Science.gov

Sample records for lettuce lactuca sativa

  1. Yield response of head lettuce (Lactuca sativa l. ) to ozone

    SciTech Connect

    Temple, P.J.; Taylor, O.C.; Benoit, L.F.

    1986-01-01

    Head lettuce (Lactuca sativa L. cv Empire) was grown in the field and exposed in open-top chambers to proportional increments of ozone (O/sub 3/) from full charcoal filtration (CF) to twice ambient O/sub 3/ concentrations(NF x 2.0). Severe foliar injury developed on young plants exposed to O/sub 3/ concentrations 1.7 and 2.0 times greater than ambient (seasonal 7 hr means of 0.104 and 0.128 ppm, respectively). These exposure levels also reduced total head weight 13 and 35%, respectively, compared with CF plants. Marketable-sized head weight was reduced 21 and 80%, respectively.

  2. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes

    USDA-ARS?s Scientific Manuscript database

    Background: Lettuce (Lactuca sativa L.) is the major vegetable from the group of leafy vegetables. Several types of molecular markers were developed that are effictively used in lettuce breeding and genetic studies. However only a very limited number of microsattelite-based markers are publicly avai...

  3. Mutants of downy mildew resistance in Lactuca sativa (lettuce).

    PubMed

    Okubara, P A; Anderson, P A; Ochoa, O E; Michelmore, R W

    1994-07-01

    As part of our investigation of disease resistance in lettuce, we generated mutants that have lost resistance to Bremia lactucae, the casual fungus of downy mildew. Using a rapid and reliable screen, we identified 16 distinct mutants of Latuca sativa that have lost activity of one of four different downy mildew resistance genes (Dm). In all mutants, only a single Dm specificity was affected. Genetic analysis indicated that the lesions segregated as single, recessive mutations at the Dm loci. Dm3 was inactivated in nine of the mutants. One of five Dm 1 mutants was selected from a population of untreated seeds and therefore carried a spontaneous mutation. All other Dm1, Dm3, Dm5/8 and Dm7 mutants were derived from gamma- or fast neutron-irradiated seed. In two separate Dm 1 mutants and in each of the eight Dm3 mutants analyzed, at least one closely linked molecular marker was absent. Also, high molecular weight genomic DNA fragments that hybridized to a tightly linked molecular marker in wild type were either missing entirely or were truncated in two of the Dm3 mutants, providing additional evidence that deletions had occurred in these mutants. Absence of mutations at loci epistatic to the Dm genes suggested that such loci were either members of multigene families, were critical for plant survival, or encoded components of duplicated pathways for resistance; alternatively, the genes determining downy mildew resistance might be limited to the Dm loci.

  4. Mutants of Downy Mildew Resistance in Lactuca Sativa (Lettuce)

    PubMed Central

    Okubara, P. A.; Anderson, P. A.; Ochoa, O. E.; Michelmore, R. W.

    1994-01-01

    As part of our investigation of disease resistance in lettuce, we generated mutants that have lost resistance to Bremia lactucae, the casual fungus of downy mildew. Using a rapid and reliable screen, we identified 16 distinct mutants of Latuca sativa that have lost activity of one of four different downy mildew resistance genes (Dm). In all mutants, only a single Dm specificity was affected. Genetic analysis indicated that the lesions segregated as single, recessive mutations at the Dm loci. Dm3 was inactivated in nine of the mutants. One of five Dm1 mutants was selected from a population of untreated seeds and therefore carried a spontaneous mutation. All other Dm1, Dm3, Dm5/8 and Dm7 mutants were derived from γ- or fast neutron-irradiated seed. In two separate Dm1 mutants and in each of the eight Dm3 mutants analyzed, at least one closely linked molecular marker was absent. Also, high molecular weight genomic DNA fragments that hybridized to a tightly linked molecular marker in wild type were either missing entirely or were truncated in two of the Dm3 mutants, providing additional evidence that deletions had occurred in these mutants. Absence of mutations at loci epistatic to the Dm genes suggested that such loci were either members of multigene families, were critical for plant survival, or encoded components of duplicated pathways for resistance; alternatively, the genes determining downy mildew resistance might be limited to the Dm loci. PMID:8088530

  5. Plastid transformation in lettuce (Lactuca sativa L.) by biolistic DNA delivery.

    PubMed

    Ruhlman, Tracey A

    2014-01-01

    The interest in producing pharmaceutical proteins in a nontoxic plant host has led to the development of an approach to express such proteins in transplastomic lettuce (Lactuca sativa L.). A number of therapeutic proteins and vaccine antigen candidates have been stably integrated into the lettuce plastid genome using biolistic DNA delivery. High levels of accumulation and retention of biological activity suggest that lettuce may provide an ideal platform for the production of biopharmaceuticals.

  6. Semi-high throughput screening for potential drought-tolerance in lettuce (Lactuca sativa) germplasm collections

    USDA-ARS?s Scientific Manuscript database

    This protocol describes a method by which a large collection of the leafy green vegetable lettuce (Lactuca sativa L.) germplasm was screened for likely drought-tolerance traits. Fresh water availability for agricultural use is a growing concern across the United States as well as many regions of th...

  7. SSH reveals a linkage between a senescence-associated protease and Verticillium wilt symptom development in lettuce (Lactuca sativa)

    USDA-ARS?s Scientific Manuscript database

    Suppression subtractive hybridization (SSH) was employed to identify lettuce (Lactuca sativa) genes that are differentially expressed in symptomatic leaves infected with Verticillium dahliae. Genes expressed only in symptomatic leaves included those with homology to pathogenesis-related (PR) protei...

  8. Transfer and expression of the rabbit defensin NP-1 gene in lettuce (Lactuca sativa).

    PubMed

    Song, D; Xiong, X; Tu, W F; Yao, W; Liang, H W; Chen, F J; He, Z Q

    2017-01-23

    Lettuce (Lactuca sativa L.) is an annual plant of the daisy family, Asteraceae, with high food and medicinal value. However, the crop is susceptible to several viruses that are transmitted by aphids and is highly vulnerable to post-harvest diseases, as well as insect and mammal pests and fungal and bacterial diseases. Here, the rabbit defensin gene NP-1 was transferred into lettuce by Agrobacterium-mediated transformation to obtain a broad-spectrum disease-resistant lettuce. Transgenic lettuce plants were selected and regenerated on selective media. The presence of the NP-1 gene in these plants was confirmed by western blot analyses. Resistance tests revealed native defensin NP-1 expression conferred partial resistance to Bacillus subtilis and Pseudomonas aeruginosa, which suggests new possibilities for lettuce disease resistance.

  9. [Effect of outer space factors on lettuce seeds (Lactuca sativa) flown on "Kosmos" biosatellites].

    PubMed

    Nevzgodina, L V; Maksimova, E N; Akatov, Iu A; Kaminskaia, E V; Marennyĭ, A M

    1990-01-01

    The effect of cosmic radiation on air-dry lettuce (Lactuca sativa) seeds was investigated. It was attempted to discriminate the effects of cosmic ionizing radiation per se and its combination with solar light radiation. It was found that the number of aberrant cells in the seeds exposed to solar light was smaller than that of cells chielded with 0.0008 to 0.0035 g/cm2 foil which could be attributed to photoreactivity.

  10. Salt in irrigation water affects the nutritional and visual properties of romaine lettuce (Lactuca sativa L.).

    PubMed

    Kim, Hyun-Jin; Fonseca, Jorge M; Choi, Ju-Hee; Kubota, Chieri; Kwon, Dae Young

    2008-05-28

    The influence of salinity stress on the growth, appearance, and nutritional compounds, especially phenolic compounds and carotenoids, of romaine lettuce (Lactuca sativa L.), a low salt tolerant plant, was studied. The dry weight, height, and color of the lettuce plants were significantly changed by long-term irrigation (15 days) with higher NaCl concentration (i.e., >100 mM). However, no significant differences were observed in the growth and appearance among the control, all short-term treatments (2 days; 50, 100, 500, and 1000 mM), and long-term irrigation with low salt concentration. Moreover, in romaine lettuce treated with long-term irrigation with 5 mM NaCl, the total carotenoid content increased without color change, and the contents of major carotenoids in romaine lettuce, lutein and beta-carotene, increased 37 and 80%, respectively. No differences were observed in lutein and beta-carotene contents in short-term-treated lettuce. The phenolic content of the romaine lettuce declined with short-term salt irrigation, whereas there were no significant differences among treatments exposed to long-term irrigation. This research indicates that long-term irrigation with relatively low salt concentration, rather than short-term irrigation with high salt concentration, can increase carotenoid content in romaine lettuce without causing a tradeoff in yield or visual quality.

  11. Growing patterns to produce 'nitrate-free' lettuce (Lactuca sativa).

    PubMed

    Croitoru, Mircea Dumitru; Muntean, Daniela-Lucia; Fülöp, Ibolya; Modroiu, Adriana

    2015-01-01

    Vegetables can contain significant amounts of nitrate and, therefore, may pose health hazards to consumers by exceeding the accepted daily intake for nitrate. Different hydroponic growing patterns were examined in this work in order to obtain 'nitrate-free lettuces'. Growing lettuces on low nitrate content nutrient solution resulted in a significant decrease in lettuces' nitrate concentrations (1741 versus 39 mg kg(-1)), however the beneficial effect was cancelled out by an increase in the ambient temperature. Nitrate replacement with ammonium was associated with an important decrease of the lettuces' nitrate concentration (from 1896 to 14 mg kg(-1)) and survival rate. An economically feasible method to reduce nitrate concentrations was the removal of all inorganic nitrogen from the nutrient solution before the exponential growth phase. This method led to lettuces almost devoid of nitrate (10 mg kg(-1)). The dried mass and calcinated mass of lettuces, used as markers of lettuces' quality, were not influenced by this treatment, but a small reduction (18%, p < 0.05) in the fresh mass was recorded. The concentrations of nitrite in the lettuces and their modifications are also discussed in the paper. It is possible to obtain 'nitrate-free' lettuces in an economically feasible way.

  12. Evidence for a race-specific resistance factor in some lettuce (Lactuca sativa L.) cultivars previously considered to be universally susceptible to Bremia lactucae regel.

    PubMed

    Crute, I R; Lebeda, A

    1981-05-01

    Previously undetected race-specific resistance to Bremia lactucae (downy mildew) was located in many lettuce cultivars hitherto considered to be universally susceptible to this disease. This resistance factor(s) may also be widely distributed in other cultivars known to carry combinations of already recognised factors R1 to R11. Specific virulence to match this resistance is almost invariably present in pathogen collections. This situation may be either a relic of the evolutionary history of the B. lactucae - L. sativa asssociation or may reflect a rare mutation in B. lactucae for avirulence on all but a few specialised L. sativa genotypes.

  13. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes

    PubMed Central

    2013-01-01

    Background Lettuce (Lactuca sativa L.) is the major crop from the group of leafy vegetables. Several types of molecular markers were developed that are effectively used in lettuce breeding and genetic studies. However only a very limited number of microsattelite-based markers are publicly available. We have employed the method of enriched microsatellite libraries to develop 97 genomic SSR markers. Results Testing of newly developed markers on a set of 36 Lactuca accession (33 L. sativa, and one of each L. serriola L., L. saligna L., and L. virosa L.) revealed that both the genetic heterozygosity (UHe = 0.56) and the number of loci per SSR (Na = 5.50) are significantly higher for genomic SSR markers than for previously developed EST-based SSR markers (UHe = 0.32, Na = 3.56). Fifty-four genomic SSR markers were placed on the molecular linkage map of lettuce. Distribution of markers in the genome appeared to be random, with the exception of possible cluster on linkage group 6. Any combination of 32 genomic SSRs was able to distinguish genotypes of all 36 accessions. Fourteen of newly developed SSR markers originate from fragments with high sequence similarity to resistance gene candidates (RGCs) and RGC pseudogenes. Analysis of molecular variance (AMOVA) of L. sativa accessions showed that approximately 3% of genetic diversity was within accessions, 79% among accessions, and 18% among horticultural types. Conclusions The newly developed genomic SSR markers were added to the pool of previously developed EST-SSRs markers. These two types of SSR-based markers provide useful tools for lettuce cultivar fingerprinting, development of integrated molecular linkage maps, and mapping of genes. PMID:23339733

  14. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes.

    PubMed

    Rauscher, Gilda; Simko, Ivan

    2013-01-22

    Lettuce (Lactuca sativa L.) is the major crop from the group of leafy vegetables. Several types of molecular markers were developed that are effectively used in lettuce breeding and genetic studies. However only a very limited number of microsattelite-based markers are publicly available. We have employed the method of enriched microsatellite libraries to develop 97 genomic SSR markers. Testing of newly developed markers on a set of 36 Lactuca accession (33 L. sativa, and one of each L. serriola L., L. saligna L., and L. virosa L.) revealed that both the genetic heterozygosity (UHe = 0.56) and the number of loci per SSR (Na = 5.50) are significantly higher for genomic SSR markers than for previously developed EST-based SSR markers (UHe = 0.32, Na = 3.56). Fifty-four genomic SSR markers were placed on the molecular linkage map of lettuce. Distribution of markers in the genome appeared to be random, with the exception of possible cluster on linkage group 6. Any combination of 32 genomic SSRs was able to distinguish genotypes of all 36 accessions. Fourteen of newly developed SSR markers originate from fragments with high sequence similarity to resistance gene candidates (RGCs) and RGC pseudogenes. Analysis of molecular variance (AMOVA) of L. sativa accessions showed that approximately 3% of genetic diversity was within accessions, 79% among accessions, and 18% among horticultural types. The newly developed genomic SSR markers were added to the pool of previously developed EST-SSRs markers. These two types of SSR-based markers provide useful tools for lettuce cultivar fingerprinting, development of integrated molecular linkage maps, and mapping of genes.

  15. Effect of methyl jasmonate on phenolic compounds and carotenoids of romaine lettuce (Lactuca sativa L.).

    PubMed

    Kim, Hyun-Jin; Fonseca, Jorge M; Choi, Ju-Hee; Kubota, Chieri

    2007-12-12

    The effect of exogenous methyl jasmonate (MeJA) on antioxidative compounds of romaine lettuce ( Lactuca sativa L.) was investigated. Lettuces were treated with various MeJA solutions (0, 0.05, 0.1, 0.25, and 0.5 mM) before harvest. Total phenolic compounds content and antioxidant capacity of romaine lettuce significantly increased after MeJA treatments (0.1, 0.25, and 0.5 mM). The total content of phenolic compounds of the romaine lettuce treated with 0.5 mM MeJA (31.6 microg of gallic acid equivalents/mg of dry weight) was 35% higher than that of the control. The increase in phenolic compound content was attributed to a caffeic acid derivative and an unknown phenolic compound, which also contributed to increased antioxidant capacity. The induction of phenylalanine ammonia-lyase (PAL) activity by the MeJA treatment indicated that phenolic compounds were altered due to the activation of the phenylpropandoid pathway. Total content of carotenoids, including lutein and beta-carotene, of the MeJA-treated lettuce did not change after 8 days of treatment, whereas the content of the control without MeJA decreased after 8 days. This research indicated that preharvest application of MeJA could increase the nutritional value of romaine lettuce under determined conditions discussed in this work.

  16. Selectivity of thiobencarb between two lettuce (Lactuca sativa, L. ) cultivars

    SciTech Connect

    Reiners, S.

    1987-01-01

    Thiobencarb (S-(4-chlorobenzyl)N,N-diethylthiocarbamate) was examined for weed control on muck grown lettuce. Weed control results were erratic though differential lettuce tolerance was observed in the field. This led to the testing of five lettuce cultivars for tolerance to the herbicide. Of the five lettuce cultivars evaluated, two were selected with the widest tolerance differences: Great Lakes 366 (GLA) (tolerant) and Dark Green Boston (BOS) (susceptible). Studies examining the mechanism of thiobencarb tolerance were conducted with these two cultivars. Within four days after the addition of thiobencarb to the nutrient solution, BOS had significant reductions in the foliar dry weight. In addition, growth abnormalities including fused leaves were observed, indicating inhibition early in leaf development. Greater amounts of /sup 14/C-thiobencarb were absorbed from nutrient solution by BOS, likely due to a significantly greater root system at the time of treatment. The greater uptake and accumulation of /sup 14/C-label in the leaves, as well as significantly greater amounts of unmetabolized /sup 14/C-thiobencarb in the foliage of BOS may account for the selectivity observed. A thiobencarb sulfoxide was not identified in these studies. This indicates that the metabolism of thiobencarb in lettuce differs from other members of the thiocarbamate family of herbicides.

  17. Combination of minimal processing and irradiation to improve the microbiological safety of lettuce ( Lactuca sativa, L.)

    NASA Astrophysics Data System (ADS)

    Goularte, L.; Martins, C. G.; Morales-Aizpurúa, I. C.; Destro, M. T.; Franco, B. D. G. M.; Vizeu, D. M.; Hutzler, B. W.; Landgraf, M.

    2004-09-01

    The feasibility of gamma radiation in combination with minimal processing (MP) to reduce the number of Salmonella spp. and Escherichia coli O157:H7 in iceberg lettuce ( Lactuca sativa, L.) (shredded) was studied in order to increase the safety of the product. The reduction of the microbial population during the processing, the D10-values for Salmonella spp. and E. coli O157:H7 inoculated on shredded iceberg lettuce as well as the sensory evaluation of the irradiated product were evaluated. The immersion in chlorine (200 ppm) reduced coliform and aerobic mesophilic microorganisms by 0.9 and 2.7 log, respectively. D-values varied from 0.16 to 0.23 kGy for Salmonella spp. and from 0.11 to 0.12 kGy for E. coli O157:H7. Minimally processed iceberg lettuce exposed to 0.9 kGy does not show any change in sensory attributes. However, the texture of the vegetable was affected during the exposition to 1.1 kGy. The exposition of MP iceberg lettuce to 0.7 kGy reduced the population of Salmonella spp. by 4.0 log and E. coli by 6.8 log without impairing the sensory attributes. The combination of minimal process and gamma radiation to improve the safety of iceberg lettuce is feasible if good hygiene practices begins at farm stage.

  18. Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids.

    PubMed

    Kanamoto, Hirosuke; Yamashita, Atsushi; Asao, Hiroshi; Okumura, Satoru; Takase, Hisabumi; Hattori, Masahira; Yokota, Akiho; Tomizawa, Ken-Ichi

    2006-04-01

    Transgenic plastids offer unique advantages in plant biotechnology, including high-level foreign protein expression. However, broad application of plastid genome engineering in biotechnology has been largely hampered by the lack of plastid transformation systems for major crops. Here we describe the development of a plastid transformation system for lettuce, Lactuca sativa L. cv. Cisco. The transforming DNA carries a spectinomycin-resistance gene (aadA) under the control of lettuce chloroplast regulatory expression elements, flanked by two adjacent lettuce plastid genome sequences allowing its targeted insertion between the rbcL and accD genes. On average, we obtained 1 transplastomic lettuce plant per bombardment. We show that lettuce leaf chloroplasts can express transgene-encoded GFP to approximately 36% of the total soluble protein. All transplastomic T0 plants were fertile and the T1 progeny uniformly showed stability of the transgene in the chloroplast genome. This system will open up new possibilities for the efficient production of edible vaccines, pharmaceuticals, and antibodies in plants.

  19. Silencing the lettuce homologs of small rubber particle protein does not influence natural rubber biosynthesis in lettuce (Lactuca sativa).

    PubMed

    Chakrabarty, Romit; Qu, Yang; Ro, Dae-Kyun

    2015-05-01

    Natural rubber, cis-1,4-polyisoprene, is an important raw material in chemical industries, but its biosynthetic mechanism remains elusive. Natural rubber is known to be synthesized in rubber particles suspended in laticifer cells in the Brazilian rubber tree (Hevea brasiliensis). In the rubber tree, rubber elongation factor (REF) and its homolog, small rubber particle protein (SRPP), were found to be the most abundant proteins in rubber particles, and they have been implicated in natural rubber biosynthesis. As lettuce (Lactuca sativa) can synthesize natural rubber, we utilized this annual, transformable plant to examine in planta roles of the lettuce REF/SRPP homologs by RNA interference. Among eight lettuce REF/SRPP homologs identified, transcripts of two genes (LsSRPP4 and LsSRPP8) accounted for more than 90% of total transcripts of REF/SRPP homologs in lettuce latex. LsSRPP4 displays a typical primary protein sequence as other REF/SRPP, while LsSRPP8 is twice as long as LsSRPP4. These two major LsSRPP transcripts were individually and simultaneously silenced by RNA interference, and relative abundance, polymer molecular weight, and polydispersity of natural rubber were analyzed from the LsSRPP4- and LsSRPP8-silenced transgenic lettuce. Despite previous data suggesting the implications of REF/SRPP in natural rubber biosynthesis, qualitative and quantitative alterations of natural rubber could not be observed in transgenic lettuce lines. It is concluded that lettuce REF/SRPP homologs are not critically important proteins in natural rubber biosynthesis in lettuce. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A rapid and efficient in vitro regeneration system for lettuce (Lactuca sativa L.).

    PubMed

    Armas, Isabel; Pogrebnyak, Natalia; Raskin, Ilya

    2017-01-01

    Successful biotechnological improvement of crop plants requires a reliable and efficient in vitro regeneration system. Lettuce (Lactuca sativa L.), one the most important vegetable crops worldwide, is strongly genotype-dependent in terms of regeneration capacity, limiting the potential for biotechnological improvement of cultivars which show recalcitrance under currently available protocols. The effect of different nutrient sources, plant hormone combinations and activated charcoal supplementation on shoot induction efficiency was evaluated on the cultivar 'RSL NFR', which had previously shown poor regeneration efficiency. Multiple shoot organogenesis from cotyledon explants was recorded at the highest frequency and speed on Murashige and Skoog regeneration medium supplemented with 200 mg/l of activated charcoal, 3% sucrose, 10 mg/l benzylaminopurine and 0.5 mg/l naphthaleneacetic acid, which induced shoots through direct regeneration in 90.8 ± 7.9% of explants. High shoot induction efficiency was also observed, albeit not quantified, when using this medium on some other cultivars. This activated charcoal-containing regeneration medium might offer a rapid and efficient option for direct shoot induction in some lettuce genotypes that do not respond well to common lettuce regeneration protocols. This is also the first report of the effect of activated charcoal in lettuce tissue culture.

  1. [Disinfection treatment for lettuces (Lactuca sativa) and strawberries (Fragatia Chiloensis)].

    PubMed

    López, L; Romero, J; Ureta, F

    2001-12-01

    The disinfection of vegetables and fruits is a treatment applied in order to reduce their natural contamination or processes to the product along the different steps of the food chain until its consumption. In the present work the effect of two disinfectants products was studied: grapefruit seed extract (400 ppm) for 10 min and peracetic acid (2000 ppm) for 1 min (action times assayed according to the manufacturer recommendations) and other additional times. The germicidal action was carried out against the natural contaminants of lettuces and strawberries, through the determination of the germicidal efficiency (%). Treated and untreated strawberries were also evaluated for flavor changes through a sensorial difference test, triangular test. None of the assayed products reached the 99.999% destruction of the natural contaminants according to the Chambers test. Peracetic acid was the most effective disinfectant, reaching the highest destruction percentages at a time lower than that for grapefruit seed extract. Sensory analysis showed no significant differences (p = .05) between strawberries with and without disinfection treatments, at the conditions suggested by the manufacturer.

  2. Cloning and expression of sesquiterpene synthase genes from lettuce (Lactuca sativa L.).

    PubMed

    Bennett, Mark H; Mansfield, John W; Lewis, Mervyn J; Beale, Michael H

    2002-06-01

    Sesquiterpenoid lactones (SLs) from lettuce (Lactuca sativa L.) include constitutive components of latex such as lactucin and the induced phytoalexin, lettucenin A. A redundant primer strategy was used to recover two full length cDNA clones (LTC1 and LTC2) encoding sesquiterpene synthases from a cDNA library derived from seedlings with the red spot disorder, which accumulate phytoalexins. Recombinant enzymes produced from LTC1 and LTC2 in Escherichia coli catalysed the cyclisation of farnesyl diphosphate to germacrene A, potentially an early step in the biosynthesis of SLs. RT-PCR analysis showed LTC1 and LTC2 were expressed constitutively in roots, hypocotyls and true leaves but not in cotyledons. Expression in cotyledons was induced by challenge with the downy mildew pathogen Bremia lactucae in the disease resistant cultivar Diana. Southern hybridisation experiments showed that LTC1 and LTC2 were not part of a multigene family. The germacrene A synthases provide targets for modified expression to generate beneficial modifications to the SL profile in lettuce.

  3. Effect of acaricidal components isolated from lettuce (Lactuca sativa) on carmine spider mite (Tetranychus cinnabarinus Boisd.).

    PubMed

    Li, M; Zhang, Y; Ding, W; Luo, J; Li, S; Zhang, Q

    2017-08-14

    This study aimed to evaluate the acaricidal activity of lettuce (Lactuca sativa) extracts against carmine spider mites (Tetranychus cinnabarinus Boisd.) and isolate the acaricidal components. Acaricidal activities of lettuce extracts isolated from different parts (the leaf, root and seed) using various solvents (petroleum ether, acetone and methanol) were evaluated with slide-dip bioassay and relatively high median lethal concentration (LC50) values were detected. Acetone extracts of lettuce leaves harvested in July and September were fractionated and isolated with silica gel and thin-layer chromatography. Consequently, acetone extracts of lettuce leaves harvested in July exhibited higher acaricidal activity than those harvested in September, with an LC50 value of 0.268 mg ml-1 at 72 h post-treatment. A total of 27 fractions were obtained from the acetone extract of lettuce leaves harvested in July, and mite mortalities with the 11th and 12th fractions were higher than those with the other 25 fractions (LC50: 0.751 and 1.258 mg ml-1 at 48 h post-treatment, respectively). Subsequently, active acaricidal components of the 11th fraction were identified by infrared, nuclear magnetic resonance and liquid chromatography/mass spectrometry. Five components were isolated from the 11th fraction, with components 11-a and 11-b showing relatively high acaricidal activities (LC50: 0.288 and 0.114 mg ml-1 at 48 h post-treatment, respectively). Component 11-a was identified as β-sitosterol. In conclusion, acetone extracts of lettuce leaves harvested in July might be used as a novel phytogenic acaricide to control mites.

  4. Acinetobacter lactucae sp. nov., isolated from iceberg lettuce (Asteraceae: Lactuca sativa).

    PubMed

    Rooney, Alejandro P; Dunlap, Christopher A; Flor-Weiler, Lina B

    2016-09-01

    Strain NRRL B-41902T and three closely related strains were isolated from iceberg lettuce. The strain was found to consist of strictly aerobic, Gram-stain-negative rods that formed cocci in late stationary phase. 16S rRNA gene sequence analysis showed that strain NRRL B-41902T was most closely related to species within the genera Acinetobacter, and that a grouping of it and the three other closely related strains was most closely related to the type strain of Acinetobacter pittii, which was also confirmed through a phylogenomic analysis. Moreover, in silico DNA-DNA hybridization analysis revealed a substantial amount of genomic divergence (39.1 %) between strain NRRL B-41902T and the type strain of A. pittii, which is expected if the strains represent distinct species. Further phenotypic analysis revealed that strain NRRL B-41902T was able to utilize a combination of l-serine, citraconic acid and citramalic acid, which differentiated it from other, closely related Acinetobacter species. Therefore, strain NRRL B-41902T (=CCUG 68785T) is proposed as the type strain of a novel species, Acinetobacter lactucae sp. nov.

  5. Plastid transformation in lettuce (Lactuca sativa L.) by polyethylene glycol treatment of protoplasts.

    PubMed

    Lelivelt, Cilia L C; van Dun, Kees M P; de Snoo, C Bastiaan; McCabe, Matthew S; Hogg, Bridget V; Nugent, Jacqueline M

    2014-01-01

    A detailed protocol for PEG-mediated plastid transformation of Lactuca sativa cv. Flora, using leaf protoplasts, is described. Successful plastid transformation using protoplasts requires a large number of viable cells, high plating densities, and an efficient regeneration system. Transformation was achieved using a vector that targets genes to the trnI/trnA intergenic region of the lettuce plastid genome. The aadA gene, encoding an adenylyltransferase enzyme that confers spectinomycin resistance, was used as a selectable marker. With the current method, the expected transformation frequency is 1-2 spectinomycin-resistant cell lines per 10(6) viable protoplasts. Fertile, diploid, homoplasmic, plastid-transformed lines were obtained. Transmission of the plastid-encoded transgene to the T1 generation was demonstrated.

  6. Semi-High Throughput Screening for Potential Drought-tolerance in Lettuce (Lactuca sativa) Germplasm Collections.

    PubMed

    Knepper, Caleb; Mou, Beiquan

    2015-04-17

    This protocol describes a method by which a large collection of the leafy green vegetable lettuce (Lactuca sativa L.) germplasm was screened for likely drought-tolerance traits. Fresh water availability for agricultural use is a growing concern across the United States as well as many regions of the world. Short-term drought events along with regulatory intervention in the regulation of water availability coupled with the looming threat of long-term climate shifts that may lead to reduced precipitation in many important agricultural regions has increased the need to hasten the development of crops adapted for improved water use efficiency in order to maintain or expand production in the coming years. This protocol is not meant as a step-by-step guide to identifying at either the physiological or molecular level drought-tolerance traits in lettuce, but rather is a method developed and refined through the screening of thousands of different lettuce varieties. The nature of this screen is based in part on the streamlined measurements focusing on only three water-stress indicators: leaf relative water content, wilt, and differential plant growth following drought-stress. The purpose of rapidly screening a large germplasm collection is to narrow the candidate pool to a point in which more intensive physiological, molecular, and genetic methods can be applied to identify specific drought-tolerant traits in either the lab or field. Candidates can also be directly incorporated into breeding programs as a source of drought-tolerance traits.

  7. Semi-High Throughput Screening for Potential Drought-tolerance in Lettuce (Lactuca sativa) Germplasm Collections

    PubMed Central

    Knepper, Caleb; Mou, Beiquan

    2015-01-01

    This protocol describes a method by which a large collection of the leafy green vegetable lettuce (Lactuca sativa L.) germplasm was screened for likely drought-tolerance traits. Fresh water availability for agricultural use is a growing concern across the United States as well as many regions of the world. Short-term drought events along with regulatory intervention in the regulation of water availability coupled with the looming threat of long-term climate shifts that may lead to reduced precipitation in many important agricultural regions has increased the need to hasten the development of crops adapted for improved water use efficiency in order to maintain or expand production in the coming years. This protocol is not meant as a step-by-step guide to identifying at either the physiological or molecular level drought-tolerance traits in lettuce, but rather is a method developed and refined through the screening of thousands of different lettuce varieties. The nature of this screen is based in part on the streamlined measurements focusing on only three water-stress indicators: leaf relative water content, wilt, and differential plant growth following drought-stress. The purpose of rapidly screening a large germplasm collection is to narrow the candidate pool to a point in which more intensive physiological, molecular, and genetic methods can be applied to identify specific drought-tolerant traits in either the lab or field. Candidates can also be directly incorporated into breeding programs as a source of drought-tolerance traits. PMID:25938876

  8. Use of polishing pond effluents to cultivate lettuce (Lactuca sativa) in a hydroponic system.

    PubMed

    Keller, R; Perin, K; Souza, W G; Cruz, L S; Zandonade, E; Cassini, S T A; Goncalves, R F

    2008-01-01

    The sanitary quality and productivity of hydroponic lettuce (Lactuca sativa L.) plants cultivated under greenhouse conditions and treated with effluent from anaerobic reactor + polishing pond followed by physical-chemical treatment was evaluated. Two hydroponic cultivations were performed at summer and winter time at Vitoria-ES, Brazil. The treatments for both cultivations were: T1) conventional nutrient solution, T2) effluent from physical-chemical treatment, T3) effluent from polishing pond, and T4) effluent from polishing pond with 50% dilution. The plants were evaluated for microbial contamination, productivity and nutrient content. In all cases, no significant microbial contamination of lettuce was detected and the levels of macronutrients in the shoot system were similar to those in published reports. In the experiments from summer season, the treatments T1 and T2 resulted in higher production than the T3 and T4 treatments. Plants from T3 and T4 had a less developed root system as a result of reduced oxygenation from competition with the higher algae biomass content from the polishing pond effluent. In the winter season, the effect of the algal biomass was pronounced only in the T3 treatment (undiluted effluent from polishing pond). In conclusion, hydroponic cultivation of lettuce with pond effluent is suitable as a complement to water and nutrients for plants.

  9. Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa).

    PubMed

    Damerum, Annabelle; Selmes, Stacey L; Biggi, Gaia F; Clarkson, Graham Jj; Rothwell, Steve D; Truco, Maria José; Michelmore, Richard W; Hancock, Robert D; Shellcock, Connie; Chapman, Mark A; Taylor, Gail

    2015-01-01

    A diet rich in phytonutrients from fruit and vegetables has been acknowledged to afford protection against a range of human diseases, but many of the most popular vegetables are low in phytonutrients. Wild relatives of crops may contain allelic variation for genes determining the concentrations of these beneficial phytonutrients, and therefore understanding the genetic basis of this variation is important for breeding efforts to enhance nutritional quality. In this study, lettuce recombinant inbred lines, generated from a cross between wild and cultivated lettuce (Lactuca serriola and Lactuca sativa, respectively), were analysed for antioxidant (AO) potential and important phytonutrients including carotenoids, chlorophyll and phenolic compounds. When grown in two environments, 96 quantitative trait loci (QTL) were identified for these nutritional traits: 4 for AO potential, 2 for carotenoid content, 3 for total chlorophyll content and 87 for individual phenolic compounds (two per compound on average). Most often, the L. serriola alleles conferred an increase in total AOs and metabolites. Candidate genes underlying these QTL were identified by BLASTn searches; in several cases, these had functions suggesting involvement in phytonutrient biosynthetic pathways. Analysis of a QTL on linkage group 3, which accounted for >30% of the variation in AO potential, revealed several candidate genes encoding multiple MYB transcription factors which regulate flavonoid biosynthesis and flavanone 3-hydroxylase, an enzyme involved in the biosynthesis of the flavonoids quercetin and kaempferol, which are known to have powerful AO activity. Follow-up quantitative RT-PCR of these candidates revealed that 5 out of 10 genes investigated were significantly differentially expressed between the wild and cultivated parents, providing further evidence of their potential involvement in determining the contrasting phenotypes. These results offer exciting opportunities to improve the nutritional

  10. Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa)

    PubMed Central

    Damerum, Annabelle; Selmes, Stacey L; Biggi, Gaia F; Clarkson, Graham JJ; Rothwell, Steve D; Truco, Maria José; Michelmore, Richard W; Hancock, Robert D; Shellcock, Connie; Chapman, Mark A; Taylor, Gail

    2015-01-01

    A diet rich in phytonutrients from fruit and vegetables has been acknowledged to afford protection against a range of human diseases, but many of the most popular vegetables are low in phytonutrients. Wild relatives of crops may contain allelic variation for genes determining the concentrations of these beneficial phytonutrients, and therefore understanding the genetic basis of this variation is important for breeding efforts to enhance nutritional quality. In this study, lettuce recombinant inbred lines, generated from a cross between wild and cultivated lettuce (Lactuca serriola and Lactuca sativa, respectively), were analysed for antioxidant (AO) potential and important phytonutrients including carotenoids, chlorophyll and phenolic compounds. When grown in two environments, 96 quantitative trait loci (QTL) were identified for these nutritional traits: 4 for AO potential, 2 for carotenoid content, 3 for total chlorophyll content and 87 for individual phenolic compounds (two per compound on average). Most often, the L. serriola alleles conferred an increase in total AOs and metabolites. Candidate genes underlying these QTL were identified by BLASTn searches; in several cases, these had functions suggesting involvement in phytonutrient biosynthetic pathways. Analysis of a QTL on linkage group 3, which accounted for >30% of the variation in AO potential, revealed several candidate genes encoding multiple MYB transcription factors which regulate flavonoid biosynthesis and flavanone 3-hydroxylase, an enzyme involved in the biosynthesis of the flavonoids quercetin and kaempferol, which are known to have powerful AO activity. Follow-up quantitative RT-PCR of these candidates revealed that 5 out of 10 genes investigated were significantly differentially expressed between the wild and cultivated parents, providing further evidence of their potential involvement in determining the contrasting phenotypes. These results offer exciting opportunities to improve the nutritional

  11. Perfluoroalkyl acid uptake in lettuce (Lactuca sativa) and strawberry (Fragaria ananassa) irrigated with reclaimed water.

    PubMed

    Blaine, Andrea C; Rich, Courtney D; Sedlacko, Erin M; Hyland, Katherine C; Stushnoff, Cecil; Dickenson, Eric R V; Higgins, Christopher P

    2014-12-16

    Using reclaimed water to irrigate food crops presents an exposure pathway for persistent organic contaminants such as perfluoroalkyl acids (PFAAs) to enter the human food chain. This greenhouse study used reclaimed water augmented with varying concentrations (0.2-40 μg/L) of PFAAs, including perfluorocarboxylates (C3F7COO(-) to C8F17COO(-)) and perfluorosulfonates (C4F9SO2O(-), C6F13SO2O(-), C8F17SO2O(-)), to investigate potential uptake and concentration-response trends in lettuce (Lactuca sativa) and strawberry (Fragaria ananassa). In addition, studies were conducted to evaluate the role of soil organic carbon concentrations on plant uptake of PFAAs. PFAA concentrations in lettuce leaves and strawberry fruit were measured for each aqueous PFAA concentration applied. PFAA plant concentrations increased linearly with the aqueous concentration for all PFAAs, with PFCAs bioaccumulating to a greater degree than PFSAs in the edible portions of the tested plants. Chain-length-dependency trends were evident in both lettuce shoot and strawberry fruit, with decreasing concentrations associated with increasing chain length. Perfluorobutanoate (PFBA) and perfluoropentanoate (PFPeA), both short-chain PFAAs (<8 carbon chain length), accumulated the most compared with other PFAAs tested in the edible parts of both lettuce and strawberry. PFAA concentrations in strawberry root and shoot were also measured at selected PFAA aqueous concentrations (0.4, 4, and 40 μg/L). Short-chain perfluorocarboxylates were the dominant fraction in the strawberry fruit and shoot compartments, whereas a more even distribution of all PFAAs appeared in the root compartment. Lettuce grown in soils with varying organic carbon contents (0.4%, 2%, 6%) was used to assess the impact of organic carbon sorption on PFAA bioaccumulation. The lettuce grown in soil with the 6% organic carbon content had the lowest bioaccumulation of PFAAs. Bioaccumulation factors for lettuce were correlated to carbon chain

  12. Production and characterization of cyanocobalamin-enriched lettuce (Lactuca sativa L.) grown using hydroponics.

    PubMed

    Bito, Tomohiro; Ohishi, Noriharu; Hatanaka, Yuka; Takenaka, Shigeo; Nishihara, Eiji; Yabuta, Yukinori; Watanabe, Fumio

    2013-04-24

    When lettuces (Lactuca sativa L.) grown for 30 days in hydroponic culture were treated with various concentrations of cyanocobalamin for 24 h, its content in their leaves increased significantly from nondetectable to 164.6 ± 74.7 ng/g fresh weight. This finding indicated that consumption of only two or three of these fresh leaves is sufficient to meet the Recommended Dietary Allowance for adults of 2.4 μg/day. Analyses using a cobalamin-dependent Escherichia coli 215 bioautogram and LC/ESI-MS/MS demonstrated that the cyanocobalamin absorbed from the nutrient solutions by the leaves did not alter any other compounds such as coenzymes and inactive corrinoids. Gel filtration indicated that most (86%) of the cyanocobalamin in the leaves was recovered in the free cyanocobalamin fractions. These results indicated that cyanocobalamin-enriched lettuce leaves would be an excellent source of free cyanocobalamin, particularly for strict vegetarians or elderly people with food-bound cobalamin malabsorption.

  13. Trichoderma spp. alleviate phytotoxicity in lettuce plants (Lactuca sativa L.) irrigated with arsenic-contaminated water.

    PubMed

    Caporale, Antonio G; Sommella, Alessia; Lorito, Matteo; Lombardi, Nadia; Azam, Shah M G G; Pigna, Massimo; Ruocco, Michelina

    2014-09-15

    The influence of two strains of Trichoderma (T. harzianum strain T22 and T. atroviride strain P1) on the growth of lettuce plants (Lactuca sativa L.) irrigated with As-contaminated water, and their effect on the uptake and accumulation of the contaminant in the plant roots and leaves, were studied. Accumulation of this non-essential element occurred mainly into the root system and reduced both biomass development and net photosynthesis rate (while altering the plant P status). Plant growth-promoting fungi (PGPF) of both Trichoderma species alleviated, at least in part, the phytotoxicity of As, essentially by decreasing its accumulation in the tissues and enhancing plant growth, P status and net photosynthesis rate. Our results indicate that inoculation of lettuce with selected Trichoderma strains may be helpful, beside the classical biocontrol application, in alleviating abiotic stresses such as that caused by irrigation with As-contaminated water, and in reducing the concentration of this metalloid in the edible part of the plant.

  14. The nitrogen and nitrate economy of butterhead lettuce (Lactuca sativa var capitata L).

    PubMed

    Broadley, Martin R; Seginer, Ido; Burns, Amanda; Escobar-Gutiérrez, Abraham J; Burns, Ian G; White, Philip J

    2003-09-01

    Quantifying and simulating the relationships between crop growth, total-nitrogen (total-N) and nitrate-N (NO3--N) concentration can improve crop nutritional husbandry. In this study, the relationship between shoot relative growth rate (RGR) and shoot total-N, organic-N and NO3--N concentration of hydroponically-grown lettuce (Lactuca sativa var. capitata L. cv. Kennedy) was described and simulated. Plants were grown hydroponically for up to 74 d. Nitrogen was supplied throughout (control; T1), or removed at 35 d (T2) and 54 d (T3), respectively, after sowing. The organic-N and NO3--N concentration declined in the shoots of control plants with growth, until commercial maturity approached when organic-N and NO3--N concentration increased. There were sub-linear relationships between both total-N and organic-N concentration, and shoot RGR, in the N-limited treatments, i.e. shoot RGR approached an asymptote at high shoot N concentration. The proportional effects of total-N and organic-N concentration on shoot RGR were independent of plant age. A dynamic simulation model ('Nicolet'), derived previously under different conditions, was used to simulate the growth, dry matter content, organic-N, and NO3--N concentration of lettuce grown under the extreme N-stress conditions experienced by the plants. In view of the largely successful fitting of the model to experimental data, the model was used to interpret the results. Suggestions for model improvement are made.

  15. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa).

    PubMed

    Hong, Jie; Rico, Cyren M; Zhao, Lijuan; Adeleye, Adeyemi S; Keller, Arturo A; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-01-01

    The increased production and use of nanoparticles (NPs) has generated concerns about their impact on living organisms. In this study, nCu, bulk Cu, nCuO, bulk CuO, Cu(OH)2 (CuPRO 2005, Kocide 3000), and CuCl2 were exposed for 15 days to 10 days-old hydroponically grown lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Each compound was applied at 0, 5, 10, and 20 mg L(-1). At harvest, we measured the size of the plants and determined the concentration of Cu, macro and microelements by using ICP-OES. Catalase and ascorbate peroxidase activity was also determined. Results showed that all Cu NPs/compounds reduced the root length by 49% in both plant species. All Cu NPs/compounds increased Cu, P, and S (>100%, >50%, and >20%, respectively) in alfalfa shoots and decreased P and Fe in lettuce shoot (>50% and >50%, respectively, excluding Fe in CuCl2 treatment). Biochemical assays showed reduced catalase activity in alfalfa (root and shoot) and increased ascorbate peroxidase activity in roots of both plant species. Results suggest that Cu NPs/compounds not only reduced the size of the plants but altered nutrient content and enzyme activity in both plant species.

  16. Toxic Effects of Copper-based Nanoparticles or Compounds to Lettuce (Lactuca sativa) and Alfalfa (Medicago sativa)

    PubMed Central

    Hong, Jie; Rico, Cyren; Zhao, Lijuan; Adeleye, Adeyemi S.; Keller, Arturo A.; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

    2014-01-01

    The increased production and use of nanoparticles (NPs) has generated concerns about their impact on living organisms. In this study, nCu, bulk Cu, nCuO, bulk CuO, Cu(OH)2 (CuPRO 2005, Kocide 3000), and CuCl2 were exposed for 15 days to 10 day-old hydroponically grown lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Each compound was applied at 0, 5, 10, and 20 mg/L. At harvest, we measured the size of the plants and determined the concentration of Cu, macro and microelements by using ICP-OES. Catalase and ascorbate peroxidase activity was also determined. Results showed that all Cu NPs/compounds reduced the root length by 49% in both plant species. All Cu NPs/compounds increased Cu, P, and S (>100%, >50%, and >20%, respectively) in alfalfa shoots and decreased P and Fe in lettuce shoot (>50% and >50%, respectively, excluding Fe in CuCl2 treatment). Biochemical assays showed reduced catalase activity in alfalfa (root and shoot) and increased ascorbate peroxidase activity in roots of both plant species. Results suggest that Cu NPs/compounds not only reduced the size of the plants but altered nutrient content and enzyme activity in both plant species. PMID:25474419

  17. Acinetobacter lactucae sp. nov., isolated from iceberg lettuce (Asteraceae: Lactuca sativa)

    USDA-ARS?s Scientific Manuscript database

    Strain NRRL B-41902 and three closely related strains were isolated from iceberg lettuce. The strain was found to consist of strictly aerobic, gram-negative rods that formed cocci in late stationary phase. Subsequent to sequencing the 16S ribosomal RNA gene, it was found that strain NRRL B-41902 was...

  18. [The dynamic of calcium distribution during megasporegenesis of lettuce (Lactuca sativa L.)].

    PubMed

    Qiu, Yi-Lan; Liu, Ru-Shi; Xie, Chao-Tian; Yang, Yan-Hong; Ge, Li-Li; Tian, Hui-Qiao

    2005-08-01

    Potassium antimonite was used to deposit calcium in the young ovule of lettuce (Lactuca sativa L.) at megasporogenesis stage to study the relationship between calcium and megaspore degeneration. At the megaspore mother cell stage, few calcium granules were formed in the cell (Plate I-1, 2). After meiosis of megaspore mother cell and forming an arrayed tetrad in a line (Plate I-3), three megaspores degenerated one by one from the micropyle end. In the process of degeneration, the numbers of calcium granules decreased in the three megaspores. After the first megaspore degenerated, the number of calcium granules decreased in the second megaspore, which began to degenerate (Plate II-7, 8). The third megaspore also had its number of calcium granules diminishing before it degenerated (Plate III-13, 14). The fourth megaspore always accumulated many calcium granules in the cytoplasm during its development (Plate IV-17, 18) and finally becomes functional one that will develop into an embryo sac (Plate IV-20). Megaspore degeneration is a process of programmed cell death which may be closely related with change in calcium content: when a megaspore of tetrad decreases calcium content the cell begins to degenerate, and when calcium increases in the cell, it will continue to develop into a functional megaspore. This is the first report about calcium distribution in megaspores of a tetrad during megasporogenesis in higher plants and will open a door to study the physiological function of calcium in megasporogenesis.

  19. Cell-Wall Autohydrolysis in Isolated Endosperms of Lettuce (Lactuca sativa L.).

    PubMed Central

    Dutta, S.; Bradford, K. J.; Nevins, D. J.

    1994-01-01

    Cell walls prepared from the endosperm tissue of hydrated lettuce (Lactuca sativa L.) seeds undergo autohydrolysis. Release of carbohydrates is most rapid (0.4-0.6 [mu]g per endosperm) within the 1st h of incubation in buffer, but substantial autolysis is sustained for at least 10 h. Autolysis is temperature sensitive, and the optimum rate occurs at pH 5. The rate of autolysis increases markedly in the period just prior to radicle emergence. The cell-wall polysaccharide composition in micropylar and lateral endosperm regions differs significantly; the micropylar walls are rich in arabinose and glucose with substantially lower amounts of mannose. Although walls prepared from both micropylar and lateral regions undergo autolysis, micropylar walls release carbohydrates at a higher rate than lateral walls. Autolysis products elute as large polymers when subjected to size-exclusion chromatography, suggesting that endo-enzyme activity is responsible for release of fragments containing arabinose, galactose, mannose, and uronic acids. Arabinose, galactose, mannose, and glucose are also released as monomers. As a function of time, the ratio of polymers to monomers decreases, indicating that exo-enzyme activity is also present. Thermoinhibition or treatment with abscisic acid suppresses germination and reduces the rates of autolysis of walls isolated from the endosperm by about 25%. Treatments that alleviate thermoinhibition (kinetin and gibberellic acid) increase the rates of autolysis by 20 to 30% when compared to thermoinhibited controls. PMID:12232113

  20. An Analysis of Electrical Impedance Measurements Applied for Plant N Status Estimation in Lettuce (Lactuca sativa)

    PubMed Central

    Muñoz-Huerta, Rafael F.; de J. Ortiz-Melendez, Antonio; Guevara-Gonzalez, Ramon G.; Torres-Pacheco, Irineo; Herrera-Ruiz, Gilberto; Contreras-Medina, Luis M.; Prado-Olivarez, Juan; Ocampo-Velazquez, Rosalia V.

    2014-01-01

    Nitrogen plays a key role in crop yields. Hence, farmers may apply excessive N fertilizers to crop fields, inducing environmental pollution. Crop N monitoring methods have been developed to improve N fertilizer management, most of them based on leaf or canopy optical-property measurements. However, sensitivity to environmental interference remains an important drawback. Electrical impedance has been applied to determine the physiological and nutritional status of plant tissue, but no studies related to plant-N contents are reported. The objective of this article is to analyze how the electrical impedance response of plants is affected by their N status. Four sets of lettuce (Lactuca sativa L.) with a different N-source concentrations per set were used. Total nitrogen and electrical impedance spectra (in a 1 to 100 kHz frequency range) were measured five times per set, three times every other day. Minimum phase angles of impedance spectra were detected and analyzed, together with the frequency value in which they occurred, and their magnitude at that frequency. High and positive correlation was observed between plant N content and frequency values at minimum phase angle with no significant variations detected between days of measurement. These results suggest that electrical impedance can be sensitive to plant N status. PMID:25057134

  1. An analysis of electrical impedance measurements applied for plant N status estimation in lettuce (Lactuca sativa).

    PubMed

    Muñoz-Huerta, Rafael F; Ortiz-Melendez, Antonio de J; Guevara-Gonzalez, Ramon G; Torres-Pacheco, Irineo; Herrera-Ruiz, Gilberto; Contreras-Medina, Luis M; Prado-Olivarez, Juan; Ocampo-Velazquez, Rosalia V

    2014-06-27

    Nitrogen plays a key role in crop yields. Hence, farmers may apply excessive N fertilizers to crop fields, inducing environmental pollution. Crop N monitoring methods have been developed to improve N fertilizer management, most of them based on leaf or canopy optical-property measurements. However, sensitivity to environmental interference remains an important drawback. Electrical impedance has been applied to determine the physiological and nutritional status of plant tissue, but no studies related to plant-N contents are reported. The objective of this article is to analyze how the electrical impedance response of plants is affected by their N status. Four sets of lettuce (Lactuca sativa L.) with a different N-source concentrations per set were used. Total nitrogen and electrical impedance spectra (in a 1 to 100 kHz frequency range) were measured five times per set, three times every other day. Minimum phase angles of impedance spectra were detected and analyzed, together with the frequency value in which they occurred, and their magnitude at that frequency. High and positive correlation was observed between plant N content and frequency values at minimum phase angle with no significant variations detected between days of measurement. These results suggest that electrical impedance can be sensitive to plant N status.

  2. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa).

    PubMed

    Felizeter, Sebastian; McLachlan, Michael S; de Voogt, Pim

    2012-11-06

    An uptake study was carried out to assess the potential human exposure to perfluorinated alkyl acids (PFAAs) through the ingestion of vegetables. Lettuce (Lactuca sativa) was grown in PFAA-spiked nutrient solutions at four different concentrations, ranging from 10 ng/L to 10 μg/L. Eleven perfluorinated carboxylic acids (PFCAs) and three perfluorinated sulfonic acids (PFSAs) were analyzed by HPLC-MS/MS. At the end of the experiment, the major part of the total mass of each of the PFAAs (except the short-chain, C4-C7, PFCAs) taken up by plants appeared to be retained in the nonedible part, viz. the roots. Root concentration factors (RCF), foliage/root concentration factors (FRCF), and transpiration stream concentration factors (TSCF) were calculated. For the long chained PFAAs, RCF values were highest, whereas FRCF were lowest. This indicates that uptake by roots is likely governed by sorption of PFAAs to lipid-rich root solids. Translocation from roots to shoots is restricted and highly depending on the hydrophobicity of the compounds. Although the TSCF show that longer-chain PFCAs (e.g., perfluorododecanoic acid) get better transferred from the nutrient solution to the foliage than shorter-chain PFCAs (e.g., perfluoroheptanoic acid), the major fraction of longer-chain PFCAs is found in roots due to additional adsorption from the spiked solution. Due to the strong electron-withdrawing effect of the fluorine atoms the role of the negative charge of the dissociated PFAAs is likely insignificant.

  3. Tipburn in salt-affected lettuce (Lactuca sativa L.) plants results from local oxidative stress.

    PubMed

    Carassay, Luciano R; Bustos, Dolores A; Golberg, Alberto D; Taleisnik, Edith

    2012-02-15

    Tipburn in lettuce is a physiological disorder expressed as a necrosis in the margins of young developing leaves and is commonly observed under saline conditions. Tipburn is usually attributed to Ca(2+) deficiencies, and there has very limited research on other mechanisms that may contribute to tipburn development. This work examines whether symptoms are mediated by increased reactive oxygen species (ROS) production. Two butter lettuce (Lactuca sativa L.) varieties, Sunstar (Su) and Pontina (Po), with contrasting tipburn susceptibility were grown in hydroponics with low Ca(2+) (0.5 mM), and with or without 50 mM NaCl. Tipburn symptoms were observed only in Su, and only in the saline treatment. Tipburn incidence in response to topical treatments with Ca(2+) scavengers, Ca(2+) transport inhibitors, and antioxidants was assessed. All treatments were applied before symptom expression, and evaluated later, when symptoms were expected to occur. Superoxide presence in tissues was determined with nitro blue tetrazolium (NBT) and oxidative damage as malondialdehyde (MDA) content. Superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities were assayed. Under control and saline conditions, tipburn could be induced in both varieties by topical treatments with a Ca(2+) scavenger (EGTA) and Ca(2+) transport inhibitors (verapamil, LaCl(3)) and reduced by supplying Ca(2+) along with a ionophore (A 23187). Tipburn symptoms were associated with locally produced ROS. O(2)(·-) and oxidative damage significantly increased in leaf margins before symptom expression, while topical antioxidant applications (Tiron, DPI) reduced symptoms in treated leaves, but not in the rest of the plant. Antioxidant enzyme activity was higher in Po, and increased more in response to EGTA treatments, and may contribute to mitigating oxidative damage and tipburn expression in this variety.

  4. Development of EST-SSR markers for the study of population structure in lettuce (Lactuca sativa L.).

    PubMed

    Simko, Ivan

    2009-01-01

    A set of 61 simple sequence repeat (SSR) markers was developed from the 19,523 Lactuca sativa and Lactuca serriola unigenes. Approximately 4.5% of the unigenes contained a perfect SSR at least 20 bp long, corresponding to roughly 1 perfect SSR per 14.7 kb. Marker polymorphism was tested on a set comprising 96 accessions representing all major horticultural types and 3 wild species (L. serriola, Lactuca saligna, and Lactuca virosa). Both the average marker heterozygosity (UHe = 0.32) and the number of different alleles per locus (Na = 3.56) were significantly reduced in expressed sequence tag (EST)-SSRs as compared with anonymous SSRs (UHe = 0.59, Na = 5.53). Marker transfer rate to the wild species corresponded to the decreasing sexual compatibility with L. sativa and was higher for EST-SSRs (100% L. serriola, 87% L. saligna, and 75% L. virosa) than for anonymous SSRs (93%, 66%, and 42%, respectively). Assessment of population structure among 90 L. sativa cultivars with SSRs was in good agreement with classification into the horticultural types. The average marker heterozygosity was smallest in iceberg (0.097), Latin (0.140), and romaine-type (0.151) cultivars while highest in leaf (green leaf 0.208 and red leaf 0.240) lettuces. The level of marker heterozygosity is in accord with morphological variability observed in different horticultural types.

  5. Linkage analysis of genes for resistance to downy mildew (Bremia lactucae) in lettuce (Lactuca sativa).

    PubMed

    Hulbert, S H; Michelmore, R W

    1985-08-01

    The genetics of specific resistance was studied in F2 populations which segregated for either one or two resistance genes. The resistance factors 1, 11 and 14 which had not previously been characterized genetically segregated as single dominant genes (Dm). Resistance was determined by three linkage groups; R 1/14, 2, 3, and 6 in the first, R 5/8, and 10 in the second and R 4, 7 and 11 in the third. Cultivars of lettuce commonly used in the differential series to detect virulence to R3 and R10, were demonstrated to carry two tightly linked resistance genes. Implications of this linkage arrangement to the manipulation and characterization of these resistance genes are discussed.

  6. [The character of calcium distribution in developing anther of lettuce (Lactuca sativa L.)].

    PubMed

    Qiu, Yi Lan; Liu, Ru Shi; Xie, Chao Tian; Yang, Yan Hong; Xu, Qing; Tian, Hui Qiao

    2005-10-01

    Potassium antimonite was used to locate calcium in the anther of lettuce (Lactuca sativa L) during its development. At the early stage of anther development there were few calcium granules in microspore mother cells and the cells of anther wall. After meiosis of microspore mother cells, calcium granules first appeared in the tapetal cells in which some small secretive vacuoles containing many calcium granules were formed and secreted into locule. Then, the tapetal cells began to degenerate. At the late stage of microspore, tapetal cells completely degenerated and its protoplast masses moved into anther locule with many calcium granules. Few calcium granules were precipitated in the microspores just being released from tetrad, but some on the surface of exine. Then calcium granules appeared in the nucleus and cytoplasm of early microspores, as wall as in the exine. When microspores formed some small vacuoles containing some calcium granules, and then the small vacuoles fused to form a large vacuole, the calcium granules in the nucleus and cytoplasm evidently decreased, microspore developed to the late stage. The result suggested that calcium is related to the formation of large vacuole in microspores. The wall of microspore also is a main location of calcium granules during its developing. At early microspore some calcium granules began to accumulate in exine, which suggested calcium related with exine formation. At late stage of microspore, most of calcium granules were mainly deposited on the surface of exine. After the first mitosis of microspores, the large vacuole of bicellular pollen disappeared and calcium granules in the large vacuole went back to cytoplasm again. When bicellular pollen synthesized starches some calcium granules appeared on the surface of starches, which suggested calcium may regulate starch synthesis. With amount of starches increasing, calcium granules disappeared from pollen cytoplasm and only some of them located on the surface of pollen.

  7. [Calcium distribution in the egg cell, zygote and proembryo of lettuce (Lactuca sativa L.)].

    PubMed

    Qiu, Yi Lan; Liu, Ru Shi; Wei, Dong Mei; Tian, Hui Qiao

    2006-02-01

    Potassium antimonite precipitation was used to located calcium in the egg cells (before and after anthesis), zygotes and proembryos of lettuce (Lactuca sativa L.). A few calcium precipitates (ppts) were located in the small vacuoles of cytoplasm of egg cell at 3 d before anthesis, when egg cells just formed. Then the small vacuoles fused to form some bigger vacuoles in egg cell at 2d before anthesis. Calcium ppts increased evidently in the cytoplasm and nucleus of egg cells at this time. At 1d before anthesis, a biggest vacuole located at the micropyle end of the cell and its nucleus was pushed toward the chalazal end of the cell, which made an evident cellular polarity. The number of calcium ppts in the egg cell markedly decreased, suggesting that change of calcium distribution may be related to the development of egg cell. After anthesis and before fertilization, calcium ppts were still few in the egg cells, and most of them were accumulated in the nucleus, especially in the vacuoles of nucleolus. At 4h after anthesis, egg cell was fertilized and the wall at the chalazal end of egg cell was formed completely. Calcium ppts evidently increased again in egg cell, and some big ppts appeared in the karyoplasm of nucleus and abundant small ppts in the large vacuole. At 9h after anthesis, zygote completed its first division. Calcium ppts in the nucleus and cytoplasm of two-celled proembryo began to decrease, and only some ones accumulated in the vacuoles of nucleolus. At 18h after anthesis, zygote divided several times and became a multi-celled proembryo. Calcium ppts in the cells of proembryo ulteriorly diminished but there were many ppts on the surface of proembryo. The result indicates that calcium in egg cell, zygote and the cells of proembryo orderly changes its temporal and spatial position, which suggests that calcium may play a role during the development of egg cell and zygote.

  8. [Calcium distribution in the central cell of lettuce (Lactuca sativa L.) before and after pollination].

    PubMed

    Qiu, Yi Lan; Liu, Ru Shi; Ye, Lv; Tian, Hui

    2008-02-01

    Potassium antimonite precipitation was used to locate calcium in the central cell of lettuce (Lactuca sativa L.) before and after pollination. At 3d before anthesis, two polar nuclei of central cell separately located at two polarity of the cell, and few calcium precipitates (ppts) appeared in the polar nuclei and cytoplasm, but some ppts in its small vacuoles. At 2d before anthesis, two polar nuclei moved toward the middle of the cell and fused to form a secondary nucleus, and the ppts evidently increased in the nucleus and cytoplasm. At 1d before anthesis, secondary nucleus again moved toward micropylar end and located near the egg to prepare for fertilization. Calcium precipitates were mainly accumulated in the secondary nucleus. After pollination and before fertilization, the distribution of calcium ppts was similar to that before pollination. At 4h after pollination, the central cell was fertilized, and calcium ppts evidently increased in the cell and numerous were accumulated in its nucleus and cytoplasm. At 6h after pollination, the primary endosperm nucleus completed its first division and formed two dissociate endosperm nuclei, and still many calcium precipitates appeared in the nucleus and cytoplasm. With endosperm development, calcium ppts decreased in the endosperm cell. At 1d after emasculated and without pollination, the secondary nucleus of the cell still bordered on the egg and some calcium ppts appeared in the secondary nucleus. The results indicated that the temporal and spatial changes of calcium in the central cell may play an important physiological role during the development of the central cell and endosperm.

  9. Germination and growth of lettuce (Lactuca sativa) at low atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Spanarkel, Robert; Drew, Malcolm C.

    2002-01-01

    The response of lettuce (Lactuca sativa L. cv. Waldmann's Green) to low atmospheric pressure was examined during the initial 5 days of germination and emergence, and also during subsequent growth to vegetative maturity at 30 days. Growth took place inside a 66-l-volume low pressure chamber maintained at 70 kPa, and plant response was compared to that of plants in a second, matching chamber that was at ambient pressure (approximately 101 kPa) as a control. In other experiments, to determine short-term effects of low pressure transients, plants were grown at ambient pressure until maturity and then subjected to alternating periods of 24 h of low and ambient atmospheric pressures. In all treatments the partial pressure of O2 was maintained at 21 kPa (approximately the partial pressure in air at normal pressure), and the partial pressure of CO2 was in the range 66.5-73.5 Pa (about twice that in normal air) in both chambers, with the addition of CO2 during the light phase. With continuous exposure to low pressure, shoot and root growth was at least as rapid as at ambient pressure, with an overall trend towards slightly greater performance at the lower pressure. Dark respiration rates were greater at low pressure. Transient periods at low pressure decreased transpiration and increased dark respiration but only during the period of exposure to low pressure. We conclude that long-term or short-term exposure to subambient pressure (70 kPa) was without detectable detriment to vegetative growth and development.

  10. Germination and growth of lettuce (Lactuca sativa) at low atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Spanarkel, Robert; Drew, Malcolm C.

    2002-01-01

    The response of lettuce (Lactuca sativa L. cv. Waldmann's Green) to low atmospheric pressure was examined during the initial 5 days of germination and emergence, and also during subsequent growth to vegetative maturity at 30 days. Growth took place inside a 66-l-volume low pressure chamber maintained at 70 kPa, and plant response was compared to that of plants in a second, matching chamber that was at ambient pressure (approximately 101 kPa) as a control. In other experiments, to determine short-term effects of low pressure transients, plants were grown at ambient pressure until maturity and then subjected to alternating periods of 24 h of low and ambient atmospheric pressures. In all treatments the partial pressure of O2 was maintained at 21 kPa (approximately the partial pressure in air at normal pressure), and the partial pressure of CO2 was in the range 66.5-73.5 Pa (about twice that in normal air) in both chambers, with the addition of CO2 during the light phase. With continuous exposure to low pressure, shoot and root growth was at least as rapid as at ambient pressure, with an overall trend towards slightly greater performance at the lower pressure. Dark respiration rates were greater at low pressure. Transient periods at low pressure decreased transpiration and increased dark respiration but only during the period of exposure to low pressure. We conclude that long-term or short-term exposure to subambient pressure (70 kPa) was without detectable detriment to vegetative growth and development.

  11. Construction of transplastomic lettuce (Lactuca sativa) dominantly producing astaxanthin fatty acid esters and detailed chemical analysis of generated carotenoids.

    PubMed

    Harada, Hisashi; Maoka, Takashi; Osawa, Ayako; Hattan, Jun-Ichiro; Kanamoto, Hirosuke; Shindo, Kazutoshi; Otomatsu, Toshihiko; Misawa, Norihiko

    2014-04-01

    The plastid genome of lettuce (Lactuca sativa L.) cv. Berkeley was site-specifically modified with the addition of three transgenes, which encoded β,β-carotenoid 3,3'-hydroxylase (CrtZ) and β,β-carotenoid 4,4'-ketolase (4,4'-oxygenase; CrtW) from a marine bacterium Brevundimonas sp. strain SD212, and isopentenyl diphosphate isomerase from a marine bacterium Paracoccus sp. strain N81106. Constructed transplastomic lettuce plants were able to grow on soil at a growth rate similar to that of non-transformed lettuce cv. Berkeley and generate flowers and seeds. The germination ratio of the lettuce transformants (T0) (98.8%) was higher than that of non-transformed lettuce (93.1 %). The transplastomic lettuce (T1) leaves produced the astaxanthin fatty acid (myristate or palmitate) diester (49.2% of total carotenoids), astaxanthin monoester (18.2%), and the free forms of astaxanthin (10.0%) and the other ketocarotenoids (17.5%), which indicated that artificial ketocarotenoids corresponded to 94.9% of total carotenoids (230 μg/g fresh weight). Native carotenoids were there lactucaxanthin (3.8%) and lutein (1.3 %) only. This is the first report to structurally identify the astaxanthin esters biosynthesized in transgenic or transplastomic plants producing astaxanthin. The singlet oxygen-quenching activity of the total carotenoids extracted from the transplastomic leaves was similar to that of astaxanthin (mostly esterified) from the green algae Haematococcus pluvialis.

  12. [Studies on the calcium distribution in developing synergids of lettuce (Lactuca sativa L.)].

    PubMed

    Qiu, Yi Lan; Liu, Ru Shi; Tian, Hui Qiao

    2007-08-01

    Potassium antimonite was used to locate calcium in the synergids of lettuce (Lactuca sativa L) during their development. The two synergids on 3d before anthesis formed evident polarity with most cytoplasm located in the micropylar end and nucleus in the middle and a big vacuole in the chalazal end. At this time, calcium precipitates were a few in both cells. Calcium precipitates in the two synergids began to increase on 2d before anthesis. Synergid wall in the micropylar end thickened on 1d before anthesis, in which many calcium precipitates located. Near anthesis, synergids formed filiform apparatus in which abundant calcium precipitates accumulated to prepare for attracting pollen tubes entering. At anthesis, the distribution of calcium precipitates between two synergids was the same. At 1h after pollination, calcium precipitates evidently increased in one synergid that seemed to degenerate, the other one was persistent and the distribution of calcium granules did not change. Two synergids kept intact at 1d after emasculated, and the distribution of calcium precipitates did not display difference, suggesting that the degeneration of one synergid was caused by approaching pollen tubes which might give some signal to induce calcium increase of the synergid. Before fusion of sperm cell with egg cell, the cytoplasm of degenerated synergid embraced the egg and formed a thin layer between the egg and the central cell. Calcium precipitates in the different parts of degenerated synergid were closely connected with the fertilization: calcium precipitates accumulated in the near chalazal end of degenerated synergid at 1h after pollination. At 2.5h after pollination, the calcium precipitates increased at the chalazal end, especially abundant in the thin layer between the egg and the central cell. However, at 4h after pollination, the fertilization had finished at this time, the distribution of calcium precipitates in degenerated synergid changed again: the precipitates

  13. Heavy metals deposited in the culture of lettuce (Lactuca sativa L.) by the influence of vehicular traffic in Pernambuco, Brazil.

    PubMed

    França, Fernanda C S S; Albuuerque, Adriana M A; Almeida, Amanda C; Silveira, Patrícia B; Filho, Crescêncio A; Hazin, Clovis A; Honorato, Eliane V

    2017-01-15

    Currently one of the main sources of atmospheric pollution identified in urban centers is derived from both industrial and motor vehicle emissions. These pollutants can be adsorbed to particulate matter which is present in the air or deposited in the soil and plants, eventually reaching the human food chain. In this context, the present study aimed to determine the concentration of metals such as Cu, Pb, Cd, Ni and Zn in two subspecies of Lactuca sativa L. and in the soil from were lettuce samples were collected. The results for the soil samples analyzed show a possible contamination by Pb with concentration values as high as 140mg.kg(-1), which are above the Brazilian standards defined by Resolution CONAMA 420/2009 (Brazilian Environmental Council). However, the values found in the lettuce itself reveal that it is still suitable for consumption.

  14. Reduced allelopathic inhibition of lettuce (Lactuca sativa) growth caused by velvet bean (Mucuna pruriens) under 3D-clinorotation.

    PubMed

    Tomita-Yokotani, Kaori; Fujii, Yoshiharu; Hashimoto, Hirofumi; Yamashita, Masamichi

    2003-06-01

    Allelopathy between Mucuna pruriens (velvet bean) and Lactuca sativa (lettuce) was studied under 3D-clinorotation. Growth of both roots and shoots of lettuce seedlings was suppressed by the presence of velvet bean. The degree of suppression was less on the clinostat compared to the normal static earth gravity. L-DOPA (L-3, 4-dihydroxyphenylalanine) is known to be a major substance in allelopathy of velvet bean. Amount of L-DOPA diffused out from a sintered filter paper into agar medium was compared between clinorotation and control group, and found no significant difference. It was concluded that some factors related to release, transport, and sensing phenomena of allelopathic substances may be responsible to the new findings in this study.

  15. Nitrate content of lettuce (Lactuca sativa L.) after fertilization with sewage sludge and irrigation with treated wastewater.

    PubMed

    Castro, E; Mañas, M P; De Las Heras, J

    2009-02-01

    A romaine-type lettuce (Lactuca sativa L.) was cultivated over three crop seasons (spring 2005, spring 2006 and autumn-winter 2006) in six 36 m(2) plots in Alcázar de San Juan, Spain. A drip irrigation system was used to water all plots: five plots with drinking water and one plot with wastewater from the activated sludge system of a wastewater treatment plant (WWTP). One drinking water-irrigated plot was not fertilized (control). Five different treatments were applied to the soil: three organic mixtures (sewage sludge, sewage sludge mixed with pine bark and municipal solid waste with composted sludge) and a conventional fertilizer were applied to the four plots irrigated with drinking water. The last plot was irrigated with treated wastewater. The treatments were tested for their effect on plant growth and nitrate concentration in vegetable tissue. An increase in fresh weight in the lettuce was linked to the dosage of sewage sludge. The highest nitrate level was observed in the sewage sludge treatment in all crops and seasons, although, in general, all values were below the maximum limits established by the European Commission for nitrate content in fresh romaine lettuce. In the third crop season, a significant increase in nitrate content was observed in lettuce from organic treatments. Nitrate concentration in lettuce from irrigated treated wastewater was higher than control, although significant differences were not found.

  16. Complete genome sequence of the biofilm-forming Curtobacterium sp. strain BH-2-1-1, isolated from lettuce (Lactuca sativa) originating from a conventional field in Norway.

    PubMed

    Dees, Merete Wiken; Brurberg, May Bente; Lysøe, Erik

    2016-12-01

    Here, we present the 3,795,952 bp complete genome sequence of the biofilm-forming Curtobacterium sp. strain BH-2-1-1, isolated from conventionally grown lettuce (Lactuca sativa) from a field in Vestfold, Norway. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession CP017580.

  17. LSGermOPA, a custom OPA of 384 EST-derived SNPs for high-throughput lettuce (Lactuca sativa L.) germplasm fingerprinting

    USDA-ARS?s Scientific Manuscript database

    We assessed the genetic diversity and population structure among 148 cultivated lettuce (Lactuca sativa L.) accessions using the high-throughput GoldenGate assay and 384 EST (Expressed Sequence Tag)-derived SNP (single nucleotide polymorphism) markers. A custom OPA (Oligo Pool All), LSGermOPA was fo...

  18. Differential Scanning Calorimetry as a Tool for Nondestructive Measurements of Seed Deterioration in Lettuce (Lactuca sativa, CV “Black Seeded Simpson”)

    USDA-ARS?s Scientific Manuscript database

    This study was undertaken to determine if changes in lipid phase behavior could be used to detect lost viability in lettuce (Lactuca sativa) seeds. We used seeds from the cultivar ‘Black Seeded Simpson’ that were purchased every 2-3 years since 1989 and stored in resealable plastic bags at constan...

  19. Postharvest changes in water status and chlorophyll content of lettuce (Lactuca sativa L.) and their relationship with overall visual quality.

    PubMed

    Agüero, M V; Barg, M V; Yommi, A; Camelo, A; Roura, S I

    2008-01-01

    The purpose of this study was to evaluate water status, chlorophyll content (C), and overall visual quality (OVQ) of fresh butter lettuce (Lactuca sativa var. Lores) as well as these indexes' evolution during storage and their relationships, if any. Whole lettuce plants were stored at optimal postharvest conditions (0 to 2 degrees C and 97% to 99% relative humidity). Measured parameters during each sampling day were relative water content (RWC), water content (WC), free water (FW), bound water (BW), free water to total water ratio (FW/TW), C, and OVQ. All parameters were evaluated in the external, middle, and internal zones of lettuce heads. The external zone had higher initial values of RWC, WC, and FW than the internal zone. The external zone yielded the highest FW/TW ratio (85%), indicating that external leaves had more water available to be used in degradation reactions and were more perishable, with the lowest shelf life if compared with the other lettuce zones. During storage, water status index evolution differed from zone to zone. An increase in BW and a decrease in FW were detected in all lettuce zones. RWC turned out to be a more sensitive measurement than WC. Yet RWC showed no significant correlation with any index. The OVQ parameter correlates with FW directly, or indirectly through FW/TW in all lettuce zones; therefore, FW is an objective and quantitative measurement, which impacts on the visual quality of butter lettuce. The decrease in chlorophyll content observed in the external leaves strongly correlated with the decrease in OVQ.

  20. Allelopathic Activity of Extracts from Different Brazilian Peanut (Arachis hypogaea L.) Cultivars on Lettuce (Lactuca sativa) and Weed Plants

    PubMed Central

    Garcia, R.; Simas, N. K.

