unc5C, in vivo. Starburst amacrine cells and their synaptic partners, ON-OFF direction-selective ganglion cells, express FLRT2 and are repelled by Unc5C. These data suggest a single molecular mechanism may have been co-opted by synaptic partners to ensure joint laminar restriction. DOI: http://dx.doi.org/10.7554/eLife.08149.001 PMID:26633812

  13. High-Content Genome-Wide RNAi Screen Reveals CCR3 as a Key Mediator of Neuronal Cell Death.

    PubMed

    Zhang, Jianmin; Wang, Huaishan; Sherbini, Omar; Ling-Lin Pai, Emily; Kang, Sung-Ung; Kwon, Ji-Sun; Yang, Jia; He, Wei; Wang, Hong; Eacker, Stephen M; Chi, Zhikai; Mao, Xiaobo; Xu, Jinchong; Jiang, Haisong; Andrabi, Shaida A; Dawson, Ted M; Dawson, Valina L

    2016-01-01

    Neuronal loss caused by ischemic injury, trauma, or disease can lead to devastating consequences for the individual. With the goal of limiting neuronal loss, a number of cell death pathways have been studied, but there may be additional contributors to neuronal death that are yet unknown. To identify previously unknown cell death mediators, we performed a high-content genome-wide screening of short, interfering RNA (siRNA) with an siRNA library in murine neural stem cells after exposure to N-methyl-N-nitroso-N'-nitroguanidine (MNNG), which leads to DNA damage and cell death. Eighty genes were identified as key mediators for cell death. Among them, 14 are known cell death mediators and 66 have not previously been linked to cell death pathways. Using an integrated approach with functional and bioinformatics analysis, we provide possible molecular networks, interconnected pathways, and/or protein complexes that may participate in cell death. Of the 66 genes, we selected CCR3 for further evaluation and found that CCR3 is a mediator of neuronal injury. CCR3 inhibition or deletion protects murine cortical cultures from oxygen-glucose deprivation-induced cell death, and CCR3 deletion in mice provides protection from ischemia in vivo. Taken together, our findings suggest that CCR3 is a previously unknown mediator of cell death. Future identification of the neural cell death network in which CCR3 participates will enhance our understanding of the molecular mechanisms of neural cell death.

  14. Elaborate ligand-based modeling coupled with QSAR analysis and in silico screening reveal new potent acetylcholinesterase inhibitors

    NASA Astrophysics Data System (ADS)

    Abuhamdah, Sawsan; Habash, Maha; Taha, Mutasem O.

    2013-12-01

    Inhibition of the enzyme acetylcholinesterase (AChE) has been shown to alleviate neurodegenerative diseases prompting several attempts to discover and optimize new AChE inhibitors. In this direction, we explored the pharmacophoric space of 85 AChE inhibitors to identify high quality pharmacophores. Subsequently, we implemented genetic algorithm-based quantitative structure-activity relationship (QSAR) modeling to select optimal combination of pharmacophoric models and 2D physicochemical descriptors capable of explaining bioactivity variation among training compounds ( {{r}}^{ 2}_{ 6 8} = 0. 9 4 , F-statistic = 125.8, {{r}}^{ 2}_{{LOO}} { = 0} . 9 2 , {{r}}^{ 2}_{{PRESS}} against 17 external test inhibitors = 0.84). Two orthogonal pharmacophores emerged in the QSAR equation suggesting the existence of at least two binding modes accessible to ligands within AChE binding pocket. The successful pharmacophores were comparable with crystallographically resolved AChE binding pocket. We employed the pharmacophoric models and associated QSAR equation to screen the national cancer institute list of compounds. Twenty-four low micromolar AChE inhibitors were identified. The most potent gave IC50 value of 1.0 μM.

  15. Mutational screening of the USH2A gene in Spanish USH patients reveals 23 novel pathogenic mutations

    PubMed Central

    2011-01-01

    Background Usher Syndrome type II (USH2) is an autosomal recessive disorder, characterized by moderate to severe hearing impairment and retinitis pigmentosa (RP). Among the three genes implicated, mutations in the USH2A gene account for 74-90% of the USH2 cases. Methods To identify the genetic cause of the disease and determine the frequency of USH2A mutations in a cohort of 88 unrelated USH Spanish patients, we carried out a mutation screening of the 72 coding exons of this gene by direct sequencing. Moreover, we performed functional minigene studies for those changes that were predicted to affect splicing. Results As a result, a total of 144 DNA sequence variants were identified. Based upon previous studies, allele frequencies, segregation analysis, bioinformatics' predictions and in vitro experiments, 37 variants (23 of them novel) were classified as pathogenic mutations. Conclusions This report provide a wide spectrum of USH2A mutations and clinical features, including atypical Usher syndrome phenotypes resembling Usher syndrome type I. Considering only the patients clearly diagnosed with Usher syndrome type II, and results obtained in this and previous studies, we can state that mutations in USH2A are responsible for 76.1% of USH2 disease in patients of Spanish origin. PMID:22004887

  16. Functional mutagenesis screens reveal the ‘cap structure’ formation in disulfide-bridge free TASK channels

    PubMed Central

    Goldstein, Matthias; Rinné, Susanne; Kiper, Aytug K.; Ramírez, David; Netter, Michael F.; Bustos, Daniel; Ortiz-Bonnin, Beatriz; González, Wendy; Decher, Niels

    2016-01-01

    Two-pore-domain potassium (K2P) channels have a large extracellular cap structure formed by two M1-P1 linkers, containing a cysteine for dimerization. However, this cysteine is not present in the TASK-1/3/5 subfamily. The functional role of the cap is poorly understood and it remained unclear whether K2P channels assemble in the domain-swapped orientation or not. Functional alanine-mutagenesis screens of TASK-1 and TRAAK were used to build an in silico model of the TASK-1 cap. According to our data the cap structure of disulfide-bridge free TASK channels is similar to that of other K2P channels and is most likely assembled in the domain-swapped orientation. As the conserved cysteine is not essential for functional expression of all K2P channels tested, we propose that hydrophobic residues at the inner leaflets of the cap domains can interact with each other and that this way of stabilizing the cap is most likely conserved among K2P channels. PMID:26794006

  17. A Whole Genome RNA Interference Screen Reveals a Role for Spry2 in Insulin Transcription and the Unfolded Protein Response.

    PubMed

    Pappalardo, Zachary; Chopra, Deeksha G; Hennings, Thomas G; Richards, Hunter; Choe, Justin; Yang, Katherine; Baeyens, Luc; Ang, Kenny; Chen, Steven; Arkin, Michelle; German, Michael S; McManus, Michael T; Ku, Gregory M

    2017-02-28

    Insulin production by the pancreatic beta cell is required for normal glucose homeostasis. While key transcription factors that bind to the insulin promoter are known, relatively little is known about the upstream regulators of insulin transcription. Using a whole genome RNA interference screen, we uncovered 26 novel regulators of insulin transcription that regulate diverse processes including oxidative phosphorylation, vesicle traffic, and the unfolded protein response(UPR). We focused on Spry2 -- a gene implicated in human type 2 diabetes by genome wide association studies but without a clear connection to glucose homeostasis. We showed that Spry2 is a novel UPR target and its up-regulation is dependent on PERK. Knockdown of Spry2 resulted in reduced expression of Serca2, reduced endoplasmic reticulum(ER) calcium levels and induction of the UPR. Spry2 deletion in the adult mouse beta cell caused hyperglycemia and hypoinsulinemia. Our study greatly expands the compendium of insulin promoter regulators and demonstrates a novel beta cell link between Spry2 and human diabetes.

  18. Large-scale screening of transcription factor-promoter interactions in spruce reveals a transcriptional network involved in vascular development.

    PubMed

    Duval, Isabelle; Lachance, Denis; Giguère, Isabelle; Bomal, Claude; Morency, Marie-Josée; Pelletier, Gervais; Boyle, Brian; MacKay, John J; Séguin, Armand

    2014-06-01

    This research aimed to investigate the role of diverse transcription factors (TFs) and to delineate gene regulatory networks directly in conifers at a relatively high-throughput level. The approach integrated sequence analyses, transcript profiling, and development of a conifer-specific activation assay. Transcript accumulation profiles of 102 TFs and potential target genes were clustered to identify groups of coordinately expressed genes. Several different patterns of transcript accumulation were observed by profiling in nine different organs and tissues: 27 genes were preferential to secondary xylem both in stems and roots, and other genes were preferential to phelloderm and periderm or were more ubiquitous. A robust system has been established as a screening approach to define which TFs have the ability to regulate a given promoter in planta. Trans-activation or repression effects were observed in 30% of TF-candidate gene promoter combinations. As a proof of concept, phylogenetic analysis and expression and trans-activation data were used to demonstrate that two spruce NAC-domain proteins most likely play key roles in secondary vascular growth as observed in other plant species. This study tested many TFs from diverse families in a conifer tree species, which broadens the knowledge of promoter-TF interactions in wood development and enables comparisons of gene regulatory networks found in angiosperms and gymnosperms.

  19. Antibacterial and brine shrimp lethality effect of marine actinobacterium Streptomyces sp. CAS72 against human pathogenic bacteria

    PubMed Central

    Sivasankar, Palaniappan; Manivasagan, Panchanathan; Vijayanand, Packiyaraj; Sivakumar, Kannan; Sugesh, Shanmugam; Poongodi, Subramaniam; Maharani, Viswanathan; Vijayalakshmi, Shanmugam; Balasubramanian, Thangavel

    2013-01-01

    Objective To investigate the in vitro antibacterial activity against human pathogenic bacteria and brine shrimp lethality bioassay of the marine actinobacterium. Methods Forty six marine actinobacterial strains were isolated from sediment samples of Uppanar estuary, Cuddalore, India. Preliminary screening was done by cross-streak method and the potential strain was identified by morphological, chemotaxonomical and molecular methods. Fermentation was done and the metabolite was obtained by liquid-liquid extraction using ethyl acetate and purified by silica gel (100-200 mesh) column chromatography. The purified metabolite was tested for antibacterial activity, minimal inhibitory concentration and brine shrimp lethality bioassay. Results Among the forty six strains, CAS72 was found effective against human pathogenic bacteria. The strain CAS72 was identified as Streptomyces sp. The purified metabolite exhibited a significant in vitro antibacterial activity. The MIC value was also determined against human pathogenic bacteria and a strong cytotoxic activity in brine shrimp lethality assay was observed and the LC50 value was 23.5 µg/mL. Conclusions The present investigation reveals that the marine actinobacteria are well obtainable in Uppanar estuary environment and it can provide a definite source for novel bioactive metabolites.

  20. Pharmacogenomics and chemical library screens reveal a novel SCF(SKP2) inhibitor that overcomes Bortezomib resistance in multiple myeloma.

    PubMed

    Malek, E; Abdel-Malek, M A Y; Jagannathan, S; Vad, N; Karns, R; Jegga, A G; Broyl, A; van Duin, M; Sonneveld, P; Cottini, F; Anderson, K C; Driscoll, J J

    2017-03-01

    While clinical benefit of the proteasome inhibitor (PI) bortezomib (BTZ) for multiple myeloma (MM) patients remains unchallenged, dose-limiting toxicities and drug resistance limit the long-term utility. The E3 ubiquitin ligase Skp1-Cullin-1-Skp2 (SCF(Skp2)) promotes proteasomal degradation of the cell cycle inhibitor p27 to enhance tumor growth. Increased SKP2 expression and reduced p27 levels are frequent in human cancers and are associated with therapeutic resistance. SCF(Skp2) activity is increased by the Cullin-1-binding protein Commd1 and the Skp2-binding protein Cks1B. Here we observed higher CUL1, COMMD1 and SKP2 mRNA levels in CD138(+) cells isolated from BTZ-resistant MM patients. Higher CUL1, COMMD1, SKP2 and CKS1B mRNA levels in patient CD138(+) cells correlated with decreased progression-free and overall survival. Genetic knockdown of CUL1, COMMD1 or SKP2 disrupted the SCF(Skp2) complex, stabilized p27 and increased the number of annexin-V-positive cells after BTZ treatment. Chemical library screens identified a novel compound, designated DT204, that reduced Skp2 binding to Cullin-1 and Commd1, and synergistically enhanced BTZ-induced apoptosis. DT204 co-treatment with BTZ overcame drug resistance and reduced the in vivo growth of myeloma tumors in murine models with survival benefit. Taken together, the results provide proof of concept for rationally designed drug combinations that incorporate SCF(Skp2) inhibitors to treat BTZ resistant disease.

  1. Drug-screening and genomic analyses of HER2-positive breast cancer cell lines reveal predictors for treatment response

    PubMed Central

    Jernström, Sandra; Hongisto, Vesa; Leivonen, Suvi-Katri; Due, Eldri Undlien; Tadele, Dagim Shiferaw; Edgren, Henrik; Kallioniemi, Olli; Perälä, Merja; Mælandsmo, Gunhild Mari; Sahlberg, Kristine Kleivi

    2017-01-01

    Background Approximately 15%–20% of all diagnosed breast cancers are characterized by amplified and overexpressed HER2 (= ErbB2). These breast cancers are aggressive and have a poor prognosis. Although improvements in treatment have been achieved after the introduction of trastuzumab and lapatinib, many patients do not benefit from these drugs. Therefore, in-depth understanding of the mechanisms behind the treatment responses is essential to find alternative therapeutic strategies. Materials and methods Thirteen HER2 positive breast cancer cell lines were screened with 22 commercially available compounds, mainly targeting proteins in the ErbB2-signaling pathway, and molecular mechanisms related to treatment sensitivity were sought. Cell viability was measured, and treatment responses between the cell lines were compared. To search for response predictors and genomic and transcriptomic profiling, PIK3CA mutations and PTEN status were explored and molecular features associated with drug sensitivity sought. Results The cell lines were divided into three groups according to the growth-retarding effect induced by trastuzumab and lapatinib. Interestingly, two cell lines insensitive to trastuzumab (KPL4 and SUM190PT) showed sensitivity to an Akt1/2 kinase inhibitor. These cell lines had mutation in PIK3CA and loss of PTEN, suggesting an activated and druggable Akt-signaling pathway. Expression levels of five genes (CDC42, MAPK8, PLCG1, PTK6, and PAK6) were suggested as predictors for the Akt1/2 kinase-inhibitor response. Conclusion Targeting the Akt-signaling pathway shows promise in cell lines that do not respond to trastuzumab. In addition, our results indicate that several molecular features determine the growth-retarding effects induced by the drugs, suggesting that parameters other than HER2 amplification/expression should be included as markers for therapy decisions. PMID:28356768

  2. Pharmacogenomics and chemical library screens reveal a novel SCFSKP2 inhibitor that overcomes Bortezomib resistance in multiple myeloma

    PubMed Central

    Malek, E; Abdel-Malek, M A Y; Jagannathan, S; Vad, N; Karns, R; Jegga, A G; Broyl, A; van Duin, M; Sonneveld, P; Cottini, F; Anderson, K C; Driscoll, J J

    2017-01-01

    While clinical benefit of the proteasome inhibitor (PI) bortezomib (BTZ) for multiple myeloma (MM) patients remains unchallenged, dose-limiting toxicities and drug resistance limit the long-term utility. The E3 ubiquitin ligase Skp1–Cullin-1–Skp2 (SCFSkp2) promotes proteasomal degradation of the cell cycle inhibitor p27 to enhance tumor growth. Increased SKP2 expression and reduced p27 levels are frequent in human cancers and are associated with therapeutic resistance. SCFSkp2 activity is increased by the Cullin-1-binding protein Commd1 and the Skp2-binding protein Cks1B. Here we observed higher CUL1, COMMD1 and SKP2 mRNA levels in CD138+ cells isolated from BTZ-resistant MM patients. Higher CUL1, COMMD1, SKP2 and CKS1B mRNA levels in patient CD138+ cells correlated with decreased progression-free and overall survival. Genetic knockdown of CUL1, COMMD1 or SKP2 disrupted the SCFSkp2 complex, stabilized p27 and increased the number of annexin-V-positive cells after BTZ treatment. Chemical library screens identified a novel compound, designated DT204, that reduced Skp2 binding to Cullin-1 and Commd1, and synergistically enhanced BTZ-induced apoptosis. DT204 co-treatment with BTZ overcame drug resistance and reduced the in vivo growth of myeloma tumors in murine models with survival benefit. Taken together, the results provide proof of concept for rationally designed drug combinations that incorporate SCFSkp2 inhibitors to treat BTZ resistant disease. PMID:27677741

  3. Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism.

    PubMed

    Takos, Adam; Lai, Daniela; Mikkelsen, Lisbeth; Abou Hachem, Maher; Shelton, Dale; Motawia, Mohammed Saddik; Olsen, Carl Erik; Wang, Trevor L; Martin, Cathie; Rook, Fred

    2010-05-01

    Cyanogenesis, the release of hydrogen cyanide from damaged plant tissues, involves the enzymatic degradation of amino acid-derived cyanogenic glucosides (alpha-hydroxynitrile glucosides) by specific beta-glucosidases. Release of cyanide functions as a defense mechanism against generalist herbivores. We developed a high-throughput screening method and used it to identify cyanogenesis deficient (cyd) mutants in the model legume Lotus japonicus. Mutants in both biosynthesis and catabolism of cyanogenic glucosides were isolated and classified following metabolic profiling of cyanogenic glucoside content. L. japonicus produces two cyanogenic glucosides: linamarin (derived from Val) and lotaustralin (derived from Ile). Their biosynthesis may involve the same set of enzymes for both amino acid precursors. However, in one class of mutants, accumulation of lotaustralin and linamarin was uncoupled. Catabolic mutants could be placed in two complementation groups, one of which, cyd2, encoded the beta-glucosidase BGD2. Despite the identification of nine independent cyd2 alleles, no mutants involving the gene encoding a closely related beta-glucosidase, BGD4, were identified. This indicated that BGD4 plays no role in cyanogenesis in L. japonicus in vivo. Biochemical analysis confirmed that BGD4 cannot hydrolyze linamarin or lotaustralin and in L. japonicus is specific for breakdown of related hydroxynitrile glucosides, such as rhodiocyanoside A. By contrast, BGD2 can hydrolyze both cyanogenic glucosides and rhodiocyanosides. Our genetic analysis demonstrated specificity in the catabolic pathways for hydroxynitrile glucosides and implied specificity in their biosynthetic pathways as well. In addition, it has provided important tools for elucidating and potentially modifying cyanogenesis pathways in plants.

  4. Screening a yeast library of temperature-sensitive mutants reveals a role for actin in tombusvirus RNA recombination.

    PubMed

    Prasanth, K Reddisiva; Kovalev, Nikolay; de Castro Martín, Isabel Fernández; Baker, Jannine; Nagy, Peter D

    2016-02-01

    Genetic recombination in RNA viruses drives the evolutionary arms race with host's antiviral strategies and recombination also facilitates adaptation of viruses to new hosts. In this paper, the authors used tombusvirus and a temperature-sensitive (ts) mutant library of yeast to identify 40 host proteins affecting viral recombination in yeast model host. Subsequent detailed analysis with two identified actin-related proteins, Act1p and Arp3p, has revealed that the wt actin network helps TBSV to maintain low level viral recombination. Pharmacological inhibition of actin in plant protoplasts confirmed the role of the actin network in tombusvirus recombination. An in vitro approach revealed the altered activity of the tombusvirus replicase in the presence of mutated Act1p. The authors show more efficient recruitment of a cellular DEAD-box helicase, which enhances tombusvirus recombination, into the membrane-bound replicase in Act1p mutant yeast. Overall, this work shows that the actin network affects tombusvirus recombination in yeast and plant cells.

  5. Derivation of Human Lethal Doses

    DTIC Science & Technology

    2006-01-19

    emergency medicine, pharmacology, forensic medicine, and industrial chemical toxicology, in addition to a poison information center. The authors presented...Meditsinskaya Ekspeertiza. Forensic Medical Examination, 26(2), 48, 1983 (as cited in Sax’s). This reference is not available for review. Rat – LD50...mg/kg No LDLo, MLD, or lethal dose for humans Rat – LD50 (Bulletin of the Entomological Society of America, 1969) (as cited in Sax’s). This

  6. Caenorhabditis elegans Semi-Automated Liquid Screen Reveals a Specialized Role for the Chemotaxis Gene cheB2 in Pseudomonas aeruginosa Virulence

    PubMed Central

    Garvis, Steven; Munder, Antje; Ball, Geneviève; de Bentzmann, Sophie; Wiehlmann, Lutz; Ewbank, Jonathan J.; Tümmler, Burkhard; Filloux, Alain

    2009-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that causes infections in a variety of animal and plant hosts. Caenorhabditis elegans is a simple model with which one can identify bacterial virulence genes. Previous studies with C. elegans have shown that depending on the growth medium, P. aeruginosa provokes different pathologies: slow or fast killing, lethal paralysis and red death. In this study, we developed a high-throughput semi-automated liquid-based assay such that an entire genome can readily be scanned for virulence genes in a short time period. We screened a 2,200-member STM mutant library generated in a cystic fibrosis airway P. aeruginosa isolate, TBCF10839. Twelve mutants were isolated each showing at least 70% attenuation in C. elegans killing. The selected mutants had insertions in regulatory genes, such as a histidine kinase sensor of two-component systems and a member of the AraC family, or in genes involved in adherence or chemotaxis. One mutant had an insertion in a cheB gene homologue, encoding a methylesterase involved in chemotaxis (CheB2). The cheB2 mutant was tested in a murine lung infection model and found to have a highly attenuated virulence. The cheB2 gene is part of the chemotactic gene cluster II, which was shown to be required for an optimal mobility in vitro. In P. aeruginosa, the main player in chemotaxis and mobility is the chemotactic gene cluster I, including cheB1. We show that, in contrast to the cheB2 mutant, a cheB1 mutant is not attenuated for virulence in C. elegans whereas in vitro motility and chemotaxis are severely impaired. We conclude that the virulence defect of the cheB2 mutant is not linked with a global motility defect but that instead the cheB2 gene is involved in a specific chemotactic response, which takes place during infection and is required for P. aeruginosa pathogenicity. PMID:19662168

  7. A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against Pseudomonas syringae pv. tomato DC3000.

    PubMed

    Zeng, Weiqing; Brutus, Alexandre; Kremer, James M; Withers, John C; Gao, Xiaoli; Jones, A Daniel; He, Sheng Yang

    2011-10-01

    Bacterial infection of plants often begins with colonization of the plant surface, followed by entry into the plant through wounds and natural openings (such as stomata), multiplication in the intercellular space (apoplast) of the infected tissues, and dissemination of bacteria to other plants. Historically, most studies assess bacterial infection based on final outcomes of disease and/or pathogen growth using whole infected tissues; few studies have genetically distinguished the contribution of different host cell types in response to an infection. The phytotoxin coronatine (COR) is produced by several pathovars of Pseudomonas syringae. COR-deficient mutants of P. s. tomato (Pst) DC3000 are severely compromised in virulence, especially when inoculated onto the plant surface. We report here a genetic screen to identify Arabidopsis mutants that could rescue the virulence of COR-deficient mutant bacteria. Among the susceptible to coronatine-deficient Pst DC3000 (scord) mutants were two that were defective in stomatal closure response, two that were defective in apoplast defense, and four that were defective in both stomatal and apoplast defense. Isolation of these three classes of mutants suggests that stomatal and apoplastic defenses are integrated in plants, but are genetically separable, and that COR is important for Pst DC3000 to overcome both stomatal guard cell- and apoplastic mesophyll cell-based defenses. Of the six mutants defective in bacterium-triggered stomatal closure, three are defective in salicylic acid (SA)-induced stomatal closure, but exhibit normal stomatal closure in response to abscisic acid (ABA), and scord7 is compromised in both SA- and ABA-induced stomatal closure. We have cloned SCORD3, which is required for salicylic acid (SA) biosynthesis, and SCORD5, which encodes an ATP-binding cassette (ABC) protein, AtGCN20/AtABCF3, predicted to be involved in stress-associated protein translation control. Identification of SCORD5 begins to implicate

  8. Defective sister chromatid cohesion is synthetically lethal with impaired APC/C function.

    PubMed

    de Lange, Job; Faramarz, Atiq; Oostra, Anneke B; de Menezes, Renee X; van der Meulen, Ida H; Rooimans, Martin A; Rockx, Davy A; Brakenhoff, Ruud H; van Beusechem, Victor W; King, Randall W; de Winter, Johan P; Wolthuis, Rob M F

    2015-10-01

    Warsaw breakage syndrome (WABS) is caused by defective DDX11, a DNA helicase that is essential for chromatid cohesion. Here, a paired genome-wide siRNA screen in patient-derived cell lines reveals that WABS cells do not tolerate partial depletion of individual APC/C subunits or the spindle checkpoint inhibitor p31(comet). A combination of reduced cohesion and impaired APC/C function also leads to fatal mitotic arrest in diploid RPE1 cells. Moreover, WABS cell lines, and several cancer cell lines with cohesion defects, display a highly increased response to a new cell-permeable APC/C inhibitor, apcin, but not to the spindle poison paclitaxel. Synthetic lethality of APC/C inhibition and cohesion defects strictly depends on a functional mitotic spindle checkpoint as well as on intact microtubule pulling forces. This indicates that the underlying mechanism involves cohesion fatigue in response to mitotic delay, leading to spindle checkpoint re-activation and lethal mitotic arrest. Our results point to APC/C inhibitors as promising therapeutic agents targeting cohesion-defective cancers.

  9. The effects of anthrax lethal toxin on host barrier function.

    PubMed

    Xie, Tao; Auth, Roger D; Frucht, David M

    2011-06-01

    The pathological actions of anthrax toxin require the activities of its edema factor (EF) and lethal factor (LF) enzyme components, which gain intracellular access via its receptor-binding component, protective antigen (PA). LF is a metalloproteinase with specificity for selected mitogen-activated protein kinase kinases (MKKs), but its activity is not directly lethal to many types of primary and transformed cells in vitro. Nevertheless, in vivo treatment of several animal species with the combination of LF and PA (termed lethal toxin or LT) leads to morbidity and mortality, suggesting that LT-dependent toxicity is mediated by cellular interactions between host cells. Decades of research have revealed that a central hallmark of this toxicity is the disruption of key cellular barriers required to maintain homeostasis. This review will focus on the current understanding of the effects of LT on barrier function, highlighting recent progress in establishing the molecular mechanisms underlying these effects.

  10. A Genetic Screen Reveals that Synthesis of 1,4-Dihydroxy-2-Naphthoate (DHNA), but Not Full-Length Menaquinone, Is Required for Listeria monocytogenes Cytosolic Survival.

    PubMed

    Chen, Grischa Y; McDougal, Courtney E; D'Antonio, Marc A; Portman, Jonathan L; Sauer, John-Demian

    2017-03-21

    Through unknown mechanisms, the host cytosol restricts bacterial colonization; therefore, only professional cytosolic pathogens are adapted to colonize this host environment. Listeria monocytogenes is a Gram-positive intracellular pathogen that is highly adapted to colonize the cytosol of both phagocytic and nonphagocytic cells. To identify L. monocytogenes determinants of cytosolic survival, we designed and executed a novel screen to isolate L. monocytogenes mutants with cytosolic survival defects. Multiple mutants identified in the screen were defective for synthesis of menaquinone (MK), an essential molecule in the electron transport chain. Analysis of an extensive set of MK biosynthesis and respiratory chain mutants revealed that cellular respiration was not required for cytosolic survival of L. monocytogenes but that, instead, synthesis of 1,4-dihydroxy-2-naphthoate (DHNA), an MK biosynthesis intermediate, was essential. Recent discoveries showed that modulation of the central metabolism of both host and pathogen can influence the outcome of host-pathogen interactions. Our results identify a potentially novel function of the MK biosynthetic intermediate DHNA and specifically highlight how L. monocytogenes metabolic adaptations promote cytosolic survival and evasion of host immunity.IMPORTANCE Cytosolic bacterial pathogens, such as Listeria monocytogenes and Francisella tularensis, are exquisitely evolved to colonize the host cytosol in a variety of cell types. Establishing an intracellular niche shields these pathogens from effectors of humoral immunity, grants access to host nutrients, and is essential for pathogenesis. Through yet-to-be-defined mechanisms, the host cytosol restricts replication of non-cytosol-adapted bacteria, likely through a combination of cell autonomous defenses (CADs) and nutritional immunity. Utilizing a novel genetic screen, we identified determinants of L. monocytogenes cytosolic survival and virulence and identified a role for

  11. Virtual and In Vitro Screens Reveal a Potential Pharmacophore that Avoids the Fibrillization of Aβ1–42

    PubMed Central

    Hernández-Rodríguez, Maricarmen; Correa-Basurto, José; Nicolás-Vázquez, María Inés; Miranda-Ruvalcaba, René; Benítez-Cardoza, Claudia Guadalupe; Reséndiz-Albor, Aldo Arturo; Méndez-Méndez, Juan Vicente; Rosales-Hernández, Martha C.

    2015-01-01

    Among the multiple factors that induce Alzheimer’s disease, aggregation of the amyloid β peptide (Aβ) is considered the most important due to the ability of the 42-amino acid Aβ peptides (Aβ1–42) to form oligomers and fibrils, which constitute Aβ pathological aggregates. For this reason, the development of inhibitors of Aβ1–42 pathological aggregation represents a field of research interest. Several Aβ1–42 fibrillization inhibitors possess tertiary amine and aromatic moieties. In the present study, we selected 26 compounds containing tertiary amine and aromatic moieties with or without substituents and performed theoretical studies that allowed us to select four compounds according to their free energy values for Aβ1–42 in α-helix (Aβ-α), random coil (Aβ-RC) and β-sheet (Aβ-β) conformations. Docking studies revealed that compound 5 had a higher affinity for Aβ-α and Aβ-RC than the other compounds. In vitro, this compound was able to abolish Thioflavin T fluorescence and favored an RC conformation of Aβ1–42 in circular dichroism studies, resulting in the formation of amorphous aggregates as shown by atomic force microscopy. The results obtained from quantum studies allowed us to identify a possible pharmacophore that can be used to design Aβ1–42 aggregation inhibitors. In conclusion, compounds with higher affinity for Aβ-α and Aβ-RC prevented the formation of oligomeric species. PMID:26172152

  12. Virtual and In Vitro Screens Reveal a Potential Pharmacophore that Avoids the Fibrillization of Aβ1-42.

    PubMed

    Hernández-Rodríguez, Maricarmen; Correa-Basurto, José; Nicolás-Vázquez, María Inés; Miranda-Ruvalcaba, René; Benítez-Cardoza, Claudia Guadalupe; Reséndiz-Albor, Aldo Arturo; Méndez-Méndez, Juan Vicente; Rosales-Hernández, Martha C

    2015-01-01

    Among the multiple factors that induce Alzheimer's disease, aggregation of the amyloid β peptide (Aβ) is considered the most important due to the ability of the 42-amino acid Aβ peptides (Aβ1-42) to form oligomers and fibrils, which constitute Aβ pathological aggregates. For this reason, the development of inhibitors of Aβ1-42 pathological aggregation represents a field of research interest. Several Aβ1-42 fibrillization inhibitors possess tertiary amine and aromatic moieties. In the present study, we selected 26 compounds containing tertiary amine and aromatic moieties with or without substituents and performed theoretical studies that allowed us to select four compounds according to their free energy values for Aβ1-42 in α-helix (Aβ-α), random coil (Aβ-RC) and β-sheet (Aβ-β) conformations. Docking studies revealed that compound 5 had a higher affinity for Aβ-α and Aβ-RC than the other compounds. In vitro, this compound was able to abolish Thioflavin T fluorescence and favored an RC conformation of Aβ1-42 in circular dichroism studies, resulting in the formation of amorphous aggregates as shown by atomic force microscopy. The results obtained from quantum studies allowed us to identify a possible pharmacophore that can be used to design Aβ1-42 aggregation inhibitors. In conclusion, compounds with higher affinity for Aβ-α and Aβ-RC prevented the formation of oligomeric species.

  13. Virtual screening on an α-helix to β-strand switchable region of the FGFR2 extracellular domain revealed positive and negative modulators.

    PubMed

    Diaz, Constantino; Corentin, Herbert; Thierry, Vermat; Chantal, Alcouffe; Tanguy, Bozec; David, Sibrac; Jean-Marc, Herbert; Pascual, Ferrara; Françoise, Bono; Edgardo, Ferran

    2014-11-01

    The secondary structure of some protein segments may vary between α-helix and β-strand. To predict these switchable segments, we have developed an algorithm, Switch-P, based solely on the protein sequence. This algorithm was used on the extracellular parts of FGF receptors. For FGFR2, it predicted that β4 and β5 strands of the third Ig-like domain were highly switchable. These two strands possess a high number of somatic mutations associated with cancer. Analysis of PDB structures of FGF receptors confirmed the switchability prediction for β5. We thus evaluated if compound-driven α-helix/β-strand switching of β5 could modulate FGFR2 signaling. We performed the virtual screening of a library containing 1.4 million of chemical compounds with two models of the third Ig-like domain of FGFR2 showing different secondary structures for β5, and we selected 32 compounds. Experimental testing using proliferation assays with FGF7-stimulated SNU-16 cells and a FGFR2-dependent Erk1/2 phosphorylation assay with FGFR2-transfected L6 cells, revealed activators and inhibitors of FGFR2. Our method for the identification of switchable proteinic regions, associated with our virtual screening approach, provides an opportunity to discover new generation of drugs with under-explored mechanism of action.

  14. Human Genome-Wide RNAi Screen for Host Factors That Facilitate Salmonella Invasion Reveals a Role for Potassium Secretion in Promoting Internalization

    PubMed Central

    Thornbrough, Joshua M.; Gopinath, Adarsh; Hundley, Tom; Worley, Micah J.

    2016-01-01

    Salmonella enterica can actively invade the gastro-intestinal epithelium. This frequently leads to diarrheal disease, and also gives the pathogen access to phagocytes that can serve as vehicles for dissemination into deeper tissue. The ability to invade host cells is also important in maintaining the carrier state. While much is known about the bacterial factors that promote invasion, relatively little is known about the host factors involved. To gain insight into how Salmonella enterica serovar Typhimurium is able to invade normally non-phagocytic cells, we undertook a global RNAi screen with S. Typhimurium-infected human epithelial cells. In all, we identified 633 genes as contributing to bacterial internalization. These genes fall into a diverse group of functional categories revealing that cytoskeletal regulators are not the only factors that modulate invasion. In fact, potassium ion transport was the most enriched molecular function category in our screen, reinforcing a link between potassium and internalization. In addition to providing new insights into the molecular mechanisms underlying the ability of pathogens to invade host cells, all 633 host factors identified are candidates for new anti-microbial targets for treating Salmonella infections, and may be useful in curtailing infections with other pathogens as well. PMID:27880807

  15. A Genetic Screen Reveals that Synthesis of 1,4-Dihydroxy-2-Naphthoate (DHNA), but Not Full-Length Menaquinone, Is Required for Listeria monocytogenes Cytosolic Survival

    PubMed Central

    Chen, Grischa Y.; McDougal, Courtney E.; D’Antonio, Marc A.; Portman, Jonathan L.

    2017-01-01

    ABSTRACT Through unknown mechanisms, the host cytosol restricts bacterial colonization; therefore, only professional cytosolic pathogens are adapted to colonize this host environment. Listeria monocytogenes is a Gram-positive intracellular pathogen that is highly adapted to colonize the cytosol of both phagocytic and nonphagocytic cells. To identify L. monocytogenes determinants of cytosolic survival, we designed and executed a novel screen to isolate L. monocytogenes mutants with cytosolic survival defects. Multiple mutants identified in the screen were defective for synthesis of menaquinone (MK), an essential molecule in the electron transport chain. Analysis of an extensive set of MK biosynthesis and respiratory chain mutants revealed that cellular respiration was not required for cytosolic survival of L. monocytogenes but that, instead, synthesis of 1,4-dihydroxy-2-naphthoate (DHNA), an MK biosynthesis intermediate, was essential. Recent discoveries showed that modulation of the central metabolism of both host and pathogen can influence the outcome of host-pathogen interactions. Our results identify a potentially novel function of the MK biosynthetic intermediate DHNA and specifically highlight how L. monocytogenes metabolic adaptations promote cytosolic survival and evasion of host immunity. PMID:28325762

  16. A yeast two-hybrid screen reveals a strong interaction between the Legionella chaperonin Hsp60 and the host cell small heat shock protein Hsp10.

    PubMed

    Nasrallah, Gheyath K

    2015-06-01

    L. pneumophila is an intracellular bacterium that replicates inside a membrane-bound vacuole called Legionella-containing vacuole (LCV), where it plentifully liberates its HtpB chaperonin. From LCV, HtpB reaches the host cell cytoplasm, where it interacts with SAMDC, a cytoplasmic protein required for synthesis of host polyamines that are important for intracellular growth of L. pneumophila. Additionally, cytoplasmic expression of HtpB in S. cerevisiae induces pseudohyphal growth, and in mammalian cells recruits mitochondria to LCV, and modifies actin microfilaments organization. This led us to hypothesize here that HtpB recruits a protein(s) from eukaryotic cells that is involved in the emergence of the aforementioned phenotypes. To identify this protein, a commercially available HeLa cDNA library was screened using a yeast two-hybrid system. Approximately 5×10(6) yeast clones carrying HeLa cDNA library plasmid were screened. Twenty-one positive clones were identified. DNA sequence analysis revealed that all of these positive clones encoded the mammalian small heat shock protein Hsp10. Based on the fact that chaperonions are required to interact with co-chaperonins to function properly in protein folding, we believe that HtpB recruits the host cell Hsp10 to appropriately interact with SAMDC and to induce the multifunction phenotypes deemed important in L. pneumophila pathogenesis.

  17. In silico screening reveals structurally diverse, nanomolar inhibitors of NQO2 that are functionally active in cells and can modulate NFκB signalling

    PubMed Central

    Nolan, Karen A.; Dunstan, Mark S.; Caraher, Mary C.; Scott, Katherine A.; Leys, David; Stratford, Ian J.

    2011-01-01

    The NCI chemical database has been screened using in silico docking to identify novel nanomolar inhibitors of NRH:quinone oxidoreductase 2 (NQO2). The inhibitors identified from the screen exhibit a diverse range of scaffolds and the structure of one of the inhibitors, NSC13000 co-crystalized with NQO2, has been solved. This has been used to aid the generation of a structure/activity relationship between the computationally derived binding affinity and experimentally measured enzyme inhibitory potency. Many of the compounds are functionally active as inhibitors of NQO2 in cells at non toxic concentrations. To demonstrate this, advantage was taken of the NQO2-mediated toxicity of the chemotherapeutic drug CB1954. The toxicity of this drug is substantially reduced when the function of NQO2 is inhibited and many of the compounds achieve this in cells at nanomolar concentrations. The NQO2 inhibitors also attenuated TNFα-mediated, NFκB-driven transcriptional activity. The link between NQO2 and the regulation of NFκB was confirmed by using siRNA to NQO2 and by the observation that NRH, the cofactor for NQO2 enzyme activity, could regulate NFκB activity in an NQO2 dependent manner. NFκB is a potential therapeutic target and this study reveals an underlying mechanism that may exploitable for developing new anti-cancer drugs. PMID:22090421

  18. A screen for modulators reveals that orexin-A rapidly stimulates thyrotropin releasing hormone expression and release in hypothalamic cell culture.

    PubMed

    Cote-Vélez, Antonieta; Martínez Báez, Anabel; Lezama, Leticia; Uribe, Rosa María; Joseph-Bravo, Patricia; Charli, Jean-Louis

    2017-02-02

    In the paraventricular nucleus of the mammalian hypothalamus, hypophysiotropic thyrotropin releasing hormone (TRH) neurons integrate metabolic information and control the activity of the thyroid axis. Additional populations of TRH neurons reside in various hypothalamic areas, with poorly defined connections and functions, albeit there is evidence that some may be related to energy balance. To establish extracellular modulators of TRH hypothalamic neurons activity, we performed a screen of neurotransmitters effects in hypothalamic cultures. Cell culture conditions were chosen to facilitate the full differentiation of the TRH neurons; these conditions had permitted the characterization of the effects of known modulators of hypophysiotropic TRH neurons. The major end-point of the screen was Trh mRNA levels, since they are generally rapidly (0.5-3h) modified by synaptic inputs onto TRH neurons; in some experiments, TRH cell content or release was also analyzed. Various modulators, including histamine, serotonin, β-endorphin, met-enkephalin, and melanin concentrating hormone, had no effect. Glutamate, as well as ionotropic agonists (kainate and N-Methyl-d-aspartic acid), increased Trh mRNA levels. Baclofen, a GABAB receptor agonist, and dopamine enhanced Trh mRNA levels. An endocannabinoid receptor 1 inverse agonist promoted TRH release. Somatostatin increased Trh mRNA levels and TRH cell content. Orexin-A rapidly increased Trh mRNA levels, TRH cell content and release, while orexin-B decreased Trh mRNA levels. These data reveal unaccounted regulators, which exert potent effects on hypothalamic TRH neurons in vitro.

  19. A novel mutation in the mitochondrial tRNA{sup Asn} gene associated with a lethal disease

    SciTech Connect

    Coulbault, Laurent; Herlicoviez, Danielle; Chapon, Francoise; Read, Marie-Helene; Penniello, Marie-Jose; Reynier, Pascal; Fayet, Guillemette; Lombes, Anne; Jauzac, Philippe; Allouche, Stephane . E-mail: allouche-s@chu-caen.fr

    2005-04-15

    We describe a lethal mitochondrial disease in a 10-month-old child who presented with encephalomyopathy. Histochemical and electron microscopy examinations of skeletal muscle biopsy revealed abnormal mitochondria associated with a combined deficiency of complexes I and IV. After excluding mitochondrial DNA deletions and depletion, direct sequencing was used to screen for mutation in all transfer RNA (tRNA) genes. A T-to-C substitution at position 5693 in the tRNA{sup Asn} gene was found in blood and muscle. Microdissection of muscle biopsy and its analysis revealed the highest level of this mutation in cytochrome c oxidase (COX)-negative fibres. We suggest that this novel mutation would affect the anticodon loop structure of the tRNA{sup Asn} and cause a fatal mitochondrial disease.

  20. Malignancy of Cancers and Synthetic Lethal Interactions Associated With Mutations of Cancer Driver Genes.

    PubMed

    Wang, Xiaosheng; Zhang, Yue; Han, Ze-Guang; He, Kun-Yan

    2016-02-01

    The mutation status of cancer driver genes may correlate with different degrees of malignancy of cancers. The doubling time and multidrug resistance are 2 phenotypes that reflect the degree of malignancy of cancer cells. Because most of cancer driver genes are hard to target, identification of their synthetic lethal partners might be a viable approach to treatment of the cancers with the relevant mutations.The genome-wide screening for synthetic lethal partners is costly and labor intensive. Thus, a computational approach facilitating identification of candidate genes for a focus synthetic lethal RNAi screening will accelerate novel anticancer drug discovery.We used several publicly available cancer cell lines and tumor tissue genomic data in this study.We compared the doubling time and multidrug resistance between the NCI-60 cell lines with mutations in some cancer driver genes and those without the mutations. We identified some candidate synthetic lethal genes to the cancer driver genes APC, KRAS, BRAF, PIK3CA, and TP53 by comparison of their gene phenotype values in cancer cell lines with the relevant mutations and wild-type background. Further, we experimentally validated some of the synthetic lethal relationships we predicted.We reported that mutations in some cancer driver genes mutations in some cancer driver genes such as APC, KRAS, or PIK3CA might correlate with cancer proliferation or drug resistance. We identified 40, 21, 5, 43, and 18 potential synthetic lethal genes to APC, KRAS, BRAF, PIK3CA, and TP53, respectively. We found that some of the potential synthetic lethal genes show significantly higher expression in the cancers with mutations of their synthetic lethal partners and the wild-type counterparts. Further, our experiments confirmed several synthetic lethal relationships that are novel findings by our methods.We experimentally validated a part of the synthetic lethal relationships we predicted. We plan to perform further experiments to validate

  1. Electroshock weapons can be lethal!

    NASA Astrophysics Data System (ADS)

    Lundquist, Marjorie

    2008-03-01

    Electroshock weapons (EWs)-stun guns, tasers, riot shields-are electroconductive devices designed to safely incapacitate healthy men neuromuscularly, so they are called nonlethal or less-lethal. EW firms seeking large nonmilitary markets targeted law enforcement and corrections personnel, who began using EWs in prisons/jails and on public patrol in 1980 in the USA. This shifted the EW-shocked population from healthy soldiers to a heterogeneous mix of both sexes, ages 6-92, in a wide variety of health conditions! An EW operates by disrupting normal physiological processes, producing transient effects in healthy people. But if a person's health is sufficiently compromised, the margin of safety can be lost, resulting in death or permanent health problems. 325 people have died after EW shock since 1980. Did the EW cause these deaths? Evidence indicates that EWs do play a causal role in most such deaths. EWs can be lethal for people in diabetic shock^1 (hypoglycemia), which may be why Robert Dziekanski-a Polish immigrant to Canada-died so quickly after he was tasered at Vancouver Airport: not having eaten for over 10 hours, he likely was severely hypoglycemic. The EW death rate in North America is 30 times higher than need be, because EW users have not been properly trained to use EWs on a heterogeneous population safely! ^1J. Clinical Engineering 30(3):111(2005).

