Sample records for leukemia sequences downstream

  1. Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project | Office of Cancer Genomics

    Cancer.gov

    TARGET researchers sequenced the tyrosine kinome and downstream signaling genes in 45 high-risk pediatric ALL cases with activated kinase signaling, including Ph-like ALL, to establish the incidence of tyrosine kinase mutations in this cohort. The study confirmed previously identified somatic mutations in JAK and FLT3, but did not find novel alterations in any additional tyrosine kinases or downstream genes. The mechanism of kinase signaling activation in this high-risk subgroup of pediatric ALL remains largely unknown.

  2. An interferon regulatory factor binding site in the U5 region of the bovine leukemia virus long terminal repeat stimulates Tax-independent gene expression.

    PubMed

    Kiermer, V; Van Lint, C; Briclet, D; Vanhulle, C; Kettmann, R; Verdin, E; Burny, A; Droogmans, L

    1998-07-01

    Bovine leukemia virus (BLV) replication is controlled by both cis- and trans-acting elements. The virus-encoded transactivator, Tax, is necessary for efficient transcription from the BLV promoter, although it is not present during the early stages of infection. Therefore, sequences that control Tax-independent transcription must play an important role in the initiation of viral gene expression. This study demonstrates that the R-U5 sequence of BLV stimulates Tax-independent reporter gene expression directed by the BLV promoter. R-U5 was also stimulatory when inserted immediately downstream from the transcription initiation site of a heterologous promoter. Progressive deletion analysis of this region revealed that a 46-bp element corresponding to the 5' half of U5 is principally responsible for the stimulation. This element exhibited enhancer activity when inserted upstream or downstream from the herpes simplex virus thymidine kinase promoter. This enhancer contains a binding site for the interferon regulatory factors IRF-1 and IRF-2. A 3-bp mutation that destroys the IRF recognition site caused a twofold decrease in Tax-independent BLV long terminal repeat-driven gene expression. These observations suggest that the IRF binding site in the U5 region of BLV plays a role in the initiation of virus replication.

  3. Provirus Integration at the 3 Region of N‐myc in Cell Lines Established from Thymic Lymphomas Spontaneously Formed in AKR Mice and a [(BALB/c × B6)F1AKR] Bone Marrow Chimera

    PubMed Central

    Yano, Yoko; Kobayashi, Seiichi; Yasumizu, Ryoji; Tamaki, Junko; Kubo, Mitsumasa; Sasaki, Akio; Hasan, Shahid; Okuyama, Harue; Inaba, Muneo; Ikehara, Susumu; Hiai, Hiroshi; Kakinuma, Mitsuaki

    1991-01-01

    Among 18 thymic leukemia cell lines which have been established from spontaneous thymic lym‐phomas in AKR mice as well as in bone marrow chimeras which were constructed by transplanting allogeneic bone marrow cells into irradiated AKR mice, three proviral integration sites were identified; near c‐myc, N‐myc and pim‐l loci. No integration site specific for chimeric leukemia cell lines was found. In three thymic leukemia cell lines which contained rearranged N‐myc, genes, insertions of long terminal repeats (LTRs) of murine leukemia viruses were detected at 18 or 20 bp downstream of the translational termination codon. These results demonstrate that the 3’region of the N‐myc gene is one of the integration targets for murine leukemia viruses in spontaneous thymic lymphomas. In these three cell lines, N‐myc mRNA was stably transcribed and transcription of c‐myc mRNA was down‐regulated. The integrated murine leukemia viruses in AKR thymic leukemia were most likely AKV, though the DNA sequence of the LTR inserted in the genome of a leukemic cell line from [(BALB/c × B6)F1‐AKR], CAK20, was different from LTRs of murine leukemia viruses so far reported. PMID:1900822

  4. Farnesyltransferase inhibitor tipifarnib inhibits Rheb prenylation and stabilizes Bax in acute myelogenous leukemia cells

    PubMed Central

    Ding, Husheng; McDonald, Jennifer S.; Yun, Seongseok; Schneider, Paula A.; Peterson, Kevin L.; Flatten, Karen S.; Loegering, David A.; Oberg, Ann L.; Riska, Shaun M.; Huang, Shengbing; Sinicrope, Frank A.; Adjei, Alex A.; Karp, Judith E.; Meng, X. Wei; Kaufmann, Scott H.

    2014-01-01

    Although farnesyltransferase inhibitors have shown promising activity in relapsed lymphoma and sporadic activity in acute myelogenous leukemia, their mechanism of cytotoxicity is incompletely understood, making development of predictive biomarkers difficult. In the present study, we examined the action of tipifarnib in human acute myelogenous leukemia cell lines and clinical samples. In contrast to the Ras/MEK/ERK pathway-mediated Bim upregulation that is responsible for tipifarnib-induced killing of malignant lymphoid cells, inhibition of Rheb-induced mTOR signaling followed by dose-dependent upregulation of Bax and Puma occurred in acute myelogenous leukemia cell lines undergoing tipifarnib-induced apoptosis. Similar Bax and Puma upregulation occurred in serial bone marrow samples harvested from a subset of acute myelogenous leukemia patients during tipifarnib treatment. Expression of FTI-resistant Rheb M184L, like knockdown of Bax or Puma, diminished tipifarnib-induced killing. Further analysis demonstrated that increased Bax and Puma levels reflect protein stabilization rather than increased gene expression. In U937 cells selected for tipifarnib resistance, neither inhibition of signaling downstream of Rheb nor Bax and Puma stabilization occurred. Collectively, these results not only identify a pathway downstream from Rheb that contributes to tipifarnib cytotoxicity in human acute myelogenous leukemia cells, but also demonstrate that FTI-induced killing of lymphoid versus myeloid cells reflects distinct biochemical mechanisms downstream of different farnesylated substrates. (ClinicalTrials.gov identifier NCT00602771) PMID:23996484

  5. Replacement of Murine Leukemia Virus Readthrough Mechanism by Human Immunodeficiency Virus Frameshift Allows Synthesis of Viral Proteins and Virus Replication

    PubMed Central

    Brunelle, Marie-Noëlle; Brakier-Gingras, Léa; Lemay, Guy

    2003-01-01

    Retroviruses use unusual recoding strategies to synthesize the Gag-Pol polyprotein precursor of viral enzymes. In human immunodeficiency virus, ribosomes translating full-length viral RNA can shift back by 1 nucleotide at a specific site defined by the presence of both a slippery sequence and a downstream stimulatory element made of an extensive secondary structure. This so-called frameshift mechanism could become a target for the development of novel antiviral strategies. A different recoding strategy is used by other retroviruses, such as murine leukemia viruses, to synthesize the Gag-Pol precursor; in this case, a stop codon is suppressed in a readthrough process, again due to the presence of a specific structure adopted by the mRNA. Development of antiframeshift agents will greatly benefit from the availability of a simple animal and virus model. For this purpose, the murine leukemia virus readthrough region was rendered inactive by mutagenesis and the frameshift region of human immunodeficiency virus was inserted to generate a chimeric provirus. This substitution of readthrough by frameshift allows the synthesis of viral proteins, and the chimeric provirus sequence was found to generate infectious viruses. This system could be a most interesting alternative to study ribosomal frameshift in the context of a virus amenable to the use of a simple animal model. PMID:12584361

  6. RNAi screen for rapid therapeutic target identification in leukemia patients

    PubMed Central

    Tyner, Jeffrey W.; Deininger, Michael W.; Loriaux, Marc M.; Chang, Bill H.; Gotlib, Jason R.; Willis, Stephanie G.; Erickson, Heidi; Kovacsovics, Tibor; O'Hare, Thomas; Heinrich, Michael C.; Druker, Brian J.

    2009-01-01

    Targeted therapy has vastly improved outcomes in certain types of cancer. Extension of this paradigm across a broad spectrum of malignancies will require an efficient method to determine the molecular vulnerabilities of cancerous cells. Improvements in sequencing technology will soon enable high-throughput sequencing of entire genomes of cancer patients; however, determining the relevance of identified sequence variants will require complementary functional analyses. Here, we report an RNAi-assisted protein target identification (RAPID) technology that individually assesses targeting of each member of the tyrosine kinase gene family. We demonstrate that RAPID screening of primary leukemia cells from 30 patients identifies targets that are critical to survival of the malignant cells from 10 of these individuals. We identify known, activating mutations in JAK2 and K-RAS, as well as patient-specific sensitivity to down-regulation of FLT1, CSF1R, PDGFR, ROR1, EPHA4/5, JAK1/3, LMTK3, LYN, FYN, PTK2B, and N-RAS. We also describe a previously undescribed, somatic, activating mutation in the thrombopoietin receptor that is sensitive to down-stream pharmacologic inhibition. Hence, the RAPID technique can quickly identify molecular vulnerabilities in malignant cells. Combination of this technique with whole-genome sequencing will represent an ideal tool for oncogenic target identification such that specific therapies can be matched with individual patients. PMID:19433805

  7. Aberrant methylation of the M-type phospholipase A2 receptor gene in leukemic cells

    PubMed Central

    2012-01-01

    Background The M-type phospholipase A2 receptor (PLA2R1) plays a crucial role in several signaling pathways and may act as tumor-suppressor. This study examined the expression and methylation of the PLA2R1 gene in Jurkat and U937 leukemic cell lines and its methylation in patients with myelodysplastic syndrome (MDS) or acute leukemia. Methods Sites of methylation of the PLA2R1 locus were identified by sequencing bisulfite-modified DNA fragments. Methylation specific-high resolution melting (MS-HRM) analysis was then carried out to quantify PLA2R1 methylation at 5`-CpG sites identified with differences in methylation between healthy control subjects and leukemic patients using sequencing of bisulfite-modified genomic DNA. Results Expression of PLA2R1 was found to be completely down-regulated in Jurkat and U937 cells, accompanied by complete methylation of PLA2R1 promoter and down-stream regions; PLA2R1 was re-expressed after exposure of cells to 5-aza-2´-deoxycytidine. MS-HRM analysis of the PLA2R1 locus in patients with different types of leukemia indicated an average methylation of 28.9% ± 17.8%, compared to less than 9% in control subjects. In MDS patients the extent of PLA2R1 methylation significantly increased with disease risk. Furthermore, measurements of PLA2R1 methylation appeared useful for predicting responsiveness to the methyltransferase inhibitor, azacitidine, as a pre-emptive treatment to avoid hematological relapse in patients with high-risk MDS or acute myeloid leukemia. Conclusions The study shows for the first time that PLA2R1 gene sequences are a target of hypermethylation in leukemia, which may have pathophysiological relevance for disease evolution in MDS and leukemogenesis. PMID:23217014

  8. EVI1 Interferes with Myeloid Maturation via Transcriptional Repression of Cebpa, via Binding to Two Far Downstream Regulatory Elements*

    PubMed Central

    Wilson, Michael; Tsakraklides, Vasiliki; Tran, Minh; Xiao, Ying-Yi; Zhang, Yi; Perkins, Archibald S.

    2016-01-01

    One mechanism by which oncoproteins work is through perturbation of cellular maturation; understanding the mechanisms by which this occurs can lead to the development of targeted therapies. EVI1 is a zinc finger oncoprotein involved in the development of acute myeloid leukemia; previous work has shown it to interfere with the maturation of granulocytes from immature precursors. Here we investigate the mechanism by which that occurs, using an immortalized hematopoietic progenitor cell line, EML-C1, as a model system. We document that overexpression of EVI1 abrogates retinoic acid-induced maturation of EML cells into committed myeloid cells, a process that can be documented by the down-regulation of stem cell antigen-1 and acquisition of responsiveness to granulocyte-macrophage colony-stimulating factor. We show that this requires DNA binding capacity of EVI1, suggesting that downstream target genes are involved. We identify the myeloid regulator Cebpa as a target gene and identify two EVI1 binding regions within evolutionarily conserved enhancer elements at +35 and +37 kb relative to the gene. EVI1 can strongly suppress Cebpa transcription, and add-back of Cebpa into EVI1-expressing EML cells partially corrects the block in maturation. We identify the DNA sequences to which EVI1 binds at +35 and +37 kb and show that mutation of one of these releases Cebpa from EVI1-induced suppression. We observe a more complex picture in primary bone marrow cells, where EVI1 suppresses Cebpa in stem cells but not in more committed progenitors. Our data thus identify a regulatory node by which EVI1 contributes to leukemia, and this represents a possible therapeutic target for treatment of EVI1-expressing leukemia. PMID:27129260

  9. Sequence analysis of Leukemia DNA

    NASA Astrophysics Data System (ADS)

    Nacong, Nasria; Lusiyanti, Desy; Irawan, Muhammad. Isa

    2018-03-01

    Cancer is a very deadly disease, one of which is leukemia disease or better known as blood cancer. The cancer cell can be detected by taking DNA in laboratory test. This study focused on local alignment of leukemia and non leukemia data resulting from NCBI in the form of DNA sequences by using Smith-Waterman algorithm. SmithWaterman algorithm was invented by TF Smith and MS Waterman in 1981. These algorithms try to find as much as possible similarity of a pair of sequences, by giving a negative value to the unequal base pair (mismatch), and positive values on the same base pair (match). So that will obtain the maximum positive value as the end of the alignment, and the minimum value as the initial alignment. This study will use sequences of leukemia and 3 sequences of non leukemia.

  10. Survivin Selectively Modulates Genes Deregulated in Human Leukemia Stem Cells

    PubMed Central

    Fukuda, Seiji; Abe, Mariko; Onishi, Chie; Taketani, Takeshi; Purevsuren, Jamiyan; Yamaguchi, Seiji; Conway, Edward M.; Pelus, Louis M.

    2011-01-01

    ITD-Flt3 mutations are detected in leukemia stem cells (LSCs) in acute myeloid leukemia (AML) patients. While antagonizing Survivin normalizes ITD-Flt3-induced acute leukemia, it also impairs hematopoietic stem cell (HSC) function, indicating that identification of differences in signaling pathways downstream of Survivin between LSC and HSC are crucial to develop selective Survivin-based therapeutic strategies for AML. Using a Survivin-deletion model, we identified 1,096 genes regulated by Survivin in ITD-Flt3-transformed c-kit+, Sca-1+, and lineageneg (KSL) cells, of which 137 are deregulated in human LSC. Of the 137, 124 genes were regulated by Survivin exclusively in ITD-Flt3+ KSL cells but not in normal CD34neg KSL cells. Survivin-regulated genes in LSC connect through a network associated with the epidermal growth factor receptor signaling pathway and falls into various functional categories independent of effects on apoptosis. Pathways downstream of Survivin in LSC that are distinct from HSC can be potentially targeted for selective anti-LSC therapy. PMID:21253548

  11. Characterization of an internal ribosomal entry segment within the 5' leader of avian reticuloendotheliosis virus type A RNA and development of novel MLV-REV-based retroviral vectors.

    PubMed

    López-Lastra, M; Gabus, C; Darlix, J L

    1997-11-01

    The murine leukemia virus (MLV)-related type C viruses constitute a major class of retroviruses that includes numerous endogenous and exogenous mammalian viruses and the related avian spleen necrosis virus (SNV). The MLV-related viruses possess a long and multifunctional 5' untranslated leader involved in key steps of the viral life cycle--splicing, translation, RNA dimerization, encapsidation, and reverse transcription. Recent studies have shown that the 5' leader of Friend murine leukemia virus and Moloney murine leukemia virus can direct cap independent translation of gag precursor proteins (Berlioz et al., 1995; Vagner et al., 1995b). These data, together with structural homology studies (Koning et al., 1992), prompted us to undertake a search for new internal ribosome entry segment (IRES) of retroviral origin. Here we describe an IRES element within the 5' leader of avian reticuloendotheliosis virus type A (REV-A) genomic RNA. Data show that the REV-A 5' IRES element maps downstream of the packaging/dimerization (E/DLS) sequence (Watanabe and Temin, 1982; Darlix et al., 1992) and the minimal IRES sequence appears to be within a 129 nt fragment (nucleotides 452-580) of the 5' leader, immediately upstream of the gag AUG codon. The REV-A IRES has been successfully utilized in the construction of novel high titer MLV-based retroviral vectors, containing one or more IRES elements of retroviral origin. These retroviral constructs, which represent a starting point for the design of novel vectors suitable for gene therapy, are also of interest as a model system of internal translation initiation and its possible regulation during development, cancer, or virus infection.

  12. Real-time detection of BRAF V600E mutation from archival hairy cell leukemia FFPE tissue by nanopore sequencing.

    PubMed

    Vacca, Davide; Cancila, Valeria; Gulino, Alessandro; Lo Bosco, Giosuè; Belmonte, Beatrice; Di Napoli, Arianna; Florena, Ada Maria; Tripodo, Claudio; Arancio, Walter

    2018-02-01

    The MinION is a miniaturized high-throughput next generation sequencing platform of novel conception. The use of nucleic acids derived from formalin-fixed paraffin-embedded samples is highly desirable, but their adoption for molecular assays is hurdled by the high degree of fragmentation and by the chemical-induced mutations stemming from the fixation protocols. In order to investigate the suitability of MinION sequencing on formalin-fixed paraffin-embedded samples, the presence and frequency of BRAF c.1799T > A mutation was investigated in two archival tissue specimens of Hairy cell leukemia and Hairy cell leukemia Variant. Despite the poor quality of the starting DNA, BRAF mutation was successfully detected in the Hairy cell leukemia sample with around 50% of the reads obtained within 2 h of the sequencing start. Notably, the mutational burden of the Hairy cell leukemia sample as derived from nanopore sequencing proved to be comparable to a sensitive method for the detection of point mutations, namely the Digital PCR, using a validated assay. Nanopore sequencing can be adopted for targeted sequencing of genetic lesions on critical DNA samples such as those extracted from archival routine formalin-fixed paraffin-embedded samples. This result let speculating about the possibility that the nanopore sequencing could be trustably adopted for the real-time targeted sequencing of genetic lesions. Our report opens the window for the adoption of nanopore sequencing in molecular pathology for research and diagnostics.

  13. Nucleotide sequence of the gag gene and gag-pol junction of feline leukemia virus.

    PubMed Central

    Laprevotte, I; Hampe, A; Sherr, C J; Galibert, F

    1984-01-01

    The nucleotide sequence of the gag gene of feline leukemia virus and its flanking sequences were determined and compared with the corresponding sequences of two strains of feline sarcoma virus and with that of the Moloney strain of murine leukemia virus. A high degree of nucleotide sequence homology between the feline leukemia virus and murine leukemia virus gag genes was observed, suggesting that retroviruses of domestic cats and laboratory mice have a common, proximal evolutionary progenitor. The predicted structure of the complete feline leukemia virus gag gene precursor suggests that the translation of nonglycosylated and glycosylated gag gene polypeptides is initiated at two different AUG codons. These initiator codons fall in the same reading frame and are separated by a 222-base-pair segment which encodes an amino terminal signal peptide. The nucleotide sequence predicts the order of amino acids in each of the individual gag-coded proteins (p15, p12, p30, p10), all of which derive from the gag gene precursor. Stable stem-and-loop secondary structures are proposed for two regions of viral RNA. The first falls within sequences at the 5' end of the viral genome, together with adjacent palindromic sequences which may play a role in dimer linkage of RNA subunits. The second includes coding sequences at the gag-pol junction and is proposed to be involved in translation of the pol gene product. Sequence analysis of the latter region shows that the gag and pol genes are translated in different reading frames. Classical consensus splice donor and acceptor sequences could not be localized to regions which would permit synthesis of the expected gag-pol precursor protein. Alternatively, we suggest that the pol gene product (RNA-dependent DNA polymerase) could be translated by a frameshift suppressing mechanism which could involve cleavage modification of stems and loops in a manner similar to that observed in tRNA processing. PMID:6328019

  14. The Sequence of Cyclophosphamide and Myeloablative Total Body Irradiation in Hematopoietic Cell Transplantation for Patients with Acute Leukemia.

    PubMed

    Holter-Chakrabarty, Jennifer L; Pierson, Namali; Zhang, Mei-Jie; Zhu, Xiaochun; Akpek, Görgün; Aljurf, Mahmoud D; Artz, Andrew S; Baron, Frédéric; Bredeson, Christopher N; Dvorak, Christopher C; Epstein, Robert B; Lazarus, Hillard M; Olsson, Richard F; Selby, George B; Williams, Kirsten M; Cooke, Kenneth R; Pasquini, Marcelo C; McCarthy, Philip L

    2015-07-01

    Limited clinical data are available to assess whether the sequencing of cyclophosphamide (Cy) and total body irradiation (TBI) changes outcomes. We evaluated the sequence in 1769 (CyTBI, n = 948; TBICy, n = 821) recipients of related or unrelated hematopoietic cell transplantation who received TBI (1200 to 1500 cGY) for acute leukemia from 2003 to 2010. The 2 cohorts were comparable for median age, performance score, type of leukemia, first complete remission, Philadelphia chromosome-positive acute lymphoblastic leukemia, HLA-matched siblings, stem cell source, antithymocyte globulin use, TBI dose, and type of graft-versus-host disease (GVHD) prophylaxis. The sequence of TBI did not significantly affect transplantation-related mortality (24% versus 23% at 3 years, P = .67; relative risk, 1.01; P = .91), leukemia relapse (27% versus 29% at 3 years, P = .34; relative risk, .89, P = .18), leukemia-free survival (49% versus 48% at 3 years, P = .27; relative risk, .93; P = .29), chronic GVHD (45% versus 47% at 1 year, P = .39; relative risk, .9; P = .11), or overall survival (53% versus 52% at 3 years, P = .62; relative risk, .96; P = .57) for CyTBI and TBICy, respectively. Corresponding cumulative incidences of sinusoidal obstruction syndrome were 4% and 6% at 100 days (P = .08), respectively. This study demonstrates that the sequence of Cy and TBI does not impact transplantation outcomes and complications in patients with acute leukemia undergoing hematopoietic cell transplantation with myeloablative conditioning. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  15. Targeted Blockage of Signal Transducer and Activator of Transcription 5 Signaling Pathway with Decoy Oligodeoxynucleotides Suppresses Leukemic K562 Cell Growth

    PubMed Central

    Wang, Xiaozhong; Zeng, Jianming; Shi, Mei; Zhao, Shiqiao; Bai, Weijun; Cao, Weixi; Tu, Zhiguang; Huang, Zonggan

    2011-01-01

    The protein signal transducer and activator of transcription 5 (STAT5) of the JAK/STAT pathway is constitutively activated because of its phosphorylation by tyrosine kinase activity of fusion protein BCR-ABL in chronic myelogenous leukemia (CML) cells. This study investigated the potential therapeutic effect of STAT5 decoy oligodeoxynucleotides (ODN) using leukemia K562 cells as a model. Our results showed that transfection of 21-mer-long STAT5 decoy ODN into K562 cells effectively inhibited cell proliferation and induced cell apoptosis. Further, STAT5 decoy ODN downregulated STAT5 targets bcl-xL, cyclinD1, and c-myc at both mRNA and protein levels in a sequence-specific manner. Collectively, these data demonstrate the therapeutic effect of blocking the STAT5 signal pathway by cis-element decoy for cancer characterized by constitutive STAT5 activation. Thus, our study provides support for STAT5 as a potential target downstream of BCR-ABL for CML treatment and helps establish the concept of targeting STAT5 by decoy ODN as a novel therapy approach for imatinib-resistant CML. PMID:21091189

  16. TAM Receptors in Leukemia: Expression, Signaling, and Therapeutic Implications

    PubMed Central

    Brandão, Luis; Migdall-Wilson, Justine; Eisenman, Kristen; Graham, Douglas K.

    2016-01-01

    In the past 30 years there has been remarkable progress in the treatment of leukemia and lymphoma. However, current treatments are largely ineffective against relapsed leukemia and, in the case of pediatric patients, are often associated with severe long-term toxicities. Thus, there continues to be a critical need for the development of effective biologically targeted therapies. The TAM family of receptor tyrosine kinases—Tyro3, Axl, and Mer—plays an important role in normal hematopoiesis, including natural killer cell maturation, macrophage function, and platelet activation and signaling. Furthermore, TAM receptor activation leads to upregulation of pro-survival and proliferation signaling pathways, and aberrant TAM receptor expression contributes to cancer development, including myeloid and lymphoid leukemia. This review summarizes the role of TAM receptors in leukemia. We outline TAM receptor expression patterns in different forms of leukemia, describe potential mechanisms leading to their overexpression, and delineate the signaling pathways downstream of receptor activation that have been implicated in leukemogenesis. Finally, we discuss the current research focused on inhibitors against these receptors in an effort to develop new therapeutic strategies for leukemia. PMID:22150307

  17. Computational Identification Of CDR3 Sequence Archetypes Among Immunoglobulin Sequences in Chronic Lymphocytic Leukemia

    PubMed Central

    Messmer, Bradley T; Raphael, Benjamin J; Aerni, Sarah J; Widhopf, George F; Rassenti, Laura Z; Gribben, John G; Kay, Neil E; Kipps, Thomas J

    2009-01-01

    The leukemia cells of unrelated patients with chronic lymphocytic leukemia (CLL) display a restricted repertoire of immunoglobulin (Ig) gene rearrangements with preferential usage of certain Ig gene segments. We developed a computational method to rigorously quantify biases in Ig sequence similarity in large patient databases and to identify groups of patients with unusual levels of sequence similarity. We applied our method to sequences from 1577 CLL patients through the CLL Research Consortium (CRC), and identified 67 similarity groups into which roughly 20% of all patients could be assigned. Immunoglobulin light chain class was highly correlated within all groups and light chain gene usage was similar within sets. Surprisingly, over 40% of the identified groups were composed of somatically mutated genes. This study significantly expands the evidence that antigen selection shapes the Ig repertoire in CLL. PMID:18640719

  18. Computational identification of CDR3 sequence archetypes among immunoglobulin sequences in chronic lymphocytic leukemia.

    PubMed

    Messmer, Bradley T; Raphael, Benjamin J; Aerni, Sarah J; Widhopf, George F; Rassenti, Laura Z; Gribben, John G; Kay, Neil E; Kipps, Thomas J

    2009-03-01

    The leukemia cells of unrelated patients with chronic lymphocytic leukemia (CLL) display a restricted repertoire of immunoglobulin (Ig) gene rearrangements with preferential usage of certain Ig gene segments. We developed a computational method to rigorously quantify biases in Ig sequence similarity in large patient databases and to identify groups of patients with unusual levels of sequence similarity. We applied our method to sequences from 1577 CLL patients through the CLL Research Consortium (CRC), and identified 67 similarity groups into which roughly 20% of all patients could be assigned. Immunoglobulin light chain class was highly correlated within all groups and light chain gene usage was similar within sets. Surprisingly, over 40% of the identified groups were composed of somatically mutated genes. This study significantly expands the evidence that antigen selection shapes the Ig repertoire in CLL.

  19. NRASG12V oncogene facilitates self-renewal in a murine model of acute myelogenous leukemia

    PubMed Central

    LaRue, Rebecca S.; Nguyen, Hanh T.; Sachs, Karen; Noble, Klara E.; Mohd Hassan, Nurul Azyan; Diaz-Flores, Ernesto; Rathe, Susan K.; Sarver, Aaron L.; Bendall, Sean C.; Ha, Ngoc A.; Diers, Miechaleen D.; Nolan, Garry P.; Shannon, Kevin M.; Largaespada, David A.

    2014-01-01

    Mutant RAS oncoproteins activate signaling molecules that drive oncogenesis in multiple human tumors including acute myelogenous leukemia (AML). However, the specific functions of these pathways in AML are unclear, thwarting the rational application of targeted therapeutics. To elucidate the downstream functions of activated NRAS in AML, we used a murine model that harbors Mll-AF9 and a tetracycline-repressible, activated NRAS (NRASG12V). Using computational approaches to explore our gene-expression data sets, we found that NRASG12V enforced the leukemia self-renewal gene-expression signature and was required to maintain an MLL-AF9– and Myb-dependent leukemia self-renewal gene-expression program. NRASG12V was required for leukemia self-renewal independent of its effects on growth and survival. Analysis of the gene-expression patterns of leukemic subpopulations revealed that the NRASG12V-mediated leukemia self-renewal signature is preferentially expressed in the leukemia stem cell–enriched subpopulation. In a multiplexed analysis of RAS-dependent signaling, Mac-1Low cells, which harbor leukemia stem cells, were preferentially sensitive to NRASG12V withdrawal. NRASG12V maintained leukemia self-renewal through mTOR and MEK pathway activation, implicating these pathways as potential targets for cancer stem cell–specific therapies. Together, these experimental results define a RAS oncogene–driven function that is critical for leukemia maintenance and represents a novel mechanism of oncogene addiction. PMID:25316678

  20. JAK inhibitors suppress t(8;21) fusion protein-induced leukemia

    PubMed Central

    Lo, Miao-Chia; Peterson, Luke F.; Yan, Ming; Cong, Xiuli; Hickman, Justin H.; DeKelver, Russel C.; Niewerth, Denise; Zhang, Dong-Er

    2014-01-01

    Oncogenic mutations in components of the JAK/STAT pathway, including those in cytokine receptors and JAKs, lead to increased activity of downstream signaling and are frequently found in leukemia and other hematological disorders. Thus, small-molecule inhibitors of this pathway have been the focus of targeted therapy in these hematological diseases. We previously showed that t(8;21) fusion protein AML1-ETO and its alternatively spliced variant AML1-ETO9a (AE9a) enhance the JAK/STAT pathway via down-regulation of CD45, a negative regulator of this pathway. To investigate the therapeutic potential of targeting JAK/STAT in t(8;21) leukemia, we examined the effects of a JAK2-selective inhibitor TG101209 and a JAK1/2-selective inhibitor INCB18424 on t(8;21) leukemia cells. TG101209 and INCB18424 inhibited proliferation and promoted apoptosis of these cells. Furthermore, TG101209 treatment in AE9a leukemia mice reduced tumor burden and significantly prolonged survival. TG101209 also significantly impaired the leukemia-initiating potential of AE9a leukemia cells in secondary recipient mice. These results demonstrate the potential therapeutic efficacy of JAK inhibitors in treating t(8;21) AML. PMID:23812420

  1. Regulation of CYBB Gene Expression in Human Phagocytes by a Distant Upstream NF-κB Binding Site.

    PubMed

    Frazão, Josias B; Thain, Alison; Zhu, Zhiqing; Luengo, Marcos; Condino-Neto, Antonio; Newburger, Peter E

    2015-09-01

    The human CYBB gene encodes the gp91-phox component of the phagocyte oxidase enzyme complex, which is responsible for generating superoxide and other downstream reactive oxygen species essential to microbial killing. In the present study, we have identified by sequence analysis a putative NF-κB binding site in a DNase I hypersensitive site, termed HS-II, located in the distant 5' flanking region of the CYBB gene. Electrophoretic mobility assays showed binding of the sequence element by recombinant NF-κB protein p50 and by proteins in nuclear extract from the HL-60 myeloid leukemia cell line corresponding to p50 and to p50/p65 heterodimers. Chromatin immunoprecipitation demonstrated NF-κB binding to the site in intact HL-60 cells. Chromosome conformation capture (3C) assays demonstrated physical interaction between the NF-κB binding site and the CYBB promoter region. Inhibition of NF-κB activity by salicylate reduced CYBB expression in peripheral blood neutrophils and differentiated U937 monocytic leukemia cells. U937 cells transfected with a mutant inhibitor of κB "super-repressor" showed markedly diminished CYBB expression. Luciferase reporter analysis of the NF-κB site linked to the CYBB 5' flanking promoter region revealed enhanced expression, augmented by treatment with interferon-γ. These studies indicate a role for this distant, 15 kb upstream, binding site in NF-κB regulation of the CYBB gene, an essential component of phagocyte-mediated host defense. © 2015 Wiley Periodicals, Inc.

  2. The molecular genetic makeup of acute lymphoblastic leukemia | Office of Cancer Genomics

    Cancer.gov

    Abstract: Genomic profiling has transformed our understanding of the genetic basis of acute lymphoblastic leukemia (ALL). Recent years have seen a shift from microarray analysis and candidate gene sequencing to next-generation sequencing. Together, these approaches have shown that many ALL subtypes are characterized by constellations of structural rearrangements, submicroscopic DNA copy number alterations, and sequence mutations, several of which have clear implications for risk stratification and targeted therapeutic intervention.

  3. Preclinical efficacy of maternal embryonic leucine-zipper kinase (MELK) inhibition in acute myeloid leukemia.

    PubMed

    Alachkar, Houda; Mutonga, Martin B G; Metzeler, Klaus H; Fulton, Noreen; Malnassy, Gregory; Herold, Tobias; Spiekermann, Karsten; Bohlander, Stefan K; Hiddemann, Wolfgang; Matsuo, Yo; Stock, Wendy; Nakamura, Yusuke

    2014-12-15

    Maternal embryonic leucine-zipper kinase (MELK), which was reported to be frequently up-regulated in various types of solid cancer, plays critical roles in formation and maintenance of cancer stem cells. However, little is known about the relevance of this kinase in hematologic malignancies. Here we report characterization of possible roles of MELK in acute myeloid leukemia (AML). MELK is expressed in AML cell lines and AML blasts with higher levels in less differentiated cells. MELK is frequently upregulated in AML with complex karyotypes and is associated with worse clinical outcome. MELK knockdown resulted in growth inhibition and apoptosis of leukemic cells. Hence, we investigated the potent anti-leukemia activity of OTS167, a small molecule MELK kinase inhibitor, in AML, and found that the compound induced cell differentiation and apoptosis as well as decreased migration of AML cells. MELK expression was positively correlated with the expression of FOXM1 as well as its downstream target genes. Furthermore, MELK inhibition resulted in downregulation of FOXM1 activity and the expression of its downstream targets. Taken together, and given that OTS167 is undergoing a phase I clinical trial in solid cancer, our study warrants clinical evaluation of this compound as a novel targeted therapy for AML patients.

  4. Preclinical efficacy of maternal embryonic leucine-zipper kinase (MELK) inhibition in acute myeloid leukemia

    PubMed Central

    Alachkar, Houda; Mutonga, Martin B.G.; Metzeler, Klaus H.; Fulton, Noreen; Malnassy, Gregory; Herold, Tobias; Spiekermann, Karsten; Bohlander, Stefan K.; Hiddemann, Wolfgang; Matsuo, Yo; Stock, Wendy; Nakamura, Yusuke

    2014-01-01

    Maternal embryonic leucine-zipper kinase (MELK), which was reported to be frequently up-regulated in various types of solid cancer, plays critical roles in formation and maintenance of cancer stem cells. However, little is known about the relevance of this kinase in hematologic malignancies. Here we report characterization of possible roles of MELK in acute myeloid leukemia (AML). MELK is expressed in AML cell lines and AML blasts with higher levels in less differentiated cells. MELK is frequently upregulated in AML with complex karyotypes and is associated with worse clinical outcome. MELK knockdown resulted in growth inhibition and apoptosis of leukemic cells. Hence, we investigated the potent anti-leukemia activity of OTS167, a small molecule MELK kinase inhibitor, in AML, and found that the compound induced cell differentiation and apoptosis as well as decreased migration of AML cells. MELK expression was positively correlated with the expression of FOXM1 as well as its downstream target genes. Furthermore, MELK inhibition resulted in downregulation of FOXM1 activity and the expression of its downstream targets. Taken together, and given that OTS167 is undergoing a phase I clinical trial in solid cancer, our study warrants clinical evaluation of this compound as a novel targeted therapy for AML patients. PMID:25365263

  5. Two decades of leukemia oncoprotein epistasis: the MLL1 paradigm for epigenetic deregulation in leukemia

    PubMed Central

    Li, Bin E.; Ernst, Patricia

    2015-01-01

    MLL1, located on human chromosome 11, is disrupted in distinct recurrent chromosomal translocations in several leukemia subsets. Studying the MLL1 gene and its oncogenic variants has provided a paradigm for understanding cancer initiation and maintenance through aberrant epigenetic gene regulation. Here we review the historical development of model systems to recapitulate oncogenic MLL1-rearrangement (MLL-r) alleles encoding mixed-lineage leukemia fusion proteins (MLL-FPs) or internal gene rearrangement products. These largely mouse and human cell/xenograft systems have been generated and used to understand how MLL-r alleles affect diverse pathways to result in a highly penetrant, drug-resistant leukemia. The particular features of the animal models influenced the conclusions of mechanisms of transformation. We discuss significant downstream enablers, inhibitors, effectors, and collaborators of MLL-r leukemia, including molecules that directly interact with MLL-FPs and endogenous mixed-lineage leukemia protein, direct target genes of MLL-FPs, and other pathways that have proven to be influential in supporting or suppressing the leukemogenic activity of MLL-FPs. The use of animal models has been complemented with patient sample, genome-wide analyses to delineate the important genomic and epigenomic changes that occur in distinct subsets of MLL-r leukemia. Collectively, these studies have resulted in rapid progress toward developing new strategies for targeting MLL-r leukemia and general cell-biological principles that may broadly inform targeting aberrant epigenetic regulators in other cancers. PMID:25264566

  6. Targeting neuropilin-1 in human leukemia and lymphoma.

    PubMed

    Karjalainen, Katja; Jaalouk, Diana E; Bueso-Ramos, Carlos E; Zurita, Amado J; Kuniyasu, Akihiko; Eckhardt, Bedrich L; Marini, Frank C; Lichtiger, Benjamin; O'Brien, Susan; Kantarjian, Hagop M; Cortes, Jorge E; Koivunen, Erkki; Arap, Wadih; Pasqualini, Renata

    2011-01-20

    Targeted drug delivery offers an opportunity for the development of safer and more effective therapies for the treatment of cancer. In this study, we sought to identify short, cell-internalizing peptide ligands that could serve as directive agents for specific drug delivery in hematologic malignancies. By screening of human leukemia cells with a combinatorial phage display peptide library, we isolated a peptide motif, sequence Phe-Phe/Tyr-Any-Leu-Arg-Ser (F(F)/(Y)XLRS), which bound to different leukemia cell lines and to patient-derived bone marrow samples. The motif was internalized through a receptor-mediated pathway, and we next identified the corresponding receptor as the transmembrane glycoprotein neuropilin-1 (NRP-1). Moreover, we observed a potent anti-leukemia cell effect when the targeting motif was synthesized in tandem to the pro-apoptotic sequence (D)(KLAKLAK)₂. Finally, our results confirmed increased expression of NRP-1 in representative human leukemia and lymphoma cell lines and in a panel of bone marrow specimens obtained from patients with acute lymphoblastic leukemia or acute myelogenous leukemia compared with normal bone marrow. These results indicate that NRP-1 could potentially be used as a target for ligand-directed therapy in human leukemias and lymphomas and that the prototype CGFYWLRSC-GG-(D)(KLAKLAK)₂ is a promising drug candidate in this setting.

  7. Growth of chronic myeloid leukemia cells is inhibited by infection with Ad-SH2-HA adenovirus that disrupts Grb2-Bcr-Abl complexes.

    PubMed

    Peng, Zhi; Luo, Hong-Wei; Yuan, Ying; Shi, Jing; Huang, Shi-Feng; Li, Chun-Li; Cao, Wei-Xi; Huang, Zong-Gan; Feng, Wen-Li

    2011-05-01

    The persistence of Bcr-Abl-positive cells in patients on imatinib therapy indicates that inhibition of the Bcr-Abl kinase activity alone might not be sufficient to eradicate the leukemia cells. Many downstream effectors of Bcr-Abl have been described, including activation of both the Grb2-SoS-Ras-MAPK and Grb2-Gab2-PI3K-Akt pathways. The Bcr-Abl-Grb2 interaction, which is mediated by the direct interaction of the Grb2 SH2 domain with the phospho-Bcr-Abl Y177, is required for activation of these signaling pathways. Therefore, disrupting their interaction represents a potential therapeutic strategy for inhibiting the oncogenic downstream signals of Bcr-Abl. Adenovirus Ad-SH2-HA expressing the Grb2 SH2 domain was constructed and applied in this study. As expected, Ad-SH2-HA efficiently infected CML cells and functioned by binding to the phospho-Bcr-Abl Y177 site, competitively disrupting the Grb2 SH2-phospho-Bcr-Abl Y177 complex. They induced potent anti-proliferation and apoptosis-inducing effects in CML cell lines. Moreover, the Ras, MAPK and Akt activities were significantly reduced in the Ad-SH2-HA treated cells. These were not observed with the point-mutated control adenovirus Ad-Sm-HA with abolished phospho-Bcr-Abl Y177 binding sites. These data indicate that, in addition to the direct targeting of Bcr-Abl, selective inhibition of its downstream signaling pathways may be a therapeutic option for CML, and the Ad-SH2-HA-mediated killing strategy could be explored as a promising anti-leukemia agent in CML.

  8. Detection of isocitrate dehydrogenase 1 mutation R132H in myelodysplastic syndrome by mutation-specific antibody and direct sequencing.

    PubMed

    Andrulis, Mindaugas; Capper, David; Luft, Thomas; Hartmann, Christian; Zentgraf, Hanswalter; von Deimling, Andreas

    2010-08-01

    Sequencing of the acute myeloid leukemia genome revealed somatic mutations in isocitrate dehydrogenase-1. Acute myeloid leukemia frequently develops from myelodysplastic syndrome. In order to test whether myelodysplastic syndrome also carries isocitrate dehydrogenase-1 mutations, we stained a series of bone marrow samples from patients with myelodysplastic syndrome using an antibody specific for the R132H mutation. Three out of 71 patients exhibited antibody binding to myeloid precursor cells. The presence of the R132H mutation was confirmed by DNA sequencing. We demonstrated that isocitrate dehydrogenase-1 mutations occur in myelodysplasia preceding acute myeloid leukemia and that the R132H alteration can be detected by immunohistochemistry. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia

    PubMed Central

    Ford, Anthony M.; Bennett, Caroline A.; Price, Cathy M.; Bruin, M. C. A.; Van Wering, Elisabeth R.; Greaves, Mel

    1998-01-01

    The TEL (ETV6)−AML1 (CBFA2) gene fusion is the most common reciprocal chromosomal rearrangement in childhood cancer occurring in ≈25% of the most predominant subtype of leukemia— common acute lymphoblastic leukemia. The TEL-AML1 genomic sequence has been characterized in a pair of monozygotic twins diagnosed at ages 3 years, 6 months and 4 years, 10 months with common acute lymphoblastic leukemia. The twin leukemic DNA shared the same unique (or clonotypic) but nonconstitutive TEL-AML1 fusion sequence. The most plausible explanation for this finding is a single cell origin of the TEL-AML fusion in one fetus in utero, probably as a leukemia-initiating mutation, followed by intraplacental metastasis of clonal progeny to the other twin. Clonal identity is further supported by the finding that the leukemic cells in the two twins shared an identical rearranged IGH allele. These data have implications for the etiology and natural history of childhood leukemia. PMID:9539781

  10. Genome-wide identification and characterization of Notch transcription complex-binding sequence paired sites in leukemia cells

    PubMed Central

    Severson, Eric; Arnett, Kelly L.; Wang, Hongfang; Zang, Chongzhi; Taing, Len; Liu, Hudan; Pear, Warren S.; Liu, X. Shirley; Blacklow, Stephen C.; Aster, Jon C.

    2018-01-01

    Notch transcription complexes (NTCs) drive target gene expression by binding to two distinct types of genomic response elements, NTC monomer-binding sites and sequence-paired sites (SPSs) that bind NTC dimers. SPSs are conserved and are linked to the Notch-responsiveness of a few genes, but their overall contribution to Notch-dependent gene regulation is unknown. To address this issue, we determined the DNA sequence requirements for NTC dimerization using a fluorescence resonance energy transfer (FRET) assay, and applied insights from these in vitro studies to Notch-“addicted” leukemia cells. We find that SPSs contribute to the regulation of approximately a third of direct Notch target genes. While originally described in promoters, SPSs are present mainly in long-range enhancers, including an enhancer containing a newly described SPS that regulates HES5. Our work provides a general method for identifying sequence-paired sites in genome-wide data sets and highlights the widespread role of NTC dimerization in Notch-transformed leukemia cells. PMID:28465412

  11. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1.

    PubMed

    Yoneda-Kato, N; Look, A T; Kirstein, M N; Valentine, M B; Raimondi, S C; Cohen, K J; Carroll, A J; Morris, S W

    1996-01-18

    A t(3;5)(q25.1;q34) chromosomal translocation associated with myelodysplastic syndrome and acute myeloid leukemia (AML) was found to rearrange part of the nucleophosmin (NPM) gene on chromosome 5 with sequences from a novel gene on chromosome 3. Chimeric transcripts expressed by these cells contain 5' NPM coding sequences fused in-frame to those of the new gene, which we named myelodysplasia/myeloid leukemia factor 1 (MLF1). RNA-based polymerase chain reaction analysis revealed identical NPM-MLF1 mRNA fusions in each of the three t(3;5)-positive cases of AML examined. The predicted MLF1 amino acid sequence lacked homology to previously characterized proteins and did not contain known functional motifs. Normal MLF1 transcripts were expressed in a variety of tissues, most abundantly in testis, ovary, skeletal muscle, heart, kidney and colon. Anti-MLF1 antibodies detected the wild-type 31 kDa protein in K562 and HEL erythroleukemia cell lines, but not in HL-60, U937 or KG-1 myeloid leukemia lines. By contrast, t(3;5)-positive leukemia cells expressed a 54 kDa NPM-MLF1 protein, but not normal MLF1. Immunostaining experiments indicated that MLF1 is normally located in the cytoplasm, whereas NPM-MLF1 is targeted to the nucleus, with highest levels in the nucleolus. The nuclear/nucleolar localization of NPM-MLF1 mirrors that of NPM, indicating that NPM trafficking signals direct MLF1 to an inappropriate cellular compartment in myeloid leukemia cells.

  12. Identification of a gag-encoded cytotoxic T-lymphocyte epitope from FBL-3 leukemia shared by Friend, Moloney, and Rauscher murine leukemia virus-induced tumors.

    PubMed Central

    Chen, W; Qin, H; Chesebro, B; Cheever, M A

    1996-01-01

    FBL-3 is a highly immunogenic murine leukemia of C57BL/6 origin induced by Friend murine leukemia virus (MuLV). Immunization of C57BL/6 mice with FBL-3 readily elicits CD8+ cytotoxic T lymphocytes (CTL) capable of lysing FBL-3 as well as syngeneic leukemias induced by Moloney and Rauscher MuLV. The aim of this current study was to identify the immunogenic epitope(s) recognized by the FBL-3-specific CD8+ CTL. A series of FBL-3-specific CD8+ CTL clones were generated from C57BL/6 mice immunized to FBL-3. The majority of CTL clones (32 of 38) were specific for F-MuLV gag-encoded antigen. By using a series of recombinant vaccinia viruses expressing full-length and truncated F-MuLV gag genes, the antigenic epitope recognized by the FBL-3 gag-specific CTL clones, as well as by bulk-cultured CTL from spleens of mice immune to FBL-3, was localized to the leader sequence of gPr80gag protein. The precise amino acid sequence of the CTL epitope in the leader sequence was identified as CCLCLTVFL (positions 85-93) by examining lysis of targets incubated with a series of synthetic leader sequence peptides. No evidence of other CTL epitopes in the gPr80gag or Pr65gag core virion structural polyproteins was found. The identity of CCLCLTVFL as the target peptide was validated by showing that immunization with the peptide elicited CTL that lysed FBL-3. The CTL elicited by the Gag peptide also specifically lysed syngeneic leukemia cells induced by Moloney and Rauscher MuLV (MBL-2 and RBL-5). The transmembrane peptide was shown to be the major gag-encoded antigenic epitope recognized by bulk-cultured CTL derived from C57BL/6 mice immunized to MBL-2 or RBL-5. Thus, the CTL epitope of FBL-3 is localized to the transmembrane anchor domain of the nonstructural Gag polyprotein and is shared by leukemia/lymphoma cell lines induced by Friend, Moloney, and Rauscher MuLV. PMID:8892898

  13. Identification of a sequence element on the 3' side of AAUAAA which is necessary for simian virus 40 late mRNA 3'-end processing.

    PubMed Central

    Sadofsky, M; Connelly, S; Manley, J L; Alwine, J C

    1985-01-01

    Our previous studies of the 3'-end processing of simian virus 40 late mRNAs indicated the existence of an essential element (or elements) downstream of the AAUAAA signal. We report here the use of transient expression analysis to study a functional element which we located within the sequence AGGUUUUUU, beginning 59 nucleotides downstream of the recognized signal AAUAAA. Deletion of this element resulted in (i) at least a 75% drop in 3'-end processing at the normal site and (ii) appearance of readthrough transcripts with alternate 3' ends. Some flexibility in the downstream position of this element relative to the AAUAAA was noted by deletion analysis. Using computer sequence comparison, we located homologous regions within downstream sequences of other genes, suggesting a generalized sequence element. In addition, specific complementarity is noted between the downstream element and U4 RNA. The possibility that this complementarity could participate in 3'-end site selection is discussed. Images PMID:3016512

  14. Therapeutic targeting of HES1 transcriptional programs in T-ALL

    PubMed Central

    Schnell, Stephanie A.; Ambesi-Impiombato, Alberto; Sanchez-Martin, Marta; Belver, Laura; Xu, Luyao; Qin, Yue; Kageyama, Ryoichiro

    2015-01-01

    Oncogenic activation of NOTCH1 signaling plays a central role in the pathogenesis of T-cell acute lymphoblastic leukemia, with mutations on this signaling pathway affecting more than 60% of patients at diagnosis. However, the transcriptional regulatory circuitries driving T-cell transformation downstream of NOTCH1 remain incompletely understood. Here we identify Hairy and Enhancer of Split 1 (HES1), a transcriptional repressor controlled by NOTCH1, as a critical mediator of NOTCH1-induced leukemogenesis strictly required for tumor cell survival. Mechanistically, we demonstrate that HES1 directly downregulates the expression of BBC3, the gene encoding the PUMA BH3-only proapoptotic factor in T-cell acute lymphoblastic leukemia. Finally, we identify perhexiline, a small-molecule inhibitor of mitochondrial carnitine palmitoyltransferase-1, as a HES1-signature antagonist drug with robust antileukemic activity against NOTCH1-induced leukemias in vitro and in vivo. PMID:25784680

  15. Targeting of hyperactivated mTOR signaling in high-risk acute lymphoblastic leukemia in a pre-clinical model.

    PubMed

    Hasan, Md Nabiul; Queudeville, Manon; Trentin, Luca; Eckhoff, Sarah Mirjam; Bronzini, Ilaria; Palmi, Chiara; Barth, Thomas; Cazzaniga, Giovanni; te Kronnie, Geertruy; Debatin, Klaus-Michael; Meyer, Lüder Hinrich

    2015-01-30

    Despite increasingly successful treatment of pediatric ALL, up to 20% of patients encounter relapse. By current biomarkers, the majority of relapse patients is initially not identified indicating the need for prognostic and therapeutic targets reflecting leukemia biology. We previously described that rapid engraftment of patient ALL cells transplanted onto NOD/SCID mice (short time to leukemia, TTLshort) is indicative of early patient relapse. Gene expression profiling identified genes coding for molecules involved in mTOR signaling to be associated with TTLshort/early relapse leukemia. Here, we now functionally address mTOR signaling activity in primograft ALL samples and evaluate mTOR pathway inhibition as novel treatment strategy for high-risk ALL ex vivo and in vivo. By analysis of S6-phosphorylation downstream of mTOR, increased mTOR activation was found in TTLshort/high-risk ALL, which was effectively abrogated by mTOR inhibitors resulting in decreased leukemia proliferation and growth. In a preclinical setting treating individual patient-derived ALL in vivo, mTOR inhibition alone, and even more pronounced together with conventional remission induction therapy, significantly delayed post-treatment leukemia reoccurrence in TTLshort/high-risk ALL. Thus, the TTLshort phenotype is functionally characterized by hyperactivated mTOR signaling and can effectively be targeted ex vivo and in vivo providing a novel therapeutic strategy for high-risk ALL.

  16. Heterogeneous breakpoints in patients with acute lymphoblastic leukemia and the dic(9;20)(p11~13;q11) show recurrent involvement of genes at 20q11.21

    PubMed Central

    An, Qian; Wright, Sarah L.; Moorman, Anthony V.; Parker, Helen; Griffiths, Mike; Ross, Fiona M.; Davies, Teresa; Harrison, Christine J.; Strefford, Jon C.

    2009-01-01

    The dic(9;20)(p11~13;q11) is a recurrent chromosomal abnormality in patients with acute lymphoblastic leukemia. Although it results in loss of material from 9p and 20q, the molecular targets on both chromosomes have not been fully elucidated. From an initial cohort of 58 with acute lymphoblastic leukemia patients with this translocation, breakpoint mapping with fluorescence in situ hybridization on 26 of them revealed breakpoint heterogeneity of both chromosomes. PAX5 has been proposed to be the target gene on 9p, while for 20q, FISH analysis implicated the involvement of the ASXL1 gene, either by a breakpoint within (n=4) or centromeric (deletion, n=12) of the gene. Molecular copy-number counting, long-distance inverse PCR and direct sequence analysis identified six dic(9;20) breakpoint sequences. In addition to the three previously reported: PAX5-ASXL1, PAX5-C20ORF112 and PAX5-KIF3B; we identified three new ones in this study: sequences 3’ of PAX5 disrupting ASXL1, and ZCCHC7 disrupted by sequences 3’ of FRG1B and LOC1499503. This study provides insight into the breakpoint complexity underlying dicentric chromosomal formation in acute lymphoblastic leukemia and highlights putative target gene loci. PMID:19586940

  17. Heterogeneous breakpoints in patients with acute lymphoblastic leukemia and the dic(9;20)(p11-13;q11) show recurrent involvement of genes at 20q11.21.

    PubMed

    An, Qian; Wright, Sarah L; Moorman, Anthony V; Parker, Helen; Griffiths, Mike; Ross, Fiona M; Davies, Teresa; Harrison, Christine J; Strefford, Jon C

    2009-08-01

    The dic(9;20)(p11-13;q11) is a recurrent chromosomal abnormality in patients with acute lymphoblastic leukemia. Although it results in loss of material from 9p and 20q, the molecular targets on both chromosomes have not been fully elucidated. From an initial cohort of 58 with acute lymphoblastic leukemia patients with this translocation, breakpoint mapping with fluorescence in situ hybridization on 26 of them revealed breakpoint heterogeneity of both chromosomes. PAX5 has been proposed to be the target gene on 9p, while for 20q, FISH analysis implicated the involvement of the ASXL1 gene, either by a breakpoint within (n=4) or centromeric (deletion, n=12) of the gene. Molecular copy-number counting, long-distance inverse PCR and direct sequence analysis identified six dic(9;20) breakpoint sequences. In addition to the three previously reported: PAX5-ASXL1, PAX5-C20ORF112 and PAX5-KIF3B; we identified three new ones in this study: sequences 3' of PAX5 disrupting ASXL1, and ZCCHC7 disrupted by sequences 3' of FRG1B and LOC1499503. This study provides insight into the breakpoint complexity underlying dicentric chromosomal formation in acute lymphoblastic leukemia and highlights putative target gene loci.

  18. Nature and distribution of feline sarcoma virus nucleotide sequences.

    PubMed Central

    Frankel, A E; Gilbert, J H; Porzig, K J; Scolnick, E M; Aaronson, S A

    1979-01-01

    The genomes of three independent isolates of feline sarcoma virus (FeSV) were compared by molecular hybridization techniques. Using complementary DNAs prepared from two strains, SM- and ST-FeSV, common complementary DNA'S were selected by sequential hybridization to FeSV and feline leukemia virus RNAs. These DNAs were shown to be highly related among the three independent sarcoma virus isolates. FeSV-specific complementary DNAs were prepared by selection for hybridization by the homologous FeSV RNA and against hybridization by fline leukemia virus RNA. Sarcoma virus-specific sequences of SM-FeSV were shown to differ from those of either ST- or GA-FeSV strains, whereas ST-FeSV-specific DNA shared extensive sequence homology with GA-FeSV. By molecular hybridization, each set of FeSV-specific sequences was demonstrated to be present in normal cat cellular DNA in approximately one copy per haploid genome and was conserved throughout Felidae. In contrast, FeSV-common sequences were present in multiple DNA copies and were found only in Mediterranean cats. The present results are consistent with the concept that each FeSV strain has arisen by a mechanism involving recombination between feline leukemia virus and cat cellular DNA sequences, the latter represented within the cat genome in a manner analogous to that of a cellular gene. PMID:225544

  19. Fast multiclonal clusterization of V(D)J recombinations from high-throughput sequencing.

    PubMed

    Giraud, Mathieu; Salson, Mikaël; Duez, Marc; Villenet, Céline; Quief, Sabine; Caillault, Aurélie; Grardel, Nathalie; Roumier, Christophe; Preudhomme, Claude; Figeac, Martin

    2014-05-28

    V(D)J recombinations in lymphocytes are essential for immunological diversity. They are also useful markers of pathologies. In leukemia, they are used to quantify the minimal residual disease during patient follow-up. However, the full breadth of lymphocyte diversity is not fully understood. We propose new algorithms that process high-throughput sequencing (HTS) data to extract unnamed V(D)J junctions and gather them into clones for quantification. This analysis is based on a seed heuristic and is fast and scalable because in the first phase, no alignment is performed with germline database sequences. The algorithms were applied to TR γ HTS data from a patient with acute lymphoblastic leukemia, and also on data simulating hypermutations. Our methods identified the main clone, as well as additional clones that were not identified with standard protocols. The proposed algorithms provide new insight into the analysis of high-throughput sequencing data for leukemia, and also to the quantitative assessment of any immunological profile. The methods described here are implemented in a C++ open-source program called Vidjil.

  20. Targeted next-generation sequencing in chronic lymphocytic leukemia: a high-throughput yet tailored approach will facilitate implementation in a clinical setting.

    PubMed

    Sutton, Lesley-Ann; Ljungström, Viktor; Mansouri, Larry; Young, Emma; Cortese, Diego; Navrkalova, Veronika; Malcikova, Jitka; Muggen, Alice F; Trbusek, Martin; Panagiotidis, Panagiotis; Davi, Frederic; Belessi, Chrysoula; Langerak, Anton W; Ghia, Paolo; Pospisilova, Sarka; Stamatopoulos, Kostas; Rosenquist, Richard

    2015-03-01

    Next-generation sequencing has revealed novel recurrent mutations in chronic lymphocytic leukemia, particularly in patients with aggressive disease. Here, we explored targeted re-sequencing as a novel strategy to assess the mutation status of genes with prognostic potential. To this end, we utilized HaloPlex targeted enrichment technology and designed a panel including nine genes: ATM, BIRC3, MYD88, NOTCH1, SF3B1 and TP53, which have been linked to the prognosis of chronic lymphocytic leukemia, and KLHL6, POT1 and XPO1, which are less characterized but were found to be recurrently mutated in various sequencing studies. A total of 188 chronic lymphocytic leukemia patients with poor prognostic features (unmutated IGHV, n=137; IGHV3-21 subset #2, n=51) were sequenced on the HiSeq 2000 and data were analyzed using well-established bioinformatics tools. Using a conservative cutoff of 10% for the mutant allele, we found that 114/180 (63%) patients carried at least one mutation, with mutations in ATM, BIRC3, NOTCH1, SF3B1 and TP53 accounting for 149/177 (84%) of all mutations. We selected 155 mutations for Sanger validation (variant allele frequency, 10-99%) and 93% (144/155) of mutations were confirmed; notably, all 11 discordant variants had a variant allele frequency between 11-27%, hence at the detection limit of conventional Sanger sequencing. Technical precision was assessed by repeating the entire HaloPlex procedure for 63 patients; concordance was found for 77/82 (94%) mutations. In summary, this study demonstrates that targeted next-generation sequencing is an accurate and reproducible technique potentially suitable for routine screening, eventually as a stand-alone test without the need for confirmation by Sanger sequencing. Copyright© Ferrata Storti Foundation.

  1. Amino- and carboxyl-terminal amino acid sequences of proteins coded by gag gene of murine leukemia virus

    PubMed Central

    Oroszlan, Stephen; Henderson, Louis E.; Stephenson, John R.; Copeland, Terry D.; Long, Cedric W.; Ihle, James N.; Gilden, Raymond V.

    1978-01-01

    The amino- and carboxyl-terminal amino acid sequences of proteins (p10, p12, p15, and p30) coded by the gag gene of Rauscher and AKR murine leukemia viruses were determined. Among these proteins, p15 from both viruses appears to have a blocked amino end. Proline was found to be the common NH2 terminus of both p30s and both p12s, and alanine of both p10s. The amino-terminal sequences of p30s are identical, as are those of p10s, while the p12 sequences are clearly distinctive but also show substantial homology. The carboxyl-terminal amino acids of both viral p30s and p12s are leucine and phenylalanine, respectively. Rauscher leukemia virus p15 has tyrosine as the carboxyl terminus while AKR virus p15 has phenylalanine in this position. The compositional and sequence data provide definite chemical criteria for the identification of analogous gag gene products and for the comparison of viral proteins isolated in different laboratories. On the basis of amino acid sequences and the previously proposed H-p15-p12-p30-p10-COOH peptide sequence in the precursor polyprotein, a model for cleavage sites involved in the post-translational processing of the precursor coded for by the gag gene is proposed. PMID:206897

  2. Deregulated expression of Cdc6 as BCR/ABL-dependent survival factor in chronic myeloid leukemia cells.

    PubMed

    Zhang, Jia-Hua; He, Yan-Li; Zhu, Rui; Du, Wen; Xiao, Jun-Hua

    2017-06-01

    Chronic myeloid leukemia is characterized by the presence of the reciprocal translocation t(9;22) and the BCR/ABL oncogene. The BCR/ABL oncogene activates multiple signaling pathways and involves the dysregulation of oncogenes during the progression of chronic myeloid leukemia. The cell division cycle protein 6, an essential regulator of DNA replication, is elevated in some human cancer cells. However, the expression of cell division cycle protein 6 in chronic myeloid leukemia and the underlying regulatory mechanism remain to be elucidated. In this study, our data showed that cell division cycle protein 6 expression was significantly upregulated in primary chronic myeloid leukemia cells and the chronic myeloid leukemia cell line K562 cells, as compared to the normal bone marrow mononuclear cells. BCR/ABL kinase inhibitor STI571 or BCR/ABL small interfering RNA could significantly downregulate cell division cycle protein 6 messenger RNA expression in K562 cells. Moreover, phosphoinositide 3-kinase/AKT pathway inhibitor LY294002 and Janus kinase/signal transducer and activator of transcription pathway inhibitor AG490 could downregulate cell division cycle protein 6 expression in K562 cells, but not RAS/mitogen-activated protein kinase pathway inhibitor PD98059 had such effect. Cell division cycle protein 6 gene silencing by small interfering RNA effectively resulted in decrease of proliferation, increase of apoptosis, and arrest of cell cycle in K562 cells. These findings have demonstrated that cell division cycle protein 6 overexpression may contribute to the high proliferation and low apoptosis in chronic myeloid leukemia cells and can be regulated by BCR/ABL signal transduction through downstream phosphoinositide 3-kinase/Akt and Janus kinase/signal transducer and activator of transcription pathways, suggesting cell division cycle protein 6 as a potential therapeutic target in chronic myeloid leukemia.

  3. Hematopoietic stem cells burn fat to prevent exhaustion.

    PubMed

    Lallemand-Breitenbach, Valerie; de Thé, Hugues

    2012-10-05

    Ito et al. (2012) recently report in Nature Medicine that fatty acid oxidation (FAO) regulated by PPARδ controls asymmetric division in hematopoietic stem cells (HSCs). This metabolic mechanism prevents HSC exhaustion and is downstream of the promyelocytic leukemia protein PML, suggesting therapeutic implications for HSC function and disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. miR-2909-mediated regulation of KLF4: a novel molecular mechanism for differentiating between B-cell and T-cell pediatric acute lymphoblastic leukemias

    PubMed Central

    2014-01-01

    Background microRNAs (miRNAs) play both oncogenic and oncostatic roles in leukemia. However, the molecular details underlying miRNA-mediated regulation of their target genes in pediatric B- and T-cell acute lymphoblastic leukemias (ALLs) remain unclear. The present study investigated the relationship between miR-2909 and Kruppel-like factor 4 (KLF4), and its functional relevance to cell cycle progression and immortalization in patients with pediatric ALL. Methods Elevated levels of miR-2909 targeted the tumor suppressor gene KLF4 in pediatric B-cell, but not pediatric T-cell ALL, as detected by pMIR-GFP reporter assay. Expression levels of genes including apoptosis-antagonizing transcription factor (AATF), MYC, B-cell lymphoma (BCL3), P21 CIP , CCND1 and SP1 in B- and T-cells from patients with pediatric ALL were compared with control levels using real-time quantitative reverse transcription polymerase chain reaction, western blotting, and reporter assays. Results We identified two novel mutations in KLF4 in pediatric T-ALL. A mutation in the 3′ untranslated region of the KLF4 gene resulted in loss of miR-2909-mediated regulation, while mutation in its first or third zinc-finger motif (Zf1/Zf3) rendered KLF4 transcriptionally inactive. This mutation was a frameshift mutation resulting in alteration of the Zf3 motif sequence in the mutant KLF4 protein in all pediatric T-ALL samples. Homology models, docking studies and promoter activity of its target gene P21 CIP confirmed the lack of function of the mutant KLF4 protein in pediatric T-ALL. Moreover, the inability of miR-2909 to regulate KLF4 and its downstream genes controlling cell cycle and apoptosis in T-cell but not in B-ALL was verified by antagomiR-2909 transfection. Comprehensive sequence analysis of KLF4 identified the predominance of isoform 1 (~55 kDa) in most patients with pediatric B-ALL, while those with pediatric T-ALL expressed isoform 2 (~51 kDa). Conclusions This study identified a novel miR-2909-KLF4 molecular axis able to differentiate between the pathogeneses of pediatric B- and T-cell ALLs, and which may represent a new diagnostic/prognostic marker. PMID:25037230

  5. Comparative sequence analysis of a region on human chromosome 13q14, frequently deleted in B-cell chronic lymphocytic leukemia, and its homologous region on mouse chromosome 14.

    PubMed

    Kapanadze, B; Makeeva, N; Corcoran, M; Jareborg, N; Hammarsund, M; Baranova, A; Zabarovsky, E; Vorontsova, O; Merup, M; Gahrton, G; Jansson, M; Yankovsky, N; Einhorn, S; Oscier, D; Grandér, D; Sangfelt, O

    2000-12-15

    Previous studies have indicated the presence of a putative tumor suppressor gene on human chromosome 13q14, commonly deleted in patients with B-cell chronic lymphocytic leukemia (B-CLL). We have recently identified a minimally deleted region encompassing parts of two adjacent genes, termed LEU1 and LEU2 (leukemia-associated genes 1 and 2), and several additional transcripts. In addition, 50 kb centromeric to this region we have identified another gene, LEU5/RFP2. To elucidate further the complex genomic organization of this region, we have identified, mapped, and sequenced the homologous region in the mouse. Fluorescence in situ hybridization analysis demonstrated that the region maps to mouse chromosome 14. The overall organization and gene order in this region were found to be highly conserved in the mouse. Sequence comparison between the human deletion hotspot region and its homologous mouse region revealed a high degree of sequence conservation with an overall score of 74%. However, our data also show that in terms of transcribed sequences, only two of those, human LEU2 and LEU5/RFP2, are clearly conserved, strengthening the case for these genes as putative candidate B-CLL tumor suppressor genes.

  6. PIG7 promotes leukemia cell chemosensitivity via lysosomal membrane permeabilization

    PubMed Central

    Niu, Ting; Wu, Yu; Li, Jianjun; Wang, Fangfang; Zheng, Yuhuan; Liu, Ting

    2016-01-01

    PIG7 localizes to lysosomal membrane in leukemia cells. Our previous work has shown that transduction of pig7 into a series of leukemia cell lines did not result in either apoptosis or differentiation of most tested cell lines. Interestingly, it did significantly sensitize these cell lines to chemotherapeutic drugs. Here, we further investigated the mechanism underlying pig7-induced improved sensitivity of acute leukemia cells to chemotherapy. Our results demonstrated that the sensitization effect driven by exogenous pig7 was more effective in drug-resistant leukemia cell lines which had lower endogenous pig7 expression. Overexpression of pig7 did not directly activate the caspase apoptotic pathway, but decreased the lysosomal stability. The expression of pig7 resulted in lysosomal membrane permeabilization (LMP) and lysosomal protease (e.g. cathepsin B, D, L) release. Moreover, we also observed increased reactive oxygen species (ROS) and decreased mitochondrial membrane potential (ΔΨm) induced by pig7. Some autophagy markers such as LC3I/II, ATG5 and Beclin-1, and necroptosis maker MLKL were also stimulated. However, intrinsic antagonism such as serine/cysteine protease inhibitors Spi2A and Cystatin C prevented downstream effectors from triggering leukemia cells, which were only on the “verge of apoptosis”. When combined with chemotherapy, LMP increased and more proteases were released. Once this process was beyond the limit of intrinsic antagonism, it induced programmed cell death cooperatively via caspase-independent and caspase-dependent pathways. PMID:26716897

  7. Prolonged lymphocytosis during ibrutinib therapy is associated with distinct molecular characteristics and does not indicate a suboptimal response to therapy

    PubMed Central

    Smucker, Kelly; Smith, Lisa L.; Lozanski, Arletta; Zhong, Yiming; Ruppert, Amy S.; Lucas, David; Williams, Katie; Zhao, Weiqiang; Rassenti, Laura; Ghia, Emanuela; Kipps, Thomas J.; Mantel, Rose; Jones, Jeffrey; Flynn, Joseph; Maddocks, Kami; O’Brien, Susan; Furman, Richard R.; James, Danelle F.; Clow, Fong; Lozanski, Gerard; Johnson, Amy J.; Byrd, John C.

    2014-01-01

    The Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib has outstanding activity in patients with chronic lymphocytic leukemia. Most patients experience lymphocytosis, representing lymphocyte egress from nodal compartments. This resolves within 8 months in the majority of patients, but a subgroup has lymphocytosis lasting >12 months. Here we report a detailed characterization of patients with persistent lymphocytosis during ibrutinib therapy. Signaling evaluation showed that while BTK is inhibited, downstream mediators of B-cell receptor (BCR) signaling are activated in persistent lymphocytes. These cells cannot be stimulated through the BCR and do not show evidence of target gene activation. Flow cytometry for κ and λ expression, IGHV sequencing, Zap-70 methylation, and targeted gene sequencing in these patients are identical at baseline and later time points, suggesting that persistent lymphocytes do not represent clonal evolution. In vitro treatment with targeted kinase inhibitors shows that they are not addicted to a single survival pathway. Finally, progression-free survival is not inferior for patients with prolonged lymphocytosis vs those with traditional responses. Thus, prolonged lymphocytosis is common following ibrutinib treatment, likely represents the persistence of a quiescent clone, and does not predict a subgroup of patients likely to relapse early. PMID:24415539

  8. Non-codingRNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer.

    PubMed

    Wojcik, Sylwia E; Rossi, Simona; Shimizu, Masayoshi; Nicoloso, Milena S; Cimmino, Amelia; Alder, Hansjuerg; Herlea, Vlad; Rassenti, Laura Z; Rai, Kanti R; Kipps, Thomas J; Keating, Michael J; Croce, Carlo M; Calin, George A

    2010-02-01

    Cancer is a genetic disease in which the interplay between alterations in protein-coding genes and non-coding RNAs (ncRNAs) plays a fundamental role. In recent years, the full coding component of the human genome was sequenced in various cancers, whereas such attempts related to ncRNAs are still fragmentary. We screened genomic DNAs for sequence variations in 148 microRNAs (miRNAs) and ultraconserved regions (UCRs) loci in patients with chronic lymphocytic leukemia (CLL) or colorectal cancer (CRC) by Sanger technique and further tried to elucidate the functional consequences of some of these variations. We found sequence variations in miRNAs in both sporadic and familial CLL cases, mutations of UCRs in CLLs and CRCs and, in certain instances, detected functional effects of these variations. Furthermore, by integrating our data with previously published data on miRNA sequence variations, we have created a catalog of DNA sequence variations in miRNAs/ultraconserved genes in human cancers. These findings argue that ncRNAs are targeted by both germ line and somatic mutations as well as by single-nucleotide polymorphisms with functional significance for human tumorigenesis. Sequence variations in ncRNA loci are frequent and some have functional and biological significance. Such information can be exploited to further investigate on a genome-wide scale the frequency of genetic variations in ncRNAs and their functional meaning, as well as for the development of new diagnostic and prognostic markers for leukemias and carcinomas.

  9. Non-codingRNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer

    PubMed Central

    Wojcik, Sylwia E.; Rossi, Simona; Shimizu, Masayoshi; Nicoloso, Milena S.; Cimmino, Amelia; Alder, Hansjuerg; Herlea, Vlad; Rassenti, Laura Z.; Rai, Kanti R.; Kipps, Thomas J.; Keating, Michael J.

    2010-01-01

    Cancer is a genetic disease in which the interplay between alterations in protein-coding genes and non-coding RNAs (ncRNAs) plays a fundamental role. In recent years, the full coding component of the human genome was sequenced in various cancers, whereas such attempts related to ncRNAs are still fragmentary. We screened genomic DNAs for sequence variations in 148 microRNAs (miRNAs) and ultraconserved regions (UCRs) loci in patients with chronic lymphocytic leukemia (CLL) or colorectal cancer (CRC) by Sanger technique and further tried to elucidate the functional consequences of some of these variations. We found sequence variations in miRNAs in both sporadic and familial CLL cases, mutations of UCRs in CLLs and CRCs and, in certain instances, detected functional effects of these variations. Furthermore, by integrating our data with previously published data on miRNA sequence variations, we have created a catalog of DNA sequence variations in miRNAs/ultraconserved genes in human cancers. These findings argue that ncRNAs are targeted by both germ line and somatic mutations as well as by single-nucleotide polymorphisms with functional significance for human tumorigenesis. Sequence variations in ncRNA loci are frequent and some have functional and biological significance. Such information can be exploited to further investigate on a genome-wide scale the frequency of genetic variations in ncRNAs and their functional meaning, as well as for the development of new diagnostic and prognostic markers for leukemias and carcinomas. PMID:19926640

  10. Genotyping of 25 leukemia-associated genes in a single work flow by next-generation sequencing technology with low amounts of input template DNA.

    PubMed

    Rinke, Jenny; Schäfer, Vivien; Schmidt, Mathias; Ziermann, Janine; Kohlmann, Alexander; Hochhaus, Andreas; Ernst, Thomas

    2013-08-01

    We sought to establish a convenient, sensitive next-generation sequencing (NGS) method for genotyping the 26 most commonly mutated leukemia-associated genes in a single work flow and to optimize this method for low amounts of input template DNA. We designed 184 PCR amplicons that cover all of the candidate genes. NGS was performed with genomic DNA (gDNA) from a cohort of 10 individuals with chronic myelomonocytic leukemia. The results were compared with NGS data obtained from sequencing of DNA generated by whole-genome amplification (WGA) of 20 ng template gDNA. Differences between gDNA and WGA samples in variant frequencies were determined for 2 different WGA kits. For gDNA samples, 25 of 26 genes were successfully sequenced with a sensitivity of 5%, which was achieved by a median coverage of 492 reads (range, 308-636 reads) per amplicon. We identified 24 distinct mutations in 11 genes. With WGA samples, we reliably detected all mutations above 5% sensitivity with a median coverage of 506 reads (range, 256-653 reads) per amplicon. With all variants included in the analysis, WGA amplification by the 2 kits tested yielded differences in variant frequencies that ranged from -28.19% to +9.94% [mean (SD) difference, -0.2% (4.08%)] and from -35.03% to +18.67% [mean difference, -0.75% (5.12%)]. Our method permits simultaneous analysis of a wide range of leukemia-associated target genes in a single sequencing run. NGS can be performed after WGA of template DNA for reliable detection of variants without introducing appreciable bias.

  11. A Retrospective Examination of Feline Leukemia Subgroup Characterization: Viral Interference Assays to Deep Sequencing.

    PubMed

    Chiu, Elliott S; Hoover, Edward A; VandeWoude, Sue

    2018-01-10

    Feline leukemia virus (FeLV) was the first feline retrovirus discovered, and is associated with multiple fatal disease syndromes in cats, including lymphoma. The original research conducted on FeLV employed classical virological techniques. As methods have evolved to allow FeLV genetic characterization, investigators have continued to unravel the molecular pathology associated with this fascinating agent. In this review, we discuss how FeLV classification, transmission, and disease-inducing potential have been defined sequentially by viral interference assays, Sanger sequencing, PCR, and next-generation sequencing. In particular, we highlight the influences of endogenous FeLV and host genetics that represent FeLV research opportunities on the near horizon.

  12. Targeting connective tissue growth factor (CTGF) in acute lymphoblastic leukemia preclinical models: anti-CTGF monoclonal antibody attenuates leukemia growth.

    PubMed

    Lu, Hongbo; Kojima, Kensuke; Battula, Venkata Lokesh; Korchin, Borys; Shi, Yuexi; Chen, Ye; Spong, Suzanne; Thomas, Deborah A; Kantarjian, Hagop; Lock, Richard B; Andreeff, Michael; Konopleva, Marina

    2014-03-01

    Connective tissue growth factor (CTGF/CCN2) is involved in extracellular matrix production, tumor cell proliferation, adhesion, migration, and metastasis. Recent studies have shown that CTGF expression is elevated in precursor B-acute lymphoblastic leukemia (ALL) and that increased expression of CTGF is associated with inferior outcome in B-ALL. In this study, we characterized the functional role and downstream signaling pathways of CTGF in ALL cells. First, we utilized lentiviral shRNA to knockdown CTGF in RS4;11 and REH ALL cells expressing high levels of CTGF mRNA. Silencing of CTGF resulted in significant suppression of leukemia cell growth compared to control vector, which was associated with AKT/mTOR inactivation and increased levels of cyclin-dependent kinase inhibitor p27. CTGF knockdown sensitized ALL cells to vincristine and methotrexate. Treatment with an anti-CTGF monoclonal antibody, FG-3019, significantly prolonged survival of mice injected with primary xenograft B-ALL cells when co-treated with conventional chemotherapy (vincristine, L-asparaginase and dexamethasone). Data suggest that CTGF represents a targetable molecular aberration in B-ALL, and blocking CTGF signaling in conjunction with administration of chemotherapy may represent a novel therapeutic approach for ALL patients.

  13. Thrombopoietin/MPL participates in initiating and maintaining RUNX1-ETO acute myeloid leukemia via PI3K/AKT signaling

    PubMed Central

    Pulikkan, John Anto; Madera, Dmitri; Xue, Liting; Bradley, Paul; Landrette, Sean Francis; Kuo, Ya-Huei; Abbas, Saman; Zhu, Lihua Julie; Valk, Peter

    2012-01-01

    Oncogenic mutations in components of cytokine signaling pathways elicit ligand-independent activation of downstream signaling, enhancing proliferation and survival in acute myeloid leukemia (AML). The myeloproliferative leukemia virus oncogene, MPL, a homodimeric receptor activated by thrombopoietin (THPO), is mutated in myeloproliferative disorders but rarely in AML. Here we show that wild-type MPL expression is increased in a fraction of human AML samples expressing RUNX1-ETO, a fusion protein created by chromosome translocation t(8;21), and that up-regulation of Mpl expression in mice induces AML when coexpressed with RUNX1-ETO. The leukemic cells are sensitive to THPO, activating survival and proliferative responses. Mpl expression is not regulated by RUNX1-ETO in mouse hematopoietic progenitors or leukemic cells. Moreover, we find that activation of PI3K/AKT but not ERK/MEK pathway is a critical mediator of the MPL-directed antiapoptotic function in leukemic cells. Hence, this study provides evidence that up-regulation of wild-type MPL levels promotes leukemia development and maintenance through activation of the PI3K/AKT axis, and suggests that inhibitors of this axis could be effective for treatment of MPL-positive AML. PMID:22613795

  14. Thrombopoietin/MPL participates in initiating and maintaining RUNX1-ETO acute myeloid leukemia via PI3K/AKT signaling.