    2017-01-01

    Peanut (Arachis hypogaea L.) is the fourth most consumed oleaginous plant in the world, producing seeds with high contents of lipids, proteins, vitamins, and carbohydrates. Biological activities of different extracts of this species have already been evaluated by many researchers, including antioxidant, antitumoral, and antibacterial. In this work, the allelopathic activity of extracts from different Brazilian peanut cultivars against lettuce (Lactuca sativa) and two weed plants (Commelina benghalensis and Ipomoea nil) was studied. Aerial parts, roots, seeds, and seed coats were used for the preparation of crude extracts. Seed extract partitioning was performed with n-hexane, dichloromethane, ethyl acetate, n-butanol, and aqueous residue. Germination and growth of hypocotyls and rootlets were evaluated after one and five days of incubation with plant extracts, respectively. Crude seed extract and its dichloromethanic partition displayed highest allelopathic activity. These results contribute for the study of new potential natural herbicides. PMID:28396881

  1. Allelopathic Activity of Extracts from Different Brazilian Peanut (Arachis hypogaea L.) Cultivars on Lettuce (Lactuca sativa) and Weed Plants.

    PubMed

    Casimiro, G S; Mansur, E; Pacheco, G; Garcia, R; Leal, I C R; Simas, N K

    2017-01-01

    Peanut (Arachis hypogaea L.) is the fourth most consumed oleaginous plant in the world, producing seeds with high contents of lipids, proteins, vitamins, and carbohydrates. Biological activities of different extracts of this species have already been evaluated by many researchers, including antioxidant, antitumoral, and antibacterial. In this work, the allelopathic activity of extracts from different Brazilian peanut cultivars against lettuce (Lactuca sativa) and two weed plants (Commelina benghalensis and Ipomoea nil) was studied. Aerial parts, roots, seeds, and seed coats were used for the preparation of crude extracts. Seed extract partitioning was performed with n-hexane, dichloromethane, ethyl acetate, n-butanol, and aqueous residue. Germination and growth of hypocotyls and rootlets were evaluated after one and five days of incubation with plant extracts, respectively. Crude seed extract and its dichloromethanic partition displayed highest allelopathic activity. These results contribute for the study of new potential natural herbicides.

  2. Effect of ozonated water treatment on microbial control and on browning of iceberg lettuce (Lactuca sativa L.).

    PubMed

    Koseki, Shigenobu; Isobe, Seiichiro

    2006-01-01

    We examined the effect of ozonated water treatment on microbial control and quality of cut iceberg lettuce (Lactuca sativa L.). Fresh-cut lettuce was washed in ozonated water (3, 5, and 10 ppm) for 5 min at ambient temperature. The native bacterial population on the lettuce declined in response to a rise in ozone concentration. However, there was no further bacterial reduction (1.4 log CFU/g) above 5 ppm ozone. Although ozonated water treatment increased the phenylalanine ammonia lyase (PAL) activity of the lettuce stored at 10 degrees C compared with the water wash treatment after 1 day of storage, the concentration of ozone did not affect PAL activity. The a* value of the residue of the lettuce methanol extracts, which reflects the extent of browning, increased dramatically in lettuce treated with 10 ppm ozonated water compared with other treatments. Treatment with 3 or 5 ppm ozonated water resulted in more rapid changes in the a* value than after the water treatment. The combined treatment of hot water (50 degrees C, 2.5 min) followed by ozonated water (5 ppm, 2.5 min) had the same bactericidal effect as treatment with ozonated water (5 ppm, 5 min) or sodium hypochlorite (NaOCl, 200 ppm, 5 min), giving a reduction in bacteria numbers of 1.2 to 1.4 log CFU/g. The ascorbic acid content of the lettuce was not affected by these treatments. The combined treatment of hot water followed by ozonated water greatly inhibited PAL activity for up to 3 days of storage at 10 degrees C. Treatment with this combination greatly suppressed increases in the a* value, thus retarding the progress of browning compared with other treatments throughout the 6-day storage. NaOCl treatment also inhibited browning for up to 3 days of storage. Bacterial populations on the lettuce treated with sanitizers were initially reduced but then showed rapid growth compared with that of the water wash treatment, which did not reduce bacterial counts initially.

  3. Impact of non-functionalized and amino-functionalized multiwall carbon nanotubes on pesticide uptake by lettuce (Lactuca sativa L.).

    PubMed

    Hamdi, Helmi; De La Torre-Roche, Roberto; Hawthorne, Joseph; White, Jason C

    2015-03-01

    The effect of non-functionalized and amino-functionalized multiwall carbon nanotube (CNT) exposure, as well as the impact of CNT presence on coexistent pesticide accumulation, was investigated in lettuce (Lactuca sativa L.). Lettuce seeds were sown directly into CNT-amended vermiculite (1000 mg L(-1)) to monitor phytotoxicity during germination and growth. During growth, lettuce seedlings were subsequently exposed to chlordane (cis-chlordane [CS], trans-chlordane [TC] and trans-nonachlor [TN]) and p,p'-DDE (all at 100 ng/L) in the irrigation solution for a 19-d growth period. CNT exposure did not significantly influence seed germination (82-96%) or plant growth. Similarly, pesticide exposure had no impact on plant growth, total pigment production or tissue lipid peroxidation. After 19 d, the root content of total chlordane and p,p'-DDE was 390 and 73.8 µg g(-1), respectively; in plants not exposed to CNTs, the shoot levels were 1.58 and 0.40 µg g(-1), respectively. The presence and type of CNT significantly influenced pesticide availability to lettuce seedlings. Non-functionalized CNT decreased the root and shoot pesticide content by 88% and 78%, respectively, but amino-functionalized CNT effects were significantly more modest, with decreases of 57% in the roots and 23% in the shoots, respectively. The presence of humic acid completely reversed the reduced accumulation of pesticides induced by amino-functionalized CNT, likely due to strong competition over adsorption sites on the nanomaterial (NM). These findings have implications for food safety and for the use of engineered NMs in agriculture, especially with leafy vegetables.

  4. Complete genome sequence of the biofilm-forming Microbacterium sp. strain BH-3-3-3, isolated from conventional field-grown lettuce (Lactuca sativa) in Norway.

    PubMed

    Dees, Merete Wiken; Brurberg, May Bente; Lysøe, Erik

    2017-03-01

    The genus Microbacterium contains bacteria that are ubiquitously distributed in various environments and includes plant-associated bacteria that are able to colonize tissue of agricultural crop plants. Here, we report the 3,508,491 bp complete genome sequence of Microbacterium sp. strain BH-3-3-3, isolated from conventionally grown lettuce (Lactuca sativa) from a field in Vestfold, Norway. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession CP017674.

  5. [The dynamics of calcium distribution in stigma and style of lettuce (Lactuca sativa L.) before and after pollination].

    PubMed

    Qiu, Yi Lan; Liu, Ru Shi; Xie, Chao Tian; Yang, Yan Hong; Gu, Li; Tian, Hui Qiao

    2005-08-01

    Potassium antimonite was used to deposit calcium in the stigma and style of lettuce (Lactuca sativa L.) before and after pollination. The stigma of lettuce is two splits. Abundant calcium granules are displayed in the wall of papillae on the receptive surface of stigma before and after pollination, which may facilitate pollen germination. However, a few calcium granules in the wall of epidermis cell on no-receptive surface. Calcium distribution in style presents a gradient in transmitting tissue and parenchyma cells from the top to the base of the style before pollination. After pollination, calcium in transmitting tissue distinctly increased and its gradient distribution became more evident. Pollen tubes grow in the intercellular gaps of transmitting tissue. When pollen tubes grew into transmitting tissue, calcium granules in parenchyma around transmitting tissue decreased, suggesting a calcium movement was controlled by pollen tubes. The calcium gradient distribution also appeared in the trachea of vascular bundle of style. In general, calcium in style displays a feature of time-special distribution: transmitting tissue doesn't need much more calcium that is only stored in the parenchyma before pollination. However, calcium in parenchyma cells may be transported to transmitting tissue and make the latter contain more calcium to form an evident calcium gradient and meet the requirement of pollen tubes directionally growing after pollination. This is the second sample of calcium gradient existing in style, which was found by using potassium antimonite method.

  6. Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake.

    PubMed

    Doolette, Casey L; McLaughlin, Michael J; Kirby, Jason K; Navarro, Divina A

    2015-12-30

    Silver nanoparticles (AgNPs) can enter terrestrial systems as sulfidised AgNPs (Ag2S-NPs) through the application of biosolids to soil. However, the bioavailability of Ag2S-NPs in soils is unknown. The two aims of this study were to investigate (1) the bioavailability of Ag to lettuce (Lactuca sativa) using a soil amended with biosolids containing Ag2S-NPs and (2) the effect of commonly used agricultural fertilisers/amendments on the bioavailability of Ag, AgNPs and Ag2S-NPs to lettuce. The study used realistic AgNP exposure pathways and exposure concentrations. The plant uptake of Ag from biosolids-amended soil containing Ag2S-NPs was very low for all Ag treatments (0.02%). Ammonium thiosulfate and potassium chloride fertilisation significantly increased the Ag concentrations of plant roots and shoots. The extent of the effect varied depending on the type of Ag. Ag2S-NPs, the realistic form of AgNPs in soil, had the lowest bioavailability. The potential risk of AgNPs in soils is low; even in the plants that had the highest Ag concentrations (Ag(+)+thiosulfate), only 0.06% of added Ag was found in edible plant parts (shoots). Results from the study suggest that agricultural practises must be considered when carrying out risk assessments of AgNPs in terrestrial systems; such practises can affect AgNP bioavailability.

  7. Determination of phytotoxicity of soluble elements in soils, based on a bioassay with lettuce (Lactuca sativa L.).

    PubMed

    Valerio, Marlon Escoto; García, Juan Fernández; Peinado, Francisco Martín

    2007-05-25

    In this work the different concentrations of soluble elements in soils from natural (peridotitic soils) and anthropogenic (soils affected by a pyrite-mine spill) origin, are used to determine the phytotoxicity in lettuce (Lactuca sativa L.). The solutions are obtained from soil:water extracts (1:1), having neutral pH and high concentrations of As, Pb, Zn, Mn, Co and Ni, with values exceeding the toxic level for soil solution [Bohn HL, McNeal BL, O'Connor GA. Soil Chemistry, Wiley Interscience. Wiley & Sons, New York, 1985]. The variables evaluated are: Seed Germination (SG), Root Elongation (RE), Germination Rate (GR) and Root Necrosis (RN). The most sensitive variables in the bioassay with these solutions are GR and RN, in these cases the solution causes a reduction of 44% and 67%, respectively, in relation to control (distilled water). The test using soil-water solutions is sensitive and reproducible to determine phytotoxicity in lettuce caused by potentially pollutant elements in soils.

  8. Stabilization of adenine nucleotide ratios at various values by an oxygen limitation of respiration in germinating lettuce (Lactuca sativa) seeds.

    PubMed Central

    Raymond, P; Pradet, A

    1980-01-01

    The concentrations of adenine nucleotides were determined in germinating lettuce (Lactuca sativa) seeds after transitions from air to hypoxic or anoxic atmospheres. The ratio ATP/ADP and the energy charge were rapidly lowered after the transitions and remained stable at low values for hours. The energy charge in anoxia stabilized at a value close to 0.3. After 24 h in anoxia the energy charge rose rapidly to high values (0.9) when N2 was replaced by air. The metabolic properties of lettuce seeds had then been conversed for hours at low energy charge. In hypoxia the O2 uptake was decreased and the energy charge was stabilized at values intermediate between that in air and that in anoxia. When the O2 partial pressures (pO2) were 5 and 2kPa, the values of O2 uptake were one-third and one-sixth of that in air, and the energy charges were 0.7 and 0.5. These results show that the energy charge is regulated over a wide range of values. The ratio ATP/ADP and the energy charge are indicators of the limitation of metabolic activity by hypoxia. PMID:7447934

  9. Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator.

    PubMed

    Charles, Jérémie; Sancey, Bertrand; Morin-Crini, Nadia; Badot, Pierre-Marie; Degiorgi, François; Trunfio, Giuseppe; Crini, Grégorio

    2011-10-01

    Industrial wastewater containing heavy metals is generally decontaminated by physicochemical treatment consisting in insolublizing the contaminants and separating the two phases, water and sludge, by a physical process (filtration, settling or flotation). However, chemical precipitation does not usually remove the whole pollution load and the effluent discharged into the environment can be toxic even if it comes up to regulatory standards. To assess the impact of industrial effluent from 4 different surface treatment companies, we performed standardized bioassays using seeds of the lettuce Lactuca sativa. We measured the rate of germination, and the length and mass of the lettuce plantlet. The results were used to compare the overall toxicity of the different effluents: effluents containing copper and nickel had a much higher impact than those containing zinc or aluminum. In addition, germination tests conducted using synthetic solutions confirmed that mixtures of metals have higher toxicity than the sum of their separate constituents. These biological tests are cheap, easy to implement, reproducible and highlight the effects caused by effluent treated with the methods commonly applied in industry today. They could be routinely used to check the impact of industrial discharges, even when they meet regulatory requirements for the individual metals. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Dissection of Two Complex Clusters of Resistance Genes in Lettuce (Lactuca sativa).

    PubMed

    Christopoulou, Marilena; McHale, Leah K; Kozik, Alex; Reyes-Chin Wo, Sebastian; Wroblewski, Tadeusz; Michelmore, Richard W

    2015-07-01

    Of the over 50 phenotypic resistance genes mapped in lettuce, 25 colocalize to three major resistance clusters (MRC) on chromosomes 1, 2, and 4. Similarly, the majority of candidate resistance genes encoding nucleotide binding-leucine rich repeat (NLR) proteins genetically colocalize with phenotypic resistance loci. MRC1 and MRC4 span over 66 and 63 Mb containing 84 and 21 NLR-encoding genes, respectively, as well as 765 and 627 genes that are not related to NLR genes. Forward and reverse genetic approaches were applied to dissect MRC1 and MRC4. Transgenic lines exhibiting silencing were selected using silencing of β-glucuronidase as a reporter. Silencing of two of five NLR-encoding gene families resulted in abrogation of nine of 14 tested resistance phenotypes mapping to these two regions. At MRC1, members of the coiled coil-NLR-encoding RGC1 gene family were implicated in host and nonhost resistance through requirement for Dm5/8- and Dm45-mediated resistance to downy mildew caused by Bremia lactucae as well as the hypersensitive response to effectors AvrB, AvrRpm1, and AvrRpt2 of the nonpathogen Pseudomonas syringae. At MRC4, RGC12 family members, which encode toll interleukin receptor-NLR proteins, were implicated in Dm4-, Dm7-, Dm11-, and Dm44-mediated resistance to B. lactucae. Lesions were identified in the sequence of a candidate gene within dm7 loss-of-resistance mutant lines, confirming that RGC12G confers Dm7.

  11. Nutritional value, bioactive compounds, and health benefits of lettuce (Lactuca sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Lettuce is one of the most popularly consumed vegetables worldwide but its nutritional value has been underestimated. Lettuce is low in calories and fat but high in fiber. Moreover, lettuce is high in potassium but low in sodium. Lettuce is also a good source of health-beneficial bioactive compounds...

  12. The effects of cover crop on weed control in collard (Brassica olerecea var acephala) and lettuce (Lactuca sativa L.).

    PubMed

    Mennan, H; Ngouajio, M; Isik, D; Kose, B; Kaya, E

    2006-01-01

    Leafy vegetables are not very competitive and weed interference can cause considerable yield losses in collard (Brassica olerecea var acephala) and lettuce (Lactuca sativa L.). Currently there are no pre or post emergence herbicides registered for weed control in these vegetables in Turkey. For this reason, alternative weed control strategies need to be developed. Cover crop residue could represent an alternative method of weed management in these crops. Field studies were conducted in 2004 at the Black Sea Agricultural Research Institute experimental field in Samsun, Turkey. The cover crop treatments consisted of Sorghum bicolor (L.) Moench, Sorghum vulgare Pers., Vicia villosa L., Amaranthus cruentus L., Pisum sativum L. and the bare ground with no cover crop. All cover crops were seeded by hand and incorporated into the soil on 11 May, 2004. Each plot was 10 m2 (2 x 5 m) and arranged in a randomized complete block design with four replications. All cover crops were incorporated into the soil by discing on 1 September 2004 at flowering stage of the cover crops. Broadleaved weed species were dominant in the experimental area. Most cover crops established well and S. bicolor biomass was the highest. The number of weed species emerging in all treatments was different at 14 DAD (days after desiccation). Similar results were observed at 28 and 56 DAD. Treatments with Vicia villosa residues had fewer weed species and lower total weed densities than other treatments.

  13. L-Lactate dehydrogenase from leaves of higher plants. Kinetics and regulation of the enzyme from lettuce (Lactuca sativa L).

    PubMed Central

    Betsche, T

    1981-01-01

    1. L-Lactate dehydrogenase from lettuce (Lactuca sativa) leaves was purified to electrophoretic homogeneity by affinity chromatography. 2. In addition to its NAD(H)-dependent activity with L-lactate and pyruvate, the enzyme also catalyses the reduction of hydroxypyruvate and glyoxylate. The latter activities are not due to a contamination of the enzyme preparations with hydroxypyruvate reductase. 3. The enzyme shows allosteric properties that are markedly by the pH. 4. ATP is a potent inhibitor of the enzyme. The kinetic data suggest that the inhibition by ATP is competitive with respect to NADH at pH 7.0 and 6.2. The existence of regulatory binding sites for ATP and NADH is discussed. 5. Bivalent metal cations and fructose 6-phosphate relieve the ATP inhibition of the enzyme. 6. A function of leaf L-lactate dehydrogenase is proposed as a component of the systems regulating the cellular pH and/or controlling the concentration of reducing equivalents in the cytoplasm of leaf cells. PMID:7316976

  14. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils

    PubMed Central

    Neumann, G.; Bott, S.; Ohler, M. A.; Mock, H.-P.; Lippmann, R.; Grosch, R.; Smalla, K.

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes. PMID:24478764

  15. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils.

    PubMed

    Neumann, G; Bott, S; Ohler, M A; Mock, H-P; Lippmann, R; Grosch, R; Smalla, K

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes.

  16. Development of molecular markers for marker-assisted selection in lettuce (Lactuca sativa).

    USDA-ARS?s Scientific Manuscript database

    Lettuce dieback disease is widespread in commercially grown romaine and leaf-type lettuces, but not in iceberg-type cultivars. The cause of disease are two closely related tombusviruses -- Tomato bushy stunt virus (TBSV) and Lettuce necrotic stunt virus (LNSV). A single dominant gene on chromosome 2...

  17. Development of molecular markers for marker-assisted selection in lettuce (Lactuca sativa).

    USDA-ARS?s Scientific Manuscript database

    Lettuce dieback disease is widespread in commercially grown romaine and leaf-type lettuces, but not in iceberg-type cultivars. The disease is caused by two closely related Tombusviruses: Tomato bushy stunt virus (TBSV) and Lettuce necrotic stunt virus (LNSV). A single dominant gene (Tvr1) on chromos...

  18. Performance and feeding behaviour of two biotypes of the black currant-lettuce aphid, Nasonovia ribisnigri, on resistant and susceptible Lactuca sativa near-isogenic lines.

    PubMed

    ten Broeke, Cindy J M; Dicke, Marcel; van Loon, Joop J A

    2013-10-01

    The black currant-lettuce aphid, Nasonovia ribisnigri, is an important pest of cultivated lettuce, Lactuca sativa. Since 1982, the control of this aphid on lettuce is largely based on host plant resistance, conferred by the Nr gene, introgressed from Lactuca virosa. The resistance mechanism remains to be identified. N. ribisnigri populations virulent on the Nr-based resistance in lettuce have emerged in several locations in Europe since 2007. The objective of this study was to investigate the resistance mechanism mediated by the Nr gene in lettuce by detailed studies of aphid feeding behaviour and performance. Both avirulent (Nr:0) and virulent (Nr:1)biotypes of N. ribisnigri were studied on five resistant and two susceptible near isogenic lines (NILs). In addition, survival and colony development were quantified.Nr:0 aphids showed a strong decrease in sieve element ingestion and took longer to accept a sieve element on resistant NILs compared with susceptible NILs, and no aphids survived on the resistant NIL. Nr:1 aphids fed and performed equally well on the resistant and susceptible NILs. The resistance mechanism against Nr:0 aphids encoded by the Nr gene seems to be located in the phloem, although we also observed differences in feeding behaviour during the pathway phase to the phloem. Nr:1 aphids were highly virulent to the resistance conferred by the Nr gene. The consequences of the appearance of Nr:1 aphids for control of N. ribisnigri are discussed.

  19. Analysis of bacteria, parasites, and heavy metals in lettuce (Lactuca sativa) and rocket salad (Eruca sativa L.) irrigated with treated effluent from a biological wastewater treatment plant.

    PubMed

    Nikaido, Meire; Tonani, Karina A A; Julião, Fabiana C; Trevilato, Tânia M B; Takayanagui, Angela M M; Sanches, Sérgio M; Domingo, José L; Segura-Muñoz, Susana I

    2010-06-01

    This study aimed to evaluate the viability of using treated residuary water from the Biological Wastewater Treatment Plant of Ribeirão Preto to grow vegetables, through the characterization and quantification of parasites, coliforms, and heavy metals. Three equal cultivation areas were prepared. The first was irrigated with treated/chlorinated (0.2 mg L(-1)) wastewater, the second one with treated wastewater without chlorination, and the third site with potable water, which was the control group. The presence of Hymenolepis nana, Enterobius vermicularis, nematode larvae, and Entamoeba coli was verified in lettuce (Lactuca sativa) samples. Although nematode larvae were observed in rocket salad (Eruca sativa L.), no significant differences were found between the number of parasites and type of irrigation water used. No significant differences were found between the number of fecal coliforms in vegetables and the different types of irrigation. However, the vegetables irrigated with treated effluent without chlorination showed higher levels of fecal coliforms. The risk of pathogens is reduced with bleach addition to the treated effluent at 0.2 mg/L. Concentration of heavy metals in vegetables does not mean significant risks to human health, according with the parameters recommended by the World Health Organization.

  20. Changes in the content of free and conjugated polyamines during Lettuce (Lactuca sativa) growth.

    PubMed

    Pinto, Edgar; Ferreira, Isabel M P L V O

    2015-01-21

    Polyamines (PAs) in plant foods are relevant due to the association of these bioactive nutrients with health and disease. The scope of the present study was to monitor the content of free, conjugated, and total (free + conjugated) putrescine (Put), spermidine (Spd), and spermine (Spm) at five stages of lettuce growth in three different greenhouses. The daily intake of PAs from lettuce consumption was estimated since its consumption represents about 7.2% of vegetables intake. Results showed that the content of free Put, Spd, and Spm decreased during plant growth, while the content of conjugated Put, Spd, and Spm increased. Nevertheless, the total PA content remained fairly constant. Significant differences were observed in the PAs content in lettuces grown in different greenhouses. The conjugated fraction of PAs in mature lettuces has an important contribution to the total PAs and will certainly influence the bioavailability and/or bioactivity of dietary polyamines.

  1. Delineating ion-ion interactions by electrostatic modeling for predicting rhizotoxicity of metal mixtures to lettuce Lactuca sativa.

    PubMed

    Le, T T Yen; Wang, Peng; Vijver, Martina G; Kinraide, Thomas B; Hendriks, A Jan; Peijnenburg, Willie J G M

    2014-09-01

    Effects of ion-ion interactions on metal toxicity to lettuce Lactuca sativa were studied based on the electrical potential at the plasma membrane surface (ψ0 ). Surface interactions at the proximate outside of the membrane influenced ion activities at the plasma membrane surface ({M(n+)}0). At a given free Cu(2+) activity in the bulk medium ({Cu(2+)}b), additions of Na(+), K(+), Ca(2+), and Mg(2+) resulted in substantial decreases in {Cu(2+)}0. Additions of Zn(2+) led to declines in {Cu(2+)}0, but Cu(2+) and Ag(+) at the exposure levels tested had negligible effects on the plasma membrane surface activity of each other. Metal toxicity was expressed by the {M(n+)}0 -based strength coefficient, indicating a decrease of toxicity in the order: Ag(+)  > Cu(2+)  > Zn(2+). Adsorbed Na(+), K(+), Ca(2+), and Mg(2+) had significant and dose-dependent effects on Cu(2+) toxicity in terms of osmolarity. Internal interactions between Cu(2+) and Zn(2+) and between Cu(2+) and Ag(+) were modeled by expanding the strength coefficients in concentration addition and response multiplication models. These extended models consistently indicated that Zn(2+) significantly alleviated Cu(2+) toxicity. According to the extended concentration addition model, Ag(+) significantly enhanced Cu(2+) toxicity whereas Cu(2+) reduced Ag(+) toxicity. By contrast, the response multiplication model predicted insignificant effects of adsorbed Cu(2+) and Ag(+) on the toxicity of each other. These interactions were interpreted using ψ0, demonstrating its influence on metal toxicity.

  2. Experimental determinations of soil copper toxicity to lettuce (Lactuca sativa) growth in highly different copper spiked and aged soils.

    PubMed

    Christiansen, Karen S; Borggaard, Ole K; Holm, Peter E; Vijver, Martina G; Hauschild, Michael Z; Peijnenburg, Willie J G M

    2015-04-01

    Accurate knowledge about factors and conditions determining copper (Cu) toxicity in soil is needed for predicting plant growth in various Cu-contaminated soils. Therefore, effects of Cu on growth (biomass production) of lettuce (Lactuca sativa) were tested on seven selected, very different soils spiked with Cu and aged for 2 months at 35 °C. Cu toxicity was expressed as pEC50(Cu(2+)), i.e., the negative logarithm of the EC50(Cu(2+)) activity to plant growth. The determined pEC50(Cu(2+)) was significantly and positively correlated with both the analytically readily available soil pH and concentration of dissolved organic carbon [DOC] which together could explain 87% of the pEC50(Cu(2+)) variation according to the simple equation: pEC50(Cu(2+)) = 0.98 × pH + 345 × [DOC] - 0.27. Other soil characteristics, including the base cation concentrations (Na(+), K(+), Ca(2+), Mg(2+)), the cation exchange capacity at soil pH (ECEC), and at pH 7 (CEC7), soil organic carbon, clay content, and electric conductivity as well as the distribution coefficient (Kd) calculated as the ratio between total soil Cu and water-extractable Cu did not correlate significantly with pEC50(Cu(2+)). Consequently, Cu toxicity, expressed as the negative log of the Cu(2+) activity, to plant growth increases at increasing pH and DOC, which needs to be considered in future management of plant growth on Cu-contaminated soils. The developed regression equation allows identification of soil types in which the phytotoxicity potential of Cu is highest.

  3. Proximate nutrient analyses of four species of submerged aquatic vegetation consumed by Florida manatee (Trichechus manatus latirostris) compared to romaine lettuce (Lactuca sativa var. longifolia).

    PubMed

    Siegal-Willott, Jessica L; Harr, Kendal; Hayek, Lee-Ann C; Scott, Karen C; Gerlach, Trevor; Sirois, Paul; Reuter, Mike; Crewz, David W; Hill, Richard C

    2010-12-01

    Free-ranging Florida manatees (Trichechus manatus latirostris) consume a variety of sea grasses and algae. This study compared the dry matter (DM) content, proximate nutrients (crude protein [CP], ether-extracted crude fat [EE], nonfiber carbohydrate [NFC], and ash), and the calculated digestible energy (DE) of sea grasses (Thalassia testudinum, Halodule wrightii, and Syringodium filiforme) collected in spring, summer, and winter, and an alga (Chara sp.) with those of romaine lettuce (Lactuca sativa var. longifolia). Neutral-detergent fiber (NDF), acid-detergent fiber (ADF), and lignin (L) measured after ash-extraction were also compared. Results of statistical tests (C = 0.01) revealed DM content was higher in aquatic vegetation than in lettuce (P = 0.0001), but NDF and ADF were up to threefold greater, EE (P = 0.00001) and CP (P = 0.00001) were 2-9 times less, and NFC (P = 0.0001) was 2-6 times lower in sea grass than in lettuce, on a DM basis. Chara was lower in NDF, ADF, L, EE, CP, and NFC relative to lettuce on a DM basis. Ash content (DM basis) was higher (P = 0.0001), and DE was 2-6 times lower in aquatic vegetation than in lettuce. Sea grass rhizomes had lower L and higher ash contents (DM basis) than sea grass leaves. Based on the nutrient analyses, romaine lettuce and sea grasses are not equivalent forages, which suggests that the current diet of captive Florida manatees should be reassessed.

  4. Photoprotection vs. Photoinhibition of Photosystem II in Transplastomic Lettuce (Lactuca sativa) Dominantly Accumulating Astaxanthin.

    PubMed

    Fujii, Ritsuko; Yamano, Nami; Hashimoto, Hideki; Misawa, Norihiko; Ifuku, Kentaro

    2016-07-01

    Transplastomic (chloroplast genome-modified; CGM) lettuce that dominantly accumulates astaxanthin grows similarly to a non-transgenic control with almost no accumulation of naturally occurring photosynthetic carotenoids. In this study, we evaluated the activity and assembly of PSII in CGM lettuce. The maximum quantum yield of PSII in CGM lettuce was <0.6; however, the quantum yield of PSII was comparable with that in control leaves under higher light intensity. CGM lettuce showed a lower ability to induce non-photochemical quenching (NPQ) than the control under various light intensities. The fraction of slowly recovering NPQ in CGM lettuce, which is considered to be photoinhibitory quenching (qI), was less than half that of the control. In fact, (1)O2 generation was lower in CGM than in control leaves under high light intensity. CGM lettuce contained less PSII, accumulated mostly as a monomer in thylakoid membranes. The PSII monomers purified from the CGM thylakoids bound echinenone and canthaxanthin in addition to β-carotene, suggesting that a shortage of β-carotene and/or the binding of carbonyl carotenoids would interfere with the photophysical function as well as normal assembly of PSII. In contrast, high accumulation of astaxanthin and other carbonyl carotenoids was found within the thylakoid membranes. This finding would be associated with the suppression of photo-oxidative stress in the thylakoid membranes. Our observation suggests the importance of a specific balance between photoprotection and photoinhibition that can support normal photosynthesis in CGM lettuce producing astaxanthin. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Uptake of arsenic species by turnip (Brassica rapa L.) and lettuce (Lactuca sativa L.) treated with roxarsone and its metabolites in chicken manure.

    PubMed

    Huang, Lian Xi; Yao, Li Xian; He, Zhao Huan; Zhou, Chang Min; Li, Guo Liang; Yang, Bao Mei; Li, Ying Fen

    2013-01-01

    Roxarsone is an organoarsenic feed additive that can be metabolised to other higher toxic arsenic (As) species in animal manure such as arsenate, arsenite, monomethylarsonic acid, dimethylarsinic acid, 3-amino-4-hydroxyphenylarsonic acid and other unknown As species. The accumulation, transport and distribution of As species in turnip (Brassica rapa L.) and lettuce (Lactuca sativa L.) amended with roxarsone and its metabolites in chicken manure were investigated. Results showed arsenite was the predominant As form, followed by arsenate in turnip and lettuce plants, and a low content of dimethylarsinic acid was detected only in lettuce roots. Compared with the control plants treated with chicken manure without roxarsone and its metabolites, the treatments containing roxarsone and its metabolites increased arsenite content by 2.0-3.2% in turnip shoots, by 6.6-6.7% in lettuce shoots, by 11-44% in turnip tubers and by 18-20% in lettuce roots at two growth stages. The enhanced proportion of arsenate content in turnip shoots, turnip tubers and lettuce roots was 4.3-14%, 20-35% and 70%, respectively, while dimethylarsinic acid content in lettuce roots increased 2.4 times. Results showed that the occurrence of dimethylarsinic acid in lettuce roots might be converted from the inorganic As species and the uptake of both inorganic and organic As compounds in turnip and lettuce plants would be enhanced by roxarsone and its metabolites in chicken manure. The pathway of roxarsone metabolites introduced into the human body via roxarsone → animal → manure → soil → crop was indicated.

  6. Effects of Nitrogen Fertilizers on the Growth and Nitrate Content of Lettuce (Lactuca sativa L.)

    PubMed Central

    Liu, Cheng-Wei; Sung, Yu; Chen, Bo-Ching; Lai, Hung-Yu

    2014-01-01

    Nitrogen is an essential element for plant growth and development; however, due to environmental pollution, high nitrate concentrations accumulate in the edible parts of these leafy vegetables, particularly if excessive nitrogen fertilizer has been applied. Consuming these crops can harm human health; thus, developing a suitable strategy for the agricultural application of nitrogen fertilizer is important. Organic, inorganic, and liquid fertilizers were utilized in this study to investigate their effect on nitrate concentrations and lettuce growth. The results of this pot experiment show that the total nitrogen concentration in soil and the nitrate concentration in lettuce increased as the amount of nitrogen fertilizer increased. If the recommended amount of inorganic fertilizer (200 kg·N·ha−1) is used as a standard of comparison, lettuce augmented with organic fertilizers (200 kg·N·ha−1) have significantly longer and wider leaves, higher shoot, and lower concentrations of nitrate. PMID:24758896

  7. Effects of nitrogen fertilizers on the growth and nitrate content of lettuce (Lactuca sativa L.).

    PubMed

    Liu, Cheng-Wei; Sung, Yu; Chen, Bo-Ching; Lai, Hung-Yu

    2014-04-22

    Nitrogen is an essential element for plant growth and development; however, due to environmental pollution, high nitrate concentrations accumulate in the edible parts of these leafy vegetables, particularly if excessive nitrogen fertilizer has been applied. Consuming these crops can harm human health; thus, developing a suitable strategy for the agricultural application of nitrogen fertilizer is important. Organic, inorganic, and liquid fertilizers were utilized in this study to investigate their effect on nitrate concentrations and lettuce growth. The results of this pot experiment show that the total nitrogen concentration in soil and the nitrate concentration in lettuce increased as the amount of nitrogen fertilizer increased. If the recommended amount of inorganic fertilizer (200 kg·N·ha⁻¹) is used as a standard of comparison, lettuce augmented with organic fertilizers (200 kg·N·ha⁻¹) have significantly longer and wider leaves, higher shoot, and lower concentrations of nitrate.

  8. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.).

    PubMed

    Tang, Xiwang; Pang, Yan; Ji, Puhui; Gao, Pengcheng; Nguyen, Thanh Hung; Tong, Yan'an

    2016-03-01

    Because of its high Cd uptake and translocation, lettuce is often used in Cd contamination studies. However, there is a lack of information on Cd accumulation in the above-ground parts of lettuce during the entire growing season. In this study, a field experiment was carried out in a Cd-contaminated area. Above-ground lettuce parts were sampled, and the Cd content was measured using a flame atomic absorption spectrophotometer (AAS). The results showed that the Cd concentration in the above-ground parts of lettuce increased from 2.70 to 3.62mgkg(-1) during the seedling stage, but decreased from 3.62 to 2.40mgkg(-1) during organogenesis and from 2.40 to 1.64mgkg(-1) during bolting. The mean Cd concentration during the seedling stage was significantly higher than that during organogenesis (a=0.05) and bolting (a=0.01). The Cd accumulation in the above-ground parts of an individual lettuce plant could be described by a sigmoidal curve. Cadmium uptake during organogenesis was highest (80% of the total), whereas that during bolting was only 4.34%. This research further reveals that for Rome lettuce: (1) the highest Cd content of above-ground parts occurred at the end of the seedling phase; (2) the best harvest time with respect to Cd phytoaccumulation is at the end of the organogenesis stage; and (3) the organogenesis stage is the most suitable time to enhance phytoaccumulation efficiency by adjusting the root:shoot ratio. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Characterization of volatile production during storage of lettuce (Lactuca sativa) seed

    USDA-ARS?s Scientific Manuscript database

    The duration that seeds stay vigorous during storage is difficult to predict but critical to seed industry and conservation communities. Production of volatile compounds from lettuce seeds during storage was investigated as a non-invasive and early detection method of seed aging rates. Over thirty...

  10. MADS-Box Genes and Gibberellins Regulate Bolting in Lettuce (Lactuca sativa L.).

    PubMed

    Han, Yingyan; Chen, Zijing; Lv, Shanshan; Ning, Kang; Ji, Xueliang; Liu, Xueying; Wang, Qian; Liu, Renyi; Fan, Shuangxi; Zhang, Xiaolan

    2016-01-01

    Bolting in lettuce is promoted by high temperature and bolting resistance is of great economic importance for lettuce production. But how bolting is regulated at the molecular level remains elusive. Here, a bolting resistant line S24 and a bolting sensitive line S39 were selected for morphological, physiological, transcriptomic and proteomic comparisons. A total of 12204 genes were differentially expressed in S39 vs. S24. Line S39 was featured with larger leaves, higher levels of chlorophyll, soluble sugar, anthocyanin and auxin, consistent with its up-regulation of genes implicated in photosynthesis, oxidation-reduction and auxin actions. Proteomic analysis identified 30 differentially accumulated proteins in lines S39 and S24 upon heat treatment, and 19 out of the 30 genes showed differential expression in the RNA-Seq data. Exogenous gibberellins (GA) treatment promoted bolting in both S39 and S24, while 12 flowering promoting MADS-box genes were specifically induced in line S39, suggesting that although GA regulates bolting in lettuce, it may be the MADS-box genes, not GA, that plays a major role in differing the bolting resistance between these two lettuce lines.

  11. MADS-Box Genes and Gibberellins Regulate Bolting in Lettuce (Lactuca sativa L.)

    PubMed Central

    Han, Yingyan; Chen, Zijing; Lv, Shanshan; Ning, Kang; Ji, Xueliang; Liu, Xueying; Wang, Qian; Liu, Renyi; Fan, Shuangxi; Zhang, Xiaolan

    2016-01-01

    Bolting in lettuce is promoted by high temperature and bolting resistance is of great economic importance for lettuce production. But how bolting is regulated at the molecular level remains elusive. Here, a bolting resistant line S24 and a bolting sensitive line S39 were selected for morphological, physiological, transcriptomic and proteomic comparisons. A total of 12204 genes were differentially expressed in S39 vs. S24. Line S39 was featured with larger leaves, higher levels of chlorophyll, soluble sugar, anthocyanin and auxin, consistent with its up-regulation of genes implicated in photosynthesis, oxidation-reduction and auxin actions. Proteomic analysis identified 30 differentially accumulated proteins in lines S39 and S24 upon heat treatment, and 19 out of the 30 genes showed differential expression in the RNA-Seq data. Exogenous gibberellins (GA) treatment promoted bolting in both S39 and S24, while 12 flowering promoting MADS-box genes were specifically induced in line S39, suggesting that although GA regulates bolting in lettuce, it may be the MADS-box genes, not GA, that plays a major role in differing the bolting resistance between these two lettuce lines. PMID:28018414

  12. Alkylperoxyl radical scavenging activity of red leaf lettuce (Lactuca sativa L.) phenolics.

    PubMed

    Caldwell, Charles R

    2003-07-30

    Although lettuce may provide relatively low levels of antioxidative phytochemicals which may contribute to human health, lettuce leaf extracts in fact contained compounds with high specific peroxyl radical scavenging activities. After determining the extraction conditions that minimized phenolic oxidation and produced the highest oxygen radical absorbance capacity (ORAC) values, the phenolic compounds from red leaf lettuce were separated by reverse-phase high-performance liquid chromatography (HPLC). The primary phenolic compounds in the leaf tissue extracts were mono- and dicaffeoyltartaric acid (CTA and DCTA), mono- and dicaffeoylquinic acid (CQA and DCQA), quercetin 3-malonylglucoside (QMG), quercetin 3-glucoside (QG), cyanidin 3-malonylglucoside (CMG), and an unknown phenolic ester (UPE). Significant levels of DCQA were only found after wounding. Using the new fluorescein-based ORAC assay procedures, fractions from the HPLC analyses were assayed for peroxyl radical absorbance capacity. Using absorbance to estimate concentration, the decreasing order of contribution to the total ORAC value of an extract from wounded tissue was QMG > DCQA > CMG > DCTA > UPE > QG > CTA. The decreasing order of the specific peroxyl radical scavenging activities was CMG > QG > DCTA > DCQA > QMG > UPE > CQA > CTA. Since the concentrations of plant flavonoid and phenolic acid esters are sensitive to environmental factors, this information may be used to develop pre- and postharvest conditions which increase the dietary benefits of leaf lettuce.

  13. Genotype variations in cadmium and lead accumulations of leafy lettuce (Lactuca sativa L.) and screening for pollution-safe cultivars for food safety.

    PubMed

    Zhang, Kun; Yuan, Jiangang; Kong, Wei; Yang, Zhongyi

    2013-06-01

    Heavy-metals in polluted soils can accumulate in plants and threaten crop safety. To evaluate the risk of heavy-metal pollution in leafy lettuce (Lactuca sativa L.), two pot experiments were conducted to investigate Cd and Pb accumulation and transfer potential in 28 cultivars of lettuce and to screen for low-Cd and low-Pb accumulative cultivars. In the three treatments, 5.2-fold, 4.8-fold and 4.8-fold differences in the shoot Cd concentration were observed between the cultivars with the highest and the lowest Cd concentrations, respectively. This genotype variation was sufficiently large to identify low-Cd accumulative genotypes to reduce Cd contamination in food. Cadmium accumulation in the low-Cd accumulative genotypes was significantly positively correlated with Pb accumulation. At the cultivar level, Cd and Pb accumulation in lettuce was stable and genotype-dependent. High Pb soil levels did not affect shoot Cd accumulation in lettuce. Lettuce was concluded to be at high risk for Cd pollution and low risk for Pb pollution. Among the tested cultivars, cvs. SJGT, YLGC, N518, and KR17 had the lowest Cd and Pb accumulation abilities in shoots and are thus important parental material for breeding pollution-safe cultivars to minimize Cd and Pb accumulation.

  14. Genetic Control of Water and Nitrate Capture and Their Use Efficiency in Lettuce (Lactuca sativa L.).

    PubMed

    Kerbiriou, Pauline J; Maliepaard, Chris A; Stomph, Tjeerd Jan; Koper, Martin; Froissart, Dorothee; Roobeek, Ilja; Lammerts Van Bueren, Edith T; Struik, Paul C

    2016-01-01

    Robustness in lettuce, defined as the ability to produce stable yields across a wide range of environments, may be associated with below-ground traits such as water and nitrate capture. In lettuce, research on the role of root traits in resource acquisition has been rather limited. Exploring genetic variation for such traits and shoot performance in lettuce across environments can contribute to breeding for robustness. A population of 142 lettuce cultivars was evaluated during two seasons (spring and summer) in two different locations under organic cropping conditions, and water and nitrate capture below-ground and accumulation in the shoots were assessed at two sampling dates. Resource capture in each soil layer was measured using a volumetric method based on fresh and dry weight difference in the soil for soil moisture, and using an ion-specific electrode for nitrate. We used these results to carry out an association mapping study based on 1170 single nucleotide polymorphism markers. We demonstrated that our indirect, high-throughput phenotyping methodology was reliable and capable of quantifying genetic variation in resource capture. QTLs for below-ground traits were not detected at early sampling. Significant marker-trait associations were detected across trials for below-ground and shoot traits, in number and position varying with trial, highlighting the importance of the growing environment on the expression of the traits measured. The difficulty of identifying general patterns in the expression of the QTLs for below-ground traits across different environments calls for a more in-depth analysis of the physiological mechanisms at root level allowing sustained shoot growth.

  15. Genetic Control of Water and Nitrate Capture and Their Use Efficiency in Lettuce (Lactuca sativa L.)

    PubMed Central

    Kerbiriou, Pauline J.; Maliepaard, Chris A.; Stomph, Tjeerd Jan; Koper, Martin; Froissart, Dorothee; Roobeek, Ilja; Lammerts Van Bueren, Edith T.; Struik, Paul C.

    2016-01-01

    Robustness in lettuce, defined as the ability to produce stable yields across a wide range of environments, may be associated with below-ground traits such as water and nitrate capture. In lettuce, research on the role of root traits in resource acquisition has been rather limited. Exploring genetic variation for such traits and shoot performance in lettuce across environments can contribute to breeding for robustness. A population of 142 lettuce cultivars was evaluated during two seasons (spring and summer) in two different locations under organic cropping conditions, and water and nitrate capture below-ground and accumulation in the shoots were assessed at two sampling dates. Resource capture in each soil layer was measured using a volumetric method based on fresh and dry weight difference in the soil for soil moisture, and using an ion-specific electrode for nitrate. We used these results to carry out an association mapping study based on 1170 single nucleotide polymorphism markers. We demonstrated that our indirect, high-throughput phenotyping methodology was reliable and capable of quantifying genetic variation in resource capture. QTLs for below-ground traits were not detected at early sampling. Significant marker-trait associations were detected across trials for below-ground and shoot traits, in number and position varying with trial, highlighting the importance of the growing environment on the expression of the traits measured. The difficulty of identifying general patterns in the expression of the QTLs for below-ground traits across different environments calls for a more in-depth analysis of the physiological mechanisms at root level allowing sustained shoot growth. PMID:27064203

  16. Effect of acute ingestion of fresh and stored lettuce (Lactuca sativa) on plasma total antioxidant capacity and antioxidant levels in human subjects.

    PubMed

    Serafini, Mauro; Bugianesi, Rossana; Salucci, Monica; Azzini, Elena; Raguzzini, Anna; Maiani, Giuseppe

    2002-12-01

    The present study investigated whether storage under modified-atmosphere packaging (MAP) affected the antioxidant properties of fresh lettuce (Lactuca sativa). Eleven healthy volunteers (six men, five women) consumed 250 g fresh lettuce, and blood was sampled before (0 h) and 2, 3 and 6 h after consumption. The protocol was repeated 3 d later with the same lettuce stored at 5 degrees C under MAP conditions (O2-N2 (5:95, v/v)). Results showed that after ingestion of fresh lettuce, plasma total radical-trapping antioxidant potential (TRAP), measured as area under the curve, was significantly higher (1.3 (sem 0.3) mmol/l per 6 h; P<0.05) than the value obtained with MAP-stored lettuce (0.1 (sem 0.2) mmol/l per 6 h). Plasma TRAP, quercetin and p-coumaric acid were significantly different from baseline values (Plettuce ingestion. Caffeic acid increased significantly at 3 h (P<0.05). Plasma beta-carotene levels increased significantly at 6 h (P<0.05). Vitamin C concentrations (mg/l) rose from 10.9 (sem 2.0) to 12.7 (sem 3.0) (P<0.001), 12.7 (sem 2.0) (P<0.01) and 12.9 (sem 3.0) (P<0.05) at 0, 2, 3 and 6 h respectively. No changes were observed after ingestion of MAP-stored lettuce for all the measured markers. Our present results showed that ingestion of MAP-stored lettuce does not modify plasma redox status in healthy subjects. Further research is needed to develop post-harvesting techniques able to preserve the bioactive molecule content of plant food.

  17. Dose-dependent effects of gamma radiation on lettuce (Lactuca sativa var. capitata) seedlings.

    PubMed

    Marcu, Delia; Cristea, Victoria; Daraban, Liviu

    2013-03-01

    Abstract Purpose: The objectives of this study were to determine the effects of gamma radiation on lettuce growth and development, as well as on the content of photosynthetic pigments in 28 days lettuce leaf. Lettuce dry seeds were exposed to a (60)Co [Cobalt-60] gamma source at doses ranging from 2-70 Gray (Gy). The photosynthetic pigment content was determined spectrophotometrically. Our results showed that an irradiation dose between of 2-30 Gy enhanced the growth parameters (final germination percentage, germination index, root and hypocotyl length) as compared to untreated plants. Seed germination test revealed that 30 Gy irradiation dose induced the highest increase of growth parameters, while at 70 Gy a significant decrease of plant vegetative growth was recorded. The results indicated that exposing the seeds at doses ranging from 2-30 Gy enhanced the photosynthetic pigments (chlorophyll a, chlorophyll b, carotenoids) content, while at higher doses (70 Gy)) the decrease of the assimilatory pigments was noticed. The present results suggested that seed treatment with gamma radiations (0-30 Gy) was effective in stimulating plant growth and development, as well as the content of assimilatory pigments. At a higher dose of 70 Gy, there was a drastic reduction in the length of shoots and roots and also in the total chlorophyll content. These observations confirm that ionizing radiation stimulates physiological parameters up to certain low doses, and then it inhibits these parameters at higher doses.

  18. Ultrastructural and developmental evidence of phytotoxicity on cos lettuce (Lactuca sativa) associated with nonylphenol exposure.

    PubMed

    de Bruin, Willeke; van der Merwe, Chris; Kritzinger, Quenton; Bornman, Riana; Korsten, Lise

    2017-02-01

    It has long been understood that the presence of endocrine disrupter chemicals (EDCs) in water can affect the reproductive, behavioural and regulatory systems of different types of mammals. Thus far, only a handful of studies have examined its impact on plant systems. Present research is limited to the potential uptake of these chemicals by plants and the general phytotoxic effects it can elicit. The aim of this study was to determine what effect an EDC has on developing plant and cell organelles and how it affects it. In this study, cos lettuce plants were exposed to different concentrations of nonylphenol (NP), an EDC, in a static hydroponic system. Changes in plant morphology, mass and length, chlorophyll content, as well as electrolyte leakage were examined. Furthermore an in-depth investigation of the plant cell ultrastructure was carried out with transmission electron microscopy. Results indicated that cos lettuce growth was severely restricted, chlorophyll content was reduced, leakage of electrolytes increased and roots were stunted especially after ≥3200 μg/l NP exposures. The structure of the rough endoplasmic reticulum, vacuole and chloroplast were also changed. This study emphasizes the importance of water quality management, since the presence of an EDC, like NP, can negatively impact the yield and internal structure of one of the world's most significant salad crops, namely lettuce. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. RNAi-mediated resistance to whitefly (Bemisia tabaci) in genetically engineered lettuce (Lactuca sativa).

    PubMed

    Ibrahim, Abdulrazak B; Monteiro, Tatiane R; Cabral, Glaucia B; Aragão, Francisco J L

    2017-07-15

    RNA interference (RNAi)-based transgenic technologies have evolved as potent biochemical tools for silencing specific genes of plant pathogens and pests. The approach has been demonstrated to be useful in silencing genes in insect species. Here, we report on the successful construction of RNAi-based plasmid containing an interfering cassette designed to generate dsRNAs that target a novel v-ATPase transcript in whitefly (Bemisia tabaci), an important agricultural pest in tropical and sub-tropical regions. The presence of the transgene was confirmed in T0 and T1 generations of transgenic lettuce lines, segregating in a Mendelian fashion. Seven lines were infested with whiteflies and monitored over a period of 32 days. Analysis of mortality showed that within five days of feeding, insects on transgenic plants showed a mortality rate of 83.8-98.1%. In addition, a reduced number of eggs (95 fold less) was observed in flies feeding on transgenic lettuce plants than insects on control lines. Quantitative reverse transcription PCR showed decreased expression level of endogenous v-ATPase gene in whiteflies feeding on transgenic plants. This technology is a foundation for the production of whitefly-resistant commercial crops, improving agricultural sustainability and food security, reducing the use of more environmentally aggressive methods of pest control.

  20. Oxidative Phosphorylation in Germinating Lettuce Seeds (Lactuca sativa) during the First Hours of Imbibition

    PubMed Central

    Hourmant, Annick; Pradet, Alain

    1981-01-01

    Experiments with lettuce seeds during the first hours of imbibition showed that oxygen is necessary to sustain high adenine nucleotide ratios and consequently, energy charge values are higher than 0.8 as is usually the case in normally metabolizing tissues. The energy charge value (0.2) of dry seeds soaked in aerated water increased to normal values (0.8) within 30 minutes. The energy charge value of seeds imbibed under cyanide or nitrogen stayed at low values, about 0.3 for 30 minutes. Nitrogen and cyanide treatment of seeds imbibed in aerated water produced a decrease of energy charge to low values within 3 minutes. During the first minutes of imbibition, the oxygen uptake is cyanide-sensitive. The effect of the uncoupler carbonyl cyanide p-trifluoromethoxyphenyl hydrazone was not as clear-cut. However, results were obtained which agree with the occurrence of oxidative phosphorylation during the first hours of imbibition. These results indicate that a normal cytochromic pathway synthesizes ATP during the first minutes and hours following the imbibition of lettuce seeds. PMID:16661970

  1. An assessment of the role of ethylene in mediating lettuce (Lactuca sativa) root growth at high temperatures.

    PubMed

    Qin, L; He, J; Lee, S K; Dodd, I C

    2007-01-01

    Growth of temperate lettuce (Lactuca sativa) plants aeroponically in tropical greenhouses under ambient root-zone temperatures (A-RZTs) exposes roots to temperatures of up to 40 degrees C during the middle of the day, and severely limits root and shoot growth. The role of ethylene in inhibiting growth was investigated with just-germinated (24-h-old) seedlings in vitro, and 10-d-old plants grown aeroponically. Compared with seedlings maintained at 20 degrees C, root elongation in vitro was inhibited by 39% and root diameter increased by 25% under a temperature regime (38 degrees C/24 degrees C for 7 h/17 h) that simulated A-RZT in the greenhouse. The effects on root elongation were partially alleviated by supplying the ethylene biosynthesis inhibitors aminooxyacetic acid (100-500 microM) or aminoisobutyric acid (5-100 microM) to the seedlings. Application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid to seedlings grown at 20 degrees C mimicked the high temperature effects on root elongation (1 microM) and root diameter (1 mM). Compared with plants grown at a constant 20 degrees C root-zone temperature, A-RZT plants showed decreased stomatal conductance, leaf relative water content, photosynthetic CO(2) assimilation, shoot and root biomass, total root length, the number of root tips, and root surface area, but increased average root diameter. Addition of 10 microM ACC to the nutrient solution of plants grown at a constant 20 degrees C root-zone temperature mimicked the effects of A-RZT on these parameters but did not influence relative water content. Addition of 30 microM aminoisobutyric acid or 100 microM aminooxyacetic acid to the nutrient solution of A-RZT plants increased stomatal conductance and relative water content and decreased average root diameter, but had no effect on other root parameters or root and shoot biomass or photosynthetic CO(2) assimilation. Although ethylene is important in regulating root morphology and elongation at A

  2. Wild lettuce (Lactuca virosa) toxicity

    PubMed Central

    Besharat, Sima; Besharat, Mahsa; Jabbari, Ali

    2009-01-01

    Wild lettuce (Lactuca virosa) can cause toxic effects when eaten. Wild lettuce grows in the north of Iran and some natives consume it unaware of its adverse side effects. We describe eight patients with manifestations of wild lettuce toxicity, admitted to a general hospital affiliated to the Golestan University of Medical Sciences. All the patients recovered (although one had to spend 48 h in the intensive care unit) and no chronic complications were reported. A clinical suspicion of toxicity caused by wild lettuce intake and an accurate history formed the basis of the diagnosis. Conservative treatment, vital sign monitoring, control of patient intake and output, and reducing patient agitation provided the basis for treatment. PMID:21686920

  3. Wild lettuce (Lactuca virosa) toxicity.

    PubMed

    Besharat, Sima; Besharat, Mahsa; Jabbari, Ali

    2009-01-01

    Wild lettuce (Lactuca virosa) can cause toxic effects when eaten. Wild lettuce grows in the north of Iran and some natives consume it unaware of its adverse side effects. We describe eight patients with manifestations of wild lettuce toxicity, admitted to a general hospital affiliated to the Golestan University of Medical Sciences. All the patients recovered (although one had to spend 48 h in the intensive care unit) and no chronic complications were reported. A clinical suspicion of toxicity caused by wild lettuce intake and an accurate history formed the basis of the diagnosis. Conservative treatment, vital sign monitoring, control of patient intake and output, and reducing patient agitation provided the basis for treatment.

  4. Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa)

    PubMed Central

    Park, Jong-Sug; Kim, Jung-Bong; Cho, Kang-Jin; Cheon, Choong-Ill; Sung, Mi-Kyung; Choung, Myoung-Gun

    2008-01-01

    The MYB transcription factors play important roles in the regulation of many secondary metabolites at the transcriptional level. We evaluated the possible roles of the Arabidopsis R2R3-MYB transcription factors in flavonoid biosynthesis because they are induced by UV-B irradiation but their associated phenotypes are largely unexplored. We isolated their genes by RACE-PCR, and performed transgenic approach and metabolite analyses in lettuce (Lactuca sativa). We found that one member of this protein family, AtMYB60, inhibits anthocyanin biosynthesis in the lettuce plant. Wild-type lettuce normally accumulates anthocyanin, predominantly cyanidin and traces of delphinidin, and develops a red pigmentation. However, the production and accumulation of anthocyanin pigments in AtMYB60-overexpressing lettuce was inhibited. Using RT-PCR analysis, we also identified the complete absence or reduction of dihydroflavonol 4-reductase (DFR) transcripts in AtMYB60- overexpressing lettuce (AtMYB60-117 and AtMYB60-112 lines). The correlation between the overexpression of AtMYB60 and the inhibition of anthocyanin accumulation suggests that the transcription factorAtMYB60 controls anthocyanin biosynthesis in the lettuce leaf. Clarification of the roles of the AtMYB60 transcription factor will facilitate further studies and provide genetic tools to better understand the regulation in plants of the genes controlled by the MYB-type transcription factors. Furthermore, the characterization of AtMYB60 has implications for the development of new varieties of lettuce and other commercially important plants with metabolic engineering approaches. PMID:18317777

  5. Improving Water Use Efficiency of Lettuce (Lactuca sativa L.) Using Phosphorous Fertilizers.

    PubMed

    Alkhader, Asad M F; Abu Rayyan, Azmi M

    2013-01-01

    A greenhouse pot experiment was conducted to evaluate the effect of phosphorous (P) fertilizers application to an alkaline calcareous soil on the water use efficiency (WUE) of lettuce cultivar "robinson" of iceberg type. Head fresh and dry weights, total water applied and WUE were affected significantly by the P fertilizer type and rate. P fertilizers addition induced a significant enhancement in the WUE and fresh and dry weights of the crop. A local phosphate rock (PR) applied directly was found to be inferior to the other types of P fertilizers (Mono ammonium phosphate (MAP), Single superphosphate (SSP), and Di ammonium phosphate ((DAP)). MAP fertilizer at 375 and 500 kg P2O5/ha application rates recorded the highest significant values of head fresh weight and WUE, respectively.

  6. Abscisic Acid Is an Endogenous Inhibitor in the Regulation of Mannanase Production by Isolated Lettuce (Lactuca sativa cv Grand Rapids) Endosperms 1

    PubMed Central

    Dulson, Jacqueline; Bewley, J. Derek; Johnston, R. N.

    1988-01-01

    The production of mannanase, a cell-wall-degrading carbohydrase, can be manipulated in isolated lettuce (Lactuca sativa cv Grand Rapids) endosperms by changes in the volume of buffer in which they are incubated. The enzyme is produced when endosperms are incubated in a large volume, but not when incubated in a small volume, which is suggestive that an endogenous, diffusible inhibitor of mannanase production is being lost from the endosperms in a large volume (JD Bewley, P Halmer 1980/1981 Israel J Bot 29: 118-132). We have investigated the possibility that the phytohormone abscisic acid (ABA) is involved in this regulation of mannanase production in isolated lettuce endosperms. We find several correlations between the presence of the endogenous inhibitor and of ABA, i.e. (a) a `leachate' prepared from isolated lettuce endosperms induces synthesis of ABA-specific proteins in barley aleurone layers, indicating that incubation of endosperms in a large volume results in the diffusion of ABA therefrom into the surrounding medium; (b) fractionation of the components of a leachate by either polyvinylpyrrolidone-chromatography of C18 reversed-phase high performance liquid chromatography fails to separate the endogenous inhibitor from authentic ABA; and (c) changes in the incubation volume of endosperms result in changes in the amount of extractable ABA in the endosperms, as detected by ELISA. These results are consistent with a role for endogenous ABA in the regulation of mannanase production in isolated lettuce endosperms. Images Fig. 1 PMID:16666203

  7. Irrigation with treated wastewater: effects on soil, lettuce (Lactuca sativa L.) crop and dynamics of microorganisms.

    PubMed

    Mañas, Pilar; Castro, Elena; de Las Heras, Jorge

    2009-10-01

    The aim of this study was to evaluate the applicability of treated wastewater for horticultural crops, assess the effects of continuous use of treated water on soil and crops, and analyse the physical, chemical and biological effects of irrigation with recycled water. Two lettuce plots watered with drinking water and treated wastewater were monitored over a three year period. Nutrients, heavy metal and the dynamics of pathogen and indicator microorganism content in soil and foliar tissues were analysed. Wastewater irrigation had a high influence on soil parameters: organic matter, N, P, Ca, Al, Fe, Pb and Zn. Indicator and pathogenic microorganisms were detected in soil and plants grown in the wastewater-irrigated plot, and persisted in the soil for 27 days during the study under humid conditions. N, P, Pb and Al content were significantly higher in plant tissues of wastewater-irrigated plots than in the control after 3 years of irrigation. Harvest was significantly higher in the wastewater-irrigated plot. Wastewater can be a resource for agricultural irrigation. In any case, the possible heavy metal accumulation in soils and presence of pathogenic organisms require careful management of this alternative resource: use of a drip irrigation system, previous wastewater disinfection and a limited irrigation period are recommended.

  8. Genetic characterization of quantitative resistance to Bremia lactucae, the causal organism of lettuce downy mildew

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa) is one of the most valuable vegetable crops in the United States. Downy mildew (DM), caused by Bremia lactucae, is the most important foliar disease of lettuce worldwide, which decreases the quality of the marketable portion of the crop. The use of resistant varieties carryi...

  9. Influence of season growth, soils and irrigation water composition on the concentration of uranium in two lettuce (Lactuca sativa L.) varieties. Field experiments

    NASA Astrophysics Data System (ADS)

    Abreu, M. M.; Neves, O.; Marcelino, M.

    2012-04-01

    Former uranium mines areas are frequently the sources of environmental radionuclides problems even many years after the closure of mining operations. A concern for inhabitants from mining areas is the use of contaminated land or irrigation water for agriculture, and the potential transfer of metals from soils to vegetables, and to humans through the food chain. The main aim of this study was to compare the uranium concentration in lettuce (Lactuca sativa L. varieties Marady and Romana) grown in different seasons (autumn and summer) and exposed to high and low uranium concentrations both in irrigation water and agricultural soil. The content of uranium in irrigation water, soil (total and available fraction) and in lettuce leaf samples was analyzed in a certified laboratory. In the field experiments, two agricultural soils were divided into two plots (four replicates each); one of them was irrigated with uranium contaminated water (0.94 to 1.14 mg/L) and the other with uncontaminated water (< 0.02 mg/L). Irrigation with contaminated water together with highest soil uranium available concentration (10 to 13 mg/kg) had negative effects on both studied lettuce varieties, namely yield reduction (up to 53% and 87% in autumn and summer experiments, respectively) and increase of uranium leaf concentration (up to 1.4 and 7 fold in autumn and summer, respectively). Effect on lettuce yield was mainly due to the high soil salinity (1.01 to 6.31 mS/cm) as a consequence of high irrigation water electrical conductivity (up to 1.82 mS/cm) and low lettuce soil salinity tolerance (1 to 3 mS/cm). The highest lettuce uranium concentration (dry weight) observed was 2.13 and 5.37 mg/kg for Marady and Romana variety, respectively. The highest uranium lettuce concentration in Romana variety was also the effect of its growing in summer season when it was subject to greatest frequency and amount of water irrigation. The consumption by an adult of the lettuce that concentrate more uranium

  10. Evaluation of anti-inflammatory activity and fast UHPLC-DAD-IT-TOF profiling of polyphenolic compounds extracted from green lettuce (Lactuca sativa L.; var. Maravilla de Verano).

    PubMed

    Pepe, Giacomo; Sommella, Eduardo; Manfra, Michele; De Nisco, Mauro; Tenore, Gian Carlo; Scopa, Antonio; Sofo, Adriano; Marzocco, Stefania; Adesso, Simona; Novellino, Tiziana; Campiglia, Pietro

    2015-01-15

    Fresh cut vegetables represent a widely consumed food worldwide. Among these, lettuce (Lactuca sativa L.) is one of the most popular on the market. The growing interest for this "healthy" food is related to the content of bioactive compounds, especially polyphenols, that show many beneficial effects. In this study, we report the anti-inflammatory and antioxidant potential of polyphenols extracted from lettuce (var. Maravilla de Verano), in J774A.1 macrophages stimulated with Escherichia coli lipopolysaccharide (LPS). Lettuce extract significantly decreased reactive oxygen species, nitric oxide release, inducible nitric oxide synthase and cycloxygenase-2 expression. A detailed quali/quantitative profiling of the polyphenolic content was carried out, obtaining fast separation (10 min), good retention time and peak area repeatability, (RSD% 0.80 and 8.68, respectively) as well as linearity (R(2)⩾ 0.999) and mass accuracy (⩽ 5 ppm). Our results show the importance in the diet of this cheap and popular food for his healthy properties.

  11. Humic substances can modulate the allelopathic potential of caffeic, ferulic, and salicylic acids for seedlings of lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.).

    PubMed

    Loffredo, Elisabetta; Monaci, Linda; Senesi, Nicola

    2005-11-30

    The capacity of a leonardite humic acid (LHA), a soil humic acid (SHA), and a soil fulvic acid (SFA) in modulating the allelopathic potential of caffeic acid (CA), ferulic acid (FA), and salicylic acid (SA) on seedlings of lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.) was investigated. Lettuce showed a sensitivity greater than that of tomato to CA, FA, and SA phytotoxicity, which was significantly reduced or even suppressed in the presence of SHA or SFA, especially at the highest dose, but not LHA. In general, SFA was slightly more active than SHA, and the efficiency of the action depended on their concentration, the plant species and the organ examined, and the allelochemical. The daily measured residual concentration of CA and FA decreased drastically and that of SA slightly in the presence of germinating seeds of lettuce, which were thus able to absorb and/or enhance the degradation of CA and FA. The adsorption capacity of SHA for the three allelochemicals was small and decreased in the order FA > CA > SA, thus suggesting that adsorption could be a relevant mechanism, but not the only one, involved in the "antiallelopathic" action.

  12. Light-induced root hair formation in lettuce (Lactuca sativa L. cv. Grand Rapids) roots at low pH is brought by chlorogenic acid synthesis and sugar.

    PubMed

    Narukawa, Megumi; Watanabe, Keiji; Inoue, Yasunori

    2010-11-01

    Previously, we reported that chlorogenic acid (CGA) facilitated root hair formation at pH 4.0 in lettuce (Lactuca sativa L. cv. Grand Rapids). Light was essential for this process. In the present study, we determined relationships between CGA, light, and sugar during root hair formation in lettuce seedlings. The amount of CGA increased with white light in intact seedlings. Exogenously applied CGA restored root hair formation in dark-grown intact seedlings at pH 4.0. However, no root hair formation was induced in decapitated seedlings regardless of light exposure and CGA application. Application of sucrose or glucose induced both root hair formation and CGA synthesis in light-grown decapitated seedlings at pH 4.0. Blue light was the most effective for both root hair formation and CGA synthesis when supplied with sucrose to decapitated seedlings. Addition of sucrose and CGA together induced root hair formation at pH 4.0 in dark-grown decapitated seedlings. Results suggest that light induced CGA synthesis from sugar in the roots. Sugar was also required for root hair formation other than starting material of CGA synthesis. In addition, an unknown low pH-induced factor was essential for lettuce root hair formation.

  13. The use of nile tilapia (Oreochromis niloticus) cultivation wastewater for the production of romaine lettuce (Lactuca sativa L. var. longifolia) in water recirculation system

    NASA Astrophysics Data System (ADS)

    Effendi, Hefni; Wahyuningsih, Sri; Wardiatno, Yusli

    2016-05-01

    In the recirculation aquaponic system (RAS), fish farming waste was utilized as a nutrient for plant, minimizing the water need, reducing the waste disposal into the environment, and producing the fish and plant as well. The study aimed to examine the growth of romaine lettuce (Lactuca sativa L. var. Longifolia) in aquaponic system without the addition of artificial nutrient. The nutrient relies solely on wastewater of nile tilapia (Oreochromis niloticus) cultivation circulated continuously on the aquaponic system. The results showed that tilapia weight reached 48.49 ± 3.92 g of T3 (tilapia, romaine lettuce, and inoculated bacteria), followed by T2 (tilapia and romaine lettuce) and T1 (tilapia) of 47.80 ± 1.97 and 45.89 ± 1.10 g after 35 days of experiment. Tilapia best performance in terms of growth and production occurred at T3 of 3.96 ± 0.44 g/day, 12.10 ± 0.63 %/day, 96.11 ± 1.44 % and 1.60 ± 0.07 for GR, SGR, SR, and FCR, respectively. It is also indicated by better water quality characteristic in this treatment. Romaine lettuce harvests of T2 and T3 showed no significant difference, with the final weight of 61.87 ± 5.59 and 57.74 ± 4.35 g. Overall, the integration of tilapia fish farming and romaine lettuce is potentially a promising aquaponic system for sustainable fish and horticulture plant production.

  14. A lettuce (Lactuca sativa) homolog of human Nogo-B receptor interacts with cis-prenyltransferase and is necessary for natural rubber biosynthesis.

    PubMed

    Qu, Yang; Chakrabarty, Romit; Tran, Hue T; Kwon, Eun-Joo G; Kwon, Moonhyuk; Nguyen, Trinh-Don; Ro, Dae-Kyun

    2015-01-23

    Natural rubber (cis-1,4-polyisoprene) is an indispensable biopolymer used to manufacture diverse consumer products. Although a major source of natural rubber is the rubber tree (Hevea brasiliensis), lettuce (Lactuca sativa) is also known to synthesize natural rubber. Here, we report that an unusual cis-prenyltransferase-like 2 (CPTL2) that lacks the conserved motifs of conventional cis-prenyltransferase is required for natural rubber biosynthesis in lettuce. CPTL2, identified from the lettuce rubber particle proteome, displays homology to a human NogoB receptor and is predominantly expressed in latex. Multiple transgenic lettuces expressing CPTL2-RNAi constructs showed that a decrease of CPTL2 transcripts (3-15% CPTL2 expression relative to controls) coincided with the reduction of natural rubber as low as 5%. We also identified a conventional cis-prenyltransferase 3 (CPT3), exclusively expressed in latex. In subcellular localization studies using fluorescent proteins, cytosolic CPT3 was relocalized to endoplasmic reticulum by co-occurrence of CPTL2 in tobacco and yeast at the log phase. Furthermore, yeast two-hybrid data showed that CPTL2 and CPT3 interact. Yeast microsomes containing CPTL2/CPT3 showed enhanced synthesis of short cis-polyisoprenes, but natural rubber could not be synthesized in vitro. Intriguingly, a homologous pair CPTL1/CPT1, which displays ubiquitous expressions in lettuce, showed a potent dolichol biosynthetic activity in vitro. Taken together, our data suggest that CPTL2 is a scaffolding protein that tethers CPT3 on endoplasmic reticulum and is necessary for natural rubber biosynthesis in planta, but yeast-expressed CPTL2 and CPT3 alone could not synthesize high molecular weight natural rubber in vitro.

  15. Effects of microcystin-LR, cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture on growth, oxidative stress and mineral content in lettuce plants (Lactuca sativa L.).

    PubMed

    Freitas, Marisa; Azevedo, Joana; Pinto, Edgar; Neves, Joana; Campos, Alexandre; Vasconcelos, Vitor

    2015-06-01

    Toxic cyanobacterial blooms are documented worldwide as an emerging environmental concern. Recent studies support the hypothesis that microcystin-LR (MC-LR) and cylindrospermopsin (CYN) produce toxic effects in crop plants. Lettuce (Lactuca sativa L.) is an important commercial leafy vegetable that supplies essential elements for human nutrition; thus, the study of its sensitivity to MC-LR, CYN and a MC-LR/CYN mixture is of major relevance. This study aimed to assess the effects of environmentally relevant concentrations (1, 10 and 100 µg/L) of MC-LR, CYN and a MC-LR/CYN mixture on growth, antioxidant defense system and mineral content in lettuce plants. In almost all treatments, an increase in root fresh weight was obtained; however, the fresh weight of leaves was significantly decreased in plants exposed to 100 µg/L concentrations of each toxin and the toxin mixture. Overall, GST activity was significantly increased in roots, contrary to GPx activity, which decreased in roots and leaves. The mineral content in lettuce leaves changed due to its exposure to cyanotoxins; in general, the mineral content decreased with MC-LR and increased with CYN, and apparently these effects are time and concentration-dependent. The effects of the MC-LR/CYN mixture were almost always similar to the single cyanotoxins, although MC-LR seems to be more toxic than CYN. Our results suggest that lettuce plants in non-early stages of development are able to cope with lower concentrations of MC-LR, CYN and the MC-LR/CYN mixture; however, higher concentrations (100 µg/L) can affect both lettuce yield and nutritional quality. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. A Lettuce (Lactuca sativa) Homolog of Human Nogo-B Receptor Interacts with cis-Prenyltransferase and Is Necessary for Natural Rubber Biosynthesis*

    PubMed Central

    Qu, Yang; Chakrabarty, Romit; Tran, Hue T.; Kwon, Eun-Joo G.; Kwon, Moonhyuk; Nguyen, Trinh-Don; Ro, Dae-Kyun

    2015-01-01

    Natural rubber (cis-1,4-polyisoprene) is an indispensable biopolymer used to manufacture diverse consumer products. Although a major source of natural rubber is the rubber tree (Hevea brasiliensis), lettuce (Lactuca sativa) is also known to synthesize natural rubber. Here, we report that an unusual cis-prenyltransferase-like 2 (CPTL2) that lacks the conserved motifs of conventional cis-prenyltransferase is required for natural rubber biosynthesis in lettuce. CPTL2, identified from the lettuce rubber particle proteome, displays homology to a human NogoB receptor and is predominantly expressed in latex. Multiple transgenic lettuces expressing CPTL2-RNAi constructs showed that a decrease of CPTL2 transcripts (3–15% CPTL2 expression relative to controls) coincided with the reduction of natural rubber as low as 5%. We also identified a conventional cis-prenyltransferase 3 (CPT3), exclusively expressed in latex. In subcellular localization studies using fluorescent proteins, cytosolic CPT3 was relocalized to endoplasmic reticulum by co-occurrence of CPTL2 in tobacco and yeast at the log phase. Furthermore, yeast two-hybrid data showed that CPTL2 and CPT3 interact. Yeast microsomes containing CPTL2/CPT3 showed enhanced synthesis of short cis-polyisoprenes, but natural rubber could not be synthesized in vitro. Intriguingly, a homologous pair CPTL1/CPT1, which displays ubiquitous expressions in lettuce, showed a potent dolichol biosynthetic activity in vitro. Taken together, our data suggest that CPTL2 is a scaffolding protein that tethers CPT3 on endoplasmic reticulum and is necessary for natural rubber biosynthesis in planta, but yeast-expressed CPTL2 and CPT3 alone could not synthesize high molecular weight natural rubber in vitro. PMID:25477521

  17. Supplemental Upward Lighting from Underneath to Obtain Higher Marketable Lettuce (Lactuca sativa) Leaf Fresh Weight by Retarding Senescence of Outer Leaves.