  2. Chemical genomic screening of a Saccharomyces cerevisiae genomewide mutant collection reveals genes required for defense against four antimicrobial peptides derived from proteins found in human saliva.

    PubMed

    Lis, Maciej; Bhatt, Sanjay; Schoenly, Nathan E; Lee, Anna Y; Nislow, Corey; Bobek, Libuse A

    2013-02-01

    To compare the effects of four antimicrobial peptides (MUC7 12-mer, histatin 12-mer, cathelicidin KR20, and a peptide containing lactoferricin amino acids 1 to 11) on the yeast Saccharomyces cerevisiae, we employed a genomewide fitness screen of combined collections of mutants with homozygous deletions of nonessential genes and heterozygous deletions of essential genes. When an arbitrary fitness score cutoffs of 1 (indicating a fitness defect, or hypersensitivity) and -1 (indicating a fitness gain, or resistance) was used, 425 of the 5,902 mutants tested exhibited altered fitness when treated with at least one peptide. Functional analysis of the 425 strains revealed enrichment among the identified deletions in gene groups associated with the Gene Ontology (GO) terms "ribosomal subunit," "ribosome biogenesis," "protein glycosylation," "vacuolar transport," "Golgi vesicle transport," "negative regulation of transcription," and others. Fitness profiles of all four tested peptides were highly similar, particularly among mutant strains exhibiting the greatest fitness defects. The latter group included deletions in several genes involved in induction of the RIM101 signaling pathway, including several components of the ESCRT sorting machinery. The RIM101 signaling regulates response of yeasts to alkaline and neutral pH and high salts, and our data indicate that this pathway also plays a prominent role in regulating protective measures against all four tested peptides. In summary, the results of the chemical genomic screens of S. cerevisiae mutant collection suggest that the four antimicrobial peptides, despite their differences in structure and physical properties, share many interactions with S. cerevisiae cells and consequently a high degree of similarity between their modes of action.

  3. Complete genome-wide screening and subtractive genomic approach revealed new virulence factors, potential drug targets against bio-war pathogen Brucella melitensis 16M

    PubMed Central

    Pradeepkiran, Jangampalli Adi; Sainath, Sri Bhashyam; Kumar, Konidala Kranthi; Bhaskar, Matcha

    2015-01-01

    Brucella melitensis 16M is a Gram-negative coccobacillus that infects both animals and humans. It causes a disease known as brucellosis, which is characterized by acute febrile illness in humans and causes abortions in livestock. To prevent and control brucellosis, identification of putative drug targets is crucial. The present study aimed to identify drug targets in B. melitensis 16M by using a subtractive genomic approach. We used available database repositories (Database of Essential Genes, Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server, and Kyoto Encyclopedia of Genes and Genomes) to identify putative genes that are nonhomologous to humans and essential for pathogen B. melitensis 16M. The results revealed that among 3 Mb genome size of pathogen, 53 putative characterized and 13 uncharacterized hypothetical genes were identified; further, from Basic Local Alignment Search Tool protein analysis, one hypothetical protein showed a close resemblance (50%) to Silicibacter pomeroyi DUF1285 family protein (2RE3). A further homology model of the target was constructed using MODELLER 9.12 and optimized through variable target function method by molecular dynamics optimization with simulating annealing. The stereochemical quality of the restrained model was evaluated by PROCHECK, VERIFY-3D, ERRAT, and WHATIF servers. Furthermore, structure-based virtual screening was carried out against the predicted active site of the respective protein using the glycerol structural analogs from the PubChem database. We identified five best inhibitors with strong affinities, stable interactions, and also with reliable drug-like properties. Hence, these leads might be used as the most effective inhibitors of modeled protein. The outcome of the present work of virtual screening of putative gene targets might facilitate design of potential drugs for better treatment against brucellosis. PMID:25834405

  4. Complete genome-wide screening and subtractive genomic approach revealed new virulence factors, potential drug targets against bio-war pathogen Brucella melitensis 16M.

    PubMed

    Pradeepkiran, Jangampalli Adi; Sainath, Sri Bhashyam; Kumar, Konidala Kranthi; Bhaskar, Matcha

    2015-01-01

    Brucella melitensis 16M is a Gram-negative coccobacillus that infects both animals and humans. It causes a disease known as brucellosis, which is characterized by acute febrile illness in humans and causes abortions in livestock. To prevent and control brucellosis, identification of putative drug targets is crucial. The present study aimed to identify drug targets in B. melitensis 16M by using a subtractive genomic approach. We used available database repositories (Database of Essential Genes, Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server, and Kyoto Encyclopedia of Genes and Genomes) to identify putative genes that are nonhomologous to humans and essential for pathogen B. melitensis 16M. The results revealed that among 3 Mb genome size of pathogen, 53 putative characterized and 13 uncharacterized hypothetical genes were identified; further, from Basic Local Alignment Search Tool protein analysis, one hypothetical protein showed a close resemblance (50%) to Silicibacter pomeroyi DUF1285 family protein (2RE3). A further homology model of the target was constructed using MODELLER 9.12 and optimized through variable target function method by molecular dynamics optimization with simulating annealing. The stereochemical quality of the restrained model was evaluated by PROCHECK, VERIFY-3D, ERRAT, and WHATIF servers. Furthermore, structure-based virtual screening was carried out against the predicted active site of the respective protein using the glycerol structural analogs from the PubChem database. We identified five best inhibitors with strong affinities, stable interactions, and also with reliable drug-like properties. Hence, these leads might be used as the most effective inhibitors of modeled protein. The outcome of the present work of virtual screening of putative gene targets might facilitate design of potential drugs for better treatment against brucellosis.

  5. Identification of cetrimonium bromide and irinotecan as compounds with synthetic lethality against NDRG1 deficient prostate cancer cells.

    PubMed

    Wissing, Michel D; Mendonca, Janet; Kim, Eunice; Kim, Eugene; Shim, Joong S; Kaelber, Nadine S; Kant, Huub; Hammers, Hans; Commes, Therese; Van Diest, Paul J; Liu, Jun O; Kachhap, Sushant K

    2013-05-01

    The N-myc downstream regulated gene 1 (NDRG1) has been identified as a metastasis-suppressor gene in prostate cancer (PCa). Compounds targeting PCa cells deficient in NDRG1 could potentially decrease invasion/metastasis of PCa. A cell based screening strategy was employed to identify small molecules that selectively target NDRG1 deficient PCa cells. DU-145 PCa cells rendered deficient in NDRG1 expression by a lentiviral shRNA-mediated knockdown strategy were used in the primary screen. Compounds filtered from the primary screen were further validated through proliferation and clonogenic survival assays in parental and NDRG1 knockdown PCa cells. Screening of 3360 compounds revealed irinotecan and cetrimonium bromide (CTAB) as compounds that exhibited synthetic lethality against NDRG1 deficient PCa cells. A three-dimensional (3-D) invasion assay was utilized to test the ability of CTAB to inhibit invasion of DU-145 cells. CTAB was found to remarkably decrease invasion of DU-145 cells in collagen matrix. Our results suggest that CTAB and irinotecan could be further explored for their potential clinical benefit in patients with NDRG1 deficient PCa.

  6. Histopathological effects of anthrax lethal factor on rat liver.

    PubMed

    Altunkaynak, Berrin Zuhal; Ozbek, Elvan

    2015-01-01

    Bacillus anthracis, the causative agent of anthrax, has become an increasingly important scientific topic due to its potential role in bioterrorism. The lethal toxin (LT) of B. anthracis consists of lethal factor (LF) and a protective antigen (PA). This study investigated whether only lethal factor was efficient as a hepatotoxin in the absence of the PA. To achieve this aim, LF (100 µg/kg body weight, dissolved in sterile distilled water) or distilled water vehicle were intraperitoneally injected once into adult rats. At 24 h post-injection, the hosts were euthanized and their livers removed and tissue samples examined under light and electron microscopes. As a result of LF application, hepatic injury - including cytoplasmic and nuclear damage in hepatocytes, sinusoidal dilatation, and hepatocellular lysis - became apparent. Further, light microscopic analyses of liver sections from the LF-injected rats revealed ballooning degeneration and cytoplasmic loss within hepatocytes, as well as peri-sinusoidal inflammation. Additionally, an increase in the numbers of Kupffer cells was evident. Common vascular injuries were also found in the liver samples; these injuries caused hypoxia and pathological changes. In addition, some cytoplasmic and nuclear changes were detected within the liver ultrastructure. The results of these studies allow one to suggest that LF could be an effective toxicant alone and that PA might act in situ to modify the effect of this agent (or the reverse situation wherein LF modifies effects of PA) such that lethality results.

  7. Infantile pulmonary capillary haemangiomatosis: a lethal form of pulmonary hypertension.

    PubMed

    McGovern, Eiméar; McNally, Paul; O'Sullivan, Maureen; Phelan, Ethna; Sumner, Kelli; Best, D Hunter; McMahon, Colin J

    2016-04-01

    We describe the cases of two children who both presented in infancy with recurrent severe pulmonary hypertensive crises. Exhaustive clinical work-up failed to identify an underlying aetiology. The patients had no clinical response to steroids, immunoglobulins, or pulmonary vasodilators. Post-mortem examination revealed extensive invasive pulmonary capillary haemangiomatosis. There was no evidence of pulmonary venous occlusive disease. Given the lethal nature of this condition, early consideration of referral to a lung transplant centre should be considered in selected patients.

  8. A trans-Amazonian screening of mtDNA reveals deep intraspecific divergence in forest birds and suggests a vast underestimation of species diversity.

    PubMed

    Milá, Borja; Tavares, Erika S; Muñoz Saldaña, Alberto; Karubian, Jordan; Smith, Thomas B; Baker, Allan J

    2012-01-01

    The Amazonian avifauna remains severely understudied relative to that of the temperate zone, and its species richness is thought to be underestimated by current taxonomy. Recent molecular systematic studies using mtDNA sequence reveal that traditionally accepted species-level taxa often conceal genetically divergent subspecific lineages found to represent new species upon close taxonomic scrutiny, suggesting that intraspecific mtDNA variation could be useful in species discovery. Surveys of mtDNA variation in Holarctic species have revealed patterns of variation that are largely congruent with species boundaries. However, little information exists on intraspecific divergence in most Amazonian species. Here we screen intraspecific mtDNA genetic variation in 41 Amazonian forest understory species belonging to 36 genera and 17 families in 6 orders, using 758 individual samples from Ecuador and French Guiana. For 13 of these species, we also analyzed trans-Andean populations from the Ecuadorian Chocó. A consistent pattern of deep intraspecific divergence among trans-Amazonian haplogroups was found for 33 of the 41 taxa, and genetic differentiation and genetic diversity among them was highly variable, suggesting a complex range of evolutionary histories. Mean sequence divergence within families was the same as that found in North American birds (13%), yet mean intraspecific divergence in Neotropical species was an order of magnitude larger (2.13% vs. 0.23%), with mean distance between intraspecific lineages reaching 3.56%. We found no clear relationship between genetic distances and differentiation in plumage color. Our results identify numerous genetically and phenotypically divergent lineages which may result in new species-level designations upon closer taxonomic scrutiny and thorough sampling, although lineages in the tropical region could be older than those in the temperate zone without necessarily representing separate species. In-depth phylogeographic surveys

  9. A Trans-Amazonian Screening of mtDNA Reveals Deep Intraspecific Divergence in Forest Birds and Suggests a Vast Underestimation of Species Diversity

    PubMed Central

    Milá, Borja; Tavares, Erika S.; Muñoz Saldaña, Alberto; Karubian, Jordan; Smith, Thomas B.; Baker, Allan J.

    2012-01-01

    The Amazonian avifauna remains severely understudied relative to that of the temperate zone, and its species richness is thought to be underestimated by current taxonomy. Recent molecular systematic studies using mtDNA sequence reveal that traditionally accepted species-level taxa often conceal genetically divergent subspecific lineages found to represent new species upon close taxonomic scrutiny, suggesting that intraspecific mtDNA variation could be useful in species discovery. Surveys of mtDNA variation in Holarctic species have revealed patterns of variation that are largely congruent with species boundaries. However, little information exists on intraspecific divergence in most Amazonian species. Here we screen intraspecific mtDNA genetic variation in 41 Amazonian forest understory species belonging to 36 genera and 17 families in 6 orders, using 758 individual samples from Ecuador and French Guiana. For 13 of these species, we also analyzed trans-Andean populations from the Ecuadorian Chocó. A consistent pattern of deep intraspecific divergence among trans-Amazonian haplogroups was found for 33 of the 41 taxa, and genetic differentiation and genetic diversity among them was highly variable, suggesting a complex range of evolutionary histories. Mean sequence divergence within families was the same as that found in North American birds (13%), yet mean intraspecific divergence in Neotropical species was an order of magnitude larger (2.13% vs. 0.23%), with mean distance between intraspecific lineages reaching 3.56%. We found no clear relationship between genetic distances and differentiation in plumage color. Our results identify numerous genetically and phenotypically divergent lineages which may result in new species-level designations upon closer taxonomic scrutiny and thorough sampling, although lineages in the tropical region could be older than those in the temperate zone without necessarily representing separate species. In-depth phylogeographic surveys

  10. Acute and sub-lethal response to mercury in Arctic and boreal calanoid copepods.

    PubMed

    Overjordet, Ida Beathe; Altin, Dag; Berg, Torunn; Jenssen, Bjørn Munro; Gabrielsen, Geir Wing; Hansen, Bjørn Henrik

    2014-10-01

    Acute lethal toxicity, expressed as LC50 values, is a widely used parameter in risk assessment of chemicals, and has been proposed as a tool to assess differences in species sensitivities to chemicals between climatic regions. Arctic Calanus glacialis and boreal Calanus finmarchicus were exposed to mercury (Hg(2+)) under natural environmental conditions including sea temperatures of 2° and 10°C, respectively. Acute lethal toxicity (96 h LC50) and sub-lethal molecular response (GST expression; in this article gene expression is used as a synonym of gene transcription, although it is acknowledged that gene expression is also regulated, e.g., at translation and protein stability level) were studied. The acute lethal toxicity was monitored for 96 h using seven different Hg concentrations. The sub-lethal experiment was set up on the basis of nominal LC50 values for each species using concentrations equivalent to 50, 5 and 0.5% of their 96 h LC50 value. No significant differences were found in acute lethal toxicity between the two species. The sub-lethal molecular response revealed large differences both in response time and the fold induction of GST, where the Arctic species responded both faster and with higher mRNA levels of GST after 48 h exposure. Under the natural exposure conditions applied in the present study, the Arctic species C. glacialis may potentially be more susceptible to mercury exposure on the sub-lethal level.

  11. An in-tumor genetic screen reveals that the BET bromodomain protein, BRD4, is a potential therapeutic target in ovarian carcinoma.

    PubMed

    Baratta, Maria Giuseppina; Schinzel, Anna C; Zwang, Yaara; Bandopadhayay, Pratiti; Bowman-Colin, Christian; Kutt, Jennifer; Curtis, Jennifer; Piao, Huiying; Wong, Laura C; Kung, Andrew L; Beroukhim, Rameen; Bradner, James E; Drapkin, Ronny; Hahn, William C; Liu, Joyce F; Livingston, David M

    2015-01-06

    High-grade serous ovarian carcinoma (HGSOC) is the most common and aggressive form of epithelial ovarian cancer, for which few targeted therapies exist. To search for new therapeutic target proteins, we performed an in vivo shRNA screen using an established human HGSOC cell line growing either subcutaneously or intraperitoneally in immunocompromised mice. We identified genes previously implicated in ovarian cancer such as AURKA1, ERBB3, CDK2, and mTOR, as well as several novel candidates including BRD4, VRK1, and GALK2. We confirmed, using both genetic and pharmacologic approaches, that the activity of BRD4, an epigenetic transcription modulator, is necessary for proliferation/survival of both an established human ovarian cancer cell line (OVCAR8) and a subset of primary serous ovarian cancer cell strains (DFs). Among the DFs tested, the strains sensitive to BRD4 inhibition revealed elevated expression of either MYCN or c-MYC, with MYCN expression correlating closely with JQ1 sensitivity. Accordingly, primary human xenografts derived from high-MYCN or c-MYC strains exhibited sensitivity to BRD4 inhibition. These data suggest that BRD4 inhibition represents a new therapeutic approach for MYC-overexpressing HGSOCs.

  12. Virtual Screening of Plant Volatile Compounds Reveals a High Affinity of Hylamorpha elegans (Coleoptera: Scarabaeidae) Odorant-Binding Proteins for Sesquiterpenes From Its Native Host

    PubMed Central

    Palma-Millanao, Rubén; Yáñez, Osvaldo; Rojas, Maximiliano; Mutis, Ana; Venthur, Herbert; Quiroz, Andrés; Ramírez, Claudio C.

    2016-01-01

    Hylamorpha elegans (Burmeister) is a native Chilean scarab beetle considered to be a relevant agricultural pest to pasture and cereal and small fruit crops. Because of their cryptic habits, control with conventional methods is difficult; therefore, alternative and environmentally friendly control strategies are highly desirable. The study of proteins that participate in the recognition of odorants, such as odorant-binding proteins (OBPs), offers interesting opportunities to identify new compounds with the potential to modify pest behavior and computational screening of compounds, which is commonly used in drug discovery, may help to accelerate the discovery of new semiochemicals. Here, we report the discovery of four OBPs in H. elegans as well as six new volatiles released by its native host Nothofagus obliqua (Mirbel). Molecular docking performed between OBPs and new and previously reported volatiles from N. obliqua revealed the best binding energy values for sesquiterpenic compounds. Despite remarkable divergence at the amino acid level, three of the four OBPs evaluated exhibited the best interaction energy for the same ligands. Molecular dynamics investigation reinforced the importance of sesquiterpenes, showing that hydrophobic residues of the OBPs interacted most frequently with the tested ligands, and binding free energy calculations demonstrated van der Waals and hydrophobic interactions to be the most important. Altogether, the results suggest that sesquiterpenes are interesting candidates for in vitro and in vivo assays to assess their potential application in pest management strategies. PMID:27012867

  13. A signal peptide secretion screen in Fucus distichus embryos reveals expression of glucanase, EGF domain-containing, and LRR receptor kinase-like polypeptides during asymmetric cell growth.

    PubMed

    Belanger, Kenneth D; Wyman, Aaron J; Sudol, Michelle N; Singla-Pareek, Sneh L; Quatrano, Ralph S

    2003-10-01

    Zygotes of the brown alga Fucus distichus (L.) Powell develop polarity prior to the first embryonic cell division and retain a pattern of asymmetric growth during early embryogenesis. In order to identify F. distichus polypeptides secreted during asymmetric cell growth, we used a functional assay in Saccharomyces cerevisiae to screen a cDNA library generated from asymmetrically growing Fucus embryos for sequences encoding polypeptides that function as signal peptides for secretion. We isolated and sequenced 222 plasmids containing Fucus cDNAs encoding signal peptide activity. The cDNA inserts from these plasmids were translated in silico into 244 potential polypeptide sequences, 169 of which are predicted to contain signal peptides. BlastP analysis of the Fucus sequences revealed similarity between many Fucus proteins and cell surface proteins that function in development in other eukaryotes, including epidermal growth factor (EGF)-like repeat-containing proteins, plant leucine-rich repeat (LRR)-receptor kinases, and algal beta-1, 3-exoglucanase. However, most of the isolated Fucus polypeptides lack similarity to known proteins. The isolation of cDNAs encoding secreted Fucus proteins provides an important step toward characterizing cell surface proteins important for asymmetric organization and growth in fucoid embryos.

  14. Cultivation-Independent Screening Revealed Hot Spots of IncP-1, IncP-7 and IncP-9 Plasmid Occurrence in Different Environmental Habitats

    PubMed Central

    Dealtry, Simone; Ding, Guo-Chun; Weichelt, Viola; Dunon, Vincent; Schlüter, Andreas; Martini, María Carla; Papa, María Florencia Del; Lagares, Antonio; Amos, Gregory Charles Auton; Wellington, Elizabeth Margaret Helen; Gaze, William Hugo; Sipkema, Detmer; Sjöling, Sara; Springael, Dirk; Heuer, Holger; van Elsas, Jan Dirk; Thomas, Christopher; Smalla, Kornelia

    2014-01-01

    IncP-1, IncP-7 and IncP-9 plasmids often carry genes encoding enzymes involved in the degradation of man-made and natural contaminants, thus contributing to bacterial survival in polluted environments. However, the lack of suitable molecular tools often limits the detection of these plasmids in the environment. In this study, PCR followed by Southern blot hybridization detected the presence of plasmid-specific sequences in total community (TC-) DNA or fosmid DNA from samples originating from different environments and geographic regions. A novel primer system targeting IncP-9 plasmids was developed and applied along with established primers for IncP-1 and IncP-7. Screening TC-DNA from biopurification systems (BPS) which are used on farms for the purification of pesticide-contaminated water revealed high abundances of IncP-1 plasmids belonging to different subgroups as well as IncP-7 and IncP-9. The novel IncP-9 primer-system targeting the rep gene of nine IncP-9 subgroups allowed the detection of a high diversity of IncP-9 plasmid specific sequences in environments with different sources of pollution. Thus polluted sites are “hot spots” of plasmids potentially carrying catabolic genes. PMID:24587126

  15. An in-tumor genetic screen reveals that the BET bromodomain protein, BRD4, is a potential therapeutic target in ovarian carcinoma

    PubMed Central

    Baratta, Maria Giuseppina; Schinzel, Anna C.; Zwang, Yaara; Bandopadhayay, Pratiti; Bowman-Colin, Christian; Kutt, Jennifer; Curtis, Jennifer; Piao, Huiying; Wong, Laura C.; Kung, Andrew L.; Beroukhim, Rameen; Bradner, James E.; Drapkin, Ronny; Hahn, William C.; Liu, Joyce F.; Livingston, David M.

    2015-01-01

    High-grade serous ovarian carcinoma (HGSOC) is the most common and aggressive form of epithelial ovarian cancer, for which few targeted therapies exist. To search for new therapeutic target proteins, we performed an in vivo shRNA screen using an established human HGSOC cell line growing either subcutaneously or intraperitoneally in immunocompromised mice. We identified genes previously implicated in ovarian cancer such as AURKA1, ERBB3, CDK2, and mTOR, as well as several novel candidates including BRD4, VRK1, and GALK2. We confirmed, using both genetic and pharmacologic approaches, that the activity of BRD4, an epigenetic transcription modulator, is necessary for proliferation/survival of both an established human ovarian cancer cell line (OVCAR8) and a subset of primary serous ovarian cancer cell strains (DFs). Among the DFs tested, the strains sensitive to BRD4 inhibition revealed elevated expression of either MYCN or c-MYC, with MYCN expression correlating closely with JQ1 sensitivity. Accordingly, primary human xenografts derived from high-MYCN or c-MYC strains exhibited sensitivity to BRD4 inhibition. These data suggest that BRD4 inhibition represents a new therapeutic approach for MYC-overexpressing HGSOCs. PMID:25535366

  16. Alcohol Consumption and Nearly Lethal Suicide Attempts.

    ERIC Educational Resources Information Center

    Powell, Kenneth E.; Kresnow, Marcie-jo; Mercy, James A.; Potter, Lloyd B.; Swann, Alan C.; Frankowski, Ralph F.; Lee, Roberta K.; Bayer, Timothy L.

    2002-01-01

    Presents a case-control study of the association between nearly lethal suicide attempts and facets of alcohol consumption; namely, drinking frequency, drinking quantity, binge drinking, alcoholism, drinking within 3 hours of suicide attempt, and age began drinking. In bivariate analyses, all measures were associated with nearly lethal suicide…

  17. Empirical Complexities in the Genetic Foundations of Lethal Mutagenesis

    PubMed Central

    Bull, James J.; Joyce, Paul; Gladstone, Eric; Molineux, Ian J.

    2013-01-01

    From population genetics theory, elevating the mutation rate of a large population should progressively reduce average fitness. If the fitness decline is large enough, the population will go extinct in a process known as lethal mutagenesis. Lethal mutagenesis has been endorsed in the virology literature as a promising approach to viral treatment, and several in vitro studies have forced viral extinction with high doses of mutagenic drugs. Yet only one empirical study has tested the genetic models underlying lethal mutagenesis, and the theory failed on even a qualitative level. Here we provide a new level of analysis of lethal mutagenesis by developing and evaluating models specifically tailored to empirical systems that may be used to test the theory. We first quantify a bias in the estimation of a critical parameter and consider whether that bias underlies the previously observed lack of concordance between theory and experiment. We then consider a seemingly ideal protocol that avoids this bias—mutagenesis of virions—but find that it is hampered by other problems. Finally, results that reveal difficulties in the mere interpretation of mutations assayed from double-strand genomes are derived. Our analyses expose unanticipated complexities in testing the theory. Nevertheless, the previous failure of the theory to predict experimental outcomes appears to reside in evolutionary mechanisms neglected by the theory (e.g., beneficial mutations) rather than from a mismatch between the empirical setup and model assumptions. This interpretation raises the specter that naive attempts at lethal mutagenesis may augment adaptation rather than retard it. PMID:23934886

  18. Lethal mitochondrial cardiomyopathy in a hypomorphic Med30 mouse mutant is ameliorated by ketogenic diet.

    PubMed

    Krebs, Philippe; Fan, Weiwei; Chen, Yen-Hui; Tobita, Kimimasa; Downes, Michael R; Wood, Malcolm R; Sun, Lei; Li, Xiaohong; Xia, Yu; Ding, Ning; Spaeth, Jason M; Moresco, Eva Marie Y; Boyer, Thomas G; Lo, Cecilia Wen Ya; Yen, Jeffrey; Evans, Ronald M; Beutler, Bruce

    2011-12-06

    Deficiencies of subunits of the transcriptional regulatory complex Mediator generally result in embryonic lethality, precluding study of its physiological function. Here we describe a missense mutation in Med30 causing progressive cardiomyopathy in homozygous mice that, although viable during lactation, show precipitous lethality 2-3 wk after weaning. Expression profiling reveals pleiotropic changes in transcription of cardiac genes required for oxidative phosphorylation and mitochondrial integrity. Weaning mice to a ketogenic diet extends viability to 8.5 wk. Thus, we establish a mechanistic connection between Mediator and induction of a metabolic program for oxidative phosphorylation and fatty acid oxidation, in which lethal cardiomyopathy is mitigated by dietary intervention.

  19. Lethal entanglement in baleen whales.

    PubMed

    Cassoff, Rachel M; Moore, Kathleen M; McLellan, William A; Barco, Susan G; Rotsteins, David S; Moore, Michael J

    2011-10-06

    Understanding the scenarios whereby fishing gear entanglement of large whales induces mortality is important for the development of mitigation strategies. Here we present a series of 21 cases involving 4 species of baleen whales in the NW Atlantic, describing the available sighting history, necropsy observations, and subsequent data analyses that enabled the compilation of the manners in which entanglement can be lethal. The single acute cause of entanglement mortality identified was drowning from entanglement involving multiple body parts, with the animal's inability to surface. More protracted causes of death included impaired foraging during entanglement, resulting in starvation after many months; systemic infection arising from open, unresolved entanglement wounds; and hemorrhage or debilitation due to severe gear-related damage to tissues. Serious gear-induced injury can include laceration of large vessels, occlusion of the nares, embedding of line in growing bone, and massive periosteal proliferation of new bone in an attempt to wall off constricting, encircling lines. These data show that baleen whale entanglement is not only a major issue for the conservation of some baleen whale populations, but is also a major concern for the welfare of each affected individual.

  20. Lethal photosensitization of Helicobacter species

    NASA Astrophysics Data System (ADS)

    Millson, Charles E.; Wilson, Michael; MacRobert, Alexander J.; Thurrell, Wendy; Mlkvy, Peter; Davies, Claire; Bown, Stephen G.

    1995-01-01

    Helicobacter pylori (H. pylori) is associated with a large number of gastroduodenal disorders. Clearance of the bacteria has been shown to benefit patients with duodenal ulcers, gastric ulcers, and certain rare types of gastric tumors. Broad-spectrum antibiotics are the mainstay of current treatment strategies but side-effects, poor compliance, and drug resistance limit their usefulness. We sensitized H. pylori with toluidine blue, haematoporphyrin derivative, aluminum disulphonated phthalocyanine, methylene blue or protoporphyrin IX prior to exposure to low-power laser light from either a gallium aluminum arsenide laser or a helium neon gas laser. All 5 sensitizers caused reductions of greater than 1000-fold in the number of viable bacteria. Light alone had no effect and only HpD caused a significant decrease in bacterial numbers without laser light. Next, we sensitized H. mustelae on explanted ferret gastric mucosa (ex vivo) with the same sensitizers and exposed them to light from a copper vapor pumped dye laser tuned appropriately. MB caused significant reductions in bacterial counts. Successful lethal photosensitization of Helicobacter pylori both in vitro and ex vivo raises the possibility of a local method for eradicating the bacteria, especially as the bacteria are only found in those parts of the upper gastrointestinal tract that are accessible to the endoscope.

  1. The flap by flap dissection in terminal ballistic applied to less lethal weapons.

    PubMed

    de Freminville, Humbert; Rongieras, Fréderic; Prat, Nicolas; Voiglio, Eric J

    2011-06-01

    Medical examiners often have to solve questions such as firing distance and bullet trajectory for lethal weapons. Knowledge in the field of terminal ballistics has increased during the last 30 years and layer by layer dissection reveals superficial wounds that can be linked with the permanent cavity. At the end of the 1990s, terminal ballistics also focused on less lethal weapons and their wounds. Here, 2 different less lethal weapons with single bullets were tested on nonembalmed and undressed cadavers (N = 26) at different ranges and speeds. We have developed a technique for dissection which we call flap by flap dissection that reveals the advantage of the bullet-skin-bone entity, the absence of wounds linking its components and range of less lethal weapons.

  2. High-throughput Screening of ToxCast" Phase I Chemicals in an Embryonic Stem Cell Assay Reveals Potential Disruption of a Critical Developmental Signaling Pathway

    EPA Science Inventory

    Little is known about the developmental toxicity of the expansive chemical landscape in existence today. Significant efforts are being made to apply novel methods to predict developmental activity of chemicals utilizing high-throughput screening (HTS) and high-content screening (...

  3. Highly variable recessive lethal or nearly lethal mutation rates during germ-line development of male Drosophila melanogaster.

    PubMed

    Gao, Jian-Jun; Pan, Xue-Rong; Hu, Jing; Ma, Li; Wu, Jian-Min; Shao, Ye-Lin; Barton, Sara A; Woodruff, Ronny C; Zhang, Ya-Ping; Fu, Yun-Xin

    2011-09-20

    Each cell of higher organism adults is derived from a fertilized egg through a series of divisions, during which mutations can occur. Both the rate and timing of mutations can have profound impacts on both the individual and the population, because mutations that occur at early cell divisions will affect more tissues and are more likely to be transferred to the next generation. Using large-scale multigeneration screening experiments for recessive lethal or nearly lethal mutations of Drosophila melanogaster and recently developed statistical analysis, we show for male D. melanogaster that (i) mutation rates (for recessive lethal or nearly lethal) are highly variable during germ cell development; (ii) first cell cleavage has the highest mutation rate, which drops substantially in the second cleavage or the next few cleavages; (iii) the intermediate stages, after a few cleavages to right before spermatogenesis, have at least an order of magnitude smaller mutation rate; and (iv) spermatogenesis also harbors a fairly high mutation rate. Because germ-line lineage shares some (early) cell divisions with somatic cell lineage, the first conclusion is readily extended to a somatic cell lineage. It is conceivable that the first conclusion is true for most (if not all) higher organisms, whereas the other three conclusions are widely applicable, although the extent may differ from species to species. Therefore, conclusions or analyses that are based on equal mutation rates during development should be taken with caution. Furthermore, the statistical approach developed can be adopted for studying other organisms, including the human germ-line or somatic mutational patterns.

  4. miRNA array screening reveals cooperative MGMT-regulation between miR-181d-5p and miR-409-3p in glioblastoma

    PubMed Central

    Khalil, Susanna; Fabbri, Enrica; Santangelo, Alessandra; Bezzerri, Valentino; Cantù, Cinzia; Gennaro, Gianfranco Di; Finotti, Alessia; Ghimenton, Claudio; Eccher, Albino; Dechecchi, Maria; Scarpa, Aldo; Hirshman, Brian; Chen, Clark; Ferracin, Manuela; Negrini, Massimo; Gambari, Roberto; Cabrini, Giulio

    2016-01-01

    The levels of expression of O6-methylguanine-DNA methyltransferase (MGMT) are relevant in predicting the response to the alkylating chemotherapy in patients affected by glioblastoma. MGMT promoter methylation and the published MGMT regulating microRNAs (miRNAs) do not completely explain the expression pattern of MGMT in clinical glioblastoma specimens. Here we used a genome-wide microarray-based approach to identify MGMT regulating miRNAs. Our screen unveiled three novel MGMT regulating miRNAs, miR-127-3p, miR-409-3p, and miR-124-3p, in addition to the previously identified miR-181d-5p. Transfection of these three novel miRNAs into the T98G glioblastoma cell line suppressed MGMT mRNA and protein expression. However, their MGMT- suppressive effects are 30–50% relative that seen with miR-181d-5p transfection. In silico analyses of The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) revealed that miR-181d-5p is the only miRNA that consistently exhibited inverse correlation with MGMT mRNA expression. However, statistical models incorporating both miR-181d-5p and miR-409-3p expression better predict MGMT expression relative to models involving either miRNA alone. Our results confirmed miR-181d-5p as the key MGMT-regulating miRNA. Other MGMT regulating miRNAs, including the miR-409-3p identified in this report, modify the effect of miR-181d-5p on MGMT expression. MGMT expression is, thus, regulated by cooperative interaction between key MGMT-regulating miRNAs. PMID:27057640

  5. miRNA array screening reveals cooperative MGMT-regulation between miR-181d-5p and miR-409-3p in glioblastoma.

    PubMed

    Khalil, Susanna; Fabbri, Enrica; Santangelo, Alessandra; Bezzerri, Valentino; Cantù, Cinzia; Di Gennaro, Gianfranco; Finotti, Alessia; Ghimenton, Claudio; Eccher, Albino; Dechecchi, Maria; Scarpa, Aldo; Hirshman, Brian; Chen, Clark; Ferracin, Manuela; Negrini, Massimo; Gambari, Roberto; Cabrini, Giulio

    2016-05-10

    The levels of expression of O6-methylguanine-DNA methyltransferase (MGMT) are relevant in predicting the response to the alkylating chemotherapy in patients affected by glioblastoma. MGMT promoter methylation and the published MGMT regulating microRNAs (miRNAs) do not completely explain the expression pattern of MGMT in clinical glioblastoma specimens. Here we used a genome-wide microarray-based approach to identify MGMT regulating miRNAs. Our screen unveiled three novel MGMT regulating miRNAs, miR-127-3p, miR-409-3p, and miR-124-3p, in addition to the previously identified miR-181d-5p. Transfection of these three novel miRNAs into the T98G glioblastoma cell line suppressed MGMT mRNA and protein expression. However, their MGMT- suppressive effects are 30-50% relative that seen with miR-181d-5p transfection. In silico analyses of The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) revealed that miR-181d-5p is the only miRNA that consistently exhibited inverse correlation with MGMT mRNA expression. However, statistical models incorporating both miR-181d-5p and miR-409-3p expression better predict MGMT expression relative to models involving either miRNA alone. Our results confirmed miR-181d-5p as the key MGMT-regulating miRNA. Other MGMT regulating miRNAs, including the miR-409-3p identified in this report, modify the effect of miR-181d-5p on MGMT expression. MGMT expression is, thus, regulated by cooperative interaction between key MGMT-regulating miRNAs.

  6. Sequence-Based Screening for Rare Enzymes: New Insights into the World of AMDases Reveal a Conserved Motif and 58 Novel Enzymes Clustering in Eight Distinct Families

    PubMed Central

    Maimanakos, Janine; Chow, Jennifer; Gaßmeyer, Sarah K.; Güllert, Simon; Busch, Florian; Kourist, Robert; Streit, Wolfgang R.

    2016-01-01

    Arylmalonate Decarboxylases (AMDases, EC 4.1.1.76) are very rare and mostly underexplored enzymes. Currently only four known and biochemically characterized representatives exist. However, their ability to decarboxylate α-disubstituted malonic acid derivatives to optically pure products without cofactors makes them attractive and promising candidates for the use as biocatalysts in industrial processes. Until now, AMDases could not be separated from other members of the aspartate/glutamate racemase superfamily based on their gene sequences. Within this work, a search algorithm was developed that enables a reliable prediction of AMDase activity for potential candidates. Based on specific sequence patterns and screening methods 58 novel AMDase candidate genes could be identified in this work. Thereby, AMDases with the conserved sequence pattern of Bordetella bronchiseptica’s prototype appeared to be limited to the classes of Alpha-, Beta-, and Gamma-proteobacteria. Amino acid homologies and comparison of gene surrounding sequences enabled the classification of eight enzyme clusters. Particularly striking is the accumulation of genes coding for different transporters of the tripartite tricarboxylate transporters family, TRAP transporters and ABC transporters as well as genes coding for mandelate racemases/muconate lactonizing enzymes that might be involved in substrate uptake or degradation of AMDase products. Further, three novel AMDases were characterized which showed a high enantiomeric excess (>99%) of the (R)-enantiomer of flurbiprofen. These are the recombinant AmdA and AmdV from Variovorax sp. strains HH01 and HH02, originated from soil, and AmdP from Polymorphum gilvum found by a data base search. Altogether our findings give new insights into the class of AMDases and reveal many previously unknown enzyme candidates with high potential for bioindustrial processes. PMID:27610105

  7. Large Scale Screening of Digeneans for Neorickettsia Endosymbionts Using Real-Time PCR Reveals New Neorickettsia Genotypes, Host Associations and Geographic Records

    PubMed Central

    Greiman, Stephen E.; Tkach, Vasyl V.; Pulis, Eric; Fayton, Thomas J.; Curran, Stephen S.

    2014-01-01

    Digeneans are endoparasitic flatworms with complex life cycles including one or two intermediate hosts (first of which is always a mollusk) and a vertebrate definitive host. Digeneans may harbor intracellular endosymbiotic bacteria belonging to the genus Neorickettsia (order Rickettsiales, family Anaplasmataceae). Some Neorickettsia are able to invade cells of the digenean's vertebrate host and are known to cause diseases of wildlife and humans. In this study we report the results of screening 771 digenean samples for Neorickettsia collected from various vertebrates in terrestrial, freshwater, brackish, and marine habitats in the United States, China and Australia. Neorickettsia were detected using a newly designed real-time PCR protocol targeting a 152 bp fragment of the heat shock protein coding gene, GroEL, and verified with nested PCR and sequencing of a 1371 bp long region of 16S rRNA. Eight isolates of Neorickettsia have been obtained. Sequence comparison and phylogenetic analysis demonstrated that 7 of these isolates, provisionally named Neorickettsia sp. 1–7 (obtained from allocreadiid Crepidostomum affine, haploporids Saccocoelioides beauforti and Saccocoelioides lizae, faustulid Bacciger sprenti, deropegid Deropegus aspina, a lecithodendriid, and a pleurogenid) represent new genotypes and one (obtained from Metagonimoides oregonensis) was identical to a published sequence of Neorickettsia known as SF agent. All digenean species reported in this study represent new host records. Three of the 6 digenean families (Haploporidae, Pleurogenidae, and Faustulidae) are also reported for the first time as hosts of Neorickettsia. We have detected Neorickettsia in digeneans from China and Australia for the first time based on PCR and sequencing evidence. Our findings suggest that further surveys from broader geographic regions and wider selection of digenean taxa are likely to reveal new Neorickettsia lineages as well as new digenean host associations. PMID

  8. Lethal Mutagenesis Failure May Augment Viral Adaptation

    PubMed Central

    Paff, Matthew L.; Stolte, Steven P.; Bull, James J.

    2014-01-01

    Lethal mutagenesis, the attempt to extinguish a population by elevating its mutation rate, has been endorsed in the virology literature as a promising approach for treating viral infections. In support of the concept, in vitro studies have forced viral extinction with high doses of mutagenic drugs. However, the one known mutagenic drug used on patients commonly fails to cure infections, and in vitro studies typically find a wide range of mutagenic conditions permissive for viral growth. A key question becomes how subsequent evolution is affected if the viral population is mutated but avoids extinction—Is viral adaptation augmented rather than suppressed? Here we consider the evolution of highly mutated populations surviving mutagenesis, using the DNA phage T7. In assays using inhibitory hosts, whenever resistance mutants were observed, the mutagenized populations exhibited higher frequencies, but some inhibitors blocked plaque formation by even the mutagenized stock. Second, outgrowth of previously mutagenized populations led to rapid and potentially complete fitness recovery but polymorphism was slow to decay, and mutations exhibited inconsistent patterns of change. Third, the combination of population bottlenecks with mutagenesis did cause fitness declines, revealing a vulnerability that was not apparent from mutagenesis of large populations. The results show that a population surviving high mutagenesis may exhibit enhanced adaptation in some environments and experience little negative fitness consequences in many others. PMID:24092771

  9. Lethal methemoglobinemia and automobile exhaust inhalation.

    PubMed

    Vevelstad, Merete; Morild, Inge

    2009-05-30

    Inhalation of automobile exhaust gas often leads to death by CO intoxication. In some cases the measured carbon monoxide hemoglobin saturation level (COHb) is considerably below what is considered to be lethal. The death in such cases has been attributed to a combination of a high CO2 and a low O2 tension. In a recent case the deceased was found dead in a car equipped with a catalytic converter, with a hose leading exhaust from the engine to the interior of the car. Analysis revealed a moderately elevated COHb and a high methemoglobin saturation level (MetHb) in peripheral blood. No ethanol, narcotics or drugs were detected. Reports mentioning MetHb or methemoglobinemia in post-mortem cases are surprisingly scarce, and very few have related exhaust gas deaths to methemoglobinemia. High-degree methemoglobinemia causes serious tissue hypoxia leading to unconsciousness, arrhythmia and death. The existing literature in this field and the knowledge that exhaust fumes contain nitrogen oxide gases (NOx) that by inhalation and absorption can result in severe methemoglobinemia, led us to postulate that this death could possibly be attributed to a combination of methemoglobinemia and a moderately high COHb concentration.

  10. Targeting synthetic lethality between the SRC kinase and the EPHB6 receptor may benefit cancer treatment

    PubMed Central

    Bhanumathy, Kalpana Kalyanasundaram; Li, Yue; Gerger, Courtney; Zawily, Amr El; Freywald, Tanya; Anderson, Deborah H.; Mousseau, Darrell; Kanthan, Rani; Zhang, Zhaolei; Vizeacoumar, Franco J.; Freywald, Andrew

    2016-01-01

    Application of tumor genome sequencing has identified numerous loss-of-function alterations in cancer cells. While these alterations are difficult to target using direct interventions, they may be attacked with the help of the synthetic lethality (SL) approach. In this approach, inhibition of one gene causes lethality only when another gene is also completely or partially inactivated. The EPHB6 receptor tyrosine kinase has been shown to have anti-malignant properties and to be downregulated in multiple cancers, which makes it a very attractive target for SL applications. In our work, we used a genome-wide SL screen combined with expression and interaction network analyses, and identified the SRC kinase as a SL partner of EPHB6 in triple-negative breast cancer (TNBC) cells. Our experiments also reveal that this SL interaction can be targeted by small molecule SRC inhibitors, SU6656 and KX2-391, and can be used to improve elimination of human TNBC tumors in a xenograft model. Our observations are of potential practical importance, since TNBC is an aggressive heterogeneous malignancy with a very high rate of patient mortality due to the lack of targeted therapies, and our work indicates that FDA-approved SRC inhibitors may potentially be used in a personalized manner for treating patients with EPHB6-deficient TNBC. Our findings are also of a general interest, as EPHB6 is downregulated in multiple malignancies and our data serve as a proof of principle that EPHB6 deficiency may be targeted by small molecule inhibitors in the SL approach. PMID:27418135

  11. PPS, a large multidomain protein, functions with sex-lethal to regulate alternative splicing in Drosophila.

    PubMed

    Johnson, Matthew L; Nagengast, Alexis A; Salz, Helen K

    2010-03-05

    Alternative splicing controls the expression of many genes, including the Drosophila sex determination gene Sex-lethal (Sxl). Sxl expression is controlled via a negative regulatory mechanism where inclusion of the translation-terminating male exon is blocked in females. Previous studies have shown that the mechanism leading to exon skipping is autoregulatory and requires the SXL protein to antagonize exon inclusion by interacting with core spliceosomal proteins, including the U1 snRNP protein Sans-fille (SNF). In studies begun by screening for proteins that interact with SNF, we identified PPS, a previously uncharacterized protein, as a novel component of the machinery required for Sxl male exon skipping. PPS encodes a large protein with four signature motifs, PHD, BRK, TFS2M, and SPOC, typically found in proteins involved in transcription. We demonstrate that PPS has a direct role in Sxl male exon skipping by showing first that loss of function mutations have phenotypes indicative of Sxl misregulation and second that the PPS protein forms a complex with SXL and the unspliced Sxl RNA. In addition, we mapped the recruitment of PPS, SXL, and SNF along the Sxl gene using chromatin immunoprecipitation (ChIP), which revealed that, like many other splicing factors, these proteins bind their RNA targets while in close proximity to the DNA. Interestingly, while SNF and SXL are specifically recruited to their predicted binding sites, PPS has a distinct pattern of accumulation along the Sxl gene, associating with a region that includes, but is not limited to, the SxlPm promoter. Together, these data indicate that PPS is different from other splicing factors involved in male-exon skipping and suggest, for the first time, a functional link between transcription and SXL-mediated alternative splicing. Loss of zygotic PPS function, however, is lethal to both sexes, indicating that its role may be of broad significance.