    PubMed

    Pulikkan, John Anto; Madera, Dmitri; Xue, Liting; Bradley, Paul; Landrette, Sean Francis; Kuo, Ya-Huei; Abbas, Saman; Zhu, Lihua Julie; Valk, Peter; Castilla, Lucio Hernán

    2012-07-26

    Oncogenic mutations in components of cytokine signaling pathways elicit ligand-independent activation of downstream signaling, enhancing proliferation and survival in acute myeloid leukemia (AML). The myeloproliferative leukemia virus oncogene, MPL, a homodimeric receptor activated by thrombopoietin (THPO), is mutated in myeloproliferative disorders but rarely in AML. Here we show that wild-type MPL expression is increased in a fraction of human AML samples expressing RUNX1-ETO, a fusion protein created by chromosome translocation t(8;21), and that up-regulation of Mpl expression in mice induces AML when coexpressed with RUNX1-ETO. The leukemic cells are sensitive to THPO, activating survival and proliferative responses. Mpl expression is not regulated by RUNX1-ETO in mouse hematopoietic progenitors or leukemic cells. Moreover, we find that activation of PI3K/AKT but not ERK/MEK pathway is a critical mediator of the MPL-directed antiapoptotic function in leukemic cells. Hence, this study provides evidence that up-regulation of wild-type MPL levels promotes leukemia development and maintenance through activation of the PI3K/AKT axis, and suggests that inhibitors of this axis could be effective for treatment of MPL-positive AML.

  15. Efficacy of a Mer and Flt3 tyrosine kinase small molecule inhibitor, UNC1666, in acute myeloid leukemia

    PubMed Central

    Lee-Sherick, Alisa B.; Zhang, Weihe; Menachof, Kelly K.; Hill, Amanda A.; Rinella, Sean; Kirkpatrick, Gregory; Page, Lauren S.; Stashko, Michael A.; Jordan, Craig T.; Wei, Qi; Liu, Jing; Zhang, Dehui; DeRyckere, Deborah; Wang, Xiaodong; Frye, Stephen; Earp, H. Shelton; Graham, Douglas K.

    2015-01-01

    Mer and Flt3 receptor tyrosine kinases have been implicated as therapeutic targets in acute myeloid leukemia (AML). In this manuscript we describe UNC1666, a novel ATP-competitive small molecule tyrosine kinase inhibitor, which potently diminishes Mer and Flt3 phosphorylation in AML. Treatment with UNC1666 mediated biochemical and functional effects in AML cell lines expressing Mer or Flt3 internal tandem duplication (ITD), including decreased phosphorylation of Mer, Flt3 and downstream effectors Stat, Akt and Erk, induction of apoptosis in up to 98% of cells, and reduction of colony formation by greater than 90%, compared to treatment with vehicle. These effects were dose-dependent, with inhibition of downstream signaling and functional effects correlating with the degree of Mer or Flt3 kinase inhibition. Treatment of primary AML patient samples expressing Mer and/or Flt3-ITD with UNC1666 also inhibited Mer and Flt3 intracellular signaling, induced apoptosis, and inhibited colony formation. In summary, UNC1666 is a novel potent small molecule tyrosine kinase inhibitor that decreases oncogenic signaling and myeloblast survival, thereby validating dual Mer/Flt3 inhibition as an attractive treatment strategy for AML. PMID:25762638

  16. Pin1 inhibition exerts potent activity against acute myeloid leukemia through blocking multiple cancer-driving pathways.

    PubMed

    Lian, Xiaolan; Lin, Yu-Min; Kozono, Shingo; Herbert, Megan K; Li, Xin; Yuan, Xiaohong; Guo, Jiangrui; Guo, Yafei; Tang, Min; Lin, Jia; Huang, Yiping; Wang, Bixin; Qiu, Chenxi; Tsai, Cheng-Yu; Xie, Jane; Cao, Ziang Jeff; Wu, Yong; Liu, Hekun; Zhou, Xiaozhen; Lu, Kunping; Chen, Yuanzhong

    2018-05-30

    The increasing genomic complexity of acute myeloid leukemia (AML), the most common form of acute leukemia, poses a major challenge to its therapy. To identify potent therapeutic targets with the ability to block multiple cancer-driving pathways is thus imperative. The unique peptidyl-prolyl cis-trans isomerase Pin1 has been reported to promote tumorigenesis through upregulation of numerous cancer-driving pathways. Although Pin1 is a key drug target for treating acute promyelocytic leukemia (APL) caused by a fusion oncogene, much less is known about the role of Pin1 in other heterogeneous leukemia. The mRNA and protein levels of Pin1 were detected in samples from de novo leukemia patients and healthy controls using real-time quantitative RT-PCR (qRT-PCR) and western blot. The establishment of the lentiviral stable-expressed short hairpin RNA (shRNA) system and the tetracycline-inducible shRNA system for targeting Pin1 were used to analyze the biological function of Pin1 in AML cells. The expression of cancer-related Pin1 downstream oncoproteins in shPin1 (Pin1 knockdown) and Pin1 inhibitor all-trans retinoic acid (ATRA) treated leukemia cells were examined by western blot, followed by evaluating the effects of genetic and chemical inhibition of Pin1 in leukemia cells on transformed phenotype, including cell proliferation and colony formation ability, using trypan blue, cell counting assay, and colony formation assay in vitro, as well as the tumorigenesis ability using in vivo xenograft mouse models. First, we found that the expression of Pin1 mRNA and protein was significantly increased in both de novo leukemia clinical samples and multiple leukemia cell lines, compared with healthy controls. Furthermore, genetic or chemical inhibition of Pin1 in human multiple leukemia cell lines potently inhibited multiple Pin1 substrate oncoproteins and effectively suppressed leukemia cell proliferation and colony formation ability in cell culture models in vitro. Moreover, tetracycline-inducible Pin1 knockdown and slow-releasing ATRA potently inhibited tumorigenicity of U937 and HL-60 leukemia cells in xenograft mouse models. We demonstrate that Pin1 is highly overexpressed in human AML and is a promising therapeutic target to block multiple cancer-driving pathways in AML.

  17. Involvement of SLP-65 and Btk in tumor suppression and malignant transformation of pre-B cells.

    PubMed

    Hendriks, Rudi W; Kersseboom, Rogier

    2006-02-01

    Signals from the precursor-B cell receptor (pre-BCR) are essential for selection and clonal expansion of pre-B cells that have performed productive immunoglobulin heavy chain V(D)J recombination. In the mouse, the downstream signaling molecules SLP-65 and Btk cooperate to limit proliferation and induce differentiation of pre-B cells, thereby acting as tumor suppressors to prevent pre-B cell leukemia. In contrast, recent observations in human BCR-ABL1(+) pre-B lymphoblastic leukemia cells demonstrate that Btk is constitutively phosphorylated and activated by the BCR-ABL1 fusion protein. As a result, activated Btk transmits survival signals that are essential for the transforming activity of oncogenic Abl tyrosine kinase.

  18. Spliceosomal gene aberrations are rare, coexist with oncogenic mutations, and are unlikely to exert a driver effect in childhood MDS and JMML.

    PubMed

    Hirabayashi, Shinsuke; Flotho, Christian; Moetter, Jessica; Heuser, Michael; Hasle, Henrik; Gruhn, Bernd; Klingebiel, Thomas; Thol, Felicitas; Schlegelberger, Brigitte; Baumann, Irith; Strahm, Brigitte; Stary, Jan; Locatelli, Franco; Zecca, Marco; Bergstraesser, Eva; Dworzak, Michael; van den Heuvel-Eibrink, Marry M; De Moerloose, Barbara; Ogawa, Seishi; Niemeyer, Charlotte M; Wlodarski, Marcin W

    2012-03-15

    Somatic mutations of the spliceosomal machinery occur frequently in adult patients with myelodysplastic syndrome (MDS). We resequenced SF3B1, U2AF35, and SRSF2 in 371 children with MDS or juvenile myelomonocytic leukemia. We found missense mutations in 2 juvenile myelomonocytic leukemia cases and in 1 child with systemic mastocytosis with MDS. In 1 juvenile myelomonocytic leukemia patient, the SRSF2 mutation that initially coexisted with an oncogenic NRAS mutation was absent at relapse, whereas the NRAS mutation persisted and a second, concomitant NRAS mutation later emerged. The patient with systemic mastocytosis and MDS carried both mutated U2AF35 and KIT in a single clone as confirmed by clonal sequencing. In the adult MDS patients sequenced for control purposes, we detected previously reported mutations in 7/30 and a novel SRSF2 deletion (c.284_307del) in 3 of 30 patients. These findings implicate that spliceosome mutations are rare in pediatric MDS and juvenile myelomonocytic leukemia and are unlikely to operate as driver mutations.

  19. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia

    PubMed Central

    Vicente, Carmen; Schwab, Claire; Broux, Michaël; Geerdens, Ellen; Degryse, Sandrine; Demeyer, Sofie; Lahortiga, Idoya; Elliott, Alannah; Chilton, Lucy; La Starza, Roberta; Mecucci, Cristina; Vandenberghe, Peter; Goulden, Nicholas; Vora, Ajay; Moorman, Anthony V.; Soulier, Jean; Harrison, Christine J.; Clappier, Emmanuelle; Cools, Jan

    2015-01-01

    T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases. We found that IL7R-JAK pathway genes were mutated in 27.7% of cases, with JAK3 mutations being the most frequent event in this group. Copy number variations were also detected, including deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a novel extracellular mutation in FLT3 was detected and confirmed to be transforming. Furthermore, we identified complex patterns of pairwise associations, including a significant association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. Overall, these results identify interconnections between the T-cell acute lymphoblastic leukemia genome and disease biology, and suggest a potential clinical application for JAK inhibitors in a significant proportion of patients with T-cell acute lymphoblastic leukemia. PMID:26206799

  20. Mutational analysis of the gag-pol junction of Moloney murine leukemia virus: requirements for expression of the gag-pol fusion protein.

    PubMed Central

    Felsenstein, K M; Goff, S P

    1992-01-01

    The gag-pol polyprotein of the murine and feline leukemia viruses is expressed by translational readthrough of a UAG terminator codon at the 3' end of the gag gene. To explore the cis-acting sequence requirements for the readthrough event in vivo, we generated a library of mutants of the Moloney murine leukemia virus with point mutations near the terminator codon and tested the mutant viral DNAs for the ability to direct synthesis of the gag-pol fusion protein and formation of infectious virus. The analysis showed that sequences 3' to the terminator are necessary and sufficient for the process. The results do not support a role for one proposed stem-loop structure that includes the terminator but are consistent with the involvement of another stem-loop 3' to the terminator. One mutant, containing two compensatory changes in this stem structure, was temperature sensitive for replication and for formation of the gag-pol protein. The results suggest that RNA sequence and structure are critical determinants of translational readthrough in vivo. Images PMID:1404606

  1. Seroprevalence of feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) in shelter cats on the island of Newfoundland, Canada.

    PubMed

    Munro, Hannah J; Berghuis, Lesley; Lang, Andrew S; Rogers, Laura; Whitney, Hugh

    2014-04-01

    Feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) are retroviruses found within domestic and wild cat populations. These viruses cause severe illnesses that eventually lead to death. Housing cats communally for long periods of time makes shelters at high risk for virus transmission among cats. We tested 548 cats from 5 different sites across the island of Newfoundland for FIV and FeLV. The overall seroprevalence was 2.2% and 6.2% for FIV and FeLV, respectively. Two sites had significantly higher seroprevalence of FeLV infection than the other 3 sites. Analysis of sequences from the FeLV env gene (envelope gene) from 6 positive cats showed that 4 fell within the FeLV subtype-A, while 2 sequences were most closely related to FeLV subtype-B and endogenous feline leukemia virus (en FeLV). Varying seroprevalence and the variation in sequences at different sites demonstrate that some shelters are at greater risk of FeLV infections and recombination can occur at sites of high seroprevalence.

  2. Genome-wide identification and characterization of Notch transcription complex-binding sequence-paired sites in leukemia cells.

    PubMed

    Severson, Eric; Arnett, Kelly L; Wang, Hongfang; Zang, Chongzhi; Taing, Len; Liu, Hudan; Pear, Warren S; Shirley Liu, X; Blacklow, Stephen C; Aster, Jon C

    2017-05-02

    Notch transcription complexes (NTCs) drive target gene expression by binding to two distinct types of genomic response elements, NTC monomer-binding sites and sequence-paired sites (SPSs) that bind NTC dimers. SPSs are conserved and have been linked to the Notch responsiveness of a few genes. To assess the overall contribution of SPSs to Notch-dependent gene regulation, we determined the DNA sequence requirements for NTC dimerization using a fluorescence resonance energy transfer (FRET) assay and applied insights from these in vitro studies to Notch-"addicted" T cell acute lymphoblastic leukemia (T-ALL) cells. We found that SPSs contributed to the regulation of about a third of direct Notch target genes. Although originally described in promoters, SPSs are present mainly in long-range enhancers, including an enhancer containing a newly described SPS that regulates HES5 expression. Our work provides a general method for identifying SPSs in genome-wide data sets and highlights the widespread role of NTC dimerization in Notch-transformed leukemia cells. Copyright © 2017, American Association for the Advancement of Science.

  3. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia

    PubMed Central

    Papaemmanuil, Elli; Rapado, Inmaculada; Li, Yilong; Potter, Nicola E; Wedge, David C; Tubio, Jose; Alexandrov, Ludmil B; Van Loo, Peter; Cooke, Susanna L; Marshall, John; Martincorena, Inigo; Hinton, Jonathan; Gundem, Gunes; van Delft, Frederik W; Nik-Zainal, Serena; Jones, David R; Ramakrishna, Manasa; Titley, Ian; Stebbings, Lucy; Leroy, Catherine; Menzies, Andrew; Gamble, John; Robinson, Ben; Mudie, Laura; Raine, Keiran; O’Meara, Sarah; Teague, Jon W; Butler, Adam P; Cazzaniga, Giovanni; Biondi, Andrea; Zuna, Jan; Kempski, Helena; Muschen, Markus; Ford, Anthony M; Stratton, Michael R; Greaves, Mel; Campbell, Peter J

    2014-01-01

    The ETV6-RUNX1 fusion gene, found in 25% of childhood acute lymphoblastic leukemia (ALL), is acquired in utero but requires additional somatic mutations for overt leukemia. We used exome and low-coverage whole-genome sequencing to characterize secondary events associated with leukemic transformation. RAG-mediated deletions emerge as the dominant mutational process, characterized by recombination signal sequence motifs near the breakpoints; incorporation of non-templated sequence at the junction; ~30-fold enrichment at promoters and enhancers of genes actively transcribed in B-cell development and an unexpectedly high ratio of recurrent to non-recurrent structural variants. Single cell tracking shows that this mechanism is active throughout leukemic evolution with evidence of localized clustering and re-iterated deletions. Integration of point mutation and rearrangement data identifies ATF7IP and MGA as two new tumor suppressor genes in ALL. Thus, a remarkably parsimonious mutational process transforms ETV6-RUNX1 lymphoblasts, targeting the promoters, enhancers and first exons of genes that normally regulate B-cell differentiation. PMID:24413735

  4. Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing.

    PubMed

    Hughes, Andrew E O; Magrini, Vincent; Demeter, Ryan; Miller, Christopher A; Fulton, Robert; Fulton, Lucinda L; Eades, William C; Elliott, Kevin; Heath, Sharon; Westervelt, Peter; Ding, Li; Conrad, Donald F; White, Brian S; Shao, Jin; Link, Daniel C; DiPersio, John F; Mardis, Elaine R; Wilson, Richard K; Ley, Timothy J; Walter, Matthew J; Graubert, Timothy A

    2014-07-01

    Next-generation sequencing has been used to infer the clonality of heterogeneous tumor samples. These analyses yield specific predictions-the population frequency of individual clones, their genetic composition, and their evolutionary relationships-which we set out to test by sequencing individual cells from three subjects diagnosed with secondary acute myeloid leukemia, each of whom had been previously characterized by whole genome sequencing of unfractionated tumor samples. Single-cell mutation profiling strongly supported the clonal architecture implied by the analysis of bulk material. In addition, it resolved the clonal assignment of single nucleotide variants that had been initially ambiguous and identified areas of previously unappreciated complexity. Accordingly, we find that many of the key assumptions underlying the analysis of tumor clonality by deep sequencing of unfractionated material are valid. Furthermore, we illustrate a single-cell sequencing strategy for interrogating the clonal relationships among known variants that is cost-effective, scalable, and adaptable to the analysis of both hematopoietic and solid tumors, or any heterogeneous population of cells.

  5. Application of the whole-transcriptome shotgun sequencing approach to the study of Philadelphia-positive acute lymphoblastic leukemia

    PubMed Central

    Iacobucci, I; Ferrarini, A; Sazzini, M; Giacomelli, E; Lonetti, A; Xumerle, L; Ferrari, A; Papayannidis, C; Malerba, G; Luiselli, D; Boattini, A; Garagnani, P; Vitale, A; Soverini, S; Pane, F; Baccarani, M; Delledonne, M; Martinelli, G

    2012-01-01

    Although the pathogenesis of BCR–ABL1-positive acute lymphoblastic leukemia (ALL) is mainly related to the expression of the BCR–ABL1 fusion transcript, additional cooperating genetic lesions are supposed to be involved in its development and progression. Therefore, in an attempt to investigate the complex landscape of mutations, changes in expression profiles and alternative splicing (AS) events that can be observed in such disease, the leukemia transcriptome of a BCR–ABL1-positive ALL patient at diagnosis and at relapse was sequenced using a whole-transcriptome shotgun sequencing (RNA-Seq) approach. A total of 13.9 and 15.8 million sequence reads was generated from de novo and relapsed samples, respectively, and aligned to the human genome reference sequence. This led to the identification of five validated missense mutations in genes involved in metabolic processes (DPEP1, TMEM46), transport (MVP), cell cycle regulation (ABL1) and catalytic activity (CTSZ), two of which resulted in acquired relapse variants. In all, 6390 and 4671 putative AS events were also detected, as well as expression levels for 18 315 and 18 795 genes, 28% of which were differentially expressed in the two disease phases. These data demonstrate that RNA-Seq is a suitable approach for identifying a wide spectrum of genetic alterations potentially involved in ALL. PMID:22829256

  6. Determination of the promoter region of mouse ribosomal RNA gene by an in vitro transcription system.

    PubMed Central

    Yamamoto, O; Takakusa, N; Mishima, Y; Kominami, R; Muramatsu, M

    1984-01-01

    Sequences required for a faithful and efficient transcription of a cloned mouse ribosomal RNA gene (rDNA) are determined by testing a series of deletion mutants in an in vitro transcription system utilizing two kinds of mouse cellular extract. Deletion of sequences upstream of -40 or downstream of +52 causes only slight reduction in promoter activity as compared with the "wild-type" template. For upstream deletion mutants, the removal of a sequence between -40 and -35 causes a significant decrease in the capacity to direct efficient initiation. This decrease becomes more pronounced when the deletion reaches -32 and the sequence A-T-C-T-T-T, conserved among mouse, rat, and human rDNAs, is lost. Residual template activity is further reduced as more upstream sequence is deleted and finally becomes undetectable when the deletion is extended from -22 down to -17, corresponding to the loss of the conserved sequence T-A-T-T-G. As for downstream deletion mutants, the removal of the sequence downstream of +23 causes some (and further deletions up to +11 cause a more) serious decrease in template activity in vitro. These deletions involve other conserved sequences downstream of the transcription start site. However, the removal of the original transcription start site does not abolish the transcription initiation completely, provided that the whole upstream sequence is intact. Images PMID:6320178

  7. Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia

    PubMed Central

    Degryse, S; de Bock, C E; Demeyer, S; Govaerts, I; Bornschein, S; Verbeke, D; Jacobs, K; Binos, S; Skerrett-Byrne, D A; Murray, H C; Verrills, N M; Van Vlierberghe, P; Cools, J; Dun, M D

    2018-01-01

    Mutations in the interleukin-7 receptor (IL7R) or the Janus kinase 3 (JAK3) kinase occur frequently in T-cell acute lymphoblastic leukemia (T-ALL) and both are able to drive cellular transformation and the development of T-ALL in mouse models. However, the signal transduction pathways downstream of JAK3 mutations remain poorly characterized. Here we describe the phosphoproteome downstream of the JAK3(L857Q)/(M511I) activating mutations in transformed Ba/F3 lymphocyte cells. Signaling pathways regulated by JAK3 mutants were assessed following acute inhibition of JAK1/JAK3 using the JAK kinase inhibitors ruxolitinib or tofacitinib. Comprehensive network interrogation using the phosphoproteomic signatures identified significant changes in pathways regulating cell cycle, translation initiation, mitogen-activated protein kinase and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signaling, RNA metabolism, as well as epigenetic and apoptotic processes. Key regulatory proteins within pathways that showed altered phosphorylation following JAK inhibition were targeted using selumetinib and trametinib (MEK), buparlisib (PI3K) and ABT-199 (BCL2), and found to be synergistic in combination with JAK kinase inhibitors in primary T-ALL samples harboring JAK3 mutations. These data provide the first detailed molecular characterization of the downstream signaling pathways regulated by JAK3 mutations and provide further understanding into the oncogenic processes regulated by constitutive kinase activation aiding in the development of improved combinatorial treatment regimens. PMID:28852199

  8. A Critical Role for IL-17RB Signaling in HTLV-1 Tax-Induced NF-κB Activation and T-Cell Transformation

    PubMed Central

    Lavorgna, Alfonso; Matsuoka, Masao; Harhaj, Edward William

    2014-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) infection is linked to the development of adult T-cell leukemia (ATL) and the neuroinflammatory disease HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax protein functions as a potent viral oncogene that constitutively activates the NF-κB transcription factor to transform T cells; however, the underlying mechanisms remain obscure. Here, using next-generation RNA sequencing we identified the IL-25 receptor subunit IL-17RB as an aberrantly overexpressed gene in HTLV-1 immortalized T cells. Tax induced the expression of IL-17RB in an IκB kinase (IKK) and NF-κB-dependent manner. Remarkably, Tax activation of the canonical NF-κB pathway in T cells was critically dependent on IL-17RB expression. IL-17RB and IL-25 were required for HTLV-1-induced immortalization of primary T cells, and the constitutive NF-κB activation and survival of HTLV-1 transformed T cells. IL-9 was identified as an important downstream target gene of the IL-17RB pathway that drives the proliferation of HTLV-1 transformed cells. Furthermore, IL-17RB was overexpressed in leukemic cells from a subset of ATL patients and also regulated NF-κB activation in some, but not all, Tax-negative ATL cell lines. Together, our results support a model whereby Tax instigates an IL-17RB-NF-κB feed-forward autocrine loop that is obligatory for HTLV-1 leukemogenesis. PMID:25340344

  9. MCL-1–dependent leukemia cells are more sensitive to chemotherapy than BCL-2–dependent counterparts

    PubMed Central

    Brunelle, Joslyn K.; Ryan, Jeremy; Yecies, Derek; Opferman, Joseph T.

    2009-01-01

    Myeloid cell leukemia sequence 1 (MCL-1) and B cell leukemia/lymphoma 2 (BCL-2) are anti-apoptotic proteins in the BCL-2 protein family often expressed in cancer. To compare the function of MCL-1 and BCL-2 in maintaining cancer survival, we constructed complementary mouse leukemia models based on Eμ-Myc expression in which either BCL-2 or MCL-1 are required for leukemia maintenance. We show that the principal anti-apoptotic mechanism of both BCL-2 and MCL-1 in these leukemias is to sequester pro-death BH3-only proteins rather than BAX and BAK. We find that the MCL-1–dependent leukemias are more sensitive to a wide range of chemotherapeutic agents acting by disparate mechanisms. In common across these varied treatments is that MCL-1 protein levels rapidly decrease in a proteosome-dependent fashion, whereas those of BCL-2 are stable. We demonstrate for the first time that two anti-apoptotic proteins can enable tumorigenesis equally well, but nonetheless differ in their influence on chemosensitivity. PMID:19948485

  10. Quercetin alters the DNA damage response in human hematopoietic stem and progenitor cells via TopoII- and PI3K-dependent mechanisms synergizing in leukemogenic rearrangements.

    PubMed

    Biechonski, Shahar; Gourevich, Dana; Rall, Melanie; Aqaqe, Nasma; Yassin, Muhammad; Zipin-Roitman, Adi; Trakhtenbrot, Luba; Olender, Leonid; Raz, Yael; Jaffa, Ariel J; Grisaru, Dan; Wiesmuller, Lisa; Elad, David; Milyavsky, Michael

    2017-02-15

    Quercetin (Que) is an abundant flavonoid in the human diet and high-concentration food supplement with reported pro- and anti-carcinogenic activities. Topoisomerase II (TopoII) inhibition and subsequent DNA damage induction by Que was implicated in the mixed lineage leukemia gene (MLL) rearrangements that can induce infant and adult leukemias. This notion raised concerns regarding possible genotoxicities of Que in hematopoietic stem and progenitor cells (HSPCs). However, molecular targets mediating Que effects on DNA repair relevant to MLL translocations have not been defined. In this study we describe novel and potentially genotoxic Que activities in suppressing non-homologous end joining and homologous recombination pathways downstream of MLL cleavage. Using pharmacological dissection of DNA-PK, ATM and PI3K signalling we defined PI3K inhibition by Que with a concomitant decrease in the abundance of key DNA repair genes to be responsible for DNA repair inhibition. Evidence for the downstream TopoII-independent mutagenic potential of Que was obtained by documenting further increased frequencies of MLL rearrangements in human HSPCs concomitantly treated with Etoposide and Que versus single treatments. Importantly, by engaging a tissue engineered placental barrier, we have established the extent of Que transplacental transfer and hence provided the evidence for Que reaching fetal HSPCs. Thus, Que exhibits genotoxic effects in human HSPCs via different mechanisms when applied continuously and at high concentrations. In light of the demonstrated Que transfer to the fetal compartment our findings are key to understanding the mechanisms underlying infant leukemia and provide molecular markers for the development of safety values. © 2016 UICC.

  11. Cryptochrome-1 expression: a new prognostic marker in B-cell chronic lymphocytic leukemia.

    PubMed

    Lewintre, Eloisa Jantus; Martín, Cristina Reinoso; Ballesteros, Carlos García; Montaner, David; Rivera, Rosa Farrás; Mayans, José Ramón; García-Conde, Javier

    2009-02-01

    Chronic lymphocytic leukemia is an adult-onset leukemia with a heterogeneous clinical behavior. When chronic lymphocytic leukemia cases were divided on the basis of IgV(H) mutational status, widely differing clinical courses were revealed. Since IgV(H) sequencing is difficult to perform in a routine diagnostic laboratory, finding a surrogate for IgV(H) mutational status seems an important priority. In the present study, we proposed the use of Cryptochrome-1 as a new prognostic marker in early-stage chronic lymphocytic leukemia. Seventy patients (Binet stage A, without treatment) were included in the study. We correlated Cryptochrome-1 mRNA with well established prognostic markers such as IgV(H) mutations, ZAP70, LPL or CD38 expression and chromosomal abnormalities. High Cryptochrome-1 expression correlated with IgV(H) unmutated samples. In addition, Cryptochrome-1 was a valuable predictor of disease progression in early-stage chronic lymphocytic leukemia, therefore it can be introduced in clinical practice with the advantage of a simplified method of quantification.

  12. Cyclic AMP efflux inhibitors as potential therapeutic agents for leukemia.

    PubMed

    Perez, Dominique R; Smagley, Yelena; Garcia, Matthew; Carter, Mark B; Evangelisti, Annette; Matlawska-Wasowska, Ksenia; Winter, Stuart S; Sklar, Larry A; Chigaev, Alexandre

    2016-06-07

    Apoptotic evasion is a hallmark of cancer. We propose that some cancers may evade cell death by regulating 3'-5'-cyclic adenosine monophosphate (cAMP), which is associated with pro-apoptotic signaling. We hypothesize that leukemic cells possess mechanisms that efflux cAMP from the cytoplasm, thus protecting them from apoptosis. Accordingly, cAMP efflux inhibition should result in: cAMP accumulation, activation of cAMP-dependent downstream signaling, viability loss, and apoptosis. We developed a novel assay to assess cAMP efflux and performed screens to identify inhibitors. In an acute myeloid leukemia (AML) model, several identified compounds reduced cAMP efflux, appropriately modulated pathways that are responsive to cAMP elevation (cAMP-responsive element-binding protein phosphorylation, and deactivation of Very Late Antigen-4 integrin), and induced mitochondrial depolarization and caspase activation. Blocking adenylyl cyclase activity was sufficient to reduce effects of the most potent compounds. These compounds also decreased cAMP efflux and viability of B-lineage acute lymphoblastic leukemia (B-ALL) cell lines and primary patient samples, but not of normal primary peripheral blood mononuclear cells. Our data suggest that cAMP efflux is a functional feature that could be therapeutically targeted in leukemia. Furthermore, because some of the identified drugs are currently used for treating other illnesses, this work creates an opportunity for repurposing.

  13. Synchronous Occurrence of Chronic Myeloid Leukemia and Mantle Cell Lymphoma

    PubMed Central

    Li, Ying; Gray, Brian Allen; May, William Stratford

    2017-01-01

    Chronic myeloid leukemia (CML) and mantle cell lymphoma (MCL) are hematologic malignancies that originate from different oligopotent progenitor stem cells, namely, common myeloid and lymphoid progenitor cells, respectively. Although blastic transformation of CML can occur in the lymphoid lineage and CML has been related to non-Hodgkin lymphoma on transformation, to our knowledge, de novo and synchronous occurrence of CML and MCL has not been reported. Herein, we report the first case of synchronous CML and MCL in an otherwise healthy 38-year-old man. Potential etiologies and pathological relationships between the two malignancies are explored, including the possibility that the downstream effects of BCR-ABL may link it to an overexpression of cyclin D1, which is inherent to the etiology of MCL. PMID:28270940

  14. Direct binding of arsenic trioxide to AMPK and generation of inhibitory effects on acute myeloid leukemia precursors

    PubMed Central

    Beauchamp, Elspeth M.; Kosciuczuk, Ewa M.; Serrano, Ruth; Nanavati, Dhaval; Swindell, Elden P.; Viollet, Benoit; O'Halloran, Thomas V.; Altman, Jessica K.; Platanias, Leonidas C.

    2014-01-01

    Arsenic trioxide (As2O3) exhibits potent antineoplastic effects and is used extensively in clinical oncology for the treatment of a subset of patients with acute myeloid leukemia (AML). Although As2O3 is known to regulate activation of several signaling cascades, the key events, accounting for its anti-leukemic properties, remain to be defined. We provide evidence that arsenic can directly bind to cysteine 299 in AMPKα and inhibit its activity. This inhibition of AMPK by arsenic is required in part for its cytotoxic effects on primitive leukemic progenitors from patients with AML, while concomitant treatment with an AMPK activator antagonizes in vivo the arsenic-induced antileukemic effects in a xenograft AML mouse model. A consequence of AMPK inhibition is activation of the mTOR pathway as a negative regulatory feedback loop. However, when AMPK expression is lost, arsenic-dependent activation of the kinase RSK downstream of MAPK activity compensates the generation of regulatory feedback signals through phosphorylation of downstream mTOR targets. Thus, therapeutic regimens with arsenic trioxide will need to include inhibitors of both the mTOR and RSK pathways in combination to prevent engagement of negative feedback loops and maximize antineoplastic responses. PMID:25344585

  15. mTOR up-regulation of PFKFB3 is essential for acute myeloid leukemia cell survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Yonghuai; Institute of Hematology, Peking University, Beijing; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing

    Although mTOR (mammalian target of rapamycin) activation is frequently observed in acute myeloid leukemia (AML) patients, the precise function and the downstream targets of mTOR are poorly understood. Here we revealed that PFKFB3, but not PFKFB1, PFKFB2 nor PFKFB4 was a novel downstream substrate of mTOR signaling pathway as PFKFB3 level was augmented after knocking down TSC2 in THP1 and OCI-AML3 cells. Importantly, PFKFB3 silencing suppressed glycolysis and cell proliferation of TSC2 silencing OCI-AML3 cells and activated apoptosis pathway. These results suggested that mTOR up-regulation of PFKFB3 was essential for AML cells survival. Mechanistically, Rapamycin treatment or Raptor knockdown reducedmore » the expression of PFKFB3 in TSC2 knockdown cells, while Rictor silencing did not have such effect. Furthermore, we also revealed that mTORC1 up-regulated PFKFB3 was dependent on hypoxia-inducible factor 1α (HIF1α), a positive regulator of glycolysis. Moreover, PFKFB3 inhibitor PFK15 and rapamycin synergistically blunted the AML cell proliferation. Taken together, PFKFB3 was a promising drug target in AML patients harboring mTOR hyper-activation.« less

  16. Next-generation sequencing of cancer genomes: back to the future

    PubMed Central

    Walter, Matthew J; Graubert, Timothy A; DiPersio, John F; Mardis, Elaine R; Wilson, Richard K; Ley, Timothy J

    2010-01-01

    The systematic karyotyping of bone marrow cells was the first genomic approach used to personalize therapy for patients with leukemia. The paradigm established by cytogenetic studies in leukemia (from gene discovery to therapeutic intervention) now has the potential to be rapidly extended with the use of whole-genome sequencing approaches for cancer, which are now possible. We are now entering a period of exponential growth in cancer gene discovery that will provide many novel therapeutic targets for a large number of cancer types. Establishing the pathogenetic relevance of individual mutations is a major challenge that must be solved. However, after thousands of cancer genomes have been sequenced, the genetic rules of cancer will become known and new approaches for diagnosis, risk stratification and individualized treatment of cancer patients will surely follow. PMID:20161678

  17. Genetic heterogeneity of RPMI-8402, a T-acute lymphoblastic leukemia cell line

    PubMed Central

    STOCZYNSKA-FIDELUS, EWELINA; PIASKOWSKI, SYLWESTER; PAWLOWSKA, ROZA; SZYBKA, MALGORZATA; PECIAK, JOANNA; HULAS-BIGOSZEWSKA, KRYSTYNA; WINIECKA-KLIMEK, MARTA; RIESKE, PIOTR

    2016-01-01

    Thorough examination of genetic heterogeneity of cell lines is uncommon. In order to address this issue, the present study analyzed the genetic heterogeneity of RPMI-8402, a T-acute lymphoblastic leukemia (T-ALL) cell line. For this purpose, traditional techniques such as fluorescence in situ hybridization and immunocytochemistry were used, in addition to more advanced techniques, including cell sorting, Sanger sequencing and massive parallel sequencing. The results indicated that the RPMI-8402 cell line consists of several genetically different cell subpopulations. Furthermore, massive parallel sequencing of RPMI-8402 provided insight into the evolution of T-ALL carcinogenesis, since this cell line exhibited the genetic heterogeneity typical of T-ALL. Therefore, the use of cell lines for drug testing in future studies may aid the progress of anticancer drug research. PMID:26870252

  18. The hidden genomic landscape of acute myeloid leukemia: subclonal structure revealed by undetected mutations

    PubMed Central

    Bodini, Margherita; Ronchini, Chiara; Giacò, Luciano; Russo, Anna; Melloni, Giorgio E. M.; Luzi, Lucilla; Sardella, Domenico; Volorio, Sara; Hasan, Syed K.; Ottone, Tiziana; Lavorgna, Serena; Lo-Coco, Francesco; Candoni, Anna; Fanin, Renato; Toffoletti, Eleonora; Iacobucci, Ilaria; Martinelli, Giovanni; Cignetti, Alessandro; Tarella, Corrado; Bernard, Loris; Pelicci, Pier Giuseppe

    2015-01-01

    The analyses carried out using 2 different bioinformatics pipelines (SomaticSniper and MuTect) on the same set of genomic data from 133 acute myeloid leukemia (AML) patients, sequenced inside the Cancer Genome Atlas project, gave discrepant results. We subsequently tested these 2 variant-calling pipelines on 20 leukemia samples from our series (19 primary AMLs and 1 secondary AML). By validating many of the predicted somatic variants (variant allele frequencies ranging from 100% to 5%), we observed significantly different calling efficiencies. In particular, despite relatively high specificity, sensitivity was poor in both pipelines resulting in a high rate of false negatives. Our findings raise the possibility that landscapes of AML genomes might be more complex than previously reported and characterized by the presence of hundreds of genes mutated at low variant allele frequency, suggesting that the application of genome sequencing to the clinic requires a careful and critical evaluation. We think that improvements in technology and workflow standardization, through the generation of clear experimental and bioinformatics guidelines, are fundamental to translate the use of next-generation sequencing from research to the clinic and to transform genomic information into better diagnosis and outcomes for the patient. PMID:25499761

  19. Subcellular localization of full-length human myeloid leukemia factor 1 (MLF1) is independent of 14-3-3 proteins.

    PubMed

    Molzan, Manuela; Ottmann, Christian

    2013-03-01

    Myeloid leukemia factor 1 (MLF1) is associated with the development of leukemic diseases such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, information on the physiological function of MLF1 is limited and mostly derived from studies identifying MLF1 interaction partners like CSN3, MLF1IP, MADM, Manp and the 14-3-3 proteins. The 14-3-3-binding site surrounding S34 is one of the only known functional features of the MLF1 sequence, along with one nuclear export sequence (NES) and two nuclear localization sequences (NLS). It was recently shown that the subcellular localization of mouse MLF1 is dependent on 14-3-3 proteins. Based on these findings, we investigated whether the subcellular localization of human MLF1 was also directly 14-3-3-dependent. Live cell imaging with GFP-fused human MLF1 was used to study the effects of mutations and deletions on its subcellular localization. Surprisingly, we found that the subcellular localization of full-length human MLF1 is 14-3-3-independent, and is probably regulated by other as-yet-unknown proteins.

  20. Antagonism of SET using OP449 enhances the efficacy of tyrosine kinase inhibitors and overcome drug resistance in myeloid leukemia

    PubMed Central

    Agarwal, Anupriya; MacKenzie, Ryan J.; Pippa, Raffaella; Eide, Christopher A.; Oddo, Jessica; Tyner, Jeffrey W.; Sears, Rosalie; Vitek, Michael P.; Odero, María D.; Christensen, Dale; Druker, Brian J.

    2014-01-01

    Purpose The SET oncoprotein, a potent inhibitor of the protein phosphatase 2A (PP2A), is overexpressed in leukemia. We evaluated the efficacy of SET antagonism in chronic myeloid leukemia (CML) and acute myeloid leukemia (AML) cell lines, a murine leukemia model, and primary patient samples using OP449, a specific, cell-penetrating peptide that antagonizes SET's inhibition of PP2A. Experimental Design In vitro cytotoxicity and specificity of OP449 in CML and AML cell lines and primary samples were measured using proliferation, apoptosis and colonogenic assays. Efficacy of target inhibition by OP449 is evaluated by immunoblotting and PP2A assay. In vivo antitumor efficacy of OP449 was measured in human HL-60 xenografted murine model. Results We observed that OP449 inhibited growth of CML cells including those from patients with blastic phase disease and patients harboring highly drug-resistant BCR-ABL1 mutations. Combined treatment with OP449 and ABL1 tyrosine kinase inhibitors was significantly more cytotoxic to K562 cells and primary CD34+ CML cells. SET protein levels remained unchanged with OP449 treatment, but BCR-ABL1-mediated downstream signaling was significantly inhibited with the degradation of key signaling molecules such as BCR-ABL1, STAT5, and AKT. Similarly, AML cell lines and primary patient samples with various genetic lesions showed inhibition of cell growth after treatment with OP449 alone or in combination with respective kinase inhibitors. Finally, OP449 reduced the tumor burden of mice xenografted with human leukemia cells. Conclusions We demonstrate a novel therapeutic paradigm of SET antagonism using OP449 in combination with tyrosine kinase inhibitors for the treatment of CML and AML. PMID:24436473

  1. Identification of a precursor genomic segment that provided a sequence unique to glycophorin B and E genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onda, M.; Kudo, S.; Fukuda, M.

    Human glycophorin A, B, and E (GPA, GPB, and GPE) genes belong to a gene family located at the long arm of chromosome 4. These three genes are homologous from the 5'-flanking sequence to the Alu sequence, which is 1 kb downstream from the exon encoding the transmembrane domain. Analysis of the Alu sequence and flanking direct repeat sequences suggested that the GPA gene most closely resembles the ancestral gene, whereas the GPB and GPE gene arose by homologous recombination within the Alu sequence, acquiring 3' sequences from an unrelated precursor genomic segment. Here the authors describe the identification ofmore » this putative precursor genomic segment. A human genomic library was screened by using the sequence of the 3' region of the GPB gene as a probe. The genomic clones isolated were found to contain an Alu sequence that appeared to be involved in the recombination. Downstream from the Alu sequence, the nucleotide sequence of the precursor genomic segment is almost identical to that of the GPB or GPE gene. In contrast, the upstream sequence of the genomic segment differs entirely from that of the GPA, GPB, and GPE genes. Conservation of the direct repeats flanking the Alu sequence of the genomic segment strongly suggests that the sequence of this genomic segment has been maintained during evolution. This identified genomic segment was found to reside downstream from the GPA gene by both gene mapping and in situ chromosomal localization. The precursor genomic segment was also identified in the orangutan genome, which is known to lack GPB and GPE genes. These results indicate that one of the duplicated ancestral glycophorin genes acquired a unique 3' sequence by unequal crossing-over through its Alu sequence and the further downstream Alu sequence present in the duplicated gene. Further duplication and divergence of this gene yielded the GPB and GPE genes. 37 refs., 5 figs.« less

  2. Sequences downstream of AAUAAA signals affect pre-mRNA cleavage and polyadenylation in vitro both directly and indirectly.

    PubMed Central

    Ryner, L C; Takagaki, Y; Manley, J L

    1989-01-01

    To investigate the role of sequences lying downstream of the conserved AAUAAA hexanucleotide in pre-mRNA cleavage and polyadenylation, deletions or substitutions were constructed in polyadenylation signals from simian virus 40 and adenovirus, and their effects were assayed in both crude and fractionated HeLa cell nuclear extracts. As expected, these sequences influenced the efficiency of both cleavage and polyadenylation as well as the accuracy of the cleavage reaction. Sequences near or upstream of the actual site of poly(A) addition appeared to specify a unique cleavage site, since their deletion resulted, in some cases, in heterogeneous cleavage. Furthermore, the sequences that allowed the simian virus 40 late pre-RNA to be cleaved preferentially by partially purified cleavage activity were also those at the cleavage site itself. Interestingly, sequences downstream of the cleavage site interacted with factors not directly involved in catalyzing cleavage and polyadenylation, since the effects of deletions were substantially diminished when partially purified components were used in assays. In addition, these sequences contained elements that could affect 3'-end formation both positively and negatively. Images PMID:2566911

  3. Chromosome 12p deletions in TEL-AML1 childhood acute lymphoblastic leukemia are associated with retrotransposon elements and occur postnatally

    PubMed Central

    Hofmann, Jerry; Kang, Michelle; Selzer, Rebecca; Green, Roland; Zhou, Mi; Zhong, Sheng; Zhang, Luoping; Smith, Martyn T.; Marsit, Carmen; Loh, Mignon; Buffler, Patricia; Yeh, Ru-Fang

    2008-01-01

    TEL-AML1 (ETV6-RUNX1) is the most common translocation in the childhood leukemias, and is a prenatal mutation in most children. This translocation has been detected at a high rate among newborns (∼1%); therefore the rate-limiting event for leukemia appears to be secondary mutations. A frequent such mutation in this subtype is partial deletion of chromosome 12p, trans from the translocation. Nine del(12p) breakpoints within six leukemia cases were sequenced to explore the etiology of this genetic event, and most involved cryptic sterile translocations. Twelve of 18 del(12p) parent sequences involved in these breakpoints were located in repeat regions (8 of these in Long Interspersed Nuclear Elements, or LINEs). This stands in contrast to TEL-AML1, in which only 21 of 110 previously assessed breakpoints (19%) occur in DNA repeats (P = 0.0001). An exploratory assessment of archived neonatal blood cards (ANB cards) revealed significantly more LINE CpG methylation in individuals at birth who were later diagnosed with TEL-AML1 leukemia, compared to individuals who did not contract leukemia (P = 0.01). Nontemplate nucleotides were also more frequent in del(12p) than in TEL-AML1 junctions (P = 0.004) suggesting formation by terminal deoxynucleotidyl transferase. Assessment of six ANB cards indicated that no del(12p) rearrangements backtracked to birth, although two of these patients were previously positive for TEL-AML1 using the same assay with comparable sensitivity. These data are compatible with the a two-stage natural history: TEL-AML1 occurs prenatally, and del(12p) occurs postnatally in more mature cells with a structure that suggests the involvement of retrotransposon instability. PMID:19047175

  4. Selection of Optimal Polypurine Tract Region Sequences during Moloney Murine Leukemia Virus Replication

    PubMed Central

    Robson, Nicole D.; Telesnitsky, Alice

    2000-01-01

    Retrovirus plus-strand synthesis is primed by a cleavage remnant of the polypurine tract (PPT) region of viral RNA. In this study, we tested replication properties for Moloney murine leukemia viruses with targeted mutations in the PPT and in conserved sequences upstream, as well as for pools of mutants with randomized sequences in these regions. The importance of maintaining some purine residues within the PPT was indicated both by examining the evolution of random PPT pools and from the replication properties of targeted mutants. Although many different PPT sequences could support efficient replication and one mutant that contained two differences in the core PPT was found to replicate as well as the wild type, some sequences in the core PPT clearly conferred advantages over others. Contributions of sequences upstream of the core PPT were examined with deletion mutants. A conserved T-stretch within the upstream sequence was examined in detail and found to be unimportant to helper functions. Evolution of virus pools containing randomized T-stretch sequences demonstrated marked preference for the wild-type sequence in six of its eight positions. These findings demonstrate that maintenance of the T-rich element is more important to viral replication than is maintenance of the core PPT. PMID:11044073

  5. Rho kinase regulates the survival and transformation of cells bearing oncogenic forms of KIT, FLT3 and BCR-ABL

    PubMed Central

    Mali, Raghuveer Singh; Ramdas, Baskar; Ma, Peilin; Shi, Jianjian; Munugalavadla, Veerendra; Sims, Emily; Wei, Lei; Vemula, Sasidhar; Nabinger, Sarah C.; Goodwin, Charles B.; Chan, Rebecca J.; Traina, Fabiola; Visconte, Valeria; Tiu, Ramon V.; Lewis, Timothy A.; Stern, Andrew M.; Wen, Qiang; Crispino, John D.; Boswell, H. Scott; Kapur, Reuben

    2011-01-01

    Summary We show constitutive activation of Rho kinase (ROCK) in cells bearing oncogenic forms of KIT, FLT3 and BCR-ABL, which is dependent on PI3K and Rho GTPase. Genetic or pharmacologic inhibition of ROCK in oncogene bearing cells impaired their growth as well as the growth of acute myeloid leukemia patient derived blasts and prolonged the life span of mice bearing myeloproliferative disease. Downstream from ROCK, rapid dephosphorylation or loss of expression of myosin light chain resulted in enhanced apoptosis, reduced growth and loss of actin polymerization in oncogene bearing cells leading to significantly prolonged life span of leukemic mice. In summary, we describe a pathway involving PI3K/Rho/ROCK/MLC which may contribute to myeloproliferative disease and/or acute myeloid leukemia in humans. PMID:21907926

  6. Genetic alterations of m6A regulators predict poorer survival in acute myeloid leukemia.

    PubMed

    Kwok, Chau-To; Marshall, Amy D; Rasko, John E J; Wong, Justin J L

    2017-02-02

    Methylation of N 6 adenosine (m 6 A) is known to be important for diverse biological processes including gene expression control, translation of protein, and messenger RNA (mRNA) splicing. However, its role in the development of human cancers is poorly understood. By analyzing datasets from the Cancer Genome Atlas Research Network (TCGA) acute myeloid leukemia (AML) study, we discover that mutations and/or copy number variations of m 6 A regulatory genes are strongly associated with the presence of TP53 mutations in AML patients. Further, our analyses reveal that alterations in m 6 A regulatory genes confer a worse survival in AML. Our work indicates that genetic alterations of m 6 A regulatory genes may cooperate with TP53 and/or its regulator/downstream targets in the pathogenesis and/or maintenance of AML.

  7. Friend and Moloney murine leukemia viruses specifically recombine with different endogenous retroviral sequences to generate mink cell focus-forming viruses.

    PubMed

    Evans, L H; Cloyd, M W

    1985-01-01

    A group of mink cell focus-forming (MCF) viruses was derived by inoculation of NFS/N mice with Moloney murine leukemia virus (Mo-MuLV 1387) and was compared to a similarly derived group of MCF viruses from mice inoculated with Friend MuLV (Fr-MuLV 57). Antigenic analyses using monoclonal antibodies specific for MCF virus and xenotropic MuLV envelope proteins and genomic structural analyses by RNase T1-resistant oligonucleotide finger-printing indicated that the Moloney and Friend MCF viruses arose by recombination of the respective ecotropic MuLVs with different endogenous retrovirus sequences of NFS mice.

  8. First case of breakthrough pneumonia due to Aspergillus nomius in a patient with acute myeloid leukemia.

    PubMed

    Caira, Morena; Posteraro, Brunella; Sanguinetti, Maurizio; de Carolis, Elena; Leone, Giuseppe; Pagano, Livio

    2012-10-01

    We report the first known case of a breakthrough pulmonary infection caused by Aspergillus nomius in an acute myeloid leukemia patient receiving caspofungin therapy. The isolate was identified using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and sequencing-based methods. The organism was found to be fully susceptible, in vitro, to echinocandin antifungal agents.

  9. The human T-cell leukemia virus type-1 p30II protein activates p53 and induces the TIGAR and suppresses oncogene-induced oxidative stress during viral carcinogenesis.

    PubMed

    Romeo, Megan; Hutchison, Tetiana; Malu, Aditi; White, Averi; Kim, Janice; Gardner, Rachel; Smith, Katie; Nelson, Katherine; Bergeson, Rachel; McKee, Ryan; Harrod, Carolyn; Ratner, Lee; Lüscher, Bernhard; Martinez, Ernest; Harrod, Robert

    2018-05-01

    In normal cells, aberrant oncogene expression leads to the accumulation of cytotoxic metabolites, including reactive oxygen species (ROS), which can cause oxidative DNA-damage and apoptosis as an intrinsic barrier against neoplastic disease. The c-Myc oncoprotein is overexpressed in many lymphoid cancers due to c-myc gene amplification and/or 8q24 chromosomal translocations. Intriguingly, p53 is a downstream target of c-Myc and hematological malignancies, such as adult T-cell leukemia/lymphoma (ATL), frequently contain wildtype p53 and c-Myc overexpression. We therefore hypothesized that p53-regulated pro-survival signals may thwart the cell's metabolic anticancer defenses to support oncogene-activation in lymphoid cancers. Here we show that the Tp53-induced glycolysis and apoptosis regulator (TIGAR) promotes c-myc oncogene-activation by the human T-cell leukemia virus type-1 (HTLV-1) latency-maintenance factor p30 II , associated with c-Myc deregulation in ATL clinical isolates. TIGAR prevents the intracellular accumulation of c-Myc-induced ROS and inhibits oncogene-induced cellular senescence in ATL, acute lymphoblastic leukemia, and multiple myeloma cells with elevated c-Myc expression. Our results allude to a pivotal role for p53-regulated antioxidant signals as mediators of c-Myc oncogenic functions in viral and non-viral lymphoid tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Requirement for CDK6 in MLL-rearranged acute myeloid leukemia

    PubMed Central

    Placke, Theresa; Faber, Katrin; Nonami, Atsushi; Putwain, Sarah L.; Salih, Helmut R.; Heidel, Florian H.; Krämer, Alwin; Root, David E.; Barbie, David A.; Krivtsov, Andrei V.; Armstrong, Scott A.; Hahn, William C.; Huntly, Brian J.; Sykes, Stephen M.; Milsom, Michael D.; Scholl, Claudia

    2014-01-01

    Chromosomal rearrangements involving the H3K4 methyltransferase mixed-lineage leukemia (MLL) trigger aberrant gene expression in hematopoietic progenitors and give rise to an aggressive subtype of acute myeloid leukemia (AML). Insights into MLL fusion-mediated leukemogenesis have not yet translated into better therapies because MLL is difficult to target directly, and the identity of the genes downstream of MLL whose altered transcription mediates leukemic transformation are poorly annotated. We used a functional genetic approach to uncover that AML cells driven by MLL-AF9 are exceptionally reliant on the cell-cycle regulator CDK6, but not its functional homolog CDK4, and that the preferential growth inhibition induced by CDK6 depletion is mediated through enhanced myeloid differentiation. CDK6 essentiality is also evident in AML cells harboring alternate MLL fusions and a mouse model of MLL-AF9–driven leukemia and can be ascribed to transcriptional activation of CDK6 by mutant MLL. Importantly, the context-dependent effects of lowering CDK6 expression are closely phenocopied by a small-molecule CDK6 inhibitor currently in clinical development. These data identify CDK6 as critical effector of MLL fusions in leukemogenesis that might be targeted to overcome the differentiation block associated with MLL-rearranged AML, and underscore that cell-cycle regulators may have distinct, noncanonical, and nonredundant functions in different contexts. PMID:24764564

  11. Direct trans-activation of the human cyclin D2 gene by the oncogene product Tax of human T-cell leukemia virus type I.

    PubMed

    Huang, Y; Ohtani, K; Iwanaga, R; Matsumura, Y; Nakamura, M

    2001-03-01

    Cyclins are one of the pivotal determinants regulating cell cycle progression. We previously reported that the trans-activator Tax of human T-cell leukemia virus type I (HTLV-I) induces endogenous cyclin D2 expression along with cell cycle progression in a resting human T-cell line, Kit 225, suggesting a role of cyclin D2 in Tax-mediated cell cycle progression. The cyclin D2 gene has a typical E2F binding element, raising the possibility that induction of cyclin D2 expression is a consequence of cell cycle progression. In this study, we examined the role and molecular mechanism of induction of the endogenous human cyclin D2 gene by Tax. Introduction of p19(INK4d), a cyclin dependent kinase (CDK) inhibitor of the INK4 family specific for D-type CDK, inhibited Tax-mediated activation of E2F, indicating requirement of D-type CDK in Tax-mediated activation of E2F. Previously indicated E2F binding element and two NF-kappaB-like binding elements in the 1.6 kbp cyclin D2 promoter fragment had little, if any, effect on responsiveness to Tax. We found that trans-activation of the cyclin D2 promoter by Tax was mainly mediated by a newly identified NF-kappaB-like element with auxiliary contribution of a CRE-like element residing in sequences downstream of -444 which were by themselves sufficient for trans-activation by Tax. These results indicate that Tax directly trans-activates the cyclin D2 gene, resulting in growth promotion and perhaps leukemogenesis through activation of D-type CDK.

  12. Oral Microbiota Distinguishes Acute Lymphoblastic Leukemia Pediatric Hosts from Healthy Populations

    PubMed Central

    Zhou, Xuedong; You, Meng; Du, Qin; Yang, Xue; He, Jingzhi; Zou, Jing; Cheng, Lei; Li, Mingyun; Li, Yuqing; Zhu, Yiping; Li, Jiyao; Shi, Wenyuan; Xu, Xin

    2014-01-01

    In leukemia, oral manifestations indicate aberrations in oral microbiota. Microbiota structure is determined by both host and environmental factors. In human hosts, how health status shapes the composition of oral microbiota is largely unknown. Taking advantage of advances in high-throughput sequencing, we compared the composition of supragingival plaque microbiota of acute lymphoblastic leukemia (ALL) pediatric patients with healthy controls. The oral microbiota of leukemia patients had lower richness and less diversity compared to healthy controls. Microbial samples clustered into two major groups, one of ALL patients and another of healthy children, with different structure and composition. Abundance changes of certain taxa including the Phylum Firmicutes, the Class Bacilli, the Order Lactobacillales, the Family Aerococcaceae and Carnobacteriaceae, as well as the Genus Abiotrophia and Granulicatella were associated with leukemia status. ALL patients demonstrated a structural imbalance of the oral microbiota, characterized by reduced diversity and abundance alterations, possibly involved in systemic infections, indicating the importance of immune status in shaping the structure of oral microbiota. PMID:25025462

  13. Metagenomic analysis of bloodstream infections in patients with acute leukemia and therapy-induced neutropenia

    PubMed Central

    Gyarmati, P.; Kjellander, C.; Aust, C.; Song, Y.; Öhrmalm, L.; Giske, C. G.

    2016-01-01

    Leukemic patients are often immunocompromised due to underlying conditions, comorbidities and the effects of chemotherapy, and thus at risk for developing systemic infections. Bloodstream infection (BSI) is a severe complication in neutropenic patients, and is associated with increased mortality. BSI is routinely diagnosed with blood culture, which only detects culturable pathogens. We analyzed 27 blood samples from 9 patients with acute leukemia and suspected BSI at different time points of their antimicrobial treatment using shotgun metagenomics sequencing in order to detect unculturable and non-bacterial pathogens. Our findings confirm the presence of bacterial, fungal and viral pathogens alongside antimicrobial resistance genes. Decreased white blood cell (WBC) counts were associated with the presence of microbial DNA, and was inversely proportional to the number of sequencing reads. This study could indicate the use of high-throughput sequencing for personalized antimicrobial treatments in BSIs. PMID:26996149

  14. Excess congenital non-synonymous variation in leukemia-associated genes in MLL− infant leukemia: a Children's Oncology Group report

    PubMed Central

    Valentine, M C; Linabery, A M; Chasnoff, S; Hughes, A E O; Mallaney, C; Sanchez, N; Giacalone, J; Heerema, N A; Hilden, J M; Spector, L G; Ross, J A; Druley, T E

    2014-01-01

    Infant leukemia (IL) is a rare sporadic cancer with a grim prognosis. Although most cases are accompanied by MLL rearrangements and harbor very few somatic mutations, less is known about the genetics of the cases without MLL translocations. We performed the largest exome-sequencing study to date on matched non-cancer DNA from pairs of mothers and IL patients to characterize congenital variation that may contribute to early leukemogenesis. Using the COSMIC database to define acute leukemia-associated candidate genes, we find a significant enrichment of rare, potentially functional congenital variation in IL patients compared with randomly selected genes within the same patients and unaffected pediatric controls. IL acute myeloid leukemia (AML) patients had more overall variation than IL acute lymphocytic leukemia (ALL) patients, but less of that variation was inherited from mothers. Of our candidate genes, we found that MLL3 was a compound heterozygote in every infant who developed AML and 50% of infants who developed ALL. These data suggest a model by which known genetic mechanisms for leukemogenesis could be disrupted without an abundance of somatic mutation or chromosomal rearrangements. This model would be consistent with existing models for the establishment of leukemia clones in utero and the high rate of IL concordance in monozygotic twins. PMID:24301523

  15. The functional basis for hemophagocytic lymphohistiocytosis in a patient with co-inherited missense mutations in the perforin (PFN1) gene.

    PubMed

    Voskoboinik, Ilia; Thia, Marie-Claude; De Bono, Annette; Browne, Kylie; Cretney, Erika; Jackson, Jacob T; Darcy, Phillip K; Jane, Stephen M; Smyth, Mark J; Trapani, Joseph A

    2004-09-20

    About 30% of cases of the autosomal recessive immunodeficiency disorder hemophagocytic lymphohistiocytosis are believed to be caused by inactivating mutations of the perforin gene. We expressed perforin in rat basophil leukemia cells to define the basis of perforin dysfunction associated with two mutations, R225W and G429E, inherited by a compound heterozygote patient. Whereas RBL cells expressing wild-type perforin (67 kD) efficiently killed Jurkat target cells to which they were conjugated, the substitution to tryptophan at position 225 resulted in expression of a truncated ( approximately 45 kD) form of the protein, complete loss of cytotoxicity, and failure to traffic to rat basophil leukemia secretory granules. By contrast, G429E perforin was correctly processed, stored, and released, but the rat basophil leukemia cells possessed reduced cytotoxicity. The defective function of G429E perforin mapped downstream of exocytosis and was due to its reduced ability to bind lipid membranes in a calcium-dependent manner. This study elucidates the cellular basis for perforin dysfunctions in hemophagocytic lymphohistiocytosis and provides the means for studying structure-function relationships for lymphocyte perforin.

  16. The Notch/Hes1 pathway sustains NF-κB activation through CYLD repression in T cell leukemia

    PubMed Central

    Espinosa, Lluis; Cathelin, Severine; D’Altri, Teresa; Trimarchi, Thomas; Statnikov, Alexander; Guiu, Jordi; Rodilla, Veronica; Inglés-Esteve, Julia; Nomdedeu, Josep; Bellosillo, Beatriz; Besses, Carles; Abdel-Wahab, Omar; Kucine, Nicole; Sun, Shao-Cong; Song, Guangchan; Mullighan, Charles C.; Levine, Ross L.; Rajewsky, Klaus; Aifantis, Iannis; Bigas, Anna

    2010-01-01

    SUMMARY It was previously shown that the NF-κB pathway is downstream of oncogenic Notch1 in T cell acute lymphoblastic leukemia (T-ALL). Here we visualize Notch-induced NF-κB activation using both human T-ALL cell lines and animal models. We demonstrate that Hes1, a canonical Notch target and transcriptional repressor, is responsible for sustaining IKK activation in T-ALL. Hes1 exerts its effects by repressing the deubiquitinase CYLD, a negative IKK complex regulator. CYLD expression was found to be significantly suppressed in primary T-ALL. Finally, we demonstrate that IKK inhibition is a promising option for the targeted therapy of T-ALL as specific suppression of IKK expression and function affected both the survival of human T-ALL cells and the maintenance of the disease in vivo. PMID:20832754

  17. The Notch/Hes1 pathway sustains NF-κB activation through CYLD repression in T cell leukemia.

    PubMed

    Espinosa, Lluis; Cathelin, Severine; D'Altri, Teresa; Trimarchi, Thomas; Statnikov, Alexander; Guiu, Jordi; Rodilla, Veronica; Inglés-Esteve, Julia; Nomdedeu, Josep; Bellosillo, Beatriz; Besses, Carles; Abdel-Wahab, Omar; Kucine, Nicole; Sun, Shao-Cong; Song, Guangchan; Mullighan, Charles C; Levine, Ross L; Rajewsky, Klaus; Aifantis, Iannis; Bigas, Anna

    2010-09-14

    It was previously shown that the NF-κB pathway is downstream of oncogenic Notch1 in T cell acute lymphoblastic leukemia (T-ALL). Here, we visualize Notch-induced NF-κB activation using both human T-ALL cell lines and animal models. We demonstrate that Hes1, a canonical Notch target and transcriptional repressor, is responsible for sustaining IKK activation in T-ALL. Hes1 exerts its effects by repressing the deubiquitinase CYLD, a negative IKK complex regulator. CYLD expression was found to be significantly suppressed in primary T-ALL. Finally, we demonstrate that IKK inhibition is a promising option for the targeted therapy of T-ALL as specific suppression of IKK expression and function affected both the survival of human T-ALL cells and the maintenance of the disease in vivo. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. The human T-cell leukemia virus type 1 p13II protein: effects on mitochondrial function and cell growth

    PubMed Central

    D’Agostino, DM; Silic-Benussi, M; Hiraragi, H; Lairmore, MD; Ciminale, V

    2011-01-01

    p13II of human T-cell leukemia virus type 1 (HTLV-1) is an 87-amino-acid protein that is targeted to the inner mitochondrial membrane. p13II alters mitochondrial membrane permeability, producing a rapid, membrane potential-dependent influx of K+. These changes result in increased mitochondrial matrix volume and fragmentation and may lead to depolarization and alterations in mitochondrial Ca2+ uptake/retention capacity. At the cellular level, p13II has been found to interfere with cell proliferation and transformation and to promote apoptosis induced by ceramide and Fas ligand. Assays carried out in T cells (the major targets of HTLV-1 infection in vivo) demonstrate that p13II-mediated sensitization to Fas ligand-induced apoptosis can be blocked by an inhibitor of Ras farnesylation, thus implicating Ras signaling as a downstream target of p13II function. PMID:15761473

  19. In-depth characterization of the microRNA transcriptome in a leukemia progression model

    PubMed Central

    Kuchenbauer, Florian; Morin, Ryan D.; Argiropoulos, Bob; Petriv, Oleh I.; Griffith, Malachi; Heuser, Michael; Yung, Eric; Piper, Jessica; Delaney, Allen; Prabhu, Anna-Liisa; Zhao, Yongjun; McDonald, Helen; Zeng, Thomas; Hirst, Martin; Hansen, Carl L.; Marra, Marco A.; Humphries, R. Keith

    2008-01-01

    MicroRNAs (miRNAs) have been shown to play important roles in physiological as well as multiple malignant processes, including acute myeloid leukemia (AML). In an effort to gain further insight into the role of miRNAs in AML, we have applied the Illumina massively parallel sequencing platform to carry out an in-depth analysis of the miRNA transcriptome in a murine leukemia progression model. This model simulates the stepwise conversion of a myeloid progenitor cell by an engineered overexpression of the nucleoporin 98 (NUP98)–homeobox HOXD13 fusion gene (ND13), to aggressive AML inducing cells upon transduction with the oncogenic collaborator Meis1. From this data set, we identified 307 miRNA/miRNA* species in the ND13 cells and 306 miRNA/miRNA* species in ND13+Meis1 cells, corresponding to 223 and 219 miRNA genes. Sequence counts varied between two and 136,558, indicating a remarkable expression range between the detected miRNA species. The large number of miRNAs expressed and the nature of differential expression suggest that leukemic progression as modeled here is dictated by the repertoire of shared, but differentially expressed miRNAs. Our finding of extensive sequence variations (isomiRs) for almost all miRNA and miRNA* species adds additional complexity to the miRNA transcriptome. A stringent target prediction analysis coupled with in vitro target validation revealed the potential for miRNA-mediated release of oncogenes that facilitates leukemic progression from the preleukemic to leukemia inducing state. Finally, 55 novel miRNAs species were identified in our data set, adding further complexity to the emerging world of small RNAs. PMID:18849523

  20. In silico Analysis of 3′-End-Processing Signals in Aspergillus oryzae Using Expressed Sequence Tags and Genomic Sequencing Data

    PubMed Central

    Tanaka, Mizuki; Sakai, Yoshifumi; Yamada, Osamu; Shintani, Takahiro; Gomi, Katsuya

    2011-01-01

    To investigate 3′-end-processing signals in Aspergillus oryzae, we created a nucleotide sequence data set of the 3′-untranslated region (3′ UTR) plus 100 nucleotides (nt) sequence downstream of the poly(A) site using A. oryzae expressed sequence tags and genomic sequencing data. This data set comprised 1065 sequences derived from 1042 unique genes. The average 3′ UTR length in A. oryzae was 241 nt, which is greater than that in yeast but similar to that in plants. The 3′ UTR and 100 nt sequence downstream of the poly(A) site is notably U-rich, while the region located 15–30 nt upstream of the poly(A) site is markedly A-rich. The most frequently found hexanucleotide in this A-rich region is AAUGAA, although this sequence accounts for only 6% of all transcripts. These data suggested that A. oryzae has no highly conserved sequence element equivalent to AAUAAA, a mammalian polyadenylation signal. We identified that putative 3′-end-processing signals in A. oryzae, while less well conserved than those in mammals, comprised four sequence elements: the furthest upstream U-rich element, A-rich sequence, cleavage site, and downstream U-rich element flanking the cleavage site. Although these putative 3′-end-processing signals are similar to those in yeast and plants, some notable differences exist between them. PMID:21586533

  1. On the phylogenetic placement of human T cell leukemia virus type 1 sequences associated with an Andean mummy.

    PubMed

    Coulthart, Michael B; Posada, David; Crandall, Keith A; Dekaban, Gregory A

    2006-03-01

    Recently, the putative finding of ancient human T cell leukemia virus type 1 (HTLV-1) long terminal repeat (LTR) DNA sequences in association with a 1500-year-old Chilean mummy has stirred vigorous debate. The debate is based partly on the inherent uncertainties associated with phylogenetic reconstruction when only short sequences of closely related genotypes are available. However, a full analysis of what phylogenetic information is present in the mummy data has not previously been published, leaving open the question of what precisely is the range of admissible interpretation. To fulfill this need, we re-analyzed the mummy data in a new way. We first performed phylogenetic analysis of 188 published LTR DNA sequences from extant strains belonging to the HTLV-1 Cosmopolitan clade, using the method of statistical parsimony which is designed both to optimize phylogenetic resolution among sequences with little evolutionary divergence, and to permit precise mapping of individual sequence mutations onto branches of a divergence network. We then deduced possible phylogenetic positions for the two main categories of published Chilean mummy sequences, based on their published 157-nucleotide LTR sequences. The possible phylogenetic placements for one of the mummy sequence categories are consistent with a modern origin. However, one of these placements for the other mummy sequence category falls very close to the root of the Cosmopolitan clade, consistent with an ancient origin for both this mummy sequence and the Cosmopolitan clade.

  2. Identification of Homeotic Target Genes in Drosophila Melanogaster Including Nervy, a Proto-Oncogene Homologue

    PubMed Central

    Feinstein, P. G.; Kornfeld, K.; Hogness, D. S.; Mann, R. S.

    1995-01-01

    In Drosophila, the specific morphological characteristics of each segment are determined by the homeotic genes that regulate the expression of downstream target genes. We used a subtractive hybridization procedure to isolate activated target genes of the homeotic gene Ultrabithorax (Ubx). In addition, we constructed a set of mutant genotypes that measures the regulatory contribution of individual homeotic genes to a complex target gene expression pattern. Using these mutants, we demonstrate that homeotic genes can regulate target gene expression at the start of gastrulation, suggesting a previously unknown role for the homeotic genes at this early stage. We also show that, in abdominal segments, the levels of expression for two target genes increase in response to high levels of Ubx, demonstrating that the normal down-regulation of Ubx in these segments is functional. Finally, the DNA sequence of cDNAs for one of these genes predicts a protein that is similar to a human proto-oncogene involved in acute myeloid leukemias. These results illustrate potentially general rules about the homeotic control of target gene expression and suggest that subtractive hybridization can be used to isolate interesting homeotic target genes. PMID:7498738

  3. Functional and genetic screening of acute myeloid leukemia associated with mediastinal germ cell tumor identifies MEK inhibitor as an active clinical agent.

    PubMed

    Leonard, Jessica T; Raess, Philipp W; Dunlap, Jennifer; Hayes-Lattin, Brandon; Tyner, Jeffrey W; Traer, Elie

    2016-03-31

    Hematologic malignancies arising in the setting of established germ cell tumors have been previously described and have a dismal prognosis. Identification of targetable mutations and pathway dysregulation through massively parallel sequencing and functional assays provides new approaches to disease management. Herein, we report the case of a 23-year-old male who was diagnosed with a mediastinal germ cell tumor and subsequent acute myeloid leukemia. A shared clonal origin was demonstrated through identification of identical NRAS and TP53 somatic mutations in both malignancies. The patient's leukemia was refractory to standard therapies with short interval relapse. Functional assays demonstrated the patient's blasts to be sensitive to the mitogen-activated protein kinase kinase (MEK) inhibitor trametinib, correlating with the activating NRAS mutation. The patient experienced a sustained partial remission while on trametinib therapy but ultimately suffered relapse of the germ cell tumor. The leukemic clone remained stable and sensitive to trametinib at that time. This case highlights the potential power of combining genetic sequencing and in vitro functional assays with targeted therapies in the treatment of rare diseases.

  4. Concise review: preleukemic stem cells: molecular biology and clinical implications of the precursors to leukemia stem cells.

    PubMed

    Pandolfi, Ashley; Barreyro, Laura; Steidl, Ulrich

    2013-02-01

    Recent experimental evidence has shown that acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) arise from transformed immature hematopoietic cells following the accumulation of multiple stepwise genetic and epigenetic changes in hematopoietic stem cells and committed progenitors. The series of transforming events initially gives rise to preleukemic stem cells (pre-LSC), preceding the formation of fully transformed leukemia stem cells (LSC). Despite the established use of poly-chemotherapy, relapse continues to be the most common cause of death in AML and MDS. The therapeutic elimination of all LSC, as well as pre-LSC, which provide a silent reservoir for the re-formation of LSC, will be essential for achieving lasting cures. Conventional sequencing and next-generation genome sequencing have allowed us to describe many of the recurrent mutations in the bulk cell populations in AML and MDS, and recent work has also focused on identifying the initial molecular changes contributing to leukemogenesis. Here we review recent and ongoing advances in understanding the roles of pre-LSC, and the aberrations that lead to pre-LSC formation and subsequent LSC transformation.

  5. Integrative analysis of RUNX1 downstream pathways and target genes

    PubMed Central

    Michaud, Joëlle; Simpson, Ken M; Escher, Robert; Buchet-Poyau, Karine; Beissbarth, Tim; Carmichael, Catherine; Ritchie, Matthew E; Schütz, Frédéric; Cannon, Ping; Liu, Marjorie; Shen, Xiaofeng; Ito, Yoshiaki; Raskind, Wendy H; Horwitz, Marshall S; Osato, Motomi; Turner, David R; Speed, Terence P; Kavallaris, Maria; Smyth, Gordon K; Scott, Hamish S

    2008-01-01

    Background The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML). The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. Results Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1) cell lines with RUNX1 mutations from FPD-AML patients, 2) over-expression of RUNX1 and CBFβ, and 3) Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes) significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBFβ. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. Conclusion This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease progression in both familial and sporadic leukemia as well as therapeutic implications. PMID:18671852

  6. Characterization of leukemias with ETV6-ABL1 fusion

    PubMed Central

    Zaliova, Marketa; Moorman, Anthony V.; Cazzaniga, Giovanni; Stanulla, Martin; Harvey, Richard C.; Roberts, Kathryn G.; Heatley, Sue L.; Loh, Mignon L.; Konopleva, Marina; Chen, I-Ming; Zimmermannova, Olga; Schwab, Claire; Smith, Owen; Mozziconacci, Marie-Joelle; Chabannon, Christian; Kim, Myungshin; Frederik Falkenburg, J. H.; Norton, Alice; Marshall, Karen; Haas, Oskar A.; Starkova, Julia; Stuchly, Jan; Hunger, Stephen P.; White, Deborah; Mullighan, Charles G.; Willman, Cheryl L.; Stary, Jan; Trka, Jan; Zuna, Jan

    2016-01-01

    To characterize the incidence, clinical features and genetics of ETV6-ABL1 leukemias, representing targetable kinase-activating lesions, we analyzed 44 new and published cases of ETV6-ABL1-positive hematologic malignancies [22 cases of acute lymphoblastic leukemia (13 children, 9 adults) and 22 myeloid malignancies (18 myeloproliferative neoplasms, 4 acute myeloid leukemias)]. The presence of the ETV6-ABL1 fusion was ascertained by cytogenetics, fluorescence in-situ hybridization, reverse transcriptase-polymerase chain reaction and RNA sequencing. Genomic and gene expression profiling was performed by single nucleotide polymorphism and expression arrays. Systematic screening of more than 4,500 cases revealed that in acute lymphoblastic leukemia ETV6-ABL1 is rare in childhood (0.17% cases) and slightly more common in adults (0.38%). There is no systematic screening of myeloproliferative neoplasms; however, the number of ETV6-ABL1-positive cases and the relative incidence of acute lymphoblastic leukemia and myeloproliferative neoplasms suggest that in adulthood ETV6-ABL1 is more common in BCR-ABL1-negative chronic myeloid leukemia-like myeloproliferations than in acute lymphoblastic leukemia. The genomic profile of ETV6-ABL1 acute lymphoblastic leukemia resembled that of BCR-ABL1 and BCR-ABL1-like cases with 80% of patients having concurrent CDKN2A/B and IKZF1 deletions. In the gene expression profiling all the ETV6-ABL1-positive samples clustered in close vicinity to BCR-ABL1 cases. All but one of the cases of ETV6-ABL1 acute lymphoblastic leukemia were classified as BCR-ABL1-like by a standardized assay. Over 60% of patients died, irrespectively of the disease or age subgroup examined. In conclusion, ETV6-ABL1 fusion occurs in both lymphoid and myeloid leukemias; the genomic profile and clinical behavior resemble BCR-ABL1-positive malignancies, including the unfavorable prognosis, particularly of acute leukemias. The poor outcome suggests that treatment with tyrosine kinase inhibitors should be considered for patients with this fusion. PMID:27229714

  7. Discovery of a BTK/MNK dual inhibitor for lymphoma and leukemia.

    PubMed

    Wu, H; Hu, C; Wang, A; Weisberg, E L; Chen, Y; Yun, C-H; Wang, W; Liu, Y; Liu, X; Tian, B; Wang, J; Zhao, Z; Liang, Y; Li, B; Wang, L; Wang, B; Chen, C; Buhrlage, S J; Qi, Z; Zou, F; Nonami, A; Li, Y; Fernandes, S M; Adamia, S; Stone, R M; Galinsky, I A; Wang, X; Yang, G; Griffin, J D; Brown, J R; Eck, M J; Liu, J; Gray, N S; Liu, Q

    2016-01-01

    Bruton's tyrosine kinase (BTK) kinase is a member of the TEC kinase family and is a key regulator of the B-cell receptor (BCR)-mediated signaling pathway. It is important for B-cell maturation, proliferation, survival and metastasis. Pharmacological inhibition of BTK is clinically effective against a variety of B-cell malignances, such as mantle cell lymphoma, chronic lymphocytic leukemia (CLL), acute myeloid leukemia (AML) and activated B-cell-diffuse large B-cell lymphoma. MNK kinase is one of the key downstream regulators in the RAF-MEK-ERK signaling pathway and controls protein synthesis via regulating the activity of eIF4E. Inhibition of MNK activity has been observed to moderately inhibit the proliferation of AML cells. Through a structure-based drug-design approach, we have discovered a selective and potent BTK/MNK dual kinase inhibitor (QL-X-138), which exhibits covalent binding to BTK and noncovalent binding to MNK. Compared with the BTK kinase inhibitor (PCI-32765) and the MNK kinase inhibitor (cercosporamide), QL-X-138 enhanced the antiproliferative efficacies in vitro against a variety of B-cell cancer cell lines, as well as AML and CLL primary patient cells, which respond moderately to BTK inhibitor in vitro. The agent can effectively arrest the growth of lymphoma and leukemia cells at the G0-G1 stage and can induce strong apoptotic cell death. These primary results demonstrate that simultaneous inhibition of BTK and MNK kinase activity might be a new therapeutic strategy for B-cell malignances.

  8. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study

    PubMed Central

    Stubbs, Andrew P.; Vroegindeweij, Eric M.; Smits, Willem K.; van Marion, Ronald; Dinjens, Winand N. M.; Horstmann, Martin; Kuiper, Roland P.; Zaman, Guido J. R.; van der Spek, Peter J.; Pieters, Rob; Meijerink, Jules P. P.