    PubMed

    Zhang, Geng; Shen, Shanqi; Takagaki, Michiko; Kozai, Toyoki; Yamori, Wataru

    2015-01-01

    Recently, the so-called "plant factory with artificial lighting" (PFAL) approach has been developed to provide safe and steady food production. Although PFALs can produce high-yielding and high-quality plants, the high plant density in these systems accelerates leaf senescence in the bottom (or outer) leaves owing to shading by the upper (or inner) leaves and by neighboring plants. This decreases yield and increases labor costs for trimming. Thus, the establishment of cultivation methods to retard senescence of outer leaves is an important research goal to improve PFAL yield and profitability. In the present study, we developed an LED lighting apparatus that would optimize light conditions for PFAL cultivation of a leafy vegetable. Lettuce (Lactuca sativa L.) was hydroponically grown under white, red, or blue LEDs, with light provided from above (downward), with or without supplemental upward lighting from underneath the plant. White LEDs proved more appropriate for lettuce growth than red or blue LEDs, and the supplemental lighting retarded the senescence of outer leaves and decreased waste (i.e., dead or low-quality senescent leaves), leading to an improvement of the marketable leaf fresh weight.

  18. Supplemental Upward Lighting from Underneath to Obtain Higher Marketable Lettuce (Lactuca sativa) Leaf Fresh Weight by Retarding Senescence of Outer Leaves

    PubMed Central

    Zhang, Geng; Shen, Shanqi; Takagaki, Michiko; Kozai, Toyoki; Yamori, Wataru

    2015-01-01

    Recently, the so-called “plant factory with artificial lighting” (PFAL) approach has been developed to provide safe and steady food production. Although PFALs can produce high-yielding and high-quality plants, the high plant density in these systems accelerates leaf senescence in the bottom (or outer) leaves owing to shading by the upper (or inner) leaves and by neighboring plants. This decreases yield and increases labor costs for trimming. Thus, the establishment of cultivation methods to retard senescence of outer leaves is an important research goal to improve PFAL yield and profitability. In the present study, we developed an LED lighting apparatus that would optimize light conditions for PFAL cultivation of a leafy vegetable. Lettuce (Lactuca sativa L.) was hydroponically grown under white, red, or blue LEDs, with light provided from above (downward), with or without supplemental upward lighting from underneath the plant. White LEDs proved more appropriate for lettuce growth than red or blue LEDs, and the supplemental lighting retarded the senescence of outer leaves and decreased waste (i.e., dead or low-quality senescent leaves), leading to an improvement of the marketable leaf fresh weight. PMID:26697055

  19. Production characteristics of lettuce Lactuca sativa L. in the frame of the first crop tests in the Higher Plant Chamber integrated into the MELiSSA Pilot Plant

    NASA Astrophysics Data System (ADS)

    Tikhomirova, Natalia; Lawson, Jamie; Stasiak, Michael; Dixon, Mike; Paille, Christel; Peiro, Enrique; Fossen, Arnaud; Godia, Francesc

    Micro-Ecological Life Support System Alternative (MELiSSA) is an artificial closed ecosystem that is considered a tool for the development of a bioregenerative life support system for manned space missions. One of the five compartments of MELiSSA loop -Higher Plant Chamber was recently integrated into the MELiSSA Pilot Plant facility at Universitat Aut`noma deo Barcelona. The main contributions expected by integration of this photosynthetic compartment are oxygen, water, vegetable food production and CO2 consumption. Production characteristics of Lactuca sativa L., as a MELiSSA candidate crop, were investigated in this work in the first crop experiments in the MELiSSA Pilot Plant facility. The plants were grown in batch culture and totaled 100 plants with a growing area 5 m long and 1 m wide in a sealed controlled environment. Several replicates of the experiments were carried out with varying duration. It was shown that after 46 days of lettuce cultivation dry edible biomass averaged 27, 2 g per plant. However accumulation of oxygen in the chamber, which required purging of the chamber, and decrease in the food value of the plants was observed. Reducing the duration of the tests allowed uninterrupted test without opening the system and also allowed estimation of the crop's carbon balance. Results of productivity, tissue composition, nutrient uptake and canopy photosynthesis of lettuce regardless of test duration are discussed in the paper.

  20. Impacts of major cations (K(+), Na (+), Ca (2+), Mg (2+)) and protons on toxicity predictions of nickel and cadmium to lettuce (Lactuca sativa L.) using exposure models.

    PubMed

    Liu, Yang; Vijver, Martina G; Peijnenburg, Willie J G M

    2014-04-01

    Biotic ligand models (BLM) explicitly accounting for hypothetical interactions with biotic ligands and bioavailability as dictated by water chemistry have been developed for various metals and different organisms. It is only recently that BLMs for plants have received increasing attention. Lettuce is one of the most important vegetable crops in the world. This study investigated the impacts of Ca(2+), Mg(2+), K(+), Na(+) and pH, on acute toxicity of Ni and Cd to butter-head lettuce seedlings (Lactuca sativa L.). 4-day assays with the root elongation inhibition (REI) as the endpoint were performed in hydroponic solutions. Magnesium was found to be the sole cation significantly enhancing the median inhibition concentration (IC50) of Ni(2+) with increasing concentration. By incorporating the competitive effects of Mg(2+), the Ni-toxicity prediction was improved significantly as compared to the total metal model (TMM) and the free ion activity model (FIAM). The conditional stability constants derived from the Ni-BLM were log K MgBL = 2.86, log K NiBL = 5.1, and f NiBL (50%)  = 0.57. A slight downtrend was observed in the 4-d IC50 of Cd(2+) at increasing H(+) concentrations, but this tendency was not consistent and statistically significant (p = 0.07) over the whole range. The overall variations of Cd-toxicity within the tested Na(+), K(+), Ca(2+) and Mg(2+) concentration ranges were relatively small and not statistically significant. 80 % of lettuce REI by Cd could be explained using both TMM and FIAM instead of BLM in the present study. Thus, the mechanistically underpinned models for soil quality guidelines should be developed on a metal-specific basis across different exposure conditions.

  1. Mapping QTL, epistasis and genotype × environment interaction of antioxidant activity, chlorophyll content and head formation in domesticated lettuce (Lactuca sativa).

    PubMed

    Hayashi, Eiji; You, Youngsook; Lewis, Rosemary; Calderon, Mirna C; Wan, Grace; Still, David W

    2012-05-01

    Fruits and vegetables are rich sources of antioxidants in human diets and their intake is associated with chronic disease prevention. Lettuce (Lactuca sativa L.) is a common vegetable in diets worldwide, but its nutritional content is relatively low. To elucidate the genetic basis of antioxidant content in lettuce, we measured the oxygen radical absorbance capacity (ORAC) and chlorophyll (Chl) content as a proxy of β-carotene in an F(8) recombinant inbred line (RIL) in multiple production cycles at two different production sites. Plants were phenotyped at the open-leaf stage to measure genetic potential (GP) or at market maturity (MM) to measure the influence of head architecture ('head' or 'open'). Main effect quantitative trait loci (QTL) were identified at MM (three Chl and one ORAC QTL) and GP (two ORAC QTL). No main effect QTL for Chl was detected at GP, but epistatic interaction was identified in one pair of marker intervals for each trait at GP. Interactions with environment were also detected for both main and epistatic effects (two for main effect, and one for epistatic effect). Main effect QTL for plant architecture and nutritional traits at MM colocated to a single genomic region. Chlorophyll contents and ORAC values at MM were significantly higher and Chl a to Chl b ratios were lower in 'open' types compared to 'head' types. The nutritional traits assessed for GP showed a significant association with plant architecture suggesting pleiotropic effects or closely linked genes. Taken together, the antioxidant and chlorophyll content of lettuce is controlled by complex mechanisms and participating alleles change depending on growth stage and production environment.

  2. A transgenic mutant of Lactuca sativa (lettuce) with a T-DNA tightly linked to loss of downy mildew resistance.

    PubMed

    Okubara, P A; Arroyo-Garcia, R; Shen, K A; Mazier, M; Meyers, B C; Ochoa, O E; Kim, S; Yang, C H; Michelmore, R W

    1997-11-01

    One hundred and ninety-two independent primary transformants of lettuce cv. Diana were obtained by co-cultivation with Agrobacterium tumefaciens carrying constructs containing maize Ac transposase and Ds. R2 families were screened for mutations at four genes (Dm) for resistance to downy mildew. One family, designated dm3t524, had lost resistance to an isolate of Bremia lactucae expressing the avirulence gene Avr3. Loss of resistance segregated as a single recessive allele of Dm3. The mutation was not due to a large deletion as all molecular markers flanking Dm3 were present. Loss of Dm3 activity co-segregated with a T-DNA from which Ds had excised. Genomic DNA flanking the right border of this T-DNA was isolated by inverse polymerase chain reaction. This genomic sequence was present in four to five copies in wild-type cv. Diana. One copy was missing in all eight deletion mutants of Dm3 and altered in dm3t524, indicating tight physical linkage to Dm3. Three open reading frames (ORFs) occurred in a 6.6-kb region flanking the insertion site; however, expression of these ORFs was not detected. No similarities were detected between these ORFs and resistance genes cloned from other species. Transgenic complementation with 11-to 27-kb genomic fragments of Diana spanning the insertion site failed to restore Dm3 function to two ethyl methanesulfonate (EMS)-induced mutants of Dm3 or to cv. Cobham Green, which naturally lacks Dm3 activity. Therefore, either the T-DNA inserted extremely close to, but not within, Dm3 and the mutation may have been caused by secondary movement of Ds, or Dm3 activity is encoded by a gene extending beyond the fragments used for complementation.

  3. Effect of aqueous and hydro-alcoholic extracts of lettuce (Lactuca sativa) seed on testosterone level and spermatogenesis in NMRI mice

    PubMed Central

    Ahangarpour, Akram; Oroojan, Ali Akbar; Radan, Maryam

    2014-01-01

    Background: One of the considerable uses of lettuce (Lactuca sativa) seed in traditional medicine has been to reduce semen, sperm and sexuality. Objective: The aim of this study was to investigate the effects of aqueous and hydro-alcoholic extracts of lettuce seed on testosterone level and spermatogenesis. Materials and Methods: In this experimental study 24 adult male NMRI mice weighing 20-25gr were purchased. Animals were randomly divided into 4 groups: controls, hydro-alcoholic (200 mg/kg) and aqueous extracts (50, 100mg/kg). The extracts were injected intraperitoneally once a day for 10 consecutive days. 2 weeks after the last injection, the mice were anaesthetized by ether and after laparatomy blood was collected from the heart to determine testosterone by ELISA assay kit. Then testis and cauda epididymis of all animals were removed for analyzing testis morphology and sperm count and viability. Results: Testis weight in hydro-alcoholic and aqueous extracts 100 mg/kg (p=0.001) and aqueous extract 50 mg/kg (p=0.008) groups was increased. Sperm viability in hydro-alcoholic (p=0.001) and aqueous extracts 50 (p=0.026), 100 mg/kg (p=0.045) groups was decreased, Also the results showed a significant decrease in sperm count in hydro-alcoholic (p=0.035) and aqueous extracts 50 mg/kg (p=0.006) groups in comparison with control group. Also there was a significant increase in serum level of testosterone in aqueous extract 50 mg/kg group in comparison with control (p=0.002) hydro-alcoholic (p=0.001) and aqueous extracts 100 mg/kg (p=0.003) groups. Conclusion: Present results demonstrated that hydro-alcoholic and aqueous 50 mg/kg extracts of lettuce seed have antispermatogenic effects, also aqueous extract 50 mg/kg increased serum level of testosterone in mice. Therefore we can suggest that lettuce seed could be a potential contraceptive agent. This article extracted from M.Sc. student research project. (Ali Akbar Oroojan) PMID:24799863

  4. Effect of aqueous and hydro-alcoholic extracts of lettuce (Lactuca sativa) seed on testosterone level and spermatogenesis in NMRI mice.

    PubMed

    Ahangarpour, Akram; Oroojan, Ali Akbar; Radan, Maryam

    2014-01-01

    One of the considerable uses of lettuce (Lactuca sativa) seed in traditional medicine has been to reduce semen, sperm and sexuality. The aim of this study was to investigate the effects of aqueous and hydro-alcoholic extracts of lettuce seed on testosterone level and spermatogenesis. In this experimental study 24 adult male NMRI mice weighing 20-25gr were purchased. Animals were randomly divided into 4 groups: controls, hydro-alcoholic (200 mg/kg) and aqueous extracts (50, 100mg/kg). The extracts were injected intraperitoneally once a day for 10 consecutive days. 2 weeks after the last injection, the mice were anaesthetized by ether and after laparatomy blood was collected from the heart to determine testosterone by ELISA assay kit. Then testis and cauda epididymis of all animals were removed for analyzing testis morphology and sperm count and viability. Testis weight in hydro-alcoholic and aqueous extracts 100 mg/kg (p=0.001) and aqueous extract 50 mg/kg (p=0.008) groups was increased. Sperm viability in hydro-alcoholic (p=0.001) and aqueous extracts 50 (p=0.026), 100 mg/kg (p=0.045) groups was decreased, Also the results showed a significant decrease in sperm count in hydro-alcoholic (p=0.035) and aqueous extracts 50 mg/kg (p=0.006) groups in comparison with control group. Also there was a significant increase in serum level of testosterone in aqueous extract 50 mg/kg group in comparison with control (p=0.002) hydro-alcoholic (p=0.001) and aqueous extracts 100 mg/kg (p=0.003) groups. Present results demonstrated that hydro-alcoholic and aqueous 50 mg/kg extracts of lettuce seed have antispermatogenic effects, also aqueous extract 50 mg/kg increased serum level of testosterone in mice. Therefore we can suggest that lettuce seed could be a potential contraceptive agent. This article extracted from M.Sc. student research project. (Ali Akbar Oroojan).

  5. The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.)

    PubMed Central

    Verwaaijen, Bart; Wibberg, Daniel; Kröber, Magdalena; Winkler, Anika; Zrenner, Rita; Bednarz, Hanna; Niehaus, Karsten; Grosch, Rita; Pühler, Alfred

    2017-01-01

    The necrotrophic pathogen Rhizoctonia solani is one of the most economically important soil-borne pathogens of crop plants. Isolates of R. solani AG1-IB are the major pathogens responsible for bottom-rot of lettuce (Lactuca sativa L.) and are also responsible for diseases in other plant species. Currently, there is lack of information regarding the molecular responses in R. solani during the pathogenic interaction between the necrotrophic soil-borne pathogen and its host plant. The genome of R. solani AG1-IB (isolate 7/3/14) was recently established to obtain insights into its putative pathogenicity determinants. In this study, the transcriptional activity of R. solani AG1-IB was followed during the course of its pathogenic interaction with the host plant lettuce under controlled conditions. Based on visual observations, three distinct pathogen-host interaction zones on lettuce leaves were defined which covered different phases of disease progression on tissue inoculated with the AG1-IB (isolate 7/3/14). The zones were defined as: Zone 1—symptomless, Zone 2—light brown discoloration, and Zone 3—dark brown, necrotic lesions. Differences in R. solani hyphae structure in these three zones were investigated by microscopic observation. Transcriptional activity within these three interaction zones was used to represent the course of R. solani disease progression applying high-throughput RNA sequencing (RNA-Seq) analysis of samples collected from each Zone. The resulting three transcriptome data sets were analyzed for their highest expressed genes and for differentially transcribed genes between the respective interaction zones. Among the highest expressed genes was a group of not previously described genes which were transcribed exclusively during early stages of interaction, in Zones 1 and 2. Previously described importance of up-regulation in R. solani agglutinin genes during disease progression could be further confirmed; here, the corresponding genes exhibited

  6. The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.).

    PubMed

    Verwaaijen, Bart; Wibberg, Daniel; Kröber, Magdalena; Winkler, Anika; Zrenner, Rita; Bednarz, Hanna; Niehaus, Karsten; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas

    2017-01-01

    The necrotrophic pathogen Rhizoctonia solani is one of the most economically important soil-borne pathogens of crop plants. Isolates of R. solani AG1-IB are the major pathogens responsible for bottom-rot of lettuce (Lactuca sativa L.) and are also responsible for diseases in other plant species. Currently, there is lack of information regarding the molecular responses in R. solani during the pathogenic interaction between the necrotrophic soil-borne pathogen and its host plant. The genome of R. solani AG1-IB (isolate 7/3/14) was recently established to obtain insights into its putative pathogenicity determinants. In this study, the transcriptional activity of R. solani AG1-IB was followed during the course of its pathogenic interaction with the host plant lettuce under controlled conditions. Based on visual observations, three distinct pathogen-host interaction zones on lettuce leaves were defined which covered different phases of disease progression on tissue inoculated with the AG1-IB (isolate 7/3/14). The zones were defined as: Zone 1-symptomless, Zone 2-light brown discoloration, and Zone 3-dark brown, necrotic lesions. Differences in R. solani hyphae structure in these three zones were investigated by microscopic observation. Transcriptional activity within these three interaction zones was used to represent the course of R. solani disease progression applying high-throughput RNA sequencing (RNA-Seq) analysis of samples collected from each Zone. The resulting three transcriptome data sets were analyzed for their highest expressed genes and for differentially transcribed genes between the respective interaction zones. Among the highest expressed genes was a group of not previously described genes which were transcribed exclusively during early stages of interaction, in Zones 1 and 2. Previously described importance of up-regulation in R. solani agglutinin genes during disease progression could be further confirmed; here, the corresponding genes exhibited

  7. Toxicity of methyl tert butyl ether to soil invertebrates (springtails: Folsomia candida, Proisotoma minuta, and Onychiurus folsomi) and lettuce (Lactuca sativa).

    PubMed

    Dodd, Matthew; Addison, Janet A

    2010-02-01

    Experiments were conducted to assess the toxicity of methyl tert butyl ether (MTBE) to three species of Collembola (Proisotoma minuta, Folsomia candida, and Onychiurus folsomi) and lettuce (Lactuca sativa L.) using an artificial Organization for Economic Cooperation and Development (OECD) soil and field-collected sandy loam and silt loam soil samples. Soil invertebrate tests were carried out in airtight vials to prevent volatilization of MTBE out of the test units and to allow for direct head-space sampling and gas chromatography-mass spectrometry (GC-MS) analysis for residual MTBE. The use of the airtight vial protocol proved to be very successful, in that the measured MTBE concentrations at the beginning of the experiments were within 95% of nominal concentrations. The test methods used in this study could be used to test the toxicity of other volatile organic compounds to Collembola. The soil invertebrates tested had inhibitory concentration (ICx) and lethal concentration (LCx) values that ranged from 242 to 844 mg MTBE/kg dry soil. When the three test species of Collembola were tested under identical conditions in the artificial OECD soil, O. folsomi was the most sensitive collembolan, with a median inhibitory concentration (IC50; reproduction) of 296 mg MTBE/kg dry soil. The most sensitive endpoint for lettuce was an IC50 for root length of 81 mg MTBE/kg dry soil after 5 d of germination in OECD soil. Data on the loss of MTBE from the three test soils over time indicated that MTBE was retained in the silt loam soil longer than in either the sandy loam or the artificial OECD soil.

  8. Occupational dermatitis from Lactuca sativa (lettuce) and Cichorium (endive). Simultaneous occurrence of immediate and delayed allergy as a cause of contact dermatitis.

    PubMed

    Krook, G

    1977-02-01

    Four patients with occupational contact dermatitis to Lactuca sativa had cross-sensitivity to Cichorium endivia. One of the patients also had contact urticaria to Lactuca and Cichorium, and another reacted positively to scratch tests with these plants as a sign of immediate allergy. In two cases such immediate allergy was considered the cause of a vesicular, intense itching eruption within a few minutes of contact with fresh leaves of Lactuca on previously eczematous skin. The severe chronic dermatitis of the hands of these patients is ascribed to combined delayed and immediate allergy.

  9. Changes in macrominerals, trace elements and pigments content during lettuce (Lactuca sativa L.) growth: influence of soil composition.

    PubMed

    Pinto, Edgar; Almeida, Agostinho A; Aguiar, Ana A R M; Ferreira, Isabel M P L V O

    2014-01-01

    Changes in macrominerals, trace elements and photosynthetic pigments were monitored at 5 stages of lettuce growth. Plants were grown in three experimental agriculture greenhouse fields (A1, A2 and A3). Soil composition was also monitored to understand its influence on lettuce composition. In general, the content of macrominerals, trace elements, chlorophylls and carotenoids decreased during lettuce growth and consequently, high nutritional value was observed at younger stages. A2 lettuces showed an increase of Fe, Al, Cr, V and Pb due to the different soil physicochemical parameters. Multiple linear regression analysis with stepwise variable selection, indicated that soil characteristics, namely, pH(CaCl2) for Fe and Cr, silt and fine-sand for Al and V, OM for Al and Pb, coarse-sand and CEC for Cr, had a key role determining element bioavailability and plant mineral content. Thus, lettuce nutritional value was strongly dependent of growth stage and soil characteristics.

  10. Variations in bioactive substance contents and crop yields of lettuce (Lactuca sativa L.) cultivated in soils with different fertilization treatments.

    PubMed

    Coria-Cayupán, Yanina Soledad; Sánchez de Pinto, María Ines; Nazareno, Mónica Azucena

    2009-11-11

    Changes in crop yields and bioactive substance contents were studied in lettuce crop concerning the influence of soil nutritional status as a result of compost and vermicompost additions obtained from different organic substrates. Plant productions and main pigment contents in lettuce were higher in all the fertilized soils than in the untreated soil, with the exception of the one treated with urban solid waste compost. These positive effects correlate with nitrogen level increase in soil. However, the high saline input of this compost prepared from food home wastes interferes in lettuce growth and prevents it from being higher than the control. Marked decreases in lettuce phenolic contents and antiradical activity were found in most of the treatments. Composts and vermicomposts produced through the processing of cattle manures, agro-industrial organic wastes significantly increased lettuce crop yield enriching its pigment contents, although, in some cases, antioxidant value and phenolic levels were reduced.

  11. Nitrate content in dandelion (Taraxacum officinale) and lettuce (Lactuca sativa) from organic and conventional origin: intake assessment.

    PubMed

    Gorenjak, Alenka Hmelak; Koležnik, Urška Rizman; Cencič, Avrelija

    2012-01-01

    To estimate the actual intake of nitrate by consumption of different lettuce varieties, 52 samples of lettuce of different origins and dandelion from 15 different areas of northeast Slovenia were analysed. For determination of actual nitrate content, a continuous flow method was used. The lowest nitrate content was detected in dandelion, with a mean value of 195 mg kg(-1) (ranging 47-487 mg kg(-1)). Nitrate content in lettuce of different origins ranged 85-3237 mg kg(-1), with a mean value of 1196 mg kg(-1). The mean nitrate content in organically cultivated lettuce was 890 mg kg(-1), which was considerably lower than the nitrate level in conventionally cultivated lettuce (1298 mg kg(-1)). Consumption of 100 g of dandelion would result in a maximal nitrate intake corresponding to 22% of the acceptable daily intake (ADI), with values up to seven times higher for lettuce.

  12. Identification of thaumatin-like protein and aspartyl protease as new major allergens in lettuce (Lactuca sativa).

    PubMed

    Muñoz-García, Esther; Luengo-Sánchez, Olga; Haroun-Díaz, Elisa; Maroto, Aroa Sanz; Palacín, Arancha; Díaz-Perales, Araceli; de las Heras Gozalo, Manuel; Labrador-Horrillo, Moisés; Vivanco, Fernando; Cuesta-Herranz, Javier; Pastor-Vargas, Carlos

    2013-12-01

    Today, about 2-8% of the population of Western countries exhibits some type of food allergy whose impact ranges from localized symptoms confined to the oral mucosa to severe anaphylactic reactions. Consumed worldwide, lettuce is a Compositae family vegetable that can elicit allergic reactions. To date, however, only one lipid transfer protein has been described in allergic reaction to lettuce. The aim of this study was to identify potential new allergens involved in lettuce allergy. Sera from 42 Spanish lettuce-allergic patients were obtained from patients recruited at the outpatient clinic. IgE-binding proteins were detected by SDS-PAGE and immunoblotting. Molecular characterization of IgE-binding bands was performed by MS. Thaumatin was purified using the Agilent 3100 OFFGEL system. The IgE-binding bands recognized in the sera of more than 50% of patients were identified as lipid transfer protein (9 kDa), a thaumatin-like protein (26 kDa), and an aspartyl protease (35 and 45 kDa). ELISA inhibition studies were performed to confirm the IgE reactivity of the purified allergen. Two new major lettuce allergens-a thaumatin-like protein and an aspartyl protease-have been identified and characterized. These allergens may be used to improve both diagnosis and treatment of lettuce-allergic patients. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light

    PubMed Central

    Wang, Jun; Lu, Wei; Tong, Yuxin; Yang, Qichang

    2016-01-01

    Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m−2⋅s−1 irradiance for a 16 h⋅d−1 photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (Amax) and photosynthetic rate (Pn) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. Pn and Amax under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between Pn and shoot dry weight accumulation. PMID:27014285

  14. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light.

    PubMed

    Wang, Jun; Lu, Wei; Tong, Yuxin; Yang, Qichang

    2016-01-01

    Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m(-2)⋅s(-1) irradiance for a 16 h⋅d(-1) photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (A max) and photosynthetic rate (P n) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. P n and A max under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between P n and shoot dry weight accumulation.

  15. Lactucaxanthin - a potential anti-diabetic carotenoid from lettuce (Lactuca sativa) inhibits α-amylase and α-glucosidase activity in vitro and in diabetic rats.

    PubMed

    Gopal, Sowmya Shree; Lakshmi, Magisetty Jhansi; Sharavana, Gurunathan; Sathaiah, Gunaseelan; Sreerama, Yadahally N; Baskaran, Vallikannan

    2017-03-22

    Intestinal and pancreatic α-amylase and α-glucosidase inhibitors offer an approach to lower the levels of post-prandial hyperglycemia through the control of dietary starch breakdown in digestion. This study hypothesized that lactucaxanthin (Lxn) in lettuce (Lactuca sativa) inhibits the activity of α-amylase and α-glucosidase. In this study, the interaction of Lxn with α-amylase and α-glucosidase in silico and its inhibitory effect on these enzymes were studied using in vitro and STZ-induced diabetic rat models. Lxn was isolated from lettuce with 96% purity confirmed by HPLC and LCMS. The in silico analysis showed that Lxn has a lower binding energy (-6.05 and -6.34 kcal mol(-1)) with α-amylase and α-glucosidase compared to their synthetic inhibitors, acarbose (-0.21 kcal mol(-1)) and miglitol (-2.78 kcal mol(-1)), respectively. In vitro α-amylase and α-glucosidase inhibition assays revealed that Lxn had IC50 values of 435.5 μg mL(-1) and 1.84 mg mL(-1), but acarbose has values of 2.5 and 16.19 μg mL(-1). The in vivo results showed an increased activity for α-amylase and α-glucosidase in the intestine (4.7 and 1.30 fold, p < 0.05) and pancreas (1.3 and 1.48 fold, p < 0.05) of STZ induced diabetic rats compared to normal rats. Whereas the activity decreased (p < 0.05) in the Lxn fed diabetic rats, except for the intestinal α-glucosidase activity (1.69 ± 0.12 PNP per min per mg protein). This was confirmed by the low blood glucose level (239.4 ± 18.2 mg dL(-1)) in diabetic rats fed Lxn compared to the diabetic group (572.2 ± 30.5 mg dL(-1), p < 0.05). Lxn significantly inhibited (p < 0.05) the activity of α-amylase and α-glucosidase and could be of medical and nutritional relevance in the treatment of diabetes.

  16. Effects of dietary supplementation with red-pigmented leafy lettuce (Lactuca sativa) on lipid profiles and antioxidant status in C57BL/6J mice fed a high-fat high-cholesterol diet.

    PubMed

    Lee, Jeung Hee; Felipe, Penelope; Yang, Yoon Hyung; Kim, Mi Yeon; Kwon, Oh Yoon; Sok, Dai-Eun; Kim, Hyoung Chin; Kim, Mee Ree

    2009-04-01

    The present study was undertaken to assess the beneficial effects of a daily consumption of 8 % freeze-dried red-pigmented leafy lettuce (Lactuca sativa) on CVD. C57BL/6J mice were fed a high-fat high-cholesterol diet supplemented with or without red-pigmented leafy lettuce for 4 weeks. The present results showed that the red-pigmented leafy lettuce-supplemented diet significantly decreased the level of total and LDL-cholesterol and TAG in the plasma of the mice. The atherosclerotic index was calculated to be 46 % lower in the mice fed with the lettuce diet compared with the control diet. Lipid peroxidation measured by 2-thiobarbituric acid-reactive substances was markedly reduced in the plasma, liver, heart and kidney of the mice fed the lettuce diet. The content of antioxidants (total glutathione and beta-carotene) was significantly increased by lettuce supplementation. The antioxidant defence system by antioxidant enzymes including glutathione S-transferase, glutathione peroxidase, glutathione reductase, superoxide dismutase and paraoxanase in blood or liver tissues was also increased, and showed the improved oxidative stress in the mice fed the lettuce diet. The measurement of tail DNA (%), tail extent moment and olive tail moment indicated that the lettuce diet increased the resistance of hepatocyte and lymphocyte DNA to oxidative damage. The present study showed that the supplementation of a high-cholesterol high-fat diet with 8 % red-pigmented leafy lettuce resulted in an improvement of plasma cholesterol and lipid levels, prevention of lipid peroxidation and an increase of the antioxidant defence system and, therefore, could contribute to reduce the risk factors of CVD.

  17. Expression analysis of polyphenol oxidase isozymes by active staining method and tissue browning of head lettuce (Lactuca sativa L.).

    PubMed

    Noda, Takahiro; Iimure, Kazuhiko; Okamoto, Shunsuke; Saito, Akira

    2017-08-01

    Browning of plant tissue is generally considered attributable to enzymatic oxidation by polyphenol oxidase (PPO). Electrophoresis followed by activity staining has been used as an effective procedure to visually detect and isolate isozymes; however, it has not been applied for examination of various PPO isozymes in lettuce. Our study demonstrated that different lettuce PPO isozymes could be detected at different pH in active staining, and multiple isozymes were detected only under alkaline conditions. As a result, we concluded that activity staining with approximately pH 8 enabled to detect various PPO isozymes in lettuce. By expression analysis of the PPO isozymes after wounding, PPO isozymes that correlated with time-course of tissue browning were detected. The wound-induced PPO may play a key role in enzymatic browning.

  18. Antioxidant potential of Lactuca sativa

    PubMed Central

    Garg, Munish; Garg, Chanchal; Mukherjee, Pulok K.; Suresh, B.

    2004-01-01

    The present study is based on the evaluation of antioxidant potential of a well known plant Lactuca sativa. Methanolic leaf extract was investigated for in vitro inhibition of oxidative damage induced by UV-radiations to the salmonella typhi bacteria and in vivo effect on the production of body enzymes i.e. catalase and superoxide dismutase. The lipid peroxidation masurement was also done in terms of thiobarbituric acid reactive substances (TBARS) in blood and brain of male albino wistar rats. The plant extract has shown significant antioxidant potential both in vitro and in vivo. PMID:22557144

  19. Effect of proline on biochemical and molecular mechanisms in lettuce (Lactuca sativa L.) exposed to UV-B radiation.

    PubMed

    Aksakal, Ozkan; Tabay, Dilruba; Esringu, Aslıhan; Icoglu Aksakal, Feyza; Esim, Nevzat

    2017-02-15

    The purpose of the present study was to evaluate the role of proline (Pro) in relieving UV-B radiation-induced oxidative stress in lettuce. Lettuce seedlings were exposed to 3.3 W m(-2) UV-B radiation for 12 h after pre-treatment sprayed with 20 mM Pro. The data for malondialdehyde (MDA), hydrogen peroxide (H2O2), endogenous Pro level, the activities of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD)], total phenolic concentration, antioxidant capacity, expression of phenylalanine ammonia lyase (PAL), γ-tocopherol methyltransferase (γ-TMT) and proline dehydrogenase (ProDH) genes, phytohormone levels such as abscisic acid (ABA), gibberellic acid (GA), indole acetic acid (IAA) and salicylic acid (SA), soluble sugars and organic acids were recorded. It was found that Pro alleviated the oxidative damage in the seedlings of lettuce as demonstrated by lower lipid peroxidation and H2O2 content, increasing the endogenous Pro level, the activity of antioxidant enzymes, total phenolic concentration and the antioxidant capacity. Additionally, it was revealed that exogenous application of Pro enhanced the levels of GA, IAA, the concentrations of soluble sugars and organic acids and expressions of PAL, γ-TMT and ProDH genes as compared to the control. The results obtained in this study suggest that pre-treatment with exogenous Pro provides important contributions to the increase in the UV-B tolerance of lettuce by regulating the biochemical mechanisms of UV-B response.

  20. Genetic Diversity of Lettuce (Lactuca sativa) for Resistance to Bacterial Leaf Spot Caused by Xanthomonas campestris pv. vitians.

    USDA-ARS?s Scientific Manuscript database

    Lettuce plants were artificially inoculated with three isolates of Xanthomonas campestris pv. vitians in field and greenhouse evaluations for genetic variation in resistance to bacterial leaf spot. The cultivar Little Gem had the least amount of disease, whether evaluated for disease severity or dis...

  1. Filth fly transmission of Escherichia coli O157:H7 and Salmonella enterica to lettuce, Lactuca sativa

    USDA-ARS?s Scientific Manuscript database

    Filth flies have been implicated in the dispersal of human disease pathogens; however, fly transmission parameters of human pathogens to plants are largely undescribed. The capacity of the black blow fly, Phormia regina, to acquire and subsequently release bacteria onto baby lettuce leaves was comp...

  2. Effect of supplemental ultraviolet radiation on the concentration of phytonutrients in green and red leaf lettuce (Lactuca sativa) cultivars

    NASA Astrophysics Data System (ADS)

    Britz, Steven; Caldwell, Charles; Mirecki, Roman; Slusser, James; Gao, Wei

    2005-08-01

    Eight cultivars each of red and green leaf lettuce were raised in a greenhouse with supplemental UV radiation, either UV-A (wavelengths greater than ca. 315 nm) or UV-A+UV-B (wavelengths greater than ca. 290 nm; 6.4 kJ m-2 daily biologically effective UV-B), or no supplemental UV (controls). Several phytonutrients were analyzed in leaf flours to identify lines with large differences in composition and response to UV-B. Red leaf lettuce had higher levels of phenolic acid esters, flavonols and anthocyanins than green lines. Both green and red lines exposed to UV-B for 9 days showed 2-3-fold increases in flavonoids compared to controls, but only 45% increases in phenolic acid esters, suggesting these compounds may be regulated by different mechanisms. There were large differences between cultivars in levels of phenolic compounds under control conditions and also large differences in UV-B effects. Among red varieties, cv. Galactic was notable for high levels of phenolics and a large response to UV-B. Among green varieties, cvs. Black-Seeded Simpson and Simpson Elite had large increases in phenolics with UV-B exposure. Photosynthetic pigments were also analyzed. Green leaf lettuce had high levels of pheophytin, a chlorophyll degradation product. Total chlorophylls (including pheophytin) were much lower in green compared to red varieties. Lutein, a carotenoid, was similar for green and red lines. Total chlorophylls and lutein increased 2-fold under supplemental UV-B in green lines but decreased slightly under UV-B in red lines. Lettuce appears to be a valuable crop to use to study phytochemical-environment interactions.

  3. Transcriptome Profiling of Caco-2 Cancer Cell Line following Treatment with Extracts from Iodine-Biofortified Lettuce (Lactuca sativa L.)

    PubMed Central

    Koronowicz, Aneta A.; Kopeć, Aneta; Master, Adam; Smoleń, Sylwester; Piątkowska, Ewa; Bieżanowska-Kopeć, Renata; Ledwożyw-Smoleń, Iwona; Skoczylas, Łukasz; Rakoczy, Roksana; Leszczyńska, Teresa; Kapusta-Duch, Joanna; Pysz, Mirosław

    2016-01-01

    Although iodization of salt is the most common method used to obtain iodine-enriched food, iodine deficiency disorders are still a global health problem and profoundly affect the quality of human life. Iodine is required for the synthesis of thyroid hormones, which are crucial regulators of human metabolism, cell growth, proliferation, apoptosis and have been reported to be involved in carcinogenesis. In this study, for the first time, we evaluated the effect of iodine-biofortified lettuce on transcriptomic profile of Caco-2 cancer cell line by applying the Whole Human Genome Microarray assay. We showed 1326 differentially expressed Caco-2 transcripts after treatment with iodine-biofortified (BFL) and non-fortified (NFL) lettuce extracts. We analysed pathways, molecular functions, biological processes and protein classes based on comparison between BFL and NFL specific genes. Iodine, which was expected to act as a free ion (KI-NFL) or at least in part to be incorporated into lettuce macromolecules (BFL), differently regulated pathways of numerous transcription factors leading to different cellular effects. In this study we showed the inhibition of Caco-2 cells proliferation after treatment with BFL, but not potassium iodide (KI), and BFL-mediated induction of mitochondrial apoptosis and/or cell differentiation. Our results showed that iodine-biofortified plants can be effectively used by cells as an alternative source of this trace element. Moreover, the observed differences in action of both iodine sources may suggest a potential of BFL in cancer treatment. PMID:26799209

  4. Transcriptome Profiling of Caco-2 Cancer Cell Line following Treatment with Extracts from Iodine-Biofortified Lettuce (Lactuca sativa L.).

    PubMed

    Koronowicz, Aneta A; Kopeć, Aneta; Master, Adam; Smoleń, Sylwester; Piątkowska, Ewa; Bieżanowska-Kopeć, Renata; Ledwożyw-Smoleń, Iwona; Skoczylas, Łukasz; Rakoczy, Roksana; Leszczyńska, Teresa; Kapusta-Duch, Joanna; Pysz, Mirosław

    2016-01-01

    Although iodization of salt is the most common method used to obtain iodine-enriched food, iodine deficiency disorders are still a global health problem and profoundly affect the quality of human life. Iodine is required for the synthesis of thyroid hormones, which are crucial regulators of human metabolism, cell growth, proliferation, apoptosis and have been reported to be involved in carcinogenesis. In this study, for the first time, we evaluated the effect of iodine-biofortified lettuce on transcriptomic profile of Caco-2 cancer cell line by applying the Whole Human Genome Microarray assay. We showed 1326 differentially expressed Caco-2 transcripts after treatment with iodine-biofortified (BFL) and non-fortified (NFL) lettuce extracts. We analysed pathways, molecular functions, biological processes and protein classes based on comparison between BFL and NFL specific genes. Iodine, which was expected to act as a free ion (KI-NFL) or at least in part to be incorporated into lettuce macromolecules (BFL), differently regulated pathways of numerous transcription factors leading to different cellular effects. In this study we showed the inhibition of Caco-2 cells proliferation after treatment with BFL, but not potassium iodide (KI), and BFL-mediated induction of mitochondrial apoptosis and/or cell differentiation. Our results showed that iodine-biofortified plants can be effectively used by cells as an alternative source of this trace element. Moreover, the observed differences in action of both iodine sources may suggest a potential of BFL in cancer treatment.

  5. Plant growth-promoting bacterium Acinetobacter calcoaceticus P23 increases the chlorophyll content of the monocot Lemna minor (duckweed) and the dicot Lactuca sativa (lettuce).

    PubMed

    Suzuki, Wakako; Sugawara, Masayuki; Miwa, Kyoko; Morikawa, Masaaki

    2014-07-01

    Acinetobacter calcoaceticus P23 is a plant growth-promoting bacterium that was isolated from the surface of duckweed (Lemna aoukikusa). The bacterium was observed to colonize on the plant surfaces and increase the chlorophyll content of not only the monocotyledon Lemna minor but also the dicotyledon Lactuca sativa in a hydroponic culture. This effect on the Lactuca sativa was significant in nutrient-poor (×1/100 dilution of H2 medium) and not nutrient-rich (×1 or ×1/10 dilutions of H2 medium) conditions. Strain P23 has the potential to play a part in the future development of fertilizers and energy-saving hydroponic agricultural technologies.

  6. Comparison of sensitivity of grasses (Lolium perenne L. and Festuca rubra L.) and lettuce (Lactuca sativa L.) exposed to water contaminated with microcystins.

    PubMed

    Pereira, Silvia; Saker, Martin L; Vale, Micaela; Vasconcelos, Vitor M

    2009-07-01

    The effects of aqueous extracts from Microcysts aeruginosa strains (both microcystin-producers and non-microcystin producers) on germination and root growth were investigated for three economically important plant species: Festuca rubra L., Lolium perenne L., and Lactuca sativa L. There was a clear inhibition of root growth for L. sativa exposed to strains containing microcystins (5.9-56.4 microg L(-1)). The strain that produced the most pronounced effects contained the lowest concentration of microcystin suggesting that other cellular compounds may also affect growth.

  7. Effects of sodium nitroprusside (SNP) pretreatment on UV-B stress tolerance in lettuce (Lactuca sativa L.) seedlings.

    PubMed

    Esringu, Aslıhan; Aksakal, Ozkan; Tabay, Dilruba; Kara, Ayse Aydan

    2016-01-01

    Ultraviolet-B (UV-B) radiation is one of the most important abiotic stress factors that could influence plant growth, development, and productivity. Nitric oxide (NO) is an important plant growth regulator involved in a wide variety of physiological processes. In the present study, the possibility of enhancing UV-B stress tolerance of lettuce seedlings by the exogenous application of sodium nitroprusside (SNP) was investigated. UV-B radiation increased the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD) and total phenolic concentrations, antioxidant capacity, and expression of phenylalanine ammonia lyase (PAL) gene in seedlings, but the combination of SNP pretreatment and UV-B enhanced antioxidant enzyme activities, total phenolic concentrations, antioxidant capacity, and PAL gene expression even more. Moreover, UV-B radiation significantly inhibited chlorophylls, carotenoid, gibberellic acid (GA), and indole-3-acetic acid (IAA) contents and increased the contents of abscisic acid (ABA), salicylic acid (SA), malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide radical (O2•(-)) in lettuce seedlings. When SNP pretreatment was combined with the UV-B radiation, we observed alleviated chlorophylls, carotenoid, GA, and IAA inhibition and decreased content of ABA, SA, MDA, H2O2, and O2•(-) in comparison to non-pretreated stressed seedlings.

  8. Metabolomics to Detect Response of Lettuce (Lactuca sativa) to Cu(OH)2 Nanopesticides: Oxidative Stress Response and Detoxification Mechanisms.

    PubMed

    Zhao, Lijuan; Ortiz, Cruz; Adeleye, Adeyemi S; Hu, Qirui; Zhou, Hongjun; Huang, Yuxiong; Keller, Arturo A

    2016-09-06

    There has been an increasing influx of nanopesticides into agriculture in recent years. Understanding the interaction between nanopesticides and edible plants is crucial in evaluating the potential impact of nanotechnology on the environment and agriculture. Here we exposed lettuce plants to Cu(OH)2 nanopesticides (1050-2100 mg/L) through foliar spray for one month. Inductively coupled plasma-mass spectrometry (ICP-MS) results indicate that 97-99% (1353-2501 mg/kg) of copper was sequestered in the leaves and only a small percentage (1-3%) (17.5-56.9 mg/kg) was translocated to root tissues through phloem loading. Gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) based metabolomics combined with partial least squares-discriminant analysis (PLS-DA) multivariate analysis revealed that Cu(OH)2 nanopesticides altered metabolite levels of lettuce leaves. Tricarboxylic (TCA) cycle and a number of amino acid-related biological pathways were disturbed. Some antioxidant levels (cis-caffeic acid, chlorogenic acid, 3,4-dihydroxycinnamic acid, dehydroascorbic acid) were significantly decreased compared to the control, indicating that oxidative stress and a defense response occurred. Nicotianamine, a copper chelator, increased by 12-27 fold compared to the control, which may represent a detoxification mechanism. The up-regulation of polyamines (spermidine and putrescine) and potassium may mitigate oxidative stress and enhance tolerance. The data presented here provide a molecular-scale perspective on the response of plants to copper nanopesticides.

  9. Metabolic fate of [14C] chlorophenols in radish (Raphanus sativus), lettuce (Lactuca sativa), and spinach (Spinacia oleracea).

    PubMed

    Pascal-Lorber, Sophie; Despoux, Sabrina; Rathahao, Estelle; Canlet, Cécile; Debrauwer, Laurent; Laurent, François

    2008-09-24

    Chlorophenols are potentially harmful pollutants that are found in numerous natural and agricultural systems. Plants are a sink for xenobiotics, which occur either intentionally or not, as they are unable to eliminate them although they generally metabolize them into less toxic compounds. The metabolic fate of [ (14)C] 4-chlorophenol (4-CP), [ (14)C] 2,4-dichlorophenol (2,4-DCP), and [ (14)C] 2,4,5-trichlorophenol (2,4,5-TCP) was investigated in lettuce, spinach, and radish to locate putative toxic metabolites that could become bioavailable to food chains. Radish plants were grown on sand for four weeks before roots were dipped in a solution of radiolabeled chlorophenol. The leaves of six-week old lettuce and spinach were treated. Three weeks after treatments, metabolites from edible plant parts were extracted and analyzed by high performance liquid chromatography (HPLC) and characterized by mass spectrometry (MS), and nuclear magnetic resonance spectroscopy (NMR). Characterization of compounds highlighted the presence of complex glycosides. Upon hydrolysis in the digestive tract of animals or humans, these conjugates could return to the toxic parent compound, and this should be kept in mind for registration studies.

  10. Exposure studies of core-shell Fe/Fe(3)O(4) and Cu/CuO NPs to lettuce (Lactuca sativa) plants: Are they a potential physiological and nutritional hazard?

    PubMed

    Trujillo-Reyes, J; Majumdar, S; Botez, C E; Peralta-Videa, J R; Gardea-Torresdey, J L

    2014-02-28

    Iron and copper nanomaterials are widely used in environmental remediation and agriculture. However, their effects on physiological parameters and nutritional quality of terrestrial plants such as lettuce (Lactuca sativa) are still unknown. In this research, 18-day-old hydroponically grown lettuce seedlings were treated for 15 days with core-shell nanoscale materials (Fe/Fe(3)O(4), Cu/CuO) at 10 and 20mg/L, and FeSO(4)·7H(2)O and CuSO(4)·5H(2)O at 10mg/L. At harvest, Fe, Cu, micro and macronutrients were determined by ICP-OES. Also, we evaluated chlorophyll content, plant growth, and catalase (CAT) and ascorbate peroxidase (APX) activities. Our results showed that iron ions/NPs did not affect the physiological parameters with respect to water control. Conversely, Cu ions/NPs reduced water content, root length, and dry biomass of the lettuce plants. ICP-OES results showed that nano-Cu/CuO treatments produced significant accumulation of Cu in roots compared to the CuSO(4)·5H(2)O treatment. In roots, all Cu treatments increased CAT activity but decreased APX activity. In addition, relative to the control, nano-Cu/CuO altered the nutritional quality of lettuce, since the treated plants had significantly more Cu, Al and S but less Mn, P, Ca, and Mg.

  11. Effects of industrial waste water on heavy metal accumulation, growth and biochemical responses of lettuce (Lactuca sativa L.).

    PubMed

    Naaz, Shadma; Pandey, S N

    2010-05-01

    The waste water showed high values of total solid (TS), hardness and chloride with slightly alkaline pH along with high concentrations of Cr (2.03 mg l(-1)), Ni (1.59 mg l(-1)) and Zn (0.46 mg l(-1)). The concentration of Cu (0.21 mg l(-1)) and Zn in industrial waste water was low than Ni and Cr. The diluted (25 and 50%), undiluted (100%) waste water was used to irrigate the lettuce plants grown in alluvial soils. Plants accumulated heavy metals in their shoot (Ni, 13.65; Cr, 19.73; Zn, 21.6 and Cu 14.76 microg g(-1) dry weight) and root (Ni, 41.4; Cr, 31.6; Zn, 30.2 and Cu 15.85 microg g(-1) dry weight) in high concentrations after irrigation with undiluted industrial waste water. Maximum accumulation of heavy metals was found in the root than the shoot (13.65-21.60 microg g(-1) dry weight). Dry matter yield and biomolecules (Chlorophyll a, b and sugar contents) was found to increase with increase in concentration of waste water up to 50%, which declined at the exposure of undiluted waste water. Catalase activity was found to increase with increase in waste water concentrations up to 100%, while carotenoids content increased in plants only up to the 50% waste water irrigation. Use of industrial waste water in such form, on agricultural lands is not found suitable without proper treatment. It could be injurious to plants growth and may be a potential threat to food web.

  12. [Lettuce, lactuca sp., as a medicinal plant in polish publications of the 19th century].

    PubMed

    Trojanowska, Anna

    2005-01-01

    Mentions of lettuce Lactuca sp. that have appeared since antiquity contained similar information on its curative properties, but such properties were ascribed to different species or varieties. Apart from the wild and poisonous lettuce, also garden or common lettuce were identified as having curative action, and some publications lacked information enabling the precise identification of the lettuce in question. In the 19th century, attempts were made to put some order into the knowledge of lettuce as a medicinal plant. Information contained in Polish medical studies of the 19th century on lettuce points to the poisonous species, Lactuca virosa, and the common or garden lettuce, Lactuca sativa v. Lactuca hortensis, as being used as a medicinal plant. In that period, lettuce and especially the the desiccated lactescent juice obtained from it, lactucarium, were considered to be an intoxicant, and were used as a sedative and an analgesic. The action of the substance was weaker than that of opium but free of the side-effects, and medical practice showed that in some cases lactucarium produced better curative effects than opium. To corroborate those properties of lettuce and its lactescent juice, studies were undertaken to find the substance responsible for the curative effects of the juice. However, such studies failed to produce the expected results, and the component responsible for the curative properties of letuce was not identified. Medical practice thus had to restrict itself to the uses of the desiccated lactescent juice and extracts obtained from it. The possibility of obtaining lactucarium from plants cultivated in Poland caused Polish pharmacists and physicians to take an interest in the stuff and launch their own research of lettuce and the lactescent juice obtained from it. Results of research on lettuce were published in 19th-century journals by, among others, Jan Fryderyk Wolfgang, Florian Sawiczewski and Józef Orkisz.

  13. TOXICITY OF METHYL-TERT BYTYL ETHER (MTBE) TO PLANTS (AVENA SATIVA, ZEA MAYS, TRITICUM AESTIVUM, AND LACTUCA SATIVA)

    EPA Science Inventory

    Effects of Methyl tert-butyl ether (MTBE) on the germination of seeds and growth of the plant were studied in some laboratory experiments. Test plants were wild oat (Avena sative), sweet corn (Zea mays), wheat (Triticum aestivum), and lettuce (Lactuca sativa). Seed germination,...

  14. TOXICITY OF METHYL-TERT BYTYL ETHER (MTBE) TO PLANTS (AVENA SATIVA, ZEA MAYS, TRITICUM AESTIVUM, AND LACTUCA SATIVA)

    EPA Science Inventory

    Effects of Methyl tert-butyl ether (MTBE) on the germination of seeds and growth of the plant were studied in some laboratory experiments. Test plants were wild oat (Avena sative), sweet corn (Zea mays), wheat (Triticum aestivum), and lettuce (Lactuca sativa). Seed germination,...

  15. [Combination of phosphorus solubilizing and mobilizing fungi with phosphate rocks and volcanic materials to promote plant growth of lettuce (Lactuca sativa L.)].

    PubMed

    Velázquez, María S; Cabello, Marta N; Elíades, Lorena A; Russo, María L; Allegrucci, Natalia; Schalamuk, Santiago

    2017-09-08

    Arbuscular mycorrhizal fungi (AMF) increase the uptake of soluble phosphates, while phosphorus solubilizing fungi (S) promote solubilization of insoluble phosphates complexes, favoring plant nutrition. Another alternative to maintaining crop productivity is to combine minerals and rocks that provide nutrients and other desirable properties. The aim of this work was to combine AMF and S with pyroclastic materials (ashes and pumices) from Puyehue volcano and phosphate rocks (PR) from Rio Chico Group (Chubut) - to formulate a substrate for the production of potted Lactuca sativa. A mixture of Terrafertil®:ashes was used as substrate. Penicillium thomii was the solubilizing fungus and Rhizophagus intraradices spores (AMF) was the P mobilizer (AEGIS® Irriga). The treatments were: 1) Substrate; 2) Substrate+AMF; 3) Substrate+S; 4) Substrate+AMF+S; 5) Substrate: PR; 6) Substrate: PR+AMF; 7) Substrate: PR+S and 8) Substrate: PR+AMF+S. Three replicates were performed per treatment. All parameters evaluated (total and assimilable P content in substrate, P in plant tissue and plant dry biomass) were significantly higher in plants grown in substrate containing PR and inoculas with S and AMF. This work confirms that the combination of S/AMF with Puyehue volcanic ashes, PR from the Río Chico Group and a commercial substrate promote the growth of L. sativa, thus increasing the added value of national geomaterials. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Association analysis of bacterial leaf spot resistance and SNP markers derived from expressed sequence tags (ESTs) in lettuce (Lactuca sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Bacterial leaf spot of lettuce, caused by Xanthomonas campestris pv. vitians, is a devastating disease of lettuce worldwide. Since there are no chemicals available for effective control of the disease, host-plant resistance is highly desirable to protect lettuce production. A total of 179 lettuce ge...

  17. Selection for resistance to Verticillium wilt caused by race 2 isolates of Verticillium dahliae in accessions of lettuce (Lactuca sativa L.).

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt of lettuce caused by Verticillium dahliae can cause severe economic damage to lettuce producers. The pathogen exists as two races (races 1 and 2) in lettuce, and complete resistance to race 1 is known. Resistance to race 2 isolates has not been reported, and production of race 1 re...

  18. Potentiating Effects of Lactuca sativa on Pentobarbital-Induced Sleep.

    PubMed

    Ghorbani, Ahmad; Rakhshandeh, Hassan; Sadeghnia, Hamid Reza

    2013-01-01

    Traditionally, Lactuca sativa (lettuce) has been recommended for its hypnotic property. The present study was planned to investigate sleep-prolonging effect of this plant. The hydro-alcoholic extract (HAE) of lettuce and its water fraction (WF), ethyl acetate fraction (EAF), and n-butanol fraction (NBF) were administrated (IP) to mice 30 min before the pentobarbital injection. Moreover, both in-vivo and in-vitro toxicity of the extracts were determined. The quality of HAE and NBF was also evaluated using HPLC fingerprint. The HAE prolonged the pentobarbital-induced sleep duration at dose of 400 mg/Kg. The NBF was the only fraction which could increase the sleep duration and decrease sleep latency. The effects of NBF were comparable to those of induced by diazepam. The LD50-value for HAE was found to be 4.8 g/Kg. No neurotoxic effect was observed either by HAE or by its fractions in cultured PC12 neuron-like cells. The results suggest that lettuce potentiates pentobarbital hypnosis without major toxic effect. The main component(s) responsible for this effect is most likely to be non-polar agent(s) which found in NBF of this plant.

  19. Potentiating Effects of Lactuca sativa on Pentobarbital-Induced Sleep

    PubMed Central

    Ghorbani, Ahmad; Rakhshandeh, Hassan; Sadeghnia, Hamid Reza

    2013-01-01

    Traditionally, Lactuca sativa (lettuce) has been recommended for its hypnotic property. The present study was planned to investigate sleep-prolonging effect of this plant. The hydro-alcoholic extract (HAE) of lettuce and its water fraction (WF), ethyl acetate fraction (EAF), and n-butanol fraction (NBF) were administrated (IP) to mice 30 min before the pentobarbital injection. Moreover, both in-vivo and in-vitro toxicity of the extracts were determined. The quality of HAE and NBF was also evaluated using HPLC fingerprint. The HAE prolonged the pentobarbital-induced sleep duration at dose of 400 mg/Kg. The NBF was the only fraction which could increase the sleep duration and decrease sleep latency. The effects of NBF were comparable to those of induced by diazepam. The LD50-value for HAE was found to be 4.8 g/Kg. No neurotoxic effect was observed either by HAE or by its fractions in cultured PC12 neuron-like cells. The results suggest that lettuce potentiates pentobarbital hypnosis without major toxic effect. The main component(s) responsible for this effect is most likely to be non-polar agent(s) which found in NBF of this plant. PMID:24250615

  20. Assessing the effect of sodium dichloroisocyanurate concentration on transfer of Salmonella enterica serotype Typhimurium in wash water for production of minimally processed iceberg lettuce (Lactuca sativa L.).

    PubMed

    Maffei, D F; Sant'Ana, A S; Monteiro, G; Schaffner, D W; Franco, B D G M

    2016-06-01

    This study evaluated the impact of sodium dichloroisocyanurate (5, 10, 20, 30, 40, 50 and 250 mg l(-1) ) in wash water on transfer of Salmonella Typhimurium from contaminated lettuce to wash water and then to other noncontaminated lettuces washed sequentially in the same water. Experiments were designed mimicking the conditions commonly seen in minimally processed vegetable (MPV) processing plants in Brazil. The scenarios were as follows: (1) Washing one inoculated lettuce portion in nonchlorinated water, followed by washing 10 noninoculated portions sequentially. (2) Washing one inoculated lettuce portion in chlorinated water followed by washing five noninoculated portions sequentially. (3) Washing five inoculated lettuce portions in chlorinated water sequentially, followed by washing five noninoculated portions sequentially. (4) Washing five noninoculated lettuce portions in chlorinated water sequentially, followed by washing five inoculated portions sequentially and then by washing five noninoculated portions sequentially in the same water. Salm. Typhimurium transfer from inoculated lettuce to wash water and further dissemination to noninoculated lettuces occurred when nonchlorinated water was used (scenario 1). When chlorinated water was used (scenarios 2, 3 and 4), no measurable Salm. Typhimurium transfer occurred if the sanitizer was ≥10 mg l(-1) . Use of sanitizers in correct concentrations is important to minimize the risk of microbial transfer during MPV washing. In this study, the impact of sodium dichloroisocyanurate in the wash water on transfer of Salmonella Typhimurium from inoculated lettuce to wash water and then to other noninoculated lettuces washed sequentially in the same water was evaluated. The use of chlorinated water, at concentration above 10 mg l(-1) , effectively prevented Salm. Typhimurium transfer under several different washing scenarios. Conversely, when nonchlorinated water was used, Salm. Typhimurium transfer occurred in

  1. Influence of the temporal and spatial variation of nitrate reductase, glutamine synthetase and soil composition in the N species content in lettuce (Lactuca sativa).

    PubMed

    Pinto, Edgar; Fidalgo, Fernanda; Teixeira, Jorge; Aguiar, Ana A; Ferreira, Isabel M P L V O

    2014-04-01

    The variation of nitrate reductase (NR), glutamine synthetase (GS) and N content in lettuce was evaluated at 5 stages of lettuce growth. Soil physicochemical properties and its N content were also assessed to elucidate the soil-to-plant transfer of inorganic N and potential leaching to groundwater. A decrease of NR activity and an increase of NO3(-) and N-Kjeldahl content in lettuces were observed during plant growth, whereas GS activity and NH4(+) increased during the first few weeks of lettuce growth and then decreased. Although the temporal variation was similar in lettuces grown in different soils, quantitative differences were observed, indicating that high NO3(-) content in soil caused a higher NO3(-) accumulation in lettuce despite the higher NR activity during the initial stage of plant growth. Higher levels of NO3(-) and NH4(+) were correlated with higher levels of N-Kjeldahl in lettuce suggesting a positive effect of these N species in the biosynthesis of organic forms of N. Soil physicochemical properties influenced the mobility of inorganic N within the groundwater-soil-plant system. Sandy soils with low OM content allowed NO3(-) leaching, which was confirmed by higher NO3(-) levels in groundwater. Therefore, lettuces grown in those soils presented lower N content and the inputs of N to the environment were higher.

  2. Three combined quantitative trait loci from nonhost Lactuca saligna are sufficient to provide complete resistance of lettuce against Bremia lactucae.

    PubMed

    Zhang, Ningwen W; Pelgrom, Koen; Niks, Rients E; Visser, Richard G F; Jeuken, Marieke J W

    2009-09-01

    The nonhost resistance of wild lettuce (Lactuca saligna) to downy mildew (Bremia lactucae) is based on at least 15 quantitative trait loci (QTL), each effective at one or more plant developmental stages. We used QTL pyramiding (stacking) to determine how many of these QTL from L. saligna are sufficient to impart complete resistance towards B. lactucae to cultivated lettuce, L. sativa. The alleles of four of the most promising QTL, rbq4, rbq5, rbq6+11, and rbq7 are effective at both the young and adult plant stages. Lines with these four QTL in all possible combinations were generated by crossing the respective backcross inbred lines (BIL). Using the 11 resulting lines (combiBIL), we determined that combinations of three QTL, rbq4, rbq5, and rbq6+11, led to increased levels of resistance; however, one QTL, rbq7, did not add to the resistance level when combined with the other QTL. One line, tripleBIL268, which contains the three QTL rbq4, rbq5, and rbq6+11, was completely resistant to B. lactucae at the young plant stage. This suggests that these three QTL are sufficient to confer the complete resistance of the nonhost L. saligna and any additional QTL in L. saligna are redundant. Histological analysis of B. lactucae infection in L. saligna, the BIL, and the combiBIL 48 h after inoculation revealed different microscopical phenotypes of resistance. The QTL differed with respect to the stage of the infection process with which they interfered.

  3. Effector identification in the lettuce downy mildew Bremia lactucae by massively parallel transcriptome sequencing.

    PubMed

    Stassen, Joost H M; Seidl, Michael F; Vergeer, Pim W J; Nijman, Isaäc J; Snel, Berend; Cuppen, Edwin; Van den Ackerveken, Guido

    2012-09-01

    Lettuce downy mildew (Bremia lactucae) is a rapidly adapting oomycete pathogen affecting commercial lettuce cultivation. Oomycetes are known to use a diverse arsenal of secreted proteins (effectors) to manipulate their hosts. Two classes of effector are known to be translocated by the host: the RXLRs and Crinklers. To gain insight into the repertoire of effectors used by B. lactucae to manipulate its host, we performed massively parallel sequencing of cDNA derived from B. lactucae spores and infected lettuce (Lactuca sativa) seedlings. From over 2.3 million 454 GS FLX reads, 59 618 contigs were assembled representing both plant and pathogen transcripts. Of these, 19 663 contigs were determined to be of B. lactucae origin as they matched pathogen genome sequences (SOLiD) that were obtained from >270 million reads of spore-derived genomic DNA. After correction of cDNA sequencing errors with SOLiD data, translation into protein models and filtering, 16 372 protein models remained, 1023 of which were predicted to be secreted. This secretome included elicitins, necrosis and ethylene-inducing peptide 1-like proteins, glucanase inhibitors and lectins, and was enriched in cysteine-rich proteins. Candidate host-translocated effectors included 78 protein models with RXLR effector features. In addition, we found indications for an unknown number of Crinkler-like sequences. Similarity clustering of secreted proteins revealed additional effector candidates. We provide a first look at the transcriptome of B. lactucae and its encoded effector arsenal. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  4. Phytotoxicity of three plant-based biodiesels, unmodified castor oil, and Diesel fuel to alfalfa (Medicago sativa L.), lettuce (Lactuca sativa L.), radish (Raphanus sativus), and wheatgrass (Triticum aestivum).

    PubMed

    Bamgbose, Ifeoluwa; Anderson, Todd A

    2015-12-01

    The wide use of plant-based oils and their derivatives, in particular biodiesel, have increased extensively over the past decade to help alleviate demand for petroleum products and improve the greenhouse gas emissions profile of the transportation sector. Biodiesel is regarded as a clean burning alternative fuel produced from livestock feeds and various vegetable oils. Although in theory these animal and/or plant derived fuels should have less environmental impact in soil based on their simplified composition relative to Diesel, they pose an environmental risk like Diesel at high concentrations when disposed. The aim of the present study was to ascertain the phytotoxicity of three different plant-derived biodiesels relative to conventional Diesel. For phytotoxicological analysis, we used seeds of four crop plants, Medicago sativa, Lactuca sativa, Raphanus sativus, and Triticum aestivum to analyze the germination of seeds in contaminated soil samples. The toxicological experiment was conducted with two different soil textures: sandy loam soil and silt loam soil. The studied plant-based biodiesels were safflower methyl-ester, castor methyl ester, and castor ethyl-ester. Biodiesel toxicity was more evident at high concentrations, affecting the germination and survival of small-seeded plants to a greater extent. Tolerance of plants to the biodiesels varied between plant species and soil textures. With the exception of R. sativus, all plant species were affected and exhibited some sensitivity to the fuels, such as delayed seedling emergence and slow germination (average=10 days) at high soil concentrations (0.85% for Diesel and 1.76% for the biodiesels). Tolerance of plants to soil contamination had a species-specific nature, and on average, decreased in the following order: Raphanus sativus (0-20%)>Triticum aestivum (10-40%) ≥ Medicago sativa> Lactuca sativa (80-100%). Thus, we conclude that there is some phytotoxicity associated with plant-based biodiesels. Further

  5. Assessment of microbiological contamination of fresh, minimally processed, and ready-to-eat lettuces (Lactuca sativa), Rio de Janeiro State, Brazil.

    PubMed

    Brandão, Marcelo L L; Almeida, Davi O; Bispo, Fernanda C P; Bricio, Silvia M L; Marin, Victor A; Miagostovich, Marize P

    2014-05-01

    This study aimed to assess the microbiological contamination of lettuces commercialized in Rio de Janeiro, Brazil, in order to investigate detection of norovirus genogroup II (NoV GII), Salmonella spp., total and fecal coliforms, such as Escherichia coli. For NoV detection samples were processed using the adsorption-elution concentration method associated to real-time quantitative polymerase chain reaction (qPCR). A total of 90 samples of lettuce including 30 whole fresh lettuces, 30 minimally processed (MP) lettuces, and 30 raw ready-to-eat (RTE) lettuce salads were randomly collected from different supermarkets (fresh and MP lettuce samples), food services, and self-service restaurants (RTE lettuce salads), all located in Rio de Janeiro, Brazil, from October 2010 to December 2011. NoV GII was not detected and PP7 bacteriophage used as internal control process (ICP) was recovered in 40.0%, 86.7%, and 76.7% of those samples, respectively. Salmonella spp. was not detected although fecal contamination has been observed by fecal coliform concentrations higher than 10(2) most probable number/g. E. coli was detected in 70.0%, 6.7%, and 30.0% of fresh, MP, and RTE samples, respectively. This study highlights the need to improve hygiene procedures at all stages of vegetable production and to show PP7 bacteriophage as an ICP for recovering RNA viruses' methods from MP and RTE lettuce samples, encouraging the evaluation of new protocols that facilitate the establishment of methodologies for NoV detection in a greater number of food microbiology laboratories. The PP7 bacteriophage can be used as an internal control process in methods for recovering RNA viruses from minimally processed and ready-to-eat lettuce samples. © 2014 Institute of Food Technologists®

  6. Selected biochemical properties of polyphenol oxidase in butter lettuce leaves (Lactuca sativa L. var. capitata) elicited with dl-β-amino-n-butyric acid.

    PubMed

    Złotek, Urszula; Gawlik-Dziki, Urszula

    2015-02-01

    The study concentrated on changes in certain biochemical parameters of polyphenol oxidase (PPO) from lettuce leaves caused by dl-β-amino-n-butyric acid (BABA) elicitation. PPO from control plants demonstrated the highest affinity toward catechol, whereas PPO from BABA-elicited lettuce showed the highest affinity to 4-methylcatechol. The optimum temperature for enzymes from control plants was 35°C, whereas from plants elicited with 1mM BABA this was 25°C. PPO from plants elicited with BABA was also more sensitive to the tested inhibitors than PPO from control plants. l-Cysteine was the most effective inhibitor. Native gel stained for PPO activity in control samples showed two isoforms. However, in BABA-treated lettuce three bands visualising PPO activity were observed. The information obtained in this study will be valuable for the development of treatment technology and storage conditions to control undesirable browning reactions in elicited lettuce.

  7. Elicitation effect of Saccharomyces cerevisiae yeast extract on main health-promoting compounds and antioxidant and anti-inflammatory potential of butter lettuce (Lactuca sativa L.).

    PubMed

    Złotek, Urszula; Świeca, Michał

    2016-05-01

    This paper presents a study on changes in the main phytochemical levels and antioxidant and anti-inflammatory activity of lettuce caused by different doses and times of application of yeast extracts. Elicitation with yeast extract caused an increase in the total phenolic compounds and chlorophyll content, which varied according to the dose and time of spraying, but it did not have a positive impact on vitamin C, flavonoid and carotenoid content in lettuce. The best effect was achieved by double spraying with 1% yeast extract and by single spraying with 0.1% yeast extract. The increase in phytochemical content was positively correlated with the antioxidant and anti-inflammatory activity of the studied lettuce leaves. Chicoric acid seems to be the major contributor to these antioxidant activities. Yeast extract may be used as a natural, environmentally friendly and safe elicitor for improving the health-promoting qualities of lettuce. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  8. Biosurfactant Produced by Salmonella Enteritidis SE86 Can Increase Adherence and Resistance to Sanitizers on Lettuce Leaves (Lactuca sativa L., cichoraceae).

    PubMed

    Rossi, Eliandra M; Beilke, Luniele; Kochhann, Marília; Sarzi, Diana H; Tondo, Eduardo C

    2016-01-01

    Salmonella Enteritidis SE86 is an important foodborne pathogen in Southern Brazil and it is able to produce a biosurfactant. However, the importance of this compound for the microorganism is still unknown. This study aimed to investigate the influence of the biosurfactant produced by S. Enteritidis SE86 on adherence to slices of lettuce leaves and on resistance to sanitizers. First, lettuce leaves were inoculated with S. Enteritidis SE86 in order to determine the amount of biosurfactant produced. Subsequently, lettuce leaves were inoculated with S. Enteritidis SE86 with and without the biosurfactant, and the adherence and bacterial resistance to different sanitization methods were evaluated. S. Enteritidis SE86 produced biosurfactant after 16 h (emulsification index of 11 to 52.15 percent, P < 0.05) and showed greater adherence capability and resistance to sanitization methods when the compound was present. The scanning electron microscopy demonstrated that S. Enteritidis was able to adhere, form lumps, and invade the lettuce leaves' stomata in the presence of the biosurfactant. Results indicated that the biosurfactant produced by S. Enteritidis SE86 contributed to adherence and increased resistance to sanitizers when the microorganism was present on lettuce leaves.

  9. Biosurfactant Produced by Salmonella Enteritidis SE86 Can Increase Adherence and Resistance to Sanitizers on Lettuce Leaves (Lactuca sativa L., cichoraceae)

    PubMed Central

    Rossi, Eliandra M.; Beilke, Luniele; Kochhann, Marília; Sarzi, Diana H.; Tondo, Eduardo C.

    2016-01-01

    Salmonella Enteritidis SE86 is an important foodborne pathogen in Southern Brazil and it is able to produce a biosurfactant. However, the importance of this compound for the microorganism is still unknown. This study aimed to investigate the influence of the biosurfactant produced by S. Enteritidis SE86 on adherence to slices of lettuce leaves and on resistance to sanitizers. First, lettuce leaves were inoculated with S. Enteritidis SE86 in order to determine the amount of biosurfactant produced. Subsequently, lettuce leaves were inoculated with S. Enteritidis SE86 with and without the biosurfactant, and the adherence and bacterial resistance to different sanitization methods were evaluated. S. Enteritidis SE86 produced biosurfactant after 16 h (emulsification index of 11 to 52.15 percent, P < 0.05) and showed greater adherence capability and resistance to sanitization methods when the compound was present. The scanning electron microscopy demonstrated that S. Enteritidis was able to adhere, form lumps, and invade the lettuce leaves’ stomata in the presence of the biosurfactant. Results indicated that the biosurfactant produced by S. Enteritidis SE86 contributed to adherence and increased resistance to sanitizers when the microorganism was present on lettuce leaves. PMID:26834727

  10. Effect of Different Elicitors and Preharvest Day Application on the Content of Phytochemicals and Antioxidant Activity of Butterhead Lettuce (Lactuca sativa var. capitata) Produced under Hydroponic Conditions.

    PubMed

    Moreno-Escamilla, Jesús Omar; Alvarez-Parrilla, Emilio; de la Rosa, Laura A; Núñez-Gastélum, José Alberto; González-Aguilar, Gustavo A; Rodrigo-García, Joaquín

    2017-07-05

    The effect of four elicitors on phytochemical content in two varieties of lettuce was evaluated. The best preharvest day for application of each elicitor was chosen. Solutions of arachidonic acid (AA), salicylic acid (SA), methyl jasmonate (MJ), and Harpin protein (HP) were applied by foliar aspersion on lettuce leaves while cultivating under hydroponic conditions. Application of elicitors was done at 15, 7, 5, 3, or 1 day before harvest. Green lettuce showed the highest increase in phytochemical content when elicitors (AA, SA, and HP) were applied on day 7 before harvest. Similarly, antioxidant activity rose in all treatments on day 7. In red lettuce, the highest content of bioactive molecules occurred in samples treated on day 15. AA, SA, and HP were the elicitors with the highest effect on phytochemical content for both varieties, mainly on polyphenol content. Antioxidant activity also increased in response to elicitation. HPLC-MS showed an increase in the content of phenolic acids in green and red lettuce, especially after elicitation with SA, suggesting activation of the caffeic acid pathway due to elicitation.

  11. Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils.

    PubMed

    Woldetsadik, Desta; Drechsel, Pay; Keraita, Bernard; Marschner, Bernd; Itanna, Fisseha; Gebrekidan, Heluf

    2016-01-01

    To assess the efficiency of seven treatments including biochars produced from dried faecal matter and manures as stabilizing agents of cadmium (Cd)-spiked soils, lettuce was grown in glasshouse on two contrasting soils. The soils used were moderately fertile silty loam and less fertile sandy loam and the applied treatments were 7 % w/w. The reduction of bioavailable Cd (ammonium nitrate extractable) and its phytoavailability for lettuce were used as assessment criteria in the evaluation of stabilization performance of each treatment. Moreover, the agronomic values of the treatments were also investigated. Ammonium nitrate extraction results indicated that faecal matter biochar, cow manure biochar and lime significantly reduced bioavailable Cd by 84-87, 65-68 and 82-91 %, respectively, as compared to the spiked controls. Unpredictably, coffee husk biochar induced significant increment of Cd in NH4NO3 extracts. The immobilization potential of faecal matter biochar and lime were superior than the other treatments. However, lime and egg shell promoted statistically lower yield and P, K and Zn concentrations response of lettuce plants compared to the biochar treatments. The lowest Cd and highest P tissue concentrations of lettuce plants were induced by faecal matter and cow manure biochar treatments in both soils. Additionally, the greatest Cd phytoavailability reduction for lettuce was induced by poultry litter and cow manure biochars in the silty loam soil. Our results indicate that faecal matter and animal manure biochars have shown great potential to promote Cd immobilization and lettuce growth response in heavily contaminated agricultural fields.

  12. Effect of abiotic elicitation on main health-promoting compounds, antioxidant activity and commercial quality of butter lettuce (Lactuca sativa L.).

    PubMed

    Złotek, Urszula; Świeca, Michał; Jakubczyk, Anna

    2014-04-01

    The study presents changes in the phytochemical levels, antiradical activity and quality of lettuce caused by different chemical elicitors: arachidonic acid (AA), jasmonic acid (JA), and abscisic acid (ABA). The application of 1 μM and 100 μM JA induced an increase in the concentration of phenolic compounds, including flavonoids and phenolic acids. Flavonoid levels were also increased after treatment with 100 μM AA and ABA. Some of the elicitor concentrations used also caused an increase in the levels of other phytochemicals, such as chlorophyll a (1 μM and 100 μM AA, 50 μM ABA); chlorophyll b (100 μM AA); carotenoids (100 μM AA, 1 μM JA and 100 μM ABA) and vitamin C (100 μM AA, 100 μM JA). The highest antiradical activity was noted after treatment with 100 μM AA, 100 μM JA. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging ability was positively and significantly correlated with flavonoid, chlorophyll and carotenoid levels. These results may suggest that the antiradical activity of lettuce was determined not only by phenolics, but also by other bioactive compounds. Elicitation did not change the sensory quality of lettuce. Therefore, treatment with elicitors could be a useful tool for improving the health-promoting qualities of lettuce without the loss of sensory quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Effector-mediated discovery of a novel resistance gene against Bremia lactucae in a nonhost lettuce species.