  12. Two cases of lethal nitrazepam poisoning.

    PubMed

    Brødsgaard, I; Hansen, A C; Vesterby, A

    1995-06-01

    This case report describes two cases of lethal poisoning caused by a combination of advanced chronic disease and an overdose of nitrazepam. In both cases, a relatively small blood concentration of nitrazepam was found postmortem.

  13. Lethality and Autonomous Robots: An Ethical Stance

    DTIC Science & Technology

    2007-01-01

    Lethality and Autonomous Robots : An Ethical Stance Ronald C. Arkin and Lilia Moshkina College of Computing Georgia Institute of Technology Atlanta... autonomous robots that maintain an ethical infrastructure to govern their behavior will be referred to as humane-oids. 2. Understanding the Ethical...2007 4. TITLE AND SUBTITLE Lethality and Autonomous Robots : An Ethical Stance 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  14. Non-Lethal Weapons (NLW) Reference Book

    DTIC Science & Technology

    2012-01-01

    v Section A COUNTER-PERSONNEL (CP) FIELDED NLW Non-Lethal Capability Sets ( NLCS ) 1 Escalation of Force-Mission Modules (EoF-MM) 1...Weapons, 27 September 1999. Policy References Section A CP Fielded NLW 1 Non-Lethal Capability Sets ( NLCS ). A versatile package of commercial...and government off-the-shelf mission enhancing equipment and munitions. NLCS provide the warfighter with a variety of acoustic, optical distraction

  15. Kinome-wide RNA interference screen reveals a role for PDK1 in acquired resistance to CDK4/6 inhibition in ER-positive breast cancer.

    PubMed

    Jansen, Valerie M; Bhola, Neil E; Bauer, Joshua A; Formisano, Luigi; Lee, Kyung-Min; Hutchinson, Katherine E; Witkiewicz, Agnieszka K; Moore, Preston D; Estrada, Monica Valeria; Sanchez, Violeta; Ericsson, Paula G; Sanders, Melinda; Pohlmann, Paula R; Pishvaian, Michael J; Riddle, David A; Wei, Wenyi; Dugger, Teresa C; Knudsen, Erik; Arteaga, Carlos L

    2017-03-01

    To discover mechanisms of resistance to CDK4/6 inhibitors, we used a kinome-wide siRNA screen to identify kinases that, when downregulated, promote sensitivity to ribociclib. We identified 3-phosphoinositide dependent protein kinase 1 (PDK1) as the top siRNA that sensitized ER+ MCF-7 cells to ribociclib. Pharmacological inhibition of PDK1 with GSK2334470 in combination with ribociclib or palbociclib, synergistically inhibited proliferation and increased apoptosis in a panel of ER+ breast cancer cell lines. Ribociclib-resistant MCF-7, T47D and HCC1428 cells, selected after chronic drug exposure, displayed increased levels of PDK1, P-RSK2, P-AKT and P-S6 compared to parental drug-sensitive cells. Cell cycle analysis revealed that CDK4/6 inhibition failed to induce G1 arrest, a reduction in S phase, and senescence in ribociclib-resistant cells, suggesting an upregulation of S-phase cyclins/CDKs. The resistant cells exhibited significantly higher levels of P-CDK2, cyclin A, cyclin D1, cyclin E and S477/T479 P-AKT, a CDK2-dependent phosphorylation site within AKT required for full kinase activity and limited to the S-phase of the cell cycle. Treatment with GSK2334470 or the CDK2 inhibitor dinaciclib re-sensitized ribociclib-resistant cells to CDK4/6 inhibitors; however, ribociclib/GSK2334470 inhibited the ribociclib-resistant cells more potently than ribociclib/dinaciclib. Ribociclib/GSK2334470 but not ribociclib/dinaciclib completely abrogated P-Rb, P-S6, P-RSK2, P-CDK2, cyclin A, cyclin D1 and cyclin E expression. Further, ribociclib in combination with GSK2334470 or the PI3Kα inhibitor alpelisib induced regression of MCF-7 xenografts. Finally, primary ER+ tumors displayed increased PDK1, P-S6 and cyclin D1 levels after short treatment with palbociclib. These data support a role for PI3K/PDK1 in mediating acquired resistance to CDK4/6 inhibitors.

  16. Crystallographic studies of the Anthrax lethal toxin. Annual report

    SciTech Connect

    Frederick, C.A.

    1996-07-01

    The lethal form of Anthrax results from the inhalation of anthrax spores. Death is primarily due to the effects of the lethal toxin (Protective Antigen (PA) + Lethal Factor) from the causative agent, Bacillus anthracis. All the Anthrax vaccines currently in use or under development contain or produce PA, the major antigenic component of anthrax toxin, and there is a clear need for an improved vaccine for human use. In the previous report we described the first atomic resolution structure of PA, revealing that the molecule is composed largely of beta-sheets organized into four domains. This information can be used in the design. of recombinant PA vaccines. In this report we describe additional features of the full-length PA molecule derived from further crystallographic refinement and careful examination of the structure. We compare two crystal forms of PA grown at different pH values and discuss the functional implications. A complete definition of the function of each domain must await the crystal structure of the PA63 heptamer. We have grown crystals of the heptamer under both detergent and detergent-free conditions, and made substantial progress towards the crystal structure. The mechanism of anthrax intoxication in the light of our results is reviewed.

  17. Lethal Effects of Helianthemum lippii (L.) on Acanthamoeba castellanii Cysts in Vitro

    PubMed Central

    Badria, F.A.; Hetta, M.H.; Sarhan, Rania M.; Ezz El-Din, M.H.

    2014-01-01

    Acanthamoeba spp. commonly cause Acanthamoeba keratitis which is typically associated with the wear of contact lenses. Therefore, finding an economic, efficient, and safe therapy of natural origin is of outmost importance. This study examined the in vitro lethal potential of ethyl acetate and methanol extracts of Helianthemum lippii (L.) (sun roses) against Acanthamoeba castellanii cysts isolated from patients with amoebic keratitis. Both extracts proved to be potent as regard to their lethal effects on A. castellanii cysts with comparable results to chlorhexidine. The ethyl acetate was more promising with cumulative lethality. It showed a highly significant lethal percentage along the duration of treatment. The analysis of the more potent ethyl acetate extract revealed the presence of 2.96 mg/100 g of total phenolics, 0.289 mg/100 ml of total flavonoids and 37 mg/100 mg of total tannins which highlighted their phytomedicinal role. PMID:25031463

  18. High-throughput Screening of ToxCast™ Phase I Chemicals in a Mouse Embryonic Stem Cell (mESC) Assay Reveals Disruption of Potential Toxicity Pathways

    EPA Science Inventory

    Little information is available regarding the potential for many commercial chemicals to induce developmental toxicity. The mESC Adherent Cell Differentiation and Cytoxicity (ACDC) assay is a high-throughput screen used to close this data gap. Thus, ToxCast™ Phase I chemicals wer...

  19. Genetic localization and transmission of the mouse osteopetrotic grey-lethal mutation.

    PubMed

    Vacher, J; Bernard, H

    1999-03-01

    The grey-lethal (gl) mouse is the most relevant animal model for recessive osteopetrosis, a genetic defect affecting bone resorption. To localize the gl gene, two novel backcrosses between the gl mutant strain GL/Le dlJ +/+ gl and with the Mus spretus or the Mus m. molossinus have been generated and typed with 19 DNA markers representative of genes or microsatellites. In the Mus m. molossinus backcross, the gl locus cosegregates with the D10Mit108,109,184,193, 254,255 markers within a 1 centimorgan genetic interval between the markers (D10Mit54,55,215,Cd24a) and D10Mit148. Our results have also eliminated all the five candidate genes previously localized to this region (Braf-rs1, Fyn, Cd24a, Ros1, and Gja1). On the Mus spretus background, segregation distortion due to a approximately threefold differential survival resulted in a severe deficit in gl/gl animals, indicating the presence of modifier genes. We have also characterized nine cosegregating microsatellite markers closely linked to gl as defined by their specific polymorphisms for the Chromosome (Chr) 10 harboring the gl mutation. Screening of several mouse inbred strains for these polymorphic markers revealed an identical pattern between gl and 129/SvEms, suggesting that the gl mutation arose on this genetic background. The linkage between this polymorphic region and the gl locus provides an entry point to produce a physical map to isolate the gl gene.

  20. Inhibition of retrograde transport protects mice from lethal ricin challenge.

    PubMed

    Stechmann, Bahne; Bai, Siau-Kun; Gobbo, Emilie; Lopez, Roman; Merer, Goulven; Pinchard, Suzy; Panigai, Laetitia; Tenza, Danièle; Raposo, Graça; Beaumelle, Bruno; Sauvaire, Didier; Gillet, Daniel; Johannes, Ludger; Barbier, Julien

    2010-04-16

    Bacterial Shiga-like toxins are virulence factors that constitute a significant public health threat worldwide, and the plant toxin ricin is a potential bioterror weapon. To gain access to their cytosolic target, ribosomal RNA, these toxins follow the retrograde transport route from the plasma membrane to the endoplasmic reticulum, via endosomes and the Golgi apparatus. Here, we used high-throughput screening to identify small molecule inhibitors that protect cells from ricin and Shiga-like toxins. We identified two compounds that selectively block retrograde toxin trafficking at the early endosome-TGN interface, without affecting compartment morphology, endogenous retrograde cargos, or other trafficking steps, demonstrating an unexpected degree of selectivity and lack of toxicity. In mice, one compound clearly protects from lethal nasal exposure to ricin. Our work discovers the first small molecule that shows efficacy against ricin in animal experiments and identifies the retrograde route as a potential therapeutic target.

  1. Newborn Screening

    MedlinePlus

    ... Activities Importance of Newborn Screening Newborn Screening and Molecular Biology Branch Pulse Oximetry Screening for CCHDs Sickle Cell Disease Laboratory SCID Quality Assurance Training and Resources ...

  2. Lipopolysaccharide-induced lethality and cytokine production in aged mice.

    PubMed Central

    Tateda, K; Matsumoto, T; Miyazaki, S; Yamaguchi, K

    1996-01-01

    This study was designed to define the lipopolysaccharide (LPS) sensitivity of aged mice in terms of lethality and cytokine production and to determine down-regulating responses of corticosterone and interleukin 10 (IL-10). The 50% lethal doses of LPS in young (6- to 7-week-old) and aged (98- to 102-week-old) mice were 601 and 93 microg per mouse (25.6 and 1.6 mg per kg of body weight), respectively. Aged mice were approximately 6.5-fold more sensitive to the lethal toxicity of LPS in micrograms per mouse (16-fold more sensitive in milligrams per kilogram) than young mice. Levels in sera of tumor necrosis factor-alpha (TNF-alpha) IL-1alpha, and IL-6 after intraperitoneal injection of 100 microg of LPS peaked at 1.5, 3, and 3 h, respectively, and declined thereafter in both groups of mice. However, the peak values of these cytokines were significantly higher in aged than in young mice (P < 0.05). Gamma interferon (IFN-gamma) was detectable at 3 h, and sustained high levels were still detected after 12 h in both age groups. Although there were no significant differences in levels of IFN-gamma in sera from both groups, aged mice showed higher IFN-gamma levels throughout the 3- to 12-h study period. Administration of increasing doses of LPS revealed that aged mice had a lower threshold to IL-1alpha production than young mice. In addition, aged mice were approximately 4-fold more sensitive to the lethal toxicity of exogenous TNF in units per mouse (10-fold more sensitive in units per kilogram) than young mice. With regard to down-regulating factors, corticosterone amounts were similar at basal levels and no differences in kinetics after the LPS challenge were observed, whereas IL-10 levels in sera were significantly higher in aged mice at 1.5 and 3 h than in young mice (P < 0.01). These results indicate that aged mice are more sensitive to the lethal toxicities of LPS and TNF than young mice. We conclude that a relatively activated, or primed, state for LPS

  3. Identification of a De Novo Heterozygous Missense FLNB Mutation in Lethal Atelosteogenesis Type I by Exome Sequencing

    PubMed Central

    Jeon, Ga Won; Lee, Mi-Na; Jung, Ji Mi; Hong, Seong Yeon; Kim, Young Nam; Sin, Jong Beom

    2014-01-01

    Background Atelosteogenesis type I (AO-I) is a rare lethal skeletal dysplastic disorder characterized by severe short-limbed dwarfism and dislocated hips, knees, and elbows. AO-I is caused by mutations in the filamin B (FLNB) gene; however, several other genes can cause AO-like lethal skeletal dysplasias. Methods In order to screen all possible genes associated with AO-like lethal skeletal dysplasias simultaneously, we performed whole-exome sequencing in a female newborn having clinical features of AO-I. Results Exome sequencing identified a novel missense variant (c.517G>A; p.Ala173Thr) in exon 2 of the FLNB gene in the patient. Sanger sequencing validated this variant, and genetic analysis of the patient's parents suggested a de novo occurrence of the variant. Conclusions This study shows that exome sequencing can be a useful tool for the identification of causative mutations in lethal skeletal dysplasia patients. PMID:24624349

  4. Preparation and characterization of cobalt-substituted anthrax lethal factor

    SciTech Connect

    Saebel, Crystal E.; Carbone, Ryan; Dabous, John R.; Lo, Suet Y.; Siemann, Stefan

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Cobalt-substituted anthrax lethal factor (CoLF) is highly active. Black-Right-Pointing-Pointer CoLF can be prepared by bio-assimilation and direct exchange. Black-Right-Pointing-Pointer Lethal factor binds cobalt tightly. Black-Right-Pointing-Pointer The electronic spectrum of CoLF reveals penta-coordination. Black-Right-Pointing-Pointer Interaction of CoLF with thioglycolic acid follows a 2-step mechanism. -- Abstract: Anthrax lethal factor (LF) is a zinc-dependent endopeptidase involved in the cleavage of mitogen-activated protein kinase kinases near their N-termini. The current report concerns the preparation of cobalt-substituted LF (CoLF) and its characterization by electronic spectroscopy. Two strategies to produce CoLF were explored, including (i) a bio-assimilation approach involving the cultivation of LF-expressing Bacillus megaterium cells in the presence of CoCl{sub 2}, and (ii) direct exchange by treatment of zinc-LF with CoCl{sub 2}. Independent of the method employed, the protein was found to contain one Co{sup 2+} per LF molecule, and was shown to be twice as active as its native zinc counterpart. The electronic spectrum of CoLF suggests the Co{sup 2+} ion to be five-coordinate, an observation similar to that reported for other Co{sup 2+}-substituted gluzincins, but distinct from that documented for the crystal structure of native LF. Furthermore, spectroscopic studies following the exposure of CoLF to thioglycolic acid (TGA) revealed a sequential mechanism of metal removal from LF, which likely involves the formation of an enzyme: Co{sup 2+}:TGA ternary complex prior to demetallation of the active site. CoLF reported herein constitutes the first spectroscopic probe of LF's active site, which may be utilized in future studies to gain further insight into the enzyme's mechanism and inhibitor interactions.

  5. Genetic Panel Screening of Nearly 100 Mutations Reveals New Insights into the Breed Distribution of Risk Variants for Canine Hereditary Disorders

    PubMed Central

    Donner, Jonas; Möller, Fredrik; Kyöstilä, Kaisa; Sankari, Satu; Hytönen, Marjo; Giger, Urs; Lohi, Hannes

    2016-01-01

    Background The growing number of identified genetic disease risk variants across dog breeds challenges the current state-of-the-art of population screening, veterinary molecular diagnostics, and genetic counseling. Multiplex screening of such variants is now technologically feasible, but its practical potential as a supportive tool for canine breeding, disease diagnostics, pet care, and genetics research is still unexplored. Results To demonstrate the utility of comprehensive genetic panel screening, we tested nearly 7000 dogs representing around 230 breeds for 93 disease-associated variants using a custom-designed genotyping microarray (the MyDogDNA® panel test). In addition to known breed disease-associated mutations, we discovered 15 risk variants in a total of 34 breeds in which their presence was previously undocumented. We followed up on seven of these genetic findings to demonstrate their clinical relevance. We report additional breeds harboring variants causing factor VII deficiency, hyperuricosuria, lens luxation, von Willebrand’s disease, multifocal retinopathy, multidrug resistance, and rod-cone dysplasia. Moreover, we provide plausible molecular explanations for chondrodysplasia in the Chinook, cerebellar ataxia in the Norrbottenspitz, and familiar nephropathy in the Welsh Springer Spaniel. Conclusions These practical examples illustrate how genetic panel screening represents a comprehensive, efficient and powerful diagnostic and research discovery tool with a range of applications in veterinary care, disease research, and breeding. We conclude that several known disease alleles are more widespread across different breeds than previously recognized. However, careful follow up studies of any unexpected discoveries are essential to establish genotype-phenotype correlations, as is readiness to provide genetic counseling on their implications for the dog and its breed. PMID:27525650

  6. Analysis of mutants from a genetic screening reveals the control of intestine and liver development by many common genes in zebrafish.

    PubMed

    Jiang, Faming; Chen, Jiehui; Ma, Xirui; Huang, Chao; Zhu, Shicheng; Wang, Fei; Li, Li; Luo, Lingfei; Ruan, Hua; Huang, Honghui

    2015-05-08

    Both the intestine and liver develop from the endoderm, yet little is known how these two digestive organs share and differ in their developmental programs, at the molecular level. A classical forward genetic screen, with no gene bias, is an effective way to address this question by examining the defects of the intestine and liver in obtained mutants to assess mutated genes responsible for the development of either organ or both. We report here such a screen in zebrafish. ENU was used as the mutagen because of its high mutagenic efficiency and no site preference. Embryos were collected at 3.5 dpf for RNA whole mount in situ hybridization with a cocktail probe of the intestine marker ifabp and the liver marker lfabp to check phenotypes and determine their parental heterozygosis. A total of 52 F2 putative mutants were identified, and those with general developmental defects were aborted. To rule out non-inheritable phenotypes caused by high mutation background, F2 putative mutants were outcrossed with wild type fish and a re-screen in F3 generations was performed. After complementation tests between F3 mutants with similar phenotypes originating from the same F2 families, a total of 37 F3 mutant lines originated from 22 F2 families were identified after screening 78 mutagenized genomes. Classification of mutant phenotypes indicated that 31 out of the 37 mutants showed defects in both the intestine and liver. In addition, four "intestine specific mutants" and two "liver specific mutants" showed selectively more severe phenotype in the intestine and liver respectively. These results suggested that the intestine and liver share a substantial number of essential genes during both organs development in zebrafish. Further studies of the mutants are likely to shed more insights into the molecular basis of the digestive system development in the zebrafish and vertebrate.

  7. Fragment library screening reveals remarkable similarities between the G protein-coupled receptor histamine H₄ and the ion channel serotonin 5-HT₃A.

    PubMed

    Verheij, Mark H P; de Graaf, Chris; de Kloe, Gerdien E; Nijmeijer, Saskia; Vischer, Henry F; Smits, Rogier A; Zuiderveld, Obbe P; Hulscher, Saskia; Silvestri, Linda; Thompson, Andrew J; van Muijlwijk-Koezen, Jacqueline E; Lummis, Sarah C R; Leurs, Rob; de Esch, Iwan J P

    2011-09-15

    A fragment library was screened against the G protein-coupled histamine H(4) receptor (H(4)R) and the ligand-gated ion channel serotonin 5-HT(3A) (5-HT(3A)R). Interestingly, significant overlap was found between H(4)R and 5-HT(3A)R hit sets. The data indicates that dual active H(4)R and 5 HT(3A)R fragments have a higher complexity than the selective compounds which has important implications for chemical genomics approaches. The results of our fragment-based library screening study illustrate similarities in ligand recognition between H(4)R and 5-HT(3A)R and have important consequences for selectivity profiling in ongoing drug discovery efforts on H(4)R and 5-HT(3A)R. The affinity profiles of our fragment screening studies furthermore match the chemical properties of the H(4)R and 5-HT(3A)R binding sites and can be used to define molecular interaction fingerprints to guide the in silico prediction of protein-ligand interactions and structure.

  8. Synthetic Lethality in Breast Cancer Cells: Genes Required for Tumor Survival

    DTIC Science & Technology

    2004-07-01

    that the goals of this grant and that of the Innovator award are distinct. The innovator award is to develop high-throughput procedures to create a...revised report The original goal of this application was to develop strategies to permit synthetic lethal screens to be carried out in mammalian cells. In...parallel, one needed to develop systems in which such interactions could be effectively tested. When this application was initially submitted four

  9. Sarcocystis species lethal for domestic pigeons.

    PubMed

    Olias, Philipp; Gruber, Achim D; Kohls, Andrea; Hafez, Hafez M; Heydorn, Alfred Otto; Mehlhorn, Heinz; Lierz, Michael

    2010-03-01

    A large number of Sarcocystis spp. infect birds as intermediate hosts, but pigeons are rarely affected. We identified a novel Sarcocystis sp. that causes lethal neurologic disease in domestic pigeons in Germany. Experimental infections indicated transmission by northern goshawks, and sequence analyses indicated transnational distribution. Worldwide spread is possible.

  10. Deadly Lessons: Understanding Lethal School Violence.

    ERIC Educational Resources Information Center

    Moore, Mark H., Ed.; Petrie, Carol V., Ed.; Braga, Anthony A., Ed.; McLaughlin, Brenda L., Ed.

    This collection of papers is the outcome of the National Academies' effort to glean information from six different case studies of student-perpetrated school shootings. Part 1, "Case Studies of Lethal School Violence," includes: "The Copycat Factor: Mental Illness, Guns, and the Shooting Incident at Heritage High School, Rockdale…

  11. The evolution of lethal intergroup violence.

    PubMed

    Kelly, Raymond C

    2005-10-25

    Recent findings and analyses in evolutionary biology, archaeology, and ethnology provide a favorable conjuncture for examining the evolution of lethal intergroup violence among hominids during the 2.9-million-year Paleolithic time span. Here, I seek to identify and investigate the main turning points in this evolutionary trajectory and to delineate the periodization that follows from this inquiry.

  12. Medical Conditions and Nearly Lethal Suicide Attempts.

    ERIC Educational Resources Information Center

    Ikeda, Robin M.; Kresnow, Marcie-jo; Mercy, James A.; Powell, Kenneth E.; Simon, Thomas R.; Potter, Lloyd B.; Durant, Tonji M.; Swahn, Monica H.

    2002-01-01

    This population-based, case-control study examined physical illness as a risk factor for suicidal behavior. Case patients were more likely than controls to report having any serious medical conditions. Results suggest that young men with medical conditions are at increased risk for nearly lethal suicide attempts. (Contains 33 references and 3…

  13. A fluorescent bimolecular complementation screen reveals MAF1, RNF7 and SETD3 as PCNA-associated proteins in human cells

    PubMed Central

    Cooper, Simon E; Hodimont, Elsie; Green, Catherine M

    2015-01-01

    The proliferating cell nuclear antigen (PCNA) is a conserved component of DNA replication factories, and interactions with PCNA mediate the recruitment of many essential DNA replication enzymes to these sites of DNA synthesis. A complete description of the structure and composition of these factories remains elusive, and a better knowledge of them will improve our understanding of how the maintenance of genome and epigenetic stability is achieved. To fully characterize the set of proteins that interact with PCNA we developed a bimolecular fluorescence complementation (BiFC) screen for PCNA-interactors in human cells. This 2-hybrid type screen for interactors from a human cDNA library is rapid and efficient. The fluorescent read-out for protein interaction enables facile selection of interacting clones, and we combined this with next generation sequencing to identify the cDNAs encoding the interacting proteins. This method was able to reproducibly identify previously characterized PCNA-interactors but importantly also identified RNF7, Maf1 and SetD3 as PCNA-interacting proteins. We validated these interactions by co-immunoprecipitation from human cell extracts and by interaction analyses using recombinant proteins. These results show that the BiFC screen is a valuable method for the identification of protein-protein interactions in living mammalian cells. This approach has potentially wide application as it is high throughput and readily automated. We suggest that, given this interaction with PCNA, Maf1, RNF7, and SetD3 are potentially involved in DNA replication, DNA repair, or associated processes. PMID:26030842

  14. Salicylic and jasmonic acid pathways are necessary for defence against Dickeya solani as revealed by a novel method for Blackleg disease screening of in vitro grown potato.

    PubMed

    Burra, D D; Mühlenbock, P; Andreasson, E

    2015-09-01

    Potato is major crop ensuring food security in Europe, and blackleg disease is increasingly causing losses in yield and during storage. Recently, one blackleg pathogen, Dickeya solani has been shown to be spreading in Northern Europe that causes aggressive disease development. Currently, identification of tolerant commercial potato varieties has been unsuccessful; this is confounded by the complicated etiology of the disease and a strong environmental influence on disease development. There is currently a lack of efficient testing systems. Here, we describe a system for quantification of blackleg symptoms on shoots of sterile in vitro potato plants, which saves time and space compared to greenhouse and existing field assays. We found no evidence for differences in infection between the described in vitro-based screening method and existing greenhouse assays. This system facilitates efficient screening of blackleg disease response of potato plants independent of other microorganisms and variable environmental conditions. We therefore used the in vitro screening method to increase understanding of plant mechanisms involved in blackleg disease development by analysing disease response of hormone- related (salicylic and jasmonic acid) transgenic potato plants. We show that both jasmonic (JA) and salicylic (SA) acid pathways regulate tolerance to blackleg disease in potato, a result unlike previous findings in Arabidopsis defence response to necrotrophic bacteria. We confirm this by showing induction of a SA marker, pathogenesis-related protein 1 (StPR1), and a JA marker, lipoxygenase (StLOX), in Dickeya solani infected in vitro potato plants. We also observed that tubers of transgenic potato plants were more susceptible to soft rot compared to wild type, suggesting a role for SA and JA pathways in general tolerance to Dickeya.

  15. Hospital population screening reveals overrepresentation of CD5(-) monoclonal B-cell lymphocytosis and monoclonal gammopathy of undetermined significance of IgM type.

    PubMed

    Voigtlaender, Minna; Vogler, Birthe; Trepel, Martin; Panse, Jens; Jung, Roman; Bokemeyer, Carsten; Bacher, Ulrike; Binder, Mascha

    2015-09-01

    Monoclonal B-cell lymphocytosis (MBL) and monoclonal gammopathy of undetermined significance (MGUS) result from clonal expansions of mature B or plasma cells. Here, we set out to determine the immunophenotypic/monoclonal immunoglobulin (M protein) features and co-prevalence of MBL and MGUS in a hospital-based cohort of 1909 non-hematooncological patients. Of the evaluable cases, 3.8 % showed evidence for MBL by immunophenotyping, while 9.8 % were screened positive for M protein by immunofixation. With six concomitant cases (0.4 %), MBL and MGUS were not statistically associated. At least in two of these coincident cases, MBL and MGUS were of different clonal origin since both clones had divergent light chain restriction. CD5(-) MBL (57.1 %) and IgM+ MGUS (24.7 %) were strikingly overrepresented compared to population-based screenings and did not progress to overt lymphoma or myeloma during the observation period (mean follow-up of 117 weeks or 110 weeks, respectively). Prevalence and phenotypes suggest that a substantial proportion of incidental MBL and MGUS in hospitalized patients may be attributed to transiently expanded B-cell clones in the context of disease-related immune stimulation rather than reflecting veritable precursors of clonal B-cell malignancies.

  16. Screening in ALS and FTD patients reveals 3 novel UBQLN2 mutations outside the PXX domain and a pure FTD phenotype.

    PubMed

    Synofzik, Matthis; Maetzler, Walter; Grehl, Torsten; Prudlo, Johannes; Vom Hagen, Jennifer Müller; Haack, Tobias; Rebassoo, Piret; Munz, Marita; Schöls, Ludger; Biskup, Saskia

    2012-12-01

    Mutations in UBQLN2 have recently been shown to cause dominant X-linked amyotrophic lateral sclerosis (ALS) and ALS plus frontotemporal dementia (FTD). Information on their frequency in different populations is still rare, and a pure FTD phenotype has not yet been reported. Moreover, the mutational spectrum of known UBQLN2 mutations is still limited to its PXX repeat region. Based on a screening of 206 ALS and FTD patients, we here report 3 novel UBQLN2 mutations, accounting for 1.2% (2/161) ALS and 2.2% (1/45) FTD patients, including a patient with pure FTD. All mutations were located in highly conserved domains outside the PXX repeat region and not observed in 1450 ethnically matched control X-chromosomes. All affected patients presented with apparently sporadic disease. UBQLN2 mutations are rare in Central European ALS and FTD patients, but contribute significantly to patients with seemingly sporadic disease. UBQLN2 is able to cause any disease on the ALS-FTD continuum, including pure FTD. Because the pathogenic mechanism of UBQLN2 mutations is not limited to its PXX region, UBQLN2 screening in neurodegenerative patients should not be limited to this region.

  17. Non-combinatorial library screening reveals subsite cooperativity and identifies new high-efficiency substrates for kallikrein-related peptidase 14.

    PubMed

    de Veer, Simon J; Swedberg, Joakim E; Parker, Edward A; Harris, Jonathan M

    2012-04-01

    An array of substrates link the tryptic serine protease, kallikrein-related peptidase 14 (KLK14), to physiological functions including desquamation and activation of signaling molecules associated with inflammation and cancer. Recognition of protease cleavage sequences is driven by complementarity between exposed substrate motifs and the physicochemical signature of an enzyme's active site cleft. However, conventional substrate screening methods have generated conflicting subsite profiles for KLK14. This study utilizes a recently developed screening technique, the sparse matrix library, to identify five novel high-efficiency sequences for KLK14. The optimal sequence, YASR, was cleaved with higher efficiency (k(cat)/K(m)=3.81 ± 0.4 × 10(6) M(-1) s(-1)) than favored substrates from positional scanning and phage display by 2- and 10-fold, respectively. Binding site cooperativity was prominent among preferred sequences, which enabled optimal interaction at all subsites as indicated by predictive modeling of KLK14/substrate complexes. These simulations constitute the first molecular dynamics analysis of KLK14 and offer a structural rationale for the divergent subsite preferences evident between KLK14 and closely related KLKs, KLK4 and KLK5. Collectively, these findings highlight the importance of binding site cooperativity in protease substrate recognition, which has implications for discovery of optimal substrates and engineering highly effective protease inhibitors.

  18. Yeast-hybrid based high-throughput assay for identification of anthrax lethal factor inhibitors.

    PubMed

    Kim, Joungmok; Park, Hae-Chul; Gedi, Vinayakumar; Park, Hye-Yeon; Roberts, Arthur G; Atkins, William M; Yoon, Moon-Young

    2011-01-07

    Inhibitors of anthrax lethal factor (LF) are currently being sought as effective therapeutics for the treatment of anthrax. Here we report a novel screening approach for inhibitors of LF, a yeast-hybrid-based assay system in which the expression of reporter genes from a Gal4 promoter is repressed by LF proteolytic activity. Yeast cells were co-transformed with LF and a chimeric transcription factor that contains an LF substrate sequence inserted between the DNA-binding and activation domains of Gal4. In the resulting yeast cells, LF cleaves the substrate, thus inactivating the chimeric Gal4 and resulting in lack of expression of reporter genes. Compounds that inhibit LF cleavage of its substrate are identified by changes in reporter gene activity. Relative to in vitro screens for inhibitors of LF proteolytic activity, this screen has the advantage of excluding compounds that are toxic or non-permeable to eukaryotic cells. Additionally, the screen has the advantage of being fast, easy and cheap because exogenous LF and substrate are not needed. An initial chemical library screen with this system has identified four candidate inhibitors which were confirmed to inhibit LF protease activity in an in vitro assay. Furthermore, FBS-00831, one of the compounds identified, protects Raw 264.7 macrophages from anthrax lethal toxin and the possible binding site on LF was also evaluated by molecular docking.

  19. Lethality and synthetic lethality in the genome-wide metabolic network of Escherichia coli.

    PubMed

    Ghim, Cheol-Min; Goh, Kwang-Il; Kahng, Byungnam

    2005-12-21

    Recent genomic analyses on the cellular metabolic network show that reaction flux across enzymes are diverse and exhibit power-law behavior in its distribution. While intuition might suggest that the reactions with larger fluxes are more likely to be lethal under the blockade of its catalysing gene products or gene knockouts, we find, by in silico flux analysis, that the lethality rarely has correlations with the flux level owing to the widespread backup pathways innate in the genome-wide metabolism of Escherichia coli. Lethal reactions, of which the deletion generates cascading failure of following reactions up to the biomass reaction, are identified in terms of the Boolean network scheme as well as the flux balance analysis. The avalanche size of a reaction, defined as the number of subsequently blocked reactions after its removal, turns out to be a useful measure of lethality. As a means to elucidate phenotypic robustness to a single deletion, we investigate synthetic lethality in reaction level, where simultaneous deletion of a pair of nonlethal reactions leads to the failure of the biomass reaction. Synthetic lethals identified via flux balance and Boolean scheme are consistently shown to act in parallel pathways, working in such a way that the backup machinery is compromised.

  20. The Spatial Concentration of Southern Whites and Argument-Based Lethal Violence

    ERIC Educational Resources Information Center

    Lee, Matthew R.; Shihadeh, Edward S.

    2009-01-01

    This analysis examines how the spatial concentration of Southern whites is associated with white argument-based lethal violence. Using a well-known measure of spatial segregation (V, the adjusted P* index) among Southern-born whites in U.S. counties in 2000, the results reveal that the spatial concentration of Southern-born whites is only…

  1. [The interrelationship of alcoholic psychoses and lethal alcohol intoxications with population cash income].

    PubMed

    Kiselev, A S; Shestakov, M G; Nazarov, V I; Beliavskiĭ, A R

    2009-01-01

    The analysis of dependence of alcoholic psychoses and lethal alcohol intoxications from the portion of poor population all over 87 regions of the Russian Federation revealed the decrease in alcoholism morbidity up to 70.7%. Thereby, the poorer is the territory the higher is the indexes of morbidity and mortality because of alcoholism.

  2. High content image-based screening of a protease inhibitor library reveals compounds broadly active against Rift Valley fever virus and other highly pathogenic RNA viruses.

    PubMed

    Mudhasani, Rajini; Kota, Krishna P; Retterer, Cary; Tran, Julie P; Whitehouse, Chris A; Bavari, Sina

    2014-08-01

    High content image-based screening was developed as an approach to test a protease inhibitor small molecule library for antiviral activity against Rift Valley fever virus (RVFV) and to determine their mechanism of action. RVFV is the causative agent of severe disease of humans and animals throughout Africa and the Arabian Peninsula. Of the 849 compounds screened, 34 compounds exhibited ≥ 50% inhibition against RVFV. All of the hit compounds could be classified into 4 distinct groups based on their unique chemical backbone. Some of the compounds also showed broad antiviral activity against several highly pathogenic RNA viruses including Ebola, Marburg, Venezuela equine encephalitis, and Lassa viruses. Four hit compounds (C795-0925, D011-2120, F694-1532 and G202-0362), which were most active against RVFV and showed broad-spectrum antiviral activity, were selected for further evaluation for their cytotoxicity, dose response profile, and mode of action using classical virological methods and high-content imaging analysis. Time-of-addition assays in RVFV infections suggested that D011-2120 and G202-0362 targeted virus egress, while C795-0925 and F694-1532 inhibited virus replication. We showed that D011-2120 exhibited its antiviral effects by blocking microtubule polymerization, thereby disrupting the Golgi complex and inhibiting viral trafficking to the plasma membrane during virus egress. While G202-0362 also affected virus egress, it appears to do so by a different mechanism, namely by blocking virus budding from the trans Golgi. F694-1532 inhibited viral replication, but also appeared to inhibit overall cellular gene expression. However, G202-0362 and C795-0925 did not alter any of the morphological features that we examined and thus may prove to be good candidates for antiviral drug development. Overall this work demonstrates that high-content image analysis can be used to screen chemical libraries for new antivirals and to determine their mechanism of action and

  3. Functional Screening of the Cronobacter sakazakii BAA-894 Genome reveals a role for ProP (ESA_02131) in carnitine uptake.

    PubMed

    Feeney, Audrey; Sleator, Roy D

    2015-01-01

    Cronobacter sakazakii is a neonatal pathogen responsible for up to 80% of fatalities in infected infants. Low birth weight infants and neonates infected with C. sakazakii suffer necrotizing enterocolitis, bacteraemia and meningitis. The mode of transmission most often associated with infection is powdered infant formula (PIF) which, with an aw of ∼0.2, is too low to allow most microorganisms to persist. Survival of C. sakazakii in environments subject to extreme hyperosmotic stress has previously been attributed to the uptake of compatible solutes including proline and betaine. Herein, we report the construction and screening of a C. sakazakii genome bank and the identification of ProP (ESA_02131) as a carnitine uptake system.

  4. Inferred metagenomic comparison of mucosal and fecal microbiota from individuals undergoing routine screening colonoscopy reveals similar differences observed during active inflammation

    PubMed Central

    Tang, Mei San; Poles, Jordan; Leung, Jacqueline M; Wolff, Martin J; Davenport, Michael; Lee, Soo Ching; Lim, Yvonne Al; Chua, Kek Heng; Loke, P'ng; Cho, Ilseung

    2015-01-01

    The mucosal microbiota lives in close proximity with the intestinal epithelium and may interact more directly with the host immune system than the luminal/fecal bacteria. The availability of nutrients in the mucus layer of the epithelium is also very different from the gut lumen environment. Inferred metagenomic analysis for microbial function of the mucosal microbiota is possible by PICRUSt. We recently found that by using this approach, actively inflamed tissue of ulcerative colitis (UC) patients have mucosal communities enriched for genes involved in lipid and amino acid metabolism, and reduced for carbohydrate and nucleotide metabolism. Here, we find that the same bacterial taxa (e.g. Acinetobacter) and predicted microbial pathways enriched in actively inflamed colitis tissue are also enriched in the mucosa of subjects undergoing routine screening colonoscopies, when compared with paired samples of luminal/fecal bacteria. These results suggest that the mucosa of healthy individuals may be a reservoir of aerotolerant microbial communities expanded during colitis. PMID:25559083

  5. Functional Screening of the Cronobacter sakazakii BAA-894 Genome reveals a role for ProP (ESA_02131) in carnitine uptake

    PubMed Central

    Feeney, Audrey; Sleator, Roy D

    2015-01-01

    Cronobacter sakazakii is a neonatal pathogen responsible for up to 80% of fatalities in infected infants. Low birth weight infants and neonates infected with C. sakazakii suffer necrotizing enterocolitis, bacteraemia and meningitis. The mode of transmission most often associated with infection is powdered infant formula (PIF) which, with an aw of ∼0.2, is too low to allow most microorganisms to persist. Survival of C. sakazakii in environments subject to extreme hyperosmotic stress has previously been attributed to the uptake of compatible solutes including proline and betaine. Herein, we report the construction and screening of a C. sakazakii genome bank and the identification of ProP (ESA_02131) as a carnitine uptake system. PMID:25915804

  6. Functional RNAi screen targeting cytokine and growth factor receptors reveals oncorequisite role for interleukin-2 gamma receptor in JAK3-mutation-positive leukemia.

    PubMed

    Agarwal, A; MacKenzie, R J; Eide, C A; Davare, M A; Watanabe-Smith, K; Tognon, C E; Mongoue-Tchokote, S; Park, B; Braziel, R M; Tyner, J W; Druker, B J

    2015-06-04

    To understand the role of cytokine and growth factor receptor-mediated signaling in leukemia pathogenesis, we designed a functional RNA interference (RNAi) screen targeting 188 cytokine and growth factor receptors that we found highly expressed in primary leukemia specimens. Using this screen, we identified interleukin-2 gamma receptor (IL2Rγ) as a critical growth determinant for a JAK3(A572V) mutation-positive acute myeloid leukemia cell line. We observed that knockdown of IL2Rγ abrogates phosphorylation of JAK3 and downstream signaling molecules, JAK1, STAT5, MAPK and pS6 ribosomal protein. Overexpression of IL2Rγ in murine cells increased the transforming potential of activating JAK3 mutations, whereas absence of IL2Rγ completely abrogated the clonogenic potential of JAK3(A572V), as well as the transforming potential of additional JAK3-activating mutations such as JAK3(M511I). In addition, mutation at the IL2Rγ interaction site in the FERM domain of JAK3 (Y100C) completely abrogated JAK3-mediated leukemic transformation. Mechanistically, we found IL2Rγ contributes to constitutive JAK3 mutant signaling by increasing JAK3 expression and phosphorylation. Conversely, we found that mutant, but not wild-type JAK3, increased the expression of IL2Rγ, indicating IL2Rγ and JAK3 contribute to constitutive JAK/STAT signaling through their reciprocal regulation. Overall, we demonstrate a novel role for IL2Rγ in potentiating oncogenesis in the setting of JAK3-mutation-positive leukemia. In addition, our study highlights an RNAi-based functional assay that can be used to facilitate the identification of non-kinase cytokine and growth factor receptor targets for inhibiting leukemic cell growth.

  7. Dual microRNA Screens Reveal That the Immune-Responsive miR-181 Promotes Henipavirus Entry and Cell-Cell Fusion.

    PubMed

    Foo, Chwan Hong; Rootes, Christina L; Cowley, Karla; Marsh, Glenn A; Gould, Cathryn M; Deffrasnes, Celine; Cowled, Christopher J; Klein, Reuben; Riddell, Sarah J; Middleton, Deborah; Simpson, Kaylene J; Wang, Lin-Fa; Bean, Andrew G D; Stewart, Cameron R

    2016-10-01

    Hendra and Nipah viruses (family Paramyxoviridae, genus Henipavirus) are bat-borne viruses that cause fatal disease in humans and a range of other mammalian species. Gaining a deeper understanding of host pathways exploited by henipaviruses for infection may identify targets for new anti-viral therapies. Here we have performed genome-wide high-throughput agonist and antagonist screens at biosafety level 4 to identify host-encoded microRNAs (miRNAs) impacting henipavirus infection in human cells. Members of the miR-181 and miR-17~93 families strongly promoted Hendra virus infection. miR-181 also promoted Nipah virus infection, but did not affect infection by paramyxoviruses from other genera, indicating specificity in the virus-host interaction. Infection promotion was primarily mediated via the ability of miR-181 to significantly enhance henipavirus-induced membrane fusion. Cell signalling receptors of ephrins, namely EphA5 and EphA7, were identified as novel negative regulators of henipavirus fusion. The expression of these receptors, as well as EphB4, were suppressed by miR-181 overexpression, suggesting that simultaneous inhibition of several Ephs by the miRNA contributes to enhanced infection and fusion. Immune-responsive miR-181 levels was also up-regulated in the biofluids of ferrets and horses infected with Hendra virus, suggesting that the host innate immune response may promote henipavirus spread and exacerbate disease severity. This study is the first genome-wide screen of miRNAs influencing infection by a clinically significant mononegavirus and nominates select miRNAs as targets for future anti-viral therapy development.

  8. A novel phosphorylation site mutation in profilin 1 revealed in a large screen of US, Nordic, and German amyotrophic lateral sclerosis/frontotemporal dementia cohorts.

    PubMed

    Ingre, Caroline; Landers, John E; Rizik, Naji; Volk, Alexander E; Akimoto, Chizuru; Birve, Anna; Hübers, Annemarie; Keagle, Pamela J; Piotrowska, Katarzyna; Press, Rayomand; Andersen, Peter Munch; Ludolph, Albert C; Weishaupt, Jochen H

    2013-06-01

    Profilin 1 is a central regulator of actin dynamics. Mutations in the gene profilin 1 (PFN1) have very recently been shown to be the cause of a subgroup of amyotrophic lateral sclerosis (ALS). Here, we performed a large screen of US, Nordic, and German familial and sporadic ALS and frontotemporal dementia (FTLD) patients for PFN1 mutations to get further insight into the spectrum and pathogenic relevance of this gene for the complete ALS/FTLD continuum. Four hundred twelve familial and 260 sporadic ALS cases and 16 ALS/FTLD cases from Germany, the Nordic countries, and the United States were screened for PFN1 mutations. Phenotypes of patients carrying PFN1 mutations were studied. In a German ALS family we identified the novel heterozygous PFN1 mutation p.Thr109Met, which was absent in controls. This novel mutation abrogates a phosphorylation site in profilin 1. The recently described p.Gln117Gly sequence variant was found in another familial ALS patient from the United States. The ALS patients with mutations in PFN1 displayed spinal onset motor neuron disease without overt cognitive involvement. PFN1 mutations were absent in patients with motor neuron disease and dementia, and in patients with only FTLD. We provide further evidence that PFN1 mutations can cause ALS as a Mendelian dominant trait. Patients carrying PFN1 mutations reported so far represent the "classic" ALS end of the ALS-FTLD spectrum. The novel p.Thr109Met mutation provides additional proof-of-principle that mutant proteins involved in the regulation of cytoskeletal dynamics can cause motor neuron degeneration. Moreover, this new mutation suggests that fine-tuning of actin polymerization by phosphorylation of profilin 1 might be necessary for motor neuron survival.