    2016-01-01

    Background Pediatric acute lymphoblastic leukemia (ALL) is the most common childhood cancer and the leading cause of cancer-related mortality in children. T cell ALL (T-ALL) represents about 15% of pediatric ALL cases and is considered a high-risk disease. T-ALL is often associated with resistance to treatment, including steroids, which are currently the cornerstone for treating ALL; moreover, initial steroid response strongly predicts survival and cure. However, the cellular mechanisms underlying steroid resistance in T-ALL patients are poorly understood. In this study, we combined various genomic datasets in order to identify candidate genetic mechanisms underlying steroid resistance in children undergoing T-ALL treatment. Methods and Findings We performed whole genome sequencing on paired pre-treatment (diagnostic) and post-treatment (remission) samples from 13 patients, and targeted exome sequencing of pre-treatment samples from 69 additional T-ALL patients. We then integrated mutation data with copy number data for 151 mutated genes, and this integrated dataset was tested for associations of mutations with clinical outcomes and in vitro drug response. Our analysis revealed that mutations in JAK1 and KRAS, two genes encoding components of the interleukin 7 receptor (IL7R) signaling pathway, were associated with steroid resistance and poor outcome. We then sequenced JAK1, KRAS, and other genes in this pathway, including IL7R, JAK3, NF1, NRAS, and AKT, in these 69 T-ALL patients and a further 77 T-ALL patients. We identified mutations in 32% (47/146) of patients, the majority of whom had a specific T-ALL subtype (early thymic progenitor ALL or TLX). Based on the outcomes of these patients and their prednisolone responsiveness measured in vitro, we then confirmed that these mutations were associated with both steroid resistance and poor outcome. To explore how these mutations in IL7R signaling pathway genes cause steroid resistance and subsequent poor outcome, we expressed wild-type and mutant IL7R signaling molecules in two steroid-sensitive T-ALL cell lines (SUPT1 and P12 Ichikawa cells) using inducible lentiviral expression constructs. We found that expressing mutant IL7R, JAK1, or NRAS, or wild-type NRAS or AKT, specifically induced steroid resistance without affecting sensitivity to vincristine or L-asparaginase. In contrast, wild-type IL7R, JAK1, and JAK3, as well as mutant JAK3 and mutant AKT, had no effect. We then performed a functional study to examine the mechanisms underlying steroid resistance and found that, rather than changing the steroid receptor’s ability to activate downstream targets, steroid resistance was associated with strong activation of MEK-ERK and AKT, downstream components of the IL7R signaling pathway, thereby inducing a robust antiapoptotic response by upregulating MCL1 and BCLXL expression. Both the MEK-ERK and AKT pathways also inactivate BIM, an essential molecule for steroid-induced cell death, and inhibit GSK3B, an important regulator of proapoptotic BIM. Importantly, treating our cell lines with IL7R signaling inhibitors restored steroid sensitivity. To address clinical relevance, we treated primary T-ALL cells obtained from 11 patients with steroids either alone or in combination with IL7R signaling inhibitors; we found that including a MEK, AKT, mTOR, or dual PI3K/mTOR inhibitor strongly increased steroid-induced cell death. Therefore, combining these inhibitors with steroid treatment may enhance steroid sensitivity in patients with ALL. The main limitation of our study was the modest cohort size, owing to the very low incidence of T-ALL. Conclusions Using an unbiased sequencing approach, we found that specific mutations in IL7R signaling molecules underlie steroid resistance in T-ALL. Future prospective clinical studies should test the ability of inhibitors of MEK, AKT, mTOR, or PI3K/mTOR to restore or enhance steroid sensitivity and improve clinical outcome. PMID:27997540

  9. Frequencies and prognostic impact of RAS mutations in MLL-rearranged acute lymphoblastic leukemia in infants

    PubMed Central

    Driessen, Emma M.C.; van Roon, Eddy H.J.; Spijkers-Hagelstein, Jill A.P.; Schneider, Pauline; de Lorenzo, Paola; Valsecchi, Maria Grazia; Pieters, Rob; Stam, Ronald W.

    2013-01-01

    Acute lymphoblastic leukemia in infants represents an aggressive malignancy associated with a high incidence (approx. 80%) of translocations involving the Mixed Lineage Leukemia (MLL) gene. Attempts to mimic Mixed Lineage Leukemia fusion driven leukemogenesis in mice raised the question whether these fusion proteins require secondary hits. RAS mutations are suggested as candidates. Earlier results on the incidence of RAS mutations in Mixed Lineage Leukemia-rearranged acute lymphoblastic leukemia are inconclusive. Therefore, we studied frequencies and relation with clinical parameters of RAS mutations in a large cohort of infant acute lymphoblastic leukemia patients. Using conventional sequencing analysis, we screened neuroblastoma RAS viral (v-ras) oncogene homolog gene (NRAS), v-Ki-ras Kirsten rat sarcoma viral oncogene homolog gene (KRAS), and v-raf murine sarcoma viral oncogene homolog B1 gene (BRAF) for mutations in a large cohort (n=109) of infant acute lymphoblastic leukemia patients and studied the mutations in relation to several clinical parameters, and in relation to Homeobox gene A9 expression and the presence of ALL1 fused gene 4-Mixed Lineage Leukemia (AF4-MLL). Mutations were detected in approximately 14% of all cases, with a higher frequency of approximately 24% in t(4;11)-positive patients (P=0.04). Furthermore, we identified RAS mutations as an independent predictor (P=0.019) for poor outcome in Mixed Lineage Leukemia-rearranged infant acute lymphoblastic leukemia, with a hazard ratio of 3.194 (95% confidence interval (CI):1.211–8.429). Also, RAS-mutated infants have higher white blood cell counts at diagnosis (P=0.013), and are more resistant to glucocorticoids in vitro (P<0.05). Finally, we demonstrate that RAS mutations, and not the lack of Homeobox gene A9 expression nor the expression of AF4-MLL are associated with poor outcome in t(4;11)-rearranged infants. We conclude that the presence of RAS mutations in Mixed Lineage Leukemia-rearranged infant acute lymphoblastic leukemia is an independent predictor for a poor outcome. Therefore, future risk-stratification based on abnormal RAS-pathway activation and RAS-pathway inhibition could be beneficial in RAS-mutated infant acute lymphoblastic leukemia patients. PMID:23403319

  10. Bifunctional nanoparticles for surface-enhanced Raman spectroscopy-based leukemia biomarker detection

    NASA Astrophysics Data System (ADS)

    Mehn, Dora; Morasso, Carlo; Vanna, Renzo; Schiumarini, Domitilla; Bedoni, Marzia; Ciceri, Fabio; Gramatica, Furio

    2014-03-01

    The Wilms tumor gene (WT1) is a biomarker overexpressed in more than 90% of acute myeloid leukemia patients. Fast and sensitive detection of the WT1 in blood samples would allow monitoring of the minimal residual disease during clinical remission and would permit early detection of a potential relapse in acute myeloid leukemia. In this work, Surface Enhanced Raman Spectroscopy (SERS) based detection of the WT1 sequence using bifunctional, magnetic core - gold shell nanoparticles is presented. The classical co-precipitation method was applied to generate magnetic nanoparticles which were coated with a gold shell after modification with aminopropyltriethoxy silane and subsequent deposition of gold nanoparticle seeds. Simple hydroquinone based reduction procedure was applied for the shell growing in water based reaction mixture at room temperature. Thiolated ssDNA probes of the WT1 sequence were immobilized as capture oligonucleotides on the gold surface. Malachite green was applied both for testing the amplification performance of the core-shell colloidal SERS substrate and also as label dye of the target DNA sequence. The SERS enhancer efficacy of the core-shell nanomaterial was compared with the efficacy of classical spherical gold particles produced using the conventional citrate reduction method. The core-shell particles were found not only to provide an opportunity for facile separation in a heterogeneous reaction system but also to be superior regarding robustness as SERS enhancers.

  11. Genomic complexity and dynamics of clonal evolution in childhood acute myeloid leukemia studied with whole-exome sequencing.

    PubMed

    Masetti, Riccardo; Castelli, Ilaria; Astolfi, Annalisa; Bertuccio, Salvatore Nicola; Indio, Valentina; Togni, Marco; Belotti, Tamara; Serravalle, Salvatore; Tarantino, Giuseppe; Zecca, Marco; Pigazzi, Martina; Basso, Giuseppe; Pession, Andrea; Locatelli, Franco

    2016-08-30

    Despite significant improvement in treatment of childhood acute myeloid leukemia (AML), 30% of patients experience disease recurrence, which is still the major cause of treatment failure and death in these patients. To investigate molecular mechanisms underlying relapse, we performed whole-exome sequencing of diagnosis-relapse pairs and matched remission samples from 4 pediatric AML patients without recurrent cytogenetic alterations. Candidate driver mutations were selected for targeted deep sequencing at high coverage, suitable to detect small subclones (0.12%). BiCEBPα mutation was found to be stable and highly penetrant, representing a separate biological and clinical entity, unlike WT1 mutations, which were extremely unstable. Among the mutational patterns underlying relapse, we detected the acquisition of proliferative advantage by signaling activation (PTPN11 and FLT3-TKD mutations) and the increased resistance to apoptosis (hyperactivation of TYK2). We also found a previously undescribed feature of AML, consisting of a hypermutator phenotype caused by SETD2 inactivation. The consequent accumulation of new mutations promotes the adaptability of the leukemia, contributing to clonal selection. We report a novel ASXL3 mutation characterizing a very small subclone (<1%) present at diagnosis and undergoing expansion (60%) at relapse. Taken together, these findings provide molecular clues for designing optimal therapeutic strategies, in terms of target selection, adequate schedule design and reliable response-monitoring techniques.

  12. Mutations in epigenetic regulators are involved in acute lymphoblastic leukemia relapse following allogeneic hematopoietic stem cell transplantation.

    PubMed

    Xiao, Haowen; Wang, Li-Mengmeng; Luo, Yi; Lai, Xiaoyu; Li, Caihua; Shi, Jimin; Tan, Yamin; Fu, Shan; Wang, Yebo; Zhu, Ni; He, Jingsong; Zheng, Weiyan; Yu, Xiaohong; Cai, Zhen; Huang, He

    2016-01-19

    Although steady improvements to chemotherapeutic treatments has helped cure 80% of childhood acute lymphoblastic leukemia (ALL) cases, chemotherapy has proven to be less effective in treating the majority of adult patients, leaving allogeneic hematopoietic stem cell transplantation (allo-HSCT) as the primary adult treatment option. Nevertheless relapse are the leading cause of death following allo-HSCT. The genetic pathogenesis of relapse following allo-HSCT in Philadelphia chromosome- negative ALL (Ph- ALL) remains unexplored. We performed longitudinal whole-exome sequencing analysis in three adult patients with Ph- B-cell ALL (Ph- B-ALL) on samples collected from diagnosis to relapse after allo-HSCT. Based on these data, we performed target gene sequencing on 23 selected genes in 58 adult patients undergoing allo-HSCT with Ph- B-ALL. Our results revealed a significant enrichment of mutations in epigenetic regulators from relapsed samples, with recurrent somatic mutations in SETD2, CREBBP, KDM6A and NR3C1. The relapsed samples were also enriched in signaling factor mutations, including KRAS, PTPN21, MYC and USP54. Furthermore, we are the first to reveal the clonal evolution patterns during leukemia relapse after allo-HSCT. Cells present in relapsed specimens were genetically related to the diagnosed tumor, these cells therefore arose from either an existing subclone that was not eradicated by allo-HSCT therapy, or from the same progenitor that acquired new mutations. In some cases, however, it is possible that leukemia recurrence following allo-HSCT could result from a secondary malignancy with a distinct set of mutations. We identified novel genetic causes of leukemia relapse after allo-HSCT using the largest generated data set to date from adult patients with Ph- B-ALL.

  13. Mutations in epigenetic regulators are involved in acute lymphoblastic leukemia relapse following allogeneic hematopoietic stem cell transplantation

    PubMed Central

    Lai, Xiaoyu; Li, Caihua; Shi, Jimin; Tan, Yamin; Fu, Shan; Wang, Yebo; Zhu, Ni; He, Jingsong; Zheng, Weiyan; Yu, Xiaohong; Cai, Zhen; Huang, He

    2016-01-01

    Although steady improvements to chemotherapeutic treatments has helped cure 80% of childhood acute lymphoblastic leukemia (ALL) cases, chemotherapy has proven to be less effective in treating the majority of adult patients, leaving allogeneic hematopoietic stem cell transplantation (allo-HSCT) as the primary adult treatment option. Nevertheless relapse are the leading cause of death following allo-HSCT. The genetic pathogenesis of relapse following allo-HSCT in Philadelphia chromosome- negative ALL (Ph− ALL) remains unexplored. We performed longitudinal whole-exome sequencing analysis in three adult patients with Ph− B-cell ALL (Ph− B-ALL) on samples collected from diagnosis to relapse after allo-HSCT. Based on these data, we performed target gene sequencing on 23 selected genes in 58 adult patients undergoing allo-HSCT with Ph− B-ALL. Our results revealed a significant enrichment of mutations in epigenetic regulators from relapsed samples, with recurrent somatic mutations in SETD2, CREBBP, KDM6A and NR3C1. The relapsed samples were also enriched in signaling factor mutations, including KRAS, PTPN21, MYC and USP54. Furthermore, we are the first to reveal the clonal evolution patterns during leukemia relapse after allo-HSCT. Cells present in relapsed specimens were genetically related to the diagnosed tumor, these cells therefore arose from either an existing subclone that was not eradicated by allo-HSCT therapy, or from the same progenitor that acquired new mutations. In some cases, however, it is possible that leukemia recurrence following allo-HSCT could result from a secondary malignancy with a distinct set of mutations. We identified novel genetic causes of leukemia relapse after allo-HSCT using the largest generated data set to date from adult patients with Ph− B-ALL. PMID:26527318

  14. The fast changing landscape of sequencing technologies and their impact on microbial genome assemblies and annotation.

    PubMed

    Mavromatis, Konstantinos; Land, Miriam L; Brettin, Thomas S; Quest, Daniel J; Copeland, Alex; Clum, Alicia; Goodwin, Lynne; Woyke, Tanja; Lapidus, Alla; Klenk, Hans Peter; Cottingham, Robert W; Kyrpides, Nikos C

    2012-01-01

    The emergence of next generation sequencing (NGS) has provided the means for rapid and high throughput sequencing and data generation at low cost, while concomitantly creating a new set of challenges. The number of available assembled microbial genomes continues to grow rapidly and their quality reflects the quality of the sequencing technology used, but also of the analysis software employed for assembly and annotation. In this work, we have explored the quality of the microbial draft genomes across various sequencing technologies. We have compared the draft and finished assemblies of 133 microbial genomes sequenced at the Department of Energy-Joint Genome Institute and finished at the Los Alamos National Laboratory using a variety of combinations of sequencing technologies, reflecting the transition of the institute from Sanger-based sequencing platforms to NGS platforms. The quality of the public assemblies and of the associated gene annotations was evaluated using various metrics. Results obtained with the different sequencing technologies, as well as their effects on downstream processes, were analyzed. Our results demonstrate that the Illumina HiSeq 2000 sequencing system, the primary sequencing technology currently used for de novo genome sequencing and assembly at JGI, has various advantages in terms of total sequence throughput and cost, but it also introduces challenges for the downstream analyses. In all cases assembly results although on average are of high quality, need to be viewed critically and consider sources of errors in them prior to analysis. These data follow the evolution of microbial sequencing and downstream processing at the JGI from draft genome sequences with large gaps corresponding to missing genes of significant biological role to assemblies with multiple small gaps (Illumina) and finally to assemblies that generate almost complete genomes (Illumina+PacBio).

  15. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions | Office of Cancer Genomics

    Cancer.gov

    We present the molecular landscape of pediatric acute myeloid leukemia (AML) and characterize nearly 1,000 participants in Children’s Oncology Group (COG) AML trials. The COG–National Cancer Institute (NCI) TARGET AML initiative assessed cases by whole-genome, targeted DNA, mRNA and microRNA sequencing and CpG methylation profiling. Validated DNA variants corresponded to diverse, infrequent mutations, with fewer than 40 genes mutated in >2% of cases.

  16. Structure of a gene encoding a murine thymus leukemia antigen, and organization of Tla genes in the BALB/c mouse

    PubMed Central

    1985-01-01

    We have determined the DNA sequence of a gene encoding a thymus leukemia (TL) antigen in the BALB/c mouse, and have more definitively mapped the cloned BALB/c Tla-region class I gene clusters. Analysis of the sequence shows that the Tla gene is less closely related to the H-2 genes than H-2 genes are to one another or to a Qa-2,3-region genes. The Tla gene, 17.3A, contains an apparent gene conversion. Comparison of the BALB/c Tla genes with those from C57BL shows that BALB/c has more Tla-region class I genes, and that one of the genes absent in C57BL is gene 17.3A. PMID:3894562

  17. Mouse chromosomal mapping of a murine leukemia virus integration region (Mis-1) first identified in rat thymic leukemia.

    PubMed Central

    Jolicoeur, P; Villeneuve, L; Rassart, E; Kozak, C

    1985-01-01

    We have previously identified a region of genomic DNA which constitutes the site of frequent provirus integration in rat thymomas induced by Moloney murine leukemia virus (Lemay and Jolicoeur, Proc. Natl. Acad. Sci. USA 81:38-42, 1984). This genetic locus is now designated Mis-1 (Moloney integration site). Cellular sequences homologous to Mis-1 are present in mouse DNA. Using a series of hamster-mouse somatic cell hybrids, we mapped the Mis-1 locus to mouse chromosome 15. Frequent chromosome 15 aberrations have been described in mouse thymomas. Mis-1 represents a putative new oncogene which might be involved in the initiation or maintenance or both of these neoplasms. Images PMID:4068142

  18. Acute myeloid leukemia presenting with panhypopituitarism or diabetes insipidus: a case series with molecular genetic analysis and review of the literature.

    PubMed

    Cull, Elizabeth H; Watts, Justin M; Tallman, Martin S; Kopp, Peter; Frattini, Mark; Rapaport, Franck; Rampal, Raajit; Levine, Ross; Altman, Jessica K

    2014-09-01

    Central diabetes insipidus (DI) is a rare finding in patients with acute myeloid leukemia (AML), usually occurring in patients with chromosome 3 or 7 abnormalities. We describe four patients with AML and concurrent DI and a fifth patient with AML and panhypopituitarism. Four of five patients had monosomy 7. Three patients had chromosome 3q21q26/EVI-1 gene rearrangements. The molecular genotype of patients with AML and DI is not known. Therefore, we performed gene sequencing of 30 genes commonly mutated in AML in three patients with available leukemia cell DNA. One patient had no identifiable mutations, and two had RUNX1 F158S mutations.

  19. Repression of BIM mediates survival signaling by MYC and AKT in high-risk T-cell acute lymphoblastic leukemia.

    PubMed

    Reynolds, C; Roderick, J E; LaBelle, J L; Bird, G; Mathieu, R; Bodaar, K; Colon, D; Pyati, U; Stevenson, K E; Qi, J; Harris, M; Silverman, L B; Sallan, S E; Bradner, J E; Neuberg, D S; Look, A T; Walensky, L D; Kelliher, M A; Gutierrez, A

    2014-09-01

    Treatment resistance in T-cell acute lymphoblastic leukemia (T-ALL) is associated with phosphatase and tensin homolog (PTEN) deletions and resultant phosphatidylinositol 3'-kinase (PI3K)-AKT pathway activation, as well as MYC overexpression, and these pathways repress mitochondrial apoptosis in established T-lymphoblasts through poorly defined mechanisms. Normal T-cell progenitors are hypersensitive to mitochondrial apoptosis, a phenotype that is dependent on the expression of proapoptotic BIM. In a conditional zebrafish model, MYC downregulation induced BIM expression in T-lymphoblasts, an effect that was blunted by expression of constitutively active AKT. In human T-ALL cell lines and treatment-resistant patient samples, treatment with MYC or PI3K-AKT pathway inhibitors each induced BIM upregulation and apoptosis, indicating that BIM is repressed downstream of MYC and PI3K-AKT in high-risk T-ALL. Restoring BIM function in human T-ALL cells using a stapled peptide mimetic of the BIM BH3 domain had therapeutic activity, indicating that BIM repression is required for T-ALL viability. In the zebrafish model, where MYC downregulation induces T-ALL regression via mitochondrial apoptosis, T-ALL persisted despite MYC downregulation in 10% of bim wild-type zebrafish, 18% of bim heterozygotes and in 33% of bim homozygous mutants (P=0.017). We conclude that downregulation of BIM represents a key survival signal downstream of oncogenic MYC and PI3K-AKT signaling in treatment-resistant T-ALL.

  20. Role of NF-E2 related factor 2 (Nrf2) on chemotherapy resistance in acute myeloid leukemia (AML) and the effect of pharmacological inhibition of Nrf2.

    PubMed

    Karathedath, Sreeja; Rajamani, Bharathi M; Musheer Aalam, Syed Mohammed; Abraham, Ajay; Varatharajan, Savitha; Krishnamurthy, Partha; Mathews, Vikram; Velayudhan, Shaji Ramachandran; Balasubramanian, Poonkuzhali

    2017-01-01

    Cytarabine (Ara-C) and Daunorubicin (Dnr) forms the backbone of acute myeloid leukemia (AML) therapy. Drug resistance and toxic side effects pose a major threat to treatment success and hence alternate less toxic therapies are warranted. NF-E2 related factor-2 (Nrf2), a master regulator of antioxidant response is implicated in chemoresistance in solid tumors. However, little is known about the role of Nrf2 in AML chemoresistance and the effect of pharmacological inhibitor brusatol in modulating this resistance. Primary AML samples with high ex-vivo IC50 to Ara-C, ATO, Dnr had significantly high NRF2 RNA expression. Gene-specific knockdown of NRF2 improved sensitivity to these drugs in resistant AML cell lines by decreasing the expression of downstream antioxidant targets of Nrf2 by compromising the cell's ability to scavenge the ROS. Treatment with brusatol, a pharmacological inhibitor of Nrf2, improved sensitivity to Ara-C, ATO, and Dnr and reduced colony formation capacity. AML cell lines stably overexpressing NRF2 showed increased resistance to ATO, Dnr and Ara-C and increased expression of downstream targets. This study demonstrates that Nrf2 could be an ideal druggable target in AML, more so to the drugs that function through ROS, suggesting the possibility of using Nrf2 inhibitors in combination with chemotherapeutic agents to modulate drug resistance in AML.

  1. RSK2 is a new Pim2 target with pro-survival functions in FLT3-ITD-positive acute myeloid leukemia.

    PubMed

    Hospital, M-A; Jacquel, A; Mazed, F; Saland, E; Larrue, C; Mondesir, J; Birsen, R; Green, A S; Lambert, M; Sujobert, P; Gautier, E-F; Salnot, V; Le Gall, M; Decroocq, J; Poulain, L; Jacque, N; Fontenay, M; Kosmider, O; Récher, C; Auberger, P; Mayeux, P; Bouscary, D; Sarry, J-E; Tamburini, J

    2018-03-01

    Acute myeloid leukemia (AML) with the FLT3 internal tandem duplication (FLT3-ITD AML) accounts for 20-30% of AML cases. This subtype usually responds poorly to conventional therapies, and might become resistant to FLT3 tyrosine kinase inhibitors (TKIs) due to molecular bypass mechanisms. New therapeutic strategies focusing on resistance mechanisms are therefore urgently needed. Pim kinases are FLT3-ITD oncogenic targets that have been implicated in FLT3 TKI resistance. However, their precise biological function downstream of FLT3-ITD requires further investigation. We performed high-throughput transcriptomic and proteomic analyses in Pim2-depleted FLT3-ITD AML cells and found that Pim2 predominantly controlled apoptosis through Bax expression and mitochondria disruption. We identified ribosomal protein S6 kinase A3 (RSK2), a 90 kDa serine/threonine kinase involved in the mitogen-activated protein kinase cascade encoded by the RPS6KA3 gene, as a novel Pim2 target. Ectopic expression of an RPS6KA3 allele rescued the viability of Pim2-depleted cells, supporting the involvement of RSK2 in AML cell survival downstream of Pim2. Finally, we showed that RPS6KA3 knockdown reduced the propagation of human AML cells in vivo in mice. Our results point to RSK2 as a novel Pim2 target with translational therapeutic potential in FLT3-ITD AML.

  2. A MEK Inhibitor Abrogates Myeloproliferative Disease in Kras Mutant Mice

    PubMed Central

    Lyubynska, Natalya; Gorman, Matthew F.; Lauchle, Jennifer O.; Hong, Wan Xing; Akutagawa, Jon K.; Shannon, Kevin; Braun, Benjamin S.

    2012-01-01

    Chronic and juvenile myelomonocytic leukemias (CMML and JMML) are aggressive myeloproliferative neoplasms that are incurable with conventional chemotherapy. Mutations that deregulate Ras signaling play a central pathogenic role in both disorders, and Mx1-Cre, KrasLSL-G12D mice that express the Kras oncogene develop a fatal disease that closely mimics these two leukemias in humans. Activated Ras controls multiple downstream effectors, but the specific pathways that mediate the leukemogenic effects of hyperactive Ras are unknown. We used PD0325901, a highly selective pharmacological inhibitor of mitogen-activated protein kinase kinase (MEK), a downstream component of the Ras signaling network, to address how deregulated Raf/MEK/ERK signaling drives neoplasm formation in Mx1-Cre, KrasLSL-G12D mice. PD0325901 treatment induced a rapid and sustained reduction in leukocyte counts, enhanced erythropoiesis, prolonged mouse survival, and corrected the aberrant proliferation and differentiation of bone marrow progenitor cells. These responses were due to direct effects of PD0325901 on Kras mutant cells rather than to stimulation of normal hematopoietic cell proliferation. Consistent with the in vivo response, inhibition of MEK reversed the cytokine hypersensitivity characteristic of KrasG12D hematopoietic progenitor cells in vitro. Our data demonstrate that deregulated Raf/MEK/ERK signaling is integral to the growth of Kras-mediated myeloproliferative neoplasias, and further suggest that MEK inhibition could be a useful way to ameliorate functional hematologic abnormalities in patients with CMML and JMML. PMID:21451123

  3. Comprehensive discovery of noncoding RNAs in acute myeloid leukemia cell transcriptomes.

    PubMed

    Zhang, Jin; Griffith, Malachi; Miller, Christopher A; Griffith, Obi L; Spencer, David H; Walker, Jason R; Magrini, Vincent; McGrath, Sean D; Ly, Amy; Helton, Nichole M; Trissal, Maria; Link, Daniel C; Dang, Ha X; Larson, David E; Kulkarni, Shashikant; Cordes, Matthew G; Fronick, Catrina C; Fulton, Robert S; Klco, Jeffery M; Mardis, Elaine R; Ley, Timothy J; Wilson, Richard K; Maher, Christopher A

    2017-11-01

    To detect diverse and novel RNA species comprehensively, we compared deep small RNA and RNA sequencing (RNA-seq) methods applied to a primary acute myeloid leukemia (AML) sample. We were able to discover previously unannotated small RNAs using deep sequencing of a library method using broader insert size selection. We analyzed the long noncoding RNA (lncRNA) landscape in AML by comparing deep sequencing from multiple RNA-seq library construction methods for the sample that we studied and then integrating RNA-seq data from 179 AML cases. This identified lncRNAs that are completely novel, differentially expressed, and associated with specific AML subtypes. Our study revealed the complexity of the noncoding RNA transcriptome through a combined strategy of strand-specific small RNA and total RNA-seq. This dataset will serve as an invaluable resource for future RNA-based analyses. Copyright © 2017 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  4. Association Between Mutation Clearance After Induction Therapy and Outcomes in Acute Myeloid Leukemia

    PubMed Central

    Klco, Jeffery M.; Miller, Christopher A.; Griffith, Malachi; Petti, Allegra; Spencer, David H.; Ketkar-Kulkarni, Shamika; Wartman, Lukas D; Christopher, Matthew; Lamprecht, Tamara L.; Helton, Nicole M.; Duncavage, Eric J.; Payton, Jacqueline E.; Baty, Jack; Heath, Sharon E.; Griffith, Obi L.; Shen, Dong; Hundal, Jasreet; Chang, Gue Su; Fulton, Robert; O'Laughlin, Michelle; Fronick, Catrina; Magrini, Vincent; Demeter, Ryan T.; Larson, David E.; Kulkarni, Shashikant; Ozenberger, Bradley A.; Welch, John S; Walter, Matthew J; Graubert, Timothy A.; Westervelt, Peter; Radich, Jerald P.; Link, Daniel C.; Mardis, Elaine R.; DiPersio, John F.; Wilson, Richard K.; Ley, Timothy J.

    2015-01-01

    IMPORTANCE Tests that predict outcomes for patients with acute myeloid leukemia (AML) are imprecise, especially for those with intermediate risk AML. OBJECTIVES To determine whether genomic approaches can provide novel prognostic information for adult patients with de novo AML. DESIGN, SETTING, AND PARTICIPANTS Whole-genome or exome sequencing was performed on samples obtained at disease presentation from 71 patients with AML (mean age, 50.8 years) treated with standard induction chemotherapy at a single site starting in March 2002, with follow-up through January 2015. In addition, deep digital sequencing was performed on paired diagnosis and remission samples from 50 patients (including 32 with intermediate-risk AML), approximately 30 days after successful induction therapy. Twenty-five of the 50 were from the cohort of 71 patients, and 25 were new, additional cases. EXPOSURES Whole-genome or exome sequencing and targeted deep sequencing. Risk of identification based on genetic data. MAIN OUTCOMES AND MEASURES Mutation patterns (including clearance of leukemia-associated variants after chemotherapy) and their association with event-free survival and overall survival. RESULTS Analysis of comprehensive genomic data from the 71 patients did not improve outcome assessment over current standard-of-care metrics. In an analysis of 50 patients with both presentation and documented remission samples, 24 (48%) had persistent leukemia-associated mutations in at least 5%of bone marrow cells at remission. The 24 with persistent mutations had significantly reduced event-free and overall survival vs the 26 who cleared all mutations. Patients with intermediate cytogenetic risk profiles had similar findings. Digital Sequencing (n=50)Intermediate CytogeneticRisk Profile (n=32)PersistentMutations(n=24)ClearedMutations(n=26)HR(95% CI)PersistentMutations(n=14)ClearedMutations(n=18)HR(95% CI)Event-free survival,median (95% CI), mo6.0(3.7–9.6)17.9(11.3–40.4)3.67(1.93–7.11)8.8(3.7–14.6)25.6(11.4-notestimable)3.32(1.44–7.67)Overall survival,median (95% CI), mo10.5(7.5–22.2)42.2(20.6-notestimable)2.86(1.39–5.88)19.3(7.5–42.3)46.8(22.6-notestimable)2.88(1.11–7.45) CONCLUSIONS AND RELEVANCE The detection of persistent leukemia-associated mutations in at least 5%of bone marrow cells in day 30 remission samples was associated with a significantly increased risk of relapse, and reduced overall survival. These data suggest that this genomic approach may improve risk stratification for patients with AML. PMID:26305651

  5. Enhancing acute myeloid leukemia therapy - monitoring response using residual disease testing as a guide to therapeutic decision-making.

    PubMed

    Tomlinson, Benjamin; Lazarus, Hillard M

    2017-06-01

    Current standards for monitoring the response of acute myeloid leukemia (AML) are based on morphologic assessments of the bone marrow and recovery of peripheral blood counts. A growing experience is being developed to enhance the detection of small amounts of AML, or minimal residual disease (MRD). Areas covered: Available techniques include multi-color flow cytometry (MFC) of leukemia associated immunophenotypes (LAIP), quantitative reverse transcriptase polymerase chain reaction (QRT-PCR) for detecting fusion and mutated genes (RUNX1-RUNX1T1, CBFB-MYH11, and NPM1), overexpression of genes such as WT1, and next generation sequencing (NGS) for MRD. Expert commentary: While MRD monitoring is standard of care in some leukemia subsets such as acute promyelocytic leukemia, this approach for the broader AML population does not universally predict outcomes as some patients may experience relapse in the setting of undetectable leukemia while others show no obvious disease progression despite MRD positivity. However, there are instances where MRD can identify patients at increased risk for relapse that may change recommended therapy. Currently, prospective investigations to define clinically relevant MRD thresholds are ongoing. Risk-adapted trials are needed to best define the use of MRD in the follow up of AML patients after initial induction therapy.

  6. Interferon regulatory factor-1 binds c-Cbl, enhances mitogen activated protein kinase signaling and promotes retinoic acid-induced differentiation of HL-60 human myelo-monoblastic leukemia cells.

    PubMed

    Shen, Miaoqing; Bunaciu, Rodica P; Congleton, Johanna; Jensen, Holly A; Sayam, Lavanya G; Varner, Jeffrey D; Yen, Andrew

    2011-12-01

    All-trans retinoic acid (RA) and interferons (IFNs) have efficacy in treating certain leukemias and lymphomas, respectively, motivating interest in their mechanism of action to improve therapy. Both RA and IFNs induce interferon regulatory factor-1 (IRF-1). We find that in HL-60 myeloblastic leukemia cells which undergo mitogen activated protien kinase (MAPK)-dependent myeloid differentiation in response to RA, IRF-1 propels differentiation. RA induces MAPK-dependent expression of IRF-1. IRF-1 binds c-Cbl, a MAPK related adaptor. Ectopic IRF-1 expression causes CD38 expression and activation of the Raf/MEK/ERK axis, and enhances RA-induced differentiation by augmenting CD38, CD11b, respiratory burst and G0 arrest. Ectopic IRF-1 expression also decreases the activity of aldehyde dehydrogenase 1, a stem cell marker, and enhances RA-induced ALDH1 down-regulation. Interestingly, expression of aryl hydrocarbon receptor (AhR), which is RA-induced and known to down-regulate Oct4 and drive RA-induced differentiation, also enhances IRF-1 expression. The data are consistent with a model whereby IRF-1 acts downstream of RA and AhR to enhance Raf/MEK/ERK activation and propel differentiation.

  7. The genomic landscape of acute lymphoblastic leukemia in children and young adults.

    PubMed

    Mullighan, Charles G

    2014-12-05

    Our understanding of the genetic basis of childhood acute lymphoblastic leukemia (ALL) has been greatly advanced by genomic profiling and sequencing studies. These efforts have characterized the genetic basis of recently described and poorly understood subtypes of ALL, including early T-cell precursor ALL, Philadelphia chromosome-like (Ph-like) ALL, and ALL with intrachromosomal amplification of chromosome 21, and have identified several rational therapeutic targets in high-risk ALL, notably ABL1-class and JAK-STAT inhibitors in Ph-like ALL. Deep sequencing studies are also refining our understanding of the genetic basis of clonal heterogeneity and relapse. These studies have elucidated the nature of clonal evolution during disease progression and identified genetic changes that confer resistance to specific therapeutic agents, including CREBBP and NT5C2. Genomic profiling has also identified common and rare inherited genetic variants that influence the risk of developing leukemia. These efforts are now being extended to ALL in adolescents and adults with the goal of fully defining the genetic landscape of ALL to further improve treatment outcomes in high-risk populations. © 2014 by The American Society of Hematology. All rights reserved.

  8. Identification of a novel fusion gene, IRF2BP2-RARA, in acute promyelocytic leukemia.

    PubMed

    Yin, C Cameron; Jain, Nitin; Mehrotra, Meenakshi; Zhagn, Jianhua; Protopopov, Alexei; Zuo, Zhuang; Pemmaraju, Naveen; DiNardo, Courtney; Hirsch-Ginsberg, Cheryl; Wang, Sa A; Medeiros, L Jeffrey; Chin, Lynda; Patel, Keyur P; Ravandi, Farhad; Futreal, Andrew; Bueso-Ramos, Carlos E

    2015-01-01

    Acute promyelocytic leukemia (APL) is characterized by the fusion of retinoic acid receptor alpha (RARA) with promyelocytic leukemia (PML) or, rarely, other gene partners. This report presents a patient with APL with a novel fusion between RARA and the interferon regulatory factor 2 binding protein 2 (IRF2BP2) genes. A bone marrow examination in a 19-year-old woman who presented with ecchymoses and epistaxis showed morphologic and immunophenotypic features consistent with APL. PML oncogenic domain antibody was positive. Results of fluorescence in situ hybridization, conventional cytogenetics, reverse transcription-polymerase chain reaction (RT-PCR), and oligonucleotide microarray for PML-RARA and common APL variant translocations were negative. Next-generation RNA-sequencing analysis followed by RT-PCR and direct sequencing revealed distinct breakpoints within IRF2BP2 exon 2 and RARA intron 2. The patient received all-trans retinoic acid, arsenic, and gemtuzumab ozogamicin, and achieved complete remission. However, the disease relapsed 10 months later, 2 months after consolidation therapy. This is the first report showing involvement of IRF2BP2 in APL, and it expands the list of novel RARA partners identified in APL. Copyright © 2015 by the National Comprehensive Cancer Network.

  9. Targeted Therapies in Hematology and Their Impact on Patient Care: Chronic and Acute Myeloid Leukemia

    PubMed Central

    Cortes, Elias Jabbour Jorge; Ravandi, Farhad; O’Brien, Susan; Kantarjian, Hagop

    2014-01-01

    Advances in the genetic and molecular characterizations of leukemias have enhanced our capabilities to develop targeted therapies. The most dramatic examples of targeted therapy in cancer to date are the use of targeted BCR-ABL protein tyrosine kinase inhibitors (TKI) which has revolutionized the treatment of chronic myeloid leukemia (CML). Inhibition of the signaling activity of this kinase has proved to be a highly successful treatment target, transforming the prognosis of patients with CML. In contrast, acute myeloid leukemia (AML) is an extremely heterogeneous disease with outcomes that vary widely according to subtype of the disease. Targeted therapy with monoclonal antibodies and small molecule kinase inhibitors are promising strategies to help improve the cure rates in AML. In this review, we will highlight the results of recent clinical trials in which outcomes of CML and AML have been influenced significantly. Also, novel approaches to sequencing and combining available therapies will be covered. PMID:24246694

  10. Treatment of acute myeloid leukemia in the next decade - Towards real-time functional testing and personalized medicine.

    PubMed

    Lam, Stephen Sze-Yuen; He, Alex Bai-Liang; Leung, Anskar Yu-Hung

    2017-11-01

    Information arising from next generation sequencing of leukemia genome has shed important light on the heterogeneous and combinatorial driver events in acute myeloid leukemia (AML). It has also provided insight into its intricate signaling pathways operative in the disease pathogenesis. These have also become biomarkers and targets for therapeutic intervention. Emerging evidence from in vitro drug screening has demonstrated its potential value in predicting clinical drug responses in specific AML subtypes. However, the best culture conditions and readouts have yet to be standardized and the drugs included in these screening exercises frequently revised in view of the rapid emergence of new therapeutic agents in the oncology field. Testing of leukemia cell functions, including BCL2 profiling, has also been used to predict treatment response to conventional chemotherapy and hypomethylating agents as well as BCL2 antagonist in small patient cohorts. These platforms should be integrated into future clinical trials to develop personalized treatment of AML. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. FLT3 is implicated in cytarabine transport by human equilibrative nucleoside transporter 1 in pediatric acute leukemia.

    PubMed

    Català, Albert; Pastor-Anglada, Marçal; Caviedes-Cárdenas, Liska; Malatesta, Roberta; Rives, Susana; Vega-García, Nerea; Camós, Mireia; Fernández-Calotti, Paula

    2016-08-02

    FLT3 abnormalities are negative prognostic markers in acute leukemia. Infant leukemias are a subgroup with frequent MLL (KMT2A) rearrangements, FLT3 overexpression and high sensitivity to cytarabine, but dismal prognosis. Cytarabine is transported into cells by Human Equilibrative Nucleoside Transporter-1 (hENT1, SLC29A1), but the mechanisms that regulate hENT1 in acute leukemia have been scarcely studied.We explored the expression and functional link between FLT3 and main cytarabine transporters in 50 pediatric patients diagnosed with acute lymphoblastic leukemia and MLL rearrangement (ALL-MLL+) and other subtypes of leukemia, and in leukemia cell lines.A significant positive correlation was found between FLT3 and hENT1 expression in patients. Cytarabine uptake into cells was mediated mainly by hENT1, hENT2 and hCNT1. hENT1-mediated uptake of cytarabine was transiently abolished by the FLT3 inhibitor PKC412, and this effect was associated with decreased hENT1 mRNA and protein levels. Noticeably, the cytotoxicity of cytarabine was lower when cells were first exposed to FLT3 inhibitors (PKC412 or AC220), probably due to decreased hENT1 activity, but we observed a higher cytotoxic effect if FLT3 inhibitors were administered after cytarabine.FLT3 regulates hENT1 activity and thereby affects cytarabine cytotoxicity. The sequence of administration of cytarabine and FLT3 inhibitors is important to maintain their efficacy.

  12. Nucleotide sequence analysis establishes the role of endogenous murine leukemia virus DNA segments in formation of recombinant mink cell focus-forming murine leukemia viruses.

    PubMed Central

    Khan, A S

    1984-01-01

    The sequence of 363 nucleotides near the 3' end of the pol gene and 564 nucleotides from the 5' terminus of the env gene in an endogenous murine leukemia viral (MuLV) DNA segment, cloned from AKR/J mouse DNA and designated as A-12, was obtained. For comparison, the nucleotide sequence in an analogous portion of AKR mink cell focus-forming (MCF) 247 MuLV provirus was also determined. Sequence features unique to MCF247 MuLV DNA in the 3' pol and 5' env regions were identified by comparison with nucleotide sequences in analogous regions of NFS -Th-1 xenotropic and AKR ecotropic MuLV proviruses. These included (i) an insertion of 12 base pairs encoding four amino acids located 60 base pairs from the 3' terminus of the pol gene and immediately preceding the env gene, (ii) the deletion of 12 base pairs (encoding four amino acids) and the insertion of 3 base pairs (encoding one amino acid) in the 5' portion of the env gene, and (iii) single base substitutions resulting in 2 MCF247 -specific amino acids in the 3' pol and 23 in the 5' env regions. Nucleotide sequence comparison involving the 3' pol and 5' env regions of AKR MCF247 , NFS xenotropic, and AKR ecotropic MuLV proviruses with the cloned endogenous MuLV DNA indicated that MCF247 proviral DNA sequences were conserved in the cloned endogenous MuLV proviral segment. In fact, total nucleotide sequence identity existed between the endogenous MuLV DNA and the MCF247 MuLV provirus in the 3' portion of the pol gene. In the 5' env region, only 4 of 564 nucleotides were different, resulting in three amino acid changes between AKR MCF247 MuLV DNA and the endogenous MuLV DNA present in clone A-12. In addition, nucleotide sequence comparison indicated that Moloney-and Friend-MCF MuLVs were also highly related in the 3' pol and 5' env regions to the cloned endogenous MuLV DNA. These results establish the role of endogenous MuLV DNA segments in generation of recombinant MCF viruses. PMID:6328017

  13. Characterization of leukemias with ETV6-ABL1 fusion.

    PubMed

    Zaliova, Marketa; Moorman, Anthony V; Cazzaniga, Giovanni; Stanulla, Martin; Harvey, Richard C; Roberts, Kathryn G; Heatley, Sue L; Loh, Mignon L; Konopleva, Marina; Chen, I-Ming; Zimmermannova, Olga; Schwab, Claire; Smith, Owen; Mozziconacci, Marie-Joelle; Chabannon, Christian; Kim, Myungshin; Frederik Falkenburg, J H; Norton, Alice; Marshall, Karen; Haas, Oskar A; Starkova, Julia; Stuchly, Jan; Hunger, Stephen P; White, Deborah; Mullighan, Charles G; Willman, Cheryl L; Stary, Jan; Trka, Jan; Zuna, Jan

    2016-09-01

    To characterize the incidence, clinical features and genetics of ETV6-ABL1 leukemias, representing targetable kinase-activating lesions, we analyzed 44 new and published cases of ETV6-ABL1-positive hematologic malignancies [22 cases of acute lymphoblastic leukemia (13 children, 9 adults) and 22 myeloid malignancies (18 myeloproliferative neoplasms, 4 acute myeloid leukemias)]. The presence of the ETV6-ABL1 fusion was ascertained by cytogenetics, fluorescence in-situ hybridization, reverse transcriptase-polymerase chain reaction and RNA sequencing. Genomic and gene expression profiling was performed by single nucleotide polymorphism and expression arrays. Systematic screening of more than 4,500 cases revealed that in acute lymphoblastic leukemia ETV6-ABL1 is rare in childhood (0.17% cases) and slightly more common in adults (0.38%). There is no systematic screening of myeloproliferative neoplasms; however, the number of ETV6-ABL1-positive cases and the relative incidence of acute lymphoblastic leukemia and myeloproliferative neoplasms suggest that in adulthood ETV6-ABL1 is more common in BCR-ABL1-negative chronic myeloid leukemia-like myeloproliferations than in acute lymphoblastic leukemia. The genomic profile of ETV6-ABL1 acute lymphoblastic leukemia resembled that of BCR-ABL1 and BCR-ABL1-like cases with 80% of patients having concurrent CDKN2A/B and IKZF1 deletions. In the gene expression profiling all the ETV6-ABL1-positive samples clustered in close vicinity to BCR-ABL1 cases. All but one of the cases of ETV6-ABL1 acute lymphoblastic leukemia were classified as BCR-ABL1-like by a standardized assay. Over 60% of patients died, irrespectively of the disease or age subgroup examined. In conclusion, ETV6-ABL1 fusion occurs in both lymphoid and myeloid leukemias; the genomic profile and clinical behavior resemble BCR-ABL1-positive malignancies, including the unfavorable prognosis, particularly of acute leukemias. The poor outcome suggests that treatment with tyrosine kinase inhibitors should be considered for patients with this fusion. Copyright© Ferrata Storti Foundation.

  14. Mutation profiling of 19 candidate genes in acute myeloid leukemia suggests significance of DNMT3A mutations.

    PubMed

    Shin, Sang-Yong; Lee, Seung-Tae; Kim, Hee-Jin; Cho, Eun Hae; Kim, Jong-Won; Park, Silvia; Jung, Chul Won; Kim, Sun-Hee

    2016-08-23

    We selected 19 significantly-mutated genes in AMLs, including FLT3, DNMT3A, NPM1, TET2, RUNX1, CEBPA, WT1, IDH1, IDH2, NRAS, ASXL1, SETD2, PTPN11, TP53, KIT, JAK2, KRAS, BRAF and CBL, and performed massively parallel sequencing for 114 patients with acute myeloid leukemias, mainly including those with normal karyotypes (CN-AML). More than 80% of patients had at least one mutation in the genes tested. DNMT3A mutation was significantly associated with adverse outcome in addition to conventional risk stratification such as the European LeukemiaNet (ELN) classification. We observed clinical usefulness of mutation testing on multiple target genes and the association with disease subgroups, clinical features and prognosis in AMLs.

  15. Exome sequencing identifies putative drivers of progression of transient myeloproliferative disorder to AMKL in infants with Down syndrome.

    PubMed

    Nikolaev, Sergey I; Santoni, Federico; Vannier, Anne; Falconnet, Emilie; Giarin, Emanuela; Basso, Giuseppe; Hoischen, Alexander; Veltman, Joris A; Groet, Jurgen; Nizetic, Dean; Antonarakis, Stylianos E

    2013-07-25

    Some neonates with Down syndrome (DS) are diagnosed with self-regressing transient myeloproliferative disorder (TMD), and 20% to 30% of those progress to acute megakaryoblastic leukemia (AMKL). We performed exome sequencing in 7 TMD/AMKL cases and copy-number analysis in these and 10 additional cases. All TMD/AMKL samples contained GATA1 mutations. No exome-sequenced TMD/AMKL sample had other recurrently mutated genes. However, 2 of 5 TMD cases, and all AMKL cases, showed mutations/deletions other than GATA1, in genes proven as transformation drivers in non-DS leukemia (EZH2, APC, FLT3, JAK1, PARK2-PACRG, EXT1, DLEC1, and SMC3). One patient at the TMD stage revealed 2 clonal expansions with different GATA1 mutations, of which 1 clone had an additional driver mutation. Interestingly, it was the other clone that gave rise to AMKL after accumulating mutations in 7 other genes. Data suggest that GATA1 mutations alone are sufficient for clonal expansions, and additional driver mutations at the TMD stage do not necessarily predict AMKL progression. Later in infancy, leukemic progression requires "third-hit driver" mutations/somatic copy-number alterations found in non-DS leukemias. Putative driver mutations affecting WNT (wingless-related integration site), JAK-STAT (Janus kinase/signal transducer and activator of transcription), or MAPK/PI3K (mitogen-activated kinase/phosphatidylinositol-3 kinase) pathways were found in all cases, aberrant activation of which converges on overexpression of MYC.

  16. ARResT/AssignSubsets: a novel application for robust subclassification of chronic lymphocytic leukemia based on B cell receptor IG stereotypy.

    PubMed

    Bystry, Vojtech; Agathangelidis, Andreas; Bikos, Vasilis; Sutton, Lesley Ann; Baliakas, Panagiotis; Hadzidimitriou, Anastasia; Stamatopoulos, Kostas; Darzentas, Nikos

    2015-12-01

    An ever-increasing body of evidence supports the importance of B cell receptor immunoglobulin (BcR IG) sequence restriction, alias stereotypy, in chronic lymphocytic leukemia (CLL). This phenomenon accounts for ∼30% of studied cases, one in eight of which belong to major subsets, and extends beyond restricted sequence patterns to shared biologic and clinical characteristics and, generally, outcome. Thus, the robust assignment of new cases to major CLL subsets is a critical, and yet unmet, requirement. We introduce a novel application, ARResT/AssignSubsets, which enables the robust assignment of BcR IG sequences from CLL patients to major stereotyped subsets. ARResT/AssignSubsets uniquely combines expert immunogenetic sequence annotation from IMGT/V-QUEST with curation to safeguard quality, statistical modeling of sequence features from more than 7500 CLL patients, and results from multiple perspectives to allow for both objective and subjective assessment. We validated our approach on the learning set, and evaluated its real-world applicability on a new representative dataset comprising 459 sequences from a single institution. ARResT/AssignSubsets is freely available on the web at http://bat.infspire.org/arrest/assignsubsets/ nikos.darzentas@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Targeting the SH2-Kinase Interface in Bcr-Abl Inhibits Leukemogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grebien, Florian; Hantschel, Oliver; Wojcik, John

    2012-10-25

    Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of themore » SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention.« less

  18. Disseminated Cryptococcal Disease in a Patient with Chronic Lymphocytic Leukemia on Ibrutinib.

    PubMed

    Okamoto, Koh; Proia, Laurie A; Demarais, Patricia L

    2016-01-01

    Cryptococcus is a unique environmental fungus that can cause disease most often in immunocompromised individuals with defective cell-mediated immunity. Chronic lymphocytic leukemia (CLL) is not known to be a risk factor for cryptococcal disease although cases have been described mainly in patients treated with agents that suppress cell-mediated immunity. Ibrutinib is a new biologic agent used for treatment of CLL, mantle cell lymphoma, and Waldenstrom's macroglobulinemia. It acts by inhibiting Bruton's tyrosine kinase, a kinase downstream of the B-cell receptor critical for B-cell survival and proliferation. Ibrutinib use has not been associated previously with cryptococcal disease. However, recent evidence suggested that treatments aimed at blocking the function of Bruton's tyrosine kinase could pose a higher risk for cryptococcal infection in a mice model. Here, we report the first case of disseminated cryptococcal disease in a patient with CLL treated with ibrutinib. When evaluating possible infection in CLL patients receiving ibrutinib, cryptococcal disease, which could be life threatening if overlooked, could be considered.

  19. Targeting the SH2-kinase interface in Bcr-Abl inhibits leukemogenesis.

    PubMed

    Grebien, Florian; Hantschel, Oliver; Wojcik, John; Kaupe, Ines; Kovacic, Boris; Wyrzucki, Arkadiusz M; Gish, Gerald D; Cerny-Reiterer, Sabine; Koide, Akiko; Beug, Hartmut; Pawson, Tony; Valent, Peter; Koide, Shohei; Superti-Furga, Giulio

    2011-10-14

    Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Targeting the SH2-Kinase Interface in Bcr-Abl Inhibits Leukemogenesis

    PubMed Central

    Grebien, Florian; Hantschel, Oliver; Wojcik, John; Kaupe, Ines; Kovacic, Boris; Wyrzucki, Arkadiusz M.; Gish, Gerald D.; Cerny-Reiterer, Sabine; Koide, Akiko; Beug, Hartmut; Pawson, Tony; Valent, Peter; Koide, Shohei; Superti-Furga, Giulio

    2011-01-01

    Summary Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention. PaperFlick PMID:22000011

  1. Partial versus Productive Immunoglobulin Heavy Locus Rearrangements in Chronic Lymphocytic Leukemia: Implications for B-Cell Receptor Stereotypy

    PubMed Central

    Tsakou, Eugenia; Agathagelidis, Andreas; Boudjoghra, Myriam; Raff, Thorsten; Dagklis, Antonis; Chatzouli, Maria; Smilevska, Tatjana; Bourikas, George; Merle-Beral, Helene; Manioudaki-Kavallieratou, Eleni; Anagnostopoulos, Achilles; Brüggemann, Monika; Davi, Frederic; Stamatopoulos, Kostas; Belessi, Chrysoula

    2012-01-01

    The frequent occurrence of stereotyped heavy complementarity-determining region 3 (VH CDR3) sequences among unrelated cases with chronic lymphocytic leukemia (CLL) is widely taken as evidence for antigen selection. Stereotyped VH CDR3 sequences are often defined by the selective association of certain immunoglobulin heavy diversity (IGHD) genes in specific reading frames with certain immunoglobulin heavy joining (IGHJ ) genes. To gain insight into the mechanisms underlying VH CDR3 restrictions and also determine the developmental stage when restrictions in VH CDR3 are imposed, we analyzed partial IGHD-IGHJ rearrangements (D-J) in 829 CLL cases and compared the productively rearranged D-J joints (that is, in-frame junctions without junctional stop codons) to (a) the productive immunoglobulin heavy variable (IGHV )-IGHD-IGHJ rearrangements (V-D-J) from the same cases and (b) 174 D-J rearrangements from 160 precursor B-cell acute lymphoblastic leukemia cases (pre-B acute lymphoblastic leukemia [ALL]). Partial D-J rearrangements were detected in 272/829 CLL cases (32.8%). Sequence analysis was feasible in 238 of 272 D-J rearrangements; 198 of 238 (83.2%) were productively rearranged. The D-J joints in CLL did not differ significantly from those in pre-B ALL, except for higher frequency of the IGHD7-27 and IGHJ6 genes in the latter. Among CLL carrying productively rearranged D-J, comparison of the IGHD gene repertoire in productive V-D-J versus D-J revealed the following: (a) overuse of IGHD reading frames encoding hydrophilic peptides among V-D-J and (b) selection of the IGHD3-3 and IGHD6-19 genes in V-D-J junctions. These results document that the IGHD and IGHJ gene biases in the CLL expressed VH CDR3 repertoire are not stochastic but are directed by selection operating at the immunoglobulin protein level. PMID:21968789

  2. Mutational landscape, clonal evolution patterns, and role of RAS mutations in relapsed acute lymphoblastic leukemia

    PubMed Central

    Oshima, Koichi; Khiabanian, Hossein; da Silva-Almeida, Ana C.; Tzoneva, Gannie; Abate, Francesco; Ambesi-Impiombato, Alberto; Sanchez-Martin, Marta; Carpenter, Zachary; Penson, Alex; Perez-Garcia, Arianne; Eckert, Cornelia; Nicolas, Concepción; Balbin, Milagros; Sulis, Maria Luisa; Kato, Motohiro; Koh, Katsuyoshi; Paganin, Maddalena; Basso, Giuseppe; Gastier-Foster, Julie M.; Devidas, Meenakshi; Loh, Mignon L.; Kirschner-Schwabe, Renate; Palomero, Teresa; Rabadan, Raul; Ferrando, Adolfo A.

    2016-01-01

    Although multiagent combination chemotherapy is curative in a significant fraction of childhood acute lymphoblastic leukemia (ALL) patients, 20% of cases relapse and most die because of chemorefractory disease. Here we used whole-exome and whole-genome sequencing to analyze the mutational landscape at relapse in pediatric ALL cases. These analyses identified numerous relapse-associated mutated genes intertwined in chemotherapy resistance-related protein complexes. In this context, RAS-MAPK pathway-activating mutations in the neuroblastoma RAS viral oncogene homolog (NRAS), kirsten rat sarcoma viral oncogene homolog (KRAS), and protein tyrosine phosphatase, nonreceptor type 11 (PTPN11) genes were present in 24 of 55 (44%) cases in our series. Interestingly, some leukemias showed retention or emergence of RAS mutant clones at relapse, whereas in others RAS mutant clones present at diagnosis were replaced by RAS wild-type populations, supporting a role for both positive and negative selection evolutionary pressures in clonal evolution of RAS-mutant leukemia. Consistently, functional dissection of mouse and human wild-type and mutant RAS isogenic leukemia cells demonstrated induction of methotrexate resistance but also improved the response to vincristine in mutant RAS-expressing lymphoblasts. These results highlight the central role of chemotherapy-driven selection as a central mechanism of leukemia clonal evolution in relapsed ALL, and demonstrate a previously unrecognized dual role of RAS mutations as drivers of both sensitivity and resistance to chemotherapy. PMID:27655895

  3. Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL-rearranged leukemias.

    PubMed

    Mullighan, C G; Kennedy, A; Zhou, X; Radtke, I; Phillips, L A; Shurtleff, S A; Downing, J R

    2007-09-01

    Somatic mutations in nucleophosmin (NPM1) occur in approximately 35% of adult acute myeloid leukemia (AML). To assess the frequency of NPM1 mutations in pediatric AML, we sequenced NPM1 in the diagnostic blasts from 93 pediatric AML patients. Six cases harbored NPM1 mutations, with each case lacking common cytogenetic abnormalities. To explore the phenotype of the AMLs with NPM1 mutations, gene expression profiles were obtained using Affymetrix U133A microarrays. NPM1 mutations were associated with increased expression of multiple homeobox genes including HOXA9, A10, B2, B6 and MEIS1. As dysregulated homeobox gene expression is also a feature of MLL-rearranged leukemia, the gene expression signatures of NPM1-mutated and MLL-rearranged leukemias were compared. Significant differences were identified between these leukemia subtypes including the expression of different HOX genes, with NPM1-mutated AML showing higher levels of expression of HOXB2, B3, B6 and D4. These results confirm recent reports of perturbed HOX expression in NPM1-mutated adult AML, and provide the first evidence that the NPM1-mutated signature is distinct from MLL-rearranged AML. These findings suggest that mutated NPM1 leads to dysregulated HOX expression via a different mechanism than MLL rearrangement.

  4. Anticipation in familial leukemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horwitz, M.; Jarvik, G.P.; Goode, E.L.

    Anticipation refers to worsening severity or earlier age at onset with each generation for an inherited disease and primarily has been described for neurodegenerative illnesses resulting from expansion of trinucleotide repeats. We have tested for evidence of anticipation in familial leukemia. Of 49 affected individuals in nine families transmitting autosomal dominant acute myelogenous leukemia (AML), the mean age at onset is 57 years in the grandparental generation, 32 years in the parental generation, and 13 years in the youngest generation (P < .001). Of 21 parent-child pairs with AML, 19 show younger ages at onset in the child and demonstratemore » a mean decline in age at onset of 28 years (P < .001). Of 18 affected individuals from seven pedigrees with autosomal dominant chronic lymphocytic leukemia (CLL), the mean age at onset in the parental generation is 66 years versus 51 years in the youngest generation (P = .008). Of nine parent-child pairs with CLL, eight show younger ages at onset in the child and reveal a mean decline in age at onset of 21 years (P = .001). Inspection of rare pedigrees transmitting acute lymphocytic leukemia, chronic myelogenous leukemia, multiple types of leukemia, and lymphoma is also compatible with anticipation. Sampling bias is unlikely to explain these findings. This suggests that dynamic mutation of unstable DNA sequence repeats could be a common mechanism of inherited hematopoietic malignancy with implications for the role of somatic mutation in the more frequent sporadic cases. We speculate on three possible candidate genes for familial leukemia with anticipation: a locus on 21q22.1-22.2, CBL2 on 11q23.3, and CBFB or a nearby gene on 16q22. 55 refs., 4 figs.« less

  5. A deletion mutation in the 5' part of the pol gene of Moloney murine leukemia virus blocks proteolytic processing of the gag and pol polyproteins.

    PubMed Central

    Crawford, S; Goff, S P

    1985-01-01

    Deletion mutations in the 5' part of the pol gene of Moloney murine leukemia virus were generated by restriction enzyme site-directed mutagenesis of cloned proviral DNA. DNA sequence analysis indicated that one such deletion was localized entirely within the 5' part of the pol gene, did not affect the region encoding reverse transcriptase, and preserved the translational reading frame downstream of the mutation. The major viral precursor polyproteins (Pr65gag, Pr200gag-pol, and gPr80env) were synthesized at wild-type levels in cell lines carrying the mutant genome. These cell lines assembled and released wild-type levels of virion particles into the medium. Cleavage of both Pr65gag and Pr200gag-pol precursors to the mature proteins was completely blocked in the mutant virions. Surprisingly, these virions contained high levels of active reverse transcriptase; examination of the endogenous reverse transcription products synthesized by the mutant virions revealed normal amounts of minus-strand strong-stop DNA, indicating that the RNA genome was packaged and that reverse transcription in detergent-permeabilized virions was not significantly impaired. Processing of gPr80env to gP70env and P15E was not affected by the mutation, but cleavage of P15E to P12E was not observed. The mutant particles were poorly infectious; analysis indicated that infection was blocked at an early stage. The data are consistent with the idea that the 5' part of the pol gene encodes a protease directly responsible for processing Pr65gag, and possibly Pr200gag-pol, to the structural virion proteins. It appears that cleavage of the gag gene product is not required for budding and release of virions and that complete processing of the pol gene product to the mature form of reverse transcriptase is not required for its functional activation. Images PMID:3882995

  6. Comparison of acalabrutinib, a selective Bruton tyrosine kinase inhibitor, with ibrutinib in chronic lymphocytic leukemia cells

    PubMed Central

    Patel, Viralkumar; Balakrishnan, Kumudha; Bibikova, Elena; Ayres, Mary; Keating, Michael J.; Wierda, William G.; Gandhi, Varsha

    2017-01-01

    Purpose Ibrutinib inhibits Bruton tyrosine kinase (BTK) by irreversibly binding to the Cys-481 residue in the enzyme. However, ibrutinib also inhibits several other enzymes that contain cysteine residues homologous to Cys-481 in BTK. Patients with relapsed/refractory or previously untreated chronic lymphocytic leukemia (CLL) demonstrate a high overall response rate to ibrutinib with prolonged survival. Acalabrutinib, a selective BTK inhibitor developed to minimize off-target activity, has shown promising overall response rates in patients with relapsed/refractory CLL. A head-to-head comparison of ibrutinib and acalabrutinib in CLL cell cultures and healthy T cells is needed to understand preclinical biologic and molecular effects. Experimental Design Using samples from patients with CLL, we compared the effects of both BTK inhibitors on biologic activity, chemokine production, cell migration, BTK phosphorylation, and downstream signaling in primary CLL lymphocytes and on normal T-cell signaling to determine effects on other kinases. Results Both BTK inhibitors induced modest cell death accompanied by cleavage of PARP and caspase 3. Production of CCL3 and CCL4 chemokines and pseudoemperipolesis were inhibited by both drugs to a similar degree. These drugs also showed similar inhibitory effects on phosphorylation of BTK and downstream S6 and ERK kinases. By contrast, off-target effects on SRC-family kinases were more pronounced with ibrutinib than acalabrutinib in healthy T lymphocytes. Conclusion Both BTK inhibitors show similar biological and molecular profile in primary CLL cells but appear different on their effect on normal T-cells. PMID:28034907

  7. Revealing the Genomic Landscape of Pediatric T-ALL | Office of Cancer Genomics

    Cancer.gov

    T-lineage acute lymphoblastic leukemia (T-ALL) comprises 15-20% of childhood ALL and has historically been associated with inferior outcome to B-cell  ALL (B-ALL). Recent studies have used genome-wide sequencing approaches to identify new subtypes and targets of mutation in B-ALL, but comprehensive sequencing studies of large cohorts of T-ALL have not been performed.

  8. The transcriptional terminator sequences downstream of the covR gene terminate covR/S operon transcription to generate covR monocistronic transcripts in Streptococcus pyogenes.

    PubMed

    Chiang-Ni, Chuan; Tsou, Chih-Cheng; Lin, Yee-Shin; Chuang, Woei-Jer; Lin, Ming-T; Liu, Ching-Chuan; Wu, Jiunn-Jong

    2008-12-31

    CovR/S is an important two component regulatory system, which regulates about 15% of the gene expression in Streptococcus pyogenes. The covR/S locus was identified as an operon generating an RNA transcript around 2.5-kb in size. In this study, we found the covR/S operon produced three RNA transcripts (around 2.5-, 1.0-, and 0.8-kb in size). Using RNA transcriptional terminator sequence prediction and transcriptional terminator analysis, we identified two atypical rho-independent terminator sequences downstream of the covR gene and showed these terminator sequences terminate RNA transcription efficiently. These results indicate that covR/S operon generates covR/S transcript and monocistronic covR transcripts.

  9. Histone acetyltransferase activity of MOF is required for MLL-AF9 leukemogenesis

    PubMed Central

    Valerio, Daria G.; Xu, Haiming; Chen, Chun-Wei; Hoshii, Takayuki; Eisold, Meghan E.; Delaney, Christopher; Cusan, Monica; Deshpande, Aniruddha J.; Huang, Chun-Hao; Lujambio, Amaia; Zheng, George; Zuber, Johannes; Pandita, Tej K.; Lowe, Scott W.; Armstrong, Scott A.

    2017-01-01

    Chromatin-based mechanisms offer therapeutic targets in acute myeloid leukemia (AML) that are of great current interest. In this study, we conducted an RNAi-based screen to identify druggable chromatin regulator-based targets in leukemias marked by oncogenic rearrangements of the MLL gene. In this manner, we discovered the H4K16 histone acetyltransferase (HAT) MOF to be important for leukemia cell growth. Conditional deletion of Mof in a mouse model of MLL-AF9-driven leukemogenesis reduced tumor burden and prolonged host survival. RNA sequencing showed an expected downregulation of genes within DNA damage repair pathways that are controlled by MOF, as correlated with a significant increase in yH2AX nuclear foci in Mof-deficient MLL-AF9 tumor cells. In parallel, Mof loss also impaired global H4K16 acetylation in the tumor cell genome. Rescue experiments with catalytically inactive mutants of MOF showed that its enzymatic activity was required to maintain cancer pathogenicity. In support of the role of MOF in sustaining H4K16 acetylation, a small molecule inhibitor of the HAT component MYST blocked the growth of both murine and human MLL-AF9 leukemia cell lines. Furthermore Mof inactivation suppressed leukemia development in a NUP98-HOXA9 driven AML model. Taken together, our results establish that the HAT activity of MOF is required to sustain MLL-AF9 leukemia and may be important for multiple AML subtypes. Blocking this activity is sufficient to stimulate DNA damage, offering a rationale to pursue MOF inhibitors as a targeted approach to treat MLL-rearranged leukemias. PMID:28202522

  10. Biology of acute lymphoblastic leukemia (ALL): clinical and therapeutic relevance.

    PubMed

    Graux, Carlos

    2011-04-01

    Acute lymphoblastic leukemia is a heterogeneous disease comprising several clinico-biological entities. Karyotyping of leukemic cells identifies recurrent chromosome rearrangements. These are usually translocations that activate genes encoding transcription factor regulating B- or T-cell differentiation. Gene expression-array confirms the prognostic relevance of ALL subgroups identified by specific chromosomal rearrangements and isolates new subgroups. Analysis of genomic copy number changes and high throughput sequencing reveal new cryptic deletions. The challenge is now to understand how these cooperative genetic lesions interact in order to have the molecular rationales needed to select new therapeutic targets and to develop and combine inhibitors with high levels of anti-leukemic specificity. The aim of this paper is to provide some data on the biology of acute lymphoblastic leukemia which are relevant in clinical practice. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. In Vivo Hypermutation of Xenotropic Murine Leukemia Virus-Related Virus DNA in Peripheral Blood Mononuclear Cells of Rhesus Macaque by APOBEC3 Proteins

    PubMed Central

    Zhang, Ao; Bogerd, Hal; Villinger, Francois; Gupta, Jaydip Das; Dong, Beihua; Klein, Eric A.; Hackett, John; Schochetman, Gerald; Cullen, Bryan R.; Silverman, Robert H.

    2011-01-01

    The gammaretrovirus, xenotropic murine leukemia virus-related virus (XMRV), replicates to high titers in some human cell lines and is able to infect non-human primates. To determine whether APOBEC3 (A3) proteins restrict XMRV infections in a non-human primate model, we sequenced proviral DNA from peripheral blood mononuclear cells of XMRV-infected rhesus macaques. Hypermutation characteristic of A3DE, A3F and A3G activities was observed in the XMRV proviral sequences in vivo. Furthermore, expression of rhesus A3DE, A3F, or A3G in human cells inhibited XMRV infection and caused hypermutation of XMRV DNA. These studies show that some rhesus A3 isoforms are highly effective against XMRV in the blood of a non-human primate model of infection and in cultured human cells. PMID:21982221

  12. Monitoring therapy responses at the leukemic subclone level by ultra-deep amplicon resequencing in acute myeloid leukemia.

    PubMed

    Ojamies, P N; Kontro, M; Edgren, H; Ellonen, P; Lagström, S; Almusa, H; Miettinen, T; Eldfors, S; Tamborero, D; Wennerberg, K; Heckman, C; Porkka, K; Wolf, M; Kallioniemi, O

    2017-05-01

    In our individualized systems medicine program, personalized treatment options are identified and administered to chemorefractory acute myeloid leukemia (AML) patients based on exome sequencing and ex vivo drug sensitivity and resistance testing data. Here, we analyzed how clonal heterogeneity affects the responses of 13 AML patients to chemotherapy or targeted treatments using ultra-deep (average 68 000 × coverage) amplicon resequencing. Using amplicon resequencing, we identified 16 variants from 4 patients (frequency 0.54-2%) that were not detected previously by exome sequencing. A correlation-based method was developed to detect mutation-specific responses in serial samples across multiple time points. Significant subclone-specific responses were observed for both chemotherapy and targeted therapy. We detected subclonal responses in patients where clinical European LeukemiaNet (ELN) criteria showed no response. Subclonal responses also helped to identify putative mechanisms underlying drug sensitivities, such as sensitivity to azacitidine in DNMT3A mutated cell clones and resistance to cytarabine in a subclone with loss of NF1 gene. In summary, ultra-deep amplicon resequencing method enables sensitive quantification of subclonal variants and their responses to therapies. This approach provides new opportunities for designing combinatorial therapies blocking multiple subclones as well as for real-time assessment of such treatments.

  13. Akt3 is a privileged first responder in isozyme-specific electrophile response.

    PubMed

    Long, Marcus J C; Parvez, Saba; Zhao, Yi; Surya, Sanjna L; Wang, Yiran; Zhang, Sheng; Aye, Yimon

    2017-03-01

    Isozyme-specific post-translational regulation fine tunes signaling events. However, redundancy in sequence or activity renders links between isozyme-specific modifications and downstream functions uncertain. Methods to study this phenomenon are underdeveloped. Here we use a redox-targeting screen to reveal that Akt3 is a first-responding isozyme sensing native electrophilic lipids. Electrophile modification of Akt3 modulated downstream pathway responses in cells and Danio rerio (zebrafish) and markedly differed from Akt2-specific oxidative regulation. Digest MS sequencing identified Akt3 C119 as the privileged cysteine that senses 4-hydroxynonenal. A C119S Akt3 mutant was hypomorphic for all downstream phenotypes shown by wild-type Akt3. This study documents isozyme-specific and chemical redox signal-personalized physiological responses.

  14. Identification of Bisindolylmaleimide IX as a potential agent to treat drug-resistant BCR-ABL positive leukemia

    PubMed Central

    Liu, Huijuan; Zang, Yi; Azam, Mohammad; Habib, Samy L.; Li, Jia; Ruan, Xinsen; Jia, Hao; Wang, Xueying; Li, Baojie

    2016-01-01

    Chronic myeloid leukemia (CML) treatment with BCR-ABL inhibitors is often hampered by development of drug resistance. In a screen for novel chemotherapeutic drug candidates with genotoxic activity, we identified a bisindolylmaleimide derivative, IX, as a small molecule compound with therapeutic potential against CML including drug-resistant CML. We show that Bisindolylmaleimide IX inhibits DNA topoisomerase, generates DNA breaks, activates the Atm-p53 and Atm-Chk2 pathways, and induces cell cycle arrest and cell death. Interestingly, Bisindolylmaleimide IX is highly effective in targeting cells positive for BCR-ABL. BCR-ABL positive cells display enhanced DNA damage and increased cell cycle arrest in response to Bisindolylmaleimide IX due to decreased expression of topoisomerases. Cells positive for BCR-ABL or drug-resistant T315I BCR-ABL also display increased cytotoxicity since Bisindolylmaleimide IX inhibits B-Raf and the downstream oncogene addiction pathway. Mouse cancer model experiments showed that Bisindolylmaleimide IX, at doses that show little side effect, was effective in treating leukemia-like disorders induced by BCR-ABL or T315I BCR-ABL, and prolonged the lifespan of these model mice. Thus, Bisindolylmaleimide IX presents a novel drug candidate to treat drug-resistant CML via activating BCR-ABL-dependent genotoxic stress response and inhibiting the oncogene addiction pathway activated by BCR-ABL. PMID:27564101

  15. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia

    PubMed Central

    Lee-Sherick, Alisa B.; Callaghan, Michael; Noris, Patrizia; Savoia, Anna; Rajpurkar, Madhvi; Jones, Kenneth; Gowan, Katherine; Balduini, Carlo; Pecci, Alessandro; Gnan, Chiara; De Rocco, Daniela; Doubek, Michael; Li, Ling; Lu, Lily; Leung, Richard; Landolt-Marticorena, Carolina; Hunger, Stephen; Heller, Paula; Gutierrez-Hartmann, Arthur; Xiayuan, Liang; Pluthero, Fred G.; Rowley, Jesse W.; Weyrich, Andrew S.

    2015-01-01

    Some familial platelet disorders are associated with predisposition to leukemia, myelodysplastic syndrome (MDS) or dyserythropoietic anemia.1,2 We identified a family with autosomal dominant thrombocytopenia, high erythrocyte mean corpuscular volume (MCV) and two occurrences of B-cell precursor acute lymphoblastic leukemia (ALL). Whole exome sequencing identified a heterozygous single nucleotide change in ETV6 (Ets Variant Gene 6), c.641C>T, encoding a p.Pro214Leu substitution in the central domain, segregating with thrombocytopenia and elevated MCV. A screen of 23 families with similar phenotype found two with ETV6 mutations. One family had the p.Pro214Leu mutation and one individual with ALL. The other family had a c.1252A>G transition producing a p.Arg418Gly substitution in the DNA binding domain, with alternative splicing and exon-skipping. Functional characterization of these mutations showed aberrant cellular localization of mutant and endogenous ETV6, decreased transcriptional repression and altered megakaryocyte maturation. Our findings underscore a key role for ETV6 in platelet formation and leukemia predisposition. PMID:25807284

  16. Structural homologies between phenformin, lipitor and gleevec aim the same metabolic oncotarget in leukemia and melanoma.

    PubMed

    Somlyai, Gábor; Collins, T Que; Meuillet, Emmanuelle J; Hitendra, Patel; D'Agostino, Dominic P; Boros, László G

    2017-07-25

    Phenformin's recently demonstrated efficacy in melanoma and Gleevec's demonstrated anti-proliferative action in chronic myeloid leukemia may lie within these drugs' significant pharmacokinetics, pharmacodynamics and structural homologies, which are reviewed herein. Gleevec's success in turning a fatal leukemia into a manageable chronic disease has been trumpeted in medical, economic, political and social circles because it is considered the first successful targeted therapy. Investments have been immense in omics analyses and while in some cases they greatly helped the management of patients, in others targeted therapies failed to achieve clinically stable recurrence-free disease course or to substantially extend survival. Nevertheless protein kinase controlling approaches have persisted despite early warnings that the targeted genomics narrative is overblown. Experimental and clinical observations with Phenformin suggest an alternative explanation for Gleevec's mode of action. Using 13C-guided precise flux measurements, a comparative multiple cell line study demonstrated the drug's downstream impact on submolecular fatty acid processing metabolic events that occurred independent of Gleevec's molecular target. Clinical observations that hyperlipidemia and diabetes are both reversed in mice and in patients taking Gleevec support the drugs' primary metabolic targets by biguanides and statins. This is evident by structural data demonstrating that Gleevec shows pyridine- and phenyl-guanidine homology with Phenformin and identical phenylcarbamoyl structural and ligand binding homology with Lipitor. The misunderstood mechanism of action of Gleevec is emblematic of the pervasive flawed reasoning that genomic analysis will lead to targeted, personalized diagnosis and therapy. The alternative perspective for Gleevec's mode of action may turn oncotargets towards metabolic channel reaction architectures in leukemia and melanoma, as well as in other cancers.

  17. A Novel Subgenomic Murine Leukemia Virus RNA Transcript Results from Alternative Splicing

    PubMed Central

    Déjardin, Jérôme; Bompard-Maréchal, Guillaume; Audit, Muriel; Hope, Thomas J.; Sitbon, Marc; Mougel, Marylène

    2000-01-01

    Here we show the existence of a novel subgenomic 4.4-kb RNA in cells infected with the prototypic replication-competent Friend or Moloney murine leukemia viruses (MuLV). This RNA derives by splicing from an alternative donor site (SD′) within the capsid-coding region to the canonical envelope splice acceptor site. The position and the sequence of SD′ was highly conserved among mammalian type C and D oncoviruses. Point mutations used to inactivate SD′ without changing the capsid-coding ability affected viral RNA splicing and reduced viral replication in infected cells. PMID:10729146

  18. Novel Feline Leukemia Virus Interference Group Based on the env Gene.

    PubMed

    Miyake, Ariko; Watanabe, Shinya; Hiratsuka, Takahiro; Ito, Jumpei; Ngo, Minh Ha; Makundi, Isaac; Kawasaki, Junna; Endo, Yasuyuki; Tsujimoto, Hajime; Nishigaki, Kazuo

    2016-05-01

    Feline leukemia virus (FeLV) subgroups have emerged in infected cats via the mutation or recombination of the env gene of subgroup A FeLV (FeLV-A), the primary virus. We report the isolation and characterization of a novel env gene, TG35-2, and report that the TG35-2 pseudotype can be categorized as a novel FeLV subgroup. The TG35-2 envelope protein displays strong sequence identity to FeLV-A Env, suggesting that selection pressure in cats causes novel FeLV subgroups to emerge. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia | Office of Cancer Genomics

    Cancer.gov

    Genetic alterations that activate NOTCH1 signaling and T cell transcription factors, coupled with inactivation of the INK4/ARF tumor suppressors, are hallmarks of T-lineage acute lymphoblastic leukemia (T-ALL), but detailed genome-wide sequencing of large T-ALL cohorts has not been carried out. Using integrated genomic analysis of 264 T-ALL cases, we identified 106 putative driver genes, half of which had not previously been described in childhood T-ALL (for example, CCND3, CTCF, MYB, SMARCA4, ZFP36L2 and MYCN).

