Sample records for level affects alpha-synuclein

  1. Rotenone Upregulates Alpha-Synuclein and Myocyte Enhancer Factor 2D Independently from Lysosomal Degradation Inhibition

    PubMed Central

    Stefanoni, Giovanni; Melchionda, Laura; Riva, Chiara; Brighina, Laura

    2013-01-01

    Dysfunctions of chaperone-mediated autophagy (CMA), the main catabolic pathway for alpha-synuclein, have been linked to the pathogenesis of Parkinson's disease (PD). Since till now there is limited information on how PD-related toxins may affect CMA, in this study we explored the effect of mitochondrial complex I inhibitor rotenone on CMA substrates, alpha-synuclein and MEF2D, and effectors, lamp2A and hsc70, in a human dopaminergic neuroblastoma SH-SY5Y cell line. Rotenone induced an upregulation of alpha-synuclein and MEF2D protein levels through the stimulation of their de novo synthesis rather than through a reduction of their CMA-mediated degradation. Moreover, increased MEF2D transcription resulted in higher nuclear protein levels that exert a protective role against mitochondrial dysfunction and oxidative stress. These results were compared with those obtained after lysosome inhibition with ammonium chloride. As expected, this toxin induced the cytosolic accumulation of both alpha-synuclein and MEF2D proteins, as the result of the inhibition of their lysosome-mediated degradation, while, differently from rotenone, ammonium chloride decreased MEF2D nuclear levels through the downregulation of its transcription, thus reducing its protective function. These results highlight that rotenone affects alpha-synuclein and MEF2D protein levels through a mechanism independent from lysosomal degradation inhibition. PMID:23984410

  2. Advancing Stem Cell Models of Alpha-Synuclein Gene Regulation in Neurodegenerative Disease.

    PubMed

    Piper, Desiree A; Sastre, Danuta; Schüle, Birgitt

    2018-01-01

    Alpha-synuclein ( non A4 component of amyloid precursor, SNCA, NM_000345.3 ) plays a central role in the pathogenesis of Parkinson's disease (PD) and related Lewy body disorders such as Parkinson's disease dementia, Lewy body dementia, and multiple system atrophy. Since its discovery as a disease-causing gene in 1997, alpha-synuclein has been a central point of scientific interest both at the protein and gene level. Mutations, including copy number variants, missense mutations, short structural variants, and single nucleotide polymorphisms, can be causative for PD and affect conformational changes of the protein, can contribute to changes in expression of alpha-synuclein and its isoforms, and can influence regulation of temporal as well as spatial levels of alpha-synuclein in different tissues and cell types. A lot of progress has been made to understand both the physiological transcriptional and epigenetic regulation of the alpha-synuclein gene and whether changes in transcriptional regulation could lead to disease and neurodegeneration in PD and related alpha-synucleinopathies. Although the histopathological changes in these neurodegenerative disorders are similar, the temporal and spatial presentation and progression distinguishes them which could be in part due to changes or disruption of transcriptional regulation of alpha-synuclein. In this review, we describe different genetic alterations that contribute to PD and neurodegenerative conditions and review aspects of transcriptional regulation of the alpha-synuclein gene in the context of the development of PD. New technologies, advanced gene engineering and stem cell modeling, are on the horizon to shed further light on a better understanding of gene regulatory processes and exploit them for therapeutic developments.

  3. Alpha-synuclein Toxicity in the Early Secretory Pathway: How It Drives Neurodegeneration in Parkinsons Disease

    PubMed Central

    Wang, Ting; Hay, Jesse C.

    2015-01-01

    Alpha-synuclein is a predominant player in the pathogenesis of Parkinson's Disease. However, despite extensive study for two decades, its physiological and pathological mechanisms remain poorly understood. Alpha-synuclein forms a perplexing web of interactions with lipids, trafficking machinery, and other regulatory factors. One emerging consensus is that synaptic vesicles are likely the functional site for alpha-synuclein, where it appears to facilitate vesicle docking and fusion. On the other hand, the dysfunctions of alpha-synuclein are more dispersed and numerous; when mutated or over-expressed, alpha-synuclein affects several membrane trafficking and stress pathways, including exocytosis, ER-to-Golgi transport, ER stress, Golgi homeostasis, endocytosis, autophagy, oxidative stress, and others. Here we examine recent developments in alpha-synuclein's toxicity in the early secretory pathway placed in the context of emerging themes from other affected pathways to help illuminate its underlying pathogenic mechanisms in neurodegeneration. PMID:26617485

  4. Lrrk2 and alpha-synuclein are co-regulated in rodent striatum.

    PubMed

    Westerlund, Marie; Ran, Caroline; Borgkvist, Anders; Sterky, Fredrik H; Lindqvist, Eva; Lundströmer, Karin; Pernold, Karin; Brené, Stefan; Kallunki, Pekka; Fisone, Gilberto; Olson, Lars; Galter, Dagmar

    2008-12-01

    LRRK2, alpha-synuclein, UCH-L1 and DJ-1 are implicated in the etiology of Parkinson's disease. We show for the first time that increase in striatal alpha-synuclein levels induce increased Lrrk2 mRNA levels while Dj-1 and Uch-L1 are unchanged. We also demonstrate that a mouse strain lacking the dopamine signaling molecule DARPP-32 has significantly reduced levels of both Lrrk2 and alpha-synuclein, while mice carrying a disabling mutation of the DARPP-32 phosphorylation site T34A or lack alpha-synuclein do not show any changes. To test if striatal dopamine depletion influences Lrrk2 or alpha-synuclein expression, we used the neurotoxin 6-hydroxydopamine in rats and MitoPark mice in which there is progressive degeneration of dopamine neurons. Because striatal Lrrk2 and alpha-synuclein levels were not changed by dopamine depletion, we conclude that Lrrk2 and alpha-synuclein mRNA levels are possibly co-regulated, but they are not influenced by striatal dopamine levels.

  5. Alpha-synuclein levels in blood plasma decline with healthy aging.

    PubMed

    Koehler, Niklas K U; Stransky, Elke; Meyer, Mirjam; Gaertner, Susanne; Shing, Mona; Schnaidt, Martina; Celej, Maria S; Jovin, Thomas M; Leyhe, Thomas; Laske, Christoph; Batra, Anil; Buchkremer, Gerhard; Fallgatter, Andreas J; Wernet, Dorothee; Richartz-Salzburger, Elke

    2015-01-01

    There is unequivocal evidence that alpha-synuclein plays a pivotal pathophysiological role in neurodegenerative diseases, and in particular in synucleinopathies. These disorders present with a variable extent of cognitive impairment and alpha-synuclein is being explored as a biomarker in CSF, blood serum and plasma. Considering key events of aging that include proteostasis, alpha-synuclein may not only be useful as a marker for differential diagnosis but also for aging per se. To explore this hypothesis, we developed a highly specific ELISA to measure alpha-synuclein. In healthy males plasma alpha-synuclein levels correlated strongly with age, revealing much lower concentrations in older (avg. 58.1 years) compared to younger (avg. 27.6 years) individuals. This difference between the age groups was enhanced after acidification of the plasmas (p<0.0001), possibly reflecting a decrease of alpha-synuclein-antibody complexes or chaperone activity in older individuals. Our results support the concept that alpha-synuclein homeostasis may be impaired early on, possibly due to disturbance of the proteostasis network, a key component of healthy aging. Thus, alpha-synuclein may be a novel biomarker of aging, a factor that should be considered when analyzing its presence in biological specimens.

  6. Severely impaired hippocampal neurogenesis associates with an early serotonergic deficit in a BAC α-synuclein transgenic rat model of Parkinson's disease

    PubMed Central

    Kohl, Zacharias; Abdallah, Nada Ben; Vogelgsang, Jonathan; Tischer, Lucas; Deusser, Janina; Amato, Davide; Anderson, Scott; Müller, Christian P.; Riess, Olaf; Masliah, Eliezer; Nuber, Silke; Winkler, Jürgen

    2016-01-01

    Parkinson's disease (PD) is a multisystem disorder, involving several monoaminergic neurotransmitter systems resulting in a broad range of motor and non-motor symptoms. Pathological hallmarks of PD are the loss of dopaminergic neurons and the accumulation of alpha-synuclein, however also being present in the serotonergic raphe nuclei early in the disease course. The dysfunction of the serotonergic system projecting to the hippocampus might contribute to early non-motor symptoms such as anxiety and depression. The adult hippocampal dentate gyrus (DG), a unique niche of the forebrain continuously generating new neurons, may particularly present enhanced susceptibility towards accumulating alpha-synuclein levels. The underlying molecular mechanisms in the context of neuronal maturation and survival of new-born neurons are yet not well understood. To characterize the effects of overexpression of human full-length alpha-synuclein on hippocampal cellular and synaptic plasticity, we used a recently generated BAC alpha-synuclein transgenic rat model showing important features of PD such as widespread and progressive alpha-synuclein aggregation pathology, dopamine loss and age-dependent motor decline. At the age of four months, thus prior to the occurrence of the motor phenotype, we observed a profoundly impaired dendritogenesis of neuroblasts in the hippocampal DG resulting in severely reduced survival of adult new-born neurons. Diminished neurogenesis concurred with a serotonergic deficit in the hippocampus as defined by reduced levels of serotonin (5-HT) 1B receptor, decreased 5-HT neurotransmitter levels, and a loss of serotonergic nerve terminals innervating the DG/CA3 subfield, while the number of serotonergic neurons in the raphe nuclei remained unchanged. Moreover, alpha-synuclein overexpression reduced proteins involved in vesicle release, in particular synapsin-1 and Rab3 interacting molecule (RIM3), in conjunction with an altered ultrastructural architecture of hippocampal synapses. Importantly, alterations of the hippocampal serotonergic system were associated with an anxiety-like behavior consisting of reduced exploratory behavior and feeding in transgenic rats. Taken together, these findings imply that accumulating alpha-synuclein severely affects hippocampal neurogenesis paralleled by impaired 5-HT neurotransmission prior to the onset of aggregation pathology and motor deficits in this transgenic rat model of PD. PMID:26523794

  7. Phthalocyanine tetrasulfonates affect the amyloid formation and cytotoxicity of alpha-synuclein.

    PubMed

    Lee, Eui-Nam; Cho, Hyun-Ju; Lee, Choong-Hwan; Lee, Daekyun; Chung, Kwang Chul; Paik, Seung R

    2004-03-30

    Alpha-synuclein is a pathological component of Parkinson's disease by constituting the filamentous component of Lewy bodies. Phthalocyanine (Pc) effects on the amyloidosis of alpha-synuclein have been examined. The copper complex of phthalocyanine tetrasulfonate (PcTS-Cu(2+)) caused the self-oligomerization of alpha-synuclein while Pc-Cu(2+) did not affect the protein, indicating that introduction of the sulfonate groups was critical for the selective protein interaction. The PcTS-Cu(2+) interaction with alpha-synuclein has occurred predominantly at the N-terminal region of the protein with a K(d) of 0.83 microM apart from the hydrophobic NAC (non-Abeta component of Alzheimer's disease amyloid) segment. Phthalocyanine tetrasulfonate (PcTS) lacking the intercalated copper ion also showed a considerable affinity toward alpha-synuclein with a K(d) of 3.12 microM, and its binding site, on the other hand, was located at the acidic C-terminus. These mutually exclusive interactions between PcTS and PcTS-Cu(2+) toward alpha-synuclein resulted in distinctive features on the kinetics of protein aggregation, morphologies of the final aggregates, and their in vitro cytotoxicities. The PcTS actually suppressed the fibrous amyloid formation of alpha-synuclein, but it produced the chopped-wood-looking protein aggregates. The aggregates showed rather low toxicity (9.5%) on human neuroblastoma cells (SH-SY5Y). In fact, the PcTS was shown to effectively rescue the cell death of alpha-synuclein overexpressing cells caused by the lactacystin treatment as a proteasome inhibitor. The anti-aggregative and anti-amyloidogenic properties of PcTS were also demonstrated with alcohol dehydrogenase, glutathione S-transferase, and amyloid beta/A4 protein under their aggregative conditions. The PcTS-Cu(2+), on the other hand, promoted the protein aggregation of alpha-synuclein, which gave rise to the fibrillar protein aggregates whose cytotoxicity became significant to 35.8%. Taken together, the data provided in this study indicate that PcTS/PcTS-Cu(2+) could be considered as possible candidates for the development of therapeutic or prophylactic strategies against the alpha-synuclein-related neurodegenerative disorders.

  8. Role of alpha-synuclein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice.

    PubMed

    Schlüter, O M; Fornai, F; Alessandrí, M G; Takamori, S; Geppert, M; Jahn, R; Südhof, T C

    2003-01-01

    In humans, mutations in the alpha-synuclein gene or exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) produce Parkinson's disease with loss of dopaminergic neurons and depletion of nigrostriatal dopamine. alpha-Synuclein is a vertebrate-specific component of presynaptic nerve terminals that may function in modulating synaptic transmission. To test whether MPTP toxicity involves alpha-synuclein, we generated alpha-synuclein-deficient mice by homologous recombination, and analyzed the effect of deleting alpha-synuclein on MPTP toxicity using these knockout mice. In addition, we examined commercially available mice that contain a spontaneous loss of the alpha-synuclein gene. As described previously, deletion of alpha-synuclein had no significant effects on brain structure or composition. In particular, the levels of synaptic proteins were not altered, and the concentrations of dopamine, dopamine metabolites, and dopaminergic proteins were unchanged. Upon acute MPTP challenge, alpha-synuclein knockout mice were partly protected from chronic depletion of nigrostriatal dopamine when compared with littermates of the same genetic background, whereas mice carrying the spontaneous deletion of the alpha-synuclein gene exhibited no protection. Furthermore, alpha-synuclein knockout mice but not the mice with the alpha-synuclein gene deletion were slightly more sensitive to methamphetamine than littermate control mice. These results demonstrate that alpha-synuclein is not obligatorily coupled to MPTP sensitivity, but can influence MPTP toxicity on some genetic backgrounds, and illustrate the need for extensive controls in studies aimed at describing the effects of mouse knockouts on MPTP sensitivity.

  9. Deletion of alpha-synuclein decreases impulsivity in mice.

    PubMed

    Peña-Oliver, Y; Buchman, V L; Dalley, J W; Robbins, T W; Schumann, G; Ripley, T L; King, S L; Stephens, D N

    2012-03-01

    The presynaptic protein alpha-synuclein, associated with Parkinson's Disease (PD), plays a role in dopaminergic neurotransmission and is implicated in impulse control disorders (ICDs) such as drug addiction. In this study we investigated a potential causal relationship between alpha-synuclein and impulsivity, by evaluating differences in motor impulsivity in the 5-choice serial reaction time task (5-CSRTT) in strains of mice that differ in the expression of the alpha-synuclein gene. C57BL/6JOlaHsd mice differ from their C57BL/6J ancestors in possessing a chromosomal deletion resulting in the loss of two genes, snca, encoding alpha-synuclein, and mmrn1, encoding multimerin-1. C57BL/6J mice displayed higher impulsivity (more premature responding) than C57BL/6JOlaHsd mice when the pre-stimulus waiting interval was increased in the 5-CSRTT. In order to ensure that the reduced impulsivity was indeed related to snca, and not adjacent gene deletion, wild type (WT) and mice with targeted deletion of alpha-synuclein (KO) were tested in the 5-CSRTT. Similarly, WT mice were more impulsive than mice with targeted deletion of alpha-synuclein. Interrogation of our ongoing analysis of impulsivity in BXD recombinant inbred mouse lines revealed an association of impulsive responding with levels of alpha-synuclein expression in hippocampus. Expression of beta- and gamma-synuclein, members of the synuclein family that may substitute for alpha-synuclein following its deletion, revealed no differential compensations among the mouse strains. These findings suggest that alpha-synuclein may contribute to impulsivity and potentially, to ICDs which arise in some PD patients treated with dopaminergic medication. © 2011 The Authors. Genes, Brain and Behavior © 2011 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  10. Quantitative measurement of intact alpha-synuclein proteoforms from post-mortem control and Parkinson's disease brain tissue by intact protein mass spectrometry.

    PubMed

    Kellie, John F; Higgs, Richard E; Ryder, John W; Major, Anthony; Beach, Thomas G; Adler, Charles H; Merchant, Kalpana; Knierman, Michael D

    2014-07-23

    A robust top down proteomics method is presented for profiling alpha-synuclein species from autopsied human frontal cortex brain tissue from Parkinson's cases and controls. The method was used to test the hypothesis that pathology associated brain tissue will have a different profile of post-translationally modified alpha-synuclein than the control samples. Validation of the sample processing steps, mass spectrometry based measurements, and data processing steps were performed. The intact protein quantitation method features extraction and integration of m/z data from each charge state of a detected alpha-synuclein species and fitting of the data to a simple linear model which accounts for concentration and charge state variability. The quantitation method was validated with serial dilutions of intact protein standards. Using the method on the human brain samples, several previously unreported modifications in alpha-synuclein were identified. Low levels of phosphorylated alpha synuclein were detected in brain tissue fractions enriched for Lewy body pathology and were marginally significant between PD cases and controls (p = 0.03).

  11. The Identification of Alpha-Synuclein as the First Parkinson Disease Gene.

    PubMed

    Nussbaum, Robert L

    2017-01-01

    In this Commentary, I describe the events that led from an NINDS-sponsored Workshop on Parkinson Disease Research in 1995, where I was asked to speak about the genetics of Parkinson disease, to the identification a mere two years later of a mutation in alpha-synuclein as the cause of autosomal dominant Parkinson disease in the Contursi kindred. I review the steps we took to first map and then find the mutation in the alpha-synuclein locus and describe the obstacles and the role of serendipity in facilitating the work. Although alpha-synuclein mutations are a rare cause of hereditary PD, the importance of this finding goes far beyond the rare families with hereditary disease because it pinpointed alpha-synuclein as a key contributor to the far more common sporadic form of Parkinson disease. This work confirms William Harvey's observation from 350 years ago that studying rarer forms of a disease is an excellent way to understand the more common forms of that disease. The identification of synuclein's role in hereditary Parkinson disease has opened new avenues of research into the pathogenesis and potential treatments of the common form of Parkinson disease that affects many millions of Americans and tens of millions of human beings worldwide.

  12. Brain region-dependent differential expression of alpha-synuclein.

    PubMed

    Taguchi, Katsutoshi; Watanabe, Yoshihisa; Tsujimura, Atsushi; Tanaka, Masaki

    2016-04-15

    α-Synuclein, the major constituent of Lewy bodies (LBs), is normally expressed in presynapses and is involved in synaptic function. Abnormal intracellular aggregation of α-synuclein is observed as LBs and Lewy neurites in neurodegenerative disorders, such as Parkinson's disease (PD) or dementia with Lewy bodies. Accumulated evidence suggests that abundant intracellular expression of α-synuclein is one of the risk factors for pathological aggregation. Recently, we reported differential expression patterns of α-synuclein between excitatory and inhibitory hippocampal neurons. Here we further investigated the precise expression profile in the adult mouse brain with special reference to vulnerable regions along the progression of idiopathic PD. The results show that α-synuclein was highly expressed in the neuronal cell bodies of some early PD-affected brain regions, such as the olfactory bulb, dorsal motor nucleus of the vagus, and substantia nigra pars compacta. Synaptic expression of α-synuclein was mostly accompanied by expression of vesicular glutamate transporter-1, an excitatory presynaptic marker. In contrast, expression of α-synuclein in the GABAergic inhibitory synapses was different among brain regions. α-Synuclein was clearly expressed in inhibitory synapses in the external plexiform layer of the olfactory bulb, globus pallidus, and substantia nigra pars reticulata, but not in the cerebral cortex, subthalamic nucleus, or thalamus. These results suggest that some neurons in early PD-affected human brain regions express high levels of perikaryal α-synuclein, as happens in the mouse brain. Additionally, synaptic profiles expressing α-synuclein are different in various brain regions. © 2015 Wiley Periodicals, Inc.

  13. Transgenic mice overexpressing tyrosine-to-cysteine mutant human alpha-synuclein: a progressive neurodegenerative model of diffuse Lewy body disease.

    PubMed

    Zhou, Wenbo; Milder, Julie B; Freed, Curt R

    2008-04-11

    Abnormal aggregation of human alpha-synuclein in Lewy bodies and Lewy neurites is a pathological hallmark of Parkinson disease and dementia with Lewy bodies. Studies have shown that oxidation and nitration of alpha-synuclein lead to the formation of stable dimers and oligomers through dityrosine cross-linking. Previously we have reported that tyrosine-to-cysteine mutations, particularly at the tyrosine 39 residue (Y39C), significantly enhanced alpha-synuclein fibril formation and neurotoxicity. In the current study, we have generated transgenic mice expressing the Y39C mutant human alpha-synuclein gene controlled by the mouse Thy1 promoter. Mutant human alpha-synuclein was widely expressed in transgenic mouse brain, resulting in 150% overexpression relative to endogenous mouse alpha-synuclein. At age 9-12 months, transgenic mice began to display motor dysfunction in rotarod testing. Older animals aged 15-18 months showed progressive accumulation of human alpha-synuclein oligomers, associated with worse motor function and cognitive impairment in the Morris water maze. By age 21-24 months, alpha-synuclein aggregates were further increased, accompanied by severe behavioral deficits. At this age, transgenic mice developed neuropathology, such as Lewy body-like alpha-synuclein and ubiquitin-positive inclusions, phosphorylation at Ser(129) of human alpha-synuclein, and increased apoptotic cell death. In summary, Y39C human alpha-synuclein transgenic mice show age-dependent, progressive neuronal degeneration with motor and cognitive deficits similar to diffuse Lewy body disease. The time course of alpha-synuclein oligomer accumulation coincided with behavioral and pathological changes, indicating that these oligomers may initiate protein aggregation, disrupt cellular function, and eventually lead to neuronal death.

  14. PA700, the regulatory complex of the 26S proteasome, interferes with alpha-synuclein assembly.

    PubMed

    Ghee, Medeva; Melki, Ronald; Michot, Nadine; Mallet, Jacques

    2005-08-01

    Parkinson's disease is characterized by the loss of dopaminergic neurons in the nigrostriatal pathway accompanied by the presence of intracellular cytoplasmic inclusions, termed Lewy bodies. Fibrillized alpha-synuclein forms the major component of Lewy bodies. We reported a specific interaction between rat alpha-synuclein and tat binding protein 1, a subunit of PA700, the regulatory complex of the 26S proteasome. It has been demonstrated that PA700 prevents the aggregation of misfolded, nonubiquinated substrates. In this study, we examine the effect of PA700 on the aggregation of wild-type and A53T mutant alpha-synuclein. PA700 inhibits both wild-type and A53T alpha-synuclein fibril formation as measured by Thioflavin T fluorescence. Using size exclusion chromatography, we present evidence for a stable PA700-alpha-synuclein complex. Sedimentation analyses reveal that PA700 sequesters alpha-synuclein in an assembly incompetent form. Analysis of the morphology of wild-type and A53T alpha-synuclein aggregates during the course of fibrillization by electron microscopy demonstrate the formation of amyloid-like fibrils. Secondary structure analyses of wild-type and A53T alpha-synuclein assembled in the presence of PA700 revealed a decrease in the overall amount of assembled alpha-synuclein with no significant change in protein conformation. Thus, PA700 acts on alpha-synuclein assembly and not on the structure of fibrils. We hypothesize that PA700 sequesters alpha-synuclein oligomeric species that are the precursors of the fibrillar form of the protein, thus preventing its assembly into fibrils.

  15. Induction of Parkinson disease-related proteins in motor neurons after transient spinal cord ischemia in rabbits.

    PubMed

    Sakurai, Masahiro; Kawamura, Takae; Nishimura, Hidekazu; Suzuki, Hiroyoshi; Tezuka, Fumiaki; Abe, Koji

    2009-04-01

    The mechanism of spinal cord injury has been thought to be related to the vulnerability of spinal motor neuron cells against ischemia. However, the mechanisms of such vulnerability are not fully understood. We investigated a possible mechanism of neuronal death by immunohistochemical analysis for DJ-1, PINK1, and alpha-Synuclein. We used a 15-min rabbit spinal cord ischemia model, with use of a balloon catheter. Western blot analysis for DJ-1, PINK1, and alpha-Synuclein; temporal profiles of DJ-1, PINK1, and alpha-Synuclein immunoreactivity; and double-label fluorescence immunocytochemical studies were performed. Western blot analysis revealed scarce immunoreactivity for DJ-1, PINK1, and alpha-Synuclein in the sham-operated spinal cords. However, they became apparent at 8 h after transient ischemia, which returned to the baseline level at 1 day. Double-label fluorescence immunocytochemical study revealed that both DJ-1 and PINK1, and DJ-1 and alpha-Synuclein were positive at 8 h of reperfusion in the same motor neurons, which eventually die. The induction of DJ-1 and PINK1 proteins in the motor neurons at the early stage of reperfusion may indicate oxidative stress, and the induction of alpha-Synuclein may be implicated in the programmed cell death change after transient spinal cord ischemia.

  16. The Identification of Alpha-Synuclein as the First Parkinson Disease Gene

    PubMed Central

    Nussbaum, Robert L.

    2017-01-01

    In this Commentary, I describe the events that led from an NINDS-sponsored Workshop on Parkinson Disease Research in 1995, where I was asked to speak about the genetics of Parkinson disease, to the identification a mere two years later of a mutation in alpha-synuclein as the cause of autosomal dominant Parkinson disease in the Contursi kindred. I review the steps we took to first map and then find the mutation in the alpha-synuclein locus and describe the obstacles and the role of serendipity in facilitating the work. Although alpha-synuclein mutations are a rare cause of hereditary PD, the importance of this finding goes far beyond the rare families with hereditary disease because it pinpointed alpha-synuclein as a key contributor to the far more common sporadic form of Parkinson disease. This work confirms William Harvey’s observation from 350 years ago that studying rarer forms of a disease is an excellent way to understand the more common forms of that disease. The identification of synuclein’s role in hereditary Parkinson disease has opened new avenues of research into the pathogenesis and potential treatments of the common form of Parkinson disease that affects many millions of Americans and tens of millions of human beings worldwide. PMID:28282812

  17. Genetic association between Alzheimer disease and the alpha-synuclein gene.

    PubMed

    Matsubara, M; Yamagata, H; Kamino, K; Nomura, T; Kohara, K; Kondo, I; Miki, T

    2001-01-01

    alpha-Synuclein has been isolated as a component of amyloid in addition to the major A beta peptide in Alzheimer disease (AD). However, there are conflicting reports regarding the association of alpha-synuclein gene polymorphism with AD. Using a novel and common polymorphism in intron 3, we examined the relationship between AD and alpha-synuclein and apolipoprotein E (ApoE) genes in 183 Japanese AD patients and 210 controls. Carriers of the alpha-synuclein deletion (D) allele had a 2.2-fold increased risk of developing AD than noncarriers in women. The odds ratio for the ApoE epsilon 4 and the alpha-synuclein D allele was 11.4 in women. The results showed that the alpha-synuclein gene is associated with sporadic AD in women, independent of ApoE epsilon 4 status. Copyright 2001 S. Karger AG, Basel

  18. Pesticide exposure exacerbates alpha-synucleinopathy in an A53T transgenic mouse model.

    PubMed

    Norris, Erin H; Uryu, Kunihiro; Leight, Susan; Giasson, Benoit I; Trojanowski, John Q; Lee, Virginia M-Y

    2007-02-01

    The factors initiating or contributing to the pathogenesis of Parkinson's disease and related neurodegenerative synucleinopathies are still largely unclear, but environmental factors such as pesticides have been implicated. In this study, A53T mutant human alpha-synuclein transgenic mice (M83), which develop alpha-synuclein neuropathology, were treated with the pesticides paraquat and maneb (either singly or together), and their effects were analyzed. Immunohistochemical and biochemical analyses showed that chronic treatment of M83 transgenic mice with both pesticides (but not with either pesticide alone) drastically increased neuronal alpha-synuclein pathology throughout the central nervous system including the hippocampus, cerebellum, and sensory and auditory cortices. alpha-Synuclein-associated mitochondrial degeneration was observed in M83 but not in wild-type alpha-synuclein transgenic mice. Because alpha-synuclein inclusions accumulated in pesticide-exposed M83 transgenic mice without a motor phenotype, we conclude that alpha-synuclein aggregate formation precedes disease onset. These studies support the notion that environmental factors causing nitrative damage are closely linked to mechanisms underlying the formation of alpha-synuclein pathologies and the onset of Parkinson's-like neurodegeneration.

  19. Alpha-synuclein aggregates activate calcium pump SERCA leading to calcium dysregulation.

    PubMed

    Betzer, Cristine; Lassen, Louise Berkhoudt; Olsen, Anders; Kofoed, Rikke Hahn; Reimer, Lasse; Gregersen, Emil; Zheng, Jin; Calì, Tito; Gai, Wei-Ping; Chen, Tong; Moeller, Arne; Brini, Marisa; Fu, Yuhong; Halliday, Glenda; Brudek, Tomasz; Aznar, Susana; Pakkenberg, Bente; Andersen, Jens Peter; Jensen, Poul Henning

    2018-05-01

    Aggregation of α-synuclein is a hallmark of Parkinson's disease and dementia with Lewy bodies. We here investigate the relationship between cytosolic Ca 2+ and α-synuclein aggregation. Analyses of cell lines and primary culture models of α-synuclein cytopathology reveal an early phase with reduced cytosolic Ca 2+ levels followed by a later Ca 2+ increase. Aggregated but not monomeric α-synuclein binds to and activates SERCA in vitro , and proximity ligation assays confirm this interaction in cells. The SERCA inhibitor cyclopiazonic acid (CPA) normalises both the initial reduction and the later increase in cytosolic Ca 2+ CPA protects the cells against α-synuclein-aggregate stress and improves viability in cell models and in Caenorhabditis elegans in vivo Proximity ligation assays also reveal an increased interaction between α-synuclein aggregates and SERCA in human brains affected by dementia with Lewy bodies. We conclude that α-synuclein aggregates bind SERCA and stimulate its activity. Reducing SERCA activity is neuroprotective, indicating that SERCA and down-stream processes may be therapeutic targets for treating α-synucleinopathies. © 2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  20. Structure, function and toxicity of alpha-synuclein: the Bermuda triangle in synucleinopathies.

    PubMed

    Villar-Piqué, Anna; Lopes da Fonseca, Tomás; Outeiro, Tiago Fleming

    2016-10-01

    Parkinson's disease belongs to a group of currently incurable neurodegenerative disorders characterized by the misfolding and accumulation of alpha-synuclein aggregates that are commonly known as synucleinopathies. Clinically, synucleinopathies are heterogeneous, reflecting the somewhat selective neuronal vulnerability characteristic of each disease. The precise molecular underpinnings of synucleinopathies remain unclear, but the process of aggregation of alpha-synuclein appears as a central event. However, there is still no consensus with respect to the toxic forms of alpha-synuclein, hampering our ability to use the protein as a target for therapeutic intervention. To decipher the molecular bases of synucleinopathies, it is essential to understand the complex triangle formed between the structure, function and toxicity of alpha-synuclein. Recently, important steps have been undertaken to elucidate the role of the protein in both physiological and pathological conditions. Here, we provide an overview of recent findings in the field of alpha-synuclein research, and put forward a new perspective over paradigms that persist in the field. Establishing whether alpha-synuclein has a causative role in all synucleinopathies will enable the identification of targets for the development of novel therapeutic strategies for this devastating group of disorders. Alpha-synuclein is the speculated cornerstone of several neurodegenerative disorders known as Synucleinopathies. Nevertheless, the mechanisms underlying the pathogenic effects of this protein remain unknown. Here, we review the recent findings in the three corners of alpha-synuclein biology - structure, function and toxicity - and discuss the enigmatic roads that have accompanied alpha-synuclein from the beginning. This article is part of a special issue on Parkinson disease. © 2015 International Society for Neurochemistry.

  1. Redistribution of DAT/α-Synuclein Complexes Visualized by “In Situ” Proximity Ligation Assay in Transgenic Mice Modelling Early Parkinson's Disease

    PubMed Central

    Bellucci, Arianna; Navarria, Laura; Falarti, Elisa; Zaltieri, Michela; Bono, Federica; Collo, Ginetta; Grazia, Maria; Missale, Cristina; Spano, PierFranco

    2011-01-01

    Alpha-synuclein, the major component of Lewy bodies, is thought to play a central role in the onset of synaptic dysfunctions in Parkinson's disease (PD). In particular, α-synuclein may affect dopaminergic neuron function as it interacts with a key protein modulating dopamine (DA) content at the synapse: the DA transporter (DAT). Indeed, recent evidence from our “in vitro” studies showed that α-synuclein aggregation decreases the expression and membrane trafficking of the DAT as the DAT is retained into α-synuclein-immunopositive inclusions. This notwithstanding, “in vivo” studies on PD animal models investigating whether DAT distribution is altered by the pathological overexpression and aggregation of α-synuclein are missing. By using the proximity ligation assay, a technique which allows the “in situ” visualization of protein-protein interactions, we studied the occurrence of alterations in the distribution of DAT/α-synuclein complexes in the SYN120 transgenic mouse model, showing insoluble α-synuclein aggregates into dopaminergic neurons of the nigrostriatal system, reduced striatal DA levels and an altered distribution of synaptic proteins in the striatum. We found that DAT/α-synuclein complexes were markedly redistributed in the striatum and substantia nigra of SYN120 mice. These alterations were accompanied by a significant increase of DAT striatal levels in transgenic animals when compared to wild type littermates. Our data indicate that, in the early pathogenesis of PD, α-synuclein acts as a fine modulator of the dopaminergic synapse by regulating the subcellular distribution of key proteins such as the DAT. PMID:22163275

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Song Yi; Kim, Seulgi; Hwang, Heejin

    Research highlights: {yields} Formation of the {alpha}-synuclein amyloid fibrils by [BIMbF{sub 3}Im]. {yields} Disaggregation of amyloid fibrils by epigallocatechin gallate (EGCG) and baicalein. {yields} Amyloid formation of {alpha}-synuclein tandem repeat ({alpha}-TR). -- Abstract: The aggregation of {alpha}-synuclein is clearly related to the pathogenesis of Parkinson's disease. Therefore, detailed understanding of the mechanism of fibril formation is highly valuable for the development of clinical treatment and also of the diagnostic tools. Here, we have investigated the interaction of {alpha}-synuclein with ionic liquids by using several biochemical techniques including Thioflavin T assays and transmission electron microscopy (TEM). Our data shows a rapidmore » formation of {alpha}-synuclein amyloid fibrils was stimulated by 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BIMbF{sub 3}Im], and these fibrils could be disaggregated by polyphenols such as epigallocatechin gallate (EGCG) and baicalein. Furthermore, the effect of [BIMbF{sub 3}Im] on the {alpha}-synuclein tandem repeat ({alpha}-TR) in the aggregation process was studied.« less

  3. Autophagy and Alpha-Synuclein: Relevance to Parkinson's Disease and Related Synucleopathies.

    PubMed

    Xilouri, Maria; Brekk, Oeystein Roed; Stefanis, Leonidas

    2016-02-01

    Evidence from human postmortem material, transgenic mice, and cellular/animal models of PD link alpha-synuclein accumulation to alterations in the autophagy lysosomal pathway. Conversely, alpha-synuclein mutations related to PD pathogenesis, as well as post-translational modifications of the wild-type protein, result in the generation of aberrant species that may impair further the function of the autophagy lysosomal pathway, thus generating a vicious cycle leading to neuronal death. Moreover, PD-linked mutations in lysosomal-related genes, such as glucocerebrosidase, have been also shown to contribute to alpha-synuclein accumulation and related toxicity, indicating that lysosomal dysfunction may, in part, account for the neurodegeneration observed in synucleinopathies. In the current review, we summarize findings related to the inter-relationship between alpha-synuclein and lysosomal proteolytic pathways, focusing especially on recent experimental strategies based on the manipulation of the autophagy lysosomal pathway to counteract alpha-synuclein-mediated neurotoxicity in vivo. Pinpointing the factors that regulate alpha-synuclein association to the lysosome may represent potential targets for therapeutic interventions in PD and related synucleinopathies. © 2016 International Parkinson and Movement Disorder Society.

  4. Rasagiline protects against alpha-synuclein induced sensitivity to oxidative stress in dopaminergic cells

    PubMed Central

    Chau, K.Y.; Cooper, J.M.; Schapira, A.H.V.

    2010-01-01

    Rasagiline is a propargylamine and irreversible monoamine oxidase (MAO) B inhibitor used for the treatment of Parkinson's disease (PD). It has demonstrated neuroprotective properties in laboratory studies. Current concepts of PD aetiopathogenesis include the role of alpha-synuclein, protein aggregation, free radical metabolism and mitochondrial dysfunction in contributing to cell death. We have used a combination of alpha-synuclein and free radical mediated toxicity in a dopaminergic cell line to provide a model of nigral toxicity in order to investigate the potential molecular mechanisms that mediate rasagiline protection. We demonstrate that rasagiline protects against cell death induced by the combination of free radicals generated by paraquat and either wild-type or A53T mutant alpha-synuclein over-expression. This protection was associated with a reduction in caspase 3 activation, a reduction in superoxide generation and a trend to ameliorate the fall in mitochondrial membrane potential. Rasagiline induced an increase in cellular glutathione levels. The results support a role for rasagiline in protecting dopaminergic cells against free radical mediated damage and apoptosis in the presence of alpha-synuclein over-expression. The data are of relevance to the interpretation of the potential mechanisms of action of rasagiline in explaining the results of disease modification trials in PD. PMID:20624440

  5. α-Synuclein transgenic mice reveal compensatory increases in Parkinson's disease-associated proteins DJ-1 and parkin and have enhanced α-synuclein and PINK1 levels after rotenone treatment.

    PubMed

    George, Sonia; Mok, Su San; Nurjono, Milawaty; Ayton, Scott; Finkelstein, David I; Masters, Colin L; Li, Qiao-Xin; Culvenor, Janetta G

    2010-10-01

    Parkinson's disease (PD) is a severe neurodegenerative disorder characterised by loss of dopaminergic neurons of the substantia nigra. The pathological hallmarks are cytoplasmic inclusions termed Lewy bodies consisting primarily of aggregated alpha-synuclein (alphaSN). Different lines of transgenic mice have been developed to model PD but have failed to recapitulate the hallmarks of this disease. Since treatment of rodents with the pesticide rotenone can reproduce nigrostriatal cell loss and other features of PD, we aimed to test chronic oral administration of rotenone to transgenic mice over-expressing human alphaSN with the A53T mutation. Initial assessment of this transgenic line for compensatory molecular changes indicated decreased brain beta-synuclein expression and significantly increased levels of the PD-associated oxidative stress response protein, DJ-1, and the E3 ubiquitin ligase enzyme, Parkin. Rotenone treatment of 30 mg/kg for 25 doses over a 35-day period was tolerated in the transgenic mice and resulted in decreased spontaneous locomotor movement and increased cytoplasmic alphaSN expression. The mitochondrial Parkinson's-associated PTEN-induced kinase 1 protein levels were also increased in transgenic mouse brain after rotenone treatment; there was no change in brain dopamine levels or nigrostriatal cell loss. These hA53T alphaSN transgenic mice provide a useful model for presymptomatic Parkinson's features and are valuable for study of associated compensatory changes in early Parkinson's disease stages.

  6. Expression of alpha-synuclein during eye development of mice (Mus musculus), chick (Gallus gallus domisticus) and fish (Ctenopharyngodon idella) in a comparison study.

    PubMed

    Seleem, Amin A

    2015-08-01

    Synucleins are small proteins associated with neurodegenerative diseases, alpha-synuclein is a Parkinson's disease-linked protein of ubiquitous expression in the central nervous system. This study aimed at the localization of alpha-synuclein during eye development of mice (Mus musculus), chick (Gallus gallus domisticus) and fish (Ctenopharyngodon idella) by immunohistochemical staining in a comparison study. The results showed that alpha-synuclein expression increased gradually with the development of ciliary body, iris, retina and cornea of mice at E17, P1, P3, P7 and chick at E5, E10, E15 with unequal appearance of alpha-synuclein expression. Also, it was not detected in iridocorneal angle during eye development of mice and chick. Alpha-synuclein expression during fish eye development at P10, P15, P20 was not detected either in the ciliray body or Iris regions and it was pronounced with sharp signals in the highly specialized tissue of the iridocorneal angle at P20. Also, the expression was gradually increased from P15 to P20 in fish retina and cornea. The pattern of expression and distribution of alpha-synuclein during the development of ciliary body and iris of mice, chick and fish has not been previously characterized, The data concluded that alpha-synuclein has important cellular function during eye development of studied animals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Drift diffusion model of reward and punishment learning in rare alpha-synuclein gene carriers.

    PubMed

    Moustafa, Ahmed A; Kéri, Szabolcs; Polner, Bertalan; White, Corey

    To understand the cognitive effects of alpha-synuclein polymorphism, we employed a drift diffusion model (DDM) to analyze reward- and punishment-guided probabilistic learning task data of participants with the rare alpha-synuclein gene duplication and age- and education-matched controls. Overall, the DDM analysis showed that, relative to controls, asymptomatic alpha-synuclein gene duplication carriers had significantly increased learning from negative feedback, while they tended to show impaired learning from positive feedback. No significant differences were found in response caution, response bias, or motor/encoding time. We here discuss the implications of these computational findings to the understanding of the neural mechanism of alpha-synuclein gene duplication.

  8. Direct Correlation Between Ligand-Induced α-Synuclein Oligomers and Amyloid-like Fibril Growth

    PubMed Central

    Nors Perdersen, Martin; Foderà, Vito; Horvath, Istvan; van Maarschalkerweerd, Andreas; Nørgaard Toft, Katrine; Weise, Christoph; Almqvist, Fredrik; Wolf-Watz, Magnus; Wittung-Stafshede, Pernilla; Vestergaard, Bente

    2015-01-01

    Aggregation of proteins into amyloid deposits is the hallmark of several neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. The suggestion that intermediate oligomeric species may be cytotoxic has led to intensified investigations of pre-fibrillar oligomers, which are complicated by their transient nature and low population. Here we investigate alpha-synuclein oligomers, enriched by a 2-pyridone molecule (FN075), and the conversion of oligomers into fibrils. As probed by leakage assays, the FN075 induced oligomers potently disrupt vesicles in vitro, suggesting a potential link to disease related degenerative activity. Fibrils formed in the presence and absence of FN075 are indistinguishable on microscopic and macroscopic levels. Using small angle X-ray scattering, we reveal that FN075 induced oligomers are similar, but not identical, to oligomers previously observed during alpha-synuclein fibrillation. Since the levels of FN075 induced oligomers correlate with the amounts of fibrils among different FN075:protein ratios, the oligomers appear to be on-pathway and modeling supports an ‘oligomer stacking model’ for alpha-synuclein fibril elongation. PMID:26020724

  9. Alpha-Synuclein Expression Restricts RNA Viral Infections in the Brain.

    PubMed

    Beatman, Erica L; Massey, Aaron; Shives, Katherine D; Burrack, Kristina S; Chamanian, Mastooreh; Morrison, Thomas E; Beckham, J David

    2015-12-30

    We have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system (CNS). Enveloped RNA viruses, such as West Nile virus (WNV), invade the CNS and cause encephalitis, yet little is known about the innate neuron-specific inhibitors of viral infections in the CNS. Following WNV infection of primary neurons, we found that Asyn protein expression is increased. The infectious titer of WNV and Venezuelan equine encephalitis virus (VEEV) TC83 in the brains of Asyn-knockout mice exhibited a mean increase of 10(4.5) infectious viral particles compared to the titers in wild-type and heterozygote littermates. Asyn-knockout mice also exhibited significantly increased virus-induced mortality compared to Asyn heterozygote or homozygote control mice. Virus-induced Asyn localized to perinuclear, neuronal regions expressing viral envelope protein and the endoplasmic reticulum (ER)-associated trafficking protein Rab1. In Asyn-knockout primary neuronal cultures, the levels of expression of ER signaling pathways, known to support WNV replication, were significantly elevated before and during viral infection compared to those in Asyn-expressing primary neuronal cultures. We propose a model in which virus-induced Asyn localizes to ER-derived membranes, modulates virus-induced ER stress signaling, and inhibits viral replication, growth, and injury in the CNS. These data provide a novel and important functional role for the expression of native alpha-synuclein, a protein that is closely associated with the development of Parkinson's disease. Neuroinvasive viruses such as West Nile virus are able to infect neurons and cause severe disease, such as encephalitis, or infection of brain tissue. Following viral infection in the central nervous system, only select neurons are infected, implying that neurons exhibit innate resistance to viral infections. We discovered that native neuronal expression of alpha-synuclein inhibited viral infection in the central nervous system. When the gene for alpha-synuclein was deleted, mice exhibited significantly decreased survival, markedly increased viral growth in the brain, and evidence of increased neuron injury. Virus-induced alpha-synuclein localized to intracellular neuron membranes, and in the absence of alpha-synuclein expression, specific endoplasmic reticulum stress signaling events were significantly increased. We describe a new neuron-specific inhibitor of viral infections in the central nervous system. Given the importance of alpha-synuclein as a cause of Parkinson's disease, these data also ascribe a novel functional role for the native expression of alpha-synuclein in the CNS. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Role of Different Alpha-Synuclein Strains in Synucleinopathies, Similarities with other Neurodegenerative Diseases

    PubMed Central

    Melki, Ronald

    2015-01-01

    Abstract Misfolded protein aggregates are the hallmark of several neurodegenerative diseases in humans. The main protein constituent of these aggregates and the regions within the brain that are affected differ from one neurodegenerative disorder to another. A plethora of reports suggest that distinct diseases have in common the ability of protein aggregates to spread and amplify within the central nervous system. This review summarizes briefly what is known about the nature of the protein aggregates that are infectious and the reason they are toxic to cells. The chameleon property of polypeptides which aggregation into distinct high-molecular weight assemblies is associated to different diseases, in particular, that of alpha-synuclein which aggregation is the hallmark of distinct synucleinopathies, is discussed. Finally, strategies targeting the formation and propagation of structurally distinct alpha-synuclein assemblies associated to different synucleinopathies are presented and their therapeutic and diagnostic potential is discussed. PMID:25757830

  11. The association of metal ion exposure with alpha-synuclein-like immunoreactivity in the central nervous system of fish, Catostomus commersoni.

    PubMed

    Boudreau, Heather S; Krol, Karmen M; Eibl, Joseph K; Williams, Linda D; Rossiter, John P; Palace, Vincent P; Ross, Gregory M

    2009-05-17

    Alpha-synuclein protein aggregates are a major component of Lewy bodies, the intracytoplasmic inclusions found in dopaminergic neurons that are a defining characteristic of Parkinson's disease. Other "synucleopathies" include dementia with Lewy bodies and multisystem atrophy. In vitro, the formation of these deposits can be induced by a number of substances, including metal ions. Fish provide a useful model to study the long-term biological effects of metal ion exposure, but to date no studies have been reported concerning such exposures with respect to alpha-synuclein aggregation. Mature white sucker fish (Catostomus commersoni; aged 5-8 years) were sampled from two sites within the Red Lake area of Northwestern Ontario, a region highly contaminated by metal ions due to mining activity. Individual fish were characterized with respect to liver metal ion uptake and metallothionein levels. Central nervous system (CNS) tissues of fish from test sites representing high and low metal ion contamination were examined immunohistochemically using a polyclonal antibody recognising alpha-synuclein protein. We demonstrate here that the CNS of fish exposed to elevated metal ion environments had increased alpha-synuclein-like immunoreactive aggregates, potentially reflecting metal ion exposure leading to CNS toxicity. These findings demonstrate that fish may be an important new model for studying environmental risk factors and the pathology associated with Parkinson's disease.