  9. Dual microRNA Screens Reveal That the Immune-Responsive miR-181 Promotes Henipavirus Entry and Cell-Cell Fusion

    PubMed Central

    Foo, Chwan Hong; Rootes, Christina L.; Marsh, Glenn A.; Gould, Cathryn M.; Klein, Reuben; Riddell, Sarah J.; Middleton, Deborah; Simpson, Kaylene J.; Bean, Andrew G. D.; Stewart, Cameron R.

    2016-01-01

    Hendra and Nipah viruses (family Paramyxoviridae, genus Henipavirus) are bat-borne viruses that cause fatal disease in humans and a range of other mammalian species. Gaining a deeper understanding of host pathways exploited by henipaviruses for infection may identify targets for new anti-viral therapies. Here we have performed genome-wide high-throughput agonist and antagonist screens at biosafety level 4 to identify host-encoded microRNAs (miRNAs) impacting henipavirus infection in human cells. Members of the miR-181 and miR-17~93 families strongly promoted Hendra virus infection. miR-181 also promoted Nipah virus infection, but did not affect infection by paramyxoviruses from other genera, indicating specificity in the virus-host interaction. Infection promotion was primarily mediated via the ability of miR-181 to significantly enhance henipavirus-induced membrane fusion. Cell signalling receptors of ephrins, namely EphA5 and EphA7, were identified as novel negative regulators of henipavirus fusion. The expression of these receptors, as well as EphB4, were suppressed by miR-181 overexpression, suggesting that simultaneous inhibition of several Ephs by the miRNA contributes to enhanced infection and fusion. Immune-responsive miR-181 levels was also up-regulated in the biofluids of ferrets and horses infected with Hendra virus, suggesting that the host innate immune response may promote henipavirus spread and exacerbate disease severity. This study is the first genome-wide screen of miRNAs influencing infection by a clinically significant mononegavirus and nominates select miRNAs as targets for future anti-viral therapy development. PMID:27783670

  10. Comparison of independent screens on differentially vulnerable motor neurons reveals alpha-synuclein as a common modifier in motor neuron diseases.

    PubMed

    Kline, Rachel A; Kaifer, Kevin A; Osman, Erkan Y; Carella, Francesco; Tiberi, Ariana; Ross, Jolill; Pennetta, Giuseppa; Lorson, Christian L; Murray, Lyndsay M

    2017-03-31

    The term "motor neuron disease" encompasses a spectrum of disorders in which motor neurons are the primary pathological target. However, in both patients and animal models of these diseases, not all motor neurons are equally vulnerable, in that while some motor neurons are lost very early in disease, others remain comparatively intact, even at late stages. This creates a valuable system to investigate the factors that regulate motor neuron vulnerability. In this study, we aim to use this experimental paradigm to identify potential transcriptional modifiers. We have compared the transcriptome of motor neurons from healthy wild-type mice, which are differentially vulnerable in the childhood motor neuron disease Spinal Muscular Atrophy (SMA), and have identified 910 transcriptional changes. We have compared this data set with published microarray data sets on other differentially vulnerable motor neurons. These neurons were differentially vulnerable in the adult onset motor neuron disease Amyotrophic Lateral Sclerosis (ALS), but the screen was performed on the equivalent population of neurons from neurologically normal human, rat and mouse. This cross species comparison has generated a refined list of differentially expressed genes, including CELF5, Col5a2, PGEMN1, SNCA, Stmn1 and HOXa5, alongside a further enrichment for synaptic and axonal transcripts. As an in vivo validation, we demonstrate that the manipulation of a significant number of these transcripts can modify the neurodegenerative phenotype observed in a Drosophila line carrying an ALS causing mutation. Finally, we demonstrate that vector-mediated expression of alpha-synuclein (SNCA), a transcript decreased in selectively vulnerable motor neurons in all four screens, can extend life span, increase weight and decrease neuromuscular junction pathology in a mouse model of SMA. In summary, we have combined multiple data sets to identify transcripts, which are strong candidates for being phenotypic modifiers

  11. Lethal arthrogryposis with anterior horn cell disease.

    PubMed

    Vuopala, K; Ignatius, J; Herva, R

    1995-01-01

    Fifteen infants (11 families) with lethal arthrogryposis and anterior horn motor neuron loss are described. The clinical presentation was the fetal akinesia deformation sequence (FADS) with multiple contractures and facial anomalies. At autopsy neurogenic muscular atrophy was present in all infants. The spinal cord showed a paucity of anterior horn motor neurons in the 12 infants studied. Both male and female infants were affected. Nine cases were sporadic, whereas in two families there were three affected cases. Consanguinity between the parents was reported in one family with one affected child. This and the recurrence of the condition speak for autosomal recessive inheritance. Detailed neuropathological examination and documentation of the clinical features are needed for a better delineation of and genetic counseling for perinatally lethal arthrogryposis.

  12. Henipaviruses-unanswered questions of lethal zoonoses.

    PubMed

    Field, Hume; Kung, Nina

    2011-12-01

    The highly lethal Hendra and Nipah viruses have been described for little more than a decade, yet within that time have been aetiologically associated with major livestock and human health impacts, albeit on a limited scale. Do these emerging pathogens pose a broader threat, or are they inconsequential 'viral chatter'. Given their lethality, and the evident multi-generational human-to-human transmission associated with Nipah virus in Bangladesh, it seems prudent to apply the precautionary principle. While much is known of their clinical, pathogenic and epidemiologic features in livestock species and humans, a number of fundamental questions regarding the relationship between the viruses, their natural fruit-bat host and the environment remain unanswered. In this paper, we pose and probe these questions in context, and offer perspectives based primarily on our experience with Hendra virus in Australia, augmented with Nipah virus parallels.

  13. PARP inhibitors: Synthetic lethality in the clinic.

    PubMed

    Lord, Christopher J; Ashworth, Alan

    2017-03-17

    PARP inhibitors (PARPi), a cancer therapy targeting poly(ADP-ribose) polymerase, are the first clinically approved drugs designed to exploit synthetic lethality, a genetic concept proposed nearly a century ago. Tumors arising in patients who carry germline mutations in either BRCA1 or BRCA2 are sensitive to PARPi because they have a specific type of DNA repair defect. PARPi also show promising activity in more common cancers that share this repair defect. However, as with other targeted therapies, resistance to PARPi arises in advanced disease. In addition, determining the optimal use of PARPi within drug combination approaches has been challenging. Nevertheless, the preclinical discovery of PARPi synthetic lethality and the route to clinical approval provide interesting lessons for the development of other therapies. Here, we discuss current knowledge of PARP inhibitors and potential ways to maximize their clinical effectiveness.

  14. Lethality and entropy of protein interaction networks.

    PubMed

    Manke, Thomas; Demetrius, Lloyd; Vingron, Martin

    2005-01-01

    We characterize protein interaction networks in terms of network entropy. This approach suggests a ranking principle, which strongly correlates with elements of functional importance, such as lethal proteins. Our combined analysis of protein interaction networks and functional profiles in single cellular yeast and multi-cellular worm shows that proteins with large contribution to network entropy are preferentially lethal. While entropy is inherently a dynamical concept, the present analysis incorporates only structural information. Our result therefore highlights the importance of topological features, which appear as correlates of an underlying dynamical property, and which in turn determine functional traits. We argue that network entropy is a natural extension of previously studied observables, such as pathway multiplicity and centrality. It is also applicable to networks in which the processes can be quantified and therefore serves as a link to study questions of structural and dynamical robustness in a unified way.

  15. Structure-Based Systematic Isolation of Conditional-Lethal Mutations in the Single Yeast Calmodulin Gene

    PubMed Central

    Ohya, Y.; Botstein, D.

    1994-01-01

    Conditional-lethal mutations of the single calmodulin gene in Saccharomyces cerevisiae have been very difficult to isolate by random and systematic methods, despite the fact that deletions cause recessive lethality. We report here the isolation of numerous conditional-lethal mutants that were recovered by systematically altering phenylalanine residues. The phenylalanine residues of calmodulin were implicated in function both by structural studies of calmodulin bound to target peptides and by their extraordinary conservation in evolution. Seven single and 26 multiple Phe -> Ala mutations were constructed. Mutant phenotypes were examined in a haploid cmd1 disrupted strain under three conditions: single copy, low copy, and overexpressed. Whereas all but one of the single mutations caused no obvious phenotype, most of the multiple mutations caused obvious growth phenotypes. Five were lethal, 6 were lethal only in synthetic medium, 13 were temperature-sensitive lethal and 2 had no discernible phenotypic consequences. Overexpression of some of the mutant genes restored the phenotype to nearly wild type. Several temperature-sensitive calmodulin mutations were suppressed by elevated concentration of CaCl(2) in the medium. Mutant calmodulin protein was detected at normal levels in extracts of most of the lethal mutant cells, suggesting that the deleterious phenotypes were due to loss of the calmodulin function and not protein instability. Analysis of diploid strains heterozygous for all combinations of cmd1-ts alleles revealed four intragenic complementation groups. The contributions of individual phe->ala changes to mutant phenotypes support the idea of internal functional redundancy in the symmetrical calmodulin protein molecule. These results suggest that the several phenylalanine residues in calmodulin are required to different extents in different combinations in order to carry out each of the several essential tasks. PMID:7896089

  16. Lethality and Autonomous Systems: The Roboticist Demographic

    DTIC Science & Technology

    2008-01-01

    humanoid (22%), and other (23%); 9) Media Influence: only 18% said that media had a strong or very strong influence on their attitude to robots ...and whether certain emotions would be appropriate in a military robot . The Wars question was worded as follows: To what extent do you think ...Lethality and Autonomous Systems: The Roboticist Demographic Lilia V. Moshkina and Ronald C. Arkin Mobile Robot Laboratory, College of

  17. Complement component 5 promotes lethal thrombosis

    PubMed Central

    Mizuno, Tomohiro; Yoshioka, Kengo; Mizuno, Masashi; Shimizu, Mie; Nagano, Fumihiko; Okuda, Tomoyuki; Tsuboi, Naotake; Maruyama, Shoichi; Nagamatsu, Tadashi; Imai, Masaki

    2017-01-01

    Extracellular histones promote platelet aggregation and thrombosis; this is followed by induction of coagulation disorder, which results in exhaustion of coagulation factors. Complement component 5 (C5) is known to be associated with platelet aggregation and coagulation system activation. To date, the pathological mechanism underlying liver injury has remained unclear. Here, we investigated whether C5 promotes liver injury associated with histone-induced lethal thrombosis. C5-sufficient and C5-deficient mice received single tail vein injections of purified, unfractionated histones obtained from calf thymus (45–75 μg/g). Subsequently, the mice were monitored for survival for up to 72 h. Based on the survival data, the 45 μg/g dose was used for analysis of blood cell count, liver function, blood coagulation ability, and promotion of platelet aggregation and platelet/leukocyte aggregate (PLA) production by extracellular histones. C5-deficient mice were protected from lethal thrombosis and had milder thrombocytopenia, consumptive coagulopathy, and liver injury with embolism and lower PLA production than C5-sufficient mice. These results indicate that C5 is associated with coagulation disorders, PLA production, and embolism-induced liver injury. In conclusion, C5 promotes liver injury associated with histone-induced lethal thrombosis. PMID:28205538

  18. Lethal interpersonal violence in the Middle Pleistocene.

    PubMed

    Sala, Nohemi; Arsuaga, Juan Luis; Pantoja-Pérez, Ana; Pablos, Adrián; Martínez, Ignacio; Quam, Rolf M; Gómez-Olivencia, Asier; Bermúdez de Castro, José María; Carbonell, Eudald

    2015-01-01

    Evidence of interpersonal violence has been documented previously in Pleistocene members of the genus Homo, but only very rarely has this been posited as the possible manner of death. Here we report the earliest evidence of lethal interpersonal violence in the hominin fossil record. Cranium 17 recovered from the Sima de los Huesos Middle Pleistocene site shows two clear perimortem depression fractures on the frontal bone, interpreted as being produced by two episodes of localized blunt force trauma. The type of injuries, their location, the strong similarity of the fractures in shape and size, and the different orientations and implied trajectories of the two fractures suggest they were produced with the same object in face-to-face interpersonal conflict. Given that either of the two traumatic events was likely lethal, the presence of multiple blows implies an intention to kill. This finding shows that the lethal interpersonal violence is an ancient human behavior and has important implications for the accumulation of bodies at the site, supporting an anthropic origin.

  19. Lethal Interpersonal Violence in the Middle Pleistocene

    PubMed Central

    Sala, Nohemi; Arsuaga, Juan Luis; Pantoja-Pérez, Ana; Pablos, Adrián; Martínez, Ignacio; Quam, Rolf M.; Gómez-Olivencia, Asier; Bermúdez de Castro, José María; Carbonell, Eudald

    2015-01-01

    Evidence of interpersonal violence has been documented previously in Pleistocene members of the genus Homo, but only very rarely has this been posited as the possible manner of death. Here we report the earliest evidence of lethal interpersonal violence in the hominin fossil record. Cranium 17 recovered from the Sima de los Huesos Middle Pleistocene site shows two clear perimortem depression fractures on the frontal bone, interpreted as being produced by two episodes of localized blunt force trauma. The type of injuries, their location, the strong similarity of the fractures in shape and size, and the different orientations and implied trajectories of the two fractures suggest they were produced with the same object in face-to-face interpersonal conflict. Given that either of the two traumatic events was likely lethal, the presence of multiple blows implies an intention to kill. This finding shows that the lethal interpersonal violence is an ancient human behavior and has important implications for the accumulation of bodies at the site, supporting an anthropic origin. PMID:26018668

  20. Stress-Related Signaling Pathways in Lethal and Non-Lethal Prostate Cancer

    PubMed Central

    Valdimarsdóttir, Unnur; Fang, Fang; Gerke, Travis; Tyekucheva, Svitlana; Fiorentino, Michelangelo; Lambe, Mats; Sesso, Howard D.; Sweeney, Christopher J.; Wilson, Kathryn M.; Giovannucci, Edward L.; Loda, Massimo

    2015-01-01

    Purpose Recent data suggest that neuroendocrine signaling may influence progression in some cancers. We aimed to determine whether genes within the five major stress-related signaling pathways are differentially expressed in tumor tissue when comparing prostate cancer patients with lethal and non-lethal disease. Experimental Design We measured mRNA expression of 51 selected genes involved in predetermined stress-related signaling pathways (adrenergic, glucocorticoid, dopaminergic, serotoninergic, and muscarinic systems) in tumor tissue and normal prostate tissue collected from prostate cancer patients in the Physicians’ Health Study (n=150; n=82 with normal) and the Health Professionals Follow-Up Study (n=254; n=120 with normal). We assessed differences in pathway expression in relation to prostate cancer lethality as the primary outcome, and to biomarkers as secondary outcomes. Results Differential mRNA expression of genes within the adrenergic (p=0.001), glucocorticoid (p<0.0001), serotoninergic (p=0.0019), and muscarinic (p=0.0045) pathways in tumor tissue was associated with the risk of lethality. The adrenergic pathway was also statistically significant (p=0.001) when comparing against differential expression of genes not involved in the pathways. In adjacent normal prostate tissue, none of the pathways was clearly differentially expressed between lethal and non-lethal prostate cancer. The glucocorticoid and adrenergic pathways were associated with cell proliferation, while the glucocorticoid pathway was additionally associated with angiogenesis and perineural invasion. Conclusions Our study suggests that stress-related signaling pathways, particularly the adrenergic and glucocorticoid, may be dysregulated in the tumors of men whose prostate cancer proves to be lethal, and motivates further investigation of these pathways in functional studies. PMID:26490316

  1. Chemical mutagenesis testing in Drosophila. I. Comparison of positive and negative control data for sex-linked recessive lethal mutations and reciprocal translocations in three laboratories

    SciTech Connect

    Woodruff, R.C.; Mason, J.M.; Valencia, R.; Zimmering, S.

    1984-01-01

    As part of the validation phase of the Drosophila melanogaster segment of the National Toxicology Program, a comparison has been made of positive and negative controls for sex-linked recessive lethal mutations and reciprocal translocations from three laboratories. This comparison involves approximately 700,000 spontaneous recessive lethal mutation tests, 70,000 spontaneous translocation tests, and screens for genetic damage induced by N-nitrosodimethylamine and ..beta..-propiolactone. Spontaneous frequencies for lethal mutations and translocations were homogeneous in the laboratories regardless of solvent or broods sampled. Inhomogeneity was observed in induced frequencies among laboratories, but the variation was no greater than that found within a laboratory.

  2. A simple screening assay for the most common JK*0 alleles revealed compound heterozygosity in Jk(a-b-) probands from Guam.

    PubMed

    Wester, E S; Gustafsson, J; Snell, B; Spruell, P; Hellberg, A; Olsson, M L; Storry, J R

    2009-01-01

    The Jk(a-b-) phenotype results from alterations in the JK gene and is characterized by absence of the RBC urea transporter in the cell membrane. The frequency of Jk(a-b-) varies among populations,but this phenotype is most commonly found in people of Polynesian and Finnish descent. Although rare, Jk(a-b-) individuals present a clinical challenge because anti-Jk3 is produced readily in response to transfusion and pregnancy, and Jk(a-b-) blood is not routinely available. Identification of Jk(a-b-) patients and donors is most often performed serologically. However, ten JK*0 alleles have been identified, and this information can be used in DNA-based typing. We selected five JK*0 alleles that had been encountered by our reference laboratory in two or more samples from unrelated individuals and designed an allele-specific primer PCR assay for use as an initial screening tool. After in-house validation,we tested genomic DNA from a family: a mother and her two sons referred to us for genetic investigation of their Jk(a-b-)phenotypes. Two different nucleotide substitutions, -1g>a in intron 5 (IVS5) and 956C>T in exon 10, originally associated with Polynesian and Indian/African populations respectively, were identified in the family. The mother and one son were compound heterozygotes, and the second son was homozygous for IVS5-1g>a. We conclude that the effort to design and validate such a screening assay was cost-efficient when compared with DNA sequencing costs. Furthermore, selection of the more common JK*0 mutations was a practical approach that resulted in rapid identification of the genetic bases behind the Jk(a-b-) phenotypes in this unusual family. Although an obvious target for eventual inclusion into high-throughput genotyping platforms for clinical diagnostic services, current systems are very limited. Our approach provides a simple and inexpensive method for the identification of these rare alleles.

  3. A genome-wide small interfering RNA (siRNA) screen reveals nuclear factor-κB (NF-κB)-independent regulators of NOD2-induced interleukin-8 (IL-8) secretion.

    PubMed

    Warner, Neil; Burberry, Aaron; Pliakas, Maria; McDonald, Christine; Núñez, Gabriel

    2014-10-10

    NOD2 encodes an intracellular multidomain pattern recognition receptor that is the strongest known genetic risk factor in the pathogenesis of Crohn disease (CD), a chronic relapsing inflammatory disorder of the intestinal tract. NOD2 functions as a sensor for bacterial cell wall components and activates proinflammatory and antimicrobial signaling pathways. Here, using a genome-wide small interfering RNA (siRNA) screen, we identify numerous genes that regulate secretion of the proinflammatory cytokine IL-8 in response to NOD2 activation. Moreover, many of the identified IL-8 regulators are linked by protein-protein interactions, revealing subnetworks of highly connected IL-8 regulators implicated in processes such as vesicle formation, mRNA stability, and protein ubiquitination and trafficking. A TNFα counterscreen to induce IL-8 secretion in an NOD2-independent manner reveals that the majority of the identified regulators affect IL-8 secretion irrespective of the initiating stimuli. Using immortalized macrophages, we validate the ubiquitin protease, USP8, and the endosomal sorting protein, VPS28, as negative regulators of NOD2-induced cytokine secretion. Interestingly, several genes that affect NOD2-induced IL-8 secretion are present in loci associated with CD risk by genome-wide association studies, supporting a role for the NOD2/IL-8 pathway, and not just NOD2, in the pathogenesis of CD. Overall, this screen provides a valuable resource in the advancement of our understanding of the genes that regulate the secretion of IL-8.

  4. A genome-wide siRNA screen reveals multiple mTORC1 independent signaling pathways regulating autophagy under normal nutritional conditions

    PubMed Central

    Lipinski, Marta M.; Hoffman, Greg; Ng, Aylwin; Zhou, Wen; Py, Bénédicte F.; Hsu, Emily; Liu, Xuxin; Eisenberg, Jason; Liu, Jun; Blenis, John; Xavier, Ramnik J.; Yuan, Junying

    2010-01-01

    Summary Autophagy is a cellular catabolic mechanism that plays an essential function in protecting multicellular eukaryotes from neurodegeneration, cancer and other diseases. However, we still know very little about mechanisms regulating autophagy under normal homeostatic conditions when nutrients are not limiting. In a genome-wide human siRNA screen, we demonstrate that under normal nutrient conditions up regulation of autophagy requires the type III PI3 kinase, but not inhibition of mTORC1, the essential negative regulator of starvation-induced autophagy. We show that a group of growth factors and cytokines inhibit the type III PI3 kinase through multiple pathways, including the MAPK-ERK1/2, Stat3, Akt/Foxo3 and CXCR4/GPCR, which are all known to positively regulate cell growth and proliferation. Our study suggests that the type III PI3 kinase integrates diverse signals to regulate cellular levels of autophagy, and that autophagy and cell proliferation may represent two alternative cell fates that are regulated in a mutually exclusive manner. PMID:20627085

  5. In Vitro Screening of the Open-Source Medicines for Malaria Venture Malaria Box Reveals Novel Compounds with Profound Activities against Theileria annulata Schizonts.

    PubMed

    Hostettler, Isabel; Müller, Joachim; Hemphill, Andrew

    2016-06-01

    Intracellular schizonts of the apicomplexans Theileria annulata and Theileria parva immortalize bovine leukocytes and thereby cause fatal diseases. The hydroxynaphthoquinone buparvaquone is currently the only option for the treatment of theileriosis, and resistance development has been reported. It is therefore tempting to investigate the repurposing of compounds effective against related apicomplexan parasites, such as Plasmodium Here, we present the results of a screen of 400 compounds included in the open-access Medicines for Malaria Venture (MMV) malaria box on TaC12 cells, a macrophage-derived cell line immortalized by T. annulata schizonts. Using a combination of the classical alamarBlue vitality assay and a recently developed quantitative reverse transcriptase real-time PCR method based on the Theileria TaSP gene, we have identified 5 compounds, characterized their effects on the ultrastructure of TaC12 cells, and investigated whether they easily induce resistance formation. Two compounds, the quinolinols MMV666022 and MMV666054, have 50% inhibitory concentrations (IC50s) of 0.5 and 0.2 μM on TaC12 cells and 5.3 and 5.2 μM on BoMac cells, respectively. Thus, with therapeutic indexes of 11 and 18, they represent promising leads for further development of antitheilerial chemotherapeutics.

  6. In Vitro Screening of the Open-Source Medicines for Malaria Venture Malaria Box Reveals Novel Compounds with Profound Activities against Theileria annulata Schizonts

    PubMed Central

    Hostettler, Isabel; Müller, Joachim

    2016-01-01

    Intracellular schizonts of the apicomplexans Theileria annulata and Theileria parva immortalize bovine leukocytes and thereby cause fatal diseases. The hydroxynaphthoquinone buparvaquone is currently the only option for the treatment of theileriosis, and resistance development has been reported. It is therefore tempting to investigate the repurposing of compounds effective against related apicomplexan parasites, such as Plasmodium. Here, we present the results of a screen of 400 compounds included in the open-access Medicines for Malaria Venture (MMV) malaria box on TaC12 cells, a macrophage-derived cell line immortalized by T. annulata schizonts. Using a combination of the classical alamarBlue vitality assay and a recently developed quantitative reverse transcriptase real-time PCR method based on the Theileria TaSP gene, we have identified 5 compounds, characterized their effects on the ultrastructure of TaC12 cells, and investigated whether they easily induce resistance formation. Two compounds, the quinolinols MMV666022 and MMV666054, have 50% inhibitory concentrations (IC50s) of 0.5 and 0.2 μM on TaC12 cells and 5.3 and 5.2 μM on BoMac cells, respectively. Thus, with therapeutic indexes of 11 and 18, they represent promising leads for further development of antitheilerial chemotherapeutics. PMID:26976863

  7. A misexpression screen reveals effects of bag-of-marbles and TGF beta class signaling on the Drosophila male germ-line stem cell lineage.

    PubMed Central

    Schulz, Cordula; Kiger, Amy A; Tazuke, Salli I; Yamashita, Yukiko M; Pantalena-Filho, Luiz C; Jones, D Leanne; Wood, Cricket G; Fuller, Margaret T

    2004-01-01

    Male gametes are produced throughout reproductive life by a classic stem cell mechanism. However, little is known about the molecular mechanisms for lineage production that maintain male germ-line stem cell (GSC) populations, regulate mitotic amplification divisions, and ensure germ cell differentiation. Here we utilize the Drosophila system to identify genes that cause defects in the male GSC lineage when forcibly expressed. We conducted a gain-of-function screen using a collection of 2050 EP lines and found 55 EP lines that caused defects at early stages of spermatogenesis upon forced expression either in germ cells or in surrounding somatic support cells. Most strikingly, our analysis of forced expression indicated that repression of bag-of-marbles (bam) expression in male GSC is important for male GSC survival, while activity of the TGF beta signal transduction pathway may play a permissive role in maintenance of GSCs in Drosophila testes. In addition, forced activation of the TGF beta signal transduction pathway in germ cells inhibits the transition from the spermatogonial mitotic amplification program to spermatocyte differentiation. PMID:15238523

  8. Combinatorial drug screening and molecular profiling reveal diverse mechanisms of intrinsic and adaptive resistance to BRAF inhibition in V600E BRAF mutant melanomas

    PubMed Central

    Roller, Devin G.; Capaldo, Brian; Bekiranov, Stefan; Mackey, Aaron J.; Conaway, Mark R.; Petricoin, Emanuel F.; Gioeli, Daniel; Weber, Michael J.

    2016-01-01

    Over half of BRAFV600E melanomas display intrinsic resistance to BRAF inhibitors, in part due to adaptive signaling responses. In this communication we ask whether BRAFV600E melanomas share common adaptive responses to BRAF inhibition that can provide clinically relevant targets for drug combinations. We screened a panel of 12 treatment-naïve BRAFV600E melanoma cell lines with MAP Kinase pathway inhibitors in pairwise combination with 58 signaling inhibitors, assaying for synergistic cytotoxicity. We found enormous diversity in the drug combinations that showed synergy, with no two cell lines having an identical profile. Although the 6 lines most resistant to BRAF inhibition showed synergistic benefit from combination with lapatinib, the signaling mechanisms by which this combination generated synergistic cytotoxicity differed between the cell lines. We conclude that adaptive responses to inhibition of the primary oncogenic driver (BRAFV600E) are determined not only by the primary oncogenic driver but also by diverse secondary genetic and epigenetic changes (“back-seat drivers”) and hence optimal drug combinations will be variable. Because upregulation of receptor tyrosine kinases is a major source of drug resistance arising from diverse adaptive responses, we propose that inhibitors of these receptors may have substantial clinical utility in combination with inhibitors of the MAP Kinase pathway. PMID:26673621

  9. Genetic Screen Reveals Link between the Maternal Effect Sterile Gene mes-1 and Pseudomonas aeruginosa-induced Neurodegeneration in Caenorhabditis elegans*

    PubMed Central

    Wu, Qiuli; Cao, Xiou; Yan, Dong; Wang, Dayong; Aballay, Alejandro

    2015-01-01

    Increasing evidence indicates that immune responses to microbial infections may contribute to neurodegenerative diseases. Here, we show that Pseudomonas aeruginosa infection of Caenorhabditis elegans causes a number of neural changes that are hallmarks of neurodegeneration. Using an unbiased genetic screen to identify genes involved in the control of P. aeruginosa-induced neurodegeneration, we identified mes-1, which encodes a receptor tyrosine kinase-like protein that is required for unequal cell divisions in the early embryonic germ line. We showed that sterile but not fertile mes-1 animals were resistant to neurodegeneration induced by P. aeruginosa infection. Similar results were observed using animals carrying a mutation in the maternal effect gene pgl-1, which is required for postembryonic germ line development, and the germ line-deficient strains glp-1 and glp-4. Additional studies indicated that the FOXO transcription factor DAF-16 is required for resistance to P. aeruginosa-induced neurodegeneration in germ line-deficient strains. Thus, our results demonstrate that P. aeruginosa infection results in neurodegeneration phenotypes in C. elegans that are controlled by the germ line in a cell-nonautonomous manner. PMID:26475858

  10. Screening for sexually transmitted diseases in human immunodeficiency virus-positive patients in Peru reveals an absence of Chlamydia trachomatis and identifies Trichomonas vaginalis in pharyngeal specimens.

    PubMed

    Press, N; Chavez, V M; Ticona, E; Calderon, M; Apolinario, I S; Culotta, A; Arevalo, J; Gilman, R H

    2001-03-01

    To determine the prevalence of sexually transmitted diseases (STDs), we screened 107 human immunodeficiency virus-positive patients in Peru, where the virus is predominantly sexually transmitted. Patients had multiple risk factors for STDs, and 38% of women and 50% of men had at least 1 STD (gonorrhea, trichomoniasis, herpes simplex, anogenital warts, or syphilis seropositivity). No chlamydial infection was detected, even though infection rates in the general population are 5%-12%. Patients receiving trimethoprim-sulfamethoxazole(TMP-SMZ) for prophylaxis or treatment of respiratory infections were least likely to have cervicitis and/or urethritis (odds ratio, 0.37; 95% confidence interval, 0.15-0.89). Although not optimal treatment, administration of TMP-SMZ is effective against chlamydial infection. We speculate that the use of concomitant medications, such as TMP-SMZ, may be inadvertently preventing chlamydial infection in this population. Another finding was the presence of Trichomonas vaginalis in pharyngeal specimens of 3 men with histories of orogenital activity. This has not been previously reported and requires further study.

  11. RNAi-Based Suppressor Screens Reveal Genetic Interactions Between the CRL2LRR-1 E3-Ligase and the DNA Replication Machinery in Caenorhabditis elegans

    PubMed Central

    Ossareh-Nazari, Batool; Katsiarimpa, Anthi; Merlet, Jorge; Pintard, Lionel

    2016-01-01

    Cullin-RING E3-Ligases (CRLs), the largest family of E3 ubiquitin-Ligases, regulate diverse cellular processes by promoting ubiquitination of target proteins. The evolutionarily conserved Leucine Rich Repeat protein 1 (LRR-1) is a substrate-recognition subunit of a CRL2LRR-1 E3-ligase. Here we provide genetic evidence supporting a role of this E3-enzyme in the maintenance of DNA replication integrity in Caenorhabditis elegans. Through RNAi-based suppressor screens of lrr-1(0) and cul-2(or209ts) mutants, we identified two genes encoding components of the GINS complex, which is part of the Cdc45-MCM-GINS (CMG) replicative helicase, as well as CDC-7 and MUS-101, which drives the assembly of the CMG helicase during DNA replication. In addition, we identified the core components of the ATR/ATL-1 DNA replication checkpoint pathway (MUS-101, ATL-1, CLSP-1, CHK-1). These results suggest that the CRL2LRR-1 E3-ligase acts to modify or degrade factor(s) that would otherwise misregulate the replisome, eventually leading to the activation of the DNA replication checkpoint. PMID:27543292

  12. A systematic screen for dominant second-site modifiers of Merlin/NF2 phenotypes reveals an interaction with blistered/DSRF and scribbler.

    PubMed Central

    LaJeunesse, D R; McCartney, B M; Fehon, R G

    2001-01-01

    Merlin, the Drosophila homologue of the human tumor suppressor gene Neurofibromatosis 2 (NF2), is required for the regulation of cell proliferation and differentiation. To better understand the cellular functions of the NF2 gene product, Merlin, recent work has concentrated on identifying proteins with which it interacts either physically or functionally. In this article, we describe genetic screens designed to isolate second-site modifiers of Merlin phenotypes from which we have identified five multiallelic complementation groups that modify both loss-of-function and dominant-negative Merlin phenotypes. Three of these groups, Group IIa/scribbler (also known as brakeless), Group IIc/blistered, and Group IId/net, are known genes, while two appear to be novel. In addition, two genes, Group IIa/scribbler and Group IIc/blistered, alter Merlin subcellular localization in epithelial and neuronal tissues, suggesting that they regulate Merlin trafficking or function. Furthermore, we show that mutations in scribbler and blistered display second-site noncomplementation with one another. These results suggest that Merlin, blistered, and scribbler function together in a common pathway to regulate Drosophila wing epithelial development. PMID:11404331

  13. Screening microorganisms for insulin binding reveals binding by Burkholderia multivorans and Burkholderia cenocepacia and novel attachment of insulin to Aeromonas salmonicida via the A-layer.

    PubMed

    Nisr, Raid B; Moody, A John; Gilpin, Martyn L

    2012-03-01

    Exposure to microorganisms is considered an environmental factor that can contribute to Type 1 diabetes. Insulin-binding proteins (IBPs) on microorganisms may induce production of antibodies that can react with the human insulin receptor (HIR) with possible consequences in developing a diabetic autoimmune response against HIR and insulin. The interaction of insulin with microorganisms was studied by screening 45 microbial species for their ability to bind insulin. Binding assays were performed using labelled insulin to identify insulin-binding components on the microorganisms. Burkholderia multivorans and Burkholderia cenocepacia isolated from patients with cystic fibrosis (CF) and the fish pathogen Aeromonas salmonicida were the only strains of those tested, which showed insulin-binding components on their cell surfaces. Further work with A. salmonicida suggested that the insulin-binding activity of A. salmonicida is due to the A-layer. A mutant of A. salmonicida lacking the A-layer showed binding, but at a much reduced rate suggesting another insulin-binding component in addition to the high affinity of the A-protein. Soluble protein lysates were subjected to Western ligand blotting using peroxidase-labelled insulin to detect IBPs. Two positive IBPs were apparent at approximately 30 and 20 kDa in lysates from Burkholderia strains, but no IBP was detected in A. salmonicida lysates.

  14. Screening of a kinase library reveals novel pro-senescence kinases and their common NF-κB-dependent transcriptional program

    PubMed Central

    Ferrand, Mylène; Kirsh, Olivier; Griveau, Audrey; Vindrieux, David; Martin, Nadine; Defossez, Pierre-Antoine; Bernard, David

    2015-01-01

    Cellular senescence results in proliferation arrest and acquisition of hallmarks such as the Senescence-Associated Secretory Phenotype (SASP). Senescence is involved in regulating numerous physio-pathological responses, including embryonic development, cancer, and several aging-related diseases. Only a few kinases, centered on the RAS signaling pathway, have been identified as inducing premature senescence. About possible other senescence-regulating kinases and signaling pathways, practically little is known. By screening a library of activated kinases, we identified 33 kinases whose constitutive expression decreases cell proliferation and induces expression of senescence markers; p16 and SASP components. Focusing on some kinases showing the strongest pro-senescence effects, we observed that they all induce expression of SASP-component genes through activation of an NF-κB-dependent transcriptional program. Furthermore, inhibition of the p53 or Rb pathway failed to prevent the SASP-inducing effect of pro-senescence kinases. Inhibition of the NF-κB, p53, or Rb pathway proved insufficient to prevent kinase-triggered cell cycle arrest. We have thus identified a repertoire of novel pro-senescence kinases and pathways. These results will open new perspectives in the understanding on the role of cellular senescence in various physio-pathological responses. PMID:26583757

  15. A genome-wide RNAi screen reveals a Trio-regulated Rho GTPase circuitry transducing mitogenic signals initiated by G protein-coupled receptors.

    PubMed

    Vaqué, Jose P; Dorsam, Robert T; Feng, Xiaodong; Iglesias-Bartolome, Ramiro; Forsthoefel, David J; Chen, Qianming; Debant, Anne; Seeger, Mark A; Ksander, Bruce R; Teramoto, Hidemi; Gutkind, J Silvio

    2013-01-10

    Activating mutations in GNAQ and GNA11, encoding members of the Gα(q) family of G protein α subunits, are the driver oncogenes in uveal melanoma, and mutations in Gq-linked G protein-coupled receptors have been identified recently in numerous human malignancies. How Gα(q) and its coupled receptors transduce mitogenic signals is still unclear because of the complexity of signaling events perturbed upon Gq activation. Using a synthetic-biology approach and a genome-wide RNAi screen, we found that a highly conserved guanine nucleotide exchange factor, Trio, is essential for activating Rho- and Rac-regulated signaling pathways acting on JNK and p38, and thereby transducing proliferative signals from Gα(q) to the nucleus independently of phospholipase C-β. Indeed, whereas many biological responses elicited by Gq depend on the transient activation of second-messenger systems, Gq utilizes a hard-wired protein-protein-interaction-based signaling circuitry to achieve the sustained stimulation of proliferative pathways, thereby controlling normal and aberrant cell growth.

  16. A BLOC-1 Mutation Screen Reveals a Novel BLOC1S3 Mutation in Hermansky-Pudlak Syndrome Type 8 (HPS-8)

    PubMed Central

    Cullinane, Andrew R; Curry, James A; Golas, Gretchen; Pan, James; Carmona-Rivera, Carmelo; Hess, Richard A; White, James G; Huizing, Marjan; Gahl, William A

    2012-01-01

    Summary Hermansky-Pudlak Syndrome (HPS) is a genetically heterogeneous disorder of lysosome-related organelle biogenesis and is characterized by oculocutaneous albinism and a bleeding diathesis. Over the past decade, we screened 250 patients with HPS-like symptoms for mutations in the genes responsible for HPS subtypes 1–6. We identified 38 individuals with no functional mutations, and therefore, we analyzed all 8 genes encoding the Biogenesis of Lysosome-related Organelles Complex-1 (BLOC-1) proteins in these individuals. Here we describe the identification of a novel nonsense mutation in BLOC1S3 (HPS-8) in a 6 year-old Iranian boy. This mutation caused nonsense mediated decay of BLOC1S3 mRNA and destabilized the BLOC-1 complex. Our patient’s melanocytes showed aberrant localization of TYRP1, with increased plasma-membrane trafficking. These findings confirm a common cellular defect for HPS patients with defects in BLOC-1 subunits. We identified only 2 patients with BLOC-1 defects in our cohort, suggesting that other HPS genes remain to be identified. PMID:22709368

  17. Screening of Random Peptide Library of Hemagglutinin from Pandemic 2009 A(H1N1) Influenza Virus Reveals Unexpected Antigenically Important Regions

    PubMed Central

    Xu, Wanghui; Han, Lu; Lin, Zhanglin

    2011-01-01

    The antigenic structure of the membrane protein hemagglutinin (HA) from the 2009 A(H1N1) influenza virus was dissected with a high-throughput screening method using complex antisera. The approach involves generating yeast cell libraries displaying a pool of random peptides of controllable lengths on the cell surface, followed by one round of fluorescence-activated cell sorting (FACS) against antisera from mouse, goat and human, respectively. The amino acid residue frequency appearing in the antigenic peptides at both the primary sequence and structural level was determined and used to identify “hot spots” or antigenically important regions. Unexpectedly, different antigenic structures were seen for different antisera. Moreover, five antigenic regions were identified, of which all but one are located in the conserved HA stem region that is responsible for membrane fusion. Our findings are corroborated by several recent studies on cross-neutralizing H1 subtype antibodies that recognize the HA stem region. The antigenic peptides identified may provide clues for creating peptide vaccines with better accessibility to memory B cells and better induction of cross-neutralizing antibodies than the whole HA protein. The scheme used in this study enables a direct mapping of the antigenic regions of viral proteins recognized by antisera, and may be useful for dissecting the antigenic structures of other viral proteins. PMID:21437206

  18. Influence of Salmonella enterica Serovar Typhimurium ssrB on Colonization of Eastern Oysters (Crassostrea virginica) as Revealed by a Promoter Probe Screen

    PubMed Central

    Cox, Clayton E.; Wright, Anita C.; McClelland, Michael

    2015-01-01

    Although Salmonella has been isolated from 7.4 to 8.6% of domestic raw oysters, representing a significant risk for food-borne illness, little is known about the factors that influence their initial colonization by Salmonella. This study tested the hypothesis that specific regulatory changes enable a portion of the invading Salmonella population to colonize oysters. An in vivo promoter probe library screen identified 19 unique regions as regulated during colonization. The mutants in the nearest corresponding downstream genes were tested for colonization defects in oysters. Only one mutation, in ssrB, resulted in a significantly reduced ability to colonize oysters compared to that of wild-type Salmonella. Because ssrB regulates Salmonella pathogenicity island 2 (SPI-2)-dependent infections in vertebrate macrophages, the possibility that ssrB mediated colonization of oyster hemocytes in a similar manner was examined. However, no difference in hemocyte colonization was observed. The complementary hypothesis that signal exchange between Salmonella and the oyster's native microbial community aids colonization was also tested. Signals that triggered responses in quorum sensing (QS) reporters were shown to be produced by oyster-associated bacteria and present in oyster tissue. However, no evidence for signal exchange was observed in vivo. The sdiA reporter responded to salinity, suggesting that SdiA may also have a role in environmental sensing. Overall, this study suggests the initial colonization of live oysters by Salmonella is controlled by a limited number of regulators, including ssrB. PMID:26497459

  19. An interaction type of genetic screen reveals a role of the Rab11 gene in oskar mRNA localization in the developing Drosophila melanogaster oocyte.

    PubMed Central

    Jankovics, F; Sinka, R; Erdélyi, M

    2001-01-01

    Abdomen and germ cell development of Drosophila melanogaster embryo requires proper localization of oskar mRNA to the posterior pole of the developing oocyte. oskar mRNA localization depends on complex cell biological events like cell-cell communication, dynamic rearrangement of the microtubule network, and function of the actin cytoskeleton of the oocyte. To investigate the cellular mechanisms involved, we developed a novel interaction type of genetic screen by which we isolated 14 dominant enhancers of a sensitized genetic background composed of mutations in oskar and in TropomyosinII, an actin binding protein. Here we describe the detailed analysis of two allelic modifiers that identify Drosophila Rab11, a gene encoding small monomeric GTPase. We demonstrate that mutation of the Rab11 gene, involved in various vesicle transport processes, results in ectopic localization of oskar mRNA, whereas localization of gurken and bicoid mRNAs and signaling between the oocyte and the somatic follicle cells are unaffected. We show that the ectopic oskar mRNA localization in the Rab11 mutants is a consequence of an abnormally polarized oocyte microtubule cytoskeleton. Our results indicate that the internal membranous structures play an important role in the microtubule organization in the Drosophila oocyte and, thus, in oskar RNA localization. PMID:11454766

  20. A retroviral mutagenesis screen reveals strong cooperation between Bcl11a overexpression and loss of the Nf1 tumor suppressor gene

    PubMed Central

    Yin, Bin; Delwel, Ruud; Valk, Peter J.; Wallace, Margaret R.; Loh, Mignon L.; Shannon, Kevin M.

    2009-01-01

    NF1 inactivation occurs in specific human cancers, including juvenile myelomonocytic leukemia, an aggressive myeloproliferative disorder of childhood. However, evidence suggests that Nf1 loss alone does not cause leukemia. We therefore hypothesized that inactivation of the Nf1 tumor suppressor gene requires cooperating mutations to cause acute leukemia. To search for candidate genes that cooperate with Nf1 deficiency in leukemogenesis, we performed a forward genetic screen using retroviral insertion mutagenesis in Nf1 mutant mice. We identified 43 common proviral insertion sites that contain candidate genes involved in leukemogenesis. One of these genes, Bcl11a, confers a growth advantage in cultured Nf1 mutant hematopoietic cells and causes early onset of leukemia of either myeloid or lymphoid lineage in mice when expressed in Nf1-deficient bone marrow. Bcl11a-expressing cells display compromised p21Cip1 induction, suggesting that Bcl11a's oncogenic effects are mediated, in part, through suppression of p21Cip1. Importantly, Bcl11a is expressed in human chronic myelomonocytic leukemia and juvenile myelomonocytic leukemia samples. A subset of AML patients, who had poor outcomes, of 16 clusters, displayed high levels of BCL11A in leukemic cells. These findings suggest that deregulated Bcl11a cooperates with Nf1 in leukemogenesis, and a therapeutic strategy targeting the BCL11A pathway may prove beneficial in the treatment of leukemia. PMID:18948576

  1. TRAIL-Based High Throughput Screening Reveals a Link between TRAIL-Mediated Apoptosis and Glutathione Reductase, a Key Component of Oxidative Stress Response.