  20. A Benchmark Study on Error Assessment and Quality Control of CCS Reads Derived from the PacBio RS

    PubMed Central

    Jiao, Xiaoli; Zheng, Xin; Ma, Liang; Kutty, Geetha; Gogineni, Emile; Sun, Qiang; Sherman, Brad T.; Hu, Xiaojun; Jones, Kristine; Raley, Castle; Tran, Bao; Munroe, David J.; Stephens, Robert; Liang, Dun; Imamichi, Tomozumi; Kovacs, Joseph A.; Lempicki, Richard A.; Huang, Da Wei

    2013-01-01

    PacBio RS, a newly emerging third-generation DNA sequencing platform, is based on a real-time, single-molecule, nano-nitch sequencing technology that can generate very long reads (up to 20-kb) in contrast to the shorter reads produced by the first and second generation sequencing technologies. As a new platform, it is important to assess the sequencing error rate, as well as the quality control (QC) parameters associated with the PacBio sequence data. In this study, a mixture of 10 prior known, closely related DNA amplicons were sequenced using the PacBio RS sequencing platform. After aligning Circular Consensus Sequence (CCS) reads derived from the above sequencing experiment to the known reference sequences, we found that the median error rate was 2.5% without read QC, and improved to 1.3% with an SVM based multi-parameter QC method. In addition, a De Novo assembly was used as a downstream application to evaluate the effects of different QC approaches. This benchmark study indicates that even though CCS reads are post error-corrected it is still necessary to perform appropriate QC on CCS reads in order to produce successful downstream bioinformatics analytical results. PMID:24179701

  1. A Benchmark Study on Error Assessment and Quality Control of CCS Reads Derived from the PacBio RS.

    PubMed

    Jiao, Xiaoli; Zheng, Xin; Ma, Liang; Kutty, Geetha; Gogineni, Emile; Sun, Qiang; Sherman, Brad T; Hu, Xiaojun; Jones, Kristine; Raley, Castle; Tran, Bao; Munroe, David J; Stephens, Robert; Liang, Dun; Imamichi, Tomozumi; Kovacs, Joseph A; Lempicki, Richard A; Huang, Da Wei

    2013-07-31

    PacBio RS, a newly emerging third-generation DNA sequencing platform, is based on a real-time, single-molecule, nano-nitch sequencing technology that can generate very long reads (up to 20-kb) in contrast to the shorter reads produced by the first and second generation sequencing technologies. As a new platform, it is important to assess the sequencing error rate, as well as the quality control (QC) parameters associated with the PacBio sequence data. In this study, a mixture of 10 prior known, closely related DNA amplicons were sequenced using the PacBio RS sequencing platform. After aligning Circular Consensus Sequence (CCS) reads derived from the above sequencing experiment to the known reference sequences, we found that the median error rate was 2.5% without read QC, and improved to 1.3% with an SVM based multi-parameter QC method. In addition, a De Novo assembly was used as a downstream application to evaluate the effects of different QC approaches. This benchmark study indicates that even though CCS reads are post error-corrected it is still necessary to perform appropriate QC on CCS reads in order to produce successful downstream bioinformatics analytical results.

  2. Analysis of SNP rs16754 of WT1 gene in a series of de novo acute myeloid leukemia patients.

    PubMed

    Luna, Irene; Such, Esperanza; Cervera, Jose; Barragán, Eva; Jiménez-Velasco, Antonio; Dolz, Sandra; Ibáñez, Mariam; Gómez-Seguí, Inés; López-Pavía, María; Llop, Marta; Fuster, Óscar; Oltra, Silvestre; Moscardó, Federico; Martínez-Cuadrón, David; Senent, M Leonor; Gascón, Adriana; Montesinos, Pau; Martín, Guillermo; Bolufer, Pascual; Sanz, Miguel A

    2012-12-01

    The single nucleotide polymorphism (SNP) rs16754 of the WT1 gene has been previously described as a possible prognostic marker in normal karyotype acute myeloid leukemia (AML) patients. Nevertheless, the findings in this field are not always reproducible in different series. One hundred and seventy-five adult de novo AML patients were screened with two different methods for the detection of SNP rs16754: high-resolution melting (HRM) and FRET hybridization probes. Direct sequencing was used to validate both techniques. The SNP was detected in 52 out of 175 patients (30 %), both by HRM and hybridization probes. Direct sequencing confirmed that every positive sample in the screening methods had a variation in the DNA sequence. Patients with the wild-type genotype (WT1(AA)) for the SNP rs16754 were significantly younger than those with the heterozygous WT1(AG) genotype. No other difference was observed for baseline characteristic or outcome between patients with or without the SNP. Both techniques are equally reliable and reproducible as screening methods for the detection of the SNP rs16754, allowing for the selection of those samples that will need to be sequenced. We were unable to confirm the suggested favorable outcome of SNP rs16754 in de novo AML.

  3. The molecular genetic makeup of acute lymphoblastic leukemia.

    PubMed

    Mullighan, Charles G

    2012-01-01

    Genomic profiling has transformed our understanding of the genetic basis of acute lymphoblastic leukemia (ALL). Recent years have seen a shift from microarray analysis and candidate gene sequencing to next-generation sequencing. Together, these approaches have shown that many ALL subtypes are characterized by constellations of structural rearrangements, submicroscopic DNA copy number alterations, and sequence mutations, several of which have clear implications for risk stratification and targeted therapeutic intervention. Mutations in genes regulating lymphoid development are a hallmark of ALL, and alterations of the lymphoid transcription factor gene IKZF1 (IKAROS) are associated with a high risk of treatment failure in B-ALL. Approximately 20% of B-ALL cases harbor genetic alterations that activate kinase signaling that may be amenable to treatment with tyrosine kinase inhibitors, including rearrangements of the cytokine receptor gene CRLF2; rearrangements of ABL1, JAK2, and PDGFRB; and mutations of JAK1 and JAK2. Whole-genome sequencing has also identified novel targets of mutation in aggressive T-lineage ALL, including hematopoietic regulators (ETV6 and RUNX1), tyrosine kinases, and epigenetic regulators. Challenges for the future are to comprehensively identify and experimentally validate all genetic alterations driving leukemogenesis and treatment failure in childhood and adult ALL and to implement genomic profiling into the clinical setting to guide risk stratification and targeted therapy.

  4. Proteogenomics approaches for studying cancer biology and their potential in the identification of acute myeloid leukemia biomarkers.

    PubMed

    Hernandez-Valladares, Maria; Vaudel, Marc; Selheim, Frode; Berven, Frode; Bruserud, Øystein

    2017-08-01

    Mass spectrometry (MS)-based proteomics has become an indispensable tool for the characterization of the proteome and its post-translational modifications (PTM). In addition to standard protein sequence databases, proteogenomics strategies search the spectral data against the theoretical spectra obtained from customized protein sequence databases. Up to date, there are no published proteogenomics studies on acute myeloid leukemia (AML) samples. Areas covered: Proteogenomics involves the understanding of genomic and proteomic data. The intersection of both datatypes requires advanced bioinformatics skills. A standard proteogenomics workflow that could be used for the study of AML samples is described. The generation of customized protein sequence databases as well as bioinformatics tools and pipelines commonly used in proteogenomics are discussed in detail. Expert commentary: Drawing on evidence from recent cancer proteogenomics studies and taking into account the public availability of AML genomic data, the interpretation of present and future MS-based AML proteomic data using AML-specific protein sequence databases could discover new biological mechanisms and targets in AML. However, proteogenomics workflows including bioinformatics guidelines can be challenging for the wide AML research community. It is expected that further automation and simplification of the bioinformatics procedures might attract AML investigators to adopt the proteogenomics strategy.

  5. Ikaros gene expression and leukemia.

    PubMed

    Tonnelle, Cécile; Calmels, Boris; Maroc, Christine; Gabert, Jean; Chabannon, Christian

    2002-01-01

    The Ikaros (Ik) protein, or LyF1, was initially described as a protein binding to regulatory sequences of a number of genes expressed in murine lymphoid cells. Ikaros is a critical regulator of normal hematopoietic stem cell differentiation, as evidenced by dramatic defects in the lymphoid compartments, in homozygous animals with gene inactivation. Because differential splicing produces multiple isoforms with potentially different functions, Ikaros provides a unique model to study how post-transcriptional mechanisms may be involved in neoplastic processes. Indeed, several groups including ours have underlined evidences that expression of different Ikaros isoforms vary among different types of leukemias. The predominance of short isoforms in certain subsets is intriguing. Here, additional observations reinforced the hypothesis that Ikaros expression may be deregulated in human leukemias. Whether this is a cause or a consequence of the leukemic process remains speculative. Other human diseases however, provide examples of abnormal post-transcriptional regulations that have been further characterized.

  6. Histone Acetyltransferase Activity of MOF Is Required for MLL-AF9 Leukemogenesis.

    PubMed

    Valerio, Daria G; Xu, Haiming; Chen, Chun-Wei; Hoshii, Takayuki; Eisold, Meghan E; Delaney, Christopher; Cusan, Monica; Deshpande, Aniruddha J; Huang, Chun-Hao; Lujambio, Amaia; Zheng, YuJun George; Zuber, Johannes; Pandita, Tej K; Lowe, Scott W; Armstrong, Scott A

    2017-04-01

    Chromatin-based mechanisms offer therapeutic targets in acute myeloid leukemia (AML) that are of great current interest. In this study, we conducted an RNAi-based screen to identify druggable chromatin regulator-based targets in leukemias marked by oncogenic rearrangements of the MLL gene. In this manner, we discovered the H4K16 histone acetyltransferase (HAT) MOF to be important for leukemia cell growth. Conditional deletion of Mof in a mouse model of MLL-AF9 -driven leukemogenesis reduced tumor burden and prolonged host survival. RNA sequencing showed an expected downregulation of genes within DNA damage repair pathways that are controlled by MOF, as correlated with a significant increase in yH2AX nuclear foci in Mof -deficient MLL-AF9 tumor cells. In parallel, Mof loss also impaired global H4K16 acetylation in the tumor cell genome. Rescue experiments with catalytically inactive mutants of MOF showed that its enzymatic activity was required to maintain cancer pathogenicity. In support of the role of MOF in sustaining H4K16 acetylation, a small-molecule inhibitor of the HAT component MYST blocked the growth of both murine and human MLL-AF9 leukemia cell lines. Furthermore, Mof inactivation suppressed leukemia development in an NUP98-HOXA9 -driven AML model. Taken together, our results establish that the HAT activity of MOF is required to sustain MLL-AF9 leukemia and may be important for multiple AML subtypes. Blocking this activity is sufficient to stimulate DNA damage, offering a rationale to pursue MOF inhibitors as a targeted approach to treat MLL -rearranged leukemias. Cancer Res; 77(7); 1753-62. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. Identification of key factors regulating self-renewal and differentiation in EML hematopoietic precursor cells by RNA-sequencing analysis.

    PubMed

    Zong, Shan; Deng, Shuyun; Chen, Kenian; Wu, Jia Qian

    2014-11-11

    Hematopoietic stem cells (HSCs) are used clinically for transplantation treatment to rebuild a patient's hematopoietic system in many diseases such as leukemia and lymphoma. Elucidating the mechanisms controlling HSCs self-renewal and differentiation is important for application of HSCs for research and clinical uses. However, it is not possible to obtain large quantity of HSCs due to their inability to proliferate in vitro. To overcome this hurdle, we used a mouse bone marrow derived cell line, the EML (Erythroid, Myeloid, and Lymphocytic) cell line, as a model system for this study. RNA-sequencing (RNA-Seq) has been increasingly used to replace microarray for gene expression studies. We report here a detailed method of using RNA-Seq technology to investigate the potential key factors in regulation of EML cell self-renewal and differentiation. The protocol provided in this paper is divided into three parts. The first part explains how to culture EML cells and separate Lin-CD34+ and Lin-CD34- cells. The second part of the protocol offers detailed procedures for total RNA preparation and the subsequent library construction for high-throughput sequencing. The last part describes the method for RNA-Seq data analysis and explains how to use the data to identify differentially expressed transcription factors between Lin-CD34+ and Lin-CD34- cells. The most significantly differentially expressed transcription factors were identified to be the potential key regulators controlling EML cell self-renewal and differentiation. In the discussion section of this paper, we highlight the key steps for successful performance of this experiment. In summary, this paper offers a method of using RNA-Seq technology to identify potential regulators of self-renewal and differentiation in EML cells. The key factors identified are subjected to downstream functional analysis in vitro and in vivo.

  8. Identification of Key Factors Regulating Self-renewal and Differentiation in EML Hematopoietic Precursor Cells by RNA-sequencing Analysis

    PubMed Central

    Chen, Kenian; Wu, Jia Qian

    2014-01-01

    Hematopoietic stem cells (HSCs) are used clinically for transplantation treatment to rebuild a patient's hematopoietic system in many diseases such as leukemia and lymphoma. Elucidating the mechanisms controlling HSCs self-renewal and differentiation is important for application of HSCs for research and clinical uses. However, it is not possible to obtain large quantity of HSCs due to their inability to proliferate in vitro. To overcome this hurdle, we used a mouse bone marrow derived cell line, the EML (Erythroid, Myeloid, and Lymphocytic) cell line, as a model system for this study. RNA-sequencing (RNA-Seq) has been increasingly used to replace microarray for gene expression studies. We report here a detailed method of using RNA-Seq technology to investigate the potential key factors in regulation of EML cell self-renewal and differentiation. The protocol provided in this paper is divided into three parts. The first part explains how to culture EML cells and separate Lin-CD34+ and Lin-CD34- cells. The second part of the protocol offers detailed procedures for total RNA preparation and the subsequent library construction for high-throughput sequencing. The last part describes the method for RNA-Seq data analysis and explains how to use the data to identify differentially expressed transcription factors between Lin-CD34+ and Lin-CD34- cells. The most significantly differentially expressed transcription factors were identified to be the potential key regulators controlling EML cell self-renewal and differentiation. In the discussion section of this paper, we highlight the key steps for successful performance of this experiment. In summary, this paper offers a method of using RNA-Seq technology to identify potential regulators of self-renewal and differentiation in EML cells. The key factors identified are subjected to downstream functional analysis in vitro and in vivo. PMID:25407807

  9. Ibrutinib inhibits SDF1/CXCR4 mediated migration in AML

    PubMed Central

    Zaitseva, Lyubov; Murray, Megan Y.; Shafat, Manar S.; Lawes, Matthew J.; MacEwan, David J.; Bowles, Kristian M.; Rushworth, Stuart A.

    2014-01-01

    Pharmacological targeting of BTK using ibrutinib has recently shown encouraging clinical activity in a range of lymphoid malignancies. Recently we reported that ibrutinib inhibits human acute myeloid leukemia (AML) blast proliferation and leukemic cell adhesion to the surrounding bone marrow stroma cells. Here we report that in human AML ibrutinib, in addition, functions to inhibit SDF1/CXCR4-mediated AML migration at concentrations achievable in vivo. It has previously been shown that SDF1/CXCR4-induced migration is dependent on activation of downstream BTK in chronic lymphocytic leukaemia (CLL) and multiple myeloma. Here we show that SDF-1 induces BTK phosphorylation and downstream MAPK signalling in primary AML blast. Furthermore, we show that ibrutinib can inhibit SDF1-induced AKT and MAPK activation. These results reported here provide a molecular mechanistic rationale for clinically evaluating BTK inhibition in AML patients and suggests that in some AML patients the blasts count may initially rise in response to ibrutinib therapy, analgous to similar clinical observations in CLL. PMID:25294819

  10. Oncogenic NOTCH1 control of MYC and PI3K: challenges and opportunities for anti-NOTCH1 therapy in T-ALL

    PubMed Central

    Palomero, Teresa; Ferrando, Adolfo

    2008-01-01

    The identification of activating mutations in NOTCH1 in the majority of T-cell acute lymphoblastic leukemias and lymphomas (T-ALL) has brought much interest in inhibiting NOTCH1 signaling as therapeutic target in this disease. Small molecule inhibitors of the γ-secretase complex, which mediates a critical proteolytic cleavage required for NOTCH1 activation, hold the promise of becoming an effective molecular therapy against relapsed and refractory T-ALL. Recent progress in the elucidation of the transcriptional regulatory networks downstream of oncogenic NOTCH1 has uncovered a central role of NOTCH1 signaling in promoting leukemic cell growth and revealed an intricate circuitry that connects NOTCH1 signaling with MYC and the PI3K-AKT signaling pathway. The identification of the downstream effector pathways controlled by NOTCH1 should pave the way for the rational design of anti-NOTCH1 therapies for the treatment of T-ALL. PMID:18765521

  11. A Novel Alternative Splicing Isoform of Human T-Cell Leukemia Virus Type 1 bZIP Factor (HBZ-SI) Targets Distinct Subnuclear Localization

    PubMed Central

    Murata, Ken; Hayashibara, Toshihisa; Sugahara, Kazuyuki; Uemura, Akiko; Yamaguchi, Taku; Harasawa, Hitomi; Hasegawa, Hiroo; Tsuruda, Kazuto; Okazaki, Toshiro; Koji, Takehiko; Miyanishi, Takayuki; Yamada, Yasuaki; Kamihira, Shimeru

    2006-01-01

    Adult T-cell leukemia (ATL) is associated with prior infection with human T-cell leukemia virus type 1 (HTLV-1); however, the mechanism by which HTLV-1 causes adult T-cell leukemia has not been fully elucidated. Recently, a functional basic leucine zipper (bZIP) protein coded in the minus strand of HTLV-1 genome (HBZ) was identified. We report here a novel isoform of the HTLV-1 bZIP factor (HBZ), HBZ-SI, identified by means of reverse transcription-PCR (RT-PCR) in conjunction with 5′ and 3′ rapid amplification of cDNA ends (RACE). HBZ-SI is a 206-amino-acid-long protein and is generated by alternative splicing between part of the HBZ gene and a novel exon located in the 3′ long terminal repeat of the HTLV-1 genome. Consequently, these isoforms share >95% amino acid sequence identity, and differ only at their N termini, indicating that HBZ-SI is also a functional protein. Duplex RT-PCR and real-time quantitative RT-PCR analyses showed that the mRNAs of these isoforms were expressed at equivalent levels in all ATL cell samples examined. Nonetheless, we found by Western blotting that the HBZ-SI protein was preferentially expressed in some ATL cell lines examined. A key finding was obtained from the subcellular localization analyses of these isoforms. Despite their high sequence similarity, each isoform was targeted to distinguishable subnuclear structures. These data show the presence of a novel isoform of HBZ in ATL cells, and in addition, shed new light on the possibility that each isoform may play a unique role in distinct regions in the cell nucleus. PMID:16474156

  12. Mutations in TET2 and DNMT3A genes are associated with changes in global and gene-specific methylation in acute myeloid leukemia.

    PubMed

    Ponciano-Gómez, Alberto; Martínez-Tovar, Adolfo; Vela-Ojeda, Jorge; Olarte-Carrillo, Irma; Centeno-Cruz, Federico; Garrido, Efraín

    2017-10-01

    Acute myeloid leukemia is characterized by its high biological and clinical heterogeneity, which represents an important barrier for a precise disease classification and accurate therapy. While epigenetic aberrations play a pivotal role in acute myeloid leukemia pathophysiology, molecular signatures such as change in the DNA methylation patterns and genetic mutations in enzymes needed to the methylation process can also be helpful for classifying acute myeloid leukemia. Our study aims to unveil the relevance of DNMT3A and TET2 genes in global and specific methylation patterns in acute myeloid leukemia. Peripheral blood samples from 110 untreated patients with acute myeloid leukemia and 15 healthy control individuals were collected. Global 5-methylcytosine and 5-hydroxymethylcytosine in genomic DNA from peripheral blood leukocytes were measured by using the MethylFlashTM Quantification kits. DNMT3A and TET2 expression levels were evaluated by real-time quantitative polymerase chain reaction. The R882A hotspot of DNMT3A and exons 6-10 of TET2 were amplified by polymerase chain reaction and sequenced using the Sanger method. Methylation patterns of 16 gene promoters were evaluated by pyrosequencing after treating DNA with sodium bisulfite, and their transcriptional products were measured by real-time quantitative polymerase chain reaction.Here, we demonstrate altered levels of 5-methylcytosine and 5-hydroxymethylcytosine and highly variable transcript levels of DNMT3A and TET2 in peripheral blood leukocytes from acute myeloid leukemia patients. We found a mutation prevalence of 2.7% for DNMT3A and 11.8% for TET2 in the Mexican population with this disease. The average overall survival of acute myeloid leukemia patients with DNMT3A mutations was only 4 months. In addition, we showed that mutations in DNMT3A and TET2 may cause irregular DNA methylation patterns and transcriptional expression levels in 16 genes known to be involved in acute myeloid leukemia pathogenesis. Our findings suggest that alterations in DNMT3A and TET2 may be associated with acute myeloid leukemia prognosis. Furthermore, alterations in these enzymes affect normal methylation patterns in acute myeloid leukemia- specific genes, which in turn, may influence patient survival.

  13. 5’-Terminal AUGs in Escherichia coli mRNAs with Shine-Dalgarno Sequences: Identification and Analysis of Their Roles in Non-Canonical Translation Initiation

    PubMed Central

    Beck, Heather J.; Fleming, Ian M. C.

    2016-01-01

    Analysis of the Escherichia coli transcriptome identified a unique subset of messenger RNAs (mRNAs) that contain a conventional untranslated leader and Shine-Dalgarno (SD) sequence upstream of the gene’s start codon while also containing an AUG triplet at the mRNA’s 5’- terminus (5’-uAUG). Fusion of the coding sequence specified by the 5’-terminal putative AUG start codon to a lacZ reporter gene, as well as primer extension inhibition assays, reveal that the majority of the 5’-terminal upstream open reading frames (5’-uORFs) tested support some level of lacZ translation, indicating that these mRNAs can function both as leaderless and canonical SD-leadered mRNAs. Although some of the uORFs were expressed at low levels, others were expressed at levels close to that of the respective downstream genes and as high as the naturally leaderless cI mRNA of bacteriophage λ. These 5’-terminal uORFs potentially encode peptides of varying lengths, but their functions, if any, are unknown. In an effort to determine whether expression from the 5’-terminal uORFs impact expression of the immediately downstream cistron, we examined expression from the downstream coding sequence after mutations were introduced that inhibit efficient 5’-uORF translation. These mutations were found to affect expression from the downstream cistrons to varying degrees, suggesting that some 5’-uORFs may play roles in downstream regulation. Since the 5’-uAUGs found on these conventionally leadered mRNAs can function to bind ribosomes and initiate translation, this indicates that canonical mRNAs containing 5’-uAUGs should be examined for their potential to function also as leaderless mRNAs. PMID:27467758

  14. Clonal evolution of acute myeloid leukemia highlighted by latest genome sequencing studies.

    PubMed

    Zhang, Xuehong; Lv, Dekang; Zhang, Yu; Liu, Quentin; Li, Zhiguang

    2016-09-06

    Decades of years might be required for an initiated cell to become a fully-pledged, metastasized tumor. DNA mutations are accumulated during this process including background mutations that emerge scholastically, as well as driver mutations that selectively occur in a handful of cancer genes and confer the cell a growth advantage over its neighbors. A clone of tumor cells could be superseded by another clone that acquires new mutations and grows more aggressively. Tumor evolutional patterns have been studied for years using conventional approaches that focus on the investigation of a single or a couple of genes. Latest deep sequencing technology enables a global view of tumor evolution by deciphering almost all genome aberrations in a tumor. Tumor clones and the fate of each clone during tumor evolution can be depicted with the help of the concept of variant allele frequency. Here, we summarize the new insights of cancer evolutional progression in acute myeloid leukemia. Cancer evolution is currently thought to start from a clone that has accumulated the requisite somatically-acquired genetic aberrations through a series of increasingly disordered clinical and pathological phases, eventually leading to malignant transformation [1-3]. The observations in invasive colorectal cancer that usually emerges from an antecedent benign adenomatous polyp and in cervical cancer that proceeds through intraepithelial neoplasia support the idea of stepwise or linear cancerous progression [3-5]. Genetically, such progression is achieved by successive waves of clonal expansion during which cells acquire novel genomic alterations including single nucleotide variants (SNVs), small insertions and deletions (indels), and/or copy number variations (CNVs) [6]. The latest improvement in sequencing technology has allowed the deciphering of the whole exome or genome in different types of tumor and normal tissue pairs, providing detailed catalogue about genome aberrations during tumor initiation and progression, which have been reviewed in several papers [7-10]. Here, we focus on demonstrating the cancer clonal evolution pattern revealed by recent deep sequencing studies of samples from acute myeloid leukemia (AML) patients.

  15. The alpha subunit of Go interacts with promyelocytic leukemia zinc finger protein and modulates its functions.

    PubMed

    Won, Jung Hee; Park, Jung Sik; Ju, Hyun Hee; Kim, Soyeon; Suh-Kim, Haeyoung; Ghil, Sung Ho

    2008-05-01

    Heterotrimeric GTP-binding proteins (G proteins) mediate signal transduction generated by neurotransmitters and hormones. Go, a member of the Go/Gi family, is the most abundant heterotrimeric G protein in the brain. Most mechanistic analyses on Go activation demonstrate that its action is mediated by the Gbetagamma dimer; downstream effectors for its alpha subunit (Goalpha) have not been clearly defined. Here, we employ the yeast two-hybrid system to screen for Goalpha-interacting partners in a cDNA library from human fetal brain. The transcription factor promyelocytic leukemia zinc finger protein (PLZF) specifically bound to Goalpha. Interactions between PLZF and Goalpha were confirmed using in vitro and in vivo affinity binding assays. Activated Goalpha interacted directly with PLZF, and enhanced its function as a transcriptional and cell growth suppressor. Notably, PLZF activity was additionally promoted by the Go/ialpha-coupled cannabinoid receptor (CB) in HL60 cells endogenously expressing CB and PLZF. These results collectively suggest that Goalpha modulates the function of PLZF via direct interactions. Our novel findings provide insights into the diverse cellular roles of Goalpha and its coupled receptor.

  16. A mathematical model of phosphorylation AKT in Acute Myeloid Leukemia

    NASA Astrophysics Data System (ADS)

    Adi, Y. A.; Kusumo, F. A.; Aryati, L.; Hardianti, M. S.

    2016-04-01

    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present a mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.

  17. Trisubstituted purine inhibitors of PDGFRα and their antileukemic activity in the human eosinophilic cell line EOL-1.

    PubMed

    Malínková, Veronika; Řezníčková, Eva; Jorda, Radek; Gucký, Tomáš; Kryštof, Vladimír

    2017-12-15

    Inhibition of protein kinases is a validated concept for pharmacological intervention in cancers. Many kinase inhibitors have been approved for clinical use, but their practical application is often limited. Here, we describe a collection of 23 novel 2,6,9-trisubstituted purine derivatives with nanomolar inhibitory activities against PDGFRα, a receptor tyrosine kinase often found constitutively activated in various tumours. The compounds demonstrated strong and selective cytotoxicity in the human eosinophilic leukemia cell line EOL-1, whereas several other cell lines were substantially less sensitive. The cytotoxicity in EOL-1, which is known to express the FIP1L1-PDGFRA fusion gene encoding an oncogenic kinase, correlated significantly with PDGFRα inhibition. EOL-1 cells treated with the compounds also exhibited dose-dependent inhibition of PDGFRα autophosphorylation and suppression of its downstream signaling pathways with concomitant G 1 phase arrest, confirming the proposed mechanism of action. Our results show that substituted purines can be used as platforms for preparing tyrosine kinase inhibitors with specific activity towards eosinophilic leukemia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The Pim kinases: new targets for drug development.

    PubMed

    Swords, Ronan; Kelly, Kevin; Carew, Jennifer; Nawrocki, Stefan; Mahalingam, Devalingam; Sarantopoulos, John; Bearss, David; Giles, Francis

    2011-12-01

    The three Pim kinases are a small family of serine/threonine kinases regulating several signaling pathways that are fundamental to cancer development and progression. They were first recognized as pro-viral integration sites for the Moloney Murine Leukemia virus. Unlike other kinases, they possess a hinge region which creates a unique binding pocket for ATP. Absence of a regulatory domain means that these proteins are constitutively active once transcribed. Pim kinases are critical downstream effectors of the ABL (ableson), JAK2 (janus kinase 2), and Flt-3 (FMS related tyrosine kinase 1) oncogenes and are required by them to drive tumorigenesis. Recent investigations have established that the Pim kinases function as effective inhibitors of apoptosis and when overexpressed, produce resistance to the mTOR (mammalian target of rapamycin) inhibitor, rapamycin . Overexpression of the PIM kinases has been reported in several hematological and solid tumors (PIM 1), myeloma, lymphoma, leukemia (PIM 2) and adenocarcinomas (PIM 3). As such, the Pim kinases are a very attractive target for pharmacological inhibition in cancer therapy. Novel small molecule inhibitors of the human Pim kinases have been designed and are currently undergoing preclinical evaluation.

  19. Interaction between Sam68 and Src family tyrosine kinases, Fyn and Lck, in T cell receptor signaling.

    PubMed

    Fusaki, N; Iwamatsu, A; Iwashima, M; Fujisawa, J i

    1997-03-07

    The Src family protein-tyrosine kinase, Fyn, is associated with the T cell receptor (TCR) and plays an important role in TCR-mediated signaling. We found that a human T cell leukemia virus type 1-infected T cell line, Hayai, overexpressed Fyn. To identify the molecules downstream of Fyn, we analyzed the tyrosine phosphorylation of cellular proteins in the cells. In Hayai, a 68-kDa protein was constitutively tyrosine-phosphorylated. The 68-kDa protein was coimmunoprecipitated with various signaling proteins such as phospholipase C gamma1, the phosphatidylinositol 3-kinase p85 subunit, Grb2, SHP-1, Cbl, and Jak3, implying that the protein might function as an adapter. Purification and microsequencing of this protein revealed that it was the RNA-binding protein, Sam68 (Src associated in mitosis, 68 kDa). Sam68 was associated with the Src homology 2 and 3 domains of Fyn and also those of another Src family kinase, Lck. CD3 cross-linking induced tyrosine phosphorylation of Sam68 in uninfected T cells. These data suggest that Sam68 participates in the signal transduction pathway downstream of TCR-coupled Src family kinases Fyn and Lck in lymphocytes, that is not only in the mitotic pathway downstream of c-Src in fibroblasts.

  20. The Phosphoinositide 3-Kinase p110α Isoform Regulates Leukemia Inhibitory Factor Receptor Expression via c-Myc and miR-125b to Promote Cell Proliferation in Medulloblastoma

    PubMed Central

    von Bueren, André O.; Ćwiek, Paulina; Rehrauer, Hubert; Djonov, Valentin; Anderle, Pascale; Arcaro, Alexandre

    2015-01-01

    Medulloblastoma (MB) is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K) pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi)-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α) was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH) subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation. PMID:25915540

  1. Spliced RNA of woodchuck hepatitis virus.

    PubMed

    Ogston, C W; Razman, D G

    1992-07-01

    Polymerase chain reaction was used to investigate RNA splicing in liver of woodchucks infected with woodchuck hepatitis virus (WHV). Two spliced species were detected, and the splice junctions were sequenced. The larger spliced RNA has an intron of 1300 nucleotides, and the smaller spliced sequence shows an additional downstream intron of 1104 nucleotides. We did not detect singly spliced sequences from which the smaller intron alone was removed. Control experiments showed that spliced sequences are present in both RNA and DNA in infected liver, showing that the viral reverse transcriptase can use spliced RNA as template. Spliced sequences were detected also in virion DNA prepared from serum. The upstream intron produces a reading frame that fuses the core to the polymerase polypeptide, while the downstream intron causes an inframe deletion in the polymerase open reading frame. Whereas the splicing patterns in WHV are superficially similar to those reported recently in hepatitis B virus, we detected no obvious homology in the coding capacity of spliced RNAs from these two viruses.

  2. Targeting Stereotyped B Cell Receptors from Chronic Lymphocytic Leukemia Patients with Synthetic Antigen Surrogates.

    PubMed

    Sarkar, Mohosin; Liu, Yun; Qi, Junpeng; Peng, Haiyong; Morimoto, Jumpei; Rader, Christoph; Chiorazzi, Nicholas; Kodadek, Thomas

    2016-04-01

    Chronic lymphocytic leukemia (CLL) is a disease in which a single B-cell clone proliferates relentlessly in peripheral lymphoid organs, bone marrow, and blood. DNA sequencing experiments have shown that about 30% of CLL patients have stereotyped antigen-specific B-cell receptors (BCRs) with a high level of sequence homology in the variable domains of the heavy and light chains. These include many of the most aggressive cases that haveIGHV-unmutated BCRs whose sequences have not diverged significantly from the germ line. This suggests a personalized therapy strategy in which a toxin or immune effector function is delivered selectively to the pathogenic B-cells but not to healthy B-cells. To execute this strategy, serum-stable, drug-like compounds able to target the antigen-binding sites of most or all patients in a stereotyped subset are required. We demonstrate here the feasibility of this approach with the discovery of selective, high affinity ligands for CLL BCRs of the aggressive, stereotyped subset 7P that cross-react with the BCRs of several CLL patients in subset 7p, but not with BCRs from patients outside this subset. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Retroviral insertions in the VISION database identify molecular pathways in mouse lymphoid leukemia and lymphoma

    PubMed Central

    Weiser, Keith C.; Liu, Bin; Hansen, Gwenn M.; Skapura, Darlene; Hentges, Kathryn E.; Yarlagadda, Sujatha; Morse III, Herbert C.

    2007-01-01

    AKXD recombinant inbred (RI) strains develop a variety of leukemias and lymphomas due to somatically acquired insertions of retroviral DNA into the genome of hematopoetic cells that can mutate cellular proto-oncogenes and tumor suppressor genes. We generated a new set of tumors from nine AKXD RI strains selected for their propensity to develop B-cell tumors, the most common type of human hematopoietic cancers. We employed a PCR technique called viral insertion site amplification (VISA) to rapidly isolate genomic sequence at the site of provirus insertion. Here we describe 550 VISA sequence tags (VSTs) that identify 74 common insertion sites (CISs), of which 21 have not been identified previously. Several suspected proto-oncogenes and tumor suppressor genes lie near CISs, providing supportive evidence for their roles in cancer. Furthermore, numerous previously uncharacterized genes lie near CISs, providing a pool of candidate disease genes for future research. Pathway analysis of candidate genes identified several signaling pathways as common and powerful routes to blood cancer, including Notch, E-protein, NFκB, and Ras signaling. Misregulation of several Notch signaling genes was confirmed by quantitative RT-PCR. Our data suggest that analyses of insertional mutagenesis on a single genetic background are biased toward the identification of cooperating mutations. This tumor collection represents the most comprehensive study of the genetics of B-cell leukemia and lymphoma development in mice. We have deposited the VST sequences, CISs in a genome viewer, histopathology, and molecular tumor typing data in a public web database called VISION (Viral Insertion Sites Identifying Oncogenes), which is located at http://www.mouse-genome.bcm.tmc.edu/vision. PMID:17926094

  4. Retroviral insertions in the VISION database identify molecular pathways in mouse lymphoid leukemia and lymphoma.

    PubMed

    Weiser, Keith C; Liu, Bin; Hansen, Gwenn M; Skapura, Darlene; Hentges, Kathryn E; Yarlagadda, Sujatha; Morse Iii, Herbert C; Justice, Monica J

    2007-10-01

    AKXD recombinant inbred (RI) strains develop a variety of leukemias and lymphomas due to somatically acquired insertions of retroviral DNA into the genome of hematopoetic cells that can mutate cellular proto-oncogenes and tumor suppressor genes. We generated a new set of tumors from nine AKXD RI strains selected for their propensity to develop B-cell tumors, the most common type of human hematopoietic cancers. We employed a PCR technique called viral insertion site amplification (VISA) to rapidly isolate genomic sequence at the site of provirus insertion. Here we describe 550 VISA sequence tags (VSTs) that identify 74 common insertion sites (CISs), of which 21 have not been identified previously. Several suspected proto-oncogenes and tumor suppressor genes lie near CISs, providing supportive evidence for their roles in cancer. Furthermore, numerous previously uncharacterized genes lie near CISs, providing a pool of candidate disease genes for future research. Pathway analysis of candidate genes identified several signaling pathways as common and powerful routes to blood cancer, including Notch, E-protein, NFkappaB, and Ras signaling. Misregulation of several Notch signaling genes was confirmed by quantitative RT-PCR. Our data suggest that analyses of insertional mutagenesis on a single genetic background are biased toward the identification of cooperating mutations. This tumor collection represents the most comprehensive study of the genetics of B-cell leukemia and lymphoma development in mice. We have deposited the VST sequences, CISs in a genome viewer, histopathology, and molecular tumor typing data in a public web database called VISION (Viral Insertion Sites Identifying Oncogenes), which is located at http://www.mouse-genome.bcm.tmc.edu/vision .

  5. Screening of Variations in CD22 Gene in Children with B-Precursor Acute Lymphoblastic Leukemia.

    PubMed

    Aslar Oner, Deniz; Akin, Dilara Fatma; Sipahi, Kadir; Mumcuoglu, Mine; Ezer, Ustun; Kürekci, A Emin; Akar, Nejat

    2016-09-01

    CD22 is expressed on the surface of B-cell lineage cells from the early progenitor stage of pro-B cell until terminal differentiation to mature B cells. It plays a role in signal transduction and as a regulator of B-cell receptor signaling in B-cell development. We aimed to screen exons 9-14 of the CD22 gene, which is a mutational hot spot region in B-precursor acute lymphoblastic leukemia (pre-B ALL) patients, to find possible genetic variants that could play role in the pathogenesis of pre-B ALL in Turkish children. This study included 109 Turkish children with pre-B ALL who were diagnosed at Losante Hospital for Children with Leukemia. Genomic DNA was extracted from both peripheral blood and bone marrow leukocytes. Gene amplification was performed with PCR, and all samples were screened for the variants by single strand conformation polymorphism. Samples showing band shifts were sequenced on an automated sequencer. In our patient group a total of 9 variants were identified in the CD22 gene by sequencing: a novel variant in intron 10 (T2199G); a missense variant in exon 12; 5 intronic variants between exon 12 and intron 13; a novel intronic variant (C2424T); and a synonymous in exon 13. Thirteen of 109 children (11.9%) carried the T2199G novel intronic variant located in intron 10, and 17 of 109 children (15.6%) carried the C2424T novel intronic variant. Novel variants in the CD22 gene in children with pre-B ALL in Turkey that are not present, in the Human Gene Mutation Database or NCBI SNP database, were found.

  6. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia

    PubMed Central

    Kiel, Mark J.; Velusamy, Thirunavukkarasu; Rolland, Delphine; Sahasrabuddhe, Anagh A.; Chung, Fuzon; Bailey, Nathanael G.; Schrader, Alexandra; Li, Bo; Li, Jun Z.; Ozel, Ayse B.; Betz, Bryan L.; Miranda, Roberto N.; Medeiros, L. Jeffrey; Zhao, Lili; Herling, Marco

    2014-01-01

    The comprehensive genetic alterations underlying the pathogenesis of T-cell prolymphocytic leukemia (T-PLL) are unknown. To address this, we performed whole-genome sequencing (WGS), whole-exome sequencing (WES), high-resolution copy-number analysis, and Sanger resequencing of a large cohort of T-PLL. WGS and WES identified novel mutations in recurrently altered genes not previously implicated in T-PLL including EZH2, FBXW10, and CHEK2. Strikingly, WGS and/or WES showed largely mutually exclusive mutations affecting IL2RG, JAK1, JAK3, or STAT5B in 38 of 50 T-PLL genomes (76.0%). Notably, gain-of-function IL2RG mutations are novel and have not been reported in any form of cancer. Further, high-frequency mutations in STAT5B have not been previously reported in T-PLL. Functionally, IL2RG-JAK1-JAK3-STAT5B mutations led to signal transducer and activator of transcription 5 (STAT5) hyperactivation, transformed Ba/F3 cells resulting in cytokine-independent growth, and/or enhanced colony formation in Jurkat T cells. Importantly, primary T-PLL cells exhibited constitutive activation of STAT5, and targeted pharmacologic inhibition of STAT5 with pimozide induced apoptosis in primary T-PLL cells. These results for the first time provide a portrait of the mutational landscape of T-PLL and implicate deregulation of DNA repair and epigenetic modulators as well as high-frequency mutational activation of the IL2RG-JAK1-JAK3-STAT5B axis in the pathogenesis of T-PLL. These findings offer opportunities for novel targeted therapies in this aggressive leukemia. PMID:24825865

  7. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia.

    PubMed

    Kiel, Mark J; Velusamy, Thirunavukkarasu; Rolland, Delphine; Sahasrabuddhe, Anagh A; Chung, Fuzon; Bailey, Nathanael G; Schrader, Alexandra; Li, Bo; Li, Jun Z; Ozel, Ayse B; Betz, Bryan L; Miranda, Roberto N; Medeiros, L Jeffrey; Zhao, Lili; Herling, Marco; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2014-08-28

    The comprehensive genetic alterations underlying the pathogenesis of T-cell prolymphocytic leukemia (T-PLL) are unknown. To address this, we performed whole-genome sequencing (WGS), whole-exome sequencing (WES), high-resolution copy-number analysis, and Sanger resequencing of a large cohort of T-PLL. WGS and WES identified novel mutations in recurrently altered genes not previously implicated in T-PLL including EZH2, FBXW10, and CHEK2. Strikingly, WGS and/or WES showed largely mutually exclusive mutations affecting IL2RG, JAK1, JAK3, or STAT5B in 38 of 50 T-PLL genomes (76.0%). Notably, gain-of-function IL2RG mutations are novel and have not been reported in any form of cancer. Further, high-frequency mutations in STAT5B have not been previously reported in T-PLL. Functionally, IL2RG-JAK1-JAK3-STAT5B mutations led to signal transducer and activator of transcription 5 (STAT5) hyperactivation, transformed Ba/F3 cells resulting in cytokine-independent growth, and/or enhanced colony formation in Jurkat T cells. Importantly, primary T-PLL cells exhibited constitutive activation of STAT5, and targeted pharmacologic inhibition of STAT5 with pimozide induced apoptosis in primary T-PLL cells. These results for the first time provide a portrait of the mutational landscape of T-PLL and implicate deregulation of DNA repair and epigenetic modulators as well as high-frequency mutational activation of the IL2RG-JAK1-JAK3-STAT5B axis in the pathogenesis of T-PLL. These findings offer opportunities for novel targeted therapies in this aggressive leukemia. © 2014 by The American Society of Hematology.

  8. Molecular epidemiology of childhood leukemia with emphasis on chemical exposures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buffler, P.A.; Smith, M.T.; Wood, S.

    1996-12-31

    Developing markets in the Pacific Basin depend heavily on the production and export of consumer goods. The generation of hazardous waste as a by-product of industrial production can be linked to adverse health outcomes, such as childhood leukemia, in ways that are presently unknown. In California, exposures resulting from hazardous waste disposal are of concern in the etiology of childhood cancer. Approximately 63% of the 57 hazardous waste sites that the U.S. Environmental Protection Agency (USEPA) included in the national priority list under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) statute were in the six-county San Francisco Baymore » area. This area includes California`s Silicon Valley, where a disproportionate majority of these sites are located. Although only one study links hazardous waste disposal to childhood leukemia evidence is accumulating that in utero and maternal pesticide exposures as well as chemical exposures during childhood are important in the etiology of childhood leukemia. This study investigates whether children with leukemia have common genetic changes, whether children with genetic changes experience common chemical exposures, and whether the occurrences of these genetic changes correspond to the same temporal sequence as exposure. The purpose of this paper is to describe the study design and report on the status of research activity. 10 refs., 1 fig., 3 tabs.« less

  9. Clonal dynamics towards the development of venetoclax resistance in chronic lymphocytic leukemia.

    PubMed

    Herling, Carmen D; Abedpour, Nima; Weiss, Jonathan; Schmitt, Anna; Jachimowicz, Ron Daniel; Merkel, Olaf; Cartolano, Maria; Oberbeck, Sebastian; Mayer, Petra; Berg, Valeska; Thomalla, Daniel; Kutsch, Nadine; Stiefelhagen, Marius; Cramer, Paula; Wendtner, Clemens-Martin; Persigehl, Thorsten; Saleh, Andreas; Altmüller, Janine; Nürnberg, Peter; Pallasch, Christian; Achter, Viktor; Lang, Ulrich; Eichhorst, Barbara; Castiglione, Roberta; Schäfer, Stephan C; Büttner, Reinhard; Kreuzer, Karl-Anton; Reinhardt, Hans Christian; Hallek, Michael; Frenzel, Lukas P; Peifer, Martin

    2018-02-20

    Deciphering the evolution of cancer cells under therapeutic pressure is a crucial step to understand the mechanisms that lead to treatment resistance. To this end, we analyzed whole-exome sequencing data of eight chronic lymphocytic leukemia (CLL) patients that developed resistance upon BCL2-inhibition by venetoclax. Here, we report recurrent mutations in BTG1 (2 patients) and homozygous deletions affecting CDKN2A/B (3 patients) that developed during treatment, as well as a mutation in BRAF and a high-level focal amplification of CD274 (PD-L1) that might pinpoint molecular aberrations offering structures for further therapeutic interventions.

  10. AKT capture by feline leukemia virus.

    PubMed

    Kawamura, Maki; Umehara, Daigo; Odahara, Yuka; Miyake, Ariko; Ngo, Minh Ha; Ohsato, Yoshiharu; Hisasue, Masaharu; Nakaya, Masa-Aki; Watanabe, Shinya; Nishigaki, Kazuo

    2017-04-01

    Oncogene-containing retroviruses are generated by recombination events between viral and cellular sequences, a phenomenon called "oncogene capture". The captured cellular genes, referred to as "v-onc" genes, then acquire new oncogenic properties. We report a novel feline leukemia virus (FeLV), designated "FeLV-AKT", that has captured feline c-AKT1 in feline lymphoma. FeLV-AKT contains a gag-AKT fusion gene that encodes the myristoylated Gag matrix protein and the kinase domain of feline c-AKT1, but not its pleckstrin homology domain. Therefore, it differs structurally from the v-Akt gene of murine retrovirus AKT8. AKT may be involved in the mechanisms underlying malignant diseases in cats.

  11. Retroviral expression screening of oncogenes in natural killer cell leukemia.

    PubMed

    Choi, Young Lim; Moriuchi, Ryozo; Osawa, Mitsujiro; Iwama, Atsushi; Makishima, Hideki; Wada, Tomoaki; Kisanuki, Hiroyuki; Kaneda, Ruri; Ota, Jun; Koinuma, Koji; Ishikawa, Madoka; Takada, Shuji; Yamashita, Yoshihiro; Oshimi, Kazuo; Mano, Hiroyuki

    2005-08-01

    Aggressive natural killer cell leukemia (ANKL) is an intractable malignancy that is characterized by the outgrowth of NK cells. To identify transforming genes in ANKL, we constructed a retroviral cDNA expression library from an ANKL cell line KHYG-1. Infection of 3T3 cells with recombinant retroviruses yielded 33 transformed foci. Nucleotide sequencing of the DNA inserts recovered from these foci revealed that 31 of them encoded KRAS2 with a glycine-to-alanine mutation at codon 12. Mutation-specific PCR analysis indicated that the KRAS mutation was present only in KHYG-1 cells, not in another ANKL cell line or in clinical specimens (n=8).

  12. Lentin, a novel and potent antifungal protein from shitake mushroom with inhibitory effects on activity of human immunodeficiency virus-1 reverse transcriptase and proliferation of leukemia cells.

    PubMed

    Ngai, Patrick H K; Ng, T B

    2003-11-14

    From the fruiting bodies of the edible mushroom Lentinus edodes, a novel protein designated lentin with potent antifungal activity was isolated. Lentin was unadsorbed on DEAE-cellulose, and adsorbed on Affi-gel blue gel and Mono S. The N-terminal sequence of lentin manifested similarity to endoglucanase. Lentin, which had a molecular mass of 27.5 kDa, inhibited mycelial growth in a variety of fungal species including Physalospora piricola, Botrytis cinerea and Mycosphaerella arachidicola. Lentin also exerted an inhibitory activity on HIV-1 reverse transcriptase and proliferation of leukemia cells.

  13. Chromatin modifiers and the promise of epigenetic therapy in acute leukemia

    PubMed Central

    Greenblatt, Sarah M.; Nimer, Stephen D.

    2017-01-01

    Hematopoiesis is a tightly regulated process involving the control of gene expression that directs the transition from hematopoietic stem and progenitor cells to terminally differentiated blood cells. In leukemia, the processes directing self-renewal, differentiation, and progenitor cell expansion are disrupted, leading to the accumulation of immature, non-functioning malignant cells. Insights into these processes have come in stages, based upon technological advances in genetic analyses, bioinformatics, and biological sciences. The first cytogenetic studies of leukemic cells identified chromosomal translocations that generate oncogenic fusion proteins, and most commonly affect regulators of transcription. This was followed by the discovery of recurrent somatic mutations in genes encoding regulators of the signal transduction pathways that control cell proliferation and survival. Recently, studies of global changes in methylation and gene expression have led to the understanding that the output of transcriptional regulators and the proliferative signaling pathways, are ultimately influenced by chromatin structure. Candidate gene, whole genome, and whole exome sequencing studies have identified recurrent somatic mutations in genes encoding epigenetic modifiers in both acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL). In contrast to the two hit model of leukemogenesis, emerging evidence suggests that these epigenetic modifiers represent a class of mutations that are critical to the development of leukemia and affect the regulation of various other oncogenic pathways. In this review, we discuss the range of recurrent, somatic mutations in epigenetic modifiers found in leukemia and how these modifiers relate to the classical leukemogenic pathways that lead to impaired cell differentiation and aberrant self-renewal and proliferation. PMID:24609046

  14. A small and efficient dimerization/packaging signal of rat VL30 RNA and its use in murine leukemia virus-VL30-derived vectors for gene transfer.

    PubMed

    Torrent, C; Gabus, C; Darlix, J L

    1994-02-01

    Retroviral genomes consist of two identical RNA molecules associated at their 5' ends by the dimer linkage structure located in the packaging element (Psi or E) necessary for RNA dimerization in vitro and packaging in vivo. In murine leukemia virus (MLV)-derived vectors designed for gene transfer, the Psi + sequence of 600 nucleotides directs the packaging of recombinant RNAs into MLV virions produced by helper cells. By using in vitro RNA dimerization as a screening system, a sequence of rat VL30 RNA located next to the 5' end of the Harvey mouse sarcoma virus genome and as small as 67 nucleotides was found to form stable dimeric RNA. In addition, a purine-rich sequence located at the 5' end of this VL30 RNA seems to be critical for RNA dimerization. When this VL30 element was extended by 107 nucleotides at its 3' end and inserted into an MLV-derived vector lacking MLV Psi +, it directed the efficient encapsidation of recombinant RNAs into MLV virions. Because this VL30 packaging signal is smaller and more efficient in packaging recombinant RNAs than the MLV Psi + and does not contain gag or glyco-gag coding sequences, its use in MLV-derived vectors should render even more unlikely recombinations which could generate replication-competent viruses. Therefore, utilization of the rat VL30 packaging sequence should improve the biological safety of MLV vectors for human gene transfer.

  15. Avian acute leukemia viruses MC29 and MH2 share specific RNA sequences: Evidence for a second class of transforming genes

    PubMed Central

    Duesberg, Peter H.; Vogt, Peter K.

    1979-01-01

    The genome of the defective avian tumor virus MH2 was identified as a RNA of 5.7 kilobases by its presence in different MH2-helper virus complexes and its absence from pure helper virus, by its unique fingerprint pattern of RNase T1-resistant (T1) oligonucleotides that differed from those of two helper virus RNAs, and by its structural analogy to the RNA of MC29, another avian acute leukemia virus. Two sets of sequences were distinguished in MH2 RNA: 66% hybridized with DNA complementary to helper-independent avian tumor viruses, termed group-specific, and 34% were specific. The percentage of specific sequences is considered a minimal estimate because the MH2 RNA used was about 30% contaminated by helper virus RNA. No sequences related to the transforming src gene of avian sarcoma viruses were found in MH2. MH2 shared three large T1 oligonucleotides with MC29, two of which could also be isolated from a RNase A- and T1-resistant hybrid formed between MH2 RNA and MC29 specific cDNA. These oligonucleotides belong to a group of six that define the specific segment of MC29 RNA described previously. The group-specific sequences of MH2 and MC29 RNA shared only the two smallest out of about 20 T1 oligonucleotides associated with MH2 RNA. It is concluded that the specific sequences of MH2 and MC29 are related, and it is proposed that they are necessary for, or identical with, the onc genes of these viruses. These sequences would define a related class of transforming genes in avian tumor viruses that differs from the src genes of avian sarcoma viruses. Images PMID:221900

  16. Maesopsin 4-O-beta-D-glucoside, a natural compound isolated from the leaves of Artocarpus tonkinensis, inhibits proliferation and up-regulates HMOX1, SRXN1 and BCAS3 in acute myeloid leukemia.

    PubMed

    Pozzesi, N; Pierangeli, S; Vacca, C; Falchi, L; Pettorossi, V; Martelli, M P; Thuy, T T; Ninh, P T; Liberati, A M; Riccardi, C; Sung, T V; Delfino, D V

    2011-06-01

    The leaves of Artocarpus tonkinensis are used in Vietnamese traditional medicine for treatment of arthritis, and the compound maesopsin 4-O-β-D-glucoside (TAT-2), isolated from them, inhibits the proliferation of activated T cells. Our goal was to test the anti-proliferative activity of TAT-2 on the T-cell leukemia, Jurkat, and on the acute myeloid leukemia, OCI-AML. TAT-2 inhibited the growth of OCI-AML (and additional acute myeloid leukemia cells) but not Jurkat cells. Growth inhibition was shown to be due to inhibition of proliferation rather than increase in cell death. Analysis of cytokine release showed that TAT-2 stimulated the release of TGF-β, yet TGF-β neutralization did not reverse the maesopsin-dependent effect. Gene expression profiling determined that maesopsin modulated 19 identifiable genes. Transcription factor CP2 was the gene most significantly modulated. Real-time PCR validated that up-regulation of sulphiredoxin 1 homolog (SRXN1), hemeoxygenase 1 (HMOX1), and breast carcinoma amplified sequence 3 (BCAS3) were consistently modulated.

  17. Genomically Intact Endogenous Feline Leukemia Viruses of Recent Origin

    PubMed Central

    Roca, Alfred L.; Pecon-Slattery, Jill; O'Brien, Stephen J.

    2004-01-01

    We isolated and sequenced two complete endogenous feline leukemia viruses (enFeLVs), designated enFeLV-AGTT and enFeLV-GGAG. In enFeLV-AGTT, the open reading frames are reminiscent of a functioning FeLV genome, and the 5′ and 3′ long terminal repeat sequences are identical. Neither endogenous provirus is genetically fixed in cats but polymorphic, with 8.9 and 15.2% prevalence for enFeLV-AGTT and enFeLV-GGAG, respectively, among a survey of domestic cats. Neither provirus was found in the genomes of related species of the Felis genus, previously shown to harbor enFeLVs. The absence of mutational divergence, polymorphic incidence in cats, and absence in related species suggest that these enFeLVs may have entered the germ line more recently than previously believed, perhaps coincident with domestication, and reopens the question of whether some enFeLVs might be replication competent. PMID:15047851

  18. Genetic Characterization of Feline Leukemia Virus from Florida Panthers

    PubMed Central

    Brown, Meredith A.; Cunningham, Mark W.; Roca, Alfred L.; Troyer, Jennifer L.; Johnson, Warren E.

    2008-01-01

    From 2002 through 2005, an outbreak of feline leukemia virus (FeLV) occurred in Florida panthers (Puma concolor coryi). Clinical signs included lymphadenopathy, anemia, septicemia, and weight loss; 5 panthers died. Not associated with FeLV outcome were the genetic heritage of the panthers (pure Florida vs. Texas/Florida crosses) and co-infection with feline immunodeficiency virus. Genetic analysis of panther FeLV, designated FeLV-Pco, determined that the outbreak likely came from 1 cross-species transmission from a domestic cat. The FeLV-Pco virus was closely related to the domestic cat exogenous FeLV-A subgroup in lacking recombinant segments derived from endogenous FeLV. FeLV-Pco sequences were most similar to the well-characterized FeLV-945 strain, which is highly virulent and strongly pathogenic in domestic cats because of unique long terminal repeat and envelope sequences. These unique features may also account for the severity of the outbreak after cross-species transmission to the panther. PMID:18258118

  19. Discovery of somatic mutations in the progression of chronic myeloid leukemia by whole-exome sequencing.

    PubMed

    Huang, Y; Zheng, J; Hu, J D; Wu, Y A; Zheng, X Y; Liu, T B; Chen, F L

    2014-02-19

    We performed whole-exome sequencing in samples representing accelerated phase (AP) and blastic crisis (BC) in a subject with chronic myeloid leukemia (CML). A total of 12.74 Gb clean data were generated, achieving a mean depth coverage of 64.45 and 69.53 for AP and BC samples, respectively, of the target region. A total of 148 somatic variants were detected, including 76 insertions and deletions (indels), 64 single-nucleotide variations (SNV), and 8 structural variations (SV). On the basis of annotation and functional prediction analysis, we identified 3 SNVs and 6 SVs that showed a potential association with CML progression. Among the genes that harbor the identified variants, GATA2 has previously been reported to play important roles in the progression from AP to BC in CML. Identification of these genes will allow us to gain a better understanding of the pathological mechanism of CML and represents a critical advance toward new molecular diagnostic tests for the development of potential therapies for CML.

  20. Using RNA-seq and targeted nucleases to identify mechanisms of drug resistance in acute myeloid leukemia.

    PubMed

    Rathe, Susan K; Moriarity, Branden S; Stoltenberg, Christopher B; Kurata, Morito; Aumann, Natalie K; Rahrmann, Eric P; Bailey, Natashay J; Melrose, Ellen G; Beckmann, Dominic A; Liska, Chase R; Largaespada, David A

    2014-08-13

    The evolution from microarrays to transcriptome deep-sequencing (RNA-seq) and from RNA interference to gene knockouts using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and Transcription Activator-Like Effector Nucleases (TALENs) has provided a new experimental partnership for identifying and quantifying the effects of gene changes on drug resistance. Here we describe the results from deep-sequencing of RNA derived from two cytarabine (Ara-C) resistance acute myeloid leukemia (AML) cell lines, and present CRISPR and TALEN based methods for accomplishing complete gene knockout (KO) in AML cells. We found protein modifying loss-of-function mutations in Dck in both Ara-C resistant cell lines. CRISPR and TALEN-based KO of Dck dramatically increased the IC₅₀ of Ara-C and introduction of a DCK overexpression vector into Dck KO clones resulted in a significant increase in Ara-C sensitivity. This effort demonstrates the power of using transcriptome analysis and CRISPR/TALEN-based KOs to identify and verify genes associated with drug resistance.

  1. Genetic characterization of feline leukemia virus from Florida panthers.

    PubMed

    Brown, Meredith A; Cunningham, Mark W; Roca, Alfred L; Troyer, Jennifer L; Johnson, Warren E; O'Brien, Stephen J

    2008-02-01

    From 2002 through 2005, an outbreak of feline leukemia virus (FeLV) occurred in Florida panthers (Puma concolor coryi). Clinical signs included lymphadenopathy, anemia, septicemia, and weight loss; 5 panthers died. Not associated with FeLV outcome were the genetic heritage of the panthers (pure Florida vs. Texas/Florida crosses) and co-infection with feline immunodeficiency virus. Genetic analysis of panther FeLV, designated FeLV-Pco, determined that the outbreak likely came from 1 cross-species transmission from a domestic cat. The FeLV-Pco virus was closely related to the domestic cat exogenous FeLV-A subgroup in lacking recombinant segments derived from endogenous FeLV. FeLV-Pco sequences were most similar to the well-characterized FeLV-945 strain, which is highly virulent and strongly pathogenic in domestic cats because of unique long terminal repeat and envelope sequences. These unique features may also account for the severity of the outbreak after cross-species transmission to the panther.

  2. U2AF1 mutations alter splice site recognition in hematological malignancies.

    PubMed

    Ilagan, Janine O; Ramakrishnan, Aravind; Hayes, Brian; Murphy, Michele E; Zebari, Ahmad S; Bradley, Philip; Bradley, Robert K

    2015-01-01

    Whole-exome sequencing studies have identified common mutations affecting genes encoding components of the RNA splicing machinery in hematological malignancies. Here, we sought to determine how mutations affecting the 3' splice site recognition factor U2AF1 alter its normal role in RNA splicing. We find that U2AF1 mutations influence the similarity of splicing programs in leukemias, but do not give rise to widespread splicing failure. U2AF1 mutations cause differential splicing of hundreds of genes, affecting biological pathways such as DNA methylation (DNMT3B), X chromosome inactivation (H2AFY), the DNA damage response (ATR, FANCA), and apoptosis (CASP8). We show that U2AF1 mutations alter the preferred 3' splice site motif in patients, in cell culture, and in vitro. Mutations affecting the first and second zinc fingers give rise to different alterations in splice site preference and largely distinct downstream splicing programs. These allele-specific effects are consistent with a computationally predicted model of U2AF1 in complex with RNA. Our findings suggest that U2AF1 mutations contribute to pathogenesis by causing quantitative changes in splicing that affect diverse cellular pathways, and give insight into the normal function of U2AF1's zinc finger domains. © 2015 Ilagan et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Improved efficiency in amplification of Escherichia coli o-antigen gene clusters using genome-wide sequence comparison

    USDA-ARS?s Scientific Manuscript database

    Background: In many bacteria including E. coli, genes encoding O-antigens are clustered in the chromosome, with a 39-bp JUMPstart sequence and gnd gene located upstream and downstream of the cluster, respectively. For determining the DNA sequence of the E. coli O-antigen gene cluster, one set of P...

  4. Amino-terminal domain of the v-fms oncogene product includes a functional signal peptide that directs synthesis of a transforming glycoprotein in the absence of feline leukemia virus gag sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, E.F.; Roussel, M.F.; Hampe, A.

    1986-08-01

    The nucleotide sequence of a 5' segment of the human genomic c-fms proto-oncogene suggested that recombination between feline leukemia virus and feline c-fms sequences might have occurred in a region encoding the 5' untranslated portion of c-fms mRNA. The polyprotein precursor gP180/sup gag-fms/ encoded by the McDonough strain of feline sarcoma virus was therefore predicted to contain 34 v-fms-coded amino acids derived from sequences of the c-fms gene that are not ordinarily translated from the proto-oncogene mRNA. The (gP180/sup gag-fms/) polyprotein was cotranslationally cleaved near the gag-fms junction to remove its gag gene-coded portion. Determination of the amino-terminal sequence ofmore » the resulting v-fms-coded glycoprotein, gp120/sup v-fms/, showed that the site of proteolysis corresponded to a predicted signal peptidase cleavage site within the c-fms gene product. Together, these analyses suggested that the linked gag sequences may not be necessary for expression of a biologically active v-fms gene product. The gag-fms sequences of feline sarcoma virus strain McDonough and the v-fms sequences alone were inserted into a murine retroviral vector containing a neomycin resistance gene. The authors conclude that a cryptic hydrophobic signal peptide sequence in v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms gene product within membranous organelles. It seems likely that the proteolytic cleavage of gP180/gag-fms/ is mediated by signal peptidase and that the amino termini of gp140/sup v-fms/ and the c-fms gene product are identical.« less

  5. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts.

    PubMed

    Lun, Aaron T L; Bach, Karsten; Marioni, John C

    2016-04-27

    Normalization of single-cell RNA sequencing data is necessary to eliminate cell-specific biases prior to downstream analyses. However, this is not straightforward for noisy single-cell data where many counts are zero. We present a novel approach where expression values are summed across pools of cells, and the summed values are used for normalization. Pool-based size factors are then deconvolved to yield cell-based factors. Our deconvolution approach outperforms existing methods for accurate normalization of cell-specific biases in simulated data. Similar behavior is observed in real data, where deconvolution improves the relevance of results of downstream analyses.

  6. Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults.

    PubMed

    Yasuda, Takahiko; Tsuzuki, Shinobu; Kawazu, Masahito; Hayakawa, Fumihiko; Kojima, Shinya; Ueno, Toshihide; Imoto, Naoto; Kohsaka, Shinji; Kunita, Akiko; Doi, Koichiro; Sakura, Toru; Yujiri, Toshiaki; Kondo, Eisei; Fujimaki, Katsumichi; Ueda, Yasunori; Aoyama, Yasutaka; Ohtake, Shigeki; Takita, Junko; Sai, Eirin; Taniwaki, Masafumi; Kurokawa, Mineo; Morishita, Shinichi; Fukayama, Masashi; Kiyoi, Hitoshi; Miyazaki, Yasushi; Naoe, Tomoki; Mano, Hiroyuki

    2016-05-01

    The oncogenic mechanisms underlying acute lymphoblastic leukemia (ALL) in adolescents and young adults (AYA; 15-39 years old) remain largely elusive. Here we have searched for new oncogenes in AYA-ALL by performing RNA-seq analysis of Philadelphia chromosome (Ph)-negative AYA-ALL specimens (n = 73) with the use of a next-generation sequencer. Interestingly, insertion of D4Z4 repeats containing the DUX4 gene into the IGH locus was frequently identified in B cell AYA-ALL, leading to a high level of expression of DUX4 protein with an aberrant C terminus. A transplantation assay in mice demonstrated that expression of DUX4-IGH in pro-B cells was capable of generating B cell leukemia in vivo. DUX4 fusions were preferentially detected in the AYA generation. Our data thus show that DUX4 can become an oncogenic driver as a result of somatic chromosomal rearrangements and that AYA-ALL may be a clinical entity distinct from ALL at other ages.

  7. Regulation of leukemia-initiating cell activity by the ubiquitin ligase FBXW7

    PubMed Central

    King, Bryan; Trimarchi, Thomas; Reavie, Linsey; Xu, Luyao; Mullenders, Jasper; Ntziachristos, Panagiotis; Aranda-Orgilles, Beatriz; Perez-Garcia, Arianne; Shi, Junwei; Vakoc, Christopher; Sandy, Peter; Shen, Steven S.; Ferrando, Adolfo; Aifantis, Iannis

    2013-01-01

    SUMMARY Sequencing efforts led to the identification of somatic mutations that could affect self-renewal and differentiation of cancer-initiating cells. One such recurrent mutation targets the binding pocket of the ubiquitin ligase FBXW7. Missense FBXW7 mutations are prevalent in various tumors, including T-cell acute lymphoblastic leukemia (T-ALL). To study the effects of such lesions, we generated animals carrying regulatable Fbxw7 mutant alleles. We show here that these mutations specifically bolster cancer-initiating cell activity in collaboration with Notch1 oncogenes, but spare normal hematopoietic stem cell function. We were also able to show that FBXW7 mutations specifically affect the ubiquitylation and half-life of c-Myc protein, a key T-ALL oncogene. Using animals carrying c-Myc fusion alleles, we connected Fbxw7 function to c-Myc abundance and correlated c-Myc expression to leukemia-initiating activity. Finally, we demonstrated that small molecule-mediated suppression of MYC activity leads to T-ALL remission, suggesting a novel effective therapeutic strategy. PMID:23791182

  8. [Acute myeloid leukemia. Genetic diagnostics and molecular therapy].

    PubMed

    Schlenk, R F; Döhner, K; Döhner, H

    2013-02-01

    Acute myeloid leukemia (AML) is a genetically heterogeneous disease. The genetic diagnostics have become an essential component in the initial work-up for disease classification, prognostication and prediction. More and more promising molecular targeted therapeutics are becoming available. A prerequisite for individualized treatment strategies is a fast pretherapeutic molecular screening including the fusion genes PML-RARA, RUNX1-RUNX1T1 and CBFB-MYH11 as well as mutations in the genes NPM1, FLT3 and CEBPA. Promising new therapeutic approaches include the combination of all- trans retinoic acid and arsentrioxid in acute promyelocytic leukemia, the combination of intensive chemotherapy with KIT inhibitors in core-binding factor AML and FLT3 inhibitors in AML with FLT3 mutation, as well as gemtuzumab ozogamicin therapy in patients with low and intermediate cytogenetic risk profiles. With the advent of the next generation sequencing technologies it is expected that new therapeutic targets will be identified. These insights will lead to a further individualization of AML therapy.

  9. Revisiting the biology of infant t(4;11)/MLL-AF4+ B-cell acute lymphoblastic leukemia

    PubMed Central

    Bueno, Clara; Prieto, Cristina; Acha, Pamela; Stam, Ronald W.; Marschalek, Rolf; Menéndez, Pablo

    2015-01-01

    Infant B-cell acute lymphoblastic leukemia (B-ALL) accounts for 10% of childhood ALL. The genetic hallmark of most infant B-ALL is chromosomal rearrangements of the mixed-lineage leukemia (MLL) gene. Despite improvement in the clinical management and survival (∼85-90%) of childhood B-ALL, the outcome of infants with MLL-rearranged (MLL-r) B-ALL remains dismal, with overall survival <35%. Among MLL-r infant B-ALL, t(4;11)+ patients harboring the fusion MLL-AF4 (MA4) display a particularly poor prognosis and a pro-B/mixed phenotype. Studies in monozygotic twins and archived blood spots have provided compelling evidence of a single cell of prenatal origin as the target for MA4 fusion, explaining the brief leukemia latency. Despite its aggressiveness and short latency, current progress on its etiology, pathogenesis, and cellular origin is limited as evidenced by the lack of mouse/human models recapitulating the disease phenotype/latency. We propose this is because infant cancer is from an etiologic and pathogenesis standpoint distinct from adult cancer and should be seen as a developmental disease. This is supported by whole-genome sequencing studies suggesting that opposite to the view of cancer as a “multiple-and-sequential-hit” model, t(4;11) alone might be sufficient to spawn leukemia. The stable genome of these patients suggests that, in infant developmental cancer, one “big-hit” might be sufficient for overt disease and supports a key contribution of epigenetics and a prenatal cell of origin during a critical developmental window of stem cell vulnerability in the leukemia pathogenesis. Here, we revisit the biology of t(4;11)+ infant B-ALL with an emphasis on its origin, genetics, and disease models. PMID:26463423

  10. Inhibiting Polo-like kinase 1 causes growth reduction and apoptosis in pediatric acute lymphoblastic leukemia cells

    PubMed Central

    Hartsink-Segers, Stefanie A.; Exalto, Carla; Allen, Matthew; Williamson, Daniel; Clifford, Steven C.; Horstmann, Martin; Caron, Huib N.; Pieters, Rob; Den Boer, Monique L.

    2013-01-01

    This study investigated Polo-like kinase 1, a mitotic regulator often over-expressed in solid tumors and adult hematopoietic malignancies, as a potential new target in the treatment of pediatric acute lymphoblastic leukemia. Polo-like kinase 1 protein and Thr210 phosphorylation levels were higher in pediatric acute lymphoblastic leukemia (n=172) than in normal bone marrow mononuclear cells (n=10) (P<0.0001). High Polo-like kinase 1 protein phosphorylation, but not expression, was associated with a lower probability of event-free survival (P=0.042) and was a borderline significant prognostic factor (P=0.065) in a multivariate analysis including age and initial white blood cell count. Polo-like kinase 1 was necessary for leukemic cell survival, since short hairpin-mediated Polo-like kinase 1 knockdown in acute lymphoblastic leukemia cell lines inhibited cell proliferation by G2/M cell cycle arrest and induced apoptosis through caspase-3 and poly (ADP-ribose) polymerase cleavage. Primary patient cells with a high Polo-like kinase 1 protein expression were sensitive to the Polo-like kinase 1-specific inhibitor NMS-P937 in vitro, whereas cells with a low expression and normal bone marrow cells were resistant. This sensitivity was likely not caused by Polo-like kinase 1 mutations, since only one new mutation (Ser335Arg) was found by 454-sequencing of 38 pediatric acute lymphoblastic leukemia cases. This mutation did not affect Polo-like kinase 1 expression or NMS-P937 sensitivity. Together, these results indicate a pivotal role for Polo-like kinase 1 in pediatric acute lymphoblastic leukemia and show potential for Polo-like kinase 1-inhibiting drugs as an addition to current treatment strategies for cases expressing high Polo-like kinase 1 levels. PMID:23753023

  11. Crystal Structure of Menin Reveals Binding Site for Mixed Lineage Leukemia (MLL) Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murai, Marcelo J.; Chruszcz, Maksymilian; Reddy, Gireesh

    2014-10-02

    Menin is a tumor suppressor protein that is encoded by the MEN1 (multiple endocrine neoplasia 1) gene and controls cell growth in endocrine tissues. Importantly, menin also serves as a critical oncogenic cofactor of MLL (mixed lineage leukemia) fusion proteins in acute leukemias. Direct association of menin with MLL fusion proteins is required for MLL fusion protein-mediated leukemogenesis in vivo, and this interaction has been validated as a new potential therapeutic target for development of novel anti-leukemia agents. Here, we report the first crystal structure of menin homolog from Nematostella vectensis. Due to a very high sequence similarity, the Nematostellamore » menin is a close homolog of human menin, and these two proteins likely have very similar structures. Menin is predominantly an {alpha}-helical protein with the protein core comprising three tetratricopeptide motifs that are flanked by two {alpha}-helical bundles and covered by a {beta}-sheet motif. A very interesting feature of menin structure is the presence of a large central cavity that is highly conserved between Nematostella and human menin. By employing site-directed mutagenesis, we have demonstrated that this cavity constitutes the binding site for MLL. Our data provide a structural basis for understanding the role of menin as a tumor suppressor protein and as an oncogenic co-factor of MLL fusion proteins. It also provides essential structural information for development of inhibitors targeting the menin-MLL interaction as a novel therapeutic strategy in MLL-related leukemias.« less

  12. A novel natural killer cell line (KHYG-1) from a patient with aggressive natural killer cell leukemia carrying a p53 point mutation.

    PubMed

    Yagita, M; Huang, C L; Umehara, H; Matsuo, Y; Tabata, R; Miyake, M; Konaka, Y; Takatsuki, K

    2000-05-01

    We present the establishment of a natural killer (NK) leukemia cell line, designated KHYG-1, from the blood of a patient with aggressive NK leukemia, which both possessed the same p53 point mutation. The immunophenotype of the primary leukemia cells was CD2+, surface CD3-, cytoplasmic CD3epsilon+, CD7+, CD8alphaalpha+, CD16+, CD56+, CD57+ and HLA-DR+. A new cell line (KHYG-1) was established by culturing peripheral leukemia cells with 100 units of recombinant interleukin (IL)-2. The KHYG-1 cells showed LGL morphology with a large nucleus, coarse chromatin, conspicuous nucleoli, and abundant basophilic cytoplasm with many azurophilic granules. The immunophenotype of KHYG-1 cells was CD1-, CD2+, surface CD3-, cytoplasmic CD3epsilon+, CD7+, CD8alphaalpha+, CD16-, CD25-, CD33+, CD34-, CD56+, CD57-, CD122+, CD132+, and TdT-. Southern blot analysis of these cells revealed a normal germline configuration for the beta, delta, and gamma chains of the T cell receptor and the immunoglobulin heavy-chain genes. Moreover, the KHYG-1 cells displayed NK cell activity and IL-2-dependent proliferation in vitro, suggesting that they are of NK cell origin. Epstein-Barr virus (EBV) DNA was not detected in KHYG-1 cells by Southern blot analysis with a terminal repeat probe from an EBV genome. A point mutation in exon 7 of the p53 gene was detected in the KHYG-1 cells by PCR/SSCP analysis, and direct sequencing revealed the conversion of C to T at nucleotide 877 in codon 248. The primary leukemia cells also carried the same point mutation. Although the precise role of the p53 point mutation in leukemogenesis remains to be clarified, the establishment of an NK leukemia cell line with a p53 point mutation could be valuable in the study of leukemogenesis.

  13. Selective cytotoxicity of the antibacterial peptide ABP-dHC-Cecropin A and its analog towards leukemia cells.

    PubMed

    Sang, Ming; Zhang, Jiaxin; Zhuge, Qiang

    2017-05-15

    Some cationic antibacterial peptides, with typical amphiphilic α-helical conformations in a membrane-mimicking environment, exhibit anticancer properties as a result of a similar mechanism of action towards both bacteria and cancer cells. We previously reported the cDNA sequence of the antimicrobial peptide ABP-dHC-Cecropin A precursor cloned from drury (Hyphantria cunea) (dHC). In the present study, we synthesized and structurally characterized ABP-dHC-Cecropin A and its analog, ABP-dHC-Cecropin A-K(24). Circular dichroism spectroscopy showed that ABP-dHC-Cecropin A and its analog adopt a well-defined α-helical structure in a 50% trifluorethanol solution. The cytotoxicity and cell selectivity of these peptides were further examined in three leukemia cell lines and two non-cancerous cell lines. The MTT assay indicated both of these peptides have a concentration-dependent cytotoxic effect in leukemia cells, although the observed cytotoxicity was greater with ABP-dHC-Cecropin A-K(24) treatment, whereas they were not cytotoxic towards the non-cancerous cell lines. Moreover, ABP-dHC-Cecropin A and its analog had a lower hemolytic effect in human red blood cells. Together, these results suggest the peptides are selectively cytotoxic towards leukemia cells. Confocal laser scanning microscopy determined that the peptides were concentrated at the surface of the leukemia cells, and changes in the cell membrane were determined with a permeability assay, which suggested that the anticancer activity of ABP-dHC-Cecropin A and its analog is a result of its presence at the leukemia cell membrane. ABP-dHC-Cecropin A and its analog may represent a novel anticancer agent for leukemia therapy, considering its cancer cell selectivity and relatively low cytotoxicity in normal cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A small and efficient dimerization/packaging signal of rat VL30 RNA and its use in murine leukemia virus-VL30-derived vectors for gene transfer.

    PubMed Central

    Torrent, C; Gabus, C; Darlix, J L

    1994-01-01

    Retroviral genomes consist of two identical RNA molecules associated at their 5' ends by the dimer linkage structure located in the packaging element (Psi or E) necessary for RNA dimerization in vitro and packaging in vivo. In murine leukemia virus (MLV)-derived vectors designed for gene transfer, the Psi + sequence of 600 nucleotides directs the packaging of recombinant RNAs into MLV virions produced by helper cells. By using in vitro RNA dimerization as a screening system, a sequence of rat VL30 RNA located next to the 5' end of the Harvey mouse sarcoma virus genome and as small as 67 nucleotides was found to form stable dimeric RNA. In addition, a purine-rich sequence located at the 5' end of this VL30 RNA seems to be critical for RNA dimerization. When this VL30 element was extended by 107 nucleotides at its 3' end and inserted into an MLV-derived vector lacking MLV Psi +, it directed the efficient encapsidation of recombinant RNAs into MLV virions. Because this VL30 packaging signal is smaller and more efficient in packaging recombinant RNAs than the MLV Psi + and does not contain gag or glyco-gag coding sequences, its use in MLV-derived vectors should render even more unlikely recombinations which could generate replication-competent viruses. Therefore, utilization of the rat VL30 packaging sequence should improve the biological safety of MLV vectors for human gene transfer. Images PMID:8289369

  15. Treetrimmer: a method for phylogenetic dataset size reduction.

    PubMed

    Maruyama, Shinichiro; Eveleigh, Robert J M; Archibald, John M

    2013-04-12

    With rapid advances in genome sequencing and bioinformatics, it is now possible to generate phylogenetic trees containing thousands of operational taxonomic units (OTUs) from a wide range of organisms. However, use of rigorous tree-building methods on such large datasets is prohibitive and manual 'pruning' of sequence alignments is time consuming and raises concerns over reproducibility. There is a need for bioinformatic tools with which to objectively carry out such pruning procedures. Here we present 'TreeTrimmer', a bioinformatics procedure that removes unnecessary redundancy in large phylogenetic datasets, alleviating the size effect on more rigorous downstream analyses. The method identifies and removes user-defined 'redundant' sequences, e.g., orthologous sequences from closely related organisms and 'recently' evolved lineage-specific paralogs. Representative OTUs are retained for more rigorous re-analysis. TreeTrimmer reduces the OTU density of phylogenetic trees without sacrificing taxonomic diversity while retaining the original tree topology, thereby speeding up downstream computer-intensive analyses, e.g., Bayesian and maximum likelihood tree reconstructions, in a reproducible fashion.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laulicht, Freda; Brocato, Jason; Cartularo, Laura

    Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten's ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer-related pathways in transformed clones as determined by RNA sequencing. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. Inmore » a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data show the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. - Highlights: • Tungsten (W) induces cell transformation and increases migration in vitro. • W increases xenograft growth in nude mice. • W altered the expression of cancer-related genes such as those involved in leukemia. • Some of the dysregulated leukemia genes include, CD74, CTGF, MST4, and HOXB5. • For the first time, data is presented that demonstrates tungsten's carcinogenic potential.« less

  17. RNA from the 5' end of the R2 retrotransposon controls R2 protein binding to and cleavage of its DNA target site.

    PubMed

    Christensen, Shawn M; Ye, Junqiang; Eickbush, Thomas H

    2006-11-21

    Non-LTR retrotransposons insert into eukaryotic genomes by target-primed reverse transcription (TPRT), a process in which cleaved DNA targets are used to prime reverse transcription of the element's RNA transcript. Many of the steps in the integration pathway of these elements can be characterized in vitro for the R2 element because of the rigid sequence specificity of R2 for both its DNA target and its RNA template. R2 retrotransposition involves identical subunits of the R2 protein bound to different DNA sequences upstream and downstream of the insertion site. The key determinant regulating which DNA-binding conformation the protein adopts was found to be a 320-nt RNA sequence from near the 5' end of the R2 element. In the absence of this 5' RNA the R2 protein binds DNA sequences upstream of the insertion site, cleaves the first DNA strand, and conducts TPRT when RNA containing the 3' untranslated region of the R2 transcript is present. In the presence of the 320-nt 5' RNA, the R2 protein binds DNA sequences downstream of the insertion site. Cleavage of the second DNA strand by the downstream subunit does not appear to occur until after the 5' RNA is removed from this subunit. We postulate that the removal of the 5' RNA normally occurs during reverse transcription, and thus provides a critical temporal link to first- and second-strand DNA cleavage in the R2 retrotransposition reaction.