    PubMed

    Giesbers, Anne K J; Pelgrom, Alexandra J E; Visser, Richard G F; Niks, Rients E; Van den Ackerveken, Guido; Jeuken, Marieke J W

    2017-08-21

    Candidate effectors from lettuce downy mildew (Bremia lactucae) enable high-throughput germplasm screening for the presence of resistance (R) genes. The nonhost species Lactuca saligna comprises a source of B. lactucae R genes that has hardly been exploited in lettuce breeding. Its cross-compatibility with the host species L. sativa enables the study of inheritance of nonhost resistance (NHR). We performed transient expression of candidate RXLR effector genes from B. lactucae in a diverse Lactuca germplasm set. Responses to two candidate effectors (BLR31 and BLN08) were genetically mapped and tested for co-segregation with disease resistance. BLN08 induced a hypersensitive response (HR) in 55% of the L. saligna accessions, but responsiveness did not co-segregate with resistance to Bl:24. BLR31 triggered an HR in 5% of the L. saligna accessions, and revealed a novel R gene providing complete B. lactucae race Bl:24 resistance. Resistant hybrid plants that were BLR31 nonresponsive indicated other unlinked R genes and/or nonhost QTLs. We have identified a candidate avirulence effector of B. lactucae (BLR31) and its cognate R gene in L. saligna. Concurrently, our results suggest that R genes are not required for NHR of L. saligna. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Lettuce (Lactuca sativa L.) leaf-proteome profiles after exposure to cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture: a concentration-dependent response.

    PubMed

    Freitas, Marisa; Campos, Alexandre; Azevedo, Joana; Barreiro, Aldo; Planchon, Sébastien; Renaut, Jenny; Vasconcelos, Vitor

    2015-02-01

    The intensification of agricultural productivity is an important challenge worldwide. However, environmental stressors can provide challenges to this intensification. The progressive occurrence of the cyanotoxins cylindrospermopsin (CYN) and microcystin-LR (MC-LR) as a potential consequence of eutrophication and climate change is of increasing concern in the agricultural sector because it has been reported that these cyanotoxins exert harmful effects in crop plants. A proteomic-based approach has been shown to be a suitable tool for the detection and identification of the primary responses of organisms exposed to cyanotoxins. The aim of this study was to compare the leaf-proteome profiles of lettuce plants exposed to environmentally relevant concentrations of CYN and a MC-LR/CYN mixture. Lettuce plants were exposed to 1, 10, and 100 μg/l CYN and a MC-LR/CYN mixture for five days. The proteins of lettuce leaves were separated by two-dimensional electrophoresis (2-DE), and those that were differentially abundant were then identified by matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF/TOF MS). The biological functions of the proteins that were most represented in both experiments were photosynthesis and carbon metabolism and stress/defense response. Proteins involved in protein synthesis and signal transduction were also highly observed in the MC-LR/CYN experiment. Although distinct protein abundance patterns were observed in both experiments, the effects appear to be concentration-dependent, and the effects of the mixture were clearly stronger than those of CYN alone. The obtained results highlight the putative tolerance of lettuce to CYN at concentrations up to 100 μg/l. Furthermore, the combination of CYN with MC-LR at low concentrations (1 μg/l) stimulated a significant increase in the fresh weight (fr. wt) of lettuce leaves and at the proteomic level resulted in the increase in abundance of a high number of proteins. In

  15. RNAseq-based transcriptome analysis of Lactuca sativa infected by the fungal necrotroph Botrytis cinerea.

    PubMed

    De Cremer, Kaat; Mathys, Janick; Vos, Christine; Froenicke, Lutz; Michelmore, Richard W; Cammue, Bruno P A; De Coninck, Barbara

    2013-11-01

    The fungal pathogen Botrytis cinerea establishes a necrotrophic interaction with its host plants, including lettuce (Lactuca sativa), causing it to wilt, collapse and eventually dry up and die, which results in serious economic losses. Global expression profiling using RNAseq and the newly sequenced lettuce genome identified a complex network of genes involved in the lettuce-B. cinerea interaction. The observed high number of differentially expressed genes allowed us to classify them according to the biological pathways in which they are implicated, generating a holistic picture. Most pronounced were the induction of the phenylpropanoid pathway and terpenoid biosynthesis, whereas photosynthesis was globally down-regulated at 48 h post-inoculation. Large-scale comparison with data available on the interaction of B. cinerea with the model plant Arabidopsis thaliana revealed both general and species-specific responses to infection with this pathogen. Surprisingly, expression analysis of selected genes could not detect significant systemic transcriptional alterations in lettuce leaves distant from the inoculation site. Additionally, we assessed the response of these lettuce genes to a biotrophic pathogen, Bremia lactucae, revealing that similar pathways are induced during compatible interactions of lettuce with necrotrophic and biotrophic pathogens. © 2013 John Wiley & Sons Ltd.

  16. Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.).

    PubMed

    Muneer, Sowbiya; Kim, Eun Jeong; Park, Jeong Suk; Lee, Jeong Hyun

    2014-03-17

    The objective of this study was to investigate the response of light emitting diodes (LEDs) at different light intensities (70 and 80 for green LEDs, 88 and 238 for red LEDs and 80 and 238 μmol m-2 s-1 for blue LEDs) at three wavelengths in lettuce leaves. Lettuce leaves were exposed to (522 nm), red (639 nm) and blue (470 nm) LEDs of different light intensities. Thylakoid multiprotein complex proteins and photosynthetic metabolism were then investigated. Biomass and photosynthetic parameters increased with an increasing light intensity under blue LED illumination and decreased when illuminated with red and green LEDs with decreased light intensity. The expression of multiprotein complex proteins including PSII-core dimer and PSII-core monomer using blue LEDs illumination was higher at higher light intensity (238 μmol m-2 s-1) and was lowered with decreased light intensity (70-80 μmol m-2 s-1). The responses of chloroplast sub-compartment proteins, including those active in stomatal opening and closing, and leaf physiological responses at different light intensities, indicated induced growth enhancement upon illumination with blue LEDs. High intensity blue LEDs promote plant growth by controlling the integrity of chloroplast proteins that optimize photosynthetic performance in the natural environment.

  17. Influence of Green, Red and Blue Light Emitting Diodes on Multiprotein Complex Proteins and Photosynthetic Activity under Different Light Intensities in Lettuce Leaves (Lactuca sativa L.)

    PubMed Central

    Muneer, Sowbiya; Kim, Eun Jeong; Park, Jeong Suk; Lee, Jeong Hyun

    2014-01-01

    The objective of this study was to investigate the response of light emitting diodes (LEDs) at different light intensities (70 and 80 for green LEDs, 88 and 238 for red LEDs and 80 and 238 μmol m−2 s−1 for blue LEDs) at three wavelengths in lettuce leaves. Lettuce leaves were exposed to (522 nm), red (639 nm) and blue (470 nm) LEDs of different light intensities. Thylakoid multiprotein complex proteins and photosynthetic metabolism were then investigated. Biomass and photosynthetic parameters increased with an increasing light intensity under blue LED illumination and decreased when illuminated with red and green LEDs with decreased light intensity. The expression of multiprotein complex proteins including PSII-core dimer and PSII-core monomer using blue LEDs illumination was higher at higher light intensity (238 μmol m−2 s−1) and was lowered with decreased light intensity (70–80 μmol m−2 s−1). The responses of chloroplast sub-compartment proteins, including those active in stomatal opening and closing, and leaf physiological responses at different light intensities, indicated induced growth enhancement upon illumination with blue LEDs. High intensity blue LEDs promote plant growth by controlling the integrity of chloroplast proteins that optimize photosynthetic performance in the natural environment. PMID:24642884

  18. The effect of light and ancymidol on the metabolism of sup 14 C-ent-Kaurene in photoblastic lettuce (Lactuca sativa L. var. Grand Rapids) seeds

    SciTech Connect

    Hazebroek, J.P.; Coolbaugh, R.C. )

    1990-05-01

    The effect of light ancymidol on the metabolism of {sup 14}C-kaurene in light-requiring lettuce seeds was investigated. Seeds were soaked in a solution of {sup 14}C-kaurene in CH{sub 2}Cl{sub 2} with 0.1% Tween-20 for 24 h. The treatment did not reduce viability nor alter the light requirement. The solvent was removed and the seeds were incubated at 25{degree}C in continuous light or dark in 20% (w/v) PEG or 10 mM anycymidol. Labeled metabolites were extracted and analyzed by reverse phase HPLC. {sup 14}C-Kaurenol and {sup 14}C-kaurenal were identified in seed incubated in 20% PeG in the light, while no acid EtOAc-soluble metabolites were found in seeds incubated in the dark. In the presence of ancymidol, {sup 14}C-karuenol, {sup 14}C-kaurenal, and a polar metabolite were found in seeds exposed to light, while only a trace of {sup 14}C-kaurenol was detected in seeds incubated in the dark. These results indicate that the oxidation of kaurene is a light sensitive step in the biosynthesis of gibberellins in photoblastic lettuce seeds. Under these conditions ancymidol inhibits germination at a site different than the light sensitive kaurene oxidation step.

  19. Iodine and Selenium Biofortification with Additional Application of Salicylic Acid Affects Yield, Selected Molecular Parameters and Chemical Composition of Lettuce Plants (Lactuca sativa L. var. capitata)

    PubMed Central

    Smoleń, Sylwester; Kowalska, Iwona; Czernicka, Małgorzata; Halka, Mariya; Kęska, Kinga; Sady, Włodzimierz

    2016-01-01

    Iodine (I) and selenium (Se) are included in the group of beneficial elements. They both play important roles in humans and other animals, particularly in the regulation of thyroid functioning. A substantial percentage of people around the world suffer from health disorders related to the deficiency of these elements in the diet. Salicylic acid (SA) is a compound similar to phytohormones and is known to improve the efficiency of I biofortification of plants. The influence of SA on Se enrichment of plants has not, however, been recognized together with its effect on simultaneous application of I and Se to plants. Two-year studies (2014–2015) were conducted in a greenhouse with hydroponic cultivation of lettuce in an NFT (nutrient film technique) system. They included the application of I (as KIO3), Se (as Na2SeO3) and SA into the nutrient solution. KIO3 was used at a dose of 5 mg I⋅dm-3 (i.e., 39.4 μM I), while Na2SeO3 was 0.5 mg Se⋅dm-3 (i.e., 6.3 μM Se). SA was introduced at three doses: 0.1, 1.0, and 10.0 mg⋅dm-3 nutrient solutions, equivalent to 0.724, 7.24, and 72.4 μM SA, respectively. The tested combinations were as follows: (1) control, (2) I + Se, (3) I + Se + 0.1 mg SA⋅dm-3, (4) I + Se + 1.0 mg SA⋅dm-3 and (5) I + Se + 10.0 mg SA⋅dm-3. The applied treatments had no significant impact on lettuce biomass (leaves and roots). Depending on the dose, a diverse influence of SA was noted with respect to the efficiency of I and Se biofortification; chemical composition of leaves; and mineral nutrition of lettuce plants, including the content of macro- and microelements and selenocysteine methyltransferase (SMT) gene expression. SA application at all tested doses comparably increased the level of selenomethionine (SeMet) and decreased the content of SA in leaves. PMID:27803709

  20. Iodine and Selenium Biofortification with Additional Application of Salicylic Acid Affects Yield, Selected Molecular Parameters and Chemical Composition of Lettuce Plants (Lactuca sativa L. var. capitata).

    PubMed

    Smoleń, Sylwester; Kowalska, Iwona; Czernicka, Małgorzata; Halka, Mariya; Kęska, Kinga; Sady, Włodzimierz

    2016-01-01

    Iodine (I) and selenium (Se) are included in the group of beneficial elements. They both play important roles in humans and other animals, particularly in the regulation of thyroid functioning. A substantial percentage of people around the world suffer from health disorders related to the deficiency of these elements in the diet. Salicylic acid (SA) is a compound similar to phytohormones and is known to improve the efficiency of I biofortification of plants. The influence of SA on Se enrichment of plants has not, however, been recognized together with its effect on simultaneous application of I and Se to plants. Two-year studies (2014-2015) were conducted in a greenhouse with hydroponic cultivation of lettuce in an NFT (nutrient film technique) system. They included the application of I (as KIO3), Se (as Na2SeO3) and SA into the nutrient solution. KIO3 was used at a dose of 5 mg I⋅dm(-3) (i.e., 39.4 μM I), while Na2SeO3 was 0.5 mg Se⋅dm(-3) (i.e., 6.3 μM Se). SA was introduced at three doses: 0.1, 1.0, and 10.0 mg⋅dm(-3) nutrient solutions, equivalent to 0.724, 7.24, and 72.4 μM SA, respectively. The tested combinations were as follows: (1) control, (2) I + Se, (3) I + Se + 0.1 mg SA⋅dm(-3), (4) I + Se + 1.0 mg SA⋅dm(-3) and (5) I + Se + 10.0 mg SA⋅dm(-3). The applied treatments had no significant impact on lettuce biomass (leaves and roots). Depending on the dose, a diverse influence of SA was noted with respect to the efficiency of I and Se biofortification; chemical composition of leaves; and mineral nutrition of lettuce plants, including the content of macro- and microelements and selenocysteine methyltransferase (SMT) gene expression. SA application at all tested doses comparably increased the level of selenomethionine (SeMet) and decreased the content of SA in leaves.

  1. A dose-response relationship for marketable yield reduction of two lettuce (Lactuca sativa L.) cultivars exposed to tropospheric ozone in Southern Europe.

    PubMed

    Marzuoli, Riccardo; Finco, Angelo; Chiesa, Maria; Gerosa, Giacomo

    2016-12-27

    The present study investigated the response to ozone (O3) of two cultivars (cv.'Romana' and cv. 'Canasta') of irrigated lettuce grown in an open-top chamber (OTC) experiment in Mediterranean conditions. Two different levels of O3 were applied, ambient O3 in non-filtered OTCs (NF-OTCs) and -40% of ambient O3 in charcoal-filtered OTCs (CF-OTCs), during four consecutive growing cycles. At the end of each growing cycle, the marketable yield (fresh biomass) was assessed while during the growing periods, measurements of the stomatal conductance at leaf level were performed and used to define a stomatal conductance model for calculation of the phytotoxic ozone dose (POD) absorbed by the plants.Results showed that O3 caused statistically significant yield reductions in the first and in the last growing cycle. In general, the marketable yield of the NF-OTC plants was always lower than the CF-OTC plants for both cultivars, with mean reductions of -18.5 and -14.5% for 'Romana' and 'Canasta', respectively. On the contrary, there was no statistically significant difference in marketable yield due to the cultivar factor or to the interaction between O3 and cultivar in any of the growing cycle performed.Dose-response relationships for the marketable relative yield based on the POD values were calculated according to different flux threshold values (Y). The best regression fit was obtained using an instantaneous flux threshold of 6 nmol O3 m(-2) s(-1) (POD6); the same value was obtained also for other crops. According to the generic lettuce dose-response relationship, an O3 critical level of 1 mmol O3 m(-2) of POD6 for a 15% of marketable yield loss was found.

  2. Inhibitory effect of marine green algal extracts on germination of Lactuca sativa seeds.

    PubMed

    Choi, Jae-Suk; Choi, In Soon

    2016-03-01

    The allelopathic potential of nine green seaweed species was examined based on germination and seedling growth of lettuce (Lactuca sativa L.). Out of nine methanol extracts, Capsosiphon fulvescens and Monostroma nitidum extracts completely inhibited germination of L. sativa at 4 mg/filter paper after 24 hr of treatment. Water extracts of these seaweeds generally showed low anti-germination activities than methanol extracts. Of the nine water extracts, Enteromorpha linza extract completely inhibited L. sativa germination at 16 mg/filter paper after 24 hrs. To identify the primary active compounds, C. fulvescens. powder was successively fractionated according to polarity, and the main active agents against L. sativa were determined to be lipids (0.0% germination at 0.5 mg of lipids/paper disc). According to these results, extracts of C. fulvescens can be used to develop natural herbicidal agents and manage terrestrial weeds.

  3. A single recessive gene conferring short leaves in romaine x Latin type lettuce (Lactuca sativa L.) crosses, and its effect on plant morphology and resistance to lettuce drop caused by Sclerotinia minor Jagger.

    USDA-ARS?s Scientific Manuscript database

    Understanding the relationship between plant morphology and disease resistance is crucial to successful breeding, particularly resistance to lettuce drop caused by Sclerotinia minor. Latin type lettuce cultivars are small plants with upright leaves longer than they are wide, similar to romaine type...

  4. Phytotoxicity studies with Lactuca sativa in soil and nutrient solution

    SciTech Connect

    Hulzebos, E.M.; Dirven-van Breemen, E.M.; Dis, W.A. van; Herbold, H.A.; Hoekstra, J.A.; Baerselman, R.; Gestel, C.A.M van ); Adema, D.M.M.; Henzen, L. )

    1993-06-01

    The toxicity of 76 priority pollutants to lettuce (Lactuca sativa) was determined in soil and in nutrient solution. In the first case a static and in the latter a semistatic exposure was established. Volatile and easily degradable compounds had high EC50 values in soil. In nutrient solution, however, several of these compounds were rather toxic. Quantitative structure activity relationships (QSARs) relating EC50 values to log K[sub ow] could be described for the toxicity in nutrient solution. Generally, the toxicity of the compounds increased with increasing lipophilicity. Deviations were caused by reactivity (N-containing compounds, double bonds in compounds), low lipophilicity, and EC50 values close to solubility. To relate toxicity in soil and nutrient solution, soil EC50 values were recalculated to values in the soil pore water using calculated adsorption coefficients. Estimated pore-water EC50 values showed a good correlation with values determined in nutrient solution but were not equal to these values. The differences can be attributed to differences in exposure.

  5. Lactuca saligna, a non-host for lettuce downy mildew ( Bremia lactucae), harbors a new race-specific Dm gene and three QTLs for resistance.

    PubMed

    Jeuken, M.; Lindhout, P.

    2002-08-01

    Lactuca sativa (lettuce) is susceptible to Bremia lactucae (downy mildew). In cultivated and wild Lactuca species, Dm genes have been identified that confer race-specific resistance. However, these genes were soon rendered ineffective by adaptation of the pathogen. Lactuca saligna (wild lettuce) is resistant to all downy mildew races and can be considered as a non-host. Therefore, L. saligna might be an alternative source for a more-durable resistance to downy mildew in lettuce. In order to analyze this resistance, we have developed an F(2) population based on a resistant L. saligna x susceptible L. sativa cross. This F(2) population was fingerprinted with AFLP markers and tested for resistance to two Bremia races NL14 and NL16. The F(2) population showed a wide and continuous range of resistance levels from completely resistant to completely susceptible. By comparison of disease tests, we observed a quantitative resistance against both Bremia races as well as a race-specific resistance to Bremia race NL16 and not to NL14. QTL mapping revealed a qualitative gene ( R39) involved in the race-specific resistance and three QTLs ( RBQ1, RBQ2 and RBQ3) involved in the quantitative resistance. The qualitative gene R39 is a dominant gene that gives nearly complete resistance to race NL16 in L. saligna CGN 5271 and therefore it showed features similar to Dm genes. The three QTLs explained 51% of the quantitative resistance against NL14, which indicated that probably only the major QTLs have been detected in this F(2) population. The perspectives for breeding for durable resistance are discussed.

  6. Specific in planta recognition of two GKLR proteins of the downy mildew Bremia lactucae revealed in a large effector screen in lettuce.

    PubMed

    Stassen, Joost H M; den Boer, Erik; Vergeer, Pim W J; Andel, Annemiek; Ellendorff, Ursula; Pelgrom, Koen; Pel, Mathieu; Schut, Johan; Zonneveld, Olaf; Jeuken, Marieke J W; Van den Ackerveken, Guido

    2013-11-01

    Breeding lettuce (Lactuca sativa) for resistance to the downy mildew pathogen Bremia lactucae is mainly achieved by introgression of dominant downy mildew resistance (Dm) genes. New Bremia races quickly render Dm genes ineffective, possibly by mutation of recognized host-translocated effectors or by suppression of effector-triggered immunity. We have previously identified 34 potential RXLR(-like) effector proteins of B. lactucae that were here tested for specific recognition within a collection of 129 B. lactucae-resistant Lactuca lines. Two effectors triggered a hypersensitive response: BLG01 in 52 lines, predominantly L. saligna, and BLG03 in two L. sativa lines containing Dm2 resistance. The N-terminal sequences of BLG01 and BLG03, containing the signal peptide and GKLR variant of the RXLR translocation motif, are not required for in planta recognition but function in effector delivery. The locus responsible for BLG01 recognition maps to the bottom of lettuce chromosome 9, whereas recognition of BLG03 maps in the RGC2 cluster on chromosome 2. Lactuca lines that recognize the BLG effectors are not resistant to Bremia isolate Bl:24 that expresses both BLG genes, suggesting that Bl:24 can suppress the triggered immune responses. In contrast, lettuce segregants displaying Dm2-mediated resistance to Bremia isolate Bl:5 are responsive to BLG03, suggesting that BLG03 is a candidate Avr2 protein.

  7. Phyotoxicity of diesel soil contamination on the germination of Lactuca sativa and Ipomoea batatas.

    PubMed

    Fatokun, Kayode; Lewu, Francis Bayo; Zharare, Godfrey Elijah

    2015-11-01

    Phytotoxic effect of diesel contaminated soil on germination rate of Lactuca sativa and Ipomoea batatas, at two concentrations ranges (0-6ml and 0-30ml), were investigated and compared. Diesel soil contamination was simulated and soil samples were taken from contaminated soil at 1, 5,10, 15, 25, 50, 75 and 100 days should be after planting. The result showed that in both plant species, diesel inhibited germination in a concentration dependent manner, Also, the influence of diesel contamination diminished with increased time duration; suggesting possible reduction in diesel toxicity over time. However, germination of lettuce was significant and negatively correlated (r2 = -0.941) with diesel contamination as compared to sweet potato (r2 = -0.638).Critical concentration of diesel in relation to seed germination of L. sativa was lower than vegetative germination of I. batatas, indicating that germination of I. batatas was less sensitive to diesel contamination as compared to L. sativa.

  8. Resistance to lettuce aphid (Nasonovia ribisnigri) biotype 0 in wild lettuce accessions PI 491093 and PI 274378

    USDA-ARS?s Scientific Manuscript database

    Lettuce aphid, Nasonovia ribisnigri Mosley (Homoptera : Aphididae), is a major insect pest of lettuce, Lactuca sativa L, in many commercial lettuce productions areas around the world. Resistance to lettuce aphid was first reported in Lactuca virosa L. accession IVT 280 and characterized as complete,...

  9. Biofortification of lettuce (Lactuca sativa L.) with iodine: the effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce grown in water culture.

    PubMed

    Voogt, Wim; Holwerda, Harmen T; Khodabaks, Rashied

    2010-04-15

    Iodine is an essential trace element for humans. Two billion individuals have insufficient iodine intake. Biofortification of vegetables with iodine offers an excellent opportunity to increase iodine intake by humans. The main aim was to study the effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce, grown in water culture. In both a winter and summer trial, dose rates of 0, 13, 39, 65, and 90 or 129 microg iodine L(-1), applied as iodate (IO(3)(-)) or iodide (I(-)), did not affect plant biomass, produce quality or water uptake. Increases in iodine concentration significantly enhanced iodine content in the plant. Iodine contents in plant tissue were up to five times higher with I(-) than with IO(3)(-). Iodine was mainly distributed to the outer leaves. The highest iodide dose rates in both trials resulted in 653 and 764 microg iodine kg(-1) total leaf fresh weight. Biofortification of lettuce with iodine is easily applicable in a hydroponic growing system, both with I(-) and IO(3)(-). I(-) was more effective than IO(3)(-). Fifty grams of iodine-biofortified lettuce would provide, respectively, 22% and 25% of the recommended daily allowance of iodine for adolescents and adults. (c) 2010 Society of Chemical Industry.

  10. Internalization of Murine Norovirus 1 by Lactuca sativa during Irrigation ▿

    PubMed Central

    Wei, Jie; Jin, Yan; Sims, Tom; Kniel, Kalmia E.

    2011-01-01

    Romaine lettuce (Lactuca sativa) was grown hydroponically or in soil and challenged with murine norovirus 1 (MNV) under two conditions: one mimicking a severe one-time contamination event and another mimicking a lower level of contamination occurring over time. In each condition, lettuce was challenged with MNV delivered at the roots. In the first case, contamination occurred on day one with 5 × 108 reverse transcriptase quantitative PCR (RT-qPCR) U/ml MNV in nutrient buffer, and irrigation water was replaced with virus-free buffer every day for another 4 days. In the second case, contamination with 5 × 105 RT-qPCR U/ml MNV (freshly prepared) occurred every day for 5 days. Virus had a tendency to adsorb to soil particles, with a small portion suspended in nutrient buffer; e.g., ∼8 log RT-qPCR U/g MNV was detected in soil during 5 days of challenge with virus inoculums of 5 × 108 RT-qPCR U/ml at day one, but <6 log was found in nutrient buffer on days 3 and 5. For hydroponically grown lettuce, ∼3.4 log RT-qPCR U of viral RNA/50 mg of plant tissue was detected in some lettuce leaf samples after 5 days at high MNV inoculums, significantly higher than the internalized virus concentration (∼2.6 log) at low inoculums (P < 0.05). For lettuce grown in soil, approximately 2 log RT-qPCR U of viral RNA/50 mg of plant tissue was detected in lettuce with both high and low inoculums, showing no significant difference. For viral infectivity, infectious MNV was found in lettuce samples challenged with high virus inoculums grown hydroponically and in soil but not in lettuce grown with low virus inoculums. Lettuce grown hydroponically was further incubated in 99% and 70% relative humidities (RH) to evaluate plant transpiration relative to virus uptake. More lettuce samples were found positive for MNV at a significantly higher transpiration rate at 70% RH, indicating that transpiration might play an important role in virus internalization into L. sativa. PMID:21296944

  11. Development of an assay for rapid detection of the lettuce downy mildew pathogen, Bremia lactucae

    USDA-ARS?s Scientific Manuscript database

    Downy mildew of lettuce, caused by Bremia lactucae, causes chlorosis on leaves and adversely affects marketability. Though downy mildew on lettuce can be controlled by fungicide applications, it is costly to routinely apply fungicides to prevent the establishment of downy mildew. Repeated use of the...

  12. Cyazofamide: a fungicide against Bremia lactucae on lettuce.

    PubMed

    Fanigliulo, Angela; Filì, Vittorio; Crescenzi, Aniello

    2009-01-01

    During 2007 and 2008 summers, experimentation was performed by the Bioagritest test facility, according to EPPO guidelines and Principles of Good Experimental Practice (GEP), aiming at establishing the biological efficacy of Cyazofamide 25SC (formulate MILDICUT, Belchim) and Cyazofamide 400SC + an organosilicone adjuvant containing polyalkyleneoxide modified heptamethyltrisiloxane (Ranman 400 SC, Belchim) on lettuce against Bremia lactucae. The study was performed in Nocera Inferiore (Salerno), southern Italy, in a greenhouse with polyethylene cover. Experimental design consisted in random blocks, in 3 repetitions. Two different dosages of the formulate Mildicut--3.5 lt/ha and 4.5 lt/ha--were compared with the unique dosage 0.350 lt/ha of Ranman and a commercial formulate: 2.4% metalaxyl-M + 40% copper, 4 kg/ha (Ridomil Gold R 46 WP, Syngenta Crop Protection). Four foliage applications were applied every 7 days. The intensity and diffusion of the disease were evaluated on Leaves together with eventual phytotoxic effects. The extreme climatic conditions occurred during the course of study, with rather low temperatures and high humidity in the greenhouse, accompanied by high rainfall outside, allowed for extremely serious attacks by Bremia Lactucae, as to make the 3 replications of the checks strongly compromised. Experimental results show the excellent effectiveness of Cyazofamide: both the two doses of Mildicut and Ranman, such as the standard formulate used in comparison, showed to be effective in the control of the disease, highlighting a strong biological activity against B. Lactuce. No effect of phytotoxicity was noticed on leaves.

  13. Localisation and metabolism of reactive oxygen species during Bremia lactucae pathogenesis in Lactuca sativa and wild Lactuca spp.

    PubMed

    Sedlárová, Michaela; Luhová, Lenka; Petrivalský, Marek; Lebeda, Ales

    2007-08-01

    A plant's physiology is modified simultaneously with Oomycete pathogen penetration, starting with release and accumulation of reactive oxygen species (ROS). Localisation of superoxide, hydrogen peroxide, peroxidase and variation in their activity, and the isoenzyme profile of antioxidant enzymes peroxidase (1.11.1.7), catalase (EC 1.11.1.6), superoxide dismutase (EC 1.15.1.1) were studied in six genotypes of four Lactuca spp. (L. sativa, L. serriola, L. saligna and L. virosa) challenged with Bremia lactucae (race NL16). These factors were related to the differential expression of resistance during the course of 96h after inoculation (hai). Accumulation of hydrogen peroxide in infected cells together with enhanced activity of H(2)O(2)-scavenging enzymes in leaf extracts characterised resistant Lactuca spp. genotypes 6-12hai, and peaked at 48-96hai with expression of a hypersensitive reaction. Substantial changes of guaiacol peroxidase activity were detected only in the cytosolic enzyme; activities of the membrane-bound and the ion-bound enzymes were insignificant in the interactions of host genotypes and pathogen isolate examined. The most significant modifications of ROS metabolism were found in resistant L. virosa (NVRS 10.001 602), a genotype responding to pathogen ingress by a rapid and extensive hypersensitive reaction. Formation of the superoxide anion was not detected in either susceptible or resistant plants, and there was also no increase of superoxide dismutase activity or changes in its isozyme profile. The significance of precise balancing the intracellular level of hydrogen peroxide for variability of phenotypic expression of responses to B. lactucae infection in Lactuca spp. is discussed.

  14. Genetics of resistance against lettuce downy mildew

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa) is one of the most valuable vegetable crops in the U.S. Downy mildew (DM), caused by Bremia lactucae, is the most important foliar disease of lettuce worldwide, which decreases the quality of the marketable portion of the crop. The use of resistant varieties carrying dominan...

  15. Allelopathic and bioherbicidal potential of Cladonia verticillaris on the germination and growth of Lactuca sativa.

    PubMed

    Tigre, R C; Silva, N H; Santos, M G; Honda, N K; Falcão, E P S; Pereira, E C

    2012-10-01

    Responses to germination and initial growth of Lactuca sativa (lettuce) submitted to organic extracts and purified compounds of Cladonia verticillaris ("salambaia") were analyzed in this work. The experiments were conducted in laboratory conditions using extracts and pure compounds at different concentrations. None of the assays showed any influence on the germination of L. sativa seeds using C. verticillaris extracts; however, modifications in leaf area and seedling hypocotyl and root development occurred. In the growth experiments, seedlings exposed to ether or acetone extract showed diminished hypocotyl growth in detriment to the root stimulus, compared to controls. Increases in extract concentrations led to the formation of abnormal seedlings. To determine the allelochemicals of C. verticillaris, its principal components, fumarprotocetraric and protocetraric acids, were isolated and then analyzed by high performance liquid chromatography (HPLC). When the seedlings were exposed to the two acids separately, presented increased leaf area at all concentrations. In contrast, hypocotyl and root stimulus was observed only in the presence of protocetraric acid at different concentrations. Fumarprotocetraric as well as protocetraric acids, isolated and purified from C. verticillaris and Parmotrema dilatatum respectively, influenced the development of L. sativa seedlings at high concentrations, indicating a possible bioherbicide potential of these acids.

  16. Genetic mapping of turnip mosaic virus resistance in Lactuca sativa.

    PubMed

    Robbins, M A; Witsenboer, H; Michelmore, R W; Laliberte, J F; Fortin, M G

    1994-11-01

    Presence of the dominant Tu gene in Lactuca sativa is sufficient to confer resistance to infection by turnip mosaic virus (TuMV). In order to obtain an immunological assay for the presence of TuMV in inoculated plants, the TuMV coat protein (CP) gene was cloned by amplification of a cDNA corresponding to the viral genome using degenerate primers designed from conserved potyvirus CP sequences. The TuMV CP was overexpressed in Escherichia coli, and polyclonal antibodies were produced. To locate Tu on the L. sativa genetic map, F3 families from a cross between cvs "Cobbham Green" (resistant to TuMV) and "Calmar" (susceptible) were genotyped for Tu. Families known to be recombinant in the region containing Tu were infected with TuMV and tested by the indirect enzyme-linked immunosorbent assay (ELISA) using the anti-CP serum. This assay placed Tu between two random amplified polymorphic DNA (RAPD) markers and 3.2 cM from Dm5/8 (which confers resistance to Bremia lactucae). Also, bulked segregant analysis was used to screen for additional RAPD markers tightly linked to the Tu locus. Five new markers linked to Tu were identified in this region, and their location on the genetic map was determined using informative recombinants in the region. Six markers were identified as being linked within 2.5 cM of Tu.

  17. [Enteroparasite determination in Lactuca sativa from farms dedicated to its production in Pasto, Colombia].

    PubMed

    Polo, Giovanni Andrés; Benavides, Carmenza Janneth; Astaiza, Juan Manuel; Vallejo, Dario Antonio; Betancourt, Patricia

    2016-12-01

    Currently, vegetables like lettuce are widely recommended as part of the daily diet given their high nutritional value; however, while consumers feel attracted to the benefits provided by the vegetable, they may also be exposed to parasitic intestinal infections. To determine the presence or absence of enteroparasites in lettuce (Lactuca sativa) grown in the rural area in the municipality of Pasto, and to analyze associated factors based on the characterization of the lands. We conducted a descriptive double blind cross-sectional study. We took a total of 105 samples from 21 properties from June to December, 2013, and we processed them by sedimentation and flotation tests. Additionally, the owners were surveyed in order to obtain information about the possible variables influencing the occurrence of enteroparasites. We detected contamination in 100% of the lettuce samples and we found parasite eggs and larvae as follows: 95.25% with Entamoeba spp. cysts; 71.43% with Isospora spp. oocysts; 61.90% with Strongyloides stercoralis larvae (L3); 28.57% with Toxocara spp. eggs, and 4.76% with Eimeria spp. oocysts. Using the chi-square test we found association between Entamoeba spp. and ditches (p=0.008), dogs (p=0.008) and septic tanks (p=0.029); between Isospora spp. and compost (p=0.0001), dogs (p=0.0001) and slugs (p=0.002); between S. stercoralis and handling (p=0.003), and between Toxocara spp. and no use of biodigesters (p= 0.002). We found contamination with enteroparasites in lettuce samples from growing areas in the municipality of Pasto with animal and human sources as their main reservoirs, although others were present in the environment.

  18. [Analysis of essential oil extracted from Lactuca sativa seeds growing in Xinjiang by GC-MS].

    PubMed

    Xu, Fang; Wang, Qiang; Haji, Akber Aisa

    2011-12-01

    To analyze the components of essential oil from Lactuca sativa seeds growing in Xinjiang. The components of essential oil from Lactuca sativa seeds were analyzed by gas chromatography-mass spectrometry (GC-MS). 62 components were identified from 71 separated peaks,amounting to total mass fraction 95.07%. The dominant compounds were n-Hexanol (36.31%), n-Hexanal (13.71%), trans-2-Octen-l-ol (8.09%) and 2-n-Pentylfuran (4.41%). The research provides a theoretical basis for the exploitation and use of Lactuca sativa seeds resource.

  19. Protective effects of Lactuca sativa ethanolic extract on carbon tetrachloride induced oxidative damage in rats

    PubMed Central

    Hefnawy, Hefnawy Taha M.; Ramadan, Mohamed Fawzy

    2013-01-01

    Objective To study the protective effects of the ethanolic extract of lettuce (Lactuca sativa L. var. longifolia) leaves against the toxicity caused by carbon tetrachloride (CCl4) in reproductive system of rats. Methods Lettuce leaves were dried and extracted with ethanol (plant: solvent, 1:10, w/v). The extract was filtered and evaporated to yield dried lettuce extract. Animals were divided into seven groups and treated with CCl4 and different concentrations of lettuce extract. At the end of the experimental period, the animals were sacrificed and blood was collected and centrifuged for serum separation. Body weights, testis size, histopathology of testis and liver, catalase (CAT) activity, superoxide dismutase (SOD) activity, peroxidase (POD) activity, reduced glutathione (GSH), glutathione peroxidase activity (GSH-Px), thiobarbituric acid reactive substances (TBARS), nitrite level, and serum hormones were determined. Results Oxidative stress induced by CCl4 (2 mL/kg body weight) in rat decreases the increase in body weight and relative testis weight. It also markedly increases the level of TBARS and nitrites along with corresponding decrease in reduced glutathione and various antioxidant enzymes in testis (i.e., CAT, POD, SOD and GSH-Px). Serum level of testosterone, luteinizing hormone and follicle stimulating hormone was decreased while estradiol and prolactin were increased during CCl4 treatment. Histopathology of CCl4-treated rats indicated the partial degeneration of germ and leydig cells along with deformities in spermatogenesis. Supplementation of lettuce extract (100, 150, 200 mg/kg body weight orally) once a week for 10 weeks results in decrease of TBARS and nitrite, while increase in antioxidant enzymes; CAT, POD, SOD, GSH-Px and GSH contents. Serum level of testosterone, luteinizing hormone, follicle stimulating hormone, estradiol, prolactin, histology, body weight and relative testis weight was also concomitantly restored to near normal level by

  20. Human Norovirus and Its Surrogates Induce Plant Immune Response in Arabidopsis thaliana and Lactuca sativa.

    PubMed

    Markland, Sarah M; Bais, Harsh; Kniel, Kalmia E

    2017-08-01

    Human norovirus is the leading cause of foodborne illness worldwide with the majority of outbreaks linked to fresh produce and leafy greens. It is essential that we thoroughly understand the type of relationship and interactions that take place between plants and human norovirus to better utilize control strategies to reduce transmission of norovirus in the field onto plants harvested for human consumption. In this study the expression of gene markers for the salicylic acid (SA) and jasmonic acid (JA) plant defense pathways was measured and compared in romaine lettuce (Lactuca sativa) and Arabidopsis thaliana Col-0 plants that were inoculated with Murine Norovirus-1, Tulane Virus, human norovirus GII.4, or Hank's Balanced Salt Solution (control). Genes involving both the SA and JA pathways were expressed in both romaine lettuce and A. thaliana for all three viruses, as well as controls. Studies, including gene expression of SA- and JA-deficient A. thaliana mutant lines, suggest that the JA pathway is more likely involved in the plant immune response to human norovirus. This research provides the first pieces of information regarding how foodborne viruses interact with plants in the preharvest environment.

  1. Role of Ethylene in Lactuca sativa cv `Grand Rapids' Seed Germination

    PubMed Central

    Abeles, Fred B.

    1986-01-01

    Promotion of thermoinhibited (30°C) lettuce (Lactuca sativa cv `Grand Rapids') seed germination by ethylene is similar to the action of the gas in other hormonal systems. Ethylene was more active than propylene and ethane was inactive. An inhibitor of ethylene production, aminoethoxy-vinylglycine, reduced ethylene evolution and germination. Inhibitors of ethylene action such as, 5-methyl-7-chloro-4-ethoxycarbonylmethoxy-2,1,3-benzothiadiazole, 2,5-norbornadiene, and silver thiosulfate inhibited germination and the effect was reversed by the addition of ethylene to the gas phase. The action of ethylene appears to be due to the promotion of radial cell expansion in the embryonic hypocotyl. The action of N6-benzyladenine and fusiccocin, which also overcome thermoinhibition, appears to be due to a promotion of hypocotyl elongation. None of the germination promoters studied appeared to function by lowering the mechanical resistance of the endosperm to embryonic growth. Data presented here are consistent with the view that ethylene plays a role in lettuce seed germination under thermoinhibited and normal conditions. PMID:16664902

  2. Evaluation of Lettuce Genotypes for Seed Thermotolerance

    USDA-ARS?s Scientific Manuscript database

    Thermoinhibition of lettuce (Lactuca sativa L.) seed germination is a common problem associated with lettuce production. Depending on lettuce cultivars, seed germination may be inhibited when temperatures exceed 28oC. The delay or inhibition of seed germination at high temperatures may reduce seedli...

  3. Role of ascorbic acid in the inhibition of polyphenol oxidase and the prevention of browning in different browning-sensitive Lactuca sativa var. capitata (L.) and Eruca sativa (Mill.) stored as fresh-cut produce.

    PubMed

    Landi, Marco; Degl'Innocenti, Elena; Guglielminetti, Lorenzo; Guidi, Lucia

    2013-06-01

    Polyphenol oxidase (PPO) and, to a minor extent, peroxidase (POD) represent the key enzymes involved in enzymatic browning, a negative process induced by cutting fresh-cut produce such as lettuce (Lactuca sativa) and rocket salad (Eruca sativa). Although ascorbic acid is frequently utilised as an anti-browning agent, its mechanism in the prevention of the browning phenomenon is not clearly understood. The activity of PPO and POD and their isoforms in lettuce (a high-browning and low-ascorbic acid species) and rocket salad (a low-browning and high-ascorbic species) was characterised. The kinetic parameters of PPO and in vitro ascorbic acid-PPO inhibition were also investigated. In rocket salad, PPO activity was much lower than that in lettuce and cutting induced an increase in PPO activity only in lettuce. Exogenous ascorbic acid (5 mmol L(-1)) reduced PPO activity by about 90% in lettuce. POD did not appear to be closely related to browning in lettuce. PPO is the main enzyme involved in the browning phenomenon; POD appears to play a minor role. The concentration of endogenous ascorbic acid in rocket salad was related to its low-browning sensitivity after cutting. In lettuce, the addition of ascorbic acid directly inhibited PPO activity. The results suggest that the high ascorbic acid content found in rocket salad plays an effective role in reducing PPO activity. © 2012 Society of Chemical Industry.

  4. Reuse of Organomineral Substrate Waste from Hydroponic Systems as Fertilizer in Open-Field Production Increases Yields, Flavonoid Glycosides, and Caffeic Acid Derivatives of Red Oak Leaf Lettuce (Lactuca sativa L.) Much More than Synthetic Fertilizer.

    PubMed

    Dannehl, Dennis; Becker, Christine; Suhl, Johanna; Josuttis, Melanie; Schmidt, Uwe

    2016-09-28

    Effects of organic waste from a hydroponic system added with minerals (organomineral fertilizer) and synthetic fertilizer on major polyphenols of red oak leaf lettuce using HPLC-DAD-ESI-MS(3) were investigated. Interestingly, contents of the main flavonoid glycosides and caffeic acid derivatives of lettuce treated with organomineral fertilizer were equal to those synthesized without soil additives. This was found although soil nutrient concentrations, including that of nitrogen, were much lower without additives. However, lettuce treated with synthetic fertilizer showed a significant decrease in contents of caffeic acid derivatives and flavonoid glycosides up to 78.3 and 54.2%, respectively. It is assumed that a negative effect of a high yield on polyphenols as described in the growth-differentiation balance hypothesis can be counteracted by (i) a higher concentration of Mg or (ii) optimal physical properties of the soil structure. Finally, the organomineral substrate waste reused as fertilizer and soil improver resulted in the highest yield (+78.7%), a total fertilizer saving of 322 kg ha(-1) and waste reduction in greenhouses.

  5. Use of spent mushroom substrates from Agaricus subrufescens (syn. A. blazei, A. brasiliensis) and Lentinula edodes productions in the enrichment of a soil-based potting media for lettuce (Lactuca sativa) cultivation: Growth promotion and soil bioremediation.

    PubMed

    Ribas, L C C; de Mendonça, M M; Camelini, C M; Soares, C H L

    2009-10-01

    This study aimed to assess physicochemical and microbiological properties of fresh spent mushroom substrates (SMSs)--without post-crop heat treatment--from Agaricus subrufescens and Lentinula edodes production to optimize the use of these residues in the soil enrichment for lettuce growth promotion and soil remediation. Organic matter and C content of both SMSs were high. Fresh A. subrufescens SMS was a good source of N, P and K. On the other hand, L. edodes SMS presented a lower concentration of these nutrients and a high level of immaturity. Both SMSs presented high electric conductivity values (2.5-3.4 mS/cm). Microbiological analysis, based upon enumeration of culturable bacteria (thermophilic and mesophilic) and fungi, and also evolution of CO(2), showed that SMSs played higher microbial diversity than soil control. Laccase activity from A. subrufescens SMS tended to remain constant during a 2-month period, while L. edodes SMS presented low laccase activity throughout the same period. Agaricus subrufescens and L. edodes were able to grow on a PDA (Potato Dextrose Agar) media supplemented with different concentrations of atrazine (1-50 microg/ml), degraded the herbicide, attaining rates of 35% and 26%, respectively. On experiments of lettuce growth promotion using a soil-based potting media with different SMS rates, 5% and 10% (dw) rates of A. subrufescens SMS resulted in higher lettuce aerial dry weights than the rates of 25% and 40%, the chemical fertilization (NPK) and the control (soil). At 10% supplementation, lettuce aerial dry weight increased 2.2 and 1.3 times compared to the control and the NPK treatment, respectively. Protein content increased along with SMS rates. Fresh A. subrufescens SMS was an excellent supplement for lettuce growth promotion and showed potential for remediation of biocides possibly due to improved microbial diversity and enzymatic activity. Fresh L. edodes SMS was not a good fertilizer, at least under the conditions tested

  6. Occupational contact dermatitis from Cichorium (chicory, endive) and Lactuca (lettuce).

    PubMed

    Friis, B; Hjorth, N; Vail, J T; Mitchell, J C

    1975-10-01

    In two cases, occupational contact dermatitis was found to be due to chicory (Cichorium) used as a salad plant. In one of the two cases, contact sensitivity to letuce (Lactuca) was also observed. The sesquiterpene lactones of the plant may be the allergens.

  7. Moderate and high doses of sodium hypochlorite, neutral electrolyzed oxidizing water, peroxyacetic acid, and gaseous chlorine dioxide did not affect the nutritional and sensory qualities of fresh-cut Iceberg lettuce (Lactuca sativa Var. capitata L.) after washing.

    PubMed

    Vandekinderen, Isabelle; Van Camp, John; De Meulenaer, Bruno; Veramme, Kim; Bernaert, Nathalie; Denon, Quenten; Ragaert, Peter; Devlieghere, Frank

    2009-05-27

    Besides the traditionally used sodium hypochlorite (20 and 200 mg L(-1)), alternative sanitizers such as peroxyacetic acid (80 and 250 mg L(-1)) and neutral electrolyzed oxidizing water (4.5 and 30 mg L(-1) free chlorine) as well as chlorine dioxide gas (1.54 mg L(-1)) were evaluated for their efficiency in reducing the microbial load of fresh-cut iceberg lettuce. An additional rinsing step with tap water and cooling of the sanitizing solutions, which are obvious for the fresh-cut industry, were not performed within the current study. The high doses of sodium hypochlorite and peroxyacetic acid tested within this study do not conform to the normally used concentrations within the fresh-cut industry. Neutral electrolyzed oxidizing water (30 mg L(-1)), peroxyacetic acid (250 mg L(-1)), and gaseous chlorine dioxide significantly reduced the total aerobic plate count of cut lettuce in comparison with water wash treatments alone. None of the treatments significantly affected the sensory quality of the lettuce, although small color changes were observed after colorimetric measurements. From a nutritional point of view water rinsing significantly decreased the vitamin C (maximum 35%) and phenol (maximum 17%) contents, but did not affect the carotenoid and α-tocopherol contents. Additional effects caused by adding a sanitizer to the wash water were not observed for vitamin C and phenols. Conversely, washing with 250 mg L(-1) peroxyacetic acid reduced the β-carotene content by about 30%, whereas using 200 mg L(-1) sodium hypochlorite reduced both the lactucaxanthin and the lutein contents by about 60%. Use of gaseous chlorine dioxide also had an impact on the lutein content (-18%). Furthermore, the α-tocopherol content was reduced by 19.7 and 15.4% when the two concentrations of neutral electrolyzed oxidizing water were used, respectively. These data represent the situation on day 0. In a next phase, shelf-life studies considering microbial and sensory quality and

  8. Ecotoxicological impact of two soil remediation treatments in Lactuca sativa seeds.

    PubMed

    Rede, Diana; Santos, Lúcia H M L M; Ramos, Sandra; Oliva-Teles, Filipe; Antão, Cristina; Sousa, Susana R; Delerue-Matos, Cristina

    2016-09-01

    Pharmaceuticals have been identified as environmental emerging pollutants and are present in different compartments, including soils. Chemical remediation showed to be a good and suitable approach for soil remediation, though the knowledge in their impact for terrestrial organisms is still limited. Therefore, in this work, two different chemical remediation treatments (Fenton oxidation and nanoremediation) were applied to a soil contaminated with an environmental representative concentration of ibuprofen (3 ng g(-1)). The phytotoxic impact of a traditional soil remediation treatment (Fenton oxidation) and of a new and more sustainable approach for soil remediation (nanoremediation using green nano-scale zero-valent iron nanoparticles (nZVIs)) was evaluated in Lactuca sativa seeds. Percentage of seed germination, root elongation, shoot length and leaf length were considered as endpoints to assess the possible acute phytotoxicity of the soil remediation treatments as well as of the ibuprofen contaminated soil. Both chemical remediation treatments showed to have a negative impact in the germination and development of lettuce seeds, exhibiting a reduction up to 45% in the percentage of seed germination and a decrease around 80% in root elongation comparatively to the contaminated soil. These results indicate that chemical soil remediation treatments could be more prejudicial for terrestrial organisms than contaminated soils.

  9. Effects of Jatropha curcas oil in Lactuca sativa root tip bioassays.

    PubMed

    Andrade-Vieira, Larissa F; Botelho, Carolina M; Laviola, Bruno G; Palmieri, Marcel J; Praça-Fontes, Milene M

    2014-03-01

    Jatropha curcas L. (Euphorbiaceae) is important for biofuel production and as a feed ingredient for animal. However, the presence of phorbol esters in the oil and cake renders the seeds toxic. The toxicity of J. curcas oil is currently assessed by testing in animals, leading to their death. The identification of toxic and nontoxic improved varieties is important for the safe use of J. curcas seeds and byproducts to avoid their environmental toxicity. Hence, the aim of this study was to propose a short-term bioassay using a plant as a model to screen the toxicity of J. curcas oil without the need to sacrifice any animals. The toxicity of J. curcas oil was evident in germination, root elongation and chromosomal aberration tests in Lactuca sativa. It was demonstrated that J. curcas seeds contain natural compounds that exert phyto-, cyto- and genotoxic effects on lettuce, and that phorbol esters act as aneugenic agents, leading to the formation of sticky chromosomes and c-metaphase cells. In conclusion, the tests applied have shown reproducibility, which is important to verify the extent of detoxification and to determine toxic doses, thus reducing the numbers of animals that would be used for toxicity tests.

  10. Zn-biofortification enhanced nitrogen metabolism and photorespiration process in green leafy vegetable Lactuca sativa L.

    PubMed

    Barrameda-Medina, Yurena; Lentini, Marco; Esposito, Sergio; Ruiz, Juan M; Blasco, Begoña

    2017-04-01

    Excessive rates of nitrogen (N) fertilizers may result in elevated concentrations of nitrate (NO3(-) ) in plants. Considering that many programs of biofortification with trace elements are being performed, it has become important to study how the application of these elements affects plant physiology and, particularly, N utilization in leaf crops. The main objective of the present study was to determine whether the NO3(-) accumulation and the nitrogen use efficiency was affected by the application of different doses of Zn in Lactuca sativa plants. Zn doses in the range 80-100 µmol L(-1) produced an increase in Zn concentration provoking a decrease of NO3(-) concentration and increase of the nitrate reductase, glutamine synthetase and aspartate aminotransferase activities, as well as the photorespiration processes. As result, we observed an increase in reduced N, total N concentration and N utilization efficiency. Consequently, at a dose of 80 µmol L(-1) of Zn, the amino acid concentration increased significantly. Adequate Zn fertilization is an important critical player in lettuce, especially at a dose of 80 µmol L(-1) of Zn, because it could result in an increase in the Zn concentration, a reduction of NO3(-) levels and an increase the concentration of essential amino acids, with all of them having beneficial properties for the human diet. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Effects of light level, time of harvest and position within field on the variability of tissue nitrate concentration in commercial crops of lettuce (Lactuca sativa) and endive (Cichorium endiva).

    PubMed

    Weightman, R M; Dyer, C; Buxton, J; Farrington, D S

    2006-05-01

    Seven commercial crops of lettuce and one crop of endive were sampled in order to study the variability in plant tissue nitrate concentration (TNC). Assuming that an appropriate sampling pattern was employed, ten plants were sufficient to give an acceptable estimate of the mean TNC. Short-term shading (24-48 h) had no significant effects on mean TNC, unlike the increase in TNC known to occur following dull periods 10-14 days before harvest. The effect on TNC of time of day harvested was significant, but there was no obvious pattern of diurnal variation. Averaged over all experiments, the coefficient of variation for TNC was in the order of 35%. Increasing the sample size from ten to 40 plants would only be expected to decrease the standard error of measurement of TNC from 16 to 12% of the mean because of the underlying analytical error, which would remain constant.

  12. In vivo Tracking of Copper-64 Radiolabeled Nanoparticles in Lactuca sativa.

    PubMed

    Davis, Ryan Andrew; Rippner, Devin; Hausner, Sven H; Parikh, Sanjai J; McElrone, Andrew J; Sutcliffe, Julie L

    2017-09-27

    Engineered nanoparticles (NPs) are increasingly used in commercial products including automotive lubricants, clothing, deodorants, sunscreens, and cosmetics and can potentially accumulate in our food supply. Given their size it is difficult to detect and visualize the presence of NPs in environmental samples, including crop plants. New analytical tools are needed to fill the void for detection and visualization of NPs in complex biological and environmental matrices. We aimed to determine whether radiolabeled NPs could be used as a noninvasive, highly sensitive analytical tool to quantitatively track and visualize NP transport and accumulation in vivo in lettuce (Lactuca sativa) and to investigate the effect of NP size on transport and distribution over time using a combination of autoradiography, positron emission tomography (PET)/computed tomography (CT), scanning electron microscopy (SEM), and transition electron microscopy (TEM). Azide functionalized NPs were radiolabeled via a "click" reaction with copper-64 (64Cu)-1,4,7-triazacyclononane triacetic acid (NOTA) azadibenzocyclooctyne (ADIBO) conjugate ([64Cu]-ADIBO-NOTA) via copper-free Huisgen-1,3-dipolar cycloaddition reaction. This yielded radiolabeled [64Cu]-NPs of uniform shape and size with a high radiochemical purity (>99%), specific activity of 83 MBq/mg of NP, and high stability (i.e., no detectable dissolution) over 24 h across a pH range of 5-9. Both PET/CT and autoradiography showed that [64Cu]-NPs entered the lettuce seedling roots and were rapidly transported to the cotyledons with the majority of the accumulation inside the roots. Uptake and transport of intact NPs was size dependent, and in combination with the accumulation within the roots suggests a filtering effect of the plant cell walls at various points along the water transport pathway.

  13. Pb low doses induced genotoxicity in Lactuca sativa plants.

    PubMed

    Silva, S; Silva, P; Oliveira, H; Gaivão, I; Matos, M; Pinto-Carnide, O; Santos, C

    2017-03-01

    Soil and water contamination by lead (Pb) remains a topic of great concern, particularly regarding crop production. The admissible Pb values in irrigation water in several countries range from ≈0.1 to ≈5 mg L(-1). In order to evaluate putative effects of Pb within legal doses on crops growth, we exposed Lactuca sativa seeds and seedlings to increasing doses of Pb(NO3)2 up to 20 mg L(-1). The OECD parameter seed germination and seedling/plant growth were not affected by any of the Pb-concentrations used. However, for doses higher than 5 mg L(-1) significant DNA damage was detected: Comet assay detected DNA fragmentation at ≥ 5 mg L(-1) and presence of micronuclei (MN) were detected for 20 mg L(-1). Also, cell cycle impairment was observed for doses as low as 0.05 mg L(-1) and 0.5 mg L(-1) (mostly G2 arrest). Our data show that for the low doses of Pb used, the OECD endpoints were not able to detect toxicity, while more sensitive endpoints (related with DNA damage and mitotic/interphase disorders) identified genotoxic and cytostatic effects. Furthermore, the nature of the genotoxic effect was dependent on the concentration. Finally, we recommend that MN test and the comet assay should be included as sensitive endpoints in (eco)toxicological assays.

  14. Halogenated auxins affect microtubules and root elongation in Lactuca sativa

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.

  15. Initiation and elongation of lateral roots in Lactuca sativa

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    1999-01-01

    Lactuca sativa cv. Baijianye seedlings do not normally produce lateral roots, but removal of the root tip or application of auxin, especially indole-butyric acid, triggered the formation of lateral roots. Primordia initiated within 9 h and were fully developed after 24 h by activating the pericycle cells opposite the xylem pole. The pericycle cells divided asymmetrically into short and long cells. The short cells divided further to form primordia. The effect of root tip removal and auxin application was reversed by 6-benzylaminopurine at concentrations >10(-8) M. The cytokinin oxidase inhibitor N1-(2chloro4pyridyl)-N2-phenylurea also suppressed auxin-induced lateral rooting. The elongation of primary roots was promoted by L-alpha-(2-aminoethoxyvinyl) glycine and silver ions, but only the latter enhanced elongation of lateral roots. The data indicate that the induction of lateral roots is controlled by basipetally moving cytokinin and acropetally moving auxin. Lateral roots appear to not produce ethylene.

  16. Halogenated auxins affect microtubules and root elongation in Lactuca sativa

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.

  17. Initiation and elongation of lateral roots in Lactuca sativa

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    1999-01-01

    Lactuca sativa cv. Baijianye seedlings do not normally produce lateral roots, but removal of the root tip or application of auxin, especially indole-butyric acid, triggered the formation of lateral roots. Primordia initiated within 9 h and were fully developed after 24 h by activating the pericycle cells opposite the xylem pole. The pericycle cells divided asymmetrically into short and long cells. The short cells divided further to form primordia. The effect of root tip removal and auxin application was reversed by 6-benzylaminopurine at concentrations >10(-8) M. The cytokinin oxidase inhibitor N1-(2chloro4pyridyl)-N2-phenylurea also suppressed auxin-induced lateral rooting. The elongation of primary roots was promoted by L-alpha-(2-aminoethoxyvinyl) glycine and silver ions, but only the latter enhanced elongation of lateral roots. The data indicate that the induction of lateral roots is controlled by basipetally moving cytokinin and acropetally moving auxin. Lateral roots appear to not produce ethylene.

  18. Genetic and biochemical evaluation of natural rubber from Eastern Washington prickly lettuce (Lactuca serriola L.).

    PubMed

    Bell, Jared L; Burke, Ian C; Neff, Michael M

    2015-01-21

    Alternative sources of natural rubber are of importance due to economic, biological, and political threats that could diminish supplies of this resource. Prickly lettuce (Lactuca serriola L.) synthesizes long-chain natural rubber and was studied to determine underlying genetic and phenotypic characteristics of rubber biosynthesis. Genotypic and phenotypic analysis of an F2 segregating population using EST-SSR markers led to the discovery of genetic regions linked to natural rubber production. Interval mapping (IM) and multiple QTL mapping (MQM) identified several QTL in the mapping population that had significance based on LOD score thresholds. The discovered QTL and the corresponding local markers are genetic resources for understanding rubber biosynthesis in prickly lettuce and could be used in marker-assisted selection (MAS) breeding. Prickly lettuce is an excellent candidate for elucidating the rubber synthesis mechanism and has potential as a crop plant for rubber production.

  19. Anxiolytic property of hydro-alcohol extract of Lactuca sativa and its effect on behavioral activities of mice.

    PubMed

    Harsha, Singapura Nagesh; Anilakumar, Kandangath Raghavan

    2013-01-01

    Lactuca sativa, belonging to the Asteraceae family, is a leafy vegetable known for its medicinal properties. This study aimed to understand the mechanism of Lactuca sativa extract with respect to pharmacological action.We investigated the anxiolytic effects of hydro-alcoholic extract of leaves of Lactuca sativa on mice. The behavioral tests performed on mice models to assess anti-anxiety properties were: open field test (OFT), elevated plus maze test (EPM), elevated T maze test, and marble burying test. Increased locomotor activity and time spent in the "open-arm" were observed in extract fed group. Malondialdehyde (MDA) and nitrite levels were decreased, catalase and glutathione levels were increased in Lactuca sativa treated mice. The data obtained in the present study suggests that the extract of Lactuca sativa can afford significant protection against anxiolytic activity.

  20. Anxiolytic property of hydro-alcohol extract of Lactuca sativa and its effect on behavioral activities of mice

    PubMed Central

    Harsha, Singapura Nagesh; Anilakumar, Kandangath Raghavan

    2013-01-01

    Lactuca sativa, belonging to the Asteraceae family, is a leafy vegetable known for its medicinal properties. This study aimed to understand the mechanism of Lactuca sativa extract with respect to pharmacological action.We investigated the anxiolytic effects of hydro-alcoholic extract of leaves of Lactuca sativa on mice. The behavioral tests performed on mice models to assess anti-anxiety properties were: open field test (OFT), elevated plus maze test (EPM), elevated T maze test, and marble burying test. Increased locomotor activity and time spent in the “open-arm” were observed in extract fed group. Malondialdehyde (MDA) and nitrite levels were decreased, catalase and glutathione levels were increased in Lactuca sativa treated mice. The data obtained in the present study suggests that the extract of Lactuca sativa can afford significant protection against anxiolytic activity. PMID:23554792

  1. Advancements in utilizing molecular markers in lettuce breeding

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa L.) is globally the most popular commercially produced, leafy vegetable, farmed in moderate climates. Cultivated lettuce is a self-fertilizing, diploid (2n = 2x = 18) species from the family Compositae (Asteraceae). New cultivars of lettuce are developed by combining desirabl...

  2. Velvetbean (Mucuna pruriens) extracts: impact on Meloidogyne incognita survival and on Lycopersicon esculentum and Lactuca sativa germination and growth.

    PubMed

    Zasada, Inga A; Klassen, Waldemar; Meyer, Susan L F; Codallo, Maharanie; Abdul-Baki, Aref A

    2006-11-01

    Velvetbean (Mucuna spp.) is a summer annual that has been used as a cover crop to reduce erosion, fix nitrogen and suppress weeds and plant-parasitic nematodes. Crude aqueous extracts (1:15 dry weight plant/volume water) were made from velvetbean plant parts, and various concentrations of the extracts were evaluated in vitro for toxicities to different stages of Meloidogyne incognita (Kofoid and White) Chitwood and for suppression of hypocotyl and root growth and inhibition of germination of tomato (Lycopersicon esculentum L.) and lettuce (Lactuca sativa L.). Germination was only affected by the full-strength extract from leaf blades. Lettuce root growth was the most sensitive indicator of allelopathic activity of the plant part extracts. Lettuce and tomato root growth was more sensitive to the extract from main roots than to extracts of other plant parts, with lethal concentration (LC50) values of 1.2 and 1.1% respectively. Meloidogyne incognita egg hatch was less sensitive to extracts from velvetbean than the juvenile (J2) stage. There was no difference among LC50 values of the extracts from different plant parts against the egg stage. Based on LC50 values, the extract from fine roots was the least toxic to J2 (LC50 39.9%), and the extract from vines the most toxic (LC50 7.8%). The effects of the extracts were nematicidal because LC50 values did not change when the extracts were removed and replaced with water. Copyright (c) 2006 Society of Chemical Industry.

  3. Comparing three approaches in extending biotic ligand models to predict the toxicity of binary metal mixtures (Cu-Ni, Cu-Zn and Cu-Ag) to lettuce (Lactuca sativa L.).

    PubMed

    Liu, Yang; Vijver, Martina G; Peijnenburg, Willie J G M

    2014-10-01

    Metals are always found in the environment as mixtures rather than as solitary elements. However, effect models such as biotic ligand models (BLMs) are usually derived for toxicity prediction of single metals. Our study aimed at predicting mixture toxicity of Cu-Ni, Cu-Zn and Cu-Ag combinations to lettuce (Lactucasativa L.) by combining BLMs with three toxicity indexes: the toxic unit, the overall amounts of metal ions bound to the biotic ligands and the toxic equivalency factor. The accumulation of metal ions at the biotic ligands was used to determine the toxic potency of metals alone or in combination. On the basis of parameters derived from toxicity assessment of individual metals, these three extended BLMs appeared to be all acceptable (p<0.0001) in assessing toxicity of diverse metal mixtures. The BLM-based approaches integrated competition between metal ions in assessing mixture toxicity and showed different predictive ability for each metal combination. The outcome of modeling suggested that the combined toxicity depends on the specific components of the metal mixtures. The best developed models assist in identifying the type of underlying toxic mechanisms of diverse metal mixtures in terrestrial plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Potential of a metal-organic framework as a new material for solid-phase extraction of pesticides from lettuce (Lactuca sativa), with analysis by gas chromatography-mass spectrometry.

    PubMed

    Barreto, Alysson S; da Silva, Rogério Luiz; Dos Santos Silva, Silvia Caroline G; Rodrigues, Marcelo O; de Simone, Carlos A; de Sá, Gilberto F; Júnior, Severino A; Navickiene, Sandro; de Mesquita, Maria Eliane

    2010-12-01

    The metal-organic framework (∞)[(La(0.9)Eu(0.1))(2)(DPA)(3)(H(2)O)(3)] was tested for extraction of pyrimicarb, procymidone, malathion, methyl parathion and α- and β-endosulfan from lettuce, with analysis using GC/MS in SIM mode. Experiments were carried out in triplicate at two fortification levels (0.1 and 0.5 mg/kg), and resulted in recoveries in the range of 78-107%, with RSD values between 1.6 and 8.0% for (∞)[(La(0.9)Eu(0.1))(2)(DPA)(3)(H(2)O)(3)] sorbent. Detection and quantification limits ranged from 0.02 to 0.05 mg/kg and from 0.05 to 0.10 mg/kg, respectively, for the different pesticides studied. The method developed was linear over the range tested (0.05-10.0 μg/mL), with correlation coefficients ranging from 0.9990 to 0.9997. Comparison between (∞)[(La(0.9)Eu(0.1))(2)(DPA)(3)(H(2)O)(3)] and conventional sorbent (silica gel) showed better performance of the (∞)[(La(0.9)Eu(0.1))(2)(DPA)(3)(H(2)O)(3)] polymeric sorbent for all pesticides tested.

  5. A Quantitative Dynamic Simulation of Bremia lactucae Airborne Conidia Concentration above a Lettuce Canopy.

    PubMed

    Fall, Mamadou Lamine; Van der Heyden, Hervé; Carisse, Odile

    2016-01-01

    Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by airborne spores. A weather-based dynamic simulation model for B. lactucae airborne spores was developed to simulate the aerobiological characteristics of the pathogen. The model was built using the STELLA platform by following the system dynamics methodology. The model was developed using published equations describing disease subprocesses (e.g., sporulation) and assembled knowledge of the interactions among pathogen, host, and weather. The model was evaluated with four years of independent data by comparing model simulations with observations of hourly and daily airborne spore concentrations. The results show an accurate simulation of the trend and shape of B. lactucae temporal dynamics of airborne spore concentration. The model simulated hourly and daily peaks in airborne spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne conidia concentration was 0 when airborne conidia were not observed. Also, the relationship between the simulated and the observed airborne spores was linear. In more than 94% of the simulation runs, the proportion of the linear variation in the hourly-observed values explained by the variation in the hourly-simulated values was greater than 0.7 in all years except one. Most of the errors came from the deviation from the 1:1 line, and the proportion of errors due to the model bias was low. This model is the only dynamic model developed to mimic the dynamics of airborne inoculum and represents an initial step towards improved lettuce downy mildew understanding, forecasting and management.

  6. A Quantitative Dynamic Simulation of Bremia lactucae Airborne Conidia Concentration above a Lettuce Canopy

    PubMed Central

    Fall, Mamadou Lamine; Van der Heyden, Hervé; Carisse, Odile

    2016-01-01

    Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by airborne spores. A weather-based dynamic simulation model for B. lactucae airborne spores was developed to simulate the aerobiological characteristics of the pathogen. The model was built using the STELLA platform by following the system dynamics methodology. The model was developed using published equations describing disease subprocesses (e.g., sporulation) and assembled knowledge of the interactions among pathogen, host, and weather. The model was evaluated with four years of independent data by comparing model simulations with observations of hourly and daily airborne spore concentrations. The results show an accurate simulation of the trend and shape of B. lactucae temporal dynamics of airborne spore concentration. The model simulated hourly and daily peaks in airborne spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne conidia concentration was 0 when airborne conidia were not observed. Also, the relationship between the simulated and the observed airborne spores was linear. In more than 94% of the simulation runs, the proportion of the linear variation in the hourly-observed values explained by the variation in the hourly-simulated values was greater than 0.7 in all years except one. Most of the errors came from the deviation from the 1:1 line, and the proportion of errors due to the model bias was low. This model is the only dynamic model developed to mimic the dynamics of airborne inoculum and represents an initial step towards improved lettuce downy mildew understanding, forecasting and management. PMID:26953691

  7. Screening of lettuce germplasm for agronomic traits under low water conditions

    USDA-ARS?s Scientific Manuscript database

    After a preliminary screening of over 3,500 varieties, we selected 200 cultivars of butterhead, cos, crisphead, leaf, and stem lettuce (Lactuca sativa L.) and wild prickly lettuce (Lactuca serriola L.) to test under high water (150% ET) and low water (50% ET) conditions in the field, and tracked com...

  8. Influence of diesel contamination in soil on growth and dry matter partitioning of Lactuca sativa and Ipomoea batatas.

    PubMed

    Fatokun, Kayode; Zharare, Godfrey Elijah

    2015-09-01

    Phytotoxic effect of diesel contaminated soil was investigated on growth and dry matter partitioning in Lactuca sativa and Ipomoea batatas in greenhouse pot experiment at two concentration range (0-30 ml and 0-6 ml diesel kg(-1) soil) for 14 weeks. The results indicated thatwhole plant biomass, stem length, root length, number of leaves and leaf chlorophyll in two plants were negatively correlated with increasing diesel concentrations. The critical concentration of diesel associated with 10% decrease in plant growth was 0.33 ml for lettuce and 1.50 ml for sweet potato. Thus, growth of lettuce in diesel contaminated soil was more sensitive than sweet potato. The pattern of dry matter partitioning between root and shoot in both plants were similar. In 0-6 ml diesel contamination range, allocation of dry matter to shoot system was favoured resulting in high shoot: root ratio of 4.54 and 12.91 for lettuce and sweet potato respectively. However, in 0-30 ml diesel contamination range, allocation of dry matter to root was favoured, which may have been an adaptive mechanism in which the root system was used for storage in addition to increasing the capacity for foraging for mineral nutrients and water. Although lettuce accumulated more metals in its tissue than sweet potato, the tissue mineral nutrients in both species did not vary to great extent. The critical diesel concentration for toxicity suggested that the cause of mortality and poor growth of sweet potato and lettuce grown in diesel contaminated soil was due to presence of hydrocarbons in diesel.

  9. Factors Affecting the Survival of Bremia lactucae Sporangia Deposited on Lettuce Leaves.

    PubMed

    Wu, B M; Subbarao, K V; van Bruggen, A H

    2000-08-01

    ABSTRACT Experiments to identify the factors affecting survival of Bremia lactucae sporangia after deposition on lettuce leaves were conducted in growth chambers and outdoors under ambient conditions. Lettuce seedlings at the four-leaf stage were inoculated with B. lactucae sporangia under dry conditions. Sporangia deposited on lettuce seedlings were incubated at different temperature and relative humidity (RH) combinations, exposed to 100, 50, 25, and 0% sunlight in the second experiment, and exposed to different artificial lights in wavelength ranges of UVA (315 to 400 nm), UVB (280 to 315 nm), or fluorescent light in the third experiment. After exposure for 0 to 48 h in the first experiment and 0 to 12 h in the second and third experiments, seedlings in two pots were sampled for each treatment, and sporangia were washed from 15 leaves excised from the sampled seedlings. Germination of sporangia was determined in water after incubation in the dark at 15 degrees C for 24 h. The sampled seedlings with remaining leaves were first transferred to optimal conditions for infection (24 h), for the development of downy mildew, and then assessed for disease after 9 days. Sporangia survived much longer at 23 degrees C (>12 h) than at 31 degrees C (2 to 5 h), regardless of RH (33 to 76%). Germination percentage was significantly reduced after exposure to 50 and 100% sunlight. UVB significantly reduced sporangium viability, while fluorescent light and UVA had no effect relative to incubation in the dark. Infection of seedlings followed a pattern similar to germination of sporangia. Solar radiation is the dominant factor determining survival of B. lactucae sporangia, while temperature and RH have small, insignificant effects in coastal areas of California. This suggests that infections by sporangia that survived a day are probable only on cloudy days or on leaves that are highly shaded.

  10. Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A, -B, or -C lamp.

    PubMed

    Lee, Min-Jeong; Son, Jung Eek; Oh, Myung-Min

    2014-01-30

    The production of high-quality crops based on phytochemicals is a strategy for accelerating the practical use of plant factories. Previous studies have demonstrated that ultraviolet (UV) light is effective in improving phytochemical production. This study aimed to determine the effect of various UV wavelengths on growth and phenolic compound accumulation in lettuce (Lactuca sativa L.) grown in a closed-type plant production system. Seven days, 1 day and 0.25 day were determined as the upper limit of the irradiation periods for UV-A, -B, and -C, respectively, in the lettuce based on physiological disorders and the fluorescence parameter F(v)/F(m). Continuous UV-A treatment significantly induced the accumulation of phenolic compounds and antioxidants until 4 days of treatment without growth inhibition, consistent with an increase in phenylalanine ammonia lyase (PAL) gene expression and PAL activity. Repeated or gradual UV-B exposure yielded approximately 1.4-3.6 times more total phenolics and antioxidants, respectively, than the controls did 2 days after the treatments, although both treatments inhibited lettuce growth. Repeated UV-C exposure increased phenolics but severely inhibited the growth of lettuce plants. Our data suggest that UV irradiation can improve the accumulation of phenolic compounds with antioxidant properties in lettuce cultivated in plant factories. © 2013 Society of Chemical Industry.

  11. Genome-wide association study for lettuce cultivars with improved salad processing efficiency

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa L.) is widely used as the main ingredient of packaged leafy vegetable salads. Salad lettuce can have short shelf life, decaying as early as eight days after harvest and reducing the nutritional quality. Decayed lettuce is not marketable, produces extra waste, and results in t...

  12. Older leaves of lettuce (Lactuca spp.) support higher levels of Salmonella enterica ser. Senftenberg attachment and show greater variation between plant accessions than do younger leaves.