  12. Alpha-synuclein aggregation induced by brief ischemia negatively impacts neuronal survival in vivo: a study in [A30P]alpha-synuclein transgenic mouse

    PubMed Central

    Unal-Cevik, Isin; Gursoy-Ozdemir, Yasemin; Yemisci, Muge; Lule, Sevda; Gurer, Gunfer; Can, Alp; Müller, Veronica; Kahle, Philip J; Dalkara, Turgay

    2011-01-01

    Alpha-synuclein oligomerization and aggregation are considered to have a role in the pathogenesis of neurodegenerative diseases. However, despite numerous in vitro studies, the impact of aggregates in the intact brain is unclear. In vitro, oxidative/nitrative stress and acidity induce α-synuclein oligomerization. These conditions favoring α-synuclein fibrillization are present in the ischemic brain, which may serve as an in vivo model to study α-synuclein aggregation. In this study, we show that 30-minute proximal middle cerebral artery (MCA) occlusion and 72 hours reperfusion induce oligomerization of wild-type α-synuclein in the ischemic mouse brain. The nonamyloidogenic isoform β-synuclein did not form oligomers. Alpha-synuclein aggregates were confined to neurons and colocalized with ubiquitin immunoreactivity. We also found that 30 minutes proximal MCA occlusion and 24 hours reperfusion induced larger infarcts in C57BL/6(Thy1)-h[A30P]alphaSYN transgenic mice, which have an increased tendency to form synuclein fibrils. Trangenics also developed more selective neuronal necrosis when subjected to 20 minutes distal MCA occlusion and 72 hours reperfusion. Enhanced 3-nitrotyrosine immunoreactivity in transgenic mice suggests that oxidative/nitrative stress may be one of the mechanisms mediating aggregate toxicity. Thus, the increased vulnerability of transgenic mice to ischemia suggests that α-synuclein aggregates not only form during ischemia but also negatively impact neuronal survival, supporting the idea that α-synuclein misfolding may be neurotoxic. PMID:20877387

  13. Clearing Extracellular Alpha-Synuclein from Cerebrospinal Fluid: A New Therapeutic Strategy in Parkinson’s Disease

    PubMed Central

    Padilla-Zambrano, Huber S.; Tomás-Zapico, Cristina; García, Benjamin Fernández

    2018-01-01

    This concept article aims to show the rationale of targeting extracellular α-Synuclein (α-Syn) from cerebrospinal fluid (CSF) as a new strategy to remove this protein from the brain in Parkinson’s disease (PD). Misfolding and intracellular aggregation of α-synuclein into Lewy bodies are thought to be crucial in the pathogenesis of PD. Recent research has shown that small amounts of monomeric and oligomeric α-synuclein are released from neuronal cells by exocytosis and that this extracellular alpha-synuclein contributes to neurodegeneration, progressive spreading of alpha-synuclein pathology, and neuroinflammation. In PD, extracellular oligomeric-α-synuclein moves in constant equilibrium between the interstitial fluid (ISF) and the CSF. Thus, we expect that continuous depletion of oligomeric-α-synuclein in the CSF will produce a steady clearance of the protein in the ISF, preventing transmission and deposition in the brain. PMID:29570693

  14. Clearing Extracellular Alpha-Synuclein from Cerebrospinal Fluid: A New Therapeutic Strategy in Parkinson's Disease.

    PubMed

    Menéndez-González, Manuel; Padilla-Zambrano, Huber S; Tomás-Zapico, Cristina; García, Benjamin Fernández

    2018-03-23

    This concept article aims to show the rationale of targeting extracellular α-Synuclein (α-Syn) from cerebrospinal fluid (CSF) as a new strategy to remove this protein from the brain in Parkinson's disease (PD). Misfolding and intracellular aggregation of α-synuclein into Lewy bodies are thought to be crucial in the pathogenesis of PD. Recent research has shown that small amounts of monomeric and oligomeric α-synuclein are released from neuronal cells by exocytosis and that this extracellular alpha-synuclein contributes to neurodegeneration, progressive spreading of alpha-synuclein pathology, and neuroinflammation. In PD, extracellular oligomeric-α-synuclein moves in constant equilibrium between the interstitial fluid (ISF) and the CSF. Thus, we expect that continuous depletion of oligomeric-α-synuclein in the CSF will produce a steady clearance of the protein in the ISF, preventing transmission and deposition in the brain.

  15. Mutant alpha-synuclein overexpression mediates early proinflammatory activity.

    PubMed

    Su, Xiaomin; Federoff, Howard J; Maguire-Zeiss, Kathleen A

    2009-10-01

    Microglia provide immune surveillance for the brain through both the removal of cellular debris and protection against infection by microorganisms and "foreign" molecules. Upon activation, microglia display an altered morphology and increased expression of proinflammatory molecules. Increased numbers of activated microglia have been identified in a number of neurodegenerative diseases including Parkinson's disease (PD). What remains to be determined is whether activated microglia result from ongoing cell death or are involved in disease initiation and progression. To address this question we utilized a transgenic mouse model that expresses a mutated form of a key protein involved in Parkinson's disease, alpha-synuclein. Herein, we report an increase in activated microglia and proinflammatory molecules in 1-month-old transgenic mice well before cell death occurs in this model. Frank microglial activation is resolved by 6 months of age while a subset of proinflammatory molecules remain elevated for 12 months. Both tyrosine hydroxylase mRNA expression and alpha-synuclein protein are decreased in the striatum of older animals evidence of dystrophic neuritic projections. To determine whether mutated alpha-synuclein could directly activate microglia primary microglia-enriched cell cultures were treated with exogenous mutated alpha-synuclein. The data reveal an increase in activated microglia and proinflammatory molecules due to direct interaction with mutated alpha-synuclein. Together, these data demonstrate that mutated alpha-synuclein mediates a proinflammatory response in microglia and this activity may participate in PD pathogenesis.

  16. MicroRNA-7 facilitates the degradation of alpha-synuclein and its aggregates by promoting autophagy.

    PubMed

    Choi, Doo Chul; Yoo, Myungsik; Kabaria, Savan; Junn, Eunsung

    2018-05-05

    Alpha-Synuclein (α-Syn) is an important protein in the pathogenesis of Parkinson disease (PD) as it accumulates as fibrillar inclusions in affected brain regions including dopaminergic neurons in the substantia nigra. Elevated levels of α-Syn seem to be crucial in mediating its toxicity. Thus, detailed information regarding the regulatory mechanism of α-Syn expression in several layers such as transcription, post-transcription and post-translation is needed in order to devise therapeutic interventions for PD. Previously, we reported that expression of α-Syn is repressed by microRNA-7 (miR-7) through its effect on the 3'-untranslated region (UTR) of α-Syn mRNA. Here, we show that miR-7 also accelerates the clearance of α-Syn and its aggregates by promoting autophagy in differentiated ReNcell VM cells. Further, miR-7 facilitates the degradation of pre-formed fibrils of α-Syn transported from outside the cells. This additional mechanism for reducing α-Syn levels show miR-7 to be an important molecular target for PD and other alpha-synucleinopathies. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Immunotherapy targeting α-synuclein protofibrils reduced pathology in (Thy-1)-h[A30P] α-synuclein mice.

    PubMed

    Lindström, Veronica; Fagerqvist, Therese; Nordström, Eva; Eriksson, Fredrik; Lord, Anna; Tucker, Stina; Andersson, Jessica; Johannesson, Malin; Schell, Heinrich; Kahle, Philipp J; Möller, Christer; Gellerfors, Pär; Bergström, Joakim; Lannfelt, Lars; Ingelsson, Martin

    2014-09-01

    Several lines of evidence suggest that accumulation of aggregated alpha-synuclein (α-synuclein) in the central nervous system (CNS) is an early pathogenic event in Parkinson's disease and other Lewy body disorders. In recent years, animal studies have indicated immunotherapy with antibodies directed against α-synuclein as a promising novel treatment strategy. Since large α-synuclein oligomers, or protofibrils, have been demonstrated to possess pronounced cytotoxic properties, such species should be particularly attractive as therapeutic targets. In support of this, (Thy-1)-h[A30P] α-synuclein transgenic mice with motor dysfunction symptoms were found to display increased levels of α-synuclein protofibrils in the CNS. An α-synuclein protofibril-selective monoclonal antibody (mAb47) was evaluated in this α-synuclein transgenic mouse model. As measured by ELISA, 14month old mice treated for 14weeks with weekly intraperitoneal injections of mAb47 displayed significantly lower levels of both soluble and membrane-associated protofibrils in the spinal cord. Besides the lower levels of pathogenic α-synuclein demonstrated, a reduction of motor dysfunction in transgenic mice upon peripheral administration of mAb47 was indicated. Thus, immunotherapy with antibodies targeting toxic α-synuclein species holds promise as a future disease-modifying treatment in Parkinson's disease and related disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Structural Characteristics of the Alpha-Synuclein Oligomers Stabilized By the Flavonoid Baicalein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, D.-P.; Fink, A.L.; Uversky, V.N.

    The flavonoid baicalein inhibits fibrillation of alpha-synuclein, which is a major component of Lewy bodies in Parkinson's disease. It has been known that baicalein induces the formation of alpha-synuclein oligomers and consequently prevents their fibrillation. In order to evaluate the structural properties of baicalein-stabilized oligomers, we purified oligomer species by HPLC and examined their stability and structure by CD, Fourier transform infrared spectroscopy, size exclusion chromatography HPLC, small-angle X-ray scattering, and atomic force microscopy. Baicalein-stabilized oligomers are beta-sheet-enriched according to CD and Fourier transform infrared spectroscopy analyses. They did not form fibrils even after very prolonged incubation. From small-angle X-raymore » scattering data and atomic force microscopy images, the oligomers were characterized as quite compact globular species. Oligomers were extremely stable, with a GdmCl C(m)=3.3 M. This high stability explains the previously observed inhibition properties of baicalein against alpha-synuclein fibrillation. These baicalein-stabilized oligomers, added to the solution of aggregating alpha-synuclein, were able to noticeably inhibit its fibrillation. After prolonged coincubation, short fibrils were formed, suggesting an effective interaction of oligomers with monomeric alpha-synuclein. Membrane permeability tests suggested that the baicalein-stabilized oligomers had a mild effect on the integrity of the membrane surface. This effect was rather similar to that of the monomeric protein, suggesting that targeted stabilization of certain alpha-synuclein oligomers might offer a potential strategy for the development of novel Parkinson's disease therapies.« less

  19. Alpha-synuclein: relating metals to structure, function and inhibition.

    PubMed

    McDowall, J S; Brown, D R

    2016-04-01

    Alpha-synuclein has long been studied due to its involvement in the progression of Parkinson's disease (PD), a common neurodegenerative disorder, although a consensus on the exact function of this protein is elusive. This protein shows remarkable structural plasticity and this property is important for both correct cellular function and pathological progression of PD. Formation of intracellular oligomeric species within the substantia nigra correlates with disease progression and it has been proposed that formation of a partially folded intermediate is key to the initiation of the fibrillisation process. Many factors can influence changes in the structure of alpha-synuclein such as disease mutations and interaction with metals and neurotransmitters. High concentrations of both dopamine and metals are present in the substantia nigra making this an ideal location for both the structural alteration of alpha-synuclein and the production of toxic oxygen species. The recent proposal that alpha-synuclein is a ferrireductase is important as it can possibly catalyse the formation of such reactive species and as a result exacerbate neurodegeneration.

  20. THE EFFECT OF GESTATIONAL MERCURY VAPOR EXPOSURE ON RAT BRAIN A-SYNUCLEIN EXPRESSION.

    EPA Science Inventory

    Alpha-synuclein is a highly conserved protein that localizes to pre-synaptic terminals and is thought to play a role in neuronal plasticity. It is upregulated developmentally and continues to be expressed at high levels in the adult brain. Its presence in a number of neuronal (A...

  1. Antiapoptotic property of human alpha-synuclein in neuronal cell lines is associated with the inhibition of caspase-3 but not caspase-9 activity.

    PubMed

    Li, Wenxue; Lee, Michael K

    2005-06-01

    Abnormalities of alpha-synuclein (alpha-Syn) are mechanistically linked to Parkinson's disease (PD) and other alpha-synucleinopathies. To gain additional insights into the relationships between alpha-Syn expression and cell death, we examined the effects of expressing human alpha-Syn (Hualpha-Syn) variants on the cellular vulnerability to apoptotic stimuli. We show that the expression of wild-type (WT) and A30P mutant, but not A53T mutant, Hualpha-Syn leads to the protection of neuronal cell lines from apoptosis but not necrosis. Significantly, Hualpha-Syn did not protect non-neuronal cell lines from apoptosis. We also show that A53T mutant is a loss of function in regards to the antiapoptotic property since the expression of WT Hualpha-Syn with an excess of A53T mutant Hualpha-Syn leads to protection of the cells from apoptosis. The antiapoptotic property is specific to human alpha-Syn as neither beta-Syn nor mouse alpha-Syn protected cells from apoptosis, and the carboxy-terminal 20 amino acids are required for the antiapoptotic property. Analyses of capase-3 and caspase-9 activation reveal that the antiapoptotic property of Hualpha-Syn in neuronal cell lines is associated with the attenuation of caspase-3 activity without affecting the caspase-9 activity or the levels of cleaved, active caspase-3. We conclude that Hualpha-Syn modulates the activity of cleaved caspase-3 product in neuronal cell lines.

  2. Formation and implications of alpha-synuclein radical in Maneb- and paraquat-induced models of Parkinson’s disease

    PubMed Central

    Kumar, Ashutosh; Leinisch, Fabian; Kadiiska, Maria B.; Corbett, Jean; Mason, Ronald P.

    2015-01-01

    Parkinson’s disease (PD) is a debilitating, progressive, neurodegenerative disorder characterized by progressive loss of dopaminergic neurons and motor deficits. Alpha-synuclein-containing aggregates represent a feature of a variety of neurodegenerative disorders, including PD; however, the mechanism that initiates and promotes intraneuronal alpha-synuclein aggregation remains unknown. We hypothesized protein radical formation as an initiating mechanism for alpha-synuclein aggregation. Therefore, we used the highly sensitive immuno-spin trapping technique to investigate protein radical formation as a possible mechanism of alpha-synuclein aggregation as well as to investigate the source of protein radical formation in the midbrains of Maneb and paraquat coexposed mice. Coexposure to Maneb and paraquat for 6 weeks resulted in active microgliosis, NADPH oxidase activation, and inducible nitric oxide synthase (iNOS) induction, which culminated in protein radical formation in the midbrains of mice. Results obtained with immuno-spin trapping and immunoprecipitation experiments confirmed formation of alpha-synuclein radicals in dopaminergic neurons of exposed mice. Free radical formation requires NADPH oxidase and iNOS, as indicated by decreased protein radical formation in knockout mice (P47phox−/− and iNOS−/−) and in mice treated with inhibitors such as FeTPPS (a peroxynitrite decomposition catalyst), 1400W (an iNOS inhibitor), or apocynin (a NADPH oxidase inhibitor). Concurrence of protein radical formation with dopaminergic neuronal death indicated a link between protein radicals and disease progression. Taken together, these results show for the first time the formation and detection of the alpha-synuclein radical and suggest that NADPH oxidase and iNOS play roles in peroxynitrite-mediated protein radical formation and subsequent neuronal death in the midbrains of Maneb and paraquat coexposed mice. PMID:25952542

  3. Alpha-synuclein mitochondrial interaction leads to irreversible translocation and complex I impairment.

    PubMed

    Martínez, Jimena H; Fuentes, Federico; Vanasco, Virginia; Alvarez, Silvia; Alaimo, Agustina; Cassina, Adriana; Coluccio Leskow, Federico; Velazquez, Francisco

    2018-08-01

    α-synuclein is involved in both familial and sporadic Parkinson's disease. Although its interaction with mitochondria has been well documented, several aspects remains unknown or under debate such as the specific sub-mitochondrial localization or the dynamics of the interaction. It has been suggested that α-synuclein could only interact with ER-associated mitochondria. The vast use of model systems and experimental conditions makes difficult to compare results and extract definitive conclusions. Here we tackle this by analyzing, in a simplified system, the interaction between purified α-synuclein and isolated rat brain mitochondria. This work shows that wild type α-synuclein interacts with isolated mitochondria and translocates into the mitochondrial matrix. This interaction and the irreversibility of α-synuclein translocation depend on incubation time and α-synuclein concentration. FRET experiments show that α-synuclein localizes close to components of the TOM complex suggesting a passive transport of α-synuclein through the outer membrane. In addition, α-synuclein binding alters mitochondrial function at the level of Complex I leading to a decrease in ATP synthesis and an increase of ROS production. Copyright © 2018. Published by Elsevier Inc.

  4. Alpha-synuclein levels in patients with multiple system atrophy: a meta-analysis.

    PubMed

    Yang, Fei; Li, Wan-Jun; Huang, Xu-Sheng

    2018-05-01

    This study evaluates the relationship between multiple system atrophy and α-synuclein levels in the cerebrospinal fluid, plasma and neural tissue. Literature search for relevant research articles was undertaken in electronic databases and study selection was based on a priori eligibility criteria. Random-effects meta-analyses of standardized mean differences in α-synuclein levels between multiple system atrophy patients and normal controls were conducted to obtain the overall and subgroup effect sizes. Meta-regression analyses were performed to evaluate the effect of age, gender and disease severity on standardized mean differences. Data were obtained from 11 studies involving 378 multiple system atrophy patients and 637 healthy controls (age: multiple system atrophy patients 64.14 [95% confidence interval 62.05, 66.23] years; controls 64.16 [60.06, 68.25] years; disease duration: 44.41 [26.44, 62.38] months). Cerebrospinal fluid α-synuclein levels were significantly lower in multiple system atrophy patients than in controls but in plasma and neural tissue, α-synuclein levels were significantly higher in multiple system atrophy patients (standardized mean difference: -0.99 [-1.65, -0.32]; p = 0.001). Percentage of male multiple system atrophy patients was significantly positively associated with the standardized mean differences of cerebrospinal fluid α-synuclein levels (p = 0.029) whereas the percentage of healthy males was not associated with the standardized mean differences of cerebrospinal fluid α-synuclein levels (p = 0.920). In multiple system atrophy patients, α-synuclein levels were significantly lower in the cerebrospinal fluid and were positively associated with the male gender.

  5. [Targeted inactivation of gamma-synuclein gene affects anxiety and exploratory behaviour of mice].

    PubMed

    Kokhan, V S; Bolkunov, A V; Ustiugov, A A; Van'kin, G I; Shelkovnikova, T A; Redkozubova, O M; Strekalova, T V; Bukhman, V L; Ninkina, N N; Bachurin, S O

    2011-01-01

    Gamma(gamma)-synuclein is a member of synuclein family of cytoplasmic and predominantly neuronal proteins found only in vertebrates. Gamma-synuclein is abundant in axons and presynaptic terminals of neurons localized in brain regions involved in emotions, learning and memory. However, the role of gamma-synuclein in these brain functions was not previously assessed. We have demonstrated for the first time that the loss of gamma-synuclein results in a significant increase in the level of orientation response in novel environment and decrease in the level of state anxiety.

  6. KLK6 proteolysis is implicated in the turnover and uptake of extracellular alpha-synuclein species.

    PubMed

    Pampalakis, Georgios; Sykioti, Vasia-Samantha; Ximerakis, Methodios; Stefanakou-Kalakou, Ioanna; Melki, Ronald; Vekrellis, Kostas; Sotiropoulou, Georgia

    2017-02-28

    KLK6 is a serine protease highly expressed in the nervous system. In synucleinopathies, including Parkinson disease, the levels of KLK6 inversely correlate with α-synuclein in CSF. Recently, we suggested that recombinant KLK6 mediates the degradation of extracellular α-synuclein directly and via a proteolytic cascade that involves unidentified metalloproteinase(s). Here, we show that recombinant and naturally secreted KLK6 can readily cleave α-synuclein fibrils that have the potential for cell-to-cell propagation in "a prion-like mechanism". Importantly, KLK6-deficient primary cortical neurons have increased ability for α-synuclein fibril uptake. We also demonstrate that KLK6 activates proMMP2, which in turn can cleave α-synuclein. The repertoire of proteases activated by KLK6 in a neuronal environment was analyzed by degradomic profiling, which also identified ADAMTS19 and showed that KLK6 has a limited number of substrates indicating specific biological functions such as the regulation of α-synuclein turnover. We generated adenoviral vectors for KLK6 delivery and demonstrated that the levels of extracellular α-synuclein can be reduced by neuronally secreted KLK6. Our findings open the possibility to exploit KLK6 as a novel therapeutic target for Parkinson disease and other synucleinopathies.

  7. KLK6 proteolysis is implicated in the turnover and uptake of extracellular alpha-synuclein species

    PubMed Central

    Pampalakis, Georgios; Sykioti, Vasia-Samantha; Ximerakis, Methodios; Stefanakou-Kalakou, Ioanna; Melki, Ronald; Vekrellis, Kostas; Sotiropoulou, Georgia

    2017-01-01

    KLK6 is a serine protease highly expressed in the nervous system. In synucleinopathies, including Parkinson disease, the levels of KLK6 inversely correlate with α-synuclein in CSF. Recently, we suggested that recombinant KLK6 mediates the degradation of extracellular α-synuclein directly and via a proteolytic cascade that involves unidentified metalloproteinase(s). Here, we show that recombinant and naturally secreted KLK6 can readily cleave α-synuclein fibrils that have the potential for cell-to-cell propagation in “a prion-like mechanism”. Importantly, KLK6-deficient primary cortical neurons have increased ability for α-synuclein fibril uptake. We also demonstrate that KLK6 activates proMMP2, which in turn can cleave α-synuclein. The repertoire of proteases activated by KLK6 in a neuronal environment was analyzed by degradomic profiling, which also identified ADAMTS19 and showed that KLK6 has a limited number of substrates indicating specific biological functions such as the regulation of α-synuclein turnover. We generated adenoviral vectors for KLK6 delivery and demonstrated that the levels of extracellular α-synuclein can be reduced by neuronally secreted KLK6. Our findings open the possibility to exploit KLK6 as a novel therapeutic target for Parkinson disease and other synucleinopathies. PMID:27845893

  8. Ageing enhances alpha-synuclein, ubiquitin and endoplasmic reticular stress protein expression in the nigral neurons of Asian Indians.

    PubMed

    Alladi, Phalguni Anand; Mahadevan, Anita; Vijayalakshmi, K; Muthane, Uday; Shankar, S K; Raju, T R

    2010-11-01

    Accumulating evidences suggest that dopaminergic neuronal loss in the substantia nigra pars compacta (SNpc) during ageing and in Parkinson's disease (PD) is linked to neurodegenerative changes like exponential increase in alpha-synuclein expression and protein misfolding. Lewy body formation is also a quintessential observation in neurodegeneration and PD. In experimental models of PD, GRP78 a neuroprotective endoplasmic reticulum (ER) chaperone protein targets misfolded proteins for degradation and prevents release of caspase12 from the ER. Release of active caspase12 and its translocation to the nucleus induces ER mediated apoptosis. The effect of ageing on these proteins in human nigra is not known. We evaluated alpha-synuclein, caspase12, GRP78 and ubiquitin expression in the SNpc of Asian Indians, using immunohistochemistry and stereology. The number of alpha-synuclein and caspase12 immunoreactive neurons increased gradually with age whereas the number of GRP78-labeled neurons remained stable. In contrast, GRP78 protein expression was significantly upregulated with age, while alpha-synuclein and caspase12 increased slightly. An increase in the size and numbers of marinesco bodies was prominent after the sixth decade. The mild increase in alpha-synuclein expression and occurrence of marinesco bodies suggests ageing induced protein misfolding and GRP78 upregulation indicates presence of ER stress. The logarithmic upregulation of GRP78 could even be an indicator of neuroprotective or neuromodulatory response of ER to protein misfolding and initiation of unfolded protein response pathway. Since dopaminergic neurons are preserved in ageing Asian Indians, our study possibly signifies better proteasomal or ER response and partially explains the lower prevalence of PD in them. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Structural and functional characterization of two alpha-synuclein strains

    NASA Astrophysics Data System (ADS)

    Bousset, Luc; Pieri, Laura; Ruiz-Arlandis, Gemma; Gath, Julia; Jensen, Poul Henning; Habenstein, Birgit; Madiona, Karine; Olieric, Vincent; Böckmann, Anja; Meier, Beat H.; Melki, Ronald

    2013-10-01

    α-synuclein aggregation is implicated in a variety of diseases including Parkinson’s disease, dementia with Lewy bodies, pure autonomic failure and multiple system atrophy. The association of protein aggregates made of a single protein with a variety of clinical phenotypes has been explained for prion diseases by the existence of different strains that propagate through the infection pathway. Here we structurally and functionally characterize two polymorphs of α-synuclein. We present evidence that the two forms indeed fulfil the molecular criteria to be identified as two strains of α-synuclein. Specifically, we show that the two strains have different structures, levels of toxicity, and in vitro and in vivo seeding and propagation properties. Such strain differences may account for differences in disease progression in different individuals/cell types and/or types of synucleinopathies.

  10. Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein.

    PubMed

    Fleming, Sheila M; Salcedo, Jonathan; Fernagut, Pierre-Olivier; Rockenstein, Edward; Masliah, Eliezer; Levine, Michael S; Chesselet, Marie-Françoise

    2004-10-20

    Accumulation of alpha-synuclein in brain is a hallmark of synucleinopathies, neurodegenerative diseases that include Parkinson's disease. Mice overexpressing alpha-synuclein under the Thy-1 promoter (ASO) show abnormal accumulation of alpha-synuclein in cortical and subcortical regions of the brain, including the substantia nigra. We examined the motor deficits in ASO mice with a battery of sensorimotor tests that are sensitive to alterations in the nigrostriatal dopaminergic system. Male wild-type and ASO mice were tested every 2 months for 8 months for motor performance and coordination on a challenging beam, inverted grid, and pole, sensorimotor deficits in an adhesive removal test, spontaneous activity in a cylinder, and gait. Fine motor skills were assessed by the ability to grasp cotton from a bin. ASO mice displayed significant impairments in motor performance and coordination and a reduction in spontaneous activity as early as 2 months of age. Motor performance and coordination impairments became progressively worse with age and sensorimotor deficits appeared at 6 months. Fine motor skills were altered at 4 months and worsened at 8 months. These data indicate that overexpression of alpha-synuclein induced an early and progressive behavioral phenotype that can be detected in multiple tests of sensorimotor function. These behavioral deficits provide a useful way to assess novel drug therapy in genetic models of synucleinopathies.

  11. Single-molecule FRET studies on alpha-synuclein oligomerization of Parkinson’s disease genetically related mutants

    NASA Astrophysics Data System (ADS)

    Tosatto, Laura; Horrocks, Mathew H.; Dear, Alexander J.; Knowles, Tuomas P. J.; Dalla Serra, Mauro; Cremades, Nunilo; Dobson, Christopher M.; Klenerman, David

    2015-11-01

    Oligomers of alpha-synuclein are toxic to cells and have been proposed to play a key role in the etiopathogenesis of Parkinson’s disease. As certain missense mutations in the gene encoding for alpha-synuclein induce early-onset forms of the disease, it has been suggested that these variants might have an inherent tendency to produce high concentrations of oligomers during aggregation, although a direct experimental evidence for this is still missing. We used single-molecule Förster Resonance Energy Transfer to visualize directly the protein self-assembly process by wild-type alpha-synuclein and A53T, A30P and E46K mutants and to compare the structural properties of the ensemble of oligomers generated. We found that the kinetics of oligomer formation correlates with the natural tendency of each variant to acquire beta-sheet structure. Moreover, A53T and A30P showed significant differences in the averaged FRET efficiency of one of the two types of oligomers formed compared to the wild-type oligomers, indicating possible structural variety among the ensemble of species generated. Importantly, we found similar concentrations of oligomers during the lag-phase of the aggregation of wild-type and mutated alpha-synuclein, suggesting that the properties of the ensemble of oligomers generated during self-assembly might be more relevant than their absolute concentration for triggering neurodegeneration.

  12. Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective.

    PubMed

    Tanaka, Mikiei; Kim, Yong Man; Lee, Gwang; Junn, Eunsung; Iwatsubo, Takeshi; Mouradian, M Maral

    2004-02-06

    Lewy bodies (LBs), which are the hallmark pathologic features of Parkinson's disease and of dementia with LBs, have several morphologic and molecular similarities to aggresomes. Whether such cytoplasmic inclusions contribute to neuronal death or protect cells from the toxic effects of misfolded proteins remains controversial. In this report, the role of aggresomes in cell viability was addressed in the context of over-expressing alpha-synuclein and its interacting partner synphilin-1 using engineered 293T cells. Inhibition of proteasome activity elicited the formation of juxtanuclear aggregates with characteristics of aggresomes including immunoreactivity for vimentin, gamma-tubulin, ubiquitin, proteasome subunit, and hsp70. As expected from the properties of aggresomes, the microtubule disrupting agents, vinblastin and nocodazole, markedly prevented the formation of these inclusions. Similar to LBs, the phosphorylated form of alpha-synuclein co-localized in these synphilin-1-containing aggresomes. Although the caspase inhibitor z-VAD-fmk significantly reduced the number of apoptotic cells, it had no impact on the percentage of aggresome-positive cells. Finally, quantitative analysis revealed aggresomes in 60% of nonapoptotic cells but only in 10% of apoptotic cells. Additionally, alpha-synuclein-induced apoptosis was not coupled with increased prevalence of aggresome-bearing cells. Taken together, these observations indicate a disconnection between aggresome formation and apoptosis, and support a protective role for these inclusions from the toxicity associated with the combined over-expression of alpha-synuclein and synphilin-1.

  13. Small heat shock proteins protect against {alpha}-synuclein-induced toxicity and aggregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Outeiro, Tiago Fleming; Klucken, Jochen; Strathearn, Katherine E.

    Protein misfolding and inclusion formation are common events in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD) or Huntington's disease (HD). {alpha}-Synuclein (aSyn) is the main protein component of inclusions called Lewy bodies (LB) which are pathognomic of PD, Dementia with Lewy bodies (DLB), and other diseases collectively known as LB diseases. Heat shock proteins (HSPs) are one class of the cellular quality control system that mediate protein folding, remodeling, and even disaggregation. Here, we investigated the role of the small heat shock proteins Hsp27 and {alpha}B-crystallin, in LB diseases. We demonstrate, via quantitative PCR, that Hsp27 messengermore » RNA levels are {approx}2-3-fold higher in DLB cases compared to control. We also show a corresponding increase in Hsp27 protein levels. Furthermore, we found that Hsp27 reduces aSyn-induced toxicity by {approx}80% in a culture model while {alpha}B-crystallin reduces toxicity by {approx}20%. In addition, intracellular inclusions were immunopositive for endogenous Hsp27, and overexpression of this protein reduced aSyn aggregation in a cell culture model.« less

  14. Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders.

    PubMed

    Goldstein, David S; Kopin, Irwin J; Sharabi, Yehonatan

    2014-12-01

    Several neurodegenerative diseases involve loss of catecholamine neurons-Parkinson disease is a prototypical example. Catecholamine neurons are rare in the nervous system, and why they are vulnerable in PD and related disorders has been mysterious. Accumulating evidence supports the concept of "autotoxicity"-inherent cytotoxicity of catecholamines and their metabolites in the cells in which they are produced. According to the "catecholaldehyde hypothesis" for the pathogenesis of Parkinson disease, long-term increased build-up of 3,4-dihydroxyphenylacetaldehyde (DOPAL), the catecholaldehyde metabolite of dopamine, causes or contributes to the eventual death of dopaminergic neurons. Lewy bodies, a neuropathologic hallmark of PD, contain precipitated alpha-synuclein. Bases for the tendency of alpha-synuclein to precipitate in the cytoplasm of catecholaminergic neurons have also been mysterious. Since DOPAL potently oligomerizes and aggregates alpha-synuclein, the catecholaldehyde hypothesis provides a link between alpha-synucleinopathy and catecholamine neuron loss in Lewy body diseases. The concept developed here is that DOPAL and alpha-synuclein are nodes in a complex nexus of interacting homeostatic systems. Dysfunctions of several processes, including decreased vesicular sequestration of cytoplasmic catecholamines, decreased aldehyde dehydrogenase activity, and oligomerization of alpha-synuclein, lead to conversion from the stability afforded by negative feedback regulation to the instability, degeneration, and system failure caused by induction of positive feedback loops. These dysfunctions result from diverse combinations of genetic predispositions, environmental exposures, stress, and time. The notion of catecholamine autotoxicity has several implications for treatment, disease modification, and prevention. Conversely, disease modification clinical trials would provide key tests of the catecholaldehyde hypothesis. Published by Elsevier Inc.

  15. Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders☆

    PubMed Central

    Goldstein, David S.; Kopin, Irwin J.; Sharabi, Yehonatan

    2015-01-01

    Several neurodegenerative diseases involve loss of catecholamine neurons—Parkinson disease is a prototypical example. Catecholamine neurons are rare in the nervous system, and why they are vulnerable in PD and related disorders has been mysterious. Accumulating evidence supports the concept of “autotoxicity”—inherent cytotoxicity of catecholamines and their metabolites in the cells in which they are produced. According to the “catecholaldehyde hypothesis” for the pathogenesis of Parkinson disease, long-term increased build-up of 3,4-dihydroxyphenylacetaldehyde (DOPAL), the catecholaldehyde metabolite of dopamine, causes or contributes to the eventual death of dopaminergic neurons. Lewy bodies, a neuropathologic hallmark of PD, contain precipitated alpha-synuclein. Bases for the tendency of alpha-synuclein to precipitate in the cytoplasm of catecholaminergic neurons have also been mysterious. Since DOPAL potently oligomerizes and aggregates alpha-synuclein, the catecholaldehyde hypothesis provides a link between alpha-synucleinopathy and catecholamine neuron loss in Lewy body diseases. The concept developed here is that DOPAL and alpha-synuclein are nodes in a complex nexus of interacting homeostatic systems. Dysfunctions of several processes, including decreased vesicular sequestration of cytoplasmic catecholamines, decreased aldehyde dehydrogenase activity, and oligomerization of alpha-synuclein, lead to conversion from the stability afforded by negative feedback regulation to the instability, degeneration, and system failure caused by induction of positive feedback loops. These dysfunctions result from diverse combinations of genetic predispositions, environmental exposures, stress, and time. The notion of catecholamine autotoxicity has several implications for treatment, disease modification, and prevention. Conversely, disease modification clinical trials would provide key tests of the catecholaldehyde hypothesis. PMID:24945828

  16. Accumulation of phosphorylated alpha-synuclein (p129S) and retinal pathology in a mouse model of Parkinson's disease

    USDA-ARS?s Scientific Manuscript database

    Aims: Parkinson's disease (PD) is a neurodegenerative disorder characterized by accumulation of misfolded alpha-synuclein within the CNS. Although non-motor clinical phenotypes of PD such as visual dysfunction have become increasingly apparent, retinal pathology associated with PD is not well under...

  17. Structural and functional characterization of two alpha-synuclein strains

    PubMed Central

    Bousset, Luc; Pieri, Laura; Ruiz-Arlandis, Gemma; Gath, Julia; Jensen, Poul Henning; Habenstein, Birgit; Madiona, Karine; Olieric, Vincent; Böckmann, Anja; Meier, Beat H.; Melki, Ronald

    2013-01-01

    α-synuclein aggregation is implicated in a variety of diseases including Parkinson’s disease, dementia with Lewy bodies, pure autonomic failure and multiple system atrophy. The association of protein aggregates made of a single protein with a variety of clinical phenotypes has been explained for prion diseases by the existence of different strains that propagate through the infection pathway. Here we structurally and functionally characterize two polymorphs of α-synuclein. We present evidence that the two forms indeed fulfil the molecular criteria to be identified as two strains of α-synuclein. Specifically, we show that the two strains have different structures, levels of toxicity, and in vitro and in vivo seeding and propagation properties. Such strain differences may account for differences in disease progression in different individuals/cell types and/or types of synucleinopathies. PMID:24108358

  18. Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase

    PubMed Central

    Ludtmann, Marthe H.R.; Angelova, Plamena R.; Ninkina, Natalia N.; Gandhi, Sonia

    2016-01-01

    Misfolded α-synuclein is a key factor in the pathogenesis of Parkinson's disease (PD). However, knowledge about a physiological role for the native, unfolded α-synuclein is limited. Using brains of mice lacking α-, β-, and γ-synuclein, we report that extracellular monomeric α-synuclein enters neurons and localizes to mitochondria, interacts with ATP synthase subunit α, and modulates ATP synthase function. Using a combination of biochemical, live-cell imaging and mitochondrial respiration analysis, we found that brain mitochondria of α-, β-, and γ-synuclein knock-out mice are uncoupled, as characterized by increased mitochondrial respiration and reduced mitochondrial membrane potential. Furthermore, synuclein deficiency results in reduced ATP synthase efficiency and lower ATP levels. Exogenous application of low unfolded α-synuclein concentrations is able to increase the ATP synthase activity that rescues the mitochondrial phenotypes observed in synuclein deficiency. Overall, the data suggest that α-synuclein is a previously unrecognized physiological regulator of mitochondrial bioenergetics through its ability to interact with ATP synthase and increase its efficiency. This may be of particular importance in times of stress or PD mutations leading to energy depletion and neuronal cell toxicity. SIGNIFICANCE STATEMENT Misfolded α-synuclein aggregations in the form of Lewy bodies have been shown to be a pathological hallmark in histological staining of Parkinson's disease (PD) patient brains. It is known that misfolded α-synuclein is a key driver in PD pathogenesis, but the physiological role of unfolded monomeric α-synuclein remains unclear. Using neuronal cocultures and isolated brain mitochondria of α-, β-, and γ-synuclein knock-out mice and monomeric α-synuclein, this current study shows that α-synuclein in its unfolded monomeric form improves ATP synthase efficiency and mitochondrial function. The ability of monomeric α-synuclein to enhance ATP synthase efficiency under physiological conditions may be of importance when α-synuclein undergoes the misfolding and aggregation reported in PD. PMID:27733604

  19. Dementia with Lewy bodies in an elderly Greek male due to alpha-synuclein gene mutation.

    PubMed

    Morfis, Litsa; Cordato, Dennis John

    2006-11-01

    We report the case of an elderly man of Greek background who presented with progressive cognitive decline and motor parkinsonism on a background of a strong family history of Parkinson's disease. Associated symptoms included visual hallucinations, excessive daytime drowsiness, recurrent falls, orthostatic hypotension and urinary incontinence. His major clinical symptoms and signs fulfilled consensus criteria for a clinical diagnosis of dementia with Lewy bodies. An alpha-synuclein gene mutation analysis for the G209A substitution was positive. We conclude that the alpha-synuclein (G209A) gene mutation genotype should be considered in the differential diagnosis of dementia with Lewy bodies, particularly in patients with European ancestry and a family history of Parkinson's disease.

  20. The mechanisms of sirtuin 2-mediated exacerbation of alpha-synuclein toxicity in models of Parkinson disease

    USDA-ARS?s Scientific Manuscript database

    Sirtuin genes have been associated with aging and are known to affect multiple cellular pathways. Sirtuin 2 was previously shown to modulate proteotoxicity associated with age-associated neurodegenerative disorders such as Alzheimer and Parkinson disease (PD). However, the precise molecular mechanis...

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binukumar, BK; Gupta, Nidhi; Bal, Amanjit

    Numerous epidemiological studies have shown an association between pesticide exposure and increased risk of developing Parkinson's diseases. Oxidative stress generated as a result of mitochondrial dysfunction has been implicated as an important factor in the etiology of Parkinson's disease. Previously, we reported that chronic dichlorvos exposure causes mitochondrial impairments and nigrostriatal neuronal death in rats. The present study was designed to test whether Coenzyme Q{sub 10} (CoQ{sub 10}) administration has any neuroprotective effect against dichlorvos mediated nigrostriatal neuronal death, {alpha}-synuclein aggregation, and motor dysfunction. Male albino rats were administered dichlorvos by subcutaneous injection at a dose of 2.5 mg/kg bodymore » weight over a period of 12 weeks. Results obtained there after showed that dichlorvos exposure leads to enhanced mitochondrial ROS production, {alpha}-synuclein aggregation, decreased dopamine and its metabolite levels resulting in nigrostriatal neurodegeneration. Pretreatment by Coenzyme Q{sub 10} (4.5 mg/kg ip for 12 weeks) to dichlorvos treated animals significantly attenuated the extent of nigrostriatal neuronal damage, in terms of decreased ROS production, increased dopamine and its metabolite levels, and restoration of motor dysfunction when compared to dichlorvos treated animals. Thus, the present study shows that Coenzyme Q{sub 10} administration may attenuate dichlorvos induced nigrostriatal neurodegeneration, {alpha}-synuclein aggregation and motor dysfunction by virtue of its antioxidant action. - Highlights: > CoQ{sub 10} administration attenuates dichlorvos induced nigrostriatal neurodegenaration. > CoQ{sub 10} pre treatment leads to preservation of TH-IR neurons. > CoQ{sub 10} may decrease oxidative damage and {alpha}-synuclin aggregation. > CoQ{sub 10} treatment enhances motor function and protects rats from catalepsy.« less

  2. β-Synuclein suppresses both the initiation and amplification steps of α-synuclein aggregation via competitive binding to surfaces

    NASA Astrophysics Data System (ADS)

    Brown, James W. P.; Buell, Alexander K.; Michaels, Thomas C. T.; Meisl, Georg; Carozza, Jacqueline; Flagmeier, Patrick; Vendruscolo, Michele; Knowles, Tuomas P. J.; Dobson, Christopher M.; Galvagnion, Céline

    2016-11-01

    α-Synuclein is an intrinsically disordered protein that is associated with the pathogenesis of Parkinson’s disease through the processes involved in the formation of amyloid fibrils. α and β-synuclein are homologous proteins found at comparable levels in presynaptic terminals but β-synuclein has a greatly reduced propensity to aggregate and indeed has been found to inhibit α-synuclein aggregation. In this paper, we describe how sequence differences between α- and β-synuclein affect individual microscopic processes in amyloid formation. In particular, we show that β-synuclein strongly suppresses both lipid-induced aggregation and secondary nucleation of α-synuclein by competing for binding sites at the surfaces of lipid vesicles and fibrils, respectively. These results suggest that β-synuclein can act as a natural inhibitor of α-synuclein aggregation by reducing both the initiation of its self-assembly and the proliferation of its aggregates.

  3. Sleep Dysfunction and EEG Alterations in Mice Overexpressing Alpha-Synuclein

    PubMed Central

    McDowell, Kimberly A.; Shin, David; Roos, Kenneth P.; Chesselet, Marie-Françoise

    2018-01-01

    Background: Sleep disruptions occur early and frequently in Parkinson’s disease (PD). PD patients also show a slowing of resting state activity. Alpha-synuclein is causally linked to PD and accumulates in sleep-related brain regions. While sleep problems occur in over 75% of PD patients and severely impact the quality of life of patients and caregivers, their study is limited by a paucity of adequate animal models. Objective: The objective of this study was to determine whether overexpression of wildtype alpha-synuclein could lead to alterations in sleep patterns reminiscent of those observed in PD by measuring sleep/wake activity with rigorous quantitative methods in a well-characterized genetic mouse model. Methods: At 10 months of age, mice expressing human wildtype alpha-synuclein under the Thy-1 promoter (Thy1-aSyn) and wildtype littermates underwent the subcutaneous implantation of a telemetry device (Data Sciences International) for the recording of electromyograms (EMG) and electroencephalograms (EEG) in freely moving animals. Surgeries and data collection were performed without knowledge of mouse genotype. Results: Thy1-aSyn mice showed increased non-rapid eye movement sleep during their quiescent phase, increased active wake during their active phase, and decreased rapid eye movement sleep over a 24-h period, as well as a shift in the density of their EEG power spectra toward lower frequencies with a significant decrease in gamma power during wakefulness. Conclusions: Alpha-synuclein overexpression in mice produces sleep disruptions and altered oscillatory EEG activity reminiscent of PD, and this model provides a novel platform to assess mechanisms and therapeutic strategies for sleep dysfunction in PD. PMID:24867919

  4. The 200-year journey of Parkinson disease: Reflecting on the past and looking towards the future.

    PubMed

    Fahn, Stanley

    2018-01-01

    It took almost 100 years before a meaningful advance occurred in any basic science understanding of Parkinson disease (PD) following James Parkinson's description in 1817. The Lewy body was described in 1912, and the substantia nigra was found to be depigmented with neuronal loss and gliosis in 1919. The link between dopamine and PD began in 1957, 140 years after Parkinson's Essay. Arvid Carlsson and Oleh Hornykiewicz were the major pioneers. The revolutionary therapeutic breakthrough was the introduction of high dosage levodopa therapy by George Cotzias in 1967. Following 40 years of the dopa/dopamine era, we have entered the era of alpha-synuclein, the protein present in Lewy bodies. Heiko Braak found that alpha-synuclein accumulates initially in the olfactory system and lower brainstem and then travels in an anatomic pattern to involve other regions of the brain and thereby cause progressive symptoms. Alpha-synuclein was somehow converted to a rogue protein. Where this originates and how it is propagated are under intense investigation. At the same time that the alpha-synuclein era was developing, clinical advances took place by recognizing PD as hosting a wide variety of nonmotor features with eventual cognitive impairment in many. Therapeutics has also evolved. Although the most effective therapy for the motor features remains levodopa, surgical approaches and drugs for nonmotor problems continue to expand our ability to treat people with PD. We can expect therapeutic advances in neuroprotection as the basic science discoveries uncovered in the alpha-synuclein era are translated into effective treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Bridging the gap between high-throughput genetic and transcriptional data reveals cellular pathways responding to alpha-synuclein toxicity

    PubMed Central

    Yeger-Lotem, Esti; Riva, Laura; Su, Linhui Julie; Gitler, Aaron D.; Cashikar, Anil; King, Oliver D.; Auluck, Pavan K.; Geddie, Melissa L.; Valastyan, Julie S.; Karger, David R.; Lindquist, Susan; Fraenkel, Ernest

    2009-01-01

    Cells respond to stimuli by changes in various processes, including signaling pathways and gene expression. Efforts to identify components of these responses increasingly depend on mRNA profiling and genetic library screens, yet the functional roles of the genes identified by these assays often remain enigmatic. By comparing the results of these two assays across various cellular responses, we found that they are consistently distinct. Moreover, genetic screens tend to identify response regulators, while mRNA profiling frequently detects metabolic responses. We developed an integrative approach that bridges the gap between these data using known molecular interactions, thus highlighting major response pathways. We harnessed this approach to reveal cellular pathways related to alpha-synuclein, a small lipid-binding protein implicated in several neurodegenerative disorders including Parkinson disease. For this we screened an established yeast model for alpha-synuclein toxicity to identify genes that when overexpressed alter cellular survival. Application of our algorithm to these data and data from mRNA profiling provided functional explanations for many of these genes and revealed novel relations between alpha-synuclein toxicity and basic cellular pathways. PMID:19234470

  6. Controlling aggregation propensity in A53T mutant of alpha-synuclein causing Parkinson's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sonu; Sarkar, Anita; Sundar, Durai, E-mail: sundar@dbeb.iitd.ac.in

    2009-09-18

    Understanding {alpha}-synuclein in terms of fibrillization, aggregation, solubility and stability is fundamental in Parkinson's disease (PD). The three familial mutations, namely, A30P, E46K and A53T cause PD because the hydrophobic regions in {alpha}-synuclein acquire {beta}-sheet configuration, and have a propensity to fibrillize and form amyloids that cause cytotoxicity and neurodegeneration. On simulating the native form and mutants (A30P, E46K and A53T) of {alpha}-synuclein in water solvent, clear deviations are observed in comparison to the all-helical 1XQ8 PDB structure. We have identified two crucial residues, {sup 40}Val and {sup 74}Val, which play key roles in {beta}-sheet aggregation in the hydrophobic regionsmore » 36-41 and 68-78, respectively, leading to fibrillization and amyloidosis in familial (A53T) PD. We have also identified V40D{sub V}74D, a double mutant of A53T (the most amyloidogenic mutant). The simultaneous introduction of these two mutations in A53T nearly ends its aggregation propensity, increases its solubility and positively enhances its thermodynamic stability.« less

  7. Validation of a commercially available enzyme-linked immunoabsorbent assay for the quantification of human α-Synuclein in cerebrospinal fluid.

    PubMed

    Kruse, Niels; Mollenhauer, Brit

    2015-11-01

    The quantification of α-Synuclein in cerebrospinal fluid (CSF) as a biomarker has gained tremendous interest in the last years. Several commercially available immunoassays are emerging. We here describe the full validation of one commercially available ELISA assay for the quantification of α-Synuclein in human CSF (Covance alpha-Synuclein ELISA kit). The study was conducted within the BIOMARKAPD project in the European initiative Joint Program for Neurodegenerative Diseases (JPND). We investigated the effect of several pre-analytical and analytical confounders: i.e. (1) need for centrifugation of freshly drawn CSF, (2) sample stability, (3) delay of freezing, (4) volume of storage aliquots, (5) freeze/thaw cycles, (6) thawing conditions, (7) dilution linearity, (8) parallelism, (9) spike recovery, and (10) precision. None of these confounders influenced the levels of α-Synuclein in CSF significantly. We found a very high intra-assay precision. The inter-assay precision was lower than expected due to different performances of kit lots used. Overall the validated immunoassay is useful for the quantification of α-Synuclein in human CSF. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. 5-HT2A Receptor Binding in the Frontal Cortex of Parkinson's Disease Patients and Alpha-Synuclein Overexpressing Mice: A Postmortem Study

    PubMed Central

    Rasmussen, Nadja Bredo; Olesen, Mikkel Vestergaard; Plenge, Per; Klein, Anders Bue; Westin, Jenny E.; Fog, Karina

    2016-01-01

    The 5-HT2A receptor is highly involved in aspects of cognition and executive function and seen to be affected in neurodegenerative diseases like Alzheimer's disease and related to the disease pathology. Even though Parkinson's disease (PD) is primarily a motor disorder, reports of impaired executive function are also steadily being associated with this disease. Not much is known about the pathophysiology behind this. The aim of this study was thereby twofold: (1) to investigate 5-HT2A receptor binding levels in Parkinson's brains and (2) to investigate whether PD associated pathology, alpha-synuclein (AS) overexpression, could be associated with 5-HT2A alterations. Binding density for the 5-HT2A-specific radioligand [3H]-MDL 100.907 was measured in membrane suspensions of frontal cortex tissue from PD patients. Protein levels of AS were further measured using western blotting. Results showed higher AS levels accompanied by increased 5-HT2A receptor binding in PD brains. In a separate study, we looked for changes in 5-HT2A receptors in the prefrontal cortex in 52-week-old transgenic mice overexpressing human AS. We performed region-specific 5-HT2A receptor binding measurements followed by gene expression analysis. The transgenic mice showed lower 5-HT2A binding in the frontal association cortex that was not accompanied by changes in gene expression levels. This study is one of the first to look at differences in serotonin receptor levels in PD and in relation to AS overexpression. PMID:27579212

  9. Solid surface dependent layering of self-arranged structures with fibril-like assemblies of alpha-synuclein

    NASA Astrophysics Data System (ADS)

    Bukauskas, V.; Šetkus, A.; Šimkienė, I.; Tumėnas, S.; Kašalynas, I.; Rėza, A.; Babonas, J.; Časaitė, V.; Povilonienė, S.; Meškys, R.