  18. BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders.

    PubMed

    Damm, Frederik; Chesnais, Virginie; Nagata, Yasunobu; Yoshida, Kenichi; Scourzic, Laurianne; Okuno, Yusuke; Itzykson, Raphael; Sanada, Masashi; Shiraishi, Yuichi; Gelsi-Boyer, Véronique; Renneville, Aline; Miyano, Satoru; Mori, Hiraku; Shih, Lee-Yung; Park, Sophie; Dreyfus, François; Guerci-Bresler, Agnes; Solary, Eric; Rose, Christian; Cheze, Stéphane; Prébet, Thomas; Vey, Norbert; Legentil, Marion; Duffourd, Yannis; de Botton, Stéphane; Preudhomme, Claude; Birnbaum, Daniel; Bernard, Olivier A; Ogawa, Seishi; Fontenay, Michaela; Kosmider, Olivier

    2013-10-31

    Patients with low-risk myelodysplastic syndromes (MDS) that rapidly progress to acute myeloid leukemia (AML) remain a challenge in disease management. Using whole-exome sequencing of an MDS patient, we identified a somatic mutation in the BCOR gene also mutated in AML. Sequencing of BCOR and related BCORL1 genes in a cohort of 354 MDS patients identified 4.2% and 0.8% of mutations respectively. BCOR mutations were associated with RUNX1 (P = .002) and DNMT3A mutations (P = .015). BCOR is also mutated in chronic myelomonocytic leukemia patients (7.4%) and BCORL1 in AML patients with myelodysplasia-related changes (9.1%). Using deep sequencing, we show that BCOR mutations arise after mutations affecting genes involved in splicing machinery or epigenetic regulation. In univariate analysis, BCOR mutations were associated with poor prognosis in MDS (overall survival [OS]: P = .013; cumulative incidence of AML transformation: P = .005). Multivariate analysis including age, International Prognostic Scoring System, transfusion dependency, and mutational status confirmed a significant inferior OS to patients with a BCOR mutation (hazard ratio, 3.3; 95% confidence interval, 1.4-8.1; P = .008). These data suggest that BCOR mutations define the clinical course rather than disease initiation. Despite infrequent mutations, BCOR analyses should be considered in risk stratification.

  19. Clonal evolution revealed by whole genome sequencing in a case of primary myelofibrosis transformed to secondary acute myeloid leukemia.

    PubMed

    Engle, E K; Fisher, D A C; Miller, C A; McLellan, M D; Fulton, R S; Moore, D M; Wilson, R K; Ley, T J; Oh, S T

    2015-04-01

    Clonal architecture in myeloproliferative neoplasms (MPNs) is poorly understood. Here we report genomic analyses of a patient with primary myelofibrosis (PMF) transformed to secondary acute myeloid leukemia (sAML). Whole genome sequencing (WGS) was performed on PMF and sAML diagnosis samples, with skin included as a germline surrogate. Deep sequencing validation was performed on the WGS samples and an additional sample obtained during sAML remission/relapsed PMF. Clustering analysis of 649 validated somatic single-nucleotide variants revealed four distinct clonal groups, each including putative driver mutations. The first group (including JAK2 and U2AF1), representing the founding clone, included mutations with high frequency at all three disease stages. The second clonal group (including MYB) was present only in PMF, suggesting the presence of a clone that was dispensable for transformation. The third group (including ASXL1) contained mutations with low frequency in PMF and high frequency in subsequent samples, indicating evolution of the dominant clone with disease progression. The fourth clonal group (including IDH1 and RUNX1) was acquired at sAML transformation and was predominantly absent at sAML remission/relapsed PMF. Taken together, these findings illustrate the complex clonal dynamics associated with disease evolution in MPNs and sAML.

  20. Next-generation sequencing identifies major DNA methylation changes during progression of Ph+ chronic myeloid leukemia

    PubMed Central

    Heller, G; Topakian, T; Altenberger, C; Cerny-Reiterer, S; Herndlhofer, S; Ziegler, B; Datlinger, P; Byrgazov, K; Bock, C; Mannhalter, C; Hörmann, G; Sperr, W R; Lion, T; Zielinski, C C; Valent, P; Zöchbauer-Müller, S

    2016-01-01

    Little is known about the impact of DNA methylation on the evolution/progression of Ph+ chronic myeloid leukemia (CML). We investigated the methylome of CML patients in chronic phase (CP-CML), accelerated phase (AP-CML) and blast crisis (BC-CML) as well as in controls by reduced representation bisulfite sequencing. Although only ~600 differentially methylated CpG sites were identified in samples obtained from CP-CML patients compared with controls, ~6500 differentially methylated CpG sites were found in samples from BC-CML patients. In the majority of affected CpG sites, methylation was increased. In CP-CML patients who progressed to AP-CML/BC-CML, we identified up to 897 genes that were methylated at the time of progression but not at the time of diagnosis. Using RNA-sequencing, we observed downregulated expression of many of these genes in BC-CML compared with CP-CML samples. Several of them are well-known tumor-suppressor genes or regulators of cell proliferation, and gene re-expression was observed by the use of epigenetic active drugs. Together, our results demonstrate that CpG site methylation clearly increases during CML progression and that it may provide a useful basis for revealing new targets of therapy in advanced CML. PMID:27211271

  1. Fragment analysis represents a suitable approach for the detection of hotspot c.7541_7542delCT NOTCH1 mutation in chronic lymphocytic leukemia.

    PubMed

    Vavrova, Eva; Kantorova, Barbara; Vonkova, Barbara; Kabathova, Jitka; Skuhrova-Francova, Hana; Diviskova, Eva; Letocha, Ondrej; Kotaskova, Jana; Brychtova, Yvona; Doubek, Michael; Mayer, Jiri; Pospisilova, Sarka

    2017-09-01

    The hotspot c.7541_7542delCT NOTCH1 mutation has been proven to have a negative clinical impact in chronic lymphocytic leukemia (CLL). However, an optimal method for its detection has not yet been specified. The aim of our study was to examine the presence of the NOTCH1 mutation in CLL using three commonly used molecular methods. Sanger sequencing, fragment analysis and allele-specific PCR were compared in the detection of the c.7541_7542delCT NOTCH1 mutation in 201 CLL patients. In 7 patients with inconclusive mutational analysis results, the presence of the NOTCH1 mutation was also confirmed using ultra-deep next generation sequencing. The NOTCH1 mutation was detected in 15% (30/201) of examined patients. Only fragment analysis was able to identify all 30 NOTCH1-mutated patients. Sanger sequencing and allele-specific PCR showed a lower detection efficiency, determining 93% (28/30) and 80% (24/30) of the present NOTCH1 mutations, respectively. Considering these three most commonly used methodologies for c.7541_7542delCT NOTCH1 mutation screening in CLL, we defined fragment analysis as the most suitable approach for detecting the hotspot NOTCH1 mutation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Identification of an Internal Ribosome Entry Segment in the 5′ Region of the Mouse VL30 Retrotransposon and Its Use in the Development of Retroviral Vectors

    PubMed Central

    López-Lastra, Marcelo; Ulrici, Sandrine; Gabus, Caroline; Darlix, Jean-Luc

    1999-01-01

    Mouse virus-like 30S RNAs (VL30m) constitute a family of retrotransposons, present at 100 to 200 copies, dispersed in the mouse genome. They display little sequence homology to Moloney murine leukemia virus (MoMLV), do not encode virus-like proteins, and have not been implicated in retroviral carcinogenesis. However, VL30 RNAs are efficiently packaged into MLV particles that are propagated in cell culture. In this study, we addressed whether the 5′ region of VL30m could replace the 5′ leader of MoMLV functionally in a recombinant vector construct. Our data confirm that the putative packaging sequence of VL30 is located within the 5′ region (nucleotides 362 to 1149 with respect to the cap structure) and that it can replace the packaging sequence of MoMLV. We also show that VL30m contains an internal ribosome entry segment (IRES) in the 5′ region, as do MoMLV, Friend murine leukemia virus, Harvey murine sarcoma virus, and avian reticuloendotheliosis virus type A. Our data show that both the packaging and IRES functions of the 5′ region of VL30m RNA can be efficiently used to develop retrotransposon-based vectors. PMID:10482590

  3. Identification of an internal ribosome entry segment in the 5' region of the mouse VL30 retrotransposon and its use in the development of retroviral vectors.

    PubMed

    López-Lastra, M; Ulrici, S; Gabus, C; Darlix, J L

    1999-10-01

    Mouse virus-like 30S RNAs (VL30m) constitute a family of retrotransposons, present at 100 to 200 copies, dispersed in the mouse genome. They display little sequence homology to Moloney murine leukemia virus (MoMLV), do not encode virus-like proteins, and have not been implicated in retroviral carcinogenesis. However, VL30 RNAs are efficiently packaged into MLV particles that are propagated in cell culture. In this study, we addressed whether the 5' region of VL30m could replace the 5' leader of MoMLV functionally in a recombinant vector construct. Our data confirm that the putative packaging sequence of VL30 is located within the 5' region (nucleotides 362 to 1149 with respect to the cap structure) and that it can replace the packaging sequence of MoMLV. We also show that VL30m contains an internal ribosome entry segment (IRES) in the 5' region, as do MoMLV, Friend murine leukemia virus, Harvey murine sarcoma virus, and avian reticuloendotheliosis virus type A. Our data show that both the packaging and IRES functions of the 5' region of VL30m RNA can be efficiently used to develop retrotransposon-based vectors.

  4. Rhizobium etli asparaginase II: an alternative for acute lymphoblastic leukemia (ALL) treatment.

    PubMed

    Huerta-Saquero, Alejandro; Evangelista-Martínez, Zahaed; Moreno-Enriquez, Angélica; Perez-Rueda, Ernesto

    2013-01-01

    Bacterial L-asparaginase has been a universal component of therapies for childhood acute lymphoblastic leukemia since the 1970s. Two principal enzymes derived from Escherichia coli and Erwinia chrysanthemi are the only options clinically approved to date. We recently reported a study of recombinant L-asparaginase (AnsA) from Rhizobium etli and described an increasing type of AnsA family members. Sequence analysis revealed four conserved motifs with notable differences with respect to the conserved regions of amino acid sequences of type I and type II L-asparaginases, particularly in comparison with therapeutic enzymes from E. coli and E. chrysanthemi. These differences suggested a distinct immunological specificity. Here, we report an in silico analysis that revealed immunogenic determinants of AnsA. Also, we used an extensive approach to compare the crystal structures of E. coli and E. chrysantemi asparaginases with a computational model of AnsA and identified immunogenic epitopes. A three-dimensional model of AsnA revealed, as expected based on sequence dissimilarities, completely different folding and different immunogenic epitopes. This approach could be very useful in transcending the problem of immunogenicity in two major ways: by chemical modifications of epitopes to reduce drug immunogenicity, and by site-directed mutagenesis of amino acid residues to diminish immunogenicity without reduction of enzymatic activity.

  5. Influence of BCR/ABL fusion proteins on the course of Ph leukemias.

    PubMed

    Telegeev, Gennady D; Dubrovska, Anna N; Dybkov, Mykhaylo V; Maliuta, Stanislav S

    2004-01-01

    The hallmark of chronic myeloid leukemia (CML) and a subset of acute lymphoblastic leukemia (ALL) is the presence of the Philadelphia chromosome as a result of the t(9;22) translocation. This gene rearrangement results in the production of a novel oncoprotein, BCR/ABL, a constitutively active tyrosine kinase. There is compelling evidence that the malignant transformation by BCR/ABL is critically dependent on its Abl tyrosine kinase activity. Also the bcr part of the hybrid gene takes part in realization of the malignant phenotype. We supposed that additional mutations accumulate in this region of the BCR/ABL oncogene during the development of the malignant blast crisis in CML patients. In ALL patients having p210 fusion protein the mutations were supposed to be preexisting. Sequencing of PCR product of the BCR/ABL gene (Dbl, PH region) showed that along with single-nucleotide substitutions other mutations, mostly deletions, had occurred. In an ALL patient a deletion of the 5th exon was detected. The size of the deletions varied from 36 to 220 amino acids. For one case of blast crisis of CML changes in the character of actin organization were observed. Taking into account the functional role of these domains in the cell an etiological role of such mutations on the disease phenotype and leukemia progression is plausible.

  6. Systematic chemical and molecular profiling of MLL-rearranged infant acute lymphoblastic leukemia reveals efficacy of romidepsin

    PubMed Central

    Cruickshank, M N; Ford, J; Cheung, L C; Heng, J; Singh, S; Wells, J; Failes, T W; Arndt, G M; Smithers, N; Prinjha, R K; Anderson, D; Carter, K W; Gout, A M; Lassmann, T; O'Reilly, J; Cole, C H; Kotecha, R S; Kees, U R

    2017-01-01

    To address the poor prognosis of mixed lineage leukemia (MLL)-rearranged infant acute lymphoblastic leukemia (iALL), we generated a panel of cell lines from primary patient samples and investigated cytotoxic responses to contemporary and novel Food and Drug Administration-approved chemotherapeutics. To characterize representation of primary disease within cell lines, molecular features were compared using RNA-sequencing and cytogenetics. High-throughput screening revealed variable efficacy of currently used drugs, however identified consistent efficacy of three novel drug classes: proteasome inhibitors, histone deacetylase inhibitors and cyclin-dependent kinase inhibitors. Gene expression of drug targets was highly reproducible comparing iALL cell lines to matched primary specimens. Histone deacetylase inhibitors, including romidepsin (ROM), enhanced the activity of a key component of iALL therapy, cytarabine (ARAC) in vitro and combined administration of ROM and ARAC to xenografted mice further reduced leukemia burden. Molecular studies showed that ROM reduces expression of cytidine deaminase, an enzyme involved in ARAC deactivation, and enhances the DNA damage–response to ARAC. In conclusion, we present a valuable resource for drug discovery, including the first systematic analysis of transcriptome reproducibility in vitro, and have identified ROM as a promising therapeutic for MLL-rearranged iALL. PMID:27443263

  7. Clonal selection in xenografted TAM recapitulates the evolutionary process of myeloid leukemia in Down syndrome.

    PubMed

    Saida, Satoshi; Watanabe, Ken-ichiro; Sato-Otsubo, Aiko; Terui, Kiminori; Yoshida, Kenichi; Okuno, Yusuke; Toki, Tsutomu; Wang, RuNan; Shiraishi, Yuichi; Miyano, Satoru; Kato, Itaru; Morishima, Tatsuya; Fujino, Hisanori; Umeda, Katsutsugu; Hiramatsu, Hidefumi; Adachi, Souichi; Ito, Etsuro; Ogawa, Seishi; Ito, Mamoru; Nakahata, Tatsutoshi; Heike, Toshio

    2013-05-23

    Transient abnormal myelopoiesis (TAM) is a clonal preleukemic disorder that progresses to myeloid leukemia of Down syndrome (ML-DS) through the accumulation of genetic alterations. To investigate the mechanism of leukemogenesis in this disorder, a xenograft model of TAM was established using NOD/Shi-scid, interleukin (IL)-2Rγ(null) mice. Serial engraftment after transplantation of cells from a TAM patient who developed ML-DS a year later demonstrated their self-renewal capacity. A GATA1 mutation and no copy number alterations (CNAs) were detected in the primary patient sample by conventional genomic sequencing and CNA profiling. However, in serial transplantations, engrafted TAM-derived cells showed the emergence of divergent subclones with another GATA1 mutation and various CNAs, including a 16q deletion and 1q gain, which are clinically associated with ML-DS. Detailed genomic analysis identified minor subclones with a 16q deletion or this distinct GATA1 mutation in the primary patient sample. These results suggest that genetically heterogeneous subclones with varying leukemia-initiating potential already exist in the neonatal TAM phase, and ML-DS may develop from a pool of such minor clones through clonal selection. Our xenograft model of TAM may provide unique insight into the evolutionary process of leukemia.

  8. PUTATIVE GENE PROMOTER SEQUENCES IN THE CHLORELLA VIRUSES

    PubMed Central

    Fitzgerald, Lisa A.; Boucher, Philip T.; Yanai-Balser, Giane; Suhre, Karsten; Graves, Michael V.; Van Etten, James L.

    2008-01-01

    Three short (7 to 9 nucleotides) highly conserved nucleotide sequences were identified in the putative promoter regions (150 bp upstream and 50 bp downstream of the ATG translation start site) of three members of the genus Chlorovirus, family Phycodnaviridae. Most of these sequences occurred in similar locations within the defined promoter regions. The sequence and location of the motifs were often conserved among homologous ORFs within the Chlorovirus family. One of these conserved sequences (AATGACA) is predominately associated with genes expressed early in virus replication. PMID:18768195

  9. Sensitive and Selective Plasmon Ruler Nanosensors for Monitoring the Apoptotic Drug Response in Leukemia

    PubMed Central

    2015-01-01

    Caspases are proteases involved in cell death, where caspase-3 is the chief executioner that produces an irreversible cutting event in downstream protein substrates and whose activity is desired in the management of cancer. To determine such activity in clinically relevant samples with high signal-to-noise, plasmon rulers are ideal because they are sensitively affected by their interparticle separation without ambiguity from photobleaching or blinking effects. A plasmon ruler is a noble metal nanoparticle pair, tethered in close proximity to one another via a biomolecule, that acts through dipole–dipole interactions and results in the light scattering to increase exponentially. In contrast, a sharp decrease in intensity is observed when the pair is confronted by a large interparticle distance. To align the mechanism of protease activity with building a sensor that can report a binary signal in the presence or absence of caspase-3, we present a caspase-3 selective plasmon ruler (C3SPR) composed of a pair of Zn0.4Fe2.6O4@SiO2@Au core–shell nanoparticles connected by a caspase-3 cleavage sequence. The dielectric core (Zn0.4Fe2.6O4@SiO2)-shell (Au) geometry provided a brighter scattering intensity versus solid Au nanoparticles, and the magnetic core additionally acted as a purification handle during the plasmon ruler assembly. By monitoring the decrease in light scattering intensity per plasmon ruler, we detected caspase-3 activity at single molecule resolution across a broad dynamic range. This was observed to be as low as 100 fM of recombinant material or 10 ng of total protein from cellular lysate. By thorough analyses of single molecule trajectories, we show caspase-3 activation in a drug-treated chronic myeloid leukemia (K562) cancer system as early as 4 and 8 h with greater sensitivity (2- and 4-fold, respectively) than conventional reagents. This study provides future implications for monitoring caspase-3 as a biomarker and efficacy of drugs. PMID:25166742

  10. Rank-order-selective neurons form a temporal basis set for the generation of motor sequences.

    PubMed

    Salinas, Emilio

    2009-04-08

    Many behaviors are composed of a series of elementary motor actions that must occur in a specific order, but the neuronal mechanisms by which such motor sequences are generated are poorly understood. In particular, if a sequence consists of a few motor actions, a primate can learn to replicate it from memory after practicing it for just a few trials. How do the motor and premotor areas of the brain assemble motor sequences so fast? The network model presented here reveals part of the solution to this problem. The model is based on experiments showing that, during the performance of motor sequences, some cortical neurons are always activated at specific times, regardless of which motor action is being executed. In the model, a population of such rank-order-selective (ROS) cells drives a layer of downstream motor neurons so that these generate specific movements at different times in different sequences. A key ingredient of the model is that the amplitude of the ROS responses must be modulated by sequence identity. Because of this modulation, which is consistent with experimental reports, the network is able not only to produce multiple sequences accurately but also to learn a new sequence with minimal changes in connectivity. The ROS neurons modulated by sequence identity thus serve as a basis set for constructing arbitrary sequences of motor responses downstream. The underlying mechanism is analogous to the mechanism described in parietal areas for generating coordinate transformations in the spatial domain.

  11. RANK-ORDER-SELECTIVE NEURONS FORM A TEMPORAL BASIS SET FOR THE GENERATION OF MOTOR SEQUENCES

    PubMed Central

    Salinas, Emilio

    2009-01-01

    Many behaviors are composed of a series of elementary motor actions that must occur in a specific order, but the neuronal mechanisms by which such motor sequences are generated are poorly understood. In particular, if a sequence consists of a few motor actions, a primate can learn to replicate it from memory after practicing it for just a few trials. How do the motor and premotor areas of the brain assemble motor sequences so fast? The network model presented here reveals part of the solution to this problem. The model is based on experiments showing that, during the performance of motor sequences, some cortical neurons are always activated at specific times, regardless of which motor action is being executed. In the model, a population of such rank-order-selective (ROS) cells drives a layer of downstream motor neurons so that these generate specific movements at different times in different sequences. A key ingredient of the model is that the amplitude of the ROS responses must be modulated by sequence identity. Because of this modulation, which is consistent with experimental reports, the network is able not only to produce multiple sequences accurately but also to learn a new sequence with minimal changes in connectivity. The ROS neurons modulated by sequence identity thus serve as a basis set for constructing arbitrary sequences of motor responses downstream. The underlying mechanism is analogous to the mechanism described in parietal areas for generating coordinate transformations in the spatial domain. PMID:19357265

  12. Experience with ibrutinib for first-line use in patients with chronic lymphocytic leukemia.

    PubMed

    Itchaki, Gilad; Brown, Jennifer R

    2018-01-01

    Ibrutinib is the first in-class, orally administered, Bruton's tyrosine kinase (BTK) inhibitor that abrogates the critical signaling downstream of the B-cell receptor (BCR). This signaling is required for B-cell survival, proliferation and interaction with the microenvironment. Ibrutinib proved active in preclinical models of lymphoproliferative diseases and achieved impressive response rates in heavily pretreated relapsed and refractory (R/R) patients with chronic lymphocytic leukemia (CLL). Ibrutinib prolonged survival compared to standard therapy and mitigated the effect of most poor prognostic factors in CLL, thus becoming the main therapeutic option in high-risk populations. Moreover, compared with standard chemoimmunotherapy (CIT) for adults, ibrutinib causes fewer cytopenias and infections, while having its own unique toxicity profile. Its efficacy in relapsed patients as well as its tolerability have led to its increased use in previously untreated patients, especially in those with poor prognostic markers and/or the elderly. This review elaborates on ibrutinib's unique toxicity profile and the mechanisms of acquired resistance leading to progression on ibrutinib, since both are critical for understanding the obstacles to its first-line use. We will further evaluate the data from ongoing clinical trials in this setting and explore future options for combination therapy.

  13. Microenvironment interactions and B-cell receptor signaling in Chronic Lymphocytic Leukemia: implications for disease pathogenesis and treatment

    PubMed Central

    ten Hacken, Elisa; Burger, Jan A.

    2015-01-01

    Chronic Lymphocytic Leukemia (CLL) is a malignancy of mature B lymphocytes which are highly dependent on interactions with the tissue microenvironment for their survival and proliferation. Critical components of the microenvironment are monocyte-derived nurselike cells (NLCs), mesenchymal stromal cells, T cells and NK cells, which communicate with CLL cells through a complex network of adhesion molecules, chemokine receptors, tumor necrosis factor (TNF) family members, and soluble factors. (Auto-) antigens and/or autonomous mechanisms activate the B-cell receptor (BCR) and its downstream signaling cascade in secondary lymphatic tissues, playing a central pathogenetic role in CLL. Novel small molecule inhibitors, including the Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib and the phosphoinositide-3-kinase delta (PI3Kδ) inhibitor idelalisib, target BCR signaling and have become the most successful new therapeutics in this disease. We here review the cellular and molecular characteristics of CLL cells, and discuss the cellular components and key pathways involved in the cross-talk with their microenvironment. We also highlight the relevant novel treatment strategies, focusing on immunomodulatory agents and BCR signaling inhibitors and how these treatments disrupt CLL-microenvironment interactions. PMID:26193078

  14. The molecular epidemiological study of bovine leukemia virus infection in Myanmar cattle.

    PubMed

    Polat, Meripet; Moe, Hla Hla; Shimogiri, Takeshi; Moe, Kyaw Kyaw; Takeshima, Shin-Nosuke; Aida, Yoko

    2017-02-01

    Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle. BLV infects cattle worldwide and affects both health status and productivity. However, no studies have examined the distribution of BLV in Myanmar, and the genetic characteristics of Myanmar BLV strains are unknown. Therefore, the aim of this study was to detect BLV infection in Myanmar and examine genetic variability. Blood samples were obtained from 66 cattle from different farms in four townships of the Nay Pyi Taw Union Territory of central Myanmar. BLV provirus was detected by nested PCR and real-time PCR targeting BLV long terminal repeats. Results were confirmed by nested PCR targeting the BLV env-gp51 gene and real-time PCR targeting the BLV tax gene. Out of 66 samples, six (9.1 %) were positive for BLV provirus. A phylogenetic tree, constructed using five distinct partial and complete env-gp51 sequences from BLV strains isolated from three different townships, indicated that Myanmar strains were genotype-10. A phylogenetic tree constructed from whole genome sequences obtained by sequencing cloned, overlapping PCR products from two Myanmar strains confirmed the existence of genotype-10 in Myanmar. Comparative analysis of complete genome sequences identified genotype-10-specific amino acid substitutions in both structural and non-structural genes, thereby distinguishing genotype-10 strains from other known genotypes. This study provides information regarding BLV infection levels in Myanmar and confirms that genotype-10 is circulating in Myanmar.

  15. Analytical study of avian reticuloendotheliosis virus dimeric RNA generated in vivo and in vitro.

    PubMed

    Darlix, J L; Gabus, C; Allain, B

    1992-12-01

    The retroviral genome consists of two identical RNA molecules associated at their 5' ends by a stable structure called the dimer linkage structure. The dimer linkage structure, while maintaining the dimer state of the retroviral genome, might also be involved in packaging and reverse transcription, as well as recombination during proviral DNA synthesis. To study the dimer structure of the retroviral genome and the mechanism of dimerization, we analyzed features of the dimeric genome of reticuloendotheliosis virus (REV) type A and identified elements required for its dimerization. Here we report that the REV dimeric genome extracted from virions and infected cells, as well as that synthesized in vitro, is more resistant to heat denaturation than avian sarcoma and leukemia virus, murine leukemia virus, or human immunodeficiency virus type 1 dimeric RNA. The minimal domain required to form a stable REV RNA dimer in vitro was found to map between positions 268 and 452 (KpnI and SalI sites), thus corresponding to the E encapsidation sequence (J. E. Embretson and H. M. Temin, J. Virol. 61:2675-2683, 1987). In addition, both the 5' and 3' halves of E are necessary in cis for RNA dimerization and the extent of RNA dimerization is influenced by viral sequences flanking E. Rapid and efficient dimerization of REV RNA containing gag sequences in addition to the E sequences and annealing of replication primer tRNA(Pro) to the primer-binding site necessitate the nucleocapsid protein.

  16. Analytical study of avian reticuloendotheliosis virus dimeric RNA generated in vivo and in vitro.

    PubMed Central

    Darlix, J L; Gabus, C; Allain, B

    1992-01-01

    The retroviral genome consists of two identical RNA molecules associated at their 5' ends by a stable structure called the dimer linkage structure. The dimer linkage structure, while maintaining the dimer state of the retroviral genome, might also be involved in packaging and reverse transcription, as well as recombination during proviral DNA synthesis. To study the dimer structure of the retroviral genome and the mechanism of dimerization, we analyzed features of the dimeric genome of reticuloendotheliosis virus (REV) type A and identified elements required for its dimerization. Here we report that the REV dimeric genome extracted from virions and infected cells, as well as that synthesized in vitro, is more resistant to heat denaturation than avian sarcoma and leukemia virus, murine leukemia virus, or human immunodeficiency virus type 1 dimeric RNA. The minimal domain required to form a stable REV RNA dimer in vitro was found to map between positions 268 and 452 (KpnI and SalI sites), thus corresponding to the E encapsidation sequence (J. E. Embretson and H. M. Temin, J. Virol. 61:2675-2683, 1987). In addition, both the 5' and 3' halves of E are necessary in cis for RNA dimerization and the extent of RNA dimerization is influenced by viral sequences flanking E. Rapid and efficient dimerization of REV RNA containing gag sequences in addition to the E sequences and annealing of replication primer tRNA(Pro) to the primer-binding site necessitate the nucleocapsid protein. Images PMID:1331519

  17. A Robust Error Model for iTRAQ Quantification Reveals Divergent Signaling between Oncogenic FLT3 Mutants in Acute Myeloid Leukemia*

    PubMed Central

    Zhang, Yi; Askenazi, Manor; Jiang, Jingrui; Luckey, C. John; Griffin, James D.; Marto, Jarrod A.

    2010-01-01

    The FLT3 receptor tyrosine kinase plays an important role in normal hematopoietic development and leukemogenesis. Point mutations within the activation loop and in-frame tandem duplications of the juxtamembrane domain represent the most frequent molecular abnormalities observed in acute myeloid leukemia. Interestingly these gain-of-function mutations correlate with different clinical outcomes, suggesting that signals from constitutive FLT3 mutants activate different downstream targets. In principle, mass spectrometry offers a powerful means to quantify protein phosphorylation and identify signaling events associated with constitutively active kinases or other oncogenic events. However, regulation of individual phosphorylation sites presents a challenging case for proteomics studies whereby quantification is based on individual peptides rather than an average across different peptides derived from the same protein. Here we describe a robust experimental framework and associated error model for iTRAQ-based quantification on an Orbitrap mass spectrometer that relates variance of peptide ratios to mass spectral peak height and provides for assignment of p value, q value, and confidence interval to every peptide identification, all based on routine measurements, obviating the need for detailed characterization of individual ion peaks. Moreover, we demonstrate that our model is stable over time and can be applied in a manner directly analogous to ubiquitously used external mass calibration routines. Application of our error model to quantitative proteomics data for FLT3 signaling provides evidence that phosphorylation of tyrosine phosphatase SHP1 abrogates the transformative potential, but not overall kinase activity, of FLT3-D835Y in acute myeloid leukemia. PMID:20019052

  18. Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China.

    PubMed

    Jiang, Zhou; Li, Ping; Jiang, Dawei; Dai, Xinyue; Zhang, Rui; Wang, Yanhong; Wang, Yanxin

    2016-01-01

    Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73-0.86). Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation), Sulfolobus (sulfur and iron oxidation), Metallosphaera and Acidicaldus (iron oxidation). Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41-95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs.

  19. High-throughput sequencing in acute lymphoblastic leukemia: Follow-up of minimal residual disease and emergence of new clones.

    PubMed

    Salson, Mikaël; Giraud, Mathieu; Caillault, Aurélie; Grardel, Nathalie; Duployez, Nicolas; Ferret, Yann; Duez, Marc; Herbert, Ryan; Rocher, Tatiana; Sebda, Shéhérazade; Quief, Sabine; Villenet, Céline; Figeac, Martin; Preudhomme, Claude

    2017-02-01

    Minimal residual disease (MRD) is known to be an independent prognostic factor in patients with acute lymphoblastic leukemia (ALL). High-throughput sequencing (HTS) is currently used in routine practice for the diagnosis and follow-up of patients with hematological neoplasms. In this retrospective study, we examined the role of immunoglobulin/T-cell receptor-based MRD in patients with ALL by HTS analysis of immunoglobulin H and/or T-cell receptor gamma chain loci in bone marrow samples from 11 patients with ALL, at diagnosis and during follow-up. We assessed the clinical feasibility of using combined HTS and bioinformatics analysis with interactive visualization using Vidjil software. We discuss the advantages and drawbacks of HTS for monitoring MRD. HTS gives a more complete insight of the leukemic population than conventional real-time quantitative PCR (qPCR), and allows identification of new emerging clones at each time point of the monitoring. Thus, HTS monitoring of Ig/TR based MRD is expected to improve the management of patients with ALL. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Evolutionary dynamics of endogenous feline leukemia virus proliferation among species of the domestic cat lineage.

    PubMed

    Polani, Sagi; Roca, Alfred L; Rosensteel, Bryan B; Kolokotronis, Sergios-Orestis; Bar-Gal, Gila Kahila

    2010-09-30

    Endogenous feline leukemia viruses (enFeLVs) occur in the germ lines of the domestic cat and related wild species (genus Felis). We sequenced the long terminal repeats and part of the env region of enFeLVs in domestic cats and five wild species. A total of 305 enFeLV sequences were generated across 17 individuals, demonstrating considerable diversity within two major clades. Distinct proliferations of enFeLVs occurred before and after the black-footed cat diverged from the other species. Diversity of enFeLVs was limited for the sand cat and jungle cat suggesting that proliferation of enFeLVs occurred within these species after they diverged. Relationships among enFeLVs were congruent with host species relationships except for the jungle cat, which carried only enFeLVs from a lineage that recently invaded the germline (enFeLV-AGTT). Comparison of wildcat and domestic cat enFeLVs indicated that a distinctive germ line invasion of enFeLVs has not occurred since the cat was domesticated. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Evolutionary dynamics of endogenous feline leukemia virus proliferation among species of the domestic cat lineage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polani, Sagi, E-mail: sagi.polani@gmail.co; Roca, Alfred L., E-mail: roca@illinois.ed; Rosensteel, Bryan B., E-mail: bryanr1@umbc.ed

    Endogenous feline leukemia viruses (enFeLVs) occur in the germ lines of the domestic cat and related wild species (genus Felis). We sequenced the long terminal repeats and part of the env region of enFeLVs in domestic cats and five wild species. A total of 305 enFeLV sequences were generated across 17 individuals, demonstrating considerable diversity within two major clades. Distinct proliferations of enFeLVs occurred before and after the black-footed cat diverged from the other species. Diversity of enFeLVs was limited for the sand cat and jungle cat suggesting that proliferation of enFeLVs occurred within these species after they diverged. Relationshipsmore » among enFeLVs were congruent with host species relationships except for the jungle cat, which carried only enFeLVs from a lineage that recently invaded the germline (enFeLV-AGTT). Comparison of wildcat and domestic cat enFeLVs indicated that a distinctive germ line invasion of enFeLVs has not occurred since the cat was domesticated.« less

  2. Biochemical characterization of a novel L-Asparaginase with low glutaminase activity from Rhizomucor miehei and its application in food safety and leukemia treatment.

    PubMed

    Huang, Linhua; Liu, Yu; Sun, Yan; Yan, Qiaojuan; Jiang, Zhengqiang

    2014-03-01

    A novel fungal gene encoding the Rhizomucor miehei l-asparaginase (RmAsnase) was cloned and expressed in Escherichia coli. Its deduced amino acid sequence shared only 57% identity with the amino acid sequences of other reported l-asparaginases. The purified l-asparaginase homodimer had a molecular mass of 133.7 kDa, a high specific activity of 1,985 U/mg, and very low glutaminase activity. RmAsnase was optimally active at pH 7.0 and 45°C and was stable at this temperature for 30 min. The final level of acrylamide in biscuits and bread was decreased by about 81.6% and 94.2%, respectively, upon treatment with 10 U RmAsnase per mg flour. Moreover, this l-asparaginase was found to potentiate a lectin's induction of leukemic K562 cell apoptosis, allowing lowering of the drug dosage and shortening of the incubation time. Overall, our findings suggest that RmAsnase possesses a remarkable potential for the food industry and in chemotherapeutics for leukemia.

  3. Biochemical Characterization of a Novel l-Asparaginase with Low Glutaminase Activity from Rhizomucor miehei and Its Application in Food Safety and Leukemia Treatment

    PubMed Central

    Huang, Linhua; Liu, Yu; Sun, Yan

    2014-01-01

    A novel fungal gene encoding the Rhizomucor miehei l-asparaginase (RmAsnase) was cloned and expressed in Escherichia coli. Its deduced amino acid sequence shared only 57% identity with the amino acid sequences of other reported l-asparaginases. The purified l-asparaginase homodimer had a molecular mass of 133.7 kDa, a high specific activity of 1,985 U/mg, and very low glutaminase activity. RmAsnase was optimally active at pH 7.0 and 45°C and was stable at this temperature for 30 min. The final level of acrylamide in biscuits and bread was decreased by about 81.6% and 94.2%, respectively, upon treatment with 10 U RmAsnase per mg flour. Moreover, this l-asparaginase was found to potentiate a lectin's induction of leukemic K562 cell apoptosis, allowing lowering of the drug dosage and shortening of the incubation time. Overall, our findings suggest that RmAsnase possesses a remarkable potential for the food industry and in chemotherapeutics for leukemia. PMID:24362429

  4. Effect of the replacement of aspartic acid/glutamic acid residues with asparagine/glutamine residues in RNase He1 from Hericium erinaceus on inhibition of human leukemia cell line proliferation.

    PubMed

    Kobayashi, Hiroko; Motoyoshi, Naomi; Itagaki, Tadashi; Suzuki, Mamoru; Inokuchi, Norio

    2015-01-01

    RNase He1 from Hericium erinaceus, a member of the RNase T1 family, has high identity with RNase Po1 from Pleurotus ostreatus with complete conservation of the catalytic sequence. However, the optimal pH for RNase He1 activity is lower than that of RNase Po1, and the enzyme shows little inhibition of human tumor cell proliferation. Hence, to investigate the potential antitumor activity of recombinant RNase He1 and to possibly enhance its optimum pH, we generated RNase He1 mutants by replacing 12 Asn/Gln residues with Asp/Glu residues; the amino acid sequence of RNase Po1 was taken as reference. These mutants were then expressed in Escherichia coli. Using site-directed mutagenesis, we successfully modified the optimal pH for enzyme activity and generated a recombinant RNase He1 that inhibited the proliferation of cells in the human leukemia cell line. These properties are extremely important in the production of anticancer biologics that are based on RNase activity.

  5. [Nano-ESI-MS/MS identification on differentiation-associated proteins in M1 mouse myeloid leukemia cells induced by IL-6].

    PubMed

    Xia, Qing; Wang, Hong-xia; Wang, Jie; Liu, Bing-yu; Hu, Mei-ru; Zhang, Xue-min; Shen, Bei-fen

    2004-10-01

    To identify two differentiation-associated proteins induced by rhIL-6 in M1 mouse myeloid leukemia cells. Protein spots were excised from 2-D gels and digested in-gel with trypsin. The trypsin lysis products were first analyzed by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) through peptide mass fingerprinting and then performed peptide sequencing by nano-electrospray ionization mass spectrometry/mass spectrometry (nano-ESI-MS/MS). The database search was finished with the Mascot search engine (http://www.matrixscience.co.uk) using the data processed through MaxEnt3 and MasSeq. The two proteins were not revealed by peptide mass fingerprint using MALDI-TOF-MS, while they were respectively identified as Destrin and Putative protein after the sequence of their trypic peptides were obtained by the nano-ESI-MS/MS techniques. Nano-ESI-MS/MS technique can successfully identify the two differentiation-associated proteins induced by rhIL-6 and has great advantage in protein analysis.

  6. Sequence Diversity, Intersubgroup Relationships, and Origins of the Mouse Leukemia Gammaretroviruses of Laboratory and Wild Mice.

    PubMed

    Bamunusinghe, Devinka; Naghashfar, Zohreh; Buckler-White, Alicia; Plishka, Ronald; Baliji, Surendranath; Liu, Qingping; Kassner, Joshua; Oler, Andrew J; Hartley, Janet; Kozak, Christine A

    2016-04-01

    Mouse leukemia viruses (MLVs) are found in the common inbred strains of laboratory mice and in the house mouse subspecies ofMus musculus Receptor usage and envelope (env) sequence variation define three MLV host range subgroups in laboratory mice: ecotropic, polytropic, and xenotropic MLVs (E-, P-, and X-MLVs, respectively). These exogenous MLVs derive from endogenous retroviruses (ERVs) that were acquired by the wild mouse progenitors of laboratory mice about 1 million years ago. We analyzed the genomes of seven MLVs isolated from Eurasian and American wild mice and three previously sequenced MLVs to describe their relationships and identify their possible ERV progenitors. The phylogenetic tree based on the receptor-determining regions ofenvproduced expected host range clusters, but these clusters are not maintained in trees generated from other virus regions. Colinear alignments of the viral genomes identified segmental homologies to ERVs of different host range subgroups. Six MLVs show close relationships to a small xenotropic ERV subgroup largely confined to the inbred mouse Y chromosome.envvariations define three E-MLV subtypes, one of which carries duplications of various sizes, sequences, and locations in the proline-rich region ofenv Outside theenvregion, all E-MLVs are related to different nonecotropic MLVs. These results document the diversity in gammaretroviruses isolated from globally distributedMussubspecies, provide insight into their origins and relationships, and indicate that recombination has had an important role in the evolution of these mutagenic and pathogenic agents. Laboratory mice carry mouse leukemia viruses (MLVs) of three host range groups which were acquired from their wild mouse progenitors. We sequenced the complete genomes of seven infectious MLVs isolated from geographically separated Eurasian and American wild mice and compared them with endogenous germ line retroviruses (ERVs) acquired early in house mouse evolution. We did this because the laboratory mouse viruses derive directly from specific ERVs or arise by recombination between different ERVs. The six distinctively different wild mouse viruses appear to be recombinants, often involving different host range subgroups, and most are related to a distinctive, largely Y-chromosome-linked MLV ERV subtype. MLVs with ecotropic host ranges show the greatest variability with extensive inter- and intrasubtype envelope differences and with homologies to other host range subgroups outside the envelope. The sequence diversity among these wild mouse isolates helps define their relationships and origins and emphasizes the importance of recombination in their evolution. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Endogenous Gibbon Ape Leukemia Virus Identified in a Rodent (Melomys burtoni subsp.) from Wallacea (Indonesia)

    PubMed Central

    Alfano, Niccolò; Michaux, Johan; Morand, Serge; Aplin, Ken; Tsangaras, Kyriakos; Löber, Ulrike; Fabre, Pierre-Henri; Fitriana, Yuli; Semiadi, Gono; Ishida, Yasuko; Helgen, Kristofer M.; Roca, Alfred L.; Eiden, Maribeth V.

    2016-01-01

    ABSTRACT Gibbon ape leukemia virus (GALV) and koala retrovirus (KoRV) most likely originated from a cross-species transmission of an ancestral retrovirus into koalas and gibbons via one or more intermediate as-yet-unknown hosts. A virus highly similar to GALV has been identified in an Australian native rodent (Melomys burtoni) after extensive screening of Australian wildlife. GALV-like viruses have also been discovered in several Southeast Asian species, although screening has not been extensive and viruses discovered to date are only distantly related to GALV. We therefore screened 26 Southeast Asian rodent species for KoRV- and GALV-like sequences, using hybridization capture and high-throughput sequencing, in the attempt to identify potential GALV and KoRV hosts. Only the individuals belonging to a newly discovered subspecies of Melomys burtoni from Indonesia were positive, yielding an endogenous provirus very closely related to a strain of GALV. The sequence of the critical receptor domain for GALV infection in the Indonesian M. burtoni subsp. was consistent with the susceptibility of the species to GALV infection. The second record of a GALV in M. burtoni provides further evidence that M. burtoni, and potentially other lineages within the widespread subfamily Murinae, may play a role in the spread of GALV-like viruses. The discovery of a GALV in the most western part of the Australo-Papuan distribution of M. burtoni, specifically in a transitional zone between Asia and Australia (Wallacea), may be relevant to the cross-species transmission to gibbons in Southeast Asia and broadens the known distribution of GALVs in wild rodents. IMPORTANCE Gibbon ape leukemia virus (GALV) and the koala retrovirus (KoRV) are very closely related, yet their hosts neither are closely related nor overlap geographically. Direct cross-species infection between koalas and gibbons is unlikely. Therefore, GALV and KoRV may have arisen via a cross-species transfer from an intermediate host whose range overlaps those of both gibbons and koalas. Using hybridization capture and high-throughput sequencing, we have screened a wide range of rodent candidate hosts from Southeast Asia for KoRV- and GALV-like sequences. Only a Melomys burtoni subspecies from Wallacea (Indonesia) was positive for GALV. We report the genome sequence of this newly identified GALV, the critical domain for infection of its potential cellular receptor, and its phylogenetic relationships with the other previously characterized GALVs. We hypothesize that Melomys burtoni, and potentially related lineages with an Australo-Papuan distribution, may have played a key role in cross-species transmission to other taxa. PMID:27384662

  8. Genotyping of feline leukemia virus in Mexican housecats.

    PubMed

    Ramírez, Hugo; Autran, Marcela; García, M Martha; Carmona, M Ángel; Rodríguez, Cecilia; Martínez, H Alejandro

    2016-04-01

    Feline leukemia virus (FeLV) is a retrovirus with variable rates of infection globally. DNA was obtained from cats' peripheral blood mononuclear cells, and proviral DNA of pol and env genes was detected using PCR. Seventy-six percent of cats scored positive for FeLV using env-PCR; and 54 %, by pol-PCR. Phylogenetic analysis of both regions identified sequences that correspond to a group that includes endogenous retroviruses. They form an independent branch and, therefore, a new group of endogenous viruses. Cat gender, age, outdoor access, and cohabitation with other cats were found to be significant risk factors associated with the disease. This strongly suggests that these FeLV genotypes are widely distributed in the studied feline population in Mexico.

  9. EZH2 mutations and promoter hypermethylation in childhood acute lymphoblastic leukemia.

    PubMed

    Schäfer, Vivien; Ernst, Jana; Rinke, Jenny; Winkelmann, Nils; Beck, James F; Hochhaus, Andreas; Gruhn, Bernd; Ernst, Thomas

    2016-07-01

    Acute lymphoblastic leukemia (ALL) is the most common malignancy in children and young adults. The polycomb repressive complex 2 (PRC2) has been identified as one of the most frequently mutated epigenetic protein complexes in hematologic cancers. PRC2 acts as an epigenetic repressor through histone H3 lysine 27 trimethylation (H3K27me3), catalyzed by the histone methyltransferase enhancer of zeste homolog 2 protein (EZH2). To study the prevalence and clinical impact of PRC2 aberrations in an unselected childhood ALL cohort (n = 152), we performed PRC2 mutational screenings by Sanger sequencing and promoter methylation analyses by quantitative pyrosequencing for the three PRC2 core component genes EZH2, suppressor of zeste 12 (SUZ12), and embryonic ectoderm development (EED). Targeted deep next-generation sequencing of 30 frequently mutated genes in leukemia was performed to search for cooperating mutations in patients harboring PRC2 aberrations. Finally, the functional consequence of EZH2 promoter hypermethylation on H3K27me3 was studied by Western blot analyses of primary cells. Loss-of-function EZH2 mutations were detected in 2/152 (1.3 %) patients with common-ALL and early T-cell precursor (ETP)-ALL, respectively. In one patient, targeted deep sequencing identified cooperating mutations in ASXL1 and TET2. EZH2 promoter hypermethylation was found in one patient with ETP-ALL which led to reduced H3K27me3. In comparison with healthy children, the EZH2 promoter was significantly higher methylated in T-ALL patients. No mutations or promoter methylation changes were identified for SUZ12 or EED genes, respectively. Although PRC2 aberrations seem to be rare in childhood ALL, our findings indicate that EZH2 aberrations might contribute to the disease in specific cases. Hereby, EZH2 promoter hypermethylation might have functionally similar consequences as loss-of-function mutations.

  10. Impact of electrode sequence on electrochemical removal of trichloroethylene from aqueous solution

    PubMed Central

    Rajic, Ljiljana; Fallahpour, Noushin; Alshawabkeh, Akram N.

    2015-01-01

    The electrode sequence in a mixed flow-through electrochemical cell is evaluated to improve the hydrodechlorination (HDC) of trichloroethylene (TCE) in aqueous solutions. In a mixed (undivided) electrochemical cell, oxygen generated at the anode competes with the transformation of target contaminants at the cathode. In this study, we evaluate the effect of placing the anode downstream from the cathode and using multiple electrodes to promote TCE reduction. Experiments with a cathode followed by an anode (C→A) and an anode followed by a cathode (A→C) were conducted using mixed metal oxide (MMO) and iron as electrode materials. The TCE removal rates when the anode is placed downstream of the cathode (C→A) were 54% by MMO→MMO, 64% by MMO→Fe and 87% by Fe→MMO sequence. Removal rates when the anode is placed upstream of the cathode (A→C) were 38% by MMO→MMO, 58% by Fe→MMO and 69% by MMO→Fe sequence. Placing the anode downstream of the cathode positively improves (by 26%) the degradation of aqueous TCE in a mixed flow-through cell as it minimizes the influence of oxygen generated at the MMO anode on TCE reduction at the cathode. Furthermore, placing the MMO anode downstream of the cathode neutralizes pH and redox potential of the treated solution. Higher flow velocity under the C→A setup increases TCE mass flux reduction rate. Using multiple cathodes and an iron foam cathode up stream of the anode increase the removal rate by 1.6 and 2.4 times, respectively. More than 99% of TCE was removed in the presence of Pd catalyst on carbon and as an iron foam coating. Enhanced reaction rates found in this study imply that a mixed flow-through electrochemical cell with multiple cathodes up stream of an anode is an effective method to promote the reduction of TCE in groundwater. PMID:25931774

  11. Human T-cell leukemia virus type 1 Tax requires direct access to DNA for recruitment of CREB binding protein to the viral promoter.

    PubMed

    Lenzmeier, B A; Giebler, H A; Nyborg, J K

    1998-02-01

    Efficient human T-cell leukemia virus type 1 (HTLV-1) replication and viral gene expression are dependent upon the virally encoded oncoprotein Tax. To activate HTLV-1 transcription, Tax interacts with the cellular DNA binding protein cyclic AMP-responsive element binding protein (CREB) and recruits the coactivator CREB binding protein (CBP), forming a nucleoprotein complex on the three viral cyclic AMP-responsive elements (CREs) in the HTLV-1 promoter. Short stretches of dG-dC-rich (GC-rich) DNA, immediately flanking each of the viral CREs, are essential for Tax recruitment of CBP in vitro and Tax transactivation in vivo. Although the importance of the viral CRE-flanking sequences is well established, several studies have failed to identify an interaction between Tax and the DNA. The mechanistic role of the viral CRE-flanking sequences has therefore remained enigmatic. In this study, we used high resolution methidiumpropyl-EDTA iron(II) footprinting to show that Tax extended the CREB footprint into the GC-rich DNA flanking sequences of the viral CRE. The Tax-CREB footprint was enhanced but not extended by the KIX domain of CBP, suggesting that the coactivator increased the stability of the nucleoprotein complex. Conversely, the footprint pattern of CREB on a cellular CRE lacking GC-rich flanking sequences did not change in the presence of Tax or Tax plus KIX. The minor-groove DNA binding drug chromomycin A3 bound to the GC-rich flanking sequences and inhibited the association of Tax and the Tax-CBP complex without affecting CREB binding. Tax specifically cross-linked to the viral CRE in the 5'-flanking sequence, and this cross-link was blocked by chromomycin A3. Together, these data support a model where Tax interacts directly with both CREB and the minor-groove viral CRE-flanking sequences to form a high-affinity binding site for the recruitment of CBP to the HTLV-1 promoter.

  12. Alignment methods: strategies, challenges, benchmarking, and comparative overview.

    PubMed

    Löytynoja, Ari

    2012-01-01

    Comparative evolutionary analyses of molecular sequences are solely based on the identities and differences detected between homologous characters. Errors in this homology statement, that is errors in the alignment of the sequences, are likely to lead to errors in the downstream analyses. Sequence alignment and phylogenetic inference are tightly connected and many popular alignment programs use the phylogeny to divide the alignment problem into smaller tasks. They then neglect the phylogenetic tree, however, and produce alignments that are not evolutionarily meaningful. The use of phylogeny-aware methods reduces the error but the resulting alignments, with evolutionarily correct representation of homology, can challenge the existing practices and methods for viewing and visualising the sequences. The inter-dependency of alignment and phylogeny can be resolved by joint estimation of the two; methods based on statistical models allow for inferring the alignment parameters from the data and correctly take into account the uncertainty of the solution but remain computationally challenging. Widely used alignment methods are based on heuristic algorithms and unlikely to find globally optimal solutions. The whole concept of one correct alignment for the sequences is questionable, however, as there typically exist vast numbers of alternative, roughly equally good alignments that should also be considered. This uncertainty is hidden by many popular alignment programs and is rarely correctly taken into account in the downstream analyses. The quest for finding and improving the alignment solution is complicated by the lack of suitable measures of alignment goodness. The difficulty of comparing alternative solutions also affects benchmarks of alignment methods and the results strongly depend on the measure used. As the effects of alignment error cannot be predicted, comparing the alignments' performance in downstream analyses is recommended.

  13. Clinical significance of productive immunoglobulin heavy chain gene rearrangements in childhood acute lymphoblastic leukemia.

    PubMed

    Katsibardi, Katerina; Braoudaki, Maria; Papathanasiou, Chrissa; Karamolegou, Kalliopi; Tzortzatou-Stathopoulou, Fotini

    2011-09-01

    We analyzed the CDR3 region of 80 children with B-cell acute lymphoblastic leukemia (B-ALL) using the ImMunoGeneTics Information System and JOINSOLVER. In total, 108 IGH@ rearrangements were analyzed. Most of them (75.3%) were non-productive. IGHV@ segments proximal to IGHD-IGHJ@ were preferentially rearranged (45.3%). Increased utilization of IGHV3 segments IGHV3-13 (11.3%) and IGHV3-15 (9.3%), IGHD3 (30.5%), and IGHJ4 (34%) was noted. In pro-B ALL more frequent were IGHV3-11 (33.3%) and IGHV6-1 (33.3%), IGHD2-21 (50%), IGHJ4 (50%), and IGHJ6 (50%) segments. Shorter CDR3 length was observed in IGHV@6, IGHD7, and IGHJ1 segments, whereas increased CDR3 length was related to IGHV3, IGHD2, and IGHJ4 segments. Increased risk of relapse was found in patients with productive sequences. Specifically, the relapse-free survival rate at 5 years in patients with productive sequences at diagnosis was 75% (standard error [SE] ±9%), whereas in patients with non-productive sequences it was 97% (SE ±1.92%) (p-value =0.0264). Monoclonality and oligoclonality were identified in 81.2% and 18.75% cases at diagnosis, respectively. Sequence analysis revealed IGHV@ to IGHDJ joining only in 6.6% cases with oligoclonality. The majority (75%) of relapsed patients had monoclonal IGH@ rearrangements. The preferential utilization of IGHV@ segments proximal to IGHDJ depended on their location on the IGHV@ locus. Molecular mechanisms occurring during IGH@ rearrangement might play an essential role in childhood ALL prognosis. In our study, the productivity of the rearranged sequences at diagnosis proved to be a significant prognostic factor.

  14. Consequences of germline variation disrupting the constitutional translational initiation codon start sites of MLH1 and BRCA2: use of potential alternative start sites and implications for predicting variant pathogenicity

    PubMed Central

    Parsons, Michael T.; Whiley, Phillip J.; Beesley, Jonathan; Drost, Mark; de Wind, Niels; Thompson, Bryony A.; Marquart, Louise; Hopper, John L.; Jenkins, Mark A.; Brown, Melissa A.; Tucker, Kathy; Warwick, Linda; Buchanan, Daniel D.; Spurdle, Amanda B.

    2014-01-01

    Variants that disrupt the translation initiation sequences in cancer predisposition genes are generally assumed to be deleterious. However few studies have validated these assumptions with functional and clinical data. Two cancer syndrome gene variants likely to affect native translation initiation were identified by clinical genetic testing: MLH1:c.1A>G p.(Met1?) and BRCA2:c.67+3A>G. In vitro GFP-reporter assays were conducted to assess the consequences of translation initiation disruption on alternative downstream initiation codon usage. Analysis of MLH1:c.1A>G p.(Met1?) showed that translation was mostly initiated at an in-frame position 103 nucleotides downstream, but also at two ATG sequences downstream. The protein product encoded by the in-frame transcript initiating from position c.103 showed loss of in vitro mismatch repair activity comparable to known pathogenic mutations. BRCA2:c.67+3A>G was shown by mRNA analysis to result in an aberrantly spliced transcript deleting exon 2 and the consensus ATG site. In the absence of exon 2, translation initiated mostly at an out-of-frame ATG 323 nucleotides downstream, and to a lesser extent at an in-frame ATG 370 nucleotides downstream. Initiation from any of the downstream alternative sites tested in both genes would lead to loss of protein function, but further clinical data is required to confirm if these variants are associated with a high cancer risk. Importantly, our results highlight the need for caution in interpreting the functional and clinical consequences of variation that leads to disruption of the initiation codon, since translation may not necessarily occur from the first downstream alternative start site, or from a single alternative start site. PMID:24302565

  15. Proliferating cell nuclear antigen (Pcna) as a direct downstream target gene of Hoxc8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Hyehyun; Lee, Ji-Yeon; Bok, Jinwoong

    2010-02-19

    Hoxc8 is a member of Hox family transcription factors that play crucial roles in spatiotemporal body patterning during embryogenesis. Hox proteins contain a conserved 61 amino acid homeodomain, which is responsible for recognition and binding of the proteins onto Hox-specific DNA binding motifs and regulates expression of their target genes. Previously, using proteome analysis, we identified Proliferating cell nuclear antigen (Pcna) as one of the putative target genes of Hoxc8. Here, we asked whether Hoxc8 regulates Pcna expression by directly binding to the regulatory sequence of Pcna. In mouse embryos at embryonic day 11.5, the expression pattern of Pcna wasmore » similar to that of Hoxc8 along the anteroposterior body axis. Moreover, Pcna transcript levels as well as cell proliferation rate were increased by overexpression of Hoxc8 in C3H10T1/2 mouse embryonic fibroblast cells. Characterization of 2.3 kb genomic sequence upstream of Pcna coding region revealed that the upstream sequence contains several Hox core binding sequences and one Hox-Pbx binding sequence. Direct binding of Hoxc8 proteins to the Pcna regulatory sequence was verified by chromatin immunoprecipitation assay. Taken together, our data suggest that Pcna is a direct downstream target of Hoxc8.« less

  16. Recognition of the Xenopus ribosomal core promoter by the transcription factor xUBF involves multiple HMG box domains and leads to an xUBF interdomain interaction.

    PubMed

    Leblanc, B; Read, C; Moss, T

    1993-02-01

    The interaction of the ribosomal transcription factor xUBF with the RNA polymerase I core promoter of Xenopus laevis has been studied both at the DNA and protein levels. It is shown that a single xUBF-DNA complex forms over the 40S initiation site (+1) and involves at least the DNA sequences between -20 and +60 bp. DNA sequences upstream of +10 and downstream of +18 are each sufficient to direct complex formation independently. HMG box 1 of xUBF independently recognizes the sequences -20 to -1 and +1 to +22 and the addition of the N-terminal dimerization domain to HMG box 1 stabilizes its interaction with these sequences approximately 10-fold. HMG boxes 2/3 interact with the DNA downstream of +22 and can independently position xUBF across the initiation site. The C-terminal segment of xUBF, HMG boxes 4, 5 or the acidic domain, directly or indirectly interact with HMG box 1, making the core promoter sequences between -11 and -15 hypersensitive to DNase. This interaction also requires the DNA sequences between +17 and +32, i.e. the HMG box 2/3 binding site. The data suggest extensive folding of the core promoter within the xUBF complex.

  17. Apatinib exhibits anti-leukemia activity in preclinical models of acute lymphoblastic leukemia.

    PubMed

    Deng, Manman; Zha, Jie; Jiang, Zhiwu; Jia, Xian; Shi, Yuanfei; Li, Peng; Chen, Xiao Lei; Fang, Zhihong; Du, Zhiqiang; Xu, Bing

    2018-02-28

    Acute lymphoblastic leukemia (ALL) is a clonal malignant disorder characterized by an uncontrolled proliferation of immature B or T lymphocytes. Extensive studies have suggested an involvement of angiogenesis signaling in ALL progression and resistance to treatment. Thus, targeting angiogenesis with anti-angiogenic drugs may be a promising approach for ALL treatment. In this study, we investigated the effectiveness of Apatinib, a novel receptor tyrosine kinase inhibitor selectively targeting VEGFR-2 in ALL cells. ALL cell lines were treated with different concentration of Apatinib and then CCK8 assay, flow cytometry were used to determine the IC 50 value and cell apoptosis, respectively. The effect of Apatinib against primary ALL cells from 11 adult patients and normal counterparts were also analyzed by apoptosis with flow cytometry. Next, we used western bolting and mass cytometry (CyTOF) assay to explore the underlying mechanism of the cytotoxicity of Apatinib. Finally, the anti-leukemia activity was further evaluated in an in vivo xenograft model of ALL. Our results showed that Apatinib significantly inhibited cell growth and promoted apoptosis in both B and T lineage ALL cell lines in a dose- and time-dependent manner. The IC 50 values of Apatinib against Nalm6, Reh, Jurkat and Molt4 for 48 h were 55.76 ± 13.19, 51.53 ± 10.74, 32.43 ± 5.58, 39.91 ± 9.88 μmol/L, and for 72 h were 30.34 ± 2.65, 31.96 ± 3.92, 17.62 ± 5.90, and 17.65 ± 2.17 μmol/L respectively. Similarly, Apatinib shows cytotoxic activity against primary adult ALL cells while sparing their normal counterparts in vitro. Moreover, Apatinib suppressed ALL growth and progression in an in vivo xenograft model. Mechanistically, Apatinib-induced cytotoxicity was closely associated with inhibition of VEGFR2 and its downstream signaling cascades, including the PI3 K, MAPK and STAT3 pathways. Our study indicates that Apatinib exerts its anti-leukemia effect by inducing apoptosis through suppressing the VEGFR2 signaling pathway, supporting a potential role for Apatinib in the treatment of ALL.

  18. Role of ribosomal protein mutations in tumor development (Review)

    PubMed Central

    GOUDARZI, KAVEH M.; LINDSTRÖM, MIKAEL S.

    2016-01-01

    Ribosomes are cellular machines essential for protein synthesis. The biogenesis of ribosomes is a highly complex and energy consuming process that initiates in the nucleolus. Recently, a series of studies applying whole-exome or whole-genome sequencing techniques have led to the discovery of ribosomal protein gene mutations in different cancer types. Mutations in ribosomal protein genes have for example been found in endometrial cancer (RPL22), T-cell acute lymphoblastic leukemia (RPL10, RPL5 and RPL11), chronic lymphocytic leukemia (RPS15), colorectal cancer (RPS20), and glioma (RPL5). Moreover, patients suffering from Diamond-Blackfan anemia, a bone marrow failure syndrome caused by mutant ribosomal proteins are also at higher risk for developing leukemia, or solid tumors. Different experimental models indicate potential mechanisms whereby ribosomal proteins may initiate cancer development. In particular, deregulation of the p53 tumor suppressor network and altered mRNA translation are mechanisms likely to be involved. We envisage that changes in expression and the occurrence of ribosomal protein gene mutations play important roles in cancer development. Ribosome biology constitutes a re-emerging vital area of basic and translational cancer research. PMID:26892688

  19. Technical Advances in the Measurement of Residual Disease in Acute Myeloid Leukemia

    PubMed Central

    Roloff, Gregory W.; Lai, Catherine; Dillon, Laura W.

    2017-01-01

    Outcomes for those diagnosed with acute myeloid leukemia (AML) remain poor. It has been widely established that persistent residual leukemic burden, often referred to as measurable or minimal residual disease (MRD), after induction therapy or at the time of hematopoietic stem cell transplant (HSCT) is highly predictive for adverse clinical outcomes and can be used to identify patients likely to experience clinically evident relapse. As a result of inherent genetic and molecular heterogeneity in AML, there is no uniform method or protocol for MRD measurement to encompass all cases. Several techniques focusing on identifying recurrent molecular and cytogenetic aberrations or leukemia-associated immunophenotypes have been described, each with their own strengths and weaknesses. Modern technologies enabling the digital quantification and tracking of individual DNA or RNA molecules, next-generation sequencing (NGS) platforms, and high-resolution imaging capabilities are among several new avenues under development to supplement or replace the current standard of flow cytometry. In this review, we outline emerging modalities positioned to enhance MRD detection and discuss factors surrounding their integration into clinical practice. PMID:28925935

  20. miR-133 regulates Evi1 expression in AML cells as a potential therapeutic target.

    PubMed

    Yamamoto, Haruna; Lu, Jun; Oba, Shigeyoshi; Kawamata, Toyotaka; Yoshimi, Akihide; Kurosaki, Natsumi; Yokoyama, Kazuaki; Matsushita, Hiromichi; Kurokawa, Mineo; Tojo, Arinobu; Ando, Kiyoshi; Morishita, Kazuhiro; Katagiri, Koko; Kotani, Ai

    2016-01-12

    The Ecotropic viral integration site 1 (Evi1) is a zinc finger transcription factor, which is located on chromosome 3q26, over-expression in some acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Elevated Evi1 expression in AML is associated with unfavorable prognosis. Therefore, Evi1 is one of the strong candidate in molecular target therapy for the leukemia. MicroRNAs (miRNAs) are small non-coding RNAs, vital to many cell functions that negatively regulate gene expression by translation or inducing sequence-specific degradation of target mRNAs. As a novel biologics, miRNAs is a promising therapeutic target due to its low toxicity and low cost. We screened miRNAs which down-regulate Evi1. miR-133 was identified to directly bind to Evi1 to regulate it. miR-133 increases drug sensitivity specifically in Evi1 expressing leukemic cells, but not in Evi1-non-expressing cells The results suggest that miR-133 can be promising therapeutic target for the Evi1 dysregulated poor prognostic leukemia.

  1. Detection of t(3;5) and NPM1/MLF1 rearrangement in an elderly patient with acute myeloid leukemia: clinical and laboratory study with review of the literature.

    PubMed

    Lim, Gayoung; Choi, Jong Rak; Kim, Min Jin; Kim, So Young; Lee, Hee Joo; Suh, Jin-Tae; Yoon, Hwi-Joong; Lee, Juhie; Lee, Sanggyu; Lee, Woo-In; Park, Tae Sung

    2010-06-01

    We present a novel case of acute myeloid leukemia with an NPM1/MLF1 rearrangement in a 78-year-old Korean woman. The bone marrow chromosome study showed a complex karyotype: 46,XX,t(2;13) (q13;q32),der(3)t(3;5)(q25.1;q34),der(5)del(5)(?q31q34)t(3;5),inv(9)(p11q13)c,del(20)(q11.2)[13]/49,idem,+5,+8,+der(13)t(2;13)[7]. Multiplex gene rearrangement testing, cloning, and sequencing analyses revealed an NPM1/MLF1 fusion rearrangement between exon 6 of NPM1 (ENSG00000181163) and exon 2 of MLF1 (ENSG00000178053). Although t(3;5)(q25.1;q34) or the NPM1/MLF1 rearrangement has been reported mostly as a sole karyotypic abnormality in younger patients, it should also be considered in elderly patients with complex chromosomal abnormalities in acute myeloid leukemia or myelodysplastic syndrome. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Mesenchymal Inflammation Drives Genotoxic Stress in Hematopoietic Stem Cells and Predicts Disease Evolution in Human Pre-leukemia.

    PubMed

    Zambetti, Noemi A; Ping, Zhen; Chen, Si; Kenswil, Keane J G; Mylona, Maria A; Sanders, Mathijs A; Hoogenboezem, Remco M; Bindels, Eric M J; Adisty, Maria N; Van Strien, Paulina M H; van der Leije, Cindy S; Westers, Theresia M; Cremers, Eline M P; Milanese, Chiara; Mastroberardino, Pier G; van Leeuwen, Johannes P T M; van der Eerden, Bram C J; Touw, Ivo P; Kuijpers, Taco W; Kanaar, Roland; van de Loosdrecht, Arjan A; Vogl, Thomas; Raaijmakers, Marc H G P

    2016-11-03

    Mesenchymal niche cells may drive tissue failure and malignant transformation in the hematopoietic system, but the underlying molecular mechanisms and relevance to human disease remain poorly defined. Here, we show that perturbation of mesenchymal cells in a mouse model of the pre-leukemic disorder Shwachman-Diamond syndrome (SDS) induces mitochondrial dysfunction, oxidative stress, and activation of DNA damage responses in hematopoietic stem and progenitor cells. Massive parallel RNA sequencing of highly purified mesenchymal cells in the SDS mouse model and a range of human pre-leukemic syndromes identified p53-S100A8/9-TLR inflammatory signaling as a common driving mechanism of genotoxic stress. Transcriptional activation of this signaling axis in the mesenchymal niche predicted leukemic evolution and progression-free survival in myelodysplastic syndrome (MDS), the principal leukemia predisposition syndrome. Collectively, our findings identify mesenchymal niche-induced genotoxic stress in heterotypic stem and progenitor cells through inflammatory signaling as a targetable determinant of disease outcome in human pre-leukemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. [Association of single nucleotide polymorphism of methylenetetrahydrofolate reductase gene with susceptibility to acute leukemia].

    PubMed

    Zheng, Miao-miao; Yue, Li-jie; Zhang, Hong-hong; Yang, Chun-lan; Xie, Cai

    2013-08-01

    To assess whether polymorphisms of methylenetetrahydrofolate reductase (MTHFR) gene is associated with susceptibility to acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML) in Chinese Han children. The study has included 87 patients with ALL, 22 patients with AML and 120 healthy controls. All subjects were analyzed with reverse transcriptase-polymerase chain reaction-denaturing gradient gel electrophoresis and sequencing. A 677CT genotype of the MTHFR gene was associated with decreased risk of ALL (OR=0.23, 95%CI: 0.07-0.79). However, MTHFR A1298C genotypes were not associated with the risk of either disease. 677TT/1298AA and 677CC/1298AC genotypes were associated with increased risk of ALL(OR=3.78, 95% CI: 1.38-10.40; OR=3.17, 95% CI: 1.18-8.53, respectively), whereas the genotype 677CT/1298AA was associated with susceptibility to AML (OR=0.23, 95% CI: 0.06-0.97). Our data suggested that C677T polymorphism of MTHFR gene may increase the risk of childhood AML.

  4. Exploring the Presence of microDNAs in Prostate Cancer Cell Lines, Tissue, and Sera of Prostate Cancer Patients and its Possible Application as Biomarker

    DTIC Science & Technology

    2015-08-01

    Sequence tags were mapped on the human reference genome using the Novoalign software. Only those tags... the linear islands to create a novel junctional sequence that does not exist in the genome . Thus the PE- sequence of a fragment that breaks at or...identified in cancer cell lines. (b) Median percent GC content of microDNAs and the genomic sequences up- or downstream of the source loci are

  5. Novel Immune Modulating Cellular Vaccine for Prostate Cancer

    DTIC Science & Technology

    2014-10-01

    restriction sites. Murine PSMA : The cDNA encoding mPSMA was purchased from Sino Biologicals and was cloned into the HindIII and BamHI sites of pSP73-Sph/A64...sequence) and reverse primer 5’-TATATAGAGCTCTCAGATGTTCCGATACACATCTC-3’ Murine PSMA no signal sequence (mPSMA-SS): Murine PSMA minus the signal sequence...contains a HindIII site for cloning and utilizes an ATG that lies downstream of the signal sequence as the start codon in PSMA -SS ( PSMA without signal

  6. Temporal quantitation of mutant Kit tyrosine kinase signaling attenuated by a novel thiophene kinase inhibitor OSI-930.

    PubMed

    Petti, Filippo; Thelemann, April; Kahler, Jen; McCormack, Siobhan; Castaldo, Linda; Hunt, Tony; Nuwaysir, Lydia; Zeiske, Lynn; Haack, Herbert; Sullivan, Laura; Garton, Andrew; Haley, John D

    2005-08-01

    OSI-930, a potent thiophene inhibitor of the Kit, KDR, and platelet-derived growth factor receptor tyrosine kinases, was used to selectively inhibit tyrosine phosphorylation downstream of juxtamembrane mutant Kit in the mast cell leukemia line HMC-1. Inhibition of Kit kinase activity resulted in a rapid dephosphorylation of Kit and inhibition of the downstream signaling pathways. Attenuation of Ras-Raf-Erk (phospho-Erk, phospho-p38), phosphatidyl inositol-3' kinase (phospho-p85, phospho-Akt, phospho-S6), and signal transducers and activators of transcription signaling pathways (phospho-STAT3/5/6) were measured by affinity liquid chromatography tandem mass spectrometry, by immunoblot, and by tissue microarrays of fixed cell pellets. To more globally define additional components of Kit signaling temporally altered by kinase inhibition, a novel multiplex quantitative isobaric peptide labeling approach was used. This approach allowed clustering of proteins by temporal expression patterns. Kit kinase, which dephosphorylates rapidly upon kinase inhibition, was shown to regulate both Shp-1 and BDP-1 tyrosine phosphatases and the phosphatase-interacting protein PSTPIP2. Interactions with SH2 domain adapters [growth factor receptor binding protein 2 (Grb2), Cbl, Slp-76] and SH3 domain adapters (HS1, cortactin, CD2BP3) were attenuated by inhibition of Kit kinase activity. Functional crosstalk between Kit and the non-receptor tyrosine kinases Fes/Fps, Fer, Btk, and Syk was observed. Inhibition of Kit modulated phosphorylation-dependent interactions with pathways controlling focal adhesion (paxillin, leupaxin, p130CAS, FAK1, the Src family kinase Lyn, Wasp, Fhl-3, G25K, Ack-1, Nap1, SH3P12/ponsin) and septin-actin complexes (NEDD5, cdc11, actin). The combined use of isobaric protein quantitation and expression clustering, immunoblot, and tissue microarray strategies allowed temporal measurement signaling pathways modulated by mutant Kit inhibition in a model of mast cell leukemia.

  7. Two short basic sequences surrounding the zinc finger of nucleocapsid protein NCp10 of Moloney murine leukemia virus are critical for RNA annealing activity.

    PubMed

    De Rocquigny, H; Ficheux, D; Gabus, C; Allain, B; Fournie-Zaluski, M C; Darlix, J L; Roques, B P

    1993-02-25

    The 56 amino acid nucleocapsid protein (NCp10) of Moloney Murine Leukemia Virus, contains a CysX2CysX4HisX4Cys zinc finger flanked by basic residues. In vitro NCp10 promotes genomic RNA dimerization, a process most probably linked to genomic RNA packaging, and replication primer tRNA(Pro) annealing to the initiation site of reverse transcription. To characterize the amino-acid sequences involved in the various functions of NCp10, we have synthesized by solid phase method the native protein and a series of derived peptides shortened at the N- or C-terminus with or without the zinc finger domain. In the latter case, the two parts of the protein were linked by a Glycine - Glycine spacer. The in vitro studies of these peptides show that nucleic acid annealing activities of NCp10 do not require a zinc finger but are critically dependent on the presence of specific sequences located on each side of the CCHC domain and containing proline and basic residues. Thus, deletion of 11R or 49PRPQT, of the fully active 29 residue peptide 11RQGGERRRSQLDRDGGKKPRGPRGPRPQT53 leads to a complete loss of NCp10 activity. Therefore it is proposed that in NCp10, the zinc finger directs the spatial recognition of the target RNAs by the basic domains surrounding the zinc finger.

  8. Single-cell whole exome and targeted sequencing in NPM1/FLT3 positive pediatric acute myeloid leukemia.

    PubMed

    Walter, Christiane; Pozzorini, Christian; Reinhardt, Katarina; Geffers, Robert; Xu, Zhenyu; Reinhardt, Dirk; von Neuhoff, Nils; Hanenberg, Helmut

    2018-02-01

    The small portion of leukemic stem cells (LSCs) in acute myeloid leukemia (AML) present in children and adolescents is often masked by the high background of AML blasts and normal hematopoietic cells. The aim of the current study was to establish a simple workflow for reliable genetic analysis of single LSC-enriched blasts from pediatric patients. For three AMLs with mutations in nucleophosmin 1 and/or fms-like tyrosine kinase 3, we performed whole genome amplification on sorted single-cell DNA followed by whole exome sequencing (WES). The corresponding bulk bone marrow DNAs were also analyzed by WES and by targeted sequencing (TS) that included 54 genes associated with myeloid malignancies. Analysis revealed that read coverage statistics were comparable between single-cell and bulk WES data, indicating high-quality whole genome amplification. From 102 single-cell variants, 72 single nucleotide variants and insertions or deletions (70%) were consistently found in the two bulk DNA analyses. Variants reliably detected in single cells were also present in TS. However, initial screening by WES with read counts between 50-72× failed to detect rare AML subclones in the bulk DNAs. In summary, our study demonstrated that single-cell WES combined with bulk DNA TS is a promising tool set for detecting AML subclones and possibly LSCs. © 2017 Wiley Periodicals, Inc.

  9. Ferrate oxidation of murine leukemia virus reverse transcriptase: identification of the template-primer binding domain.

    PubMed

    Reddy, G; Nanduri, V B; Basu, A; Modak, M J

    1991-08-20

    Treatment of murine leukemia virus reverse transcriptase (MuLV RT) with potassium ferrate, an oxidizing agent known to oxidize amino acids involved in phosphate binding domains of proteins, results in the irreversible inactivation of both the DNA polymerase and the RNase H activities. Significant protection from ferrate-mediated inactivation is observed in the presence of template-primer but not in the presence of substrate deoxynucleoside triphosphates. Furthermore, ferrate-treated enzyme loses template-primer binding activity as judged by UV-mediated cross-linking of radiolabeled DNA. Comparative tryptic peptide mapping by reverse-phase HPLC of native and ferrate-oxidized enzyme indicated the presence of two new peptides eluting at 38 and 57 min and a significant loss of a peptide eluting at 74 min. Purification, amino acid composition, and sequencing of these affected peptides revealed that they correspond to amino acid residues 285-295, 630-640, and 586-599, respectively, in the primary amino acid sequence of MuLV RT. These results indicate that the domains constituted by the above peptides are important for the template-primer binding function in MuLV RT. Peptide I is located in the polymerase domain whereas peptides II and III are located in the RNase H domain. Amino acid sequence analysis of peptides I and II suggested Lys-285 and Cys-635 as the probable sites of ferrate action.