    PubMed

    Rozanov, Dmitri; Cheltsov, Anton; Sergienko, Eduard; Vasile, Stefan; Golubkov, Vladislav; Aleshin, Alexander E; Levin, Trevor; Traer, Elie; Hann, Byron; Freimuth, Julia; Alexeev, Nikita; Alekseyev, Max A; Budko, Sergey P; Bächinger, Hans Peter; Spellman, Paul

    2015-01-01

    A high throughput screen for compounds that induce TRAIL-mediated apoptosis identified ML100 as an active chemical probe, which potentiated TRAIL activity in prostate carcinoma PPC-1 and melanoma MDA-MB-435 cells. Follow-up in silico modeling and profiling in cell-based assays allowed us to identify NSC130362, pharmacophore analog of ML100 that induced 65-95% cytotoxicity in cancer cells and did not affect the viability of human primary hepatocytes. In agreement with the activation of the apoptotic pathway, both ML100 and NSC130362 synergistically with TRAIL induced caspase-3/7 activity in MDA-MB-435 cells. Subsequent affinity chromatography and inhibition studies convincingly demonstrated that glutathione reductase (GSR), a key component of the oxidative stress response, is a target of NSC130362. In accordance with the role of GSR in the TRAIL pathway, GSR gene silencing potentiated TRAIL activity in MDA-MB-435 cells but not in human hepatocytes. Inhibition of GSR activity resulted in the induction of oxidative stress, as was evidenced by an increase in intracellular reactive oxygen species (ROS) and peroxidation of mitochondrial membrane after NSC130362 treatment in MDA-MB-435 cells but not in human hepatocytes. The antioxidant reduced glutathione (GSH) fully protected MDA-MB-435 cells from cell lysis induced by NSC130362 and TRAIL, thereby further confirming the interplay between GSR and TRAIL. As a consequence of activation of oxidative stress, combined treatment of different oxidative stress inducers and NSC130362 promoted cell death in a variety of cancer cells but not in hepatocytes in cell-based assays and in in vivo, in a mouse tumor xenograft model.

  2. A Kinase Inhibitor Screen Reveals Protein Kinase C-dependent Endocytic Recycling of ErbB2 in Breast Cancer Cells*

    PubMed Central

    Bailey, Tameka A.; Luan, Haitao; Tom, Eric; Bielecki, Timothy Alan; Mohapatra, Bhopal; Ahmad, Gulzar; George, Manju; Kelly, David L.; Natarajan, Amarnath; Raja, Srikumar M.; Band, Vimla; Band, Hamid

    2014-01-01

    ErbB2 overexpression drives oncogenesis in 20–30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca2+-dependent PKCs (α, β1, βII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling. PMID:25225290

  3. High‐throughput screening of clinically approved drugs that prime polyethylenimine transfection reveals modulation of mitochondria dysfunction response improves gene transfer efficiencies

    PubMed Central

    Nguyen, Albert; Beyersdorf, Jared; Riethoven, Jean‐Jack

    2016-01-01

    Abstract Nonviral gene delivery methods are advantageous over viral vectors in terms of safety, cost, and flexibility in design and application, but suffer from lower gene transfer efficiency. In addition to modifications to nucleic acid design and nonviral carriers, new tools are sought to enhance transfection. Priming is the pharmacological modulation of transfection efficiency and transgene expression, and has demonstrated transfection increase in several compounds, for example, chloroquine and glucocorticoids. To develop a library of transfection priming compounds, a high‐throughput screen was performed of the NIH Clinical Collection (NCC) to identify clinical compounds that prime polyethylenimine (PEI) transfection. HEK293T cells were treated with priming compounds, then transfected with enhanced green fluorescent protein (EGFP)‐encoding plasmid by PEI. After 48‐hr culture, primed and transfected cells were assayed for transfection, cell proliferation, and cell viability by fluorescence measurement of EGFP reporter, Hoechst 33342 nuclei stain, and resazurin metabolic assay. From the microscope image analysis and microplate measurements, transfection fold‐changes were determined, and compounds resulting in statistically significant transfection fold‐change were identified. NCC compounds were clustered using PubChem fingerprint similarity by Tanimoto coefficients in ChemmineTools. Fold‐changes for each compound were linked to drug clusters, from which drug classes that prime transfection were identified. Among the identified drugs classes that primed transfection increases were antioxidants, GABAA receptor modulators, and glucocorticoids. Resveratrol and piceid, stilbenoid antioxidants found in grapes, and zolpidem, a GABAA modulator, increased transfection nearly three‐fold. Literature indicate interaction of the identified transfection priming drug clusters with mitochondria, which may modulate mitochondrial dysfunction known to be associated

  4. Kinome-Wide Functional Genomics Screen Reveals a Novel Mechanism of TNFα-Induced Nuclear Accumulation of the HIF-1α Transcription Factor in Cancer Cells

    PubMed Central

    Schoolmeesters, Angela; Brown, Daniel D.; Fedorov, Yuriy

    2012-01-01

    Hypoxia-inducible factor-1 (HIF-1) and its most important subunit, HIF-1α, plays a central role in tumor progression by regulating genes involved in cancer cell survival, proliferation and metastasis. HIF-1α activity is associated with nuclear accumulation of the transcription factor and regulated by several mechanisms including modulation of protein stability and degradation. Among recent advances are the discoveries that inflammation-induced cytokines and growth factors affect protein accumulation of HIF-1α under normoxia conditions. TNFα, a major pro-inflammatory cytokine that promotes tumorigenesis is known as a stimulator of HIF-1α activity. To improve our understanding of TNFα-mediated regulation of HIF-1α nuclear accumulation we screened a kinase-specific siRNA library using a cell imaging–based HIF-1α-eGFP chimera reporter assay. Interestingly, this systematic analysis determined that depletion of kinases involved in conventional TNFα signaling (IKK/NFκB and JNK pathways) has no detrimental effect on HIF-1α accumulation. On the other hand, depletion of PRKAR2B, ADCK2, TRPM7, and TRIB2 significantly decreases the effect of TNFα on HIF-1α stability in osteosarcoma and prostate cancer cell lines. These newly discovered regulators conveyed their activity through a non-conventional RELB-depended NFκB signaling pathway and regulation of superoxide activity. Taken together our data allow us to conclude that TNFα uses a distinct and complex signaling mechanism to induce accumulation of HIF-1α in cancer cells. In summary, our results illuminate a novel mechanism through which cancer initiation and progression may be promoted by inflammatory cytokines, highlighting new potential avenues for fighting this disease. PMID:22355351

  5. TRAIL-Based High Throughput Screening Reveals a Link between TRAIL-Mediated Apoptosis and Glutathione Reductase, a Key Component of Oxidative Stress Response

    PubMed Central

    Rozanov, Dmitri; Cheltsov, Anton; Sergienko, Eduard; Vasile, Stefan; Golubkov, Vladislav; Aleshin, Alexander E.; Levin, Trevor; Traer, Elie; Hann, Byron; Freimuth, Julia; Alexeev, Nikita; Alekseyev, Max A.; Budko, Sergey P; Bächinger, Hans Peter; Spellman, Paul

    2015-01-01

    A high throughput screen for compounds that induce TRAIL-mediated apoptosis identified ML100 as an active chemical probe, which potentiated TRAIL activity in prostate carcinoma PPC-1 and melanoma MDA-MB-435 cells. Follow-up in silico modeling and profiling in cell-based assays allowed us to identify NSC130362, pharmacophore analog of ML100 that induced 65-95% cytotoxicity in cancer cells and did not affect the viability of human primary hepatocytes. In agreement with the activation of the apoptotic pathway, both ML100 and NSC130362 synergistically with TRAIL induced caspase-3/7 activity in MDA-MB-435 cells. Subsequent affinity chromatography and inhibition studies convincingly demonstrated that glutathione reductase (GSR), a key component of the oxidative stress response, is a target of NSC130362. In accordance with the role of GSR in the TRAIL pathway, GSR gene silencing potentiated TRAIL activity in MDA-MB-435 cells but not in human hepatocytes. Inhibition of GSR activity resulted in the induction of oxidative stress, as was evidenced by an increase in intracellular reactive oxygen species (ROS) and peroxidation of mitochondrial membrane after NSC130362 treatment in MDA-MB-435 cells but not in human hepatocytes. The antioxidant reduced glutathione (GSH) fully protected MDA-MB-435 cells from cell lysis induced by NSC130362 and TRAIL, thereby further confirming the interplay between GSR and TRAIL. As a consequence of activation of oxidative stress, combined treatment of different oxidative stress inducers and NSC130362 promoted cell death in a variety of cancer cells but not in hepatocytes in cell-based assays and in in vivo, in a mouse tumor xenograft model. PMID:26075913

  6. Cyclic AMP effectors in African trypanosomes revealed by genome-scale RNA interference library screening for resistance to the phosphodiesterase inhibitor CpdA.

    PubMed

    Gould, Matthew K; Bachmaier, Sabine; Ali, Juma A M; Alsford, Sam; Tagoe, Daniel N A; Munday, Jane C; Schnaufer, Achim C; Horn, David; Boshart, Michael; de Koning, Harry P

    2013-10-01

    One of the most promising new targets for trypanocidal drugs to emerge in recent years is the cyclic AMP (cAMP) phosphodiesterase (PDE) activity encoded by TbrPDEB1 and TbrPDEB2. These genes were genetically confirmed as essential, and a high-affinity inhibitor, CpdA, displays potent antitrypanosomal activity. To identify effectors of the elevated cAMP levels resulting from CpdA action and, consequently, potential sites for adaptations giving resistance to PDE inhibitors, resistance to the drug was induced. Selection of mutagenized trypanosomes resulted in resistance to CpdA as well as cross-resistance to membrane-permeable cAMP analogues but not to currently used trypanocidal drugs. Resistance was not due to changes in cAMP levels or in PDEB genes. A second approach, a genome-wide RNA interference (RNAi) library screen, returned four genes giving resistance to CpdA upon knockdown. Validation by independent RNAi strategies confirmed resistance to CpdA and suggested a role for the identified cAMP Response Proteins (CARPs) in cAMP action. CARP1 is unique to kinetoplastid parasites and has predicted cyclic nucleotide binding-like domains, and RNAi repression resulted in >100-fold resistance. CARP2 and CARP4 are hypothetical conserved proteins associated with the eukaryotic flagellar proteome or with flagellar function, with an orthologue of CARP4 implicated in human disease. CARP3 is a hypothetical protein, unique to Trypanosoma. CARP1 to CARP4 likely represent components of a novel cAMP signaling pathway in the parasite. As cAMP metabolism is validated as a drug target in Trypanosoma brucei, cAMP effectors highly divergent from the mammalian host, such as CARP1, lend themselves to further pharmacological development.

  7. Differential screening of mutated SOD1 transgenic mice reveals early up-regulation of a fast axonal transport component in spinal cord motor neurons.

    PubMed

    Dupuis, L; de Tapia, M; René, F; Lutz-Bucher, B; Gordon, J W; Mercken, L; Pradier, L; Loeffler, J P

    2000-08-01

    In the present study we analyze the molecular mechanisms underlying motor neuron degeneration in familial amyotrophic lateral sclerosis (FALS). For this, we used a transgenic mouse model expressing the Cu/Zn superoxide dismutase (SOD1) gene with a Gly(86) to Arg (G86R) mutation equivalent to that found in a subset of human FALS. Using an optimized suppression subtractive hybridization method, a cDNA specifically up-regulated during the asymptomatic phase in the lumbar spinal cord of G86R mice was identified by sequence analysis as the KIF3-associated protein (KAP3), a regulator of fast axonal transport. RT-PCR analysis revealed that KAP3 induction was an early event arising long before axonal degeneration. Immunohistochemical studies further revealed that KAP3 protein predominantly accumulates in large motor neurons of the ventral spinal cord. We further demonstrated that KAP3 up-regulation occurs independent of any change in the other components of the kinesin II complex. However, since the ubiquitous KIF1A motor is up-regulated, our results show an early and complex rearrangement of the fast axonal transport machinery in the course of FALS pathology.

  8. Lethal Forethought: Delayed Reward Discounting Differentiates High- and Low-Lethality Suicide Attempts in Old Age

    PubMed Central

    Dombrovski, Alexandre Y.; Szanto, Katalin; Siegle, Greg J.; Wallace, Meredith L.; Forman, Steven D.; Sahakian, Barbara; Reynolds, Charles F.; Clark, Luke

    2011-01-01

    Background The decision to commit suicide may be impulsive, but lethal suicidal acts often involve planning and forethought. People who attempt suicide make disadvantageous decisions in other contexts, but nothing is known about the way they decide about the future. Can the willingness to postpone future gratification differentiate between individuals prone to serious, premeditated and less serious, unplanned suicidal acts? Methods Four groups of depressed participants aged 60+ made choices between smaller immediate and larger delayed monetary rewards: 15 who made high-lethality suicide attempts, 14 who made low-lethality suicide attempts, 12 who seriously contemplated suicide, and 42 people with depression but no history of suicidal thoughts. The reference group was 31 psychiatrically healthy elders. Results Individuals who had made low-lethality attempts displayed an exaggerated preference for immediate rewards compared to non-suicidal depressed and healthy controls. Those who had carried out high-lethality suicide attempts were more willing to delay future rewards, compared to low-lethality attempters. Better planned suicide attempts were also associated with willingness to wait for larger rewards. These effects were unchanged after accounting for education, global cognitive function, substance use disorders, psychotropic medications, and possible brain injury from attempts. Discount rates were correlated with having debt but were not significantly associated with income, hopelessness, depressive severity, premorbid IQ, age at first attempt, or choice of violent means. Conclusions While clinicians often focus on impulsivity in patients at risk for suicide, these data suggest that identifying biological characteristics and treatments for non-impulsive suicidal older people may be even more important. PMID:21329911

  9. Suppressor Screen and Phenotype Analyses Revealed an Emerging Role of the Monofunctional Peroxisomal Enoyl-CoA Hydratase 2 in Compensated Cell Enlargement

    PubMed Central

    Katano, Mana; Takahashi, Kazuki; Hirano, Tomonari; Kazama, Yusuke; Abe, Tomoko; Tsukaya, Hirokazu; Ferjani, Ali

    2016-01-01

    Efficient use of seed nutrient reserves is crucial for germination and establishment of plant seedlings. Mobilizing seed oil reserves in Arabidopsis involves β-oxidation, the glyoxylate cycle, and gluconeogenesis, which provide essential energy and the carbon skeletons needed to sustain seedling growth until photoautotrophy is acquired. We demonstrated that H+-PPase activity is required for gluconeogenesis. Lack of H+-PPase in fugu5 mutants increases cytosolic pyrophosphate (PPi) levels, which partially reduces sucrose synthesis de novo and inhibits cell division. In contrast, post-mitotic cell expansion in cotyledons was unusually enhanced, a phenotype called compensation. Therefore, it appears that PPi inhibits several cellular functions, including cell cycling, to trigger compensated cell enlargement (CCE). Here, we mutagenized fugu5-1 seeds with 12C6+ heavy-ion irradiation and screened mutations that restrain CCE to gain insight into the genetic pathway(s) involved in CCE. We isolated A#3-1, in which cell size was severely reduced, but cell number remained similar to that of original fugu5-1. Moreover, cell number decreased in A#3-1 single mutant (A#3-1sm), similar to that of fugu5-1, but cell size was almost equal to that of the wild type. Surprisingly, A#3-1 mutation did not affect CCE in other compensation exhibiting mutant backgrounds, such as an3-4 and fugu2-1/fas1-6. Subsequent map-based cloning combined with genome sequencing and HRM curve analysis identified enoyl-CoA hydratase 2 (ECH2) as the causal gene of A#3-1. The above phenotypes were consistently observed in the ech2-1 allele and supplying sucrose restored the morphological and cellular phenotypes in fugu5-1, ech2-1, A#3-1sm, fugu5-1 ech2-1, and A#3-1; fugu5-1. Taken together, these results suggest that defects in either H+-PPase or ECH2 compromise cell proliferation due to defects in mobilizing seed storage lipids. In contrast, ECH2 alone likely promotes CCE during the post-mitotic cell

  10. A Screen for Modifiers of Cilia Phenotypes Reveals Novel MKS Alleles and Uncovers a Specific Genetic Interaction between osm-3 and nphp-4

    PubMed Central

    Williams, Corey L.; Pieczynski, Jay N.; Roszczynialski, Kelly N.; Covington, Jannese E.; Malarkey, Erik B.; Yoder, Bradley K.

    2016-01-01

    Nephronophthisis (NPHP) is a ciliopathy in which genetic modifiers may underlie the variable penetrance of clinical features. To identify modifiers, a screen was conducted on C. elegans nphp-4(tm925) mutants. Mutations in ten loci exacerbating nphp-4(tm925) ciliary defects were obtained. Four loci have been identified, three of which are established ciliopathy genes mks-1, mks-2, and mks-5. The fourth allele (yhw66) is a missense mutation (S316F) in OSM-3, a kinesin required for cilia distal segment assembly. While osm-3(yhw66) mutants alone have no overt cilia phenotype, nphp-4(tm925);osm-3(yhw66) double mutants lack distal segments and are dye-filling (Dyf) and osmotic avoidance (Osm) defective, similar to osm-3(mn357) null mutants. In osm-3(yhw66) mutants anterograde intraflagellar transport (IFT) velocity is reduced. Furthermore, expression of OSM-3(S316F)::GFP reduced IFT velocities in nphp-4(tm925) mutants, but not in wild type animals. In silico analysis indicates the S316F mutation may affect a phosphorylation site. Putative phospho-null OSM-3(S316F) and phospho-mimetic OSM-3(S316D) proteins accumulate at the cilia base and tip respectively. FRAP analysis indicates that the cilia entry rate of OSM-3(S316F) is slower than OSM-3 and that in the presence of OSM-3(S316F), OSM-3 and OSM-3(S316D) rates decrease. In the presence OSM-3::GFP or OSM-3(S316D)::GFP, OSM-3(S316F)::tdTomato redistributes along the cilium and accumulates in the cilia tip. OSM-3(S316F) and OSM-3(S316D) are functional as they restore cilia distal segment formation in osm-3(mn357) null mutants; however, only OSM-3(S316F) rescues the osm-3(mn357) null Dyf phenotype. Despite rescue of cilia length in osm-3(mn357) null mutants, neither OSM-3(S316F) nor OSM-3(S316D) restores ciliary defects in nphp-4(tm925);osm-3(yhw66) double mutants. Thus, these OSM-3 mutations cause NPHP-4 dependent and independent phenotypes. These data indicate that in addition to regulating cilia protein entry or exit

  11. Disease screening of three breeding populations of adult exhibition budgerigars (Melopsittacus undulatus) in New Zealand reveals a high prevalence of a novel polyomavirus and avian malaria infection.

    PubMed

    Baron, Hamish R; Howe, Laryssa; Varsani, Arvind; Doneley, Robert J T

    2014-03-01

    Disease surveillance is vital to the management of New Zealand's endemic and threatened avian species. Three infectious agents that are potential threats to New Zealand's endemic birds include avian polyomavirus (APV), beak and feather disease virus (BFDV), and avian malaria. All three agents have been reported in New Zealand; however, possible reservoir populations have not been identified. In this communication, we report the first study of APV, BFDV, and avian malaria in introduced adult exhibition budgerigars (Melopsittacus undulatus) in New Zealand. Blood samples were collected from 90 living adult budgerigars from three breeding locations in the North Island of New Zealand. An overall APV prevalence of 22% was determined using a broad-spectrum nested PCR that amplified the major capsid protein VP1 gene of polyomavirus. Phylogenetic analysis of the VP1 gene revealed a unique isolate of APV, which had a sequence divergence of 32% to previously reported budgerigar fledgling disease strains and 33% to the recently reported New Zealand finch isolate. All of the budgerigars sampled were found to be PCR negative for BFDV, and an overall prevalence of 30% was detected by PCR for avian malaria. Sequencing revealed the presence of ubiquitous malarial strains and also the potentially destructive Plasmodium relictum strain. The results of this study suggest that both APV and avian malaria are present in New Zealand adult budgerigars, and our study highlights the need for further studies to determine whether these pathogens in captive bird populations may be a threat or spill over into New Zealand's endemic and threatened avifauna and whether prevention and control methods need to be implemented.

  12. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia

    PubMed Central

    Periasamy, Sivakumar; Avram, Dorina; McCabe, Amanda; MacNamara, Katherine C.; Sellati, Timothy J.; Harton, Jonathan A.

    2016-01-01

    Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection. PMID:27015566

  13. A draft genome sequence and functional screen reveals the repertoire of type III secreted proteins of Pseudomonas syringae pathovar tabaci 11528

    PubMed Central

    Studholme, David J; Ibanez, Selena Gimenez; MacLean, Daniel; Dangl, Jeffery L; Chang, Jeff H; Rathjen, John P

    2009-01-01

    Background Pseudomonas syringae is a widespread bacterial pathogen that causes disease on a broad range of economically important plant species. Pathogenicity of P. syringae strains is dependent on the type III secretion system, which secretes a suite of up to about thirty virulence 'effector' proteins into the host cytoplasm where they subvert the eukaryotic cell physiology and disrupt host defences. P. syringae pathovar tabaci naturally causes disease on wild tobacco, the model member of the Solanaceae, a family that includes many crop species as well as on soybean. Results We used the 'next-generation' Illumina sequencing platform and the Velvet short-read assembly program to generate a 145X deep 6,077,921 nucleotide draft genome sequence for P. syringae pathovar tabaci strain 11528. From our draft assembly, we predicted 5,300 potential genes encoding proteins of at least 100 amino acids long, of which 303 (5.72%) had no significant sequence similarity to those encoded by the three previously fully sequenced P. syringae genomes. Of the core set of Hrp Outer Proteins that are conserved in three previously fully sequenced P. syringae strains, most were also conserved in strain 11528, including AvrE1, HopAH2, HopAJ2, HopAK1, HopAN1, HopI, HopJ1, HopX1, HrpK1 and HrpW1. However, the hrpZ1 gene is partially deleted and hopAF1 is completely absent in 11528. The draft genome of strain 11528 also encodes close homologues of HopO1, HopT1, HopAH1, HopR1, HopV1, HopAG1, HopAS1, HopAE1, HopAR1, HopF1, and HopW1 and a degenerate HopM1'. Using a functional screen, we confirmed that hopO1, hopT1, hopAH1, hopM1', hopAE1, hopAR1, and hopAI1' are part of the virulence-associated HrpL regulon, though the hopAI1' and hopM1' sequences were degenerate with premature stop codons. We also discovered two additional HrpL-regulated effector candidates and an HrpL-regulated distant homologue of avrPto1. Conclusion The draft genome sequence facilitates the continued development of P

  14. mRNA Expression Signature of Gleason Grade Predicts Lethal Prostate Cancer

    PubMed Central

    Penney, Kathryn L.; Sinnott, Jennifer A.; Fall, Katja; Pawitan, Yudi; Hoshida, Yujin; Kraft, Peter; Stark, Jennifer R.; Fiorentino, Michelangelo; Perner, Sven; Finn, Stephen; Calza, Stefano; Flavin, Richard; Freedman, Matthew L.; Setlur, Sunita; Sesso, Howard D.; Andersson, Swen-Olof; Martin, Neil; Kantoff, Philip W.; Johansson, Jan-Erik; Adami, Hans-Olov; Rubin, Mark A.; Loda, Massimo; Golub, Todd R.; Andrén, Ove; Stampfer, Meir J.; Mucci, Lorelei A.

    2011-01-01

    Purpose Prostate-specific antigen screening has led to enormous overtreatment of prostate cancer because of the inability to distinguish potentially lethal disease at diagnosis. We reasoned that by identifying an mRNA signature of Gleason grade, the best predictor of prognosis, we could improve prediction of lethal disease among men with moderate Gleason 7 tumors, the most common grade, and the most indeterminate in terms of prognosis. Patients and Methods Using the complementary DNA–mediated annealing, selection, extension, and ligation assay, we measured the mRNA expression of 6,100 genes in prostate tumor tissue in the Swedish Watchful Waiting cohort (n = 358) and Physicians' Health Study (PHS; n = 109). We developed an mRNA signature of Gleason grade comparing individuals with Gleason ≤ 6 to those with Gleason ≥ 8 tumors and applied the model among patients with Gleason 7 to discriminate lethal cases. Results We built a 157-gene signature using the Swedish data that predicted Gleason with low misclassification (area under the curve [AUC] = 0.91); when this signature was tested in the PHS, the discriminatory ability remained high (AUC = 0.94). In men with Gleason 7 tumors, who were excluded from the model building, the signature significantly improved the prediction of lethal disease beyond knowing whether the Gleason score was 4 + 3 or 3 + 4 (P = .006). Conclusion Our expression signature and the genes identified may improve our understanding of the de-differentiation process of prostate tumors. Additionally, the signature may have clinical applications among men with Gleason 7, by further estimating their risk of lethal prostate cancer and thereby guiding therapy decisions to improve outcomes and reduce overtreatment. PMID:21537050

  15. Two different forms of lethal chondrodysplasias caused by COL2A1 gene mutations

    SciTech Connect

    Winterpacht, A.; Hilbert, K.; Schwarze, U.

    1994-09-01

    Two bone dysplasia families seem to be due to mutations in the type II procollagen gene (COL2A1): the so-called spondyloepiphyseal dysplasia congenita (SEDC) group with achondrogenesis II, hypochondrogenesis, SEDC, osteoarthrosis and the Stickler-Kniest pattern that include different forms of Kniest and Stickler dysplasia. Both groups comprise a clinical spectrum ranging from lethal to mild. COL2A1-mutations have been identified in lethal forms of the SEDC family but not in lethal forms of the Stickler/Kniest group. We now report a COL2A-1 mutation in an additional case of hypochondrogenesis (patient S) and in a lethal case of Kniest dysplasia (patient B). We amplified all 54 exons of the COL2A1 gene in both patients and screened the PCR products for mutations by SSCP analysis and sequencing. In patient B, we identified an 18 bp deletion in exon 34 which removes 6 amino acids from the mature protein. In patient S, we were able to identify a two base pair exchange (GG to AT) in exon 31, which leads to the very unusual conversion of Gly to Ile. To our knowledge, this is the first report of a Gly to Ile conversion in the COL2A1 gene, and the first report of a COL2A1 gene mutation in a lethal form of Kniest dysplasia. On the basis of the known COL2A1 gene mutations and the genotype-phenotype correlations established so far, we provide molecular data (an in frame deletion in patient B and a Gly conversion in patient S) that support their clinical classification as Kniest dysplasia and hypochondrogenesis, respectively.

  16. Issues surrounding lethal injection as a means of capital punishment.

    PubMed

    Romanelli, Frank; Whisman, Tyler; Fink, Joseph L

    2008-12-01

    Lethal injection as a method of state-sanctioned capital punishment was initially proposed in the United States in 1977 and used for the first time in 1982. Most lethal injection protocols use a sequential drug combination of sodium thiopental, pancuronium bromide, and potassium chloride. Lethal injection was originally introduced as a more humane form of execution compared with existing mechanical methods such as electrocution, toxic gassing, hanging, or firing squad. Lethal injection has not, however, been without controversy. Several states are considering whether lethal injection meets constitutional scrutiny forbidding cruel and unusual punishment. Recently in the case of Ralph Baze and Thomas C. Bowling, Petitioners, v John D. Rees, Commissioner, Kentucky Department of Corrections et al, the United States Supreme Court upheld the constitutionality of the lethal injection protocol as carried out in the Commonwealth of Kentucky. Most of the debate has surrounded the dosing and procedures used in lethal injection and whether the drug combinations and measures for administering the drugs truly produce a timely, pain-free, and fail-safe death. Many have also raised issues regarding the "medicalization" of execution and the ethics of health care professionals' participation in any part of the lethal injection process. As a result of all these issues, the future of lethal injection as a means of execution in the United States is under significant scrutiny. Outcomes of ongoing legislative and judicial reviews might result in cessation of lethal injection in totality or in alterations involving specific drug combinations or administration procedures.

  17. Bacillus anthracis lethal toxin reduces human alveolar epithelial barrier function.

    PubMed

    Langer, Marybeth; Duggan, Elizabeth Stewart; Booth, John Leland; Patel, Vineet Indrajit; Zander, Ryan A; Silasi-Mansat, Robert; Ramani, Vijay; Veres, Tibor Zoltan; Prenzler, Frauke; Sewald, Katherina; Williams, Daniel M; Coggeshall, Kenneth Mark; Awasthi, Shanjana; Lupu, Florea; Burian, Dennis; Ballard, Jimmy Dale; Braun, Armin; Metcalf, Jordan Patrick

    2012-12-01

    The lung is the site of entry for Bacillus anthracis in inhalation anthrax, the deadliest form of the disease. Bacillus anthracis produces virulence toxins required for disease. Alveolar macrophages were considered the primary target of the Bacillus anthracis virulence factor lethal toxin because lethal toxin inhibits mouse macrophages through cleavage of MEK signaling pathway components, but we have reported that human alveolar macrophages are not a target of lethal toxin. Our current results suggest that, unlike human alveolar macrophages, the cells lining the respiratory units of the lung, alveolar epithelial cells, are a target of lethal toxin in humans. Alveolar epithelial cells expressed lethal toxin receptor protein, bound the protective antigen component of lethal toxin, and were subject to lethal-toxin-induced cleavage of multiple MEKs. These findings suggest that human alveolar epithelial cells are a target of Bacillus anthracis lethal toxin. Further, no reduction in alveolar epithelial cell viability was observed, but lethal toxin caused actin rearrangement and impaired desmosome formation, consistent with impaired barrier function as well as reduced surfactant production. Therefore, by compromising epithelial barrier function, lethal toxin may play a role in the pathogenesis of inhalation anthrax by facilitating the dissemination of Bacillus anthracis from the lung in early disease and promoting edema in late stages of the illness.

  18. Bacillus anthracis Lethal Toxin Reduces Human Alveolar Epithelial Barrier Function

    PubMed Central

    Langer, Marybeth; Duggan, Elizabeth Stewart; Booth, John Leland; Patel, Vineet Indrajit; Zander, Ryan A.; Silasi-Mansat, Robert; Ramani, Vijay; Veres, Tibor Zoltan; Prenzler, Frauke; Sewald, Katherina; Williams, Daniel M.; Coggeshall, Kenneth Mark; Awasthi, Shanjana; Lupu, Florea; Burian, Dennis; Ballard, Jimmy Dale; Braun, Armin

    2012-01-01

    The lung is the site of entry for Bacillus anthracis in inhalation anthrax, the deadliest form of the disease. Bacillus anthracis produces virulence toxins required for disease. Alveolar macrophages were considered the primary target of the Bacillus anthracis virulence factor lethal toxin because lethal toxin inhibits mouse macrophages through cleavage of MEK signaling pathway components, but we have reported that human alveolar macrophages are not a target of lethal toxin. Our current results suggest that, unlike human alveolar macrophages, the cells lining the respiratory units of the lung, alveolar epithelial cells, are a target of lethal toxin in humans. Alveolar epithelial cells expressed lethal toxin receptor protein, bound the protective antigen component of lethal toxin, and were subject to lethal-toxin-induced cleavage of multiple MEKs. These findings suggest that human alveolar epithelial cells are a target of Bacillus anthracis lethal toxin. Further, no reduction in alveolar epithelial cell viability was observed, but lethal toxin caused actin rearrangement and impaired desmosome formation, consistent with impaired barrier function as well as reduced surfactant production. Therefore, by compromising epithelial barrier function, lethal toxin may play a role in the pathogenesis of inhalation anthrax by facilitating the dissemination of Bacillus anthracis from the lung in early disease and promoting edema in late stages of the illness. PMID:23027535

  19. Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient γ-ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation.

    PubMed

    Jobe, Timothy O; Sung, Dong-Yul; Akmakjian, Garo; Pham, Allis; Komives, Elizabeth A; Mendoza-Cózatl, David G; Schroeder, Julian I

    2012-06-01

    Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M(2) seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRC) mutants. Two nrc mutants, nrc1 and nrc2, were mapped, cloned and further characterized. The nrc1 mutation was mapped to the γ-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione depletion

  20. Screening sourdough samples for gliadin-degrading activity revealed Lactobacillus casei strains able to individually metabolize the coeliac-disease-related 33-mer peptide.

    PubMed

    Alvarez-Sieiro, Patricia; Redruello, Begoña; Ladero, Victor; Martín, Maria Cruz; Fernández, María; Alvarez, Miguel A

    2016-05-01

    A selective culture medium containing acid-hydrolyzed gliadins as the sole nitrogen source was used in the search for sourdough-indigenous lactic acid bacteria (LAB) with gliadin-metabolizing activity. Twenty gliadin-degrading LAB strains were isolated from 10 sourdoughs made in different ways and from different geographical regions. Fifteen of the 20 isolated strains were identified as Lactobacillus casei, a species usually reported as subdominant in sourdough populations. The other 5 gliadin-degrading strains belonged to the more commonly encountered sourdough species Leuconostoc mesenteroides and Lactobacillus plantarum. All these strains were shown to be safe in terms of their resistance to antimicrobial agents. When individually incubated with the α2-gliadin-derived immunotoxic 33-mer peptide (97.5 ppm), half of the L. casei strains metabolized at least 50% of it within 24 h. One strain metabolized 82% of the 33-mer peptide within 8 h and made it fully disappear within 12 h. These results reveal for the first time the presence in sourdough of proteolytic L. casei strains with the capacity to individually metabolize the coeliac-disease-related 33-mer peptide.

  1. High-throughput screening of a large collection of non-conventional yeasts reveals their potential for aroma formation in food fermentation.

    PubMed

    Gamero, Amparo; Quintilla, Raquel; Groenewald, Marizeth; Alkema, Wynand; Boekhout, Teun; Hazelwood, Lucie

    2016-12-01

    Saccharomyces yeast species are currently the most important yeasts involved in industrial-scale food fermentations. However, there are hundreds of other yeast species poorly studied that are highly promising for flavour development, some of which have also been identified in traditional food fermentations. This work explores natural yeast biodiversity in terms of aroma formation, with a particular focus on aromas relevant for industrial fermentations such as wine and beer. Several non-Saccharomyces species produce important aroma compounds such as fusel alcohols derived from the Ehrlich pathway, acetate esters and ethyl esters in significantly higher quantities than the well-known Saccharomyces species. These species are Starmera caribaea, Hanseniaspora guilliermondii, Galactomyces geotrichum, Saccharomycopsis vini and Ambrosiozyma monospora. Certain species revealed a strain-dependent flavour profile while other species were very homogenous in their flavour profiles. Finally, characterization of a selected number of yeast species using valine or leucine as sole nitrogen sources indicates that the mechanisms of regulation of the expression of the Ehrlich pathway exist amongst non-conventional yeast species.

  2. OUP: lethal gene drive selects inbreeding

    PubMed Central

    Bull, James J.

    2017-01-01

    The use of ‘selfish’ gene drive systems to suppress or even extinguish populations has been proposed on theoretical grounds for almost half a century. Creating these genes has recently become possible with CRISPR technology. One seemingly feasible approach, originally proposed by Burt, is to create a homing endonuclease gene (HEG) that inserts into an essential gene, enabling heterozygote viability but causing homozygote lethality. With 100% segregation distortion in gametes, such genes can cause profound population suppression if resistance does not evolve. Here, population genetic models are used to consider the evolution of inbreeding (specifically selfing) as a possible response to a recessively lethal HEG with complete segregation distortion. Numerical analyses indicate a rich set of outcomes, but selfing often evolves in response to the HEG, with a corresponding partial restoration of mean fitness. Whether selfing does indeed evolve and its effect in restoring fitness depends heavily on the magnitude of inbreeding depression. Overall, these results point toward an underappreciated evolutionary response to block the harmful effects of a selfish gene. They raise the possibility that extreme population suppression may be resisted by mechanisms that are independent of the molecular basis of gene drive. At the same time, the evolution of inbreeding is not assured even if the genetic basis for inbreeding is present. As the models here strictly apply to hermaphrodites (plants), an important next step is to consider inbreeding in populations with separate sexes. PMID:28013241

  3. Suicide Intent and Accurate Expectations of Lethality: Predictors of Medical Lethality of Suicide Attempts

    ERIC Educational Resources Information Center

    Brown, Gregory K.; Henriques, Gregg R.; Sosdjan, Daniella; Beck, Aaron T.

    2004-01-01

    The degree of intent to commit suicide and the severity of self-injury were examined in individuals (N = 180) who had recently attempted suicide. Although a minimal association was found between the degree of suicide intent and the degree of lethality of the attempt, the accuracy of expectations about the likelihood of dying was found to moderate…

  4. Gonadosomatic mosaicism for lethal mutations in Drosophila lethal mutations disturbing larval development

    SciTech Connect

    Ivanov, A.I.; Sakharova, N.Yu.

    1988-11-01

    Phenogenetic analysis of autonomous lethal mutations obtained by the method of gonadosomatic mosaicism which manifested during larval stages, established that the nuclei of hypodermal cells, salivary glands suprapharyngeal ganglion, pharynx, esophagus, gizzard, and hindgut are the derivatives of the same nucleus (from the first two nuclei of cleavage) as the nuclei of the cells of the imaginal-somatic tissues.

  5. In Planta Expression Screens of Phytophthora infestans RXLR Effectors Reveal Diverse Phenotypes, Including Activation of the Solanum bulbocastanum Disease Resistance Protein Rpi-blb2[W

    PubMed Central

    Oh, Sang-Keun; Young, Carolyn; Lee, Minkyoung; Oliva, Ricardo; Bozkurt, Tolga O.; Cano, Liliana M.; Win, Joe; Bos, Jorunn I.B.; Liu, Hsin-Yin; van Damme, Mireille; Morgan, William; Choi, Doil; Van der Vossen, Edwin A.G.; Vleeshouwers, Vivianne G.A.A.; Kamoun, Sophien

    2009-01-01

    The Irish potato famine pathogen Phytophthora infestans is predicted to secrete hundreds of effector proteins. To address the challenge of assigning biological functions to computationally predicted effector genes, we combined allele mining with high-throughput in planta expression. We developed a library of 62 infection-ready P. infestans RXLR effector clones, obtained using primer pairs corresponding to 32 genes and assigned activities to several of these genes. This approach revealed that 16 of the 62 examined effectors cause phenotypes when expressed inside plant cells. Besides the well-studied AVR3a effector, two additional effectors, PexRD8 and PexRD3645-1, suppressed the hypersensitive cell death triggered by the elicitin INF1, another secreted protein of P. infestans. One effector, PexRD2, promoted cell death in Nicotiana benthamiana and other solanaceous plants. Finally, two families of effectors induced hypersensitive cell death specifically in the presence of the Solanum bulbocastanum late blight resistance genes Rpi-blb1 and Rpi-blb2, thereby exhibiting the activities expected for Avrblb1 and Avrblb2. The AVRblb2 family was then studied in more detail and found to be highly variable and under diversifying selection in P. infestans. Structure-function experiments indicated that a 34–amino acid region in the C-terminal half of AVRblb2 is sufficient for triggering Rpi-blb2 hypersensitivity and that a single positively selected AVRblb2 residue is critical for recognition by Rpi-blb2. PMID:19794118

  6. Apparent lethal concentrations of pyrolysis products of some polymeric materials

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Marcussen, W. H.; Furst, A.; Kourtides, D. A.; Parker, J. A.

    1976-01-01

    Thirty-nine samples of polymeric materials were evaluated to determine the apparent lethal concentrations of their pyrolysis products. The materials were compared on the basis of the apparent lethal concentration for 50 percent of the test animals. Relative toxicity rankings based o apparent lethal concentration values can differ significantly depending on whether they are based on weight of sample charged or weight of sample pyrolyzed. The ranking of polyphenylene sulfide is particularly sensitive to this difference.

  7. Ants defend aphids against lethal disease.

    PubMed

    Nielsen, Charlotte; Agrawal, Anurag A; Hajek, Ann E

    2010-04-23

    Social insects defend their own colonies and some species also protect their mutualist partners. In mutualisms with aphids, ants typically feed on honeydew produced by aphids and, in turn guard and shelter aphid colonies from insect natural enemies. Here we report that Formica podzolica ants tending milkweed aphids, Aphis asclepiadis, protect aphid colonies from lethal fungal infections caused by an obligate aphid pathogen, Pandora neoaphidis. In field experiments, bodies of fungal-killed aphids were quickly removed from ant-tended aphid colonies. Ant workers were also able to detect infective conidia on the cuticle of living aphids and responded by either removing or grooming these aphids. Our results extend the long-standing view of ants as mutualists and protectors of aphids by demonstrating focused sanitizing and quarantining behaviour that may lead to reduced disease transmission in aphid colonies.

  8. Lethal Synergism between Influenza and Streptococcus pneumoniae

    PubMed Central

    Rudd, Jennifer M; Ashar, Harshini K; Chow, Vincent TK; Teluguakula, Narasaraju

    2016-01-01

    The devastating synergism of bacterial pneumonia with influenza viral infections left its mark on the world over the last century. Although the details of pathogenesis remain unclear, the synergism is related to a variety of factors including pulmonary epithelial barrier damage which exposes receptors that influence bacterial adherence and the triggering of an exaggerated innate immune response and cytokine storm, which further acts to worsen the injury. Several therapeutics and combination therapies of antibiotics, anti-inflammatories including corticosteroids and toll-like receptor modifiers, and anti-virals are being discussed. This mini review summarizes recent developments in unearthing the pathogenesis of the lethal synergism of pneumococcal co-infection following influenza, as well as addresses potential therapeutic options and combinations of therapies currently being evaluated. PMID:27981251

  9. Statistical tests for recessive lethal-carriers.

    PubMed

    Hamilton, M A; Haseman, J K

    1979-08-01

    This paper presents a statistical method for testing whether a male mouse is a recessive lethal-carrier. The analysis is based on a back-cross experiment in which the male mouse is mated with some of his daughters. The numbers of total implantations and intrauterine deaths in each litter are recorded. It is assumed that, conditional on the number of total implantations, the number of intrauterine deaths follows a binomial distribution. Using computer-simulated experimentation it is shown that the proposed statistical method, which is sensitive to the pattern of intrauterine death rates, is more powerful than a test based only on the total number of implant deaths. The proposed test requires relatively simple calculations and can be used for a wide range of values of total implantations and background implant mortality rates. For computer-simulated experiments, there was no practical difference between the empirical error rate and the nominal error rate.

  10. Health Screening

    MedlinePlus

    Screenings are tests that look for diseases before you have symptoms. Screening tests can find diseases early, when they're easier ... Overweight and obesity Prostate cancer in men Which tests you need depends on your age, your sex, ...

  11. Depression Screening

    MedlinePlus

    ... Centers Diseases + Condition Centers Mental Health Medical Library Depression Screening (PHQ-9) - Instructions The following questions are ... this tool, there is also text-only version . Depression Screening - Manual Instructions The following questions are a ...

  12. Biochip for the Detection of Bacillus anthracis Lethal Factor and Therapeutic Agents against Anthrax Toxins

    PubMed Central

    Silin, Vitalii; Kasianowicz, John J.; Michelman-Ribeiro, Ariel; Panchal, Rekha G.; Bavari, Sina; Robertson, Joseph W. F.

    2016-01-01

    Tethered lipid bilayer membranes (tBLMs) have been used in many applications, including biosensing and membrane protein structure studies. This report describes a biosensor for anthrax toxins that was fabricated through the self-assembly of a tBLM with B. anthracis protective antigen ion channels that are both the recognition element and electrochemical transducer. We characterize the sensor and its properties with electrochemical impedance spectroscopy and surface plasmon resonance. The sensor shows a sensitivity similar to ELISA and can also be used to rapidly screen for molecules that bind to the toxins and potentially inhibit their lethal effects. PMID:27348008

  13. Tetracycline-suppressible female lethality and sterility in the Mexican fruit fly, Anastrepha ludens.

    PubMed

    Schetelig, M F; Targovska, A; Meza, J S; Bourtzis, K; Handler, A M

    2016-08-01

    The sterile insect technique (SIT) involves the mass release of sterile males to suppress insect pest populations. SIT has been improved for larval pests by the development of strains for female-specific tetracycline-suppressible (Tet-off) embryonic lethal systems for male-only populations. Here we describe the extension of this approach to the Mexican fruit fly, Anastrepha ludens, using a Tet-off driver construct with the Tet-transactivator (tTA) under embryo-specific Anastrepha suspensa serendipity α (As-sry-α) promoter regulation. In the absence of tetracycline, tTA acts upon a Tet-response element linked to the pro-apoptotic cell death gene lethal effector, head involuation defective (hid), from A. ludens (Alhid(Ala2) ) that contains a sex-specific intron splicing cassette, resulting in female-specific expression of the lethal effector. Parental adults double-homozygous for the driver/effector vectors were expected to yield male-only progeny when reared on Tet-free diet, but a complete lack of oviposited eggs resulted for each of the three strains tested. Ovary dissection revealed nonvitellogenic oocytes in all strains that was reversible by feeding females tetracycline for 5 days after eclosion, resulting in male-only adults in one strain. Presumably the sry-α promoter exhibits prezygotic maternal expression as well as zygotic embryonic expression in A. ludens, resulting in a Tet-off sterility effect in addition to female-specific lethality.