    2012-03-01

    In present work the formation of hybrid constructions composed of alpha-synuclein-based colloidal solutions on various solid surfaces (silica coated Si, mica, CaF2 and KBr) is investigated by scanning probe microscopy, spectrocopic ellipsometry, Fourier transformed infrared spectroscopy and vibrational circular dichroism. Prior to the modification of the solids, the proteins were intentionally fibrilled under special conditions. It is proved that the multi-component coatings are self-arranged on the solid substrates. Depending on the substrate material, the interface films consisting of individual biomolecules can be detected on the solid surfaces. The coatings with fibril-like alpha-synuclein objects can be obtained on solid surfaces with negligible or comparatively thick interface films. The results are interpreted in terms of the charged surface-controlled electrostatic interaction between the substrate and the biomolecules. Solubility of solids is considered in this interpretation.

  10. Comparison of alpha-synuclein immunoreactivity in the spinal cord between the adult and aged beagle dog

    PubMed Central

    Ahn, Ji-Hyeon; Choi, Jung-Hoon; Park, Joon-Ha; Yan, Bing-Chun; Kim, In-Hye; Lee, Jae-Chul; Lee, Dae-Hwan; Kim, Jin-Sang

    2012-01-01

    Alpha-synuclein (α-syn) is a presynaptic protein that is richly expressed in the central and peripheral nervous systems of mammals, and it is related to the pathogenesis of Parkinson's disease and other neurodegenerative disorders. In the present study, we compared the distribution of the immunoreactivity of α-syn and its related gliosis in the spinal cord of young adult (2-3 years) and aged (10-12 years) beagle dogs. We discovered that α-syn immunoreactivity was present in many neurons in the thoracic level of the aged spinal cord, however, its protein level was not distinct inform that of the adult spinal cord. In addition, ionized calcium-binding adapter molecule-1 (a marker for microglia) immunoreactivity, and not glial fibrillary acidic protein (a marker for astrocytes) immunoreactivity, was somewhat increased in the aged group compared to the adult group. These results indicate that α-syn immunoreactivity was not dramatically changed in the dog spinal cord during aging. PMID:23091516

  11. Alpha-synuclein functions in the nucleus to protect against hydroxyurea-induced replication stress in yeast

    PubMed Central

    Liu, Xianpeng; Lee, Yong Joo; Liou, Liang-Chun; Ren, Qun; Zhang, Zhaojie; Wang, Shaoxiao; Witt, Stephan N.

    2011-01-01

    Hydroxyurea (HU) inhibits ribonucleotide reductase (RNR), which catalyzes the rate-limiting synthesis of deoxyribonucleotides for DNA replication. HU is used to treat HIV, sickle-cell anemia and some cancers. We found that, compared with vector control cells, low levels of alpha-synuclein (α-syn) protect S. cerevisiae cells from the growth inhibition and reactive oxygen species (ROS) accumulation induced by HU. Analysis of this effect using different α-syn mutants revealed that the α-syn protein functions in the nucleus and not the cytoplasm to modulate S-phase checkpoint responses: α-syn up-regulates histone acetylation and RNR levels, maintains helicase minichromosome maintenance protein complexes (Mcm2–7) on chromatin and inhibits HU-induced ROS accumulation. Strikingly, when residues 2–10 or 96–140 are deleted, this protective function of α-syn in the nucleus is abolished. Understanding the mechanism by which α-syn protects against HU could expand our knowledge of the normal function of this neuronal protein. PMID:21642386

  12. Characterization of antibodies that selectively detect alpha-synuclein in pathological inclusions.

    PubMed

    Waxman, Elisa A; Duda, John E; Giasson, Benoit I

    2008-07-01

    Sensitive detection of alpha-synuclein (alpha-syn) pathology is important in the diagnosis of disorders like Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy and in providing better insights into the etiology of these diseases. Several monoclonal antibodies that selectively react with aggregated alpha-syn in pathological inclusions and reveal extensive and underappreciated alpha-syn pathology in the brains of diseased patients were previously reported by Duda et al. (Ann Neurol 52:205-210, 2002). We sought to characterize the specificity of some of these antibodies (Syn 505, Syn 506 and Syn 514); using C-terminal and N-terminal truncations of alpha-syn, all three antibodies were determined to require N-terminal epitopes that minimally comprise amino acids 2-4, but possibly extend to amino acid 12 of alpha-syn. The selectivity of these antibodies was further assessed using biochemical analysis of human brains and reactivity to altered recombinant alpha-syn proteins with duplication variants of amino acids 1-12. In addition, by expressing wild-type or a double mutant (E46K/A53T) of alpha-syn in cultured cells and by comparing their immunoreactivities to another antibody (SNL-4), which has a similar primary epitope, it was determined that Syn 505, Syn 506 and Syn 514 recognize conformational variants of alpha-syn that is enhanced by the presence of the double mutations. These studies indicate that antibodies Syn 505, Syn 506 and Syn 514 preferentially recognize N-terminal epitopes in complex conformations, consistent with the dramatic conformational change associated with the polymerization of alpha-synuclein into amyloid fibrils that form pathological inclusions.

  13. The relationship between glucocerebrosidase mutations and Parkinson disease.

    PubMed

    Migdalska-Richards, Anna; Schapira, Anthony H V

    2016-10-01

    Parkinson disease (PD) is the second most common neurodegenerative disorder after Alzheimer disease, whereas Gaucher disease (GD) is the most frequent lysosomal storage disorder caused by homozygous mutations in the glucocerebrosidase (GBA1) gene. Increased risk of developing PD has been observed in both GD patients and carriers. It has been estimated that GBA1 mutations confer a 20- to 30-fold increased risk for the development of PD, and that at least 7-10% of PD patients have a GBA1 mutation. To date, mutations in the GBA1 gene constitute numerically the most important risk factor for PD. The type of PD associated with GBA1 mutations (PD-GBA1) is almost identical to idiopathic PD, except for a slightly younger age of onset and a tendency to more cognitive impairment. Importantly, the pathology of PD-GBA1 is identical to idiopathic PD, with nigral dopamine cell loss, Lewy bodies, and neurites containing alpha-synuclein. The mechanism by which GBA1 mutations increase the risk for PD is still unknown. However, given that clinical manifestation and pathological findings in PD-GBA1 patients are almost identical to those in idiopathic PD individuals, it is likely that, as in idiopathic PD, alpha-synuclein accumulation, mitochondrial dysfunction, autophagic impairment, oxidative and endoplasmic reticulum stress may contribute to the development and progression of PD-GBA1. Here, we review the GBA1 gene, its role in GD, and its link with PD. The impact of glucocerebrosidase 1 (GBA1) mutations on functioning of endoplasmic reticulum (ER), lysosomes, and mitochondria. GBA1 mutations resulting in production of misfolded glucocerebrosidase (GCase) significantly affect the ER functioning. Misfolded GCase trapped in the ER leads to both an increase in the ubiquitin-proteasome system (UPS) and the ER stress. The presence of ER stress triggers the unfolded protein response (UPR) and/or endoplasmic reticulum-associated degradation (ERAD). The prolonged activation of UPR and ERAD subsequently leads to increased apoptosis. The presence of misfolded GCase in the lysosomes together with a reduction in wild-type GCase levels lead to a retardation of alpha-synuclein degradation via chaperone-mediated autophagy (CMA), which subsequently results in alpha-synuclein accumulation and aggregation. Impaired lysosomal functioning also causes a decrease in the clearance of autophagosomes, and so their accumulation. GBA1 mutations perturb normal mitochondria functioning by increasing generation of free radical species (ROS) and decreasing adenosine triphosphate (ATP) production, oxygen consumption, and membrane potential. GBA1 mutations also lead to accumulation of dysfunctional and fragmented mitochondria. This article is part of a special issue on Parkinson disease. © 2016 International Society for Neurochemistry.

  14. Differences in extinction of conditioned fear in C57BL/6 substrains are unrelated to expression of alpha-synuclein.

    PubMed

    Siegmund, Anja; Langnaese, Kristina; Wotjak, Carsten T

    2005-02-28

    C57BL/6 mice are commonly used as background strains for genetically modified mice, and little attention is usually paid to the notification of the specific substrain. However, it is known that C57BL/6NCrl (B6N) and C57BL/6JOlaHsd (B6JOla) mice differ in the course of extinction of conditioned fear (Stiedl O, Radulovic J, Lohmann R, Birkenfeld K, Palve M, Kammermeier J, et al. Strain and substrain differences in context- and tone-dependent fear conditioning of inbred mice. Behav Brain Res 1999;104:1-12), as well as in the expression of alpha-synuclein (Specht CG, Schoepfer R. Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6J inbred mice. BMC Neurosci 2001;2:11). We tested for a causal relationship between the two findings by employing B6N (expressing alpha-synuclein), B6JOla (not expressing alpha-syn) and the third strain C57BL/6JCrl (B6Jax, expressing alpha-syn). We show that alpha-syn does not account for differences in extinction in a fear conditioning task, as its expression did not covary with the decrease of freezing on repeated non-reinforced tone and context exposure in the three strains: B6Jax exhibited fastest extinction followed by B6JOla. In contrast, B6N showed persistent fear over the course of extinction training. The differences in extinction between B6JOla and B6N were unrelated to sensorimotor processing (pain threshold and basal tone reaction) and innate fear (light-dark test). However, B6Jax displayed less innate fear than B6JOla and B6N. Our results of marked differences in innate and conditioned fear in three B6 substrains illustrate the necessity of a strict adherence to an exact mouse strain nomenclature.

  15. An Efficient Procedure for Removal and Inactivation of Alpha-Synuclein Assemblies from Laboratory Materials.

    PubMed

    Bousset, Luc; Brundin, Patrik; Böckmann, Anja; Meier, Beat; Melki, Ronald

    2016-01-01

    Preformed α-synuclein fibrils seed the aggregation of soluble α-synuclein in cultured cells and in vivo. This, and other findings, has kindled the idea that α-synuclein fibrils possess prion-like properties. As α-synuclein fibrils should not be considered as innocuous, there is a need for decontamination and inactivation procedures for laboratory benches and non-disposable laboratory material. We assessed the effectiveness of different procedures designed to disassemble α-synuclein fibrils and reduce their infectivity. We examined different commercially available detergents to remove α-synuclein assemblies adsorbed on materials that are not disposable and that are most found in laboratories (e.g. plastic, glass, aluminum or stainless steel surfaces). We show that methods designed to decrease PrP prion infectivity neither effectively remove α-synuclein assemblies adsorbed to different materials commonly used in the laboratory nor disassemble the fibrillar form of the protein with efficiency. In contrast, both commercial detergents and SDS detached α-synuclein assemblies from contaminated surfaces and disassembled the fibrils. We describe three cleaning procedures that effectively remove and disassemble α-synuclein seeds. The methods rely on the use of detergents that are compatible with most non-disposable tools in a laboratory. The procedures are easy to implement and significantly decrease any potential risks associated to handling α-synuclein assemblies.

  16. An Efficient Procedure for Removal and Inactivation of Alpha-Synuclein Assemblies from Laboratory Materials

    PubMed Central

    Bousset, Luc; Brundin, Patrik; Böckmann, Anja; Meier, Beat; Melki, Ronald

    2015-01-01

    Background: Preformed α-synuclein fibrils seed the aggregation of soluble α-synuclein in cultured cells and in vivo. This, and other findings, has kindled the idea that α-synuclein fibrils possess prion-like properties. Objective: As α-synuclein fibrils should not be considered as innocuous, there is a need for decontamination and inactivation procedures for laboratory benches and non-disposable laboratory material. Methods: We assessed the effectiveness of different procedures designed to disassemble α-synuclein fibrils and reduce their infectivity. We examined different commercially available detergents to remove α-synuclein assemblies adsorbed on materials that are not disposable and that are most found in laboratories (e.g. plastic, glass, aluminum or stainless steel surfaces). Results: We show that methods designed to decrease PrP prion infectivity neither effectively remove α-synuclein assemblies adsorbed to different materials commonly used in the laboratory nor disassemble the fibrillar form of the protein with efficiency. In contrast, both commercial detergents and SDS detached α-synuclein assemblies from contaminated surfaces and disassembled the fibrils. Conclusions: We describe three cleaning procedures that effectively remove and disassemble α-synuclein seeds. The methods rely on the use of detergents that are compatible with most non-disposable tools in a laboratory. The procedures are easy to implement and significantly decrease any potential risks associated to handling α-synuclein assemblies. PMID:26639448

  17. Intralaminar nuclei of the thalamus in Lewy body diseases.

    PubMed

    Brooks, Daniel; Halliday, Glenda M

    2009-02-16

    Although the intralaminar thalamus is a target of alpha-synuclein pathology in Parkinson's disease, the degree of neuronal loss in Lewy body diseases has not been assessed. We have used unbiased stereological techniques to quantify neuronal loss in intralaminar thalamic nuclei concentrating alpha-synuclein pathology (the anterodorsal, cucullar, parataenial, paraventricular, central medial, central lateral and centre-median/parafascicular complex) in different clinical forms of Lewy body disease (Parkinson's disease with and without dementia, and dementia with Lewy bodies, N=21) compared with controls (N=5). Associations were performed in the Lewy body cases between intralaminar cell loss and the main diagnostic clinical (parkinsonism, dementia, fluctuation in consciousness, and visual hallucinations) and pathological (Braak stage of Parkinson's disease) features of these diseases, as well as between cell loss and the scaled severity of the alpha-synuclein deposition within the intralaminar thalamus. As expected, significant alpha-synuclein accumulation occurred in the intralaminar thalamus in the cases with Lewy body disease. Pathology concentrated anteriorly and in the central lateral and paraventricular nuclei was related to the Braak stage of Parkinson's disease, ageing, and the presence of dementia. Across all types of Lewy body cases there was substantial atrophy and neuronal loss in the central lateral, cucullar and parataenial nuclei, and neuronal loss without atrophy in the centre-median/parafascicular complex. Cases with visual hallucinations showed a greater degree of atrophy of the cucullar nucleus, possibly due to amygdala denervation. The significant degeneration demonstrated in the intralaminar thalamus is likely to contribute to the movement and cognitive dysfunction observed in Lewy body disorders.

  18. Alpha-Synuclein: From Early Synaptic Dysfunction to Neurodegeneration.

    PubMed

    Ghiglieri, Veronica; Calabrese, Valeria; Calabresi, Paolo

    2018-01-01

    Over the last two decades, many experimental and clinical studies have provided solid evidence that alpha-synuclein (α-syn), a small, natively unfolded protein, is closely related to Parkinson's disease (PD) pathology. To provide an overview on the different roles of this protein, here we propose a synopsis of seminal and recent studies that explored the many aspects of α-syn. Ranging from the physiological functions to its neurodegenerative potential, the relationship with the possible pathogenesis of PD will be discussed. Close attention will be paid on early cellular and molecular alterations associated with the presence of α-syn aggregates.

  19. Immunotherapy targeting α-synuclein, with relevance for future treatment of Parkinson's disease and other Lewy body disorders.

    PubMed

    Lindström, Veronica; Ihse, Elisabet; Fagerqvist, Therese; Bergström, Joakim; Nordström, Eva; Möller, Christer; Lannfelt, Lars; Ingelsson, Martin

    2014-01-01

    Immunotherapy targeting α-synuclein has evolved as a potential therapeutic strategy for neurodegenerative diseases, such as Parkinson's disease, and initial studies on cellular and animal models have shown promising results. α-synuclein vaccination of transgenic mice reduced the number of brain inclusions, whereas passive immunization studies demonstrated that antibodies against the C-terminus of α-synuclein can pass the blood-brain barrier and affect the pathology. In addition, preliminary evidence suggests that transgenic mice treated with an antibody directed against α-synuclein oligomers/protofibrils resulted in reduced levels of such species in the CNS. The underlying mechanisms of immunotherapy are not yet fully understood, but may include antibody-mediated clearance of pre-existing aggregates, prevention of protein propagation between cells and microglia-dependent protein clearance. Thus, immunotherapy targeting α-synuclein holds promise, but needs to be further developed as a future disease-modifying treatment in Parkinson's disease and other α-synucleinopathies.

  20. Association of metallothionein-III with oligodendroglial cytoplasmic inclusions in multiple system atrophy.

    PubMed

    Pountney, D L; Dickson, T C; Power, J H T; Vickers, J C; West, A J; Gai, W P

    2011-01-01

    Multiple system atrophy (MSA) is an adult-onset neurodegenerative disease characterised by Parkinsonian and autonomic symptoms and by widespread intracytoplasmic inclusion bodies in oligodendrocytes. These glial cytoplasmic inclusions (GCIs) are comprised of 9-10 nm filaments rich in the protein alpha-synuclein, also found in neuronal inclusion bodies associated with Parkinson's disease. Metallothioneins (MTs) are a class of low-molecular weight (6-7 kDa), cysteine-rich metal-binding proteins the expression of which is induced by heavy metals, glucocorticoids, cytokines and oxidative stress. Recent studies have shown a role for the ubiquitously expressed MT-I/II isoforms in the brain following a variety of stresses, whereas, the function of the brain-specific MT isoform, MT-III, is less clear. MT-III and MT-I/II immunostaining of post-mortem tissue in MSA and normal control human brains showed that the number of MT-III-positive cells is significantly increased in MSA in visual cortex, whereas MT-I/II isoforms showed no significant difference in the distribution of immunopositive cells in MSA compared to normal tissue. GCIs were immunopositive for MT-III, but were immunonegative for the MT-I/II isoforms. Immunofluorescence double labelling showed the co-localisation of alpha-synuclein and MT-III in GCIs in MSA tissue. In isolated GCIs, transmission electron microscopy demonstrated MT-III immunogold labelling of the amorphous material surrounding alpha-synuclein filaments in GCIs. High-molecular weight MT-III species in addition to MT-III monomer were detected in GCIs by Western analysis of the detergent-solubilised proteins of purified GCIs. These results show that MT-III, but not MT-I/II, is a specific component of GCIs, present in abnormal aggregated forms external to the alpha-synuclein filaments.

  1. Assessment of brain metabolite correlates of adeno-associated virus-mediated over-expression of human alpha-synuclein in cortical neurons by in vivo (1) H-MR spectroscopy at 9.4 T.

    PubMed

    Cuellar-Baena, Sandra; Landeck, Natalie; Sonnay, Sarah; Buck, Kerstin; Mlynarik, Vladimir; In 't Zandt, René; Kirik, Deniz

    2016-06-01

    In this study, we used proton-localized spectroscopy ((1) H-MRS) for the acquisition of the neurochemical profile longitudinally in a novel rat model of human wild-type alpha-synuclein (α-syn) over-expression. Our goal was to find out if the increased α-syn load in this model could be linked to changes in metabolites in the frontal cortex. Animals injected with AAV vectors encoding for human α-syn formed the experimental group, whereas green fluorescent protein expressing animals were used as the vector-treated control group and a third group of uninjected animals were used as naïve controls. Data were acquired at 2, 4, and 8 month time points. Nineteen metabolites were quantified in the MR spectra using LCModel software. On the basis of 92 spectra, we evaluated any potential gender effect and found that lactate (Lac) levels were lower in males compared to females, while the opposite was observed for ascorbate (Asc). Next, we assessed the effect of age and found increased levels of GABA, Tau, and GPC+PCho. Finally, we analyzed the effect of treatment and found that Lac levels (p = 0.005) were specifically lower in the α-syn group compared to the green fluorescent protein and control groups. In addition, Asc levels (p = 0.05) were increased in the vector-injected groups, whereas glucose levels remained unchanged. This study indicates that the metabolic switch between glucose-lactate could be detectable in vivo and might be modulated by Asc. No concomitant changes were found in markers of neuronal integrity (e.g., N-acetylaspartate) consistent with the fact that α-syn over-expression in cortical neurons did not result in neurodegeneration in this model. We acquired the neurochemical profile longitudinally in a rat model of human wild-type alpha-synuclein (α-syn) over-expression in cortical neurons. We found that Lactate levels were reduced in the α-syn group compared to the control groups and Ascorbate levels were increased in the vector-injected groups. No changes were found in markers of neuronal integrity consistent with the fact that α-syn over-expression did not result in frank neurodegeneration. © 2016 International Society for Neurochemistry.

  2. Effects of mild running on substantia nigra during early neurodegeneration.

    PubMed

    Almeida, Michael F; Silva, Carolliny M; Chaves, Rodrigo S; Lima, Nathan C R; Almeida, Renato S; Melo, Karla P; Demasi, Marilene; Fernandes, Tiago; Oliveira, Edilamar M; Netto, Luis E S; Cardoso, Sandra M; Ferrari, Merari F R

    2018-06-01

    Moderate physical exercise acts at molecular and behavioural levels, such as interfering in neuroplasticity, cell death, neurogenesis, cognition and motor functions. Therefore, the aim of this study is to analyse the cellular effects of moderate treadmill running upon substantia nigra during early neurodegeneration. Aged male Lewis rats (9-month-old) were exposed to rotenone 1mg/kg/day (8 weeks) and 6 weeks of moderate treadmill running, beginning 4 weeks after rotenone exposure. Substantia nigra was extracted and submitted to proteasome and antioxidant enzymes activities, hydrogen peroxide levels and Western blot to evaluate tyrosine hydroxylase (TH), alpha-synuclein, Tom-20, PINK1, TrkB, SLP1, CRMP-2, Rab-27b, LC3II and Beclin-1 level. It was demonstrated that moderate treadmill running, practiced during early neurodegeneration, prevented the increase of alpha-synuclein and maintained the levels of TH unaltered in substantia nigra of aged rats. Physical exercise also stimulated autophagy and prevented impairment of mitophagy, but decreased proteasome activity in rotenone-exposed aged rats. Physical activity also prevented H 2 O 2 increase during early neurodegeneration, although the involved mechanism remains to be elucidated. TrkB levels and its anterograde trafficking seem not to be influenced by moderate treadmill running. In conclusion, moderate physical training could prevent early neurodegeneration in substantia nigra through the improvement of autophagy and mitophagy.

  3. Ca2+ is a key factor in α-synuclein-induced neurotoxicity

    PubMed Central

    Angelova, Plamena R.; Ludtmann, Marthe H. R.; Horrocks, Mathew H.; Negoda, Alexander; Cremades, Nunilo; Klenerman, David; Dobson, Christopher M.; Wood, Nicholas W.; Pavlov, Evgeny V.; Gandhi, Sonia

    2016-01-01

    ABSTRACT Aggregation of α-synuclein leads to the formation of oligomeric intermediates that can interact with membranes to form pores. However, it is unknown how this leads to cell toxicity in Parkinson's disease. We investigated the species-specific effects of α-synuclein on Ca2+ signalling in primary neurons and astrocytes using live neuronal imaging and electrophysiology on artificial membranes. We demonstrate that α-synuclein induces an increase in basal intracellular Ca2+ in its unfolded monomeric state as well as in its oligomeric state. Electrophysiology of artificial membranes demonstrated that α-synuclein monomers induce irregular ionic currents, whereas α-synuclein oligomers induce rare discrete channel formation events. Despite the ability of monomeric α-synuclein to affect Ca2+ signalling, it is only the oligomeric form of α-synuclein that induces cell death. Oligomer-induced cell death was abolished by the exclusion of extracellular Ca2+, which prevented the α-synuclein-induced Ca2+ dysregulation. The findings of this study confirm that α-synuclein interacts with membranes to affect Ca2+ signalling in a structure-specific manner and the oligomeric β-sheet-rich α-synuclein species ultimately leads to Ca2+ dysregulation and Ca2+-dependent cell death. PMID:26989132

  4. Is trehalose an autophagic inducer? Unraveling the roles of non-reducing disaccharides on autophagic flux and alpha-synuclein aggregation.

    PubMed

    Yoon, Ye-Seul; Cho, Eun-Duk; Jung Ahn, Woo; Won Lee, Kyung; Lee, Seung-Jae; Lee, He-Jin

    2017-10-05

    Autophagy is a pivotal intracellular process by which cellular macromolecules are degraded upon various stimuli. A failure in the degradation of autophagic substrates such as impaired organelles and protein aggregates leads to their accumulations, which are characteristics of many neurodegenerative diseases. Pharmacological activation of autophagy has thus been considered a prospective therapeutic approach for treating neurodegenerative diseases. Among a number of autophagy-inducing agents, trehalose has received attention for its beneficial effects in different disease models of neurodegeneration. However, how trehalose promotes autophagy has not been fully revealed. We investigated the influence of trehalose and other disaccharides upon autophagic flux and aggregation of α-synuclein, a protein linked to Parkinson's disease. In differentiated human neuroblastoma and primary rat cortical neuron culture models, treatment with trehalose and other disaccharides resulted in accumulation of lipidated LC3 (LC3-II), p62, and autophagosomes, whereas it decreased autolysosomes. On the other hand, addition of Bafilomycin A1 to trehalose treatments had relatively marginal effect, an indicative of autophagic flux blockage. In concordance with these results, the cells treated with trehalose exhibited an incremental tendency in α-synuclein aggregation. Secretion of α-synuclein was also elevated in the culture medium upon trehalose treatment, thereby significantly increasing intercellular transmission of this protein. Despite the substantial increase in α-synuclein aggregation, which normally leads to cell death, cell viability was not affected upon treatment with trehalose, suggesting an autophagy-independent protective function of trehalose against protein aggregates. This study demonstrates that, although trehalose has been widely considered an autophagic inducer, it may be actually a potent blocker of the autophagic flux.

  5. O-GlcNAc modification blocks the aggregation and toxicity of the protein α-synuclein associated with Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Marotta, Nicholas P.; Lin, Yu Hsuan; Lewis, Yuka E.; Ambroso, Mark R.; Zaro, Balyn W.; Roth, Maxwell T.; Arnold, Don B.; Langen, Ralf; Pratt, Matthew R.

    2015-11-01

    Several aggregation-prone proteins associated with neurodegenerative diseases can be modified by O-linked N-acetyl-glucosamine (O-GlcNAc) in vivo. One of these proteins, α-synuclein, is a toxic aggregating protein associated with synucleinopathies, including Parkinson's disease. However, the effect of O-GlcNAcylation on α-synuclein is not clear. Here, we use synthetic protein chemistry to generate both unmodified α-synuclein and α-synuclein bearing a site-specific O-GlcNAc modification at the physiologically relevant threonine residue 72. We show that this single modification has a notable and substoichiometric inhibitory effect on α-synuclein aggregation, while not affecting the membrane binding or bending properties of α-synuclein. O-GlcNAcylation is also shown to affect the phosphorylation of α-synuclein in vitro and block the toxicity of α-synuclein that was exogenously added to cells in culture. These results suggest that increasing O-GlcNAcylation may slow the progression of synucleinopathies and further support a general function for O-GlcNAc in preventing protein aggregation.

  6. Convergence of pathology in dementia with Lewy bodies and Alzheimer’s disease: a role for the novel interaction of alpha-synuclein and presenilin 1 in disease

    PubMed Central

    Winslow, Ashley R.; Moussaud, Simon; Zhu, Liya; Post, Katherine L.; Dickson, Dennis W.

    2014-01-01

    A growing number of PSEN1 mutations have been associated with dementia with Lewy bodies and familial Alzheimer’s disease with concomitant α-synuclein pathology. The objective of this study was to determine if PSEN1 plays a direct role in the development of α-synuclein pathology in these diseases. Using mass spectrometry, immunoelectron microscopy and fluorescence lifetime image microscopy based on Forster resonance energy transfer (FLIM-FRET) we identified α-synuclein as a novel interactor of PSEN1 in wild-type mouse brain tissue. The interaction of α-synuclein with PSEN1 was detected in post-mortem brain tissue from cognitively normal cases and was significantly increased in tissue from cases with dementia with Lewy bodies and familial Alzheimer’s disease associated with known PSEN1 mutations. We confirmed an increased interaction of PSEN1 and α-synuclein in cell lines expressing well characterized familial Alzheimer’s disease PSEN1 mutations, L166P and delta exon 9, and demonstrated that PSEN1 mutations associate with increased membrane association and accumulation of α-synuclein. Our data provides evidence of a molecular interaction of PSEN1 and α-synuclein that may explain the clinical and pathophysiological overlap seen in synucleinopathies, including Parkinson’s disease, dementia with Lewy bodies, and some forms of Alzheimer’s disease. PMID:24860142

  7. Novel immunolocalization of alpha-synuclein in human muscle of inclusion-body myositis, regenerating and necrotic muscle fibers, and at neuromuscular junctions.

    PubMed

    Askanas, V; Engel, W K; Alvarez, R B; McFerrin, J; Broccolini, A

    2000-07-01

    Alpha-synuclein (alpha-syn) is an important component of neuronal and glial inclusions in brains of patients with several neurodegenerative disorders. Sporadic inclusion-body myositis (s-IBM) is the most common progressive muscle disease of older patients. Its muscle phenotype shows several similarities with Alzheimer disease brain. A distinct feature of s-IBM pathology is specific vacuolar degeneration of muscle fibers characterized by intracellular amyloid inclusions formed by both amyloid-beta (Abeta) and paired-helical filaments composed of phosphorylated tau. We immunostained alpha-syn in muscle biopsies of s-IBM, disease-control, and normal patients. Approximately 60% of Abeta-positive vacuolated muscle fibers (VMF) contained well-defined inclusions immunoreactive with antibodies against alpha-syn. In those fibers. alpha-syn co-localized with Abeta, both by light microscopy, and ultrastructurally. Paired-helical filaments did not contain alpha-syn immunoreactivity. In all muscle biopsies, alpha-syn was strongly immunoreactive at the postsynaptic region of the neuromuscular junctions. alpha-syn immunoreactivity also occurred diffusely in regenerating and necrotic muscle fibers. In cultured human muscle fibers, alpha-syn and its mRNA were expressed by immunocytochemistry, immunoblots, and Northern blots. Our study provides the first demonstration that alpha-syn participates in normal and pathologic processes of human muscle. Therefore. its function is not exclusive to the brain and neurodegenerative diseases.

  8. Persistent short-term memory defects following sleep deprivation in a drosophila model of Parkinson disease.

    PubMed

    Seugnet, Laurent; Galvin, James E; Suzuki, Yasuko; Gottschalk, Laura; Shaw, Paul J

    2009-08-01

    Parkinson disease (PD) is the second most common neurodegenerative disorder in the United States. It is associated with motor deficits, sleep disturbances, and cognitive impairment. The pathology associated with PD and the effects of sleep deprivation impinge, in part, upon common molecular pathways suggesting that sleep loss may be particularly deleterious to the degenerating brain. Thus we investigated the long-term consequences of sleep deprivation on shortterm memory using a Drosophila model of Parkinson disease. Transgenic strains of Drosophila melanogaster. Using the GAL4-UAS system, human alpha-synuclein was expressed throughout the nervous system of adult flies. Alpha-synuclein expressing flies (alpha S flies) and the corresponding genetic background controls were sleep deprived for 12 h at age 16 days and allowed to recover undisturbed for at least 3 days. Short-term memory was evaluated using aversive phototaxis suppression. Dopaminergic systems were assessed using mRNA profiling and immunohistochemistry. MEASURMENTS AND RESULTS: When sleep deprived at an intermediate stage of the pathology, alpha S flies showed persistent short-term memory deficits that lasted > or = 3 days. Cognitive deficits were not observed in younger alpha S flies nor in genetic background controls. Long-term impairments were not associated with accelerated loss of dopaminergic neurons. However mRNA expression of the dopamine receptors dDA1 and DAMB were significantly increased in sleep deprived alpha S flies. Blocking D1-like receptors during sleep deprivation prevented persistent shortterm memory deficits. Importantly, feeding flies the polyphenolic compound curcumin blocked long-term learning deficits. These data emphasize the importance of sleep in a degenerating/reorganizing brain and shows that pathological processes induced by sleep deprivation can be dissected at the molecular and cellular level using Drosophila genetics.

  9. An alpha-synuclein MRM assay with diagnostic potential for Parkinson's disease and monitoring disease progression.

    PubMed

    Yang, Li; Stewart, Tessandra; Shi, Min; Pottiez, Gwenael; Dator, Romel; Wu, Rui; Aro, Patrick; Schuster, Robert J; Ginghina, Carmen; Pan, Catherine; Gao, Yuqian; Qian, Weijun; Zabetian, Cyrus P; Hu, Shu-Ching; Quinn, Joseph F; Zhang, Jing

    2017-07-01

    The alpha-synuclein (α-syn) level in human cerebrospinal fluid (CSF), as measured by immunoassays, is promising as a Parkinson's disease (PD) biomarker. However, the levels of total α-syn are inconsistent among studies with large cohorts and different measurement platforms. Total α-syn level also does not correlate with disease severity or progression. Here, the authors developed a highly sensitive MRM method to measure absolute CSF α-syn peptide concentrations without prior enrichment or fractionation, aiming to discover new candidate biomarkers. Six peptides covering 73% of protein sequence were reliably identified, and two were consistently quantified in cross-sectional and longitudinal cohorts. Absolute concentration of α-syn in human CSF was determined to be 2.1 ng/mL. A unique α-syn peptide, TVEGAGSIAAATGFVK (81-96), displayed excellent correlation with previous immunoassay results in two independent PD cohorts (p < 0.001), correlated with disease severity, and its changes significantly tracked the disease progression longitudinally. An MRM assay to quantify human CSF α-syn was developed and optimized. Sixty clinical samples from cross-sectional and longitudinal PD cohorts were analyzed with this approach. Although further larger scale validation is needed, the results suggest that α-syn peptide could serve as a promising biomarker in PD diagnosis and progression. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. An alpha-synuclein MRM assay with diagnostic potential for Parkinson's disease and monitoring disease progression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li; Stewart, Tessandra; Shi, Min

    Aim: The alpha-synuclein (α-syn) level in human cerebrospinal fluid (CSF), as measured by immunoassays, is promising as a Parkinson’s disease (PD) biomarker. However, the levels of total α-syn are inconsistent among studies with large cohorts and different measurement platforms. Total α-syn level also does not correlate with disease severity or progression. Here, we developed a highly sensitive Multiple Reaction Monitoring (MRM) method to measure absolute CSF α-syn peptide concentrations without prior enrichment or fractionation, aiming to discover new candidate biomarkers. Results: Six peptides covering 73% of protein sequence were reliably identified, and two were consistently quantified in cross-sectional and longitudinalmore » cohorts. Absolute concentration of α-syn in human CSF was determined to be 2.1ng/mL. A unique α-syn peptide, TVEGAGSIAAATGFVK (81-96), displayed excellent correlation with previous immunoassay results in two independent PD cohorts (p < 0.001), correlated with disease severity, and its changes significantly tracked the disease progression longitudinally. Conclusions: An MRM assay to quantify human CSF α-syn was developed and optimized. Sixty clinical samples from cross-sectional and longitudinal PD cohorts were analyzed with this approach. Although further larger-scale validation is needed, the results suggest that α-syn peptide could serve as a promising biomarker in PD diagnosis and progression.« less

  11. Arachidonic acid mediates the formation of abundant alpha-helical multimers of alpha-synuclein

    NASA Astrophysics Data System (ADS)

    Iljina, Marija; Tosatto, Laura; Choi, Minee L.; Sang, Jason C.; Ye, Yu; Hughes, Craig D.; Bryant, Clare E.; Gandhi, Sonia; Klenerman, David

    2016-09-01

    The protein alpha-synuclein (αS) self-assembles into toxic beta-sheet aggregates in Parkinson’s disease, while it is proposed that αS forms soluble alpha-helical multimers in healthy neurons. Here, we have made αS multimers in vitro using arachidonic acid (ARA), one of the most abundant fatty acids in the brain, and characterized them by a combination of bulk experiments and single-molecule Fӧrster resonance energy transfer (sm-FRET) measurements. The data suggest that ARA-induced oligomers are alpha-helical, resistant to fibril formation, more prone to disaggregation, enzymatic digestion and degradation by the 26S proteasome, and lead to lower neuronal damage and reduced activation of microglia compared to the oligomers formed in the absence of ARA. These multimers can be formed at physiologically-relevant concentrations, and pathological mutants of αS form less multimers than wild-type αS. Our work provides strong biophysical evidence for the formation of alpha-helical multimers of αS in the presence of a biologically relevant fatty acid, which may have a protective role with respect to the generation of beta-sheet toxic structures during αS fibrillation.

  12. Aggregates assembled from overexpression of wild-type alpha-synuclein are not toxic to human neuronal cells.

    PubMed

    Ko, Li-Wen; Ko, Hwai-Hwa C; Lin, Wen-Lang; Kulathingal, Jayanranyan G; Yen, Shu-Hui C

    2008-11-01

    Filamentous alpha-synuclein (alpha-syn) aggregates form Lewy bodies (LBs), the neuropathologic hallmarks of Parkinson disease and related alpha-synucleinopathies. To model Lewy body-associated neurodegeneration, we generated transfectant 3D5 of human neuronal-type in which expression of human wild-type alpha-syn is regulated by the tetracycline off (TetOff)-inducible mechanism. Retinoic acid-elicited differentiation promoted assembly of alpha-syn aggregates after TetOff induction in 3D5 cells. The aggregates accumulated 14 days after TetOff induction were primarily soluble and showed augmented thioflavin affinity with concomitant phosphorylation and nitration of alpha-syn. Extension of the induction led to the formation of sarkosyl-insoluble aggregates that appeared concurrently with thioflavin-positive inclusions. Immunoelectron microscopy revealed that the inclusions consist of dense bundles of 8- to 12-nm alpha-syn fibrils that congregate in the perikarya and resemble Lewy bodies. Most importantly, accumulation of soluble and insoluble aggregates after TetOff induction for 14 and 28 days was reversible and did not compromise the viability of the cells or their subsequent survival. Thus, this chemically defined culture paradigm provides a useful means to elucidate how oxidative injuries and other insults that are associated with aging promote alpha-syn to self-assemble or interact with other molecules leading to neuronal degeneration in alpha-synucleinopathies.

  13. Drp-1 dependent mitochondrial fragmentation and protective autophagy in dopaminergic SH-SY5Y cells overexpressing alpha-synuclein.

    PubMed

    Martinez, Jimena Hebe; Alaimo, Agustina; Gorojod, Roxana Mayra; Porte Alcon, Soledad; Fuentes, Federico; Coluccio Leskow, Federico; Kotler, Mónica Lidia

    2018-04-01

    Parkinson's disease is a neurodegenerative movement disorder caused by the loss of dopaminergic neurons from substantia nigra. It is characterized by the accumulation of aggregated α-synuclein as the major component of the Lewy bodies. Additional common features of this disease are the mitochondrial dysfunction and the activation/inhibition of autophagy both events associated to the intracellular accumulation of α-synuclein. The mechanism by which these events contribute to neural degeneration remains unknown. In the present work we investigated the effect of α-synuclein on mitochondrial dynamics and autophagy/mitophagy in SH-SY5Y cells, an in vitro model of Parkinson disease. We demonstrated that overexpression of wild type α-synuclein causes moderated toxicity, ROS generation and mitochondrial dysfunction. In addition, α-synuclein induces the mitochondrial fragmentation on a Drp-1-dependent fashion. Overexpression of the fusion protein Opa-1 prevented both mitochondrial fragmentation and cytotoxicity. On the other hand, cells expressing α-synuclein showed activated autophagy and particularly mitophagy. Employing a genetic strategy we demonstrated that autophagy is triggered in order to protect cells from α-synuclein-induced cell death. Our results clarify the role of Opa-1 and Drp-1 in mitochondrial dynamics and cell survival, a controversial α-synuclein research issue. The findings presented point to the relevance of mitochondrial homeostasis and autophagy in the pathogenesis of PD. Better understanding of the molecular interaction between these processes could give rise to novel therapeutic methods for PD prevention and amelioration. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson's disease.

    PubMed

    Finkelstein, David I; Billings, Jessica L; Adlard, Paul A; Ayton, Scott; Sedjahtera, Amelia; Masters, Colin L; Wilkins, Simon; Shackleford, David M; Charman, Susan A; Bal, Wojciech; Zawisza, Izabela A; Kurowska, Ewa; Gundlach, Andrew L; Ma, Sheri; Bush, Ashley I; Hare, Dominic J; Doble, Philip A; Crawford, Simon; Gautier, Elisabeth Cl; Parsons, Jack; Huggins, Penny; Barnham, Kevin J; Cherny, Robert A

    2017-06-28

    Elevated iron in the SNpc may play a key role in Parkinson's disease (PD) neurodegeneration since drug candidates with high iron affinity rescue PD animal models, and one candidate, deferirpone, has shown efficacy recently in a phase two clinical trial. However, strong iron chelators may perturb essential iron metabolism, and it is not yet known whether the damage associated with iron is mediated by a tightly bound (eg ferritin) or lower-affinity, labile, iron pool. Here we report the preclinical characterization of PBT434, a novel quinazolinone compound bearing a moderate affinity metal-binding motif, which is in development for Parkinsonian conditions. In vitro, PBT434 was far less potent than deferiprone or deferoxamine at lowering cellular iron levels, yet was found to inhibit iron-mediated redox activity and iron-mediated aggregation of α-synuclein, a protein that aggregates in the neuropathology. In vivo, PBT434 did not deplete tissue iron stores in normal rodents, yet prevented loss of substantia nigra pars compacta neurons (SNpc), lowered nigral α-synuclein accumulation, and rescued motor performance in mice exposed to the Parkinsonian toxins 6-OHDA and MPTP, and in a transgenic animal model (hA53T α-synuclein) of PD. These improvements were associated with reduced markers of oxidative damage, and increased levels of ferroportin (an iron exporter) and DJ-1. We conclude that compounds designed to target a pool of pathological iron that is not held in high-affinity complexes in the tissue can maintain the survival of SNpc neurons and could be disease-modifying in PD.

  15. Convergence of pathology in dementia with Lewy bodies and Alzheimer's disease: a role for the novel interaction of alpha-synuclein and presenilin 1 in disease.

    PubMed

    Winslow, Ashley R; Moussaud, Simon; Zhu, Liya; Post, Kathryn L; Post, Katherine L; Dickson, Dennis W; Berezovska, Oksana; McLean, Pamela J

    2014-07-01

    A growing number of PSEN1 mutations have been associated with dementia with Lewy bodies and familial Alzheimer's disease with concomitant α-synuclein pathology. The objective of this study was to determine if PSEN1 plays a direct role in the development of α-synuclein pathology in these diseases. Using mass spectrometry, immunoelectron microscopy and fluorescence lifetime image microscopy based on Forster resonance energy transfer (FLIM-FRET) we identified α-synuclein as a novel interactor of PSEN1 in wild-type mouse brain tissue. The interaction of α-synuclein with PSEN1 was detected in post-mortem brain tissue from cognitively normal cases and was significantly increased in tissue from cases with dementia with Lewy bodies and familial Alzheimer's disease associated with known PSEN1 mutations. We confirmed an increased interaction of PSEN1 and α-synuclein in cell lines expressing well characterized familial Alzheimer's disease PSEN1 mutations, L166P and delta exon 9, and demonstrated that PSEN1 mutations associate with increased membrane association and accumulation of α-synuclein. Our data provides evidence of a molecular interaction of PSEN1 and α-synuclein that may explain the clinical and pathophysiological overlap seen in synucleinopathies, including Parkinson's disease, dementia with Lewy bodies, and some forms of Alzheimer's disease. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Induction of the Immunoproteasome Subunit Lmp7 Links Proteostasis and Immunity in α-Synuclein Aggregation Disorders.

    PubMed

    Ugras, Scott; Daniels, Malcolm J; Fazelinia, Hossein; Gould, Neal S; Yocum, Anastasia K; Luk, Kelvin C; Luna, Esteban; Ding, Hua; McKennan, Chris; Seeholzer, Steven; Martinez, Dan; Evans, Perry; Brown, Daniel; Duda, John E; Ischiropoulos, Harry

    2018-05-01

    Accumulation of aggregated α-synuclein into Lewy bodies is thought to contribute to the onset and progression of dopaminergic neuron degeneration in Parkinson's disease (PD) and related disorders. Although protein aggregation is associated with perturbation of proteostasis, how α-synuclein aggregation affects the brain proteome and signaling remains uncertain. In a mouse model of α-synuclein aggregation, 6% of 6215 proteins and 1.6% of 8183 phosphopeptides changed in abundance, indicating conservation of proteostasis and phosphorylation signaling. The proteomic analysis confirmed changes in abundance of proteins that regulate dopamine synthesis and transport, synaptic activity and integrity, and unearthed changes in mRNA binding, processing and protein translation. Phosphorylation signaling changes centered on axonal and synaptic cytoskeletal organization and structural integrity. Proteostatic responses included a significant increase in the levels of Lmp7, a component of the immunoproteasome. Increased Lmp7 levels and activity were also quantified in postmortem human brains with PD and dementia with Lewy bodies. Functionally, the immunoproteasome degrades α-synuclein aggregates and generates potentially antigenic peptides. Expression and activity of the immunoproteasome may represent testable targets to induce adaptive responses that maintain proteome integrity and modulate immune responses in protein aggregation disorders. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. The G209A mutation in the alpha-synuclein gene is not detected in familial cases of Parkinson disease in non-Greek and/or Italian populations.

    PubMed

    Wang, W W; Khajavi, M; Patel, B J; Beach, J; Jankovic, J; Ashizawa, T

    1998-12-01

    To determine whether the G-to-A substitution at nucleotide 209 (G209A) mutation in the alpha-synuclein gene is responsible for familial Parkinson disease (PD) in the US population. Polymerase chain reaction-based DNA analysis of consecutive patients with PD and family history of PD. A university-affiliated movement disorder clinic and a Veterans Affairs clinical research laboratory. Forty-four patients with PD and family history of PD and 29 patients with sporadic PD, all with no known Greek and/or Italian background. None of the DNA samples showed the G209A mutation. The G209A mutation is rare in US patients with familial PD.

  18. The contribution of alpha synuclein to neuronal survival and function - Implications for Parkinson's disease.

    PubMed

    Benskey, Matthew J; Perez, Ruth G; Manfredsson, Fredric P

    2016-05-01

    The aggregation of alpha synuclein (α-syn) is a neuropathological feature that defines a spectrum of disorders collectively termed synucleinopathies, and of these, Parkinson's disease (PD) is arguably the best characterized. Aggregated α-syn is the primary component of Lewy bodies, the defining pathological feature of PD, while mutations or multiplications in the α-syn gene result in familial PD. The high correlation between α-syn burden and PD has led to the hypothesis that α-syn aggregation produces toxicity through a gain-of-function mechanism. However, α-syn has been implicated to function in a diverse range of essential cellular processes such as the regulation of neurotransmission and response to cellular stress. As such, an alternative hypothesis with equal explanatory power is that the aggregation of α-syn results in toxicity because of a toxic loss of necessary α-syn function, following sequestration of functional forms α-syn into insoluble protein aggregates. Within this review, we will provide an overview of the literature linking α-syn to PD and the knowledge gained from current α-syn-based animal models of PD. We will then interpret these data from the viewpoint of the α-syn loss-of-function hypothesis and provide a potential mechanistic model by which loss of α-syn function could result in at least some of the neurodegeneration observed in PD. By providing an alternative perspective on the etiopathogenesis of PD and synucleinopathies, this may reveal alternative avenues of research in order to identify potential novel therapeutic targets for disease modifying strategies. The correlation between α-synuclein burden and Parkinson's disease pathology has led to the hypothesis that α-synuclein aggregation produces toxicity through a gain-of-function mechanism. However, in this review, we discuss data supporting the alternative hypothesis that the aggregation of α-synuclein results in toxicity because of loss of necessary α-synuclein function at the presynaptic terminal, following sequestration of functional forms of α-synuclein into aggregates. © 2016 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  19. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration.

    PubMed

    Mor, Danielle E; Tsika, Elpida; Mazzulli, Joseph R; Gould, Neal S; Kim, Hanna; Daniels, Malcolm J; Doshi, Shachee; Gupta, Preetika; Grossman, Jennifer L; Tan, Victor X; Kalb, Robert G; Caldwell, Kim A; Caldwell, Guy A; Wolfe, John H; Ischiropoulos, Harry

    2017-11-01

    Parkinson's disease (PD) is defined by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated both dopamine levels and α-synuclein expression. Nigrally targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine levels without damaging neurons in non-transgenic mice. In contrast, raising dopamine levels in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable Caenorhabditis elegans models, expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. These data suggest that a unique mechanism links two cardinal features of PD: dopaminergic cell death and α-synuclein aggregation.

  20. The Potential Role of Toll-Like Receptor 4 in Mediating Dopaminergic Cell Loss and Alpha-Synuclein Expression in the Acute MPTP Mouse Model of Parkinson's Disease.

    PubMed

    Mariucci, Giuseppina; Pagiotti, Rita; Galli, Francesco; Romani, Luigina; Conte, Carmela

    2018-04-01

    Toll-like receptors (TLRs) may have a role in Parkinson's disease (PD). In this study, we aimed at investigating the dopaminergic cell loss and alpha-synuclein (α-SYN) expression in TLR4-deficient mice (TLR4 -/- ) acutely exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a pharmacological PD model. TLR4 ablation restrained the number of dopaminergic neurons in the substantia nigra (SN), as assessed by tyrosine hydroxylase (TH) protein expression. Intriguingly, TLR4 -/- mice showed massive α-SYN protein accumulation in the midbrain along with high α-SYN mRNA levels in cerebral cortex, striatum, hippocampus, and cerebellum. Contrary to expectations, the high levels of α-SYN do not correlate with greater dopaminergic neuronal loss. The levels of nigral α-SYN protein in TLR4 -/- mice further, but not significantly, increased during MPTP treatment. Contrariwise, MPTP treatment significantly induced the mRNA expression of α-SYN in examined brain regions of WT and TLR4 -/- mice. Protein levels of GATA2, a transcription factor proposed to control α-SYN gene expression, did not change in TLR4 -/- mice at baseline and after MPTP treatment. These findings suggest a role for TLR4 in mediating dopaminergic cell loss and in the constitutive expression of brain α-SYN. However, further exploration is needed in order to establish the actual role of α-SYN in the relative absence of TLR4.