  10. SNP-array lesions in core binding factor acute myeloid leukemia

    PubMed Central

    Duployez, Nicolas; Boudry-Labis, Elise; Roumier, Christophe; Boissel, Nicolas; Petit, Arnaud; Geffroy, Sandrine; Helevaut, Nathalie; Celli-Lebras, Karine; Terré, Christine; Fenneteau, Odile; Cuccuini, Wendy; Luquet, Isabelle; Lapillonne, Hélène; Lacombe, Catherine; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric; Preudhomme, Claude

    2018-01-01

    Acute myeloid leukemia (AML) with t(8;21) and inv(16), together referred as core binding factor (CBF)-AML, are recognized as unique entities. Both rearrangements share a common pathophysiology, the disruption of the CBF, and a relatively good prognosis. Experiments have demonstrated that CBF rearrangements were insufficient to induce leukemia, implying the existence of cooperating events. To explore these aberrations, we performed single nucleotide polymorphism (SNP)-array in a well-annotated cohort of 198 patients with CBF-AML. Excluding breakpoint-associated lesions, the most frequent events included loss of a sex chromosome (53%), deletions at 9q21 (12%) and 7q36 (9%) in patients with t(8;21) compared with trisomy 22 (13%), trisomy 8 (10%) and 7q36 deletions (12%) in patients with inv(16). SNP-array revealed novel recurrent genetic alterations likely to be involved in CBF-AML leukemogenesis. ZBTB7A mutations (20% of t(8;21)-AML) were shown to be a target of copy-neutral losses of heterozygosity (CN-LOH) at chromosome 19p. FOXP1 focal deletions were identified in 5% of inv(16)-AML while sequence analysis revealed that 2% carried FOXP1 truncating mutations. Finally, CCDC26 disruption was found in both subtypes (4.5% of the whole cohort) and possibly highlighted a new lesion associated with aberrant tyrosine kinase signaling in this particular subtype of leukemia. PMID:29464086

  11. Production of feline leukemia inhibitory factor with biological activity in Escherichia coli.

    PubMed

    Kanegi, R; Hatoya, S; Tsujimoto, Y; Takenaka, S; Nishimura, T; Wijewardana, V; Sugiura, K; Takahashi, M; Kawate, N; Tamada, H; Inaba, T

    2016-07-15

    Leukemia inhibitory factor (LIF) is a cytokine which is essential for oocyte and embryo development, embryonic stem cell, and induced pluripotent stem cell maintenance. Leukemia inhibitory factor improves the maturation of oocytes in the human and the mouse. However, feline LIF (fLIF) cloning and effects on oocytes during IVM have not been reported. Thus, we cloned complete cDNA of fLIF and examined its biological activity and effects on oocytes during IVM in the domestic cat. The aminoacid sequence of fLIF revealed a homology of 81% or 92% with that of mouse or human. The fLIF produced by pCold TF DNA in Escherichia coli was readily soluble and after purification showed bioactivity in maintaining the undifferentiated state of mouse embryonic stem cells and enhancing the proliferation of human erythrocyte leukemia cells. Furthermore, 10- and 100-ng/mL fLIF induced cumulus expansion with or without FSH and EGF (P < 0.05). The rate of metaphase II oocytes was also improved with 100-ng/mL fLIF (P < 0.05). We therefore confirmed the successful production for the first time of biologically active fLIF and revealed its effects on oocytes during IVM in the domestic cat. Feline LIF will further improve reproduction and stem cell research in the feline family. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Chronic myelomonocytic leukemia masquerading as cutaneous indeterminate dendritic cell tumor: Expanding the spectrum of skin lesions in chronic myelomonocytic leukemia.

    PubMed

    Loghavi, Sanam; Curry, Jonathan L; Garcia-Manero, Guillermo; Patel, Keyur P; Xu, Jie; Khoury, Joseph D; Torres-Cabala, Carlos A; Nagarajan, Priyadharsini; Aung, Phyu P; Gibson, Bernard R; Goodwin, Brandon P; Kelly, Brent C; Korivi, Brinda R; Medeiros, L Jeffrey; Prieto, Victor G; Kantarjian, Hagop M; Bueso-Ramos, Carlos E; Tetzlaff, Michael T

    2017-12-01

    Chronic myelomonocytic leukemia (CMML) is a hematopoietic stem cell neoplasm exhibiting both myelodysplastic and myeloproliferative features. Cutaneous involvement by CMML is critical to recognize as it typically is a harbinger of disease progression and an increased incidence of transformation to acute myeloid leukemia. Cutaneous lesions of CMML exhibit heterogeneous histopathologic features that can be challenging to recognize as CMML. We describe a 67-year-old man with a 3-year history of CMML who had been managed on single-agent azacitidine with stable disease before developing splenomegaly and acute onset skin lesions. Examination of these skin lesions revealed a dense infiltrate of histiocytic cells morphologically resembling Langerhans type cells (lacking frank histopathologic atypia), and with the immunophenotype of an indeterminate cell histiocytosis (S100+ CD1a+ and langerin-). Given the history of CMML, next-generation sequencing studies were performed on the skin biopsy. These revealed a KRAS (p.G12R) mutation identical to that seen in the CMML 3 years prior, establishing a clonal relationship between the 2 processes. This case expands the spectrum for and underscores the protean nature of cutaneous involvement by CMML and underscores the importance of heightened vigilance when evaluating skin lesions of CMML patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Determination of cDNA encoding BCR/ABL fusion gene in patients with chronic myelogenous leukemia using a novel FRET-based quantum dots-DNA nanosensor.

    PubMed

    Shamsipur, Mojtaba; Nasirian, Vahid; Barati, Ali; Mansouri, Kamran; Vaisi-Raygani, Asad; Kashanian, Soheila

    2017-05-08

    In the present study, we developed a sensitive method based on fluorescence resonance energy transfer (FRET) for the determination of the BCR/ABL fusion gene, which is used as a biomarker to confirm the clinical diagnosis of both chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL). For this purpose, CdTe quantum dots (QDs) were conjugated to amino-modified 18-mer oligonucleotide ((N)DNA) to form the QDs-(N)DNA nanosensor. In the presence of methylene blue (MB) as an intercalator, the hybridization of QDs-(N)DNA with the target BCR/ABL fusion gene (complementary DNA), brings the MB (acceptor) at close proximity of the QDs (donor), leading to FRET upon photoexcitation of the QDs. The enhancement in the emission intensity of MB was used to follow up the hybridization, which was linearly proportional to concentration of the target complementary DNA in a range from 1.0 × 10 -9 to 1.25 × 10 -7  M. The detection limit of the proposed method was obtained to be 1.5 × 10 -10  M. Finally, the feasibility and selectivity of the proposed nanosensor was evaluated by the analysis of derived nucleotides from both mismatched sequences and clinical samples of patients with leukemia as real samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Human NUP98-HOXA9 promotes hyperplastic growth of hematopoietic tissues in Drosophila.

    PubMed

    Baril, Caroline; Gavory, Gwenaëlle; Bidla, Gawa; Knævelsrud, Helene; Sauvageau, Guy; Therrien, Marc

    2017-01-01

    Acute myeloid leukemia (AML) is a complex malignancy with poor prognosis. Several genetic lesions can lead to the disease. One of these corresponds to the NUP98-HOXA9 (NA9) translocation that fuses sequences encoding the N-terminal part of NUP98 to those encoding the DNA-binding domain of HOXA9. Despite several studies, the mechanism underlying NA9 ability to induce leukemia is still unclear. To bridge this gap, we sought to functionally dissect NA9 activity using Drosophila. For this, we generated transgenic NA9 fly lines and expressed the oncoprotein during larval hematopoiesis. This markedly enhanced cell proliferation and tissue growth, but did not alter cell fate specification. Moreover, reminiscent to NA9 activity in mammals, strong cooperation was observed between NA9 and the MEIS homolog HTH. Genetic characterization of NA9-induced phenotypes suggested interference with PVR (Flt1-4 RTK homolog) signaling, which is similar to functional interactions observed in mammals between Flt3 and HOXA9 in leukemia. Finally, NA9 expression was also found to induce non-cell autonomous effects, raising the possibility that its leukemia-inducing activity also relies on this property. Together, our work suggests that NA9 ability to induce blood cell expansion is evolutionarily conserved. The amenability of NA9 activity to a genetically-tractable system should facilitate unraveling its molecular underpinnings. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. cDNA cloning, expression pattern, and chromosomal localization of Mlf1, murine homologue of a gene involved in myelodysplasia and acute myeloid leukemia.

    PubMed

    Hitzler, J K; Witte, D P; Jenkins, N A; Copeland, N G; Gilbert, D J; Naeve, C W; Look, A T; Morris, S W

    1999-07-01

    The NPM-MLF1 fusion protein is expressed in blasts from patients with myelodysplasia/acute myeloid leukemia (MDS/AML) containing the t(3;5) chromosomal rearrangement. Nucleophosmin (NPM), a previously characterized nucleolar phosphoprotein, contributes to two other fusion proteins found in lympho-hematopoietic malignancies, anaplastic large cell lymphoma (NPM-ALK) and acute promyelocytic leukemia (NPM-RARalpha). By contrast, the function of the carboxy-terminal fusion partner, myelodysplasia/myeloid leukemia factor 1 (MLF1), is unknown. To aid in understanding normal MLF1 function, we isolated the murine cDNA, determined the chromosomal localization of Mlf1, and defined its tissue expression by in situ hybridization. Mlf1 was highly similar to its human homologue (86% and 84% identical nucleotide and amino acid sequence, respectively) and mapped to the central region of chromosome 3, within a segment lacking known mouse mutations. Mlf1 tissue distribution was restricted during both development and postnatal life, with high levels present only in skeletal, cardiac, and selected smooth muscle, gonadal tissues, and rare epithelial tissues including the nasal mucosa and the ependyma/choroid plexus in the brain. Mlf1 transcripts were undetectable in the lympho-hematopoietic organs of both the embryonic and adult mouse, suggesting that NPM-MLF1 contributes to the genesis of MDS/AML in part by enforcing the ectopic overexpression of MLF1 within hematopoietic tissues.

  16. SNP-array lesions in core binding factor acute myeloid leukemia.

    PubMed

    Duployez, Nicolas; Boudry-Labis, Elise; Roumier, Christophe; Boissel, Nicolas; Petit, Arnaud; Geffroy, Sandrine; Helevaut, Nathalie; Celli-Lebras, Karine; Terré, Christine; Fenneteau, Odile; Cuccuini, Wendy; Luquet, Isabelle; Lapillonne, Hélène; Lacombe, Catherine; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric; Preudhomme, Claude

    2018-01-19

    Acute myeloid leukemia (AML) with t(8;21) and inv(16), together referred as core binding factor (CBF)-AML, are recognized as unique entities. Both rearrangements share a common pathophysiology, the disruption of the CBF, and a relatively good prognosis. Experiments have demonstrated that CBF rearrangements were insufficient to induce leukemia, implying the existence of cooperating events. To explore these aberrations, we performed single nucleotide polymorphism (SNP)-array in a well-annotated cohort of 198 patients with CBF-AML. Excluding breakpoint-associated lesions, the most frequent events included loss of a sex chromosome (53%), deletions at 9q21 (12%) and 7q36 (9%) in patients with t(8;21) compared with trisomy 22 (13%), trisomy 8 (10%) and 7q36 deletions (12%) in patients with inv(16). SNP-array revealed novel recurrent genetic alterations likely to be involved in CBF-AML leukemogenesis. ZBTB7A mutations (20% of t(8;21)-AML) were shown to be a target of copy-neutral losses of heterozygosity (CN-LOH) at chromosome 19p. FOXP1 focal deletions were identified in 5% of inv(16)-AML while sequence analysis revealed that 2% carried FOXP1 truncating mutations. Finally, CCDC26 disruption was found in both subtypes (4.5% of the whole cohort) and possibly highlighted a new lesion associated with aberrant tyrosine kinase signaling in this particular subtype of leukemia.

  17. Diagnostic screening identifies a wide range of mutations involving the SHOX gene, including a common 47.5 kb deletion 160 kb downstream with a variable phenotypic effect.

    PubMed

    Bunyan, David J; Baker, Kevin R; Harvey, John F; Thomas, N Simon

    2013-06-01

    Léri-Weill dyschondrosteosis (LWD) results from heterozygous mutations of the SHOX gene, with homozygosity or compound heterozygosity resulting in the more severe form, Langer mesomelic dysplasia (LMD). These mutations typically take the form of whole or partial gene deletions, point mutations within the coding sequence, or large (>100 kb) 3' deletions of downstream regulatory elements. We have analyzed the coding sequence of the SHOX gene and its downstream regulatory regions in a cohort of 377 individuals referred with symptoms of LWD, LMD or short stature. A causative mutation was identified in 68% of the probands with LWD or LMD (91/134). In addition, a 47.5 kb deletion was found 160 kb downstream of the SHOX gene in 17 of the 377 patients (12% of the LWD referrals, 4.5% of all referrals). In 14 of these 17 patients, this was the only potentially causative abnormality detected (13 had symptoms consistent with LWD and one had short stature only), but the other three 47.5 kb deletions were found in patients with an additional causative SHOX mutation (with symptoms of LWD rather than LMD). Parental samples were available on 14/17 of these families, and analysis of these showed a more variable phenotype ranging from apparently unaffected to LWD. Breakpoint sequence analysis has shown that the 47.5 kb deletion is identical in all 17 patients, most likely due to an ancient founder mutation rather than recurrence. This deletion was not seen in 471 normal controls (P<0.0001), providing further evidence for a phenotypic effect, albeit one with variable penetration. Copyright © 2013 Wiley Periodicals, Inc.

  18. Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China

    PubMed Central

    Jiang, Zhou; Li, Ping; Jiang, Dawei; Dai, Xinyue; Zhang, Rui; Wang, Yanhong; Wang, Yanxin

    2016-01-01

    Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73–0.86). Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation), Sulfolobus (sulfur and iron oxidation), Metallosphaera and Acidicaldus (iron oxidation). Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41–95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs. PMID:26761709

  19. Gastrointestinal microbial populations can distinguish pediatric and adolescent Acute Lymphoblastic Leukemia (ALL) at the time of disease diagnosis.

    PubMed

    Rajagopala, Seesandra V; Yooseph, Shibu; Harkins, Derek M; Moncera, Kelvin J; Zabokrtsky, Keri B; Torralba, Manolito G; Tovchigrechko, Andrey; Highlander, Sarah K; Pieper, Rembert; Sender, Leonard; Nelson, Karen E

    2016-08-15

    An estimated 15,000 children and adolescents under the age of 19 years are diagnosed with leukemia, lymphoma and other tumors in the USA every year. All children and adolescent acute leukemia patients will undergo chemotherapy as part of their treatment regimen. Fortunately, survival rates for most pediatric cancers have improved at a remarkable pace over the past three decades, and the overall survival rate is greater than 90 % today. However, significant differences in survival rate have been found in different age groups (94 % in 1-9.99 years, 82 % in ≥10 years and 76 % in ≥15 years). ALL accounts for about three out of four cases of childhood leukemia. Intensive chemotherapy treatment coupled with prophylactic or therapeutic antibiotic use could potentially have a long-term effect on the resident gastrointestinal (GI) microbiome. The composition of GI microbiome and its changes upon chemotherapy in pediatric and adolescent leukemia patients is poorly understood. In this study, using 16S rRNA marker gene sequences we profile the GI microbial communities of pediatric and adolescent acute leukemia patients before and after chemotherapy treatment and compare with the microbiota of their healthy siblings. Our study cohort consisted of 51 participants, made up of matched pediatric and adolescent patients with ALL and a healthy sibling. We elucidated and compared the GI microbiota profiles of patients and their healthy sibling controls via analysis of 16S rRNA gene sequencing data. We assessed the GI microbiota composition in pediatric and adolescent patients with ALL during the course of chemotherapy by comparing stool samples taken before chemotherapy with stool samples collected at varying time points during the chemotherapeutic treatment. The microbiota profiles of both patients and control sibling groups are dominated by members of Bacteroides, Prevotella, and Faecalibacterium. At the genus level, both groups share many taxa in common, but the microbiota diversity of the patient group is significantly lower than that of the control group. It was possible to distinguish between the patient and control groups based on their microbiota profiles. The top taxa include Anaerostipes, Coprococcus, Roseburia, and Ruminococcus2 with relatively higher abundance in the control group. The observed microbiota changes are likely the result of several factors including a direct influence of therapeutic compounds on the gut flora and an indirect effect of chemotherapy on the immune system, which, in turn, affects the microbiota. This study provides significant information on GI microbiota populations in immunocompromised children and opens up the potential for developing novel diagnostics based on stool tests and therapies to improve the dysbiotic condition of the microbiota at the time of diagnosis and in the earliest stages of chemotherapy.

  20. Error and Error Mitigation in Low-Coverage Genome Assemblies

    PubMed Central

    Hubisz, Melissa J.; Lin, Michael F.; Kellis, Manolis; Siepel, Adam

    2011-01-01

    The recent release of twenty-two new genome sequences has dramatically increased the data available for mammalian comparative genomics, but twenty of these new sequences are currently limited to ∼2× coverage. Here we examine the extent of sequencing error in these 2× assemblies, and its potential impact in downstream analyses. By comparing 2× assemblies with high-quality sequences from the ENCODE regions, we estimate the rate of sequencing error to be 1–4 errors per kilobase. While this error rate is fairly modest, sequencing error can still have surprising effects. For example, an apparent lineage-specific insertion in a coding region is more likely to reflect sequencing error than a true biological event, and the length distribution of coding indels is strongly distorted by error. We find that most errors are contributed by a small fraction of bases with low quality scores, in particular, by the ends of reads in regions of single-read coverage in the assembly. We explore several approaches for automatic sequencing error mitigation (SEM), making use of the localized nature of sequencing error, the fact that it is well predicted by quality scores, and information about errors that comes from comparisons across species. Our automatic methods for error mitigation cannot replace the need for additional sequencing, but they do allow substantial fractions of errors to be masked or eliminated at the cost of modest amounts of over-correction, and they can reduce the impact of error in downstream phylogenomic analyses. Our error-mitigated alignments are available for download. PMID:21340033

  1. Whole-exome sequencing of primary plasma cell leukemia discloses heterogeneous mutational patterns.

    PubMed

    Cifola, Ingrid; Lionetti, Marta; Pinatel, Eva; Todoerti, Katia; Mangano, Eleonora; Pietrelli, Alessandro; Fabris, Sonia; Mosca, Laura; Simeon, Vittorio; Petrucci, Maria Teresa; Morabito, Fortunato; Offidani, Massimo; Di Raimondo, Francesco; Falcone, Antonietta; Caravita, Tommaso; Battaglia, Cristina; De Bellis, Gianluca; Palumbo, Antonio; Musto, Pellegrino; Neri, Antonino

    2015-07-10

    Primary plasma cell leukemia (pPCL) is a rare and aggressive form of plasma cell dyscrasia and may represent a valid model for high-risk multiple myeloma (MM). To provide novel information concerning the mutational profile of this disease, we performed the whole-exome sequencing of a prospective series of 12 pPCL cases included in a Phase II multicenter clinical trial and previously characterized at clinical and molecular levels. We identified 1, 928 coding somatic non-silent variants on 1, 643 genes, with a mean of 166 variants per sample, and only few variants and genes recurrent in two or more samples. An excess of C > T transitions and the presence of two main mutational signatures (related to APOBEC over-activity and aging) occurring in different translocation groups were observed. We identified 14 candidate cancer driver genes, mainly involved in cell-matrix adhesion, cell cycle, genome stability, RNA metabolism and protein folding. Furthermore, integration of mutation data with copy number alteration profiles evidenced biallelically disrupted genes with potential tumor suppressor functions. Globally, cadherin/Wnt signaling, extracellular matrix and cell cycle checkpoint resulted the most affected functional pathways. Sequencing results were finally combined with gene expression data to better elucidate the biological relevance of mutated genes. This study represents the first whole-exome sequencing screen of pPCL and evidenced a remarkable genetic heterogeneity of mutational patterns. This may provide a contribution to the comprehension of the pathogenetic mechanisms associated with this aggressive form of PC dyscrasia and potentially with high-risk MM.

  2. Sequence variation of functional HTLV-II tax alleles among isolates from an endemic population: lack of evidence for oncogenic determinant in tax.

    PubMed

    Hjelle, B; Chaney, R

    1992-02-01

    Human T-cell leukemia-lymphoma virus type II (HTLV-II) has been isolated from patients with hairy cell leukemia (HCL). We previously described a population with longstanding endemic HTLV-II infection, and showed that there is no increased risk for HCL in the affected groups. We thus have direct evidence that the endemic form(s) of HTLV-II cause HCL infrequently, if at all. By comparison, there is reason to suspect that the viruses isolated from patients with HCL had an etiologic role in the disease in those patients. One way to reconcile these conflicting observations is to consider that isolates of HTLV-II might differ in oncogenic potential. To determine whether the structure of the putative oncogenic determinant of HTLV-II, tax2, might differ in the new isolates compared to the tax of the prototype HCL isolate, MO, four new functional tax cDNAs were cloned from new isolates. Sequence analysis showed only minor (0.9-2.0%) amino acid variation compared to the published sequence of MO tax2. Some codons were consistently different from published sequences of the MO virus, but in most cases, such variations were also found in each of two tax2 clones we isolated from the MO T-cell line. These variations rendered the new clones more similar to the tax1 of the pathogenic virus HTLV-I. Thus we find no evidence that pathologic determinants of HTLV-II can be assigned to the tax gene.

  3. Genetic diversity in the feline leukemia virus gag gene.

    PubMed

    Kawamura, Maki; Watanabe, Shinya; Odahara, Yuka; Nakagawa, So; Endo, Yasuyuki; Tsujimoto, Hajime; Nishigaki, Kazuo

    2015-06-02

    Feline leukemia virus (FeLV) belongs to the Gammaretrovirus genus and is horizontally transmitted among cats. FeLV is known to undergo recombination with endogenous retroviruses already present in the host during FeLV-subgroup A infection. Such recombinant FeLVs, designated FeLV-subgroup B or FeLV-subgroup D, can be generated by transduced endogenous retroviral env sequences encoding the viral envelope. These recombinant viruses have biologically distinct properties and may mediate different disease outcomes. The generation of such recombinant viruses resulted in structural diversity of the FeLV particle and genetic diversity of the virus itself. FeLV env diversity through mutation and recombination has been studied, while gag diversity and its possible effects are less well understood. In this study, we investigated recombination events in the gag genes of FeLVs isolated from naturally infected cats and reference isolates. Recombination and phylogenetic analyses indicated that the gag genes often contain endogenous FeLV sequences and were occasionally replaced by entire endogenous FeLV gag genes. Phylogenetic reconstructions of FeLV gag sequences allowed for classification into three distinct clusters, similar to those previously established for the env gene. Analysis of the recombination junctions in FeLV gag indicated that these variants have similar recombination patterns within the same genotypes, indicating that the recombinant viruses were horizontally transmitted among cats. It remains to be investigated whether the recombinant sequences affect the molecular mechanism of FeLV transmission. These findings extend our understanding of gammaretrovirus evolutionary patterns in the field. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Evaluation of Intracellular Signaling Downstream Chimeric Antigen Receptors

    PubMed Central

    Karlsson, Hannah; Svensson, Emma; Gigg, Camilla; Jarvius, Malin; Olsson-Strömberg, Ulla; Savoldo, Barbara; Dotti, Gianpietro; Loskog, Angelica

    2015-01-01

    CD19-targeting CAR T cells have shown potency in clinical trials targeting B cell leukemia. Although mainly second generation (2G) CARs carrying CD28 or 4-1BB have been investigated in patients, preclinical studies suggest that third generation (3G) CARs with both CD28 and 4-1BB have enhanced capacity. However, little is known about the intracellular signaling pathways downstream of CARs. In the present work, we have analyzed the signaling capacity post antigen stimulation in both 2G and 3G CARs. 3G CAR T cells expanded better than 2G CAR T cells upon repeated stimulation with IL-2 and autologous B cells. An antigen-driven accumulation of CAR+ cells was evident post antigen stimulation. The cytotoxicity of both 2G and 3G CAR T cells was maintained by repeated stimulation. The phosphorylation status of intracellular signaling proteins post antigen stimulation showed that 3G CAR T cells had a higher activation status than 2G. Several proteins involved in signaling downstream the TCR were activated, as were proteins involved in the cell cycle, cell adhesion and exocytosis. In conclusion, 3G CAR T cells had a higher degree of intracellular signaling activity than 2G CARs which may explain the increased proliferative capacity seen in 3G CAR T cells. The study also indicates that there may be other signaling pathways to consider when designing or evaluating new generations of CARs. PMID:26700307

  5. Supply-Limited Bedforms in a Gravel-Sand Transition

    NASA Astrophysics Data System (ADS)

    Venditti, J. G.; Nittrouer, J. A.; Humphries, R. P.; Allison, M. A.

    2009-12-01

    Rivers often exhibit an abrupt transition from gravel to sand-bedded conditions as river channel slopes decrease. A distinct suite of bedforms has been observed through these reaches where sand supply to the bed is limited. The suite of bedforms includes a sequence of sand ribbons, barchans, and channel spanning dunes as sediment supply increases in the downstream direction. While these bedforms have been extensively documented in laboratory channels, there are relatively few observations of this sequence of supply-limited bedforms from large natural channels. Here we examine the sequence through the gravel-sand transition of the Fraser River in Southwestern British Columbia. We mapped the bed using multi-beam swath-bathymetry (Reson 8101 Seabat) at high flow (~9,000 m3s-1) immediately following a high peak flow of 11,800 m3s-1 in June 2007 The bed material grades from >70% gravel to entirely sand through the reach. The bedforms follow the expected sequence where sand ribbons and barchanoid forms cover the bed where it is primarily gravel. Channel spanning dunes form as the sand bed coverage increases. Bedform dimensions (height and length) increase moving downstream as the sand moving on the bed increases. Supply-unlimited bedforms typically scale with the flow depth where the height is 1/5 the flow depth. The bedforms developed over the gravel are undersized by this criterion. Downstream, where the bed is dominantly sand, bedforms do scale with flow depth. These data highlight the dominant role sediment supply can play in bedform morphology and scaling, confirming patterns observed in laboratory data.

  6. Deregulation of the telomerase reverse transcriptase (TERT) gene by chromosomal translocations in B-cell malignancies.

    PubMed

    Nagel, Inga; Szczepanowski, Monika; Martín-Subero, José I; Harder, Lana; Akasaka, Takashi; Ammerpohl, Ole; Callet-Bauchu, Evelyne; Gascoyne, Randy D; Gesk, Stefan; Horsman, Doug; Klapper, Wolfram; Majid, Aneela; Martinez-Climent, José A; Stilgenbauer, Stephan; Tönnies, Holger; Dyer, Martin J S; Siebert, Reiner

    2010-08-26

    Sequence variants at the TERT-CLPTM1L locus in chromosome 5p have been recently associated with disposition for various cancers. Here we show that this locus including the gene encoding the telomerase reverse-transcriptase TERT at 5p13.33 is rarely but recurrently targeted by somatic chromosomal translocations to IGH and non-IG loci in B-cell neoplasms, including acute lymphoblastic leukemia, chronic lymphocytic leukemia, mantle cell lymphoma and splenic marginal zone lymphoma. In addition, cases with genomic amplification of TERT locus were identified. Tumors bearing chromosomal aberrations involving TERT showed higher TERT transcriptional expression and increased telomerase activity. These data suggest that deregulation of TERT gene by chromosomal abnormalities leading to increased telomerase activity might contribute to B-cell lymphomagenesis.

  7. Ancient DNA identification of early 20th century simian T-cell leukemia virus type 1.

    PubMed

    Calvignac, Sébastien; Terme, Jean-Michel; Hensley, Shannon M; Jalinot, Pierre; Greenwood, Alex D; Hänni, Catherine

    2008-06-01

    The molecular identification of proviruses from ancient tissues (and particularly from bones) remains a contentious issue. It can be expected that the copy number of proviruses will be low, which magnifies the risk of contamination with retroviruses from exogenous sources. To assess the feasibility of paleoretrovirological studies, we attempted to identify proviruses from early 20th century bones of museum specimens while following a strict ancient DNA methodology. Simian T-cell leukemia virus type 1 sequences were successfully obtained and authenticated from a Chlorocebus pygerythrus specimen. This represents the first clear evidence that it will be possible to use museum specimens to better characterize simian and human T-tropic retrovirus genetic diversity and analyze their origin and evolution, in greater detail.

  8. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia.

    PubMed

    Landau, Dan A; Clement, Kendell; Ziller, Michael J; Boyle, Patrick; Fan, Jean; Gu, Hongcang; Stevenson, Kristen; Sougnez, Carrie; Wang, Lili; Li, Shuqiang; Kotliar, Dylan; Zhang, Wandi; Ghandi, Mahmoud; Garraway, Levi; Fernandes, Stacey M; Livak, Kenneth J; Gabriel, Stacey; Gnirke, Andreas; Lander, Eric S; Brown, Jennifer R; Neuberg, Donna; Kharchenko, Peter V; Hacohen, Nir; Getz, Gad; Meissner, Alexander; Wu, Catherine J

    2014-12-08

    Intratumoral heterogeneity plays a critical role in tumor evolution. To define the contribution of DNA methylation to heterogeneity within tumors, we performed genome-scale bisulfite sequencing of 104 primary chronic lymphocytic leukemias (CLLs). Compared with 26 normal B cell samples, CLLs consistently displayed higher intrasample variability of DNA methylation patterns across the genome, which appears to arise from stochastically disordered methylation in malignant cells. Transcriptome analysis of bulk and single CLL cells revealed that methylation disorder was linked to low-level expression. Disordered methylation was further associated with adverse clinical outcome. We therefore propose that disordered methylation plays a similar role to that of genetic instability, enhancing the ability of cancer cells to search for superior evolutionary trajectories. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Locally disordered methylation forms the basis of intra-tumor methylome variation in chronic lymphocytic leukemia

    PubMed Central

    Landau, Dan A.; Clement, Kendell; Ziller, Michael J.; Boyle, Patrick; Fan, Jean; Gu, Hongcang; Stevenson, Kristen; Sougnez, Carrie; Wang, Lili; Li, Shuqiang; Kotliar, Dylan; Zhang, Wandi; Ghandi, Mahmoud; Garraway, Levi; Fernandes, Stacey M.; Livak, Kenneth J.; Gabriel, Stacey; Gnirke, Andreas; Lander, Eric S.; Brown, Jennifer R.; Neuberg, Donna; Kharchenko, Peter V.; Hacohen, Nir; Getz, Gad; Meissner, Alexander; Wu, Catherine J.

    2014-01-01

    SUMMARY Intra-tumoral heterogeneity plays a critical role in tumor evolution. To define the contribution of DNA methylation to heterogeneity within tumors, we performed genome-scale bisulfite sequencing of 104 primary chronic lymphocytic leukemias (CLL). Compared to 26 normal B cell samples, CLLs consistently displayed higher intra-sample variability of DNA methylation patterns across the genome, which appears to arise from stochastically disordered methylation in malignant cells. Transcriptome analysis of bulk and single CLL cells revealed that methylation disorder was linked to low-level expression. Disordered methylation was further associated with adverse clinical outcome. We therefore propose that disordered methylation plays a similar role to genetic instability, enhancing the ability of cancer cells to search for superior evolutionary trajectories. PMID:25490447

  10. MiR-100 regulates cell differentiation and survival by targeting RBSP3, a phosphatase-like tumor suppressor in acute myeloid leukemia

    PubMed Central

    Zheng, Y-S; Zhang, H; Zhang, X-J; Feng, D-D; Luo, X-Q; Zeng, C-W; Lin, K-Y; Zhou, H; Qu, L-H; Zhang, P; Chen, Y-Q

    2012-01-01

    Acute myeloblastic leukemia (AML) is characterized by the accumulation of abnormal myeloblasts (mainly granulocyte or monocyte precursors) in the bone marrow and blood. Though great progress has been made for improvement in clinical treatment during the past decades, only minority with AML achieve long-term survival. Therefore, further understanding mechanisms of leukemogenesis and exploring novel therapeutic strategies are still crucial for improving disease outcome. MicroRNA-100 (miR-100), a small non-coding RNA molecule, has been reported as a frequent event aberrantly expressed in patients with AML; however, the molecular basis for this phenotype and the statuses of its downstream targets have not yet been elucidated. In the present study, we found that the expression level of miR-100 in vivo was related to the stage of the maturation block underlying the subtypes of myeloid leukemia. In vitro experiments further demonstrated that miR-100 was required to promote the cell proliferation of promyelocytic blasts and arrest them differentiated to granulocyte/monocyte lineages. Significantly, we identified RBSP3, a phosphatase-like tumor suppressor, as a bona fide target of miR-100 and validated that RBSP3 was involved in cell differentiation and survival in AML. Moreover, we revealed a new pathway that miR-100 regulates G1/S transition and S-phase entry and blocks the terminal differentiation by targeting RBSP3, which partly in turn modulates the cell cycle effectors pRB/E2F1 in AML. These events promoted cell proliferation and blocked granulocyte/monocyte differentiation. Our data highlight an important role of miR-100 in the molecular etiology of AML, and implicate the potential application of miR-100 in cancer therapy. PMID:21643017

  11. The TPO/c-MPL pathway in the bone marrow may protect leukemia cells from chemotherapy in AML Patients.

    PubMed

    Dong-Feng, Zeng; Ting, Liu; Yong, Zhang; Cheng, Chang; Xi, Zhang; Pei-Yan, Kong

    2014-04-01

    Accumulating evidence indicates that the interaction of human LSCs (leukemic stem cells) with the hematopoietic microenvironment, mediated by the thrombopoietin (TPO)/c-MPL pathway, may be an underlying mechanism for resistance to cell cycle-dependent cytotoxic chemotherapy. However, the role of TPO/c-MPL signaling in AML (acute myelogenous leukemia) chemotherapy resistance hasn't been fully understood. The c-MPL and TPO levels in different AML samples were measured by flow cytometry and ELISA. We also assessed the TPO levels in the osteoblasts derived from bone mesenchymal stem cells (BMSCs). The survival rate of an AML cell line that had been co-cultured with different BMSC-derived osteoblasts was measured to determine the IC50 of an AML chemotherapy drug daunorubicin (DNR). The levels of TPO/c-MPL in the initial and relapse AML patients were significantly higher than that in the control (P < 0.05). The osteoblasts derived from AML patients' BMSCs secreted more TPO than the osteoblasts derived from normal control BMSCs (P < 0.05). A strong positive correlation between the TPO level and c-MPL expression was found in the bone marrow mononuclear cells of the relapse AML patients. More importantly, the IC50 of DNR in the HEL + AML-derived osteoblasts was the highest among all co-culture systems. High level of TPO/c-MPL signaling may protect LSCs from chemotherapy in AML. The effects of inhibition of the TPO/c-MPL pathway on enhancing the chemotherapy sensitivity of AML cells, and on their downstream effector molecules that direct the interactions between patient-derived blasts and leukemia repopulating cells need to be further studied.

  12. Genomic characterization of pediatric T-cell acute lymphoblastic leukemia reveals novel recurrent driver mutations

    PubMed Central

    Spinella, Jean-François; Cassart, Pauline; Richer, Chantal; Saillour, Virginie; Ouimet, Manon; Langlois, Sylvie; St-Onge, Pascal; Sontag, Thomas; Healy, Jasmine; Minden, Mark D.; Sinnett, Daniel

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy with variable prognosis. It represents 15% of diagnosed pediatric ALL cases and has a threefold higher incidence among males. Many recurrent alterations have been identified and help define molecular subgroups of T-ALL, however the full range of events involved in driving transformation remain to be defined. Using an integrative approach combining genomic and transcriptomic data, we molecularly characterized 30 pediatric T-ALLs and identified common recurrent T-ALL targets such as FBXW7, JAK1, JAK3, PHF6, KDM6A and NOTCH1 as well as novel candidate T-ALL driver mutations including the p.R35L missense mutation in splicesome factor U2AF1 found in 3 patients and loss of function mutations in the X-linked tumor suppressor genes MED12 (frameshit mutation p.V167fs, splice site mutation g.chrX:70339329T>C, missense mutation p.R1989H) and USP9X (nonsense mutation p.Q117*). In vitro functional studies further supported the putative role of these novel T-ALL genes in driving transformation. U2AF1 p.R35L was shown to induce aberrant splicing of downstream target genes, and shRNA knockdown of MED12 and USP9X was shown to confer resistance to apoptosis following T-ALL relevant chemotherapy drug treatment in Jurkat leukemia cells. Interestingly, nearly 60% of novel candidate driver events were identified among immature T-ALL cases, highlighting the underlying genomic complexity of pediatric T-ALL, and the need for larger integrative studies to decipher the mechanisms that contribute to its various subtypes and provide opportunities to refine patient stratification and treatment. PMID:27602765

  13. Phase I study of UCN-01 and perifosine in patients with relapsed and refractory acute leukemias and high-risk myelodysplastic syndrome

    PubMed Central

    Gojo, Ivana; Perl, Alexander; Luger, Selina; Baer, Maria R.; Norsworthy, Kelly J.; Bauer, Kenneth S.; Tidwell, Michael; Fleckinger, Stephanie; Carroll, Martin; Sausville, Edward A.

    2013-01-01

    Summary Background The PI3K-Akt pathway is frequently activated in acute leukemias and represents an important therapeutic target. UCN-01 and perifosine are known to inhibit Akt activation. Methods The primary objective of this phase I study was to determine the maximum tolerated dose (MTD) of UCN-01 given in combination with perifosine in patients with advanced acute leukemias and myelodysplastic syndrome. Secondary objectives included safety, pharmacokinetics, pharmacodynamics, and efficacy. Perifosine 150 mg every 6 hours was given orally on day 1 followed by 100 mg once a day continuously in 28-day cycles. UCN-01 was given intravenously over 3 hours on day 4 at three dose levels (DL1=40 mg/m2; DL2=65 mg/m2; DL3=90 mg/m2). Results Thirteen patients were treated (DL1, n=6; DL2, n=4; DL3, n=3) according to a traditional “3+3” design. Two patients at the DL3 experienced dose-limiting toxicity including grade 3-4 pericardial effusion, hypotension, hyperglycemia, hyperkalemia, constitutional symptoms and grade 5 pneumonitis. Other frequent toxicities were grade 1-2 nausea, diarrhea, vomiting, fatigue and hyperglycemia. The MTD was determined to be UCN-01 65 mg/m2 with perifosine 100 mg a day. No appreciable direct Akt inhibition could be demonstrated in patients’ mononuclear cells using Western blot, however, reduced phosphorylation of the downstream target ribosomal protein S6 in leukemic blasts was noted by intracellular flow cytometry. No objective responses were observed on this study. Conclusion UCN-01 and perifosine can be safely administered, but this regimen lacked clinical efficacy. This approach may have failed because of insufficient Akt inhibition in vivo. PMID:23443507

  14. Evaluation of tyrosine-kinase receptor c-KIT (c-KIT) mutations, mRNA and protein expression in canine leukemia: might c-KIT represent a therapeutic target?

    PubMed

    Giantin, M; Aresu, L; Aricò, A; Gelain, M E; Riondato, F; Martini, V; Comazzi, S; Dacasto, M

    2013-04-15

    The tyrosine-kinase receptor c-KIT (c-KIT) plays an important role in proliferation, survival and differentiation of progenitor cells in normal hematopoietic cells. In human hematological malignancies, c-KIT is mostly expressed by progenitor cell neoplasia and seldom by those involving mature cells. Tyrosine kinase inhibitors (TKIs) are actually licensed for the first- and second-line treatment of human hematologic disorders. Aim of the present study was to evaluate c-KIT mRNA and protein expression and complementary DNA (cDNA) mutations in canine leukemia. Eleven acute lymphoblastic leukemia (ALL) and acute undifferentiated leukemia (AUL) and 12 chronic lymphocytic leukemia (CLL) were enrolled in this study. The amounts of c-KIT mRNA and protein were determined, in peripheral blood samples, by using quantitative real time RT-PCR, flow cytometry and immunocytochemistry, respectively. The presence of mutations on c-KIT exons 8-11 and 17 were investigated by cDNA sequencing. Higher amounts of c-KIT mRNA were found in ALL/AUL compared to CLL, and this latter showed a lower pattern of gene expression. Transcriptional data were confirmed at the protein level. No significant gain-of-function mutations were ever observed in both ALL/AUL and CLL. Among canine hematological malignancies, ALL/AUL typically show a very aggressive biological behavior, partly being attributable to the lack of efficacious therapeutic options. The high level of c-KIT expression found in canine ALL/AUL might represent the rationale for using TKIs in future clinical trials. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Real world outcomes and management strategies for venetoclax-treated chronic lymphocytic leukemia patients in the United States.

    PubMed

    Mato, Anthony R; Thompson, Meghan; Allan, John N; Brander, Danielle M; Pagel, John M; Ujjani, Chaitra S; Hill, Brian T; Lamanna, Nicole; Lansigan, Frederick; Jacobs, Ryan; Shadman, Mazyar; Skarbnik, Alan P; Pu, Jeffrey J; Barr, Paul M; Sehgal, Alison R; Cheson, Bruce D; Zent, Clive S; Tuncer, Hande H; Schuster, Stephen J; Pickens, Peter V; Shah, Nirav N; Goy, Andre; Winter, Allison M; Garcia, Christine; Kennard, Kaitlin; Isaac, Krista; Dorsey, Colleen; Gashonia, Lisa M; Singavi, Arun K; Roeker, Lindsey E; Zelenetz, Andrew; Williams, Annalynn; Howlett, Christina; Weissbrot, Hanna; Ali, Naveed; Khajavian, Sirin; Sitlinger, Andrea; Tranchito, Eve; Rhodes, Joanna; Felsenfeld, Joshua; Bailey, Neil; Patel, Bhavisha; Burns, Timothy F; Yacur, Melissa; Malhotra, Mansi; Svoboda, Jakub; Furman, Richard R; Nabhan, Chadi

    2018-06-07

    Venetoclax is a BCL2 inhibitor approved for 17p-deleted relapsed/refractory chronic lymphocytic leukemia with activity following kinase inhibitors. We conducted a multicenter retrospective cohort analysis of patients with CLL treated with venetoclax to describe outcomes, toxicities, and treatment selection following venetoclax discontinuation. A total of 141 chronic lymphocytic leukemia patients were included (98% relapsed/refractory). Median age at venetoclax initiation was 67 years (range 37-91), median prior therapies was 3 (0-11), 81% unmutated IGHV, 45% del(17p), and 26.8% complex karyotype (≥ 3 abnormalities). Prior to venetoclax initiation, 89% received a B-cell receptor antagonist. For tumor lysis syndrome prophylaxis, 93% received allopurinol, 92% normal saline, and 45% rasburicase. Dose escalation to the maximum recommended dose of 400 mg daily was achieved in 85% of patients. Adverse events of interest included neutropenia in 47.4%, thrombocytopenia in 36%, tumor lysis syndrome in 13.4%, neutropenic fever in 11.6%, and diarrhea in 7.3%. The overall response rate to venetoclax was 72% (19.4% complete remission). With a median follow up of 7 months, median progression free survival and overall survival for the entire cohort have not been reached. To date, 41 venetoclax treated patients have discontinued therapy and 24 have received a subsequent therapy, most commonly ibrutinib. In the largest clinical experience of venetoclax-treated chronic lymphocytic leukemia patients , the majority successfully completed and maintained a maximum recommended dose. Response rates and duration of response appear comparable to clinical trial data. Venetoclax was active in patients with mutations known to confer ibrutinib resistance. Optimal sequencing of newer chronic lymphocytic leukemia therapies requires further study. Copyright © 2018, Ferrata Storti Foundation.

  16. [Relationship between single nucleotide polymorphisms in thiopurine methyltransferase gene and tolerance to thiopurines in acute leukemia].

    PubMed

    Ma, Xiao-li; Zhu, Ping; Wu, Min-yuan; Li, Zhi-gang; Hu, Ya-mei

    2003-12-01

    For the purpose of clarifying the influence of thiopurine methyltransferase (TPMT) gene single nucleotide polymorphisms (SNPs) on the efficacy of thiopurines and risk for its toxicity and therefore improving the safety and efficacy of thiopurines, the authors investigated TPMT genotype in acute leukemia in children who were intolerant to the treatment with 6-mercap topurine (6-MP). TPMT genotype was determined in an unrelated population of 250 Chinese healthy blood donors and 280 children with acute leukemia. TPMT genotyping assay was based on polymerase chain reaction (PCR), restriction digestion of PCR products, denaturing high-performance liquid chromatography (DHPLC) and direct DNA sequencing in the TPMT * 2 (G238C), TPMT * 3A (G460A, A719G) and TPMT * 3C (A719G). There were 10 TPMT * 1/TPMT * 3C heterozygotes in 280 children. The frequency of the polymorphism was 3.6%. All the involved alleles were TPMT * 3C. Of the 160 children acute leukemia evaluated, 45 (26%) were intolerant to 6-MP. Presentations included hepatotoxicity and hematological toxicity. Six out of 45 children were heterozygous, while the other 39 were wild type homozygous. Before dosage adjustments for thiopurine, the hematologic toxicity and hepatotoxicity in TPMT heterozygous individuals occurred more frequently than in homozygous. Therefore, cases of TPMT heterozygotes experienced more missed doses of 6-MP. TPMT genotype is associated with tolerance in acute leukemia in children. The heterozygote individuals have low TPMT activity. Therefore the frequencies of hemtopoietic toxicity and hepatoxicity are high after using 6-MP. Detection of SNPs in the TPMT genes is useful in identifying children before administration of 6-MP.

  17. New acute transforming feline retovirus with fms homology specifies a C-terminally truncated version of the c-fms protein that is different from SM-feline sarcoma virus v-fms protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besmer, P.; Lader, E.; George, P.C.

    1986-10-01

    The HZ5-feline sarcoma virus (FeSV) is a new acute transforming feline retrovirus which was isolated from a multicentric fibrosarcoma of a domestic cat. The HZ5-FeSV transforms fibroblasts in vitro and is replication defective. A biologically active integrated HZ5-FeSV provirus was molecularly cloned from cellular DNA of HZ5-FeSV-infected FRE-3A rat cells. The HZ5-FeSV has oncogene homology with the fms sequences of the SM-FeSV. The genome organization of the 8.6-kilobase HZ5-FeSV provirus is 5' ..delta..gag-fms-..delta..pol-..delta..env 3'. The HZ5- and SM-FeSVs display indistinguishable in vitro transformation characteristics, and the structures of the gag-fms transforming genes in the two viruses are very similar. Inmore » the HZ5-FeSV and the SM-FeSV, identical c-fms and feline leukemia virus p10 sequences form the 5' gag-fms junction. With regard to v-fms the two viruses are homologous up to 11 amino acids before the C terminus of the SM-FeSV v-fms protein. In HZ5-FeSV a segment of 362 nucleotides then follows before the 3' recombination site with feline leukemia virus pol. The new 3' v-fms sequence encodes 27 amino acids before reaching a TGA termination signal. The relationship of this sequence with the recently characterized human c-fms sequence has been examined. The 3' HZ5-FeSV v-fms sequence is homologous with 3' c-fms sequences. A frameshift mutation (11-base-pair deletion) was found in the C-terminal fms coding sequence of the HZ5-FeSV. As a result, the HZ5-FeSV v-fms protein is predicted to be a C-terminally truncated version of c-fms. This frameshift mutation may determine the oncogenic properties of v-fms in the HZ5-FeSV.« less

  18. A new acute transforming feline retrovirus with fms homology specifies a C-terminally truncated version of the c-fms protein that is different from SM-feline sarcoma virus v-fms protein.

    PubMed Central

    Besmer, P; Lader, E; George, P C; Bergold, P J; Qiu, F H; Zuckerman, E E; Hardy, W D

    1986-01-01

    The HZ5-feline sarcoma virus (FeSV) is a new acute transforming feline retrovirus which was isolated from a multicentric fibrosarcoma of a domestic cat. The HZ5-FeSV transforms fibroblasts in vitro and is replication defective. A biologically active integrated HZ5-FeSV provirus was molecularly cloned from cellular DNA of HZ5-FeSV-infected FRE-3A rat cells. The HZ5-FeSV has oncogene homology with the fms sequences of the SM-FeSV. The genome organization of the 8.6-kilobase HZ5-FeSV provirus is 5' delta gag-fms-delta pol-delta env 3'. The HZ5-and SM-FeSVs display indistinguishable in vitro transformation characteristics, and the structures of the gag-fms transforming genes in the two viruses are very similar. In the HZ5-FeSV and the SM-FeSV, identical c-fms and feline leukemia virus p10 sequences form the 5' gag-fms junction. With regard to v-fms the two viruses are homologous up to 11 amino acids before the C terminus of the SM-FeSV v-fms protein. In HZ5-FeSV a segment of 362 nucleotides then follows before the 3' recombination site with feline leukemia virus pol. The new 3' v-fms sequence encodes 27 amino acids before reaching a TGA termination signal. The relationship of this sequence with the recently characterized human c-fms sequence has been examined. The 3' HZ5-FeSV v-fms sequence is homologous with 3' c-fms sequences. A frameshift mutation (11-base-pair deletion) was found in the C-terminal fms coding sequence of the HZ5-FeSV. As a result, the HZ5-FeSV v-fms protein is predicted to be a C-terminally truncated version of c-fms. This frameshift mutation may determine the oncogenic properties of v-fms in the HZ5-FeSV. Images PMID:3018286

  19. Whole-exome sequencing of a rare case of familial childhood acute lymphoblastic leukemia reveals putative predisposing mutations in Fanconi anemia genes.

    PubMed

    Spinella, Jean-François; Healy, Jasmine; Saillour, Virginie; Richer, Chantal; Cassart, Pauline; Ouimet, Manon; Sinnett, Daniel

    2015-07-23

    Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer. While the multi-step model of pediatric leukemogenesis suggests interplay between constitutional and somatic genomes, the role of inherited genetic variability remains largely undescribed. Nonsyndromic familial ALL, although extremely rare, provides the ideal setting to study inherited contributions to ALL. Toward this goal, we sequenced the exomes of a childhood ALL family consisting of mother, father and two non-twinned siblings diagnosed with concordant pre-B hyperdiploid ALL and previously shown to have inherited a rare form of PRDM9, a histone H3 methyltransferase involved in crossing-over at recombination hotspots and Holliday junctions. We postulated that inheritance of additional rare disadvantaging variants in predisposing cancer genes could affect genomic stability and lead to increased risk of hyperdiploid ALL within this family. Whole exomes were captured using Agilent's SureSelect kit and sequenced on the Life Technologies SOLiD System. We applied a data reduction strategy to identify candidate variants shared by both affected siblings. Under a recessive disease model, we focused on rare non-synonymous or frame-shift variants in leukemia predisposing pathways. Though the family was nonsyndromic, we identified a combination of rare variants in Fanconi anemia (FA) genes FANCP/SLX4 (compound heterozygote - rs137976282/rs79842542) and FANCA (rs61753269) and a rare homozygous variant in the Holliday junction resolvase GEN1 (rs16981869). These variants, predicted to affect protein function, were previously identified in familial breast cancer cases. Based on our in-house database of 369 childhood ALL exomes, the sibs were the only patients to carry this particularly rare combination and only a single hyperdiploid patient was heterozygote at both FANCP/SLX4 positions, while no FANCA variant allele carriers were identified. FANCA is the most commonly mutated gene in FA and is essential for resolving DNA interstrand cross-links during replication. FANCP/SLX4 and GEN1 are involved in the cleavage of Holliday junctions and their mutated forms, in combination with the rare allele of PRDM9, could alter Holliday junction resolution leading to nondisjunction of chromosomes and segregation defects. Taken together, these results suggest that concomitant inheritance of rare variants in FANCA, FANCP/SLX4 and GEN1 on the specific genetic background of this familial case, could lead to increased genomic instability, hematopoietic dysfunction, and higher risk of childhood leukemia.

  20. Arkas: Rapid reproducible RNAseq analysis

    PubMed Central

    Colombo, Anthony R.; J. Triche Jr, Timothy; Ramsingh, Giridharan

    2017-01-01

    The recently introduced Kallisto pseudoaligner has radically simplified the quantification of transcripts in RNA-sequencing experiments.  We offer cloud-scale RNAseq pipelines Arkas-Quantification, and Arkas-Analysis available within Illumina’s BaseSpace cloud application platform which expedites Kallisto preparatory routines, reliably calculates differential expression, and performs gene-set enrichment of REACTOME pathways .  Due to inherit inefficiencies of scale, Illumina's BaseSpace computing platform offers a massively parallel distributive environment improving data management services and data importing.   Arkas-Quantification deploys Kallisto for parallel cloud computations and is conveniently integrated downstream from the BaseSpace Sequence Read Archive (SRA) import/conversion application titled SRA Import.  Arkas-Analysis annotates the Kallisto results by extracting structured information directly from source FASTA files with per-contig metadata, calculates the differential expression and gene-set enrichment analysis on both coding genes and transcripts. The Arkas cloud pipeline supports ENSEMBL transcriptomes and can be used downstream from the SRA Import facilitating raw sequencing importing, SRA FASTQ conversion, RNA quantification and analysis steps. PMID:28868134

  1. The recX gene product is involved in the SOS response in Herbaspirillum seropedicae.

    PubMed

    Galvão, Carolina W; Pedrosa, Fábio O; Souza, Emanuel M; Yates, M Geoffrey; Chubatsu, Leda S; Steffens, Maria Berenice R

    2003-02-01

    The recA and the recX genes of Herbaspirillum seropedicae were sequenced. The recX is located 359 bp downstream from recA. Sequence analysis indicated the presence of a putative operator site overlapping a probable sigma70-dependent promoter upstream of recA and a transcription terminator downstream from recX, with no apparent promoter sequence in the intergenic region. Transcriptional analysis using lacZ promoter fusions indicated that recA expression increased three- to fourfold in the presence of methyl methanesulfonate (MMS). The roles of recA and recX genes in the SOS response were determined from studies of chromosomal mutants. The recA mutant showed the highest sensitivity to MMS and UV, and the recX mutant had an intermediate sensitivity, compared with the wild type (SMR1), confirming the essential role of the RecA protein in cell viability in the presence of mutagenic agents and also indicating a role for RecX in the SOS response.

  2. Therapeutic l-asparaginase: upstream, downstream and beyond.

    PubMed

    Lopes, André Moreni; Oliveira-Nascimento, Laura de; Ribeiro, Artur; Tairum, Carlos Abrunhosa; Breyer, Carlos Alexandre; Oliveira, Marcos Antonio de; Monteiro, Gisele; Souza-Motta, Cristina Maria de; Magalhães, Pérola de Oliveira; Avendaño, Jorge Gonzalo Farías; Cavaco-Paulo, Artur Manuel; Mazzola, Priscila Gava; Rangel-Yagui, Carlota de Oliveira; Sette, Lara Durães; Converti, Attilio; Pessoa, Adalberto

    2017-02-01

    l-asparaginase (l-asparagine amino hydrolase, E.C.3.5.1.1) is an enzyme clinically accepted as an antitumor agent to treat acute lymphoblastic leukemia and lymphosarcoma. It catalyzes l-asparagine (Asn) hydrolysis to l-aspartate and ammonia, and Asn effective depletion results in cytotoxicity to leukemic cells. Microbial l-asparaginase (ASNase) production has attracted considerable attention owing to its cost effectiveness and eco-friendliness. The focus of this review is to provide a thorough review on microbial ASNase production, with special emphasis to microbial producers, conditions of enzyme production, protein engineering, downstream processes, biochemical characteristics, enzyme stability, bioavailability, toxicity and allergy potential. Some issues are also highlighted that will have to be addressed to achieve better therapeutic results and less side effects of ASNase use in cancer treatment: (a) search for new sources of this enzyme to increase its availability as a drug; (b) production of new ASNases with improved pharmacodynamics, pharmacokinetics and toxicological profiles, and (c) improvement of ASNase production by recombinant microorganisms. In this regard, rational protein engineering, directed mutagenesis, metabolic flux analysis and optimization of purification protocols are expected to play a paramount role in the near future.

  3. Identification of a novel functional JAK1 S646P mutation in acute lymphoblastic leukemia

    PubMed Central

    Hu, Liangding; Ning, Hongmei; Jiang, Min; Wang, Danhong; Liu, Tingting; Zhang, Bin; Chen, Hu

    2017-01-01

    The survival rate of childhood acute lymphoblastic leukemia (ALL) is approaching 90%, while the prognosis of adults remains poor due to the limited therapeutic approaches. In order to identify new targets for ALL, we performed whole-exome sequencing on four adults with B-ALL and discovered a somatic JAK1 S646P mutation. Sanger sequencing of JAK1 was conducted on 53 ALL patients, and two cases exhibited A639G and P960S mutations separately. Functional studies demonstrated that only JAK1 S646P mutation could activate multiple signaling pathways, drive cytokine-independent cell growth, and promote proliferation of malignant cells in nude mice. Moreover, a high sensitivity to the JAK1/2 inhibitor ruxolitinib was observed in S646P mutant model. Exploration in a total of 209 ALL cases showed that JAK1 mutations occur at a frequency of 10.5% in T-ALL (2/19) and 1.6% in B-ALL (3/190). Collectively, our results suggested that JAK1 S646P is an activating mutation in vitro and in vivo. JAK-STAT pathway might represent a promising therapeutic target for ALL. PMID:28410228

  4. Identification of a novel functional JAK1 S646P mutation in acute lymphoblastic leukemia.

    PubMed

    Li, Qian; Li, Botao; Hu, Liangding; Ning, Hongmei; Jiang, Min; Wang, Danhong; Liu, Tingting; Zhang, Bin; Chen, Hu

    2017-05-23

    The survival rate of childhood acute lymphoblastic leukemia (ALL) is approaching 90%, while the prognosis of adults remains poor due to the limited therapeutic approaches. In order to identify new targets for ALL, we performed whole-exome sequencing on four adults with B-ALL and discovered a somatic JAK1 S646P mutation. Sanger sequencing of JAK1 was conducted on 53 ALL patients, and two cases exhibited A639G and P960S mutations separately. Functional studies demonstrated that only JAK1 S646P mutation could activate multiple signaling pathways, drive cytokine-independent cell growth, and promote proliferation of malignant cells in nude mice. Moreover, a high sensitivity to the JAK1/2 inhibitor ruxolitinib was observed in S646P mutant model. Exploration in a total of 209 ALL cases showed that JAK1 mutations occur at a frequency of 10.5% in T-ALL (2/19) and 1.6% in B-ALL (3/190). Collectively, our results suggested that JAK1 S646P is an activating mutation in vitro and in vivo. JAK-STAT pathway might represent a promising therapeutic target for ALL.

  5. Genetically distinct leukemic stem cells in human CD34− acute myeloid leukemia are arrested at a hemopoietic precursor-like stage

    PubMed Central

    Quek, Lynn; Garnett, Catherine; Karamitros, Dimitris; Stoilova, Bilyana; Doondeea, Jessica; Kennedy, Alison; Metzner, Marlen; Ivey, Adam; Sternberg, Alexander; Hunter, Hannah; Price, Andrew; Virgo, Paul; Grimwade, David; Freeman, Sylvie; Russell, Nigel; Mead, Adam

    2016-01-01

    Our understanding of the perturbation of normal cellular differentiation hierarchies to create tumor-propagating stem cell populations is incomplete. In human acute myeloid leukemia (AML), current models suggest transformation creates leukemic stem cell (LSC) populations arrested at a progenitor-like stage expressing cell surface CD34. We show that in ∼25% of AML, with a distinct genetic mutation pattern where >98% of cells are CD34−, there are multiple, nonhierarchically arranged CD34+ and CD34− LSC populations. Within CD34− and CD34+ LSC–containing populations, LSC frequencies are similar; there are shared clonal structures and near-identical transcriptional signatures. CD34− LSCs have disordered global transcription profiles, but these profiles are enriched for transcriptional signatures of normal CD34− mature granulocyte–macrophage precursors, downstream of progenitors. But unlike mature precursors, LSCs express multiple normal stem cell transcriptional regulators previously implicated in LSC function. This suggests a new refined model of the relationship between LSCs and normal hemopoiesis in which the nature of genetic/epigenetic changes determines the disordered transcriptional program, resulting in LSC differentiation arrest at stages that are most like either progenitor or precursor stages of hemopoiesis. PMID:27377587

  6. Estrogen promotes megakaryocyte polyploidization via estrogen receptor beta-mediated transcription of GATA1.

    PubMed

    Du, C; Xu, Y; Yang, K; Chen, S; Wang, X; Wang, S; Wang, C; Shen, M; Chen, F; Chen, M; Zeng, D; Li, F; Wang, T; Wang, F; Zhao, J; Ai, G; Cheng, T; Su, Y; Wang, J

    2017-04-01

    Estrogen is reported to be involved in thrombopoiesis and the disruption of its signaling may cause myeloproliferative disease, yet the underlying mechanisms remain largely unknown. GATA-binding factor 1 (GATA1) is a key regulator of megakaryocyte (MK) differentiation and its deficiency will lead to megakaryoblastic leukemia. Here we show that estrogen can dose-dependently promote MK polyploidization and maturation via activation of estrogen receptor beta (ERβ), accompanied by a significant upregulation of GATA1. Chromatin immunoprecipitation and a dual luciferase assay demonstrate that ERβ can directly bind the promoter region of GATA1 and activate its transcription. Steroid receptor coactivator 3 (SRC3) is involved in ERβ-mediated GATA1 transcription. The deficiency of ERβ or SRC3, similar to the inhibition of GATA1, leads to the impediment of estrogen-induced MK polyploidization and platelet production. Further investigations reveal that signal transducer and activator of transcription 1 signaling pathway downstream of GATA1 has a crucial role in estrogen-induced MK polyploidization, and ERβ-mediated GATA1 upregulation subsequently enhances nuclear factor erythroid-derived 2 expression, thereby promoting proplatelet formation and platelet release. Our study provides a deep insight into the molecular mechanisms of estrogen signaling in regulating thrombopoiesis and the pathogenesis of ER deficiency-related leukemia.

  7. Approaches for targeting self-renewal pathways in cancer stem cells: implications for hematological treatments.

    PubMed

    Horne, Gillian A; Copland, Mhairi

    2017-05-01

    Self-renewal is considered a defining property of stem cells. Self-renewal is essential in embryogenesis and normal tissue repair and homeostasis. However, in cancer, self-renewal pathways, e.g. WNT, NOTCH, Hedgehog and BMP, frequently become de-regulated in stem cells, or more mature progenitor cells acquire self-renewal properties, resulting in abnormal tissue growth and tumorigenesis. Areas covered: This review considers the conserved embryonic self-renewal pathways, including WNT, NOTCH, Hedgehog and BMP. The article describes recent advances in our understanding of these pathways in leukemia and, more specifically, leukemia stem cells (LSC), how these pathways cross-talk and interact with the LSC microenvironment, and discusses the clinical implications and potential therapeutic strategies, both in preclinical and in clinical trials for hematological malignancies. Expert opinion: The conserved embryonic self-renewal pathways are frequently de-regulated in cancer stem cells (CSC), including LSCs. There is significant cross-talk between self-renewal pathways, and their downstream targets, and the microenvironment. Effective targeting of these pathways is challenging due to cross-talk, and importantly, because these pathways are important for normal stem cells as well as CSC, adverse effects on normal tissues may mean a therapeutic window cannot be identified. Nonetheless, several agents targeting these pathways are currently in clinical trials in hematological malignancies.

  8. Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia

    PubMed Central

    Willems, Lise; Jacque, Nathalie; Jacquel, Arnaud; Neveux, Nathalie; Trovati Maciel, Thiago; Lambert, Mireille; Schmitt, Alain; Poulain, Laury; Green, Alexa S.; Uzunov, Madalina; Kosmider, Olivier; Radford-Weiss, Isabelle; Moura, Ivan Cruz; Auberger, Patrick; Ifrah, Norbert; Bardet, Valérie; Chapuis, Nicolas; Lacombe, Catherine; Mayeux, Patrick; Tamburini, Jérôme

    2013-01-01

    Cancer cells require nutrients and energy to adapt to increased biosynthetic activity, and protein synthesis inhibition downstream of mammalian target of rapamycin complex 1 (mTORC1) has shown promise as a possible therapy for acute myeloid leukemia (AML). Glutamine contributes to leucine import into cells, which controls the amino acid/Rag/mTORC1 signaling pathway. We show in our current study that glutamine removal inhibits mTORC1 and induces apoptosis in AML cells. The knockdown of the SLC1A5 high-affinity transporter for glutamine induces apoptosis and inhibits tumor formation in a mouse AML xenotransplantation model. l-asparaginase (l-ase) is an anticancer agent also harboring glutaminase activity. We show that l-ases from both Escherichia coli and Erwinia chrysanthemi profoundly inhibit mTORC1 and protein synthesis and that this inhibition correlates with their glutaminase activity levels and produces a strong apoptotic response in primary AML cells. We further show that l-ases upregulate glutamine synthase (GS) expression in leukemic cells and that a GS knockdown enhances l-ase–induced apoptosis in some AML cells. Finally, we observe a strong autophagic process upon l-ase treatment. These results suggest that l-ase anticancer activity and glutamine uptake inhibition are promising new therapeutic strategies for AML. PMID:24014241

  9. ReQON: a Bioconductor package for recalibrating quality scores from next-generation sequencing data

    PubMed Central

    2012-01-01

    Background Next-generation sequencing technologies have become important tools for genome-wide studies. However, the quality scores that are assigned to each base have been shown to be inaccurate. If the quality scores are used in downstream analyses, these inaccuracies can have a significant impact on the results. Results Here we present ReQON, a tool that recalibrates the base quality scores from an input BAM file of aligned sequencing data using logistic regression. ReQON also generates diagnostic plots showing the effectiveness of the recalibration. We show that ReQON produces quality scores that are both more accurate, in the sense that they more closely correspond to the probability of a sequencing error, and do a better job of discriminating between sequencing errors and non-errors than the original quality scores. We also compare ReQON to other available recalibration tools and show that ReQON is less biased and performs favorably in terms of quality score accuracy. Conclusion ReQON is an open source software package, written in R and available through Bioconductor, for recalibrating base quality scores for next-generation sequencing data. ReQON produces a new BAM file with more accurate quality scores, which can improve the results of downstream analysis, and produces several diagnostic plots showing the effectiveness of the recalibration. PMID:22946927

  10. Molecular cloning and analysis of Schizosaccharomyces pombe Reb1p: sequence-specific recognition of two sites in the far upstream rDNA intergenic spacer.

    PubMed Central

    Zhao, A; Guo, A; Liu, Z; Pape, L

    1997-01-01

    The coding sequences for a Schizosaccharomyces pombe sequence-specific DNA binding protein, Reb1p, have been cloned. The predicted S. pombe Reb1p is 24-29% identical to mouse TTF-1 (transcription termination factor-1) and Saccharomyces cerevisiae REB1 protein, both of which direct termination of RNA polymerase I catalyzed transcripts. The S.pombe Reb1 cDNA encodes a predicted polypeptide of 504 amino acids with a predicted molecular weight of 58.4 kDa. The S. pombe Reb1p is unusual in that the bipartite DNA binding motif identified originally in S.cerevisiae and Klyveromyces lactis REB1 proteins is uninterrupted and thus S.pombe Reb1p may contain the smallest natural REB1 homologous DNA binding domain. Its genomic coding sequences were shown to be interrupted by two introns. A recombinant histidine-tagged Reb1 protein bearing the rDNA binding domain has two homologous, sequence-specific binding sites in the S. pomber DNA intergenic spacer, located between 289 and 480 nt downstream of the end of the approximately 25S rRNA coding sequences. Each binding site is 13-14 bp downstream of two of the three proposed in vivo termination sites. The core of this 17 bp site, AGGTAAGGGTAATGCAC, is specifically protected by Reb1p in footprinting analysis. PMID:9016645

  11. G-quadruplex and G-rich sequence stimulate Pif1p-catalyzed downstream duplex DNA unwinding through reducing waiting time at ss/dsDNA junction

    PubMed Central

    Zhang, Bo; Wu, Wen-Qiang; Liu, Na-Nv; Duan, Xiao-Lei; Li, Ming; Dou, Shuo-Xing; Hou, Xi-Miao; Xi, Xu-Guang

    2016-01-01

    Alternative DNA structures that deviate from B-form double-stranded DNA such as G-quadruplex (G4) DNA can be formed by G-rich sequences that are widely distributed throughout the human genome. We have previously shown that Pif1p not only unfolds G4, but also unwinds the downstream duplex DNA in a G4-stimulated manner. In the present study, we further characterized the G4-stimulated duplex DNA unwinding phenomenon by means of single-molecule fluorescence resonance energy transfer. It was found that Pif1p did not unwind the partial duplex DNA immediately after unfolding the upstream G4 structure, but rather, it would dwell at the ss/dsDNA junction with a ‘waiting time’. Further studies revealed that the waiting time was in fact related to a protein dimerization process that was sensitive to ssDNA sequence and would become rapid if the sequence is G-rich. Furthermore, we identified that the G-rich sequence, as the G4 structure, equally stimulates duplex DNA unwinding. The present work sheds new light on the molecular mechanism by which G4-unwinding helicase Pif1p resolves physiological G4/duplex DNA structures in cells. PMID:27471032

  12. Comprehensive analysis of transcriptome variation uncovers known and novel driver events in T-cell acute lymphoblastic leukemia.

    PubMed

    Atak, Zeynep Kalender; Gianfelici, Valentina; Hulselmans, Gert; De Keersmaecker, Kim; Devasia, Arun George; Geerdens, Ellen; Mentens, Nicole; Chiaretti, Sabina; Durinck, Kaat; Uyttebroeck, Anne; Vandenberghe, Peter; Wlodarska, Iwona; Cloos, Jacqueline; Foà, Robin; Speleman, Frank; Cools, Jan; Aerts, Stein

    2013-01-01

    RNA-seq is a promising technology to re-sequence protein coding genes for the identification of single nucleotide variants (SNV), while simultaneously obtaining information on structural variations and gene expression perturbations. We asked whether RNA-seq is suitable for the detection of driver mutations in T-cell acute lymphoblastic leukemia (T-ALL). These leukemias are caused by a combination of gene fusions, over-expression of transcription factors and cooperative point mutations in oncogenes and tumor suppressor genes. We analyzed 31 T-ALL patient samples and 18 T-ALL cell lines by high-coverage paired-end RNA-seq. First, we optimized the detection of SNVs in RNA-seq data by comparing the results with exome re-sequencing data. We identified known driver genes with recurrent protein altering variations, as well as several new candidates including H3F3A, PTK2B, and STAT5B. Next, we determined accurate gene expression levels from the RNA-seq data through normalizations and batch effect removal, and used these to classify patients into T-ALL subtypes. Finally, we detected gene fusions, of which several can explain the over-expression of key driver genes such as TLX1, PLAG1, LMO1, or NKX2-1; and others result in novel fusion transcripts encoding activated kinases (SSBP2-FER and TPM3-JAK2) or involving MLLT10. In conclusion, we present novel analysis pipelines for variant calling, variant filtering, and expression normalization on RNA-seq data, and successfully applied these for the detection of translocations, point mutations, INDELs, exon-skipping events, and expression perturbations in T-ALL.

  13. Identification of three subgroups of B cell chronic lymphocytic leukemia based upon mutations of BCL-6 and IgV genes.

    PubMed

    Capello, D; Fais, F; Vivenza, D; Migliaretti, G; Chiorazzi, N; Gaidano, G; Ferrarini, M

    2000-05-01

    Although B cell chronic lymphocytic leukemia (B-CLL) has been traditionally viewed as a tumor of virgin B cells, this notion has been recently questioned by data suggesting that a fraction of B-CLL derives from antigen experienced B cells. In order to further clarify the histogenetic derivation of this lymphoproliferation, we have analyzed the DNA sequences of the 5' non-coding region of BCL-6 proto-oncogene in 28 cases of B-CLL. Mutations of BCL-6 proto-oncogene, a zinc finger transcription factor implicated in lymphoma development, represent a histogenetic marker of B cell transit through the germinal center (GC) and occur frequently in B cell malignancies derived from GC or post-GC B cells. For comparison, the same tumor panel was analyzed for somatic mutations of the rearranged immunoglobulin variable (IgV) genes, which are known to be acquired at the time of B cell transit through the GC. Sequence analyses of BCL-6 and IgV genes allowed the definition of three groups of B-CLL. Group I B-CLL displayed mutations of both BCL-6 and IgV genes (10/28; 36%). Group II B-CLL displayed mutated IgV genes, but a germline BCL-6 gene (5/28; 18%). Finally, group III B-CLL included the remaining cases (13/28; 46%) that were characterized by the absence of somatic mutations of both BCL-6 and IgV genes. Overall, the distribution of BCL-6 and IgV mutations in B-CLL reinforce the notion that this leukemia is histogenetically heterogeneous and that a substantial subgroup of these lymphoproliferations derives from post-germinal center B cells.

  14. Mutations of E3 Ubiquitin Ligase Cbl Family Members Constitute a Novel Common Pathogenic Lesion in Myeloid Malignancies

    PubMed Central

    Makishima, Hideki; Cazzolli, Heather; Szpurka, Hadrian; Dunbar, Andrew; Tiu, Ramon; Huh, Jungwon; Muramatsu, Hideki; O'Keefe, Christine; Hsi, Eric; Paquette, Ronald L.; Kojima, Seiji; List, Alan F.; Sekeres, Mikkael A.; McDevitt, Michael A.; Maciejewski, Jaroslaw P.

    2009-01-01

    Purpose Acquired somatic uniparental disomy (UPD) is commonly observed in myelodysplastic syndromes (MDS), myelodysplastic/myeloproliferative neoplasms (MDS/MPN), or secondary acute myelogenous leukemia (sAML) and may point toward genes harboring mutations. Recurrent UPD11q led to identification of homozygous mutations in c-Cbl, an E3 ubiquitin ligase involved in attenuation of proliferative signals transduced by activated receptor tyrosine kinases. We examined the role and frequency of Cbl gene family mutations in MPN and related conditions. Methods We applied high-density SNP-A karyotyping to identify loss of heterozygosity of 11q in 442 patients with MDS, MDS/MPN, MPN, sAML evolved from these conditions, and primary AML. We sequenced c-Cbl, Cbl-b, and Cbl-c in patients with or without corresponding UPD or deletions and correlated mutational status with clinical features and outcomes. Results We identified c-Cbl mutations in 5% and 9% of patients with chronic myelomonocytic leukemia (CMML) and sAML, and also in CML blast crisis and juvenile myelomonocytic leukemia (JMML). Most mutations were homozygous and affected c-Cbl; mutations in Cbl-b were also found in patients with similar clinical features. Patients with Cbl family mutations showed poor prognosis, with a median survival of 5 months. Pathomorphologic features included monocytosis, monocytoid blasts, aberrant expression of phosphoSTAT5, and c-kit overexpression. Serial studies showed acquisition of c-Cbl mutations during malignant evolution. Conclusion Mutations in the Cbl family RING finger domain or linker sequence constitute important pathogenic lesions associated with not only preleukemic CMML, JMML, and other MPN, but also progression to AML, suggesting that impairment of degradation of activated tyrosine kinases constitutes an important cancer mechanism. PMID:19901108

  15. End Joining-Mediated Gene Expression in Mammalian Cells Using PCR-Amplified DNA Constructs that Contain Terminator in Front of Promoter.

    PubMed

    Nakamura, Mikiko; Suzuki, Ayako; Akada, Junko; Tomiyoshi, Keisuke; Hoshida, Hisashi; Akada, Rinji

    2015-12-01

    Mammalian gene expression constructs are generally prepared in a plasmid vector, in which a promoter and terminator are located upstream and downstream of a protein-coding sequence, respectively. In this study, we found that front terminator constructs-DNA constructs containing a terminator upstream of a promoter rather than downstream of a coding region-could sufficiently express proteins as a result of end joining of the introduced DNA fragment. By taking advantage of front terminator constructs, FLAG substitutions, and deletions were generated using mutagenesis primers to identify amino acids specifically recognized by commercial FLAG antibodies. A minimal epitope sequence for polyclonal FLAG antibody recognition was also identified. In addition, we analyzed the sequence of a C-terminal Ser-Lys-Leu peroxisome localization signal, and identified the key residues necessary for peroxisome targeting. Moreover, front terminator constructs of hepatitis B surface antigen were used for deletion analysis, leading to the identification of regions required for the particle formation. Collectively, these results indicate that front terminator constructs allow for easy manipulations of C-terminal protein-coding sequences, and suggest that direct gene expression with PCR-amplified DNA is useful for high-throughput protein analysis in mammalian cells.

  16. Joint Estimation of Contamination, Error and Demography for Nuclear DNA from Ancient Humans

    PubMed Central

    Slatkin, Montgomery

    2016-01-01

    When sequencing an ancient DNA sample from a hominin fossil, DNA from present-day humans involved in excavation and extraction will be sequenced along with the endogenous material. This type of contamination is problematic for downstream analyses as it will introduce a bias towards the population of the contaminating individual(s). Quantifying the extent of contamination is a crucial step as it allows researchers to account for possible biases that may arise in downstream genetic analyses. Here, we present an MCMC algorithm to co-estimate the contamination rate, sequencing error rate and demographic parameters—including drift times and admixture rates—for an ancient nuclear genome obtained from human remains, when the putative contaminating DNA comes from present-day humans. We assume we have a large panel representing the putative contaminant population (e.g. European, East Asian or African). The method is implemented in a C++ program called ‘Demographic Inference with Contamination and Error’ (DICE). We applied it to simulations and genome data from ancient Neanderthals and modern humans. With reasonable levels of genome sequence coverage (>3X), we find we can recover accurate estimates of all these parameters, even when the contamination rate is as high as 50%. PMID:27049965

  17. A Spiking Neural Network System for Robust Sequence Recognition.

    PubMed

    Yu, Qiang; Yan, Rui; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2016-03-01

    This paper proposes a biologically plausible network architecture with spiking neurons for sequence recognition. This architecture is a unified and consistent system with functional parts of sensory encoding, learning, and decoding. This is the first systematic model attempting to reveal the neural mechanisms considering both the upstream and the downstream neurons together. The whole system is a consistent temporal framework, where the precise timing of spikes is employed for information processing and cognitive computing. Experimental results show that the system is competent to perform the sequence recognition, being robust to noisy sensory inputs and invariant to changes in the intervals between input stimuli within a certain range. The classification ability of the temporal learning rule used in the system is investigated through two benchmark tasks that outperform the other two widely used learning rules for classification. The results also demonstrate the computational power of spiking neurons over perceptrons for processing spatiotemporal patterns. In summary, the system provides a general way with spiking neurons to encode external stimuli into spatiotemporal spikes, to learn the encoded spike patterns with temporal learning rules, and to decode the sequence order with downstream neurons. The system structure would be beneficial for developments in both hardware and software.

  18. Spatial organization of the gastrointestinal microbiota in urban Canada geese

    USGS Publications Warehouse

    Drovetski, Sergei V.; O'Mahoney, Michael; Ransome, Emma J.; Matterson, Kenan O.; Lim, Haw Chuan; Chesser, Terry; Graves, Gary R.

    2018-01-01

    Recent reviews identified the reliance on fecal or cloacal samples as a significant limitation hindering our understanding of the avian gastrointestinal (gut) microbiota and its function. We investigated the microbiota of the esophagus, duodenum, cecum, and colon of a wild urban population of Canada goose (Branta canadensis). From a population sample of 30 individuals, we sequenced the V4 region of the 16S SSU rRNA on an Illumina MiSeq and obtained 8,628,751 sequences with a median of 76,529 per sample. These sequences were assigned to 420 bacterial OTUs and a single archaeon. Firmicutes, Proteobacteria, and Bacteroidetes accounted for 90% of all sequences. Microbiotas from the four gut regions differed significantly in their richness, composition, and variability among individuals. Microbial communities of the esophagus were the most distinctive whereas those of the colon were the least distinctive, reflecting the physical downstream mixing of regional microbiotas. The downstream mixing of regional microbiotas was also responsible for the majority of observed co-occurrence patterns among microbial families. Our results indicate that fecal and cloacal samples inadequately represent the complex patterns of richness, composition, and variability of the gut microbiota and obscure patterns of co-occurrence of microbial lineages.