  14. Lethal and sub-lethal effects of spinosad on bumble bees (Bombus impatiens Cresson).

    PubMed

    Morandin, Lora A; Winston, Mark L; Franklin, Michelle T; Abbott, Virginia A

    2005-07-01

    Recent developments of new families of pesticides and growing awareness of the importance of wild pollinators for crop pollination have stimulated interest in potential effects of novel pesticides on wild bees. Yet pesticide toxicity studies on wild bees remain rare, and few studies have included long-term monitoring of bumble bee colonies or testing of foraging ability after pesticide exposure. Larval bees feeding on exogenous pollen and exposed to pesticides during development may result in lethal or sub-lethal effects during the adult stage. We tested the effects of a naturally derived biopesticide, spinosad, on bumble bee (Bombus impatiens Cresson) colony health, including adult mortality, brood development, weights of emerging bees and foraging efficiency of adults that underwent larval development during exposure to spinosad. We monitored colonies from an early stage, over a 10-week period, and fed spinosad to colonies in pollen at four levels: control, 0.2, 0.8 and 8.0 mg kg(-1), during weeks 2 through 5 of the experiment. At concentrations that bees would likely encounter in pollen in the wild (0.2-0.8 mg kg(-1)) we detected minimal negative effects to bumble bee colonies. Brood and adult mortality was high at 8.0 mg kg(-1) spinosad, about twice the level that bees would be exposed to in a 'worst case' field scenario, resulting in colony death two to four weeks after initial pesticide exposure. At more realistic concentrations there were potentially important sub-lethal effects. Adult worker bees exposed to spinosad during larval development at 0.8 mg kg(-1) were slower foragers on artificial complex flower arrays than bees from low or no spinosad treated colonies. Inclusion of similar sub-lethal assays to detect effects of pesticides on pollinators would aid in development of environmentally responsible pest management strategies.

  15. Hyperactivated Wnt signaling induces synthetic lethal interaction with Rb inactivation by elevating TORC1 activities.

    PubMed

    Zhang, Tianyi; Liao, Yang; Hsu, Fu-Ning; Zhang, Robin; Searle, Jennifer S; Pei, Xun; Li, Xuan; Ryoo, Hyung Don; Ji, Jun-Yuan; Du, Wei

    2014-05-01

    Inactivation of the Rb tumor suppressor can lead to increased cell proliferation or cell death depending on specific cellular context. Therefore, identification of the interacting pathways that modulate the effect of Rb loss will provide novel insights into the roles of Rb in cancer development and promote new therapeutic strategies. Here, we identify a novel synthetic lethal interaction between Rb inactivation and deregulated Wg/Wnt signaling through unbiased genetic screens. We show that a weak allele of axin, which deregulates Wg signaling and increases cell proliferation without obvious effects on cell fate specification, significantly alters metabolic gene expression, causes hypersensitivity to metabolic stress induced by fasting, and induces synergistic apoptosis with mutation of fly Rb ortholog, rbf. Furthermore, hyperactivation of Wg signaling by other components of the Wg pathway also induces synergistic apoptosis with rbf. We show that hyperactivated Wg signaling significantly increases TORC1 activity and induces excessive energy stress with rbf mutation. Inhibition of TORC1 activity significantly suppressed synergistic cell death induced by hyperactivated Wg signaling and rbf inactivation, which is correlated with decreased energy stress and decreased induction of apoptotic regulator expression. Finally the synthetic lethality between Rb and deregulated Wnt signaling is conserved in mammalian cells and that inactivation of Rb and APC induces synergistic cell death through a similar mechanism. These results suggest that elevated TORC1 activity and metabolic stress underpin the evolutionarily conserved synthetic lethal interaction between hyperactivated Wnt signaling and inactivated Rb tumor suppressor.

  16. Chronic Exposure of Corals to Fine Sediments: Lethal and Sub-Lethal Impacts

    PubMed Central

    Flores, Florita; Hoogenboom, Mia O.; Smith, Luke D.; Cooper, Timothy F.; Abrego, David; Negri, Andrew P.

    2012-01-01

    Understanding the sedimentation and turbidity thresholds for corals is critical in assessing the potential impacts of dredging projects in tropical marine systems. In this study, we exposed two species of coral sampled from offshore locations to six levels of total suspended solids (TSS) for 16 weeks in the laboratory, including a 4 week recovery period. Dose-response relationships were developed to quantify the lethal and sub-lethal thresholds of sedimentation and turbidity for the corals. The sediment treatments affected the horizontal foliaceous species (Montipora aequituberculata) more than the upright branching species (Acropora millepora). The lowest sediment treatments that caused full colony mortality were 30 mg l−1 TSS (25 mg cm−2 day−1) for M. aequituberculata and 100 mg l−1 TSS (83 mg cm−2 day−1) for A. millepora after 12 weeks. Coral mortality generally took longer than 4 weeks and was closely related to sediment accumulation on the surface of the corals. While measurements of damage to photosystem II in the symbionts and reductions in lipid content and growth indicated sub-lethal responses in surviving corals, the most reliable predictor of coral mortality in this experiment was long-term sediment accumulation on coral tissue. PMID:22662225

  17. Prospective mutation screening of three common deafness genes in a large Taiwanese Cohort with idiopathic bilateral sensorineural hearing impairment reveals a difference in the results between families from hospitals and those from rehabilitation facilities.

    PubMed

    Wu, Chen-Chi; Chen, Pei-Jer; Chiu, Yu-Hsun; Lu, Ying-Chang; Wu, Ming-Chueh; Hsu, Chuan-Jen

    2008-01-01

    Accurate epidemiological data on common deafness genes are essential to improve the efficiency and to reduce the cost of molecular diagnosis. They may depend on several factors, including a clear delineation of the source of patients being studied. In the present study, we hypothesize that patients with idiopathic sensorineural hearing loss recruited from different sources might reveal discrepancies in the epidemiological results of genetic screening, because patients from different sources might demonstrate distinct clinical or audiologic features and thus result in biased selection of subjects. To elucidate the relative importance of common deafness genes in Taiwanese and to verify our hypothesis, we conducted a prospective project screening mutations in GJB2, SLC26A4 and mitochondrial 12S rRNA gene in a total of 420 Taiwanese families with idiopathic bilateral sensorineural hearing loss, of which 325 families were recruited from hospitals and 95 from hearing rehabilitation facilities. Allele frequencies of common mutations in these three genes and distributions of the corresponding genotypes were then compared between the two groups. The allele frequencies of mutations in SLC26A4, GJB2 and mitochondrial 12S rRNA in the probands of the 420 families were 14.4, 21.7 and 3.8%, respectively. The allele frequency of SLC26A4 mutations in the hospital group was significantly higher than that in the rehabilitation facility group (16.2 vs. 8.4%, chi(2)-test, p < 0.05), whereas no difference in the frequencies of GJB2 mutations and mitochondrial 12S rRNA mutations was found between the two groups. Distributions of probands classified by SLC26A4 genotypes were also different between the two groups (chi(2)-test, p < 0.05). Accordingly, a discrepancy in the genetic screening results might exist between different sources of idiopathic hearing-impaired patients. Further analysis of audiological results and construction of a logistic regression model showed that different

  18. The Influence of Geographic Mobility on Nearly Lethal Suicide Attempts.

    ERIC Educational Resources Information Center

    Potter, Lloyd B.; Kresnow, Marcie-jo; Powell, Kenneth E.; Simon, Thomas R.; Mercy, James A.; Lee, Roberta K.; Frankowski, Ralph F.; Swann, Alan C.; Bayer, Timothy; O'Carroll, Patrick W.

    2002-01-01

    Presents a population-based, case-control study of nearly lethal suicide attempts with 153 cases and 513 controls. Results indicate that moving in the past year is positively associated with a nearly lethal suicide attempt, as are specific characteristics of the move. Findings confirm and extend prior research by demonstrating a relationship…

  19. Double screening

    SciTech Connect

    Gratia, Pierre; Hu, Wayne; Joyce, Austin; Ribeiro, Raquel H.

    2016-06-15

    Attempts to modify gravity in the infrared typically require a screening mechanism to ensure consistency with local tests of gravity. These screening mechanisms fit into three broad classes; we investigate theories which are capable of exhibiting more than one type of screening. Specifically, we focus on a simple model which exhibits both Vainshtein and kinetic screening. We point out that due to the two characteristic length scales in the problem, the type of screening that dominates depends on the mass of the sourcing object, allowing for different phenomenology at different scales. We consider embedding this double screening phenomenology in a broader cosmological scenario and show that the simplest examples that exhibit double screening are radiatively stable.

  20. Colon cancer screening

    MedlinePlus

    Screening for colon cancer; Colonoscopy - screening; Sigmoidoscopy - screening; Virtual colonoscopy - screening; Fecal immunochemical test; Stool DNA test; sDNA test; Colorectal cancer - screening; Rectal ...

  1. PARP1 inhibitor olaparib (Lynparza) exerts synthetic lethal effect against ligase 4-deficient melanomas

    PubMed Central

    Czyż, Małgorzata; Toma, Monika; Gajos-Michniewicz, Anna; Majchrzak, Kinga; Hoser, Grazyna; Szemraj, Janusz; Nieborowska-Skorska, Margaret; Cheng, Phil; Gritsyuk, Daniel; Levesque, Mitchell; Dummer, Reinhard; Sliwinski, Tomasz; Skorski, Tomasz

    2016-01-01

    Cancer including melanoma may be “addicted” to double strand break (DSB) repair and targeting this process could sensitize them to the lethal effect of DNA damage. PARP1 exerts an important impact on DSB repair as it binds to both single- and double- strand breaks. PARP1 inhibitors might be highly effective drugs triggering synthetic lethality in patients whose tumors have germline or somatic defects in DNA repair genes. We hypothesized that PARP1-dependent synthetic lethality could be induced in melanoma cells displaying downregulation of DSB repair genes. We observed that PARP1 inhibitor olaparib sensitized melanomas with reduced expression of DNA ligase 4 (LIG4) to an alkylatimg agent dacarbazine (DTIC) treatment in vitro, while normal melanocytes remained intact. PARP1 inhibition caused accumulation of DSBs, which was associated with apoptosis in LIG4 deficient melanoma cells. Our hypothesis that olaparib is synthetic lethal with LIG4 deficiency in melanoma cells was supported by selective anti-tumor effects of olaparib used either alone or in combination with dacarbazine (DTIC) in LIG4 deficient, but not LIG4 proficient cells. In addition, olaparib combined with DTIC inhibited the growth of LIG4 deficient human melanoma xenografts. This work for the first time demonstrates the effectiveness of a combination of PARP1 inhibitor olaparib and alkylating agent DTIC for treating LIG4 deficient melanomas. In addition, analysis of the TCGA and transcriptome microarray databases revealed numerous individual melanoma samples potentially displaying specific defects in DSB repair pathways, which may predispose them to synthetic lethality triggered by PARP1 inhibitor combined with a cytotoxic drug. PMID:27705909

  2. Antidotes to anthrax lethal factor intoxication. Part 1: Discovery of potent lethal factor inhibitors with in vivo efficacy.

    PubMed

    Jiao, Guan-Sheng; Kim, Seongjin; Moayeri, Mahtab; Cregar-Hernandez, Lynne; McKasson, Linda; Margosiak, Stephen A; Leppla, Stephen H; Johnson, Alan T

    2010-11-15

    Sub-nanomolar small molecule inhibitors of anthrax lethal factor have been identified using SAR and Merck L915 (4) as a model compound. One of these compounds (16) provided 100% protection in a rat lethal toxin model of anthrax disease.

  3. Targeting cancer using KAT inhibitors to mimic lethal knockouts

    PubMed Central

    Brown, James A.L.; Bourke, Emer; Eriksson, Leif A.; Kerin, Michael J.

    2016-01-01

    Two opposing enzyme classes regulate fundamental elements of genome maintenance, gene regulation and metabolism, either through addition of an acetyl moiety by histone acetyltransferases (HATs) or its removal by histone de-acetyltransferases (HDAC), and are exciting targets for drug development. Importantly, dysfunctional acetylation has been implicated in numerous diseases, including cancer. Within the HAT superfamily the MYST family holds particular interest, as its members are directly involved in the DNA damage response and repair pathways and crucially, several members have been shown to be down-regulated in common cancers (such as breast and prostate). In the present study we focus on the development of lysine (K) acetyltransferase inhibitors (KATi) targeting the MYST family member Tip60 (Kat5), an essential protein, designed or discovered through screening libraries. Importantly, Tip60 has been demonstrated to be significantly down-regulated in many cancers which urgently require new treatment options. We highlight current and future efforts employing these KATi as cancer treatments and their ability to synergize and enhance current cancer treatments. We investigate the different methods of KATi production or discovery, their mechanisms and their validation models. Importantly, the utility of KATi is based on a key concept: using KATi to abrogate the activity of an already down-regulated essential protein (effectively creating a lethal knockout) provides another innovative mechanism for targeting cancer cells, while significantly minimizing any off-target effects to normal cells. This approach, combined with the rapidly developing interest in KATi, suggests that KATi have a bright future for providing truly personalized therapies. PMID:27528742

  4. Lethal body burdens of polar narcotics: Chlorophenols

    SciTech Connect

    Wezel, A.P. van; Punte, S.S.; Opperhuizen, A.

    1995-09-01

    The goal of the present study was to measure in fathead minnow (Pimephales promelas) the lethal body burden (LBB) of three chlorophenols that are known as polar narcotic chemicals. The LBBs of the chlorophenols were compared to LBBs of nonpolar narcotic chemicals to consider if the two classes of narcotic chemicals differ on a body burden level. The LBB of the most acidic chlorophenol was measured at two different levels of pH exposure to determine the influence of the degree of ionization on the magnitude of the LBB. Both n-octanol/water partition coefficients and n-hexane/water partition coefficients of the chlorophenols were determined at different pH levels to consider the influence of ionization on the partition coefficient and to determine the importance of a polar group in the organic phase on the partitioning behavior. Partitioning to n-octanol and n-hexane was used as input in a model to simulate the equilibrium partitioning between hydrophobic and nonhydrophobic and target and nontarget compartments in the fish.

  5. Tumor clone dynamics in lethal prostate cancer.

    PubMed

    Carreira, Suzanne; Romanel, Alessandro; Goodall, Jane; Grist, Emily; Ferraldeschi, Roberta; Miranda, Susana; Prandi, Davide; Lorente, David; Frenel, Jean-Sebastien; Pezaro, Carmel; Omlin, Aurelius; Rodrigues, Daniel Nava; Flohr, Penelope; Tunariu, Nina; S de Bono, Johann; Demichelis, Francesca; Attard, Gerhardt

    2014-09-17

    It is unclear whether a single clone metastasizes and remains dominant over the course of lethal prostate cancer. We describe the clonal architectural heterogeneity at different stages of disease progression by sequencing serial plasma and tumor samples from 16 ERG-positive patients. By characterizing the clonality of commonly occurring deletions at 21q22, 8p21, and 10q23, we identified multiple independent clones in metastatic disease that are differentially represented in tissue and circulation. To exemplify the clinical utility of our studies, we then showed a temporal association between clinical progression and emergence of androgen receptor (AR) mutations activated by glucocorticoids in about 20% of patients progressing on abiraterone and prednisolone or dexamethasone. Resistant clones showed a complex dynamic with temporal and spatial heterogeneity, suggesting distinct mechanisms of resistance at different sites that emerged and regressed depending on treatment selection pressure. This introduces a management paradigm requiring sequential monitoring of advanced prostate cancer patients with plasma and tumor biopsies to ensure early discontinuation of agents when they become potential disease drivers.

  6. Tumor clone dynamics in lethal prostate cancer

    PubMed Central

    Carreira, Suzanne; Romanel, Alessandro; Goodall, Jane; Grist, Emily; Ferraldeschi, Roberta; Miranda, Susana; Prandi, Davide; Lorente, David; Frenel, Jean-Sebastien; Pezaro, Carmel; Omlin, Aurelius; Rodrigues, Daniel Nava; Flohr, Penelope; Tunariu, Nina; de Bono, Johann S.; Demichelis, Francesca; Attard, Gerhardt

    2015-01-01

    It is unclear whether a single clone metastasizes and remains dominant over the course of lethal prostate cancer. We describe the clonal architectural heterogeneity at different stages of disease progression by sequencing serial plasma and tumor samples from 16 ERG-positive patients. By characterizing the clonality of commonly occurring deletions at 21q22, 8p21, and 10q23, we identified multiple independent clones in metastatic disease that are differentially represented in tissue and circulation. To exemplify the clinical utility of our studies, we then showed a temporal association between clinical progression and emergence of androgen receptor (AR) mutations activated by glucocorticoids in about 20% of patients progressing on abiraterone and prednisolone or dexamethasone. Resistant clones showed a complex dynamic with temporal and spatial heterogeneity, suggesting distinct mechanisms of resistance at different sites that emerged and regressed depending on treatment selection pressure. This introduces a management paradigm requiring sequential monitoring of advanced prostate cancer patients with plasma and tumor biopsies to ensure early discontinuation of agents when they become potential disease drivers. PMID:25232177

  7. A novel hysteroscopic approach for ovarian cancer screening/early diagnosis

    PubMed Central

    Gizzo, Salvatore; Noventa, Marco; Quaranta, Michela; Vitagliano, Amerigo; Saccardi, Carlo; Litta, Pietro; Antona, Donato

    2017-01-01

    The lethality of epithelial ovarian cancer (EOC) may be due to common misconceptions regarding etiology and the absence of effective screening and early diagnostic tools. Reviews of histopathological surveys performed on the resected fallopian tubes of breast cancer (BRCA) mutation carriers, who underwent risk-reducing salpingo-oophorectomy, unexpectedly revealed the presence of occult carcinomas of the fallopian tubes. This finding prompted studies that demonstrated the most accredited theory of type II EOC development, which suggests that a large proportion of these tumors are derived from the fallopian tube. At present, no diagnostic tools or screening programs have been demonstrated to be effective or cost-effective in improving the outcome of EOC; it is therefore imperative that the scientific community unite its efforts in the identification of a valid screening and/or early diagnostic method for the treatment of this lethal gynecological malignancy. To this end, the present paper proposes a novel tool for the screening/early diagnosis of EOC: The ‘Tuba-check’. This novel approach is based on the possibility of acquiring specimens for tubal lumen cytology via hysteroscopy in a minimally-invasive outpatient setting. The present study protocol aimed to validate the technical feasibility and oncological accuracy of the proposed approach, commencing with a cohort of patients with an expected increased oncological risk, including BRCA mutation carriers or those with a gene expression profile of ‘BRCA-ness’. If the data collected by the present study protocol validates this approach, the ‘Tuba-check’ may, in the near future, be extended for the treatment of all women, therefore reducing the number of victims of epithelial ovarian carcinoma. PMID:28356928

  8. Ranking novel cancer driving synthetic lethal gene pairs using TCGA data

    PubMed Central

    Ye, Hao; Zhang, Xiuhua; Chen, Yunqin; Liu, Qi; Wei, Jia

    2016-01-01

    Synthetic lethality (SL) has emerged as a promising approach to cancer therapy. In contrast to the costly and labour-intensive genome-wide siRNA or CRISPR-based human cell line screening approaches, computational approaches to prioritize potential synthetic lethality pairs for further experimental validation represent an attractive alternative. In this study, we propose an efficient and comprehensive in-silico pipeline to rank novel SL gene pairs by mining vast amounts of accumulated tumor high-throughput sequencing data in The Cancer Genome Atlas (TCGA), coupled with other protein interaction networks and cell line information. Our pipeline integrates three significant features, including mutation coverage in TCGA, driver mutation probability and the quantified cancer network information centrality, into a ranking model for SL gene pair identification, which is presented as the first learning-based method for SL identification. As a result, 107 potential SL gene pairs were obtained from the top 10 results covering 11 cancers. Functional analysis of these genes indicated that several promising pathways were identified, including the DNA repair related Fanconi Anemia pathway and HIF-1 signaling pathway. In addition, 4 SL pairs, mTOR-TP53, VEGFR2-TP53, EGFR-TP53, ATM-PRKCA, were validated using drug sensitivity information in the cancer cell line databases CCLE or NCI60. Interestingly, significant differences in the cell growth of mTOR siRNA or EGFR siRNA knock-down were detected between cancer cells with wild type TP53 and mutant TP53. Our study indicates that the pre-screening of potential SL gene pairs based on the large genomics data repertoire of tumor tissues and cancer cell lines could substantially expedite the identification of synthetic lethal gene pairs for cancer therapy. PMID:27438146

  9. Antimutagenic effect of black tea extract using 'rodent dominant lethal mutation assay'.

    PubMed

    Shukla, Y; Taneja, P

    2001-11-30

    The antimutagenic effect of black tea extract has been evaluated with the 'Dominant Lethal Assay' in Swiss albino mice using benzo[a]pyrene [BaP] as a mutagen. BaP was given through the intraperitoneal (i.p.) route at a single dose of 100 mg/kg b.w. to male mice once only. The animals were given 1, 2 and 4% aqueous solution of black tea as sole source of drinking solution prior to BaP. The pregnant females were analyzed for living implants, pre- and post-implantation losses. The results revealed that during mating weeks, BaP caused a reduction in implants and an increase in pre- and post-implantation losses. The protective effect of tea solution on BaP-induced mutagenicity was observed. The number of living implants increased and dead implants decreased significantly in the animals kept on 2 and 4% tea solution. The increase in dominant lethal mutation rate by BaP was inhibited by black tea extract. Four percent tea solution alone did not produce dominant lethality, and reveals that it is non-toxic/non-mutagenic to sperm. Hence the study suggests that tea has a protective effect against BaP-induced genetic damage to germ cells in Swiss albino mice.

  10. Lethal and sublethal toxicity of didecyldimethylammonium chloride in early life stages of white sturgeon, Acipenser transmontanus.

    PubMed

    Teh, Swee Joo; Wong, Cecilia; Furtula, Vesna; Teh, Foo-Ching

    2003-09-01

    This study was conducted to describe the acute lethality and latent toxicity of didecyldimethylammonium chloride (DDAC) on early life stages of white sturgeon (Acipenser transmontanus). Fish responses to 0, 10, 50, 100, 250, 500 microg/L concentrations of DDAC were determined using a 96-h standard static renewal method for acute toxicity testing, with three replicates per concentration. Twenty fish per replicate were tested for 3, 11, and 42-d-old larvae, and 7 fish per replicate were tested for 78-d-old juveniles. Following exposure, survival and growth were evaluated in exposed fish raised in clean water for 2 weeks. The 96-h median lethal concentration (LC50) values for DDAC were 10.0 to 50.0, 58.5, and 99.7 microg/L for 3, 11, and 42-d-old larvae and 100 to 250 microg/L for 78-d-old juveniles. Significant decreases in larval growth and survival were noted at all tested concentrations and in all sturgeon age groups. Results of this study reveal age- and concentration-dependent responses to DDAC. Among the age groups tested, the 3-d-old larvae were the most sensitive group. Results also revealed that 96-h lethality testing alone is not adequate for determining the toxicity of DDAC to white sturgeon.

  11. Key tissue targets responsible for anthrax-toxin-induced lethality.

    PubMed

    Liu, Shihui; Zhang, Yi; Moayeri, Mahtab; Liu, Jie; Crown, Devorah; Fattah, Rasem J; Wein, Alexander N; Yu, Zu-Xi; Finkel, Toren; Leppla, Stephen H

    2013-09-05

    Bacillus anthracis, the causative agent of anthrax disease, is lethal owing to the actions of two exotoxins: anthrax lethal toxin (LT) and oedema toxin (ET). The key tissue targets responsible for the lethal effects of these toxins are unknown. Here we generated cell-type-specific anthrax toxin receptor capillary morphogenesis protein-2 (CMG2)-null mice and cell-type-specific CMG2-expressing mice and challenged them with the toxins. Our results show that lethality induced by LT and ET occurs through damage to distinct cell types; whereas targeting cardiomyocytes and vascular smooth muscle cells is required for LT-induced mortality, ET-induced lethality occurs mainly through its action in hepatocytes. Notably, and in contradiction to what has been previously postulated, targeting of endothelial cells by either toxin does not seem to contribute significantly to lethality. Our findings demonstrate that B. anthracis has evolved to use LT and ET to induce host lethality by coordinately damaging two distinct vital systems.

  12. Internet suicide: communities of affirmation and the lethality of communication.

    PubMed

    Niezen, Ronald

    2013-04-01

    As a tool of instant information dissemination and social networking, the Internet has made possible the formation and affirmation of public identities based on personality traits that are usually characterized by clinicians as pathological. The wide variety of online communities of affirmation reveals new conditions for permissiveness and inclusiveness in expressions of these socially marginal and clinically pathologized identities. Much the same kind of discourse common to these online communities is evident in some suicide forums. Web sites with suicide as their central raison d'être, taken together, encompass a wide range of ideas and commitments, including many that provide collective affirmation outside of (and often with hostility toward) professional intervention. The paradox of a potentially life-affirming effect of such forums runs counter to a stark dualism between online therapy versus "prochoice" forums and, by extension, to simple models of the influence of ideas on the lethality of suicide. Different forums either intensify or mitigate self-destructive tendencies in ways that are significant for understanding the place of communication in the occurrence of suicide and for therapeutic practice.

  13. Embryonic Lethals and T-DNA Insertional Mutagenesis in Arabidopsis.

    PubMed Central

    Errampalli, D; Patton, D; Castle, L; Mickelson, L; Hansen, K; Schnall, J; Feldmann, K; Meinke, D

    1991-01-01

    T-DNA insertional mutagenesis represents a promising approach to the molecular isolation of genes with essential functions during plant embryo development. We describe in this report the isolation and characterization of 18 mutants of Arabidopsis thaliana defective in embryo development following seed transformation with Agrobacterium tumefaciens. Random T-DNA insertion was expected to result in a high frequency of recessive embryonic lethals because many target genes are required for embryogenesis. The cointegrate Ti plasmid used in these experiments contained the nopaline synthase and neomycin phosphotransferase gene markers. Nopaline assays and resistance to kanamycin were used to estimate the number of functional inserts present in segregating families. Nine families appeared to contain a T-DNA insert either within or adjacent to the mutant gene. Eight families were clearly not tagged with a functional insert and appeared instead to contain mutations induced during the transformation process. DNA gel blot hybridization with internal and right border probes revealed a variety of rearrangements associated with T-DNA insertion. A general strategy is presented to simplify the identification of tagged embryonic mutants and facilitate the molecular isolation of genes required for plant embryogenesis. PMID:12324593

  14. Ectopic expression of Cripto-1 in transgenic mouse embryos causes hemorrhages, fatal cardiac defects and embryonic lethality

    PubMed Central

    Lin, Xiaolin; Zhao, Wentao; Jia, Junshuang; Lin, Taoyan; Xiao, Gaofang; Wang, Shengchun; Lin, Xia; Liu, Yu; Chen, Li; Qin, Yujuan; Li, Jing; Zhang, Tingting; Hao, Weichao; Chen, Bangzhu; Xie, Raoying; Cheng, Yushuang; Xu, Kang; Yao, Kaitai; Huang, Wenhua; Xiao, Dong; Sun, Yan

    2016-01-01

    Targeted disruption of Cripto-1 in mice caused embryonic lethality at E7.5, whereas we unexpectedly found that ectopic Cripto-1 expression in mouse embryos also led to embryonic lethality, which prompted us to characterize the causes and mechanisms underlying embryonic death due to ectopic Cripto-1 expression. RCLG/EIIa-Cre embryos displayed complex phenotypes between embryonic day 14.5 (E14.5) and E17.5, including fatal hemorrhages (E14.5-E15.5), embryo resorption (E14.5-E17.5), pale body surface (E14.5-E16.5) and no abnormal appearance (E14.5-E16.5). Macroscopic and histological examination revealed that ectopic expression of Cripto-1 transgene in RCLG/EIIa-Cre embryos resulted in lethal cardiac defects, as evidenced by cardiac malformations, myocardial thinning, failed assembly of striated myofibrils and lack of heartbeat. In addition, Cripto-1 transgene activation beginning after E8.5 also caused the aforementioned lethal cardiac defects in mouse embryos. Furthermore, ectopic Cripto-1 expression in embryonic hearts reduced the expression of cardiac transcription factors, which is at least partially responsible for the aforementioned lethal cardiac defects. Our results suggest that hemorrhages and cardiac abnormalities are two important lethal factors in Cripto-1 transgenic mice. Taken together, these findings are the first to demonstrate that sustained Cripto-1 transgene expression after E11.5 causes fatal hemorrhages and lethal cardiac defects, leading to embryonic death at E14.5-17.5. PMID:27687577

  15. A Targetable GATA2-IGF2 Axis Confers Aggressiveness in Lethal Prostate Cancer

    PubMed Central

    Vidal, Samuel J.; Rodriguez-Bravo, Veronica; Quinn, S. Aidan; Rodriguez-Barrueco, Ruth; Lujambio, Amaia; Williams, Estrelania; Sun, Xiaochen; de la Iglesia-Vicente, Janis; Lee, Albert; Readhead, Ben; Chen, Xintong; Galsky, Matthew; Esteve, Berta; Petrylak, Daniel P.; Dudley, Joel T.; Rabadan, Raul; Silva, Jose M.; Hoshida, Yujin; Lowe, Scott W.; Cordon-Cardo, Carlos; Domingo-Domenech, Josep

    2015-01-01

    SUMMARY Elucidating the determinants of aggressiveness in lethal prostate cancer may stimulate therapeutic strategies that improve clinical outcomes. We used experimental models and clinical databases to identify GATA2 as a regulator of chemotherapy resistance and tumorigenicity in this context. Mechanistically, direct upregulation of the growth hormone IGF2 emerged as a mediator of the aggressive properties regulated by GATA2. IGF2 in turn activated IGF1R and INSR as well as a downstream polykinase program. The characterization of this axis prompted a combination strategy whereby dual IGF1R/INSR inhibition restored the efficacy of chemotherapy and improved survival in preclinical models. These studies reveal a GATA2-IGF2 aggressiveness axis in lethal prostate cancer and identify a therapeutic opportunity in this challenging disease. PMID:25670080

  16. Ethical language and decision-making for prenatally diagnosed lethal malformations

    PubMed Central

    Wilkinson, Dominic; de Crespigny, Lachlan; Xafis, Vicki

    2014-01-01

    Summary In clinical practice, and in the medical literature, severe congenital malformations such as trisomy 18, anencephaly, and renal agenesis are frequently referred to as ‘lethal’ or as ‘incompatible with life’. However, there is no agreement about a definition of lethal malformations, nor which conditions should be included in this category. Review of outcomes for malformations commonly designated ‘lethal’ reveals that prolonged survival is possible, even if rare. This article analyses the concept of lethal malformations and compares it to the problematic concept of ‘futility’. We recommend avoiding the term ‘lethal’ and suggest that counseling should focus on salient prognostic features instead. For conditions with a high chance of early death or profound impairment in survivors despite treatment, perinatal and neonatal palliative care would be ethical. However, active obstetric and neonatal management, if desired, may also sometimes be appropriate. PMID:25200733

  17. Impact of the Timing of Morphine Administration on Lipopolysaccharide-Mediated Lethal Endotoxic Shock in Mice.

    PubMed

    Fukada, Tomoko; Kato, Hidehito; Ozaki, Makoto; Yagi, Junji

    2016-05-01

    Sepsis is a serious condition related to systemic inflammation, organ dysfunction, and organ failure. It is a subset of the cytokine storm caused by dysregulation of cytokine production. Morphine influences the severity of infection in vivo and in vitro because it regulates cytokine production. We investigated the immunological function of morphine using a mouse model of septic shock. We treated mice with α-galactosylceramide (2 μg/mouse) to induce lethal endotoxic shock following a challenge with lipopolysaccharide (LPS, 1.5 μg/mouse). This model represents acute lung injury and respiratory failure, and reflects the clinical features of severe septic shock. We evaluated the effect of the timing of morphine (0.8 mg/mouse) administration on the survival rate, cytokine production in vivo, and histological changes of mice with LPS-mediated lethal endotoxic shock. Morphine treatment before LPS challenge suppressed lethal endotoxic shock. In contrast, when we administered after LPS, morphine exacerbated lethal endotoxic shock; hematoxylin and eosin staining revealed a marked increase in the accumulation of infiltrates comprising polymorphonuclear leukocytes and mononuclear cells in the lung; and Elastica van Gieson staining revealed the destruction of alveoli. The plasma levels of tumor necrosis factor-α, interferon-γ, monocyte-chemotactic protein-1, and interleukin-12 in the group treated with morphine after LPS challenge were higher than those treated with morphine before LPS challenge. In conclusion, one of the factors that determine whether morphine exacerbates or inhibits infection is the timing of its administration. Morphine treatment before shock improved the survival rate, and morphine treatment after shock decreased the rate of survival.

  18. The synthetic lethal killing of RAD54B-deficient colorectal cancer cells by PARP1 inhibition is enhanced with SOD1 inhibition

    PubMed Central

    McAndrew, Erin N.; Lepage, Chloe C.; McManus, Kirk J.

    2016-01-01

    Colorectal cancer (CRC) is a leading cause of cancer-related death throughout the world. Despite improved screening efforts, most CRCs are diagnosed at late stages when surgery alone is not curative. Moreover, the low 5-year survival rate (∼8-13%) for those living with stage IV CRC highlights the need for better treatment options. Many current chemotherapeutic approaches are non-specific and associated with side effects due to their tendency to target both normal and cancer cells. To address this issue, synthetic lethal (SL) approaches are now being explored in cancer and are defined as the lethal combination of two independently viable mutations/deletions. From a therapeutic perspective, SL interactors of genes mutated in cancer serve as candidate drug targets. The present study focuses on RAD54B, a gene that is aberrantly expressed in many cancer types, including CRC. We show that PARP1 silencing or inhibition (BMN673 or Olaparib) leads to selective killing within RAD54B-deficient cells relative to controls, and is accompanied by increases in γ-H2AX (a surrogate marker of DNA double strand breaks) and cleaved Caspase-3 (an apoptotic indicator). We further show that BMN673 synergizes with LCS-1 (an inhibitor of an established RAD54B SL interactor) to induce enhanced killing in RAD54B-deficient cells. Collectively, these data identify RAD54B and PARP1 as SL interactors, and thus reveal PARP1 as a novel candidate drug target in RAD54B-deficient CRCs. These findings further show that combinatorial chemotherapies involving multiple SL targets may promote synergistic killing within cancer cells, a strategy that may hold potential in many cancer contexts. PMID:27902462

  19. Lethal and sub-lethal responses of native freshwater mussels exposed to granular Bayluscide®, a sea lamprey larvicide

    USGS Publications Warehouse

    Newton, Teresa; Boogaard, Michael A.; Gray, Brian R.; Hubert, Terrance D.; Schloesser, Nicholas

    2017-01-01

    The invasive sea lamprey (Petromyzon marinus) poses a substantial threat to fish communities in the Great Lakes. Efforts to control sea lamprey populations typically involve treating tributary streams with lampricides on a recurring cycle. The presence of a substantial population of larval sea lampreys in the aquatic corridor between Lakes Huron and Erie prompted managers to propose a treatment using the granular formulation of Bayluscide® that targets larval sea lampreys that reside in sediments. However, these treatments could cause adverse effects on native freshwater mussels—imperiled animals that also reside in sediments. We estimated the risk of mortality and sub-lethal effects among eight species of adult and sub-adult mussels exposed to Bayluscide® for durations up to 8 h to mimic field applications. Mortality was appreciable in some species, especially in sub-adults (range, 23–51%). The lethal and sub-lethal effects were positively associated with the duration of exposure in most species and life stage combinations. Estimates of the median time of exposure that resulted in lethal and sub-lethal effects suggest that sub-adults were often affected by Bayluscide® earlier than adults. Siphoning activity and burrowing position of mussels during exposure may have moderated the uptake of Bayluscide® and may have influenced lethal and sub-lethal responses. Given that the various species and life stages were differentially affected, it will be difficult to predict the effects of Bayluscide® treatments on mussels.

  20. Protective Effects of Hong Shan Capsule against Lethal Total-Body Irradiation-Induced Damage in Wistar Rats

    PubMed Central

    Li, Jianzhong; Xu, Jing; Xu, Weiheng; Qi, Yang; Lu, Yiming; Qiu, Lei; Hu, Zhenlin; Chu, Zhiyong; Chai, Yifeng; Zhang, Junping

    2015-01-01

    Hong Shan Capsule (HSC), a crude drug of 11 medicinal herbs, was used in clinical practice for the treatment of radiation injuries in China. In this study, we investigated its protection in rats against acute lethal total-body irradiation (TBI). Pre-administration of HSC reduced the radiation sickness characteristics, while increasing the 30-day survival of the irradiated rats. Administration of HSC also reduced the radiation sickness characteristics and increased the 30-day survival of mice after exposure to lethal TBI. Ultrastructural observation illustrated that the pretreatment of rats with HSC significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed the dramatic effect of HSC on alterations of gene expression caused by lethal TBI. Pretreatment with HSC prevented differential expression of 66% (1398 genes) of 2126 genes differentially expressed in response to TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 32 pathways, such as pathways in cancer and the mitogen-activated protein kinase (MAPK) signaling pathway. Our analysis indicated that the pretreatment of rats with HSC modulated these pathways induced by lethal TBI, such as multiple MAPK pathways, suggesting that pretreatment with HSC might provide protective effects on lethal TBI mainly or partially through the modulation of these pathways. Our data suggest that HSC has the potential to be used as an effective therapeutic or radio-protective agent to minimize irradiation damage. PMID:26274957

  1. Somatic Mosaicism for a Lethal TRPV4 Mutation Results in Non-Lethal Metatropic Dysplasia

    PubMed Central

    Weinstein, Michael M.; Kang, Taekyu; Lachman, Ralph S.; Bamshad, Michael; Nickerson, Deborah A.; Krakow, Deborah; Cohn, Daniel H.

    2016-01-01

    Dominant mutations in TRPV4, which encodes the Transient Receptor Potential Cation Channel Subfamily V Member 4 calcium channel, result in a series of musculoskeletal disorders that include a set of peripheral neuropathies and a broad phenotypic spectrum of skeletal dysplasias. The skeletal pheno-types range from brachyolmia, in which there is scoliosis with mild short stature, through perinatal lethal metatropic dysplasia. We describe a case with phenotypic findings consistent with metatropic dysplasia, but in whom no TRPV4 mutation was detected by Sanger sequence analysis. Exome sequence analysis identified a known lethal metatropic dysplasia mutation, TRPV4L618P, which was present at lower frequency than would be expected for a heterozygous change. The affected individual was shown to be a somatic mosaic for the mutation, providing an explanation for the milder than expected phenotype. The data illustrate that high-throughput sequencing of genomic DNA can facilitate detection of mosaicism with higher sensitivity than Sanger sequence analysis and identify a new genetic mechanism for metatropic dysplasia. PMID:27530454

  2. Acquisition Challenges of a Lethal Virus

    DTIC Science & Technology

    2014-10-01

    Health Organization team responding to an Ebola virus outbreak. It’s 1995. “The Hot Zone” tops best-seller lists, and millions of people the world...over are fixated on the threat of incurable “hot” hemorrhagic fever viruses like Ebola . Gruesome depictions of melting skin and oozing blood fill...television and movie screens everywhere—but it’s not science fiction. Amid the panic and uncertainty, I am deployed to Zaire, where an outbreak of Ebola is

  3. A Chemical Genetic Screening Procedure for Arabidopsis thaliana Seedlings

    PubMed Central

    Bjornson, Marta; Song, Xingshun; Dandekar, Abhaya; Franz, Annaliese; Drakakaki, Georgia; Dehesh, Katayoon

    2016-01-01

    Unbiased screening approaches are powerful tools enabling identification of novel players in biological processes. Chemical genetic screening refers to the technique of using a reporter response, such as expression of luciferase driven by a promoter of interest, to discover small molecules that affect a given process when applied to plants. These chemicals then act as tools for identification of regulatory components that could not otherwise be detected by forward genetic screens due to gene family redundancy or mutant lethality. This protocol describes a chemical genetic screen using Arabidopsis thaliana seedlings, which has led to recognition of novel players in the plant general stress response. PMID:27446980

  4. Genetic screening

    PubMed Central

    Andermann, Anne; Blancquaert, Ingeborg

    2010-01-01

    Abstract OBJECTIVE To provide a primer for primary care professionals who are increasingly called upon to discuss the growing number of genetic screening services available and to help patients make informed decisions about whether to participate in genetic screening, how to interpret results, and which interventions are most appropriate. QUALITY OF EVIDENCE As part of a larger research program, a wide literature relating to genetic screening was reviewed. PubMed and Internet searches were conducted using broad search terms. Effort was also made to identify the gray literature. MAIN MESSAGE Genetic screening is a type of public health program that is systematically offered to a specified population of asymptomatic individuals with the aim of providing those identified as high risk with prevention, early treatment, or reproductive options. Ensuring an added benefit from screening, as compared with standard clinical care, and preventing unintended harms, such as undue anxiety or stigmatization, depends on the design and implementation of screening programs, including the recruitment methods, education and counseling provided, timing of screening, predictive value of tests, interventions available, and presence of oversight mechanisms and safeguards. There is therefore growing apprehension that economic interests might lead to a market-driven approach to introducing and expanding screening before program effectiveness, acceptability, and feasibility have been demonstrated. As with any medical intervention, there is a moral imperative for genetic screening to do more good than harm, not only from the perspective of individuals and families, but also for the target population and society as a whole. CONCLUSION Primary care professionals have an important role to play in helping their patients navigate the rapidly changing terrain of genetic screening services by informing them about the benefits and risks of new genetic and genomic technologies and empowering them to

  5. Anthrax lethal factor inhibitors as potential countermeasure of the infection.

    PubMed

    Kumar, B V S Suneel; Malik, Siddharth; Grandhi, Pradeep; Dayam, Raveendra; Sarma, J A R P

    2014-01-01

    Anthrax Lethal Factor (LF) is a zinc-dependent metalloprotease, one of the virulence factor of anthrax infection. Three forms of the anthrax infection have been identified: cutaneous (through skin), gastrointestinal (through alimentary tract), and pulmonary (by inhalation of spores). Anthrax toxin is composed of protective antigen (PA), lethal factor (LF), and edema factor (EF). Protective antigen mediates the entry of Lethal Factor/Edema Factor into the cytosol of host cells. Lethal factor (LF) inactivates mitogen-activated protein kinase kinase inducing cell death, and EF is an adenylyl cyclase impairing host defenses. In the past few years, extensive studies are undertaken to design inhibitors targeting LF. The current review focuses on the small molecule inhibitors targeting LF activity and its structure activity relationships (SAR).

  6. Perinatal-lethal Gaucher disease presenting as hydrops fetalis

    PubMed Central

    BenHamida, Emira; Ayadi, Imene; Ouertani, Ines; Chammem, Maroua; Bezzine, Ahlem; BenTmime, Riadh; Attia, Leila; Mrad, Ridha; Marrakchi, Zahra

    2015-01-01

    Perinatal-lethal Gaucher disease is very rare and is considered a variant of type 2 Gaucher disease that occurs in the neonatal period. The most distinct features of perinatal-lethal Gaucher disease are non-immune hydrops fetalis. Less common signs of the disease are hepatosplenomegaly, ichthyosis and arthrogryposis. We report a case of Gaucher's disease (type 2) diagnosed in a newborn who presented with Hydrops Fetalis. PMID:26327947

  7. Conflict Without Casualties: Non-Lethal Weapons in Irregular Warfare

    DTIC Science & Technology

    2007-09-01

    Recognizing this, in 2006 the British Royal Marines reached out to the international community and, along with U.S. Marines, established a non-lethal...obstruction. But as the scenario intensified, they moved into the city alleys for a more authentic feel. British Royal Marine Capt. Rhys Hopkins stated...89 United States Federal News Service, “ Royal Marines Teach Non-Lethal Crowd Control for 2007

  8. Field Evaluation of Lethal Ovitrap against Dengue Vectors

    DTIC Science & Technology

    2005-04-01

    AD Award Number: DAMD17-02-1-0217 TITLE: Field Evaluation of Lethal Ovitrap against Dengue Vectors PRINCIPAL INVESTIGATOR: Dr. Lane Foil CONTRACTING...2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Field Evaluation of Lethal Ovitrap against Dengue Vectors 5b. GRANT NUMBER DAMD17-02-1-0217 5c. PROGRAM...to effectively sample dengue mosquito vector populations, particularly Aedes aegypti for over a decade. Modifying a standard ovitrap by incorporating

  9. RAS - Screens & Assays - Drug Discovery

    Cancer.gov

    The RAS Drug Discovery group aims to develop assays that will reveal aspects of RAS biology upon which cancer cells depend. Successful assay formats are made available for high-throughput screening programs to yield potentially effective drug compounds.