  1. Preserved functional autonomic phenotype in adult mice overexpressing moderate levels of human alpha-synuclein in oligodendrocytes.

    PubMed

    Tank, Jens; da Costa-Goncalves, Andrey C; Kamer, Ilona; Qadri, Fatimunnisa; Ubhi, Kiren; Rockenstein, Edward; Diedrich, André; Masliah, Eliezer; Gross, Volkmar; Jordan, Jens

    2014-11-01

    Mice overexpressing human alpha-synuclein in oligodendrocytes (MBP1-α-syn) recapitulate some key functional and neuropathological features of multiple system atrophy (MSA). Whether or not these mice develop severe autonomic failure, which is a key feature of human MSA, remains unknown. We explored cardiovascular autonomic regulation using long-term blood pressure (BP) radiotelemetry and pharmacological testing. We instrumented 12 MBP1-α-syn mice and 11 wild-type mice aged 9 months for radiotelemetry. Animals were tested with atropine, metoprolol, clonidine, and trimethaphan at 9 and 12 months age. We applied spectral and cross-spectral analysis to assess heart rate (HR) and BP variability. At 9 months of age daytime BP (transgenic: 101 ± 2 vs. wild type: 99 ± 2 mmHg) and HR (497 ± 11 vs. 505 ± 16 beats/min) were similar. Circadian BP and HR rhythms were maintained. Nighttime BP (109 ± 2 vs. 108 ± 2 mmHg) and HR (575 ± 15 vs. 569 ± 14 beats/min), mean arterial BP responses to trimethaphan (-21 ± 8 vs. -10 ± 5 mmHg, P = 0.240) and to clonidine (-8 ± 3 vs. -5 ± 2 mmHg, P = 0.314) were similar. HR responses to atropine (+159 ± 24 vs. +146 ± 22 beats/min), and to clonidine (-188 ± 21 vs. -163 ± 33 beats/min) did not differ between strains. Baroreflex sensitivity (4 ± 1 vs. 4 ± 1 msec/mmHg) and HR variability (total power, 84 ± 17 vs. 65 ± 21 msec²) were similar under resting conditions and during pharmacological testing. Repeated measurements at 12 months of age provided similar results. In mice, moderate overexpression of human alpha-synuclein in oligodendrocytes is not sufficient to induce overt autonomic failure. Additional mechanisms may be required to express the autonomic failure phenotype including higher levels of expression or more advanced age. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  2. In vivo silencing of alpha-synuclein using naked siRNA

    PubMed Central

    Lewis, Jada; Melrose, Heather; Bumcrot, David; Hope, Andrew; Zehr, Cynthia; Lincoln, Sarah; Braithwaite, Adam; He, Zhen; Ogholikhan, Sina; Hinkle, Kelly; Kent, Caroline; Toudjarska, Ivanka; Charisse, Klaus; Braich, Ravi; Pandey, Rajendra K; Heckman, Michael; Maraganore, Demetrius M; Crook, Julia; Farrer, Matthew J

    2008-01-01

    Background Overexpression of α-synuclein (SNCA) in families with multiplication mutations causes parkinsonism and subsequent dementia, characterized by diffuse Lewy Body disease post-mortem. Genetic variability in SNCA contributes to risk of idiopathic Parkinson's disease (PD), possibly as a result of overexpression. SNCA downregulation is therefore a valid therapeutic target for PD. Results We have identified human and murine-specific siRNA molecules which reduce SNCA in vitro. As a proof of concept, we demonstrate that direct infusion of chemically modified (naked), murine-specific siRNA into the hippocampus significantly reduces SNCA levels. Reduction of SNCA in the hippocampus and cortex persists for a minimum of 1 week post-infusion with recovery nearing control levels by 3 weeks post-infusion. Conclusion We have developed naked gene-specific siRNAs that silence expression of SNCA in vivo. This approach may prove beneficial toward our understanding of the endogenous functional equilibrium of SNCA, its role in disease, and eventually as a therapeutic strategy for α-synucleinopathies resulting from SNCA overexpression. PMID:18976489

  3. Network Analysis Implicates Alpha-Synuclein (Snca) in the Regulation of Ovariectomy-Induced Bone Loss

    PubMed Central

    Calabrese, Gina; Mesner, Larry D.; Foley, Patricia L.; Rosen, Clifford J.; Farber, Charles R.

    2016-01-01

    The postmenopausal period in women is associated with decreased circulating estrogen levels, which accelerate bone loss and increase the risk of fracture. Here, we gained novel insight into the molecular mechanisms mediating bone loss in ovariectomized (OVX) mice, a model of human menopause, using co-expression network analysis. Specifically, we generated a co-expression network consisting of 53 gene modules using expression profiles from intact and OVX mice from a panel of inbred strains. The expression of four modules was altered by OVX, including module 23 whose expression was decreased by OVX across all strains. Module 23 was enriched for genes involved in the response to oxidative stress, a process known to be involved in OVX-induced bone loss. Additionally, module 23 homologs were co-expressed in human bone marrow. Alpha synuclein (Snca) was one of the most highly connected “hub” genes in module 23. We characterized mice deficient in Snca and observed a 40% reduction in OVX-induced bone loss. Furthermore, protection was associated with the altered expression of specific network modules, including module 23. In summary, the results of this study suggest that Snca regulates bone network homeostasis and ovariectomy-induced bone loss. PMID:27378017

  4. A prolyl oligopeptidase inhibitor, KYP-2047, reduces α-synuclein protein levels and aggregates in cellular and animal models of Parkinson's disease

    PubMed Central

    Myöhänen, TT; Hannula, MJ; Van Elzen, R; Gerard, M; Van Der Veken, P; García-Horsman, JA; Baekelandt, V; Männistö, PT; Lambeir, AM

    2012-01-01

    BACKGROUND AND PURPOSE The aggregation of α-synuclein is connected to the pathology of Parkinson's disease and prolyl oligopeptidase (PREP) accelerates the aggregation of α-synuclein in vitro. The aim of this study was to investigate the effects of a PREP inhibitor, KYP-2047, on α-synuclein aggregation in cell lines overexpressing wild-type or A30P/A53T mutant human α-syn and in the brains of two A30P α-synuclein transgenic mouse strains. EXPERIMENTAL APPROACH Cells were exposed to oxidative stress and then incubated with the PREP inhibitor during or after the stress. Wild-type or transgenic mice were treated for 5 days with KYP-2047 (2 × 3 mg·kg−1 a day). Besides immunohistochemistry and thioflavin S staining, soluble and insoluble α-synuclein protein levels were measured by Western blot. α-synuclein mRNA levels were quantified by PCR. The colocalization of PREP and α-synuclein,and the effect of KYP-2047 on cell viability were also investigated. KEY RESULTS In cell lines, oxidative stress induced a robust aggregation of α-synuclein,and low concentrations of KYP-2047 significantly reduced the number of cells with α-synuclein inclusions while abolishing the colocalization of α-synuclein and PREP. KYP-2047 significantly reduced the amount of aggregated α-synuclein,and it had beneficial effects on cell viability. In the transgenic mice, a 5-day treatment with the PREP inhibitor reduced the amount of α-synuclein immunoreactivity and soluble α-synuclein protein in the brain. CONCLUSIONS AND IMPLICATIONS The results suggest that the PREP may play a role in brain accumulation and aggregation of α-synuclein, while KYP-2047 seems to effectively prevent these processes. PMID:22233220

  5. Alpha-Synuclein Produces Early Behavioral Alterations via Striatal Cholinergic Synaptic Dysfunction by Interacting With GluN2D N-Methyl-D-Aspartate Receptor Subunit.

    PubMed

    Tozzi, Alessandro; de Iure, Antonio; Bagetta, Vincenza; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Costa, Cinzia; Di Filippo, Massimiliano; Ghiglieri, Veronica; Latagliata, Emanuele Claudio; Wegrzynowicz, Michal; Decressac, Mickael; Giampà, Carmela; Dalley, Jeffrey W; Xia, Jing; Gardoni, Fabrizio; Mellone, Manuela; El-Agnaf, Omar Mukhtar; Ardah, Mustafa Taleb; Puglisi-Allegra, Stefano; Björklund, Anders; Spillantini, Maria Grazia; Picconi, Barbara; Calabresi, Paolo

    2016-03-01

    Advanced Parkinson's disease (PD) is characterized by massive degeneration of nigral dopaminergic neurons, dramatic motor and cognitive alterations, and presence of nigral Lewy bodies, whose main constituent is α-synuclein (α-syn). However, the synaptic mechanisms underlying behavioral and motor effects induced by early selective overexpression of nigral α-syn are still a matter of debate. We performed behavioral, molecular, and immunohistochemical analyses in two transgenic models of PD, mice transgenic for truncated human α-synuclein 1-120 and rats injected with the adeno-associated viral vector carrying wild-type human α-synuclein. We also investigated striatal synaptic plasticity by electrophysiological recordings from spiny projection neurons and cholinergic interneurons. We found that overexpression of truncated or wild-type human α-syn causes partial reduction of striatal dopamine levels and selectively blocks the induction of long-term potentiation in striatal cholinergic interneurons, producing early memory and motor alterations. These effects were dependent on α-syn modulation of the GluN2D-expressing N-methyl-D-aspartate receptors in cholinergic interneurons. Acute in vitro application of human α-syn oligomers mimicked the synaptic effects observed ex vivo in PD models. We suggest that striatal cholinergic dysfunction, induced by a direct interaction between α-syn and GluN2D-expressing N-methyl-D-aspartate receptors, represents a precocious biological marker of the disease. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. In vitro study of α-synuclein protofibrils by cryo-EM suggests a Cu(2+)-dependent aggregation pathway.

    PubMed

    Zhang, Hangyu; Griggs, Amy; Rochet, Jean-Christophe; Stanciu, Lia A

    2013-06-18

    The aggregation of α-synuclein is thought to play a role in the death of dopamine neurons in Parkinson's disease (PD). Alpha-synuclein transitions itself through an aggregation pathway consisting of pathogenic species referred to as protofibrils (or oligomer), which ultimately convert to mature fibrils. The structural heterogeneity and instability of protofibrils has significantly impeded advance related to the understanding of their structural characteristics and the amyloid aggregation mystery. Here, we report, to our knowledge for the first time, on α-synuclein protofibril structural characteristics with cryo-electron microscopy. Statistical analysis of annular protofibrils revealed a constant wall thickness as a common feature. The visualization of the assembly steps enabled us to propose a novel, to our knowledge, mechanisms for α-synuclein aggregation involving ring-opening and protofibril-protofibril interaction events. The ion channel-like protofibrils and their membrane permeability have also been found in other amyloid diseases, suggesting a common molecular mechanism of pathological aggregation. Our direct visualization of the aggregation pathway of α-synuclein opens up fresh opportunities to advance the understanding of protein aggregation mechanisms relevant to many amyloid diseases. In turn, this information would enable the development of additional therapeutic strategies aimed at suppressing toxic protofibrils of amyloid proteins involved in neurological disorders. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Novel One-step Immunoassays to Quantify α-Synuclein

    PubMed Central

    Bidinosti, Michael; Shimshek, Derya R.; Mollenhauer, Brit; Marcellin, David; Schweizer, Tatjana; Lotz, Gregor P.; Schlossmacher, Michael G.; Weiss, Andreas

    2012-01-01

    Familial Parkinson disease (PD) can result from α-synuclein gene multiplication, implicating the reduction of neuronal α-synuclein as a therapeutic target. Moreover, α-synuclein content in human cerebrospinal fluid (CSF) represents a PD biomarker candidate. However, capture-based assays for α-synuclein quantification in CSF (such as by ELISA) have shown discrepancies and have limited suitability for high-throughput screening. Here, we describe two sensitive, in-solution, time-resolved Förster's resonance energy transfer (TR-FRET)-based immunoassays for total and oligomeric α-synuclein quantification. CSF analysis showed strong concordance for total α-synuclein content between two TR-FRET assays and, in agreement with a previously characterized 36 h protocol-based ELISA, demonstrated lower α-synuclein levels in PD donors. Critically, the assay suitability for high-throughput screening of siRNA constructs and small molecules aimed at reducing endogenous α-synuclein levels was established and validated. In a small-scale proof of concept compound screen using 384 well plates, signals ranged from <30 to >120% of the mean of vehicle-treated cells for molecules known to lower and increase cellular α-synuclein, respectively. Furthermore, a reverse genetic screen of a kinase-directed siRNA library identified seven genes that modulated α-synuclein protein levels (five whose knockdown increased and two that decreased cellular α-synuclein protein). This provides critical new biological insight into cellular pathways regulating α-synuclein steady-state expression that may help guide further drug discovery efforts. Moreover, we describe an inherent limitation in current α-synuclein oligomer detection methodology, a finding that will direct improvement of future assay design. Our one-step TR-FRET-based platform for α-synuclein quantification provides a novel platform with superior performance parameters for the rapid screening of large biomarker cohorts and of compound and genetic libraries, both of which are essential to the development of PD therapies. PMID:22843695

  8. Dementia with Lewy Bodies

    MedlinePlus

    ... NINDS Focus on Disorders Alzheimer's & Related Dementias Epilepsy Parkinson's Disease Spinal Cord Injury Traumatic Brain Injury Focus On ... that alpha-synuclein accumulation is also linked to Parkinson's disease, multiple system atrophy, and several other disorders, which ...

  9. Michael J. Fox Foundation for Parkinson's Research

    MedlinePlus

    ... Prize Alpha-Synuclein Imaging Prize DONATE TO ADVANCE RESEARCH FUNDRAISE WITH TEAM FOX PARTICIPATE IN YOUR AREA ... Program Pre-Proposals Due: CLOSED APPLY NOW Support Research Monthly Become a monthly supporter of the Foundation's ...

  10. Aggregation of alpha-synuclein by a coarse-grained Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Farmer, Barry; Pandey, Ras

    Alpha-synuclein, an intrinsic protein abundant in neurons, is believed to be a major cause of neurodegenerative diseases (e.g. Alzheimer, Parkinson's disease). Abnormal aggregation of ASN leads to Lewy bodies with specific morphologies. We investigate the self-organizing structures in a crowded environment of ASN proteins by a coarse-grained Monte Carlo simulation. ASN is a chain of 140 residues. Structure detail of residues is neglected but its specificity is captured via unique knowledge-based residue-residue interactions. Large-scale simulations are performed to analyze a number local and global physical quantities (e.g. mobility profile, contact map, radius of gyration, structure factor) as a function of temperature and protein concentration. Trend in multi-scale structural variations of the protein in a crowded environment is compared with that of a free protein chain.

  11. MECHANISM OF ALPHA-SYNUCLEIN OLIGOMERIZATION AND MEMBRANE INTERACTION: THEORETICAL APPROACH TO UNSTRUCTURED PROTEINS STUDIES

    PubMed Central

    Tsigelny, Igor F.; Sharikov, Yuriy; Miller, Mark A.; Masliah, Eliezer

    2008-01-01

    Misfolding and oligomerization of unstructured proteins is involved in the pathogenesis of Parkinson’s (PD), Alzheimer’s (AD), Huntington’s, and other neurodegenerative disorders. Elucidation of possible conformations of these proteins and their interactions with the membrane is necessary to understand the molecular mechanisms of neurodegeneration. We developed a strategy that makes it possible to elucidate the molecular mechanisms of of alpha-synuclein aggregation- a key molecular event in the pathogenesis of PD. This strategy can be also useful for the study of other unstructured proteins involved in neurodegeneration. The results of these theoretical studies have been confirmed with biochemical and electrophysiological studies. Our studies provide insights into the molecular mechanism for PD initiation and progression, and provide a useful paradigm for identifying possible therapeutic interventions through computational modeling. PMID:18640077

  12. Lysosomal response in relation to α-synuclein pathology differs between Parkinson's disease and multiple system atrophy.

    PubMed

    Puska, Gina; Lutz, Mirjam I; Molnar, Kinga; Regelsberger, Günther; Ricken, Gerda; Pirker, Walter; Laszlo, Lajos; Kovacs, Gabor G

    2018-06-01

    Intracellular deposition of pathologically altered α-synuclein mostly in neurons characterises Parkinson's disease (PD), while its accumulation predominantly in oligodendrocytes is a feature of multiple system atrophy (MSA). Recently a prion-like spreading of pathologic α-synuclein has been suggested to play a role in the pathogenesis of PD and MSA. This implicates a role of protein processing systems, including lysosomes, supported also by genetic studies in PD. However, particularly for MSA, the mechanism of cell-to-cell propagation of α-synuclein is yet not fully understood. To evaluate the significance of lysosomal response, we systematically compared differently affected neuronal populations in PD, MSA, and non-diseased brains using morphometric immunohistochemistry (cathepsin D), double immunolabelling (cathepsin D/α-synuclein) laser confocal microscopy, and immunogold electron microscopy for the disease associated α-synuclein. We found that i) irrespective of the presence of neuronal inclusions, the volume density of cathepsin D immunoreactivity significantly increases in affected neurons of the pontine base in MSA brains; ii) volume density of cathepsin D immunoreactivity increases in nigral neurons in PD without inclusions and with non-ubiquitinated pre-aggregates of α-synuclein, but not in neurons with Lewy bodies; iii) cathepsin D immunoreactivity frequently colocalises with α-synuclein pre-aggregates in nigral neurons in PD; iv) ultrastructural observations confirm disease-associated α-synuclein in neuronal and astrocytic lysosomes in PD; v) lysosome-associated α-synuclein is observed in astroglia and rarely in oligodendroglia and in neurons in MSA. Our observations support a crucial role for the neuronal endosomal-lysosomal system in the processing of α-synuclein in PD. We suggest a distinct contribution of lysosomes to the pathogenesis of MSA, including the possibility of oligodendroglial and eventually neuronal uptake of exogenous α-synuclein in MSA. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Validation of a quantitative cerebrospinal fluid alpha-synuclein assay in a European-wide interlaboratory study.

    PubMed

    Kruse, Niels; Persson, Staffan; Alcolea, Daniel; Bahl, Justyna M C; Baldeiras, Ines; Capello, Elisabetta; Chiasserini, Davide; Bocchio Chiavetto, Luisella; Emersic, Andreja; Engelborghs, Sebastiaan; Eren, Erden; Fladby, Tormod; Frisoni, Giovanni; García-Ayllón, María-Salud; Genc, Sermin; Gkatzima, Olymbia; Heegaard, Niels H H; Janeiro, André M; Kováčech, Branislav; Kuiperij, H Bea; Leitão, Maria J; Lleó, Alberto; Martins, Madalena; Matos, Mafalda; Mollergard, Hanne M; Nobili, Flavio; Öhrfelt, Annika; Parnetti, Lucilla; de Oliveira, Catarina Resende; Rot, Uros; Sáez-Valero, Javier; Struyfs, Hanne; Tanassi, Julia T; Taylor, Peggy; Tsolaki, Magda; Vanmechelen, Eugeen; Verbeek, Marcel M; Zilka, Norbert; Blennow, Kaj; Zetterberg, Henrik; Mollenhauer, Brit

    2015-09-01

    Decreased levels of alpha-synuclein (aSyn) in cerebrospinal fluid (CSF) in Parkinson's disease and related synucleinopathies have been reported, however, not consistently in all cross-sectional studies. To test the performance of one recently released human-specific enzyme-linked immunosorbent assay (ELISA) for the quantification of aSyn in CSF, we carried out a round robin trial with 18 participating laboratories trained in CSF ELISA analyses within the BIOMARKAPD project in the EU Joint Program - Neurodegenerative Disease Research. CSF samples (homogeneous aliquots from pools) and ELISA kits (one lot) were provided centrally and data reported back to one laboratory for data analysis. Our study showed that although factors such as preanalytical sample handling and lot-to-lot variability were minimized by our study design, we identified high variation in absolute values of CSF aSyn even when the same samples and same lots of assays were applied. We further demonstrate that although absolute concentrations differ between laboratories the quantitative results are comparable. With further standardization this assay may become an attractive tool for comparing aSyn measurements in diverse settings. Recommendations for further validation experiments and improvement of the interlaboratory results obtained are given. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration

    PubMed Central

    Mor, Danielle E.; Tsika, Elpida; Mazzulli, Joseph R.; Gould, Neal S.; Kim, Hanna; Daniels, Malcolm J.; Doshi, Shachee; Gupta, Preetika; Grossman, Jennifer L.; Tan, Victor X.; Kalb, Robert G.; Caldwell, Kim A.; Caldwell, Guy A.; Wolfe, John H.; Ischiropoulos, Harry

    2018-01-01

    Parkinson’s disease is defined by the loss of dopaminergic neurons in the substantia nigra and formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated dopamine levels in addition to α-synuclein expression. Nigra-targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine without damaging neurons in non-transgenic mice. In contrast, raising dopamine in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable C. elegans models expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. The data suggest a unique mechanism linking two cardinal features of Parkinson’s disease, dopaminergic cell death and α-synuclein aggregation. PMID:28920936

  15. Sodium butyrate rescues dopaminergic cells from alpha-synuclein-induced transcriptional deregulation and DNA damage.

    PubMed

    Paiva, Isabel; Pinho, Raquel; Pavlou, Maria Angeliki; Hennion, Magali; Wales, Pauline; Schütz, Anna-Lena; Rajput, Ashish; Szego, Éva M; Kerimoglu, Cemil; Gerhardt, Ellen; Rego, Ana Cristina; Fischer, André; Bonn, Stefan; Outeiro, Tiago F

    2017-06-15

    Alpha-synuclein (aSyn) is considered a major culprit in Parkinson's disease (PD) pathophysiology. However, the precise molecular function of the protein remains elusive. Recent evidence suggests that aSyn may play a role on transcription regulation, possibly by modulating the acetylation status of histones. Our study aimed at evaluating the impact of wild-type (WT) and mutant A30P aSyn on gene expression, in a dopaminergic neuronal cell model, and decipher potential mechanisms underlying aSyn-mediated transcriptional deregulation. We performed gene expression analysis using RNA-sequencing in Lund Human Mesencephalic (LUHMES) cells expressing endogenous (control) or increased levels of WT or A30P aSyn. Compared to control cells, cells expressing both aSyn variants exhibited robust changes in the expression of several genes, including downregulation of major genes involved in DNA repair. WT aSyn, unlike A30P aSyn, promoted DNA damage and increased levels of phosphorylated p53. In dopaminergic neuronal cells, increased aSyn expression led to reduced levels of acetylated histone 3. Importantly, treatment with sodium butyrate, a histone deacetylase inhibitor (HDACi), rescued WT aSyn-induced DNA damage, possibly via upregulation of genes involved in DNA repair. Overall, our findings provide novel and compelling insight into the mechanisms associated with aSyn neurotoxicity in dopaminergic cells, which could be ameliorated with an HDACi. Future studies will be crucial to further validate these findings and to define novel possible targets for intervention in PD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Neurofilament L gene is not a genetic factor of sporadic and familial Parkinson's disease.

    PubMed

    Rahner, Nils; Holzmann, Carsten; Krüger, Rejko; Schöls, Ludger; Berger, Klaus; Riess, Olaf

    2002-09-27

    Mutations in two genes, alpha-synuclein and parkin, have been identified as some rare causes for familial Parkinson's disease (PD). alpha-Synuclein and parkin protein have subsequently been identified in Lewy bodies (LB). To gain further insight into the pathogenesis of PD we investigated the role of neurofilament light (NF-L), another component of LB aggregation. A detailed mutation search of the NF-L gene in 328 sporadic and familial PD patients of German ancestry revealed three silent DNA changes (G163A, C224T, C487T) in three unrelated patients. Analysis of the promoter region of the NF-L gene identified a total of three base pair substitutions defining five haplotypes. Association studies based on these haplotypes revealed no significant differences between PD patients and 344 control individuals. Therefore, NF-L is unlikely to play a major role in the pathogenesis of PD.

  17. p27Kip1 regulates alpha-synuclein expression

    PubMed Central

    Gallastegui, Edurne; Domuro, Carla; Serratosa, Joan; Larrieux, Alejandra; Sin, Laura; Martinez, Jonatan; Besson, Arnaud; Morante-Redolat, José Manuel; Orlando, Serena; Aligue, Rosa; Fariñas, Isabel; Pujol, María Jesús; Bachs, Oriol

    2018-01-01

    Alpha-synuclein (α-SYN) is the main component of anomalous protein aggregates (Lewy bodies) that play a crucial role in several neurodegenerative diseases (synucleinopathies) like Parkinson’s disease and multiple system atrophy. However, the mechanisms involved in its transcriptional regulation are poorly understood. We investigated here the role of the cyclin-dependent kinase (Cdk) inhibitor and transcriptional regulator p27Kip1 (p27) in the regulation of α-SYN expression. We observed that selective deletion of p27 by CRISPR/Cas9 technology in neural cells resulted in increased levels of α-SYN. Knock-down of the member of the same family p21Cip1 (p21) also led to increased α-SYN levels, indicating that p27 and p21 collaborate in the repression of α-SYN transcription. We demonstrated that this repression is mediated by the transcription factor E2F4 and the member of the retinoblastoma protein family p130 and that it is dependent of Cdk activity. Chromatin immunoprecipitation analysis revealed specific binding sites for p27, p21 and E2F4 in the proximal α-SYN gene promoter. Finally, luciferase assays revealed a direct action of p27, p21 and E2F4 in α-SYN gene expression. Our findings reveal for the first time a negative regulatory mechanism of α-SYN expression, suggesting a putative role for cell cycle regulators in the etiology of synucleinopathies. PMID:29662651

  18. Amyloid Precursor Protein and Alpha Synuclein Translation, Implications for Iron and Inflammation in Neurodegenerative diseases

    PubMed Central

    Cahill, Catherine M.; Lahiri, Debomoy K.; Huang, Xudong; Rogers, Jack T.

    2014-01-01

    Summary Recent studies that alleles in the hemochromatosis gene may accelerate the onset of Alzheimer's disease (AD) by five years have validated interest in the model in which metals (particularly iron) accelerate disease course. Biochemical and biophysical measurements demonstrated the presence of elevated levels of neurotoxic copper, zinc and iron in the brains of AD patients. Intracellular levels of amyloid precursor protein (APP) holoprotein were shown to be modulated via iron by a mechanism that is similar to the translation control of the ferritin L- and H mRNAs by Iron-responsive Element (IRE) RNA stem loops in their 5′untranslated regions (5′UTRs). Recently, we reported a putative IRE-like sequence to be present in the 5′UTR of the Parkinson's disease (PD) specific alpha synuclein (ASYN) transcript. ASYN encodes the non-Aβ component (NAC) of amyloid plaques. The demonstration of iron-dependent translation of APP mRNA, the involvement of metals in the plaque of AD patients and of increased iron in striatal neurons in the Substantia nigra (SN) of PD patients, have each encouraged the development of metal attenuating agents and iron chelators as a major new therapeutic strategy for the treatment of these neurodegenerative diseases. In the case of AD, metal based therapeutics may ultimately prove more cost effective than the use of an amyloid vaccine as the preferred anti-amyloid therapeutic strategy to ameliorate the cognitive decline of AD patients. PMID:19166904

  19. Neuroprotective effects of voluntary running on cognitive dysfunction in an α-synuclein rat model of Parkinson's disease.

    PubMed

    Crowley, Erin K; Nolan, Yvonne M; Sullivan, Aideen M

    2018-05-01

    Parkinson's disease (PD) is no longer primarily classified as a motor disorder due to increasing recognition of the impact on patients of several nonmotor PD symptoms, including cognitive dysfunction. These nonmotor symptoms are highly prevalent and greatly affect the quality of life of patients with PD, and so, therapeutic interventions to alleviate these symptoms are urgently needed. The aim of this study was to investigate the potential neuroprotective effects of voluntary running on cognitive dysfunction in an adeno-associated virus-α-synuclein rat model of PD. Bilateral intranigral administration of adeno-associated virus-α-synuclein was found to induce motor dysfunction and a significant loss of nigral dopaminergic neurons, neither of which were rescued by voluntary running. Overexpression of α-synuclein also resulted in significant impairment on hippocampal neurogenesis-dependent pattern separation, a cognitive task; this was rescued by voluntary running. This was substantiated by an effect of running on neurogenesis levels in the dorsal dentate gyrus, suggesting that the functional effects of running on pattern separation were mediated via increased neurogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Parkinson's disease: acid-glucocerebrosidase activity and alpha-synuclein clearance.

    PubMed

    Blanz, Judith; Saftig, Paul

    2016-10-01

    The role of mutations in the gene GBA1 encoding the lysosomal hydrolase β-glucocerebrosidase for the development of synucleinopathies, such as Parkinson's disease and dementia with Lewy bodies, was only very recently uncovered. The knowledge obtained from the study of carriers or patients suffering from Gaucher disease (a common lysosomal storage disorder because of GBA1 mutations) is of particular importance for understanding the role of the enzyme and its catabolic pathway in the development of synucleinopathies. Decreased activity of β-glucocerebrosidase leads to lysosomal dysfunction and the accumulation of its substrate glucosylceramide and related lipid derivatives. Glucosylceramide is suggested to stabilize toxic oligomeric forms of α-synuclein that negatively influence the activity of β-glucocerebrosidase and to partially block export of newly synthesized β-glucocerebrosidase from the endoplasmic reticulum to late endocytic compartments, amplifying the pathological effects of α-synuclein and ultimately resulting in neuronal cell death. This pathogenic molecular feedback loop and most likely other factors (such as impaired endoplasmic reticulum-associated degradation, activation of the unfolded protein response and dysregulation of calcium homeostasis induced by misfolded GC mutants) are involved in shifting the cellular homeostasis from monomeric α-synuclein towards oligomeric neurotoxic and aggregated forms, which contribute to Parkinson's disease progression. From a therapeutic point of view, strategies aiming to increase either the expression, stability or delivery of the β-glucocerebrosidase to lysosomes are likely to decrease the α-synuclein burden and may be useful for an in depth evaluation at the organismal level. Lysosomes are critical for protein and lipid homeostasis. Recent research revealed that dysfunction of this organelle contributes to the development of neurodegenerative diseases such as Parkinson's disease (PD). Mutations in the lysosomal hydrolase β-glucocerebrosidase (GBA1) are a major risk factor for the development of PD and the molecular events linked to the reduced activity of GBA1 and the pathological accumulation of lipids and α-synuclein are just at the beginning to be understood. New therapeutic concepts in regards to how to increase the expression, stability, or delivery of β-glucocerebrosidase to lysosomes are currently developed. This article is part of a special issue on Parkinson disease. © 2016 International Society for Neurochemistry.

  1. Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease

    PubMed Central

    Cook, Travis J.; Bullock, Kristin M.; Zhao, Yanchun; Ginghina, Carmen; Li, Yanfei; Aro, Patrick; Dator, Romel; He, Chunmei; Hipp, Michael J.; Zabetian, Cyrus P.; Peskind, Elaine R.; Hu, Shu-Ching; Quinn, Joseph F.; Galasko, Douglas R.; Banks, William A.; Zhang, Jing

    2014-01-01

    Extracellular α-synuclein is important in the pathogenesis of Parkinson disease (PD) and also as a potential biomarker when tested in the cerebrospinal fluid (CSF). The performance of blood plasma or serum α-synuclein as a biomarker has been found to be inconsistent and generally ineffective, largely due to the contribution of peripherally derived α-synuclein. In this study, we discovered, via an intracerebroventricular injection of radiolabeled α-synuclein into mouse brain, that CSF α-synuclein was readily transported to blood, with a small portion being contained in exosomes that are relatively specific to the central nervous system (CNS). Consequently, we developed a technique to evaluate the levels of α-synuclein in these exosomes in individual plasma samples. When applied to a large cohort of clinical samples (267 PD, 215 controls), we found that in contrast to CSF α-synuclein concentrations, which are consistently reported to be lower in PD patients compared to controls, the levels of plasma exosomal α-synuclein were substantially higher in PD patients, suggesting an increased efflux of the protein to the peripheral blood of these patients. Furthermore, although no association was observed between plasma exosomal and CSF α-synuclein, a significant correlation between plasma exosomal α-synuclein and disease severity (r=0.176, p=0.004) was observed, and the diagnostic sensitivity and specificity achieved by plasma exosomal α-synuclein were comparable to those determined by CSF α-synuclein. Further studies are clearly needed to elucidate the mechanism involved in the transport of CNS α-synuclein to the periphery, which may lead to a more convenient and robust assessment of PD clinically. PMID:24997849

  2. Reduced glucocerebrosidase is associated with increased α-synuclein in sporadic Parkinson's disease.

    PubMed

    Murphy, Karen E; Gysbers, Amanda M; Abbott, Sarah K; Tayebi, Nahid; Kim, Woojin S; Sidransky, Ellen; Cooper, Antony; Garner, Brett; Halliday, Glenda M

    2014-03-01

    Heterozygous mutations in GBA1, the gene encoding lysosomal glucocerebrosidase, are the most frequent known genetic risk factor for Parkinson's disease. Reduced glucocerebrosidase and α-synuclein accumulation are directly related in cell models of Parkinson's disease. We investigated relationships between Parkinson's disease-specific glucocerebrosidase deficits, glucocerebrosidase-related pathways, and α-synuclein levels in brain tissue from subjects with sporadic Parkinson's disease without GBA1 mutations. Brain regions with and without a Parkinson's disease-related increase in α-synuclein levels were assessed in autopsy samples from subjects with sporadic Parkinson's disease (n = 19) and age- and post-mortem delay-matched controls (n = 10). Levels of glucocerebrosidase, α-synuclein and related lysosomal and autophagic proteins were assessed by western blotting. Glucocerebrosidase enzyme activity was measured using a fluorimetric assay, and glucocerebrosidase and α-synuclein messenger RNA expression determined by quantitative polymerase chain reaction. Related sphingolipids were analysed by mass spectrometry. Multivariate statistical analyses were performed to identify differences between disease groups and regions, with non-parametric correlations used to identify relationships between variables. Glucocerebrosidase protein levels and enzyme activity were selectively reduced in the early stages of Parkinson's disease in regions with increased α-synuclein levels although limited inclusion formation, whereas GBA1 messenger RNA expression was non-selectively reduced in Parkinson's disease. The selective loss of lysosomal glucocerebrosidase was directly related to reduced lysosomal chaperone-mediated autophagy, increased α-synuclein and decreased ceramide. Glucocerebrosidase deficits in sporadic Parkinson's disease are related to the abnormal accumulation of α-synuclein and are associated with substantial alterations in lysosomal chaperone-mediated autophagy pathways and lipid metabolism. Our data suggest that the early selective Parkinson's disease changes are likely a result of the redistribution of cellular membrane proteins leading to a chronic reduction in lysosome function in brain regions vulnerable to Parkinson's disease pathology.

  3. Alpha-synuclein, epigenetics, mitochondria, metabolism, calcium traffic, & circadian dysfunction in Parkinson's disease. An integrated strategy for management.

    PubMed

    Phillipson, Oliver T

    2017-11-01

    The motor deficits which characterise the sporadic form of Parkinson's disease arise from age-related loss of a subset of dopamine neurons in the substantia nigra. Although motor symptoms respond to dopamine replacement therapies, the underlying disease process remains. This review details some features of the progressive molecular pathology and proposes deployment of a combination of nutrients: R-lipoic acid, acetyl-l-carnitine, ubiquinol, melatonin (or receptor agonists) and vitamin D3, with the collective potential to slow progression of these features. The main nutrient targets include impaired mitochondria and the associated oxidative/nitrosative stress, calcium stress and impaired gene transcription induced by pathogenic forms of alpha- synuclein. Benefits may be achieved via nutrient influence on epigenetic signaling pathways governing transcription factors for mitochondrial biogenesis, antioxidant defences and the autophagy-lysosomal pathway, via regulation of the metabolic energy sensor AMP activated protein kinase (AMPK) and the mammalian target of rapamycin mTOR. Nutrients also benefit expression of the transcription factor for neuronal survival (NR4A2), trophic factors GDNF and BDNF, and age-related calcium signals. In addition a number of non-motor related dysfunctions in circadian control, clock genes and associated metabolic, endocrine and sleep-wake activity are briefly addressed, as are late-stage complications in respect of cognitive decline and osteoporosis. Analysis of the network of nutrient effects reveals how beneficial synergies may counter the accumulation and promote clearance of pathogenic alpha-synuclein. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  4. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults.

    PubMed

    Calderón-Garcidueñas, Lilian; Solt, Anna C; Henríquez-Roldán, Carlos; Torres-Jardón, Ricardo; Nuse, Bryan; Herritt, Lou; Villarreal-Calderón, Rafael; Osnaya, Norma; Stone, Ida; García, Raquel; Brooks, Diane M; González-Maciel, Angelica; Reynoso-Robles, Rafael; Delgado-Chávez, Ricardo; Reed, William

    2008-02-01

    Air pollution is a serious environmental problem. We investigated whether residency in cities with high air pollution is associated with neuroinflammation/neurodegeneration in healthy children and young adults who died suddenly. We measured mRNA cyclooxygenase-2, interleukin-1beta, and CD14 in target brain regions from low (n = 12) or highly exposed residents (n = 35) aged 25.1 +/- 1.5 years. Upregulation of cyclooxygenase-2, interleukin-1beta, and CD14 in olfactory bulb, frontal cortex, substantia nigrae and vagus nerves; disruption of the blood-brain barrier; endothelial activation, oxidative stress, and inflammatory cell trafficking were seen in highly exposed subjects. Amyloid beta42 (Abeta42) immunoreactivity was observed in 58.8% of apolipoprotein E (APOE) 3/3 < 25 y, and 100% of the APOE 4 subjects, whereas alpha-synuclein was seen in 23.5% of < 25 y subjects. Particulate material (PM) was seen in olfactory bulb neurons, and PM < 100 nm were observed in intraluminal erythrocytes from lung, frontal, and trigeminal ganglia capillaries. Exposure to air pollution causes neuroinflammation, an altered brain innate immune response, and accumulation of Abeta42 and alpha-synuclein starting in childhood. Exposure to air pollution should be considered a risk factor for Alzheimer's and Parkinson's diseases, and carriers of the APOE 4 allele could have a higher risk of developing Alzheimer's disease if they reside in a polluted environment.

  5. Curcumin inhibits aggregation of alpha-synuclein.

    PubMed

    Pandey, Neeraj; Strider, Jeffrey; Nolan, William C; Yan, Sherry X; Galvin, James E

    2008-04-01

    Aggregation of amyloid-beta protein (Abeta) is a key pathogenic event in Alzheimer's disease (AD). Curcumin, a constituent of the Indian spice Turmeric is structurally similar to Congo Red and has been demonstrated to bind Abeta amyloid and prevent further oligomerization of Abeta monomers onto growing amyloid beta-sheets. Reasoning that oligomerization kinetics and mechanism of amyloid formation are similar in Parkinson's disease (PD) and AD, we investigated the effect of curcumin on alpha-synuclein (AS) protein aggregation. In vitro model of AS aggregation was developed by treatment of purified AS protein (wild-type) with 1 mM Fe3+ (Fenton reaction). It was observed that the addition of curcumin inhibited aggregation in a dose-dependent manner and increased AS solubility. The aggregation-inhibiting effect of curcumin was next investigated in cell culture utilizing catecholaminergic SH-SY5Y cell line. A model system was developed in which the red fluorescent protein (DsRed2) was fused with A53T mutant of AS and its aggregation examined under different concentrations of curcumin. To estimate aggregation in an unbiased manner, a protocol was developed in which the images were captured automatically through a high-throughput cell-based screening microscope. The obtained images were processed automatically for aggregates within a defined dimension of 1-6 microm. Greater than 32% decrease in mutant alpha-synuclein aggregation was observed within 48 h subsequent to curcumin addition. Our data suggest that curcumin inhibits AS oligomerization into higher molecular weight aggregates and therefore should be further explored as a potential therapeutic compound for PD and related disorders.

  6. Synucleins: are they two-edged swords?

    PubMed

    Surguchov, Andrei

    2013-02-01

    The synuclein family consists of three distinct highly homologous genes, α-synuclein, β-synuclein, and γ-synuclein, which have so far been found only in vertebrates. Proteins encoded by these genes are characterized by an acidic C-terminal region and five or six imperfect repeat motifs (KTKEGV) distributed throughout the highly conserved N-terminal region. Numerous data demonstrate that synucleins are implicated in two groups of the most devastating human disorders, i.e., neurodegenerative diseases (NDDs) and cancer. Mutations in the α-synuclein gene are associated with familial forms of Parkinson's disease (PD), and accumulation of α-synuclein inclusions is a hallmark of this disorder. In breast cancer, increased expression of γ-synuclein correlates with disease progression. Conversely, some results indicate that the members of the synuclein family may have a protective effect. How might these small proteins combine such controversial properties? We present evidence that synuclein's features are basically regulated by two mechanisms, i.e., posttranslational modifications (PTMs) and the level of their expression. We also discuss a new, emerging area of investigation of synucleins, namely, their role in the cell-to-cell propagation of pathology. Copyright © 2012 Wiley Periodicals, Inc.

  7. α-Synuclein induced toxicity in brain stem serotonin neurons mediated by an AAV vector driven by the tryptophan hydroxylase promoter.

    PubMed

    Wan, Oi Wan; Shin, Eunju; Mattsson, Bengt; Caudal, Dorian; Svenningsson, Per; Björklund, Anders

    2016-05-23

    We studied the impact of α-synuclein overexpression in brainstem serotonin neurons using a novel vector construct where the expression of human wildtype α-synuclein is driven by the tryptophan hydroxylase promoter, allowing expression of α-synuclein at elevated levels, and with high selectivity, in serotonergic neurons. α-Synuclein induced degenerative changes in axons and dendrites, displaying a distorted appearance, suggesting accumulation and aggregation of α-synuclein as a result of impaired axonal transport, accompanied by a 40% loss of terminals, as assessed in the hippocampus. Tissue levels of serotonin and its major metabolite 5-HIAA remained largely unaltered, and the performance of the α-synuclein overexpressing rats in tests of spatial learning (water maze), anxiety related behavior (elevated plus maze) and depressive-like behavior (forced swim test) was not different from control, suggesting that the impact of the developing axonal pathology on serotonin neurotransmission was relatively mild. Overexpression of α-synuclein in the raphe nuclei, combined with overexpression in basal forebrain cholinergic neurons, resulted in more pronounced axonal pathology and significant impairment in the elevated plus maze. We conclude that α-synuclein pathology in serotonergic or cholinergic neurons alone is not sufficient to impair non-motor behaviors, but that it is their simultaneous involvement that determines severity of such symptoms.

  8. AAV1/2-induced overexpression of A53T-α-synuclein in the substantia nigra results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: a new mouse model for Parkinson's disease.

    PubMed

    Ip, Chi Wang; Klaus, Laura-Christin; Karikari, Akua A; Visanji, Naomi P; Brotchie, Jonathan M; Lang, Anthony E; Volkmann, Jens; Koprich, James B

    2017-02-01

    α-Synuclein is a protein implicated in the etiopathogenesis of Parkinson's disease (PD). AAV1/2-driven overexpression of human mutated A53T-α-synuclein in rat and monkey substantia nigra (SN) induces degeneration of nigral dopaminergic neurons and decreases striatal dopamine and tyrosine hydroxylase (TH). Given certain advantages of the mouse, especially it being amendable to genetic manipulation, translating the AAV1/2-A53T α-synuclein model to mice would be of significant value. AAV1/2-A53T α-synuclein or AAV1/2 empty vector (EV) at a concentration of 5.16 x 10 12 gp/ml were unilaterally injected into the right SN of male adult C57BL/6 mice. Post-mortem examinations included immunohistochemistry to analyze nigral α-synuclein, Ser129 phosphorylated α-synuclein and TH expression, striatal dopamine transporter (DAT) levels by autoradiography and dopamine levels by high performance liquid chromatography. At 10 weeks, in AAV1/2-A53T α-synuclein mice there was a 33% reduction in TH+ dopaminergic nigral neurons (P < 0.001), 29% deficit in striatal DAT binding (P < 0.05), 38% and 33% reductions in dopamine (P < 0.001) and DOPAC (P < 0.01) levels and a 60% increase in dopamine turnover (homovanilic acid/dopamine ratio; P < 0.001). Immunofluorescence showed that the AAV1/2-A53T α-synuclein injected mice had widespread nigral and striatal expression of vector-delivered A53T-α-synuclein. Concurrent staining with human PD SN samples using gold standard histological methodology for Lewy pathology detection by proteinase K digestion and application of specific antibody raised against human Lewy body α-synuclein (LB509) and Ser129 phosphorylated α-synuclein (81A) revealed insoluble α-synuclein aggregates in AAV1/2-A53T α-synuclein mice resembling Lewy-like neurites and bodies. In the cylinder test, we observed significant paw use asymmetry in the AAV1/2-A53T α-synuclein group when compared to EV controls at 5 and 9 weeks post injection (P < 0.001; P < 0.05). These data show that unilateral injection of AAV1/2-A53T α-synuclein into the mouse SN leads to persistent motor deficits, neurodegeneration of the nigrostriatal dopaminergic system and development of Lewy-like pathology, thereby reflecting clinical and pathological hallmarks of human PD.

  9. [Gastroparesis and other gastrointestinal symptoms in Parkinson's disease].

    PubMed

    Santos-Garcia, D; de Deus, T; Tejera-Perez, C; Exposito-Ruiz, I; Suarez-Castro, E; Carpintero, P; Macias-Arribi, M

    2015-09-16

    Different gastrointestinal symptoms, such as excessive salivation, deterioration and other disorders affecting the teeth, dysphagia, gastroparesis, gastroesophageal reflux, constipation, difficult defecation or loss of weight are frequent events in all the stages of the development of Parkinson's disease and affect at least a third of the patients. These symptoms reflect the dysfunction of the enteric nervous system, and the stomach is one of the organs where alpha-synuclein is first deposited. Other factors, such as the dysfunction of structures in the central nervous system like the dorsal motor nucleus of the vagal nerve, hormonal factors or secondary effects deriving from the consumption of antiparkinsonian drugs, are involved in its origin. The present article offers a detailed review of the epidemiological, pathophysiological, clinical and therapeutic management aspects of the different gastrointestinal symptoms in Parkinson's disease.

  10. Combustion-derived nanoparticles, the neuroenteric system, cervical vagus, hyperphosphorylated alpha synuclein and tau in young Mexico City residents.

    PubMed

    Calderón-Garcidueñas, Lilian; Reynoso-Robles, Rafael; Pérez-Guillé, Beatriz; Mukherjee, Partha S; Gónzalez-Maciel, Angélica

    2017-11-01

    Mexico City (MC) young residents are exposed to high levels of fine particulate matter (PM 2.5 ), have high frontal concentrations of combustion-derived nanoparticles (CDNPs), accumulation of hyperphosphorylated aggregated α-synuclein (α-Syn) and early Parkinson's disease (PD). Swallowed CDNPs have easy access to epithelium and submucosa, damaging gastrointestinal (GI) barrier integrity and accessing the enteric nervous system (ENS). This study is focused on the ENS, vagus nerves and GI barrier in young MC v clean air controls. Electron microscopy of epithelial, endothelial and neural cells and immunoreactivity of stomach and vagus to phosphorylated ɑ-synuclein Ser129 and Hyperphosphorylated-Tau (Htau) were evaluated and CDNPs measured in ENS. CDNPs were abundant in erythrocytes, unmyelinated submucosal, perivascular and intramuscular nerve fibers, ganglionic neurons and vagus nerves and associated with organelle pathology. ɑSyn and Htau were present in 25/27 MC gastric,15/26 vagus and 18/27 gastric and 2/26 vagus samples respectively. We strongly suggest CDNPs are penetrating and damaging the GI barrier and reaching preganglionic parasympathetic fibers and the vagus nerve. This work highlights the potential role of CDNPs in the neuroenteric hyperphosphorylated ɑ-Syn and tau pathology as seen in Parkinson and Alzheimer's diseases. Highly oxidative, ubiquitous CDNPs constitute a biologically plausible path into Parkinson's and Alzheimer's pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Novel AAV-based rat model of forebrain synucleinopathy shows extensive pathologies and progressive loss of cholinergic interneurons.

    PubMed

    Aldrin-Kirk, Patrick; Davidsson, Marcus; Holmqvist, Staffan; Li, Jia-Yi; Björklund, Tomas

    2014-01-01

    Synucleinopathies, characterized by intracellular aggregation of α-synuclein protein, share a number of features in pathology and disease progression. However, the vulnerable cell population differs significantly between the disorders, despite being caused by the same protein. While the vulnerability of dopamine cells in the substantia nigra to α-synuclein over-expression, and its link to Parkinson's disease, is well studied, animal models recapitulating the cortical degeneration in dementia with Lewy-bodies (DLB) are much less mature. The aim of this study was to develop a first rat model of widespread progressive synucleinopathy throughout the forebrain using adeno-associated viral (AAV) vector mediated gene delivery. Through bilateral injection of an AAV6 vector expressing human wild-type α-synuclein into the forebrain of neonatal rats, we were able to achieve widespread, robust α-synuclein expression with preferential expression in the frontal cortex. These animals displayed a progressive emergence of hyper-locomotion and dysregulated response to the dopaminergic agonist apomorphine. The animals receiving the α-synuclein vector displayed significant α-synuclein pathology including intra-cellular inclusion bodies, axonal pathology and elevated levels of phosphorylated α-synuclein, accompanied by significant loss of cortical neurons and a progressive reduction in both cortical and striatal ChAT positive interneurons. Furthermore, we found evidence of α-synuclein sequestered by IBA-1 positive microglia, which was coupled with a distinct change in morphology. In areas of most prominent pathology, the total α-synuclein levels were increased to, on average, two-fold, which is similar to the levels observed in patients with SNCA gene triplication, associated with cortical Lewy body pathology. This study provides a novel rat model of progressive cortical synucleinopathy, showing for the first time that cholinergic interneurons are vulnerable to α-synuclein over-expression. This animal model provides a powerful new tool for studies of neuronal degeneration in conditions of widespread cortical α-synuclein pathology, such as DLB, as well an attractive model for the exploration of novel biomarkers.