  19. Focal expression of mutant huntingtin in the songbird basal ganglia disrupts cortico-basal ganglia networks and vocal sequences

    PubMed Central

    Tanaka, Masashi; Singh Alvarado, Jonnathan; Murugan, Malavika; Mooney, Richard

    2016-01-01

    The basal ganglia (BG) promote complex sequential movements by helping to select elementary motor gestures appropriate to a given behavioral context. Indeed, Huntington’s disease (HD), which causes striatal atrophy in the BG, is characterized by hyperkinesia and chorea. How striatal cell loss alters activity in the BG and downstream motor cortical regions to cause these disorganized movements remains unknown. Here, we show that expressing the genetic mutation that causes HD in a song-related region of the songbird BG destabilizes syllable sequences and increases overall vocal activity, but leave the structure of individual syllables intact. These behavioral changes are paralleled by the selective loss of striatal neurons and reduction of inhibitory synapses on pallidal neurons that serve as the BG output. Chronic recordings in singing birds revealed disrupted temporal patterns of activity in pallidal neurons and downstream cortical neurons. Moreover, reversible inactivation of the cortical neurons rescued the disorganized vocal sequences in transfected birds. These findings shed light on a key role of temporal patterns of cortico-BG activity in the regulation of complex motor sequences and show how a genetic mutation alters cortico-BG networks to cause disorganized movements. PMID:26951661

  20. Effects of transcriptional start site sequence and position on nucleotide-sensitive selection of alternative start sites at the pyrC promoter in Escherichia coli.

    PubMed Central

    Liu, J; Turnbough, C L

    1994-01-01

    In Escherichia coli, expression of the pyrC gene is regulated primarily by a translational control mechanism based on nucleotide-sensitive selection of transcriptional start sites at the pyrC promoter. When intracellular levels of CTP are high, pyrC transcripts are initiated predominantly with CTP at a site 7 bases downstream of the Pribnow box. These transcripts form a stable hairpin at their 5' ends that blocks ribosome binding. When the CTP level is low and the GTP level is high, conditions found in pyrimidine-limited cells, transcripts are initiated primarily with GTP at a site 9 bases downstream of the Pribnow box. These shorter transcripts are unable to form a hairpin at their 5' ends and are readily translated. In this study, we examined the effects of nucleotide sequence and position on the selection of transcriptional start sites at the pyrC promoter. We characterized promoter mutations that systematically alter the sequence at position 7 or 9 downstream of the Pribnow box or vary the spacing between the Pribnow box and wild-type transcriptional initiation region. The results reveal preferences for particular initiating nucleotides (ATP > or = GTP > UTP >> CTP) and for starting positions downstream of the Pribnow box (7 >> 6 and 8 > 9 > 10). The results indicate that optimal nucleotide-sensitive start site switching at the wild-type pyrC promoter is the result of competition between the preferred start site (position 7) that uses the poorest initiating nucleotide (CTP) and a weak start site (position 9) that uses a good initiating nucleotide (GTP). The sequence of the pyrC promoter also minimizes the synthesis of untranslatable transcripts and provides for maximum stability of the regulatory transcript hairpin. In addition, the results show that the effects of the mutations on pyrC expression and regulation are consistent with the current model for translational control. Possible effects of preferences for initiating nucleotides and start sites on the expression and regulation of other genes are discussed. Images PMID:7910603

  1. Genomic profiling of thousands of candidate polymorphisms predicts risk of relapse in 778 Danish and German childhood acute lymphoblastic leukemia patients.

    PubMed

    Wesołowska-Andersen, A; Borst, L; Dalgaard, M D; Yadav, R; Rasmussen, K K; Wehner, P S; Rasmussen, M; Ørntoft, T F; Nordentoft, I; Koehler, R; Bartram, C R; Schrappe, M; Sicheritz-Ponten, T; Gautier, L; Marquart, H; Madsen, H O; Brunak, S; Stanulla, M; Gupta, R; Schmiegelow, K

    2015-02-01

    Childhood acute lymphoblastic leukemia survival approaches 90%. New strategies are needed to identify the 10-15% who evade cure. We applied targeted, sequencing-based genotyping of 25 000 to 34 000 preselected potentially clinically relevant single-nucleotide polymorphisms (SNPs) to identify host genome profiles associated with relapse risk in 352 patients from the Nordic ALL92/2000 protocols and 426 patients from the German Berlin-Frankfurt-Munster (BFM) ALL2000 protocol. Patients were enrolled between 1992 and 2008 (median follow-up: 7.6 years). Eleven cross-validated SNPs were significantly associated with risk of relapse across protocols. SNP and biologic pathway level analyses associated relapse risk with leukemia aggressiveness, glucocorticosteroid pharmacology/response and drug transport/metabolism pathways. Classification and regression tree analysis identified three distinct risk groups defined by end of induction residual leukemia, white blood cell count and variants in myeloperoxidase (MPO), estrogen receptor 1 (ESR1), lamin B1 (LMNB1) and matrix metalloproteinase-7 (MMP7) genes, ATP-binding cassette transporters and glucocorticosteroid transcription regulation pathways. Relapse rates ranged from 4% (95% confidence interval (CI): 1.6-6.3%) for the best group (72% of patients) to 76% (95% CI: 41-90%) for the worst group (5% of patients, P<0.001). Validation of these findings and similar approaches to identify SNPs associated with toxicities may allow future individualized relapse and toxicity risk-based treatments adaptation.

  2. cDNA Cloning, Expression Pattern, and Chromosomal Localization of Mlf1, Murine Homologue of a Gene Involved in Myelodysplasia and Acute Myeloid Leukemia

    PubMed Central

    Hitzler, Johann K.; Witte, David P.; Jenkins, Nancy A.; Copeland, Neal G.; Gilbert, Debra J.; Naeve, Clayton W.; Look, A. Thomas; Morris, Stephan W.

    1999-01-01

    The NPM-MLF1 fusion protein is expressed in blasts from patients with myelodysplasia/acute myeloid leukemia (MDS/AML) containing the t(3;5) chromosomal rearrangement. Nucleophosmin (NPM), a previously characterized nucleolar phosphoprotein, contributes to two other fusion proteins found in lympho-hematopoietic malignancies, anaplastic large cell lymphoma (NPM-ALK) and acute promyelocytic leukemia (NPM-RARα). By contrast, the function of the carboxy-terminal fusion partner, myelodysplasia/myeloid leukemia factor 1 (MLF1), is unknown. To aid in understanding normal MLF1 function, we isolated the murine cDNA, determined the chromosomal localization of Mlf1, and defined its tissue expression by in situ hybridization. Mlf1 was highly similar to its human homologue (86% and 84% identical nucleotide and amino acid sequence, respectively) and mapped to the central region of chromosome 3, within a segment lacking known mouse mutations. Mlf1 tissue distribution was restricted during both development and postnatal life, with high levels present only in skeletal, cardiac, and selected smooth muscle, gonadal tissues, and rare epithelial tissues including the nasal mucosa and the ependyma/choroid plexus in the brain. Mlf1 transcripts were undetectable in the lympho-hematopoietic organs of both the embryonic and adult mouse, suggesting that NPM-MLF1 contributes to the genesis of MDS/AML in part by enforcing the ectopic overexpression of MLF1 within hematopoietic tissues. PMID:10393836

  3. Kinase Pathway Dependence in Primary Human Leukemias Determined by Rapid Inhibitor Screening

    PubMed Central

    Tyner, Jeffrey W.; Yang, Wayne F.; Bankhead, Armand; Fan, Guang; Fletcher, Luke B.; Bryant, Jade; Glover, Jason M.; Chang, Bill H.; Spurgeon, Stephen E.; Fleming, William H.; Kovacsovics, Tibor; Gotlib, Jason R.; Oh, Stephen T.; Deininger, Michael W.; Zwaan, C. Michel; Den Boer, Monique L.; van den Heuvel-Eibrink, Marry M.; O’Hare, Thomas; Druker, Brian J.; Loriaux, Marc M.

    2012-01-01

    Kinases are dysregulated in most cancer but the frequency of specific kinase mutations is low, indicating a complex etiology in kinase dysregulation. Here we report a strategy to rapidly identify functionally important kinase targets, irrespective of the etiology of kinase pathway dysregulation, ultimately enabling a correlation of patient genetic profiles to clinically effective kinase inhibitors. Our methodology assessed the sensitivity of primary leukemia patient samples to a panel of 66 small-molecule kinase inhibitors over 3 days. Screening of 151 leukemia patient samples revealed a wide diversity of drug sensitivities, with 70% of the clinical specimens exhibiting hypersensitivity to one or more drugs. From this data set, we developed an algorithm to predict kinase pathway dependence based on analysis of inhibitor sensitivity patterns. Applying this algorithm correctly identified pathway dependence in proof-of-principle specimens with known oncogenes, including a rare FLT3 mutation outside regions covered by standard molecular diagnostic tests. Interrogation of all 151 patient specimens with this algorithm identified a diversity of gene targets and signaling pathways that could aid prioritization of deep sequencing data sets, permitting a cumulative analysis to understand kinase pathway dependence within leukemia subsets. In a proof-of-principle case, we showed that in vitro drug sensitivity could predict both a clinical response and the development of drug resistance. Taken together, our results suggested that drug target scores derived from a comprehensive kinase inhibitor panel could predict pathway dependence in cancer cells while simultaneously identifying potential therapeutic options. PMID:23087056

  4. PCR Amplification Strategies towards full-length HIV-1 Genome sequencing.

    PubMed

    Liu, Chao Chun; Ji, Hezhao

    2018-06-26

    The advent of next generation sequencing has enabled greater resolution of viral diversity and improved feasibility of full viral genome sequencing allowing routine HIV-1 full genome sequencing in both research and diagnostic settings. Regardless of the sequencing platform selected, successful PCR amplification of the HIV-1 genome is essential for sequencing template preparation. As such, full HIV-1 genome amplification is a crucial step in dictating the successful and reliable sequencing downstream. Here we reviewed existing PCR protocols leading to HIV-1 full genome sequencing. In addition to the discussion on basic considerations on relevant PCR design, the advantages as well as the pitfalls of published protocols were reviewed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Association of MTHFR polymorphisms and chromosomal abnormalities in leukemia.

    PubMed

    Sinthuwiwat, Thivaratana; Poowasanpetch, Phanasit; Wongngamrungroj, Angsana; Soonklang, Kamonwan; Promso, Somying; Auewarakul, Chirayu; Tocharoentanaphol, Chintana

    2012-01-01

    Genetic variation in MTHFR gene might explain the interindividual differences in the reduction of DNA repaired and the increase of chromosome breakage and damage. Nowadays, chromosomal rearrangement is recognized as a major cause of lymphoid malignancies. In addition, the association of MTHFR polymorphisms with aneuploidy was found in several studies, making the MTHFR gene as a good candidate for leukemia etiology. Therefore, in this study, we investigated the common sequence variation, 677C>T and 1298A>C in the MTHFR gene of 350 fixed cell specimens archived after chromosome analysis. The distribution of the MTHFR polymorphisms frequency was compared in leukemic patients with structural chromosome abnormality and chromosome aneuploidy, as well as in those with no evidence of chromosome abnormalities. We observed a significant decrease in the distribution of T allele in 677C>T polymorphisms among patients with chromosomal abnormalities including both structural aberration and aneuploidy. The same significance result also found in patients with structural aberration when compare with the normal karyotype patients. Suggesting that polymorphism in the MTHFR gene was involved in chromosome abnormalities of leukemia. However, further investigation on the correlation with the specific types of chromosomal aberrations is needed.

  6. Sunitinib in Treating Patients With Idiopathic Myelofibrosis

    ClinicalTrials.gov

    2014-05-12

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Mast Cell Leukemia; Meningeal Chronic Myelogenous Leukemia; Primary Myelofibrosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage IV Chronic Lymphocytic Leukemia; T-cell Large Granular Lymphocyte Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Hairy Cell Leukemia

  7. Optimisation of DNA extraction from the crustacean Daphnia

    PubMed Central

    Athanasio, Camila Gonçalves; Chipman, James K.; Viant, Mark R.

    2016-01-01

    Daphnia are key model organisms for mechanistic studies of phenotypic plasticity, adaptation and microevolution, which have led to an increasing demand for genomics resources. A key step in any genomics analysis, such as high-throughput sequencing, is the availability of sufficient and high quality DNA. Although commercial kits exist to extract genomic DNA from several species, preparation of high quality DNA from Daphnia spp. and other chitinous species can be challenging. Here, we optimise methods for tissue homogenisation, DNA extraction and quantification customised for different downstream analyses (e.g., LC-MS/MS, Hiseq, mate pair sequencing or Nanopore). We demonstrate that if Daphnia magna are homogenised as whole animals (including the carapace), absorbance-based DNA quantification methods significantly over-estimate the amount of DNA, resulting in using insufficient starting material for experiments, such as preparation of sequencing libraries. This is attributed to the high refractive index of chitin in Daphnia’s carapace at 260 nm. Therefore, unless the carapace is removed by overnight proteinase digestion, the extracted DNA should be quantified with fluorescence-based methods. However, overnight proteinase digestion will result in partial fragmentation of DNA therefore the prepared DNA is not suitable for downstream methods that require high molecular weight DNA, such as PacBio, mate pair sequencing and Nanopore. In conclusion, we found that the MasterPure DNA purification kit, coupled with grinding of frozen tissue, is the best method for extraction of high molecular weight DNA as long as the extracted DNA is quantified with fluorescence-based methods. This method generated high yield and high molecular weight DNA (3.10 ± 0.63 ng/µg dry mass, fragments >60 kb), free of organic contaminants (phenol, chloroform) and is suitable for large number of downstream analyses. PMID:27190714

  8. Comparative transgenic analysis of enhancers from the human SHOX and mouse Shox2 genomic regions.

    PubMed

    Rosin, Jessica M; Abassah-Oppong, Samuel; Cobb, John

    2013-08-01

    Disruption of presumptive enhancers downstream of the human SHOX gene (hSHOX) is a frequent cause of the zeugopodal limb defects characteristic of Léri-Weill dyschondrosteosis (LWD). The closely related mouse Shox2 gene (mShox2) is also required for limb development, but in the more proximal stylopodium. In this study, we used transgenic mice in a comparative approach to characterize enhancer sequences in the hSHOX and mShox2 genomic regions. Among conserved noncoding elements (CNEs) that function as enhancers in vertebrate genomes, those that are maintained near paralogous genes are of particular interest given their ancient origins. Therefore, we first analyzed the regulatory potential of a genomic region containing one such duplicated CNE (dCNE) downstream of mShox2 and hSHOX. We identified a strong limb enhancer directly adjacent to the mShox2 dCNE that recapitulates the expression pattern of the endogenous gene. Interestingly, this enhancer requires sequences only conserved in the mammalian lineage in order to drive strong limb expression, whereas the more deeply conserved sequences of the dCNE function as a neural enhancer. Similarly, we found that a conserved element downstream of hSHOX (CNE9) also functions as a neural enhancer in transgenic mice. However, when the CNE9 transgenic construct was enlarged to include adjacent, non-conserved sequences frequently deleted in LWD patients, the transgene drove expression in the zeugopodium of the limbs. Therefore, both hSHOX and mShox2 limb enhancers are coupled to distinct neural enhancers. This is the first report demonstrating the activity of cis-regulatory elements from the hSHOX and mShox2 genomic regions in mammalian embryos.

  9. Human ribosomal RNA gene: nucleotide sequence of the transcription initiation region and comparison of three mammalian genes.

    PubMed Central

    Financsek, I; Mizumoto, K; Mishima, Y; Muramatsu, M

    1982-01-01

    The transcription initiation site of the human ribosomal RNA gene (rDNA) was located by using the single-strand specific nuclease protection method and by determining the first nucleotide of the in vitro capped 45S preribosomal RNA. The sequence of 1,211 nucleotides surrounding the initiation site was determined. The sequenced region was found to consist of 75% G and C and to contain a number of short direct and inverted repeats and palindromes. By comparison of the corresponding initiation regions of three mammalian species, several conserved sequences were found upstream and downstream from the transcription starting point. Two short A + T-rich sequences are present on human, mouse, and rat ribosomal RNA genes between the initiation site and 40 nucleotides upstream, and a C + T cluster is located at a position around -60. At and downstream from the initiation site, a common sequence, T-AG-C-T-G-A-C-A-C-G-C-T-G-T-C-C-T-CT-T, was found in the three genes from position -1 through +18. The strong conservation of these sequences suggests their functional significance in rDNA. The S1 nuclease protection experiments with cloned rDNA fragments indicated the presence in human 45S RNA of molecules several hundred nucleotides shorter than the supposed primary transcript. The first 19 nucleotides of these molecules appear identical--except for one mismatch--to the nucleotide sequence of the 5' end of a supposed early processing product of the mouse 45S RNA. Images PMID:6954460

  10. Ddx18 is essential for cell-cycle progression in zebrafish hematopoietic cells and is mutated in human AML

    PubMed Central

    Bolli, Niccolò; Rhodes, Jennifer; Abdel-Wahab, Omar I.; Levine, Ross; Hedvat, Cyrus V.; Stone, Richard; Khanna-Gupta, Arati; Sun, Hong; Kanki, John P.; Gazda, Hanna T.; Beggs, Alan H.; Cotter, Finbarr E.

    2011-01-01

    In a zebrafish mutagenesis screen to identify genes essential for myelopoiesis, we identified an insertional allele hi1727, which disrupts the gene encoding RNA helicase dead-box 18 (Ddx18). Homozygous Ddx18 mutant embryos exhibit a profound loss of myeloid and erythroid cells along with cardiovascular abnormalities and reduced size. These mutants also display prominent apoptosis and a G1 cell-cycle arrest. Loss of p53, but not Bcl-xl overexpression, rescues myeloid cells to normal levels, suggesting that the hematopoietic defect is because of p53-dependent G1 cell-cycle arrest. We then sequenced primary samples from 262 patients with myeloid malignancies because genes essential for myelopoiesis are often mutated in human leukemias. We identified 4 nonsynonymous sequence variants (NSVs) of DDX18 in acute myeloid leukemia (AML) patient samples. RNA encoding wild-type DDX18 and 3 NSVs rescued the hematopoietic defect, indicating normal DDX18 activity. RNA encoding one mutation, DDX18-E76del, was unable to rescue hematopoiesis, and resulted in reduced myeloid cell numbers in ddx18hi1727/+ embryos, indicating this NSV likely functions as a dominant-negative allele. These studies demonstrate the use of the zebrafish as a robust in vivo system for assessing the function of genes mutated in AML, which will become increasingly important as more sequence variants are identified by next-generation resequencing technologies. PMID:21653321

  11. Two short basic sequences surrounding the zinc finger of nucleocapsid protein NCp10 of Moloney murine leukemia virus are critical for RNA annealing activity.

    PubMed Central

    De Rocquigny, H; Ficheux, D; Gabus, C; Allain, B; Fournie-Zaluski, M C; Darlix, J L; Roques, B P

    1993-01-01

    The 56 amino acid nucleocapsid protein (NCp10) of Moloney Murine Leukemia Virus, contains a CysX2CysX4HisX4Cys zinc finger flanked by basic residues. In vitro NCp10 promotes genomic RNA dimerization, a process most probably linked to genomic RNA packaging, and replication primer tRNA(Pro) annealing to the initiation site of reverse transcription. To characterize the amino-acid sequences involved in the various functions of NCp10, we have synthesized by solid phase method the native protein and a series of derived peptides shortened at the N- or C-terminus with or without the zinc finger domain. In the latter case, the two parts of the protein were linked by a Glycine - Glycine spacer. The in vitro studies of these peptides show that nucleic acid annealing activities of NCp10 do not require a zinc finger but are critically dependent on the presence of specific sequences located on each side of the CCHC domain and containing proline and basic residues. Thus, deletion of 11R or 49PRPQT, of the fully active 29 residue peptide 11RQGGERRRSQLDRDGGKKPRGPRGPRPQT53 leads to a complete loss of NCp10 activity. Therefore it is proposed that in NCp10, the zinc finger directs the spatial recognition of the target RNAs by the basic domains surrounding the zinc finger. Images PMID:8451185

  12. The Importance of Splat Events to the Spatiotemporal Structure of Near-Bed Fluid Velocity and Bed Load Motion Over Bed Forms: Laboratory Experiments Downstream of a Backward Facing Step

    NASA Astrophysics Data System (ADS)

    Leary, K. C. P.; Schmeeckle, M. W.

    2017-12-01

    Flow separation/reattachment on the lee side of alluvial bed forms is known to produce a complex turbulence field, but the spatiotemporal details of the associated patterns of bed load sediment transported remain largely unknown. Here we report turbulence-resolving, simultaneous measurements of bed load motion and near-bed fluid velocity downstream of a backward facing step in a laboratory flume. Two synchronized high-speed video cameras simultaneously observed bed load motion and the motion of neutrally buoyant particles in a laser light sheet 6 mm above the bed at 250 frames/s downstream of a 3.8 cm backward facing step. Particle Imaging Velocimetry (PIV) and Acoustic Doppler Velocimetry (ADV) were used to characterize fluid turbulent patterns, while manual particle tracking techniques were used to characterize bed load transport. Octant analysis, conducted using ADV data, coupled with Markovian sequence probability analysis highlights differences in the flow near reattachment versus farther downstream. Near reattachment, three distinct flow patterns are apparent. Farther downstream we see the development of a dominant flow sequence. Localized, intermittent, high-magnitude transport events are more apparent near flow reattachment. These events are composed of streamwise and cross-stream fluxes of comparable magnitudes. Transport pattern and fluid velocity data are consistent with the existence of permeable "splat events," wherein a volume of fluid moves toward and impinges on the bed (sweep) causing a radial movement of fluid in all directions around the point of impingement (outward interaction). This is congruent with flow patterns, identified with octant analysis, proximal to flow reattachment.

  13. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia

    PubMed Central

    Roberts, Kathryn G.; Morin, Ryan D.; Zhang, Jinghui; Hirst, Martin; Zhao, Yongjun; Su, Xiaoping; Chen, Shann-Ching; Payne-Turner, Debbie; Churchman, Michelle; Harvey, Richard C.; Chen, Xiang; Kasap, Corynn; Yan, Chunhua; Becksfort, Jared; Finney, Richard P.; Teachey, David T.; Maude, Shannon L.; Tse, Kane; Moore, Richard; Jones, Steven; Mungall, Karen; Birol, Inanc; Edmonson, Michael N.; Hu, Ying; Buetow, Kenneth E.; Chen, I-Ming; Carroll, William L.; Wei, Lei; Ma, Jing; Kleppe, Maria; Levine, Ross L.; Garcia-Manero, Guillermo; Larsen, Eric; Shah, Neil P.; Devidas, Meenakshi; Reaman, Gregory; Smith, Malcolm; Paugh, Steven W.; Evans, William E.; Grupp, Stephan A.; Jeha, Sima; Pui, Ching-Hon; Gerhard, Daniela S.; Downing, James R.; Willman, Cheryl L.; Loh, Mignon; Hunger, Stephen P.; Marra, Marco; Mullighan, Charles G.

    2012-01-01

    SUMMARY Genomic profiling has identified a subtype of high-risk B-progenitor acute lymphoblastic leukemia (B-ALL) with alteration of IKZF1, a gene expression profile similar to BCR-ABL1-positive ALL and poor outcome (Ph-like ALL). The genetic alterations that activate kinase signaling in Ph-like ALL are poorly understood. We performed transcriptome and whole genome sequencing on 15 cases of Ph-like ALL, and identified rearrangements involving ABL1, JAK2, PDGFRB, CRLF2 and EPOR, activating mutations of IL7R and FLT3, and deletion of SH2B3, which encodes the JAK2 negative regulator LNK. Importantly, several of these alterations induce transformation that is attenuated with tyrosine kinase inhibitors, suggesting the treatment outcome of these patients may be improved with targeted therapy. PMID:22897847

  14. Analysis of Morphogenic Effect of hDAB2IP on Prostate Cancer and its Disease Correlation

    DTIC Science & Technology

    2007-02-01

    variety of or- gans and cell lines. By determining the promoter sequence from the 5’- flanking region of the mDab2ip gene in mouse prosta - tic epithelial...patient with de novo acute myeloid leukemia. Genes Chromo- somes Cancer 39, 324 –334. WANG, Z., TSENG, C.P., PONG, R.C., CHEN, H., MCCONNELL, J.D

  15. Morphological changes in cultured bovine lymphoid cell lines associated with bovine viral diarrhea virus (BVDV) single and dual infections with bovine leukemia virus (BLV)

    USDA-ARS?s Scientific Manuscript database

    Currently, American Type Culture Collection (ATCC) makes available two cell lines derived from the same lymphoblast-like suspension cell that have been confirmed by next-generation sequencing and RT-PCR to have either a single contaminate of BVDV2a (CRL-8037) or dual contaminates of both BVDV and BL...

  16. Iterative Correction of Reference Nucleotides (iCORN) using second generation sequencing technology.

    PubMed

    Otto, Thomas D; Sanders, Mandy; Berriman, Matthew; Newbold, Chris

    2010-07-15

    The accuracy of reference genomes is important for downstream analysis but a low error rate requires expensive manual interrogation of the sequence. Here, we describe a novel algorithm (Iterative Correction of Reference Nucleotides) that iteratively aligns deep coverage of short sequencing reads to correct errors in reference genome sequences and evaluate their accuracy. Using Plasmodium falciparum (81% A + T content) as an extreme example, we show that the algorithm is highly accurate and corrects over 2000 errors in the reference sequence. We give examples of its application to numerous other eukaryotic and prokaryotic genomes and suggest additional applications. The software is available at http://icorn.sourceforge.net

  17. Effects of Methylphenidate on Attention Deficits in Childhood Cancer Survivors

    ClinicalTrials.gov

    2015-03-16

    ALL, Childhood; Leukemia, Lymphoblastic; Leukemia, Lymphoblastic, Acute; Leukemia, Lymphoblastic, Acute, L1; Leukemia, Lymphoblastic, Acute, L2; Leukemia, Lymphoblastic, Acute, Philadelphia-Positive; Leukemia, Lymphocytic, Acute; Leukemia, Lymphocytic, Acute, L1; Leukemia, Lymphocytic, Acute, L2; Lymphoblastic Leukemia; Lymphoblastic Leukemia, Acute; Lymphoblastic Leukemia, Acute, Childhood; Lymphoblastic Leukemia, Acute, L1; Lymphoblastic Leukemia, Acute, L2; Lymphoblastic Lymphoma; Lymphocytic Leukemia, Acute; Lymphocytic Leukemia, L1; Lymphocytic Leukemia, L2; Brain Tumors; Cancer of the Brain; Cancer of Brain; Malignant Primary Brain Tumors; Brain Neoplasms, Malignant

  18. Effect of the linkers between the zinc fingers in zinc finger protein 809 on gene silencing and nuclear localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichida, Yu, E-mail: ichida-y@ncchd.go.jp; Utsunomiya, Yuko; Onodera, Masafumi

    2016-03-18

    Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remainsmore » unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers. - Highlights: • ZFP809 has three consensus linkers between the zinc fingers. • Linkers are required for ZFP809 to silence transgene expression driven by MLV-LTR. • Linkers affect the precise nuclear localization of ZFP809.« less

  19. miR-320a regulates cell proliferation and apoptosis in multiple myeloma by targeting pre-B-cell leukemia transcription factor 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yinghao; Department of Hematology, Affiliated Hospital of Guizhou Medical University, The Hematopoietic Stem Cell Transplant Center of Guizhou Province, Blood Diseases Diagnosis and Treatment Center of Guizhou Province, Guiyang, 550004, Guizhou Province; Wu, Depei, E-mail: wudepei@medmail.com.cn

    2016-05-13

    Aberrant expression of microRNAs (miRNAs) is implicated in cancer development and progression. While miR-320a is reported to be deregulated in many malignancy types, its biological role in multiple myeloma (MM) remains unclear. Here, we observed reduced expression of miR-320a in MM samples and cell lines. Ectopic expression of miR-320a dramatically suppressed cell viability and clonogenicity and induced apoptosis in vitro. Mechanistic investigation led to the identification of Pre-B-cellleukemia transcription factor 3 (PBX3) as a novel and direct downstream target of miR-320a. Interestingly, reintroduction of PBX3 abrogated miR-320a-induced MM cell growth inhibition and apoptosis. In a mouse xenograft model, miR-320a overexpression inhibitedmore » tumorigenicity and promoted apoptosis. Our findings collectively indicate that miR-320a inhibits cell proliferation and induces apoptosis in MM cells by directly targeting PBX3, supporting its utility as a novel and potential therapeutic agent for miRNA-based MM therapy. -- Highlights: •Expression of miR-320a in MM cell induces apoptosis in vitro. •miR-320a represses PBX3 via targeting specific sequences in the 3′UTR region. •Exogenous expression of PBX3 reverses the effects of miR-320a in inhibiting MM cell growth and promoting apoptosis. •Overexpression of miR-320a inhibits tumor growth and increases apoptosis in vivo.« less

  20. De novo design of peptide immunogens that mimic the coiled coil region of human T-cell leukemia virus type-1 glycoprotein 21 transmembrane subunit for induction of native protein reactive neutralizing antibodies.

    PubMed

    Sundaram, Roshni; Lynch, Marcus P; Rawale, Sharad V; Sun, Yiping; Kazanji, Mirdad; Kaumaya, Pravin T P

    2004-06-04

    Peptide vaccines able to induce high affinity and protective neutralizing antibodies must rely in part on the design of antigenic epitopes that mimic the three-dimensional structure of the corresponding region in the native protein. We describe the design, structural characterization, immunogenicity, and neutralizing potential of antibodies elicited by conformational peptides derived from the human T-cell leukemia virus type 1 (HTLV-1) gp21 envelope glycoprotein spanning residues 347-374. We used a novel template design and a unique synthetic approach to construct two peptides (WCCR2T and CCR2T) that would each assemble into a triple helical coiled coil conformation mimicking the gp21 crystal structure. The peptide B-cell epitopes were grafted onto the epsilon side chains of three lysyl residues on a template backbone construct consisting of the sequence acetyl-XGKGKGKGCONH2 (where X represents the tetanus toxoid promiscuous T cell epitope (TT) sequence 580-599). Leucine substitutions were introduced at the a and d positions of the CCR2T sequence to maximize helical character and stability as shown by circular dichroism and guanidinium hydrochloride studies. Serum from an HTLV-1-infected patient was able to recognize the selected epitopes by enzyme-linked immunosorbent assay (ELISA). Mice immunized with the wild-type sequence (WCCR2T) and the mutant sequence (CCR2T) elicited high antibody titers that were capable of recognizing the native protein as shown by flow cytometry and whole virus ELISA. Sera and purified antibodies from immunized mice were able to reduce the formation of syncytia induced by the envelope glycoprotein of HTLV-1, suggesting that antibodies directed against the coiled coil region of gp21 are capable of disrupting cell-cell fusion. Our results indicate that these peptides represent potential candidates for use in a peptide vaccine against HTLV-1.

  1. Tanespimycin and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, Chronic Myelomonocytic Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-09-27

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  2. 7-Hydroxystaurosporine and Perifosine in Treating Patients With Relapsed or Refractory Acute Leukemia, Chronic Myelogenous Leukemia or High Risk Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-09-27

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Neoplasms; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  3. Flavopiridol in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-06-03

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia

  4. Vorinostat, Cytarabine, and Etoposide in Treating Patients With Relapsed and/or Refractory Acute Leukemia or Myelodysplastic Syndromes or Myeloproliferative Disorders

    ClinicalTrials.gov

    2013-05-01

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  5. An electrostatic selection mechanism controls sequential kinase signaling downstream of the T cell receptor

    PubMed Central

    Shah, Neel H; Wang, Qi; Yan, Qingrong; Karandur, Deepti; Kadlecek, Theresa A; Fallahee, Ian R; Russ, William P; Ranganathan, Rama; Weiss, Arthur; Kuriyan, John

    2016-01-01

    The sequence of events that initiates T cell signaling is dictated by the specificities and order of activation of the tyrosine kinases that signal downstream of the T cell receptor. Using a platform that combines exhaustive point-mutagenesis of peptide substrates, bacterial surface-display, cell sorting, and deep sequencing, we have defined the specificities of the first two kinases in this pathway, Lck and ZAP-70, for the T cell receptor ζ chain and the scaffold proteins LAT and SLP-76. We find that ZAP-70 selects its substrates by utilizing an electrostatic mechanism that excludes substrates with positively-charged residues and favors LAT and SLP-76 phosphosites that are surrounded by negatively-charged residues. This mechanism prevents ZAP-70 from phosphorylating its own activation loop, thereby enforcing its strict dependence on Lck for activation. The sequence features in ZAP-70, LAT, and SLP-76 that underlie electrostatic selectivity likely contribute to the specific response of T cells to foreign antigens. DOI: http://dx.doi.org/10.7554/eLife.20105.001 PMID:27700984

  6. Systematic evaluation of the impact of ChIP-seq read designs on genome coverage, peak identification, and allele-specific binding detection.

    PubMed

    Zhang, Qi; Zeng, Xin; Younkin, Sam; Kawli, Trupti; Snyder, Michael P; Keleş, Sündüz

    2016-02-24

    Chromatin immunoprecipitation followed by sequencing (ChIP-seq) experiments revolutionized genome-wide profiling of transcription factors and histone modifications. Although maturing sequencing technologies allow these experiments to be carried out with short (36-50 bps), long (75-100 bps), single-end, or paired-end reads, the impact of these read parameters on the downstream data analysis are not well understood. In this paper, we evaluate the effects of different read parameters on genome sequence alignment, coverage of different classes of genomic features, peak identification, and allele-specific binding detection. We generated 101 bps paired-end ChIP-seq data for many transcription factors from human GM12878 and MCF7 cell lines. Systematic evaluations using in silico variations of these data as well as fully simulated data, revealed complex interplay between the sequencing parameters and analysis tools, and indicated clear advantages of paired-end designs in several aspects such as alignment accuracy, peak resolution, and most notably, allele-specific binding detection. Our work elucidates the effect of design on the downstream analysis and provides insights to investigators in deciding sequencing parameters in ChIP-seq experiments. We present the first systematic evaluation of the impact of ChIP-seq designs on allele-specific binding detection and highlights the power of pair-end designs in such studies.

  7. Inter-individual and intragenomic variations in the ITS region of Clonorchis sinensis (Trematoda: Opisthorchiidae) from Russia and Vietnam.

    PubMed

    Tatonova, Yulia V; Chelomina, Galina N; Nguyen, Hung Manh

    2017-11-01

    Here we examined the intraspecific genetic variability of Clonorchis sinensis from Russia and Vietnam using nuclear DNA sequences (the 5.8S gene and two internal transcribed spacers of the ribosomal cluster). Despite the low level of variability in the ITS1 region, this marker has revealed some features of C. sinensis across multiple geographic regions. The genetic diversity levels for the Russian and Vietnamese populations were similar (0.1 and 0.09%, respectively) but were significantly lower than the C. sinensis from China (0.31%). About half of the sequences of the Chinese (53%) and Korean (47%) populations and about a tenth of the Vietnamese (12%) and Russian (8%) sequences included a 5bp insertion. No sequences with nucleotide substitutions both upstream and downstream of the 5bp insertion were found within the whole data set. The population of northern China had both sequence variants (with substitutions either upstream or downstream of the insertion), while only one of these variants was presented at the other localities. The Vietnamese population had a higher frequency of intragenomic polymorphism than the Russian population (69% vs. 46% and 23% vs. 3% at the 114bp and 339bp positions, respectively). These data are discussed in connection with parasite origin and adaptation, and also its invasive capacity and drug-resistance. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Treosulfan, Fludarabine Phosphate, and Total-Body Irradiation Before Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2017-04-05

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  9. Bortezomib and Combination Chemotherapy in Treating Younger Patients With Recurrent, Refractory, or Secondary Acute Myeloid Leukemia

    ClinicalTrials.gov

    2018-05-21

    Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myelomonocytic Leukemia (M4); Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  10. Caspofungin Acetate or Fluconazole in Preventing Invasive Fungal Infections in Patients With Acute Myeloid Leukemia Who Are Undergoing Chemotherapy

    ClinicalTrials.gov

    2017-11-13

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia in Remission; Childhood Acute Myelomonocytic Leukemia (M4); Fungal Infection; Neutropenia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  11. Alemtuzumab and Combination Chemotherapy in Treating Patients With Untreated Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2014-03-20

    Acute Undifferentiated Leukemia; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; L1 Adult Acute Lymphoblastic Leukemia; L1 Childhood Acute Lymphoblastic Leukemia; L2 Adult Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; Philadelphia Chromosome Negative Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  12. SB-715992 in Treating Patients With Acute Leukemia, Chronic Myelogenous Leukemia, or Advanced Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-01-10

    Acute Undifferentiated Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  13. Tipifarnib in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-02-01

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  14. Nilotinib and Imatinib Mesylate After Donor Stem Cell Transplant in Treating Patients With ALL or CML

    ClinicalTrials.gov

    2017-07-11

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia; Philadelphia Positive Adult Acute Lymphoblastic Leukemia; Philadelphia Positive Childhood Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  15. Use of Anti-Idiotypes and Synthetic Peptides for Control of Human T- Lymphotropic Virus Type 3 Infections

    DTIC Science & Technology

    1988-10-28

    FIELD GROUP SUBAGROUP Synthetic peptides, anti-idiotypes, vaccines, 06 03 human immunodeficiency virus, chimpanzees, RAI, Virology, 06 13 HTLV III...suppressive effects have been reported previously with a synthetic peptide analogous to amino acid sequences from the feline leukemia virus...on the use of synthetic peptides in human immunodeficiency virus infection. In Advances in Biotechnological Processes (A. Mizrahi, ed.), Alan R. Liss

  16. Molecular Studies of HTLV-1 Infection in Newly Recognized High Risk Population

    DTIC Science & Technology

    1993-07-10

    showing similar sequence to African Isolates. 14. SUBJECT TERMS 15. NUMBER OF PAGES HTLV-I, Epidemiology , Polymerase, Virus, Aids, Biotechnology, RAD... Epidemiologic and molecular studies of both viruses have identified several themes underlying the leukemogenic process. Leukemia is a rare consequence...form. Key words EPIDEMIOLOGIC AND MOLECULAR CIARACTERIZATION 1st OF HTLV-I INFEXTION IN ISRAEL SYehuda L. Danon, el Kilim, and Joseph Rosenblatt

  17. [Identification of novel pathogenic gene mutations in pediatric acute myeloid leukemia by whole-exome resequencing].

    PubMed

    Shiba, Norio

    2015-12-01

    A new class of gene mutations, identified in the pathogenesis of adult acute myeloid leukemia (AML), includes DNMT3A, IDH1/2, TET2 and EZH2. However, these mutations are rare in pediatric AML cases, indicating that pathogeneses differ between adult and pediatric forms of AML. Meanwhile, the recent development of massively parallel sequencing technologies has provided a new opportunity to discover genetic changes across entire genomes or proteincoding sequences. In order to reveal a complete registry of gene mutations, we performed whole exome resequencing of paired tumor-normal specimens from 19 pediatric AML cases using Illumina HiSeq 2000. In total, 80 somatic mutations or 4.2 mutations per sample were identified. Many of the recurrent mutations identified in this study involved previously reported targets in AML, such as FLT3, CEBPA, KIT, CBL, NRAS, WT1 and EZH2. On the other hand, several genes were newly identified in the current study, including BCORL1 and major cohesin components such as SMC3 and RAD21. Whole exome resequencing revealed a complex array of gene mutations in pediatric AML genomes. Our results indicate that a subset of pediatric AML represents a discrete entity that could be discriminated from its adult counterpart, in terms of the spectrum of gene mutations.

  18. Feline immunodeficiency virus and feline leukemia virus infection in free-ranging guignas (Leopardus guigna) and sympatric domestic cats in human perturbed landscapes on Chiloé Island, Chile.

    PubMed

    Mora, Mónica; Napolitano, Constanza; Ortega, René; Poulin, Elie; Pizarro-Lucero, José

    2015-01-01

    Feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) are two of the most common viruses affecting domestic cats (Felis catus). During the last two decades, reports show that both viruses also infect or affect other species of the family Felidae. Human landscape perturbation is one of the main causes of emerging diseases in wild animals, facilitating contact and transmission of pathogens between domestic and wild animals. We investigated FIV and FeLV infection in free-ranging guignas (Leopardus guigna) and sympatric domestic cats in human perturbed landscapes on Chiloé Island, Chile. Samples from 78 domestic cats and 15 guignas were collected from 2008 to 2010 and analyzed by PCR amplification and sequencing. Two guignas and two domestic cats were positive for FIV; three guignas and 26 domestic cats were positive for FeLV. The high percentage of nucleotide identity of FIV and FeLV sequences from both species suggests possible interspecies transmission of viruses, facilitated by increased contact probability through human invasion into natural habitats, fragmentation of guigna habitat, and poultry attacks by guignas. This study enhances our knowledge on the transmission of pathogens from domestic to wild animals in the global scenario of human landscape perturbation and emerging diseases.

  19. New Challenges in Targeting Signaling Pathways in Acute Lymphoblastic Leukemia by NGS Approaches: An Update

    PubMed Central

    Hernández-Rivas, Jesús María

    2018-01-01

    The identification and study of genetic alterations involved in various signaling pathways associated with the pathogenesis of acute lymphoblastic leukemia (ALL) and the application of recent next-generation sequencing (NGS) in the identification of these lesions not only broaden our understanding of the involvement of various genetic alterations in the pathogenesis of the disease but also identify new therapeutic targets for future clinical trials. The present review describes the main deletions, amplifications, sequence mutations, epigenetic lesions, and new structural DNA rearrangements detected by NGS in B-ALL and T-ALL and their clinical importance for therapeutic procedures. We reviewed the molecular basis of pathways including transcriptional regulation, lymphoid differentiation and development, TP53 and the cell cycle, RAS signaling, JAK/STAT, NOTCH, PI3K/AKT/mTOR, Wnt/β-catenin signaling, chromatin structure modifiers, and epigenetic regulators. The implementation of NGS strategies has enabled important mutated genes in each pathway, their associations with the genetic subtypes of ALL, and their outcomes, which will be described further. We also discuss classic and new cryptic DNA rearrangements in ALL identified by mRNA-seq strategies. Novel cooperative abnormalities in ALL could be key prognostic and/or predictive biomarkers for selecting the best frontline treatment and for developing therapies after the first relapse or refractory disease. PMID:29642462

  20. New Challenges in Targeting Signaling Pathways in Acute Lymphoblastic Leukemia by NGS Approaches: An Update.

    PubMed

    Montaño, Adrián; Forero-Castro, Maribel; Marchena-Mendoza, Darnel; Benito, Rocío; Hernández-Rivas, Jesús María

    2018-04-07

    The identification and study of genetic alterations involved in various signaling pathways associated with the pathogenesis of acute lymphoblastic leukemia (ALL) and the application of recent next-generation sequencing (NGS) in the identification of these lesions not only broaden our understanding of the involvement of various genetic alterations in the pathogenesis of the disease but also identify new therapeutic targets for future clinical trials. The present review describes the main deletions, amplifications, sequence mutations, epigenetic lesions, and new structural DNA rearrangements detected by NGS in B-ALL and T-ALL and their clinical importance for therapeutic procedures. We reviewed the molecular basis of pathways including transcriptional regulation, lymphoid differentiation and development, TP53 and the cell cycle, RAS signaling, JAK/STAT, NOTCH, PI3K/AKT/mTOR, Wnt/β-catenin signaling, chromatin structure modifiers, and epigenetic regulators. The implementation of NGS strategies has enabled important mutated genes in each pathway, their associations with the genetic subtypes of ALL, and their outcomes, which will be described further. We also discuss classic and new cryptic DNA rearrangements in ALL identified by mRNA-seq strategies. Novel cooperative abnormalities in ALL could be key prognostic and/or predictive biomarkers for selecting the best frontline treatment and for developing therapies after the first relapse or refractory disease.

  1. Age-related mutations and chronic myelomonocytic leukemia

    PubMed Central

    Mason, CC; Khorashad, JS; Tantravahi, SK; Kelley, TW; Zabriskie, MS; Yan, D; Pomicter, AD; Reynolds, KR; Eiring, AM; Kronenberg, Z; Sherman, RL; Tyner, JW; Dalley, BK; Dao, K-H; Yandell, M; Druker, BJ; Gotlib, J; O’Hare, T; Deininger, MW

    2016-01-01

    Chronic myelomonocytic leukemia (CMML) is a hematologic malignancy nearly confined to the elderly. Previous studies to determine incidence and prognostic significance of somatic mutations in CMML have relied on candidate gene sequencing, although an unbiased mutational search has not been conducted. As many of the genes commonly mutated in CMML were recently associated with age-related clonal hematopoiesis (ARCH) and aged hematopoiesis is characterized by a myelomonocytic differentiation bias, we hypothesized that CMML and aged hematopoiesis may be closely related. We initially established the somatic mutation landscape of CMML by whole exome sequencing followed by gene-targeted validation. Genes mutated in ⩾ 10% of patients were SRSF2, TET2, ASXL1, RUNX1, SETBP1, KRAS, EZH2, CBL and NRAS, as well as the novel CMML genes FAT4, ARIH1, DNAH2 and CSMD1. Most CMML patients (71%) had mutations in ⩾ 2 ARCH genes and 52% had ⩾ 7 mutations overall. Higher mutation burden was associated with shorter survival. Age-adjusted population incidence and reported ARCH mutation rates are consistent with a model in which clinical CMML ensues when a sufficient number of stochastically acquired age-related mutations has accumulated, suggesting that CMML represents the leukemic conversion of the myelomonocytic-lineage-biased aged hematopoietic system. PMID:26648538

  2. An N-terminal glycine-rich sequence contributes to retrovirus trimer of hairpins stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Kirilee A.; Maerz, Anne L.; Baer, Severine

    2007-08-10

    Retroviral transmembrane proteins (TMs) contain a glycine-rich segment linking the N-terminal fusion peptide and coiled coil core. Previously, we reported that the glycine-rich segment (Met-326-Ser-337) of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, is a determinant of membrane fusion function [K.A. Wilson, S. Baer, A.L. Maerz, M. Alizon, P. Poumbourios, The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function, J. Virol. 79 (2005) 4533-4539]. Here we show that the reduced fusion activity of an I334A mutantmore » correlated with a decrease in stability of the gp21 trimer of hairpins conformation, in the context of a maltose-binding protein-gp21 chimera. The stabilizing influence of Ile-334 required the C-terminal membrane-proximal sequence Trp-431-Ser-436. Proline substitution of four of five Gly residues altered gp21 trimer of hairpins stability. Our data indicate that flexibility within and hydrophobic interactions mediated by this region are determinants of gp21 stability and membrane fusion function.« less

  3. Lenalidomide in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-07-25

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  4. Simian T-Cell Leukemia Virus (STLV) Infection in Wild Primate Populations in Cameroon: Evidence for Dual STLV Type 1 and Type 3 Infection in Agile Mangabeys (Cercocebus agilis)

    PubMed Central

    Courgnaud, Valerie; Van Dooren, Sonia; Liegeois, Florian; Pourrut, Xavier; Abela, Bernadette; Loul, Severin; Mpoudi-Ngole, Eitel; Vandamme, Annemieke; Delaporte, Eric; Peeters, Martine

    2004-01-01

    Three types of human T-cell leukemia virus (HTLV)-simian T-cell leukemia virus (STLV) (collectively called primate T-cell leukemia viruses [PTLVs]) have been characterized, with evidence for zoonotic origin from primates for HTLV type 1 (HTLV-1) and HTLV-2 in Africa. To assess human exposure to STLVs in western Central Africa, we screened for STLV infection in primates hunted in the rain forests of Cameroon. Blood was obtained from 524 animals representing 18 different species. All the animals were wild caught between 1999 and 2002; 328 animals were sampled as bush meat and 196 were pets. Overall, 59 (11.2%) of the primates had antibodies cross-reacting with HTLV-1 and/or HTLV-2 antigens; HTLV-1 infection was confirmed in 37 animals, HTLV-2 infection was confirmed in 9, dual HTLV-1 and HTLV-2 infection was confirmed in 10, and results for 3 animals were indeterminate. Prevalences of infection were significantly lower in pets than in bush meat, 1.5 versus 17.0%, respectively. Discriminatory PCRs identified STLV-1, STLV-3, and STLV-1 and STLV-3 in HTLV-1-, HTLV-2-, and HTLV-1- and HTLV-2-cross-reactive samples, respectively. We identified for the first time STLV-1 sequences in mustached monkeys (Cercopithecus cephus), talapoins (Miopithecus ogouensis), and gorillas (Gorilla gorilla) and confirmed STLV-1 infection in mandrills, African green monkeys, agile mangabeys, and crested mona and greater spot-nosed monkeys. STLV-1 long terminal repeat (LTR) and env sequences revealed that the strains belonged to different PTLV-1 subtypes. A high prevalence of PTLV infection was observed among agile mangabeys (Cercocebus agilis); 89% of bush meat was infected with STLV. Cocirculation of STLV-1 and STLV-3 and STLV-1-STLV-3 coinfections were identified among the agile mangabeys. Phylogenetic analyses of partial LTR sequences indicated that the agile mangabey STLV-3 strains were more related to the STLV-3 CTO604 strain isolated from a red-capped mangabey (Cercocebus torquatus) from Cameroon than to the STLV-3 PH969 strain from an Eritrean baboon or the PPA-F3 strain from a baboon in Senegal. Our study documents for the first time that (i) a substantial proportion of wild-living monkeys in Cameroon is STLV infected, (ii) STLV-1 and STLV-3 cocirculate in the same primate species, (iii) coinfection with STLV-1 and STLV-3 occurs in agile mangabeys, and (iv) humans are exposed to different STLV-1 and STLV-3 subtypes through handling primates as bush meat. PMID:15078952

  5. Biological Therapy in Treating Patients With Advanced Myelodysplastic Syndrome, Acute or Chronic Myeloid Leukemia, or Acute Lymphoblastic Leukemia Who Are Undergoing Stem Cell Transplantation

    ClinicalTrials.gov

    2017-03-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  6. Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia.

    PubMed

    Li, Meng; Collins, Roxane; Jiao, Yuchen; Ouillette, Peter; Bixby, Dale; Erba, Harry; Vogelstein, Bert; Kinzler, Kenneth W; Papadopoulos, Nickolas; Malek, Sami N

    2011-11-24

    To further our understanding of the genetic basis of acute myelogenous leukemia (AML), we determined the coding exon sequences of ∼ 18 000 protein-encoding genes in 8 patients with secondary AML. Here we report the discovery of novel somatic mutations in the transcriptional corepressor gene BCORL1 that is located on the X-chromosome. Analysis of BCORL1 in an unselected cohort of 173 AML patients identified a total of 10 mutated cases (6%) with BCORL1 mutations, whereas analysis of 19 AML cell lines uncovered 4 (21%) BCORL1 mutated cell lines. The majority (87%) of the mutations in BCORL1 were predicted to inactivate the gene product as a result of nonsense mutations, splice site mutation, or out-of-frame insertions or deletions. These results indicate that BCORL1 by genetic criteria is a novel candidate tumor suppressor gene, joining the growing list of genes recurrently mutated in AML.

  7. Five important advances in hematopathology.

    PubMed

    Shi, Min; Xiao, Ruobing; Woda, Bruce A; Yu, Hongbo

    2014-03-01

    Hematopathology is a dynamic field that has always been on the frontier of clinical research within the scope of pathology. Several recent developments in hematopathology will likely affect its practice clinically. To review 5 important recent advances in hematopathology: (1) detection and prognostic implication of MYC in diffuse large B-cell lymphomas, (2) determining origin and prognosis through immunoglobulin gene usage in mature B-cell neoplasms, (3)detecting minimal residual disease in multiple myeloma, (4) using genome-wide analysis in myelodysplastic syndromes, and (5) employing whole-genome sequencing in acute myeloid leukemias. Literature review and the authors' experiences in an academic center. These advances will bring hematopathology into a new molecular era and help us to better understand the molecular, pathologic mechanisms of lymphomas, leukemias, myelomas, and myelodysplastic syndromes. They will help us to identify diagnostic and prognostic markers and eventually provide new therapeutic targets and treatments for these diseases.

  8. [Relationship between the methylenetetrahydrofolate reductase gene polymorphism and adverse reactions of high-dose methotrexate in children with acute lymphocytic leukemia].

    PubMed

    Zheng, Miao-Miao; Yue, Li-Jie; Chen, Xiao-Wen; Wen, Fei-Qiu; Li, Chang-Gang; Yang, Chun-Lan; Xie, Cai; Ding, Hui

    2013-03-01

    To study the association between methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms and toxicities after high-dose methotrexate (HD-MTX) infusion in children with acute lymphocytic leukemia (ALL). MTHFR variants in 52 children with ALL were determined by reverse transcriptase-polymerase chain reaction-denaturing gradient gel electrophoresis and sequencing. Toxicities of children who received HD-MTX chemotherapy were evaluated according to the National Cancer Institute-Common Toxicity Criteria (NCI-CTC). The children carrying MTHFR 1298AC had a higher risk of developing thrombocytopenia compared with the carriers of the 1298 AA genotype (OR=13.7, 95%CI=1.18-159.36, P=0.036). There was no significant difference in HD-MTX chemotherapy-related adverse effects between the patients with different MTHFR C677T or G1793A genotypes. MTHFR A1298C polymorohism may associate with the toxicity of HD-MTX chemotherapy in children with ALL.

  9. Tepidimonas arfidensis Sp. Nov., a Novel Gram-negative and thermophilic bacterium isolated from the bone marrow of a patient with leukemia in Korea.

    PubMed

    Ko, Kwan Soo; Lee, Nam Yong; Oh, Won Sup; Lee, Jang Ho; Ki, Hyun Kyun; Peck, Kyong Ran; Song, Jae-Hoon

    2005-01-01

    A Gram-negative bacillus, SMC-6271(T), which was isolated from the bone marrow of a patient with leukemia but could not be identified by a conventional microbiologic method, was characterized by a genotypic analysis of 16S rRNA gene. Sequences of the 16S rRNA gene revealed that this bacterium was closely related to Tepidimonas ignava and other slightly thermophilic isolates but diverged distinctly from them. Analyses of cellular fatty acid composition and performance of biochemical tests confirmed that this bacterium is a distinct species from the other Tepidimonas species. Based on the evaluated phenotypic and genotypic characteristics, it is proposed that SMC-6271T (=ABB 0301T =KCTC 12412T =JCM 13232T) should be classified as a new species, namely Tepidimonas arfidensis sp. nov.

  10. Selective Depletion of CD45RA+ T Cells From Allogeneic Peripheral Blood Stem Cell Grafts in Preventing GVHD in Children

    ClinicalTrials.gov

    2018-04-23

    Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Acute Biphenotypic Leukemia; Acute Leukemia of Ambiguous Lineage; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Myelodysplastic Syndrome With Excess Blasts-1; Myelodysplastic Syndrome With Excess Blasts-2; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia

  11. Myelodysplastic syndromes and acute myeloid leukemia in cats infected with feline leukemia virus clone33 containing a unique long terminal repeat.

    PubMed

    Hisasue, Masaharu; Nagashima, Naho; Nishigaki, Kazuo; Fukuzawa, Isao; Ura, Shigeyoshi; Katae, Hiromi; Tsuchiya, Ryo; Yamada, Takatsugu; Hasegawa, Atsuhiko; Tsujimoto, Hajime

    2009-03-01

    Feline leukemia virus (FeLV) clone33 was obtained from a domestic cat with acute myeloid leukemia (AML). The long terminal repeat (LTR) of this virus, like the LTRs present in FeLV from other cats with AML, differs from the LTRs of other known FeLV in that it has 3 tandem direct 47-bp repeats in the upstream region of the enhancer (URE). Here, we injected cats with FeLV clone33 and found 41% developed myelodysplastic syndromes (MDS) characterized by peripheral blood cytopenias and dysplastic changes in the bone marrow. Some of the cats with MDS eventually developed AML. The bone marrow of the majority of cats with FeLV clone33 induced MDS produced fewer erythroid and myeloid colonies upon being cultured with erythropoietin or granulocyte-macrophage colony-stimulating factor (GM-SCF) than bone marrow from normal control cats. Furthermore, the bone marrow of some of the cats expressed high-levels of the apoptosis-related genes TNF-alpha and survivin. Analysis of the proviral sequences obtained from 13 cats with naturally occurring MDS reveal they also bear the characteristic URE repeats seen in the LTR of FeLV clone33 and other proviruses from cats with AML. Deletions and mutations within the enhancer elements are frequently observed in naturally occurring MDS as well as AML. These results suggest that FeLV variants that bear URE repeats in their LTR strongly associate with the induction of both MDS and AML in cats.

  12. TC-PTP and PTP1B: Regulating JAK-STAT signaling, controlling lymphoid malignancies.

    PubMed

    Pike, Kelly A; Tremblay, Michel L

    2016-06-01

    Lymphoid malignancies are characterized by an accumulation of genetic lesions that act co-operatively to perturb signaling pathways and alter gene expression programs. The Janus kinases (JAK)-signal transducers and activators of transcription (STATs) pathway is one such pathway that is frequently mutated in leukemia and lymphoma. In response to cytokines and growth factors, a cascade of reversible tyrosine phosphorylation events propagates the JAK-STAT pathway from the cell surface to the nucleus. Activated STAT family members then play a fundamental role in establishing the transcriptional landscape of the cell. In leukemia and lymphoma, somatic mutations have been identified in JAK and STAT family members, as well as, negative regulators of the pathway. Most recently, inactivating mutations in the protein tyrosine phosphatase (PTP) genes PTPN1 (PTP1B) and PTPN2 (TC-PTP) were sequenced in B cell lymphoma and T cell acute lymphoblastic leukemia (T-ALL) respectively. The loss of PTP1B and TC-PTP phosphatase activity is associated with an increase in cytokine sensitivity, elevated JAK-STAT signaling, and changes in gene expression. As inactivation mutations in PTPN1 and PTPN2 are restricted to distinct subsets of leukemia and lymphoma, a future challenge will be to identify in which cellular contexts do they contributing to the initiation or maintenance of leukemogenesis or lymphomagenesis. As well, the molecular mechanisms by which PTP1B and TC-PTP loss co-operates with other genetic aberrations will need to be elucidated to design more effective therapeutic strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Etiology and treatment of hematological neoplasms: stochastic mathematical models.

    PubMed

    Radivoyevitch, Tomas; Li, Huamin; Sachs, Rainer K

    2014-01-01

    Leukemias are driven by stemlike cancer cells (SLCC), whose initiation, growth, response to treatment, and posttreatment behavior are often "stochastic", i.e., differ substantially even among very similar patients for reasons not observable with present techniques. We review the probabilistic mathematical methods used to analyze stochastics and give two specific examples. The first example concerns a treatment protocol, e.g., for acute myeloid leukemia (AML), where intermittent cytotoxic drug dosing (e.g., once each weekday) is used with intent to cure. We argue mathematically that, if independent SLCC are growing stochastically during prolonged treatment, then, other things being equal, front-loading doses are more effective for tumor eradication than back loading. We also argue that the interacting SLCC dynamics during treatment is often best modeled by considering SLCC in microenvironmental niches, with SLCC-SLCC interactions occurring only among SLCC within the same niche, and we present a stochastic dynamics formalism, involving "Poissonization," applicable in such situations. Interactions at a distance due to partial control of total cell numbers are also considered. The second half of this chapter concerns chromosomal aberrations, lesions known to cause some leukemias. A specific example is the induction of a Philadelphia chromosome by ionizing radiation, subsequent development of chronic myeloid leukemia (CML), CML treatment, and treatment outcome. This time evolution involves a coordinated sequence of > 10 steps, each stochastic in its own way, at the subatomic, molecular, macromolecular, cellular, tissue, and population scales, with corresponding time scales ranging from picoseconds to decades. We discuss models of these steps and progress in integrating models across scales.

  14. Metabolic Adaptation to Chronic Inhibition of Mitochondrial Protein Synthesis in Acute Myeloid Leukemia Cells

    PubMed Central

    Jhas, Bozhena; Sriskanthadevan, Shrivani; Skrtic, Marko; Sukhai, Mahadeo A.; Voisin, Veronique; Jitkova, Yulia; Gronda, Marcela; Hurren, Rose; Laister, Rob C.; Bader, Gary D.; Minden, Mark D.; Schimmer, Aaron D.

    2013-01-01

    Recently, we demonstrated that the anti-bacterial agent tigecycline preferentially induces death in leukemia cells through the inhibition of mitochondrial protein synthesis. Here, we sought to understand mechanisms of resistance to tigecycline by establishing a leukemia cell line resistant to the drug. TEX leukemia cells were treated with increasing concentrations of tigecycline over 4 months and a population of cells resistant to tigecycline (RTEX+TIG) was selected. Compared to wild type cells, RTEX+TIG cells had undetectable levels of mitochondrially translated proteins Cox-1 and Cox-2, reduced oxygen consumption and increased rates of glycolysis. Moreover, RTEX+TIG cells were more sensitive to inhibitors of glycolysis and more resistant to hypoxia. By electron microscopy, RTEX+TIG cells had abnormally swollen mitochondria with irregular cristae structures. RNA sequencing demonstrated a significant over-representation of genes with binding sites for the HIF1α:HIF1β transcription factor complex in their promoters. Upregulation of HIF1α mRNA and protein in RTEX+TIG cells was confirmed by Q-RTPCR and immunoblotting. Strikingly, upon removal of tigecycline from RTEX+TIG cells, the cells re-established aerobic metabolism. Levels of Cox-1 and Cox-2, oxygen consumption, glycolysis, mitochondrial mass and mitochondrial membrane potential returned to wild type levels, but HIF1α remained elevated. However, upon re-treatment with tigecycline for 72 hours, the glycolytic phenotype was re-established. Thus, we have generated cells with a reversible metabolic phenotype by chronic treatment with an inhibitor of mitochondrial protein synthesis. These cells will provide insight into cellular adaptations used to cope with metabolic stress. PMID:23520503

  15. Metabolic adaptation to chronic inhibition of mitochondrial protein synthesis in acute myeloid leukemia cells.

    PubMed

    Jhas, Bozhena; Sriskanthadevan, Shrivani; Skrtic, Marko; Sukhai, Mahadeo A; Voisin, Veronique; Jitkova, Yulia; Gronda, Marcela; Hurren, Rose; Laister, Rob C; Bader, Gary D; Minden, Mark D; Schimmer, Aaron D

    2013-01-01

    Recently, we demonstrated that the anti-bacterial agent tigecycline preferentially induces death in leukemia cells through the inhibition of mitochondrial protein synthesis. Here, we sought to understand mechanisms of resistance to tigecycline by establishing a leukemia cell line resistant to the drug. TEX leukemia cells were treated with increasing concentrations of tigecycline over 4 months and a population of cells resistant to tigecycline (RTEX+TIG) was selected. Compared to wild type cells, RTEX+TIG cells had undetectable levels of mitochondrially translated proteins Cox-1 and Cox-2, reduced oxygen consumption and increased rates of glycolysis. Moreover, RTEX+TIG cells were more sensitive to inhibitors of glycolysis and more resistant to hypoxia. By electron microscopy, RTEX+TIG cells had abnormally swollen mitochondria with irregular cristae structures. RNA sequencing demonstrated a significant over-representation of genes with binding sites for the HIF1α:HIF1β transcription factor complex in their promoters. Upregulation of HIF1α mRNA and protein in RTEX+TIG cells was confirmed by Q-RTPCR and immunoblotting. Strikingly, upon removal of tigecycline from RTEX+TIG cells, the cells re-established aerobic metabolism. Levels of Cox-1 and Cox-2, oxygen consumption, glycolysis, mitochondrial mass and mitochondrial membrane potential returned to wild type levels, but HIF1α remained elevated. However, upon re-treatment with tigecycline for 72 hours, the glycolytic phenotype was re-established. Thus, we have generated cells with a reversible metabolic phenotype by chronic treatment with an inhibitor of mitochondrial protein synthesis. These cells will provide insight into cellular adaptations used to cope with metabolic stress.

  16. Collecting and Storing Malignant, Borderline Malignant Neoplasms, and Related Samples From Young Patients With Cancer

    ClinicalTrials.gov

    2017-12-11

    Acute Undifferentiated Leukemia; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Childhood Acute Lymphoblastic Leukemia; Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies; Childhood Chronic Myelogenous Leukemia; Chronic Lymphocytic Leukemia; Hairy Cell Leukemia; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Neoplasm of Uncertain Malignant Potential; Prolymphocytic Leukemia; Secondary Acute Myeloid Leukemia; T-cell Large Granular Lymphocyte Leukemia; Unspecified Childhood Solid Tumor, Protocol Specific

  17. Decitabine, Cytarabine, and Daunorubicin Hydrochloride in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2018-05-24

    Acute Myeloid Leukemia; Adult Acute Basophilic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With t(9;11)(p22.3;q23.3); MLLT3-KMT2A; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  18. Azacitidine, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With High-Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2018-01-02

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  19. Eltrombopag Olamine in Treating Patients With Relapsed/Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-04

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  20. MS-275 and GM-CSF in Treating Patients With Myelodysplastic Syndrome and/or Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphocytic Leukemia

    ClinicalTrials.gov

    2017-06-16

    Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Ringed Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  1. Integrating DNA strand displacement circuitry to the nonlinear hybridization chain reaction.

    PubMed

    Zhang, Zhuo; Fan, Tsz Wing; Hsing, I-Ming

    2017-02-23

    Programmable and modular attributes of DNA molecules allow one to develop versatile sensing platforms that can be operated isothermally and enzyme-free. In this work, we present an approach to integrate upstream DNA strand displacement circuits that can be turned on by a sequence-specific microRNA analyte with a downstream nonlinear hybridization chain reaction for a cascading hyperbranched nucleic acid assembly. This system provides a two-step amplification strategy for highly sensitive detection of the miRNA analyte, conducive for multiplexed detection. Multiple miRNA analytes were tested with our integrated circuitry using the same downstream signal amplification setting, showing the decoupling of nonlinear self-assembly with the analyte sequence. Compared with the reported methods, our signal amplification approach provides an additional control module for higher-order DNA self-assembly and could be developed into a promising platform for the detection of critical nucleic-acid based biomarkers.

  2. Comprehensive Ex Vivo Transposon Mutagenesis Identifies Genes That Promote Growth Factor Independence and Leukemogenesis.

    PubMed

    Guo, Yabin; Updegraff, Barrett L; Park, Sunho; Durakoglugil, Deniz; Cruz, Victoria H; Maddux, Sarah; Hwang, Tae Hyun; O'Donnell, Kathryn A

    2016-02-15

    Aberrant signaling through cytokine receptors and their downstream signaling pathways is a major oncogenic mechanism underlying hematopoietic malignancies. To better understand how these pathways become pathologically activated and to potentially identify new drivers of hematopoietic cancers, we developed a high-throughput functional screening approach using ex vivo mutagenesis with the Sleeping Beauty transposon. We analyzed over 1,100 transposon-mutagenized pools of Ba/F3 cells, an IL3-dependent pro-B-cell line, which acquired cytokine independence and tumor-forming ability. Recurrent transposon insertions could be mapped to genes in the JAK/STAT and MAPK pathways, confirming the ability of this strategy to identify known oncogenic components of cytokine signaling pathways. In addition, recurrent insertions were identified in a large set of genes that have been found to be mutated in leukemia or associated with survival, but were not previously linked to the JAK/STAT or MAPK pathways nor shown to functionally contribute to leukemogenesis. Forced expression of these novel genes resulted in IL3-independent growth in vitro and tumorigenesis in vivo, validating this mutagenesis-based approach for identifying new genes that promote cytokine signaling and leukemogenesis. Therefore, our findings provide a broadly applicable approach for classifying functionally relevant genes in diverse malignancies and offer new insights into the impact of cytokine signaling on leukemia development. ©2015 American Association for Cancer Research.

  3. APTO-253 Stabilizes G-quadruplex DNA, Inhibits MYC Expression, and Induces DNA Damage in Acute Myeloid Leukemia Cells.

    PubMed

    Local, Andrea; Zhang, Hongying; Benbatoul, Khalid D; Folger, Peter; Sheng, Xia; Tsai, Cheng-Yu; Howell, Stephen B; Rice, William G

    2018-06-01

    APTO-253 is a phase I clinical stage small molecule that selectively induces CDKN1A (p21), promotes G 0 -G 1 cell-cycle arrest, and triggers apoptosis in acute myeloid leukemia (AML) cells without producing myelosuppression in various animal species and humans. Differential gene expression analysis identified a pharmacodynamic effect on MYC expression, as well as induction of DNA repair and stress response pathways. APTO-253 was found to elicit a concentration- and time-dependent reduction in MYC mRNA expression and protein levels. Gene ontogeny and structural informatic analyses suggested a mechanism involving G-quadruplex (G4) stabilization. Intracellular pharmacokinetic studies in AML cells revealed that APTO-253 is converted intracellularly from a monomer to a ferrous complex [Fe(253) 3 ]. FRET assays demonstrated that both monomeric APTO-253 and Fe(253) 3 stabilize G4 structures from telomeres, MYC, and KIT promoters but do not bind to non-G4 double-stranded DNA. Although APTO-253 exerts a host of mechanistic sequelae, the effect of APTO-253 on MYC expression and its downstream target genes, on cell-cycle arrest, DNA damage, and stress responses can be explained by the action of Fe(253) 3 and APTO-253 on G-quadruplex DNA motifs. Mol Cancer Ther; 17(6); 1177-86. ©2018 AACR . ©2018 American Association for Cancer Research.

  4. Discovery of a BTK/MNK Dual Inhibitor for Lymphoma and Leukemia

    PubMed Central

    Wu, Hong; Hu, Chen; Wang, Aoli; Weisberg, Ellen L.; Chen, Yongfei; Yun, Cai-Hong; Wang, Wenchao; Liu, Yan; Liu, Xiaochuan; Tian, Bei; Wang, Jinhua; Zhao, Zheng; Liang, Yanke; Li, Binhua; Wang, Li; Wang, Beilei; Chen, Cheng; Buhrlage, Sara J.; Nonami, Atsushi; Li, Yuyang; Fernandes, Stacey M.; Adamia, Sophia; Stone, Richard M.; Galinsky, Ilene A.; Wang, Xianhuo; Yang, Guang; Griffin, James D.; Brown, Jennifer R.; Eck, Michael J.; Liu, Jing; Gray, Nathanael S.; Liu, Qingsong

    2016-01-01

    BTK kinase is a member of the TEC kinase family and is a key regulator of the B-cell Receptor (BCR)-mediated signaling pathway. It is important for B-cell maturation, proliferation, survival and metastasis. Pharmacological inhibition of BTK is clinically effective against a variety of B-cell malignances, such as MCL, CLL and AML. MNK kinase is one of the key downstream regulators in the RAF-MEK-ERK signaling pathway and controls protein synthesis via regulating the activity of eIF4E. Inhibition of MNK activity has shown moderate efficacy for AML cell lines proliferation. Through a structure-based drug design approach, we have discovered a selective and potent BTK/MNK dual kinase inhibitor (QL-X-138), which exhibits covalent binding to BTK and non-covalent binding to MNK. Compared to the BTK kinase inhibitor (PCI-32765) and the MNK kinase inhibitor (cercosporamide), QL-X-138 displays a stronger anti-proliferative effect against a variety of B-cell cancer cell lines, as well as AML and CLL primary patient cells. The agent can effectively arrest the growth of lymphoma and leukemia cells at the G0–G1 stage and can induce strong apoptotic cell death. These results demonstrated that simultaneous inhibition of BTK and MNK kinase activity might be a new therapeutic strategy for B-cell malignances. PMID:26165234

  5. BTK inhibition results in impaired CXCR4 chemokine receptor surface expression, signaling and function in chronic lymphocytic leukemia.

    PubMed

    Chen, S-S; Chang, B Y; Chang, S; Tong, T; Ham, S; Sherry, B; Burger, J A; Rai, K R; Chiorazzi, N

    2016-04-01

    Bruton's tyrosine kinase (BTK) is involved in the regulation of B-cell growth, migration and adhesion. The importance of BTK in cell trafficking is emphasized by the clonal contraction proceeded by lymphocytosis typical for the enzyme inhibitor, ibrutinib, in B-cell malignancies, including chronic lymphocytic leukemia (CLL). Here, we investigated BTK regulation of leukemic B-cell trafficking in a mouse model of aggressive TCL1 CLL-like disease. Inhibiting BTK by ibrutinib reduced surface membrane (sm) levels of CXCR4 but not CXCR5, CD49d and other adhesion/homing receptors. Decreased smCXCR4 levels resulted from blocking receptor signal transduction, which in turn aborted cycling from and to the membrane. This resulted in rapid re-distribution of CLL cells from spleens and lymph nodes into the circulation. CLL cells with impaired smCXCR4 from BTK inhibition failed to home to spleens. These functional changes mainly resulted from inhibition of CXCR4 phosphorylation at Ser339, mediated directly by blocking BTK enzymatic activity and indirectly by affecting the function of downstream targets PLCγ2 and PKCμ, and eventually synthesis of PIM-1 and BTK itself. Our data identify CXCR4 as a key regulator in BTK-mediated CLL-cell retention and have elucidated a complex set of not previously described mechanisms responsible for these effects.

  6. Genetic reduction of embryonic leukemia-inhibitory factor production rescues placentation in SOCS3-null embryos but does not prevent inflammatory disease.

    PubMed

    Robb, Lorraine; Boyle, Kristy; Rakar, Steven; Hartley, Lynne; Lochland, Janelle; Roberts, Andrew W; Alexander, Warren S; Metcalf, Donald

    2005-11-08

    The suppressor of cytokine-signaling (SOCS) proteins act as negative-feedback inhibitors of cytokine and growth-factor-induced signal transduction. In vivo studies have implicated SOCS3 as a negative regulator of signaling downstream of gp130, the receptor subunit shared by IL-6-like cytokines. Mice lacking SOCS3 die at midgestation because of placental failure, and SOCS3 ablation in a cell-type-specific manner results in changes in the functional outcome of gp130 signaling in response to IL-6. In this study, we show that genetic reduction of leukemia-inhibitory factor (LIF) production by embryo-derived tissues is sufficient to prevent the placental defect. This establishes LIF signaling as a major physiological regulator of trophoblast differentiation in vivo. Mice deficient in both SOCS3 and LIF are born in predicted numbers and appear normal at birth but exhibit failure to thrive and high neonatal mortality. Adult SOCS3-null mice on a LIF-null background succumb to a spontaneous fatal inflammatory disease characterized by neutrophilia and inflammatory-cell tissue infiltrates. The disease spectrum mimics that seen in mice with a conditional deletion of SOCS3 in hematopoietic and endothelial cells, extending the evidence for a major role for SOCS3 in the homeostatic regulation of the inflammatory response and indicates that LIF is not required for this process.

  7. Genetic reduction of embryonic leukemia-inhibitory factor production rescues placentation in SOCS3-null embryos but does not prevent inflammatory disease

    PubMed Central

    Robb, Lorraine; Boyle, Kristy; Rakar, Steven; Hartley, Lynne; Lochland, Janelle; Roberts, Andrew W.; Alexander, Warren S.; Metcalf, Donald

    2005-01-01

    The suppressor of cytokine-signaling (SOCS) proteins act as negative-feedback inhibitors of cytokine and growth-factor-induced signal transduction. In vivo studies have implicated SOCS3 as a negative regulator of signaling downstream of gp130, the receptor subunit shared by IL-6-like cytokines. Mice lacking SOCS3 die at midgestation because of placental failure, and SOCS3 ablation in a cell-type-specific manner results in changes in the functional outcome of gp130 signaling in response to IL-6. In this study, we show that genetic reduction of leukemia-inhibitory factor (LIF) production by embryo-derived tissues is sufficient to prevent the placental defect. This establishes LIF signaling as a major physiological regulator of trophoblast differentiation in vivo. Mice deficient in both SOCS3 and LIF are born in predicted numbers and appear normal at birth but exhibit failure to thrive and high neonatal mortality. Adult SOCS3-null mice on a LIF-null background succumb to a spontaneous fatal inflammatory disease characterized by neutrophilia and inflammatory-cell tissue infiltrates. The disease spectrum mimics that seen in mice with a conditional deletion of SOCS3 in hematopoietic and endothelial cells, extending the evidence for a major role for SOCS3 in the homeostatic regulation of the inflammatory response and indicates that LIF is not required for this process. PMID:16258063

  8. FLT3 Inhibitors in Acute Myeloid Leukemia: Current Status and Future Directions.

    PubMed

    Larrosa-Garcia, Maria; Baer, Maria R

    2017-06-01

    The receptor tyrosine kinase fms -like tyrosine kinase 3 (FLT3), involved in regulating survival, proliferation, and differentiation of hematopoietic stem/progenitor cells, is expressed on acute myeloid leukemia (AML) cells in most patients. Mutations of FLT3 resulting in constitutive signaling are common in AML, including internal tandem duplication (ITD) in the juxtamembrane domain in 25% of patients and point mutations in the tyrosine kinase domain in 5%. Patients with AML with FLT3-ITD have a high relapse rate and short relapse-free and overall survival after chemotherapy and after transplant. A number of inhibitors of FLT3 signaling have been identified and are in clinical trials, both alone and with chemotherapy, with the goal of improving clinical outcomes in patients with AML with FLT3 mutations. While inhibitor monotherapy produces clinical responses, they are usually incomplete and transient, and resistance develops rapidly. Diverse combination therapies have been suggested to potentiate the efficacy of FLT3 inhibitors and to prevent development of resistance or overcome resistance. Combinations with epigenetic therapies, proteasome inhibitors, downstream kinase inhibitors, phosphatase activators, and other drugs that alter signaling are being explored. This review summarizes the current status of translational and clinical research on FLT3 inhibitors in AML, and discusses novel combination approaches. Mol Cancer Ther; 16(6); 991-1001. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. A critical appraisal of ibrutinib in the treatment of mantle cell lymphoma and chronic lymphocytic leukemia

    PubMed Central

    Tucker, David L; Rule, Simon A

    2015-01-01

    Although chemo-immunotherapy remains at the forefront of first-line treatment for mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL), small molecules, such as ibrutinib, are beginning to play a significant role, particularly in patients with multiply relapsed or chemotherapy-refractory disease and where toxicity is an overriding concern. Ibrutinib is a first-in-class, oral inhibitor of Bruton’s tyrosine kinase, which functions by irreversible inhibition of the downstream signaling pathway of the B-cell receptor, which normally promotes cell survival and proliferation. Early clinical trials have demonstrated excellent tolerability and a modest side-effect profile even in elderly and multiply pretreated patient cohorts. Although the majority of disease responses tend to be partial, efficacy data have also been encouraging with more than two-thirds of patients with CLL and MCL demonstrating a durable response, even in the high-risk disease setting. Resistance mechanisms are only partially understood and appear to be multifactorial, including the binding site mutation C481S, and escape through other common cell-signaling pathways. This article appraises the currently available data on safety and efficacy from clinical trials of ibrutinib in the management of MCL and CLL, both as a single agent and in combination with other therapies, and considers how this drug is likely to be used in future clinical practice. PMID:26150724

  10. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765

    PubMed Central

    Herman, Sarah E. M.; Gordon, Amber L.; Hertlein, Erin; Ramanunni, Asha; Zhang, Xiaoli; Jaglowski, Samantha; Flynn, Joseph; Jones, Jeffrey; Blum, Kristie A.; Buggy, Joseph J.; Hamdy, Ahmed

    2011-01-01

    B-cell receptor (BCR) signaling is aberrantly activated in chronic lymphocytic leukemia (CLL). Bruton tyrosine kinase (BTK) is essential to BCR signaling and in knockout mouse models its mutation has a relatively B cell–specific phenotype. Herein, we demonstrate that BTK protein and mRNA are significantly over expressed in CLL compared with normal B cells. Although BTK is not always constitutively active in CLL cells, BCR or CD40 signaling is accompanied by effective activation of this pathway. Using the irreversible BTK inhibitor PCI-32765, we demonstrate modest apoptosis in CLL cells that is greater than that observed in normal B cells. No influence of PCI-32765 on T-cell survival is observed. Treatment of CD40 or BCR activated CLL cells with PCI-32765 results in inhibition of BTK tyrosine phosphorylation and also effectively abrogates downstream survival pathways activated by this kinase including ERK1/2, PI3K, and NF-κB. In addition, PCI-32765 inhibits activation-induced proliferation of CLL cells in vitro, and effectively blocks survival signals provided externally to CLL cells from the microenvironment including soluble factors (CD40L, BAFF, IL-6, IL-4, and TNF-α), fibronectin engagement, and stromal cell contact. Based on these collective data, future efforts targeting BTK with the irreversible inhibitor PCI-32765 in clinical trials of CLL patients is warranted. PMID:21422473

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Hoang Thanh, E-mail: kk086406@mgs.k.u-tokyo.ac.jp; Ly, Bui Thi Kim; Kano, Yasuhiko

    Highlights: Black-Right-Pointing-Pointer ETV6-NTRK3 is an oncogene with transformation activity in multiple cell lineages. Black-Right-Pointing-Pointer PKC412 could block ETV6-NTRK3 activation. Black-Right-Pointing-Pointer Loss of ETV6-NTRK3 phosphorylation leads to inactivation of its downstream signaling pathway. Black-Right-Pointing-Pointer Inhibition of ETV6-NTRK3 activation by PKC412 could be a novel strategy for the treatment. -- Abstract: The ETV6-NTRK3 (EN) fusion gene which encodes a chimeric tyrosine kinase was first identified by cloning of the t(12;15)(p13;q25) translocation in congenital fibrosarcoma (CFS). Since then, EN has been also found in congenital mesoblastic nephroma (CMN), secretory breast carcinoma (SBC) and acute myelogenous leukemia (AML). Using IMS-M2 and M0-91 cell linesmore » harboring the EN fusion gene, and Ba/F3 cells stably transfected with EN, we demonstrated that PKC412, also known as midostaurin, is an inhibitor of EN. Inhibition of EN activity by PKC412 suppressed the activity of it downstream molecules leading to inhibition of cell proliferation and induction of apoptosis. Our data for the first time suggested that PKC412 could serve as therapeutic drug for treatment of patients with this fusion.« less

  12. Animal models on HTLV-1 and related viruses: what did we learn?

    PubMed Central

    Hajj, Hiba El; Nasr, Rihab; Kfoury, Youmna; Dassouki, Zeina; Nasser, Roudaina; Kchour, Ghada; Hermine, Olivier; de Thé, Hugues; Bazarbachi, Ali

    2012-01-01

    Retroviruses are associated with a wide variety of diseases, including immunological, neurological disorders, and different forms of cancer. Among retroviruses, Oncovirinae regroup according to their genetic structure and sequence, several related viruses such as human T-cell lymphotropic viruses types 1 and 2 (HTLV-1 and HTLV-2), simian T cell lymphotropic viruses types 1 and 2 (STLV-1 and STLV-2), and bovine leukemia virus (BLV). As in many diseases, animal models provide a useful tool for the studies of pathogenesis, treatment, and prevention. In the current review, an overview on different animal models used in the study of these viruses will be provided. A specific attention will be given to the HTLV-1 virus which is the causative agent of adult T-cell leukemia/lymphoma (ATL) but also of a number of inflammatory diseases regrouping the HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP), infective dermatitis and some lung inflammatory diseases. Among these models, rabbits, monkeys but also rats provide an excellent in vivo tool for early HTLV-1 viral infection and transmission as well as the induced host immune response against the virus. But ideally, mice remain the most efficient method of studying human afflictions. Genetically altered mice including both transgenic and knockout mice, offer important models to test the role of specific viral and host genes in the development of HTLV-1-associated leukemia. The development of different strains of immunodeficient mice strains (SCID, NOD, and NOG SCID mice) provide a useful and rapid tool of humanized and xenografted mice models, to test new drugs and targeted therapy against HTLV-1-associated leukemia, to identify leukemia stem cells candidates but also to study the innate immunity mediated by the virus. All together, these animal models have revolutionized the biology of retroviruses, their manipulation of host genes and more importantly the potential ways to either prevent their infection or to treat their associated diseases. PMID:23049525

  13. Cloning vector

    DOEpatents

    Guilfoyle, Richard A.; Smith, Lloyd M.