  10. Defining the origins of electron transfer at screen-printed graphene-like and graphite electrodes: MoO2 nanowire fabrication on edge plane sites reveals electrochemical insights.

    PubMed

    Rowley-Neale, Samuel J; Brownson, Dale A C; Banks, Craig E

    2016-08-18

    Molybdenum (di)oxide (MoO2) nanowires are fabricated onto graphene-like and graphite screen-printed electrodes (SPEs) for the first time, revealing crucial insights into the electrochemical properties of carbon/graphitic based materials. Distinctive patterns observed in the electrochemical process of nanowire decoration show that electron transfer occurs predominantly on edge plane sites when utilising SPEs fabricated/comprised of graphitic materials. Nanowire fabrication along the edge plane sites (and on edge plane like-sites/defects) of graphene/graphite is confirmed with Cyclic Voltammetry, Scanning Electron Microscopy (SEM) and Raman Spectroscopy. Comparison of the heterogeneous electron transfer (HET) rate constants (k°) at unmodified and nanowire coated SPEs show a reduction in the electrochemical reactivity of SPEs when the edge plane sites are effectively blocked/coated with MoO2. Throughout the process, the basal plane sites of the graphene/graphite electrodes remain relatively uncovered; except when the available edge plane sites have been utilised, in which case MoO2 deposition grows from the edge sites covering the entire surface of the electrode. This work clearly illustrates the distinct electron transfer properties of edge and basal plane sites on graphitic materials, indicating favourable electrochemical reactivity at the edge planes in contrast to limited reactivity at the basal plane sites. In addition to providing fundamental insights into the electron transfer properties of graphite and graphene-like SPEs, the reported simple, scalable, and cost effective formation of unique and intriguing MoO2 nanowires realised herein is of significant interest for use in both academic and commercial applications.

  11. Bleomycin: female-specific dominant lethal effects in mice.

    PubMed

    Sudman, P D; Rutledge, J C; Bishop, J B; Generoso, W M

    1992-12-01

    Limited comparative data in mice indicate that chemical mutagens that induce dominant lethal mutations in males are not necessarily effective in females, but those which are effective in females are generally equally or more effective in males. Recently, however, a few chemicals have been identified that are female-specific with respect to induction of dominant lethal mutations. The antitumor antibiotic adriamycin is among them. Another antitumor antibiotic, bleomycin was examined for its ability to induce dominant lethal mutations in the reproductive cells of male and female mice. No dominant lethal or cytotoxic effects were observed in males treated with bleomycin, even at a maximum tolerated dose. In females, on the other hand, a dose nearly 1/4 of that used in males induced not only a high level of dominant lethal mutations but also killed oocytes in certain stages of follicular development. The effectiveness of bleomycin in inducing dominant lethal mutations in mouse oocytes makes it a valuable tool for investigating whether gonadal transport, inherent differences in the configuration of chromatin in the germ cells of the two sexes or other factors are responsible for the differential susceptibility to bleomycin, which implies potential gender-specific genetic risk in cancer chemotherapy.

  12. Mechanism by which caffeine potentiates lethality of nitrogen mustard.

    PubMed Central

    Lau, C C; Pardee, A B

    1982-01-01

    Caffeine is synergistic with many DNA-damaging agents in increasing lethality to mammalian cells. The mechanism is not well understood. Our results show that caffeine potentiates the lethality of the nitrogen mustard 2-chloro-N-(2-chloroethyl)-N-methylethanamine (HN2) by inducing damaged cells to undergo mitosis before properly repairing lesions in their DNA. Treatment with low doses of HN2 (0.5 microM for 1 hr) caused little lethality in baby hamster kidney cells (90% survival). These cells were arrested in G2 shortly after treatment with HN2 as shown by flow microfluorimetry and autoradiography. After an arrest of 6 hr, HN2-treated cells began to move into mitosis and from then on behaved like normal cells. Repair synthesis was shown to continue during the G2 arrest by using synchronized cells pulse labeled with [3H]thymidine after HN2 treatment and autoradiography. Caffeine (2mM) increased the lethality of HN2 by 5- to 10-fold. It prevented the G2 arrest. Caffeine did not prevent these HN2-treated cells from entering or completing S phase but rather allowed them to divide without finishing the repair processes and as a consequence caused nuclear fragmentation after mitosis. Caffeine-induced nuclear fragmentation and enhanced lethality were proportional, as shown with dose--response curves and time dependence. In addition, both lethality and nuclear fragmentation were abolished by low doses of cycloheximide, an inhibitor of protein synthesis. Images PMID:6953438

  13. An F1 genetic screen for maternal-effect mutations affecting embryonic pattern formation in Drosophila melanogaster.

    PubMed Central

    Luschnig, Stefan; Moussian, Bernard; Krauss, Jana; Desjeux, Isabelle; Perkovic, Josip; Nüsslein-Volhard, Christiane

    2004-01-01

    Large-scale screens for female-sterile mutations have revealed genes required maternally for establishment of the body axes in the Drosophila embryo. Although it is likely that the majority of components involved in axis formation have been identified by this approach, certain genes have escaped detection. This may be due to (1) incomplete saturation of the screens for female-sterile mutations and (2) genes with essential functions in zygotic development that mutate to lethality, precluding their identification as female-sterile mutations. To overcome these limitations, we performed a genetic mosaic screen aimed at identifying new maternal genes required for early embryonic patterning, including zygotically required ones. Using the Flp-FRT technique and a visible germline clone marker, we developed a system that allows efficient screening for maternal-effect phenotypes after only one generation of breeding, rather than after the three generations required for classic female-sterile screens. We identified 232 mutants showing various defects in embryonic pattern or morphogenesis. The mutants were ordered into 10 different phenotypic classes. A total of 174 mutants were assigned to 86 complementation groups with two alleles on average. Mutations in 45 complementation groups represent most previously known maternal genes, while 41 complementation groups represent new loci, including several involved in dorsoventral, anterior-posterior, and terminal patterning. PMID:15166158

  14. Misregulation of Sex-Lethal and Disruption of Male-Specific Lethal Complex Localization in Drosophila Species Hybrids

    PubMed Central

    Pal Bhadra, Manika; Bhadra, Utpal; Birchler, James A.

    2006-01-01

    A major model system for the study of evolutionary divergence between closely related species has been the unisexual lethality resulting from reciprocal crosses of Drosophila melanogaster and D. simulans. Sex-lethal (Sxl), a critical gene for sex determination, is misregulated in these hybrids. In hybrid males from D. melanogaster mothers, there is an abnormal expression of Sxl and a failure of localization of the male-specific lethal (MSL) complex to the X chromosome, which causes changes in gene expression. Introduction of a Sxl mutation into this hybrid genotype will allow expression of the MSL complex but there is no sequestration to the X chromosome. Lethal hybrid rescue (Lhr), which allows hybrid males from this cross to survive, corrects the SXL and MSL defects. The reciprocal cross of D. simulans mothers by D. melanogaster males exhibits underexpression of Sxl in embryos. PMID:16951071

  15. Quadruple screen test

    MedlinePlus

    Quad screen; Multiple marker screening; AFP plus; Triple screen test; AFP maternal; MSAFP; 4-marker screen; Down syndrome - quadruple; Trisomy 21 - quadruple; Turner syndrome - quadruple; Spina bifida - ...

  16. Lethal protein produced in response to competition between sibling bacterial colonies.

    PubMed

    Be'er, Avraham; Ariel, Gil; Kalisman, Oren; Helman, Yael; Sirota-Madi, Alexandra; Zhang, H P; Florin, E-L; Payne, Shelley M; Ben-Jacob, Eshel; Swinney, Harry L

    2010-04-06

    Sibling Paenibacillus dendritiformis bacterial colonies grown on low-nutrient agar medium mutually inhibit growth through secretion of a lethal factor. Analysis of secretions reveals the presence of subtilisin (a protease) and a 12 kDa protein, termed sibling lethal factor (Slf). Purified subtilisin promotes the growth and expansion of P. dendritiformis colonies, whereas Slf is lethal and lyses P. dendritiformis cells in culture. Slf is encoded by a gene belonging to a large family of bacterial genes of unknown function, and the gene is predicted to encode a protein of approximately 20 kDa, termed dendritiformis sibling bacteriocin. The 20 kDa recombinant protein was produced and found to be inactive, but exposure to subtilisin resulted in cleavage to the active, 12 kDa form. The experimental results, combined with mathematical modeling, show that subtilisin serves to regulate growth of the colony. Below a threshold concentration, subtilisin promotes colony growth and expansion. However, once it exceeds a threshold, as occurs at the interface between competing colonies, Slf is then secreted into the medium to rapidly reduce cell density by lysis of the bacterial cells. The presence of genes encoding homologs of dendritiformis sibling bacteriocin in other bacterial species suggests that this mechanism for self-regulation of colony growth might not be limited to P. dendritiformis.

  17. Lethality of Sortase Depletion in Actinomyces oris Caused by Excessive Membrane Accumulation of a Surface Glycoprotein

    PubMed Central

    Wu, Chenggang; Huang, I-Hsiu; Chang, Chungyu; Reardon-Robinson, Melissa Elizabeth; Das, Asis; Ton-That, Hung

    2014-01-01

    Sortase, a cysteine-transpeptidase conserved in Gram-positive bacteria, anchors on the cell wall many surface proteins that facilitate bacterial pathogenesis and fitness. Genetic disruption of the housekeeping sortase in several Gram-positive pathogens reported thus far attenuates virulence, but not bacterial growth. Paradoxically, we discovered that depletion of the housekeeping sortase SrtA was lethal for Actinomyces oris; yet, all of its predicted cell wall-anchored protein substrates (AcaA-N) were individually dispensable for cell viability. Using Tn5-transposon mutagenesis to identify factors that upend lethality of srtA deletion, we uncovered a set of genetic suppressors harboring transposon insertions within genes of a locus encoding AcaC and a LytR-CpsA-Psr (LCP)-like protein. AcaC was shown to be highly glycosylated and dependent on LCP for its glycosylation. Upon SrtA depletion, the glycosylated form of AcaC, hereby renamed GspA, was accumulated in the membrane. Overexpression of GspA in a mutant lacking gspA and srtA was lethal; conversely, cells overexpressing a GspA mutant missing a membrane-localization domain were viable. The results reveal a unique glycosylation pathway in A. oris that is coupled to cell wall anchoring catalyzed by sortase SrtA. Significantly, this novel phenomenon of glyco-stress provides convenient cell-based assays for developing a new class of inhibitors against Gram-positive pathogens. PMID:25230351

  18. MRSA Screening

    MedlinePlus

    ... Tests Online. AACC is a not-for-profit organization and does not endorse non-AACC products and services. Advertising ... aureus Screening Related tests: Wound Culture All content on Lab Tests Online has been ...

  19. Hypertension screening

    NASA Technical Reports Server (NTRS)

    Foulke, J. M.

    1975-01-01

    An attempt was made to measure the response to an announcement of hypertension screening at the Goddard Space Center, to compare the results to those of previous statistics. Education and patient awareness of the problem were stressed.

  20. Developmental Screening

    MedlinePlus

    Learn More about Your Child’s Development: Developmental Monitoring and Screening Taking a first step, waving “bye-bye,” and pointing to something interesting are all developmental milestones, ...

  1. Get Screened

    MedlinePlus

    ... health. Depending on your age, sex, and medical history, you may need to be screened for things like: Certain types of cancer High blood pressure or high cholesterol Diabetes Osteoporosis (weak bones) ...

  2. [HCC screening].

    PubMed

    Albrecht, T

    2008-01-01

    Hepatocellular carcinoma (HCC) is one of the most frequently diagnosed tumour diseases throughout the world. In the vast majority of cases those affected are high-risk patients with chronic viral hepatitis and/or liver cirrhosis, which means there is a clearly identifiable target group for HCC screening. With resection, transplantation, and interventional procedures for local ablation, following early diagnosis curative treatment options are available with which 5-year survival rates of over 60% can be reached. Such early diagnosis is a reality only in a minority of patients, however, and in the majority of cases the disease is already in an advanced stage at diagnosis. One of the objects of HCC screening is diagnosis in an early stage when curative treatment is still possible. Precisely this is achieved by screening, so that the proportion of patients treated with curative intent is decisively higher. There is not yet any clear evidence as to whether this leads to a lowering of the mortality of HCC. As lower mortality is the decisive indicator of success for a screening programme the benefit of HCC screening has so far been neither documented nor refuted. Nonetheless, in large regions of the world it is the practice for high-risk patients to undergo HCC screening in the form of twice-yearly ultrasound examination and determination of AFP.

  3. Anthrax Lethal Toxin Impairs Innate Immune Functions of Alveolar Macrophages and Facilitates Bacillus anthracis Survival

    DTIC Science & Technology

    2006-06-14

    germinate into vegetative bacteria (10, 23), which are capable of secreting anthrax lethal toxin (LT) and edema toxin . In the lymph nodes, bacteria ...inability of AM to completely eradicate bacteria suggests that intracellularly secreted lethal FIG. 5. Lethal toxin impairs bactericidal activity but...Microbiology. All Rights Reserved. Anthrax Lethal Toxin Impairs Innate Immune Functions of Alveolar Macrophages and Facilitates Bacillus anthracis

  4. Ligand-induced expansion of the S1' site in the anthrax toxin lethal factor

    SciTech Connect

    Maize, Kimberly M.; Kurbanov, Elbek K.; Johnson, Rodney L.; Amin, Elizabeth Ambrose; Finzel, Barry C.

    2016-07-05

    The Bacillus anthracis lethal factor (LF) is one component of a tripartite exotoxin partly responsible for persistent anthrax cytotoxicity after initial bacterial infection. Inhibitors of the zinc metalloproteinase have been investigated as potential therapeutic agents, but LF is a challenging target because inhibitors lack sufficient selectivity or possess poor pharmaceutical properties. These structural studies reveal an alternate conformation of the enzyme, induced upon binding of specific inhibitors, that opens a previously unobserved deep pocket termed S1'* which might afford new opportunities to design selective inhibitors that target this subsite.

  5. Mitomycin C-induced synthesis of cloacin DF13 and lethality in cloacinogenic Escherichia coli cells.

    PubMed Central

    van Tiel-Menkveld, G J; Veltkamp, E; De Graaf, F K

    1981-01-01

    Treatment of cloacinogenic cultures with increasing concentrations of mitomycin C induced an increasing synthesis of cloacin DF13 accompanied by a decreasing number of colony-forming cells. Cells grown in the presence of glucose required a 10-fold-higher concentration of mitomycin C for optimal induction of cloacin production than did cells grown with lactate. Release of the cloacin was hampered in glucose-grown cells. Experiments with various CloDF13 insertion and deletion mutants revealed that the transcription of CloDF13 deoxyribonucleic acid sequences adjacent to the cloacin structural gene was essential for mitomycin C-induced lethality. PMID:7012123

  6. Selection and Separation of Viable Cells Based on a Cell-Lethal Assay

    PubMed Central

    Xu, Wei; Herman, Annadele; Phillips, Colleen; Pai, Jeng-Hao; Sims, Christopher E.; Allbritton, Nancy L.

    2010-01-01

    A method to select and separate viable cells based on the results of a cell-lethal assay was developed. Cells were plated on an array of culture sites with each site composed of closely spaced, releasable micropallets. Clonal colonies spanning multiple micropallets on individual culture sites were established within 72 h of plating. Adjacent sites were widely spaced with 100% of the colonies remaining sequestered on a single culture site during expansion. A laser-based method mechanically released a micropallet underlying a colony to segment the colony into two genetically identical colonies. One portion of the segmented colony was collected with 90% efficiency while viability of both fractions was 100%. The segmented colonies released from the array were fixed and subjected to immunofluorescence staining of intracellular phospho-ERK kinase to identify colonies that were highly resistant or sensitive to phorbol ester-induced activation of ERK. These resistant and sensitive cells were then matched to the corresponding viable colonies on the array. Sensitive and resistant colonies on the array were released and cultured. When these cultured cells were reanalyzed for phorbol ester-induced ERK activity, the cells retained the sensitive or resistant phenotype of the originally screened subcolony. Thus cells were separated and collected based using the result of a cell-lethal assay as selection criteria. These microarrays enabling clonal colony segmentation permitted sampling and manipulation of the colonies at very early times and at small cell numbers to reduce reagent, time and manpower requirements. PMID:21142138

  7. High-Throughput Robotically Assisted Isolation of Temperature-sensitive Lethal Mutants in Chlamydomonas reinhardtii

    PubMed Central

    Breker, Michal; Lieberman, Kristi; Tulin, Frej; Cross, Frederick R.

    2016-01-01

    Systematic identification and characterization of genetic perturbations have proven useful to decipher gene function and cellular pathways. However, the conventional approaches of permanent gene deletion cannot be applied to essential genes. We have pioneered a unique collection of ~70 temperature-sensitive (ts) lethal mutants for studying cell cycle regulation in the unicellular green algae Chlamydomonas reinhardtii1. These mutations identify essential genes, and the ts alleles can be conditionally inactivated by temperature shift, providing valuable tools to identify and analyze essential functions. Mutant collections are much more valuable if they are close to comprehensive, since scattershot collections can miss important components. However, this requires the efficient collection of a large number of mutants, especially in a wide-target screen. Here, we describe a robotics-based pipeline for generating ts lethal mutants and analyzing their phenotype in Chlamydomonas. This technique can be applied to any microorganism that grows on agar. We have collected over 3000 ts mutants, probably including mutations in most or all cell-essential pathways, including about 200 new candidate cell cycle mutations. Subsequent molecular and cellular characterization of these mutants should provide new insights in plant cell biology; a comprehensive mutant collection is an essential prerequisite to ensure coverage of a broad range of biological pathways. These methods are integrated with downstream genetics and bioinformatics procedures for efficient mapping and identification of the causative mutations that are beyond the scope of this manuscript. PMID:28060315

  8. Newborn screening in India.

    PubMed

    Rama Devi, A Radha; Naushad, S M

    2004-02-01

    Expanded newborn screening (NBS) is aimed for early detection and intervention of treatable inborn errors of metabolism and also to establish incidence of these disorders in this part of the globe. The first expanded NBS programme initiated in the capital city of Andhra Pradesh to screen all the newborns born in four major Government Maternity Hospitals in Hyderabad by heel prick capillary blood collected on S&S 903 filter paper. Chromatographic (TLC and HPLC), electrophoretic (cellulose acetate and agarose) and ELISA based assays have been employed for screening of common inborn errors of metabolism. This study has shown a high prevalence of treatable Inborn errors of metabolism. Congenital hypothyroidsm is the most common disorder (1 in 1700) followed by congenital Adrenal Hyperplasia (1 in 2575) and Hyperhomocystenemia (1 in 100). Interestingly, a very high prevalence of inborn errors of metabolism to the extent of 1 in every thousand newborns was observed. The study reveals the importance of screening in India, necessitating nation wide large-scale screening.

  9. Building high-resolution synthetic lethal networks: a 'Google map' of the cancer cell.

    PubMed

    Paul, James M; Templeton, Shaina D; Baharani, Akanksha; Freywald, Andrew; Vizeacoumar, Franco J

    2014-12-01

    The most commonly used therapies for cancer involve delivering high doses of radiation or toxic chemicals to the patient that also cause substantial damage to normal tissue. To overcome this, researchers have recently resorted to a basic biological concept called 'synthetic lethality' (SL) that takes advantage of interactions between gene pairs. The identification of SL interactions is of considerable therapeutic interest because if a particular gene is SL with a tumor-causing mutation, then the targeting that gene carries therapeutic advantages. Mapping these interactions in the context of human cancer cells could hold the key to effective, targeted cancer treatments. In this review, we cover the recent advances that aim to identify these SL interactions using unbiased genetic screens.

  10. Lethal effects of short-wavelength visible light on insects.

    PubMed

    Hori, Masatoshi; Shibuya, Kazuki; Sato, Mitsunari; Saito, Yoshino

    2014-12-09

    We investigated the lethal effects of visible light on insects by using light-emitting diodes (LEDs). The toxic effects of ultraviolet (UV) light, particularly shortwave (i.e., UVB and UVC) light, on organisms are well known. However, the effects of irradiation with visible light remain unclear, although shorter wavelengths are known to be more lethal. Irradiation with visible light is not thought to cause mortality in complex animals including insects. Here, however, we found that irradiation with short-wavelength visible (blue) light killed eggs, larvae, pupae, and adults of Drosophila melanogaster. Blue light was also lethal to mosquitoes and flour beetles, but the effective wavelength at which mortality occurred differed among the insect species. Our findings suggest that highly toxic wavelengths of visible light are species-specific in insects, and that shorter wavelengths are not always more toxic. For some animals, such as insects, blue light is more harmful than UV light.

  11. Crossover Suppressors and Balanced Recessive Lethals in CAENORHABDITIS ELEGANS

    PubMed Central

    Herman, Robert K.

    1978-01-01

    Two dominant suppressors of crossing over have been identified following X-ray treatment of the small nematode C. elegans. They suppress crossing over in linkage group II (LGII) about 100-fold and 50-fold and are both tightly linked to LGII markers. One, called C1, segregates independently of all other linkage groups and is homozygous fertile. The other is a translocation involving LGII and X. The translocation also suppresses crossing over along the right half of X and is homozygous lethal. C1 has been used as a balancer of LGII recessive lethal and sterile mutations induced by EMS. The frequencies of occurrence of lethals and steriles were approximately equal. Fourteen mutations were assigned to complementation groups and mapped. They tended to map in the same region where LGII visibles are clustered. PMID:631558

  12. Lethal effects of short-wavelength visible light on insects

    NASA Astrophysics Data System (ADS)

    Hori, Masatoshi; Shibuya, Kazuki; Sato, Mitsunari; Saito, Yoshino

    2014-12-01

    We investigated the lethal effects of visible light on insects by using light-emitting diodes (LEDs). The toxic effects of ultraviolet (UV) light, particularly shortwave (i.e., UVB and UVC) light, on organisms are well known. However, the effects of irradiation with visible light remain unclear, although shorter wavelengths are known to be more lethal. Irradiation with visible light is not thought to cause mortality in complex animals including insects. Here, however, we found that irradiation with short-wavelength visible (blue) light killed eggs, larvae, pupae, and adults of Drosophila melanogaster. Blue light was also lethal to mosquitoes and flour beetles, but the effective wavelength at which mortality occurred differed among the insect species. Our findings suggest that highly toxic wavelengths of visible light are species-specific in insects, and that shorter wavelengths are not always more toxic. For some animals, such as insects, blue light is more harmful than UV light.

  13. Non-Lethal Weapons for Today’s Operations

    DTIC Science & Technology

    2011-01-01

    Douglas J. Jerothe Lieutenant Colonel Paul L. Scholl Susan D. LeVine Kevin J. Swenson Kelley S. Hughes Alicia J. Owsiak Publication Management Bethel...Davel robert.davel@ conus.army.mil 573-563-7092 U.S. Air Force Sal Hernandez salvador.hernandez@ us.af.mil 210-925-5015 U.S. Marine Corps Scott H...Force Base, Nev. (DoD Photo by Alicia J. Owsiak) DoD Non-Lethal Weapons Program 2011 DoD Non-Lethal Weapons Program 2011 Colombian Marine

  14. Advantages of less-tech, less-than-lethal technologies

    NASA Astrophysics Data System (ADS)

    Marts, Donna J.; Overlin, Trudy K.

    1995-05-01

    This paper illustrates the advantages of developing less-tech technologies by reporting on two less-tech, less-than-lethal prototype law enforcement tools developed at the Idaho National Engineering Laboratory. The devices were developed for the National Institute of Justice, less- than-lethal weapons program: 1) an air bag restraint device for use in restraining suspects who become violent during transport in patrol vehicles, and 2) a retractable spiked barrier strip for stopping fleeing vehicles during high-speed pursuit. The success of both projects relied on developing design requirements in conjunction with the actual users of the devices.

  15. Hearing Screening

    ERIC Educational Resources Information Center

    Johnson-Curiskis, Nanette

    2012-01-01

    Hearing levels are threatened by modern life--headsets for music, rock concerts, traffic noises, etc. It is crucial we know our hearing levels so that we can draw attention to potential problems. This exercise requires that students receive a hearing screening for their benefit as well as for making the connection of hearing to listening.

  16. Determinants of the lethality of climate-related disasters in the Caribbean Community (CARICOM): a cross-country analysis.

    PubMed

    Andrewin, Aisha N; Rodriguez-Llanes, Jose M; Guha-Sapir, Debarati

    2015-07-08

    Floods and storms are climate-related hazards posing high mortality risk to Caribbean Community (CARICOM) nations. However risk factors for their lethality remain untested. We conducted an ecological study investigating risk factors for flood and storm lethality in CARICOM nations for the period 1980-2012. Lethality--deaths versus no deaths per disaster event- was the outcome. We examined biophysical and social vulnerability proxies and a decadal effect as predictors. We developed our regression model via multivariate analysis using a generalized logistic regression model with quasi-binomial distribution; removal of multi-collinear variables and backward elimination. Robustness was checked through subset analysis. We found significant positive associations between lethality, percentage of total land dedicated to agriculture (odds ratio [OR] 1.032; 95% CI: 1.013-1.053) and percentage urban population (OR 1.029, 95% CI 1.003-1.057). Deaths were more likely in the 2000-2012 period versus 1980-1989 (OR 3.708, 95% CI 1.615-8.737). Robustness checks revealed similar coefficients and directions of association. Population health in CARICOM nations is being increasingly impacted by climate-related disasters connected to increasing urbanization and land use patterns. Our findings support the evidence base for setting sustainable development goals (SDG).

  17. Determinants of the lethality of climate-related disasters in the Caribbean Community (CARICOM): a cross-country analysis

    NASA Astrophysics Data System (ADS)

    Andrewin, Aisha N.; Rodriguez-Llanes, Jose M.; Guha-Sapir, Debarati

    2015-07-01

    Floods and storms are climate-related hazards posing high mortality risk to Caribbean Community (CARICOM) nations. However risk factors for their lethality remain untested. We conducted an ecological study investigating risk factors for flood and storm lethality in CARICOM nations for the period 1980-2012. Lethality - deaths versus no deaths per disaster event- was the outcome. We examined biophysical and social vulnerability proxies and a decadal effect as predictors. We developed our regression model via multivariate analysis using a generalized logistic regression model with quasi-binomial distribution; removal of multi-collinear variables and backward elimination. Robustness was checked through subset analysis. We found significant positive associations between lethality, percentage of total land dedicated to agriculture (odds ratio [OR] 1.032; 95% CI: 1.013-1.053) and percentage urban population (OR 1.029, 95% CI 1.003-1.057). Deaths were more likely in the 2000-2012 period versus 1980-1989 (OR 3.708, 95% CI 1.615-8.737). Robustness checks revealed similar coefficients and directions of association. Population health in CARICOM nations is being increasingly impacted by climate-related disasters connected to increasing urbanization and land use patterns. Our findings support the evidence base for setting sustainable development goals (SDG).

  18. Determinants of the lethality of climate-related disasters in the Caribbean Community (CARICOM): a cross-country analysis

    PubMed Central

    Andrewin, Aisha N.; Rodriguez-Llanes, Jose M.; Guha-Sapir, Debarati

    2015-01-01

    Floods and storms are climate-related hazards posing high mortality risk to Caribbean Community (CARICOM) nations. However risk factors for their lethality remain untested. We conducted an ecological study investigating risk factors for flood and storm lethality in CARICOM nations for the period 1980–2012. Lethality - deaths versus no deaths per disaster event- was the outcome. We examined biophysical and social vulnerability proxies and a decadal effect as predictors. We developed our regression model via multivariate analysis using a generalized logistic regression model with quasi-binomial distribution; removal of multi-collinear variables and backward elimination. Robustness was checked through subset analysis. We found significant positive associations between lethality, percentage of total land dedicated to agriculture (odds ratio [OR] 1.032; 95% CI: 1.013–1.053) and percentage urban population (OR 1.029, 95% CI 1.003–1.057). Deaths were more likely in the 2000–2012 period versus 1980–1989 (OR 3.708, 95% CI 1.615–8.737). Robustness checks revealed similar coefficients and directions of association. Population health in CARICOM nations is being increasingly impacted by climate-related disasters connected to increasing urbanization and land use patterns. Our findings support the evidence base for setting sustainable development goals (SDG). PMID:26153115

  19. Disruption of the Pelota Gene Causes Early Embryonic Lethality and Defects in Cell Cycle Progression

    PubMed Central

    Adham, Ibrahim M.; Sallam, Mahmoud A.; Steding, Gerd; Korabiowska, Monika; Brinck, Ulrich; Hoyer-Fender, Sigrid; Oh, Changkyu; Engel, Wolfgang

    2003-01-01

    Mutations in either the Drosophila melanogaster pelota or pelo gene or the Saccharomyces cerevisiae homologous gene, DOM34, cause defects of spermatogenesis and oogenesis in Drosophila, and delay of growth and failure of sporulation in yeast. These phenotypes suggest that pelota is required for normal progression of the mitotic and meiotic cell cycle. To determine the role of the pelota in mouse development and progression of cell cycle, we have established a targeted disruption of the mouse Pelo. Heterozygous animals are variable and fertile. Genotyping of the progeny of heterozygous intercrosses shows the absence of Pelo−/− pups and suggests an embryo-lethal phenotype. Histological analyses reveal that the homozygous Pelo deficient embryos fail to develop past day 7.5 of embryogenesis (E7.5). The failure of mitotic active inner cell mass of the Pelo−/− blastocysts to expand in growth after 4 days in culture and the survival of mitotic inactive trophoplast indicate that the lethality of Pelo-null embryos is due to defects in cell proliferation. Analysis of the cellular DNA content reveals the significant increase of aneuploid cells in Pelo−/− embryos at E7.5. Therefore, the percent increase of aneuploid cells at E7.5 may be directly responsible for the arrested development and suggests that Pelo is required for the maintenance of genomic stability. PMID:12556505

  20. On quantifying nonthermal effects on the lethality of pressure-assisted heat preservation processes.

    PubMed

    Peleg, Micha; Corradini, Maria G; Normand, Mark D

    2012-01-01

    Direct experimental identification and quantification of the pressure contribution to a pressure-assisted sterilization process efficacy is difficult. However, dynamic kinetic models of thermal inactivation can be used to assess the lethality of a purely thermal process having the same temperature profile. Thus, a pressure-assisted process' temperature record can be used to generate a corresponding purely thermal survival curve with parameters determined in conventional heating experiments. Comparison of the actual final survival ratio with that calculated for the purely thermal process would reveal whether the hydrostatic pressure had synergistic or antagonistic effect on bacterial spores survival. The effect would be manifested in the number of log cycles subtracted or added to the survival ratio, and in the length of time at the holding temperature needed to produce the final survival ratio of the combined process. A set of combined treatments would reveal how the temperature and pressure profiles affect the pressure's influence on the process' lethality to either vegetative cells or spores. The need to withdraw samples during the thermal and combined processes would be avoided if the thermal survival parameters could be calculated by the "three endpoints method," which does not require the entire survival curve determination. Currently however, this method is limited to thermal inactivation patterns characterized by up to 3 survival parameters, the Weibull-Log logistic (WeLL) model, for example.

  1. Mitogenic cardiomyopathy: a lethal neonatal familial dilated cardiomyopathy characterized by myocyte hyperplasia and proliferation.

    PubMed

    Chang, Kenneth T E; Taylor, Glenn P; Meschino, Wendy S; Kantor, Paul F; Cutz, Ernest

    2010-07-01

    Pediatric cardiomyopathies are a heterogenous group of conditions of which dilated cardiomyopathies are the most common clinicomorphologic subtype. However, the etiology and pathogenesis of many cases of dilated cardiomyopathies remain unknown. We describe a series of 5 cases of a rare but clinically and histologically distinctive dilated cardiomyopathy that was uniformly lethal in early infancy. The 5 cases include 2 pairs of siblings. There was parental consanguinity in 1 of the 2 pairs of siblings. Death occurred in early infancy (range, 22-67 days; mean, 42 days) after a short history of general lethargy, decreased feeding, respiratory distress, or cyanosis. There was no specific birth or early neonatal problems. Autopsy revealed congestive cardiac failure and enlarged, dilated hearts with ventricular dilatation more pronounced than atrial dilatation, and endocardial fibroelastosis. Histology showed prominent hypertrophic nuclear changes of cardiac myofibers and markedly increased myocyte mitotic activity including occasional atypical mitoses. Immunohistochemical staining for Mib1 showed a markedly increased proliferative index of 10% to 20%. Ancillary investigations, including molecular studies, did not reveal a primary cause for the cardiomyopathies. This distinctive dilated cardiomyopathy characterized by unusual histologic features of myocyte nuclear hypertrophy and marked mitotic activity is lethal in early infancy. Its occurrence in 2 pairs of siblings suggests familial inheritance. Although the underlying molecular pathogenesis remains to be elucidated, it is important to recognize this distinctive entity for purposes of genetic counseling.

  2. Science or slaughter: need for lethal sampling of sharks.

    PubMed

    Heupel, M R; Simpfendorfer, C A

    2010-10-01

    General consensus among scientists, commercial interests, and the public regarding the status of shark populations is leading to an increasing need for the scientific community to provide information to help guide effective management and conservation actions. Experience from other marine vertebrate taxa suggests that public, political, and media pressures will play an increasingly important part in setting research, management, and conservation priorities. We examined the potential implications of nonscientific influences on shark research. In particular, we considered whether lethal research sampling of sharks is justified. Although lethal sampling comes at a cost to a population, especially for threatened species, the conservation benefits from well-designed studies provide essential data that cannot be collected currently in any other way. Methods that enable nonlethal collection of life-history data on sharks are being developed (e.g., use of blood samples to detect maturity), but in the near future they will not provide widespread or significant benefits. Development of these techniques needs to continue, as does the way in which scientists coordinate their use of material collected during lethal sampling. For almost half of the known shark species there are insufficient data to determine their population status; thus, there is an ongoing need for further collection of scientific data to ensure all shark populations have a future. Shark populations will benefit most when decisions about the use of lethal sampling are made on the basis of scientific evidence that is free from individual, political, public, and media pressures.

  3. 40 CFR 798.5450 - Rodent dominant lethal assay.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dysfunction of the gamete, but which is lethal to the fertilized egg or developing embryo. (c) Reference... of the uteri are examined to determine the numbers of implants and live and dead embryos. The... determine the total number of implants and the number of live and dead embryos. (3) Animal...

  4. 40 CFR 798.5450 - Rodent dominant lethal assay.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dysfunction of the gamete, but which is lethal to the fertilized egg or developing embryo. (c) Reference... of the uteri are examined to determine the numbers of implants and live and dead embryos. The... determine the total number of implants and the number of live and dead embryos. (3) Animal...

  5. 40 CFR 798.5450 - Rodent dominant lethal assay.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dysfunction of the gamete, but which is lethal to the fertilized egg or developing embryo. (c) Reference... of the uteri are examined to determine the numbers of implants and live and dead embryos. The... determine the total number of implants and the number of live and dead embryos. (3) Animal...

  6. 40 CFR 798.5450 - Rodent dominant lethal assay.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dysfunction of the gamete, but which is lethal to the fertilized egg or developing embryo. (c) Reference... of the uteri are examined to determine the numbers of implants and live and dead embryos. The... determine the total number of implants and the number of live and dead embryos. (3) Animal...

  7. 40 CFR 798.5450 - Rodent dominant lethal assay.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... dysfunction of the gamete, but which is lethal to the fertilized egg or developing embryo. (c) Reference... of the uteri are examined to determine the numbers of implants and live and dead embryos. The... determine the total number of implants and the number of live and dead embryos. (3) Animal...

  8. Evaluation of lethality estimates for combustion gases in military scenarios.

    PubMed

    Smith, S M; Stuhmiller, J H; Januszkiewicz, A J

    1996-12-31

    To meet the military objective of determining criteria for incapacitation and lethality from toxic gas exposures, a series of small animal tests and data analyses were conducted. Carbon monoxide (CO), a narcotic gas and nitrogen dioxide (NO2), an irritant gas, along with carbon dioxide (CO2) were tested individually and in the following mixtures: (CO + CO2), (NO2 + CO2) and (NO2 + CO + CO2). A group of six animals was exposed to each of the gases and their combinations, lethality and biophysical data were collected. We conclude that our observations of lethality from single toxic gases can be correlated with a fractional effective dose (FED) description, in which external concentrations are corrected for minute volume changes. Multiple gas exposures clearly demonstrate synergistic effects because lethality rates greatly exceed those expected from statistically independent causes. Simple addition of the FED values, however, overstates the effect and implies a competition between the narcotic and irritant gas effects. The N-Gas model, while being an additive FED model, does not appear to be in a form that could guide the setting of military exposure standards.

  9. The "Lethal Chamber": Further Evidence of the Euthanasia Option.

    ERIC Educational Resources Information Center

    Elks, Martin A.

    1993-01-01

    Historical discussions of the euthanasia or "lethal chamber" option in relation to people with mental retardation are presented. The paper concludes that eugenic beliefs in the primacy of heredity over environment and the positive role of natural selection may have condoned the poor conditions characteristic of large, segregated institutions and…

  10. The Lethal "Femme Fatale" in the Noir Tradition.

    ERIC Educational Resources Information Center

    Boozer, Jack

    2000-01-01

    Traces the lethal seductress through Hollywood's "noir" history from "Double Indemnity" (1944) to "The Last Seduction" (1996). Examines how this figure largely abjures traditional romance and passive domesticity, choosing instead to apply her sexuality to homicidal plots toward greed. Argues that her narrative…

  11. Conditional lethality strains for the biological control of Anastrepha species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pro-apoptotic cell death genes are promising candidates for biologically-based autocidal control of pest insects as demonstrated by tetracycline (tet)-suppressible systems for conditional embryonic lethality in Drosophila melanogaster (Dm) and the medfly, Ceratitis capitata (Cc). However, for medfly...

  12. Help-Seeking Behavior Prior to Nearly Lethal Suicide Attempts.

    ERIC Educational Resources Information Center

    Barnes, Lauren Seymour; Ikeda, Robin M.; Kresnow, Marcie-jo

    2002-01-01

    The association between help-seeking and nearly lethal suicide attempts was evaluated using data from a population-based, case-control study. Measures of help-seeking included type of consultant contacted, and whether suicide was discussed. Findings suggest efforts to better understand the role of help-seeking in suicide prevention deserves…

  13. Dominant-lethal mutations and heritable translocations in mice

    SciTech Connect

    Generoso, W.M.

    1983-01-01

    Chromosome aberrations are a major component of radiation or chemically induced genetic damage in mammalian germ cells. The types of aberration produced are dependent upon the mutagen used and the germ-cell stage treated. For example, in male meiotic and postmeiotic germ cells certain alkylating chemicals induce both dominant-lethal mutations and heritable translocations while others induce primarily dominant-lethal mutations. Production of these two endpoints appears to be determined by the stability of alkylation products with the chromosomes. If the reaction products are intact in the male chromosomes at the time of sperm entry, they may be repaired in fertilized eggs. If repair is not effected and the alkylation products persist to the time of pronuclear chromosome replication, they lead to chromatid-type aberrations and eventually to dominant-lethality. The production of heritable translocations, on the other hand, requires a transformation of unstable alkylation products into suitable intermediate lesions. The process by which these lesions are converted into chromosome exchange within the male genome takes place after sperm enters the egg but prior to the time of pronuclear chromosome replication (i.e., chromosome-type). Thus, dominant-lethal mutations result from both chromatid- and chromosome-type aberrations while heritable translocations result primarily from the latter type. DNA target sites associated with the production of these two endpoints are discussed.

  14. Vision Screening

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Visi Screen OSS-C, marketed by Vision Research Corporation, incorporates image processing technology originally developed by Marshall Space Flight Center. Its advantage in eye screening is speed. Because it requires no response from a subject, it can be used to detect eye problems in very young children. An electronic flash from a 35 millimeter camera sends light into a child's eyes, which is reflected back to the camera lens. The photorefractor then analyzes the retinal reflexes generated and produces an image of the child's eyes, which enables a trained observer to identify any defects. The device is used by pediatricians, day care centers and civic organizations that concentrate on children with special needs.

  15. A Systematic Screen for Tube Morphogenesis and Branching Genes in the Drosophila Tracheal System

    PubMed Central

    Ghabrial, Amin S.; Levi, Boaz P.; Krasnow, Mark A.

    2011-01-01

    Many signaling proteins and transcription factors that induce and pattern organs have been identified, but relatively few of the downstream effectors that execute morphogenesis programs. Because such morphogenesis genes may function in many organs and developmental processes, mutations in them are expected to be pleiotropic and hence ignored or discarded in most standard genetic screens. Here we describe a systematic screen designed to identify all Drosophila third chromosome genes (∼40% of the genome) that function in development of the tracheal system, a tubular respiratory organ that provides a paradigm for branching morphogenesis. To identify potentially pleiotropic morphogenesis genes, the screen included analysis of marked clones of homozygous mutant tracheal cells in heterozygous animals, plus a secondary screen to exclude mutations in general “house-keeping” genes. From a collection including more than 5,000 lethal mutations, we identified 133 mutations representing ∼70 or more genes that subdivide the tracheal terminal branching program into six genetically separable steps, a previously established cell specification step plus five major morphogenesis and maturation steps: branching, growth, tubulogenesis, gas-filling, and maintenance. Molecular identification of 14 of the 70 genes demonstrates that they include six previously known tracheal genes, each with a novel function revealed by clonal analysis, and two well-known growth suppressors that establish an integral role for cell growth control in branching morphogenesis. The rest are new tracheal genes that function in morphogenesis and maturation, many through cytoskeletal and secretory pathways. The results suggest systematic genetic screens that include clonal analysis can elucidate the full organogenesis program and that over 200 patterning and morphogenesis genes are required to build even a relatively simple organ such as the Drosophila tracheal system. PMID:21750678

  16. A Multivariate Model of Stakeholder Preference for Lethal Cat Management

    PubMed Central

    Wald, Dara M.; Jacobson, Susan K.

    2014-01-01

    Identifying stakeholder beliefs and attitudes is critical for resolving management conflicts. Debate over outdoor cat management is often described as a conflict between two groups, environmental advocates and animal welfare advocates, but little is known about the variables predicting differences among these critical stakeholder groups. We administered a mail survey to randomly selected stakeholders representing both of these groups (n = 1,596) in Florida, where contention over the management of outdoor cats has been widespread. We used a structural equation model to evaluate stakeholder intention to support non-lethal management. The cognitive hierarchy model predicted that values influenced beliefs, which predicted general and specific attitudes, which in turn, influenced behavioral intentions. We posited that specific attitudes would mediate the effect of general attitudes, beliefs, and values on management support. Model fit statistics suggested that the final model fit the data well (CFI = 0.94, RMSEA = 0.062). The final model explained 74% of the variance in management support, and positive attitudes toward lethal management (humaneness) had the largest direct effect on management support. Specific attitudes toward lethal management and general attitudes toward outdoor cats mediated the relationship between positive (p<0.05) and negative cat-related impact beliefs (p<0.05) and support for management. These results supported the specificity hypothesis and the use of the cognitive hierarchy to assess stakeholder intention to support non-lethal cat management. Our findings suggest that stakeholders can simultaneously perceive both positive and negative beliefs about outdoor cats, which influence attitudes toward and support for non-lethal management. PMID:24736744

  17. Transparent screens.

    PubMed

    Rosenthal, R J

    1988-01-01

    There is a kind of transitional phenomenon found among certain borderline patients which is quite distinct from Winnicott's transitional object. These are patients who are preoccupied with maintaining proper physical distance from their objects, in order to regulate anxieties about isolation on the one hand, and identity-annihilating closeness on the other. Since they believe the activity of looking to be intrusive and devouring, hence dangerous, transparent screens are interposed between self and other, and serve as protective barriers. These screens function intrapsychically as well, to split off or hide those aspects of the self felt to be unacceptable. The analyst may witness the failure of the screen in several ways: it may create too great a distance, isolating the individual and keeping him from life; it may become contaminated by projections and turn into a persecutor, or trap the individual, a state of intolerable claustrophobia; most dramatically, it may suddenly shatter. The latter is associated with psychosis and death, and its appearance may be a harbinger of suicide.

  18. Comparative study of peritoneal macrophage functions in mice receiving lethal and non-lethal doses of LPS.

    PubMed

    Víctor, V M; De la Fuente, M

    2000-01-01

    In previous studies, we have observed changes in several functions of peritoneal macrophages from female BALB/c mice with lethal endotoxic shock caused by intraperitoneal injection of Escherichia coli O55:B5 lipopolysaccharide (LPS; 100 mg/kg), which were associated with a high production of superoxide anion and tumor necrosis factor alpha (TNF-alpha). In the present work, both a lethal dose (250 mg/kg) and a non-lethal dose (100 mg/kg) of LPS were used in female Swiss mice. In peritoneal macrophages, the following functions were studied at 2, 4, 12 and 24 h after LPS injection: adherence to substrate, chemotaxis, ingestion of particles, and superoxide anion and TNF-alpha production. In both groups, the results showed a stimulation of adherence, ingestion and superoxide production as well as a decrease of chemotaxis, whereas TNF-alpha could not be detected in either of the two groups. These effects were more evident with the 250 mg/kg dose, especially as regards superoxide anion production, which was higher in the animals treated with a lethal dose of LPS.