  12. Progressive accumulation of ubiquitin and disappearance of alpha-synuclein epitope in multiple system atrophy-associated glial cytoplasmic inclusions: triple fluorescence study combined with Gallyas-Braak method.

    PubMed

    Sakamoto, Masaki; Uchihara, Toshiki; Nakamura, Ayako; Mizutani, Toshio; Mizusawa, Hidehiro

    2005-10-01

    Alpha-synuclein (alphaS) and ubiquitin (Ub) are shared constituents of glial cytoplasmic inclusions (GCIs) and Lewy bodies (LBs), both composed of fibrillary structures. Staining profiles of GCIs were investigated with triple immunofluorescence involving immunostaining for alphaS and Ub, both amplified with catalyzed reporter deposition, and a fluorochrome, thiazin red (TR) that has an affinity to fibrillary structures. After observation for the triple-fluorescent images, the sections were subsequently stained with the Gallyas-Braak method. Sections of putamen, cerebellar white matter and motor cortex from patients suffering from multiple system atrophy (MSA) with varying duration of the disease (4-15 years) were quantified for these staining profiles of Gallyas-positive GCIs. Although most of GCIs were positive for Ub and variably positive for alphaS, they were consistently negative for TR. The result was opposite in LBs in Lewy body disease with variable affinity to TR, suggesting that the construction of GCIs is different from that of LBs. These four staining features (alphaS, Ub, TR and Gallyas) alone failed to exhibit apparent correlation with disease duration, lesion site or severity of degeneration as reported previously. The fraction of alphaS-negative and Ub-positive GCIs, however, linearly increased along the disease progression, while that of alphaS-positive and Ub-negative GCIs decreased in contrast. This reciprocal change suggests that alphaS immunoreactivity in GCIs is being replaced by Ub immunoreactivity during the disease progression, which resulted in the ultimate predominance of alphaS-negative and Ub-positive GCIs in the most advanced case. Interestingly, this predominance of alphaS-negative and Ub-positive GCIs was a feature of motor cortex, where degeneration usually remains mild in spite of robust appearance of Gallyas-positive GCIs. Another fraction, alphaS-positive and Ub-positive GCIs were frequent in cerebellar white matter, suggesting that GCI evolution is heterogeneous and dependent also on area examined. Progressive accumulation of Ub with concomitant disappearance of alphaS epitope and their colocalization, partly shared with LBs, may represent a process of GCI formation, possibly linked to an aspect of degeneration in MSA.

  13. Surgery plus anesthesia induces loss of attention in mice

    PubMed Central

    Ren, Quan; Peng, Mian; Dong, Yuanlin; Zhang, Yiying; Chen, Ming; Yin, Ning; Marcantonio, Edward R.; Xie, Zhongcong

    2015-01-01

    There is a need to develop animal models to study postoperative delirium. Inattention is one of the symptoms of delirium. Increases in the levels of α-synuclein and S100β have been reported to be associated with delirium. Therefore, we set out to determine the effects of surgery plus general anesthesia on the behavioral changes (including loss of attention) in mice and on the levels of α-synuclein and S100β in the brain tissues of these mice. C57BL/6J mice (2- to 8-months-old) had a simple laparotomy plus isoflurane anesthesia. The behavioral changes, including attention level and the speed of movements, were determined 12, 24, and 48 h after the surgery plus anesthesia in the mice. The levels of α-synuclein and S100β in the cortex of these mice following the surgery plus anesthesia were determined by Western blot analysis. We found that there was a loss of attention at 24, but not 12 or 48 h following the surgery plus anesthesia (49% ± 5 vs. 33% ± 2.9, P = 0.011, N = 12) in the mice without significantly affecting the speed of their movements. There were increases in the levels of total α-synuclein (139% ± 33.5 vs. 100% ± 13.7, P = 0.037, N = 6) and S100β (142% ± 7.7 vs. 100% ± 6, P = 0.002, N = 6) in the cortex of the mice 12 h following the surgery plus anesthesia. These findings suggested that the surgery plus isoflurane anesthesia might induce behavioral and biochemical/cellular changes associated with delirium. We could use the surgery plus anesthesia in mice to develop an animal model to study postoperative delirium. PMID:26441522

  14. Surgery plus anesthesia induces loss of attention in mice.

    PubMed

    Ren, Quan; Peng, Mian; Dong, Yuanlin; Zhang, Yiying; Chen, Ming; Yin, Ning; Marcantonio, Edward R; Xie, Zhongcong

    2015-01-01

    There is a need to develop animal models to study postoperative delirium. Inattention is one of the symptoms of delirium. Increases in the levels of α-synuclein and S100β have been reported to be associated with delirium. Therefore, we set out to determine the effects of surgery plus general anesthesia on the behavioral changes (including loss of attention) in mice and on the levels of α-synuclein and S100β in the brain tissues of these mice. C57BL/6J mice (2- to 8-months-old) had a simple laparotomy plus isoflurane anesthesia. The behavioral changes, including attention level and the speed of movements, were determined 12, 24, and 48 h after the surgery plus anesthesia in the mice. The levels of α-synuclein and S100β in the cortex of these mice following the surgery plus anesthesia were determined by Western blot analysis. We found that there was a loss of attention at 24, but not 12 or 48 h following the surgery plus anesthesia (49% ± 5 vs. 33% ± 2.9, P = 0.011, N = 12) in the mice without significantly affecting the speed of their movements. There were increases in the levels of total α-synuclein (139% ± 33.5 vs. 100% ± 13.7, P = 0.037, N = 6) and S100β (142% ± 7.7 vs. 100% ± 6, P = 0.002, N = 6) in the cortex of the mice 12 h following the surgery plus anesthesia. These findings suggested that the surgery plus isoflurane anesthesia might induce behavioral and biochemical/cellular changes associated with delirium. We could use the surgery plus anesthesia in mice to develop an animal model to study postoperative delirium.

  15. Trehalose does not improve neuronal survival on exposure to alpha-synuclein pre-formed fibrils.

    PubMed

    Redmann, Matthew; Wani, Willayat Y; Volpicelli-Daley, Laura; Darley-Usmar, Victor; Zhang, Jianhua

    2017-04-01

    Parkinson's disease is a debilitating neurodegenerative disorder that is pathologically characterized by intracellular inclusions comprised primarily of alpha-synuclein (αSyn) that can also be transmitted from neuron to neuron. Several lines of evidence suggest that these inclusions cause neurodegeneration. Thus exploring strategies to improve neuronal survival in neurons with αSyn aggregates is critical. Previously, exposure to αSyn pre-formed fibrils (PFFs) has been shown to induce aggregation of endogenous αSyn resulting in cell death that is exacerbated by either starvation or inhibition of mTOR by rapamycin, both of which are able to induce autophagy, an intracellular protein degradation pathway. Since mTOR inhibition may also inhibit protein synthesis and starvation itself can be detrimental to neuronal survival, we investigated the effects of autophagy induction on neurons with αSyn inclusions by a starvation and mTOR-independent autophagy induction mechanism. We exposed mouse primary cortical neurons to PFFs to induce inclusion formation in the presence and absence of the disaccharide trehalose, which has been proposed to induce autophagy and stimulate lysosomal biogenesis. As expected, we observed that on exposure to PFFs, there was increased abundance of pS129-αSyn aggregates and cell death. Trehalose alone increased LC3-II levels, consistent with increased autophagosome levels that remained elevated with PFF exposure. Interestingly, trehalose alone increased cell viability over a 14-d time course. Trehalose was also able to restore cell viability to control levels, but PFFs still exhibited toxic effects on the cells. These data provide essential information regarding effects of trehalose on αSyn accumulation and neuronal survival on exposure to PFF. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Protein degradation in a LAMP-2-deficient B-lymphoblastoid cell line from a patient with Danon disease.

    PubMed

    Sánchez-Lanzas, Raul; Alvarez-Castelao, Beatriz; Bermejo, Teresa; Ayuso, Teresa; Tuñón, Teresa; Castaño, José G

    2016-08-01

    Danon disease, a condition characterized by cardiomyopathy, myopathy, and intellectual disability, is caused by mutations in the LAMP-2 gene. Lamp-2A protein, generated by alternative splicing from the Lamp-2 pre-mRNA, is reported to be the lysosomal membrane receptor essential for the chaperone-mediated autophagic pathway (CMA) aimed to selective protein targeting and translocation into the lysosomal lumen for degradation. To study the relevance of Lamp-2 in protein degradation, a lymphoblastoid cell line was obtained by EBV transformation of B-cells from a Danon patient. The derived cell line showed no significant expression of Lamp-2 protein. The steady-state mRNA and protein levels of alpha-synuclein, IΚBα, Rcan1, and glyceraldehyde-3-phosphate dehydrogenase, four proteins reported to be selective substrates of the CMA pathway, were similar in control and Lamp-2-deficient cells. Inhibition of protein synthesis showed that the half-life of alpha-synuclein, IΚBα, and Rcan1 was similar in control and Lamp-2-deficient cells, and its degradation prevented by proteasome inhibitors. Both in control and Lamp-2-deficient cells, induction of CMA and macroautophagy by serum and aminoacid starvation of cells for 8h produced a similar decrease in IΚBα and Rcan1 protein levels and was prevented by the addition of lysosome and autophagy inhibitors. In conclusion, the results presented here showed that Lamp-2 deficiency in human lymphoblastoid cells did not modify the steady-state levels or the degradation of several protein substrates reported as selective substrates of the CMA pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Structural Effects of Two Camelid Nanobodies Directed to Distinct C-Terminal Epitopes on α-Synuclein.

    PubMed

    El-Turk, Farah; Newby, Francisco N; De Genst, Erwin; Guilliams, Tim; Sprules, Tara; Mittermaier, Anthony; Dobson, Christopher M; Vendruscolo, Michele

    2016-06-07

    α-Synuclein is an intrinsically disordered protein whose aggregation is associated with Parkinson's disease and other related neurodegenerative disorders. Recently, two single-domain camelid antibodies (nanobodies) were shown to bind α-synuclein with high affinity. Herein, we investigated how these two nanobodies (NbSyn2 and NbSyn87), which are directed to two distinct epitopes within the C-terminal domain of α-synuclein, affect the conformational properties of this protein. Our results suggest that nanobody NbSyn2, which binds to the five C-terminal residues of α-synuclein (residues 136-140), does not disrupt the transient long-range interactions that generate a degree of compaction within the native structural ensemble of α-synuclein. In contrast, the data that we report indicate that NbSyn87, which targets a central region within the C-terminal domain (residues 118-128), has more substantial effects on the fluctuating secondary and tertiary structure of the protein. These results are consistent with the different effects that the two nanobodies have on the aggregation behavior of α-synuclein in vitro. Our findings thus provide new insights into the type of effects that nanobodies can have on the conformational ensemble of α-synuclein.

  18. Targeting the Progression of Parkinson’s Disease

    PubMed Central

    George, J.L; Mok, S; Moses, D; Wilkins, S; Bush, A.I; Cherny, R.A; Finkelstein, D.I

    2009-01-01

    By the time a patient first presents with symptoms of Parkinson’s disease at the clinic, a significant proportion (50-70%) of the cells in the substantia nigra (SN) has already been destroyed. This degeneration progresses until, within a few years, most of the cells have died. Except for rare cases of familial PD, the initial trigger for cell loss is unknown. However, we do have some clues as to why the damage, once initiated, progresses unabated. It would represent a major advance in therapy to arrest cell loss at the stage when the patient first presents at the clinic. Current therapies for Parkinson’s disease focus on relieving the motor symptoms of the disease, these unfortunately lose their effectiveness as the neurodegeneration and symptoms progress. Many experimental approaches are currently being investigated attempting to alter the progression of the disease. These range from replacement of the lost neurons to neuroprotective therapies; each of these will be briefly discussed in this review. The main thrust of this review is to explore the interactions between dopamine, alpha synuclein and redox-active metals. There is abundant evidence suggesting that destruction of SN cells occurs as a result of a self-propagating series of reactions involving dopamine, alpha synuclein and redox-active metals. A potent reducing agent, the neurotransmitter dopamine has a central role in this scheme, acting through redox metallo-chemistry to catalyze the formation of toxic oligomers of alpha-synuclein and neurotoxic metabolites including 6-hydroxydopamine. It has been hypothesized that these feed the cycle of neurodegeneration by generating further oxidative stress. The goal of dissecting and understanding the observed pathological changes is to identify therapeutic targets to mitigate the progression of this debilitating disease. PMID:19721815

  19. A Focus on the Beneficial Effects of Alpha Synuclein and a Re-Appraisal of Synucleinopathies

    PubMed Central

    Ryskalin, Larisa; Busceti, Carla L.; Limanaqi, Fiona; Biagioni, Francesca; Gambardella, Stefano; Fornai, Francesco

    2018-01-01

    Alpha synuclein (α-syn) belongs to a class of proteins which are commonly considered to play a detrimental role in neuronal survival. This assumption is based on the occurrence of a severe neuronal degeneration in patients carrying a multiplication of the α-syn gene (SNCA) and in a variety of experi-mental models, where overexpression of α-syn leads to cell death and neurological impairment. In these conditions, a higher amount of normally structured α-syn produces a damage, which is even worse com-pared with that produced by α-syn owning an abnormal structure (as occurring following point gene muta-tions). In line with this, knocking out the expression of α-syn is reported to protect from specific neurotox-ins such as 1-methyl, 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP). In the present review we briefly dis-cuss these well-known detrimental effects but we focus on findings showing that, in specific conditions α-syn is beneficial for cell survival. This occurs during methamphetamine intoxication which is counteracted by endogenous α-syn. Similarly, the dysfunction of the chaperone cysteine-string protein-alpha leads to cell pathology which is counteracted by over-expressing α-syn. In line with this, an increased expression of α-syn protects against oxidative damage produced by dopamine. Remarkably, when the lack of α-syn is combined with a depletion of β- and γ- synucleins, alterations in brain structure and function occur. This review tries to balance the evidence showing a beneficial effect with the bulk of data reporting a detri-mental effect of endogenous α-syn. The specific role of α-syn as a chaperone protein is discussed to ex-plain such a dual effect. PMID:29150919

  20. A Focus on the Beneficial Effects of Alpha Synuclein and a Re-Appraisal of Synucleinopathies.

    PubMed

    Ryskalin, Larisa; Busceti, Carla L; Limanaqi, Fiona; Biagioni, Francesca; Gambardella, Stefano; Fornai, Francesco

    2018-01-01

    Alpha synuclein (α-syn) belongs to a class of proteins which are commonly considered to play a detrimental role in neuronal survival. This assumption is based on the occurrence of a severe neuronal degeneration in patients carrying a multiplication of the α-syn gene (SNCA) and in a variety of experimental models, where overexpression of α-syn leads to cell death and neurological impairment. In these conditions, a higher amount of normally structured α-syn produces a damage, which is even worse compared with that produced by α-syn owning an abnormal structure (as occurring following point gene mutations). In line with this, knocking out the expression of α-syn is reported to protect from specific neurotoxins such as 1-methyl, 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP). In the present review we briefly discuss these well-known detrimental effects but we focus on findings showing that, in specific conditions α-syn is beneficial for cell survival. This occurs during methamphetamine intoxication which is counteracted by endogenous α-syn. Similarly, the dysfunction of the chaperone cysteine-string protein- alpha leads to cell pathology which is counteracted by over-expressing α-syn. In line with this, an increased expression of α-syn protects against oxidative damage produced by dopamine. Remarkably, when the lack of α-syn is combined with a depletion of β- and γ- synucleins, alterations in brain structure and function occur. This review tries to balance the evidence showing a beneficial effect with the bulk of data reporting a detrimental effect of endogenous α-syn. The specific role of α-syn as a chaperone protein is discussed to explain such a dual effect. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Triptolide Promotes the Clearance of α-Synuclein by Enhancing Autophagy in Neuronal Cells.

    PubMed

    Hu, Guanzheng; Gong, Xiaoli; Wang, Le; Liu, Mengru; Liu, Yang; Fu, Xia; Wang, Wei; Zhang, Ting; Wang, Xiaomin

    2017-04-01

    Parkinson's disease (PD) is an aging-associated neurodegenerative disease with a characteristic feature of α-synuclein accumulation. Point mutations (A53T, A30P) that increase the aggregation propensity of α-synuclein result in familial early onset PD. The abnormal metabolism of α-synuclein results in aberrant level changes of α-synuclein in PD. In pathological conditions, α-synuclein is degraded mainly by the autophagy-lysosome pathway. Triptolide (T10) is a monomeric compound isolated from a traditional Chinese herb. Our group demonstrated for the first time that T10 possesses potent neuroprotective properties both in vitro and in vivo PD models. In the present study, we reported T10 as a potent autophagy inducer in neuronal cells, which helped to promote the clearance of various forms of α-synuclein in neuronal cells. We transfected neuronal cells with A53T mutant (A53T) or wild-type (WT) α-synuclein plasmids and found T10 attenuated the cytotoxicity induced by pathogenic A53T α-synuclein overexpression. We observed that T10 significantly reduced both A53T and WT α-synuclein level in neuronal cell line, as well as in primary cultured cortical neurons. Excluding the changes of syntheses, secretion, and aggregation of α-synuclein, we further added autophagy inhibitor or proteasome inhibitor with T10, and we noticed that T10 promoted the clearance of α-synuclein mainly by the autophagic pathway. Lastly, we observed increased autophagy marker LC3-II expression and autophagosomes by GFP-LC3-II accumulation and ultrastructural characterization. However, the lysosome activity and cell viability were not modulated by T10. Our study revealed that T10 could induce autophagy and promote the clearance of both WT and A53T α-synuclein in neurons. These results provide evidence of T10 as a promising mean to treat PD and other neurodegenerative diseases by reducing pathogenic proteins in neurons.

  2. Neurogranin binds α-synuclein in the human superior temporal cortex and interaction is decreased in Parkinson's disease.

    PubMed

    Koob, Andrew O; Shaked, Gideon M; Bender, Andreas; Bisquertt, Alejandro; Rockenstein, Edward; Masliah, Eliezer

    2014-12-03

    Neurogranin is a calmodulin binding protein that has been implicated in learning and memory, long-term potentiation and synaptic plasticity. Neurons expressing neurogranin in the cortex degenerate in late stages of Parkinson's disease with widespread α-synuclein pathology. While analyzing neurogranin gene expression levels through rtPCR in brains of mouse models overexpressing human α-synuclein, we found levels were elevated 2.5 times when compared to nontransgenic animals. Immunohistochemistry in the cortex revealed colocalization between α-synuclein and neurogranin in mouse transgenics when compared to control mice. Coimmunoprecipitation studies in the superior temporal cortex in humans confirmed interaction between α-synuclein and neurogranin, and decreased interaction between α-synuclein and neurogranin was noticed in patients diagnosed with Parkinson's disease when compared to normal control brains. Additionally, phosphorylated neurogranin levels were also decreased in the human superior temporal cortex in patients diagnosed with Parkinson's disease and patients diagnosed with dementia with Lewy bodies. Here, we show for the first time that neurogranin binds to α-synuclein in the human cortex, and this interaction decreases in Parkinson's disease along with the phosphorylation of neurogranin, a molecular process thought to be involved in learning and memory. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Neurogranin binds α-synuclein in the human superior temporal cortex and interaction is decreased in Parkinson’s disease

    PubMed Central

    Koob, Andrew O.; Shaked, Gideon M.; Bender, Andreas; Bisquertt, Alejandro; Rockenstein, Edward; Masliah, Eliezer

    2016-01-01

    Neurogranin is a calmodulin binding protein that has been implicated in learning and memory, long-term potentiation and synaptic plasticity. Neurons expressing neurogranin in the cortex degenerate in late stages of Parkinson’s disease with widespread α-synuclein pathology. While analyzing neurogranin gene expression levels through rtPCR in brains of mouse models overexpressing human α-synuclein, we found levels were elevated 2.5 times when compared to nontransgenic animals. Immunohistochemistry in the cortex revealed colocalization between α-synuclein and neurogranin in mouse transgenics when compared to control mice. Coimmunoprecipitation studies in the superior temporal cortex in humans confirmed interaction between α-synuclein and neurogranin, and decreased interaction between α-synuclein and neurogranin was noticed in patients diagnosed with Parkinson’s disease when compared to normal control brains. Additionally, phosphorylated neurogranin levels were also decreased in the human superior temporal cortex in patients diagnosed with Parkinson’s disease and patients diagnosed with dementia with Lewy bodies. Here, we show for the first time that neurogranin binds to α-synuclein in the human cortex, and this interaction decreases in Parkinson’s disease along with the phosphorylation of neurogranin, a molecular process thought to be involved in learning and memory. PMID:25446004

  4. Glycation potentiates α-synuclein-associated neurodegeneration in synucleinopathies.

    PubMed

    Vicente Miranda, Hugo; Szego, Éva M; Oliveira, Luís M A; Breda, Carlo; Darendelioglu, Ekrem; de Oliveira, Rita M; Ferreira, Diana G; Gomes, Marcos A; Rott, Ruth; Oliveira, Márcia; Munari, Francesca; Enguita, Francisco J; Simões, Tânia; Rodrigues, Eva F; Heinrich, Michael; Martins, Ivo C; Zamolo, Irina; Riess, Olaf; Cordeiro, Carlos; Ponces-Freire, Ana; Lashuel, Hilal A; Santos, Nuno C; Lopes, Luisa V; Xiang, Wei; Jovin, Thomas M; Penque, Deborah; Engelender, Simone; Zweckstetter, Markus; Klucken, Jochen; Giorgini, Flaviano; Quintas, Alexandre; Outeiro, Tiago F

    2017-05-01

    α-Synuclein misfolding and aggregation is a hallmark in Parkinson's disease and in several other neurodegenerative diseases known as synucleinopathies. The toxic properties of α-synuclein are conserved from yeast to man, but the precise underpinnings of the cellular pathologies associated are still elusive, complicating the development of effective therapeutic strategies. Combining molecular genetics with target-based approaches, we established that glycation, an unavoidable age-associated post-translational modification, enhanced α-synuclein toxicity in vitro and in vivo, in Drosophila and in mice. Glycation affected primarily the N-terminal region of α-synuclein, reducing membrane binding, impaired the clearance of α-synuclein, and promoted the accumulation of toxic oligomers that impaired neuronal synaptic transmission. Strikingly, using glycation inhibitors, we demonstrated that normal clearance of α-synuclein was re-established, aggregation was reduced, and motor phenotypes in Drosophila were alleviated. Altogether, our study demonstrates glycation constitutes a novel drug target that can be explored in synucleinopathies as well as in other neurodegenerative conditions. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Recent advances in α-synuclein functions, advanced glycation, and toxicity: implications for Parkinson's disease.

    PubMed

    Guerrero, Erika; Vasudevaraju, P; Hegde, Muralidhar L; Britton, G B; Rao, K S

    2013-04-01

    The toxicity of α-synuclein in the neuropathology of Parkinson's disease which includes its hallmark aggregation has been studied scrupulously in the last decade. Although little is known regarding the normal functions of α-synuclein, its association with membrane phospholipids suggests its potential role in signaling pathways. Following extensive evidences for its nuclear localization, we and others recently demonstrated DNA binding activity of α-synuclein that modulates its conformation as well as aggregation properties. Furthermore, we also underscored the similarities among various amyloidogenic proteins involved in neurodegenerative diseases including amyloid beta peptides and tau. Our more recent studies show that α-synuclein is glycated and glycosylated both in vitro and in neurons, significantly affecting its folding, oligomeric, and DNA binding properties. Glycated α-synuclein causes increased genome damage both via its direct interaction with DNA and by increased generation of reactive oxygen species as glycation byproduct. In this review, we discuss the mechanisms of glycation and other posttranslational modifications of α-synuclein, including phosphorylation and nitration, and their role in neuronal death in Parkinson's disease.

  6. A neuroprotective role for angiogenin in models of Parkinson’s Disease

    PubMed Central

    Steidinger, Trent U.; Standaert, David G.; Yacoubian, Talene A.

    2010-01-01

    We previously observed marked downregulation of the mRNA for angiogenin, a potent inducer of neovascularization, in a mouse model of Parkinson’s disease (PD) based on overexpression of alpha-synuclein. Angiogenin has also been recently implicated in the pathogenesis of amyotrophic lateral sclerosis. In this study, we confirmed that mouse angiogenin-1 protein is dramatically reduced in this transgenic alpha-synuclein mouse model of PD, and examined the effect of angiogenin in cellular models of PD. We found that endogenous angiogenin is present in two dopamine-producing neuroblastoma cell lines, SH-SY5Y and M17, and that exogenous angiogenin is taken up by these cells and leads to phosphorylation of Akt. Applied angiogenin protects against the cell death induced by the neurotoxins MPP+ and rotenone and reduces the activation of caspase-3. Together our data supports the importance of angiogenin in protecting against dopaminergic neuronal cell death and suggests its potential as a therapy for PD. PMID:21091473

  7. Critical radius in the organisation of synuclein-alpha interacting protein in living cells

    NASA Astrophysics Data System (ADS)

    Narayanan, Arjun; Meriin, Anatoli; Sherman, Michael; Cisse, Ibrahim

    We report a super-resolution imaging study of protein aggregation in the living cell. Focusing on the aggregation of the Parkinsons's disease linked Synuclein-alpha interacting protein, we found and characterized sub-diffraction aggregates in healthy cells and studied the progression of these aggregates in stressed cells. Our results allowed us to establish the aggregation process as amenable to a simple physical description - the well-established thermodynamics of condensation phenomena. This description turned out to be both robust and useful. Not only did the distribution of aggregate sizes fit exceedingly well to the thermodynamic predictions in all tested conditions, but its evolving shape under pharmacological and genetic perturbations correlated intuitively with predictions from cell biology. The picture emerging from measurements in different genetic and pharmacological states is a view of protein aggregate size distribution as resulting from a non-equilibrium steady state maintained - even in healthy cells - with continuous and concurrent aggregate production and clearance.

  8. Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease.

    PubMed

    Masliah, Eliezer; Rockenstein, Edward; Mante, Michael; Crews, Leslie; Spencer, Brian; Adame, Anthony; Patrick, Christina; Trejo, Margarita; Ubhi, Kiren; Rohn, Troy T; Mueller-Steiner, Sarah; Seubert, Peter; Barbour, Robin; McConlogue, Lisa; Buttini, Manuel; Games, Dora; Schenk, Dale

    2011-04-29

    Dementia with Lewy bodies (DLB) and Parkinson's Disease (PD) are common causes of motor and cognitive deficits and are associated with the abnormal accumulation of alpha-synuclein (α-syn). This study investigated whether passive immunization with a novel monoclonal α-syn antibody (9E4) against the C-terminus (CT) of α-syn was able to cross into the CNS and ameliorate the deficits associated with α-syn accumulation. In this study we demonstrate that 9E4 was effective at reducing behavioral deficits in the water maze, moreover, immunization with 9E4 reduced the accumulation of calpain-cleaved α-syn in axons and synapses and the associated neurodegenerative deficits. In vivo studies demonstrated that 9E4 traffics into the CNS, binds to cells that display α-syn accumulation and promotes α-syn clearance via the lysosomal pathway. These results suggest that passive immunization with monoclonal antibodies against the CT of α-syn may be of therapeutic relevance in patients with PD and DLB.

  9. Sequestration of synaptic proteins by alpha-synuclein aggregates leading to neurotoxicity is inhibited by small peptide

    PubMed Central

    Choi, Mal-Gi; Kim, Mi Jin; Kim, Do-Geun; Yu, Ri; Jang, You-Na

    2018-01-01

    α-Synuclein (α-syn) is a major component of Lewy bodies found in synucleinopathies including Parkinson’s disease (PD) and Dementia with Lewy Bodies (DLB). Under the pathological conditions, α-syn tends to generate a diverse form of aggregates showing toxicity to neuronal cells and able to transmit across cells. However, mechanisms by which α-syn aggregates affect cytotoxicity in neurons have not been fully elucidated. Here we report that α-syn aggregates preferentially sequester specific synaptic proteins such as vesicle-associated membrane protein 2 (VAMP2) and synaptosomal-associated protein 25 (SNAP25) through direct binding which is resistant to SDS. The sequestration effect of α-syn aggregates was shown in a cell-free system, cultured primary neurons, and PD mouse model. Furthermore, we identified a specific blocking peptide derived from VAMP2 which partially inhibited the sequestration by α-syn aggregates and contributed to reduced neurotoxicity. These results provide a mechanism of neurotoxicity mediated by α-syn aggregates and suggest that the blocking peptide interfering with the pathological role of α-syn aggregates could be useful for designing a potential therapeutic drug for the treatment of PD. PMID:29608598

  10. CSF levels of oligomeric alpha-synuclein and beta-amyloid as biomarkers for neurodegenerative disease

    PubMed Central

    Chatterjee, Gaurav; McGraw, Claire; Kasturirangan, Srinath; Schulz, Philip

    2012-01-01

    Protein misfolding and aggregation is a critically important feature in many devastating neurodegenerative diseases, therefore characterization of the CSF concentration profiles of selected key forms and morphologies of proteins involved in these diseases, including β-amyloid (Aβ) and α-synuclein (a-syn), can be an effective diagnostic assay for these diseases. CSF levels of tau and Aβ have been shown to have great promise as biomarkers for Alzheimer’s disease. However since the onset and progression of many neurodegenerative diseases have been strongly correlated with the presence of soluble oligomeric aggregates of proteins including various Aβ and a-syn aggregate species, specific detection and quantification of levels of each of these different toxic protein species in CSF may provide a simple and accurate means to presymptomatically diagnose and distinguish between these diseases. Here we show that the presence of different protein morphologies in human CSF samples can be readily detected using highly selective morphology specific reagents in conjunction with a sensitive electronic biosensor. We further show that these morphology specific reagents can readily distinguish between post-mortem CSF samples from AD, PD and cognitively normal sources. These studies suggest that detection of specific oligomeric aggregate species holds great promise as sensitive biomarkers for neurodegenerative disease. PMID:22076255

  11. Synthetic Proteins and Peptides for the Direct Interrogation of α-Synuclein Posttranslational Modifications

    PubMed Central

    Pratt, Matthew R.; Abeywardana, Tharindumala; Marotta, Nicholas P.

    2015-01-01

    α-Synuclein is the aggregation-prone protein associated with Parkinson’s disease (PD) and related neurodegenerative diseases. Complicating both its biological functions and toxic aggregation are a variety of posttranslational modifications. These modifications have the potential to either positively or negatively affect α-synuclein aggregation, raising the possibility that the enzymes that add or remove these modifications could be therapeutic targets in PD. Synthetic protein chemistry is uniquely positioned to generate site-specifically and homogeneously modified proteins for biochemical study. Here, we review the application of synthetic peptides and proteins towards understanding the effects of α-synuclein posttranslational modifications. PMID:26120904

  12. Measurements of auto-antibodies to α-synuclein in the serum and cerebral spinal fluids of patients with Parkinson's disease.

    PubMed

    Akhtar, Rizwan S; Licata, Joseph P; Luk, Kelvin C; Shaw, Leslie M; Trojanowski, John Q; Lee, Virginia M-Y

    2018-03-03

    Biomarkers for α-synuclein are needed for diagnosis and prognosis in Parkinson's disease (PD). Endogenous auto-antibodies to α-synuclein could serve as biomarkers for underlying synucleinopathy, but previous assessments of auto-antibodies have shown variability and inconsistent clinical correlations. We hypothesized that auto-antibodies to α-synuclein could be diagnostic for PD and explain its clinical heterogeneity. To test this hypothesis, we developed an enzyme-linked immunosorbent assay for measuring α-synuclein auto-antibodies in human samples. We evaluated 69 serum samples (16 healthy controls (HC) and 53 PD patients) and 145 CSF samples (52 HC and 93 PD patients) from our Institution. Both serum and CSF were available for 24 participants. Males had higher auto-antibody levels than females in both fluids. CSF auto-antibody levels were significantly higher in PD patients as compared to HC, whereas serum levels were not significantly different. CSF auto-antibody levels did not associate with amyloid-β 1-42 , total tau, or phosphorylated tau. CSF auto-antibody levels correlated with performance on the Montreal Cognitive Assessment, even when controlled for CSF amyloidβ 1-42 . CSF hemoglobin levels, as a proxy for contamination of CSF by blood during lumbar puncture, did not influence these observations. Using recombinant α-synuclein with N- and C-terminal truncations, we found that CSF auto-antibodies target amino acids 100 through 120 of α-synuclein. We conclude that endogenous CSF auto-antibodies are significantly higher in PD patients as compared to HC, suggesting that they could indicate the presence of underlying synucleinopathy. These auto-antibodies associate with poor cognition, independently of CSF amyloidβ 1-42 ., and target a select C-terminal region of α-synuclein. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Best Practices for Generating and Using Alpha-Synuclein Pre-Formed Fibrils to Model Parkinson’s Disease in Rodents

    PubMed Central

    Polinski, Nicole K.; Volpicelli-Daley, Laura A.; Sortwell, Caryl E.; Luk, Kelvin C.; Cremades, Nunilo; Gottler, Lindsey M.; Froula, Jessica; Duffy, Megan F.; Lee, Virginia M.Y.; Martinez, Terina N.; Dave, Kuldip D.

    2018-01-01

    Parkinson’s disease (PD) is the second most common neurodegenerative disease, affecting approximately one-percent of the population over the age of sixty. Although many animal models have been developed to study this disease, each model presents its own advantages and caveats. A unique model has arisen to study the role of alpha-synuclein (aSyn) in the pathogenesis of PD. This model involves the conversion of recombinant monomeric aSyn protein to a fibrillar form—the aSyn pre-formed fibril (aSyn PFF)—which is then injected into the brain or introduced to the media in culture. Although many groups have successfully adopted and replicated the aSyn PFF model, issues with generating consistent pathology have been reported by investigators. To improve the replicability of this model and diminish these issues, The Michael J. Fox Foundation for Parkinson’s Research (MJFF) has enlisted the help of field leaders who performed key experiments to establish the aSyn PFF model to provide the research community with guidelines and practical tips for improving the robustness and success of this model. Specifically, we identify key pitfalls and suggestions for avoiding these mistakes as they relate to generating the aSyn PFFs from monomeric protein, validating the formation of pathogenic aSyn PFFs, and using the aSyn PFFs in vivo or in vitro to model PD. With this additional information, adoption and use of the aSyn PFF model should present fewer challenges, resulting in a robust and widely available model of PD. PMID:29400668

  14. Brain-gut-microbiota axis in Parkinson's disease.

    PubMed

    Mulak, Agata; Bonaz, Bruno

    2015-10-07

    Parkinson's disease (PD) is characterized by alpha-synucleinopathy that affects all levels of the brain-gut axis including the central, autonomic, and enteric nervous systems. Recently, it has been recognized that the brain-gut axis interactions are significantly modulated by the gut microbiota via immunological, neuroendocrine, and direct neural mechanisms. Dysregulation of the brain-gut-microbiota axis in PD may be associated with gastrointestinal manifestations frequently preceding motor symptoms, as well as with the pathogenesis of PD itself, supporting the hypothesis that the pathological process is spread from the gut to the brain. Excessive stimulation of the innate immune system resulting from gut dysbiosis and/or small intestinal bacterial overgrowth and increased intestinal permeability may induce systemic inflammation, while activation of enteric neurons and enteric glial cells may contribute to the initiation of alpha-synuclein misfolding. Additionally, the adaptive immune system may be disturbed by bacterial proteins cross-reacting with human antigens. A better understanding of the brain-gut-microbiota axis interactions should bring a new insight in the pathophysiology of PD and permit an earlier diagnosis with a focus on peripheral biomarkers within the enteric nervous system. Novel therapeutic options aimed at modifying the gut microbiota composition and enhancing the intestinal epithelial barrier integrity in PD patients could influence the initial step of the following cascade of neurodegeneration in PD.

  15. Modulation of α-synuclein fibrillization by ring-fused 2-pyridones: templation and inhibition involve oligomers with different structure.

    PubMed

    Horvath, Istvan; Sellstedt, Magnus; Weise, Christoph; Nordvall, Lina-Maria; Krishna Prasad, G; Olofsson, Anders; Larsson, Göran; Almqvist, Fredrik; Wittung-Stafshede, Pernilla

    2013-04-15

    In a recent study we discovered that a ring-fused 2-pyridone compound triggered fibrillization of a key protein in Parkinson's disease, α-synuclein. To reveal how variations in compound structure affect protein aggregation, we now prepared a number of strategic analogs and tested their effects on α-synuclein amyloid fiber formation in vitro. We find that, in contrast to the earlier templating effect, some analogs inhibit α-synuclein fibrillization. For both templating and inhibiting compounds, the key species formed in the reactions are α-synuclein oligomers that contain compound. Despite similar macroscopic appearance, the templating and inhibiting oligomers are distinctly different in secondary structure content. When the inhibitory oligomers are added in seed amounts, they inhibit fresh α-synuclein aggregation reactions. Our study demonstrates that small chemical changes to the same central fragment can result in opposite effects on protein aggregation. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Chronic administration of cholesterol oximes in mice increases transcription of cytoprotective genes and improves transcriptome alterations induced by alpha-synuclein overexpression in nigrostriatal dopaminergic neurons

    PubMed Central

    Richter, Franziska; Gao, Fuying; Medvedeva, Vera; Lee, Patrick; Bove, Nicholas; Fleming, Sheila M.; Michaud, Magali; Lemesre, Vincent; Patassini, Stefano; De La Rosa, Krystal; Mulligan, Caitlin K.; Sioshansi, Pedrom; Zhu, Chunni; Coppola, Giovanni; Bordet, Thierry; Pruss, Rebecca; Chesselet, Marie-Françoise

    2014-01-01

    Cholesterol-oximes TRO19622 and TRO40303 target outer mitochondrial membrane proteins and have beneficial effects in preclinical models of neurodegenerative diseases leading to their advancement to clinical trials. Dopaminergic neurons degenerate in Parkinson’s disease (PD) and are prone to oxidative stress and mitochondrial dysfunction. In order to provide insights into the neuroprotective potential of TRO19622 and TRO40303 for dopaminergic neurons in vivo, we assessed their effects on gene expression in laser captured nigrostriatal dopaminergic neurons of wildtype mice and of mice that over-express alpha-synuclein, a protein involved in both familial and sporadic forms of PD (Thy1-aSyn mice). Young mice were fed the drugs in food pellets or a control diet from 1 to 4 months of age, approximately 10 months before the appearance of striatal dopamine loss in this model. Unbiased weighted gene co-expression network analysis (WGCNA) of transcriptional changes revealed effects of cholesterol oximes on transcripts related to mitochondria, cytoprotection and anti-oxidant response in wild-type and transgenic mice, including increased transcription of stress defense (e.g. Prdx1, Prdx2, Glrx2, Hspa9, Pink1, Drp1, Trak1) and dopamine-related (Th, Ddc, Gch1, Dat, Vmat2, Drd2, Chnr6a) genes. Even at this young age transgenic mice showed alterations in transcripts implicated in mitochondrial function and oxidative stress (e.g. Bcl-2, Bax, Casp3, Nos2), and both drugs normalized about 20% of these alterations. Young Thy1-aSyn mice exhibit motor deficits that differ from parkinsonism and are established before the onset of treatment; these deficits were not improved by cholesterol oximes. However, high doses of TRO40303 improved olfaction and produced the same effects as dopamine agonists on a challenging beam test, specifically an increase in footslips, an observation congruent with its effects on transcripts involved in dopamine synthesis. High doses of TRO19622 increased alpha-synuclein aggregates in the substantia nigra; this effect, not seen with TRO40303 was inconsistent and may represent a protective mechanism as in other neurodegenerative diseases. Overall, the results suggest that cholesterol oximes, while not improving early effects of alpha-synuclein overexpression on motor behavior or pathology, may ameliorate the function and resilience of dopaminergic neurons in vivo and support further studies of neuroprotection in models with dopaminergic cell loss. PMID:24844147

  17. Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo

    PubMed Central

    Rockenstein, Edward; Nuber, Silke; Overk, Cassia R.; Ubhi, Kiren; Mante, Michael; Patrick, Christina; Adame, Anthony; Trejo-Morales, Margarita; Gerez, Juan; Picotti, Paola; Jensen, Poul H.; Campioni, Silvia; Riek, Roland; Winkler, Jürgen; Gage, Fred H.; Winner, Beate

    2014-01-01

    In Parkinson’s disease and dementia with Lewy bodies, α-synuclein aggregates to form oligomers and fibrils; however, the precise nature of the toxic α-synuclein species remains unclear. A number of synthetic α-synuclein mutations were recently created (E57K and E35K) that produce species of α-synuclein that preferentially form oligomers and increase α-synuclein-mediated toxicity. We have shown that acute lentiviral expression of α-synuclein E57K leads to the degeneration of dopaminergic neurons; however, the effects of chronic expression of oligomer-prone α-synuclein in synapses throughout the brain have not been investigated. Such a study could provide insight into the possible mechanism(s) through which accumulation of α-synuclein oligomers in the synapse leads to neurodegeneration. For this purpose, we compared the patterns of neurodegeneration and synaptic damage between a newly generated mThy-1 α-synuclein E57K transgenic mouse model that is prone to forming oligomers and the mThy-1 α-synuclein wild-type mouse model (Line 61), which accumulates various forms of α-synuclein. Three lines of α-synuclein E57K (Lines 9, 16 and 54) were generated and compared with the wild-type. The α-synuclein E57K Lines 9 and 16 were higher expressings of α-synuclein, similar to α-synuclein wild-type Line 61, and Line 54 was a low expressing of α-synuclein compared to Line 61. By immunoblot analysis, the higher-expressing α-synuclein E57K transgenic mice showed abundant oligomeric, but not fibrillar, α-synuclein whereas lower-expressing mice accumulated monomeric α-synuclein. Monomers, oligomers, and fibrils were present in α-synuclein wild-type Line 61. Immunohistochemical and ultrastructural analyses demonstrated that α-synuclein accumulated in the synapses but not in the neuronal cells bodies, which was different from the α-synuclein wild-type Line 61, which accumulates α-synuclein in the soma. Compared to non-transgenic and lower-expressing mice, the higher-expressing α-synuclein E57K mice displayed synaptic and dendritic loss, reduced levels of synapsin 1 and synaptic vesicles, and behavioural deficits. Similar alterations, but to a lesser extent, were seen in the α-synuclein wild-type mice. Moreover, although the oligomer-prone α-synuclein mice displayed neurodegeneration in the frontal cortex and hippocampus, the α-synuclein wild-type only displayed neuronal loss in the hippocampus. These results support the hypothesis that accumulating oligomeric α-synuclein may mediate early synaptic pathology in Parkinson’s disease and dementia with Lewy bodies by disrupting synaptic vesicles. This oligomer-prone model might be useful for evaluating therapies directed at oligomer reduction. PMID:24662516

  18. Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo.

    PubMed

    Rockenstein, Edward; Nuber, Silke; Overk, Cassia R; Ubhi, Kiren; Mante, Michael; Patrick, Christina; Adame, Anthony; Trejo-Morales, Margarita; Gerez, Juan; Picotti, Paola; Jensen, Poul H; Campioni, Silvia; Riek, Roland; Winkler, Jürgen; Gage, Fred H; Winner, Beate; Masliah, Eliezer

    2014-05-01

    In Parkinson's disease and dementia with Lewy bodies, α-synuclein aggregates to form oligomers and fibrils; however, the precise nature of the toxic α-synuclein species remains unclear. A number of synthetic α-synuclein mutations were recently created (E57K and E35K) that produce species of α-synuclein that preferentially form oligomers and increase α-synuclein-mediated toxicity. We have shown that acute lentiviral expression of α-synuclein E57K leads to the degeneration of dopaminergic neurons; however, the effects of chronic expression of oligomer-prone α-synuclein in synapses throughout the brain have not been investigated. Such a study could provide insight into the possible mechanism(s) through which accumulation of α-synuclein oligomers in the synapse leads to neurodegeneration. For this purpose, we compared the patterns of neurodegeneration and synaptic damage between a newly generated mThy-1 α-synuclein E57K transgenic mouse model that is prone to forming oligomers and the mThy-1 α-synuclein wild-type mouse model (Line 61), which accumulates various forms of α-synuclein. Three lines of α-synuclein E57K (Lines 9, 16 and 54) were generated and compared with the wild-type. The α-synuclein E57K Lines 9 and 16 were higher expressings of α-synuclein, similar to α-synuclein wild-type Line 61, and Line 54 was a low expressing of α-synuclein compared to Line 61. By immunoblot analysis, the higher-expressing α-synuclein E57K transgenic mice showed abundant oligomeric, but not fibrillar, α-synuclein whereas lower-expressing mice accumulated monomeric α-synuclein. Monomers, oligomers, and fibrils were present in α-synuclein wild-type Line 61. Immunohistochemical and ultrastructural analyses demonstrated that α-synuclein accumulated in the synapses but not in the neuronal cells bodies, which was different from the α-synuclein wild-type Line 61, which accumulates α-synuclein in the soma. Compared to non-transgenic and lower-expressing mice, the higher-expressing α-synuclein E57K mice displayed synaptic and dendritic loss, reduced levels of synapsin 1 and synaptic vesicles, and behavioural deficits. Similar alterations, but to a lesser extent, were seen in the α-synuclein wild-type mice. Moreover, although the oligomer-prone α-synuclein mice displayed neurodegeneration in the frontal cortex and hippocampus, the α-synuclein wild-type only displayed neuronal loss in the hippocampus. These results support the hypothesis that accumulating oligomeric α-synuclein may mediate early synaptic pathology in Parkinson's disease and dementia with Lewy bodies by disrupting synaptic vesicles. This oligomer-prone model might be useful for evaluating therapies directed at oligomer reduction.

  19. The potential of zwitterionic nanoliposomes against neurotoxic alpha-synuclein aggregates in Parkinson's Disease.

    PubMed

    Aliakbari, Farhang; Mohammad-Beigi, Hossein; Rezaei-Ghaleh, Nasrollah; Becker, Stefan; Dehghani Esmatabad, Faezeh; Eslampanah Seyedi, Hadieh Alsadat; Bardania, Hassan; Tayaranian Marvian, Amir; Collingwood, Joanna F; Christiansen, Gunna; Zweckstetter, Markus; Otzen, Daniel E; Morshedi, Dina

    2018-05-17

    The protein α-synuclein (αSN) aggregates to form fibrils in neuronal cells of Parkinson's patients. Here we report on the effect of neutral (zwitterionic) nanoliposomes (NLPs), supplemented with cholesterol (NLP-Chol) and decorated with PEG (NLP-Chol-PEG), on αSN aggregation and neurotoxicity. Both NLPs retard αSN fibrillization in a concentration-independent fashion. They do so largely by increasing lag time (formation of fibrillization nuclei) rather than elongation (extension of existing nuclei). Interactions between neutral NLPs and αSN may locate to the N-terminus of the protein. This interaction can even perturb the interaction of αSN with negatively charged NLPs which induces an α-helical structure in αSN. This interaction was found to occur throughout the fibrillization process. Both NLP-Chol and NLP-Chol-PEG were shown to be biocompatible in vitro, and to reduce αSN neurotoxicity and reactive oxygen species (ROS) levels with no influence on intracellular calcium in neuronal cells, emphasizing a prospective role for NLPs in reducing αSN pathogenicity in vivo as well as utility as a vehicle for drug delivery.

  20. Alzheimer's disease and alpha-synuclein pathology in the olfactory bulbs of infants, children, teens and adults ≤ 40 years in Metropolitan Mexico City. APOE4 carriers at higher risk of suicide accelerate their olfactory bulb pathology.

    PubMed

    Calderón-Garcidueñas, Lilian; González-Maciel, Angélica; Reynoso-Robles, Rafael; Kulesza, Randy J; Mukherjee, Partha S; Torres-Jardón, Ricardo; Rönkkö, Topi; Doty, Richard L

    2018-06-20

    There is growing evidence that air pollution is a risk factor for a number of neurodegenerative diseases, most notably Alzheimer's (AD) and Parkinson's (PD). It is generally assumed that the pathology of these diseases arises only later in life and commonly begins within olfactory eloquent pathways prior to the onset of the classical clinical symptoms. The present study demonstrates that chronic exposure to high levels of air pollution results in AD- and PD-related pathology within the olfactory bulbs of children and relatively young adults ages 11 months to 40 years. The olfactory bulbs (OBs) of 179 residents of highly polluted Metropolitan Mexico City (MMC) were evaluated for AD- and alpha-synuclein-related pathology. Even in toddlers, hyperphosphorylated tau (hTau) and Lewy neurites (LN) were identified in the OBs. By the second decade, 84% of the bulbs exhibited hTau (48/57), 68% LNs and vascular amyloid (39/57) and 36% (21/57) diffuse amyloid plaques. OB active endothelial phagocytosis of red blood cell fragments containing combustion-derived nanoparticles (CDNPs) and the neurovascular unit damage were associated with myelinated and unmyelinated axonal damage. OB hTau neurites were associated mostly with pretangle stages 1a and 1b in subjects ≤ 20 years of age, strongly suggesting olfactory deficits could potentially be an early guide of AD pretangle subcortical and cortical hTau. APOE4 versus APOE3 carriers were 6-13 times more likely to exhibit OB vascular amyloid, neuronal amyloid accumulation, alpha-synuclein aggregates, hTau neurofibrillary tangles, and neurites. Remarkably, APOE4 carriers were 4.57 times more likely than non-carriers to die by suicide. The present findings, along with previous data that over a third of clinically healthy MMC teens and young adults exhibit low scores on an odor identification test, support the concept that olfactory testing may aid in identifying young people at high risk for neurodegenerative diseases. Moreover, results strongly support early neuroprotective interventions in fine particulate matter (PM 2.5 ) and CDNP's exposed individuals ≤ 20 years of age, and the critical need for air pollution control. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. The lysosomal enzyme alpha-Galactosidase A is deficient in Parkinson's disease brain in association with the pathologic accumulation of alpha-synuclein.