    1994-01-01

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site.

  14. Cloning vector

    DOEpatents

    Guilfoyle, R.A.; Smith, L.M.

    1994-12-27

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site. 2 figures.

  15. Obatoclax, Fludarabine, and Rituximab in Treating Patients With Previously Treated Chronic Lymphocytic Leukemia

    ClinicalTrials.gov

    2013-09-27

    B-cell Chronic Lymphocytic Leukemia; Leukemia; Prolymphocytic Leukemia; Refractory Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage IV Chronic Lymphocytic Leukemia

  16. Tipifarnib in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-03-19

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  17. Idarubicin, Cytarabine, and Tipifarnib in Treating Patients With Newly Diagnosed Myelodysplastic Syndromes or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-05-09

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  18. Clofarabine, Cytarabine, and Filgrastim Followed by Infusion of Non-HLA Matched Ex Vivo Expanded Cord Blood Progenitors in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-08-13

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  19. Concurrent Inhibition of Pim and FLT3 Kinases Enhances Apoptosis of FLT3-ITD Acute Myeloid Leukemia Cells through Increased Mcl-1 Proteasomal Degradation.

    PubMed

    Kapoor, Shivani; Natarajan, Karthika; Baldwin, Patrick R; Doshi, Kshama A; Lapidus, Rena G; Mathias, Trevor J; Scarpa, Mario; Trotta, Rossana; Davila, Eduardo; Kraus, Manfred; Huszar, Dennis; Tron, Adriana E; Perrotti, Danilo; Baer, Maria R

    2018-01-01

    Purpose: fms -like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is present in 30% of acute myeloid leukemia (AML), and these patients have short disease-free survival. FLT3 inhibitors have limited and transient clinical activity, and concurrent treatment with inhibitors of parallel or downstream signaling may improve responses. The oncogenic serine/threonine kinase Pim-1 is upregulated downstream of FLT3-ITD and also promotes its signaling in a positive feedback loop, suggesting benefit of combined Pim and FLT3 inhibition. Experimental Design: Combinations of clinically active Pim and FLT3 inhibitors were studied in vitro and in vivo Results: Concurrent treatment with the pan-Pim inhibitor AZD1208 and FLT3 inhibitors at clinically applicable concentrations abrogated in vitro growth of FLT3-ITD, but not wild-type FLT3 (FLT3-WT), cell lines. AZD1208 cotreatment increased FLT3 inhibitor-induced apoptosis of FLT3-ITD, but not FLT3-WT, cells measured by sub-G 1 fraction, annexin V labeling, mitochondrial membrane potential, and PARP and caspase-3 cleavage. Concurrent treatment with AZD1208 and the FLT3 inhibitor quizartinib decreased growth of MV4-11 cells, with FLT3-ITD, in mouse xenografts, and prolonged survival, enhanced apoptosis of FLT3-ITD primary AML blasts, but not FLT3-WT blasts or remission marrow cells, and decreased FLT3-ITD AML blast colony formation. Mechanistically, AZD1208 and quizartinib cotreatment decreased expression of the antiapoptotic protein Mcl-1. Decrease in Mcl-1 protein expression was abrogated by treatment with the proteasome inhibitor MG132, and was preceded by downregulation of the Mcl-1 deubiquitinase USP9X, a novel mechanism of Mcl-1 regulation in AML. Conclusions: The data support clinical testing of Pim and FLT3 inhibitor combination therapy for FLT3-ITD AML. Clin Cancer Res; 24(1); 234-47. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. VS-5584 as a PI3K/mTOR inhibitor enhances apoptotic effects of subtoxic dose arsenic trioxide via inhibition of NF-κB activity in B cell precursor-acute lymphoblastic leukemia.

    PubMed

    Toosi, Bahareh; Zaker, Farhad; Alikarami, Fatemeh; Kazemi, Ahmad; Teremmahi Ardestanii, Majid

    2018-06-01

    Activation of the phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway as a survival signaling cascade is a prominent feature of cancers such as acute lymphoblastic leukemia (ALL). In patients with B-cell precursor-ALL (BCP-ALL), the high activity of the pathway correlates with the weak response to anti-leukemic drugs and relapse as a result of downstream prosurvival pathway activation, such as nuclear factor kappa B (NF-κB). Recent targeted therapy (PI3K/mTOR inhibitors) in combination with a multifunctional conventional chemotherapeutic drug may be useful for treatment of BCP-ALL patients. In the current study, the potential of a subtoxic dose (0.2 μM) of arsenic trioxide (ATO) in combination with VS-5584 (a highly potent PI3K/mTOR dual inhibitor) was tested for blocking of the PI3K/Akt/mTOR pathway, inhibition of NF-κB activation and induction of apoptosis and cell-cycle arrest. The data indicate that VS-5584 as a PI3K/mTOR inhibitor inhibited cell proliferation and induced apoptosis in NALM-6 cells by means of NF-κB transcriptional activity suppression. This apoptotic process markedly increased 72 h after administration of the subtoxic dose of ATO. We also showed that concomitant treatment of VS-5584 and the subtoxic dose of ATO significantly inhibited phosphorylation of NF-κB inhibitor alpha (IκBα) and S6 ribosomal protein (S6) as the downstream proteins of the PI3K/Akt/mTOR pathway. Combining VS-5584 and a subtoxic dose of ATO also resulted in down expression of the NF-κB target genes involved in cell proliferation and survival. These results indicate that incorporation of VS-5584/ATO combination into BCP-ALL therapeutic protocols can improve treatment and the survival of patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. SubClonal Hierarchy Inference from Somatic Mutations: Automatic Reconstruction of Cancer Evolutionary Trees from Multi-region Next Generation Sequencing

    PubMed Central

    Niknafs, Noushin; Beleva-Guthrie, Violeta; Naiman, Daniel Q.; Karchin, Rachel

    2015-01-01

    Recent improvements in next-generation sequencing of tumor samples and the ability to identify somatic mutations at low allelic fractions have opened the way for new approaches to model the evolution of individual cancers. The power and utility of these models is increased when tumor samples from multiple sites are sequenced. Temporal ordering of the samples may provide insight into the etiology of both primary and metastatic lesions and rationalizations for tumor recurrence and therapeutic failures. Additional insights may be provided by temporal ordering of evolving subclones—cellular subpopulations with unique mutational profiles. Current methods for subclone hierarchy inference tightly couple the problem of temporal ordering with that of estimating the fraction of cancer cells harboring each mutation. We present a new framework that includes a rigorous statistical hypothesis test and a collection of tools that make it possible to decouple these problems, which we believe will enable substantial progress in the field of subclone hierarchy inference. The methods presented here can be flexibly combined with methods developed by others addressing either of these problems. We provide tools to interpret hypothesis test results, which inform phylogenetic tree construction, and we introduce the first genetic algorithm designed for this purpose. The utility of our framework is systematically demonstrated in simulations. For most tested combinations of tumor purity, sequencing coverage, and tree complexity, good power (≥ 0.8) can be achieved and Type 1 error is well controlled when at least three tumor samples are available from a patient. Using data from three published multi-region tumor sequencing studies of (murine) small cell lung cancer, acute myeloid leukemia, and chronic lymphocytic leukemia, in which the authors reconstructed subclonal phylogenetic trees by manual expert curation, we show how different configurations of our tools can identify either a single tree in agreement with the authors, or a small set of trees, which include the authors’ preferred tree. Our results have implications for improved modeling of tumor evolution and the importance of multi-region tumor sequencing. PMID:26436540

  2. Veliparib and Temozolomide in Treating Patients With Acute Leukemia

    ClinicalTrials.gov

    2018-04-20

    Accelerated Phase of Disease; Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21); (q22; q22.1); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22.3;q23.3); MLLT3-KMT2A; Adult Acute Promyelocytic Leukemia With PML-RARA; Adult B Acute Lymphoblastic Leukemia; Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34.1;q11.2); BCR-ABL1; Adult T Acute Lymphoblastic Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Blastic Phase; Chronic Myelomonocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Disease; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  3. Omacetaxine Mepesuccinate, Cytarabine, and Decitabine in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-05

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  4. Choline Magnesium Trisalicylate and Combination Chemotherapy in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-02-01

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  5. MK2206 in Treating Younger Patients With Recurrent or Refractory Solid Tumors or Leukemia

    ClinicalTrials.gov

    2014-04-28

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Leukemias of Ambiguous Lineage; Acute Myeloid Leukemia/Transient Myeloproliferative Disorder; Acute Undifferentiated Leukemia; Aggressive NK-cell Leukemia; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Blastic Plasmacytoid Dendritic Cell Neoplasm; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Intraocular Lymphoma; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Myeloid/NK-cell Acute Leukemia; Noncutaneous Extranodal Lymphoma; Post-transplant Lymphoproliferative Disorder; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Unspecified Childhood Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  6. Donor Umbilical Cord Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies

    ClinicalTrials.gov

    2015-12-18

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Erythroleukemia (M6a); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Adult Pure Erythroid Leukemia (M6b); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Burkitt Lymphoma; Childhood Acute Erythroleukemia (M6); Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Juvenile Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Secondary Myelofibrosis; Splenic Marginal Zone Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage IV Chronic Lymphocytic Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia; T-cell Large Granular Lymphocyte Leukemia; Waldenstrom Macroglobulinemia

  7. The consensus sequence of FAMLF alternative splice variants is overexpressed in undifferentiated hematopoietic cells.

    PubMed

    Chen, W L; Luo, D F; Gao, C; Ding, Y; Wang, S Y

    2015-07-01

    The familial acute myeloid leukemia related factor gene (FAMLF) was previously identified from a familial AML subtractive cDNA library and shown to undergo alternative splicing. This study used real-time quantitative PCR to investigate the expression of the FAMLF alternative-splicing transcript consensus sequence (FAMLF-CS) in peripheral blood mononuclear cells (PBMCs) from 119 patients with de novo acute leukemia (AL) and 104 healthy controls, as well as in CD34+ cells from 12 AL patients and 10 healthy donors. A 429-bp fragment from a novel splicing variant of FAMLF was obtained, and a 363-bp consensus sequence was targeted to quantify total FAMLF expression. Kruskal-Wallis, Nemenyi, Spearman's correlation, and Mann-Whitney U-tests were used to analyze the data. FAMLF-CS expression in PBMCs from AL patients and CD34+ cells from AL patients and controls was significantly higher than in control PBMCs (P < 0.0001). Moreover, FAMLF-CS expression in PBMCs from the AML group was positively correlated with red blood cell count (rs =0.317, P=0.006), hemoglobin levels (rs = 0.210, P = 0.049), and percentage of peripheral blood blasts (rs = 0.256, P = 0.027), but inversely correlated with hemoglobin levels in the control group (rs = -0.391, P < 0.0001). AML patients with high CD34+ expression showed significantly higher FAMLF-CS expression than those with low CD34+ expression (P = 0.041). Our results showed that FAMLF is highly expressed in both normal and malignant immature hematopoietic cells, but that expression is lower in normal mature PBMCs.

  8. Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia

    PubMed Central

    2013-01-01

    BACKGROUND Many mutations that contribute to the pathogenesis of acute myeloid leukemia (AML) are undefined. The relationships between patterns of mutations and epigenetic phenotypes are not yet clear. METHODS We analyzed the genomes of 200 clinically annotated adult cases of de novo AML, using either whole-genome sequencing (50 cases) or whole-exome sequencing (150 cases), along with RNA and microRNA sequencing and DNA-methylation analysis. RESULTS AML genomes have fewer mutations than most other adult cancers, with an average of only 13 mutations found in genes. Of these, an average of 5 are in genes that are recurrently mutated in AML. A total of 23 genes were significantly mutated, and another 237 were mutated in two or more samples. Nearly all samples had at least 1 nonsynonymous mutation in one of nine categories of genes that are almost certainly relevant for pathogenesis, including transcription-factor fusions (18% of cases), the gene encoding nucleophosmin (NPM1) (27%), tumor-suppressor genes (16%), DNA-methylation–related genes (44%), signaling genes (59%), chromatin-modifying genes (30%), myeloid transcription-factor genes (22%), cohesin-complex genes (13%), and spliceosome-complex genes (14%). Patterns of cooperation and mutual exclusivity suggested strong biologic relationships among several of the genes and categories. CONCLUSIONS We identified at least one potential driver mutation in nearly all AML samples and found that a complex interplay of genetic events contributes to AML pathogenesis in individual patients. The databases from this study are widely available to serve as a foundation for further investigations of AML pathogenesis, classification, and risk stratification. (Funded by the National Institutes of Health.) PMID:23634996

  9. Trebananib With or Without Low-Dose Cytarabine in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-02-14

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  10. Metformin+Cytarabine for the Treatment of Relapsed/Refractory AML

    ClinicalTrials.gov

    2017-09-12

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  11. Selective Depletion of CD45RA+ T Cells From Allogeneic Peripheral Blood Stem Cell Grafts From HLA-Matched Related and Unrelated Donors in Preventing GVHD

    ClinicalTrials.gov

    2017-10-25

    Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Acute Biphenotypic Leukemia; Acute Leukemia of Ambiguous Lineage; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Blastic Plasmacytoid Dendritic Cell Neoplasm; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Lymphoblastic Lymphoma; Myelodysplastic Syndrome With Excess Blasts; Myelodysplastic Syndrome With Excess Blasts-1; Myelodysplastic Syndrome With Excess Blasts-2; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Refractory Acute Lymphoblastic Leukemia; Refractory Acute Myeloid Leukemia

  12. Reduced Intensity Donor Peripheral Blood Stem Cell Transplant in Treating Patients With De Novo or Secondary Acute Myeloid Leukemia in Remission

    ClinicalTrials.gov

    2018-05-24

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia

  13. Clofarabine or Daunorubicin Hydrochloride and Cytarabine Followed By Decitabine or Observation in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-12-07

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  14. Ibrutinib Therapy Increases T Cell Repertoire Diversity in Patients with Chronic Lymphocytic Leukemia.

    PubMed

    Yin, Qingsong; Sivina, Mariela; Robins, Harlan; Yusko, Erik; Vignali, Marissa; O'Brien, Susan; Keating, Michael J; Ferrajoli, Alessandra; Estrov, Zeev; Jain, Nitin; Wierda, William G; Burger, Jan A

    2017-02-15

    The Bruton's tyrosine kinase inhibitor ibrutinib is a highly effective, new targeted therapy for chronic lymphocytic leukemia (CLL) that thwarts leukemia cell survival, growth, and tissue homing. The effects of ibrutinib treatment on the T cell compartment, which is clonally expanded and thought to support the growth of malignant B cells in CLL, are not fully characterized. Using next-generation sequencing technology, we characterized the diversity of TCRβ-chains in peripheral blood T cells from 15 CLL patients before and after 1 y of ibrutinib therapy. We noted elevated CD4 + and CD8 + T cell numbers and a restricted TCRβ repertoire in all pretreatment samples. After 1 y of ibrutinib therapy, elevated peripheral blood T cell numbers and T cell-related cytokine levels had normalized, and T cell repertoire diversity increased significantly. Dominant TCRβ clones in pretreatment samples declined or became undetectable, and the number of productive unique clones increased significantly during ibrutinib therapy, with the emergence of large numbers of low-frequency TCRβ clones. Importantly, broader TCR repertoire diversity was associated with clinical efficacy and lower rates of infections during ibrutinib therapy. These data demonstrate that ibrutinib therapy increases diversification of the T cell compartment in CLL patients, which contributes to cellular immune reconstitution. Copyright © 2017 by The American Association of Immunologists, Inc.

  15. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Final report, January 1--December 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowley, J.D.

    It has been clear for the last 15 years that cloning translocation breakpoints in both AML de novo and t-AML would provide the DNA probes required to determine whether the breakpoints in cytogenetically apparently similar translocations were identical at the level of DNA. Therefore the author has pursued an analysis of rearrangements in both types of leukemia simultaneously. She has also cloned and sequenced several translocations in acute lymphoblastic leukemia and in chronic lymphatic leukemia. Recently she cloned the breakpoint in a number of translocations involving chromosome bands 11q23 and 21q22. She has cloned the gene which she called MLL,more » that is located in 11q23 that is involved in the 6;11, 9;11, and 11;19 translocations that are seen in AML de novo as well as in t-AML. She has evidence that the breakpoint in 11q23 and in the t(9;11) is relatively similar in de novo and secondary AML. In addition, she has cloned the gene at the breakpoint in chromosome 21 in the t(3;21). These studies have provided DNA probes that will be very important for diagnosis and for monitoring the patient`s response to treatment.« less

  16. Lack of association between deletion polymorphism of BIM gene and in vitro drug sensitivity in B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Huang, Meixian; Miyake, Kunio; Kagami, Keiko; Abe, Masako; Shinohara, Tamao; Watanabe, Atsushi; Somazu, Shinpei; Oshiro, Hiroko; Goi, Kumiko; Goto, Hiroaki; Minegishi, Masayoshi; Iwamoto, Shotaro; Kiyokawa, Nobutaka; Sugita, Kanji; Inukai, Takeshi

    2017-09-01

    A deletion polymorphism in the BIM gene was identified as an intrinsic mechanism for resistance to tyrosine kinase inhibitor in chronic myeloid leukemia patients in East Asia. BIM is also involved in the responses to glucocorticoid and chemotherapy in acute lymphoblastic leukemia (ALL), suggesting a possible association between deletion polymorphism of BIM and the chemosensitivity of ALL. Thus, we analyzed 72 B-cell precursor (BCP)-ALL cell lines established from Japanese patients. Indeed, higher BIM gene expression was associated with good in vitro sensitivities to glucocorticoid and chemotherapeutic agents used in induction therapy. We also analyzed the methylation status of the BIM gene promoter by next generation sequencing of genome bisulfite PCR products, since genetic polymorphism could be insignificant when epigenetically inactivated. Hypermethylation of the BIM gene promoter was associated with lower BIM gene expression and poorer sensitivity to vincristine. Of note, however, the prevalence of a deletion polymorphism was not associated with the BIM gene expression level or drug sensitivities in BCP-ALL cell lines, in which the BIM gene was unmethylated. These observations suggest that an association of a deletion polymorphism of BIM and the response to induction therapy in BCP-ALL may be clinically minimal. Copyright © 2017. Published by Elsevier Ltd.

  17. Rapid expansion of preexisting nonleukemic hematopoietic clones frequently follows induction therapy for de novo AML.

    PubMed

    Wong, Terrence N; Miller, Christopher A; Klco, Jeffery M; Petti, Allegra; Demeter, Ryan; Helton, Nichole M; Li, Tiandao; Fulton, Robert S; Heath, Sharon E; Mardis, Elaine R; Westervelt, Peter; DiPersio, John F; Walter, Matthew J; Welch, John S; Graubert, Timothy A; Wilson, Richard K; Ley, Timothy J; Link, Daniel C

    2016-02-18

    There is interest in using leukemia-gene panels and next-generation sequencing to assess acute myelogenous leukemia (AML) response to induction chemotherapy. Studies have shown that patients with AML in morphologic remission may continue to have clonal hematopoiesis with populations closely related to the founding AML clone and that this confers an increased risk of relapse. However, it remains unknown how induction chemotherapy influences the clonal evolution of a patient's nonleukemic hematopoietic population. Here, we report that 5 of 15 patients with genetic clearance of their founding AML clone after induction chemotherapy had a concomitant expansion of a hematopoietic population unrelated to the initial AML. These populations frequently harbored somatic mutations in genes recurrently mutated in AML or myelodysplastic syndromes and were detectable at very low frequencies at the time of AML diagnosis. These results suggest that nonleukemic hematopoietic stem and progenitor cells, harboring specific aging-acquired mutations, may have a competitive fitness advantage after induction chemotherapy, expand, and persist long after the completion of chemotherapy. Although the clinical importance of these "rising" clones remains to be determined, it will be important to distinguish them from leukemia-related populations when assessing for molecular responses to induction chemotherapy. © 2016 by The American Society of Hematology.

  18. Successful treatment with allogeneic stem cell transplantation followed by DLI and TKIs for e6a2 BCR-ABL-positive acute myeloid leukaemia

    PubMed Central

    Harada, Yasuhiko; Nishiwaki, Satoshi; Sugimoto, Takumi; Onodera, Koichi; Goto, Tatsunori; Sato, Takahiko; Kamoshita, Sonoko; Kawashima, Naomi; Seto, Aika; Okuno, Shingo; Yamamoto, Satomi; Iwasaki, Toshihiro; Ozawa, Yukiyasu; Miyamura, Koichi; Akatsuka, Yoshiki; Sugiura, Isamu

    2017-01-01

    Abstract Rationale: Patients with the e6a2 BCR-ABL transcript, 1 of the atypical transcripts, have been reported to have a poor prognosis, and allogeneic stem cell transplantation (ASCT) can be considered as additional therapy. However, long-term survival after ASCT for this disease is rare. Patient concerns: This report concerns a 55-year-old female patient with e6a2 BCR-ABL-positive acute myeloid leukemia including the outcome of ASCT followed by donor lymphocyte infusion (DLI). Diagnoses: The breakpoint was confirmed by direct sequencing. Her minimal residual disease could be detected by nested reverse-transcription polymerase chain reaction using primers for the minor BCR-ABL (e1a2) transcript. Interventions: Treatment with tyrosine kinase inhibitors (TKIs) and ASCT followed by DLI. Outcomes: Despite multiple cytogenetic and molecular relapses after ASCT, she remains in molecular remission at 46 months after ASCT. Lessons: This case indicates the efficacy of the combination of the graft-versus-leukemia effect and TKIs for e6a2 BCR-ABL-positive acute leukemia. When the Philadelphia chromosome with an unusual chromosomal breakpoint is suggested, we should clarify the breakpoint because that information can aid molecular assessments and decisions to provide an additional or alternative therapy. PMID:29390324

  19. cis elements and trans-acting factors involved in dimer formation of murine leukemia virus RNA.

    PubMed

    Prats, A C; Roy, C; Wang, P A; Erard, M; Housset, V; Gabus, C; Paoletti, C; Darlix, J L

    1990-02-01

    The genetic material of all retroviruses examined so far consists of two identical RNA molecules joined at their 5' ends by the dimer linkage structure (DLS). Since the precise location of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analyzed the dimerization process of Moloney murine leukemia virus (MoMuLV) genomic RNA. For this purpose we derived an in vitro model for RNA dimerization. By using this model, murine leukemia virus RNA was shown to form dimeric molecules. Deletion mutagenesis in the 620-nucleotide leader of MoMuLV RNA showed that the dimer promoting sequences are located within the encapsidation element Psi between positions 215 and 420. Furthermore, hybridization assays in which DNA oligomers were used to probe monomer and dimer forms of MoMuLV RNA indicated that the DLS probably maps between positions 280 and 330 from the RNA 5' end. Also, retroviral nucleocapsid protein was shown to catalyze dimerization of MoMuLV RNA and to be tightly bound to genomic dimer RNA in virions. These results suggest that MoMuLV RNA dimerization and encapsidation are probably controlled by the same cis element, Psi, and trans-acting factor, nucleocapsid protein, and thus might be linked during virion formation.

  20. cis elements and trans-acting factors involved in dimer formation of murine leukemia virus RNA.

    PubMed Central

    Prats, A C; Roy, C; Wang, P A; Erard, M; Housset, V; Gabus, C; Paoletti, C; Darlix, J L

    1990-01-01

    The genetic material of all retroviruses examined so far consists of two identical RNA molecules joined at their 5' ends by the dimer linkage structure (DLS). Since the precise location of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analyzed the dimerization process of Moloney murine leukemia virus (MoMuLV) genomic RNA. For this purpose we derived an in vitro model for RNA dimerization. By using this model, murine leukemia virus RNA was shown to form dimeric molecules. Deletion mutagenesis in the 620-nucleotide leader of MoMuLV RNA showed that the dimer promoting sequences are located within the encapsidation element Psi between positions 215 and 420. Furthermore, hybridization assays in which DNA oligomers were used to probe monomer and dimer forms of MoMuLV RNA indicated that the DLS probably maps between positions 280 and 330 from the RNA 5' end. Also, retroviral nucleocapsid protein was shown to catalyze dimerization of MoMuLV RNA and to be tightly bound to genomic dimer RNA in virions. These results suggest that MoMuLV RNA dimerization and encapsidation are probably controlled by the same cis element, Psi, and trans-acting factor, nucleocapsid protein, and thus might be linked during virion formation. Images PMID:2153242

  1. Ibrutinib therapy increases T cell repertoire diversity in patients with chronic lymphocytic leukemia

    PubMed Central

    Yin, Qingsong; Sivina, Mariela; Robins, Harlan; Yusko, Erik; Vignali, Marissa; O’Brien, Susan; Keating, Michael J.; Ferrajoli, Alessandra; Estrov, Zeev; Jain, Nitin; Wierda, William G.; Burger, Jan A.

    2017-01-01

    The BTK inhibitor ibrutinib is a highly effective, new targeted therapy for chronic lymphocytic leukemia (CLL) that thwarts leukemia cell survival, growth, and tissue homing. The effects of ibrutinib treatment on the T cell compartment, which is clonally expanded and thought to support the growth of the malignant B cells in CLL, are not fully characterized. Using next-generation sequencing technology we characterized the diversity of TCRβ chains in peripheral blood T cells from 15 CLL patients before and after one year of ibrutinib therapy. We noted elevated CD4+ and CD8+ T cell numbers and a restricted TCRβ repertoire in all pretreatment samples. After one year of ibrutinib therapy, elevated PB T cell numbers and T-cell related cytokine levels had normalized and T cell repertoire diversity significantly increased. Dominant TCRβ clones in pretreatment samples declined or became undetectable, and the number of productive unique clones significantly increased during ibrutinib therapy, with the emergence of large numbers of low-frequency TCRβ clones. Importantly, broader TCR repertoire diversity was associated with clinical efficacy and lower rates of infections during ibrutinib therapy. These data demonstrate that ibrutinib therapy increases diversification of the T cell compartment in CLL patients, which contributes to cellular immune reconstitution. PMID:28077600

  2. Promoter for Sindbis virus RNA-dependent subgenomic RNA transcription.

    PubMed

    Levis, R; Schlesinger, S; Huang, H V

    1990-04-01

    Sindbis virus is a positive-strand RNA enveloped virus, a member of the Alphavirus genus of the Togaviridae family. Two species of mRNA are synthesized in cells infected with Sindbis virus; one, the 49S RNA, is the genomic RNA; the other, the 26S RNA, is a subgenomic RNA that is identical in sequence to the 3' one-third of the genomic RNA. Ou et al. (J.-H. Ou, C. M. Rice, L. Dalgarno, E. G. Strauss, and J. H. Strauss, Proc. Natl. Acad. Sci. USA 79:5235-5239, 1982) identified a highly conserved region 19 nucleotides upstream and 2 nucleotides downstream from the start of the 26S RNA and proposed that in the negative-strand template, these nucleotides compose the promoter for directing the synthesis of the subgenomic RNA. Defective interfering (DI) RNAs of Sindbis virus were used to test this proposal. A 227-nucleotide sequence encompassing 98 nucleotides upstream and 117 nucleotides downstream from the start site of the Sindbis virus subgenomic RNA was inserted into a DI genome. The DI RNA containing the insert was replicated and packaged in the presence of helper virus, and cells infected with these DI particles produced a subgenomic RNA of the size and sequence expected if the promoter was functional. The initiating nucleotide was identical to that used for Sindbis virus subgenomic mRNA synthesis. Deletion analysis showed that the minimal region required to detect transcription of a subgenomic RNA from the negative-strand template of a DI RNA was 18 or 19 nucleotides upstream and 5 nucleotides downstream from the start of the subgenomic RNA.

  3. LongISLND: in silico sequencing of lengthy and noisy datatypes

    PubMed Central

    Lau, Bayo; Mohiyuddin, Marghoob; Mu, John C.; Fang, Li Tai; Bani Asadi, Narges; Dallett, Carolina; Lam, Hugo Y. K.

    2016-01-01

    Summary: LongISLND is a software package designed to simulate sequencing data according to the characteristics of third generation, single-molecule sequencing technologies. The general software architecture is easily extendable, as demonstrated by the emulation of Pacific Biosciences (PacBio) multi-pass sequencing with P5 and P6 chemistries, producing data in FASTQ, H5, and the latest PacBio BAM format. We demonstrate its utility by downstream processing with consensus building and variant calling. Availability and Implementation: LongISLND is implemented in Java and available at http://bioinform.github.io/longislnd Contact: hugo.lam@roche.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27667791

  4. Therapeutic Allogeneic Lymphocytes and Aldesleukin in Treating Patients With High-Risk or Recurrent Myeloid Leukemia After Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2017-02-13

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia

  5. Bortezomib, Daunorubicin, and Cytarabine in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-09-04

    Acute Myeloid Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  6. AML Therapy With Irradiated Allogeneic Cells

    ClinicalTrials.gov

    2017-02-01

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  7. Cytarabine With or Without SCH 900776 in Treating Adult Patients With Relapsed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  8. Arsenic Trioxide in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2018-05-16

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  9. GTI-2040 in Treating Patients With Relapsed, Refractory, or High-Risk Acute Leukemia, High-Grade Myelodysplastic Syndromes, or Refractory or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2015-12-03

    Acute Undifferentiated Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  10. Azacitidine and Gemtuzumab Ozogamicin in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2018-04-20

    Acute Myeloid Leukemia; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21); (q22; q22.1); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22.3;q23.3); MLLT3-KMT2A; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  11. Tipifarnib and Etoposide in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-01-08

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  12. Vorinostat and Gemtuzumab Ozogamicin in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-05-30

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  13. Busulfan, Fludarabine Phosphate, and Anti-Thymocyte Globulin Followed By Donor Stem Cell Transplant and Azacitidine in Treating Patients With High-Risk Myelodysplastic Syndrome and Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2018-03-05

    Acute Myeloid Leukemia; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21); (q22; q22.1); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22.3;q23.3); MLLT3-KMT2A; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; de Novo Myelodysplastic Syndrome; Myelodysplastic Syndrome; Myelodysplastic Syndrome With Excess Blasts; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  14. Phase 1 Study of Terameprocol (EM-1421) in Patients With Leukemia

    ClinicalTrials.gov

    2016-02-20

    Leukemias; Acute Myeloid Leukemia (AML); Acute Lymphocytic Leukemia (ALL); Adult T Cell Leukemia (ATL); Chronic Myeloid Leukemia (CML-BP); Chronic Lymphocytic Leukemia (CLL); Myelodysplastic Syndrome (MDS); Chronic Myelomonocytic Leukemia (CMML)

  15. Idarubicin, Cytarabine, and Pravastatin Sodium in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2017-10-16

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Refractory Anemia With Excess Blasts; Untreated Adult Acute Myeloid Leukemia

  16. Early Discharge and Outpatients Care in Patients With Myelodysplastic Syndrome or Acute Myeloid Leukemia Previously Treated With Intensive Chemotherapy

    ClinicalTrials.gov

    2015-02-05

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia

  17. Alvocidib, Cytarabine, and Mitoxantrone Hydrochloride or Cytarabine and Daunorubicin Hydrochloride in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-07-03

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  18. Tipifarnib in Treating Patients With Acute Myeloid Leukemia in Remission

    ClinicalTrials.gov

    2018-03-20

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21); (q22; q22.1); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22.3;q23.3); MLLT3-KMT2A; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Myelodysplastic Syndrome With Excess Blasts; Recurrent Adult Acute Myeloid Leukemia

  19. Genetically Modified T-cell Immunotherapy in Treating Patients With Relapsed/Refractory Acute Myeloid Leukemia and Persistent/Recurrent Blastic Plasmacytoid Dendritic Cell Neoplasm

    ClinicalTrials.gov

    2018-03-02

    Adult Acute Myeloid Leukemia in Remission; Acute Biphenotypic Leukemia; Early Relapse of Acute Myeloid Leukemia; Late Relapse of Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Blastic Plasmacytoid Dendritic Cell Neoplasm; Acute Myeloid Leukemia; Adult Acute Lymphoblastic Leukemia; Interleukin-3 Receptor Subunit Alpha Positive; Minimal Residual Disease; Refractory Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  20. Cholecalciferol in Treating Patients With Acute Myeloid Leukemia Undergoing Intensive Induction Chemotherapy

    ClinicalTrials.gov

    2015-06-18

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  1. Sirolimus, Idarubicin, and Cytarabine in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2018-04-23

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  2. Lithium Carbonate and Tretinoin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-04-25

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  3. Phase I Trial of the Selective Inhibitor of Nuclear Export, KPT-330, in Relapsed Childhood ALL and AML

    ClinicalTrials.gov

    2018-03-05

    Relapsed Acute Lymphoblastic Leukemia (ALL); Refractory Acute Lymphoblastic Leukemia (ALL); Relapsed Acute Myelogenous Leukemia (AML); Refractory Acute Myelogenous Leukemia (AML); Relapsed Mixed Lineage Leukemia; Refractory Mixed Lineage Leukemia; Relapsed Biphenotypic Leukemia; Refractory Biphenotypic Leukemia; Chronic Myelogenous Leukemia (CML) in Blast Crisis

  4. High Throughput Drug Sensitivity Assay and Genomics- Guided Treatment of Patients With Relapsed or Refractory Acute Leukemia

    ClinicalTrials.gov

    2018-02-28

    Acute Leukemia of Ambiguous Lineage; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia

  5. Combination Chemotherapy in Treating Young Patients With Down Syndrome and Acute Myeloid Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2017-07-10

    Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  6. Bioelectrical Impedance Measurement for Predicting Treatment Outcome in Patients With Newly Diagnosed Acute Leukemia

    ClinicalTrials.gov

    2018-04-26

    Acute Undifferentiated Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Mast Cell Leukemia; Myeloid/NK-cell Acute Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  7. Donor Umbilical Cord Blood Transplant With or Without Ex-vivo Expanded Cord Blood Progenitor Cells in Treating Patients With Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2018-03-05

    Acute Biphenotypic Leukemia; Acute Erythroid Leukemia; Acute Lymphoblastic Leukemia in Remission; Acute Megakaryoblastic Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; Blasts Under 10 Percent of Bone Marrow Nucleated Cells; Blasts Under 5 Percent of Bone Marrow Nucleated Cells; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Mixed Phenotype Acute Leukemia; Myelodysplastic Syndrome; Myelodysplastic Syndrome With Excess Blasts; Pancytopenia; Refractory Anemia; Secondary Acute Myeloid Leukemia

  8. CPX-351 in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2017-06-12

    Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  9. Cyclosporine, Pravastatin Sodium, Etoposide, and Mitoxantrone Hydrochloride in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-06-27

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  10. Estrogen biosynthesis in THP1 cells is regulated by promoter switching of the aromatase (CYP19) gene.

    PubMed

    Shozu, M; Zhao, Y; Simpson, E R

    1997-12-01

    The expression of aromatase, the enzyme responsible for estrogen biosynthesis, has been studied in THP-1 cells of human mononuclear leukemic origin, which exhibit high rates of aromatase activity. These cells have the capacity to differentiate in the presence of vitamin D into cells with osteoclast-like properties. Differentiated cells displayed higher rates of aromatase than undifferentiated cells, and, in both cases, activity was stimulated 10- to 20-fold by dexamethasone. Phorbol esters also increased aromatase activity, but the effect was the same in differentiated as in undifferentiated cells. In a similar fashion to adipose stromal cells, serum potentiated the response to dexamethasone but had no effect on phorbol ester-stimulated activity. By contrast to its action in adipose stromal cells, (Bu)2cAMP markedly inhibited aromatase activity of THP-1 cells, as did factors whose actions are mediated by cAMP, such as PTH and PTH-related peptide. This was true of control cells, as well as of dexamethasone- and phorbol ester-stimulated cells. Previously we have shown that type 1 cytokines as well as tumor necrosis factor-alpha stimulate aromatase activity of adipose stromal cells in the presence of dexamethasone. By contrast, interleukin-6, interleukin-11, and leukemia-inhibitory factor had no effect on aromatase activity of THP-1 cells, whereas tumor necrosis factor-alpha, oncostatin M, and platelet-derived growth factor were slightly inhibitory of aromatase activity. Exon-specific Southern analysis of rapid amplification of cDNA ends-amplified transcripts was employed to examine the distribution of the various 5'-termini of aromatase transcripts. In the control group, most of the clones contained transcripts specific for the proximal promoter II, whereas in dexamethasone-treated cells, most transcripts contained exon I.4. In the phorbol ester-treated cells, a broader spectrum of transcripts was present, with equal proportions of I.4, II, and I.3-containing clones. Additionally, one clone containing a new sequence, exon I.6, was found. This was shown to be located about 1 kb upstream of exon II. By contrast, all clones from cells treated with (Bu)2cAMP contained promoter II-specific sequences. In addition to these transcripts, two clones in the library from the dexamethasone-treated cells contained the sequence previously defined as the brain-specific sequence, 1f. In one of these, the 1f sequence was fused downstream of exon I.4, indicative that its expression likely employed promoter I.4. These results point to similarities and important differences between aromatase expression in THP-1 cells and other cells such as adipose stromal cells, indicative of unique regulatory pathways governing aromatase expression in these cells.

  11. Regulation of notochord-specific expression of Ci-Bra downstream genes in Ciona intestinalis embryos.

    PubMed

    Takahashi, Hiroki; Hotta, Kohji; Takagi, Chiyo; Ueno, Naoto; Satoh, Nori; Shoguchi, Eiichi

    2010-02-01

    Brachyury, a T-box transcription factor, is expressed in ascidian embryos exclusively in primordial notochord cells and plays a pivotal role in differentiation of notochord cells. Previously, we identified approximately 450 genes downstream of Ciona intestinalis Brachyury (Ci-Bra), and characterized the expression profiles of 45 of these in differentiating notochord cells. In this study, we looked for cisregulatory sequences in minimal enhancers of 20 Ci-Bra downstream genes by electroporating region within approximately 3 kb upstream of each gene fused with lacZ. Eight of the 20 reporters were expressed in notochord cells. The minimal enchancer for each of these eight genes was narrowed to a region approximately 0.5-1.0-kb long. We also explored the genome-wide and coordinate regulation of 43 Ci-Bra-downstream genes. When we determined their chromosomal localization, it became evident that they are not clustered in a given region of the genome, but rather distributed evenly over 13 of the 14 pairs of chromosomes, suggesting that gene clustering does not contribute to coordinate control of the Ci-Bra downstream gene expression. Our results might provide Insights Into the molecular mechanisms underlying notochord formation in chordates.

  12. Combination Chemotherapy With or Without Donor Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2018-04-20

    Acute Lymphoblastic Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult B Acute Lymphoblastic Leukemia; Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34.1;q11.2); BCR-ABL1; Adult L1 Acute Lymphoblastic Leukemia; Adult L2 Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  13. Veliparib and Topotecan With or Without Carboplatin in Treating Patients With Relapsed or Refractory Acute Leukemia, High-Risk Myelodysplasia, or Aggressive Myeloproliferative Disorders

    ClinicalTrials.gov

    2018-04-20

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21); (q22; q22.1); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22.3;q23.3); MLLT3-KMT2A; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Essential Thrombocythemia; Hematopoietic and Lymphoid Cell Neoplasm; Myelodysplastic Syndrome; Philadelphia Chromosome Negative, BCR-ABL1 Positive Chronic Myelogenous Leukemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Disease; Secondary Myelodysplastic Syndrome

  14. Use of Anti-Idiotypes and Synthetic Peptides for Control of Human T- Lymphotropic Virus Type 3 Infections

    DTIC Science & Technology

    1988-10-28

    peptides, anti-idiotypes, vaccines, 06 03 human immunodeficiency virus, chimpanzees, RAI, Virology, 06 13 HTLV III, Immunology 19. ABSTRACT (Continue on...idiotypes (anti-Id for con- trolling HIV infection. We have identified four regions of the human immunodeficiency virus type I HIV-1 envelope glycoprotein...analogous to amino acid sequences from the feline leukemia virus / transmembrane glycoprotein. Studies have utilized an affinity purified chimpanzee anti

  15. Phase I Dose-Escalation Trial of Clofarabine Followed by Escalating Doses of Fractionated Cyclophosphamide in Children With Relapsed or Refractory Acute Leukemias

    ClinicalTrials.gov

    2018-02-13

    Myelodysplastic Syndrome; Acute Myeloid Leukemia; Myeloproliferative Disorders; Acute Lymphocytic Leukemia; Acute Promyelocytic Leukemia; Acute Leukemia; Chronic Myelogenous Leukemia; Myelofibrosis; Chronic Myelomonocytic Leukemia; Juvenile Myelomonocytic Leukemia

  16. Allogeneic Stem Cell Transplantationin Relapsed Hematological Malignancy: Early GVHD Prophylaxis

    ClinicalTrials.gov

    2018-01-29

    Hodgkin's Lymphoma; Lymphoid Leukemia; Lymphoma; Leukemia; Myeloma; Acute Lymphocytic Leukemia; Non Hodgkin Lymphoma; Chronic Lymphocytic Leukemia; Multiple Myeloma; Chronic Myelogenous Leukemia; Myelodysplastic Syndromes; Recurrent Acute Myeloid Leukemia, Adult; Recurrent Hodgkin Lymphoma; Recurrent Non-Hodgkin Lymphoma; Recurrent Plasma Cell Myeloma; Recurrent Chronic Lymphocytic Leukemia; Recurrent Chronic Myelogenous Leukemia; Acute Myelogenous Leukemia

  17. 3-AP and Fludarabine in Treating Patients With Myeloproliferative Disorders, Chronic Myelomonocytic Leukemia, or Accelerated Phase or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2014-12-16

    Accelerated Phase Chronic Myelogenous Leukemia; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Philadelphia Chromosome Negative Chronic Myelogenous Leukemia; Polycythemia Vera; Primary Myelofibrosis; Relapsing Chronic Myelogenous Leukemia

  18. AR-42 and Decitabine in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2018-03-12

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  19. Treatment for Relapsed/Refractory AML Based on a High Throughput Drug Sensitivity Assay

    ClinicalTrials.gov

    2018-04-11

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Chronic Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts

  20. Influence of gag and RRE Sequences on HIV-1 RNA Packaging Signal Structure and Function.

    PubMed

    Kharytonchyk, Siarhei; Brown, Joshua D; Stilger, Krista; Yasin, Saif; Iyer, Aishwarya S; Collins, John; Summers, Michael F; Telesnitsky, Alice

    2018-07-06

    The packaging signal (Ψ) and Rev-responsive element (RRE) enable unspliced HIV-1 RNAs' export from the nucleus and packaging into virions. For some retroviruses, engrafting Ψ onto a heterologous RNA is sufficient to direct encapsidation. In contrast, HIV-1 RNA packaging requires 5' leader Ψ elements plus poorly defined additional features. We previously defined minimal 5' leader sequences competitive with intact Ψ for HIV-1 packaging, and here examined the potential roles of additional downstream elements. The findings confirmed that together, HIV-1 5' leader Ψ sequences plus a nuclear export element are sufficient to specify packaging. However, RNAs trafficked using a heterologous export element did not compete well with RNAs using HIV-1's RRE. Furthermore, some RNA additions to well-packaged minimal vectors rendered them packaging-defective. These defects were rescued by extending gag sequences in their native context. To understand these packaging defects' causes, in vitro dimerization properties of RNAs containing minimal packaging elements were compared to RNAs with sequence extensions that were or were not compatible with packaging. In vitro dimerization was found to correlate with packaging phenotypes, suggesting that HIV-1 evolved to prevent 5' leader residues' base pairing with downstream residues and misfolding of the packaging signal. Our findings explain why gag sequences have been implicated in packaging and show that RRE's packaging contributions appear more specific than nuclear export alone. Paired with recent work showing that sequences upstream of Ψ can dictate RNA folds, the current work explains how genetic context of minimal packaging elements contributes to HIV-1 RNA fate determination. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Fludarabine Phosphate and Total-Body Irradiation Before Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Chronic Lymphocytic Leukemia or Small Lymphocytic Leukemia

    ClinicalTrials.gov

    2017-12-05

    B-Cell Prolymphocytic Leukemia; Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; T-Cell Prolymphocytic Leukemia

  2. HA-1 T TCR T Cell Immunotherapy for the Treating of Patients With Relapsed or Refractory Acute Leukemia After Donor Stem Cell Transplant

    ClinicalTrials.gov

    2018-04-30

    HLA-A*0201 HA-1 Positive Cells Present; Minimal Residual Disease; Recurrent Acute Biphenotypic Leukemia; Recurrent Acute Undifferentiated Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia

  3. Phase I Trial of AZD1775 and Belinostat in Treating Patients With Relapsed or Refractory Myeloid Malignancies or Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2018-05-24

    Acute Myeloid Leukemia; Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Refractory Acute Myeloid Leukemia; Refractory Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  4. Current Concepts in Pediatric Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia

    PubMed Central

    Bernt, Kathrin M.; Hunger, Stephen P.

    2014-01-01

    The t(9;22)(q34;q11) or Philadelphia chromosome creates a BCR–ABL1 fusion gene encoding for a chimeric BCR–ABL1 protein. It is present in 3–4% of pediatric acute lymphoblastic leukemia (Ph+ ALL), and about 25% of adult ALL cases. Prior to the advent of tyrosine kinase inhibitors (TKI), Ph+ ALL was associated with a very poor prognosis despite the use of intensive chemotherapy and frequently hematopoietic stem-cell transplantation (HSCT) in first remission. The development of TKIs revolutionized the therapy of Ph+ ALL. Addition of the first generation ABL1 class TKI imatinib to intensive chemotherapy dramatically increased the survival for children with Ph+ ALL and established that many patients can be cured without HSCT. In parallel, the mechanistic understanding of Ph+ ALL expanded exponentially through careful mapping of pathways downstream of BCR–ABL1, the discovery of mutations in master regulators of B-cell development such as IKZF1 (Ikaros), PAX5, and early B-cell factor (EBF), the recognition of the complex clonal architecture of Ph+ ALL, and the delineation of genomic, epigenetic, and signaling abnormalities contributing to relapse and resistance. Still, many important basic and clinical questions remain unanswered. Current clinical trials are testing second generation TKIs in patients with newly diagnosed Ph+ ALL. Neither the optimal duration of therapy nor the optimal chemotherapy backbone are currently defined. The role of HSCT in first remission and post-transplant TKI therapy also require further study. In addition, it will be crucial to continue to dig deeper into understanding Ph+ ALL at a mechanistic level, and translate findings into complementary targeted approaches. Expanding targeted therapies hold great promise to decrease toxicity and improve survival in this high-risk disease, which provides a paradigm for how targeted therapies can be incorporated into treatment of other high-risk leukemias. PMID:24724051

  5. Leukemia-associated gene MLAA-34 reduces arsenic trioxide-induced apoptosis in HeLa cells via activation of the Wnt/β-catenin signaling pathway.

    PubMed

    Zhang, Pengyu; Zhao, Xuan; Zhang, Wenjuan; He, Aili; Lei, Bo; Zhang, Wanggang; Chen, Yinxia

    2017-01-01

    Our laboratory previously used the SEREX method in U937 cells and identified a novel leukemia-associated gene MLAA-34, a novel splice variant of CAB39L associated with acute monocytic leukemia, that exhibited anti-apoptotic activities in U937 cells. Whether MLAA-34 has an anti-apoptotic role in other tumor cells has not yet been reported. We explored whether MLAA-34 exhibited anti-apoptotic effects in HeLa cervical cancer cells and the possible mechanism of action. We generated a HeLa cell line stably expressing MLAA-34 and found that MLAA-34 overexpression had no effect on the growth, apoptosis and cell cycle of HeLa cells. However, upon treatment with arsenic trioxide (ATO) to induce apoptosis, the cell viability and colony formation ability of ATO-treated MLAA-34 stable HeLa cells were significantly higher than that of ATO-treated controls, and the apoptosis rate and proportion of G2/M cells also decreased. We found that ATO treatment of HeLa cells resulted in significant decreases in the expression of β-catenin mRNA and protein and the downstream target factors c-Myc, cyclin B1, and cyclin D1 in the Wnt signaling pathway. Notably, ATO-treated MLAA-34 stable HeLa cells showed a significant reduction in the ATO-mediated downregulation of these factors. In addition, MLAA-34 overexpression significantly increased the expression of nuclear β-catenin protein in ATO-treated cells compared with HeLa cells treated only with ATO. Thus, here we have found that the Wnt/β-catenin signaling pathway is involved in ATO-induced apoptosis in HeLa cells. MLAA-34 reduces ATO-induced apoptosis and G2/M arrest, and the anti-apoptotic effect may be achieved by activating the Wnt/β-catenin signaling pathway in HeLa cells.

  6. Leukemia-associated gene MLAA-34 reduces arsenic trioxide-induced apoptosis in HeLa cells via activation of the Wnt/β-catenin signaling pathway

    PubMed Central

    Zhao, Xuan; Zhang, Wenjuan; He, Aili; Lei, Bo; Zhang, Wanggang; Chen, Yinxia

    2017-01-01

    Our laboratory previously used the SEREX method in U937 cells and identified a novel leukemia-associated gene MLAA-34, a novel splice variant of CAB39L associated with acute monocytic leukemia, that exhibited anti-apoptotic activities in U937 cells. Whether MLAA-34 has an anti-apoptotic role in other tumor cells has not yet been reported. We explored whether MLAA-34 exhibited anti-apoptotic effects in HeLa cervical cancer cells and the possible mechanism of action. We generated a HeLa cell line stably expressing MLAA-34 and found that MLAA-34 overexpression had no effect on the growth, apoptosis and cell cycle of HeLa cells. However, upon treatment with arsenic trioxide (ATO) to induce apoptosis, the cell viability and colony formation ability of ATO-treated MLAA-34 stable HeLa cells were significantly higher than that of ATO-treated controls, and the apoptosis rate and proportion of G2/M cells also decreased. We found that ATO treatment of HeLa cells resulted in significant decreases in the expression of β-catenin mRNA and protein and the downstream target factors c-Myc, cyclin B1, and cyclin D1 in the Wnt signaling pathway. Notably, ATO-treated MLAA-34 stable HeLa cells showed a significant reduction in the ATO-mediated downregulation of these factors. In addition, MLAA-34 overexpression significantly increased the expression of nuclear β-catenin protein in ATO-treated cells compared with HeLa cells treated only with ATO. Thus, here we have found that the Wnt/β-catenin signaling pathway is involved in ATO-induced apoptosis in HeLa cells. MLAA-34 reduces ATO-induced apoptosis and G2/M arrest, and the anti-apoptotic effect may be achieved by activating the Wnt/β-catenin signaling pathway in HeLa cells. PMID:29059232

  7. Vorinostat, Azacitidine, and Gemtuzumab Ozogamicin for Older Patients With Relapsed or Refractory AML

    ClinicalTrials.gov

    2015-01-22

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  8. Chemotherapy Plus Sargramostim in Treating Patients With Refractory Myeloid Cancer

    ClinicalTrials.gov

    2013-01-08

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Paroxysmal Nocturnal Hemoglobinuria; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia; Refractory Anemia With Ringed Sideroblasts; Relapsing Chronic Myelogenous Leukemia; Thrombocytopenia; Untreated Adult Acute Myeloid Leukemia

  9. FLT3-ITD and MLL-PTD influence the expression of MDR-1, MRP-1, and BCRP mRNA but not LRP mRNA assessed with RQ-PCR method in adult acute myeloid leukemia.

    PubMed

    Nasilowska-Adamska, Barbara; Solarska, Iwona; Paluszewska, Monika; Malinowska, Iwona; Jedrzejczak, Wieslaw W; Warzocha, Krzysztof

    2014-04-01

    Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) and mixed-lineage leukemia gene-partial tandem duplication (MLL-PTD) are aberrations associated with leukemia which indicate unsatisfactory prognosis. Downstream regulatory targets of FLT3-ITD and MLL-PTD are not well defined. We have analyzed the expression of MDR-1, multidrug resistant protein-1 (MRP-1), breast cancer resistance protein (BCRP), and lung resistance protein (LRP) messenger RNA (mRNA) in relation to the mutational status of FLT3-ITD and MLL-PTD in 185 acute myeloid leukemia (AML) adult patients. The real-time quantitative polymerase chain reaction method was performed to assess the expression of the MDR-1, MRP-1, BCRP, and LRP mRNA, and the results were presented as coefficients calculated using an intermediate method according to Pfaffl's rule. Significantly higher expressions of MDR-1 mRNA were found in patients who did not harbor FLT3-ITD (0.20 vs. 0.05; p = 0.0001) and MRP-1 mRNA in patients with this mutation (0.96 vs. 0.70; p = 0.002) and of BCRP mRNA in patients with MLL-PTD (0.61 vs. 0.38; p = 0.03). In univariate analysis, the high expression of MDR-1 mRNA (≥0.1317) negatively influenced the outcome of induction therapy (p = 0.05), whereas the high expression of BCRP mRNA (≥1.1487) was associated with a high relapse rate (RR) (p = 0.013). We found that the high expression of MDR-1 (≥0.1317), MRP-1 (≥0.8409), and BCRP mRNA (≥1.1487) significantly influenced disease-free survival (DFS; p = 0.059, 0.032, and 0.009, respectively) and overall survival (0.048, 0.014, and 0.059, respectively). Moreover, a high expression of BCRP mRNA (≥1.1487) proved to be an independent prognostic factor for RR (p = 0.01) and DFS (p = 0.002) in multivariate analysis. The significant correlation between the expression of MDR-1, MRP-1, and BCRP mRNA and FLT3-ITD or MLL-PTD in AML patients requires further investigation.

  10. PI3K and Cancer: Lessons, Challenges and Opportunities

    PubMed Central

    Fruman, David A.; Rommel, Christian

    2014-01-01

    Summary The central role of phosphoinositide 3-kinase (PI3K) activation in tumor cell biology has prompted a sizeable effort to target PI3K and/or downstream kinases such as AKT and mTOR in cancer. However, emerging clinical data show limited single agent activity of PI3K/AKT/mTOR inhibitors at tolerated doses. One exception is the response to PI3Kδ inhibitors in chronic lymphocytic leukemia, where a combination of cell-intrinsic and -extrinsic activities drive efficacy. Here we review key challenges and opportunities for clinical development of PI3K/AKT/mTOR inhibitors. Through a greater focus on patient selection, increased understanding of immune modulation, and strategic application of rational combinations, it should be possible to realize the potential of this promising class of targeted anti-cancer agents. PMID:24481312

  11. Codon-Anticodon Recognition in the Bacillus subtilis glyQS T Box Riboswitch

    PubMed Central

    Caserta, Enrico; Liu, Liang-Chun; Grundy, Frank J.; Henkin, Tina M.

    2015-01-01

    Many amino acid-related genes in Gram-positive bacteria are regulated by the T box riboswitch. The leader RNA of genes in the T box family controls the expression of downstream genes by monitoring the aminoacylation status of the cognate tRNA. Previous studies identified a three-nucleotide codon, termed the “Specifier Sequence,” in the riboswitch that corresponds to the amino acid identity of the downstream genes. Pairing of the Specifier Sequence with the anticodon of the cognate tRNA is the primary determinant of specific tRNA recognition. This interaction mimics codon-anticodon pairing in translation but occurs in the absence of the ribosome. The goal of the current study was to determine the effect of a full range of mismatches for comparison with codon recognition in translation. Mutations were individually introduced into the Specifier Sequence of the glyQS leader RNA and tRNAGly anticodon to test the effect of all possible pairing combinations on tRNA binding affinity and antitermination efficiency. The functional role of the conserved purine 3′ of the Specifier Sequence was also verifiedin this study. We found that substitutions at the Specifier Sequence resulted in reduced binding, the magnitude of which correlates well with the predicted stability of the RNA-RNA pairing. However, the tolerance for specific mismatches in antitermination was generally different from that during decoding, which reveals a unique tRNA recognition pattern in the T box antitermination system. PMID:26229106

  12. Fludarabine Phosphate, Busulfan, and Anti-Thymocyte Globulin Followed By Donor Peripheral Blood Stem Cell Transplant, Tacrolimus, and Methotrexate in Treating Patients With Myeloid Malignancies

    ClinicalTrials.gov

    2016-05-04

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Hematopoietic/Lymphoid Cancer; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia

  13. High-Dose Busulfan and High-Dose Cyclophosphamide Followed By Donor Bone Marrow Transplant in Treating Patients With Leukemia, Myelodysplastic Syndrome, Multiple Myeloma, or Recurrent Hodgkin or Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2010-08-05

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With T(15;17)(q22;q12); Adult Acute Myeloid Leukemia With T(16;16)(p13;q22); Adult Acute Myeloid Leukemia With T(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Adult Pure Erythroid Leukemia (M6b); Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Burkitt Lymphoma; Childhood Acute Erythroleukemia (M6); Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia in Remission; Childhood Acute Myelomonocytic Leukemia (M4); Childhood Acute Promyelocytic Leukemia (M3); Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Phase Chronic Myelogenous Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; De Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-Cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult Non-Hodgkin Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenstrom Macroglobulinemia

  14. Phase I Combination of Midostaurin, Bortezomib, and Chemo in Relapsed/Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-04

    Acute Myeloid Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following; Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  15. Leukemia—Health Professional Version

    Cancer.gov

    There are different types of leukemia, including acute myeloid leukemia, acute lymphoblastic leukemia, chronic lymphocytic leukemia, chronic myelogenous leukemia, and hairy cell leukemia. Find evidence-based information on leukemia treatment, research, genomics, and statistics.

  16. Dasatinib in Treating Young Patients With Recurrent or Refractory Solid Tumors or Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia or Chronic Myelogenous Leukemia That Did Not Respond to Imatinib Mesylate

    ClinicalTrials.gov

    2013-02-04

    Accelerated Phase Chronic Myelogenous Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Childhood Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Meningeal Chronic Myelogenous Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia; Unspecified Childhood Solid Tumor, Protocol Specific

  17. BMS-214662 in Treating Patients With Acute Leukemia, Myelodysplastic Syndrome, or Chronic Myeloid Leukemia

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Promyelocytic Leukemia (M3); Blastic Phase Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia

  18. Azacitidine With or Without Entinostat in Treating Patients With Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-12-08

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  19. TP53 Germline Variations Influence the Predisposition and Prognosis of B-Cell Acute Lymphoblastic Leukemia in Children

    PubMed Central

    Qian, Maoxiang; Cao, Xueyuan; Devidas, Meenakshi; Yang, Wenjian; Cheng, Cheng; Dai, Yunfeng; Carroll, Andrew; Heerema, Nyla A.; Zhang, Hui; Moriyama, Takaya; Gastier-Foster, Julie M.; Xu, Heng; Raetz, Elizabeth; Larsen, Eric; Winick, Naomi; Bowman, W. Paul; Martin, Paul L.; Mardis, Elaine R.; Fulton, Robert; Zambetti, Gerard; Borowitz, Michael; Wood, Brent; Nichols, Kim E.; Carroll, William L.; Pui, Ching-Hon; Mullighan, Charles G.; Evans, William E.; Hunger, Stephen P.; Relling, Mary V.; Loh, Mignon L.

    2018-01-01

    Purpose Germline TP53 variation is the genetic basis of Li-Fraumeni syndrome, a highly penetrant cancer predisposition condition. Recent reports of germline TP53 variants in childhood hypodiploid acute lymphoblastic leukemia (ALL) suggest that this type of leukemia is another manifestation of Li-Fraumeni syndrome; however, the pattern, prevalence, and clinical relevance of TP53 variants in childhood ALL remain unknown. Patients and Methods Targeted sequencing of TP53 coding regions was performed in 3,801 children from the Children’s Oncology Group frontline ALL clinical trials, AALL0232 and P9900. TP53 variant pathogenicity was evaluated according to experimentally determined transcriptional activity, in silico prediction of damaging effects, and prevalence in non-ALL control populations. TP53 variants were analyzed for their association with ALL presenting features and treatment outcomes. Results We identified 49 unique nonsilent rare TP53 coding variants in 77 (2.0%) of 3,801 patients sequenced, of which 22 variants were classified as pathogenic. TP53 pathogenic variants were significantly over-represented in ALL compared with non-ALL controls (odds ratio, 5.2; P < .001). Children with TP53 pathogenic variants were significantly older at ALL diagnosis (median age, 15.5 years v 7.3 years; P < .001) and were more likely to have hypodiploid ALL (65.4% v 1.2%; P < .001). Carrying germline TP53 pathogenic variants was associated with inferior event-free survival and overall survival (hazard ratio, 4.2 and 3.9; P < .001 and .001, respectively). In particular, children with TP53 pathogenic variants were at a dramatically higher risk of second cancers than those without pathogenic variants, with 5-year cumulative incidence of 25.1% and 0.7% (P < .001), respectively. Conclusion Loss-of-function germline TP53 variants predispose children to ALL and to adverse treatment outcomes with ALL therapy, particularly the risk of second malignant neoplasms. PMID:29300620

  20. Multidisciplinary insight into clonal expansion of HTLV-1-infected cells in adult T-cell leukemia via modeling by deterministic finite automata coupled with high-throughput sequencing.

    PubMed

    Farmanbar, Amir; Firouzi, Sanaz; Park, Sung-Joon; Nakai, Kenta; Uchimaru, Kaoru; Watanabe, Toshiki

    2017-01-31

    Clonal expansion of leukemic cells leads to onset of adult T-cell leukemia (ATL), an aggressive lymphoid malignancy with a very poor prognosis. Infection with human T-cell leukemia virus type-1 (HTLV-1) is the direct cause of ATL onset, and integration of HTLV-1 into the human genome is essential for clonal expansion of leukemic cells. Therefore, monitoring clonal expansion of HTLV-1-infected cells via isolation of integration sites assists in analyzing infected individuals from early infection to the final stage of ATL development. However, because of the complex nature of clonal expansion, the underlying mechanisms have yet to be clarified. Combining computational/mathematical modeling with experimental and clinical data of integration site-based clonality analysis derived from next generation sequencing technologies provides an appropriate strategy to achieve a better understanding of ATL development. As a comprehensively interdisciplinary project, this study combined three main aspects: wet laboratory experiments, in silico analysis and empirical modeling. We analyzed clinical samples from HTLV-1-infected individuals with a broad range of proviral loads using a high-throughput methodology that enables isolation of HTLV-1 integration sites and accurate measurement of the size of infected clones. We categorized clones into four size groups, "very small", "small", "big", and "very big", based on the patterns of clonal growth and observed clone sizes. We propose an empirical formal model based on deterministic finite state automata (DFA) analysis of real clinical samples to illustrate patterns of clonal expansion. Through the developed model, we have translated biological data of clonal expansion into the formal language of mathematics and represented the observed clonality data with DFA. Our data suggest that combining experimental data (absolute size of clones) with DFA can describe the clonality status of patients. This kind of modeling provides a basic understanding as well as a unique perspective for clarifying the mechanisms of clonal expansion in ATL.

  1. Decitabine in Treating Children With Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-01-22

    Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Promyelocytic Leukemia (M3); Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  2. Risk-Based Classification System of Patients With Newly Diagnosed Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2018-02-22

    Adult B Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  3. UCB Transplant for Hematological Diseases Using a Non Myeloablative Prep

    ClinicalTrials.gov

    2017-12-03

    Acute Leukemia; Acute Myeloid Leukemia; Acute Lymphoblastic Leukemia/Lymphoma; Burkitt's Lymphoma; Natural Killer Cell Malignancies; Chronic Myelogenous Leukemia; Myelodysplastic Syndrome; Large-cell Lymphoma; Hodgkin Lymphoma; Multiple Myeloma; Relapsed Chronic Lymphocytic Leukemia; Relapsed Small Lymphocytic Lymphoma; Marginal Zone B-cell Lymphoma; Follicular Lymphoma; Lymphoplasmacytic Lymphoma; Mantle-cell Lymphoma; Prolymphocytic Leukemia; Bone Marrow Failure Syndromes; Myeloproliferative Neoplasms/Myelofibrosis; Biphenotypic/Undifferentiated/Prolymphocytic Leukemias; MRD Positive Leukemia; Leukemia or MDS in Aplasia; Relapsed T-Cell Lymphoma; Relapsed Multiple Myeloma; Plasma Cell Leukemia

  4. Myeloablative Allo HSCT With Related or Unrelated Donor for Heme Disorders

    ClinicalTrials.gov

    2018-05-18

    Acute Leukemia; Acute Myeloid Leukemia; Acute Lymphoblastic Leukemia; Lymphoma; Chronic Myelogenous Leukemia; Plasma Cell Leukemia; Myeloproliferative Neoplasms; Myelofibrosis; Myelodysplasia; Refractory Anemia; High Risk Anemia; Chronic Lymphocytic Leukemia; Small Lymphocytic Lymphoma; Marginal Zone B-Cell Lymphoma; Follicular Lymphoma; Lymphoplasmacytic Lymphoma; Mantle-Cell Lymphoma; Prolymphocytic Leukemia; Diffuse Large Cell Non Hodgkins Lymphoma; Lymphoblastic Lymphoma; Burkitt Lymphoma; High Grade Non-Hodgkin's Lymphoma, Adult; Multiple Myeloma; Juvenile Myelomonocytic Leukemia; Biphenotypic/Undifferentiated/Prolymphocytic Leukemias; MRD Positive Leukemia; Natural Killer Cell Malignancies; Acquired Bone Marrow Failure Syndromes

  5. Combination Chemotherapy and Dasatinib in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2018-05-24

    Acute Myeloid Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21); (q22; q22.1); RUNX1-RUNX1T1; Core Binding Factor Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  6. Dasatinib, Cytarabine, and Idarubicin in Treating Patients With High-Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2018-05-04

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  7. BM-Map: Bayesian Mapping of Multireads for Next-Generation Sequencing Data

    PubMed Central

    Ji, Yuan; Xu, Yanxun; Zhang, Qiong; Tsui, Kam-Wah; Yuan, Yuan; Norris, Clift; Liang, Shoudan; Liang, Han

    2011-01-01

    Summary Next-generation sequencing (NGS) technology generates millions of short reads, which provide valuable information for various aspects of cellular activities and biological functions. A key step in NGS applications (e.g., RNA-Seq) is to map short reads to correct genomic locations within the source genome. While most reads are mapped to a unique location, a significant proportion of reads align to multiple genomic locations with equal or similar numbers of mismatches; these are called multireads. The ambiguity in mapping the multireads may lead to bias in downstream analyses. Currently, most practitioners discard the multireads in their analysis, resulting in a loss of valuable information, especially for the genes with similar sequences. To refine the read mapping, we develop a Bayesian model that computes the posterior probability of mapping a multiread to each competing location. The probabilities are used for downstream analyses, such as the quantification of gene expression. We show through simulation studies and RNA-Seq analysis of real life data that the Bayesian method yields better mapping than the current leading methods. We provide a C++ program for downloading that is being packaged into a user-friendly software. PMID:21517792

  8. Total Marrow and Lymphoid Irradiation and Chemotherapy Before Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Lymphocytic or Myelogenous Leukemia

    ClinicalTrials.gov

    2018-03-15

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia

  9. Organ-Sparing Marrow-Targeted Irradiation Before Stem Cell Transplant in Treating Patients With High-Risk Hematologic Malignancies

    ClinicalTrials.gov

    2017-10-09

    Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  10. Targeted Therapy in Treating Patients With Relapsed or Refractory Acute Lymphoblastic Leukemia or Acute Myelogenous Leukemia

    ClinicalTrials.gov

    2018-04-13

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia

  11. Cyclophosphamide and Busulfan Followed by Donor Stem Cell Transplant in Treating Patients With Myelofibrosis, Acute Myeloid Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2017-12-01

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Childhood Acute Myeloid Leukemia in Remission; Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Myelodysplastic Syndrome With Isolated Del(5q); Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Secondary Myelofibrosis; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  12. Low-Dose or High-Dose Conditioning Followed by Peripheral Blood Stem Cell Transplant in Treating Patients With Myelodysplastic Syndrome or Acute Myelogenous Leukemia

    ClinicalTrials.gov

    2014-10-23

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Acute Myeloid Leukemia/Transient Myeloproliferative Disorder; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Childhood Acute Myeloid Leukemia in Remission; Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  13. Total Marrow and Lymphoid Irradiation and Chemotherapy Before Donor Transplant in Treating Patients With Myelodysplastic Syndrome or Acute Leukemia

    ClinicalTrials.gov

    2018-03-27

    Adult Acute Lymphoblastic Leukemia in Complete Remission; Acute Myeloid Leukemia in Remission; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Childhood Acute Lymphoblastic Leukemia in Complete Remission

  14. Topotecan Hydrochloride and Carboplatin With or Without Veliparib in Treating Advanced Myeloproliferative Disorders and Acute Myeloid Leukemia or Chronic Myelomonocytic Leukemia

    ClinicalTrials.gov

    2018-06-22

    Acute Myeloid Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Myelodysplastic/Myeloproliferative Neoplasm; Myelofibrosis; Polycythemia Vera; Recurrent Adult Acute Myeloid Leukemia; Refractory Acute Myeloid Leukemia

  15. Leukemia Cutis Associated with Secondary Plasma Cell Leukemia.

    PubMed

    DeMartinis, Nicole C; Brown, Megan M; Hinds, Brian R; Cohen, Philip R

    2017-05-09

    Plasma cell leukemia is an uncommon, aggressive variant of leukemia that may occur de novo or in association with multiple myeloma. Leukemia cutis is the cutaneous manifestation of leukemia, and indicates an infiltration of the skin by malignant leukocytes or their precursors. Plasma cell leukemia cutis is a rare clinical presentation of leukemia. We present a man who developed plasma cell leukemia cutis in association with multiple myeloma. Cutaneous nodules developed on his arms and legs 50 days following an autologous stem cell transplant. Histopathologic examination showed CD138-positive nodular aggregates of atypical plasma cells with kappa light chain restriction, similar to the phenotype of his myeloma. In spite of systemic treatment of his underlying disease, he died 25 days after the presentation of leukemia cutis. Pub-Med was searched for the following terms: cutaneous plasmacytomas, leukemia cutis, plasma cell leukemia nodules, plasma cell leukemia cutis, and secondary cutaneous plasmacytoma. Papers were reviewed and appropriate references evaluated. Leukemia cutis in plasma cell leukemia patients is an infrequent occurrence. New skin lesions in patients with plasma cell leukemia should be biopsied for pathology and for tissue cultures to evaluate for cancer or infection, respectively. The diagnosis plasma cell leukemia cutis is associated with a very poor prognosis.

  16. Koala retroviruses: characterization and impact on the life of koalas.

    PubMed

    Denner, Joachim; Young, Paul R

    2013-10-23

    Koala retroviruses (KoRV) have been isolated from wild and captive koalas in Australia as well as from koala populations held in zoos in other countries. They are members of the genus Gammaretrovirus, are most closely related to gibbon ape leukemia virus (GaLV), feline leukemia virus (FeLV) and porcine endogenous retrovirus (PERV) and are likely the result of a relatively recent trans-species transmission from rodents or bats. The first KoRV to be isolated, KoRV-A, is widely distributed in the koala population in both integrated endogenous and infectious exogenous forms with evidence from museum specimens older than 150 years, indicating a relatively long engagement with the koala population. More recently, additional subtypes of KoRV that are not endogenized have been identified based on sequence differences and host cell receptor specificity (KoRV-B and KoRV-J). A specific association with fatal lymphoma and leukemia has been recently suggested for KoRV-B. In addition, it has been proposed that the high viral loads found in many animals may lead to immunomodulation resulting in a higher incidence of diseases such as chlamydiosis. Although the molecular basis of this immunomodulation is still unclear, purified KoRV particles and a peptide corresponding to a highly conserved domain in the envelope protein have been shown to modulate cytokine expression in vitro, similar to that induced by other gammaretroviruses. While much is still to be learned, KoRV induced lymphoma/leukemia and opportunistic disease arising as a consequence of immunomodulation are likely to play an important role in the stability of koala populations both in the wild and in captivity.

  17. Comprehensive mutational profiling of core binding factor acute myeloid leukemia

    PubMed Central

    Duployez, Nicolas; Marceau-Renaut, Alice; Boissel, Nicolas; Petit, Arnaud; Bucci, Maxime; Geffroy, Sandrine; Lapillonne, Hélène; Renneville, Aline; Ragu, Christine; Figeac, Martin; Celli-Lebras, Karine; Lacombe, Catherine; Micol, Jean-Baptiste; Abdel-Wahab, Omar; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric

    2016-01-01

    Acute myeloid leukemia (AML) with t(8;21) or inv(16) have been recognized as unique entities within AML and are usually reported together as core binding factor AML (CBF-AML). However, there is considerable clinical and biological heterogeneity within this group of diseases, and relapse incidence reaches up to 40%. Moreover, translocations involving CBFs are not sufficient to induce AML on its own and the full spectrum of mutations coexisting with CBF translocations has not been elucidated. To address these issues, we performed extensive mutational analysis by high-throughput sequencing in 215 patients with CBF-AML enrolled in the Phase 3 Trial of Systematic Versus Response-adapted Timed-Sequential Induction in Patients With Core Binding Factor Acute Myeloid Leukemia and Treating Patients with Childhood Acute Myeloid Leukemia with Interleukin-2 trials (age, 1-60 years). Mutations in genes activating tyrosine kinase signaling (including KIT, N/KRAS, and FLT3) were frequent in both subtypes of CBF-AML. In contrast, mutations in genes that regulate chromatin conformation or encode members of the cohesin complex were observed with high frequencies in t(8;21) AML (42% and 18%, respectively), whereas they were nearly absent in inv(16) AML. High KIT mutant allele ratios defined a group of t(8;21) AML patients with poor prognosis, whereas high N/KRAS mutant allele ratios were associated with the lack of KIT or FLT3 mutations and a favorable outcome. In addition, mutations in epigenetic modifying or cohesin genes were associated with a poor prognosis in patients with tyrosine kinase pathway mutations, suggesting synergic cooperation between these events. These data suggest that diverse cooperating mutations may influence CBF-AML pathophysiology as well as clinical behavior and point to potential unique pathogenesis of t(8;21) vs inv(16) AML. PMID:26980726

  18. EphB4-HSA Fusion Protein and Cytarabine /or Liposomal Vincristine in Patients With Recurrent or Refractory Acute Leukemia

    ClinicalTrials.gov

    2018-05-08

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Blasts 5 Percent or More of Bone Marrow Nucleated Cells; Myelodysplastic/Myeloproliferative Neoplasm; Philadelphia Chromosome Positive; Recurrent Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Acute Lymphoblastic Leukemia; Refractory Acute Myeloid Leukemia; Refractory Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Acute Myeloid Leukemia; T Acute Lymphoblastic Leukemia

  19. Fludarabine Phosphate, Low-Dose Total Body Irradiation, and Donor Stem Cell Transplant in Treating Patients With Hematologic Malignancies or Kidney Cancer

    ClinicalTrials.gov

    2017-10-09

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Chronic Lymphocytic Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Childhood Renal Cell Carcinoma; Chronic Phase Chronic Myelogenous Leukemia; Clear Cell Renal Cell Carcinoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Splenic Marginal Zone Lymphoma; Stage III Renal Cell Cancer; Stage IV Renal Cell Cancer; T-cell Large Granular Lymphocyte Leukemia; Type 1 Papillary Renal Cell Carcinoma; Type 2 Papillary Renal Cell Carcinoma; Waldenström Macroglobulinemia

  20. Combination Chemotherapy in Treating Young Patients With Newly Diagnosed High-Risk B Acute Lymphoblastic Leukemia and Ph-Like TKI Sensitive Mutations

    ClinicalTrials.gov

    2018-06-25

    B Acute Lymphoblastic Leukemia; Central Nervous System Leukemia; Ph-Like Acute Lymphoblastic Leukemia; Testicular Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

Top