    PubMed

    Hunter, Paul J; Shaw, Robert K; Berger, Cedric N; Frankel, Gad; Pink, David; Hand, Paul

    2015-06-01

    Salmonella can bind to the leaves of salad crops including lettuce and survive for commercially relevant periods. Previous studies have shown that younger leaves are more susceptible to colonization than older leaves and that colonization levels are dependent on both the bacterial serovar and the lettuce cultivar. In this study, we investigated the ability of two Lactuca sativa cultivars (Saladin and Iceberg) and an accession of wild lettuce (L. serriola) to support attachment of Salmonella enterica serovar Senftenberg, to the first and fifth to sixth true leaves and the associations between cultivar-dependent variation in plant leaf surface characteristics and bacterial attachment. Attachment levels were higher on older leaves than on the younger ones and these differences were associated with leaf vein and stomatal densities, leaf surface hydrophobicity and leaf surface soluble protein concentrations. Vein density and leaf surface hydrophobicity were also associated with cultivar-specific differences in Salmonella attachment, although the latter was only observed in the older leaves and was also associated with level of epicuticular wax. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. [Analysis of the mineral elements of Lactuca sativa under the condition of different spectral components].

    PubMed

    Chen, Xiao-Li; Guo, Wen-Zhong; Xue, Xu-Zhang; Wang, Li-Chun; Li, Liang; Chen, Fei

    2013-08-01

    Mineral elements absorption and content of Lactuca sativa under different spectral component conditions were studied by ICP-AES technology. The results showed that: (1) For Lactuca sativa, the average proportion for Ca : Mg : K : Na : P was 5.5 : 2.5 : 2.3 : 1.5 : 1.0, the average proportion for Fe : Mn : Zn : Cu : B was 25.9 : 5.9 : 2.8 : 1.1 : 1.0; (2) The absorptions for K, P, Ca, Mg and B are the largest under the LED treatment R/B = 1 : 2.75, red light from fluorescent lamps and LED can both promote the absorptions of Fe and Cu; (3)The LED treatments exhibiting relatively higher content of mineral elements are R/B = 1 : 2.75 and R/W = 1 : 1 while higher dry matter accumulations are R/B = 1 : 2.75 and B/W = 1 : 1.

  14. Phytotoxic effects of leukamenin E (an ent-kaurene diterpenoid) on root growth and root hair development in Lactuca sativa L. seedlings.

    PubMed

    Ding, Lan; Qi, Linlin; Jing, Hongwei; Li, Juan; Wang, Wei; Wang, Tao

    2008-11-01

    Leukamenin E, an ent-kaurene diterpenoid isolated from Isodon racemosa (Hemsl) Hara, showed phytotoxic effects on root growth and root hair development of lettuce seedlings (Lactuca sativa L.). Lower concentrations (10 microM) of leukamenin E did not affect root growth, but at concentrations higher than 50 microM, the rate was inhibited. The influence of leukamenin E on root growth rate was closely correlated with alterations in the mitotic index. A low incidence of aberrant mitosis image was observed when lettuce roots were treated with higher concentrations (100 and 200 microM) of leukamenin E. This suggests that inhibition of root growth may be due to inhibition of cell division. All tested concentrations of the diterpenoid (10 microM or more) inhibited root hair development in a dose-dependent manner. At a concentration of 80 microM, leukamenin E completely blocked root hair initiation. Application of Ag(+)-an ethylene action inhibitor-to lettuce seedlings inhibited root hair elongation similar to the diterpenoid. Enhanced root hair length was stimulated by exogenous ethephon-an ethylene-releasing agent-and could be reversed by addition of leukamenin E. This suggests that leukamenin E may act as a potential ethylene action antagonist in the inhibition of lettuce root hair development. We conclude that leukamenin E may curb root hair development by interfering with ethylene action at concentrations above 10 microM and inhibits root growth via inhibition of cell division at concentrations above 50 microM.

  15. Effects of kaurane diterpene derivatives on germination and growth of Lactuca sativa seedlings.

    PubMed

    Vieira, Henriete S; Takahashi, Jacqueline A; Pimenta, Lúcia P S; Boaventura, Maria Amélia D

    2005-01-01

    Kaurenoic and grandiflorenic acid, isolated from Wedelia paludosa (Asteraceae), some derivatives from these acids (alcohols, esters, amides, lactones, oximes) and other naturally occurring kaurane diterpenes were tested for their action on the growth of radical and shoot of Lactuca sativa. Gibberellic acid, GA3, a commercially available phytohormone, belonging to the same class of diterpenes, was also tested. Some of the tested substances showed a remarkable activity either in the inhibition or in stimulation of L. sativa growth. The activity, in some cases, was even higher than that of GA3.

  16. Marker-assisted selection for disease resistance in lettuce

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa L.) is the most popular leafy vegetable that is cultivated mainly in moderate climate. Consumers demand lettuce with good visual appearance and free of disease. Improved disease resistance of new cultivars is achieved by combining desirable genes (or alleles) from existing cu...

  17. MU06-857, a Green Leaf Lettuce Breeding Line with Resistance to Leafminer and Lettuce Mosaic Virus.

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service, United States Department of Agriculture announces the release of a breeding line of green leaf lettuce (Lactuca sativa L.) with resistance to leafminers (Liriomyza langei Frick) and lettuce mosaic. The line MU06-857 is similar to cultivar ‘Lolla Rossa’ (‘Lollo Ros...

  18. Selenium accumulation in lettuce germplasm

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is an essential micronutrient for animals and humans. Increasing Se content in food crops offers an effective approach to reduce the widespread selenium deficiency problem in many parts of the world. In this study, we evaluated thirty diverse accessions of lettuce (Lactuca sativa L.) f...

  19. Effect of salicylhydroxamic acid on endosperm strength and embryo growth of Lactuca sativa L. cv Waldmann's Green seeds

    NASA Technical Reports Server (NTRS)

    Brooks, C. A.; Mitchell, C. A.

    1988-01-01

    Salicylhydroxamic acid (SHAM) stimulated germination of photosensitive lettuce (Lactuca sativa L. cv Waldmann's Green) seeds in darkness. To determine whether SHAM acts on the embryo or the endosperm, we investigated separately effects of SHAM on growth potential of isolated embryos as well as on endosperm strength. Embryo growth potential was quantified by incubating decoated embryos in various concentrations of osmoticum and measuring subsequent radicle elongation. Growth potential of embryos isolated from seeds pretreated with 4 millimolar SHAM was equal to that of untreated controls. Rupture strength of endosperm tissue excised from seeds pretreated with SHAM was 33% less than that of controls in the micropylar region. To determine if the embryo must be in contact with the endosperm of SHAM to weaken the endosperm, some endosperms were incubated with SHAM only after dissection from seeds. Rupture strength of SHAM-treated, isolated endosperms in the micropylar region was 25% less than that of untreated controls. There was no difference in rupture strength in the cotyledonary region of endosperm isolated from seeds treated with SHAM in buffer or buffer alone. SHAM therefore stimulates germination not by enhancing embryo growth potential, but by weakening the micropylar region of the endosperm enclosing the embryo.

  20. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation.

    PubMed

    Larue, Camille; Castillo-Michel, Hiram; Sobanska, Sophie; Cécillon, Lauric; Bureau, Sarah; Barthès, Véronique; Ouerdane, Laurent; Carrière, Marie; Sarret, Géraldine

    2014-01-15

    The impact of engineered nanomaterials on plants, which act as a major point of entry of contaminants into trophic chains, is little documented. The foliar pathway is even less known than the soil-root pathway. However, significant inputs of nanoparticles (NPs) on plant foliage may be expected due to deposition of atmospheric particles or application of NP-containing pesticides. The uptake of Ag-NPs in the crop species Lactuca sativa after foliar exposure and their possible biotransformation and phytotoxic effects were studied. In addition to chemical analyses and ecotoxicological tests, micro X-ray fluorescence, micro X-ray absorption spectroscopy, time of flight secondary ion mass spectrometry and electron microscopy were used to localize and determine the speciation of Ag at sub-micrometer resolution. Although no sign of phytotoxicity was observed, Ag was effectively trapped on lettuce leaves and a thorough washing did not decrease Ag content significantly. We provide first evidence for the entrapment of Ag-NPs by the cuticle and penetration in the leaf tissue through stomata, for the diffusion of Ag in leaf tissues, and oxidation of Ag-NPs and complexation of Ag(+) by thiol-containing molecules. Such type of information is crucial for better assessing the risk associated to Ag-NP containing products.

  1. Effect of salicylhydroxamic acid on endosperm strength and embryo growth of Lactuca sativa L. cv Waldmann's Green seeds

    NASA Technical Reports Server (NTRS)

    Brooks, C. A.; Mitchell, C. A.

    1988-01-01

    Salicylhydroxamic acid (SHAM) stimulated germination of photosensitive lettuce (Lactuca sativa L. cv Waldmann's Green) seeds in darkness. To determine whether SHAM acts on the embryo or the endosperm, we investigated separately effects of SHAM on growth potential of isolated embryos as well as on endosperm strength. Embryo growth potential was quantified by incubating decoated embryos in various concentrations of osmoticum and measuring subsequent radicle elongation. Growth potential of embryos isolated from seeds pretreated with 4 millimolar SHAM was equal to that of untreated controls. Rupture strength of endosperm tissue excised from seeds pretreated with SHAM was 33% less than that of controls in the micropylar region. To determine if the embryo must be in contact with the endosperm of SHAM to weaken the endosperm, some endosperms were incubated with SHAM only after dissection from seeds. Rupture strength of SHAM-treated, isolated endosperms in the micropylar region was 25% less than that of untreated controls. There was no difference in rupture strength in the cotyledonary region of endosperm isolated from seeds treated with SHAM in buffer or buffer alone. SHAM therefore stimulates germination not by enhancing embryo growth potential, but by weakening the micropylar region of the endosperm enclosing the embryo.

  2. Development and application of a 6.5 million feature Affymetrix Genechip® for massively parallel discovery of single position polymorphisms in lettuce (Lactuca spp.)

    PubMed Central

    2012-01-01

    Background High-resolution genetic maps are needed in many crops to help characterize the genetic diversity that determines agriculturally important traits. Hybridization to microarrays to detect single feature polymorphisms is a powerful technique for marker discovery and genotyping because of its highly parallel nature. However, microarrays designed for gene expression analysis rarely provide sufficient gene coverage for optimal detection of nucleotide polymorphisms, which limits utility in species with low rates of polymorphism such as lettuce (Lactuca sativa). Results We developed a 6.5 million feature Affymetrix GeneChip® for efficient polymorphism discovery and genotyping, as well as for analysis of gene expression in lettuce. Probes on the microarray were designed from 26,809 unigenes from cultivated lettuce and an additional 8,819 unigenes from four related species (L. serriola, L. saligna, L. virosa and L. perennis). Where possible, probes were tiled with a 2 bp stagger, alternating on each DNA strand; providing an average of 187 probes covering approximately 600 bp for each of over 35,000 unigenes; resulting in up to 13 fold redundancy in coverage per nucleotide. We developed protocols for hybridization of genomic DNA to the GeneChip® and refined custom algorithms that utilized coverage from multiple, high quality probes to detect single position polymorphisms in 2 bp sliding windows across each unigene. This allowed us to detect greater than 18,000 polymorphisms between the parental lines of our core mapping population, as well as numerous polymorphisms between cultivated lettuce and wild species in the lettuce genepool. Using marker data from our diversity panel comprised of 52 accessions from the five species listed above, we were able to separate accessions by species using both phylogenetic and principal component analyses. Additionally, we estimated the diversity between different types of cultivated lettuce and distinguished morphological types

  3. Identification of QTLs conferring resistance to downy mildew in legacy cultivars of lettuce

    USDA-ARS?s Scientific Manuscript database

    Many cultivars of lettuce (Lactuca sativa L.), the most popular leafy vegetable, are susceptible to downy mildew disease caused by Bremia lactucae. Cultivars Iceberg and Grand Rapids that were released in 18th and 19th century, respectively, have high levels of quantitative resistance to downy milde...

  4. Blue and green light-induced phototropism in Arabidopsis thaliana and Lactuca sativa L. seedlings

    SciTech Connect

    Steinitz, B.; Ren, Z.; Poff, K.L.

    1985-01-01

    Exposure time-response curves for blue and green light-induced phototropic bending in hypocotyls of Arabidopsis thaliana (L.) Heynh. and Lactuca sativa L. seedlings are presented. These seedlings show significant phototropic sensitivity up to 540 to 550 nanometers. Since wavelengths longer than 560 nanometers do not induce phototropic bending, it is suggested that the response to 510 to 550 nanometers light is mediated by the specific blue light photoreceptor of phototropism. The authors advise care in the use of green safelights for studies of phototropism.

  5. Blue and Green Light-Induced Phototropism in Arabidopsis thaliana and Lactuca sativa L. Seedlings 1

    PubMed Central

    Steinitz, Benjamin; Ren, Zhangling; Poff, Kenneth L.

    1985-01-01

    Exposure time-response curves for blue and green light-induced phototropic bending in hypocotyls of Arabidopsis thaliana (L.) Heynh. and Lactuca sativa L. seedlings are presented. These seedlings show significant phototropic sensitivity up to 540 to 550 nanometers. Since wave-lengths longer than 560 nanometers do not induce phototropic bending, it is suggested that the response to 510 to 550 nanometers light is mediated by the specific blue light photoreceptor of phototropism. We advise care in the use of green `safelights' for studies of phototropism. PMID:16664021

  6. Lettuce contact allergy.

    PubMed

    Paulsen, Evy; Andersen, Klaus E

    2016-02-01

    Lettuce (Lactuca sativa L.) and its varieties are important vegetable crops worldwide. They are also well-known, rarely reported, causes of contact allergy. As lettuce allergens and extracts are not commercially available, the allergy may be underdiagnosed. The aims of this article are to present new data on lettuce contact allergy and review the literature. Lettuce is weakly allergenic, and occupational cases are mainly reported. Using aimed patch testing in Compositae-allergic patients, two recent Danish studies showed prevalence rates of positive lettuce reactions of 11% and 22%. The majority of cases are non-occupational, and may partly be caused by cross-reactivity. The sesquiterpene lactone mix seems to be a poor screening agent for lettuce contact allergy, as the prevalence of positive reactions is significantly higher in non-occupationally sensitized patients. Because of the easy degradability of lettuce allergens, it is recommended to patch test with freshly cut lettuce stem and supplement this with Compositae mix. As contact urticaria and protein contact dermatitis may present as dermatitis, it is important to perform prick-to-prick tests, and possibly scratch patch tests as well. Any person who is occupationally exposed to lettuce for longer periods, especially atopics, amateur gardeners, and persons keeping lettuce-eating pets, is potentially at risk of developing lettuce contact allergy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Agronomic aspects of strip intercropping lettuce with alyssum for biological control of aphids

    USDA-ARS?s Scientific Manuscript database

    Organic growers in California typically devote 5 to 10% of the area in lettuce (Lactuca sativa L.) fields to insectary strips of alyssum (Lobularia maritime (L.) Desv.) to attract syrphid flies (Syrphidae) whose larvae provide biological control of aphids. A 2-year study with organic romaine lettuc...

  8. Genetics of the partial resistance against race 2 of Verticillium dahliae in lettuce

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa L.) production on the Coastal California is threatened by Verticillium wilt, a soil borne fungal disease caused by Verticillium dahliae that diminishes yield and quality. Two races of V. dahliae were identified on lettuce, race 1 and race 2. Complete resistance to race 1 is c...

  9. Resistance to downy mildew in lettuce ‘La Brillante’ is conferred by dm50 gene and multiple QTL

    USDA-ARS?s Scientific Manuscript database

    Many cultivars of lettuce (Lactuca sativa L.) are susceptible to downy mildew, a nearly globally ubiquitous disease caused by Bremia lactucae. We previously determined that Batavia type cultivar La Brillante has a high level of field resistance to the disease in California. Testing of a mapping popu...

  10. Transformation of Lactuca sativa L. with rol C gene results in increased antioxidant potential and enhanced analgesic, anti-inflammatory and antidepressant activities in vivo.

    PubMed

    Ismail, Hammad; Dilshad, Erum; Waheed, Mohammad Tahir; Sajid, Moniba; Kayani, Waqas Khan; Mirza, Bushra

    2016-12-01

    Lettuce is an important edible crop which possesses various medicinal properties. In this study Lactuca sativa L. (cv Grand Rapids) was transformed by Agrobacterium-mediated transformation with rol C gene. Transgene integration and expression was confirmed through PCR and semiquantitative RT-PCR. The transformed extracts were evaluated for their in vitro antioxidant and in vivo analgesic, anti-inflammatory and antidepressant activities in rats. The transformed plants showed 53-98 % increase in total phenolic and 45-58 % increase in total flavonoid contents compared with untransformed plants. Results of total reducing power and total antioxidant capacity exhibited 90-118 and 61-75 % increase in transformed plants, respectively. In contrast to control, DPPH, lipid peroxidation and DNA protection assay showed up to 37, 20 and 50 % enhancement in transformed plants, respectively. The extracts showed similar but significant enhancement behavior in hot plate analgesic and carrageenan-induced hind paw edema test. The transformed extracts showed 72.1 and 78.5 % increase for analgesic and anti-inflammatory activities, respectively. The transformants of rol C gene exhibited prominent antidepressant activity with 64-73 % increase compared with untransformed plants. In conclusion, the present work suggests that transformation with rol C gene can be used to generate lettuce with enhanced medicinally important properties, such as antioxidant, analgesic, anti-inflammatory and antidepressant potential.

  11. Root Zone Cooling and Exogenous Spermidine Root-Pretreatment Promoting Lactuca sativa L. Growth and Photosynthesis in the High-temperature Season.

    PubMed

    Sun, Jin; Lu, Na; Xu, Hongjia; Maruo, Toru; Guo, Shirong

    2016-01-01

    Root zone high-temperature stress is a major factor limiting hydroponic plant growth during the high-temperature season. The effects of root zone cooling (RZC; at 25°C) and exogenous spermidine (Spd) root-pretreatment (SRP, 0.1 mM) on growth, leaf photosynthetic traits, and chlorophyll fluorescence characteristics of hydroponic Lactuca sativa L. grown in a high-temperature season (average temperature > 30°C) were examined. Both treatments significantly promoted plant growth and photosynthesis in the high-temperature season, but the mechanisms of photosynthesis improvement in the hydroponic grown lettuce plants were different between the RZC and SRP treatments. The former improved plant photosynthesis by increasing stoma conductance (G s) to enhance CO2 supply, thus promoting photosynthetic electron transport activity and phosphorylation, which improved the level of the photochemical efficiency of photosystem II (PSII), rather than enhancing CO2 assimilation efficiency. The latter improved plant photosynthesis by enhancing CO2 assimilation efficiency, rather than stomatal regulation. Combination of RZC and SRP significantly improved P N of lettuce plants in a high-temperature season by both improvement of G s to enhance CO2 supply and enhancement of CO2 assimilation. The enhancement of photosynthetic efficiency in both treatments was independent of altering light-harvesting or excessive energy dissipation.

  12. Increased exposure to UV-B radiation during early development leads to enhanced photoprotection and improved long-term performance in Lactuca sativa.

    PubMed

    Wargent, Jason J; Elfadly, Eslam M; Moore, Jason P; Paul, Nigel D

    2011-08-01

    Plant responses to solar UV radiation are numerous and have often been considered from a perspective of negative outcomes for plant productivity. In this study, we used two experimental approaches consisting of: (1) field-based spectrally modifying filters in addition to (2) controlled indoor exposure to UV-B, to examine the effects of UV radiation on growth and photosynthetic performance of lettuce (Lactuca sativa L.) seedlings. Various aspects of growth were affected in plants grown under a UV-inclusive environment compared to a UV-depleted environment, including reductions in leaf expansion, increases in leaf thickness and the rate of net photosynthesis. After transplantation to a uniform field environment, lettuce plants initially propagated under the UV-inclusive environment exhibited higher harvestable yields than those from a UV-depleted environment. In controlled conditions, photosynthetic rates were higher in plants grown in the presence of UV-B radiation, and relative growth of plants pre-acclimatized to UV-B was also increased, in addition to higher maximum photochemical efficiency of photosystem II (PSII) (F(v) /F(m) ) following subsequent exposure to high photosynthetically active radiation (PAR) and temperature stress. Our findings are discussed within the context of sustainability in agriculture and the paradigm shift in photobiology which such beneficial responses to UV radiation could represent. © 2011 Blackwell Publishing Ltd.

  13. Are uranium-contaminated soil and irrigation water a risk for human vegetables consumers? A study case with Solanum tuberosum L., Phaseolus vulgaris L. and Lactuca sativa L.

    PubMed

    Neves, O; Abreu, M M

    2009-11-01

    The knowledge of uranium concentration, in the products entering the human diet is of extreme importance because of their chemical hazard to health. Controlled field experiments with potatoes, beans and lettuce (Solanum tuberosum L., Phaseolus vulgaris L. and Lactuca sativa L.) were carried out in a contaminated soil used by local farmers located near a closed Portuguese uranium mine (Cunha Baixa, Mangualde). The soil with high average uranium levels (64-252 mg/kg) was divided in two plots, and irrigated with non-contaminated and uranium-contaminated water (<20 and >900 microg/L). Uranium maximum average concentration in the edible vegetables parts (mg/kg fresh weight) ranged in the following order: lettuce (234 microg/kg) > green bean (30 microg/kg) > potatoes without peel (4 microg/kg). Although uranium in soil, irrigation water and vegetables was high, the assessment of the health risk based on hazard quotient indicates that consumption of these vegetables does not represent potential adverse (no carcinogenic) effects for a local inhabitant during lifetime.

  14. Root Zone Cooling and Exogenous Spermidine Root-Pretreatment Promoting Lactuca sativa L. Growth and Photosynthesis in the High-temperature Season

    PubMed Central

    Sun, Jin; Lu, Na; Xu, Hongjia; Maruo, Toru; Guo, Shirong

    2016-01-01

    Root zone high-temperature stress is a major factor limiting hydroponic plant growth during the high-temperature season. The effects of root zone cooling (RZC; at 25°C) and exogenous spermidine (Spd) root-pretreatment (SRP, 0.1 mM) on growth, leaf photosynthetic traits, and chlorophyll fluorescence characteristics of hydroponic Lactuca sativa L. grown in a high-temperature season (average temperature > 30°C) were examined. Both treatments significantly promoted plant growth and photosynthesis in the high-temperature season, but the mechanisms of photosynthesis improvement in the hydroponic grown lettuce plants were different between the RZC and SRP treatments. The former improved plant photosynthesis by increasing stoma conductance (Gs) to enhance CO2 supply, thus promoting photosynthetic electron transport activity and phosphorylation, which improved the level of the photochemical efficiency of photosystem II (PSII), rather than enhancing CO2 assimilation efficiency. The latter improved plant photosynthesis by enhancing CO2 assimilation efficiency, rather than stomatal regulation. Combination of RZC and SRP significantly improved PN of lettuce plants in a high-temperature season by both improvement of Gs to enhance CO2 supply and enhancement of CO2 assimilation. The enhancement of photosynthetic efficiency in both treatments was independent of altering light-harvesting or excessive energy dissipation. PMID:27047532

  15. Effect of corn steep liquor on lettuce root rot (Fusarium oxysporum f.sp. lactucae) in hydroponic cultures.

    PubMed

    Chinta, Yufita D; Kano, Kazuki; Widiastuti, Ani; Fukahori, Masaru; Kawasaki, Shizuka; Eguchi, Yumi; Misu, Hideyuki; Odani, Hiromitsu; Zhou, Songying; Narisawa, Kazuhiko; Fujiwara, Kazuki; Shinohara, Makoto; Sato, Tatsuo

    2014-08-01

    Recent reports indicate that organic fertilisers have a suppressive effect on the pathogens of plants grown under hydroponic systems. Furthermore, microorganisms exhibiting antagonistic activity to diseases have been observed in organic hydroponic systems. This study evaluated the effect of corn steep liquor (CSL) on controlling lettuce root rot disease [Fusarium oxysporum f.sp. lactucae (FOL)] in a hydroponic system. The effect of CSL and Otsuka A (a chemical fertiliser) on the inhibition of FOL in terms of mycelial growth inhibition was tested in vivo. Addition of CSL suppressed FOL infection rates. CSL inhibited FOL infection by 26.3-42.5% from 2 days after starting incubation. In comparison, Otsuka A inhibited FOL growth by 5.5-19.4%. In addition, four of 10 bacteria isolated from the nutrient media containing CSL exhibited inhibition zones preventing FOL mycelial growth. We found that CSL suppressed FOL in lettuce via its antifungal and biostimulatory effects. We suggest that activation of beneficial microorganisms present in CSL may be used to decrease lettuce root rot disease and contribute to lettuce root growth. © 2014 Society of Chemical Industry.

  16. Remote sensing of nutrient deficiency in Lactuca sativa using neural networks for terrestrial and advanced life support applications

    NASA Astrophysics Data System (ADS)

    Sears, Edie Seldon

    2000-12-01

    A remote sensing study using reflectance and fluorescence spectra of hydroponically grown Lactuca sativa (lettuce) canopies was conducted. An optical receiver was designed and constructed to interface with a commercial fiber optic spectrometer for data acquisition. Optical parameters were varied to determine effects of field of view and distance to target on vegetation stress assessment over the test plant growth cycle. Feedforward backpropagation neural networks (NN) were implemented to predict the presence of canopy stress. Effects of spatial and spectral resolutions on stress predictions of the neural network were also examined. Visual inspection and fresh mass values failed to differentiate among controls, plants cultivated with 25% of the recommended concentration of phosphorous (P), and those cultivated with 25% nitrogen (N) based on fresh mass and visual inspection. The NN's were trained on input vectors created using reflectance and test day, fluorescence and test day, and reflectance, fluorescence, and test day. Four networks were created representing four levels of spectral resolution: 100-nm NN, 10-nm NN, 1-nm NN, and 0.1-nm NN. The 10-nm resolution was found to be sufficient for classifying extreme nitrogen deficiency in freestanding hydroponic lettuce. As a result of leaf angle and canopy structure broadband scattering intensity in the 700-nm to 1000-nm range was found to be the most useful portion of the spectrum in this study. More subtle effects of "greenness" and fluorescence emission were believed to be obscured by canopy structure and leaf orientation. As field of view was not as found to be as significant as originally believed, systems implementing higher repetitions over more uniformly oriented, i.e. smaller, flatter, target areas would provide for more discernible neural network input vectors. It is believed that this technique holds considerable promise for early detection of extreme nitrogen deficiency. Further research is recommended using

  17. Toxic effects of environmental pollutants: Comparative investigation using Allium cepa L. and Lactuca sativa L.

    PubMed

    Silveira, Graciele Lurdes; Lima, Maria Gabriela Franco; Reis, Gabriela Barreto Dos; Palmieri, Marcel José; Andrade-Vieria, Larissa Fonseca

    2017-03-21

    Studies that help understand the mechanisms of action of environmental pollutants are extremely important in environmental toxicology. In this context, assays using plants as models stand out for their simplicity and low performance cost. Among the plants used for this purpose, Allium cepa L. is the model most commonly applied for cytogenotoxic tests, while Lactuca sativa L., already widely used in phytotoxic investigations, has been gaining prominence in cytotoxic analyses. The present study aimed to compare the responses of A. cepa and L. sativa via macroscopic (root growth) and microscopic analyses (cell cycle and DNA fragmentation via TdT-mediated deoxy-uracil nick and labeling (TUNEL) and comet assays) after exposure of their roots to environmental pollutants with known cytogenotoxic mechanisms. Both species presented sensitive and efficient response to the applied tests after exposure to the DNA-alkylating agent Methyl Methanesulfonate (MMS), the heavy metal Cadmium, the aluminum industry waste Spent Potliner (SPL) and the herbicide Atrazine. However, they differed regarding the responses to the evaluated endpoints. Overall, A. cepa was more efficient in detecting clastogenic changes, arising from DNA breakage, while L. sativa rather detected aneugenic alterations, related to chromosome segregation in mitosis. In the tests applied to verify DNA fragmentation (comet and TUNEL assays), A. cepa presented higher sensitivity. In conclusion, both models are efficient to evaluate toxicological risks of environmental pollutants.

  18. Phytohormone profile in Lactuca sativa and Brassica oleracea plants grown under Zn deficiency.

    PubMed

    Navarro-León, Eloy; Albacete, Alfonso; Torre-González, Alejandro de la; Ruiz, Juan M; Blasco, Begoña

    2016-10-01

    Phytohormones, structurally diverse compounds, are involved in multiple processes within plants, such as controlling plant growth and stress response. Zn is an essential micronutrient for plants and its deficiency causes large economic losses in crops. Therefore, the purpose of this study was to analyse the role of phytohormones in the Zn-deficiency response of two economically important species, i.e. Lactuca sativa and Brassica oleracea. For this, these two species were grown hydroponically with different Zn-application rates: 10 μM Zn as control and 0.1 μM Zn as deficiency treatment and phytohormone concentration was determined by U-HPLC-MS. Zn deficiency resulted in a substantial loss of biomass in L. sativa plants that was correlated with a decline in growth-promoting hormones such as indole-3-acetic acid (IAA), cytokinins (CKs), and gibberellins (GAs). However these hormones increased or stabilized their concentrations in B. oleracea and could help to maintain the biomass in this species. A lower concentration of stress-signaling hormones such as ethylene precursor aminocyclopropane-1-carboxylic acid (ACC), abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) and also CKs might be involved in Zn uptake in L. sativa while a rise in GA4, isopentenyl adenine (iP), and ACC and a fall in JA and SA might contribute to a better Zn-utilization efficiency (ZnUtE), as observed in B. oleracea plants.

  19. Iceberg lettuce breeding lines with resistance to Verticillium wilt caused by race 1 isolates of Verticillium dahliae.

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service, United States Department of Agriculture and the University of California, Davis, announce the release of two breeding lines of lettuce (Lactuca sativa L.). Lines RH08-0472 and RH08-0475 are F9 iceberg type lettuce breeding lines with resistance to Verticillium wil...

  20. Application of chlorophyll fluorescence imaging and hyperspectral imaging in evaluation of decay in fresh-cut lettuce

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa L.) is commercially the most popular leafy vegetable whose leaves are usually consumed raw. Cleaned, cored, and chopped (fresh-cut) lettuce is a desirable, but highly perishable product. Modified atmosphere packaging (MAP) has been introduced to maintain quality of fresh-cut ...

  1. Toxicity of the effluent from an anaerobic bioreactor treating cereal residues on Lactuca sativa.

    PubMed

    Young, Brian Jonathan; Riera, Nicolás Iván; Beily, María Eugenia; Bres, Patricia Alina; Crespo, Diana Cristina; Ronco, Alicia Estela

    2012-02-01

    Effluents generated during the process of anaerobic digestion should be treated before their disposal into the environment. The aim of this study was evaluating the effectiveness of the effluent treatment system from an anaerobic bioreactor, assessing the toxicity reduction with the Lactuca sativa seed germination and root elongation inhibition test. Three sampling points were selected along the effluent treatment system: inflow into the first treatment pond, outflow from the third pond and recirculated flow to the bioreactor. Effluent dilutions tested for each sampling point were 25% and 50% (v/v), undiluted sample and controls. The pH, conductivity, temperature, dissolved oxygen, BOD₅ and COD were measured. The decrease in the organic and inorganic loads was correlated with a reduction in the phytotoxicity. The use of the seed toxicity test allows evaluating the quality and effectiveness of the studied effluent treatment system.

  2. Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species.

    PubMed

    Fincheira, Paola; Venthur, Herbert; Mutis, Ana; Parada, Maribel; Quiroz, Andrés

    2016-12-01

    Agrochemicals are currently used in horticulture to increase crop production. Nevertheless, their indiscriminate use is a relevant issue for environmental and legal aspects. Alternative tools for reducing fertilizers and synthetic phytohormones are being investigated, such as the use of volatile organic compounds (VOCs) as growth inducers. Some soil bacteria, such as Pseudomonas and Bacillus, stimulate Arabidopsis and tobacco growth by releasing VOCs, but their effects on vegetables have not been investigated. Lactuca sativa was used as model vegetable to investigate bacterial VOCs as growth inducers. We selected 10 bacteria strains, belonging to Bacillus, Staphylococcus and Serratia genera that are able to produce 3-hydroxy-2-butanone (acetoin), a compound with proven growth promoting activity. Two-day old-seedlings of L. sativa were exposed to VOCs emitted by the selected bacteria grown in different media cultures for 7 days. The results showed that the VOCs released from the bacteria elicited an increase in the number of lateral roots, dry weight, root growth and shoot length, depending on the media used. Three Bacillus strains, BCT53, BCT9 and BCT4, were selected according to its their growth inducing capacity. The BCT9 strain elicited the greatest increases in dry weight and primary root length when L. sativa seedlings were subjected to a 10-day experiment. Finally, because acetoin only stimulated root growth, we suggest that other volatiles could be responsible for the growth promotion of L. sativa. In conclusion, our results strongly suggest that bacteria volatiles can be used as growth-inducers as alternative or complementary strategies for application in horticulture species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locus Htg6.1 in lettuce (Lactuca sp.)

    PubMed Central

    Argyris, Jason; Truco, María José; Ochoa, Oswaldo; McHale, Leah; Dahal, Peetambar; Van Deynze, Allen; Michelmore, Richard W.

    2010-01-01

    Thermoinhibition, or failure of seeds to germinate when imbibed at warm temperatures, can be a significant problem in lettuce (Lactuca sativa L.) production. The reliability of stand establishment would be improved by increasing the ability of lettuce seeds to germinate at high temperatures. Genes encoding germination- or dormancy-related proteins were mapped in a recombinant inbred line population derived from a cross between L. sativa cv. Salinas and L. serriola accession UC96US23. This revealed several candidate genes that are located in the genomic regions containing quantitative trait loci (QTLs) associated with temperature and light requirements for germination. In particular, LsNCED4, a temperature-regulated gene in the biosynthetic pathway for abscisic acid (ABA), a germination inhibitor, mapped to the center of a previously detected QTL for high temperature germination (Htg6.1) from UC96US23. Three sets of sister BC3S2 near-isogenic lines (NILs) that were homozygous for the UC96US23 allele of LsNCED4 at Htg6.1 were developed by backcrossing to cv. Salinas and marker-assisted selection followed by selfing. The maximum temperature for germination of NIL seed lots with the UC96US23 allele at LsNCED4 was increased by 2–3°C when compared with sister NIL seed lots lacking the introgression. In addition, the expression of LsNCED4 was two- to threefold lower in the former NIL lines as compared to expression in the latter. Together, these data strongly implicate LsNCED4 as the candidate gene responsible for the Htg6.1 phenotype and indicate that decreased ABA biosynthesis at high imbibition temperatures is a major factor responsible for the increased germination thermotolerance of UC96US23 seeds. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1425-3) contains supplementary material, which is available to authorized users. PMID:20703871

  4. Chemical composition of essential oils and in vitro antioxidant activity of fresh and dry leaves crude extracts of medicinal plant of Lactuca Sativa L. native to Sultanate of Oman

    PubMed Central

    Al Nomaani, Rahma Said Salim; Hossain, Mohammad Amzad; Weli, Afaf Mohammed; Al-Riyami, Qasim; Al-Sabahi, Jamal Nasser

    2013-01-01

    Objective To isolate and analyse the chemical composition in the essential oils and free radical scavenging activity of different crude extracts from the fresh and dry leaves of vegetable plants of Lactuca sativa L. (L. sativa). Methods The essential oils and volatile chemical constituents were isolated from the fresh and dry leaves of L. sativa (lettuce) grown in Sultanate of Oman by hydro distillation method. The antioxidant activity of the crude extracts was carried out by well established free radical scavenging activity (DPPH) method. Results About 20 chemical compounds of different concentration representing 83.07% and 79.88% respectively were isolated and identified by gas chromatography-mass spectroscopy in the essential oils isolated from the fresh and dry leaves as α-pinene (5.11% and 4.05%), γ-cymene (2.07% and 1.92%), thymol (11.55% and 10.73%), durenol (52.00% and 49.79%), α-terpinene (1.66% and 1.34%), thymol acetate (0.99% and 0.67%), caryophyllene (2.11% and 1.98%), spathulenol (3.09% and 2.98%), camphene (4.11% and 3.65%), limonene (1.28% and 1.11%) representing these major chemical compounds. However, some other minor chemical constituents were also isolated and identified from the essential oil of lettuce including β-pinene, α-terpinolene, linalool, 4-terpineol, α-terpineol, o-methylthymol, L-alloaromadendrene and viridiflorene. Conclusions The chemical constituents in the essential oils from the locally grown lettuce were identified in the following classes or groups of chemical compounds such as monoterpenes, sesquiterpenes volatile organic compounds and their oxygenated hydrocarbons. Therefore, the essential oils and the crude extracts from Omani vegetable species of lettuce are active candidates which would be used as antioxidant, antifungal or antimicrobial agents in new drugs preparation for therapy of infectious diseases. PMID:23646297

  5. Chemical composition of essential oils and in vitro antioxidant activity of fresh and dry leaves crude extracts of medicinal plant of Lactuca Sativa L. native to Sultanate of Oman.

    PubMed

    Al Nomaani, Rahma Said Salim; Hossain, Mohammad Amzad; Weli, Afaf Mohammed; Al-Riyami, Qasim; Al-Sabahi, Jamal Nasser

    2013-05-01

    To isolate and analyse the chemical composition in the essential oils and free radical scavenging activity of different crude extracts from the fresh and dry leaves of vegetable plants of Lactuca sativa L. (L. sativa). The essential oils and volatile chemical constituents were isolated from the fresh and dry leaves of L. sativa (lettuce) grown in Sultanate of Oman by hydro distillation method. The antioxidant activity of the crude extracts was carried out by well established free radical scavenging activity (DPPH) method. About 20 chemical compounds of different concentration representing 83.07% and 79.88% respectively were isolated and identified by gas chromatography-mass spectroscopy in the essential oils isolated from the fresh and dry leaves as α-pinene (5.11% and 4.05%), γ-cymene (2.07% and 1.92%), thymol (11.55% and 10.73%), durenol (52.00% and 49.79%), α-terpinene (1.66% and 1.34%), thymol acetate (0.99% and 0.67%), caryophyllene (2.11% and 1.98%), spathulenol (3.09% and 2.98%), camphene (4.11% and 3.65%), limonene (1.28% and 1.11%) representing these major chemical compounds. However, some other minor chemical constituents were also isolated and identified from the essential oil of lettuce including β-pinene, α-terpinolene, linalool, 4-terpineol, α-terpineol, o-methylthymol, L-alloaromadendrene and viridiflorene. The chemical constituents in the essential oils from the locally grown lettuce were identified in the following classes or groups of chemical compounds such as monoterpenes, sesquiterpenes volatile organic compounds and their oxygenated hydrocarbons. Therefore, the essential oils and the crude extracts from Omani vegetable species of lettuce are active candidates which would be used as antioxidant, antifungal or antimicrobial agents in new drugs preparation for therapy of infectious diseases.

  6. Volatiles emitted by Bacillus sp. BCT9 act as growth modulating agents on Lactuca sativa seedlings.

    PubMed

    Fincheira, Paola; Parra, Leonardo; Mutis, Ana; Parada, Maribel; Quiroz, Andrés

    2017-10-01

    Chemical products are applied during horticulture to increase food production, but the environmental problems resulting from these applications have led to a search for more sustainable products. Volatile organic compounds (VOCs) demonstrating plant growth promoter (PGP) activity released by bacterial species have emerged as alternatives, but their effects on Lactuca sativa growth are unknown. In this study, VOCs released by Bacillus sp. BCT9 cultures grown in different media (Methyl Red & Voges Proskauer, Murashige & Skoog and nutrient media) at concentrations of 0.1, 0.2, 0.5 and 0.7 (measured as the absorbance, λ=600nm) were tested to evaluate their activity as growth inducers of L. sativa after 10days of exposure. Lower concentrations of BCT9 increased root length, and higher concentrations induced shoot length and lateral root length. The dry weight and number of lateral roots increased similarly, independent of concentration, for VOCs produced in all culture media. BCT9 cultures grown in Methyl Red & Voges Proskauer medium as bioactive compounds with or without lanolin. These VOCs increased shoot length, root length and dry weight at low concentrations, independent of the presence of lanolin. Lateral root length increased with the application of 2-nonanone (50ppm) and 2-undecanone (0.05ppm). Based on these results, the use of bioactive volatiles as growth inducers of horticultural species represents an alternative or complementary strategy. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa.

    PubMed

    Ouzounis, Theoharis; Razi Parjikolaei, Behnaz; Fretté, Xavier; Rosenqvist, Eva; Ottosen, Carl-Otto

    2015-01-01

    To evaluate the effect of blue light intensity and timing, two cultivars of lettuce [Lactuca sativa cv. "Batavia" (green) and cv. "Lollo Rossa" (red)] were grown in a greenhouse compartment in late winter under natural light and supplemental high pressure sodium (SON-T) lamps yielding 90 (±10) μmol m(-2) s(-1) for up to 20 h, but never between 17:00 and 21:00. The temperature in the greenhouse compartments was 22/11°C day/night, respectively. The five light-emitting diode (LED) light treatments were Control (no blue addition), 1B 06-08 (Blue light at 45 μmol m(-2) s(-1) from 06:00 to 08:00), 1B 21-08 (Blue light at 45 μmol m(-2) s(-1) from 21:00 to 08:00), 2B 17-19 (Blue at 80 μmol m(-2) s(-1) from 17:00 to 19:00), and 1B 17-19 (Blue at 45 μmol m(-2) s(-1) from 17:00 to 19:00). Total fresh and dry weight was not affected with additional blue light; however, plants treated with additional blue light were more compact. The stomatal conductance in the green lettuce cultivar was higher for all treatments with blue light compared to the Control. Photosynthetic yields measured with chlorophyll fluorescence showed different response between the cultivars; in red lettuce, the quantum yield of PSII decreased and the yield of non-photochemical quenching increased with increasing blue light, whereas in green lettuce no difference was observed. Quantification of secondary metabolites showed that all four treatments with additional blue light had higher amount of pigments, phenolic acids, and flavonoids compared to the Control. The effect was more prominent in red lettuce, highlighting that the results vary among treatments and compounds. Our results indicate that not only high light level triggers photoprotective heat dissipation in the plant, but also the specific spectral composition of the light itself at low intensities. However, these plant responses to light are cultivar dependent.

  8. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa

    PubMed Central

    Ouzounis, Theoharis; Razi Parjikolaei, Behnaz; Fretté, Xavier; Rosenqvist, Eva; Ottosen, Carl-Otto

    2015-01-01

    To evaluate the effect of blue light intensity and timing, two cultivars of lettuce [Lactuca sativa cv. “Batavia” (green) and cv. “Lollo Rossa” (red)] were grown in a greenhouse compartment in late winter under natural light and supplemental high pressure sodium (SON-T) lamps yielding 90 (±10) μmol m−2 s−1 for up to 20 h, but never between 17:00 and 21:00. The temperature in the greenhouse compartments was 22/11°C day/night, respectively. The five light-emitting diode (LED) light treatments were Control (no blue addition), 1B 06-08 (Blue light at 45 μmol m−2 s−1 from 06:00 to 08:00), 1B 21-08 (Blue light at 45 μmol m−2 s−1 from 21:00 to 08:00), 2B 17-19 (Blue at 80 μmol m−2 s−1 from 17:00 to 19:00), and 1B 17-19 (Blue at 45 μmol m−2 s−1 from 17:00 to 19:00). Total fresh and dry weight was not affected with additional blue light; however, plants treated with additional blue light were more compact. The stomatal conductance in the green lettuce cultivar was higher for all treatments with blue light compared to the Control. Photosynthetic yields measured with chlorophyll fluorescence showed different response between the cultivars; in red lettuce, the quantum yield of PSII decreased and the yield of non-photochemical quenching increased with increasing blue light, whereas in green lettuce no difference was observed. Quantification of secondary metabolites showed that all four treatments with additional blue light had higher amount of pigments, phenolic acids, and flavonoids compared to the Control. The effect was more prominent in red lettuce, highlighting that the results vary among treatments and compounds. Our results indicate that not only high light level triggers photoprotective heat dissipation in the plant, but also the specific spectral composition of the light itself at low intensities. However, these plant responses to light are cultivar dependent. PMID:25767473

  9. Evaluation of analgesic, anti-inflammatory, anti-depressant and anti-coagulant properties of Lactuca sativa (CV. Grand Rapids) plant tissues and cell suspension in rats.

    PubMed

    Ismail, Hammad; Mirza, Bushra

    2015-06-27

    Lactuca sativa (lettuce) has been traditionally used for relieving pain, inflammation, stomach problems including indigestion and lack of appetite. Moreover, the therapeutic significance of L. sativa includes its anticonvulsant, sedative-hypnotic and antioxidant properties. In the present study, the MC (methanol and chloroform; 1:1) and aqueous extracts of seed and leaf along with cell suspension exudate were prepared. These extracts were explored for their analgesic, anti-inflammatory, antidepressant and anticoagulant effects by hot plate analgesic assay; carrageenan induced hind paw edema test, forced swimming test and capillary method for blood clotting respectively in a rat model. The results were analyzed using one-way Analysis of Variance (ANOVA) followed by Turkey multiple comparison test. Interestingly, the extracts and the cell suspension exudate showed dual inhibition by reducing pain and inflammation. The results indicated that the aqueous extracts of leaf exhibited highest analgesic and anti-inflammatory activities followed by leaf MC, cell suspension exudate, seed aqueous and seed MC extracts. The current findings show that aqueous and MC extracts of seed have the least immobility time in the forced swimming test, which could act as an anti-depressant on the central nervous system. The leaf extracts and cell suspension exudate also expressed moderate anti-depressant activities. In anticoagulant assay, the coagulation time of aspirin (positive control) and MC extract of leaf was comparable, suggesting strong anti-coagulant effect. Additionally, no abnormal behavior or lethality was observed in any animal tested. Taken together, L. sativa can potentially act as a strong herbal drug due to its multiple pharmaceutical effects and is therefore of interest in drug discovery and development of formulations.

  10. Characterization and performance of 16 new inbred lines of lettuce

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service, U.S. Department of Agriculture announces the release of sixteen breeding lines of lettuce (Lactuca sativa L.). Five (SM13-I1, SM13-I2, SM13-I3, SM13-I4, and SM13-I5) of the six iceberg breeding lines can be used for whole head or salad blend production; the sixth i...

  11. Partial aphid resistance in lettuce negatively affects parasitoids.

    PubMed

    Lanteigne, Marie-Eve; Brodeur, Jacques; Jenni, Sylvie; Boivin, Guy

    2014-10-01

    This study investigated the effects of partial plant resistance on the lettuce aphid Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae), a major pest of cultivated lettuce (Lactuca sativa L.), and one of its parasitoids, Aphidius ervi Haliday (Hymenoptera: Braconidae). Aphids were reared on susceptible (L. sativa variety Estival; S) or partially resistant (Lactuca serriola L. PI 491093; PR) lettuce, and next parasitized by A. ervi females. Fitness proxies were measured for both aphids and parasitoids. Developmental time to adult stage took longer for alate and apterous aphids (an average of 3.5 and 1.5 additional days, respectively) on PR than on S lettuce, and fecundity of alate aphids reared on PR lettuce was reduced by 37.8% relative to those reared on S lettuce. Size (tibia length) and weight of aphids reared on PR lettuce were lower than for aphids reared on S lettuce from the third and second instar onward, respectively. Parasitism of aphids reared on PR plants resulted in lower parasitoid offspring emergence (-49.9%), lower adult female (-30.3%) and male (-27.5%) weight, smaller adult female (-17.5%) and male (-11.9%) size, and lower female fecundity (37.8% fewer eggs) than when parasitoids developed from aphids reared on S plants. Our results demonstrate that partial aphid resistance in lettuce negatively affects both the second and third trophic levels. Host plant resistance in cultivated lettuce may therefore create an ecological sink for aphid parasitoids.

  12. Metallic Nanoparticle (TiO2 and Fe3O4) Application Modifies Rhizosphere Phosphorus Availability and Uptake by Lactuca sativa.

    PubMed

    Zahra, Zahra; Arshad, Muhammad; Rafique, Rafia; Mahmood, Arshad; Habib, Amir; Qazi, Ishtiaq A; Khan, Saud A

    2015-08-12

    Application of engineered nanoparticles (NPs) with respect to nutrient uptake in plants is not yet well understood. The impacts of TiO2 and Fe3O4 NPs on the availability of naturally soil-bound inorganic phosphorus (Pi) to plants were studied along with relevant parameters. For this purpose, Lactuca sativa (lettuce) was cultivated on the soil amended with TiO2 and Fe3O4 (0, 50, 100, 150, 200, and 250 mg kg(-1)) over a period of 90 days. Different techniques, such as scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman, and Fourier transform infrared spectroscopy (FTIR) were used to monitor translocation and understand the possible mechanisms for phosphorus (P) uptake. The trends for P accumulation were different for roots (TiO2 > Fe3O4 > control) and shoots (Fe3O4 > TiO2 > control). Cystine and methionine were detected in the rhizosphere in Raman spectra. Affinities of NPs to adsorb phosphate ions, modifications in P speciation, and NP stress in the rhizosphere had possibly contributed to enhanced root exudation and acidification. All of these changes led to improved P availability and uptake by the plants. These promising results can help to develop an innovative strategy for using NPs for improved nutrient management to ensure food security.

  13. Linking the morphological and metabolomic response of Lactuca sativa L exposed to emerging contaminants using GC × GC-MS and chemometric tools.

    PubMed

    Hurtado, Carlos; Parastar, Hadi; Matamoros, Víctor; Piña, Benjamín; Tauler, Romà; Bayona, Josep M

    2017-07-26

    The occurrence of contaminants of emerging concern (CECs) in irrigation waters (up to low μg L(-1)) and irrigated crops (ng g(-1) in dry weight) has been reported, but the linkage between plant morphological changes and plant metabolomic response has not yet been addressed. In this study, a non-targeted metabolomic analysis was performed on lettuce (Lactuca sativa L) exposed to 11 CECs (pharmaceuticals, personal care products, anticorrosive agents and surfactants) by irrigation. The plants were watered with different CEC concentrations (0-50 µg L(-1)) for 34 days under controlled conditions and then harvested, extracted, derivatised and analysed by comprehensive two-dimensional gas chromatography coupled to a time-of-flight mass spectrometer (GC × GC-TOFMS). The resulting raw data were analysed using multivariate curve resolution (MCR) and partial least squares (PLS) methods. The metabolic response indicates that exposure to CECs at environmentally relevant concentrations (0.05 µg L(-1)) can cause significant metabolic alterations in plants (carbohydrate metabolism, the citric acid cycle, pentose phosphate pathway and glutathione pathway) linked to changes in morphological parameters (leaf height, stem width) and chlorophyll content.

  14. Investigating the ability of Pseudomonas fluorescens UW4 to reduce cadmium stress in Lactuca sativa via an intervention in the ethylene biosynthetic pathway.

    PubMed

    Albano, Lucas J; Macfie, Sheila M

    2016-12-01

    A typical plant response to any biotic or abiotic stress, including cadmium (Cd), involves increased ethylene synthesis, which causes senescence of the affected plant part. Stressed plants can experience reduced ethylene and improved growth if they are inoculated with bacteria that have the enzyme ACC deaminase, which metabolizes the ethylene precursor ACC (1-aminocyclopropane-1-carboxylate). We investigated whether one such bacterium, Pseudomonas fluorescens UW4, reduces the production of ethylene and improves the growth of lettuce (Lactuca sativa) sown in Cd-contaminated potting material (PRO-MIX® BX). Plants were inoculated with the wild-type P. fluorescens UW4 or a mutant strain that cannot produce ACC deaminase. Cadmium-treated plants contained up to 50 times more Cd than did control plants. In noninoculated plants, Cd induced a 5-fold increase in ethylene concentration. The wild-type bacterium prevented Cd-induced reductions in root biomass but there was no relationship between Cd treatment and ethylene production in inoculated plants. In contrast, when the concentration of ethylene was plotted against the extent of bacterial colonization of the roots, increased colonization with wild-type P. fluorescens UW4 was associated with 20% less ethylene production. Ours is the first study to show that the protective effect of this bacterium is proportional to the quantity of bacteria on the root surface.

  15. Regulation of cell division and growth in roots of Lactuca sativa L. seedlings by the Ent-Kaurene diterpenoid rabdosin B.

    PubMed

    Ding, Lan; Jing, Hongwei; Qin, Bo; Qi, Linlin; Li, Jing; Wang, Tao; Liu, Guoan

    2010-05-01

    Rabdosin B, an ent-kaurene diterpenoid purified from the air-dried aerial parts of Isodon japonica (Burm.f) Hara var. galaucocalyx (maxin) Hara, showed a biphasic, dose-dependent effect on root growth and a strong inhibitory effect on root hair development in lettuce seedlings (Lactuca sativa L.). Lower concentrations of rabdosin B (20-80 microM) significantly promoted root growth, but its higher levels at 120-200 microM, by contrast, had inhibitory effects. Additionally, all tested concentrations (10-40 microM) inhibited root hair development of seedlings in a dose-dependent manner. Further investigations on the underlying mechanism revealed that the promotion effect of rabdosin B at the lower concentrations resulted from increasing the cell length in the mature region and enhancing the mitotic activity of meristematic cells in seedlings' root tips. In contrast, rabdosin B at higher concentrations inhibited root growth by affecting both cell length in the mature region and division of meristematic cells. Comet assay and cell cycle analysis demonstrated that the decrease of mitotic activity of root meristematic cells was due to DNA damage induced cell cycle retardation of the G(2) phase and S phase at different times.

  16. Phytotoxicity of 15 common pharmaceuticals on the germination of Lactuca sativa and photosynthesis of Chlamydomonas reinhardtii.

    PubMed

    Pino, Ma Rosa; Muñiz, Selene; Val, Jonatan; Navarro, Enrique

    2016-11-01

    Pharmaceuticals reach terrestrial environments through the application of treated wastewaters and biosolids to agricultural soils. We have investigated the toxicity of 15 common pharmaceuticals, classified as nonsteroidal anti-inflammatory drugs (NSAIDs), blood lipid-lowering agents, β-blockers and antibiotics, in two photosynthetic organisms. Twelve pharmaceuticals caused inhibitory effects on the radicle and hypocotyl elongation of Lactuca sativa seeds. The EC50 values obtained were in the range of 170-5656 mg L(-1) in the case of the radicle and 188-4558 mg L(-1) for the hypocotyl. Propranolol was the most toxic drug for both root and hypocotyl elongation, followed by the NSAIDs, then gemfibrozil and tetracycline. Other effects, such as root necrosis, inhibition of root growth and curly hairs, were detected. However, even at the highest concentrations tested (3000 mg L(-1)), seed germination was not affected. NSAIDs decreased the photosynthetic yield of Chlamydomonas reinhardtii, but only salicylic acid showed EC50 values below 1000 mg L(-1). The first effects detected at low concentrations, together with the concentrations found in environmental samples, indicate that the use of biosolids and wastewaters containing pharmaceuticals should be regulated and their compositions assessed in order to prevent medium- and long-term impacts on agricultural soils and crops.

  17. 4',4‴,7,7″-tetra-O-methylcupressuflavone inhibits seed germination of Lactuca sativa.

    PubMed

    DeForest, Jacob C; Du, Lin; Joyner, P Matthew

    2014-04-25

    Biflavonoids have been isolated from a wide variety of plant species, but little is known about their native biological functions. Here we report a possible ecological role for biflavonoids by describing the isolation of the biflavonoid 4',4‴,7,7″-tetra-O-methylcupressuflavone (1) from Araucaria columnaris and its inhibitory effect on seed germination. Compound 1 was isolated from needles of a single A. columnaris specimen and inhibited germination of Lactuca sativa seeds in a culture-dish assay; it was also detected in soil samples under the canopy where reduced germination was observed, but not in a location away from the canopy where germination was uninhibited.

  18. Expression of gamma-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (Latuca sativa L.).

    PubMed

    Cho, Eun Ae; Lee, Chong Ae; Kim, Young Soo; Baek, So Hyeon; de los Reyes, Benildo G; Yun, Song Joong

    2005-02-28

    A cDNA encoding gamma-tocopherol methyltransferase (gamma-TMT) from Arabidopsis thaliana was overexpressed in lettuce (Latuca sativa L.) to improve the tocopherol composition. Seven lines of lettuce (T0) containing the gamma-TMT transgene were produced by Agrobacterium-mediated transformation. The inheritance and expression of the transgene were confirmed by DNA and RNA gel blot analyses as well as quantification of tocopherols and gamma-TMT activities. The ratio of alpha-/gamma-tocopherol content (TR) varied from 0.6 to 1.2 in non-transformed plants, while the T0 plants had ratios of 0.8 to 320. The ratio ranged from 0.4 to 544 in 41 T1 progenies of the T0 transgenic line gTM3, and the phenotypic segregation indicated monogenic inheritance of the transgene (i.e., 3:1 = dominant:wild-type classes). There was a tight relationship between the TR phenotype and gamma-TMT activity, and enzyme activities were affected by the copy number and transcript levels of the transgene. The TR phenotype was stably expressed in T2 progenies of T1 plants. The results from this study indicated that a stable inheritance and expression of Arabidopsis gamma-TMT transgene in lettuce results in a higher enzyme activity and the conversion of the gamma-tocopherol pool to alpha-tocopherol in transgenic lettuce.

  19. Toxicity assessment of a complex industrial wastewater using aquatic and terrestrial bioassays Daphnia pulex and Lactuca sativa.

    PubMed

    Sánchez-Meza, Juan Carlos; Pacheco-Salazar, Víctor Francisco; Pavón-Silva, Thelma Beatriz; Guiérrez-García, Víctor Guadalupe; Avila-González, Clemente De Jesús; Guerrero-García, Patricia

    2007-08-01

    Aquatic and terrestrial bioassays were used to assess toxicity at several stages in an industrial wastewater treatment plant that processes 400 L/s from a complex influent formed by wastewater from 135 industries. Daphnia pulex and Lactuca sativa were used to assess and compare toxicity between the influent wastewater and effluent wastewater from an activated sludge process, and compare their relationship with physicochemical parameters of Biological Oxygen Demand (BOD); Chemical Oxygen Demand (COD); Total Suspended Solids (TSS); total Nitrogen (N (N-total)), and ammonia Nitrogen (N (N - NH3)). Samples from the primary clarifiers (PC), mix liquor stage (ML) and secondary clarifiers (SC) were processed using physicochemical and bioassay test. Toxicity results with Daphnia pulex showed decreased mean values of acute Toxic Units (a.T.U.) between PC (2.1 a.T.U.) and SC (1,25 a.T.U.). Lactuca sativa showed high values of toxicity between PC and SC (3.37 and 3.32 a.T.U. respectively). Some samples exhibited higher toxicity values at the effluent stage (SC) than the influent stage (PC). The highest correlations of physicochemical properties with toxicity were obtained with COD and nitrogen compounds in effluent samples (SC), but not with influent samples (PC).

  20. Notice of release of iceberg, romaine, and leaf lettuce breeding lines with improved disease resistance

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service, U.S. Department of Agriculture announces the release of sixteen breeding lines of lettuce (Lactuca sativa L.). Five (SM13-Il, SM13-I2, SM13-I3, SM13-I4, and SM13-I5) of the six iceberg breeding lines can be used for whole head or salad blend production; the sixth i...

  1. Evaluation and Quantitative trait loci mapping of resistance to powdery mildew in lettuce

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa L.) is the major leafy vegetable that is susceptible to powdery mildew disease under greenhouse and field conditions. We mapped quantitative trait loci (QTLs) for resistance to powdery mildew under greenhouse conditions in an interspecific population derived from a cross betw...

  2. Germplasm Management in the Post-genomics Era-a case study with lettuce

    USDA-ARS?s Scientific Manuscript database

    High-throughput genotyping platforms and next-generation sequencing technologies revolutionized our ways in germplasm characterization. In collaboration with UC Davis Genome Center, we completed a project of genotyping the entire cultivated lettuce (Lactuca sativa L.) collection of 1,066 accessions ...

  3. Banded cucumber beetle (Coleoptera: Chrysomelidae) resistance in romaine lettuce: understanding latex chemistry

    USDA-ARS?s Scientific Manuscript database

    Many plants subjected to herbivore damage exude latex, a rich source of biochemicals, which play important roles in host plant resistance. Our previous studies showed that fresh latex from Valmaine, a resistant cultivar of romaine lettuce Lactuca sativa L., applied to artificial diet is highly deter...

  4. Red leaf lettuce breeding line with resistance to corky root, 06-810

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service, United States Department of Agriculture (USDA) announces the release of a breeding line of red leaf lettuce (Lactuca sativa L.), 06-810. The line may be suitable for commercial production, and is suitable for use as a source of resistance to corky root disease in t...

  5. A STUDY ON THE ACCUMULATION OF PERCHLORATE IN YOUNG HEAD LETTUCE

    EPA Science Inventory

    The overall objective of this study was to demonstrate in a greenhouse study the potential for incorporation of perchlorate from aqueous solutions of 10, 50, 100, 500, 1,000, 5,000, and 10,000 ppb into an agricultural food crop (lettuce; Lactuca sativa), which is typically grown ...

  6. Automated thinning increases uniformity of in-row spacing and plant size in romaine lettuce

    USDA-ARS?s Scientific Manuscript database

    Low availability and high cost of farm hand labor make automated thinners a faster and cheaper alternative to hand thinning in lettuce (Lactuca sativa L.). However, the effects of this new technology on uniformity of plant spacing and size as well as crop yield are not proven. Three experiments wer...

  7. A STUDY ON THE ACCUMULATION OF PERCHLORATE IN YOUNG HEAD LETTUCE

    EPA Science Inventory

    The overall objective of this study was to demonstrate in a greenhouse study the potential for incorporation of perchlorate from aqueous solutions of 10, 50, 100, 500, 1,000, 5,000, and 10,000 ppb into an agricultural food crop (lettuce; Lactuca sativa), which is typically grown ...

  8. Population biology of Verticillium dahliae isolates from lettuce in the Sallinas Valley of Californis.

    USDA-ARS?s Scientific Manuscript database

    Verticillium dahliae is a soil borne fungus and the primary causal agent of Verticillium wilt, which affects many crops worldwide. Many crops grown in the Salinas Valley (SV) of California, including strawberry and lettuce (Lactuca sativa), are susceptible to V. dahliae and severe outbreaks are comm...

  9. Modification of yield and chlorophyll content in leaf lettuce by HPS radiation and nitrogen treatments

    NASA Technical Reports Server (NTRS)

    Mitchell, Cary A.; Leakakos, Tina; Ford, Tameria L.

    1991-01-01

    The potential of realizing high photosynthetic photon flux from radiation by high-pressure sodium (HPS) lamp, alone or in combination with metal halide (MH) plus quartz iodide (QI) incandescent lamps, to support lettuce grow, with or without nitrogen supplement, was investigated. It was found that varying exposures to radiation from combined HPS, MH, and QI lamps influenced dry weight gain and photosynthetic pigment content of hydroponically grown lettuce (Lactuca sativa L.) seedlings.

  10. Modification of yield and chlorophyll content in leaf lettuce by HPS radiation and nitrogen treatments

    NASA Technical Reports Server (NTRS)

    Mitchell, Cary A.; Leakakos, Tina; Ford, Tameria L.

    1991-01-01

    The potential of realizing high photosynthetic photon flux from radiation by high-pressure sodium (HPS) lamp, alone or in combination with metal halide (MH) plus quartz iodide (QI) incandescent lamps, to support lettuce grow, with or without nitrogen supplement, was investigated. It was found that varying exposures to radiation from combined HPS, MH, and QI lamps influenced dry weight gain and photosynthetic pigment content of hydroponically grown lettuce (Lactuca sativa L.) seedlings.

  11. Extreme size and sequence variation in the ITS rDNA of Bremia lactucae.

    PubMed

    Choi, Young-Joon; Hong, Seung-Boem; Shin, Hyeon-Dong

    2007-02-01

    Bremia lactucae Regel (Chromista, Peronosporaceae) is an economically destructive pathogen, which causes downy mildew disease on lettuce (Lactuca sativa L.) worldwide. The ribosomal internal transcribed spacer (ITS) of Bremia lactucae isolates was analyzed for the first time. The ITS region of lettuce downy mildew was observed to have a size of 2458 bp; thereby, having one of the longest ITS sizes recorded to date. The majority of the extremely large sized ITS2 length of 2086 was attributed to the additional presences of nine repetitive elements with lengths of 179-194 bp, which between them shared the low homology of 48-69%. Comparison of the ITS2 sequences with the B. lactucae isolates from other host plants showed that isolates present on Lactuca sativa were distinct from those on L. indica var. laciniata, as well as Hemistepta and Youngia. We suggest the high degree of sequence heterogeneity exhibited in the ITS2 region of B. lactucae may warrant the specific detection and diagnosis of this destructive pathogen or its division into several distinct species.

  12. Green leaf lettuce breeding lines with resistance to corky root, 06-831 and 06-833.

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service, United States Department of Agriculture (USDA) announces the release of two breeding lines of green leaf lettuce (Lactuca sativa L.). The lines 06-831 and 06-833 look similar to ‘Waldmann’s Green’ and related cultivars. The lines may be suitable for commercial pro...

  13. Benzoxazolin-2(3H)-one (BOA) induced changes in leaf water relations, photosynthesis and carbon isotope discrimination in Lactuca sativa.

    PubMed

    Hussain, M Iftikhar; González, L; Chiapusio, G; Reigosa, M J

    2011-08-01

    The effects are reported here of Benzoxazolin-2(3H)-one (BOA), an allelopathic compound, on plant water relations, growth, components of chlorophyll fluorescence, and carbon isotope discrimination in lettuce (Lactuca sativa L.). Lettuce seedlings were grown in 1:1 Hoagland solution in perlite culture medium in environmentally controlled glasshouse. After 30 days, BOA was applied at concentration of 0.1, 0.5, 1.0 and 1.5 mM and distilled water (control). BOA, in the range (0.1-1.5 mM), decreased the shoot length, root length, leaf and root fresh weight. Within this concentration range, BOA significantly reduced relative water content while leaf osmotic potential remained unaltered. Stress response of lettuce was evaluated on the basis of six days of treatment with 1.5 mM BOA by analyzing several chlorophyll fluorescence parameters determined under dark-adapted and steady state conditions. There was no change in initial fluorescence (F₀) in response to BOA treatment while maximum chlorophyll fluorescence (F(m)) was significantly reduced. BOA treatment significantly reduced variable fluorescence (F(v)) on first, second, third, fourth, fifth and sixth day. Quantum efficiency of open PSII reaction centers (F(v)/F(m)) in the dark-adapted state was significantly reduced in response to BOA treatment. Quantum yield of photosystem II (ΦPSII) electron transport was significantly reduced because of decrease in the efficiency of excitation energy trapping of PSII reaction centers. Maximum fluorescence in light-adapted leaves (F'(m)) was significantly decreased but there was no change in initial fluorescence in light-adapted state (F'₀) in response to 1.5 mM BOA treatment. BOA application significantly reduced photochemical fluorescence quenching (qP) indicating that the balance between excitation rate and electron transfer rate has changed leading to a more reduced state of PSII reaction centers. Non photochemical quenching (NPQ) was also significantly reduced by BOA

  14. Physiological and Molecular Responses of Lactuca sativa to Colonization by Salmonella enterica Serovar Dublin▿

    PubMed Central

    Klerks, M. M.; van Gent-Pelzer, M.; Franz, E.; Zijlstra, C.; van Bruggen, A. H. C.

    2007-01-01

    This paper describes the physiological and molecular interactions between the human-pathogenic organism Salmonella enterica serovar Dublin and the commercially available mini Roman lettuce cv. Tamburo. The association of S. enterica serovar Dublin with lettuce plants was first determined, which indicated the presence of significant populations outside and inside the plants. The latter was evidenced from significant residual concentrations after highly efficient surface disinfection (99.81%) and fluorescence microscopy of S. enterica serovar Dublin in cross sections of lettuce at the root-shoot transition region. The plant biomass was reduced significantly compared to that of noncolonized plants upon colonization with S. enterica serovar Dublin. In addition to the physiological response, transcriptome analysis by cDNA amplified fragment length polymorphism analysis also provided clear differential gene expression profiles between noncolonized and colonized lettuce plants. From these, generally and differentially expressed genes were selected and identified by sequence analysis, followed by reverse transcription-PCR displaying the specific gene expression profiles in time. Functional grouping of the expressed genes indicated a correlation between colonization of the plants and an increase in expressed pathogenicity-related genes. This study indicates that lettuce plants respond to the presence of S. enterica serovar Dublin at physiological and molecular levels, as shown by the reduction in growth and the concurrent expression of pathogenicity-related genes. In addition, it was confirmed that Salmonella spp. can colonize the interior of lettuce plants, thus potentially imposing a human health risk when processed and consumed. PMID:17513585

  15. Anti-diabetic effects of aqueous prickly lettuce (Lactuca scariola Linn.) leaves extract in alloxan-induced male diabetic rats treated with nickel (II).

    PubMed

    Chadchan, Kailash S; Jargar, Jameel G; Das, Swastika N

    2016-01-01

    Hattaraki pallye or prickly lettuce (Lactuca scariola Linn.) is one among several green leafy plants that grow in north Karnataka; it is usually consumed by the people of this region and is found to be antidiabetic in nature. The objective of this study is to evaluate hypoglycemic activities of supplementation with aqueous extract of prickly lettuce (L. scariola) leaves in vivo in acute and subchronic exposure with or without nickel (II) along with its glucose reduction capabilities with or without nickel (II) at pH 7.0 and 9.0 in vitro. Percentage glucose reduction (in vitro) was determined by glucose oxidase-peroxidase enzymatic method at pH 7.0 and pH 9.0 using UV-Vis spectrophotometer. Hypoglycemic activities of L. scariola were carried out in alloxan-induced male diabetic rats at both acute and subchronic exposure. The results showed a significant alteration in the λmax value of Ni (II) in combination with L. scariola leaves extracts at both pH 7.0 and 9.0. The aqueous extract also produced a significant reduction in the glucose concentration at pH 7.0 and pH 9.0 even in presence of Ni (II) in vitro. Lactuca scariola leaves in either acute or subchronic supplementation showed a greater glucose tolerance and hypoglycemic regulation of blood sugar in diabetic rats with or without nickel (II) treatments. Lactuca scariola leaves can be a substitute for synthetic drugs to treat diabetic patients.

  16. Human Granulocyte Colony-Stimulating Factor (hG-CSF) Expression in Plastids of Lactuca sativa

    PubMed Central

    Sharifi Tabar, Mehdi; Habashi, Ali Akbar; Rajabi Memari, Hamid

    2013-01-01

    Background: Human granulocyte colony-stimulating factor (hG-CSF) can serve as valuable biopharmaceutical for research and treatment of the human blood cancer. Transplastomic plants have been emerged as a new and high potential candidate for production of recombinant biopharmaceutical proteins in comparison with transgenic plants due to extremely high level expression, biosafety and many other advantages. Methods: hG-CSF gene was cloned into pCL vector between prrn16S promoter and TpsbA terminator. The recombinant vector was coated on nanogold particles and transformed to lettuce chloroplasts through biolistic method. Callogenesis and regeneration of cotyledonary explants were obtained by Murashige and Skoog media containing 6-benzylaminopurine and 1-naphthaleneacetic acid hormones. The presence of hG-CSF gene in plastome was studied with four specific PCR primers and expression by Western immunoblotting. Results: hG-CSF gene cloning was confirmed by digestion and sequencing. Transplastomic lettuce lines were regenerated and subjected to molecular analysis. The presence of hG-CSF in plastome was confirmed by PCR using specific primers designed from the plastid genome. Western immunoblotting of extracted protein from transplastomic plants showed a 20-kDa band, which verified the expression of recombinant protein in lettuce chloroplasts. Conclusions: This study is the first report that successfully express hG-CSF gene in lettuce chloroplast. The lettuce plastome can provide a cheap and safe expression platform for producing valuable biopharmaceuticals for research and treatment. PMID:23748895

  17. Genome-wide association of 10 horticultural traits with expressed sequence tag-derived SNP markers in a collection of lettuce lines

    USDA-ARS?s Scientific Manuscript database

    Genetic diversity, population structure, and genome-wide marker-trait association analyses were conducted on a special collection of 298 homozygous lettuce (Lactuca sativa L.) lines. Each of these lines was derived from a single plant that had been genotyped with 384 SNP makers using LSGermOPA. They...

  18. Transfer of Metals in Food Chain: An Example with Copper and Lettuce

    NASA Astrophysics Data System (ADS)

    Vincevica-Gaile, Zane; Klavins, Maris

    2012-12-01

    Present study investigated the possible transfer of metals in the food chain (from soil to edible plants). The experiment was done with lettuce Lactuca sativa grown in different types of soil contaminated with copper (Cu2+) in various concentrations, with or without addition of humic substances. The highest content of copper was detected in lettuce samples grown in soils with lower levels of organic matter, thus indicating the importance of soil organics in metal transfer routes and accumulation rates in plants. It was found that copper accumulation in lettuce grown in contaminated soils can be significantly reduced by the addition of humic substances.

  19. Transgenic lettuce seedlings carrying hepatitis B virus antigen HBsAg.

    PubMed

    Marcondes, Jackson; Hansen, Ekkehard

    2008-12-01

    The obtainment of transgenic edible plants carrying recombinant antigens is a desired issue in search for economic alternatives viewing vaccine production. Here we report a strategy for genetic transformation of lettuce plants (Lactuca sativa L.) using the surface antigen HBsAg of hepatitis B virus. Transgenic lettuce seedlings were obtained through the application of a regulated balance of plant growth regulators. Genetic transformation process was acquired by cocultivation of cotyledons with Agrobacterium tumefaciens harboring the recombinant plasmid. It is the first description of a lettuce Brazilian variety 'Vitória de Verão' genetically modified.

  20. Effects of simulated acidic rain on yields of Raphanus sativus, Lactuca sativa, Triticum aestivum and Medicago sativa

    SciTech Connect

    Evans, L.S.; Gmur, N.F.; Mancini, D.

    1982-01-01

    Experiments were performed to determine effects of simulated acidic rain on radishes (Raphanus sativus), wheat(Triticum aestivum) and alfalfa (Medicago sativa) grown under greenhouse conditions. Experimental designs allowed the detection of statistically significant differences among means that differed by less than 10%. These results suggest that the efficiency of radish foliage in increasing; root mass decreases with increased rainfall acidity since only foliage was exposed to the treatments.

  1. Reversed-phase ultra-high-performance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolic profiling of vegetables: Lactuca sativa as an example of its application.

    PubMed

    Abu-Reidah, I M; Contreras, M M; Arráez-Román, D; Segura-Carretero, A; Fernández-Gutiérrez, A

    2013-10-25

    Lettuce (Lactuca sativa), a leafy vegetal widely consumed worldwide, fresh cut or minimally processed, constitutes a major dietary source of natural antioxidants and bioactive compounds. In this study, reversed-phase ultra-high-performance liquid chromatography (RP-UHPLC) coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry (ESI-QTOF-MS) was applied for the comprehensive profiling of polar and semi-polar metabolites from three lettuce cultivars (baby, romaine, and iceberg). The UHPLC systems allowed the use of a small-particle-size C18 column (1.8 μm), with very fine resolution for the separation of up to seven isomers, and the QTOF mass analyzer enabled sensitive detection with high mass resolution and accuracy in full scan. Thus, a total of 171 compounds were tentatively identified by matching their accurate mass signals and suggested molecular formula with those previously reported in family Asteraceae. Afterwards, their structures were also corroborated by the MS/MS data provided by the QTOF analyzer. Well-known amino acids, organic acids, sesquiterpene lactones, phenolic acids and flavonoids were characterized, e.g. lactucin, lactucopicrin, caftaric acid, chlorogenic acid, caffeoylmalic acid, chicoric acid, isochlorogenic acid A, luteolin, and quercetin glycosides. For this plant species, this is the first available report of several isomeric forms of the latter polyphenols and other types of components such as nucleosides, peptides, and tryptophan-derived alkaloids. Remarkably, 10 novel structures formed by the conjugation of known amino acids and sesquiterpene lactones were also proposed. Thus, the methodology applied is a useful option to develop an exhaustive metabolic profiling of plants that helps to explain their potential biological activities and folk uses.