    PubMed

    Nelson, Michael P; Boutin, Michel; Tse, Tonia E; Lu, Hailin; Haley, Emily D; Ouyang, Xiaosen; Zhang, Jianhua; Auray-Blais, Christiane; Shacka, John J

    2018-02-01

    The aberrant accumulation of alpha-synuclein (α-syn) is believed to contribute to the onset and pathogenesis of Parkinson's disease (PD). The autophagy-lysosome pathway (ALP) is responsible for the high capacity clearance of α-syn. ALP dysfunction is documented in PD and pre-clinical evidence suggests that inhibiting the ALP promotes the pathological accumulation of α-syn. We previously identified the pathological accumulation of α-syn in the brains of mice deficient for the soluble lysosomal enzyme alpha-Galactosidase A (α-Gal A), a member of the glycosphingolipid metabolism pathway. In the present study, we quantified α-Gal A activity and levels of its glycosphingolipid metabolites in postmortem temporal cortex specimens from control individuals and in PD individuals staged with respect to α-syn containing Lewy body pathology. In late-state PD temporal cortex we observed significant decreases in α-Gal A activity and the 46kDa "active" species of α-Gal A as determined respectively by fluorometric activity assay and western blot analysis. These decreases in α-Gal A activity/levels correlated significantly with increased α-syn phosphorylated at serine 129 (p129S-α-syn) that was maximal in late-stage PD temporal cortex. Mass spectrometric analysis of 29 different isoforms of globotriaosylceramide (Gb 3 ), a substrate of α-Gal A indicated no significant differences with respect to different stages of PD temporal cortex. However, significant correlations were observed between increased levels of several Gb 3 isoforms and with decreased α-Gal A activity and/or increased p129S-α-syn. Deacylated Gb 3 (globotriaosylsphingosine or lyso-Gb 3 ) was also analyzed in PD brain tissue but was below the limit of detection of 20pmol/g. Analysis of other lysosomal enzymes revealed a significant decrease in activity for the lysosomal aspartic acid protease cathepsin D but not for glucocerebrosidase (GCase) or cathepsin B in late-stage PD temporal cortex. However, a significant correlation was observed between decreasing GCase activity and increasing p129S-α-syn. Together our findings indicate α-Gal A deficiency in late-stage PD brain that correlates significantly with the pathological accumulation of α-syn, and further suggest the potential for α-Gal A and its glycosphingolipid substrates as putative biomarkers for PD. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Applying chaperones to protein-misfolding disorders: molecular chaperones against α-synuclein in Parkinson's disease.

    PubMed

    Chaari, Ali; Hoarau-Véchot, Jessica; Ladjimi, Moncef

    2013-09-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the accumulation of a protein called α-synuclein (α-syn) into inclusions known as lewy bodies (LB) within neurons. This accumulation is also due to insufficient formation and activity of dopamine produced in certain neurons within the substantia nigra. Lewy bodies are the pathological hallmark of the idiopathic disorder and the cascade that allows α-synuclein to misfold, aggregate and form these inclusions has been the subject of intensive research. Targeting these early steps of oligomerization is one of the main therapeutic approaches in order to develop neurodegenerative-modifying agents. Because the folding and refolding of alpha synuclein is the key point of this cascade, we are interested in this review to summarize the role of some molecular chaperones proteins such as Hsp70, Hsp90 and small heat shock proteins (sHsp) and Hsp 104. Hsp70 and its co-chaperone, Hsp70 and small heat shock proteins can prevent neurodegeneration by preventing α-syn misfolding, oligomerization and aggregation in vitro and in Parkinson disease animal models. Hsp104 is able to resolve disordered protein aggregates and cross beta amyloid conformers. Together, these chaperones have a complementary effect and can be a target for therapeutic intervention in PD. Published by Elsevier B.V.

  3. Silencing Alpha Synuclein in Mature Nigral Neurons Results in Rapid Neuroinflammation and Subsequent Toxicity

    PubMed Central

    Benskey, Matthew J.; Sellnow, Rhyomi C.; Sandoval, Ivette M.; Sortwell, Caryl E.; Lipton, Jack W.; Manfredsson, Fredric P.

    2018-01-01

    Human studies and preclinical models of Parkinson’s disease implicate the involvement of both the innate and adaptive immune systems in disease progression. Further, pro-inflammatory markers are highly enriched near neurons containing pathological forms of alpha synuclein (α-syn), and α-syn overexpression recapitulates neuroinflammatory changes in models of Parkinson’s disease. These data suggest that α-syn may initiate a pathological inflammatory response, however the mechanism by which α-syn initiates neuroinflammation is poorly understood. Silencing endogenous α-syn results in a similar pattern of nigral degeneration observed following α-syn overexpression. Here we aimed to test the hypothesis that loss of α-syn function within nigrostriatal neurons results in neuronal dysfunction, which subsequently stimulates neuroinflammation. Adeno-associated virus (AAV) expressing an short hairpin RNA (shRNA) targeting endogenous α-syn was unilaterally injected into the substantia nigra pars compacta (SNc) of adult rats, after which nigrostriatal pathology and indices of neuroinflammation were examined at 7, 10, 14 and 21 days post-surgery. Removing endogenous α-syn from nigrostriatal neurons resulted in a rapid up-regulation of the major histocompatibility complex class 1 (MHC-1) within transduced nigral neurons. Nigral MHC-1 expression occurred prior to any overt cell death and coincided with the recruitment of reactive microglia and T-cells to affected neurons. Following the induction of neuroinflammation, α-syn knockdown resulted in a 50% loss of nigrostriatal neurons in the SNc and a corresponding loss of nigrostriatal terminals and dopamine (DA) concentrations within the striatum. Expression of a control shRNA did not elicit any pathological changes. Silencing α-syn within glutamatergic neurons of the cerebellum did not elicit inflammation or cell death, suggesting that toxicity initiated by α-syn silencing is specific to DA neurons. These data provide evidence that loss of α-syn function within nigrostriatal neurons initiates a neuronal-mediated neuroinflammatory cascade, involving both the innate and adaptive immune systems, which ultimately results in the death of affected neurons. PMID:29497361

  4. Alpha-synuclein mRNA isoform formation and translation affected by polymorphism in the human SNCA 3'UTR.

    PubMed

    Barrie, Elizabeth S; Lee, Sung-Ha; Frater, John T; Kataki, Maria; Scharre, Douglas W; Sadee, Wolfgang

    2018-05-06

    Multiple variants in SNCA, encoding alpha-synuclein, a main component of Lewy bodies, are implicated in Parkinson's disease. We searched for cis-acting SNCA variants using allelic mRNA ratios in human brain tissues. In a SNCA 3'UTR (2,520 bp) luciferase reporter gene assay, translation in SH-SY5Y cells in the presence of the rs17016074 G/A alleles was measured. To assess clinical impact, we queried neurocognitive genome-wide association studies. Allelic ratios deviated up to twofold, measured at a marker SNP in the middle of a long 3' untranslated region (3'UTR), but not at a marker at its start, suggesting regulation of 3'UTR processing. 3'UTR SNP rs17016074 G/A, minor allele frequency (MAF) <1% in Caucasians, 13% in Africans, strongly associates with large allelic mRNA expression imbalance (AEI), resulting in reduced expression of long 3'UTR isoforms. A second 3'UTR SNP (rs356165) associates with moderate AEI and enhances SNCA mRNA expression. The rs17016074 A allele reduces overall 3'UTR expression in luciferase reporter gene assays but supports more efficient translation, resolving previous contradictory results. We failed to detect significant genome-wide associations for rs17016074, possibly a result of low MAF in Caucasians or its absence from most genotyping panels. In the "Genome Wide Association Study of Yoruba in Nigeria," rs356165 was associated with reduced memory performance. Here, we identify two cis-acting regulatory variants affecting SNCA mRNA expression, measured by allelic ratios in the 3'UTR. The rs17016074 minor A allele is associated with higher expression of luciferase protein activity. Resolving the genetic influence of SNCA polymorphisms requires study of the interactions between multiple regulatory variants with distinct frequencies among populations. © 2018 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  5. Wild-Type Monomeric α-Synuclein Can Impair Vesicle Endocytosis and Synaptic Fidelity via Tubulin Polymerization at the Calyx of Held.

    PubMed

    Eguchi, Kohgaku; Taoufiq, Zacharie; Thorn-Seshold, Oliver; Trauner, Dirk; Hasegawa, Masato; Takahashi, Tomoyuki

    2017-06-21

    α-Synuclein is a presynaptic protein the function of which has yet to be identified, but its neuronal content increases in patients of synucleinopathies including Parkinson's disease. Chronic overexpression of α-synuclein reportedly expresses various phenotypes of synaptic dysfunction, but the primary target of its toxicity has not been determined. To investigate this, we acutely loaded human recombinant α-synuclein or its pathological mutants in their monomeric forms into the calyces of Held presynaptic terminals in slices from auditorily mature and immature rats of either sex. Membrane capacitance measurements revealed significant and specific inhibitory effects of WT monomeric α-synuclein on vesicle endocytosis throughout development. However, the α-synuclein A53T mutant affected vesicle endocytosis only at immature calyces, whereas the A30P mutant had no effect throughout. The endocytic impairment by WT α-synuclein was rescued by intraterminal coloading of the microtubule (MT) polymerization blocker nocodazole. Furthermore, it was reversibly rescued by presynaptically loaded photostatin-1, a photoswitcheable inhibitor of MT polymerization, in a light-wavelength-dependent manner. In contrast, endocytic inhibition by the A53T mutant at immature calyces was not rescued by nocodazole. Functionally, presynaptically loaded WT α-synuclein had no effect on basal synaptic transmission evoked at a low frequency, but significantly attenuated exocytosis and impaired the fidelity of neurotransmission during prolonged high-frequency stimulation. We conclude that monomeric WT α-synuclein primarily inhibits vesicle endocytosis via MT overassembly, thereby impairing high-frequency neurotransmission. SIGNIFICANCE STATEMENT Abnormal α-synuclein abundance is associated with synucleinopathies including Parkinson's disease, but neither the primary target of α-synuclein toxicity nor its mechanism is identified. Here, we loaded monomeric α-synuclein directly into mammalian glutamatergic nerve terminals and found that it primarily inhibits vesicle endocytosis and subsequently impairs exocytosis and neurotransmission fidelity during prolonged high-frequency stimulation. Such α-synuclein toxicity could be rescued by blocking microtubule polymerization, suggesting that microtubule overassembly underlies the toxicity of acutely elevated α-synuclein in the nerve terminal. Copyright © 2017 the authors 0270-6474/17/376043-10$15.00/0.

  6. A microRNA embedded AAV alpha-synuclein gene silencing vector for dopaminergic neurons

    PubMed Central

    Han, Ye; Khodr, Christina E.; Sapru, Mohan K.; Pedapati, Jyothi; Bohn, Martha C.

    2011-01-01

    Alpha-synuclein (SNCA), an abundantly expressed presynaptic protein, is implicated in Parkinson disease (PD). Since over-expression of human SNCA (hSNCA) leads to death of dopaminergic (DA) neurons in human, rodent and fly brain, hSNCA gene silencing may reduce levels of toxic forms of SNCA and ameliorate degeneration of DA neurons in PD. To begin to develop a gene therapy for PD based on hSNCA gene silencing, two AAV gene silencing vectors were designed, and tested for efficiency and specificity of silencing, as well as toxicity in vitro. The same hSNCA silencing sequence (shRNA) was used in both vectors, but in one vector, the shRNA was embedded in a microRNA backbone and driven by a pol II promoter, and in the other the shRNA was not embedded in a microRNA and was driven by a pol III promoter. Both vectors silenced hSNCA to the same extent in 293T cells transfected with hSNCA. In DA PC12 cells, neither vector decreased expression of rat SNCA, tyrosine hydroxylase (TH), dopamine transporter (DAT) or the vesicular monoamine transporter (VMAT). However, the mir30 embedded vector was significantly less toxic to both PC12 and SH-SY5Y cells. Our in vitro data suggest that this miRNA-embedded silencing vector may be ideal for chronic in vivo SNCA gene silencing in DA neurons. PMID:21338582

  7. Progression of Parkinson's Disease Pathology Is Reproduced by Intragastric Administration of Rotenone in Mice

    PubMed Central

    Pan-Montojo, Francisco; Anichtchik, Oleg; Dening, Yanina; Knels, Lilla; Pursche, Stefan; Jung, Roland; Jackson, Sandra; Gille, Gabriele; Spillantini, Maria Grazia; Reichmann, Heinz; Funk, Richard H. W.

    2010-01-01

    In patients with Parkinson's disease (PD), the associated pathology follows a characteristic pattern involving inter alia the enteric nervous system (ENS), the dorsal motor nucleus of the vagus (DMV), the intermediolateral nucleus of the spinal cord and the substantia nigra, providing the basis for the neuropathological staging of the disease. Here we report that intragastrically administered rotenone, a commonly used pesticide that inhibits Complex I of the mitochondrial respiratory chain, is able to reproduce PD pathological staging as found in patients. Our results show that low doses of chronically and intragastrically administered rotenone induce alpha-synuclein accumulation in all the above-mentioned nervous system structures of wild-type mice. Moreover, we also observed inflammation and alpha-synuclein phosphorylation in the ENS and DMV. HPLC analysis showed no rotenone levels in the systemic blood or the central nervous system (detection limit [rotenone]<20 nM) and mitochondrial Complex I measurements showed no systemic Complex I inhibition after 1.5 months of treatment. These alterations are sequential, appearing only in synaptically connected nervous structures, treatment time-dependent and accompanied by inflammatory signs and motor dysfunctions. These results strongly suggest that the local effect of pesticides on the ENS might be sufficient to induce PD-like progression and to reproduce the neuroanatomical and neurochemical features of PD staging. It provides new insight into how environmental factors could trigger PD and suggests a transsynaptic mechanism by which PD might spread throughout the central nervous system. PMID:20098733

  8. Intercellular transfer of pathogenic α-synuclein by extracellular vesicles is induced by the lipid peroxidation product 4-hydroxynonenal.

    PubMed

    Zhang, Shi; Eitan, Erez; Wu, Tsung-Yu; Mattson, Mark P

    2018-01-01

    Parkinson's disease (PD) is characterized by accumulations of toxic α-synuclein aggregates in vulnerable neuronal populations in the brainstem, midbrain, and cerebral cortex. Recent findings suggest that α-synuclein pathology can be propagated transneuronally, but the underlying molecular mechanisms are unknown. Advances in the genetics of rare early-onset familial PD indicate that increased production and/or reduced autophagic clearance of α-synuclein can cause PD. The cause of the most common late-onset PD is unclear, but may involve metabolic compromise and oxidative stress upstream of α-synuclein accumulation. As evidence, the lipid peroxidation product 4-hydroxynonenal (HNE) is elevated in the brain during normal aging and moreso in brain regions afflicted with α-synuclein pathology. Here, we report that HNE increases aggregation of endogenous α-synuclein in primary neurons and triggers the secretion of extracellular vesicles (EVs) containing cytotoxic oligomeric α-synuclein species. EVs released from HNE-treated neurons are internalized by healthy neurons which as a consequence degenerate. Levels of endogenously generated HNE are elevated in cultured cells overexpressing human α-synuclein, and EVs released from those cells are toxic to neurons. The EV-associated α-synuclein is located both inside the vesicles and on their surface, where it plays a role in EV internalization by neurons. On internalization, EVs harboring pathogenic α-synuclein are transported both anterogradely and retrogradely within axons. Focal injection of EVs containing α-synuclein into the striatum of wild-type mice results in spread of synuclein pathology to anatomically connected brain regions. Our findings suggest a scenario for late-onset PD in which lipid peroxidation promotes intracellular accumulation and then extrusion of EVs containing toxic α-synuclein species; the EVs are then internalized by adjacent neurons, so propagating the neurodegenerative process. Published by Elsevier Inc.

  9. Genomics studies on musical aptitude, music perception, and practice.

    PubMed

    Järvelä, Irma

    2018-03-23

    When searching for genetic markers inherited together with musical aptitude, genes affecting inner ear development and brain function were identified. The alpha-synuclein gene (SNCA), located in the most significant linkage region of musical aptitude, was overexpressed when listening and performing music. The GATA-binding protein 2 gene (GATA2) was located in the best associated region of musical aptitude and regulates SNCA in dopaminergic neurons, thus linking DNA- and RNA-based studies of music-related traits together. In addition to SNCA, several other genes were linked to dopamine metabolism. Mutations in SNCA predispose to Lewy-body dementia and cause Parkinson disease in humans and affect song production in songbirds. Several other birdsong genes were found in transcriptome analysis, suggesting a common evolutionary background of sound perception and production in humans and songbirds. Regions of positive selection with musical aptitude contained genes affecting auditory perception, cognitive performance, memory, human language development, and song perception and production of songbirds. The data support the role of dopaminergic pathway and their link to the reward mechanism as a molecular determinant in positive selection of music. Integration of gene-level data from the literature across multiple species prioritized activity-dependent immediate early genes as candidate genes in musical aptitude and listening to and performing music. © 2018 New York Academy of Sciences.

  10. Agrochemicals, α-synuclein, and Parkinson's disease.

    PubMed

    Silva, Blanca A; Breydo, Leonid; Fink, Anthony L; Uversky, Vladimir N

    2013-04-01

    Epidemiological, population-based case-control, and experimental studies at the molecular, cellular, and organism levels revealed that exposure to various environmental agents, including a number of structurally different agrochemicals, may contribute to the pathogenesis of Parkinson's disease (PD) and several other neurodegenerative disorders. The role of genetic predisposition in PD has also been increasingly acknowledged, driven by the identification of a number of disease-related genes [e.g., α-synuclein, parkin, DJ-1, ubiquitin C-terminal hydrolase isozyme L1 (UCH-L1), and nuclear receptor-related factor 1]. Therefore, the etiology of this multifactorial disease is likely to involve both genetic and environmental factors. Various neurotoxicants, including agrochemicals, have been shown to elevate the levels of α-synuclein expression in neurons and to promote aggregation of this protein in vivo. Many agrochemicals physically interact with α-synuclein and accelerate the fibrillation and aggregation rates of this protein in vitro. This review analyzes some of the aspects linking α-synuclein to PD, provides brief structural and functional descriptions of this important protein, and represents some data connecting exposure to agrochemicals with α-synuclein aggregation and PD pathogenesis.

  11. Multiple system atrophy and apolipoprotein E.

    PubMed

    Ogaki, Kotaro; Martens, Yuka A; Heckman, Michael G; Koga, Shunsuke; Labbé, Catherine; Lorenzo-Betancor, Oswaldo; Wernick, Anna I; Walton, Ronald L; Soto, Alexandra I; Vargas, Emily R; Nielsen, Henrietta M; Fujioka, Shinsuke; Kanekiyo, Takahisa; Uitti, Ryan J; van Gerpen, Jay A; Cheshire, William P; Wszolek, Zbigniew K; Low, Phillip A; Singer, Wolfgang; Dickson, Dennis W; Bu, Guojun; Ross, Owen A

    2018-04-01

    Dysregulation of the specialized lipid metabolism involved in myelin synthesis and maintenance by oligodendrocytes has been associated with the unique neuropathology of MSA. We hypothesized that apolipoprotein E, which is associated with neurodegeneration, may also play a role in the pathogenesis of MSA. This study evaluated genetic associations of Apolipoprotein E alleles with risk of MSA and α-synuclein pathology, and also examined whether apolipoprotein E isoforms differentially affect α-synuclein uptake in a oligodendrocyte cell. One hundred sixty-eight pathologically confirmed MSA patients, 89 clinically diagnosed MSA patients, and 1,277 control subjects were genotyped for Apolipoprotein E. Human oligodendrocyte cell lines were incubated with α-synuclein and recombinant human apolipoprotein E, with internalized α-synuclein imaged by confocal microscopy and cells analyzed by flow cytometry. No significant association with risk of MSA or was observed for either Apolipoprotein E ɛ2 or ɛ4. α-Synuclein burden was also not associated with Apolipoprotein E alleles in the pathologically confirmed patients. Interestingly, in our cell assays, apolipoprotein E ɛ4 significantly reduced α-synuclein uptake in the oligodendrocytic cell line. Despite differential effects of apolipoprotein E isoforms on α-synuclein uptake in a human oligodendrocytic cell, we did not observe a significant association at the Apolipoprotein E locus with risk of MSA or α-synuclein pathology. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  12. α-Synuclein Regulates Neuronal Cholesterol Efflux.

    PubMed

    Hsiao, Jen-Hsiang T; Halliday, Glenda M; Kim, Woojin Scott

    2017-10-19

    α-Synuclein is a neuronal protein that is at the center of focus in understanding the etiology of a group of neurodegenerative diseases called α-synucleinopathies, which includes Parkinson's disease (PD). Despite much research, the exact physiological function of α-synuclein is still unclear. α-Synuclein has similar biophysical properties as apolipoproteins and other lipid-binding proteins and has a high affinity for cholesterol. These properties suggest a possible role for α-synuclein as a lipid acceptor mediating cholesterol efflux (the process of removing cholesterol out of cells). To test this concept, we "loaded" SK-N-SH neuronal cells with fluorescently-labelled cholesterol, applied exogenous α-synuclein, and measured the amount of cholesterol removed from the cells using a classic cholesterol efflux assay. We found that α-synuclein potently stimulated cholesterol efflux. We found that the process was dose and time dependent, and was saturable at 1.0 µg/mL of α-synuclein. It was also dependent on the transporter protein ABCA1 located on the plasma membrane. We reveal for the first time a novel role of α-synuclein that underscores its importance in neuronal cholesterol regulation, and identify novel therapeutic targets for controlling cellular cholesterol levels.

  13. Mutant Alpha-Synuclein Causes Age-Dependent Neuropathology in Monkey Brain

    PubMed Central

    Yang, Weili; Wang, Guohao; Wang, Chuan-En; Guo, Xiangyu; Yin, Peng; Gao, Jinquan; Tu, Zhuchi; Wang, Zhengbo; Wu, Jing; Hu, Xintian; Li, Shihua

    2015-01-01

    Parkinson's disease (PD) is an age-dependent neurodegenerative disease that often occurs in those over age 60. Although rodents and small animals have been used widely to model PD and investigate its pathology, their short life span makes it difficult to assess the aging-related pathology that is likely to occur in PD patient brains. Here, we used brain tissues from rhesus monkeys at 2–3, 7–8, and >15 years of age to examine the expression of Parkin, PINK1, and α-synuclein, which are known to cause PD via loss- or gain-of-function mechanisms. We found that α-synuclein is increased in the older monkey brains, whereas Parkin and PINK1 are decreased or remain unchanged. Because of the gain of toxicity of α-synuclein, we performed stereotaxic injection of lentiviral vectors expressing mutant α-synuclein (A53T) into the substantia nigra of monkeys and found that aging also increases the accumulation of A53T in neurites and its associated neuropathology. A53T also causes more extensive reactive astrocytes and axonal degeneration in monkey brain than in mouse brain. Using monkey brain tissues, we found that A53T interacts with neurofascin, an adhesion molecule involved in axon subcellular targeting and neurite outgrowth. Aged monkey brain tissues show an increased interaction of neurofascin with A53T. Overexpression of A53T causes neuritic toxicity in cultured neuronal cells, which can be attenuated by transfected neurofascin. These findings from nonhuman primate brains reveal age-dependent pathological and molecular changes that could contribute to the age-dependent neuropathology in PD. PMID:26019347

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, Johannes; German Center for Neurodegenerative Diseases – DZNE, Site Munich, Feodor-Lynen-Str. 17, 81377 Munich; Hillmer, Andreas S.

    Synucleinopathies such as dementia with Lewy bodies or Parkinson’s disease are characterized by intracellular deposition of pathologically aggregated α-synuclein. The details of the molecular pathogenesis of PD and especially the conditions that lead to intracellular aggregation of α-synuclein and the role of these aggregates in cell death remain unknown. In cell free in vitro systems considerable knowledge about the aggregation processes has been gathered. In comparison, the knowledge about these aggregation processes in cells is far behind. In cells α-synuclein aggregates can be toxic. However, the crucial particle species responsible for decisive steps in pathogenesis such as seeding a continuing aggregationmore » process and triggering cell death remain to be identified. In order to understand the complex nature of intracellular α-synuclein aggregate formation, we analyzed fluorescent particles formed by venus and α-synuclein-venus fusion proteins and α-synuclein-hemi-venus fusion proteins derived from gently lyzed cells. With these techniques we were able to identify and characterize α-synuclein oligomers formed in cells. Especially the use of α-synuclein-hemi-venus fusion proteins enabled us to identify very small α-synuclein oligomers with high sensitivity. Furthermore, we were able to study the molecular effect of heat shock protein 70, which is known to inhibit α-synuclein aggregation in cells. Heat shock protein 70 does not only influence the size of α-synuclein oligomers, but also their quantity. In summary, this approach based on fluorescence single particle spectroscopy, that is suited for high throughput measurements, can be used to detect and characterize intracellularly formed α-synuclein aggregates and characterize the effect of molecules that interfere with α-synuclein aggregate formation. - Highlights: • Single particle spectroscopy detects intracellular formed α-synuclein aggregates. • Fusion proteins allow detection of protein aggregates at the oligomer level. • The technique detects molecules inhibiting α-synuclein aggregate formation. • Single particle spectroscopy is suited for high throughput measurements.« less

  15. Mechanisms of Alpha-synuclein Aggregation and Toxicity

    DTIC Science & Technology

    2004-09-01

    Chung, H. Huang, V.L. Dawson, T.M. Hyslop , Mutation of the conserved N-terminal cysteine (Cys92) of Dawson, Parkin functions as an E2-dependent...in carbonic anhydrase and adenylate cyclase in quaking mice. Brain Res, 1980 . 185(2): p. 373-83. 18 47. Kiefer, L.L. and C.A. Fierke, Functional

  16. Drug Targets from Genetics: Alpha-Synuclein

    PubMed Central

    Danzer, Karin M.; McLean, Pamela J.

    2012-01-01

    One of the critical issues in Parkinson disease (PD) research is the identity of the specific toxic, pathogenic moiety. In PD, mutations in alpha-synuclein (αsyn) or multiplication of the SNCA gene encoding αsyn, result in a phenotype of cellular inclusions, cell death, and brain dysfunction. While the historical point of view has been that the macroscopic aggregates containing αsyn are the toxic species, in the last several years evidence has emerged that suggests instead that smaller soluble species - likely oligomers containing misfolded αsyn - are actually the toxic moiety and that the fibrillar inclusions may even be a cellular detoxification pathway and less harmful. If soluble misfolded species of αsyn are the toxic moieties, then cellular mechanisms that degrade misfolded αsyn would be neuroprotective and a rational target for drug development. In this review we will discuss the fundamental mechanisms underlying αsyn toxicity including oligomer formation, oxidative stress, and degradation pathways and consider rational therapeutic strategies that may have the potential to prevent or halt αsyn induced pathogenesis in PD. PMID:21838671

  17. Passive Immunization Reduces Behavioral and Neuropathological Deficits in an Alpha-Synuclein Transgenic Model of Lewy Body Disease

    PubMed Central

    Masliah, Eliezer; Rockenstein, Edward; Mante, Michael; Crews, Leslie; Spencer, Brian; Adame, Anthony; Patrick, Christina; Trejo, Margarita; Ubhi, Kiren; Rohn, Troy T.; Mueller-Steiner, Sarah; Seubert, Peter; Barbour, Robin; McConlogue, Lisa; Buttini, Manuel; Games, Dora; Schenk, Dale

    2011-01-01

    Dementia with Lewy bodies (DLB) and Parkinson's Disease (PD) are common causes of motor and cognitive deficits and are associated with the abnormal accumulation of alpha-synuclein (α-syn). This study investigated whether passive immunization with a novel monoclonal α-syn antibody (9E4) against the C-terminus (CT) of α-syn was able to cross into the CNS and ameliorate the deficits associated with α-syn accumulation. In this study we demonstrate that 9E4 was effective at reducing behavioral deficits in the water maze, moreover, immunization with 9E4 reduced the accumulation of calpain-cleaved α-syn in axons and synapses and the associated neurodegenerative deficits. In vivo studies demonstrated that 9E4 traffics into the CNS, binds to cells that display α-syn accumulation and promotes α-syn clearance via the lysosomal pathway. These results suggest that passive immunization with monoclonal antibodies against the CT of α-syn may be of therapeutic relevance in patients with PD and DLB. PMID:21559417

  18. Parkinson's: a syndrome rather than a disease?

    PubMed

    Titova, Nataliya; Padmakumar, C; Lewis, Simon J G; Chaudhuri, K Ray

    2017-08-01

    Emerging concepts suggest that a multitude of pathology ranging from misfolding of alpha-synuclein to neuroinflammation, mitochondrial dysfunction, and neurotransmitter driven alteration of brain neuronal networks lead to a syndrome that is commonly known as Parkinson's disease. The complex underlying pathology which may involve degeneration of non-dopaminergic pathways leads to the expression of a range of non-motor symptoms from the prodromal stage of Parkinson's to the palliative stage. Non-motor clinical subtypes, cognitive and non-cognitive, have now been proposed paving the way for possible subtype specific and non-motor treatments, a key unmet need currently. Natural history of these subtypes remains unclear and need to be defined. In addition to in vivo biomarkers which suggest variable involvement of the cholinergic and noradrenergic patterns of the Parkinson syndrome, abnormal alpha-synuclein accumulation have now been demonstrated in the gut, pancreas, heart, salivary glands, and skin suggesting that Parkinson's is a multi-organ disorder. The Parkinson's phenotype is thus not just a dopaminergic motor syndrome, but a dysfunctional multi-neurotransmitter pathway driven central and peripheral nervous system disorder that possibly ought to be considered a syndrome and not a disease.

  19. Common key-signals in learning and neurodegeneration: focus on excito-amino acids, beta-amyloid peptides and alpha-synuclein.

    PubMed

    Agnati, L F; Leo, G; Genedani, S; Piron, L; Rivera, A; Guidolin, D; Fuxe, K

    2009-08-01

    In this paper a hypothesis that some special signals ("key-signals" excito-amino acids, beta-amyloid peptides and alpha-synuclein) are not only involved in information handling by the neuronal circuits, but also trigger out substantial structural and/or functional changes in the Central Nervous System (CNS) is introduced. This forces the neuronal circuits to move from one stable state towards a new state, but in doing so these signals became potentially dangerous. Several mechanisms are put in action to protect neurons and glial cells from these potentially harmful signals. However, in agreement with the Red Queen Theory of Ageing (Agnati et al. in Acta Physiol Scand 145:301-309, 1992), it is proposed that during ageing these neuroprotective processes become less effective while, in the meantime, a shortage of brain plasticity occurs together with an increased need of plasticity for repairing the wear and tear of the CNS. The paper presents findings supporting the concept that such key-signals in instances such as ageing may favour neurodegenerative processes in an attempt of maximizing neuronal plasticity.

  20. Brain propagation of transduced α-synuclein involves non-fibrillar protein species and is enhanced in α-synuclein null mice.

    PubMed

    Helwig, Michael; Klinkenberg, Michael; Rusconi, Raffaella; Musgrove, Ruth E; Majbour, Nour K; El-Agnaf, Omar M A; Ulusoy, Ayse; Di Monte, Donato A

    2016-03-01

    Aggregation and neuron-to-neuron transmission are attributes of α-synuclein relevant to its pathogenetic role in human synucleinopathies such as Parkinson's disease. Intraparenchymal injections of fibrillar α-synuclein trigger widespread propagation of amyloidogenic protein species via mechanisms that require expression of endogenous α-synuclein and, possibly, its structural corruption by misfolded conformers acting as pathological seeds. Here we describe another paradigm of long-distance brain diffusion of α-synuclein that involves inter-neuronal transfer of monomeric and/or oligomeric species and is independent of recruitment of the endogenous protein. Targeted expression of human α-synuclein was induced in the mouse medulla oblongata through an injection of viral vectors into the vagus nerve. Enhanced levels of intra-neuronal α-synuclein were sufficient to initiate its caudo-rostral diffusion that likely involved at least one synaptic transfer and progressively reached specific brain regions such as the locus coeruleus, dorsal raphae and amygdala in the pons, midbrain and forebrain. Transfer of human α-synuclein was compared in two separate lines of α-synuclein-deficient mice versus their respective wild-type controls and, interestingly, lack of endogenous α-synuclein expression did not counteract diffusion but actually resulted in a more pronounced and advanced propagation of exogenous α-synuclein. Self-interaction of adjacent molecules of human α-synuclein was detected in both wild-type and mutant mice. In the former, interaction of human α-synuclein with mouse α-synuclein was also observed and might have contributed to differences in protein transmission. In wild-type and α-synuclein-deficient mice, accumulation of human α-synuclein within recipient axons in the pons, midbrain and forebrain caused morphological evidence of neuritic pathology. Tissue sections from the medulla oblongata and pons were stained with different antibodies recognizing oligomeric, fibrillar and/or total (monomeric and aggregated) α-synuclein. Following viral vector transduction, monomeric, oligomeric and fibrillar protein was detected within donor neurons in the medulla oblongata. In contrast, recipient axons in the pons were devoid of immunoreactivity for fibrillar α-synuclein, indicating that non-fibrillar forms of α-synuclein were primarily transferred from one neuron to the other, diffused within the brain and led to initial neuronal injury. This study elucidates a paradigm of α-synuclein propagation that may play a particularly important role under pathophysiological conditions associated with enhanced α-synuclein expression. Rapid long-distance diffusion and accumulation of monomeric and oligomeric α-synuclein does not necessarily involve pathological seeding but could still result in a significant neuronal burden during the pathogenesis of neurodegenerative diseases. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Altered machinery of protein synthesis is region- and stage-dependent and is associated with α-synuclein oligomers in Parkinson's disease.

    PubMed

    Garcia-Esparcia, Paula; Hernández-Ortega, Karina; Koneti, Anusha; Gil, Laura; Delgado-Morales, Raul; Castaño, Ester; Carmona, Margarita; Ferrer, Isidre

    2015-12-01

    Parkinson's disease (PD) is characterized by the accumulation of abnormal α-synuclein in selected regions of the brain following a gradient of severity with disease progression. Whether this is accompanied by globally altered protein synthesis is poorly documented. The present study was carried out in PD stages 1-6 of Braak and middle-aged (MA) individuals without alterations in brain in the substantia nigra, frontal cortex area 8, angular gyrus, precuneus and putamen. Reduced mRNA expression of nucleolar proteins nucleolin (NCL), nucleophosmin (NPM1), nucleoplasmin 3 (NPM3) and upstream binding transcription factor (UBF), decreased NPM1 but not NPM3 nucleolar protein immunostaining in remaining neurons; diminished 18S rRNA, 28S rRNA; reduced expression of several mRNAs encoding ribosomal protein (RP) subunits; and altered protein levels of initiation factor eIF3 and elongation factor eEF2 of protein synthesis was found in the substantia nigra in PD along with disease progression. Although many of these changes can be related to neuron loss in the substantia nigra, selective alteration of certain factors indicates variable degree of vulnerability of mRNAs, rRNAs and proteins in degenerating sustantia nigra. NPM1 mRNA and 18S rRNA was increased in the frontal cortex area 8 at stage 5-6; modifications were less marked and region-dependent in the angular gyrus and precuneus. Several RPs were abnormally regulated in the frontal cortex area 8 and precuneus, but only one RP in the angular gyrus, in PD. Altered levels of eIF3 and eIF1, and decrease eEF1A and eEF2 protein levels were observed in the frontal cortex in PD. No modifications were found in the putamen at any time of the study except transient modifications in 28S rRNA and only one RP mRNA at stages 5-6. These observations further indicate marked region-dependent and stage-dependent alterations in the cerebral cortex in PD. Altered solubility and α-synuclein oligomer formation, assessed in total homogenate fractions blotted with anti-α-synuclein oligomer-specific antibody, was demonstrated in the substantia nigra and frontal cortex, but not in the putamen, in PD. Dramatic increase in α-synuclein oligomers was also seen in fluorescent-activated cell sorter (FACS)-isolated nuclei in the frontal cortex in PD. Altered machinery of protein synthesis is altered in the substantia nigra and cerebral cortex in PD being the frontal cortex area 8 more affected than the angular gyrus and precuneus; in contrast, pathways of protein synthesis are apparently preserved in the putamen. This is associated with the presence of α-synuclein oligomeric species in total homogenates; substantia nigra and frontal cortex are enriched, albeit with different band patterns, in α-synuclein oligomeric species, whereas α-synuclein oligomers are not detected in the putamen.

  2. Cardiac sympathetic denervation and dementia in de novo Parkinson's disease: A 7-year follow-up study.

    PubMed

    Choi, Mun Hee; Yoon, Jung Han; Yong, Suk Woo

    2017-10-15

    Postganglionic cardiac sympathetic denervation is evident in patients with early-stage Parkinson's disease (PD). Cardiac iodine-123-meta-iodobenzylguanidine (MIBG) uptake is correlated with the non-motor symptoms of PD, suggesting that low cardiac MIBG uptake may reflect wider alpha-synuclein pathology. In addition, low cardiac MIBG could be related to orthostatic hypotension in PD, which may affect cognition. However, the prognostic validity of baseline MIBG scintigraphy in terms of the risk of subsequent dementia remains unclear. We investigated whether cardiac MIBG uptake was associated with a later risk of dementia. We retrospectively enrolled 93 drug-naive patients with de novo PD who underwent MIBG scanning on initial evaluation. The patients visited our outpatient clinic every 3-6months and were followed-up for a minimum of 4years from the time they were begun on dopaminergic medication. The predictive powers of baseline MIBG cardiac scintigraphic data in terms of dementia development were evaluated using Cox's proportional hazard models. During a mean follow-up period of 6.7years, 27 patients with PD (29.0%) developed dementia. These patients had less baseline MIBG uptake than did others (delayed H/M ratios: 1.19 vs. 1.31). Multivariate Cox's proportional hazard modeling revealed that both MIBG uptake (hazard ratio [HR] 3.40; p=0.004) and age (HR 1.08, p=0.01) significantly predicted dementia development. A reduction in cardiac MIBG uptake by PD patients may be associated with a subsequent risk of dementia; reduced uptake may reflect wider extension of alpha-synuclein pathology in PD. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Characterization of cognitive deficits in rats overexpressing human alpha-synuclein in the ventral tegmental area and medial septum using recombinant adeno-associated viral vectors.

    PubMed

    Hall, Hélène; Jewett, Michael; Landeck, Natalie; Nilsson, Nathalie; Schagerlöf, Ulrika; Leanza, Giampiero; Kirik, Deniz

    2013-01-01

    Intraneuronal inclusions containing alpha-synuclein (a-syn) constitute one of the pathological hallmarks of Parkinson's disease (PD) and are accompanied by severe neurodegeneration of A9 dopaminergic neurons located in the substantia nigra. Although to a lesser extent, A10 dopaminergic neurons are also affected. Neurodegeneration of other neuronal populations, such as the cholinergic, serotonergic and noradrenergic cell groups, has also been documented in PD patients. Studies in human post-mortem PD brains and in rodent models suggest that deficits in cholinergic and dopaminergic systems may be associated with the cognitive impairment seen in this disease. Here, we investigated the consequences of targeted overexpression of a-syn in the mesocorticolimbic dopaminergic and septohippocampal cholinergic pathways. Rats were injected with recombinant adeno-associated viral vectors encoding for either human wild-type a-syn or green fluorescent protein (GFP) in the ventral tegmental area and the medial septum/vertical limb of the diagonal band of Broca, two regions rich in dopaminergic and cholinergic neurons, respectively. Histopathological analysis showed widespread insoluble a-syn positive inclusions in all major projections areas of the targeted nuclei, including the hippocampus, neocortex, nucleus accumbens and anteromedial striatum. In addition, the rats overexpressing human a-syn displayed an abnormal locomotor response to apomorphine injection and exhibited spatial learning and memory deficits in the Morris water maze task, in the absence of obvious spontaneous locomotor impairment. As losses in dopaminergic and cholinergic immunoreactivity in both the GFP and a-syn expressing animals were mild-to-moderate and did not differ from each other, the behavioral impairments seen in the a-syn overexpressing animals appear to be determined by the long term persisting neuropathology in the surviving neurons rather than by neurodegeneration.

  4. Transient β-hairpin formation in α-synuclein monomer revealed by coarse-grained molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Yu, Hang; Han, Wei; Ma, Wen; Schulten, Klaus

    2015-12-01

    Parkinson's disease, originating from the intrinsically disordered peptide α-synuclein, is a common neurodegenerative disorder that affects more than 5% of the population above age 85. It remains unclear how α-synuclein monomers undergo conformational changes leading to aggregation and formation of fibrils characteristic for the disease. In the present study, we perform molecular dynamics simulations (over 180 μs in aggregated time) using a hybrid-resolution model, Proteins with Atomic details in Coarse-grained Environment (PACE), to characterize in atomic detail structural ensembles of wild type and mutant monomeric α-synuclein in aqueous solution. The simulations reproduce structural properties of α-synuclein characterized in experiments, such as secondary structure content, long-range contacts, chemical shifts, and 3J(HNHCα)-coupling constants. Most notably, the simulations reveal that a short fragment encompassing region 38-53, adjacent to the non-amyloid-β component region, exhibits a high probability of forming a β-hairpin; this fragment, when isolated from the remainder of α-synuclein, fluctuates frequently into its β-hairpin conformation. Two disease-prone mutations, namely, A30P and A53T, significantly accelerate the formation of a β-hairpin in the stated fragment. We conclude that the formation of a β-hairpin in region 38-53 is a key event during α-synuclein aggregation. We predict further that the G47V mutation impedes the formation of a turn in the β-hairpin and slows down β-hairpin formation, thereby retarding α-synuclein aggregation.

  5. Roles of Autophagy in MPP+-Induced Neurotoxicity In Vivo: The Involvement of Mitochondria and α-Synuclein Aggregation

    PubMed Central

    Lin, Ming-Wei; Lei, Yen-Ping; Lin, Anya Maan-yuh

    2014-01-01

    Macroautophagy (also known as autophagy) is an intracellular self-eating mechanism and has been proposed as both neuroprotective and neurodestructive in the central nervous system (CNS) neurodegenerative diseases. In the present study, the role of autophagy involving mitochondria and α-synuclein was investigated in MPP+ (1-methyl-4-phenylpyridinium)-induced oxidative injury in chloral hydrate-anesthetized rats in vivo. The oxidative mechanism underlying MPP+-induced neurotoxicity was identified by elevated lipid peroxidation and heme oxygenase-1 levels, a redox-regulated protein in MPP+-infused substantia nigra (SN). At the same time, MPP+ significantly increased LC3-II levels, a hallmark protein of autophagy. To block MPP+-induced autophagy in rat brain, Atg7siRNA was intranigrally infused 4 d prior to MPP+ infusion. Western blot assay showed that in vivo Atg7siRNA transfection not only reduced Atg7 levels in the MPP+-infused SN but attenuated MPP+-induced elevation in LC3-II levels, activation of caspase 9 and reduction in tyrosine hydroxylase levels, indicating that autophagy is pro-death. The immunostaining study demonstrated co-localization of LC3 and succinate dehydrogenase (a mitochondrial complex II) as well as LC3 and α-synuclein, suggesting that autophagy may engulf mitochondria and α-synuclein. Indeed, in vivo Atg7siRNA transfection mitigated MPP+-induced reduction in cytochrome c oxidase. In addition, MPP+-induced autophagy differentially altered the α-synuclein aggregates in the infused SN. In conclusion, autophagy plays a prodeath role in the MPP+-induced oxidative injury by sequestering mitochondria in the rat brain. Moreover, our data suggest that the benefits of autophagy depend on the levels of α-synuclein aggregates in the nigrostriatal dopaminergic system of the rat brain. PMID:24646838

  6. Effects of different isoforms of apoE on aggregation of the α-synuclein protein implicated in Parkinson's disease.

    PubMed

    Emamzadeh, Fatemeh Nouri; Aojula, Harmesh; McHugh, Patrick C; Allsop, David

    2016-04-08

    Parkinson's disease is a progressive brain disorder due to the degeneration of dopaminergic neurons in the substantia nigra. The accumulation of aggregated forms of α-synuclein protein into Lewy bodies is one of the characteristic features of this disease although the pathological role of any such protein deposits in causing neurodegeneration remains elusive. Here, the effects of different apolipoprotein E isoforms (apoE2, apoE3, apoE4) on the aggregation of α-synuclein in vitro were examined using thioflavin T assays and also an immunoassay to detect the formation of multimeric forms. Our results revealed that the aggregation of α-synuclein is influenced by apoE concentration. At low concentrations of apoE (<15nM), all of the isoforms were able to increase the aggregation of α-synuclein (50μM), with apoE4 showing the greatest stimulatory effect. This is in contrast to a higher concentration (>15nM) of these isoforms, where a decrease in the aggregation of α-synuclein was noted. The data show that exceptionally low levels of apoE may seed α-syn aggregation, which could potentially lead to the pathogenesis of α-synuclein-induced neurodegeneration. On the other hand, higher levels of apoE could potentially lower the degree of α-synuclein aggregation and confer protection. The differential effects noted with apoE4 could explain why this particular isoform results in an earlier age of onset for Parkinson's disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. The Contribution of α-Synuclein Spreading to Parkinson's Disease Synaptopathy

    PubMed Central

    Faustini, Gaia; Missale, Cristina; Pizzi, Marina; Spano, PierFranco

    2017-01-01

    Synaptopathies are diseases with synapse defects as shared pathogenic features, encompassing neurodegenerative disorders such as Parkinson's disease (PD). In sporadic PD, the most common age-related neurodegenerative movement disorder, nigrostriatal dopaminergic deficits are responsible for the onset of motor symptoms that have been related to α-synuclein deposition at synaptic sites. Indeed, α-synuclein accumulation can impair synaptic dopamine release and induces the death of nigrostriatal neurons. While in physiological conditions the protein can interact with and modulate synaptic vesicle proteins and membranes, numerous experimental evidences have confirmed that its pathological aggregation can compromise correct neuronal functioning. In addition, recent findings indicate that α-synuclein pathology spreads into the brain and can affect the peripheral autonomic and somatic nervous system. Indeed, monomeric, oligomeric, and fibrillary α-synuclein can move from cell to cell and can trigger the aggregation of the endogenous protein in recipient neurons. This novel “prion-like” behavior could further contribute to synaptic failure in PD and other synucleinopathies. This review describes the major findings supporting the occurrence of α-synuclein pathology propagation in PD and discusses how this phenomenon could induce or contribute to synaptic injury and degeneration. PMID:28133550

  8. Mutant alpha-synuclein causes age-dependent neuropathology in monkey brain.

    PubMed

    Yang, Weili; Wang, Guohao; Wang, Chuan-En; Guo, Xiangyu; Yin, Peng; Gao, Jinquan; Tu, Zhuchi; Wang, Zhengbo; Wu, Jing; Hu, Xintian; Li, Shihua; Li, Xiao-Jiang

    2015-05-27

    Parkinson's disease (PD) is an age-dependent neurodegenerative disease that often occurs in those over age 60. Although rodents and small animals have been used widely to model PD and investigate its pathology, their short life span makes it difficult to assess the aging-related pathology that is likely to occur in PD patient brains. Here, we used brain tissues from rhesus monkeys at 2-3, 7-8, and >15 years of age to examine the expression of Parkin, PINK1, and α-synuclein, which are known to cause PD via loss- or gain-of-function mechanisms. We found that α-synuclein is increased in the older monkey brains, whereas Parkin and PINK1 are decreased or remain unchanged. Because of the gain of toxicity of α-synuclein, we performed stereotaxic injection of lentiviral vectors expressing mutant α-synuclein (A53T) into the substantia nigra of monkeys and found that aging also increases the accumulation of A53T in neurites and its associated neuropathology. A53T also causes more extensive reactive astrocytes and axonal degeneration in monkey brain than in mouse brain. Using monkey brain tissues, we found that A53T interacts with neurofascin, an adhesion molecule involved in axon subcellular targeting and neurite outgrowth. Aged monkey brain tissues show an increased interaction of neurofascin with A53T. Overexpression of A53T causes neuritic toxicity in cultured neuronal cells, which can be attenuated by transfected neurofascin. These findings from nonhuman primate brains reveal age-dependent pathological and molecular changes that could contribute to the age-dependent neuropathology in PD. Copyright © 2015 the authors 0270-6474/15/358345-14$15.00/0.

  9. Geniposide reduces α-synuclein by blocking microRNA-21/lysosome-associated membrane protein 2A interaction in Parkinson disease models.