  19. Functional diversity of non-lethal effects, chemical camouflage, and variation in fish avoidance in colonizing beetles.

    PubMed

    Resetarits, William J; Pintar, Matthew R

    2016-12-01

    Predators play an extremely important role in natural communities. In freshwater systems, fish can dominate sorting both at the colonization and post-colonization stage. Specifically, for many colonizing species, fish can have non-lethal, direct effects that exceed the lethal direct effects of predation. Functionally diverse fish species with a range of predatory capabilities have previously been observed to elicit functionally equivalent responses on oviposition in tree frogs. We tested this hypothesis of functional equivalence of non-lethal effects for four predatory fish species, using naturally colonizing populations of aquatic beetles. Among taxa other than mosquitoes, and with the exception of the chemically camouflaged pirate perch, Aphredoderus sayanus, we provide the first evidence of variation in colonization or oviposition responses to different fish species. Focusing on total abundance, Fundulus chrysotus, a gape-limited, surface-feeding fish, elicited unique responses among colonizing Hydrophilidae, with the exception of the smallest and most abundant taxa, Paracymus, while Dytiscidae responded similarly to all avoided fish. Neither family responded to A. sayanus. Analysis of species richness and multivariate characterization of the beetle assemblages for the four fish species and controls revealed additional variation among the three avoided species and confirmed that chemical camouflage in A. sayanus results in assemblages essentially identical to fishless controls. The origin of this variation in beetle responses to different fish is unknown, but may involve variation in cue sensitivity, different behavioral algorithms, or differential responses to species-specific fish cues. The identity of fish species occupying aquatic habitats is crucial to understanding community structure, as varying strengths of lethal and non-lethal effects, as well as their interaction, create complex landscapes of predator effects and challenge the notion of functional

  20. Podophyllum hexandrum-Mediated Survival Protection and Restoration of Other Cellular Injuries in Lethally Irradiated Mice

    PubMed Central

    Sankhwar, Sanghmitra; Gupta, Manju Lata; Gupta, Vanita; Verma, Savita; Suri, Krishna Avtar; Devi, Memita; Sharma, Punita; Khan, Ehsan Ahmed; Alam, M. Sarwar

    2011-01-01

    This study aims at the development of a safe and effective formulation to counter the effects of lethal irradiation. The sub-fraction (G-001M), prepared from Podophyllum hexandrum has rendered high degree of survival (>90%) at a dose of 6 mg kg−1 body weight (intramuscular) in lethally irradiated mice. Therapeutic dose of G-001M, at about 20 times lower concentration than its LD100, has revealed a DRF of 1.62. Comet assay studies in peripheral blood leukocytes have reflected that, treatment of G-001M before irradiation has significantly reduced DNA tail length (P < .001) and DNA damage score (P < .001), as compared to radiation-only group. Spleen cell counts in irradiated animals had declined drastically at the very first day of exposure, and the fall continued till the 5th day (P < .001). In the treated irradiated groups, there was a steep reduction in the counts initially, but this phase did not prolong. More than 60% decline in thymocytes of irradiated group animals was registered at 5 h of irradiation when compared with controls, and the fall progressed further downwards with the similar pace till 5th day of exposure (P < .001). At later intervals, thymus was found fully regressed. In G-001M pre-treated irradiated groups also, thymocytes decreased till the 5th day but thereafter rejuvenated and within 30 days of treatment the values were close to normal. Current studies have explicitly indicated that, G-001M in very small doses has not only rendered high survivability in lethally irradiated mice, but also protected their cellular DNA, besides supporting fast replenishment of the immune system. PMID:19553386

  1. Genetic studies: dominant lethal study, sex linked recessive lethal, ames mutagenicity, and heritable translocation test of thermal processed, frozen, electron irradiated, and gamma irradiated chicken. Final report Jun 76-Aug 83

    SciTech Connect

    Sullivan, D.; Lusskin, R.M.; Thomson, G.M.; Kuzdas, C.D.; Ronning, D.C.

    1983-01-01

    Four samples of chicken meat identified as the frozen control, thermally processed, gamma sterilized (5.9 Mrad), and electron sterilized (5.9 MeV), along with negative and positive controls, were evaluated for genetic activity. The samples were evaluated for ability to induce dominant lethal mutations in spermatid and spermatozoan stages of spermatogenesis in mice fed 35 percent chicken meat. The test meat samples were not observed to have an effect on the incidence of the dominant lethal mutations. However, the positive control failed to give a positive response. The meat samples were investigated for mutagenic activity employing Drosophila melanogaster in the sex linked recessive lethal test. The samples were determined to be nonmutagenic in this test and the positive control gave a significant response. Reduced production of offspring in cultures of Drosophila reared on gamma irradiated chicken which could not be overcome by the addition of vitamins was observed. Pre-incubation tests with and without added mutagens revealed that in no case was a positive result observed in the Ames test from chicken meat without an added mutagen. The manner in which chicken meat was processed had no effect upon the response to the Ames test. A heritable translocation test in mice failed to reveal any cytological evidence of translocation heterozygosity in any of the chicken-containing diets.

  2. Synthetic lethal interactions suggest a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation.

    PubMed Central

    Costa, P J; Arndt, K M

    2000-01-01

    Strong evidence indicates that transcription elongation by RNA polymerase II (pol II) is a highly regulated process. Here we present genetic results that indicate a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation. A screen for synthetic lethal mutations was carried out with an rtf1 deletion mutation to identify factors that interact with Rtf1 or regulate the same process as Rtf1. The screen uncovered mutations in SRB5, CTK1, FCP1, and POB3. These genes encode an Srb/mediator component, a CTD kinase, a CTD phosphatase, and a protein involved in the regulation of transcription by chromatin structure, respectively. All of these gene products have been directly or indirectly implicated in transcription elongation, indicating that Rtf1 may also regulate this process. In support of this view, we show that RTF1 functionally interacts with genes that encode known elongation factors, including SPT4, SPT5, SPT16, and PPR2. We also show that a deletion of RTF1 causes sensitivity to 6-azauracil and mycophenolic acid, phenotypes correlated with a transcription elongation defect. Collectively, our results suggest that Rtf1 may function as a novel transcription elongation factor in yeast. PMID:11014804

  3. Breast cancer screening

    MedlinePlus

    Mammogram - breast cancer screening; Breast exam - breast cancer screening; MRI - breast cancer screening ... performed to screen women to detect early breast cancer when it is more likely to be cured. ...

  4. Strategy for enhanced transgenic strain development for embryonic conditionnal lethality in Anastrepha suspensa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here the first reproductive sterility system for the tephritid pest, Anastrepha suspensa, is presented, based on lethality primarily in embryos heterozygous for a lethal conditional transgene combination. The tetracycline-suppressible system uses the cellularization-specific A. suspensa serendipity...

  5. A Systems Biology Approach to Link Nuclear Factor Kappa B Activation with Lethal Prostate Cancer

    DTIC Science & Technology

    2012-05-01

    progression of prostate cancer to a lethal disease . We aim to identify patients with lethal prostate cancer using a systems biology approach focused on...activation which are associated with lethal disease . (Months 1 to 18) Task 1A: Perform gene profiling of tumors and determine whether a set of genes and...panel to be assessed for correlation with lethal disease . (Month 1 to 18) Accomplishments: In the first 12 months of the grant we have (i

  6. A Systems Biology Approach to Link Nuclear Factor Kappa B Activation with Lethal Prostate Cancer

    DTIC Science & Technology

    2013-05-01

    independent data sets for association with lethal disease; ii) inform and increase power for identification of new SNPs in GWAS datasets associated with...for association with lethal disease; ii) inform and increase power for identification of new SNPs in GWAS datasets associated with lethal outcome...low risk/non-lethal prostate cancer cohort. We initially planned to use EDRN samples, but due to the samples being committed to a GWAS analysis, it

  7. Antidotes to anthrax lethal factor intoxication. Part 3: Evaluation of core structures and further modifications to the C2-side chain.

    PubMed

    Jiao, Guan-Sheng; Kim, Seongjin; Moayeri, Mahtab; Crown, Devorah; Thai, April; Cregar-Hernandez, Lynne; McKasson, Linda; Sankaran, Banumathi; Lehrer, Axel; Wong, Teri; Johns, Lisa; Margosiak, Stephen A; Leppla, Stephen H; Johnson, Alan T

    2012-03-15

    Four core structures capable of providing sub-nanomolar inhibitors of anthrax lethal factor (LF) were evaluated by comparing the potential for toxicity, physicochemical properties, in vitro ADME profiles, and relative efficacy in a rat lethal toxin (LT) model of LF intoxication. Poor efficacy in the rat LT model exhibited by the phenoxyacetic acid series (3) correlated with low rat microsome and plasma stability. Specific molecular interactions contributing to the high affinity of inhibitors with a secondary amine in the C2-side chain were revealed by X-ray crystallography.

  8. Synthetic lethality between PAXX and XLF in mammalian development

    PubMed Central

    Balmus, Gabriel; Barros, Ana C.; Wijnhoven, Paul W.G.; Lescale, Chloé; Hasse, Hélène Lenden; Boroviak, Katharina; le Sage, Carlos; Doe, Brendan; Speak, Anneliese O.; Galli, Antonella; Jacobsen, Matt; Deriano, Ludovic; Adams, David J.; Jackson, Stephen P.

    2016-01-01

    PAXX was identified recently as a novel nonhomologous end-joining DNA repair factor in human cells. To characterize its physiological roles, we generated Paxx-deficient mice. Like Xlf−/− mice, Paxx−/− mice are viable, grow normally, and are fertile but show mild radiosensitivity. Strikingly, while Paxx loss is epistatic with Ku80, Lig4, and Atm deficiency, Paxx/Xlf double-knockout mice display embryonic lethality associated with genomic instability, cell death in the central nervous system, and an almost complete block in lymphogenesis, phenotypes that closely resemble those of Xrcc4−/− and Lig4−/− mice. Thus, combined loss of Paxx and Xlf is synthetic-lethal in mammals. PMID:27798842

  9. 76 FR 6054 - Use of Less-Than-Lethal Force: Delegation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ...-1146-F] RIN 1120-AB46 Use of Less-Than-Lethal Force: Delegation AGENCY: Bureau of Prisons, Justice... regulation on the use of chemical agents and other non-lethal (less-than-lethal) force to clarify that the... 39584), regarding the use of [[Page 6055

  10. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  11. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  12. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  13. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  14. 28 CFR 552.25 - Use of chemical agents or non-lethal weapons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Use of chemical agents or non-lethal weapons. 552.25 Section 552.25 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE... agents or non-lethal weapons. The Warden may authorize the use of chemical agents or non-lethal...

  15. Developing Non-Lethal Weapons: The Human Effects Characterization Process

    DTIC Science & Technology

    2015-06-01

    Review Board ( HERB ). The board provides Non-Lethal Weapons Program Managers and Milestone Decision Authorities with: • An assessment of the...quality and completeness of human effects information • Potential human effects risks • Recommendations to mitigate these risks The HERB consists of...and U.S. Coast Guard. The DoD Instruction states that “… the HERB review ensures human effects of NLWs are evaluated consistently.” In addition to

  16. Autopsy observations in lethal short-rib polydactyly syndromes.

    PubMed

    Okiro, Patricia; Wainwright, Helen; Spranger, Jürgen; Beighton, Peter

    2015-01-01

    The short rib-polydactyly syndromes are a heterogeneous group of lethal autosomal recessive disorders (SRP I-IV), which result from cellular ciliary dysfunction during embryogenesis. Diagnosis is conventionally based on radiographic imaging. Since 1976, postmortem investigations of 5 affected fetuses or stillbirths have been undertaken and the visceral abnormalities have been documented. These anomalies are discussed in the context of prenatal differential diagnosis and prognostication following imaging in pregnancy and at autopsy following miscarriage or stillbirth.

  17. Non-Lethal Weapons: Considerations for the Joint Force Commander

    DTIC Science & Technology

    2007-05-10

    a derivative of the opiate fentanyl, used by Russian military forces against Chechen terrorists in Moscow in October 2002. Unable to control the...populations. Instigators can organize and agitate a mob to engage in threatening behavior, and may attempt to employ lethal means from within that... mob . Combatants may seek shelter in homes, businesses, religious buildings, or medical facilities. It is in these scenarios that NLWs hold so much

  18. [Lethal achondrogenesis: a review of 56 cases (author's transl)].

    PubMed

    Schulte, M J; Lenz, W; Vogel, M

    1978-07-01

    54 cases with lethal achondrogenesis from the literature as well as two own cases are reviewed and analyzed with regard to the following characteristics: sex, hydramnios, breech presentation, duration of pregnancy, length and weight at birth, head circumference, length of upper and lower extremities, clinical and radiological data, age of mother and father at time of birth, familial occurrence and consanguinity of parents, histological, histochemical and electronmicroscopic tissue examination.

  19. Institute for Non-Lethal Defense Technologies Report: Ballistic Gelatin

    DTIC Science & Technology

    2004-02-01

    can be easily recovered, making this model ideal for forensics, and the wound profile visualization has proved to be a tool for wound treatment ...calibrated to reproduce measurements observed in living animal tissue. This allows prediction of wound characteristics for a given projectile without animal...must still interpret the data collected from wound profiles to determine projectile efficiency or lethality. In spite of difficulties with cost

  20. Molecular foundations of reproductive lethality in Arabidopsis thaliana.

    PubMed

    Muralla, Rosanna; Lloyd, Johnny; Meinke, David

    2011-01-01

    The SeedGenes database (www.seedgenes.org) contains information on more than 400 genes required for embryo development in Arabidopsis. Many of these EMBRYO-DEFECTIVE (EMB) genes encode proteins with an essential function required throughout the life cycle. This raises a fundamental question. Why does elimination of an essential gene in Arabidopsis often result in embryo lethality rather than gametophyte lethality? In other words, how do mutant (emb) gametophytes survive and participate in fertilization when an essential cellular function is disrupted? Furthermore, why do some mutant embryos proceed further in development than others? To address these questions, we first established a curated dataset of genes required for gametophyte development in Arabidopsis based on information extracted from the literature. This provided a basis for comparison with EMB genes obtained from the SeedGenes dataset. We also identified genes that exhibited both embryo and gametophyte defects when disrupted by a loss-of-function mutation. We then evaluated the relationship between mutant phenotype, gene redundancy, mutant allele strength, gene expression pattern, protein function, and intracellular protein localization to determine what factors influence the phenotypes of lethal mutants in Arabidopsis. After removing cases where continued development potentially resulted from gene redundancy or residual function of a weak mutant allele, we identified numerous examples of viable mutant (emb) gametophytes that required further explanation. We propose that the presence of gene products derived from transcription in diploid (heterozygous) sporocytes often enables mutant gametophytes to survive the loss of an essential gene in Arabidopsis. Whether gene disruption results in embryo or gametophyte lethality therefore depends in part on the ability of residual, parental gene products to support gametophyte development. We also highlight here 70 preglobular embryo mutants with a zygotic pattern

  1. Erythropoiesis suppression is associated with anthrax lethal toxin-mediated pathogenic progression.

    PubMed

    Chang, Hsin-Hou; Wang, Tsung-Pao; Chen, Po-Kong; Lin, Yo-Yin; Liao, Chih-Hsien; Lin, Ting-Kai; Chiang, Ya-Wen; Lin, Wen-Bin; Chiang, Chih-Yu; Kau, Jyh-Hwa; Huang, Hsin-Hsien; Hsu, Hui-Ling; Liao, Chi-Yuan; Sun, Der-Shan

    2013-01-01

    Anthrax is a disease caused by the bacterium Bacillus anthracis, which results in high mortality in animals and humans. Although some of the mechanisms are already known such as asphyxia, extensive knowledge of molecular pathogenesis of this disease is deficient and remains to be further investigated. Lethal toxin (LT) is a major virulence factor of B. anthracis and a specific inhibitor/protease of mitogen-activated protein kinase kinases (MAPKKs). Anthrax LT causes lethality and induces certain anthrax-like symptoms, such as anemia and hypoxia, in experimental mice. Mitogen-activated protein kinases (MAPKs) are the downstream pathways of MAPKKs, and are important for erythropoiesis. This prompted us to hypothesize that anemia and hypoxia may in part be exacerbated by erythropoietic dysfunction. As revealed by colony-forming cell assays in this study, LT challenges significantly reduced mouse erythroid progenitor cells. In addition, in a proteolytic activity-dependent manner, LT suppressed cell survival and differentiation of cord blood CD34(+)-derived erythroblasts in vitro. Suppression of cell numbers and the percentage of erythroblasts in the bone marrow were detected in LT-challenged C57BL/6J mice. In contrast, erythropoiesis was provoked through treatments of erythropoietin, significantly ameliorating the anemia and reducing the mortality of LT-treated mice. These data suggested that suppressed erythropoiesis is part of the pathophysiology of LT-mediated intoxication. Because specific treatments to overcome LT-mediated pathogenesis are still lacking, these efforts may help the development of effective treatments against anthrax.

  2. IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality.

    PubMed

    Zhang, Hong; Neuhöfer, Patrick; Song, Liang; Rabe, Björn; Lesina, Marina; Kurkowski, Magdalena U; Treiber, Matthias; Wartmann, Thomas; Regnér, Sara; Thorlacius, Henrik; Saur, Dieter; Weirich, Gregor; Yoshimura, Akihiko; Halangk, Walter; Mizgerd, Joseph P; Schmid, Roland M; Rose-John, Stefan; Algül, Hana

    2013-03-01

    Acute lung injury (ALI) is an inflammatory disease with a high mortality rate. Although typically seen in individuals with sepsis, ALI is also a major complication in severe acute pancreatitis (SAP). The pathophysiology of SAP-associated ALI is poorly understood, but elevated serum levels of IL-6 is a reliable marker for disease severity. Here, we used a mouse model of acute pancreatitis-associated (AP-associated) ALI to determine the role of IL-6 in ALI lethality. Il6-deficient mice had a lower death rate compared with wild-type mice with AP, while mice injected with IL-6 were more likely to develop lethal ALI. We found that inflammation-associated NF-κB induced myeloid cell secretion of IL-6, and the effects of secreted IL-6 were mediated by complexation with soluble IL-6 receptor, a process known as trans-signaling. IL-6 trans-signaling stimulated phosphorylation of STAT3 and production of the neutrophil attractant CXCL1 in pancreatic acinar cells. Examination of human samples revealed expression of IL-6 in combination with soluble IL-6 receptor was a reliable predictor of ALI in SAP. These results demonstrate that IL-6 trans-signaling is an essential mediator of ALI in SAP across species and suggest that therapeutic inhibition of IL-6 may prevent SAP-associated ALI.

  3. IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality

    PubMed Central

    Zhang, Hong; Neuhöfer, Patrick; Song, Liang; Rabe, Björn; Lesina, Marina; Kurkowski, Magdalena U.; Treiber, Matthias; Wartmann, Thomas; Regnér, Sara; Thorlacius, Henrik; Saur, Dieter; Weirich, Gregor; Yoshimura, Akihiko; Halangk, Walter; Mizgerd, Joseph P.; Schmid, Roland M.; Rose-John, Stefan; Algül, Hana

    2013-01-01

    Acute lung injury (ALI) is an inflammatory disease with a high mortality rate. Although typically seen in individuals with sepsis, ALI is also a major complication in severe acute pancreatitis (SAP). The pathophysiology of SAP-associated ALI is poorly understood, but elevated serum levels of IL-6 is a reliable marker for disease severity. Here, we used a mouse model of acute pancreatitis–associated (AP-associated) ALI to determine the role of IL-6 in ALI lethality. Il6-deficient mice had a lower death rate compared with wild-type mice with AP, while mice injected with IL-6 were more likely to develop lethal ALI. We found that inflammation-associated NF-κB induced myeloid cell secretion of IL-6, and the effects of secreted IL-6 were mediated by complexation with soluble IL-6 receptor, a process known as trans-signaling. IL-6 trans-signaling stimulated phosphorylation of STAT3 and production of the neutrophil attractant CXCL1 in pancreatic acinar cells. Examination of human samples revealed expression of IL-6 in combination with soluble IL-6 receptor was a reliable predictor of ALI in SAP. These results demonstrate that IL-6 trans-signaling is an essential mediator of ALI in SAP across species and suggest that therapeutic inhibition of IL-6 may prevent SAP-associated ALI. PMID:23426178

  4. Purification and biophysical characterization of the core protease domain of anthrax lethal factor

    SciTech Connect

    Gkazonis, Petros V.; Dalkas, Georgios A.; Chasapis, Christos T.; Vlamis-Gardikas, Alexios; Bentrop, Detlef; Spyroulias, Georgios A.

    2010-06-04

    Anthrax lethal toxin (LeTx) stands for the major virulence factor of the anthrax disease. It comprises a 90 kDa highly specific metalloprotease, the anthrax lethal factor (LF). LF possesses a catalytic Zn{sup 2+} binding site and is highly specific against MAPK kinases, thus representing the most potent native biomolecule to alter and inactivate MKK [MAPK (mitogen-activated protein kinase) kinases] signalling pathways. Given the importance of the interaction between LF and substrate for the development of anti-anthrax agents as well as the potential treatment of nascent tumours, the analysis of the structure and dynamic properties of the LF catalytic site are essential to elucidate its enzymatic properties. Here we report the recombinant expression and purification of a C-terminal part of LF (LF{sub 672-776}) that harbours the enzyme's core protease domain. The biophysical characterization and backbone assignments ({sup 1}H, {sup 13}C, {sup 15}N) of the polypeptide revealed a stable, well folded structure even in the absence of Zn{sup 2+}, suitable for high resolution structural analysis by NMR.

  5. Using photopigment biomarkers to quantify sub-lethal effects of petroleum pollution on natural phytoplankton assemblages

    SciTech Connect

    Swistak, J.; Pinckney, J.; Piehler, M.; Paerl, H.

    1995-12-31

    Although much work has been undertaken to determine the toxicity of petroleum pollutants to phytoplankton, most studies have used pure cultures to monitor growth of selected phytoplankton species. Fewer have considered the net effect on entire microalgal communities. Using high performance liquid chromatography (HPLC) to characterize diagnostic microalgal pigments, the authors were able to simultaneously assess sub-lethal pollutant effects on entire communities as well as on individual phytoplankton functional groups. Incubations of natural water samples with diesel fuel, an important contributor to coastal petroleum pollution, revealed significant changes in photopigments and relative abundance of taxonomic groups at sub-lethal concentrations. Differential rates of change of indicator pigment concentrations suggest a range of sensitivity among phytoplankton groups. In preliminary experiments, cyanobacteria exhibited the greatest overall tolerance to the diesel fuel concentrations tested, while cryptomonads displayed the most sensitivity. The authors are currently evaluating the responses of seasonal phytoplankton populations from 3 sites exposed to varied levels of petroleum pollution. HPLC will be used to characterize phytoplankton populations and to determine if the most abundant groups are also the most tolerant of diesel fuel. Preliminary experiments indicate that diesel fuel pollution may modify the structure and function of phytoplankton communities and subsequently alter the trophodynamics of impacted systems.

  6. An unusual autopsy case of lethal hypothermia exacerbated by body lice-induced severe anemia.

    PubMed

    Nara, Akina; Nagai, Hisashi; Yamaguchi, Rutsuko; Makino, Yohsuke; Chiba, Fumiko; Yoshida, Ken-ichi; Yajima, Daisuke; Iwase, Hirotaro

    2016-05-01

    Pediculus humanus humanus (known as body lice) are commonly found in the folds of clothes, and can cause skin disorders when they feed on human blood, resulting in an itching sensation. Body lice are known as vectors of infectious diseases, including typhus, recurrent fever, and trench fever. An infestation with blood-sucking body lice induces severe cutaneous pruritus, and this skin disorder is known as "vagabond's disease." A body lice infestation is sometimes complicated with iron deficiency anemia. In the present case, a man in his late 70s died of lethal hypothermia in the outdoors during the winter season. The case history and autopsy findings revealed that the cause of the lethal hypothermia was iron deficiency anemia, which was associated with a prolonged infestation of blood-sucking body lice. Also, he had vagabond's disease because the skin on his body was abnormal and highly pigmented. This is an unusual autopsy case since the body lice contributed to the cause of the death.

  7. Identification of a Novel RNA Virus Lethal to Tilapia

    PubMed Central

    Eyngor, Marina; Zamostiano, Rachel; Kembou Tsofack, Japhette Esther; Berkowitz, Asaf; Bercovier, Hillel; Tinman, Simon; Lev, Menachem; Hurvitz, Avshalom; Galeotti, Marco; Eldar, Avi

    2014-01-01

    Tilapines are important for the sustainability of ecological systems and serve as the second most important group of farmed fish worldwide. Significant mortality of wild and cultured tilapia has been observed recently in Israel. The etiological agent of this disease, a novel RNA virus, is described here, and procedures allowing its isolation and detection are revealed. The virus, denominated tilapia lake virus (TiLV), was propagated in primary tilapia brain cells or in an E-11 cell line, and it induced a cytopathic effect at 5 to 10 days postinfection. Electron microscopy revealed enveloped icosahedral particles of 55 to 75 nm. Low-passage TiLV, injected intraperitoneally in tilapia, induced a disease resembling the natural disease, which typically presents with lethargy, ocular alterations, and skin erosions, with >80% mortality. Histological changes included congestion of the internal organs (kidneys and brain) with foci of gliosis and perivascular cuffing of lymphocytes in the brain cortex; ocular inflammation included endophthalmitis and cataractous changes of the lens. The cohabitation of healthy and diseased fish demonstrated that the disease is contagious and that mortalities (80 to 100%) occur within a few days. Fish surviving the initial mortality were immune to further TiLV infections, suggesting the mounting of a protective immune response. Screening cDNA libraries identified a TiLV-specific sequence, allowing the design of a PCR-based diagnostic test. This test enables the specific identification of TiLV in tilapines and should help control the spread of this virus worldwide. PMID:25232154

  8. Non-Lethal Weapons: Setting Our Phasers on Stun? Potential Stratetgic Blessings and Curses of Non-Lethal Weapons on the Battlefield

    DTIC Science & Technology

    2003-08-01

    Guided Munition (ERGM)54 and other long range delivery vehicles such as mortars , shoulder launched weapons, artillery, missiles, guided bombs , and...launchers, mortars , field artillery, and aircraft ordnance. 5. Malodorants Malodorous substances can be very useful operationally in counter...a Non-Lethal Mortar Munition, an 81 mm round designed to deliver and dispense non-lethal payloads up to 1.5 km. A sixth weapon is a non-lethal

  9. Lethal injection, autonomy and the proper ends of medicine.

    PubMed

    Silver, David

    2003-04-01

    Gerald Dworkin has argued that it is inconsistent with the proper ends of medicine for a physician to participate in an execution by lethal injection. He does this by proposing a principle by which we are to judge whether an action is consistent with the proper ends of medicine. I argue: (a) that this principle, if valid, does not show that it is inconsistent with the proper ends of medicine for a physician to participate in an execution by lethal injection; and (b) that this principle is not valid, and this is because it mistakenly views the promotion of patient autonomy as one of the proper ends of medicine. Rather, I propose, we should view respect for a patient's autonomy as a constraint on the pursuit of the proper ends of medicine, rather than as one of the proper ends itself. With this revised understanding of the proper ends of medicine, we can conclude that it is inconsistent with the proper ends of medicine for a physician to participate in an execution by lethal injection.

  10. Skin penetration assessment of less lethal kinetic energy munitions.

    PubMed

    Bir, Cynthia A; Stewart, Shelby J; Wilhelm, Marianne

    2005-11-01

    The development of less-lethal technologies has provided law enforcement personnel with an alternative to lethal force. Although the less lethal projectile was produced to engender non-penetrating wounds, case studies show that there have been a number of reported penetrating injuries ranging from minor to significant in morbidity. The objective of this study was to determine the energy per unit area required to penetrate various regions of the body. Eight unembalmed postmortem human specimens were procured for this testing. Each specimen sustained a maximum of 25 impacts consisting of shots to the anterior and posterior thorax, abdomen, and legs. A 12-gauge, fin-stabilized, rubber rocket round was used as the impactor for all of the conducted tests. The energy density required for 50% risk of penetration varied from 23.99 J/cm2 for the location on the anterior rib (p = 0.000) to 52.74 J/cm2 for the location on the posterior rib (p = 0.001).

  11. Debye screening

    NASA Astrophysics Data System (ADS)

    Brydges, David C.; Federbush, Paul

    1980-10-01

    The existence and exponential clustering of correlation functions for a classical coulomb system at low density or high temperature are proven using methods from constructive quantum field theory, the sine gordon transformation and the Glimm, Jaffe, Spencer expansion about mean field theory. This is a vindication of a belief of long standing among physicists, known as Debye screening. That is, because of special properties of the coulomb potential, the configurations of significant probability are those in which the long range parts of r -1 are mostly cancelled, leaving an effective exponentially decaying potential acting between charge clouds. This paper generalizes a previous paper of one of the authors in which these results were obtained for a special lattice system. The present treatment covers the continuous mechanics situation, with essentially arbitrary short range forces and charge species. Charge symmetry is not assumed.

  12. Gap-PCR Screening for Common Large Deletional Mutations of β-Globin Gene Cluster Revealed a Higher Prevalence of the Turkish Inversion/Deletion (δβ)0 Mutation in Antalya

    PubMed Central

    Bilgen, Türker; Altıok Clark, Özden; Öztürk, Zeynep; Yeşilipek, M. Akif; Keser, İbrahim

    2016-01-01

    Objective: Although the calculated carrier frequency for point mutations of the β-globin gene is around 10% for Antalya Province, nothing is known about the profile of large deletional mutations involving the β-globin gene. In this study, we aimed to screen common deletional mutations in the β-globin gene cluster in patients for whom direct DNA sequencing was not able to demonstrate the mutation(s) responsible for the disease phenotype. Materials and Methods: Thirty-one index cases selected with a series of selection events among 60 cases without detected β-globin gene mutation from 580 thalassemia-related cases tested by direct sequencing over the last 4 years in our diagnostic center were screened for the most common 8 different large deletional mutations of the β-globin gene cluster by gap-PCR. Results: We detected 1 homozygous and 9 heterozygous novel unrelated cases for the Turkish inversion/deletion (δβ)0 mutation in our series of 31 cases. Our study showed that the Turkish inversion/deletion (δβ)0 mutation per se accounts for 16.6% of the unidentified causative alleles and also accounts for 1.5% of all detected mutations over the last 4 years in our laboratory. Conclusion: Since molecular diagnosis of deletional mutations in the β-globin gene cluster warrants different approaches, it deserves special attention in order to provide prenatal diagnosis and prevention opportunities to the families involved. We conclude that the Turkish inversion/deletion (δβ)0, as the most prevalent deletional mutation detected so far, has to be routinely tested for in Antalya, and the gap-PCR approach has valuable diagnostic potential in the patients at risk. PMID:26377447

  13. Lethal herpesvirosis in 16 captive horned vipers (Vipera ammodytes ammodytes): pathological and ultrastructural findings.

    PubMed

    Catoi, C; Gal, A F; Taulescu, M A; Palmieri, C; Catoi, A F

    2014-01-01

    Sixteen captive adult horned vipers (Vipera ammodytes ammodytes) were submitted for necropsy examination following a 2-week history of lethargy, anorexia and dyspnoea. Gross lesions included widespread haemorrhage, serosanguineous effusions in the body cavities and multiple pinpoint white to yellow foci in the liver. Microscopically, there was multifocal hepatic coagulative necrosis associated with intranuclear acidophilic inclusion bodies in sinusoidal endothelial cells. Similar endothelial lesions were observed in the myocardium, fat bodies, kidneys and spleen. Transmission electron microscopy revealed numerous virions (100-110 nm) in the nuclei of endothelial cells and intracytoplasmic enveloped virions (140-150 nm) were also found. The gross and histological findings and the ultrastructural features of the intranuclear inclusions and viral particles were consistent with herpesviral infection. To the best of our knowledge, these are the first reported cases of a lethal herpesvirosis in horned vipers and the second report in snakes.

  14. Lethal Procyrnea infection in a black-backed woodpecker (Picoides arcticus) from California.

    PubMed

    Siegel, Rodney B; Bond, Monica L; Wilkerson, Robert L; Barr, Bradd C; Gardiner, Chris H; Kinsella, John M

    2012-06-01

    The black-backed woodpecker (Picoides arcticus) is a species of management concern in California. As part of a study of black-backed woodpecker home range size and foraging ecology, nine birds in Lassen National Forest (Shasta and Lassen Counties, California) were radio-tracked during the 2011 breeding season. One of the marked birds was found dead after being tracked for a 10-wk period in which it successfully nested. A postmortem examination of the dead bird revealed that it was emaciated and autolyzed, with the presumptive cause being numerous spiruroid nematodes of the genus Procyrnea in the gizzard. This first observation of Procyrnea nematodes in a black-backed woodpecker is notable because the Procyrnea infection was considered lethal and because Procyrnea has been implicated in substantial die-offs in other bird species, including woodpeckers.

  15. Synthetic Lethal Gene for PTEN as a Therapeutic Target

    DTIC Science & Technology

    2013-09-01

    patients and prepare PTEN-deficient cells. We will then screen genes that play critical roles in the PTEN pathway using a technique called shRNA library ... screening , with or without radiation treatment of these cells. When we identify a gene, we will then test the effect of such gene in an animal model to

  16. Construction of a conditional lethal Salmonella mutant via genetic recombination using the ara system and asd gene.

    PubMed

    Kim, Sam Woong; Kang, Ho Young; Hur, Jin; Gal, Sang Wan; Bang, Woo Young; Cho, Kwang-Keun; Kim, Chul Wook; Bahk, Jeong Dong; Lee, John Hwa

    2011-11-01

    In order to construct a conditional lethal Salmonella mutant, an arabinose-regulated recombinant genetic system was used. The Salmonella aspartate semialdehyde dehydrogenase (asd) gene was localized under the control of araC P(araBAD) in a plasmid to create the araC P(araBAD)::asd cassette. The cassette was cloned into a plasmid carrying a p15A replication origin to create the recombinant plasmid pMMP55. The growth of Salmonella MMP10 harboring pMMP55 was dependent on the presence of arabinose. In the presence of arabinose, the Asd deficiency due to chromosomal deletion of asd in the Salmonella host was complemented by the asd gene transcribed and translated under the P(araBAD) promoter and araBAD Shine-Dalgarno (SD) sequence in pMMP55. Growth inhibition of the strain was demonstrated by arabinose depletion in M9 minimal medium, indicating that the strain were unable to grow in an arabinose-limited environment. In addition, the analysis of a 50% lethal dose (LD50) using mice revealed that the strain MMP10 exhibited attenuation by approximately 100-fold relative to that of the unmodified strain. In conclusion, these data suggest that the araC P(araBAD)::asd system developed in this study can be used to construct conditional lethal Salmonella mutants for application as safe, live-attenuated Salmonella vaccines.

  17. Therapeutic benefits of the group B3 vitamin nicotinamide in mice with lethal endotoxemia and polymicrobial sepsis.

    PubMed

    Yuan, Hongmei; Wan, Jingyuan; Li, Longjiang; Ge, Pu; Li, Hongzhong; Zhang, Li

    2012-03-01

    Nicotinamide (NAM) is a group B3 vitamin involved in a wide range of biological processes. Recently, the anti-inflammatory properties of NAM have been revealed. In this study, we investigated the therapeutic effects of NAM in murine models of endotoxemia and sepsis. Endotoxemic liver injury was induced by intraperitoneal injection of lipopolysaccharide (LPS) into D-galactosamine (D-Gal)-sensitized mice. Lethal endotoxemia was induced by intraperitoneal administration of LPS at a dose of 20 mg/kg. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP). In mice challenged with LPS/D-Gal, treatment with NAM significantly deceased serum aminotransferases level and alleviated hepatic lesions. NAM also reduced serum tumor necrosis factor-α level and attenuated apoptosis in liver, as assessed by terminal deoxynucleotidyl transferase-mediated nucleotide nick end labeling (TUNEL) staining and measurements of caspases activities. Survival analysis indicated that NAM reduced the mortality rate of LPS/D-Gal-challenged mice. In mice with lethal endotoxemia, NAM reduced serum level of pro-inflammatory cytokines and multiple organ damage as evidence by improved morphological lesion, reduced lung wet to dry ratio as well as decreased serum level of aminotransferase and blood urea nitrogen. In survival analysis, treatment with NAM increased the survival rate of mice with lethal endotoxemia or CLP-induced polymicrobial sepsis. Taken together, treatment with NAM might provide therapeutic benefits in sepsis, which attenuated inflammatory injury and improved the survival rate.

  18. Bacillus anthracis lethal toxin disrupts TCR signaling in CD1d-restricted NKT cells leading to functional anergy.

    PubMed

    Joshi, Sunil K; Lang, Gillian A; Larabee, Jason L; Devera, T Scott; Aye, Lindsay M; Shah, Hemangi B; Ballard, Jimmy D; Lang, Mark L

    2009-09-01

    Exogenous CD1d-binding glycolipid (alpha-Galactosylceramide, alpha-GC) stimulates TCR signaling and activation of type-1 natural killer-like T (NKT) cells. Activated NKT cells play a central role in the regulation of adaptive and protective immune responses against pathogens and tumors. In the present study, we tested the effect of Bacillus anthracis lethal toxin (LT) on NKT cells both in vivo and in vitro. LT is a binary toxin known to suppress host immune responses during anthrax disease and intoxicates cells by protective antigen (PA)-mediated intracellular delivery of lethal factor (LF), a potent metalloprotease. We observed that NKT cells expressed anthrax toxin receptors (CMG-2 and TEM-8) and bound more PA than other immune cell types. A sub-lethal dose of LT administered in vivo in C57BL/6 mice decreased expression of the activation receptor NKG2D by NKT cells but not by NK cells. The in vivo administration of LT led to decreased TCR-induced cytokine secretion but did not affect TCR expression. Further analysis revealed LT-dependent inhibition of TCR-stimulated MAP kinase signaling in NKT cells attributable to LT cleavage of the MAP kinase kinase MEK-2. We propose that Bacillus anthracis-derived LT causes a novel form of functional anergy in NKT cells and therefore has potential for contributing to immune evasion by the pathogen.

  19. Effect of peripheral lymphoid cells on the incidence of lethal graft versus host disease following allogeneic mouse bone marrow transplantation

    SciTech Connect

    Almaraz, R.; Ballinger, W.; Sachs, D.H.; Rosenberg, S.A.

    1983-02-01

    Experiments were performed to study the role of circulating lymphoid cells in the incidence of lethal graft versus host disease (GVHD) in radiation-induced fully allogeneic mouse chimeras. The incidence of GVHD was reduced significantly in BALB/c leads to C57BL/6 radiation chimeras if bone marrow donors were exsanguinated immediately prior to marrow harvest. Chimeras resulting from the injection of bone marrow from bled donors exhibited only donor cells in spleen, bone marrow and peripheral blood and normal levels of Thy 1+ and Ia+ cells were found in each of these lymphoid compartments. The addition of as few as 3 X 10(4) peripheral mononuclear cells to the marrow from exsanguinated donors uniformly led to lethal GVHD. /sup 51/Cr-labeled cell traffic studies revealed that prior exsanguination of marrow donors led to about a 70% reduction in the number of circulating mononuclear cells contaminating the bone marrow at the time of marrow harvest. This decrease in contaminating peripheral cells was calculated to be in the appropriate range to account for the decreased GVHD seen when marrow from exsanguinated donors was used. It thus appears that peripheral cells contaminating marrow can be an important factor in causing lethal GVHD in allogeneic radiation chimeras.

  20. Rifaximin diminishes neutropenia following potentially lethal whole-body radiation.

    PubMed

    Jahraus, Christopher D; Schemera, Bettina; Rynders, Patricia; Ramos, Melissa; Powell, Charles; Faircloth, John; Brawner, William R

    2010-07-01

    Terrorist attacks involving radiological or nuclear weapons are a substantial geopolitical concern, given that large populations could be exposed to potentially lethal doses of radiation. Because of this, evaluating potential countermeasures against radiation-induced mortality is critical. Gut microflora are the most common source of systemic infection following exposure to lethal doses of whole-body radiation, suggesting that prophylactic antibiotic therapy may reduce mortality after radiation exposure. The chemical stability, easy administration and favorable tolerability profile of the non-systemic antibiotic, rifaximin, make it an ideal potential candidate for use as a countermeasure. This study evaluated the use of rifaximin as a countermeasure against low-to-intermediate-dose whole-body radiation in rodents. Female Wistar rats (8 weeks old) were irradiated with 550 cGy to the whole body and were evaluated for 30 d. Animals received methylcellulose, neomycin (179 mg/kg/d) or variably dosed rifaximin (150-2000 mg/kg/d) one hour after irradiation and daily throughout the study period. Clinical assessments (e.g. body weight) were made daily. On postirradiation day 30, blood samples were collected and a complete blood cell count was performed. Animals receiving high doses of rifaximin (i.e. 1000 or 2000 mg/kg/d) had a greater increase in weight from the day of irradiation to postirradiation day 30 compared with animals that received placebo or neomycin. For animals with an increase in average body weight from irradiation day within 80-110% of the group average, methylcellulose rendered an absolute neutrophil count (ANC) of 211, neomycin rendered an ANC of 334, rifaximin 300 mg/kg/d rendered an ANC of 582 and rifaximin 1000 mg/kg/d rendered an ANC of 854 (P = 0.05 for group comparison). Exposure to rifaximin after near-lethal whole-body radiation resulted in diminished levels of neutropenia.

  1. Acute toxoplasmosis leads to lethal overproduction of Th1 cytokines.

    PubMed

    Mordue, D G; Monroy, F; La Regina, M; Dinarello, C A; Sibley, L D

    2001-10-15

    Virulence in Toxoplasma gondii is strongly influenced by the genotype of the parasite. Type I strains uniformly cause rapid death in mice regardless of the host genotype or the challenge dose. In contrast, the outcome of infections with type II strains is highly dependent on the challenge dose and the genotype of the host. To understand the basis of acute virulence in toxoplasmosis, we compared low and high doses of the RH strain (type I) and the ME49/PTG strain (type II) of T. gondii in outbred mice. Differences in virulence were reflected in only modestly different growth rates in vivo, and both strains disseminated widely to different tissues. The key difference in the virulent RH strain was the ability to reach high tissue burdens rapidly following a low dose challenge. Lethal infections caused by type I (RH) or type II (PTG) strain infections were accompanied by extremely elevated levels of Th1 cytokines in the serum, including IFN-gamma, TNF-alpha, IL-12, and IL-18. Extensive liver damage and lymphoid degeneration accompanied the elevated levels of cytokines produced during lethal infection. Increased time of survival following lethal infection with the RH strain was provided by neutralization of IL-18, but not TNF-alpha or IFN-gamma. Nonlethal infections with a low dose of type II PTG strain parasites were characterized by a modest induction of Th1 cytokines that led to control of infection and minimal damage to host tissues. Our findings establish that overstimulation of immune responses that are normally necessary for protection is an important feature of acute toxoplasmosis.

  2. Left ventricular function during lethal and sublethal endotoxemia in swine

    SciTech Connect

    Goldfarb, R.D.; Nightingale, L.M.; Kish, P.; Weber, P.B.; Loegering, D.J.

    1986-08-01

    Previous studies suggested that after a median lethal dose (LD50) of endotoxin, cardiac contractility was depressed in nonsurviving dogs. The canine cardiovascular system is unlike humans in that dogs have a hepatic vein sphincter that is susceptible to adrenergic stimulation capable of raising hepatic and splanchnic venous pressures. The authors retested the hypothesis that lethality after endotoxin administration is associated with cardiac contractile depression in pigs, because of the hepatic circulation in this species is similar to that of humans. They compared cardiac mechanical function of pigs administered a high dose (250 g/kg) or a low dose (100 g/kg) endotoxin by use of the slope of the end-systolic pressure-diameter relationship (ESPDR) as well as other measurements of cardiac performance. In all the pigs administered a high dose, ESPDR demonstrated a marked, time-dependent depression whereas we observed no significant ESPDR changes after low endotoxin doses. The other cardiodynamic variables were uninterpretable, due to the significant changes in heart rate, end-diastolic diameter (preload), and aortic diastolic pressure (afterload). Plasma myocardia depressant factor activity accumulated in all endotoxin-administered animals, tending to be greater in the high-dose group. In this group, both subendocardial blood flow and global function were depressed, whereas pigs administered the low dose endotoxin demonstrated slight, but nonsignificant, increases in flow and function. These observations indicate that myocardial contractile depression is associated with a lethal outcome to high doses of endotoxin. Myocardial perfusion was measured using radiolabeled microspheres infused into the left atria.

  3. Filgrastim Improves Survival in Lethally Irradiated Nonhuman Prim