  2. Physiological Mechanisms Only Tell Half Story: Multiple Biological Processes are involved in Regulating Freezing Tolerance of Imbibed Lactuca sativa Seeds.

    PubMed

    Jaganathan, Ganesh K; Han, Yingying; Li, Weijie; Song, Danping; Song, Xiaoyan; Shen, Mengqi; Zhou, Qiang; Zhang, Chenxue; Liu, Baolin

    2017-03-13

    The physiological mechanisms by which imbibed seeds survive freezing temperatures in their natural environment have been categorized as freezing avoidance by supercooling and freezing tolerance by extracellular freeze-desiccation, but the biochemical and molecular mechanisms conferring seed freezing tolerance is unexplored. In this study, using imbibed Lactuca sativa seeds we show that fast cooled seeds (60 °C h(-1)) suffered significantly higher membrane damage at temperature between -20 °C and -10 °C than slow cooled (3 °Ch(-1)) seeds (P < 0.05), presumably explaining viability loss during fast cooling when temperature approaches -20 °C. Total soluble sugars increase in low temperature environment, but did not differ significantly between two cooling rates (P > 0.05). However, both SOD activity and accumulation of free proline were induced significantly after slow cooling to -20 °C compared with fast cooling. RNA-seq demonstrated that multiple pathways were differentially regulated between slow and fast cooling. Real-time verification of some differentially expressed genes (DEGs) revealed that fast cooling caused mRNA level changes of plant hormone and ubiquitionation pathways at higher sub-zero temperature, whilst slow cooling caused mRNA level change of those pathways at lower sub-zero ttemperatures. Thus, we conclude that imbibed seed tolerate low temperature not only by physiological mechanisms but also by biochemical and molecular changes.

  3. Evaluation of the toxic potential of coffee wastewater on seeds, roots and meristematic cells of Lactuca sativa L.

    PubMed

    Aguiar, Luara Louzada; Andrade-Vieira, Larissa Fonseca; de Oliveira David, José Augusto

    2016-11-01

    Coffee wastewater (CWW) is an effluent produced through wet processing of coffee containing high concentration of organic matter, nutrients, salts and also agrochemicals. It is released directly into the argillaceous soil or into decantation tanks for later disposal into soils, by fertigation, subsurface infiltration or superficial draining. However, this practice is not followed by the monitoring the toxicity potential of this effluent. In this sense, the present work aimed to evaluate the phytotoxic, cytogenotoxic and mutagenic potential of CWW on seed germination, root elongation and cell cycle alterations in the plant model Lactuca sativa L. The effluent (CWW) collected was diluted in distilled water into six concentrations solutions (1.25%, 1.66%, 2.5%, 5.0%, 10%, 20%). A solution of raw CWW (100%) was also applied. Distilled water was used as negative control), and the DNA alkylating agent, metilmetano sulfonate (4×10(-4)M) as positive control. Physico-chemical parameters of the CWW was accessed and it was found that the effluent contained total phenols and inorganic matter in amounts within the limits established by the National Environment Council (CONAMA). Nevertheless, the biologicals assays performed demonstrated the phytotoxicity and cytogenotoxicty of CWW. Seed germination was totally inhibited after exposure of raw CWW. In addition, a decrease in seed germination speed as well as in root growth dose-dependently manner was noticed. Moreover, nuclear and chromosomal alterations were observed in the cell cycle, mostly arising from aneugenic action.

  4. Physiological Mechanisms Only Tell Half Story: Multiple Biological Processes are involved in Regulating Freezing Tolerance of Imbibed Lactuca sativa Seeds

    PubMed Central

    Jaganathan, Ganesh K.; Han, Yingying; Li, Weijie; Song, Danping; Song, Xiaoyan; Shen, Mengqi; Zhou, Qiang; Zhang, Chenxue; Liu, Baolin

    2017-01-01

    The physiological mechanisms by which imbibed seeds survive freezing temperatures in their natural environment have been categorized as freezing avoidance by supercooling and freezing tolerance by extracellular freeze-desiccation, but the biochemical and molecular mechanisms conferring seed freezing tolerance is unexplored. In this study, using imbibed Lactuca sativa seeds we show that fast cooled seeds (60 °C h−1) suffered significantly higher membrane damage at temperature between −20 °C and −10 °C than slow cooled (3 °Ch−1) seeds (P < 0.05), presumably explaining viability loss during fast cooling when temperature approaches −20 °C. Total soluble sugars increase in low temperature environment, but did not differ significantly between two cooling rates (P > 0.05). However, both SOD activity and accumulation of free proline were induced significantly after slow cooling to −20 °C compared with fast cooling. RNA-seq demonstrated that multiple pathways were differentially regulated between slow and fast cooling. Real-time verification of some differentially expressed genes (DEGs) revealed that fast cooling caused mRNA level changes of plant hormone and ubiquitionation pathways at higher sub-zero temperature, whilst slow cooling caused mRNA level change of those pathways at lower sub-zero ttemperatures. Thus, we conclude that imbibed seed tolerate low temperature not only by physiological mechanisms but also by biochemical and molecular changes. PMID:28287125

  5. Anti-inflammatory and antioxidant activity of polyphenolic extracts from Lactuca sativa (var. Maravilla de Verano) under different farming methods.

    PubMed

    Adesso, Simona; Pepe, Giacomo; Sommella, Eduardo; Manfra, Michele; Scopa, Antonio; Sofo, Adriano; Tenore, Gian Carlo; Russo, Mariateresa; Di Gaudio, Francesca; Autore, Giuseppina; Campiglia, Pietro; Marzocco, Stefania

    2016-09-01

    Besides their nutritional value, vegetables are a source of health-promoting compounds, such as polyphenols, and their content can be influenced by the particular farming method. In this study polyphenolic extracts from Lactuca sativa (var. Maravilla de verano) plants cultivated with different farming methods were chemically characterised and tested in vitro and ex vivo inflammation models. The tested extacts (250-2.5 µg mL(-1) ) were able to reduce both the inflammatory and oxidative stress in LPS-stimulated J774A.1 murine monocyte macrophage cells, by lowering the release of nitric oxide (NO) and reactive oxygen species (ROS) and promoting nuclear translocation of nuclear factor (erythroid-derived 2)-like 2; (Nrf2) and nuclear factor-κB (NF-κB). In this regard, quantitative profiles revealed different amounts of polyphenols, in particular quercetin levels were higher in plants under mineral fertilised treatment. Those extract showed an enhanced anti-inflammatory and antioxidant activity. Our data showed the anti-inflammatory and antioxidant potential of Maravilla de Verano polyphenolic extracts. The effect of farming methods on polyphenolic levels was highlighted. The higher reduction of inflammatory mediators release in extracts from plants cultivated under mineral fertilisation treatment was correlated to the higher amount of quercetin. These results can be useful for both nutraceutical or agronomic purposes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Phytochemical relationship of Euphorbia helioscopia and Euphorbia pulcherrima with Lactuca sativa.

    PubMed

    Rehman, Hafiza Ayesha; Yousaf, Zubaida; Rashid, Madiha; Younas, Afifa; Arif, Ayesha; Afzal, Ismah; Akram, Waheed

    2014-01-01

    Allelopathy is an important phenomenon that modifies the ecosystem. A plant can enhance or reduce the growth of other plant due to the presence of a number of allelochemicals in its different parts. Euphorbia helioscopia and Euphorbia pulcherrima are medicinal plant species. Both these species are collected from wild resources for various purposes. To reduce the pressure on wild population, it is important to bring them into cultivation. Therefore, the allelopathic effects of E. helioscopia and E. pulcherrima on the growth of lettuce seeds were studied. Three different concentrations (2%, 4% and 6%) of five different solvents (methanol, acetone, ethyl acetate, n-hexane and distilled water) were used to estimate the allelopathic potential of the above-mentioned Euphorbia species. Results indicated a non-significant growth inhibitory effect of both plants on lettuce seeds. Different extracts reduced the growth of test plant to some extent but this inhibition was not significant. From the observed results, it was concluded that the studied Euphorbia species, being medicinally important crops, can be introduced as intercrop with other cash crops.

  7. North American Continent – A new source of wild Lactuca spp. germplasm variability for future lettuce breeding

    USDA-ARS?s Scientific Manuscript database

    In the years 2002-2008, missions were undertaken in the USA and Canada to search for wild and weedy Lactuca species. Altogether, 16 states in the USA (Arizona, California, Colorado, Idaho, Iowa, Minnesota, Montana, Nevada, New York, North Carolina, Oregon, South Dakota, Utah, Washington, Wisconsin a...

  8. Use of hairy roots extracts for 2,4-DCP removal and toxicity evaluation by Lactuca sativa test.

    PubMed

    Angelini, Vanina A; Agostini, Elizabeth; Medina, María I; González, Paola S

    2014-02-01

    2,4-Dichlorophenol (2,4-DCP) is widely distributed in wastewaters discharged from several industries, and it is considered as a priority pollutant due to its high toxicity. In this study, the use of different peroxidase extracts for 2,4-DCP removal from aqueous solutions was investigated. Tobacco hairy roots (HRs), wild-type (WT), and double-transgenic (DT) for tomato basic peroxidases (TPX1 and TPX2) were used to obtain different peroxidase extracts: total peroxidases (TPx), soluble peroxidases (SPx), and peroxidases ionically bound to the cell wall (IBPx). All extracts derived from DT HRs exhibited higher peroxidase activity than those obtained from WT HRs. TPx and IBPx DT extracts showed the highest catalytic efficiency values. The optimal conditions for 2,4-DCP oxidation were pH 6.5, H2O2 0.5 mM, and 200 U mL(-1) of enzyme, for all extracts analyzed. Although both TPx extracts were able to oxidize different 2,4-DCP concentrations, the removal efficiency was higher for TPx DT. Polyethylene glycol addition slightly improved 2,4-DCP removal efficiency, and it showed some protective effect on TPx WT after 2,4-DCP oxidation. In addition, using Lactuca sativa test, a reduction of the toxicity of post removal solutions was observed, for both TPx extracts. The results demonstrate that TPx extracts from both tobacco HRs appear to be promising candidate for future applications in removing 2,4-DCP from wastewaters. This is particularly true considering that these peroxidase sources are associated with low costs and are readily available. However, TPx DT has increased peroxidase activity, catalytic efficiency, and higher removal efficiency than TPx WT, probably due to the expression of TPX1 and TPX2 isoenzymes.

  9. The effects of nutrient solution sterilization on the growth and yield of hydroponically grown lettuce

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.; Dudzinski, D.; Minners, R. S.

    1987-01-01

    Two methods of removing bacteria from hydroponic nutrient solution [ultraviolet (UV) radiation and submicronic filter] were evaluated for efficiency and for their effects on lettuce (Lactuca sativa L.) production. Both methods were effective in removing bacteria; but, at high intensity, the ultraviolet sterilizer significantly inhibited the production of plants grown in the treated solution. Bacterial removal by lower intensity UV or a submicronic filter seemed to promote plant growth slightly, but showed no consistent, statistically significant effect.

  10. The effects of nutrient solution sterilization on the growth and yield of hydroponically grown lettuce

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.; Dudzinski, D.; Minners, R. S.

    1987-01-01

    Two methods of removing bacteria from hydroponic nutrient solution [ultraviolet (UV) radiation and submicronic filter] were evaluated for efficiency and for their effects on lettuce (Lactuca sativa L.) production. Both methods were effective in removing bacteria; but, at high intensity, the ultraviolet sterilizer significantly inhibited the production of plants grown in the treated solution. Bacterial removal by lower intensity UV or a submicronic filter seemed to promote plant growth slightly, but showed no consistent, statistically significant effect.

  11. The effects of nutrient solution sterilization on the growth and yield of hydroponically grown lettuce.

    PubMed

    Schwartzkopf, S H; Dudzinski, D; Minners, R S

    1987-10-01

    Two methods of removing bacteria from hydroponic nutrient solution [ultraviolet (UV) radiation and submicronic filter] were evaluated for efficiency and for their effects on lettuce (Lactuca sativa L.) production. Both methods were effective in removing bacteria; but, at high intensity, the ultraviolet sterilizer significantly inhibited the production of plants grown in the treated solution. Bacterial removal by lower intensity UV or a submicronic filter seemed to promote plant growth slightly, but showed no consistent, statistically significant effect.

  12. Evaluation of lettuce germplasm resistance to gray mold disease for organic cultivations.

    PubMed

    Shim, Chang Ki; Kim, Min Jeong; Kim, Yong Ki; Jee, Hyeong Jin

    2014-03-01

    This study was conducted to evaluate the resistance of 212 accessions of lettuce germplasm to gray mold disease caused by Botrytis cinerea. The lettuce germplasm were composed of five species: Lactuca sativa (193 accessions), L. sativa var. longifolia (2 accessions), L. sativa var. crispa (2 accessions), L. saligna (2 accessions), and L. serriola (1 accession); majority of these originated from Korea, Netherlands, USA, Russia, and Bulgaria. After 35 days of spray inoculation with conidial suspension (3×10(7) conidia/ml) of B. cinerea on the surface of lettuce leaves, tested lettuce germplasm showed severe symptoms of gray mold disease. There were 208 susceptible accessions to B. cinerea counted with 100% of disease incidence and four resistant accessions, IT908801, K000598, K000599, and K021055. Two moderately resistant accessions of L. sativa, K021055 and IT908801, showed 20% of disease incidence of gray mold disease at 45 days after inoculation; and two accessions of L. saligna, K000598 and K000599, which are wild relatives of lettuce germplasm with loose-leaf type, showed complete resistance to B. cinerea. These four accessions are candidates for breeding lettuce cultivars resistant to gray mold disease.

  13. Spore Release of Bremia lactucae on Lettuce Is Affected by Timing of Light Initiation and Decrease in Relative Humidity.

    PubMed

    Su, H; van Bruggen, A H; Subbarao, K V

    2000-01-01

    ABSTRACT A suction-impaction mini-spore trap was developed to study the effect of light initiation and decreasing relative humidity (RH) on spore release of Bremia lactucae in a controlled environment. Three light periods (from 0400 to 1600, 0600 to 1800, and 0800 to 2000 h, circadian time) at a constant RH of 99 to 100% were used for studying the effect of light initiation on spore release. Few spores were released during the dark periods. Spore release increased sharply after the initiation of the three light periods, reached a maximum 1 to 2 h after light initiation, and then declined until only a few spores could be detected. The effect of reduction in RH on spore release was studied by comparing decreases in RH 2 h before and 2 h after light initiation at 0800 h. When RH decreased from 100 to 94% 2 h before light initiation, spore release increased within 1 h, followed by a second increase after light initiation. When RH decreased 2 h after light initiation, spore release continued to increase after the initial increase after light initiation, reached a maximum 1 h after the reduction in RH, and then declined. The results suggest that both light initiation and reduction in RH can trigger spore release and that these factors have separate effects on spore release of Bremia lactucae.

  14. Health risks resulting from contaminants transfers in soil-plants systems: case study of Atrazine in Lactuca sativa.

    NASA Astrophysics Data System (ADS)

    Mathieu, Camoin

    2015-04-01

    Food safety is presently at the center of great part of scientific and political debates. This represents a field of study in its own right of health risks, including ingestion by humans of hazardous biological, physical, chemical or radiological substances, from contaminated foods during different stages of production. Plant cultivation step is often one of the main sources of contamination, whether of voluntary (pesticide application) or accidental (nuclear, industrial waste, etc.) origin. As a result, the plants growth in an contaminated environment may increase the risk of transfer within the plant, and finally the exposure of humans. Furthermore, pesticides are among the main contaminants investigated in the frame of human health risks resulting from food intakes. However, most of these scientific works focus mainly on their occurrence and persistence in water bodies, and few of them are interested in soil/plants transfer. In this context, the understanding of the processes governing transfers of pesticides in plants is become a necessity, in particular to prevent human risks linked the ingestion of food produced in contaminated environments. This objective can be reached by studying the pollutants behavior in soils/plants transfers, and using various substances/plants couples. In our study, we selected a salad/pesticide couple as our experimental model. Atrazine was chosen as model contaminant because of its problematic presence in a large amount of environmental compartments, its physico-chemical properties and because of its long-term toxicity. Lactuca sativa has been selected as model plant because of its importance in French agriculture, and specifically in Languedoc-Roussillon. Salad has been cultivated in peats and irrigated with an atrazine spiked water solution (concentrations from 10 to 100 μg/L). Plant growth in such conditions has been compared to a growth in clean condition (irrigation with non spiked water). Measurements of atrazine contents in

  15. The allelopathic effects of invasive plant Solidago canadensis on seed germination and growth of Lactuca sativa enhanced by different types of acid deposition.

    PubMed

    Wang, Congyan; Xiao, Hongguang; Zhao, Lulu; Liu, Jun; Wang, Lei; Zhang, Fei; Shi, Yanchun; Du, Daolin

    2016-04-01

    Invasive species can exhibit allelopathic effects on native species. Meanwhile, the types of acid deposition are gradually changing. Thus, the allelopathic effects of invasive species on seed germination and growth of native species may be altered or even enhanced under conditions with diversified acid deposition. This study aims to assess the allelopathic effects (using leaves extracts) of invasive plant Solidago canadensis on seed germination and growth of native species Lactuca sativa treated with five types of acid deposition with different SO4(2-) to NO3(-) ratios (1:0, sulfuric acid; 5:1, sulfuric-rich acid; 1:1, mixed acid; 1:5, nitric-rich acid; 0:1, nitric acid). Solidago canadensis leaf extracts exhibited significantly allelopathic effects on germination index, vigor index, and germination rate index of L. sativa. High concentration of S. canadensis leaf extracts also similarly exhibited significantly allelopathic effects on root length of L. sativa. This may be due to that S. canadensis could release allelochemicals and then trigger allelopathic effects on seed germination and growth of L. sativa. Acid deposition exhibited significantly negative effects on seedling biomass, root length, seedling height, germination index, vigor index, and germination rate index of L. sativa. This may be ascribed to the decreased soil pH values mediated by acid deposition which could produce toxic effects on seedling growth. Sulfuric acid deposition triggered more toxic effects on seedling biomass and vigor index of L. sativa than nitric acid deposition. This may be attributing to the difference in exchange capacity with hydroxyl groups (OH(-)) between SO4(2-) and NO3(-) as well as the fertilizing effects mediated by nitric deposition. All types of acid deposition significantly enhanced the allelopathic effects of S. canadensis on root length, germination index, vigor index, and germination rate index of L. sativa. This may be due to the negatively synergistic effects of

  16. Environmental modification of yield and food composition of cowpea and leaf lettuce

    NASA Technical Reports Server (NTRS)

    Mitchell, Cary A.; Nielsen, Suzanne S.; Bubenheim, David L.

    1990-01-01

    Cowpea (Vigna unguiculata (L.) Walp.) and leaf lettuce (Lactuca sativa L.) are candidate species to provide ligume protein and starch or serve as a salad base for a nutritionally balanced and psychologically satisfying vegetarian diet in the Controlled Ecology Life Support System (CELSS). Various nutritional parameters are reported. Hydroponic leaf lettuce grew best under CO2 enrichment and photosynthetic photon flux (PPF) enhancement. Leaf protein content reached 36 percent with NH4(+) + NO3 nutrition; starch and free sugar content was as high as 7 or 8.4 percent of DW, respectively, for high PPF/CO2 enriched environments.

  17. Effect of 16 and 24 hours daily radiation (light) on lettuce growth

    NASA Technical Reports Server (NTRS)

    Koontz, H. V.; Prince, R. P.; Knott, W. M. (Principal Investigator)

    1986-01-01

    A 50% increase in total radiation by extending the photoperiod from 16 to 24 hr doubled the weight of all cultivars of loose-leaf lettuce (Lactuca sativa L.) 'Grand Rapids Forcing', 'Waldmanns Green', 'Salad Bowl', and 'RubyConn', but not a Butterhead cultivar, 'Salina'. When total daily radiation (moles of photons) was the same, plants under continuous radiation weighed 30% to 50% more than plants under a 16 hr photoperiod. By using continuous radiation on loose-leaf lettuce, fewer lamp fixtures were required and yield was increased.

  18. Effect of 16 and 24 hours daily radiation (light) on lettuce growth

    NASA Technical Reports Server (NTRS)

    Koontz, H. V.; Prince, R. P.; Knott, W. M. (Principal Investigator)

    1986-01-01

    A 50% increase in total radiation by extending the photoperiod from 16 to 24 hr doubled the weight of all cultivars of loose-leaf lettuce (Lactuca sativa L.) 'Grand Rapids Forcing', 'Waldmanns Green', 'Salad Bowl', and 'RubyConn', but not a Butterhead cultivar, 'Salina'. When total daily radiation (moles of photons) was the same, plants under continuous radiation weighed 30% to 50% more than plants under a 16 hr photoperiod. By using continuous radiation on loose-leaf lettuce, fewer lamp fixtures were required and yield was increased.

  19. Effect of 16 and 24 hours daily radiation (light) on lettuce growth.

    PubMed

    Koontz, H V; Prince, R P

    1986-02-01

    A 50% increase in total radiation by extending the photoperiod from 16 to 24 hr doubled the weight of all cultivars of loose-leaf lettuce (Lactuca sativa L.) 'Grand Rapids Forcing', 'Waldmanns Green', 'Salad Bowl', and 'RubyConn', but not a Butterhead cultivar, 'Salina'. When total daily radiation (moles of photons) was the same, plants under continuous radiation weighed 30% to 50% more than plants under a 16 hr photoperiod. By using continuous radiation on loose-leaf lettuce, fewer lamp fixtures were required and yield was increased.

  20. Transient Protein Expression by Agroinfiltration in Lettuce.

    PubMed

    Chen, Qiang; Dent, Matthew; Hurtado, Jonathan; Stahnke, Jake; McNulty, Alyssa; Leuzinger, Kahlin; Lai, Huafang

    2016-01-01

    Current systems of recombinant protein production include bacterial, insect, and mammalian cell culture. However, these platforms are expensive to build and operate at commercial scales and/or have limited abilities to produce complex proteins. In recent years, plant-based expression systems have become top candidates for the production of recombinant proteins as they are highly scalable, robust, safe, and can produce complex proteins due to having a eukaryotic endomembrane system. Newly developed "deconstructed" viral vectors delivered via Agrobacterium tumefaciens (agroinfiltration) have enabled robust plant-based production of proteins with a wide range of applications. The leafy Lactuca sativa (lettuce) plant with its strong foundation in agriculture is an excellent host for pharmaceutical protein production. Here, we describe a method for agroinfiltration of lettuce that can rapidly produce high levels of recombinant proteins in a matter of days and has the potential to be scaled up to an agricultural level.

  1. SM09A and SM09B: Romaine Lettuce Breeding Lines Resistant to Dieback and with Improved Shelf-life.

    USDA-ARS?s Scientific Manuscript database

    SM09A and SM09B are F8 romaine breeding lines of lettuce (Lactuca sativa L.) resistant to dieback and with good shelf-life. SM09B was selected from a cross between ‘Darkland’ and PI491224, while SM09A was developed from ‘Green Towers’ × (‘Darkland’ × PI491224). Resistance to the disease in both bree...

  2. Transgenic lettuce producing a candidate protein for vaccine against edema disease.

    PubMed

    Matsui, Takeshi; Asao, Hiroshi; Ki, Misa; Sawada, Kazutoshi; Kato, Ko

    2009-07-01

    Pig edema disease is a bacterial disease caused by Shiga toxin 2e-producing Escherichia coli belonging mainly to serotypes O138, O139, and O141. The B subunit of Shiga toxin 2e (Stx2eB) is a candidate protein for use in a vaccine against edema disease. We produced this protein in transgenic lettuce (Lactuca sativa), an edible plant that can be cultivated in a factory setting. In a transient expression system, we found that NtADH 5'-untranslated region (5'-UTR) functions as a translational enhancer in lettuce cells, and that Stx2eB accumulates most efficiently in the endoplasmic reticulum (ER) of lettuce cells. Stx2eB was produced in stable transgenic lettuce plants expressing a modified Stx2eB gene fused with the NtADH 5'-UTR and sequence encoding ER localization signals.

  3. Hypochlorite treatments are not a significant source of perchlorate exposure in lettuce.

    PubMed

    Sanchez, C A; Fonseca, J M; Blount, B C; Krieger, R I

    2009-03-25

    Leafy vegetables, such as lettuce ( Lactuca sativa L), have been identified as a potential source of perchlorate exposure to humans. Perchlorate is of concern because excessive amounts may impair thyroid function by inhibiting iodide uptake by the sodium iodide symporter. Perchlorate has been identified as an oxidation product in sodium hypochlorite. Dilute hypochlorite solutions are widely used on lettuce as a preservative and as a treatment to reduce microbial food risks. However, the potential of hypochlorite to be a source of human perchlorate exposure from lettuce had not been evaluated. Studies were conducted with lettuce collected in the San Luis Valley of southern Colorado and in the lower Colorado River Valley of southwestern Arizona to represent conditions under which hypochlorite is applied to lettuce in the field and in salad processing facilities. We used spray and dipping solutions that were dilutions of concentrated sodium hypochlorite that would contain from 12000 and 120000 microg/L perchlorate. The perchlorate content of iceberg and romaine lettuce averaged 6.2 and 7.2 microg/kg fw in southern Colorado and 14.0 and 56.7 microg/kg fw in southwestern Arizona and there were no significant (P > 0.05) increases in the perchlorate content of lettuce due to hypochlorite treatments. Because of the relatively low concentrations of perchlorate present after dilution and the low volumes applied to lettuce, hypochlorite solutions do not appear to be a significant source of the perchlorate levels found in lettuce.

  4. Influence of fine process particles enriched with metals and metalloids on Lactuca sativa L. leaf fatty acid composition following air and/or soil-plant field exposure.

    PubMed

    Schreck, Eva; Laplanche, Christophe; Le Guédard, Marina; Bessoule, Jean-Jacques; Austruy, Annabelle; Xiong, Tiantian; Foucault, Yann; Dumat, Camille

    2013-08-01

    We investigate the effect of both foliar and root uptake of a mixture of metal(loid)s on the fatty acid composition of plant leaves. Our objectives are to determine whether both contamination pathways have a similar effect and whether they interact. Lactuca sativa L. were exposed to fine process particles enriched with metal(loid)s in an industrial area. Data from a first experiment were used to conduct an exploratory statistical analysis which findings were successfully cross-validated by using the data from a second one. Both foliar and root pathways impact plant leaf fatty acid composition and do not interact. Z index (dimensionless quantity), weighted product of fatty acid concentration ratios was built up from the statistical analyses. It provides new insights on the mechanisms involved in metal uptake and phytotoxicity. Plant leaf fatty acid composition is a robust and fruitful approach to detect and understand the effects of metal(loid) contamination on plants.

  5. 4,4,4-trifluoro-3-(indole-3-)butyric acid promotes root elongation in Lactuca sativa independent of ethylene synthesis and pH

    NASA Technical Reports Server (NTRS)

    Zhang, Nenggang; Hasenstein, Karl H.

    2002-01-01

    We studied the mode of action of 4,4,4-trifluoro-3- (indole-3-) butyric acid (TFIBA), a recently described root growth stimulator, on primary root growth of Lactuca sativa L. seedlings. TFIBA (100 micromoles) promoted elongation of primary roots by 40% in 72 h but inhibited hypocotyl growth by 35%. TFIBA induced root growth was independent of pH. TFIBA did not affect ethylene production, but reduced the inhibitory effect of ethylene on root elongation. TFIBA promoted root growth even in the presence of the ethylene biosynthesis inhibitor L-alpha-(2-aminoethoxyvinyl)glycine. TFIBA and the ethylene-binding inhibitor silver thiosulphate (STS) had a similar effect on root elongation. The results indicate that TFIBA-stimulated root elongation was neither pH-dependent nor related to inhibition of ethylene synthesis, but was possibly related to ethylene action.

  6. 4,4,4-trifluoro-3-(indole-3-)butyric acid promotes root elongation in Lactuca sativa independent of ethylene synthesis and pH

    NASA Technical Reports Server (NTRS)

    Zhang, Nenggang; Hasenstein, Karl H.

    2002-01-01

    We studied the mode of action of 4,4,4-trifluoro-3- (indole-3-) butyric acid (TFIBA), a recently described root growth stimulator, on primary root growth of Lactuca sativa L. seedlings. TFIBA (100 micromoles) promoted elongation of primary roots by 40% in 72 h but inhibited hypocotyl growth by 35%. TFIBA induced root growth was independent of pH. TFIBA did not affect ethylene production, but reduced the inhibitory effect of ethylene on root elongation. TFIBA promoted root growth even in the presence of the ethylene biosynthesis inhibitor L-alpha-(2-aminoethoxyvinyl)glycine. TFIBA and the ethylene-binding inhibitor silver thiosulphate (STS) had a similar effect on root elongation. The results indicate that TFIBA-stimulated root elongation was neither pH-dependent nor related to inhibition of ethylene synthesis, but was possibly related to ethylene action.

  7. A genetic map of the lettuce downy mildew pathogen, Bremia lactucae, constructed from molecular markers and avirulence genes.

    PubMed

    Sicard, Delphine; Legg, Erik; Brown, Sarah; Babu, Nirmal K; Ochoa, Oswaldo; Sudarshana, Padma; Michelmore, Richard W

    2003-06-01

    The genetic map of Bremia lactucae was expanded utilizing 97 F(1) progeny derived from a cross between Finnish and Californian isolates (SF5xC82P24). Genetic maps were constructed for each parent utilizing 7 avirulence genes, 83 RFLP markers, and 347 AFLP markers, and a consensus map was constructed from the complete data set. The framework map for SF5 contained 24 linkage groups distributed over 835cM; the map for C82P24 contained 21 linkage groups distributed over 606cM. The consensus map contained 12 linkage groups with markers from both parents and 24 parent-specific groups. Six avirulence genes mapped to different linkage groups; four were located at the ends of linkage groups. The closest linkages between molecular markers and avirulence genes were 3cM to Avr4 and 1cM to Avr7. Mating type seemed to be determined by a single locus, where the heterozygote determined the B(2) type and the homozygous recessive genotype determined the B(1) type.

  8. Combined effects of dissolved humic acids and tourmaline on the accumulation of 2, 2', 4, 4', 5, 5'- hexabrominated diphenyl ether (BDE-153) in Lactuca sativa.

    PubMed

    Wang, Cuiping; Ma, Chuanxin; Jia, Weili; Wang, Dong; Sun, Hongwen; Xing, Baoshan

    2017-08-05

    In order to investigate the effects of dissolved humic acid (DHA) and tourmaline on uptake of 2, 2', 4, 4', 5, 5'- hexabrominated diphenyl ether (BDE-153) by Lactuca sativa, different fractions of DHA, including DHA1 and DHA4, as well as different doses of tourmaline were introduced into BDE-153 contaminated solutions for plant growth. The levels of BDE-153 in L. sativa tissues were positively correlated with the Fe levels (R(2) = 0.9264) in seedings of the treatments with different doses of tourmaline. However, when adding DHA1 and DHA4 into the system, the correlation coefficients (R(2)) decreased to 0.6976 and 0.5451 from 0.9264, respectively. In contrast with the Fe contents, the presence of DHAs didn't affect the R(2) between the levels of BDE-153 and the lipid contents in plant tissues. Our results indicated that both DHA1 and DHA4 could severely alter the BDE-153 uptake by L. sativa through reducing the Fe uptake instead of the lipid contents. Additionally, DHA4 exhibited much stronger abilities to alter the BDE-153 accumulation than DHA1. Transmission electron microscopy (TEM) observations indicated that either DHA1 or tourmaline or co-treatment with DHA and tourmaline had no negative impact on L. sativa at the cellular level. The present study provides important information for the impacts of different fractions of DHA extracted from soil on the BDE-153 migration in plant systems. Moreover, we elucidated the importance of the iron in tourmaline for migration of the polybrominated diphenyl ethers (PBDEs) in plant systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Molecular diversity at the major cluster of disease resistance genes in cultivated and wild Lactuca spp.

    PubMed

    Sicard, D; Woo, S S; Arroyo-Garcia, R; Ochoa, O; Nguyen, D; Korol, A; Nevo, E; Michelmore, R

    1999-08-01

    Diversity was analyzed in wild and cultivated Lactuca germplasm using molecular markers derived from resistance genes of the NBS-LRR type. Three molecular markers, one microsatellite marker and two SCAR markers that amplified LRR-encoding regions, were developed from sequences of resistance gene homologs at the main resistance gene cluster in lettuce. Variation for these markers were assessed in germplasm including accessions of cultivated lettuce, Lactuca sativa L. and three wild Lactuca spp., L. serriola L., L. saligna and L. virosa L. Diversity was also studied within and between natural populations of L. serriola from Israel and California; the former is close to the center of diversity for Lactuca spp. while the latter is an area of more recent colonization. Large numbers of haplotypes were detected indicating the presence of numerous resistance genes in wild species. The diversity in haplotypes provided evidence for gene duplication and unequal crossing-over during the evolution of this cluster of resistance genes. However, there was no evidence for duplications and deletions within the LRR-encoding regions studied. The three markers were highly correlated with resistance phenotypes in L. sativa. They were able to discriminate between accessions that had previously been shown to be resistant to all known isolates of Bremia lactucae. Therefore, these markers will be highly informative for the establishment of core collections and marker-aided selection. A hierarchical analysis of the population structure of L. serriola showed that countries, as well as locations, were significantly differentiated. These differences may reflect local founder effects and/or divergent selection.

  10. Metabolite fingerprinting in transgenic lettuce.

    PubMed

    Garratt, Lee C; Linforth, Robert; Taylor, Andrew J; Lowe, Kenneth C; Power, J Brian; Davey, Michael R

    2005-03-01

    Metabolite fingerprinting has been achieved using direct atmospheric pressure chemical ionization-mass spectrometry (APCI-MS) and linked gas chromatography (GC-APCI/EI-MS) for transgenic lettuce (Lactuca sativa L. cv. Evola) plants expressing an IPT gene under the control of the senescence-specific SAG12 promoter from Arabidopsis thaliana (P(SAG12)-IPT). Mature heads of transgenic lettuce and their azygous controls were maintained under defined conditions to assess their shelf life. Transgenic lettuce plants exhibited delayed senescence and significant increases (up to a maximum of threefold) in the concentrations of three volatile organic compounds (VOCs), corresponding to molecular masses of 45, 47 and 63, when compared with heads from azygous plants. These VOCs were identified as acetaldehyde (45), ethanol (47) and dimethyl sulphide (63). The increase in dimethyl sulphide was paralleled by an accumulation of reactive oxygen species (ROS) in the heads of transgenic plants. These results demonstrate the applicability of metabolic fingerprinting techniques to elucidate the underlying pleiotropic responses of plants to transgene expression.

  11. A system and methodology for measuring volatile organic compounds produced by hydroponic lettuce in a controlled environment

    NASA Technical Reports Server (NTRS)

    Charron, C. S.; Cantliffe, D. J.; Wheeler, R. M.; Manukian, A.; Heath, R. R.

    1996-01-01

    A system and methodology were developed for the nondestructive qualitative and quantitative analysis of volatile emissions from hydroponically grown 'Waldmann's Green' leaf lettuce (Lactuca sativa L.). Photosynthetic photon flux (PPF), photoperiod, and temperature were automatically controlled and monitored in a growth chamber modified for the collection of plant volatiles. The lipoxygenase pathway products (Z)-3-hexenal, (Z)-3-hexenol, and (Z)-3-hexenyl acetate were emitted by lettuce plants after the transition from the light period to the dark period. The volatile collection system developed in this study enabled measurements of volatiles emitted by intact plants, from planting to harvest, under controlled environmental conditions.

  12. A system and methodology for measuring volatile organic compounds produced by hydroponic lettuce in a controlled environment

    NASA Technical Reports Server (NTRS)

    Charron, C. S.; Cantliffe, D. J.; Wheeler, R. M.; Manukian, A.; Heath, R. R.

    1996-01-01

    A system and methodology were developed for the nondestructive qualitative and quantitative analysis of volatile emissions from hydroponically grown 'Waldmann's Green' leaf lettuce (Lactuca sativa L.). Photosynthetic photon flux (PPF), photoperiod, and temperature were automatically controlled and monitored in a growth chamber modified for the collection of plant volatiles. The lipoxygenase pathway products (Z)-3-hexenal, (Z)-3-hexenol, and (Z)-3-hexenyl acetate were emitted by lettuce plants after the transition from the light period to the dark period. The volatile collection system developed in this study enabled measurements of volatiles emitted by intact plants, from planting to harvest, under controlled environmental conditions.

  13. A system and methodology for measuring volatile organic compounds produced by hydroponic lettuce in a controlled environment.

    PubMed

    Charron, C S; Cantliffe, D J; Wheeler, R M; Manukian, A; Heath, R R

    1996-05-01

    A system and methodology were developed for the nondestructive qualitative and quantitative analysis of volatile emissions from hydroponically grown 'Waldmann's Green' leaf lettuce (Lactuca sativa L.). Photosynthetic photon flux (PPF), photoperiod, and temperature were automatically controlled and monitored in a growth chamber modified for the collection of plant volatiles. The lipoxygenase pathway products (Z)-3-hexenal, (Z)-3-hexenol, and (Z)-3-hexenyl acetate were emitted by lettuce plants after the transition from the light period to the dark period. The volatile collection system developed in this study enabled measurements of volatiles emitted by intact plants, from planting to harvest, under controlled environmental conditions.

  14. Stimulating productivity of hydroponic lettuce in controlled environments with triacontanol

    NASA Technical Reports Server (NTRS)

    Knight, S. L.; Mitchell, C. A.

    1987-01-01

    Triacontanol (1-triacontanol) applied as a foliar spray at 10(-7) M to 4-day-old, hydroponically grown leaf lettuce (Lactuca sativa L.) seedlings in a controlled environment increased leaf fresh and dry weight 13% to 20% and root fresh and dry weight 13% to 24% 6 days after application, relative to plants sprayed with water. When applied at 8 as well as 4 days after seeding, triacontanol increased plant fresh and dry weight, leaf area, and mean relative growth rate 12% to 37%. There was no benefit of repeating application of triacontanol in terms of leaf dry weight gain.

  15. Stimulating productivity of hydroponic lettuce in controlled environments with triacontanol

    NASA Technical Reports Server (NTRS)

    Knight, S. L.; Mitchell, C. A.

    1987-01-01

    Triacontanol (1-triacontanol) applied as a foliar spray at 10(-7) M to 4-day-old, hydroponically grown leaf lettuce (Lactuca sativa L.) seedlings in a controlled environment increased leaf fresh and dry weight 13% to 20% and root fresh and dry weight 13% to 24% 6 days after application, relative to plants sprayed with water. When applied at 8 as well as 4 days after seeding, triacontanol increased plant fresh and dry weight, leaf area, and mean relative growth rate 12% to 37%. There was no benefit of repeating application of triacontanol in terms of leaf dry weight gain.

  16. Stimulating productivity of hydroponic lettuce in controlled environments with triacontanol.

    PubMed

    Knight, S L; Mitchell, C A

    1987-12-01

    Triacontanol (1-triacontanol) applied as a foliar spray at 10(-7) M to 4-day-old, hydroponically grown leaf lettuce (Lactuca sativa L.) seedlings in a controlled environment increased leaf fresh and dry weight 13% to 20% and root fresh and dry weight 13% to 24% 6 days after application, relative to plants sprayed with water. When applied at 8 as well as 4 days after seeding, triacontanol increased plant fresh and dry weight, leaf area, and mean relative growth rate 12% to 37%. There was no benefit of repeating application of triacontanol in terms of leaf dry weight gain.

  17. Acclimation to UV-B radiation and visible light in Lactuca sativa involves up-regulation of photosynthetic performance and orchestration of metabolome-wide responses.

    PubMed

    Wargent, J J; Nelson, B C W; McGhie, T K; Barnes, P W

    2015-05-01

    UV-B radiation is often viewed as a source of stress for higher plants. In particular, photosynthetic function has been described as a common target for UV-B impairment; yet as our understanding of UV-B photomorphogenesis increases, there are opportunities to expand the emerging paradigm of regulatory UV response. Lactuca sativa is an important dietary crop species and is often subjected to rapid sunlight exposure at field transfer. Acclimation to UV-B and visible light conditions in L. sativa was dissected using gas exchange and chlorophyll fluorescence measurements, in addition to non-destructive assessments of UV epidermal shielding (SUV ). After UV-B treatment, seedlings were subjected to wide-range metabolomic analysis using liquid chromatography hybrid quadrupole time-of-flight high-resolution mass spectrometry (LC-QTOF-HRMS). During the acclimation period, net photosynthetic rate increased in UV-treated plants, epidermal UV shielding increased in both subsets of plants transferred to the acclimatory conditions (UV+/UV- plants) and Fv /Fm declined slightly in UV+/UV- plants. Metabolomic analysis revealed that a key group of secondary compounds was up-regulated by higher light conditions, yet several of these compounds were elevated further by UV-B radiation. In conclusion, acclimation to UV-B radiation involves co-protection from the effects of visible light, and responses to UV-B radiation at a photosynthetic level may not be consistently viewed as damaging to plant development.

  18. Effect of SPL (Spent Pot Liner) and its main components on root growth, mitotic activity and phosphorylation of Histone H3 in Lactuca sativa L.

    PubMed

    Freitas, Aline Silva; Fontes Cunha, Isabela Martinez; Andrade-Vieira, Larissa Fonseca; Techio, Vânia Helena

    2016-02-01

    Spent Pot Liner (SPL) is a solid waste from the aluminum industry frequently disposed of in industrial landfills; it can be leached and contaminate the soil, sources of drinking water and plantations, and thus may pose a risk to human health and to ecosystems. Its composition is high variable, including cyanide, fluoride and aluminum salts, which are highly toxic and environmental pollutants. This study evaluated the effect of SPL and its main components on root growth and the mitosis of Lactuca sativa, by investigating the mechanisms of cellular and chromosomal alterations with the aid of immunolocalization. To this end, newly emerged roots of L. sativa were exposed to SPL and its main components (solutions of cyanide, fluoride and aluminum) and to calcium chloride (control) for 48h. After this, root length was measured and cell cycle was examined by means of conventional cytogenetics and immunolocalization. Root growth was inhibited in the treatments with SPL and aluminum; chromosomal and nuclear alterations were observed in all treatments. The immunolocalization evidenced normal dividing cells with regular temporal and spatial distribution of histone H3 phosphorylation at serine 10 (H3S10ph). However, SPL and its main components inhibited the phosphorylation of histone H3 at serine 10, inactivated pericentromeric regions and affected the cohesion of sister chromatids, thus affecting the arrangement of chromosomes in the metaphase plate and separation of chromatids in anaphase. In addition, these substances induced breaks in pericentromeric regions, characterized as fragile sites.

  19. A chlorophyll fluorescence analysis of photosynthetic efficiency, quantum yield and photon energy dissipation in PSII antennae of Lactuca sativa L. leaves exposed to cinnamic acid.

    PubMed

    Hussain, M Iftikhar; Reigosa, Manuel J

    2011-11-01

    This study investigated the effects of cinnamic acid (CA) on growth, biochemical and physiological responses of Lactuca sativa L. CA (0.1, 0.5, 1.0 and 1.5 mM) treatments decreased plant height, root length, leaf and root fresh weight, but it did not affect the leaf water status. CA treatment (1.5 mM) significantly reduced F(v), F(m), photochemical efficiency of PSII (F(v)/F(m)) and quantum yield of PSII (ΦPSII) photochemistry in L. sativa. The photochemical fluorescence quenching (qP) and non-photochemical quenching (NPQ) were reduced after treatment with 1.5 mM CA. Fraction of photon energy absorbed by PS II antennae trapped by "open" PS II reaction centers (P) was reduced by CA (1.5 mM) while, portion of absorbed photon energy thermally dissipated (D) and photon energy absorbed by PSII antennae and trapped by "closed" PSII reaction centers (E) was increased. Carbon isotope composition ratios (δ(13)C) was less negative (-27.10) in CA (1.5 mM) treated plants as compared to control (-27.61). Carbon isotope discrimination (Δ(13)C) and ratio of intercellular CO(2) concentration (ci/ca) from leaf to air were also less in CA treated plants. CA (1.5 mM) also decreased the leaf protein contents of L. sativa as compared to control.

  20. Accumulation and perchlorate exposure potential of lettuce produced in the Lower Colorado River region.

    PubMed

    Sanchez, C A; Krieger, R I; Khandaker, N; Moore, R C; Holts, K C; Neidel, L L

    2005-06-29

    The Colorado River is contaminated with perchlorate concentrations of 1.5-8 microg/L, an anion linked to thyroid dysfunction. Over 90% of the lettuce (Lactuca sativa L.) consumed during the winter months in the United States is produced in the Lower Colorado River region. Studies were conducted in this region to survey the potential for lettuce perchlorate accumulation and estimate potential human exposure to perchlorate from lettuce. Total uptake of perchlorate in the above-ground plant of iceberg lettuce was approximately 5 g/ha. Exposure estimates ranged from 0.45 to 1.8 microg/day depending on lettuce types and trimming. For all lettuce types, hypothetical exposures were less than 4% of the reference dose recommended by the National Academy of Sciences. Results show the relative iodide uptake inhibition potential because of lettuce nitrate was 2 orders of magnitude greater than that associated with the corresponding trace levels of perchlorate. These data support the conclusion that potential perchlorate exposures from lettuce irrigated with Colorado River water are negligible relative to acute or long-term harmful amounts.

  1. Bacterial networks and co-occurrence relationships in the lettuce root microbiota.

    PubMed

    Cardinale, Massimiliano; Grube, Martin; Erlacher, Armin; Quehenberger, Julian; Berg, Gabriele

    2015-01-01

    Lettuce is one of the most common raw foods worldwide, but occasionally also involved in pathogen outbreaks. To understand the correlative structure of the bacterial community as a network, we studied root microbiota of eight ancient and modern Lactuca sativa cultivars and the wild ancestor Lactuca serriola by pyrosequencing of 16S rRNA gene amplicon libraries. The lettuce microbiota was dominated by Proteobacteria and Bacteriodetes, as well as abundant Chloroflexi and Actinobacteria. Cultivar specificity comprised 12.5% of the species. Diversity indices were not different between lettuce cultivar groups but higher than in L. serriola, suggesting that domestication lead to bacterial diversification in lettuce root system. Spearman correlations between operational taxonomic units (OTUs) showed that co-occurrence prevailed over co-exclusion, and complementary fluorescence in situ hybridization-confocal laser scanning microscopy (FISH-CLSM) analyses revealed that this pattern results from both potential interactions and habitat sharing. Predominant taxa, such as Pseudomonas, Flavobacterium and Sphingomonadaceae rather suggested interactions, even though these are not necessarily part of significant modules in the co-occurrence networks. Without any need for complex interactions, single organisms are able to invade into this microbial network and to colonize lettuce plants, a fact that can influence the susceptibility to pathogens. The approach to combine co-occurrence analysis and FISH-CLSM allows reliably reconstructing and interpreting microbial interaction networks.

  2. Sensitivity of salad greens (Lactuca sativa L. and Eruca sativa Mill.) exposed to crude extracts of toxic and non-toxic cyanobacteria.

    PubMed

    Bittencourt-Oliveira, M C; Hereman, T C; Macedo-Silva, I; Cordeiro-Araújo, M K; Sasaki, F F C; Dias, C T S

    2015-05-01

    We evaluated the effect of crude extracts of the microcystin-producing (MC+) cyanobacteria Microcystis aeruginosa on seed germination and initial development of lettuce and arugula, at concentrations between 0.5 μg.L(-1) and 100 μg.L(-1) of MC-LR equivalent, and compared it to crude extracts of the same species without the toxin (MC-). Crude extracts of the cyanobacteria with MC (+) and without MC (-) caused different effects on seed germination and initial development of the salad green seedlings, lettuce being more sensitive to both extracts when compared to arugula. Crude extracts of M. aeruginosa (MC+) caused more evident effects on seed germination and initial development of both species of salad greens than MC-. Concentrations of 75 μg.L(-1) and 100 μg.L(-1) of MC-LR equivalent induced a greater occurrence of abnormal seedlings in lettuce, due to necrosis of the radicle and shortening of this organ in normal seedlings, as well as the reduction in total chlorophyll content and increase in the activity of the antioxidant enzyme peroxidase (POD). The MC- extract caused no harmful effects to seed germination and initial development of seedlings of arugula. However, in lettuce, it caused elevation of POD enzyme activity, decrease in seed germination at concentrations of 75 μg.L(-1) (MC-75) and 100 μg.L(-1) (MC-100), and shortening of the radicle length, suggesting that other compounds present in the cyanobacteria extracts contributed to this result. Crude extracts of M. aeruginosa (MC-) may contain other compounds, besides the cyanotoxins, capable of causing inhibitory or stimulatory effects on seed germination and initial development of salad green seedlings. Arugula was more sensitive to the crude extracts of M. aeruginosa (MC+) and (MC-) and to other possible compounds produced by the cyanobacteria.

  3. Towards new sources of resistance to the currant-lettuce aphid (Nasonovia ribisnigri).

    PubMed

    Walley, Peter G; Hough, Gemma; Moore, Jonathan D; Carder, John; Elliott, Marian; Mead, Andrew; Jones, Julie; Teakle, Graham; Barker, Guy; Buchanan-Wollaston, Vicky; Hand, Paul; Pink, David; Collier, Rosemary

    2017-01-01

    Domesticated lettuce varieties encompass much morphological variation across a range of crop type groups, with large collections of cultivars and landrace accessions maintained in genebanks. Additional variation not captured during domestication, present in ancestral wild relatives, represents a potentially rich source of alleles that can deliver to sustainable crop production. However, these large collections are difficult and costly to screen for many agronomically important traits. In this paper, we describe the generation of a diversity collection of 96 lettuce and wild species accessions that are amenable to routine phenotypic analysis and their genotypic characterization with a panel of 682 newly developed expressed sequence tag (EST)-linked KASP™ single nucleotide polymorphism (SNP) markers that are anchored to the draft Lactuca sativa genome assembly. To exemplify the utility of these resources, we screened the collection for putative sources of resistance to currant-lettuce aphid (Nasonovia ribisnigri) and carried out association analyses to look for potential SNPs linked to resistance.

  4. Particle trajectories in seeds of Lactuca sativa and chromosome aberrations after exposure to cosmic heavy ions on cosmos biosatellites 8 and 9

    NASA Astrophysics Data System (ADS)

    Facius, R.; Scherer, K.; Reitz, G.; Bücker, H.; Nevzgodina, L. V.; Maximova, E. N.

    1994-10-01

    The potentially specific importance of the heavy ions of the galactic cosmic radiation for radiation protection in manned spaceflight continues to stimulate in situ, i.e., spaceflight experiments to investigate their radiobiological properties. Chromosome aberrations as an expression of a direct assault on the genome are of particular interest in view of cancerogenesis being the primary radiation risk for man in space. In such investigations the establishment of the geometrical correlation between heavy ions' trajectories and the location of radiation sensitive biological substructures is an essential task. The overall qualitative and quantitative precision achieved for the identification of particle trajectories in the order of 2~10 μm as well as the contributing sources of uncertainties are discussed. We describe how this was achieved for seeds of Lactuca sativa as biological test organisms, whose location and orientation had to be derived from contact photographies displaying their outlines and those of the holder plates only. The incidence of chromosome aberrations in cells exposed during the COSMOS 1887 (Biosatellite 8) and the COSMOS 2044 (Biosatellite 9) mission was determined for seeds hit by cosmic heavy ions. In those seeds the incidence of both single and multiple chromosome aberrations was enhanced. The results of the Biosatellite 9 experiment, however, are confounded by spaceflight effects unrelated to the passage of heavy ions.

  5. Pathogenic variation and sexual reproduction in Swedish populations of Bremia lactucae.

    PubMed

    Gustafsson, M; Liljeroth, E; Gustafsson, I

    1985-09-01

    The host-pathogen interaction between lettuce (Lactuca sativa) and downy mildew (Bremia lactucae) is mainly differential and the resistance so far utilized in the host is vertical. As in many other obligate parasites, the introduction of cultivars with new vertical resistance has exerted a strong selection pressure on the pathogen resulting in significant changes in virulence frequencies and in the establishment of races with new combinations of virulence. Genetic diversity in pathogen populations may arise through mutation and gene flow, and new virulence genotypes may then be established through parasexuality and sexual recombination. In Swedish populations of Bremia lactucae, the pattern of variation in the parasite agrees well with that which might be expected in a diploid, outcrossing organism with frequent sexual reproduction. This is supported by: two or more isolates, different in virulence and mating type, may occur together on the same lettuce leaf; zygotes (oospores) are formed in all populations investigated and the frequency varies from 22% to 98%; oospores germinate rather frequently under suitable conditions. To breed for resistance in dynamic host-pathogen systems such as this one is difficult and the program should preferably be based on race-non-specific resistance.

  6. Rin4 causes hybrid necrosis and race-specific resistance in an interspecific lettuce hybrid.

    PubMed

    Jeuken, Marieke J W; Zhang, Ningwen W; McHale, Leah K; Pelgrom, Koen; den Boer, Erik; Lindhout, Pim; Michelmore, Richard W; Visser, Richard G F; Niks, Rients E

    2009-10-01

    Some inter- and intraspecific crosses may result in reduced viability or sterility in the offspring, often due to genetic incompatibilities resulting from interactions between two or more loci. Hybrid necrosis is a postzygotic genetic incompatibility that is phenotypically manifested as necrotic lesions on the plant. We observed hybrid necrosis in interspecific lettuce (Lactuca sativa and Lactuca saligna) hybrids that correlated with resistance to downy mildew. Segregation analysis revealed a specific allelic combination at two interacting loci to be responsible. The allelic interaction had two consequences: (1) a quantitative temperature-dependent autoimmunity reaction leading to necrotic lesions, lethality, and quantitative resistance to an otherwise virulent race of Bremia lactucae; and (2) a qualitative temperature-independent race-specific resistance to an avirulent race of B. lactucae. We demonstrated by transient expression and silencing experiments that one of the two interacting genes was Rin4. In Arabidopsis thaliana, RIN4 is known to interact with multiple R gene products, and their interactions result in hypersensitive resistance to Pseudomonas syringae. Site-directed mutation studies on the necrosis-eliciting allele of Rin4 in lettuce showed that three residues were critical for hybrid necrosis.

  7. An Ultra-High-Density, Transcript-Based, Genetic Map of Lettuce

    PubMed Central

    Truco, Maria José; Ashrafi, Hamid; Kozik, Alexander; van Leeuwen, Hans; Bowers, John; Wo, Sebastian Reyes Chin; Stoffel, Kevin; Xu, Huaqin; Hill, Theresa; Van Deynze, Allen; Michelmore, Richard W.

    2013-01-01

    We have generated an ultra-high-density genetic map for lettuce, an economically important member of the Compositae, consisting of 12,842 unigenes (13,943 markers) mapped in 3696 genetic bins distributed over nine chromosomal linkage groups. Genomic DNA was hybridized to a custom Affymetrix oligonucleotide array containing 6.4 million features representing 35,628 unigenes of Lactuca spp. Segregation of single-position polymorphisms was analyzed using 213 F7:8 recombinant inbred lines that had been generated by crossing cultivated Lactuca sativa cv. Salinas and L. serriola acc. US96UC23, the wild progenitor species of L. sativa. The high level of replication of each allele in the recombinant inbred lines was exploited to identify single-position polymorphisms that were assigned to parental haplotypes. Marker information has been made available using GBrowse to facilitate access to the map. This map has been anchored to the previously published integrated map of lettuce providing candidate genes for multiple phenotypes. The high density of markers achieved in this ultradense map allowed syntenic studies between lettuce and Vitis vinifera as well as other plant species. PMID:23550116

  8. Gibberellin Response in Lettuce Hypocotyl Sections 1

    PubMed Central

    Silk, Wendy Kuhn; Jones, Russell L.

    1975-01-01

    Excised lettuce (Lactuca sativa L.) hypocotyl sections retain the ability to elongate in response to gibberellic acid (GA3) addition. In 48 hr at 30 C a GA3-treated segment more than doubles while a control segment elongates less than 50%. Auxin has no detectable effect on this system. Sensitivity to GA3 is not decreased by apex or root removal. Of the experimental variables tested, temperature, sucrose, and preincubation in water affect growth both with and without GA3. Blue and far red light inhibit growth without GA3; this inhibition is reversed by GA3. Potassium chloride stimulates growth of illuminated sections treated with GA3 but has no effect on control growth. When sections are incubated in the dark, KCl has a promotive effect on elongation. Images PMID:16659285

  9. Treated wastewater phytotoxicity assessment using Lactuca sativa: Focus on germination and root elongation test parameters.

    PubMed

    Priac, Anne; Badot, Pierre-Marie; Crini, Grégorio

    2017-03-01

    Sensitive and simple ecotoxicological bioassays like seed germination and root elongation tests are commonly used to evaluate the phytotoxicity of waste and industrial discharge waters. Although the tests are performed following national and international standards, various parameters such as the number of seeds per dish, the test duration or the type of support used remain variable. To be able to make a correct comparison of results from different studies, it is crucial to know which parameter(s) could affect ecotoxicological diagnosis. We tested four different control waters and three seed densities. No significant differences on either germination rate or root elongation endpoints were shown. Nevertheless, we found that the four lettuce cultivars (Appia, batavia dorée de printemps, grosse blonde paresseuse, and Kinemontepas) showed significantly different responses when watered with the same and different metal-loaded industrial discharge water. From the comparison, it is clear that a differential sensitivity scale occurs among not just species but cultivars.

  10. DECA: a new model for assessing the foliar uptake of atmospheric lead by vegetation, using Lactuca sativa as an example.

    PubMed

    Schreck, E; Bonnard, R; Laplanche, C; Leveque, T; Foucault, Y; Dumat, C

    2012-12-15

    In the context of peri-urban atmospheric pollution by industrial lead recycling emissions, metal can transfer to plant shoots. Home gardeners consuming their produce can therefore be exposed to metal pollution. The Human Health Risk Assessment Protocol (HHRAP) model from the United States Environmental Protection Agency (US EPA) classically used in risk assessment provides foliar metal uptake predictions for large farms but is not adapted to cultures in kitchen gardens. Thus, this study developed a new model, entitled "DECA", which includes individually measured parameters and the washing of vegetables before human consumption. Results given by DECA and HHRAP models were compared with experimental measurements of lettuce. The data calculated by the DECA model were highly correlated with the measured values; the HHRAP model overestimates foliar lead uptake. Moreover, strong influences of factor of washing and time-dependent variations of loss coefficient were highlighted. Finally, the DECA model provided important risk assessment data regarding consumption of vegetables from kitchen gardens.

  11. Capture and accumulation of perchlorate in lettuce. Effect of genotype, temperature, perchlorate concentration, and competition with anions.

    PubMed

    Calderón, Raúl; Palma, Paulina; Parker, David; Escudey, Mauricio

    2014-09-01

    Various studies have evaluated the accumulation of ClO4(-) in lettuce (Lactuca sativa), but very few have dealt with the variables that can interfere with its capture. The present study evaluates the transfer of ClO4(-) in two L. sativa varieties: butter head (L. sativa var. capitata) and cos lettuce (L. sativa var. crispa) under hydroponic conditions. The ClO4(-) concentrations used correspond to levels (1 and 2mgL(-1)), measured in irrigation water in the Iquique region in the north of Chile. Results indicate that the capture of ClO4(-) is dependent on its concentration, lettuce genotype, and temperature. The butter head variety accumulates the highest perchlorate concentrations. Anion competition involving NO3(-) (16 and 48mM), Cl(-) (23 and 56mM), and SO4(2-) (10 and 20mM) was evaluated, being NO3(-) (48mM), the most significant competition reducing the concentration of ClO4(-) in tissues of L. sativa varieties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Importance of 'blue' photon levels for lettuce seedlings grown under red-light-emitting diodes

    NASA Technical Reports Server (NTRS)

    Hoenecke, M. E.; Bula, R. J.; Tibbitts, T. W.

    1992-01-01

    Light-emitting diodes (LEDs) with high-intensity output are being studied as a photosynthetic light source for plants. High-output LEDs have peak emission at approximately 660 nm concentrated in a waveband of +/- 30 nm. Lettuce (Lactuca sativa Grand Rapids') seedlings developed extended hypocotyls and elongated cotyledons when grown under these LEDs as a sole source of irradiance. This extension and elongation was prevented when the red LED radiation was supplemented with more than 15 micromoles m-2 s-1 of 400- to 500-nm photons from blue fluorescent lamps. Blue radiation effects were independent of the photon level of the red radiation.

  13. Importance of 'blue' photon levels for lettuce seedlings grown under red-light-emitting diodes

    NASA Technical Reports Server (NTRS)

    Hoenecke, M. E.; Bula, R. J.; Tibbitts, T. W.

    1992-01-01

    Light-emitting diodes (LEDs) with high-intensity output are being studied as a photosynthetic light source for plants. High-output LEDs have peak emission at approximately 660 nm concentrated in a waveband of +/- 30 nm. Lettuce (Lactuca sativa Grand Rapids') seedlings developed extended hypocotyls and elongated cotyledons when grown under these LEDs as a sole source of irradiance. This extension and elongation was prevented when the red LED radiation was supplemented with more than 15 micromoles m-2 s-1 of 400- to 500-nm photons from blue fluorescent lamps. Blue radiation effects were independent of the photon level of the red radiation.

  14. Adaptability test of lettuce to soil-like substrate in bioregenerative life support system

    NASA Astrophysics Data System (ADS)

    Min, Yan; Liu, Professor Hong; Wenting, Fu

    Plant cultivation using soil-like substrate (SLS) is considered to be a feasible option for building up matter for biological turnover in bioregenerative life support system (BLSS) by many researchers. The characteristics of SLS are different from those of true soil therefore it is very important to study the adaptability of candidate crop to SLS in BLSS. This study was carried out in three successive steps to test the adaptability of lettuce (Lactuca sativa L.) to rice straw SLS in BLSS of China. First, six Chinese specific lettuce cultivars which were selected for Chinese advanced life support system were planted into the same rice straw SLS, which was to determine the more suitable plant cultivar to do the next experiment. The results showed that Sharp Leaf lettuce and Red lettuce were more suitable for SLS than other cultivars. Second, the possibility of increasing the crop yield on the SLS was conducted by changing the soil depth and plant density. Sharp Leaf lettuce and Red lettuce were used into this experiment in order to obtain the highest yield under the smallest soil volume and weight at the same light intensity. Crop edible biomass, crop nutrition content and photosynthetic characteristics were estimated during the experiment. Red lettuce obtained higher biomass and photosynthesis capacity. Lastly, the stability of planting system of lettuce and SLS was evaluated in the closed controlled system. Red lettuce would be the test plant. In this experiment different age lettuce groups would be planted together and gas exchange would be measured. In all of these experiments soil physical and chemical characteristics were also be measured which will be the basal data for further research.

  15. Selective toxin effects on faster and slower growing individuals in the formation of hormesis at the population level - A case study with Lactuca sativa and PCIB.

    PubMed

    Belz, Regina G; Sinkkonen, Aki

    2016-10-01

    Natural plant populations have large phenotypic plasticity that enhances acclimation to local stress factors such as toxin exposures. While consequences of high toxin exposures are well addressed, effects of low-dose toxin exposures on plant populations are seldom investigated. In particular, the importance of 'selective low-dose toxicity' and hormesis, i.e. stimulatory effects, has not been studied simultaneously. Since selective toxicity can change the size distribution of populations, we assumed that hormesis alters the size distribution at the population level, and investigated whether and how these two low-dose phenomena coexist. The study was conducted with Lactuca sativa L. exposed to the auxin-inhibitor 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB) in vitro. In two separate experiments, L. sativa was exposed to 12 PCIB doses in 24 replicates (50 plants/replicate). Shoot/root growth responses at the population level were compared to the fast-growing (≥90% percentile) and the slow-growing subpopulations (≤10% percentile) by Mann-Whitney U testing and dose-response modelling. In the formation of pronounced PCIB hormesis at the population level, low-dose effects proved selective, but widely stimulatory which seems to counteract low-dose selective toxicity. The selectivity of hormesis was dose- and growth rate-dependent. Stimulation occurred at lower concentrations and stimulation percentage was higher among slow-growing individuals, but partly or entirely masked at the population level by moderate or negligible stimulation among the faster growing individuals. We conclude that the hormetic effect up to the maximum stimulation may be primarily facilitated by an increase in size of the most slow-growing individuals, while thereafter it seems that mainly the fast-growing individuals contributed to the observed hormesis at the population level. As size distribution within a population is related to survival, our study hints that selective effects on slow

  16. Standardized extract of Lactuca sativa Linn. and its fractions abrogates scopolamine-induced amnesia in mice: A possible cholinergic and antioxidant mechanism.

    PubMed

    Malik, Jai; Kaur, Jagpreet; Choudhary, Sunayna

    2017-02-28

    The present study was designed to evaluate the efficacy of Lactuca sativa (LS) Linn. (Asteraceae) against scopolamine- induced amnesia and to validate its traditional claim as memory enhancer. Ethanol extract of fresh LS leaves (LSEE), standardized on the basis of quercetin content, was successively partitioned using various solvents viz., hexane, ethyl acetate, and n-butanol in increasing order of polarity. LSEE (50, 100, and 200 mg/kg) and its various fractions (at a dose equivalent to dose of LSEE exhibiting maximum activity), administered orally for 14 days, were evaluated for their memory enhancing effect against scopolamine-induced (1 mg/kg, i.p.) amnesia in 3-4 months old male Laca mice (n = 6 in each group). The memory enhancing effect was evaluated using behavioural (elevated plus maze, novel object recognition and Morris water maze tests) and biochemical parameters (acetylcholinesterase activity, malonaldehyde, superoxide dismutase, nitrite, catalase, and reduced gultathione content). The results of the test substances were compared with both scopolamine and donepezil that was used as a standard memory enhancer and acetylcholinesterase inhibitor. Scopolamine elicit marked deterioration of memory and alteration in biochemical parameters in comparison to the control group. LSEE and its n-butanol and aqueous fractions significantly (P < 0.05) attenuated the scopolamine- induced amnesia that was evident in all the behavioural and biochemical test parameters. LSEE (200 mg/kg) and n-butanol fraction (15 mg/kg) exhibited maximum anti-amnesic effect among various tested dose levels. The results exhibited that LS prophylaxis attenuated scopolamine- induced memory impairment through its acetylcholinesterase inhibitory and antioxidant activity validating its traditional claim.

  17. Mitochondrial genomes of Bremia lactucae and development of haplotype markers for population and genetic studies

    USDA-ARS?s Scientific Manuscript database

    Bremia lactucae, the causative agent of lettuce downy mildew, is the most important pathogen of lettuce in the US and worldwide. In order to identify cytoplasmic markers for use in population and genetic studies the reference mitochondrial genome of B. lactucae isolate SF5 was assembled from Illumi...

  18. Toxicity of sodium tungstate to earthworm, oat, radish, and lettuce.

    PubMed

    Bamford, Josie E; Butler, Alicia D; Heim, Katherine E; Pittinger, Charles A; Lemus, Ranulfo; Staveley, Jane P; Lee, K Brian; Venezia, Carmen; Pardus, Michael J

    2011-10-01

    Due to unknown effects of the potential exposure of the terrestrial environment to tungsten substances, a series of toxicity studies of sodium tungstate (Na(2) WO(4) ) was conducted. The effect on earthworm (Eisenia fetida) survival and reproduction was examined using Organisation for Economic Co-operation and Development (OECD) Guideline 222. No effect on either endpoint was seen at the highest concentration tested, resulting in a 56-d no-observed-effect concentration (NOEC) of ≥586 mg tungsten/kg dry soil (nominal concentrations). The effect of sodium tungstate on emergence and growth of plant species was examined according to OECD Guideline 208: oat (Avena sativa), radish (Raphanus sativus), and lettuce (Lactuca sativa). No effects on emergence, shoot height, and dry shoot weight were observed in oats exposed to the highest concentration, resulting in a 21-d NOEC of ≥586 mg tungsten/kg dry soil. The NOECs for radish and lettuce were 65 and 21.7 mg tungsten/kg dry soil (nominal concentrations), respectively. Respective 21-d median effective concentration values (EC50) for radish and lettuce were >586 and 313 mg tungsten/kg dry soil (based on shoot height) (confidence level [CL] -8.5-615); EC25 values were 152 (CL 0-331) and 55 (CL 0-114) mg tungsten/kg dry soil. Results are consistent with the few other tungsten substance terrestrial toxicity studies in the literature.

  19. High-Throughput Growth Prediction for Lactuca sativa L. Seedlings Using Chlorophyll Fluorescence in a Plant Factory with Artificial Lighting.

    PubMed

    Moriyuki, Shogo; Fukuda, Hirokazu

    2016-01-01

    Poorly grown plants that result from differences in individuals lead to large profit losses for plant factories that use large electric power sources for cultivation. Thus, identifying and culling the low-grade plants at an early stage, using so-called seedlings diagnosis technology, plays an important role in avoiding large losses in plant factories. In this study, we developed a high-throughput diagnosis system using the measurement of chlorophyll fluorescence (CF) in a commercial large-scale plant factory, which produces about 5000 lettuce plants every day. At an early stage (6 days after sowing), a CF image of 7200 seedlings was captured every 4 h on the final greening day by a high-sensitivity CCD camera and an automatic transferring machine, and biological indices were extracted. Using machine learning, plant growth can be predicted with a high degree of accuracy based on biological indices including leaf size, amount of CF, and circadian rhythms in CF. Growth prediction was improved by addition of temporal information on CF. The present data also provide new insights into the relationships between growth and temporal information regulated by the inherent biological clock.

  20. Rapid Transient Production of a Monoclonal Antibody Neutralizing the Porcine Epidemic Diarrhea Virus (PEDV) in Nicotiana benthamiana and Lactuca sativa.

    PubMed

    Rattanapisit, Kaewta; Srijangwad, Anchalee; Chuanasa, Taksina; Sukrong, Suchada; Tantituvanont, Angkana; Mason, Hugh S; Nilubol, Dachrit; Phoolcharoen, Waranyoo

    2017-06-02

    Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration, weight loss, and high mortality rate in neonatal piglets. Porcine epidemic diarrhea (PED) has been reported in Europe, America, and Asia including Thailand. The disease causes substantial losses to the swine industry in many countries. Presently, there is no effective PEDV vaccine available. In this study, we developed a plant-produced monoclonal antibody (mAb) 2C10 as a prophylactic candidate to prevent the PEDV infection. Recently, plant expression systems have gained interest as an alternative for the production of antibodies because of many advantages, such as low production cost, lack of human and animal pathogen, large scalability, etc. The 2C10 mAb was transiently expressed in Nicotiana benthamiana and lettuce using geminiviral vector. After purification by protein A affinity chromatography, the antibody was tested for the binding and neutralizing activity against PEDV. Our result showed that the plant produced 2C10 mAb can bind to the virus and also inhibit PEDV infection in vitro. These results show excellent potential for a plant-expressed 2C10 as a PEDV prophylaxis and a diagnostic for PEDV infection. Georg Thieme Verlag KG Stuttgart · New York.

  1. High-Throughput Growth Prediction for Lactuca sativa L. Seedlings Using Chlorophyll Fluorescence in a Plant Factory with Artificial Lighting

    PubMed Central

    Moriyuki, Shogo; Fukuda, Hirokazu

    2016-01-01

    Poorly grown plants that result from differences in individuals lead to large profit losses for plant factories that use large electric power sources for cultivation. Thus, identifying and culling the low-grade plants at an early stage, using so-called seedlings diagnosis technology, plays an important role in avoiding large losses in plant factories. In this study, we developed a high-throughput diagnosis system using the measurement of chlorophyll fluorescence (CF) in a commercial large-scale plant factory, which produces about 5000 lettuce plants every day. At an early stage (6 days after sowing), a CF image of 7200 seedlings was captured every 4 h on the final greening day by a high-sensitivity CCD camera and an automatic transferring machine, and biological indices were extracted. Using machine learning, plant growth can be predicted with a high degree of accuracy based on biological indices including leaf size, amount of CF, and circadian rhythms in CF. Growth prediction was improved by addition of temporal information on CF. The present data also provide new insights into the relationships between growth and temporal information regulated by the inherent biological clock. PMID:27242805

  2. Assessment of the impact of Aluminum on germination, early growth and free proline content in Lactuca sativa L.

    PubMed

    Silva, Patrícia; Matos, Manuela

    2016-09-01

    Aluminum (Al) toxicity is a major problem in crop production on acid soils. The use of industrial or municipal wastewaters, which may be contaminated with metals, for irrigation in agriculture is common over the world. This action can increase the concentration of these agents in the soil and decrease crops yields. In order to evaluate the toxicological effects of recommended Al levels in irrigation water, under acidic conditions, on lettuce, seeds of two cultivars ("cv Reine de Mai" and "cv White Boston") were exposed to five different Al concentrations (0, 0.05, 0.5, 5 and 20mg/L) and germination percentage, root and shoot lengths were measured. Also, the germination rate and the vigor index were calculated, and the proline content was estimated for all concentrations. Results showed that seed germination was not negatively affected by Al, but the germination rate decreased in both cultivars. For the other factors analyzed, with the exception of 20mg/L concentration for "cv White Boston", Al induced, in general, negative effects including the content of proline that increased in the seeds that were exposed to this metal. The "cv Reine de Mai" was more sensitive for the analyzed concentrations than the other cultivar.. The results indicated that even recommended Al concentrations for irrigation, under acidic conditions, can interfere negatively in seed germination and seedling establishment and possibly with crop production.

  3. Freshly characterization and storability of mini head lettuces at optimal and abusive temperatures.

    PubMed

    Viacava, Gabriela E; Ponce, Alejandra G; Goyeneche, Rosario; Carrozzi, Liliana; Yommi, Alejandra; Roura, Sara I

    2016-01-01

    Selection of lettuce varieties less sensitive to quality deterioration and more tolerant to abusive temperatures during handling, transportation, and storage is essential to minimize economical and quality losses that affect both producers and consumers. This work was focused on the quality changes of four baby head lettuces (Lactuca sativa L.), two butter (red and green) and two oak-leaf (red and green) types, during storage at 0 ℃ and 10 ℃ for 10 days. Lettuce quality was determined by measuring bioactive content (ascorbic acid, total phenolics), physicochemical (total chlorophyll, browning potential), and microbiological indices. At harvest, red varieties presented lower browning potential and higher bioactive compounds but no differences were observed in microbial populations. During storage, ascorbic acid underwent first order degradation for all varieties, with a degradation rate at 10 ℃ twice faster than at 0 ℃. At 0 ℃, only the red oak-leaf lettuce exhibited chlorophyll degradation, while at 10 ℃ all varieties presented degradation. No changes were observed in total phenolics and browning potential of butter lettuces during storage at both temperatures. Microbial population counts were significant affected by the storage temperature. Red butter baby lettuce presented slightly better bioactive content and microbiological characteristics and then better storability.