    PubMed

    Su, Chunhe; Yang, Xiaopeng; Lou, Jiyu

    2016-08-01

    This study aimed to explore whether the regulatory effect of miR-21 on α-synuclein expression in neurons is a potential mechanism by which geniopside (GP) protects the central nervous system from Parkinson disease (PD). The human neuroblastoma cell line SH-SY5Y was induced to differentiate in vitro and treated with dimethyl sulfoxide (DMSO), N-methyl-4-phenylpyridinium iodide (MPP(+)), and MPP(+) together with GP. To identify the role of miR-21 in the regulation of lysosome-associated membrane protein 2 (LAMP2A) and α-synuclein, SH-SY5Y cells pretreated with MPP(+) were transfected with miR-21 mimic and miR-21 inhibitor. To identify whether GP could reduce the level of α-synuclein through miR-21/LAMP2A, SHSY5Y cells pretreated with GP were treated with miR-21 mimic or miR-21 inhibitor; meanwhile, a luciferase reporter assay was performed to confirm the direct target of miR-21. LAMP2A was overexpressed using a pCMV6-XL5-LAMP2A vector to confirm the role of LAMP2A in the regulation of α-synuclein by miR-21. In these in vitro experiments, the RNA and/or protein expressions of miR-21, LAMP2A, and α-synuclein in SH-SY5Y cells were determined by quantitative real-time polymerase chain reaction and/or western blotting, respectively. An in vivo PD mouse model was established through intraperitoneal injection with N-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP). The mice were treated with saline, MPTP, MPTP+GP, and MPTP+GP+miR-21 agomir. The numbers of TH(+) cells in the substantia nigra in different groups of mice were compared. The RNA and/or protein expressions of miR-21, LAMP2A, and α-synuclein were also determined. The level of miR-21 in the cells or mice models was significantly higher than that in normal cells or normal mice, respectively, and GP significantly downregulated miR-21. GP also raised the protein and mRNA expressions of LAMP2A and reduced the protein level of α-synuclein in PD models. MiR-21 upregulated the expression of α-synuclein by directly targeting 3' UTR of LAMP2A. LAMP2A overexpression abolished the upregulating effect of miR-21 mimic on α-synuclein. MiR-21 mimics/agomir reversed the GP-induced downregulation of α-synuclein; miR-21 inhibitor effectively increased the downregulation of α-synuclein caused by GP. GP exhibits neuroprotective properties by inhibiting α-synuclein expression in PD models through the miR-21/LAMP2A axis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Mutant LRRK2 Toxicity in Neurons Depends on LRRK2 Levels and Synuclein But Not Kinase Activity or Inclusion Bodies

    PubMed Central

    Skibinski, Gaia; Nakamura, Ken; Cookson, Mark R.

    2014-01-01

    By combining experimental neuron models and mathematical tools, we developed a “systems” approach to deconvolve cellular mechanisms of neurodegeneration underlying the most common known cause of Parkinson's disease (PD), mutations in leucine-rich repeat kinase 2 (LRRK2). Neurons ectopically expressing mutant LRRK2 formed inclusion bodies (IBs), retracted neurites, accumulated synuclein, and died prematurely, recapitulating key features of PD. Degeneration was predicted from the levels of diffuse mutant LRRK2 that each neuron contained, but IB formation was neither necessary nor sufficient for death. Genetic or pharmacological blockade of its kinase activity destabilized LRRK2 and lowered its levels enough to account for the moderate reduction in LRRK2 toxicity that ensued. By contrast, targeting synuclein, including neurons made from PD patient-derived induced pluripotent cells, dramatically reduced LRRK2-dependent neurodegeneration and LRRK2 levels. These findings suggest that LRRK2 levels are more important than kinase activity per se in predicting toxicity and implicate synuclein as a major mediator of LRRK2-induced neurodegeneration. PMID:24403142

  11. Polo-like Kinase 2 (PLK2) Phosphorylates α-Synuclein at Serine 129 in Central Nervous System*S⃞

    PubMed Central

    Inglis, Kelly J.; Chereau, David; Brigham, Elizabeth F.; Chiou, San-San; Schöbel, Susanne; Frigon, Normand L.; Yu, Mei; Caccavello, Russell J.; Nelson, Seth; Motter, Ruth; Wright, Sarah; Chian, David; Santiago, Pamela; Soriano, Ferdie; Ramos, Carla; Powell, Kyle; Goldstein, Jason M.; Babcock, Michael; Yednock, Ted; Bard, Frederique; Basi, Guriqbal S.; Sham, Hing; Chilcote, Tamie J.; McConlogue, Lisa; Griswold-Prenner, Irene; Anderson, John P.

    2009-01-01

    Several neurological diseases, including Parkinson disease and dementia with Lewy bodies, are characterized by the accumulation of α-synuclein phosphorylated at Ser-129 (p-Ser-129). The kinase or kinases responsible for this phosphorylation have been the subject of intense investigation. Here we submit evidence that polo-like kinase 2 (PLK2, also known as serum-inducible kinase or SNK) is a principle contributor to α-synuclein phosphorylation at Ser-129 in neurons. PLK2 directly phosphorylates α-synuclein at Ser-129 in an in vitro biochemical assay. Inhibitors of PLK kinases inhibited α-synuclein phosphorylation both in primary cortical cell cultures and in mouse brain in vivo. Finally, specific knockdown of PLK2 expression by transduction with short hairpin RNA constructs or by knock-out of the plk2 gene reduced p-Ser-129 levels. These results indicate that PLK2 plays a critical role in α-synuclein phosphorylation in central nervous system. PMID:19004816

  12. Extracellular Alpha-Synuclein Oligomers Induce Parkin S-Nitrosylation: Relevance to Sporadic Parkinson's Disease Etiopathology.

    PubMed

    Wilkaniec, Anna; Lenkiewicz, Anna M; Czapski, Grzegorz A; Jęśko, Henryk M; Hilgier, Wojciech; Brodzik, Robert; Gąssowska-Dobrowolska, Magdalena; Culmsee, Carsten; Adamczyk, Agata

    2018-04-21

    α-Synuclein (ASN) and parkin, a multifunctional E3 ubiquitin ligase, are two proteins that are associated with the pathophysiology of Parkinson's disease (PD). Excessive release of ASN, its oligomerization, aggregation, and deposition in the cytoplasm contribute to neuronal injury and cell death through oxidative-nitrosative stress induction, mitochondrial impairment, and synaptic dysfunction. In contrast, overexpression of parkin provides protection against cellular stresses and prevents dopaminergic neural cell loss in several animal models of PD. However, the influence of ASN on the function of parkin is largely unknown. Therefore, the aim of this study was to investigate the effect of extracellular ASN oligomers on parkin expression, S-nitrosylation, as well as its activity. For these investigations, we used rat pheochromocytoma (PC12) cell line treated with exogenous oligomeric ASN as well as PC12 cells with parkin overexpression and parkin knock-down. The experiments were performed using spectrophotometric, spectrofluorometric, and immunochemical methods. We found that exogenous ASN oligomers induce oxidative/nitrosative stress leading to parkin S-nitrosylation. Moreover, this posttranslational modification induced the elevation of parkin autoubiquitination and degradation of the protein. The decreased parkin levels resulted in significant cell death, whereas parkin overexpression protected against toxicity induced by extracellular ASN oligomers. We conclude that lowering parkin levels by extracellular ASN may significantly contribute to the propagation of neurodegeneration in PD pathology through accumulation of defective proteins as a consequence of parkin degradation.

  13. Quantitative neurohistological features of frontotemporal degeneration.

    PubMed

    Arnold, S E; Han, L Y; Clark, C M; Grossman, M; Trojanowski, J Q

    2000-01-01

    Frontotemporal degeneration (FTD) is a neurodegenerative condition that has been principally associated with frontal lobe dementia. In this study, we compared neuropathological abnormalities in frontal, hippocampal, and calcarine cortices from patients assigned a diagnosis of FTD, normal elderly and Alzheimer's disease (AD). Densities of Nissl-stained neurons and lesions which were immunolabeled for tau, beta-amyloid (Abeta), alpha- and beta-synuclein, ubiquitin, glial fibrillary acidic protein (GFAP) and CD68 antigen were determined using computer-assisted, non-biased quantitative microscopy. We found that FTD frontal and hippocampal regions exhibited marked neuron loss, abundant ubiquitin-immunoreactive (ir) dystrophic neurites, GFAP-ir astrocytes, and CD68-ir microglia, while calcarine cortex was spared. No alpha- or beta-synuclein-ir lesions were observed, and neither the density of tau-ir neurofibrillary tangles nor that of Abeta-ir plaques in FTD exceeded normal controls. In addition, there were no neuropathological differences between FTD subjects who presented clinically with a frontal lobe dementia versus an AD-like dementia. These findings indicate that FTD is a category of neurodegnerative dementias with varying clinical presentations that is characterized by the progressive degeneration of select populations of cortical neurons. The molecular neurodegenerative mechanisms that lead to FTD remain to be elucidated.

  14. The Interplay between Alpha-Synuclein Clearance and Spreading

    PubMed Central

    Lopes da Fonseca, Tomás; Villar-Piqué, Anna; Outeiro, Tiago Fleming

    2015-01-01

    Parkinson’s Disease (PD) is a complex neurodegenerative disorder classically characterized by movement impairment. Pathologically, the most striking features of PD are the loss of dopaminergic neurons and the presence of intraneuronal protein inclusions primarily composed of alpha-synuclein (α-syn) that are known as Lewy bodies and Lewy neurites in surviving neurons. Though the mechanisms underlying the progression of PD pathology are unclear, accumulating evidence suggests a prion-like spreading of α-syn pathology. The intracellular homeostasis of α-syn requires the proper degradation of the protein by three mechanisms: chaperone-mediated autophagy, macroautophagy and ubiquitin-proteasome. Impairment of these pathways might drive the system towards an alternative clearance mechanism that could involve its release from the cell. This increased release to the extracellular space could be the basis for α-syn propagation to different brain areas and, ultimately, for the spreading of pathology and disease progression. Here, we review the interplay between α-syn degradation pathways and its intercellular spreading. The understanding of this interplay is indispensable for obtaining a better knowledge of the molecular basis of PD and, consequently, for the design of novel avenues for therapeutic intervention. PMID:25874605

  15. Inflammation kinase PKR phosphorylates α-synuclein and causes α-synuclein-dependent cell death.

    PubMed

    Reimer, Lasse; Vesterager, Louise Buur; Betzer, Cristine; Zheng, Jin; Nielsen, Lærke Dalsgaard; Kofoed, Rikke Hahn; Lassen, Louise Berkhoudt; Bølcho, Ulrik; Paludan, Søren Riis; Fog, Karina; Jensen, Poul Henning

    2018-07-01

    Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy comprise a group of neurodegenerative diseases termed synucleinopathies. Synucleinopathie are, characterized by presence of inclusion bodies in degenerating brain cells which contain aggregated α-synuclein phosphorylated on Ser129. Although the inflammation-associated serine-threonine kinase, PKR (EIF2AK2), promotes cellular protection against infection, we demonstrate a pro-degenerative role of activated PKR in an α-synuclein-dependent cell model of multiple system atrophy, where inhibition and silencing of PKR decrease cellular degeneration. In vitro phosphorylation demonstrates that PKR can directly bind and phosphorylate monomeric and filamenteous α-synuclein on Ser129. Inhibition and knockdown of PKR reduce Ser129 phosphorylation in different models (SH-SY5Y ASYN cells, OLN-AS7 cells, primary mouse hippocampal neurons, and acute brain slices), while overexpression of constitutively active PKR increases Ser129 α-syn phosphorylation. Treatment with pre-formed α-synuclein fibrils, proteostatic stress-promoting MG-132 and known PKR activators, herpes simplex virus-1-∆ICP34.5 and LPS, as well as PKR inducer, IFN-β-1b, lead to increased levels of phosphorylated Ser129 α-synuclein that is completely blocked by simultaneous PKR inhibition. These results reveal a direct link between PKR and the phosphorylation and toxicity of α-synuclein, and they support that neuroinflammatory processes play a role in modulating the pathogenicity of α-synuclein. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Curcumin Treatment Improves Motor Behavior in α-Synuclein Transgenic Mice

    PubMed Central

    Spinelli, Kateri J.; Osterberg, Valerie R.; Meshul, Charles K.; Soumyanath, Amala; Unni, Vivek K.

    2015-01-01

    The curry spice curcumin plays a protective role in mouse models of neurodegenerative diseases, and can also directly modulate aggregation of α-synuclein protein in vitro, yet no studies have described the interaction of curcumin and α-synuclein in genetic synucleinopathy mouse models. Here we examined the effect of chronic and acute curcumin treatment in the Syn-GFP mouse line, which overexpresses wild-type human α-synuclein protein. We discovered that curcumin diet intervention significantly improved gait impairments and resulted in an increase in phosphorylated forms of α-synuclein at cortical presynaptic terminals. Acute curcumin treatment also caused an increase in phosphorylated α-synuclein in terminals, but had no direct effect on α-synuclein aggregation, as measured by in vivo multiphoton imaging and Proteinase-K digestion. Using LC-MS/MS, we detected ~5 ng/mL and ~12 ng/mL free curcumin in the plasma of chronic or acutely treated mice, with a glucuronidation rate of 94% and 97%, respectively. Despite the low plasma levels and extensive metabolism of curcumin, these results show that dietary curcumin intervention correlates with significant behavioral and molecular changes in a genetic synucleinopathy mouse model that mimics human disease. PMID:26035833

  17. Association of Cerebrospinal Fluid β-Amyloid 1-42, T-tau, P-tau181, and α-Synuclein Levels With Clinical Features of Drug-Naive Patients With Early Parkinson Disease

    PubMed Central

    Kang, Ju-Hee; Irwin, David J.; Chen-Plotkin, Alice S.; Siderowf, Andrew; Caspell, Chelsea; Coffey, Christopher S.; Waligórska, Teresa; Taylor, Peggy; Pan, Sarah; Frasier, Mark; Marek, Kenneth; Kieburtz, Karl; Jennings, Danna; Simuni, Tanya; Tanner, Caroline M.; Singleton, Andrew; Toga, Arthur W.; Chowdhury, Sohini; Mollenhauer, Brit; Trojanowski, John Q.; Shaw, Leslie M.

    2014-01-01

    Importance We observed a significant correlation between cerebrospinal fluid (CSF) levels of tau proteins and α-synuclein, but not β-amyloid 1–42 (Aβ1–42), and lower concentration of CSF biomarkers, as compared with healthy controls, in a cohort of entirely untreated patients with Parkinson disease (PD) at the earliest stage of the disease studied so far. Objective To evaluate the baseline characteristics and relationship to clinical features of CSF biomarkers (Aβ1–42, total tau [T-tau], tau phosphorylated at threonine 181 [P-tau181], and α-synuclein) in drug-naive patients with early PD and demographically matched healthy controls enrolled in the Parkinson’s Progression Markers Initiative (PPMI) study. Design, Setting, and Participants Cross-sectional study of the initial 102 research volunteers (63 patients with PD and 39 healthy controls) of the PPMI cohort. Main Outcomes and Measures The CSF biomarkers were measured by INNO-BIA AlzBio3 immunoassay (Aβ1–42, T-tau, and P-tau181; Innogenetics Inc) or by enzyme-linked immunosorbent assay (α-synuclein). Clinical features including diagnosis, demographic characteristics, motor, neuropsychiatric, and cognitive assessments, and DaTscan were systematically assessed according to the PPMI study protocol. Results Slightly, but significantly, lower levels of Aβ1–42, T-tau, P-tau181, α-synuclein, and T-tau/Aβ1–42 were seen in subjects with PD compared with healthy controls but with a marked overlap between groups. Using multivariate regression analysis, we found that lower Aβ1–42 and P-tau181 levels were associated with PD diagnosis and that decreased CSF T-tau and α-synuclein were associated with increased motor severity. Notably, when we classified patients with PD by their motor phenotypes, lower CSF Aβ1–42 and P-tau181 concentrations were associated with the postural instability–gait disturbance–dominant phenotype but not with the tremor-dominant or intermediate phenotype. Finally, we found a significant correlation of the levels of α-synuclein with the levels of T-tau and P-tau181. Conclusions and Relevance In this first report of CSF biomarkers in PPMI study subjects, we found that measures of CSF Aβ1–42, T-tau, P-tau181, and α-synuclein have prognostic and diagnostic potential in early-stage PD. Further investigations using the entire PPMI cohort will test the predictive performance of CSF biomarkers for PD progression. PMID:23979011

  18. Protective Role of Endogenous Gangliosides for Lysosomal Pathology in a Cellular Model of Synucleinopathies

    PubMed Central

    Wei, Jianshe; Fujita, Masayo; Nakai, Masaaki; Waragai, Masaaki; Sekigawa, Akio; Sugama, Shuei; Takenouchi, Takato; Masliah, Eliezer; Hashimoto, Makoto

    2009-01-01

    Gangliosides may be involved in the pathogenesis of Parkinson’s disease and related disorders, although the precise mechanisms governing this involvement remain unknown. In this study, we determined whether changes in endogenous ganglioside levels affect lysosomal pathology in a cellular model of synucleinopathy. For this purpose, dementia with Lewy body-linked P123H β-synuclein (β-syn) neuroblastoma cells transfected with α-synuclein were used as a model system because these cells were characterized as having extensive formation of lysosomal inclusions bodies. Treatment of these cells with d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), an inhibitor of glycosyl ceramide synthase, resulted in various features of lysosomal pathology, including compromised lysosomal activity, enhanced lysosomal membrane permeabilization, and increased cytotoxicity. Consistent with these findings, expression levels of lysosomal membrane proteins, ATP13A2 and LAMP-2, were significantly decreased, and electron microscopy demonstrated alterations in the lysosomal membrane structures. Furthermore, the accumulation of both P123H β-syn and α-synuclein proteins was significant in PDMP-treated cells because of the suppressive effect of PDMP on the autophagy pathway. Finally, the detrimental effects of PDMP on lysosomal pathology were significantly ameliorated by the addition of gangliosides to the cultured cells. These data suggest that endogenous gangliosides may play protective roles against the lysosomal pathology of synucleinopathies. PMID:19349362

  19. Potential role of alpha-synuclein and metallothionein in lead-induced inclusion body formation.

    PubMed

    Zuo, Peijun; Qu, Wei; Cooper, Ryan N; Goyer, Robert A; Diwan, Bhalchandra A; Waalkes, Michael P

    2009-09-01

    Lead (Pb) produces aggresome-like inclusion bodies (IBs) in target cells as a toxic response. Our prior work shows metallothionein (MT) is required for this process. We used MT-I/II double knockout (MT-null) and parental wild-type (WT) cell lines to further explore the formation process of Pb-induced IBs. Unlike WT cells, MT-null cells did not form IBs after Pb exposure. Western blot of cytosol showed soluble MT protein in WT cells was lost during Pb exposure as IBs formed. Transfection of MT-I into MT-null cells allowed IBs formation after Pb exposure. Considering Pb-induced IBs may be like disease-related aggresomes, which often contain alpha-synuclein (Scna), we investigated Scna expression in cells capable (WT) and incapable (MT-null) of producing IBs after Pb exposure. Scna protein showed poor basal expression in MT-null cells. Pb exposure increased Scna expression only in WT cells. MT transfection increased Scna transcript to WT levels. In WT or MT-transfected MT-null cells, Pb-induced Scna expression rapidly increased and then decreased over 48 h as Pb-induced IBs were formed. A direct interaction between Scna and MT was confirmed ex vivo by antibody pulldown assay where the proteins coprecipitated with an antibody to MT. Pb exposure caused increased colocalization of MT and Scna proteins with time only in WT cells. In WT mice after chronic Pb exposure Scna was localized in renal cells containing forming IBs, whereas MT-null mice did not form IBs. Thus, Scna could be component of Pb-induced IBs and, with MT, may play a role in IBs formation.

  20. Long-term oral kinetin does not protect against α-synuclein-induced neurodegeneration in rodent models of Parkinson's disease.

    PubMed

    Orr, Adam L; Rutaganira, Florentine U; de Roulet, Daniel; Huang, Eric J; Hertz, Nicholas T; Shokat, Kevan M; Nakamura, Ken

    2017-10-01

    Mutations in the mitochondrial kinase PTEN-induced putative kinase 1 (PINK1) cause Parkinson's disease (PD), likely by disrupting PINK1's kinase activity. Although the mechanism(s) underlying how this loss of activity causes degeneration remains unclear, increasing PINK1 activity may therapeutically benefit some forms of PD. However, we must first learn whether restoring PINK1 function prevents degeneration in patients harboring PINK1 mutations, or whether boosting PINK1 function can offer protection in more common causes of PD. To test these hypotheses in preclinical rodent models of PD, we used kinetin triphosphate, a small-molecule that activates both wild-type and mutant forms of PINK1, which affects mitochondrial function and protects neural cells in culture. We chronically fed kinetin, the precursor of kinetin triphosphate, to PINK1-null rats in which PINK1 was reintroduced into their midbrain, and also to rodent models overexpressing α-synuclein. The highest tolerated dose of oral kinetin increased brain levels of kinetin for up to 6 months, without adversely affecting the survival of nigrostriatal dopamine neurons. However, there was no degeneration of midbrain dopamine neurons lacking PINK1, which precluded an assessment of neuroprotection and raised questions about the robustness of the PINK1 KO rat model of PD. In two rodent models of α-synuclein-induced toxicity, boosting PINK1 activity with oral kinetin provided no protective effects. Our results suggest that oral kinetin is unlikely to protect against α-synuclein toxicity, and thus fail to provide evidence that kinetin will protect in sporadic models of PD. Kinetin may protect in cases of PINK1 deficiency, but this possibility requires a more robust PINK1 KO model that can be validated by proof-of-principle genetic correction in adult animals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. D409H GBA1 mutation accelerates the progression of pathology in A53T α-synuclein transgenic mouse model.

    PubMed

    Kim, Donghoon; Hwang, Heehong; Choi, Seulah; Kwon, Sang Ho; Lee, Suhyun; Park, Jae Hong; Kim, SangMin; Ko, Han Seok

    2018-04-27

    Heterozygous mutations in glucocerebrosidase 1 (GBA1) are a major genetic risk factor for Parkinson's disease and Dementia with Lewy bodies. Mutations in GBA1 leads to GBA1 enzyme deficiency, and GBA1-associated parkinsonism has an earlier age of onset and more progressive parkinsonism. To investigate a potential influence of GBA1 deficiency caused by mutations in GBA1 on the disease progression of PD, GBA1 mice carrying D409H knock-in mutation were crossbred with the human A53T (hA53T) α-synuclein transgenic mice. Here, we show that GBA1 enzyme activity plays a significant role in the hA53T α-synuclein induced α-synucleinopathy. The expression of D409H GBA1 markedly shortens the lifespan of hA53T α-synuclein transgenic mice. Moreover, D409H GBA1 expression exacerbates the formation of insoluble aggregates of α-synuclein, glial activation, neuronal degeneration, and motor abnormalities in the hA53T α-synuclein transgenic mice. Interestingly, the expression of D409H GBA1 results in the loss of dopaminergic neurons in the substantia nigra pars compacta of hA53T transgenic mice. Taken together, these results indicate that GBA1 deficiency due to D409H mutation affects the disease onset and course in hA53T α-synuclein transgenic mice. Therefore, strategies aimed to maintain GBA1 enzyme activity could be employed to develop an effective novel therapy for GBA1 linked-PD and related α-synucleinopathies.

  2. Metabolic connectomics targeting brain pathology in dementia with Lewy bodies

    PubMed Central

    Caminiti, Silvia P; Tettamanti, Marco; Sala, Arianna; Presotto, Luca; Iannaccone, Sandro; Cappa, Stefano F; Magnani, Giuseppe

    2016-01-01

    Dementia with Lewy bodies is characterized by α-synuclein accumulation and degeneration of dopaminergic and cholinergic pathways. To gain an overview of brain systems affected by neurodegeneration, we characterized the [18F]FDG-PET metabolic connectivity in 42 dementia with Lewy bodies patients, as compared to 42 healthy controls, using sparse inverse covariance estimation method and graph theory. We performed whole-brain and anatomically driven analyses, targeting cholinergic and dopaminergic pathways, and the α-synuclein spreading. The first revealed substantial alterations in connectivity indexes, brain modularity, and hubs configuration. Namely, decreases in local metabolic connectivity within occipital cortex, thalamus, and cerebellum, and increases within frontal, temporal, parietal, and basal ganglia regions. There were also long-range disconnections among these brain regions, all supporting a disruption of the functional hierarchy characterizing the normal brain. The anatomically driven analysis revealed alterations within brain structures early affected by α-synuclein pathology, supporting Braak’s early pathological staging in dementia with Lewy bodies. The dopaminergic striato-cortical pathway was severely affected, as well as the cholinergic networks, with an extensive decrease in connectivity in Ch1-Ch2, Ch5-Ch6 networks, and the lateral Ch4 capsular network significantly towards the occipital cortex. These altered patterns of metabolic connectivity unveil a new in vivo scenario for dementia with Lewy bodies underlying pathology in terms of changes in whole-brain metabolic connectivity, spreading of α-synuclein, and neurotransmission impairment. PMID:27306756

  3. Structures and Free Energy Landscapes of the Wild-Type and A30P Mutant-Type α-Synuclein Proteins with Dynamics

    PubMed Central

    2013-01-01

    The genetic missense A30P mutation of the wild-type α-synuclein protein results in the replacement of the 30th amino acid residue from alanine (Ala) to proline (Pro) and was initially found in the members of a German family who developed Parkinson’s disease. Even though the structures of these proteins have been measured before, detailed understanding about the structures and their relationships with free energy landscapes is lacking, which is of interest to provide insights into the pathogenic mechanism of Parkinson’s disease. We report the secondary and tertiary structures and conformational free energy landscapes of the wild-type and A30P mutant-type α-synuclein proteins in an aqueous solution environment via extensive parallel tempering molecular dynamics simulations along with thermodynamic calculations. In addition, we present the residual secondary structure component transition stabilities at the atomic level with dynamics in terms of free energy change calculations using a new strategy that we reported most recently. Our studies yield new interesting results; for instance, we find that the A30P mutation has local as well as long-range effects on the structural properties of the wild-type α-synuclein protein. The helical content at Ala18-Gly31 is less prominent in comparison to the wild-type α-synuclein protein. The β-sheet structure abundance decreases in the N-terminal region upon A30P mutation of the wild-type α-synuclein, whereas the NAC and C-terminal regions possess larger tendencies for β-sheet structure formation. Long-range intramolecular protein interactions are less abundant upon A30P mutation, especially between the NAC and C-terminal regions, which is linked to the less compact and less stable structures of the A30P mutant-type rather than the wild-type α-synuclein protein. Results including the usage of our new strategy for secondary structure transition stabilities show that the A30P mutant-type α-synuclein tendency toward aggregation is higher than the wild-type α-synuclein but we also find that the C-terminal and NAC regions of the A30P mutant-type α-synuclein are reactive toward fibrillzation and aggregation based on atomic level studies with dynamics in an aqueous solution environment. Therefore, we propose that small molecules or drugs blocking the specific residues, which we report herein, located in the NAC- and C-terminal regions of the A30P mutant-type α-synuclein protein might help to reduce the toxicity of the A30P mutant-type α-synuclein protein. PMID:23374072

  4. Structures and free energy landscapes of the wild-type and A30P mutant-type α-synuclein proteins with dynamics.

    PubMed

    Wise-Scira, Olivia; Aloglu, Ahmet Kemal; Dunn, Aquila; Sakallioglu, Isin Tuna; Coskuner, Orkid

    2013-03-20

    The genetic missense A30P mutation of the wild-type α-synuclein protein results in the replacement of the 30th amino acid residue from alanine (Ala) to proline (Pro) and was initially found in the members of a German family who developed Parkinson's disease. Even though the structures of these proteins have been measured before, detailed understanding about the structures and their relationships with free energy landscapes is lacking, which is of interest to provide insights into the pathogenic mechanism of Parkinson's disease. We report the secondary and tertiary structures and conformational free energy landscapes of the wild-type and A30P mutant-type α-synuclein proteins in an aqueous solution environment via extensive parallel tempering molecular dynamics simulations along with thermodynamic calculations. In addition, we present the residual secondary structure component transition stabilities at the atomic level with dynamics in terms of free energy change calculations using a new strategy that we reported most recently. Our studies yield new interesting results; for instance, we find that the A30P mutation has local as well as long-range effects on the structural properties of the wild-type α-synuclein protein. The helical content at Ala18-Gly31 is less prominent in comparison to the wild-type α-synuclein protein. The β-sheet structure abundance decreases in the N-terminal region upon A30P mutation of the wild-type α-synuclein, whereas the NAC and C-terminal regions possess larger tendencies for β-sheet structure formation. Long-range intramolecular protein interactions are less abundant upon A30P mutation, especially between the NAC and C-terminal regions, which is linked to the less compact and less stable structures of the A30P mutant-type rather than the wild-type α-synuclein protein. Results including the usage of our new strategy for secondary structure transition stabilities show that the A30P mutant-type α-synuclein tendency toward aggregation is higher than the wild-type α-synuclein but we also find that the C-terminal and NAC regions of the A30P mutant-type α-synuclein are reactive toward fibrillzation and aggregation based on atomic level studies with dynamics in an aqueous solution environment. Therefore, we propose that small molecules or drugs blocking the specific residues, which we report herein, located in the NAC- and C-terminal regions of the A30P mutant-type α-synuclein protein might help to reduce the toxicity of the A30P mutant-type α-synuclein protein.

  5. Parkinson Disease Affects Peripheral Sensory Nerves in the Pharynx

    PubMed Central

    Mu, Liancai; Sobotka, Stanislaw; Chen, Jingming; Su, Hungxi; Sanders, Ira; Nyirenda, Themba; Adler, Charles H.; Shill, Holly A.; Caviness, John N.; Samanta, Johan E.; Sue, Lucia I.; Beach, Thomas G.

    2013-01-01

    Dysphagia is very common in patients with Parkinson’s disease (PD) and often leads to aspiration pneumonia, the most common cause of death in PD. Unfortunately, current therapies are largely ineffective for dysphagia. As pharyngeal sensation normally triggers the swallowing reflex, we examined pharyngeal sensory nerves in PD for Lewy pathology. Sensory nerves supplying the pharynx were excised from autopsied pharynges obtained from patients with clinically diagnosed and neuropathologically confirmed PD (n = 10) and healthy age-matched controls (n = 4). We examined: the glossopharyngeal nerve (IX); the pharyngeal sensory branch of the vagus nerve (PSB-X); and the internal superior laryngeal nerve (ISLN) innervating the laryngopharynx. Immunohistochemistry for phosphorylated α-synuclein was used to detect potential Lewy pathology. Axonal α-synuclein aggregates in the pharyngeal sensory nerves were identified in all of the PD subjects but not in the controls. The density of α-synuclein-positive lesions was significantly greater in PD subjects with documented dysphagia compared to those without dysphagia. In addition, α-synuclein-immunoreactive nerve fibers in the ISLN were much more abundant than those in the IX and PSBX. These findings suggest that pharyngeal sensory nerves are directly affected by the pathologic process of PD. This anatomic pathology may decrease pharyngeal sensation impairing swallowing and airway protective reflexes, thereby contributing to dysphagia and aspiration. PMID:23771215

  6. Parkinson disease affects peripheral sensory nerves in the pharynx.

    PubMed

    Mu, Liancai; Sobotka, Stanislaw; Chen, Jingming; Su, Hungxi; Sanders, Ira; Nyirenda, Themba; Adler, Charles H; Shill, Holly A; Caviness, John N; Samanta, Johan E; Sue, Lucia I; Beach, Thomas G

    2013-07-01

    Dysphagia is very common in patients with Parkinson disease (PD) and often leads to aspiration pneumonia, the most common cause of death in PD. Current therapies are largely ineffective for dysphagia. Because pharyngeal sensation normally triggers the swallowing reflex, we examined pharyngeal sensory nerves in PD patients for Lewy pathology.Sensory nerves supplying the pharynx were excised from autopsied pharynges obtained from patients with clinically diagnosed and neuropathologically confirmed PD (n = 10) and healthy age-matched controls (n = 4). We examined the glossopharyngeal nerve (cranial nerve IX), the pharyngeal sensory branch of the vagus nerve (PSB-X), and the internal superior laryngeal nerve (ISLN) innervating the laryngopharynx. Immunohistochemistry for phosphorylated α-synuclein was used to detect Lewy pathology. Axonal α-synuclein aggregates in the pharyngeal sensory nerves were identified in all of the PD subjects but not in the controls. The density of α-synuclein-positive lesions was greater in PD patients with dysphagia versus those without dysphagia. In addition, α-synuclein-immunoreactive nerve fibers in the ISLN were much more abundant than those in cranial nerve IX and PSB-X. These findings suggest that pharyngeal sensory nerves are directly affected by pathologic processes in PD. These abnormalities may decrease pharyngeal sensation, thereby impairing swallowing and airway protective reflexes and contributing to dysphagia and aspiration.

  7. Decreased Expression of α-Synuclein, Nogo-A and UCH-L1 in Patients with Schizophrenia: A Preliminary Serum Study

    PubMed Central

    Cetin, İhsan; Turan, Şenol; Sağlam, Tarık; Yıldız, Nazım; Duran, Alaattin

    2017-01-01

    Objective α-synuclein, Nogo-A and Ubiquitin C-terminal hydrolase L1 (UCH-L1) have neuromodulatory roles for human brain. Therefore, abnormalities of these molecules are associated with neuropsychiatric disorders. Although some serum studies in the other disorders have been made, serum study of α-synuclein, Nogo-A and UCH-L1 is not present in patients with schizophrenia and healthy controls. Therefore, our aim was to compare serum levels of α-synuclein, Nogo-A and UCH-L1 of the patients with schizophrenia and healthy controls. Methods Forty-four patients with schizophrenia who is followed by psychotic disorders unit, and 40 healthy control were included in this study. Socio-demographic form and Positive and Negative Syndrome Scale (PANSS) was applied to patients, and sociodemographic form was applied to control group. Fasting bloods were collected and the serum levels of α-synuclein, Nogo-A and UCH-L1 were measured by ELISA method. Results Serum α-synuclein [patient: 12.73 (5.18–31.84) ng/mL; control: 41.77 (15.12–66.98) ng/mL], Nogo-A [patient: 33.58 (3.09–77.26) ng/mL; control: 286.05 (136.56–346.82) ng/mL] and UCH-L1 [patient: 5.26 (1.64–10.87) ng/mL; control: 20.48 (11.01–20.81) ng/mL] levels of the patients with schizophrenia were significianly lower than healthy controls (p<0.001). Conclusion Our study results added new evidence for explaining the etiopathogenesis of schizophrenia on the basis of neurochemical markers. PMID:28539953

  8. Hypothesis: a role for EBV-induced molecular mimicry in Parkinson's disease.

    PubMed

    Woulfe, John M; Gray, Madison T; Gray, Douglas A; Munoz, David G; Middeldorp, Jaap M

    2014-07-01

    Current concepts regarding the pathogenesis of Parkinson's disease support a model whereby environmental factors conspire with a permissive genetic background to initiate the disease. The identity of the responsible environmental trigger has remained elusive. There is incontrovertible evidence that aggregation of the neuronal protein alpha-synuclein is central to disease pathogenesis. A novel hypothesis of Parkinson's pathogenesis, articulated by Braak and colleagues, implicates a pathogen acting in the olfactory mucosa and gastrointestinal tract as the inciting agent. In this point-of-view article, we hypothesize that α-synuclein aggregation in Parkinson's disease is an Epstein-Barr virus (EBV)-induced autoimmune phenomenon. Specifically, we have shown evidence for molecular mimicry between the C-terminal region of α-synuclein and a repeat region in the latent membrane protein 1 encoded by EBV. We hypothesize that, in genetically-susceptible individuals, anti-EBV latent membrane protein antibodies targeting the critical repeat region cross react with the homologous epitope on α-synuclein and induce its oligomerization. Consistent with the Braak's proposed pattern of spread, we contend that axon terminals in the lamina propria of the gut are among the initial targets, with subsequent spread of pathology to the CNS. While at this time, we can only provide evidence from the literature and preliminary findings from our own laboratory, we hope that our hypothesis will stimulate the development of tractable experimental systems that can be exploited to test it. Further support for an EBV-induced immune pathogenesis for Parkinson's disease could have profound therapeutic implications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Non-motor parkinsonian pathology in aging A53T α-synuclein mice is associated with progressive synucleinopathy and altered enzymatic function.

    PubMed

    Farrell, Kaitlin F; Krishnamachari, Sesha; Villanueva, Ernesto; Lou, Haiyan; Alerte, Tshianda N M; Peet, Eloise; Drolet, Robert E; Perez, Ruth G

    2014-02-01

    Aging, the main risk factor for Parkinson's disease (PD), is associated with increased α-synuclein levels in substantia nigra pars compacta (SNc). Excess α-synuclein spurs Lewy-like pathology and dysregulates the activity of protein phosphatase 2A (PP2A). PP2A dephosphorylates many neuroproteins, including the catecholamine rate-limiting enzyme, tyrosine hydroxylase (TH). A loss of nigral dopaminergic neurons induces PD movement problems, but before those abnormalities occur, behaviors such as olfactory loss, anxiety, and constipation often manifest. Identifying mouse models with early PD behavioral changes could provide a model in which to test emerging therapeutic compounds. To this end, we evaluated mice expressing A53T mutant human (A53T) α-synuclein for behavior and α-synuclein pathology in olfactory bulb, adrenal gland, and gut. Aging A53T mice exhibited olfactory loss and anxiety that paralleled olfactory and adrenal α-synuclein aggregation. PP2A activity was also diminished in olfactory and adrenal tissues harboring insoluble α-synuclein. Low adrenal PP2A activity co-occurred with TH hyperactivity, making this the first study to link adrenal synucleinopathy to anxiety and catecholamine dysregulation. Aggregated A53T α-synuclein recombinant protein also had impaired stimulatory effects on soluble recombinant PP2A. Collectively, the data identify an excellent model in which to screen compounds for their ability to block the spread of α-synuclein pathology associated with pre-motor stages of PD. © 2013 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of The International Society for Neurochemistry.

  10. Reduced TH expression and α-synuclein accumulation contribute towards nigrostriatal dysfunction in experimental hepatic encephalopathy.

    PubMed

    Suárez, Isabel; Bodega, Guillermo; Rubio, Miguel; Fernández, Benjamín

    2017-01-01

    The present work examines α-synuclein expression in the nigrostriatal system of a rat chronic hepatic encephalopathy model induced by portacaval anastomosis (PCA). There is evidence that dopaminergic dysfunction in disease conditions is strongly associated with such expression. Possible relationships among dopaminergic neurons, astroglial cells and α-synuclein expression were sought. Brain tissue samples from rats at 1 and 6 months post-PCA, and controls, were analysed immunohistochemically using antibodies against tyrosine hydroxylase (TH), α-synuclein, glial fibrillary acidic protein (GFAP) and ubiquitin (Ub). In the control rats, TH immunoreactivity was detected in the neuronal cell bodies and processes in the substantia nigra pars compacta (SNc). A dense TH-positive network of neurons was also seen in the striatum. In the PCA-exposed rats, however, a reduction in TH-positive neurons was seen at both 1 and 6 months in the SNc, as well as a reduction in TH-positive fibres in the striatum. This was coincident with the appearance of α-synuclein-immunoreactive neurons in the SNc; some of the TH-positive neurons also showed α-synuclein immunoreactivity. In addition, α-synuclein accumulation was seen in the SNc and striatum at both 1 and 6 months post-PCA, whereas α-synuclein was only mildly expressed in the nigrostriatal pathway of the controls. Astrogliosis was also seen following PCA, as revealed by increased GFAP expression from 1 month to 6 months post-PCA in both the SN and striatum. The astroglial activation level in the SN paralleled the reduced neuronal expression of TH throughout PCA exposure. α-synuclein accumulation following PCA may induce dopaminergic dysfunction via the downregulation of TH, as well as astroglial activation.

  11. The role of α-synuclein and tau hyperphosphorylation-mediated autophagy and apoptosis in lead-induced learning and memory injury.

    PubMed

    Zhang, Jianbin; Cai, Tongjian; Zhao, Fang; Yao, Ting; Chen, Yaoming; Liu, Xinqin; Luo, Wenjing; Chen, Jingyuan

    2012-01-01

    Lead (Pb) is a well-known heavy metal in nature. Pb can cause pathophysiological changes in several organ systems including central nervous system. Especially, Pb can affect intelligence development and the ability of learning and memory of children. However, the toxic effects and mechanisms of Pb on learning and memory are still unclear. To clarify the mechanisms of Pb-induced neurotoxicity in hippocampus, and its effect on learning and memory, we chose Sprague-Dawley rats (SD-rats) as experimental subjects. We used Morris water maze to verify the ability of learning and memory after Pb treatment. We used immunohistofluorescence and Western blotting to detect the level of tau phosphorylation, accumulation of α-synuclein, autophagy and related signaling molecules in hippocampus. We demonstrated that Pb can cause abnormally hyperphosphorylation of tau and accumulation of α-synuclein, and these can induce hippocampal injury and the ability of learning and memory damage. To provide the new insight into the underlying mechanisms, we showed that Grp78, ATF4, caspase-3, autophagy-related proteins were induced and highly expressed following Pb-exposure. But mTOR signaling pathway was suppressed in Pb-exposed groups. Our results showed that Pb could cause hyperphosphorylation of tau and accumulation of α-synuclein, which could induce ER stress and suppress mTOR signal pathway. These can enhance type II program death (autophgy) and type I program death (apoptosis) in hippocampus, and impair the ability of learning and memory of rats. This is the first evidence showing the novel role of autophagy in the neurotoxicity of Pb.

  12. Down-regulation of natural resistance-associated macrophage protein-1 (Nramp1) is associated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/1-methyl-4-phenylpyridinium (MPP+ )-induced α-synuclein accumulation and neurotoxicity.

    PubMed

    Wu, K-C; Liou, H-H; Lee, C-Y; Lin, C-J

    2018-04-21

    The accumulation of α-synuclein is a hallmark in the pathogenesis of Parkinson's disease (PD). Natural resistance-associated macrophage protein-1 (Nramp1) was previously shown to contribute to the degradation of extracellular α-synuclein in microglia under conditions of iron overload. This study was aimed at investigating the role of Nramp1 in α-synuclein pathology in the neurone under 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/1-methyl-4-phenylpyridinium (MPP + ) treatment. The expression of Nramp1 and pathological features (including iron and α-synuclein accumulation) were examined in the dopaminergic neurones of humans (with and without PD) and of mice [with and without receiving chronic MPTP intoxication]. The effects of Nramp1 expression on low-dose MPP + -induced α-synuclein expression and neurotoxicity were determined in human dopaminergic neuroblastoma SH-SY5Y cells. Similar to the findings in the substantia nigra of human PD, lower expression of Nramp1 but higher levels of iron and α-synuclein were identified in the dopaminergic neurones of mice receiving chronic MPTP intoxication, compared to controls. In parallel to the loss of dopaminergic neurones, the numbers of glial fibrillary acidic protein- and ionized calcium-binding adapter molecule-1-positive cells were significantly increased in the substantia nigra of MPTP-treated mice. Likewise, in human neuroblastoma SH-SY5Y cells exposed to low-dose MPP + , Nramp1 expression and cathepsin D activity were decreased, along with an increase in α-synuclein protein expression and aggregation. Overexpression of functional Nramp1 restored cathepsin D activity and attenuated α-synuclein up-regulation and neuronal cell death caused by MPP + treatment. These data suggest that the neuronal expression of Nramp1 is important for protecting against the development of MPTP/MPP + -induced α-synuclein pathology and neurotoxicity. © 2018 British Neuropathological Society.

  13. Alpha-synuclein is present in dental calculus but not altered in Parkinson's disease patients in comparison to controls.

    PubMed

    Schmid, Sabrina; Goldberg-Bockhorn, Eva; Schwarz, Silke; Rotter, Nicole; Kassubek, Jan; Del Tredici, Kelly; Pinkhardt, Elmar; Otto, Markus; Ludolph, Albert C; Oeckl, Patrick

    2018-06-01

    In autopsy cases staged for sporadic Parkinson's disease (PD), the neuropathology is characterized by a preclinical phase that targets the enteric nervous system of the gastrointestinal tract (GIT). Therefore, the ENS might be a source of potential (presymptomatic) PD biomarkers. In this clinically based study, we examined the alpha-synuclein (αSyn) concentration in an easily accessible protein storage medium of the GIT, dental calculus, in 21/50 patients with PD and 28/50 age- and gender-matched controls using ELISA. αSyn was detectable in dental calculus and the median concentration in the control patients was 8.6 pg/mg calculus (interquartile range 2.6-13.1 pg/mg). αSyn concentrations were significantly influenced by blood contamination and samples with a hemoglobin concentration of > 4000 ng/mL were excluded. There was no significant difference of αSyn concentrations in the dental calculus of PD patients (5.76 pg/mg, interquartile range 2.91-9.74 pg/mg) compared to those in controls (p = 0.40). The total αSyn concentration in dental calculus is not a suitable biomarker for sporadic PD. Disease-related variants such as oligomeric or phosphorylated αSyn in calculus might prove to be more specific.

  14. Familial knockin mutation of LRRK2 causes lysosomal dysfunction and accumulation of endogenous insoluble α-synuclein in neurons.

    PubMed

    Schapansky, Jason; Khasnavis, Saurabh; DeAndrade, Mark P; Nardozzi, Jonathan D; Falkson, Samuel R; Boyd, Justin D; Sanderson, John B; Bartels, Tim; Melrose, Heather L; LaVoie, Matthew J

    2018-03-01

    Missense mutations in the multi-domain kinase LRRK2 cause late onset familial Parkinson's disease. They most commonly with classic proteinopathy in the form of Lewy bodies and Lewy neurites comprised of insoluble α-synuclein, but in rare cases can also manifest tauopathy. The normal function of LRRK2 has remained elusive, as have the cellular consequences of its mutation. Data from LRRK2 null model organisms and LRRK2-inhibitor treated animals support a physiological role for LRRK2 in regulating lysosome function. Since idiopathic and LRRK2-linked PD are associated with the intraneuronal accumulation of protein aggregates, a series of critical questions emerge. First, how do pathogenic mutations that increase LRRK2 kinase activity affect lysosome biology in neurons? Second, are mutation-induced changes in lysosome function sufficient to alter the metabolism of α-synuclein? Lastly, are changes caused by pathogenic mutation sensitive to reversal with LRRK2 kinase inhibitors? Here, we report that mutation of LRRK2 induces modest but significant changes in lysosomal morphology and acidification, and decreased basal autophagic flux when compared to WT neurons. These changes were associated with an accumulation of detergent-insoluble α-synuclein and increased neuronal release of α-synuclein and were reversed by pharmacologic inhibition of LRRK2 kinase activity. These data demonstrate a critical and disease-relevant influence of native neuronal LRRK2 kinase activity on lysosome function and α-synuclein homeostasis. Furthermore, they also suggest that lysosome dysfunction, altered neuronal α-synuclein metabolism, and the insidious accumulation of aggregated protein over decades may contribute to pathogenesis in this late-onset form of familial PD. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Rotenone and elevated extracellular potassium concentration induce cell-specific fibrillation of α-synuclein in axons of cholinergic enteric neurons in the guinea-pig ileum.

    PubMed

    Sharrad, D F; Chen, B N; Gai, W P; Vaikath, N; El-Agnaf, O M; Brookes, S J H

    2017-04-01

    Parkinson's disease is a progressive neurodegenerative disorder that results in the widespread loss of select classes of neurons throughout the nervous system. The pathological hallmarks of Parkinson's disease are Lewy bodies and neurites, of which α-synuclein fibrils are the major component. α-Synuclein aggregation has been reported in the gut of Parkinson's disease patients, even up to a decade before motor symptoms, and similar observations have been made in animal models of disease. However, unlike the central nervous system, the nature of α-synuclein species that form these aggregates and the classes of neurons affected in the gut are unclear. We have previously reported selective expression of α-synuclein in cholinergic neurons in the gut (J Comp Neurol. 2013; 521:657), suggesting they may be particularly vulnerable to degeneration in Parkinson's disease. In this study, we used immunohistochemistry to detect α-synuclein oligomers and fibrils via conformation-specific antibodies after rotenone treatment or prolonged exposure to high [K + ] in ex vivo segments of guinea-pig ileum maintained in organotypic culture. Rotenone and prolonged raising of [K + ] caused accumulation of α-synuclein fibrils in the axons of cholinergic enteric neurons. This took place in a time- and, in the case of rotenone, concentration-dependent manner. Rotenone also caused selective necrosis, indicated by increased cellular autofluorescence, of cholinergic enteric neurons, labeled by ChAT-immunoreactivity, also in a concentration-dependent manner. To our knowledge, this is the first report of rotenone causing selective loss of a neurochemical class in the enteric nervous system. Cholinergic enteric neurons may be particularly susceptible to Lewy pathology and degeneration in Parkinson's disease. © 2016 John Wiley & Sons Ltd.