  4. Isolation of phenolic compounds from iceberg lettuce and impact on enzymatic browning.

    PubMed

    Mai, Franziska; Glomb, Marcus A

    2013-03-20

    Enzymatic browning is generally reported as the reaction between phenolic substances and enzymes. The quality of iceberg lettuce is directly linked to this discoloration. In particular, the color change of lettuce stems considerably reduces consumer acceptance and thus decreases sales revenue of iceberg lettuce. Ten phenolic compounds (caffeic acid, chlorogenic acid, phaseolic acid, chicoric acid, isochlorogenic acid, luteolin-7-O-glucuronide, quercetin-3-O-glucuronide, quercetin-3-O-galactoside, quercetin-3-O-glucoside, and quercetin-3-O-(6″-malonyl)-glucoside) were isolated from Lactuca sativa var. capitata by multilayer countercurrent chromatography (MLCCC) and preparative high-performance liquid chromatography (HPLC). In addition, syringin was identified for the first time in iceberg lettuce. This polyphenolic ingredient was previously not mentioned for the family of Cichorieae in general. The purity and identity of isolated compounds were confirmed by different NMR experiments, HPLC-DAD-MS, and HR-MS techniques. Furthermore, the relationship between discoloration of iceberg lettuce and enzymatic browning was thoroughly investigated. Unexpectedly, the total concentration of phenolic compounds and the activity of polyphenol oxidase were not directly related to the browning processes. Results of model incubation experiments of plant extract solutions led to the conclusion that in addition to the typical enzymatic browning induced by polyphenol oxidases, further mechanisms must be involved to explain total browning of lettuce.

  5. Non-destructive prediction of pigment content in lettuce based on visible-NIR spectroscopy.

    PubMed

    Steidle Neto, Antonio José; Moura, Lorena de Oliveira; Lopes, Daniela de Carvalho; Carlos, Lanamar de Almeida; Martins, Luma Moreira; Ferraz, Leila de Castro Louback

    2017-05-01

    Lettuce (Lactuca sativa L.) is one of the most important salad vegetables in the world, with a number of head shapes, leaf types and colors. The lettuce pigments play important physiological functions, such as photosynthetic processes and light stress defense, but they also benefit human health because of their antioxidant action and anticarcinogenic properties. In this study three lettuce cultivars were grown under different farming systems, and partial least squares models were built to predict the leaf chlorophyll, carotenoid and anthocyanin content. The three proposed models resulted in high coefficients of determination and variable importance for the projection values, as well as low estimative errors for calibration and external validation datasets. These results confirmed that it is possible to accurately predict chlorophyll, carotenoid and anthocyanin content of green and red lettuces, grown in different farming systems, based on the spectral reflectance from 500 to 1000 nm. The proposed models were adequate for estimating lettuce pigments in a quick and non-destructive way, representing an alternative to conventional measurement methods. Prediction accuracies were improved by using the detrending, smoothing and first derivative pretreatments to the original spectral signatures prior to estimating lettuce chlorophyll, carotenoid and anthocyanin content, respectively. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Arsenic uptake by lettuce from As-contaminated soil remediated with Pteris vittata and organic amendment.

    PubMed

    de Oliveira, Letuzia M; Suchismita, Das; Gress, Julia; Rathinasabapathi, Bala; Chen, Yanshan; Ma, Lena Q

    2017-06-01

    Leaching of inorganic arsenic (As) from chromated copper arsenate (CCA)-treated wood may elevate soil As levels. Thus, an environmental concern arises regarding As accumulation in vegetables grown in these soils. In this study, a greenhouse experiment was conducted to investigate the ability of As-hyperaccumulator P. vittata and organic amendments in reducing As uptake by lettuce (Lactuca sativa) from a soil contaminated from CCA-treated wood (63.9 mg kg(-1) As). P. vittata was grown for 150 d in a CCA-contaminated soil amended with biochar, activated carbon or coffee grounds at 1%, followed by lettuce for another 55 d. After harvest, plant biomass and As concentrations in plant and soil were determined. The presence of P. vittata reduced As content in lettuce by 21% from 27.3 to 21.5 mg kg(-1) while amendment further reduced As in lettuce by 5.6-18%, with activated C being most effective. Our data showed that both P. vittata and organic amendments were effective in reducing As concentration in lettuce. Though no health-based standard for As in vegetables exists in USA, care should be taken when growing lettuce in contaminated soils. Our data showed that application of organic amendments with P. vittata reduced As hazards in CCA-contaminated soils. Published by Elsevier Ltd.

  7. Effects of seasonal variation on sensory properties and total phenolic content of 5 lettuce cultivars.

    PubMed

    Bunning, Marisa L; Kendall, Patricia A; Stone, Martha B; Stonaker, Frank H; Stushnoff, Cecil

    2010-04-01

    Butterhead, crisphead, green leaf, red leaf, and romaine types of lettuce (Lactuca sativa L.) are all commonly available in U.S. markets. Sensory properties of lettuce may vary in response to environmental factors that often fluctuate widely throughout the growing season. Bitterness is generally thought to increase in lettuce grown at higher temperatures and may be related to phenolic content. This study evaluated sensory properties and total phenolic content of 5 lettuce cultivars harvested early, midway, and late in the growing season and investigated possible correlations with environmental temperature and light intensity indexes. Thirty panelists rated bitterness, appearance, flavor, texture, and overall acceptability of "Crisp and Green" (green leaf), "Crispino" (crisphead), "Green Forest" (romaine), "Lochness" (butterhead), and "Vulcan" (red leaf) lettuce. There was considerable variation in sensory ratings among the 5 cultivars (P < 0.005) but few differences within cultivars across the growing season. The crisphead cultivar, Crispino, received higher scores (P < 0.01) for flavor, texture, and overall acceptability and was rated less bitter (P < 0.05) than other cultivars. Total phenolic content varied significantly (P < 0.001) among cultivars with the red leaf cultivar, Vulcan, exhibiting the highest levels. There was no correlation between bitterness and total phenolic content or environmental factors. Differences among lettuce cultivars appear to have a larger impact on sensory and phenolic profiles than environmental variation during the growing season.

  8. Effect of a non-woven fabric covering on the residual activity of pendimethalin in lettuce and soil.

    PubMed

    Jursík, Miroslav; Kováčová, Jana; Kočárek, Martin; Hamouzová, Kateřina; Soukup, Josef

    2017-05-01

    Lettuce (Lactuca sativa L.) is a crop that is very sensitive to herbicide contamination owing to its short growing season. The use of long-residual herbicides and non-woven fabric coverings could therefore influence pendimethalin concentrations in soil and lettuce. The pendimethalin half-life in soil ranged between 18 and 85 days and was mainly affected by season (i.e. weather), and especially by soil moisture. Pendimethalin degradation in soil was slowest under dry conditions. A longer pendimethalin half-life was observed under the non-woven fabric treatment, but the effect of varying application rate was not significant. Pendimethalin residue concentrations in lettuce heads were significantly influenced by pendimethalin application rate and by non-woven fabric cover, especially at the lettuce's early growth stages. The highest pendimethalin concentration at final harvest was determined in lettuce grown on uncovered plots treated with pendimethalin at an application rate of 1200 g ha(-1) (7-38 µg kg(-1) ). Depending on growing season duration and weather conditions, pendimethalin concentrations in lettuce grown under non-woven fabric ranged from 0 to 21 µg kg(-1) . Use of transparent non-woven fabric cover with lettuce can help to reduce application rates of soil herbicides and diminish the risk of herbicide contamination in the harvested vegetables. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Inhibition of root growth by narciclasine is caused by DNA damage-induced cell cycle arrest in lettuce seedlings.

    PubMed

    Hu, Yanfeng; Li, Jiaolong; Yang, Lijing; Nan, Wenbin; Cao, Xiaoping; Bi, Yurong

    2014-09-01

    Narciclasine (NCS) is an Amaryllidaceae alkaloid isolated from Narcissus tazetta bulbs. Its phytotoxic effects on plant growth were examined in lettuce (Lactuca sativa L.) seedlings. Results showed that high concentrations (0.5-5 μM) of NCS restricted the growth of lettuce roots in a dose-dependent manner. In NCS-treated lettuce seedlings, the following changes were detected: reduction of mitotic cells and cell elongation in the mature region, inhibition of proliferation of meristematic cells, and cell cycle. Moreover, comet assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay indicated that higher levels NCS (0.5-5 μM) induced DNA damage in root cells of lettuce. The decrease in meristematic cells and increase in DNA damage signals in lettuce roots in responses to NCS are in a dose-dependent manner. NCS-induced reactive oxygen species accumulation may explain an increase in DNA damage in lettuce roots. Thus, the restraint of root growth is due to cell cycle arrest which is caused by NCS-induced DNA damage. In addition, it was also found that NCS (0.5-5 μM) inhibited the root hair development of lettuce seedlings. Further investigations on the underlying mechanism revealed that both auxin and ethylene signaling pathways are involved in the response of root hairs to NCS.

  10. Rin4 Causes Hybrid Necrosis and Race-Specific Resistance in an Interspecific Lettuce Hybrid[W

    PubMed Central

    Jeuken, Marieke J.W.; Zhang, Ningwen W.; McHale, Leah K.; Pelgrom, Koen; den Boer, Erik; Lindhout, Pim; Michelmore, Richard W.; Visser, Richard G.F.; Niks, Rients E.

    2009-01-01

    Some inter- and intraspecific crosses may result in reduced viability or sterility in the offspring, often due to genetic incompatibilities resulting from interactions between two or more loci. Hybrid necrosis is a postzygotic genetic incompatibility that is phenotypically manifested as necrotic lesions on the plant. We observed hybrid necrosis in interspecific lettuce (Lactuca sativa and Lactuca saligna) hybrids that correlated with resistance to downy mildew. Segregation analysis revealed a specific allelic combination at two interacting loci to be responsible. The allelic interaction had two consequences: (1) a quantitative temperature-dependent autoimmunity reaction leading to necrotic lesions, lethality, and quantitative resistance to an otherwise virulent race of Bremia lactucae; and (2) a qualitative temperature-independent race-specific resistance to an avirulent race of B. lactucae. We demonstrated by transient expression and silencing experiments that one of the two interacting genes was Rin4. In Arabidopsis thaliana, RIN4 is known to interact with multiple R gene products, and their interactions result in hypersensitive resistance to Pseudomonas syringae. Site-directed mutation studies on the necrosis-eliciting allele of Rin4 in lettuce showed that three residues were critical for hybrid necrosis. PMID:19855048

  11. Effect of CO2 levels on nutrient content of lettuce and radish

    NASA Technical Reports Server (NTRS)

    McKeehen, J. D.; Smart, D. J.; Mackowiak, C. L.; Wheeler, R. M.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)

    1996-01-01

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar 'Waldmann's Green' and radish (Raphanus sativus L.) cultivar 'Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO2 level.

  12. Effect of CO_2 levels on nutrient content of lettuce and radish

    NASA Astrophysics Data System (ADS)

    McKeehen, J. D.; Smart, D. J.; Mackowiak, C. L.; Wheeler, R. M.; Nielsen, S. S.

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO_2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar `Waldmann's Green' and radish (Raphanus sativus L.) cultivar `Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO_2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO_2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO_2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish roots and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO_2 level.

  13. Effect of CO2 levels on nutrient content of lettuce and radish

    NASA Technical Reports Server (NTRS)

    McKeehen, J. D.; Smart, D. J.; Mackowiak, C. L.; Wheeler, R. M.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)

    1996-01-01

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar 'Waldmann's Green' and radish (Raphanus sativus L.) cultivar 'Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO2 level.

  14. Effect of CO2 levels on nutrient content of lettuce and radish.

    PubMed

    McKeehen, J D; Smart, D J; Mackowiak, C L; Wheeler, R M; Nielsen, S S

    1996-01-01

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar 'Waldmann's Green' and radish (Raphanus sativus L.) cultivar 'Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO2 level.

  15. Comparison of lettuce diseases and yield under subsurface drip and furrow irrigation.

    PubMed

    Subbarao, K V; Hubbard, J C; Schulbach, K F

    1997-08-01

    ABSTRACT Subsurface drip and furrow irrigation were compared on lettuce (Lactuca sativa) cvs. Salinas and Misty Day for yield and incidence and severity of three important diseases of lettuce in the Salinas Valley, CA. Experiments were conducted between 1993 and 1995 during the spring and fall seasons. The diseases examined included lettuce drop (Sclerotinia minor), downy mildew (Bremia lactucae), and corky root (Rhizomonas suberifaciens). Replicated plots of subsurface drip and furrow irrigation were arranged in a randomized complete-block design. All plants were inoculated with S. minor at the initiation of the experiment during the 1993 spring season. Plots were not inoculated for downy mildew and corky root during any season nor were the plots reinoculated with S. minor. During each season, all plots were sprinkler irrigated until thinning, and subsequently, the irrigation treatments were begun. The furrow plots were irrigated once per week, and the drip plots received water twice per week. The distribution of soil moisture at two soil depths (0 to 5 and 6 to 15 cm) at 5, 10, and 15 cm distance on either side of the bed center in two diagonal directions was significantly lower in drip-irrigated compared with furrow-irrigated plots. Plots were evaluated for lettuce drop incidence and downy mildew incidence and severity at weekly intervals until harvest. Corky root severity and yield components were determined at maturity. Lettuce drop incidence and corky root severity were significantly lower and yields were higher in plots under subsurface drip irrigation compared with furrow irrigation, regardless of the cultivar, except during the 1994 fall season. Incidence and severity of downy mildew were not significantly different between the two irrigation methods throughout the study. The differential microclimates created by the two irrigation treatments did not affect downy mildew infection, presumably because the mesoclimate is usually favorable in the Salinas

  16. Lettuce seed germination: modulation of pregermination protein synthesis by gibberellic Acid, abscisic Acid, and cytokinin.

    PubMed

    Fountain, D W; Bewley, J D

    1976-10-01

    Protein synthesis in gibberellin-treated lettuce (Lactuca sativa) seeds has been studied during the lag phase between the beginning of imbibition and the first signs of radicle protrusion. When compared to the water-imbibed controls, both polyribosome populations and radioactive leucine incorporation into protein increase in the embryos of GA(3)- induced seeds early in the imbibition period. Since these results are contradictory to previously published studies, the reasons for the differences are outlined and various alternative possibilities eliminated. The protocol for protein extraction, particularly the speed at which the supernatant from the seed homogenate is cleared, is important for demonstrating the GA(3)-mediated changes. Embryos maintained in the dormant state by abscisic acid still conduct considerable amounts of protein synthesis, and this is enhanced by concentrations of 6-benzylaminopurine which also promote germination. Therefore, the actions of GA(3), abscisic acid, and cytokinin on lettuce seed germination are mediated, directly or indirectly, via protein synthesis.

  17. Response of lettuce cultivars to sludge-amended soils and bed types

    SciTech Connect

    Harrison, H.C.

    1986-01-01

    A 2-year nutrition experiment was conducted to determine the effects of sludge, bed, and genotype on lettuce growth and leaf elemental concentration levels. Three leaf lettuce cultivars (Lactuca sativa cvs. Grand Rapids, Ruby Salad Bowl) were grown in field plots of silt loam amended with 90 MT/ha/hear of industrial or municipal sludge and a control with no sludge application. The 3 bed types used were a level or flat bed, a 15-cm raised bed, and a 15-cm raised bed of unamended topsoil over prepared flat bed (overcover bed). Sludge and bed type did influence yield and leaf elemental concentrations for all 3 cultivars. When significant differences occurred, the highest leaf nutrient concentrations with the industrial sludge. Bed effects on leaf elemental concentrations were variable. Grand Rapids had significantly lower leaf concentration levels for all elements (except P in 1982) when compared to either Grand Rapids or Salad Bowl.

  18. Expression of dengue-3 premembrane and envelope polyprotein in lettuce chloroplasts

    PubMed Central

    Kanagaraj, Anderson Paul; Verma, Dheeraj

    2012-01-01

    Dengue is an acute febrile viral disease with >100 million infections occurring each year and more than half of the world population is at risk. Global resurgence of dengue in many urban centers of the tropics is a major concern. Therefore, development of a successful vaccine is urgently needed that is economical and provide long-lasting protection from dengue virus infections. In this manuscript, we report expression of dengue-3 serotype polyprotein (prM/E) consisting of part of capsid, complete premembrane (prM) and truncated envelope (E) protein in an edible crop lettuce. The dengue sequence was controlled by endogenous Lactuca sativa psbA regulatory elements. PCR and Southern blot analysis confirmed transgene integration into the lettuce chloroplast genome via homologous recombination at the trnI/trnA intergenic spacer region. Western blot analysis showed expression of polyprotein prM/E in different forms as monomers (~65 kDa) or possibly heterodimers (~130 kDa) or multimers. Multimers were solubilized into monomers using guanidine hydrochloride. Transplastomic lettuce plants expressing dengue prM/E vaccine antigens grew normally and transgenes were inherited in the T1 progeny without any segregation. Transmission electron microscopy showed the presence of virus-like particles of ~20 nm diameter in chloroplast extracts of transplastomic lettuce expressing prM/E proteins, but not in untransformed plants. The prM/E antigens expressed in lettuce chloroplasts should offer a potential source for investigating an oral Dengue vaccine. PMID:21431782

  19. Effects of long-term low atmospheric pressure on gas exchange and growth of lettuce

    NASA Astrophysics Data System (ADS)

    Tang, Yongkang; Guo, Shuangsheng; Dong, Wenping; Qin, Lifeng; Ai, Weidang; Lin, Shan

    2010-09-01

    The objectives of this research were to determine photosynthesis, evapotranspiration and growth of lettuce at long-term low atmospheric pressure. Lettuce ( Lactuca sativa L . cv. Youmaicai) plants were grown at 40 kPa total pressure (8.4 kPa p) or 101 kPa total pressure (20.9 kPa p) from seed to harvest for 35 days. Germination rate of lettuce seeds decreased by 7.6% at low pressure, although this was not significant. There was no significant difference in crop photosynthetic rate between hypobaria and ambient pressure during the 35-day study. The crop evapotranspiration rate was significantly lower at low pressure than that at ambient pressure from 20 to 30 days after planting (DAP), but it had no significant difference before 20 DAP or after 30 DAP. The growth cycle of lettuce plants at low pressure was delayed. At low pressure, lettuce leaves were curly at the seedling stage and this disappeared gradually as the plants grew. Ambient lettuce plants were yellow and had an epinastic growth at harvest. The shoot height, leaf number, leaf length and shoot/root ratio were lower at low pressure than those at ambient pressure, while leaf area and root growth increased. Total biomass of lettuce plants grown at two pressures had no significant difference. Ethylene production at low pressure decreased significantly by 38.8% compared with ambient pressure. There was no significant difference in microelements, nutritional phytochemicals and nitrate concentrations at the two treatments. This research shows that lettuce can be grown at long-term low pressure (40 kPa) without significant adverse effects on seed germination, gas exchange and plant growth. Furthermore, ethylene release was reduced in hypobaria.

  20. Tobacco streak virus isolated from lettuce.

    PubMed

    Abtahi, F S; Khodai Motlagh, M

    2009-05-01

    Tobacco streak virus (TSV) is an ilarvirus with a worldwide distribution. This virus infects many plants and causes significant yield losses. In this study, 300 samples of lettuce were collected from lettuce fields in Tehran Province. Infected plants show symptoms such as: mosaic, vein clearing, vein necrosis, yellowing and leaf distortion. DAS-ELISA (Double Antibody Sandwich-ELISA) was used with a polyclonal antiserum against TSV. Five isolates (T1, T2, T3, T4 and T5), which are collected, respectively from Mohammad Abad (Karaj), Malek Abad (Karaj), Hashtgerd (Karaj), Tarand Balla (Varamin) and Deh mah sin (Pishva) were inoculated on 29 species of Cucurbitaceae, Amaranthaceae, Solanacea, Compositae, Leguminosae and Chenopodiacea. Chenopodium quinoa 6 days after inoculation showed necrotic local lesions. Gomphrena globosa 10 days after inoculation developed chlorotic local lesions. Systemic symptoms were produced in Datura stramonium. Phaseolus vulgaris cv. Red Kidney 5 days after inoculation developed necrotic local lesions. Nicotiana tabacum 7 days after inoculation showed necrotic and chlorotic local lesions. Nicotiana clevelandii 15 days after inoculation developed leaf distortion and vein necrosis. Lactuca sativa 10-15 days after inoculation developed leaf istortion and mosaic. Reverse Transcription Polymerase Chain Reaction (RT-PCR) was performed using one primer pairs designed by DSMZ. An approximately 710 bp fragment was amplified with a specific primer.

  1. Photosynthetic responses of lettuce to downy mildew infection and cytokinin treatment.

    PubMed

    Prokopová, Jitka; Spundová, Martina; Sedlárová, Michaela; Husicková, Alexandra; Novotný, Radko; Dolezal, Karel; Naus, Jan; Lebeda, Ales

    2010-08-01

    Changes in primary metabolism of lettuce, Lactuca sativa L. (cv. Cobham Green), induced by compatible interaction with the biotrophic oomycete pathogen Bremia lactucae Regel (race BL 16), under two intensities of illumination in the presence and absence of exogenous cytokinins were studied by chlorophyll fluorescence imaging. Thirteen days post-inoculation leaf discs infected by B. lactucae exhibited impairments of photosynthesis associated with biotrophic infections, including: reductions in photosynthetic pigment contents and the maximum quantum yield of photosystem II photochemistry (F(V)/F(M)), inhibition of electron transport (Phi(PSII)) and increased non-photochemical chlorophyll fluorescence quenching (NPQ). Detected changes in photosynthetic parameters correlated with the leaf area colonized by the pathogen's intercellular hyphae. Applications of two cytokinins, benzylaminopurine and meta-topolin, previously shown to suppress B. lactucae sporulation if applied 24 h prior to inoculation at a concentration of 200 microM, retarded the pathogen's asexual reproduction with no apparent negative effects on the host's photosynthetic apparatus. However, long-lasting treatment of healthy tissues with this high concentration of exogenous cytokinin led to effects parallel to pathogenesis: reductions in photosynthetic pigment contents accompanied by inhibition of photosystem II photochemistry and electron transport. These effects of both prolonged exposure to cytokinins and the pathogenesis were weaker in discs exposed to the lower photosynthetic photon flux density. The role of cytokinins in plant-biotrophic pathogen interactions and their potential as disease control agents are discussed. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  2. Both Leaf Properties and Microbe-Microbe Interactions Influence Within-Species Variation in Bacterial Population Diversity and Structure in the Lettuce (Lactuca Species) Phyllosphere▿

    PubMed Central

    Hunter, Paul J.; Hand, Paul; Pink, David; Whipps, John M.; Bending, Gary D.

    2010-01-01

    Morphological and chemical differences between plant genera influence phyllosphere microbial populations, but the factors driving within-species variation in phyllosphere populations are poorly understood. Twenty-six lettuce accessions were used to investigate factors controlling within-species variation in phyllosphere bacterial populations. Morphological and physiochemical characteristics of the plants were compared, and bacterial community structure and diversity were investigated using terminal restriction fragment length polymorphism (T-RFLP) profiling and 16S rRNA gene clone libraries. Plant morphology and levels of soluble carbohydrates, calcium, and phenolic compounds (which have long been associated with plant responses to biotic stress) were found to significantly influence bacterial community structure. Clone libraries from three representative accessions were found to be significantly different in terms of both sequence differences and the bacterial genera represented. All three libraries were dominated by Pseudomonas species and the Enterobacteriaceae family. Significant differences in the relative proportions of genera in the Enterobacteriaceae were detected between lettuce accessions. Two such genera (Erwinia and Enterobacter) showed significant variation between the accessions and revealed microbe-microbe interactions. We conclude that both leaf surface properties and microbial interactions are important in determining the structure and diversity of the phyllosphere bacterial community. PMID:20952648

  3. Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca Species) phyllosphere.

    PubMed

    Hunter, Paul J; Hand, Paul; Pink, David; Whipps, John M; Bending, Gary D

    2010-12-01

    Morphological and chemical differences between plant genera influence phyllosphere microbial populations, but the factors driving within-species variation in phyllosphere populations are poorly understood. Twenty-six lettuce accessions were used to investigate factors controlling within-species variation in phyllosphere bacterial populations. Morphological and physiochemical characteristics of the plants were compared, and bacterial community structure and diversity were investigated using terminal restriction fragment length polymorphism (T-RFLP) profiling and 16S rRNA gene clone libraries. Plant morphology and levels of soluble carbohydrates, calcium, and phenolic compounds (which have long been associated with plant responses to biotic stress) were found to significantly influence bacterial community structure. Clone libraries from three representative accessions were found to be significantly different in terms of both sequence differences and the bacterial genera represented. All three libraries were dominated by Pseudomonas species and the Enterobacteriaceae family. Significant differences in the relative proportions of genera in the Enterobacteriaceae were detected between lettuce accessions. Two such genera (Erwinia and Enterobacter) showed significant variation between the accessions and revealed microbe-microbe interactions. We conclude that both leaf surface properties and microbial interactions are important in determining the structure and diversity of the phyllosphere bacterial community.

  4. Use of Propolis in the Sanitization of Lettuce

    PubMed Central

    Feás, Xesús; Pacheco, Lazaro; Iglesias, Antonio; Estevinho, Leticia M.

    2014-01-01

    The present study aimed to determine the effectiveness of propolis in reducing the microbial load in ready-to-eat (RTE) and fresh whole head (FWH) lettuces (Lactuca sativa L.) type Batavia. Two sanitizing solutions were employed: sodium hypochlorite (SH) and propolis (PS), during 15 and 30 min. Tap water (TW) was used as a control. Regarding the mean reduction on aerobic mesophiles, psychrotrophic and fecal coliforms, the SH and PS treatments showed the same pattern of variation. In all cases, PS was slightly more effective in the microbiological reduction in comparison with commercial SH. Reductions between two and three log cycles were obtained with PS on aerobic mesophiles and psychrotrophic counts. The information obtained in the present study can be used to evaluate the potential use of propolis as product for sanitizing other vegetables and for developing other food preservation technologies, with impact on human health. PMID:25007823

  5. Use of propolis in the sanitization of lettuce.

    PubMed

    Feás, Xesús; Pacheco, Lazaro; Iglesias, Antonio; Estevinho, Leticia M

    2014-07-09

    The present study aimed to determine the effectiveness of propolis in reducing the microbial load in ready-to-eat (RTE) and fresh whole head (FWH) lettuces (Lactuca sativa L.) type Batavia. Two sanitizing solutions were employed: sodium hypochlorite (SH) and propolis (PS), during 15 and 30 min. Tap water (TW) was used as a control. Regarding the mean reduction on aerobic mesophiles, psychrotrophic and fecal coliforms, the SH and PS treatments showed the same pattern of variation. In all cases, PS was slightly more effective in the microbiological reduction in comparison with commercial SH. Reductions between two and three log cycles were obtained with PS on aerobic mesophiles and psychrotrophic counts. The information obtained in the present study can be used to evaluate the potential use of propolis as product for sanitizing other vegetables and for developing other food preservation technologies, with impact on human health.

  6. Characterization of S-nitrosoglutathione reductase from Brassica and Lactuca spp. and its modulation during plant development.

    PubMed

    Tichá, Tereza; Činčalová, Lucie; Kopečný, David; Sedlářová, Michaela; Kopečná, Martina; Luhová, Lenka; Petřivalský, Marek

    2017-08-01

    Cellular homeostasis of S-nitrosoglutathione (GSNO), a major cache of nitric oxide bioactivity in plants, is controlled by the NADH-dependent S-nitrosoglutathione reductase (GSNOR) belonging to the family of class III alcohol dehydrogenases (EC 1.1.1.1). GSNOR is a key regulator of S-nitrosothiol metabolism and is involved in plant responses to abiotic and biotic stresses. This study was focused on GSNOR from two important crop plants, cauliflower (Brassica oleracea var. botrytis, BoGSNOR) and lettuce (Lactuca sativa, LsGSNOR). Both purified recombinant GSNORs were characterized in vitro and found to exists as dimers, exhibit high thermal stability and substrate preference towards GSNO, although both enzymes have dehydrogenase activity with a broad range of long-chain alcohols and ω-hydroxy fatty acids in presence of NAD(+). Data on enzyme affinities to their cofactors NADH and NAD(+) obtained by isothermal titration calorimetry suggest the high affinity to NADH might underline the GSNOR capacity to function in the intracellular environment. GSNOR activity and gene expression peak during early developmental stages of lettuce and cauliflower at 20 and 30 days after germination, respectively. GSNOR activity was also measured in four other Lactuca spp. genotypes with different degree of resistance to biotrophic pathogen Bremia lactucae. Higher GSNOR activities were found in non-infected plants of susceptible genotypes L. sativa UCDM2 and L. serriola as compared to resistant genotypes. GSNOR and GSNO were localized by confocal laser scanning microscopy in vascular bundles and in epidermal and parenchymal cells of leaf cross-sections. The presented results bring new insight in the role of GSNOR in the regulation of S-nitrosothiol levels in plant growth and development. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Incidence of Lettuce mosaic virus in lettuce and its detection by polyclonal antibodies produced against recombinant coat protein expressed in Escherichia coli.

    PubMed

    Sharma, Prachi; Sharma, Susheel; Singh, Jasvir; Saha, Swati; Baranwal, V K

    2016-04-01

    Lettuce mosaic virus (LMV), a member of the genus Potyvirus of family Potyviridae, causes mosaic disease in lettuce has recently been identified in India. The virus is seed borne and secondary infection occurs through aphids. To ensure virus freedom in seeds it is important to develop diagnostic tools, for serological methods the production of polyclonal antibodies is a prerequisite. The coat protein (CP) gene of LMV was amplified, cloned and expressed using pET-28a vector in Escherichia coli BL21DE3 competent cells. The LMV CP was expressed as a fusion protein containing a fragment of the E. coli His tag. The LMV CP/His protein reacted positively with a commercial antiserum against LMV in an immunoblot assay. Polyclonal antibodies purified from serum of rabbits immunized with the fusion protein gave positive results when LMV infected lettuce (Lactuca sativa) was tested at 1:1000 dilution in PTA-ELISA. These were used for specific detection of LMV in screening lettuce accessions. The efficacy of the raised polyclonal antiserum was high and it can be utilized in quarantine and clean seed production. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Silencing of the major family of NBS-LRR-encoding genes in lettuce results in the loss of multiple resistance specificities.

    PubMed

    Wroblewski, Tadeusz; Piskurewicz, Urszula; Tomczak, Anna; Ochoa, Oswaldo; Michelmore, Richard W

    2007-09-01

    The RGC2 gene cluster in lettuce (Lactuca sativa) is one of the largest known families of genes encoding nucleotide binding site-leucine-rich repeat (NBS-LRR) proteins. One of its members, RGC2B, encodes Dm3 which determines resistance to downy mildew caused by the oomycete Bremia lactucae carrying the cognate avirulence gene, Avr3. We developed an efficient strategy for analysis of this large family of low expressed genes using post-transcriptional gene silencing (PTGS). We transformed lettuce cv. Diana (carrying Dm3) using chimeric gene constructs designed to simultaneously silence RGC2B and the GUS reporter gene via the production of interfering hairpin RNA (ihpRNA). Transient assays of GUS expression in leaves accurately predicted silencing of both genes and were subsequently used to assay silencing in transgenic T(1) plants and their offspring. Levels of mRNA were reduced not only for RGC2B but also for all seven diverse RGC2 family members tested. We then used the same strategy to show that the resistance specificity encoded by the genetically defined Dm18 locus in lettuce cv. Mariska is the result of two resistance specificities, only one of which was silenced by ihpRNA derived from RGC2B. Analysis of progeny from crosses between transgenic, silenced tester stocks and lettuce accessions carrying other resistance genes previously mapped to the RGC2 locus indicated that two additional resistance specificities to B. lactucae, Dm14 and Dm16, as well as resistance to lettuce root aphid (Pemphigus bursarius L.), Ra, are encoded by RGC2 family members.

  9. Effects of CO/sub 2/ on total phenolics, phenylalanine ammonia lyase, and polyphenol oxidase in lettuce tissue

    SciTech Connect

    Siriphanich, J.; Kader, A.A.

    1985-01-01

    An atmosphere of air + 15% CO/sub 2/ caused CO/sub 2/ injury in lettuce (Lactuca sativa L.) in about 10 days at 0/sup 0/C. However, subsequent removal of CO/sub 2/ was necessary for the brown stain symptoms to develop. Under CO/sub 2/ treatment, phenylalanine ammonia lyase (PAL) was induced and its activity correlated well with the development of the injury. Nevertheless, PAL activity did not seem responsible for the differences in susceptibility to CO/sub 2/ injury among the 3 lettuce cultivars included in this study. Prevention of the development of brown stain symptoms by CO/sub 2/ probably was due to its inhibition of phenolics production and the inhibition of polyphenol oxidase activity. 27 references, 10 figures.

  10. Development of EST-SSR Markers for the Study of Population Structure in Lettuce (Lacutca sativa L.).

    USDA-ARS?s Scientific Manuscript database

    A set of 61 simple sequence repeat (SSR) markers was developed from the 19,523 L. sativa and L. serriola unigenes. Approximately 4.5% of the unigenes contained a perfect SSR at least 20 bp long, corresponding to roughly one perfect SSR per 14.7 kb. Marker polymorphism was tested on a set comprising ...

  11. Transfer of Salmonella and Campylobacter from stainless steel to romaine lettuce.

    PubMed

    Moore, Christina M; Sheldon, Brian W; Jaykus, Lee-Ann

    2003-12-01

    The degree of transfer of Campylobacter jejuni and Salmonella enterica serovar Typhimurium was evaluated from a stainless steel contact surface to a ready-to-eat food (lettuce). Stainless steel coupons (25 cm2) were inoculated with a 20-microl drop of either C. jejuni or Salmonella Typhimurium to provide an inoculum level of approximately 10(6) CFU/28 mm2. Wet and dry lettuce (Lactuca sativa var. longifolia) pieces (9 cm2) were placed onto the inoculated stainless steel surface for 10 s after the designated inoculum drying time (0 to 80 min for C. jejuni; 0 to 120 min for Salmonella Typhimurium), which was followed by the recovery and enumeration of transferred pathogens (lettuce) and residual surface pathogens (stainless steel coupons). For transfers of Salmonella Typhimurium to dry lettuce, there was an increase from 36 to 66% in the percent transfer of the initial inoculum load during the first 60 min of sampling and then a precipitous drop from 66 to 6% in percent transfer. The transfer of Salmonella Typhimurium to wet lettuce ranged from 23 to 31%, with no statistically significant difference between recoveries over the entire 120-min sampling period. For C. jejuni, the mean percent transfer ranged from 16 to 38% for dry lettuce and from 15 to 27% for wet lettuce during the 80-min sampling period. The results of this study indicate that relatively high numbers of bacteria may be transferred to a food even 1 to 2 h after surface contamination. These findings can be used to support future projects aimed at estimating the degree of risk associated with poor handling practices of ready-to-eat foods.

  12. Water-soluble compounds of lettuce inhibit DNA damage and lipid peroxidation induced by glucose/serum deprivation in N2a cells.

    PubMed

    Asadpour, Elham; Ghorbani, Ahmad; Sadeghnia, Hamid R

    2014-01-01

    Oxidative stress, increase of lipid peroxidation and resultant DNA damage are associated with pathophysiology of many human diseases such as acute and chronic CNS injuries and diseases, cancer, and also aging. This work was done to investigate whether water fraction from the hydroalcoholic extract of green leaf lettuce (Lactuca sativa L.) can protect N2a cells against glucose/serum deprivation (GSD)-induced lipid peroxidation and DNA fragmentation. The cells were cultivated for 12 h in GSD condition in the absence or presence of the lettuce fraction. The total antioxidant ability of the lettuce water fraction was determined using ferric reducing antioxidant power (FRAP) assay. The intracellular lipid peroxidation was evaluated by malondialdehyde (MDA) level. DNA damage was determined using single cell gel electrophoresis. Using FRAP assay, the antioxidant activity of lettuce water fraction was found to be 574 micromol/g, which is equivalent to 64.1 mg of pure ascorbic acid. Exposure of the cells to GSD condition led to a significant increase of MDA level and DNA fragmentation. Lettuce extract at 400 microg/mL could decrease the elevated intracellular lipid peroxidation and DNA damage. The present study demonstrates that lettuce exerts genoprotective effect through inhibition of oxidative stress.

  13. Fate and Phytotoxicity of CeO2 Nanoparticles on Lettuce Cultured in the Potting Soil Environment

    PubMed Central

    Gui, Xin; Zhang, Zhiyong; Liu, Shutong; Ma, Yuhui; Zhang, Peng; He, Xiao; Li, Yuanyuan; Zhang, Jing; Li, Huafen; Rui, Yukui; Liu, Liming; Cao, Weidong

    2015-01-01

    Cerium oxide nanoparticles (CeO2 NPs) have been shown to have significant interactions in plants. Previous study reported the specific-species phytotoxicity of CeO2 NPs by lettuce (Lactuca sativa), but their physiological impacts and vivo biotransformation are not yet well understood, especially in relative realistic environment. Butterhead lettuce were germinated and grown in potting soil for 30 days cultivation with treatments of 0, 50, 100, 1000 mg CeO2 NPs per kg soil. Results showed that lettuce in 100 mg·kg-1 treated groups grew significantly faster than others, but significantly increased nitrate content. The lower concentrations treatment had no impact on plant growth, compared with the control. However, the higher concentration treatment significantly deterred plant growth and biomass production. The stress response of lettuce plants, such as Superoxide dismutase (SOD), Peroxidase (POD), Malondialdehyde(MDA) activity was disrupted by 1000 mg·kg-1 CeO2 NPs treatment. In addition, the presence of Ce (III) in the roots of butterhead lettuce explained the reason of CeO2 NPs phytotoxicity. These findings demonstrate CeO2 NPs modification of nutritional quality, antioxidant defense system, the possible transfer into the food chain and biotransformation in vivo. PMID:26317617

  14. Fate and Phytotoxicity of CeO2 Nanoparticles on Lettuce Cultured in the Potting Soil Environment.

    PubMed

    Gui, Xin; Zhang, Zhiyong; Liu, Shutong; Ma, Yuhui; Zhang, Peng; He, Xiao; Li, Yuanyuan; Zhang, Jing; Li, Huafen; Rui, Yukui; Liu, Liming; Cao, Weidong

    2015-01-01

    Cerium oxide nanoparticles (CeO2 NPs) have been shown to have significant interactions in plants. Previous study reported the specific-species phytotoxicity of CeO2 NPs by lettuce (Lactuca sativa), but their physiological impacts and vivo biotransformation are not yet well understood, especially in relative realistic environment. Butterhead lettuce were germinated and grown in potting soil for 30 days cultivation with treatments of 0, 50, 100, 1000 mg CeO2 NPs per kg soil. Results showed that lettuce in 100 mg·kg-1 treated groups grew significantly faster than others, but significantly increased nitrate content. The lower concentrations treatment had no impact on plant growth, compared with the control. However, the higher concentration treatment significantly deterred plant growth and biomass production. The stress response of lettuce plants, such as Superoxide dismutase (SOD), Peroxidase (POD), Malondialdehyde(MDA) activity was disrupted by 1000 mg·kg-1 CeO2 NPs treatment. In addition, the presence of Ce (III) in the roots of butterhead lettuce explained the reason of CeO2 NPs phytotoxicity. These findings demonstrate CeO2 NPs modification of nutritional quality, antioxidant defense system, the possible transfer into the food chain and biotransformation in vivo.

  15. Influence of growing system on nitrate accumulation in two varieties of lettuce and red radicchio of Treviso.

    PubMed

    Lucarini, Massimo; D'Evoli, Laura; Tufi, Sara; Gabrielli, Paolo; Paoletti, Sara; Di Ferdinando, Sandra; Lombardi-Boccia, Ginevra

    2012-11-01

    Green leafy vegetables contribute greatly to the total intake of nitrates from the daily diet. This study evaluates the influence of different cultivation systems on nitrate accumulation in leafy vegetables. Two varieties of lettuce (Lactuca sativa L.) (Lattuga Romana, Foglia di Quercia) and two varieties of red radicchio of Treviso (Cychorium intibus L.) (Early, Late) were selected. Lettuce varieties were both organically and biodynamically grown; red radicchio varieties were conventionally grown both in the field and in spring water. Both lettuce varieties biodynamically grown accumulated 1.3-2 times less nitrate than the respective organically grown plants. The two lettuce varieties showed differences in nitrate accumulating capacity: Foglia di Quercia was almost three times richer in nitrate than Lattuga Romana. The traditional growing systems applied to the red radicchio of Treviso varieties strongly influenced nitrate accumulation in leaves, the Early variety having up to 15 times higher nitrate than the Late variety. Our findings on nitrate levels in both lettuce and red radicchio of Treviso varieties suggest that both genetic factors and cultivation systems strongly affect the nitrate accumulation capacity. This study also highlights how the cultivation strategy can reduce nitrate levels in leafy vegetables, suggesting the possibility of modulating the N supply along the harvesting time. Copyright © 2011 Society of Chemical Industry.

  16. Phytochrome Regulates Gibberellin Biosynthesis during Germination of Photoblastic Lettuce Seeds1

    PubMed Central

    Toyomasu, Tomonobu; Kawaide, Hiroshi; Mitsuhashi, Wataru; Inoue, Yasunori; Kamiya, Yuji

    1998-01-01

    Germination of lettuce (Lactuca sativa L.) seed is regulated by phytochrome. The requirement for red light is circumvented by the application of gibberellin (GA). We have previously shown that the endogenous content of GA1, the main bioactive GA in lettuce seeds, increases after red-light treatment. To clarify which step of GA1 synthesis is regulated by phytochrome, cDNAs encoding GA 20-oxidases (Ls20ox1 and Ls20ox2, for L. sativa GA 20-oxidase) and 3β-hydroxylases (Ls3h1 and Ls3h2 for L. sativa GA 3β-hydroxylase) were isolated from lettuce seeds by reverse-transcription polymerase chain reaction. Functional analysis of recombinant proteins expressed in Escherichia coli confirmed that the Ls20ox and Ls3h encode GA 20-oxidases and 3β-hydroxylases, respectively. Northern-blot analysis showed that Ls3h1 expression was dramatically induced by red-light treatment within 2 h, and that this effect was canceled by a subsequent far-red-light treatment. Ls3h2 mRNA was not detected in seeds that had been allowed to imbibe under any light conditions. Expression of the two Ls20ox genes was induced by initial imbibition alone in the dark. The level of Ls20ox2 mRNA decreased after the red-light treatment, whereas that of Ls20ox1 was unaffected by light. These results suggest that red light promotes GA1 synthesis in lettuce seeds by inducing Ls3h1 expression via phytochrome action. PMID:9847128

  17. Lettuce mosaic virus: from pathogen diversity to host interactors.

    PubMed

    German-Retana, Sylvie; Walter, Jocelyne; Le Gall, Olivier

    2008-03-01

    Lettuce mosaic virus (LMV) belongs to the genus Potyvirus (type species Potato virus Y) in the family Potyviridae. The virion is filamentous, flexuous with a length of 750 nm and a width of 15 nm. The particles are made of a genomic RNA of 10 080 nucleotides, covalently linked to a viral-encoded protein (the VPg) at the 5' end and with a 3' poly A tail, and encapsidated in a single type of capsid protein. The molecular weight of the capsid protein subunit has been estimated electrophoretically to be 34 kDa and estimated from the amino acid sequence to be 31 kDa. The genome is expressed as a polyprotein of 3255 amino-acid residues, processed by three virus-specific proteinases into ten mature proteins. LMV has a worldwide distribution and a relatively broad host range among several families. Weeds and ornamentals can act as local reservoirs for lettuce crops. In particular, many species within the family Asteraceae are susceptible to LMV, including cultivated and ornamental species such as common (Lactuca sativa), prickly (L. serriola) or wild (L. virosa) lettuce, endive/escarole (Cichorium endiva), safflower (Carthamus tinctorius), starthistle (Centaurea solstitialis), Cape daisy (Osteospermum spp.) and gazania (Gazania rigens). In addition, several species within the families Brassicaceae, Cucurbitaceae, Fabaceae, Solanaceae and Chenopodiaceae are natural or experimental hosts of LMV. Genetic control of resistance to LMV: The only resistance genes currently used to protect lettuce crops worldwide are the recessive genes mo1(1) and mo1(2) corresponding to mutant alleles of the gene encoding the translation initiation factor eIF4E in lettuce. It is believed that at least one intact copy of eIF4E must be present to ensure virus accumulation. LMV is transmitted in a non-persistent manner by a high number of aphid species. Myzus persicae and Macrosiphum euphorbiae are particularly active in disseminating this virus in the fields. LMV is also seedborne in lettuce. The

  18. Rapid identification of lettuce seed germination mutants by bulked segregant analysis and whole genome sequencing.

    PubMed

    Huo, Heqiang; Henry, Isabelle M; Coppoolse, Eric R; Verhoef-Post, Miriam; Schut, Johan W; de Rooij, Han; Vogelaar, Aat; Joosen, Ronny V L; Woudenberg, Leo; Comai, Luca; Bradford, Kent J

    2016-11-01

    Lettuce (Lactuca sativa) seeds exhibit thermoinhibition, or failure to complete germination when imbibed at warm temperatures. Chemical mutagenesis was employed to develop lettuce lines that exhibit germination thermotolerance. Two independent thermotolerant lettuce seed mutant lines, TG01 and TG10, were generated through ethyl methanesulfonate mutagenesis. Genetic and physiological analyses indicated that these two mutations were allelic and recessive. To identify the causal gene(s), we applied bulked segregant analysis by whole genome sequencing. For each mutant, bulked DNA samples of segregating thermotolerant (mutant) seeds were sequenced and analyzed for homozygous single-nucleotide polymorphisms. Two independent candidate mutations were identified at different physical positions in the zeaxanthin epoxidase gene (ABSCISIC ACID DEFICIENT 1/ZEAXANTHIN EPOXIDASE, or ABA1/ZEP) in TG01 and TG10. The mutation in TG01 caused an amino acid replacement, whereas the mutation in TG10 resulted in alternative mRNA splicing. Endogenous abscisic acid contents were reduced in both mutants, and expression of the ABA1 gene from wild-type lettuce under its own promoter fully complemented the TG01 mutant. Conventional genetic mapping confirmed that the causal mutations were located near the ZEP/ABA1 gene, but the bulked segregant whole genome sequencing approach more efficiently identified the specific gene responsible for the phenotype. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  19. Iodine effects on phenolic metabolism in lettuce plants under salt stress.

    PubMed

    Blasco, Begoña; Leyva, Rocio; Romero, Luis; Ruiz, Juan Manuel

    2013-03-20

    Iodine, applied as iodate in biofortification programs (at doses of ≤80 μM), has been confirmed to improve the foliar biomass, antioxidant response, and accumulation of phenol compounds in lettuce plants. The changes in phenolic compounds induced by the iodate application appear to have functional consequences in the response of salt-stressed plants. Thus, the aim of the present study was to determine whether the application of iodate can improve the response of severe salinity stress and whether the resistance can be attributed to the phenolic metabolism in lettuce ( Lactuca sativa cv. Philipus), a glycophyte cultivated for food and consumed year round. In this work, the application of iodate, especially at 20 and 40 μM, in lettuce plants under salinity stress (100 mM NaCl) exerted a significantly positive effect on biomass and induced higher activity in the enzymes shikimate dehydrogenase and phenylalanine ammonia-lyase as well as the lower MW phenol-degrading enzyme polyphenol oxidase. This increased hydroxycinnamic acids and derivatives in addition to total phenols, which appear to act as protective compounds against salinity. This study reveals that in agricultural areas affected by this type of stress, the application of iodate may be an effective strategy, as it not only improves lettuce plant growth but also supplements the human diet with phenolic compounds and the trace element iodine.

  20. Structural and Sensory Characterization of Novel Sesquiterpene Lactones from Iceberg Lettuce.

    PubMed

    Mai, Franziska; Glomb, Marcus A

    2016-01-13

    Lactuca sativa var. capitate (iceberg lettuce) is a delicious vegetable and popular for its mild taste. Nevertheless, iceberg lettuce is a source of bitter substances, such as the sesquiterpene lactones. Chemical investigations on the n-butanol extract led to the isolation of three novel sesquiterpene lactones. All compounds were isolated by multilayer countercurrent chromatography followed by preparative high-performance liquid chromatography. The structures were verified by means of spectroscopic methods, including NMR and mass spectrometry techniques. For the first time 11ß,13-dihydrolactucin-8-O-sulfate (jaquinelin-8-O-sulfate) was structurally elucidated and identified in plants. In addition, the sesquiterpene lactones cichorioside B and 8-deacetylmatricarin-8-O-sulfate were identified as novel ingredients of iceberg lettuce. Further flowering plants in the daisy family Asteraceae were examined for the above three compounds. At least one of the compounds was identified in nine plants. The comparison between the lettuce butt end and the leaves of five types of the Cichorieae tribe showed an accumulation of the compounds in the butt end. Further experiments addressed the impact of sesquiterpene lactones on color formation and bitter taste.

  1. Low-cost multispectral imaging for remote sensing of lettuce health

    NASA Astrophysics Data System (ADS)

    Ren, David D. W.; Tripathi, Siddhant; Li, Larry K. B.

    2017-01-01

    In agricultural remote sensing, unmanned aerial vehicle (UAV) platforms offer many advantages over conventional satellite and full-scale airborne platforms. One of the most important advantages is their ability to capture high spatial resolution images (1-10 cm) on-demand and at different viewing angles. However, UAV platforms typically rely on the use of multiple cameras, which can be costly and difficult to operate. We present the development of a simple low-cost imaging system for remote sensing of crop health and demonstrate it on lettuce (Lactuca sativa) grown in Hong Kong. To identify the optimal vegetation index, we recorded images of both healthy and unhealthy lettuce, and used them as input in an expectation maximization cluster analysis with a Gaussian mixture model. Results from unsupervised and supervised clustering show that, among four widely used vegetation indices, the blue wide-dynamic range vegetation index is the most accurate. This study shows that it is readily possible to design and build a remote sensing system capable of determining the health status of lettuce at a reasonably low cost (lettuce growers.

  2. Survey of vesicular-arbuscular mycorrhizae in lettuce production in relation to management and soil factors

    USGS Publications Warehouse

    Miller, R.L.; Jackson, L.E.

    1998-01-01

    The occurrence of vesicular-arbuscular mycorrhizae (VAM) root colonization and spore number in soil was assessed for 18 fields under intensive lettuce (Lactuca sativa L.) production in California during July and August of 1995. Data on management practices and soil characteristics were compiled for each field, and included a wide range of conditions. The relationship between these factors and the occurrence of VAM in these fields was explored with multivariate statistical analysis. VAM colonization of lettuce tended to decrease with the use of chemical inputs, such as pesticides and high amounts of P and N fertilizers. Addition of soil organic matter amendments, the occurrence of other host crops in the rotation, and soil carbon:phosphorus and carbon:nitrogen ratios, were positively associated with VAM colonization of lettuce roots. The number of VAM spores in soil was strongly correlated with the number of other host crops in the rotation, the occurrence of weed hosts and sampling date, but was more affected by general soil conditions than by management inputs. Higher total soil N, C and P, as well as CEC, were inversely related to soil spore number. A glasshouse study of the two primary lettuce types sampled in the field showed no significant differences in the extent of root colonization under similar growing conditions. The results of this study are compared with other studies on the effects of management and soil conditions on mycorrhizal occurrence in agriculture.

  3. [Effects of LED spectrum combinations on the absorption of mineral elements of hydroponic lettuce].

    PubMed

    Chen, Xiao-Li; Guo, Wen-Zhong; Xue, Xu-Zhang; Mmanake Beauty, Morewane

    2014-05-01

    Lettuce (Lactuca sativa) was hydroponically cultured in a completely enclosed plant factory, in which spectrum proportion-adjustable LED panels were used as sole light source for plant growth. Absorption and content of eleven mineral elements such as K, P, Ca, Mg, Na, Fe, Mn, Zn, Cu, B and Mo in Lactuca sativa under different spectral component conditions were studied by ICP -AES technology. The results showed that: (1) Single or combined spectrums corresponding to the absorbing peaks of chlorophyll a and b (450, 660 nm) could enhance the absorbing ability of roots especially for mineral elements Na, Fe, Mn, Cu and Mo, the single red spectrum had the most significant promoting effect under which contents of those four elements were respectively 7. 8, 4. 2, 4. 0 and 3. 7 times more than that under FL; (2) Absorption of K and B was the highest under FL which was 10. 309 mg g-1 and 32. 6 microg g-1 while the values decreased significantly under single or combined spectrum of red and blue; (3) Plants grown under single blue spectrum had the lowest absorption of Ca and Mg which respectively decreased by 35% and 33% than FL; (4) Lettuce grown under the spectrum combination of 30% blue and 70% red had the highest accumulations of biomass while those grown under 20% blue and 80% red had the highest accumulations of the following seven elements Ca, Mg, Na, Fe, Mn, Zn and B. The results provided theoretical basis for adjusting nutrient solution formula and selecting light spectrum of hydroponic lettuce.

  4. Characterization of Race-Specific Interactions Among Isolates of Verticillium dahliae Pathogenic on Lettuce.

    PubMed

    Vallad, Gary E; Qin, Qing-Ming; Grube, Rebecca; Hayes, Ryan J; Subbarao, Krishna V

    2006-12-01

    ABSTRACT Verticillium wilt, caused by Verticillium dahliae, poses a major threat to lettuce (Lactuca sativa) production in California. Incorporation of resistance into commercial lettuce cultivars offers the least expensive technique of sustaining production in infested areas. To test the breadth of the resistance identified in field experiments, a pair of susceptible ('Salinas' and 'Sniper') and resistant ('La Brillante' and 'Little Gem') lettuce cultivars were used as differentials and individually inoculated with 29 isolates of V. dahliae and two isolates of V. albo-atrum from several hosts, including lettuce, in replicated greenhouse experiments. The reactions of the four cultivars were determined based on the disease severity at maturity. None of the V. albo-atrum isolates or V. dahliae isolates from cruciferous hosts caused significant disease on lettuce. Both Salinas and Sniper were susceptible to many isolates of V. dahliae (21 of 23) from noncruciferous hosts, and the isolates varied in their overall virulence. However, of these, only three isolates caused significant disease on the resistant cvs. La Brillante and Little Gem. These three isolates also were distinct from the other V. dahliae isolates based on sequence data from the intergenic spacer (IGS) region of the nuclear ribosomal RNA gene, suggesting that they form a phylogenetically distinct subgroup that differs in virulence toward specific lettuce genotypes. Accordingly, isolates of V. dahliae virulent on all tested cultivars, including the resistant La Brillante and Little Gem, were designated as race 2, whereas those virulent only on the susceptible Salinas and Sniper were designated as race 1. Although a range of virulence among isolates has been described in other hosts, this is the first description of distinct virulence phenotypes in V. dahliae since a similar race structure was described in tomato in the 1960s.

  5. Molecular Mapping of High Resistance to Bacterial Leaf Spot in Lettuce PI 358001-1.

    PubMed

    Wang, Yunwen; Lu, Huangjun; Hu, Jinguo

    2016-11-01

    Lettuce (Lactuca sativa L.) is a diploid (2n = 18) with a genome size of 2,600 Mbp, and belongs to the family Compositae. Bacterial leaf spot (BLS), caused by Xanthomonas campestris pv. vitians, is a major disease of lettuce worldwide. Leaf lettuce PI 358001-1 has been characterized as an accession highly resistant to BLS and has white seed. In order to understand inheritance of the high resistance in this germplasm line, an F3 population consisting of 163 families was developed from the cross PI 358001-1 × 'Tall Guzmaine' (a susceptible Romaine lettuce variety with black seed). The segregation ratio of reaction to disease by seedling inoculation with X. campestris pv. vitians L7 strain in the F3 families was shown to be 32:82:48 homozygous resistant/heterozygous/homozygous susceptible, fitting to 1:2:1 (n = 162, χ(2) = 3.19, P = 0.20). The segregation ratio of seed color by checking F2 plants was 122:41 black/white, fitting to 3:1 (n = 163, χ(2) = 0.002, P = 0.96). The results indicated that both BLS resistance and seed color were inherited as a dominant gene mode. A genetic linkage map based on 124 randomly selected F2 plants was developed to enable molecular mapping of the BLS resistance and the seed color trait. In total, 199 markers, comprising 176 amplified fragment length polymorphisms, 16 simple-sequence repeats, 5 resistant gene candidate markers, and 2 cleaved amplified polymorphic sequences (CAPS) markers were assigned to six linkage groups. The dominant resistance gene to BLS (Xcvr) was mapped on linkage group 2 and the gene locus y for seed color was identified on linkage group 5. Due to the nature of a single gene inheritance, the high-resistance gene should be readily transferred to adapted lettuce cultivars to battle against the devastating disease of lettuce.

  6. The phytoavailability of cadmium to lettuce in long-term biosolids-amended soils

    SciTech Connect

    Brown, S.L.; Chaney, R.L.; Angle, J.S.; Ryan, J.A.

    1998-09-01

    A field study was conducted to assess the phytoavailability of Cd in long-term biosolids-amended plots managed at high and low pH. The experiment, established 13 to 15 yr prior to the present cropping, on a Christiana fine sandy loam soil used a variety of biosolids. Two of the biosolids had total Cd concentrations of 13.4 and 210 mg kg{sup {minus}1}. A Cd salt treatment, with Cd added to soil at a rate equivalent to the Cd added by the higher Cd biosolids applied at 100 Mg ha{sup {minus}1}, was also included. The lettuce (Lactuca sativa var. longifolia) cultivar (Paris Island Cos) used in the initial study was also used in the current study. Lettuce Cd was compared between treatments, and in relation to the soil Cd/soil organic C (OC) ratio. There has been no significant increase in plant Cd since the initial cropping. With 16% of the biosolids added OC remaining, lettuce grown on the soil amended with the more contaminated biosolids was not different than that of the initial cropping. Further, significantly less Cd was taken up by lettuce grown on biosolids-amended soil than lettuce grown on soil amended with equivalent rates of Cd salt. The Cd concentration in lettuce grown in the low Cd biosolids treatment was not different from the control. These results indicate that the potential hazards associated with food chain transfer of biosolids-applied Cd are substantially lower than equivalent Cd salt treatments, and that the hazards do not increase over time.

  7. CaMV-35S promoter sequence-specific DNA methylation in lettuce.

    PubMed

    Okumura, Azusa; Shimada, Asahi; Yamasaki, Satoshi; Horino, Takuya; Iwata, Yuji; Koizumi, Nozomu; Nishihara, Masahiro; Mishiba, Kei-ichiro

    2016-01-01

    We found 35S promoter sequence-specific DNA methylation in lettuce. Additionally, transgenic lettuce plants having a modified 35S promoter lost methylation, suggesting the modified sequence is subjected to the methylation machinery. We previously reported that cauliflower mosaic virus 35S promoter-specific DNA methylation in transgenic gentian (Gentiana triflora × G. scabra) plants occurs irrespective of the copy number and the genomic location of T-DNA, and causes strong gene silencing. To confirm whether 35S-specific methylation can occur in other plant species, transgenic lettuce (Lactuca sativa L.) plants with a single copy of the 35S promoter-driven sGFP gene were produced and analyzed. Among 10 lines of transgenic plants, 3, 4, and 3 lines showed strong, weak, and no expression of sGFP mRNA, respectively. Bisulfite genomic sequencing of the 35S promoter region showed hypermethylation at CpG and CpWpG (where W is A or T) sites in 9 of 10 lines. Gentian-type de novo methylation pattern, consisting of methylated cytosines at CpHpH (where H is A, C, or T) sites, was also observed in the transgenic lettuce lines, suggesting that lettuce and gentian share similar methylation machinery. Four of five transgenic lettuce lines having a single copy of a modified 35S promoter, which was modified in the proposed core target of de novo methylation in gentian, exhibited 35S hypomethylation, indicating that the modified sequence may be the target of the 35S-specific methylation machinery.

  8. Identification of three relationships linking cadmium accumulation to cadmium tolerance and zinc and citrate accumulation in lettuce.

    PubMed

    Zorrig, Walid; Rouached, Aïda; Shahzad, Zaigham; Abdelly, Chedly; Davidian, Jean-Claude; Berthomieu, Pierre

    2010-10-15

    Lettuce (Lactuca sativa) is a plant species that shows high accumulation of cadmium, a toxic heavy metal. Lettuce is therefore a good model both for identifying determinants controlling cadmium accumulation in plant tissues and for developing breeding strategies aimed at limiting cadmium accumulation in edible tissues. In this work, 14-day-old plants from three lettuce varieties were grown for 8 days on media supplemented with cadmium concentrations ranging from 0 to 50 microM. Growth, as well as Cd(2+), Zn(2+), K(+), Ca(2+), NO(3)(-), SO(4)(2-), Cl(-), phosphate, malate and citrate root an shoot contents were analyzed. The three lettuce varieties Paris Island Cos, Red Salad Bowl and Kordaat displayed differential abilities to accumulate cadmium in roots and shoots, Paris Island Cos displaying the lowest cadmium content and Kordaat the highest. From the global analysis of the three varieties, three main trends were identified. First, a common negative correlation linked cadmium tissue content and relative dry weight reduction in response to cadmium treatments in the three varieties. Second, increasing cadmium concentration in the culture medium resulted in a parallel increase in zinc tissue content in all lettuce varieties. A common strong positive correlation between cadmium and zinc contents was observed for all varieties. This suggested that systems enabling zinc and cadmium transport were induced by cadmium. Finally, the cadmium treatments had a contrasting effect on anion contents in tissues. Interestingly, citrate content in shoots was correlated with cadmium translocation from roots to shoots, suggesting that citrate might play a role in cadmium transport in the xylem vessels. Altogether, these results shed light on three main strategies developed by lettuce to cope with cadmium, which could help to develop breeding strategies aimed at limiting cadmium accumulation in lettuce. Copyright (c) 2010 Elsevier GmbH. All rights reserved.

  9. Whole-head washing, prior to cutting, provides sanitization advantages for fresh-cut Iceberg lettuce (Latuca sativa L.).

    PubMed

    Palma-Salgado, Sindy; Pearlstein, Arne J; Luo, Yaguang; Park, Hee Kyung; Feng, Hao

    2014-06-02

    The efficacy of two leafy produce wash methods, the traditional cutting-before-washing process and a new washing-before-cutting method, on reduction of Escherichia coli O157:H7 inoculated on Iceberg lettuce was compared. The washing tests were conducted in a pilot-scale washer using combinations of water, chlorine, peroxyacetic acid, and ultrasound. The washing-before-cutting process recorded an E. coli O157:H7 count reduction 0.79-0.80 log₁₀ CFU/g higher than that achieved with the cutting-before-washing process in treatments involving only a sanitizer. When ultrasound was applied to the washing-before-cutting process, a further improvement of 0.37-0.68 log₁₀ CFU/g in microbial count reduction was obtained, reaching total reductions of 2.43 and 2.24 log₁₀ CFU/g for chlorine and peroxyacetic acid washes, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Resistance to Downy Mildew in Lettuce 'La Brillante' is Conferred by Dm50 Gene and Multiple QTL.

    PubMed

    Simko, Ivan; Ochoa, Oswaldo E; Pel, Mathieu A; Tsuchida, Cayla; Font I Forcada, Carolina; Hayes, Ryan J; Truco, Maria-Jose; Antonise, Rudie; Galeano, Carlos H; Michelmore, Richard W

    2015-09-01

    Many cultivars of lettuce (Lactuca sativa L.) are susceptible to downy mildew, a nearly globally ubiquitous disease caused by Bremia lactucae. We previously determined that Batavia type cultivar 'La Brillante' has a high level of field resistance to the disease in California. Testing of a mapping population developed from a cross between 'Salinas 88' and La Brillante in multiple field and laboratory experiments revealed that at least five loci conferred resistance in La Brillante. The presence of a new dominant resistance gene (designated Dm50) that confers complete resistance to specific isolates was detected in laboratory tests of seedlings inoculated with multiple diverse isolates. Dm50 is located in the major resistance cluster on linkage group 2 that contains at least eight major, dominant Dm genes conferring resistance to downy mildew. However, this Dm gene is ineffective against the isolates of B. lactucae prevalent in the field in California and the Netherlands. A quantitative trait locus (QTL) located at the Dm50 chromosomal region (qDM2.2) was detected, though, when the amount of disease was evaluated a month before plants reached harvest maturity. Four additional QTL for resistance to B. lactucae were identified on linkage groups 4 (qDM4.1 and qDM4.2), 7 (qDM7.1), and 9 (qDM9.2). The largest effect was associated with qDM7.1 (up to 32.9% of the total phenotypic variance) that determined resistance in multiple field experiments. Markers identified in the present study will facilitate introduction of these resistance loci into commercial cultivars of lettuce.

  11. Compartmental analysis of roots in intact rapidly-growing Spergularia marina and Lactuca sativa: partial characterization of the symplasms functional in the radial transport of Na/sup +/ and K/sup +/

    SciTech Connect

    Lazof, D.B.

    1987-01-01

    Techniques of compartmental analysis were adapted to the study of intact roots of rapidly-growing Spergularia marine and Lactuca sativa. Using large numbers of plants short time-courses of uptake and chase, /sup 42/K/sup +/ and /sup 22/Na/sup +/ transport could be resolved, even during a chase following a brief 10 minute labeling period. The use of intact plant systems allowed distinction of that portion of the isotope flux into the root, associated with the ion-conducting symplasms. A small compartment, which rapidly (t/sub .5/ < 1 min) exchanges with the external medium was implicated in the radial transport of N/sup +/, accounting for the observed obtention of linear translocation rates within minutes of transferring to labeled solution. The ion contents of this compartment varied in proportion to the external ion concentration. When K/sup +/ was at a high external concentration, labeled K/sup +/ exchanged into this same symplasm, but chasing a short pulse indicated that K/sup +/ transport to the xylem was not through a rapidly-exchanging compartment. At physiological concentrations of K/sup +/ the evidence indicated that transport of K/sup +/ across the root proceeded through a compartment which was not exchanging rapidly with the external medium. The rise to a linear rate of isotope translocation was gradual and translocation during a chase, following a brief pulse,was prolonged, indicating that this compartment retained its specific activity for a considerable period.

  12. Expression of 9-cis-EPOXYCAROTENOID DIOXYGENASE4 Is Essential for Thermoinhibition of Lettuce Seed Germination but Not for Seed Development or Stress Tolerance[C][W

    PubMed Central

    Huo, Heqiang; Dahal, Peetambar; Kunusoth, Keshavulu; McCallum, Claire M.; Bradford, Kent J.

    2013-01-01

    Thermoinhibition, or failure of seeds to germinate at warm temperatures, is common in lettuce (Lactuca sativa) cultivars. Using a recombinant inbred line population developed from a lettuce cultivar (Salinas) and thermotolerant Lactuca serriola accession UC96US23 (UC), we previously mapped a quantitative trait locus associated with thermoinhibition of germination to a genomic region containing a gene encoding a key regulated enzyme in abscisic acid (ABA) biosynthesis, 9-cis-EPOXYCAROTENOID DIOXYGENASE4 (NCED4). NCED4 from either Salinas or UC complements seeds of the Arabidopsis thaliana nced6-1 nced9-1 double mutant by restoring germination thermosensitivity, indicating that both NCED4 genes encode functional proteins. Transgenic expression of Salinas NCED4 in UC seeds resulted in thermoinhibition, whereas silencing of NCED4 in Salinas seeds led to loss of thermoinhibition. Mutations in NCED4 also alleviated thermoinhibition. NCED4 expression was elevated during late seed development but was not required for seed maturation. Heat but not water stress elevated NCED4 expression in leaves, while NCED2 and NCED3 exhibited the opposite responses. Silencing of NCED4 altered the expression of genes involved in ABA, gibberellin, and ethylene biosynthesis and signaling pathways. Together, these data demonstrate that NCED4 expression is required for thermoinhibition of lettuce seeds and that it may play additional roles in plant responses to elevated temperature. PMID:23503626

  13. Carrot, Corn, Lettuce and Soybean Nutrient Contents are ...

    EPA Pesticide Factsheets

    Biochar, the carbon-rich material remaining after pyrolysis of cellulosic and manure feedstocks, has the potential as a soil amendment to sequester carbon and to improve soil water-holding and nutrient properties- thereby enhancing plant growth. However, biochar produced from some feedstocks also could adversely affect crop quality by changing soil pH and reducing nutrients (e.g., Ca, K, Mg, N, Na, and P) in plant tissues. To evaluate effects of biochar on the nutrient quality of four crops, we conducted a greenhouse study using pots with: carrot (Daucus carota cv. Tendersweet), corn (Zea mays, cv. Golden Bantam), lettuce (Lactuca sativa, cv. Black-Seeded Simpson) and soybean (Glycine max cv. Viking 2265). Plants were grown in one of two South Carolina sandy Coastal Plain soils (Norfolk and Coxville Soil Series), along with biochar (1% by weight) produced from pine chips (PC), poultry litter (PL), swine solids (SS), switchgrass (SG), and two blends of pine chips plus poultry litter (PC/PL, 50/50% and 80/20%). Each of the feedstocks and feedstock blends was pyrolyzed at 350, 500, and 700 ̊ C to produce the biochar used to amend the Norfolk and Coxville soils. Effects of biochar on leaf nutrients (% dry weight) statistically varied with species, soil, feedstock and temperature and nutrient. For carrot and lettuce, the PL, PL/PC, and SS biochars generally decreased leaf N, Ca, Mg, and P; while PL and PL/PC increased K and Na. Biochars had little effect on lea

  14. Copper, nickel and zinc accumulations in lettuce grown in soil amended with contaminated cattle manure vermicompost after sequential cultivations.

    PubMed

    Jordão, Cláudio P; de Andrade, Renato P; Cotta, Aloísio J B; Cecon, Paulo R; Neves, Júlio C L; Fontes, Mauricio P F; Fernandes, Raphael B A

    2013-01-01

    The Cu, Ni and Zn accumulations in leaves and roots of lettuce (Lactuca sativa L) grown in soil amended with natural and contaminated cattle manure vermicompost were evaluated. The vermicompost residues containing relatively high metal concentrations used in this work were obtained from a previous experiment, in which vermicompost was applied to removing metals from electroplating wastes. Sequential lettuce cultivations were conducted in pots containing the residual substrates from the first cultivation by adding metal-enriched vermicompost residues. In general, the Cu, Ni and Zn concentrations in leaves and roots of lettuce plants grown in vermicompost enriched with these metals were higher than in the treatment using the natural vermicompost. The metal concentrations in leaves from treatments with natural vermicompost were below the critical concentrations of toxicity to plants. However, the metal concentrations in leaves of the third cultivation in which metal-enriched vermicompost was applied were greater than the upper limit that causes plant toxicity, but no visual damage was observed in the plants. Treatment with Zn-enriched vermicompost resulted in toxicity symptoms, but plant damage did not result in the death of the plant. The chemical fractionation of Cu, Ni and Zn in residues from lettuce cultivation was evaluated by using a sequential extraction procedure and metal concentrations were increased in the different chemical fractions according to the increase of vermicompost dose.

  15. Mechanism of selective phytotoxicity of L-3,4-dihydroxyphenylalanine (l-dopa) in barnyardgrass and lettuce.

    PubMed

    Hachinohe, Mayumi; Matsumoto, Hiroshi

    2007-10-01

    L-3,4-dihydroxyphenylalanine (L-dopa) is one of the few allelochemicals in which the phytotoxic action mechanism has been studied. Excess exogenous L-dopa suppresses root elongation in some plant species, and the inhibitory action is species-selective. The main factor of phytotoxicity of L-dopa is considered to be oxidative damage by reactive oxygen species (ROS) and/or free radical species (FRS). This study was performed to elucidate the mechanism of species-selective phytotoxicity. The involvement of ROS/FRS and polyphenol oxidase (PPO) in species-selective phytotoxicity was examined with barnyardgrass (Echinochloa crus-galli L.) and lettuce (Lactuca sativa L.), tolerant and susceptible species, respectively. Lipid peroxidation and melanin accumulation correlated with growth inhibition by L-dopa. Antioxidants, ascorbic acid and alpha-tocopherol, decreased lipid peroxidation and melanin accumulation and rescued lettuce root from growth inhibition. The oxidation of L-dopa by PPO was much greater in lettuce than in barnyardgrass. From these results, the phytotoxicity of L-dopa is considered due to the oxidative damage caused by ROS/FRS generated from the melanin synthesis pathway. PPO activity might be involved in the mechanism of species-selective phytotoxicity between barnyardgrass and lettuce.

  16. Effects of co-cropping Bidens pilosa (L.) and Tagetes minuta (L.) on bioaccumulation of Pb in Lactuca sativa (L.) growing in polluted agricultural soils.

    PubMed

    Cid, Carolina Vergara; Rodriguez, Judith Hebelen; Salazar, María Julieta; Blanco, Andrés; Pignata, María Luisa

    2016-09-01

    Polluted agricultural soils are a serious problem for food safety, with phytoremediation being the most favorable alternative from the environmental perspective. However, this methodology is generally time-consuming and requires the cessation of agriculture. Therefore, the purpose of this study was to evaluate two potential phytoextractor plants (the native species Bidens pilosa and Tagetes minuta) co-cropped with lettuce growing on agricultural lead-polluted soils. The concentrations of Pb, as well as of other metals, were investigated in the phytoextractors, crop species, and in soils, with the potential risk to the health of consumers being estimated. The soil parameters pH, EC, organic matter percentage and bioavailable lead showed a direct relationship with the accumulation of Pb in roots. In addition, the concentration of Pb in roots of native species was closely related to Fe (B. pilosa, r = 0.81; T. minuta r = 0.75), Cu (T. minuta, r = 0.93), Mn (B. pilosa, r = 0.89) and Zn (B. pilosa, r = 0.91; T. minuta, r = 0.91). Our results indicate that the interaction between rhizospheres increased the phytoextraction of lead, which was accompanied by an increase in the biomass of the phytoextractor species. However, the consumption of lettuce still revealed a toxicological risk from Pb in all treatments.

  17. Enhancement of lettuce yield by manipulation of light and nitrogen nutrition

    NASA Technical Reports Server (NTRS)

    Knight, S. L.; Mitchell, C. A.

    1983-01-01

    Several levels of photosynthetic photon flux density (PPFD) were tested for effects on growth of 4 cultivars of lettuce (Lactuca sativa L.) under controlled-environment conditions. Growth of 'Salad Bowl', 'Bibb', and 'Ruby' was greater at 932 micromoles s-1 m-2 than at < or = 644 micromoles s-1 m-2 under a 16-hour photoperiod. Thirty mM NO3- or 5 mM NH4+ + 25 mM NO3- increased leaf dry weight while reducing leaf chlorosis in 'Salad Bowl' and 'Grand Rapids' relative to that with 15 mM NO3-, and reduced leaf purpling in 'Bibb' and 'Ruby' with little or no effect on yield. Continuous illumination with 455 or 918 micromoles s-1 m-2 stimulated yield of 'Salad Bowl' and 'Bibb' when 30 mM N as NH4+ + NO3- was used relative to that with 15 mM NO3-.

  18. Biological and molecular characterization of lettuce mosaic virus from Tehran province in Iran.

    PubMed

    Soleimani, P; Mossahebi, G H; Koohi-Habibi, M; Zad, J; Hosseini-Farhangi, S

    2004-01-01

    In this study, lettuce samples having LMV infection symptoms were collected from Tehran fields during 2003. Samples tested for LMV infection by immuno printing. Three positive samples in immuno printing collected and their characteristics were determined. In mechanical inoculation, these Isolates produced symptoms on Chenopodium quinoa, C. amaranticolor, Gomphrena globosa, Nicotiana benthamiana, Lactuca sativa cv. Mantilia and cv. Terocadero (which contains the mol1 resistance gene and susceptible respectively), but not cv. Salinas 88 (which contains the mol2 resistance gene). LMV was purified and LMV polyclonal antiserum was produced in rabbit by a series of intravenous and intramuscular injections, the precipitin titre of this antiserum was 1:1024. Gel double diffusion test (GDDT) was performed, and precipitin bands appeared. SDS-PAGE and western blotting showed the presence of coat protein 29 kDa. In IC-RT-PCR with on LMV specific primer pair, an approximately 1300 bp fragment was amplified.

  19. Enhancement of lettuce yield by manipulation of light and nitrogen nutrition

    NASA Technical Reports Server (NTRS)

    Knight, S. L.; Mitchell, C. A.

    1983-01-01

    Several levels of photosynthetic photon flux density (PPFD) were tested for effects on growth of 4 cultivars of lettuce (Lactuca sativa L.) under controlled-environment conditions. Growth of 'Salad Bowl', 'Bibb', and 'Ruby' was greater at 932 micromoles s-1 m-2 than at < or = 644 micromoles s-1 m-2 under a 16-hour photoperiod. Thirty mM NO3- or 5 mM NH4+ + 25 mM NO3- increased leaf dry weight while reducing leaf chlorosis in 'Salad Bowl' and 'Grand Rapids' relative to that with 15 mM NO3-, and reduced leaf purpling in 'Bibb' and 'Ruby' with little or no effect on yield. Continuous illumination with 455 or 918 micromoles s-1 m-2 stimulated yield of 'Salad Bowl' and 'Bibb' when 30 mM N as NH4+ + NO3- was used relative to that with 15 mM NO3-.

  20. Stimulation of lettuce productivity by manipulation of diurnal temperature and light

    NASA Technical Reports Server (NTRS)

    Knight, Sharon L.; Mitchell, Cary A.

    1983-01-01

    Salad Bowl and Waldmann's Green leaf lettuce (Lactuca sativa L.) were exposed to photosynthetic photon flux densities (PPFDs) of 444 or 889 micromol/s per sq m for 20 hrs/day under a diurnal temperature regime of 25-C days/15-C nights or 20-C days/15-C nights. Leaf dry weight of both cultivars was highest under the high PPFD/warm temperature regime and lowest under the low PPFD/cool temperature regime. Waldmann's Green yielded more than did Salad Bowl at 889 micromol/s per sq m and 25-C days/20-C nights. Under high PPFD, both cultivars yielded better with 25-C days/25-C nights than with 25-C days/20-C nights, although relative growth rates were the same under both temperature regimes.

  1. Effect of soil biochar concentration on the mitigation of emerging organic contaminant uptake in lettuce.

    PubMed

    Hurtado, Carlos; Cañameras, Núria; Domínguez, Carmen; Price, Gordon W; Comas, Jordi; Bayona, Josep M

    2017-02-05

    Although crop uptake of emerging organic contaminants (EOC) from irrigation water and soils has been previously reported, successful mitigation strategies have not yet been established. In this study, soil was amended with a wood-based biochar (BC) at two rates (0, 2.5 and 5% w/w) to evaluate the effect on mitigation of EOC uptake (i.e. bisphenol A, caffeine, carbamazepine, clofibric acid, furosemide, ibuprofen, methyl dihydrojasmonate, tris(2-chloroethyl)phosphate, triclosan, and tonalide) in lettuce (Lactuca sativa L.). After 28 days of irrigation with water containing EOCs at 15μgL(-1), the average EOC concentration in roots and leaves decreased by 20-76% in biochar amended soil relative to non BC-amended soil. In addition, the enantiomeric fractions (EF) of ibuprofen (IBU) in biochar amended soils (EF=0.58) and unamended soils (EF=0.76) suggest that the IBU sorbed fraction in BC is more recalcitrant to its biodegradation.

  2. Distribution and accumulative pattern of tetracyclines and sulfonamides in edible vegetables of cucumber, tomato, and lettuce.

    PubMed

    Ahmed, Mohamed Bedair M; Rajapaksha, Anushka Upamali; Lim, Jung Eun; Vu, Ngoc Thang; Kim, Il Seop; Kang, Ho Min; Lee, Sang Soo; Ok, Yong Sik

    2015-01-21

    Veterinary antibiotics can be released to environment by the animals' excretions, which thereby poses human health and ecological risks. Six antibiotics (tetracycline, oxytetracycline, chlortetracycline, sulfamethazine, sulfamethoxazole, and sulfadimethoxine) at three concentrations (5, 10, and 20 mg kg(-1) soil) were employed in pots filled with a loamy sand upland soil. Three types of vegetable seedlings, including cucumber (Cucumis sativus), cherry tomato (Solanum lycopersicum), and lettuce (Lactuca sativa), were also cultivated during 45 d in the greenhouse. All antibiotics taken up by tested plants showed negative effects on growth. Relatively high levels of tetracyclines and sulfonamides (SAs) were detected in the nonedible parts, roots, and leaves of cucumber and tomato, but fruit parts accumulated them lower than acceptable daily intake. Indeed, cucumber roots accumulated SAs by up to 94.6% of total addition (at 5 mg kg(-1) soil).

  3. Stimulation of lettuce productivity by manipulation of diurnal temperature and light

    NASA Technical Reports Server (NTRS)

    Knight, Sharon L.; Mitchell, Cary A.

    1983-01-01

    Salad Bowl and Waldmann's Green leaf lettuce (Lactuca sativa L.) were exposed to photosynthetic photon flux densities (PPFDs) of 444 or 889 micromol/s per sq m for 20 hrs/day under a diurnal temperature regime of 25-C days/15-C nights or 20-C days/15-C nights. Leaf dry weight of both cultivars was highest under the high PPFD/warm temperature regime and lowest under the low PPFD/cool temperature regime. Waldmann's Green yielded more than did Salad Bowl at 889 micromol/s per sq m and 25-C days/20-C nights. Under high PPFD, both cultivars yielded better with 25-C days/25-C nights than with 25-C days/20-C nights, although relative growth rates were the same under both temperature regimes.

  4. Effects of 35 C Heat Treatments on Photosensitive Grand Rapids Lettuce Seed Germination 1

    PubMed Central

    Carpita, Nicholas C.; Nabors, Murray W.

    1976-01-01

    Grand Rapids lettuce (Lactuca sativa L.) seeds were given 35 C heat treatments to increase photodormancy in a subsequent 20 C dark period. Short heat treatments (1-5 hours) induced a significant germination percentage increase of from 16% to over 50% depending on seed lot. With longer heat treatments dark germination percentage was gradually reduced to zero. If given at the end of 35 C, far red or red followed by far red further increased the amount of dark germination. Thermodormancy also delayed red-stimulated germination by 10 hours or more when red was given following a long 35 C treatment. The presence of Pfr was required during this time since far red light remained effective in reversing at least 50% of the red stimulation for up to 16 hours compared to only 4 hours in nonheat-treated seeds. PMID:16659537

  5. Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress.

    PubMed

    Leyva, Rocio; Sánchez-Rodríguez, Eva; Ríos, Juan J; Rubio-Wilhelmi, María M; Romero, Luis; Ruiz, Juan M; Blasco, Begoña

    2011-08-01

    Salinity inhibits plant growth due to ionic and osmotic effects on metabolic processes and nutritional balance, leading to impaired physiological functions. Selenium (Se) and silicon (Si) can be partially alleviated by the effects wrought by NaCl on the plant metabolism. Iodine (I), applied as iodate (IO(3)(-)) in biofortification programmes, has been confirmed to improve the antioxidant response in lettuce plants. Thus, the aim of this study was to determine whether the application of IO(3)(-) can improve the response to severe salinity stress in lettuce (Lactuca sativa cv. Philipus). In this work, the application of IO(3)(-) (20-80 μM) in lettuce plants under salinity stress (100mM of NaCl) exerted a significantly positive effect on biomass and raised the levels of soluble sugars while lowering the Na(+) and Cl(-) concentrations as well as boosting the activity of antioxidant enzymes such as SOD, APX, DHAR and GR. Therefore, IO(3)(-) could be considered a possibly beneficial element to counteract the harmful effects of salinity stress.

  6. Changes in the metabolome of lettuce leaves due to exposure to mancozeb pesticide.

    PubMed

    Pereira, Sara I; Figueiredo, Patricia I; Barros, António S; Dias, Maria C; Santos, Conceição; Duarte, Iola F; Gil, Ana M

    2014-07-01

    This paper describes a proton high resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) metabolomic study of lettuce (Lactuca sativa L.) leaves to characterise metabolic adaptations during leaf growth and exposure to mancozeb. Metabolite variations were identified through multivariate analysis and checked through spectral integration. Lettuce growth was accompanied by activation of energetic metabolism, preferential glucose use and changes in amino acids, phospholipids, ascorbate, nucleotides and nicotinate/nicotinamide. Phenylalanine and polyphenolic variations suggested higher oxidative stress at later growth stages. Exposure to mancozeb induced changes in amino acids, fumarate and malate, suggesting Krebs cycle up-regulation. In tandem disturbances in sugar, phospholipid, nucleotide and nicotinate/nicotinamide metabolism were noted. Additional changes in phenylalanine, dehydroascorbate, tartrate and formate were consistent with a higher demand for anti-oxidant defence mechanisms. Overall, lettuce exposure to mancozeb was shown to have a significant impact on plant metabolism, with mature leaves tending to be more extensively affected than younger leaves. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The morphology, physiology and nutritional quality of lettuce grown under hypobaria and hypoxia

    NASA Astrophysics Data System (ADS)

    Tang, Yongkang; Gao, Feng; Guo, Shuangsheng; Li, Fang

    2015-07-01

    The objectives of this research were to investigate the morphological, physiological and nutritional characteristics of lettuce plants (Lactuca sativa L. cv. Rome) under hypobaric and hypoxic conditions. Plants were grown under two levels of total pressures (101 and 30 kPa) and three levels of oxygen partial pressures (21, 6 and 2 kPa) for 20 days. Hypoxia (6 or 2 kPa) not only significantly inhibited the growth of lettuce plants by decreasing biomass, leaf area, root/shoot ratio, water content, the contents of minerals and organic compounds (vitamin C, crude protein and crude fat), but also destroyed the ultrastructure of mitochondria and chloroplast. The activities of catalase and total superoxide dismutase, the contents of glutathione and the total antioxidant capacity significantly decreased due to hypoxia. Hypobaria (30 kPa) did not markedly enhance the biomass, but it increased leaf area, root/shoot ratio and relative water content. Hypobaria also decreased the contents of total phenols, malondialdehyde and total carbohydrate and protected the ultrastructure of mitochondria and chloroplast under hypoxia. Furthermore, the activities of catalase and total superoxide dismutase, the contents of minerals and organic compounds markedly increased under hypobaria. This study demonstrates that hypobaria (30 kPa) does not increase the growth of lettuce plants, but it enhances plant's stress resistance and nutritional quality under hypoxia.

  8. Effect of dissolved oxygen concentration on lettuce growth in floating hydroponics.

    PubMed

    Goto, E; Both, A J; Albright, L D; Langhans, R W; Leed, A R

    1996-12-01

    Lettuce (Lactuca sativa L., cv. Ostinata) growth experiments were carried out to study the effect of dissolved oxygen (DO) concentration on plant growth in a floating hydroponic system. Pure O2 and N2 gas were supplied to the hydroponic system for precise DO control. This system made it easy to increase the DO concentration beyond the maximum (or saturation) concentration possible when bubbling air into water. Eleven day old lettuce seedlings were grown for 24 days under various DO concentrations: sub-saturated, saturated, and super-saturated. There was no significant difference in fresh weight, shoot and root dry weights among the DO concentrations: 2.1 (25% of saturated at 24 degrees C), 4.2 (50%), 8.4 (saturated), and 16.8 (200%) mg/L. The critical DO concentration for vigorous lettuce growth was considered to be lower than 2.1 mg/L. Neither root damage nor delay of shoot growth was observed at any of the studied DO concentrations.

  9. Diversity and evolutionary history of lettuce necrotic yellows virus in Australia and New Zealand.

    PubMed

    Higgins, Colleen M; Chang, Wee-Leong; Khan, Subuhi; Tang, Joe; Elliott, Carol; Dietzgen, Ralf G

    2016-02-01

    Lettuce necrotic yellows virus (LNYV) is the type member of the genus Cytorhabdovirus, family Rhabdoviridae, and causes a severe disease of lettuce (Lactuca sativa L.). This virus has been described as endemic to Australia and New Zealand, with sporadic reports of a similar virus in Europe. Genetic variability studies of plant-infecting rhabdoviruses are scarce. We have extended a previous study on the variability of the LNYV nucleocapsid gene, comparing sequences from isolates sampled from both Australia and New Zealand, as well as analysing symptom expression on Nicotiana glutinosa. Phylogenetic and BEAST analyses confirm separation of LNYV isolates into two subgroups (I and II) and suggest that subgroup I is slightly older than subgroup II. No correlation was observed between isolate subgroup and disease symptoms on N. glutinosa. The origin of LNYV remains unclear; LNYV may have moved between native and weed hosts within Australia or New Zealand before infecting lettuce or may have appeared as a result of at least two incursions, with the first coinciding with the beginning of European agriculture in the region. The apparent extinction of subgroup I in Australia may have been due to less-efficient dispersal than that which has occurred for subgroup II - possibly a consequence of suboptimal interactions with plant and/or insect hosts. Introduction of subgroup II to New Zealand appears to be more recent. More-detailed epidemiological studies using molecular tools are needed to fully understand how LNYV interacts with its hosts and to determine where the virus originated.

  10. Environmental stresses induce health-promoting phytochemicals in lettuce.

    PubMed

    Oh, Myung-Min; Carey, Edward E; Rajashekar, C B

    2009-07-01

    Plants typically respond to environmental stresses by inducing antioxidants as a defense mechanism. As a number of these are also phytochemicals with health-promoting qualities in the human diet, we have used mild environmental stresses to enhance the phytochemical content of lettuce, a common leafy vegetable. Five-week-old lettuce (Lactuca sativa L.) plants grown in growth chambers were exposed to mild stresses such as heat shock (40 degrees C for 10 min), chilling (4 degrees C for 1d) or high light intensity (800 micromolm(-2)s(-1) for 1d). In response to these stresses, there was a two to threefold increase in the total phenolic content and a significant increase in the antioxidant capacity. The concentrations of two major phenolic compounds in lettuce, chicoric acid and chlorogenic acid, increased significantly in response to all the stresses. Quercetin-3-O-glucoside and luteolin-7-O-glucoside were not detected in the control plants, but showed marked accumulations following the stress treatments. The results suggest that certain phenolic compounds can be induced in lettuce by environmental stresses. Of all the stress treatments, high light produced the greatest accumulation of phenolic compounds, especially following the stress treatments during the recovery. In addition, key genes such as phenylalanine ammonia-lyase (PAL), l-galactose dehydrogenase (l-GalDH), and gamma-tocopherol methyltransferase (gamma-TMT) involved in the biosynthesis of phenolic compounds, ascorbic acid, and alpha-tocopherol, respectively, were rapidly activated by chilling stress while heat shock and high light did not appear to have an effect on the expression of PAL and gamma-TMT. However, l-GalDH was consistently activated in response to all the stresses. The results also show that these mild environmental stresses had no adverse effects on the overall growth of lettuce, suggesting that it is possible to use mild environmental stresses to successfully improve the phytochemical content

  11. [Effects of applying pig manure on lettuce yield and nitrate content and soil nutrients].

    PubMed

    Hu, Liu-Jie; Liu, Jian-Fei; Liao, Dun-Xiu; Nie, Min; Xie, Yong-Hong; Zhang, Hong-Xia; Zhou, Zheng-Ke; Xiao, He-Ai

    2013-07-01

    A pot experiment with two representative soils (purple soil and yellow soil) in Southwest China was conducted to study the effects of applying pig manure on the lettuce (Lactuca sativa L. var. capitata L. ) yield and nitrate content and the soil nutrients. Applying pig manure increased the lettuce yield significantly, and the increment was higher for yellow soil than for purple soil. The nitrate and total nitrogen, phosphorus, and potassium contents in lettuce plants were closely related to soil type and pig manure application rate. According to the evaluation standards of the nitrate pollution level of vegetables formulated by the Chinese Academy of Agricultural Sciences, the nitrate content in lettuce plants growing on purple soil was lower than the grade I (< or = 432 mg x kg(-1), slight pollution) in treatments CK (no pig manure application) and M1 ( applying 200 kg N x hm(-2) of pig manure), but generally higher than the grade II (< or = 758 mg x kg(-1), moderate pollution) while not exceeded the grade III (< or = 1440 mg x kg(-1), heavy pollution) in other treatments. The nitrate content in lettuce plants growing on yellow soil was lower than the grade I, except that in the treatments of chemical fertilizations and of M8 (applying 1600 kg N x hm(-2) of pig manure) where the plant nitrate content was exceeded the grade II. The critical value of Olsen-P characterizing the apparent leaching risk level of phosphorous in yellow soil and purple soil was 96.3 and 107.7 mg x kg(-1), respectively. The environmental safety capacity of pig manure was higher for yellow soil than for purple soil. Applying pig manure increased the organic carbon and total nitrogen contents of the two soils significantly.

  12. Evidence of Protaphorura fimata (Collembola: Poduromorpha: Onychiuridae) feeding on germinating lettuce in the Salinas Valley of California.

    PubMed

    Joseph, Shimat V; Bettiga, Christopher; Ramirez, Christian; Soto-Adames, Felipe N

    2015-02-01

    A series of experiments were conducted to determine the impact of Protaphorura fimata Gisin (Family: Onychiuridae) feeding on seeds and germinating seedlings of lettuce, Lactuca sativa L. (Asteraceae). First, various densities of P. fimata were incubated with 25 lettuce seeds for 7 d and feeding injury was evaluated in three soilless arena experiments. As a second step, 100 P. fimata were incubated with 25 lettuce seeds in three arena experiments with soil media. Finally, in a commercial field the incidence and impact of P. fimata on recently planted lettuce was assessed following applications of pyrethroid-insecticides: 2 d before planting, at planting, and 20 d later. In experiments without soil, the number of ungerminated seeds, feeding injury sites, and plants with injury were significantly greater in arenas with P. fimata than without. Similarly, the number of germinated seedlings, shoot fresh, and dry weights, and the length and width of fully opened-leaves were greater in arenas without than with P. fimata in assays with soil. In the field, P. fimata densities were significantly lower in beds that received insecticides at 2 d before and at planting than in untreated beds. Also, the fresh and dry weights of lettuce plants were significantly greater in the beds that received insecticide than in untreated. The results clearly show that P. fimata is a pest of lettuce and can cause severe feeding injury to germinating seeds or seedlings, thereby reducing their growth rate. The potential implications of P. fimata feeding and feeding injury characteristics are discussed. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Characterization of phenolic compounds in green and red oak-leaf lettuce cultivars by UHPLC-DAD-ESI-QToF/MS using MS(E) scan mode.

    PubMed

    Viacava, Gabriela E; Roura, Sara I; Berrueta, Luis A; Iriondo, Carmen; Gallo, Blanca; Alonso-Salces, Rosa M

    2017-08-22

    Lettuce (Lactuca sativa) is one of the most popular leafy vegetables in the world and constitutes a major dietary source of phenolic compounds with health promoting properties. In particular, the demand for green and red oak-leaf lettuces have considerably increased in the last years but few data on their polyphenol composition is available. Moreover, the utilization of analytical edge technology can provide new structural information and allow the identification of unknown polyphenols. In the present study the phenolic profiles of green and red oak-leaf lettuce cultivars were exhaustively characterized by ultrahigh performance liquid chromatography (UHPLC) coupled online to diode array detection (DAD), electrospray ionization (ESI) and quadrupole time-of-flight mass spectrometry (QToF/MS), using the MS(E) instrument acquisition mode for recording simultaneously exact masses of precursor and fragment ions. One hundred fifteen phenolic compounds were identified in the acidified hydromethanolic extract of freeze-dried lettuce leaves. Forty eight of these compounds were tentatively identified for the first time in lettuce, and only twenty of them have been previously reported in oak leaf lettuce cultivars in literature. Both oak leaf lettuce cultivars presented similar phenolic composition, except for apigenin-glucuronide and dihydroxybenzoic acid, only detected in the green cultivar; and for luteolin-hydroxymalonylhexoside, an apigenin conjugate with molecular formula C40 H54 O19 (monoisotopic MW = 838.3259 u), cyanidin-3-O-glucoside, cyanidin-3-O-(3"-O-malonyl)glucoside, cyanidin-3-O-(6"-O-malonyl)glucoside and cyanidin-3-O-(6"-O-acetyl)glucoside, only found in the red cultivar. The UHPLC-DAD-ESI-QToF/MS(E) approach demonstrated to be a useful tool for the characterization of phenolic compounds in complex plant matrices. This article is protected by copyright. All rights reserved.

  14. Quantitative trait loci associated with longevity of lettuce seeds under conventional and controlled deterioration storage conditions.

    PubMed

    Schwember, Andrés R; Bradford, Kent J

    2010-10-01

    Lettuce (Lactuca sativa L.) seeds have poor shelf life and exhibit thermoinhibition (fail to germinate) above ∼25°C. Seed priming (controlled hydration followed by drying) alleviates thermoinhibition by increasing the maximum germination temperature, but reduces lettuce seed longevity. Controlled deterioration (CD) or accelerated ageing storage conditions (i.e. elevated temperature and relative humidity) are used to study seed longevity and to predict potential seed lifetimes under conventional storage conditions. Seeds produced in 2002 and 2006 of a recombinant inbred line (RIL) population derived from a cross between L. sativa cv. Salinas×L. serriola accession UC96US23 were utilized to identify quantitative trait loci (QTLs) associated with seed longevity under CD and conventional storage conditions. Multiple longevity-associated QTLs were identified under both conventional and CD storage conditions for control (non-primed) and primed seeds. However, seed longevity was poorly correlated between the two storage conditions, suggesting that deterioration processes under CD conditions are not predictive of ageing in conventional storage conditions. Additionally, the same QTLs were not identified when RIL populations were grown in different years, indicating that lettuce seed longevity is strongly affected by production environment. Nonetheless, a major QTL on chromosome 4 [Seed longevity 4.1 (Slg4.1)] was responsible for almost 23% of the phenotypic variation in viability of the conventionally stored control seeds of the 2006 RIL population, with improved longevity conferred by the Salinas allele. QTL analyses may enable identification of mechanisms responsible for the sensitivity of primed seeds to CD conditions and breeding for improved seed longevity.

  15. Association mapping and marker-assisted selection of the lettuce dieback resistance gene Tvr1

    PubMed Central

    2009-01-01

    Background Lettuce (Lactuca saliva L.) is susceptible to dieback, a soilborne disease caused by two viruses from the family Tombusviridae. Susceptibility to dieback is widespread in romaine and leaf-type lettuce, while modern iceberg cultivars are resistant to this disease. Resistance in iceberg cultivars is conferred by Tvr1 - a single, dominant gene that provides durable resistance. This study describes fine mapping of the resistance gene, analysis of nucleotide polymorphism and linkage disequilibrium in the Tvr1 region, and development of molecular markers for marker-assisted selection. Results A combination of classical linkage mapping and association mapping allowed us to pinpoint the location of the Tvr1 resistance gene on chromosomal linkage group 2. Nine molecular markers, based on expressed sequence tags (EST), were closely linked to Tvr1 in the mapping population, developed from crosses between resistant (Salinas and Salinas 88) and susceptible (Valmaine) cultivars. Sequencing of these markers from a set of 68 cultivars revealed a relatively high level of nucleotide polymorphism (θ = 6.7 × 10-3) and extensive linkage disequilibrium (r2 = 0.124 at 8 cM) in this region. However, the extent of linkage disequilibrium was affected by population structure and the values were substantially larger when the analysis was performed only for romaine (r2 = 0.247) and crisphead (r2 = 0.345) accessions. The association mapping approach revealed that one of the nine markers (Cntg10192) in the Tvr1 region matched exactly with resistant and susceptible phenotypes when tested on a set of 200 L. sativa accessions from all horticultural types of lettuce. The marker-trait association was also confirmed on two accessions of Lactuca serriola - a wild relative of cultivated lettuce. The combination of three single-nucleotide polymorphisms (SNPs) at the Cntg10192 marker identified four haplotypes. Three of the haplotypes were associated with resistance and one of them was always

  16. Lettuce breeding

    USDA-ARS?s Scientific Manuscript database

    In the 2016-2017 period, major efforts targeted resistance to lettuce drop caused by Sclerotinia species, Verticillium wilt, Fusarium wilt, bacterial leaf spot, corky root, downy mildew, drought tolerance, lettuce aphid, tipburn, shelf-life of salad-cut lettuce, and multiple disease resistance. Resi...

  17. Ethylene reduces plant gas exchange and growth of lettuce grown from seed to harvest under hypobaric and ambient total pressure.

    PubMed

    He, Chuanjiu; Davies, Fred T

    2012-03-01

    Naturally occurring high levels of ethylene can be a problem in spaceflight and controlled environment agriculture (CEA) leading to sterility and irregular plant growth. There are engineering and safety advantages of growing plants under hypobaria (low pressure) for space habitation. The goals of this research were to successfully grow lettuce (Lactuca sativa cv. Buttercrunch) in a long-term study from seed to harvest under hypobaric conditions, and to investigate how endogenously produced ethylene affects gas exchange and plant growth from seed germination to harvest under hypobaric and ambient total pressure conditions. Lettuce was grown under two levels of total gas pressure [hypobaric or ambient (25 or 101 kPa)] in a long-term, 32-day study. Significant levels of endogenous ethylene occurred by day-15 causing reductions in photosynthesis, dark-period respiration, and a subsequent decrease in plant growth. Hypobaria did not mitigate the adverse ethylene effects on plant growth. Seed germination was not adversely affected by hypobaria, but was reduced by hypoxia (6 kPa pO(2)). Under hypoxia, seed germination was higher under hypobaria than ambient total pressure. This research shows that lettuce can be grown from seed to harvest under hypobaria (≅25% of normal earth ambient total pressure). Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. Abscisic acid and ethephon regulation of cellulase in the endosperm cap and radicle during lettuce seed germination.

    PubMed

    Chen, Bingxian; Ma, Jun; Xu, Zhenjiang; Wang, Xiaofeng

    2016-10-01

    The purpose of this study was to investigate the role of cellulase in endosperm cap weakening and radicle elongation during lettuce (Lactuca sativa L.) seed germination. The application of abscisic acid (ABA) or ethephon inhibits or promotes germination, respectively, by affecting endosperm cap weakening and radicle elongation. Cellulase activities, and related protein and transcript abundances of two lettuce cellulase genes, LsCEL1 and LsCEL2, increase in the endosperm cap and radicle prior to radicle protrusion following imbibition in water. ABA or ethephon reduce or elevate, respectively, cellulase activity, and related protein and transcript abundances in the endosperm cap. Taken together, these observations suggest that cellulase plays a role in endosperm cap weakening and radicle elongation during lettuce seed germination, and that the regulation of cellulase in the endosperm cap by ABA and ethephon play a role in endosperm cap weakening. However, the influence of ABA and ethephon on radicle elongation may not be through their effects on cellulase. © 2016 Institute of Botany, Chinese Academy of Sciences.

  19. Can δ(15)N in lettuce tissues reveal the use of synthetic nitrogen fertiliser in organic production?

    PubMed

    Sturm, Martina; Kacjan-Maršić, Nina; Lojen, Sonja

    2011-01-30

    The nitrogen isotopic fingerprint (δ(15)N) is reported to be a promising indicator for differentiating between organically and conventionally grown vegetables. However, the effect on plant δ(15)N of split nitrogen fertilisation, which could enable farmers to cover up the use of synthetic fertiliser, is not well studied. In this study the use of δ(15)N in lettuce as a potential marker for identifying the use of synthetic nitrogen fertiliser was tested on pot-grown lettuce (Lactuca sativa L.) treated with synthetic and organic nitrogen fertilisers (single or split application). The effect of combined usage of synthetic and organic fertilisers on δ(15)N was also investigated. The δ(15)N values of whole plants treated with different fertilisers differed significantly when the fertiliser was applied in a single treatment. However, additional fertilisation (with isotopically the same or different fertiliser) did not cause a significant alteration of plant δ(15)N. The findings of the study suggest that the δ(15)N value of lettuce tissues could be used as a rough marker to reveal the history of nitrogen fertilisation, but only in the case of single fertiliser application. However, if the difference in δ(15)N between the applied synthetic and organic nitrogen fertilisers was > 9.1 ‰, the detection of split and combined usage of the fertilisers would have greater discriminatory power. 2010 Society of Chemical Industry.

  20. Phytochrome- and Gibberellin-Mediated Regulation of Abscisic Acid Metabolism during Germination of Photoblastic Lettuce Seeds1[OA

    PubMed Central

    Sawada, Yoshiaki; Aoki, Miki; Nakaminami, Kentaro; Mitsuhashi, Wataru; Tatematsu, Kiyoshi; Kushiro, Tetsuo; Koshiba, Tomokazu; Kamiya, Yuji; Inoue, Yasunori; Nambara, Eiji; Toyomasu, Tomonobu

    2008-01-01

    Germination of lettuce (Lactuca sativa) ‘Grand Rapids’ seeds is regulated by phytochrome. The action of phytochrome includes alterations in the levels of gibberellin (GA) and abscisic acid (ABA). To determine the molecular mechanism of phytochrome regulation of ABA metabolism, we isolated four lettuce cDNAs encoding 9-cis-epoxycarotenoid dioxygenase (biosynthesis; LsNCED1–LsNCED4) and four cDNAs for ABA 8′-hydroxylase (catabolism; LsABA8ox1–LsABA8ox4). Measurements of ABA and its catabolites showed that a decrease in ABA level coincided with a slight increase in the level of the ABA catabolite phaseic acid after red light treatment. Quantitative reverse transcription-polymerase chain reaction analysis indicated that ABA levels are controlled by phytochrome through down-regulation of LsNCED2 and LsNCED4 expression and up-regulation of LsABA8ox4 expression in lettuce seeds. Furthermore, the expression levels of LsNCED4 decreased after GA1 treatment, whereas the levels of expression of the other two genes were unaffected. The LsNCED4 expression was also down-regulated by red light in lettuce seeds in which GA biosynthesis was suppressed by AMO-1618, a specific GA biosynthesis inhibitor. These results indicate that phytochrome regulation of ABA metabolism is mediated by both GA-dependent and -independent mechanisms. Spatial analysis showed that after red light treatment, the ABA decrease on the hypocotyl side was greater than that on the cotyledon side of lettuce seeds. Moreover, phytochrome-regulated expression of ABA and GA biosynthesis genes was observed on the hypocotyl side, rather than the cotyledon side, suggesting that this regulation occurs near the photoperceptive site. PMID:18184730

  1. Identification of QTLs conferring resistance to downy mildew in legacy cultivars of lettuce.

    PubMed

    Simko, Ivan; Atallah, Amy J; Ochoa, Oswaldo E; Antonise, Rudie; Galeano, Carlos H; Truco, Maria Jose; Michelmore, Richard W

    2013-10-07

    Many cultivars of lettuce (Lactuca sativa L.), the most popular leafy vegetable, are susceptible to downy mildew disease caused by Bremia lactucae. Cultivars Iceberg and Grand Rapids that were released in the 18th and 19th centuries, respectively, have high levels of quantitative resistance to downy mildew. We developed a population of recombinant inbred lines (RILs) originating from a cross between these two legacy cultivars, constructed a linkage map, and identified two QTLs for resistance on linkage groups 2 (qDM2.1) and 5 (qDM5.1) that determined resistance under field conditions in California and the Netherlands. The same QTLs determined delayed sporulation at the seedling stage in laboratory experiments. Alleles conferring elevated resistance at both QTLs originate from cultivar Iceberg. An additional QTL on linkage group 9 (qDM9.1) was detected through simultaneous analysis of all experiments with mixed-model approach. Alleles for elevated resistance at this locus originate from cultivar Grand Rapids.

  2. Identification of QTLs conferring resistance to downy mildew in legacy cultivars of lettuce

    PubMed Central

    Simko, Ivan; Atallah, Amy J.; Ochoa, Oswaldo E.; Antonise, Rudie; Galeano, Carlos H.; Truco, Maria Jose; Michelmore, Richard W.

    2013-01-01

    Many cultivars of lettuce (Lactuca sativa L.), the most popular leafy vegetable, are susceptible to downy mildew disease caused by Bremia lactucae. Cultivars Iceberg and Grand Rapids that were released in the 18th and 19th centuries, respectively, have high levels of quantitative resistance to downy mildew. We developed a population of recombinant inbred lines (RILs) originating from a cross between these two legacy cultivars, constructed a linkage map, and identified two QTLs for resistance on linkage groups 2 (qDM2.1) and 5 (qDM5.1) that determined resistance under field conditions in California and the Netherlands. The same QTLs determined delayed sporulation at the seedling stage in laboratory experiments. Alleles conferring elevated resistance at both QTLs originate from cultivar Iceberg. An additional QTL on linkage group 9 (qDM9.1) was detected through simultaneous analysis of all experiments with mixed-model approach. Alleles for elevated resistance at this locus originate from cultivar Grand Rapids. PMID:24096732

  3. Effect of different washing procedures on phenolic metabolism of shredded, packaged iceberg lettuce during storage.

    PubMed

    Baur, Sascha; Klaiber, Ralph G; Koblo, Arjuna; Carle, Reinhold

    2004-11-17

    Different washing treatments applying chlorinated, ozonated, and tap water were examined for their effect on the phenolic metabolism of minimally processed iceberg lettuce (Lactuca sativa L.) during storage in consumer-sized bags at 4 degrees C for up to 9 days. To eliminate problems associated with raw material inhomogeneity, processing was conducted on a pilot-plant scale under operating conditions of industrial practice. Inherent product heterogeneity caused by diverse lettuce leaf tissues was compensated for by pooling large-sized samples, and frequent sampling ensured significant data about the activities of phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO), and peroxidase (POD), as well as the contents of caffeic acid derivatives over storage time. In the homogeneous lettuce samples, specific responses caused by different washing procedures were detectable. PAL activity in the samples increased for up to 5-8 days of storage. Compared to tap and ozonated water, the use of chlorinated water (100-200 mg/L free chlorine) for washing trimmed heads or shredded lettuce significantly reduced PAL activity and the concomitant rise of 3,5-di-O-caffeoylquinic acid (isochlorogenic acid isomer) concentrations. The phenolic acids O-caffeoyltartaric (caftaric acid), di-O-caffeoyltartaric (chicoric acid), 5-O-caffeoylquinic (chlorogenic acid isomer), and O-caffeoylmalic were less influenced by different washing treatments. Individual contents either were constant or decreased during storage. Additionally, the novel finding of a further caffeic acid isomer, tentatively identified as meso-di-O-caffeoyltartaric acid, is reported. PPO and POD activities were less affected by different washing treatments and thus were less suitable physiological indicators of stress reactions triggered by alternative processing.

  4. Pseudomonads associated with midrib rot and soft rot of butterhead lettuce and endive.

    PubMed

    Cottyn, B; Vanhouteghem, K; Heyrman, J; Bleyaert, P; Van Vaerenbergh, J; De Vos, P; Höfte, M; Maes, M

    2005-01-01

    During the past ten years, bacterial soft rot and midrib rot of glasshouse-grown butterhead lettuce (Lactuca sativa L. var. capitata) and field-grown endive (Cichorium endivia L.) has become increasingly common in the region of Flanders, Belgium. Severe losses and reduced market quality caused by bacterial rot represent an important economical threat for the production sector. Symptoms of midrib rot are a brownish rot along the midrib of one or more inner leaves, often accompanied by soft rot of the leaf blade. Twenty-five symptomatic lettuce and endive samples were collected from commercial growers at different locations in Flanders. Isolations of dominant bacterial colony types on dilution plates from macerated diseased tissue extracts yielded 282 isolates. All isolates were characterized by colony morphology and fluorescence on pseudomonas agar F medium, oxidase reaction, and soft rot ability on detached chicory leaves. Whole-cell fatty acid methyl esters profile analyses identified the majority of isolates (85%) as belonging to the Gammaproteobacteria, which included members of the family Enterobacteriaceae (14%) and of the genera Pseudomonas (73%), Stenotrophomonas (9%), and Acinetobacter (3%). Predominant bacteria were a diverse group of fluorescent Pseudomonas species. They were further differentiated based on the non-host hypersensitive reaction on tobacco and the ability to rot potato slices into 4 phenotypic groups: HR-/P- (57 isolates), HR-/P+ (54 isolates), HR+/P (16 isolates) and HR+/P+ (35 isolates). Artificial inoculation of suspensions of HR-, pectolytic fluorescent pseudomonads in the leaf midrib of lettuce plants produced various symptoms of soft rot, but they did not readily cause symptoms upon spray inoculation. Fluorescent pseudomonads with phenotype HR+ were consistently isolated from typical dark midrib rot symptoms, and selected isolates reproduced the typical midrib rot symptoms when spray-inoculated onto healthy lettuce plants.

  5. De novo assembly and characterization of germinating lettuce seed transcriptome using Illumina paired-end sequencing.

    PubMed

    Liu, Shu-Jun; Song, Shun-Hua; Wang, Wei-Qing; Song, Song-Quan

    2015-11-01

    At supraoptimal temperature, germination of lettuce (Lactuca sativa L.) seeds exhibits a typical germination thermoinhibition, which can be alleviated by sodium nitroprusside (SNP) in a nitric oxide-dependent manner. However, the molecular mechanism of seed germination thermoinhibition and its alleviation by SNP are poorly understood. In the present study, the lettuce seeds imbibed at optimal temperature in water or at supraoptimal temperature with or without 100 μM SNP for different periods of time were used as experimental materials, the total RNA was extracted and sequenced, we gained 147,271,347 raw reads using Illumina paired-end sequencing technique and assembled the transcriptome of germinating lettuce seeds. A total of 51,792 unigenes with a mean length of 849 nucleotides were obtained. Of these unigenes, a total of 29,542 unigenes were annotated by sequence similarity searching in four databases, NCBI non-redundant protein database, SwissProt protein database, euKaryotic Ortholog Groups database, and NCBI nucleotide database. Among the annotated unigenes, 22,276 unigenes were assigned to Gene Ontology database. When all the annotated unigenes were searched against the Kyoto Encyclopedia of Genes and Genomes Pathway database, a total of 8,810 unigenes were mapped to 5 main categories including 260 pathways. We first obtained a lot of unigenes encoding proteins involved in abscisic acid (ABA) signaling in lettuce, including 11 ABA receptors, 94 protein phosphatase 2Cs and 16 sucrose non-fermenting 1-related protein kinases. These results will help us to better understand the molecular mechanism of seed germination, thermoinhibition of seed germination and its alleviation by SNP. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Multiple Genetic Processes Result in Heterogeneous Rates of Evolution within the Major Cluster Disease Resistance Genes in LettuceW⃞

    PubMed Central

    Kuang, Hanhui; Woo, Sung-Sick; Meyers, Blake C.; Nevo, Eviatar; Michelmore, Richard W.

    2004-01-01

    Resistance Gene Candidate2 (RGC2) genes belong to a large, highly duplicated family of nucleotide binding site–leucine rich repeat (NBS-LRR) encoding disease resistance genes located at a single locus in lettuce (Lactuca sativa). To investigate the genetic events occurring during the evolution of this locus, ∼1.5- to 2-kb 3′ fragments of 126 RGC2 genes from seven genotypes were sequenced from three species of Lactuca, and 107 additional RGC2 sequences were obtained from 40 wild accessions of Lactuca spp. The copy number of RGC2 genes varied from 12 to 32 per genome in the seven genotypes studied extensively. LRR number varied from 40 to 47; most of this variation had resulted from 13 events duplicating two to five LRRs because of unequal crossing-over within or between RGC2 genes at one of two recombination hot spots. Two types of RGC2 genes (Type I and Type II) were initially distinguished based on the pattern of sequence identities between their 3′ regions. The existence of two types of RGC2 genes was further supported by intron similarities, the frequency of sequence exchange, and their prevalence in natural populations. Type I genes are extensive chimeras caused by frequent sequence exchanges. Frequent sequence exchanges between Type I genes homogenized intron sequences, but not coding sequences, and obscured allelic/orthologous relationships. Sequencing of Type I genes from additional wild accessions confirmed the high frequency of sequence exchange and the presence of numerous chimeric RGC2 genes in nature. Unlike Type I genes, Type II genes exhibited infrequent sequence exchange between paralogous sequences. Type II genes from different genotype/species within the genus Lactuca showed obvious allelic/orthologous relationships. Trans-specific polymorphism was observed for different groups of orthologs, suggesting balancing selection. Unequal crossover, insertion/deletion, and point mutation events were distributed unequally through the gene. Different

  7. Association mapping and marker-assisted selection of the lettuce dieback resistance gene Tvr1.

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca saliva L.) is susceptible to dieback, a soilborne disease caused by two viruses from the family Tombusviridae. Susceptibility to dieback is widespread in romaine and leaf-type lettuce, while modern iceberg cultivars are resistant to this disease. Resistance in iceberg cultivars is c...

  8. Stomatal Conductance of Lettuce Grown Under or Exposed to Different Light Qualities

    PubMed Central

    KIM, HYEON-HYE; GOINS, GREGORY D.; WHEELER, RAYMOND M.; SAGER, JOHN C.

    2004-01-01

    • Background and Aims The objective of this research was to examine the effects of differences in light spectrum on the stomatal conductance (Gs) and dry matter production of lettuce plants grown under a day/night cycle with different spectra, and also the effects on Gs of short-term exposure to different spectra. • Methods Lettuce (Lactuca sativa) plants were grown with 6 h dark and 18 h light under four different spectra, red–blue (RB), red–blue–green (RBG), green (GF) and white (CWF), and Gs and plant growth were measured. • Key Results and Conclusions Conductance of plants grown for 23 d under CWF rose rapidly on illumination to a maximum in the middle of the light period, then decreased again before the dark period when it was minimal. However, the maximum was smaller in plants grown under RB, RGB and GF. This demonstrates that spectral quality during growth affects the diurnal pattern of stomatal conductance. Although Gs was smaller in plants grown under RGB than CWF, dry mass accumulation was greater, suggesting that Gs did not limit carbon assimilation under these spectral conditions. Temporarily changing the spectral quality of the plants grown for 23 d under CWF, affected stomatal responses reversibly, confirming studies on epidermal strips. This study provides new information showing that Gs is responsive to spectral quality during growth and, in the short-term, is not directly coupled to dry matter accumulation. PMID:15347557

  9. Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin.

    PubMed

    Gonai, Takeru; Kawahara, Shusuke; Tougou, Makoto; Satoh, Shigeru; Hashiba, Teruyoshi; Hirai, Nobuhiro; Kawaide, Hiroshi; Kamiya, Yuji; Yoshioka, Toshihito

    2004-01-01

    Germination of lettuce (Lactuca sativa L. cv. 'Grand Rapids') seeds was inhibited at high temperatures (thermoinhibition). Thermoinhibition at 28 degrees C was prevented by the application of fluridone, an inhibitor of abscisic acid (ABA) biosynthesis. At 33 degrees C, the sensitivity of the seeds to ABA increased, and fluridone on its own was no longer effective. However, a combined application of fluridone and gibberellic acid (GA3) was able to restore the germination. Exogenous GA3 lowered endogenous ABA content in the seeds, enhancing catabolism of ABA and export of the catabolites from the intact seeds. The fluridone application also decreased the ABA content. Consequently, the combined application of fluridone and GA3 decreased the ABA content to a sufficiently low level to allow germination at 33 degrees C. There was no significant temperature-dependent change in endogenous GA1 contents. It is concluded that ABA is an important factor in the regulation of thermoinhibition of lettuce seed germination, and that GA affects the temperature responsiveness of the seeds through ABA metabolism.

  10. Changes in hyperspectral reflectance signatures of lettuce leaves in response to macronutrient deficiencies

    NASA Astrophysics Data System (ADS)

    Pacumbaba, R. O.; Beyl, C. A.

    2011-07-01

    The adaptation of specific remote sensing and hyperspectral analysis techniques for the determination of incipient nutrient stress in plants could allow early detection and precision supplementation for remediation, important considerations for minimizing mass of advanced life support systems on space station and long term missions. This experiment was conducted to determine if hyperspectral reflectance could be used to detect nutrient stress in Lactuca sativa L. cv. Black Seeded Simpson. Lettuce seedlings were grown for 90 days in a greenhouse or growth chamber in vermiculite containing modified Hoagland's nutrient solution with key macronutrient elements removed in order to induce a range of nutrient stresses, including nitrogen, phosphorus, potassium, calcium, and magnesium. Leaf tissue nutrient concentrations were compared with corresponding spectral reflectances taken at the end of 90 days. Spectral reflectances varied with growing location, position on the leaf, and nutrient deficiency treatment. Spectral responses of lettuce leaves under macronutrient deficiency conditions showed an increase in reflectance in the red, near red, and infrared wavelength ranges. The data obtained suggest that spectral reflectance shows the potential as a diagnostic tool in predicting nutrient deficiencies in general. Overlapping of spectral signatures makes the use of wavelengths of narrow bandwidths or individual bands for the discrimination of specific nutrient stresses difficult without further data processing.

  11. Stomatal conductance of lettuce grown under or exposed to different light qualities

    NASA Technical Reports Server (NTRS)

    Kim, Hyeon-Hye; Goins, Gregory D.; Wheeler, Raymond M.; Sager, John C.

    2004-01-01

    BACKGROUND AND AIMS: The objective of this research was to examine the effects of differences in light spectrum on the stomatal conductance (Gs) and dry matter production of lettuce plants grown under a day/night cycle with different spectra, and also the effects on Gs of short-term exposure to different spectra. METHODS: Lettuce (Lactuca sativa) plants were grown with 6 h dark and 18 h light under four different spectra, red-blue (RB), red-blue-green (RBG), green (GF) and white (CWF), and Gs and plant growth were measured. KEY RESULTS AND CONCLUSIONS: Conductance of plants grown for 23 d under CWF rose rapidly on illumination to a maximum in the middle of the light period, then decreased again before the dark period when it was minimal. However, the maximum was smaller in plants grown under RB, RGB and GF. This demonstrates that spectral quality during growth affects the diurnal pattern of stomatal conductance. Although Gs was smaller in plants grown under RGB than CWF, dry mass accumulation was greater, suggesting that Gs did not limit carbon assimilation under these spectral conditions. Temporarily changing the spectral quality of the plants grown for 23 d under CWF, affected stomatal responses reversibly, confirming studies on epidermal strips. This study provides new information showing that Gs is responsive to spectral quality during growth and, in the short-term, is not directly coupled to dry matter accumulation.

  12. Long-term Blue Light Effects on the Histology of Lettuce and Soybean Leaves and Stems

    NASA Technical Reports Server (NTRS)

    Dougher, Tracy A. O.; Bugbee, Bruce

    2004-01-01

    Blue light (320 to 496 nm) alters hypocotyl and stem elongation and leaf expansion in short-term, cell-level experiments, but histological effects of blue light in long-term studies of whole plants have not been described. We measured cell size and number in stems of soybean (Glycine max L.) and leaves of soybean and lettuce (Lactuca sativa L.), at two blue light fractions. Short-term studies have shown that cell expansion in stems is rapidly inhibited when etiolated tissue is exposed to blue light. However, under long-term light exposure, an increase in the blue light fraction from less than 0.1% to 26% decreased internode length, specifically by inhibiting soybean cell division in stems. In contrast, an increase in blue light fraction from 6% to 26% reduced soybean leaf area by decreasing cell expansion. Surprisingly, lettuce leaf area increased with increasing blue light fraction (0% to 6%), which was attributed to a 3.1-fold increase in cell expansion and a 1.6-fold increase in cell division.

  13. Stomatal conductance of lettuce grown under or exposed to different light qualities

    NASA Technical Reports Server (NTRS)

    Kim, Hyeon-Hye; Goins, Gregory D.; Wheeler, Raymond M.; Sager, John C.

    2004-01-01

    BACKGROUND AND AIMS: The objective of this research was to examine the effects of differences in light spectrum on the stomatal conductance (Gs) and dry matter production of lettuce plants grown under a day/night cycle with different spectra, and also the effects on Gs of short-term exposure to different spectra. METHODS: Lettuce (Lactuca sativa) plants were grown with 6 h dark and 18 h light under four different spectra, red-blue (RB), red-blue-green (RBG), green (GF) and white (CWF), and Gs and plant growth were measured. KEY RESULTS AND CONCLUSIONS: Conductance of plants grown for 23 d under CWF rose rapidly on illumination to a maximum in the middle of the light period, then decreased again before the dark period when it was minimal. However, the maximum was smaller in plants grown under RB, RGB and GF. This demonstrates that spectral quality during growth affects the diurnal pattern of stomatal conductance. Although Gs was smaller in plants grown under RGB than CWF, dry mass accumulation was greater, suggesting that Gs did not limit carbon assimilation under these spectral conditions. Temporarily changing the spectral quality of the plants grown for 23 d under CWF, affected stomatal responses reversibly, confirming studies on epidermal strips. This study provides new information showing that Gs is responsive to spectral quality during growth and, in the short-term, is not directly coupled to dry matter accumulation.

  14. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce.

    PubMed

    Samuolienė, Giedrė; Sirtautas, Ramūnas; Brazaitytė, Aušra; Duchovskis, Pavelas

    2012-10-01

    We report on the application of supplementary light-emitting diode (LED) lighting within a greenhouse for cultivation of red, green and light green leaf baby lettuces (Lactuca sativa L.) grown under natural illumination and high-pressure sodium (HPS) lamps (16-h; PPFD-170 μmol m(-2)s(-1)) during different growing season. Supplementary lighting from blue 455/470 nm and green 505/530 nm LEDs was applied (16-h; PPFD-30 μmol m(-2)s(-1)). Our results showed that to achieve solely a positive effect is complicated, because metabolism of antioxidant properties in lettuce depended on multicomponent exposure of variety, light quality or seasonality. The general trend of a greater positive effect of supplemental LED components on the vitamin C and tocopherol contents was in order: 535>505>455>470 nm; on the total phenol content: 505>535=470>455 nm; on the DPPH free-radical scavenging capacity: 535=470>505>455 nm; on the total anthocyanins: 505>455>470>535 nm. Further investigations are needed for understanding the mechanism and interaction between antioxidants and light signal transduction pathways. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Effects of indole amides on lettuce and onion germination and growth.

    PubMed

    Borgati, Thiago F; Boaventura, Maria Amelia D

    2011-01-01

    Auxins, such as indole-3-acetic acid (IAA), are important in plant germination and growth, while physiological polyamines, such as putrescine, are involved in cell proliferation and differentiation, and their concentrations increase during germination. In this work, novel indole amides were synthesized in good yields by monoacylation of morpholine and unprotected symmetrical diamines with indole-3-carboxylic acid, a putative metabolite of IAA, possessing no auxin-like activity. These amides were tested for their effects on seed germination and growth of the radicles and shoots of Lactuca sativa (lettuce) and Allium cepa (onion) seedlings, at 100.0, 1.0, and 0.01 microM concentrations. Germination was generally stimulated, with the exception of amide 3, derived from morpholine, at 100 microM. On radicle and shoot growth, the effect of these compounds was predominantly inhibitory. Compound 3 was the best inhibitor of growth of lettuce and onion, at the highest concentration. Amides, such as propanil, among others, are described as having herbicidal activity.

  16. Effects of PSAG12-IPT Gene Expression on Development and Senescence in Transgenic Lettuce1

    PubMed Central

    McCabe, Matthew S.; Garratt, Lee C.; Schepers, Frank; Jordi, Wilco J.R.M.; Stoopen, Geert M.; Davelaar, Evert; van Rhijn, J. Hans A.; Power, J. Brian; Davey, Michael R.

    2001-01-01

    An ipt gene under control of the senescence-specific SAG12 promoter from Arabidopsis (PSAG12-IPT) significantly delayed developmental and postharvest leaf senescence in mature heads of transgenic lettuce (Lactuca sativa L. cv Evola) homozygous for the transgene. Apart from retardation of leaf senescence, mature, 60-d-old plants exhibited normal morphology with no significant differences in head diameter or fresh weight of leaves and roots. Induction of senescence by nitrogen starvation rapidly reduced total nitrogen, nitrate, and growth of transgenic and azygous (control) plants, but chlorophyll was retained in the lower (outer) leaves of transgenic plants. Harvested PSAG12-IPT heads also retained chlorophyll in their lower leaves. During later development (bolting and preflowering) of transgenic plants, the decrease in chlorophyll, total protein, and Rubisco content in leaves was abolished, resulting in a uniform distribution of these components throughout the plants. Homozygous PSAG12-IPT lettuce plants showed a slight delay in bolting (4–6 d), a severe delay in flowering (4–8 weeks), and premature senescence of their upper leaves. These changes correlated with significantly elevated concentrations of cytokinin and hexoses in the upper leaves of transgenic plants during later stages of development, implicating a relationship between cytokinin and hexose concentrations in senescence. PMID:11598225

  17. Long-term Blue Light Effects on the Histology of Lettuce and Soybean Leaves and Stems

    NASA Technical Reports Server (NTRS)

    Dougher, Tracy A. O.; Bugbee, Bruce

    2004-01-01

    Blue light (320 to 496 nm) alters hypocotyl and stem elongation and leaf expansion in short-term, cell-level experiments, but histological effects of blue light in long-term studies of whole plants have not been described. We measured cell size and number in stems of soybean (Glycine max L.) and leaves of soybean and lettuce (Lactuca sativa L.), at two blue light fractions. Short-term studies have shown that cell expansion in stems is rapidly inhibited when etiolated tissue is exposed to blue light. However, under long-term light exposure, an increase in the blue light fraction from less than 0.1% to 26% decreased internode length, specifically by inhibiting soybean cell division in stems. In contrast, an increase in blue light fraction from 6% to 26% reduced soybean leaf area by decreasing cell expansion. Surprisingly, lettuce leaf area increased with increasing blue light fraction (0% to 6%), which was attributed to a 3.1-fold increase in cell expansion and a 1.6-fold increase in cell division.

  18. Calcium and gibberellin-induced elongation of lettuce hypocotyl sections.

    PubMed

    Moll, C; Jones, R L

    1981-08-01

    The relationship between calcium ions and gibberellic acid (GA3)-induced growth in the excised hypocotyl of lettuce (Lactuca sativa L.) was investigated. The short-term kinetics of growth responses were measured using a linear displacement transducer. Test solutions were added either as drops to the filter paper on which the hypocotyl stood ("non-flow-past") or by switching solution flowing past the base of hypocotyl ("flow-past"), resulting in differences in growth behavior. Drops of CaCl2 added at a high concentration (10 mM) inhibited growth within a few minutes. This inhibition was reversed by ethylenediaminetetraacetic acid (EDTA). Drops of EDTA or ethyleneglycol-bis(2-aminoethylether)-tetraacetic acid caused a rapid increase in growth rate. Growth induced by EDTA was not further promoted by GA3. A continuous H2O flow resulted in growth rates comparable to those in response to GA3. Addition of CaCl2 to the flow-past medium inhibited growth and this inhibition was reversed by a decrease in CaCl2 concentration. The growth rate was found to be a function of CaCl2 concentration. When a constant CaCl2 concentration was maintained by the flow-past medium, a shift in pH from 5.5 to 4.25 had no obvious effect on hypocotyl elongation. Gibberellic acid was found to reverse the inhibitory effect of CaCl2, causing an increase in growth rate similar to that found previously when GA3 was added to hypocotyls grown in H2O under non-flow-past conditions. We propose that gibberellin controls extension growth in lettuce hypocotyl sections by regulating the uptake of Ca(2+) by the hypocotyl cells.

  19. The inheritance of resistance to Verticillium wilt caused by race 1 isolates of Verticillium dahliae in the lettuce cultivar La Brillante.

    PubMed

    Hayes, Ryan J; McHale, Leah K; Vallad, Gary E; Truco, Maria Jose; Michelmore, Richard W; Klosterman, Steve J; Maruthachalam, Karunakaran; Subbarao, Krishna V

    2011-08-01

    Verticillium wilt of lettuce caused by Verticillium dahliae can cause severe economic damage to lettuce producers. Complete resistance to race 1 isolates is available in Lactuca sativa cultivar (cv.) La Brillante and understanding the genetic basis of this resistance will aid development of new resistant cultivars. F(1) and F(2) families from crosses between La Brillante and three iceberg cultivars as well as a recombinant inbred line population derived from L. sativa cv. Salinas 88 × La Brillante were evaluated for disease incidence and disease severity in replicated greenhouse and field experiments. One hundred and six molecular markers were used to generate a genetic map from Salinas 88 × La Brillante and for detection of quantitative trait loci. Segregation was consistent with a single dominant gene of major effect which we are naming Verticillium resistance 1 (Vr1). The gene described large portions of the phenotypic variance (R(2) = 0.49-0.68) and was mapped to linkage group 9 coincident with an expressed sequence tag marker (QGD8I16.yg.ab1) that has sequence similarity with the Ve gene that confers resistance to V. dahliae race 1 in tomato. The simple inheritance of resistance indicates that breeding procedures designed for single genes will be applicable for developing resistant cultivars. QGD8I16.yg.ab1 is a good candidate for functional analysis and development of markers suitable for marker-assisted selection.

  20. Detection and Quantification of Bremia lactucae by Spore Trapping and Quantitative PCR.

    PubMed

    Kunjeti, Sridhara G; Anchieta, Amy; Martin, Frank N; Choi, Young-Joon; Thines, Marco; Michelmore, Richard W; Koike, Steven T; Tsuchida, Cayla; Mahaffee, Walt; Subbarao, Krishna V; Klosterman, Steven J

    2016-11-01

    Bremia lactucae is an obligate, oomycete pathogen of lettuce that causes leaf chlorosis and necrosis and adversely affects marketability. The disease has been managed with a combination of host resistance and fungicide applications with success over the years. Fungicide applications are routinely made under the assumption that inoculum is always present during favorable environmental conditions. This approach often leads to fungicide resistance in B. lactucae populations. Detection and quantification of airborne B. lactucae near lettuce crops provides an estimation of the inoculum load, enabling more judicious timing of fungicide applications. We developed a quantitative polymerase chain reaction (qPCR)-based assay using a target sequence in mitochondrial DNA for specific detection of B. lactucae. Validation using amplicon sequencing of DNA from 83 geographically diverse isolates, representing 14 Bremia spp., confirmed that the primers developed for the TaqMan assays are species specific and only amplify templates from B. lactucae. DNA from a single sporangium could be detected at a quantification cycle (Cq) value of 32, and Cq values >35 were considered to be nonspecific. The coefficient of determination (R(2)) for regression between sporangial density derived from flow cytometry and Cq values derived from the qPCR was 0.86. The assay was deployed using spore traps in the Salinas Valley, where nearly half of U.S. lettuce is produced. The deployment of this sensitive B. lactucae-specific assay resulted in the detection of the pathogen during the 2-week lettuce-free period as well as during the cropping season. These results demonstrate that this assay will be useful for quantifying inoculum load in and around the lettuce fields for the purpose of timing fungicide applications based on inoculum load.

  1. USE OF PELLETED LETTUCE SEEDS IN BIOABAILABILITY STUDIES

    EPA Science Inventory

    Lettuce (Latuca sativa L., cv. Buttercrunch) is one of the most common and sensitive test organisms, among plants, used in toxicology and bioavailability studies. Much of the available lettuce seeds in commercial channels are pelleted to allow for precision machine planting. Th...

  2. USE OF PELLETED LETTUCE SEEDS IN BIOAVAILABILITY STUDIES

    EPA Science Inventory

    Lettuce (Latuca sativa L., cv. Buttercrunch) is one of the most common and sensitive test organisms, among plants, used in toxicology and bioavailability studies. Much of the available lettuce seeds in commercial channels are pelleted to allow for precision machine planting. Th...

  3. USE OF PELLETED LETTUCE SEEDS IN BIOAVAILABILITY STUDIES

    EPA Science Inventory

    Lettuce (Latuca sativa L., cv. Buttercrunch) is one of the most common and sensitive test organisms, among plants, used in toxicology and bioavailability studies. Much of the available lettuce seeds in commercial channels are pelleted to allow for precision machine planting. Th...

  4. USE OF PELLETED LETTUCE SEEDS IN BIOABAILABILITY STUDIES

    EPA Science Inventory

    Lettuce (Latuca sativa L., cv. Buttercrunch) is one of the most common and sensitive test organisms, among plants, used in toxicology and bioavailability studies. Much of the available lettuce seeds in commercial channels are pelleted to allow for precision machine planting. Th...

  5. Comparative Study of Lettuce and Radish Grown Under Red and Blue LEDs and White Fluorescent Lamps

    NASA Technical Reports Server (NTRS)

    Mickens, Matthew A.; Massa, Gioia; Newsham, Gerard; Wheeler, Raymond; Birmele, Michele

    2016-01-01

    Growing vegetable crops in space will be an essential part of sustaining astronauts during long-range missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop yield, there is also recent interest in analyzing the subtle effects of additional wavelengths on plant growth. For instance, since plants often look purplish gray under red and blue LEDs, the addition of green light allows easy recognition of disease and the assessment of plant health status. However, it is important to know if wavelengths outside the traditional red and blue wavebands have a direct effect on enhancing or hindering the mechanisms involved in plant growth. In this experiment, a comparative study was performed on two short cycle crops of red romaine lettuce (Lactuca sativa cv. "Outredgeous") and radish (Raphanus sativa cv. 'Cherry Bomb'), which were grown under two light treatments. The first treatment being red (630 nm) and blue (450 nm) LEDs alone, while the second treatment consisted of daylight tri-phosphor fluorescent lamps (CCT approximately 5000 K) at equal photosynthetic photon flux (PPF). The treatment effects were evaluated by measuring the fresh biomass produced, plant morphology and leaf dimensions, leaf chlorophyll content, and adenosine triphosphate (ATP) within plant leaf/storage root tissues.

  6. Physiological mechanisms to cope with Cr(VI) toxicity in lettuce: can lettuce be used in Cr phytoremediation?

    PubMed

    Dias, Maria Celeste; Moutinho-Pereira, José; Correia, Carlos; Monteiro, Cristina; Araújo, Márcia; Brüggemann, Wolfgang; Santos, Conceição

    2016-08-01

    This research aims at identifying the main deleterious effects of Cr(VI) on the photosynthetic apparatus and at selecting the most sensitive endpoints related to photosynthesis. To achieve this goal, we used lettuce (Lactuca sativa), a sensible ecotoxicological crop model. Three-week-old plants were exposed to 0, 50, 150 and 200 mg L(-1) of Cr(VI). These concentrations ranged from levels admitted in irrigation waters to values found in several Cr industry effluents and heavily contaminated environments. After 30 days of exposure, plants accumulated Cr preferably in roots and showed nutritional impairment, with decreases of K, Mg, Fe and Zn in both roots and leaves. Cr(VI)-exposed plants showed decreased levels of chlorophyll (Chl) a and anthocyanins, as well as decreased effective quantum yield of photostystem II (ΦPSII) and photochemical Chl fluorescence quenching (qp), but increases in the non-photochemical Chl fluorescence quenching (NPQ) and in the de-epoxidation state (DEP) of the xanthophyll cycle. Net CO2 assimilation rate (P N ) and RuBisCO activity were mostly impaired in the highest Cr(VI) concentration tested. Concerning the final products of photosynthesis, starch content was not affected, while soluble sugar contents increased. These alterations were accompanied by a reduction in protein content and in plant growth. Our results support that endpoints related to the photosynthesis photochemical processes (ΦPSII and the qp) and the content of anthocyanins are sensitive predictors of Cr(VI) toxicity. The advantages of using these parameters as biomarkers for Cr toxicity in plants are discussed. Finally, we report that, despite showing physiological disorders, L. sativa plants survived and accumulated high doses of Cr, and their use in environmental/decontamination studies is open to debate.

  7. Pseudomonas cichorii as the causal agent of midrib rot, an emerging disease of greenhouse-grown butterhead lettuce in Flanders.

    PubMed

    Cottyn, Bart; Heylen, Kim; Heyrman, Jeroen; Vanhouteghem, Katrien; Pauwelyn, Ellen; Bleyaert, Peter; Van Vaerenbergh, Johan; Höfte, Monica; De Vos, Paul; Maes, Martine

    2009-05-01

    Bacterial midrib rot of greenhouse-grown butterhead lettuce (Lactuca sativa L. var. capitata) is an emerging disease in Flanders (Belgium) and fluorescent pseudomonads are suspected to play an important role in the disease. Isolations from infected lettuces, collected from 14 commercial greenhouses in Flanders, yielded 149 isolates that were characterized polyphasically, which included morphological characteristics, pigmentation, pathogenicity tests by both injection and spraying of lettuce, LOPAT characteristics, FAME analysis, BOX-PCR fingerprinting, 16S rRNA and rpoB gene sequencing, as well as DNA-DNA hybridization. Ninety-eight isolates (66%) exhibited a fluorescent pigmentation and were associated with the genus Pseudomonas. Fifty-five of them induced an HR+ (hypersensitive reaction in tobacco leaves) response. The other 43 fluorescent isolates were most probably saprophytic bacteria and about half of them were able to cause rot on potato tuber slices. BOX-PCR genomic fingerprinting was used to assess the genetic diversity of the Pseudomonas midrib rot isolates. The delineated BOX-PCR patterns matched quite well with Pseudomonas morphotypes defined on the basis of colony appearance and variation in fluorescent pigmentation. 16S rRNA and rpoB gene sequence analyses allowed most of the fluorescent isolates to be allocated to Pseudomonas, and they belonged to either the Pseudomonas fluorescens group, Pseudomonas putida group, or the Pseudomonas cichorii/syringae group. In particular, the isolates allocated to this latter group constituted the vast majority of HR+ isolates and were identified as P. cichorii by DNA-DNA hybridization. They were demonstrated by spray-inoculation tests on greenhouse-grown lettuce to induce the midrib rot disease and could be re-isolated from lesions of inoculated plants. Four HR+ non-fluorescent isolates associated with one sample that showed an atypical midrib rot were identified as Dickeya sp.

  8. Effect of salt stress on growth and physiology in amaranth and lettuce: Implications for bioregenerative life support system

    NASA Astrophysics Data System (ADS)

    Qin, Lifeng; Guo, Shuangsheng; Ai, Weidang; Tang, Yongkang; Cheng, Quanyong; Chen, Guang

    2013-02-01

    Growing plants can be used to clean waste water in bioregenerative life support system (BLSS). However, NaCl contained in the human urine always restricts plant growth and further reduces the degree of mass cycle closure of the system (i.e. salt stress). This work determined the effect of NaCl stress on physiological characteristics of plants for the life support system. Amaranth (Amaranthus tricolor L. var. Huahong) and leaf lettuce (Lactuca sativa L. var. Luoma) were cultivated at nutrient solutions with different NaCl contents (0, 1000, 5000 and 10,000 ppm, respectively) for 10 to 18 days after planted in the Controlled Ecological Life Support System Experimental Facility in China. Results showed that the two plants have different responses to the salt stress. The amaranth showed higher salt-tolerance with NaCl stress. If NaCl content in the solution is below 5000 ppm, the salt stress effect is insignificant on above-ground biomass output, leaf photosynthesis rate, Fv/Fm, photosynthesis pigment contents, activities of antioxidant enzymes, and inducing lipid peroxidation. On the other hand, the lettuce is sensitive to NaCl which significantly decreases those indices of growth and physiology. Notably, the lettuce remains high productivity of edible biomass in low NaCl stress, although its salt-tolerant limitation is lower than amaranth. Therefore, we recommended that amaranth could be cultivated under a higher NaCl stress condition (<5000 ppm) for NaCl recycle while lettuce should be under a lower NaCl stress (<1000 ppm) for water cleaning in future BLSS.

  9. Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce.

    PubMed

    Radhakrishnan, Ramalingam; Lee, In-Jung

    2016-12-01

    The nutritional quality of green leafy vegetables can be enhanced by application of plant beneficial micro-organisms. The present study was aimed to increase the food values of lettuce leaves by bacterial treatment. We isolated bacterial strain KE2 from Kimchi food and identified as Bacillus methylotrophicus by phylogenetic analysis. The beneficial effect of B. methylotrophicus KE2 on plants was confirmed by increasing the percentage of seed germination of Lactuca sativa L., Cucumis melo L., Glycine max L. and Brassica juncea L. It might be the secretion of array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, GA34 and GA53) and indole-acetic acid from B. methylotrophicus KE2. The mechanism of plant growth promotion via their secreted metabolites was confirmed by a significant increase of GA deficient mutant rice plant growth. Moreover, the bacterial association was favor to enhance shoot length, shoot fresh weight and leaf width of lettuce. The higher concentration of protein, amino acids (Asp, Thr, Ser, Glu, Gly, Ala, Leu, Tyr and His), gama-aminobutric acid and fructose was found in bacterial culture (KE2) applied plants. The macro and micro minerals such as K, Mg, Na, P, Fe, Zn and N were also detected as significantly higher quantities in bacteria treated plants than untreated control plants. In addition, the carotenoids and chlorophyll a were also increased in lettuce at bacterial inoculation. The results of this study suggest that B. methylotrophicus KE2 application to soil helps to increase the plant growth and food values of lettuce.

  10. Assessing biochar and compost from the organic fraction of municipal solid waste on nutrient availability and plant growth of lettuce

    NASA Astrophysics Data System (ADS)

    Regkouzas, Panagiotis; Manolikaki, Ioanna; Diamadopoulos, Evan

    2017-04-01

    Biochars have a high variability in chemical composition, which is determined by types of feedstock and pyrolysis conditions. Inorganic compounds, such as N, P, K and Ca, retained in biochar could be released and become available to plants. The aim of this study was to understand the effect of biochar and compost addition, derived from the organic fraction of municipal solid wastes at two different pyrolysis temperatures 3000C (BC300) and 6000C (BC600), on phosphorus availability and plant growth of lettuce (Lactuca sativa L.) grown in an alkaline loam soil. This type of soil is widely available in Greece, leading us to investigate ways to increase its fertility. A 39 d growth period of lettuce was studied in a greenhouse in triplicate. Treatments comprised of control soils (no addition of biochar or compost), soils treated only with compost (5%) or biochar (5%), and combinations of biochar (5%) plus compost (5%). No fertilization was added to any of the treatments. One biomass cut was obtained. Plant shoot yield and height were determined along with elemental concentration (N, P, K, Ca, Mg, Mn, Fe, Zn, Cu) and uptake of shoots. Results showed that BC300 combined with compost significantly increased P uptake of lettuce. On the other hand, BC600 plus compost, along with the two biochar-only treatments, significantly decreased Ca and Mg uptake of lettuce. N, K, Fe, Zn, Mn and Cu uptakes were not affected by the application of biochar, compost or the combined treatments. Despite the significant increase of P uptake, plant height and shoot yield were not significantly influenced by any of the treatments.

  11. USE OF ULVA LACTUCA TO DISTINGUISH PH DEPENDENT TOXICANTS IN MARINE WATERS AND SEDIMENTS

    EPA Science Inventory

    Ulva lactuca (sea lettuce) is a cosmopolitan marine attached green seaweed capable of sequestering high environmental levels of ammonia. Ammonia can be acutely toxic to marine organisms and is often found in dredged sediments from highly industrial areas or from areas with high c...

  12. Detection and quantification of Bremia lactucae by spore trapping and quantitative PCR

    USDA-ARS?s Scientific Manuscript database

    Bremia lactucae causes the characteristic vein-delimited lesions, leaf chlorosis and necrosis and adversely affects marketability of lettuce. The disease has been managed with a combination of host resistance and fungicide applications with mixed success over the years. Fungicide applications are ro...

  13. USE OF ULVA LACTUCA TO DISTINGUISH PH DEPENDENT TOXICANTS IN MARINE WATERS AND SEDIMENTS

    EPA Science Inventory

    Ulva lactuca (sea lettuce) is a cosmopolitan marine attached green seaweed capable of sequestering high environmental levels of ammonia. Ammonia can be acutely toxic to marine organisms and is often found in dredged sediments from highly industrial areas or from areas with high c...

  14. Roles of MPBQ-MT in Promoting α/γ-Tocopherol Production and Photosynthesis under High Light in Lettuce

    PubMed Central

    Tang, Yueli; Fu, Xueqing; Shen, Qian; Tang, Kexuan

    2016-01-01

    2-methyl-6-phytyl-1, 4-benzoquinol methyltransferase (MPBQ-MT) is a vital enzyme catalyzing a key methylation step in both α/γ-tocopherol and plastoquinone biosynthetic pathway. In this study, the gene encoding MPBQ-MT was isolated from lettuce (Lactuca sativa) by rapid amplification of cDNA ends (RACE), named LsMT. Overexpression of LsMT in lettuce brought about a significant increase of α- and γ-tocopherol contents with a reduction of phylloquinone (vitamin K1) content, suggesting a competition for a common substrate phytyl diphosphate (PDP) between the two biosynthetic pathways. Besides, overexpression of LsMT significantly increased plastoquinone (PQ) level. The increase of tocopherol and plastoquinone levels by LsMT overexpression conduced to the improvement of plants’ tolerance and photosynthesis under high light stress, by directing excessive light energy toward photosynthetic production rather than toward generation of more photooxidative damage. These findings suggest that the role and function of MPBQ-MT can be further explored for enhancing vitamin E value, strengthening photosynthesis and phototolerance under high light in plants. PMID:26867015

  15. Zinc Excess Triggered Polyamines Accumulation in Lettuce Root Metabolome, As Compared to Osmotic Stress under High Salinity

    PubMed Central

    Rouphael, Youssef; Colla, Giuseppe; Bernardo, Letizia; Kane, David; Trevisan, Marco; Lucini, Luigi

    2016-01-01

    Abiotic stresses such as salinity and metal contaminations are the major environmental stresses that adversely affect crop productivity worldwide. Crop responses and tolerance to abiotic stress are complex processes for which “-omic” approaches such as metabolomics is giving us a newest view of biological systems. The aim of the current research was to assess metabolic changes in lettuce (Lactuca sativa L.), by specifically probing the root metabolome of plants exposed to elevated isomolar concentrations of NaCl and ZnSO4. Most of the metabolites that were differentially accumulated in roots were identified for stress conditions, however the response was more intense in plants exposed to NaCl. Compounds identified in either NaCl or ZnSO4 conditions were: carbohydrates, phenolics, hormones, glucosinolates, and lipids. Our findings suggest that osmotic stress and the consequent redox imbalance play a major role in determining lettuce root metabolic response. In addition, it was identified that polyamines and polyamine conjugates were triggered as a specific response to ZnSO4. These findings help improve understanding of how plants cope with abiotic stresses. This information can be used to assist decision-making in breeding programs for improving crop tolerance to salinity and heavy metal contaminations. PMID:27375675

  16. Preillumination of lettuce seedlings with red light enhances the resistance of photosynthetic apparatus to UV-A.

    PubMed

    Kreslavski, Vladimir D; Lyubimov, Valery Yu; Shirshikova, Galina N; Shmarev, Alexander N; Kosobryukhov, Anatoly A; Schmitt, Franz-Josef; Friedrich, Thomas; Allakhverdiev, Suleyman I

    2013-05-05

    Seedlings of 10-day-old lettuce (Lactuca sativa L., cultivar Berlin) were preilluminated by low intensity red light (λmax=660 nm, 10 min, 5 μmol quanta m(-2) s(-1)) and far-red light (λmax=730 nm, 10 min, 5 μmol quanta m(-2) s(-1)) to study the effect of pre-treatment on photosynthesis, photochemical activity of photosystem II (PSII), the contents of photosynthetic and UV-A-absorbing pigments (UAPs) and H2O2, as well as total and ascorbate peroxidase activities in cotyledonary leaves of seedlings exposed to UV-A. UV radiation reduced the photosynthetic rate (Pn), the activity of PSII, and the