  16. α-Synuclein Sequesters Dnmt1 from the Nucleus

    PubMed Central

    Desplats, Paula; Spencer, Brian; Coffee, Elizabeth; Patel, Pruthul; Michael, Sarah; Patrick, Christina; Adame, Anthony; Rockenstein, Edward; Masliah, Eliezer

    2011-01-01

    DNA methylation is a major epigenetic modification that regulates gene expression. Dnmt1, the maintenance DNA methylation enzyme, is abundantly expressed in the adult brain and is mainly located in the nuclear compartment, where it has access to chromatin. Hypomethylation of CpG islands at intron 1 of the SNCA gene has recently been reported to result in overexpression of α-synuclein in Parkinson disease (PD) and related disorders. We therefore investigated the mechanisms underlying altered DNA methylation in PD and dementia with Lewy bodies (DLB). We present evidence of reduction of nuclear Dnmt1 levels in human postmortem brain samples from PD and DLB patients as well as in the brains of α-synuclein transgenic mice models. Furthermore, sequestration of Dnmt1 in the cytoplasm results in global DNA hypomethylation in human and mouse brains, involving CpG islands upstream of SNCA, SEPW1, and PRKAR2A genes. We report that association of Dnmt1 and α-synuclein might mediate aberrant subcellular localization of Dnmt1. Nuclear Dnmt1 levels were partially rescued by overexpression of Dnmt1 in neuronal cell cultures and in α-synuclein transgenic mice brains. Our results underscore a novel mechanism for epigenetic dysregulation in Lewy body diseases, which might underlie the decrease in DNA methylation reported for PD and DLB. PMID:21296890

  17. High Throughput Sequencing Identifies MicroRNAs Mediating α-Synuclein Toxicity by Targeting Neuroactive-Ligand Receptor Interaction Pathway in Early Stage of Drosophila Parkinson's Disease Model

    PubMed Central

    Kong, Yan; Liang, Xijun; Liu, Lin; Zhang, Dongdong; Wan, Chao; Gan, Zhenji; Yuan, Liudi

    2015-01-01

    Parkinson’s disease (PD) is a prevalent neurodegenerative disorder with pathological features including death of dopaminergic neurons in the substantia nigra and intraneuronal accumulations of Lewy bodies. As the main component of Lewy bodies, α-synuclein is implicated in PD pathogenesis by aggregation into insoluble filaments. However, the detailed mechanisms underlying α-synuclein induced neurotoxicity in PD are still elusive. MicroRNAs are ~20nt small RNA molecules that fine-tune gene expression at posttranscriptional level. A plethora of miRNAs have been found to be dysregulated in the brain and blood cells of PD patients. Nevertheless, the detailed mechanisms and their in vivo functions in PD still need further investigation. By using Drosophila PD model expressing α-synuclein A30P, we examined brain miRNA expression with high-throughput small RNA sequencing technology. We found that five miRNAs (dme-miR-133-3p, dme-miR-137-3p, dme-miR-13b-3p, dme-miR-932-5p, dme-miR-1008-5p) were upregulated in PD flies. Among them, miR-13b, miR-133, miR-137 are brain enriched and highly conserved from Drosophila to humans. KEGG pathway analysis using DIANA miR-Path demonstrated that neuroactive-ligand receptor interaction pathway was most likely affected by these miRNAs. Interestingly, miR-137 was predicted to regulate most of the identified targets in this pathway, including dopamine receptor (DopR, D2R), γ-aminobutyric acid (GABA) receptor (GABA-B-R1, GABA-B-R3) and N-methyl-D-aspartate (NMDA) receptor (Nmdar2). The validation experiments showed that the expression of miR-137 and its targets was negatively correlated in PD flies. Further experiments using luciferase reporter assay confirmed that miR-137 could act on specific sites in 3’ UTR region of D2R, Nmdar2 and GABA-B-R3, which downregulated significantly in PD flies. Collectively, our findings indicate that α-synuclein could induce the dysregulation of miRNAs, which target neuroactive ligand-receptor interaction pathway in vivo. We believe it will help us further understand the contribution of miRNAs to α-synuclein neurotoxicity and provide new insights into the pathogenesis driving PD. PMID:26361355

  18. High Throughput Sequencing Identifies MicroRNAs Mediating α-Synuclein Toxicity by Targeting Neuroactive-Ligand Receptor Interaction Pathway in Early Stage of Drosophila Parkinson's Disease Model.

    PubMed

    Kong, Yan; Liang, Xijun; Liu, Lin; Zhang, Dongdong; Wan, Chao; Gan, Zhenji; Yuan, Liudi

    2015-01-01

    Parkinson's disease (PD) is a prevalent neurodegenerative disorder with pathological features including death of dopaminergic neurons in the substantia nigra and intraneuronal accumulations of Lewy bodies. As the main component of Lewy bodies, α-synuclein is implicated in PD pathogenesis by aggregation into insoluble filaments. However, the detailed mechanisms underlying α-synuclein induced neurotoxicity in PD are still elusive. MicroRNAs are ~20nt small RNA molecules that fine-tune gene expression at posttranscriptional level. A plethora of miRNAs have been found to be dysregulated in the brain and blood cells of PD patients. Nevertheless, the detailed mechanisms and their in vivo functions in PD still need further investigation. By using Drosophila PD model expressing α-synuclein A30P, we examined brain miRNA expression with high-throughput small RNA sequencing technology. We found that five miRNAs (dme-miR-133-3p, dme-miR-137-3p, dme-miR-13b-3p, dme-miR-932-5p, dme-miR-1008-5p) were upregulated in PD flies. Among them, miR-13b, miR-133, miR-137 are brain enriched and highly conserved from Drosophila to humans. KEGG pathway analysis using DIANA miR-Path demonstrated that neuroactive-ligand receptor interaction pathway was most likely affected by these miRNAs. Interestingly, miR-137 was predicted to regulate most of the identified targets in this pathway, including dopamine receptor (DopR, D2R), γ-aminobutyric acid (GABA) receptor (GABA-B-R1, GABA-B-R3) and N-methyl-D-aspartate (NMDA) receptor (Nmdar2). The validation experiments showed that the expression of miR-137 and its targets was negatively correlated in PD flies. Further experiments using luciferase reporter assay confirmed that miR-137 could act on specific sites in 3' UTR region of D2R, Nmdar2 and GABA-B-R3, which downregulated significantly in PD flies. Collectively, our findings indicate that α-synuclein could induce the dysregulation of miRNAs, which target neuroactive ligand-receptor interaction pathway in vivo. We believe it will help us further understand the contribution of miRNAs to α-synuclein neurotoxicity and provide new insights into the pathogenesis driving PD.

  19. Mutations in RAB39B cause X-linked intellectual disability and early-onset Parkinson disease with α-synuclein pathology.

    PubMed

    Wilson, Gabrielle R; Sim, Joe C H; McLean, Catriona; Giannandrea, Maila; Galea, Charles A; Riseley, Jessica R; Stephenson, Sarah E M; Fitzpatrick, Elizabeth; Haas, Stefan A; Pope, Kate; Hogan, Kirk J; Gregg, Ronald G; Bromhead, Catherine J; Wargowski, David S; Lawrence, Christopher H; James, Paul A; Churchyard, Andrew; Gao, Yujing; Phelan, Dean G; Gillies, Greta; Salce, Nicholas; Stanford, Lynn; Marsh, Ashley P L; Mignogna, Maria L; Hayflick, Susan J; Leventer, Richard J; Delatycki, Martin B; Mellick, George D; Kalscheuer, Vera M; D'Adamo, Patrizia; Bahlo, Melanie; Amor, David J; Lockhart, Paul J

    2014-12-04

    Advances in understanding the etiology of Parkinson disease have been driven by the identification of causative mutations in families. Genetic analysis of an Australian family with three males displaying clinical features of early-onset parkinsonism and intellectual disability identified a ∼45 kb deletion resulting in the complete loss of RAB39B. We subsequently identified a missense mutation (c.503C>A [p.Thr168Lys]) in RAB39B in an unrelated Wisconsin kindred affected by a similar clinical phenotype. In silico and in vitro studies demonstrated that the mutation destabilized the protein, consistent with loss of function. In vitro small-hairpin-RNA-mediated knockdown of Rab39b resulted in a reduction in the density of α-synuclein immunoreactive puncta in dendritic processes of cultured neurons. In addition, in multiple cell models, we demonstrated that knockdown of Rab39b was associated with reduced steady-state levels of α-synuclein. Post mortem studies demonstrated that loss of RAB39B resulted in pathologically confirmed Parkinson disease. There was extensive dopaminergic neuron loss in the substantia nigra and widespread classic Lewy body pathology. Additional pathological features included cortical Lewy bodies, brain iron accumulation, tau immunoreactivity, and axonal spheroids. Overall, we have shown that loss-of-function mutations in RAB39B cause intellectual disability and pathologically confirmed early-onset Parkinson disease. The loss of RAB39B results in dysregulation of α-synuclein homeostasis and a spectrum of neuropathological features that implicate RAB39B in the pathogenesis of Parkinson disease and potentially other neurodegenerative disorders. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  20. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease

    PubMed Central

    Magalhaes, Joana; Gegg, Matthew E.; Migdalska-Richards, Anna; Doherty, Mary K.; Whitfield, Phillip D.; Schapira, Anthony H.V.

    2016-01-01

    Glucocerebrosidase (GBA1) gene mutations increase the risk of Parkinson disease (PD). While the cellular mechanisms associating GBA1 mutations and PD are unknown, loss of the glucocerebrosidase enzyme (GCase) activity, inhibition of autophagy and increased α-synuclein levels have been implicated. Here we show that autophagy lysosomal reformation (ALR) is compromised in cells lacking functional GCase. ALR is a cellular process controlled by mTOR which regenerates functional lysosomes from autolysosomes formed during macroautophagy. A decrease in phopho-S6K levels, a marker of mTOR activity, was observed in models of GCase deficiency, including primary mouse neurons and the PD patient derived fibroblasts with GBA1 mutations, suggesting that ALR is compromised. Importantly Rab7, a GTPase crucial for endosome-lysosome trafficking and ALR, accumulated in GCase deficient cells, supporting the notion that lysosomal recycling is impaired. Recombinant GCase treatment reversed ALR inhibition and lysosomal dysfunction. Moreover, ALR dysfunction was accompanied by impairment of macroautophagy and chaperone-mediated autophagy, increased levels of total and phosphorylated (S129) monomeric α-synuclein, evidence of amyloid oligomers and increased α-synuclein release. Concurrently, we found increased cholesterol and altered glucosylceramide homeostasis which could compromise ALR. We propose that GCase deficiency in PD inhibits lysosomal recycling. Consequently neurons are unable to maintain the pool of mature and functional lysosomes required for the autophagic clearance of α-synuclein, leading to the accumulation and spread of pathogenic α-synuclein species in the brain. Since GCase deficiency and lysosomal dysfunction occur with ageing and sporadic PD pathology, the decrease in lysosomal reformation may be a common feature in PD. PMID:27378698

  1. Dopamine and α-synuclein dysfunction in Smad3 null mice

    PubMed Central

    2011-01-01

    Background Parkinson's disease (PD) is characterized by dopaminergic neurodegeneration in the substantia nigra (SN). Transforming growth factor-β1 (TGF-β1) levels increase in patients with PD, although the effects of this increment remain unclear. We have examined the mesostriatal system in adult mice deficient in Smad3, a molecule involved in the intracellular TGF-β1 signalling cascade. Results Striatal monoamine oxidase (MAO)-mediated dopamine (DA) catabolism to 3,4-dihydroxyphenylacetic acid (DOPAC) is strongly increased, promoting oxidative stress that is reflected by an increase in glutathione levels. Fewer astrocytes are detected in the ventral midbrain (VM) and striatal matrix, suggesting decreased trophic support to dopaminergic neurons. The SN of these mice has dopaminergic neuronal degeneration in its rostral portion, and the pro-survival Erk1/2 signalling is diminished in nigra dopaminergic neurons, not associated with alterations to p-JNK or p-p38. Furthermore, inclusions of α-synuclein are evident in selected brain areas, both in the perikaryon (SN and paralemniscal nucleus) or neurites (motor and cingulate cortices, striatum and spinal cord). Interestingly, these α-synuclein deposits are detected with ubiquitin and PS129-α-synuclein in a core/halo cellular distribution, which resemble those observed in human Lewy bodies (LB). Conclusions Smad3 deficiency promotes strong catabolism of DA in the striatum (ST), decrease trophic and astrocytic support to dopaminergic neurons and may induce α-synuclein aggregation, which may be related to early parkinsonism. These data underline a role for Smad3 in α-synuclein and DA homeostasis, and suggest that modulatory molecules of this signalling pathway should be evaluated as possible neuroprotective agents. PMID:21995845

  2. Role of advanced glycation on aggregation and DNA binding properties of α-synuclein.

    PubMed

    Padmaraju, Vasudevaraju; Bhaskar, Jamuna J; Prasada Rao, Ummiti J S; Salimath, Paramahans V; Rao, K S

    2011-01-01

    Parkinson's disease (PD) is a neurodegenerative disease with multiple etiologies. Advanced glycation end products (AGEs) accumulate in the aging brain and could be one of the reasons for age-related diseases like PD. Oxidative stress also leads to the formation of AGEs and may be involved in neurodegeneration by altering the properties of proteins. α-Synuclein is involved in pathogenesis of PD and there are limited studies on the role of AGE-α-synuclein in neurodegeneration. We studied the aggregation and DNA binding ability of AGE-α-synuclein in vitro. α-Synuclein is glycated using methylglyoxal and formation of AGE-α-synuclein is characterized using fluorescence studies, intrinsic tyrosine fluorescence, and fructosamine estimation. The results indicated that AGE-α-synuclein aggregates into smaller globular-like aggregates compared to fibrils formed with native α-synuclein. Further, it is found that AGE-α-synuclein induced conformational changes in scDNA from B-form to B-C-A mixed conformation. Additionally, AGE-α-synuclein altered DNA integrity as evidenced by the melting temperature, ethidium bromide, and DNAse I sensitivity studies. AGE-α-synuclein converted biphasic Tm to higher monophasic Tm. The Tm of AGE-α-synuclein-scDNA complex is more than that of native α-synuclein-scDNA complex, indicating that AGE-α-synuclein stabilized the uncoiled scDNA. AGE-α-synuclein could stabilize the uncoiled scDNA, as shown by the decrease in the number of ethidium bromide binding molecules per base pair of DNA. DNAse I sensitive studies indicated that both AGE-α-synuclein-scDNA and α-synuclein-scDNA are resistant to DNAse I digestion. The relevance of these findings to neuronal cell death is discussed.

  3. Defining the Role of Alpha-Synuclein in Enteric Dysfunction in Parkinsons Disease

    DTIC Science & Technology

    2017-10-01

    direction. o What were the major goals of the project?  Animal use approvals – accomplished pre-funding  Vector production - 1st round of vector...August 2017. 100% Complete  Vector injections. We injected all animals for the long-term survival group as well as additional subjects for shorter...time points. However, as noted below, the transgene expression seen in these animals was below that which was expected/intended. Thus, we are currently

  4. Mechanisms of alpha-Synuclein Aggregation and Toxicity

    DTIC Science & Technology

    2006-09-01

    Zhang, P. St George- [36] Y . Zhang, J. Gao, K.K. Chung, H. Huang, V.L. Dawson, T.M. Hyslop , Mutation of the conserved N-terminal cysteine (Cys92) of...pathies. The incidence of NFTs in Parkinson’s disease is much greater than in an age-matched population (Boller et al., 1980 ). Tau-immunoreactive Lewy...nervous system. J. Cell Biol. 101, 1371–1378. Boller, F., Mizutani, T., Roessmann, U., Gambetti, P., 1980 . Parkinson disease, dementia, and Alzheimer

  5. The nuclear accumulation of alpha-synuclein is mediated by importin alpha and promotes neurotoxicity by accelerating the cell cycle.

    PubMed

    Ma, Kai-Li; Song, Lian-Kun; Yuan, Yu-He; Zhang, Ying; Han, Ning; Gao, Kai; Chen, Nai-Hong

    2014-07-01

    α-Synuclein (α-syn), a 14 kDa pre-synaptic protein, is widely involved in the Parkinson's disease (PD) pathogenesis. Recent studies have shown that the nuclear accumulation of α-syn might have a toxic effect. The main purpose of the present study was to explore which amino acid residues in α-syn are associated with its nuclear accumulation, the molecule(s) mediated the nuclear import of α-syn, and the role of α-syn accumulated in the nucleus. It has been noted that the nuclear import of α-syn may be mediated by importin α and that both the amino acid residues 1-60 and 103-140 of α-syn were indispensable for its nuclear import. After imported into the nucleus, the accumulated α-syn played a toxic role in both the PC12 cells and the C57 mice. Furthermore, α-syn-nuclear localization signal-injected mice showed behavioral symptoms associated with PD. Further studies performed in vitro showed that the toxicity of α-syn in the nucleus might be due to an interference of the cell cycle. Thus, it can be concluded that α-syn can accumulate in nucleus, which is mediated by importin α, and promote neurotoxicity by accelerating the cell cycle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. On the role of endogenous neurotoxins and neuroprotection in Parkinson's disease.

    PubMed

    Segura-Aguilar, Juan

    2017-06-01

    For 50 years ago was introduced L-3,4-dihydroxyphenylalanine (L-dopa) in Parkinson's disease treatment and during this significant advances has been done but what trigger the degeneration of the nigrostriatal system remain unknown. There is a general agreement in the scientific community that mitochondrial dysfunction, protein degradation dysfunction, alpha-synuclein aggregation to neurotoxic oligomers, neuroinflammation, oxidative and endoplasmic reticulum stress are involved in the loss of dopaminergic neurons containing neuromelanin in Parkinson's disease. The question is what triggers these mechanisms. The age of normal onset in idiopathic Parkinson's disease suggests that environmental factors such as metals, pollutants or genetic mutations cannot be involved because these factors are related to early onset of Parkinsonism. Therefore, we have to search for endogenous neurotoxins and neuroprotection in order to understand what trigger the loss of dopaminergic neurons. One important feature of Parkinson's disease is the rate of the degenerative process before the motor symptoms are evident and during the disease progression. The extremely slow rate of Parkinson's disease suggests that the neurotoxins and the neuroprotection have to be related to dopamine metabolism. Possible candidates for endogenous neurotoxins are alpha-synuclein neurotoxic oligomers, 4-dihydroxyphenylacetaldehyde and ortho-quinones formed during dopamine oxidation to neuromelanin. Vesicular monoamine transporter-2, DT-diaphorase and glutathione transferase M2-2 seems to be the most important neuroprotective mechanism to prevent neurotoxic mechanism during dopamine oxidation.

  7. Biological Applications of Designed Hairpin Peptides: As Antimicrobials and as Inhibitors of Amyloidogenesis

    NASA Astrophysics Data System (ADS)

    Sivanesam, Kalkena

    More than 40 diseases have been associated with the misfolding of peptides (or proteins) that form fibrils with a very specific morphology. These peptides classified as amyloidogenic peptides have been implicated in the development of Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, Hungtinton's Disease etc. To date, these diseases have no cure, only therapies that can ameliorate the symptoms to a degree. Inhibition of the amyloidogenesis of these peptides has been proposed as a possible treatment option. While small molecules have been heavily tested as inhibitors of amyloidogenesis, peptides have emerged as potential inhibitors. In this work, the ability of a set of designed hairpin peptides to inhibit the amyloidogenesis of two different systems, alpha-synuclein (implicated in Parkinson's Disease) and human amylin (implicated in Type II Diabetes) is tested. Using circular dichroism and thioflavin T fluorescence, the ability of these peptides to inhibit amyloidogenesis is tested. The binding loci of these inhibitors to alpha-synuclein are also explored. The use of peptides as antimicrobials on the other hand is not a novel concept. However, most antimicrobial peptides, both natural and designed, rely heavily on covalent stabilizations in order to maintain secondary structure. In this study, non-covalent stabilizations are applied to a couple of natural as well as designed antimicrobials in order to study the effects of secondary structure stabilization on biological activity.

  8. Environmental toxicants as extrinsic epigenetic factors for parkinsonism: studies employing transgenic C. elegans model.

    PubMed

    Jadiya, Pooja; Nazir, Aamir

    2012-12-01

    Various human diseases are known to occur as a result of gene-environment interactions. Amongst such diseases, neurodegenerative Parkinson's disease (PD) is a complex disorder in which genetics and exposure to toxins constitute the main determinants in the onset of the disease. Many studies have reported on a link between pesticide exposure and increased risk of PD, however the role of different classes of pesticides vis-à-vis Parkinsonism has not been well elucidated. We carried out the present study to explore the role of six groups of pesticides viz botanicals, herbicides, fungicides, organophosphates, carbamates and pyrethroids on PD and and associated neurotoxic effects. These pesticides were studied using transgenic Caenorhabditis elegans model expressing human alpha synuclein protein tagged with yellow fluorescent protein [NL5901; (Punc-54::alphasynuclein::YFP+unc-119)] in the body wall muscle. Amongst all the classes of pesticides examined, botanical rotenone showed severe effects on PD pathogenesis. It significantly increased alpha synuclein aggregation and oxidative stress. Furthermore, it reduced mitochondrial and lipid content in the worms. Pesticides from other classes were observed to exert marginal effects as compared to rotenone thus suggesting that there is a class or structure specific effect of environmental chemicals vis-à-vis Parkinsonism. Hence it may be deduced that all classes of toxicants do not induce similar effects on neurodegeneration and associated events.

  9. (Poly)phenol-digested metabolites modulate alpha-synuclein toxicity by regulating proteostasis.

    PubMed

    Macedo, Diana; Jardim, Carolina; Figueira, Inês; Almeida, A Filipa; McDougall, Gordon J; Stewart, Derek; Yuste, Jose E; Tomás-Barberán, Francisco A; Tenreiro, Sandra; Outeiro, Tiago F; Santos, Cláudia N

    2018-05-03

    Parkinson's disease (PD) is an age-related neurodegenerative disease associated with the misfolding and aggregation of alpha-synuclein (aSyn). The molecular underpinnings of PD are still obscure, but nutrition may play an important role in the prevention, onset, and disease progression. Dietary (poly)phenols revert and prevent age-related cognitive decline and neurodegeneration in model systems. However, only limited attempts were made to evaluate the impact of digestion on the bioactivities of (poly)phenols and determine their mechanisms of action. This constitutes a challenge for the development of (poly)phenol-based nutritional therapies. Here, we subjected (poly)phenols from Arbutus unedo to in vitro digestion and tested the products in cell models of PD based on the cytotoxicity of aSyn. The (poly)phenol-digested metabolites from A. unedo leaves (LPDMs) effectively counteracted aSyn and H 2 O 2 toxicity in yeast and human cells, improving viability by reducing aSyn aggregation and inducing its clearance. In addition, LPDMs modulated pathways associated with aSyn toxicity, such as oxidative stress, endoplasmic reticulum (ER) stress, mitochondrial impairment, and SIR2 expression. Overall, LPDMs reduced aSyn toxicity, enhanced the efficiency of ER-associated protein degradation by the proteasome and autophagy, and reduced oxidative stress. In total, our study opens novel avenues for the exploitation of (poly)phenols in nutrition and health.

  10. Uncovering the role of the insula in non-motor symptoms of Parkinson’s disease

    PubMed Central

    Christopher, Leigh; Koshimori, Yuko; Lang, Anthony E.; Criaud, Marion

    2014-01-01

    Patients with Parkinson’s disease experience a range of non-motor symptoms, including cognitive impairment, behavioural changes, somatosensory and autonomic disturbances. The insula, which was once thought to be primarily a limbic cortical structure, is now known to be highly involved in integrating somatosensory, autonomic and cognitive-affective information to guide behaviour. Thus, it acts as a central hub for processing relevant information related to the state of the body as well as cognitive and mood states. Despite these crucial functions, the insula has been largely overlooked as a potential key region in contributing to non-motor symptoms of Parkinson’s disease. The insula is affected in Parkinson’s disease by alpha-synuclein deposition, disruptions in normal neurotransmitter function, alterations in connectivity as well as metabolic and structural changes. Although research focusing on the role of the insula in Parkinson’s disease is scarce, there is evidence from neuroimaging studies linking the insula to cognitive decline, behavioural abnormalities and somatosensory disturbances. Here, we review imaging studies that provide insight into the potential role of the insula in Parkinson’s disease non-motor symptoms. PMID:24736308

  11. Pharmacological inhibition of Polo Like Kinase 2 (PLK2) does not cause chromosomal damage or result in the formation of micronuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, Kent, E-mail: Kent.fitzgerald@elan.com; Bergeron, Marcelle, E-mail: Marcelle.bergeron@elan.com; Willits, Christopher, E-mail: Chris.willits@elan.com

    2013-05-15

    Polo Like Kinase 2 (PLK2) phosphorylates α-synuclein and is considered a putative therapeutic target for Parkinson's disease. Several lines of evidence indicate that PLK2 is involved with proper centriole duplication and cell cycle regulation, inhibition of which could impact chromosomal integrity during mitosis. The objectives of the series of experiments presented herein were to assess whether specific inhibition of PLK2 is genotoxic and determine if PLK2 could be considered a tractable pharmacological target for Parkinson's disease. Several selective PLK2 inhibitors, ELN 582175 and ELN 582646, and their inactive enantiomers, ELN 582176 and ELN 582647, did not significantly increase the numbermore » of micronuclei in the in vitro micronucleus assay. ELN 582646 was administered to male Sprague Dawley rats in an exploratory 14-day study where flow cytometric analysis of peripheral blood identified a dose-dependent increase in the number of micronucleated reticulocytes. A follow-up investigative study demonstrated that ELN 582646 administered to PLK2 deficient and wildtype mice significantly increased the number of peripheral micronucleated reticulocytes in both genotypes, suggesting that ELN 582646-induced genotoxicity is not through the inhibition of PLK2. Furthermore, significant reduction of retinal phosphorylated α-synuclein levels was observed at three non-genotoxic doses, additional data to suggest that pharmacological inhibition of PLK2 is not the cause of the observed genotoxicity. These data, in aggregate, indicate that PLK2 inhibition is a tractable CNS pharmacological target that does not cause genotoxicity at doses and exposures that engage the target in the sensory retina. - Highlights: • Active and inactive enantiomers test negative in the in vitro micronucleus test. • ELN 582646 significantly increased micronuclei at 100 and 300 mg/kg/day doses. • ELN 582646 significantly increased micronuclei in PLK2 knockout mice. • ELN 582646 decreased phosphorylation of alpha-synuclein at non-genotoxic doses.« less

  12. β-asarone increases MEF2D and TH levels and reduces α-synuclein level in 6-OHDA-induced rats via regulating the HSP70/MAPK/MEF2D/Beclin-1 pathway: Chaperone-mediated autophagy activation, macroautophagy inhibition and HSP70 up-expression.

    PubMed

    Huang, Liping; Deng, Minzhen; He, Yuping; Lu, Shiyao; Liu, Shu; Fang, Yongqi

    2016-10-15

    Inactive myocyte enhancer factor 2D (MEF2D) and alpha-synuclein (α-syn) aggregation will cause neuronal death. MEF2D or α-syn degradation is also associated with macroautophagy, chaperone-mediated autophagy (CMA) and heat-shock protein 70 (HSP70). We found that β-asarone had positive effects on treating 6-hydroxydopamine (6-OHDA)-induced rats, but mechanisms of β-asarone affecting on MEF2D and α-syn via regulating the HSP70/MAPK/MEF2D/Beclin-1 pathway remain unclear. Unilateral 6-OHDA injection into the medial forebrain bundle was used to create PD rats, which were divided into four groups and administered for 30days: 6-OHDA model group, MEF2D inhibitor-treated group (SB203580, 0.5mg/kg, i.p.), MEF2D activator-treated group (LiCl, 100mg/kg, i.p.), β-asarone-treated group (15mg/kg, p.o.). Expressions of tyrosine hydroxylase (TH), α-syn, heat-shock cognate protein 70 (HSC70), lysosome-associated membrane protein type 2a (LAMP-2A), MEF2D, HSP70, Beclin-1, light chain 3B (LC3B) and p62 in the mesencephalon were measured after 30-day administration. α-syn, Beclin-1 and LC3B levels were higher in the 6-OHDA model group, while TH, MEF2D, HSC70, LAMP-2A, p62 levels were lower compared to the sham-operated group. Our results also showed thatβ-asarone treatment reduced protein and mRNA levels of α-syn, Beclin-1 and LC3B, but increased HSP70, TH, MEF2D, HSC70, LAMP-2A and p62 levels compared to the 6-OHDA model group. Additionally, certain correlations among α-syn, TH, Beclin-1, LC3B, p62, HSP70, LAMP-2A and MEF2D were also discovered in this study. These findings suggested that β-asarone treatment could increase MEF2D and TH as well as reduce α-syn to protect against 6-OHDA induced damage in PD rat mesencephalon via modulating the HSP70/MAPK/MEF2D/Beclin-1 pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Regional deficiencies in chaperone-mediated autophagy underlie α-synuclein aggregation and neurodegeneration

    PubMed Central

    Malkus, Kristen A.; Ischiropoulos, Harry

    2012-01-01

    In neurodegenerative diseases, it remains unclear why certain brain regions are selectively vulnerable to protein aggregation. In transgenic mice expressing human A53T α-synuclein, the brainstem and spinal cord develop the most prominent α-synuclein inclusions which correlate with age-dependent motor dysfunction. Herein we present the novel finding that this selective aggregation is in part dependent on the inability of chaperone-mediated autophagy (CMA) to effectively degrade α-synuclein in these brain regions. Lysosomal assays revealed that CMA activity was significantly decreased in aggregation-prone regions compared to the remainder of the brain. Previously, CMA activity has been shown to be proportional to levels of the CMA receptor Lamp-2a. Using antibodies, brain tissue from Lamp-2a null mice, enzymatic deglycosylation, and mass spectrometry, we identified Lamp2a as a novel 72 kDa glycoprotein in the mouse brain. Examination of Lamp-2a levels revealed differences in expression across brain regions. The brainstem and the spinal cord had a more than three-fold greater levels of Lamp-2a as compared to regions less vulnerable to aggregation and exhibited a selective upregulation of Lamp-2a during development of α-synuclein inclusions. Despite this dynamic response of Lamp-2a, the levels of substrates bound to the brain lysosomes as well as the rates of substrate uptake and degradation were not proportional to the levels of Lamp-2a. These regional differences in CMA activity and Lamp-2a expression were found in both non-transgenic mice as well as A53T α-syn mice. Therefore, these are inherent variations and not a transgene-specific effect. However, differences in CMA activity may render select brain regions vulnerable to homeostatic dysfunction in the presence of stressors such as overexpression of human A53T α-syn. Collectively, the data provide a potential mechanism to explain the dichotomy of vulnerability or resistance that underlies brain regions during aggregate formation in neurodegenerative disease. PMID:22426402

  14. Nanomechanical properties of distinct fibrillar polymorphs of the protein α-synuclein.

    PubMed

    Makky, Ali; Bousset, Luc; Polesel-Maris, Jérôme; Melki, Ronald

    2016-11-30

    Alpha-synuclein (α-Syn) is a small presynaptic protein of 140 amino acids. Its pathologic intracellular aggregation within the central nervous system yields protein fibrillar inclusions named Lewy bodies that are the hallmarks of Parkinson's disease (PD). In solution, pure α-Syn adopts an intrinsically disordered structure and assembles into fibrils that exhibit considerable morphological heterogeneity depending on their assembly conditions. We recently established tightly controlled experimental conditions allowing the assembly of α-Syn into highly homogeneous and pure polymorphs. The latter exhibited differences in their shape, their structure but also in their functional properties. We have conducted an AFM study at high resolution and performed a statistical analysis of fibrillar α-Syn shape and thermal fluctuations to calculate the persistence length to further assess the nanomechanical properties of α-Syn polymorphs. Herein, we demonstrated quantitatively that distinct polymorphs made of the same protein (wild-type α-Syn) show significant differences in their morphology (height, width and periodicity) and physical properties (persistence length, bending rigidity and axial Young's modulus).

  15. Nanomechanical properties of distinct fibrillar polymorphs of the protein α-synuclein

    NASA Astrophysics Data System (ADS)

    Makky, Ali; Bousset, Luc; Polesel-Maris, Jérôme; Melki, Ronald

    2016-11-01

    Alpha-synuclein (α-Syn) is a small presynaptic protein of 140 amino acids. Its pathologic intracellular aggregation within the central nervous system yields protein fibrillar inclusions named Lewy bodies that are the hallmarks of Parkinson’s disease (PD). In solution, pure α-Syn adopts an intrinsically disordered structure and assembles into fibrils that exhibit considerable morphological heterogeneity depending on their assembly conditions. We recently established tightly controlled experimental conditions allowing the assembly of α-Syn into highly homogeneous and pure polymorphs. The latter exhibited differences in their shape, their structure but also in their functional properties. We have conducted an AFM study at high resolution and performed a statistical analysis of fibrillar α-Syn shape and thermal fluctuations to calculate the persistence length to further assess the nanomechanical properties of α-Syn polymorphs. Herein, we demonstrated quantitatively that distinct polymorphs made of the same protein (wild-type α-Syn) show significant differences in their morphology (height, width and periodicity) and physical properties (persistence length, bending rigidity and axial Young’s modulus).

  16. Preclinical development of a vaccine against oligomeric alpha-synuclein based on virus-like particles.

    PubMed

    Doucet, Marika; El-Turabi, Aadil; Zabel, Franziska; Hunn, Benjamin H M; Bengoa-Vergniory, Nora; Cioroch, Milena; Ramm, Mauricio; Smith, Amy M; Gomes, Ariane Cruz; Cabral de Miranda, Gustavo; Wade-Martins, Richard; Bachmann, Martin F

    2017-01-01

    Parkinson's disease (PD) is a progressive and currently incurable neurological disorder characterised by the loss of midbrain dopaminergic neurons and the accumulation of aggregated alpha-synuclein (a-syn). Oligomeric a-syn is proposed to play a central role in spreading protein aggregation in the brain with associated cellular toxicity contributing to a progressive neurological decline. For this reason, a-syn oligomers have attracted interest as therapeutic targets for neurodegenerative conditions such as PD and other alpha-synucleinopathies. In addition to strategies using small molecules, neutralisation of the toxic oligomers by antibodies represents an attractive and highly specific strategy for reducing disease progression. Emerging active immunisation approaches using vaccines are already being trialled to induce such antibodies. Here we propose a novel vaccine based on the RNA bacteriophage (Qbeta) virus-like particle conjugated with short peptides of human a-syn. High titres of antibodies were successfully and safely generated in wild-type and human a-syn over-expressing (SNCA-OVX) transgenic mice following vaccination. Antibodies from vaccine candidates targeting the C-terminal regions of a-syn were able to recognise Lewy bodies, the hallmark aggregates in human PD brains. Furthermore, antibodies specifically targeted oligomeric and aggregated a-syn as they exhibited 100 times greater affinity for oligomeric species over monomer a-syn proteins in solution. In the SNCA-OVX transgenic mice used, vaccination was, however, unable to confer significant changes to oligomeric a-syn bioburden. Similarly, there was no discernible effect of vaccine treatment on behavioural phenotype as compared to control groups. Thus, antibodies specific for oligomeric a-syn induced by vaccination were unable to treat symptoms of PD in this particular mouse model.

  17. Preclinical development of a vaccine against oligomeric alpha-synuclein based on virus-like particles

    PubMed Central

    Zabel, Franziska; Hunn, Benjamin H.M.; Bengoa-Vergniory, Nora; Cioroch, Milena; Ramm, Mauricio; Smith, Amy M.; Gomes, Ariane Cruz; Cabral de Miranda, Gustavo; Wade-Martins, Richard; Bachmann, Martin F.

    2017-01-01

    Parkinson's disease (PD) is a progressive and currently incurable neurological disorder characterised by the loss of midbrain dopaminergic neurons and the accumulation of aggregated alpha-synuclein (a-syn). Oligomeric a-syn is proposed to play a central role in spreading protein aggregation in the brain with associated cellular toxicity contributing to a progressive neurological decline. For this reason, a-syn oligomers have attracted interest as therapeutic targets for neurodegenerative conditions such as PD and other alpha-synucleinopathies. In addition to strategies using small molecules, neutralisation of the toxic oligomers by antibodies represents an attractive and highly specific strategy for reducing disease progression. Emerging active immunisation approaches using vaccines are already being trialled to induce such antibodies. Here we propose a novel vaccine based on the RNA bacteriophage (Qbeta) virus-like particle conjugated with short peptides of human a-syn. High titres of antibodies were successfully and safely generated in wild-type and human a-syn over-expressing (SNCA-OVX) transgenic mice following vaccination. Antibodies from vaccine candidates targeting the C-terminal regions of a-syn were able to recognise Lewy bodies, the hallmark aggregates in human PD brains. Furthermore, antibodies specifically targeted oligomeric and aggregated a-syn as they exhibited 100 times greater affinity for oligomeric species over monomer a-syn proteins in solution. In the SNCA-OVX transgenic mice used, vaccination was, however, unable to confer significant changes to oligomeric a-syn bioburden. Similarly, there was no discernible effect of vaccine treatment on behavioural phenotype as compared to control groups. Thus, antibodies specific for oligomeric a-syn induced by vaccination were unable to treat symptoms of PD in this particular mouse model. PMID:28797124

  18. A rationally designed six-residue swap generates comparability in the aggregation behavior of α-synuclein and β-synuclein.

    PubMed

    Roodveldt, Cintia; Andersson, August; De Genst, Erwin J; Labrador-Garrido, Adahir; Buell, Alexander K; Dobson, Christopher M; Tartaglia, Gian Gaetano; Vendruscolo, Michele

    2012-11-06

    The aggregation process of α-synuclein, a protein closely associated with Parkinson's disease, is highly sensitive to sequence variations. It is therefore of great importance to understand the factors that define the aggregation propensity of specific mutational variants as well as their toxic behavior in the cellular environment. In this context, we investigated the extent to which the aggregation behavior of α-synuclein can be altered to resemble that of β-synuclein, an aggregation-resistant homologue of α-synuclein not associated with disease, by swapping residues between the two proteins. Because of the vast number of possible swaps, we have applied a rational design procedure to single out a mutational variant, called α2β, in which two short stretches of the sequence in the NAC region have been replaced in α-synuclein from β-synuclein. We find not only that the aggregation rate of α2β is close to that of β-synuclein, being much lower than that of α-synuclein, but also that α2β effectively changes the cellular toxicity of α-synuclein to a value similar to that of β-synuclein upon exposure of SH-SY5Y cells to preformed oligomers. Remarkably, control experiments on the corresponding mutational variant of β-synuclein, called β2α, confirmed that the mutations that we have identified also shift the aggregation behavior of this protein toward that of α-synuclein. These results demonstrate that it is becoming possible to control in quantitative detail the sequence code that defines the aggregation behavior and toxicity of α-synuclein.

  19. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease.

    PubMed

    Magalhaes, Joana; Gegg, Matthew E; Migdalska-Richards, Anna; Doherty, Mary K; Whitfield, Phillip D; Schapira, Anthony H V

    2016-08-15

    Glucocerebrosidase (GBA1) gene mutations increase the risk of Parkinson disease (PD). While the cellular mechanisms associating GBA1 mutations and PD are unknown, loss of the glucocerebrosidase enzyme (GCase) activity, inhibition of autophagy and increased α-synuclein levels have been implicated. Here we show that autophagy lysosomal reformation (ALR) is compromised in cells lacking functional GCase. ALR is a cellular process controlled by mTOR which regenerates functional lysosomes from autolysosomes formed during macroautophagy. A decrease in phopho-S6K levels, a marker of mTOR activity, was observed in models of GCase deficiency, including primary mouse neurons and the PD patient derived fibroblasts with GBA1 mutations, suggesting that ALR is compromised. Importantly Rab7, a GTPase crucial for endosome-lysosome trafficking and ALR, accumulated in GCase deficient cells, supporting the notion that lysosomal recycling is impaired. Recombinant GCase treatment reversed ALR inhibition and lysosomal dysfunction. Moreover, ALR dysfunction was accompanied by impairment of macroautophagy and chaperone-mediated autophagy, increased levels of total and phosphorylated (S129) monomeric α-synuclein, evidence of amyloid oligomers and increased α-synuclein release. Concurrently, we found increased cholesterol and altered glucosylceramide homeostasis which could compromise ALR. We propose that GCase deficiency in PD inhibits lysosomal recycling. Consequently neurons are unable to maintain the pool of mature and functional lysosomes required for the autophagic clearance of α-synuclein, leading to the accumulation and spread of pathogenic α-synuclein species in the brain. Since GCase deficiency and lysosomal dysfunction occur with ageing and sporadic PD pathology, the decrease in lysosomal reformation may be a common feature in PD. © The Author 2016. Published by Oxford University Press.

  20. Adsorption and decontamination of α-synuclein from medically and environmentally-relevant surfaces.

    PubMed

    Phan, Hanh T M; Bartz, Jason C; Ayers, Jacob; Giasson, Benoit I; Schubert, Mathias; Rodenhausen, Keith B; Kananizadeh, Negin; Li, Yusong; Bartelt-Hunt, Shannon L

    2018-06-01

    The assembly and accumulation of α-synuclein fibrils are implicated in the development of several neurodegenerative disorders including multiple system atrophy and Parkinson's disease. Pre-existing α-synuclein fibrils can recruit and convert soluble non-fibrillar α-synuclein to the fibrillar form similar to what is observed in prion diseases. This raises concerns regarding attachment of fibrillary α-synuclein to medical instruments and subsequent exposure of patients to α-synuclein similar to what has been observed in iatrogenic transmission of prions. Here, we evaluated adsorption and desorption of α-synuclein to two surfaces: stainless steel and a gold surface coated with a 11-Amino-1-undecanethiol hydrochloride self-assembled-monolayer (SAM) using in-situ combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry. α-Synuclein was found to attach to both surfaces, however, increased α-synuclein adsorption was observed onto the positively charged SAM surface compared to the stainless steel surface. Dynamic light scattering data showed that larger α-synuclein fibrils were preferentially attached to the stainless steel surface when compared with the distributions in the original α-synuclein solution and on the SAM surface. We determined that after attachment, introduction of a 1N NaOH solution could completely remove α-synuclein adsorbed on the stainless steel surface while α-synuclein was retained on the SAM surface. Our results indicate α-synuclein can bind to multiple surface types and that decontamination is surface-dependent. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. [Pathology of basal ganglia in neurodegenerative diseases].

    PubMed

    Wakabayashi, Koichi; Tanji, Kunikazu; Mori, Fumiaki

    2009-04-01

    Intra- and/or extracellular proteinaceous inclusions in the brain tissue are characteristic pathological markers of many neurodegenerative diseases. Tau protein in neurofibrillary tangles and beta-amyloid in senile plaques are associated with Alzheimer's disease. Tau is associated with various neurological conditions, which are collectively referred to as tauopathies. Alpha-synucleinopathy is a term that collectively refers to a set of diseases in which neurodegeneration is accompanied by intracellular accumulation of alpha-synuclein in neurons or glial cells. Recently, TDP-43 has been identified as a major disease protein in the ubiquitinated inclusions in deseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration with tau-negative, ubiquitin-positive inclusions. Thus, these neurodegenerative disorders comprise a new disease class, namely, TDP-43 proteinopathy. In this article, we review the present understanding of histopathological features of basal ganglia lesions in protein conformation disorders, including tauopathy, alpha-synucleinopathy, and TDP-43 proteinopathy.

  2. α-Synuclein Fibrils Exhibit Gain of Toxic Function, Promoting Tau Aggregation and Inhibiting Microtubule Assembly*

    PubMed Central

    Oikawa, Takayuki; Nonaka, Takashi; Terada, Makoto; Tamaoka, Akira; Hisanaga, Shin-ichi; Hasegawa, Masato

    2016-01-01

    α-Synuclein is the major component of Lewy bodies and Lewy neurites in Parkinson disease and dementia with Lewy bodies and of glial cytoplasmic inclusions in multiple system atrophy. It has been suggested that α-synuclein fibrils or intermediate protofibrils in the process of fibril formation may have a toxic effect on neuronal cells. In this study, we investigated the ability of soluble monomeric α-synuclein to promote microtubule assembly and the effects of conformational changes of α-synuclein on Tau-promoted microtubule assembly. In marked contrast to previous findings, monomeric α-synuclein had no effect on microtubule polymerization. However, both α-synuclein fibrils and protofibrils inhibited Tau-promoted microtubule assembly. The inhibitory effect of α-synuclein fibrils was greater than that of the protofibrils. Dot blot overlay assay and spin-down techniques revealed that α-synuclein fibrils bind to Tau and inhibit microtubule assembly by depleting the Tau available for microtubule polymerization. Using various deletion mutants of α-synuclein and Tau, the acidic C-terminal region of α-synuclein and the basic central region of Tau were identified as regions involved in the binding. Furthermore, introduction of α-synuclein fibrils into cultured cells overexpressing Tau protein induced Tau aggregation. These results raise the possibility that α-synuclein fibrils interact with Tau, inhibit its function to stabilize microtubules, and also promote Tau aggregation, leading to dysfunction of neuronal cells. PMID:27226637

  3. α-Synuclein binds the KATP channel at insulin-secretory granules and inhibits insulin secretion

    PubMed Central

    Geng, Xuehui; Lou, Haiyan; Wang, Jian; Li, Lehong; Swanson, Alexandra L.; Sun, Ming; Beers-Stolz, Donna; Watkins, Simon; Perez, Ruth G.

    2011-01-01

    α-Synuclein has been studied in numerous cell types often associated with secretory processes. In pancreatic β-cells, α-synuclein might therefore play a similar role by interacting with organelles involved in insulin secretion. We tested for α-synuclein localizing to insulin-secretory granules and characterized its role in glucose-stimulated insulin secretion. Immunohistochemistry and fluorescent sulfonylureas were used to test for α-synuclein localization to insulin granules in β-cells, immunoprecipitation with Western blot analysis for interaction between α-synuclein and KATP channels, and ELISA assays for the effect of altering α-synuclein expression up or down on insulin secretion in INS1 cells or mouse islets, respectively. Differences in cellular phenotype between α-synuclein knockout and wild-type β-cells were found by using confocal microscopy to image the fluorescent insulin biosensor Ins-C-emGFP and by using transmission electron microscopy. The results show that anti-α-synuclein antibodies labeled secretory organelles within β-cells. Anti-α-synuclein antibodies colocalized with KATP channel, anti-insulin, and anti-C-peptide antibodies. α-Synuclein coimmunoprecipitated in complexes with KATP channels. Expression of α-synuclein downregulated insulin secretion at 2.8 mM glucose with little effect following 16.7 mM glucose stimulation. α-Synuclein knockout islets upregulated insulin secretion at 2.8 and 8.4 mM but not 16.7 mM glucose, consistent with the depleted insulin granule density at the β-cell surface membranes observed in these islets. These findings demonstrate that α-synuclein interacts with KATP channels and insulin-secretory granules and functionally acts as a brake on secretion that glucose stimulation can override. α-Synuclein might play similar roles in diabetes as it does in other degenerative diseases, including Alzheimer's and Parkinson's diseases. PMID:20858756

  4. A de novo compound targeting α-synuclein improves deficits in models of Parkinson’s disease

    PubMed Central

    Wrasidlo, Wolfgang; Tsigelny, Igor F.; Price, Diana L.; Dutta, Garima; Rockenstein, Edward; Schwarz, Thomas C.; Ledolter, Karin; Bonhaus, Douglas; Paulino, Amy; Eleuteri, Simona; Skjevik, Åge A.; Kouznetsova, Valentina L.; Spencer, Brian; Desplats, Paula; Gonzalez-Ruelas, Tania; Trejo-Morales, Margarita; Overk, Cassia R.; Winter, Stefan; Zhu, Chunni; Chesselet, Marie-Francoise; Meier, Dieter; Moessler, Herbert; Konrat, Robert; Masliah, Eliezer

    2016-01-01

    Abnormal accumulation and propagation of the neuronal protein α-synuclein has been hypothesized to underlie the pathogenesis of Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy. Here we report a de novo-developed compound (NPT100-18A) that reduces α-synuclein toxicity through a novel mechanism that involves displacing α-synuclein from the membrane. This compound interacts with a domain in the C-terminus of α-synuclein. The E83R mutation reduces the compound interaction with the 80–90 amino acid region of α-synuclein and prevents the effects of NPT100-18A. In vitro studies showed that NPT100-18A reduced the formation of wild-type α-synuclein oligomers in membranes, reduced the neuronal accumulation of α-synuclein, and decreased markers of cell toxicity. In vivo studies were conducted in three different α-synuclein transgenic rodent models. Treatment with NPT100-18A ameliorated motor deficits in mThy1 wild-type α-synuclein transgenic mice in a dose-dependent manner at two independent institutions. Neuropathological examination showed that NPT100-18A decreased the accumulation of proteinase K-resistant α-synuclein aggregates in the CNS and was accompanied by the normalization of neuronal and inflammatory markers. These results were confirmed in a mutant line of α-synuclein transgenic mice that is prone to generate oligomers. In vivo imaging studies of α-synuclein-GFP transgenic mice using two-photon microscopy showed that NPT100-18A reduced the cortical synaptic accumulation of α-synuclein within 1 h post-administration. Taken together, these studies support the notion that altering the interaction of α-synuclein with the membrane might be a feasible therapeutic approach for developing new disease-modifying treatments of Parkinson’s disease and other synucleinopathies. PMID:27679481

  5. Structural Variation of Alpha-synuclein with Temperature by a Coarse-grained Approach with Knowledge-based Interactions (Postprint)

    DTIC Science & Technology

    2015-07-01

    the radius of gyration in detail as a function FIG. 5. Variation of the root mean square (RMS) displacement of the center of mass of the protein with...depends on the temperature. The global motion can be examined by analyzing the variation of the root mean square displacement (RMS) of the center of...and global physical quantities during the course of simula- tion, including the energy of each residue, its mobility, mean square displacement of the

  6. Repurposing doxycycline for synucleinopathies: remodelling of α-synuclein oligomers towards non-toxic parallel beta-sheet structured species

    PubMed Central

    González-Lizárraga, Florencia; Socías, Sergio B.; Ávila, César L.; Torres-Bugeau, Clarisa M.; Barbosa, Leandro R. S.; Binolfi, Andres; Sepúlveda-Díaz, Julia E.; Del-Bel, Elaine; Fernandez, Claudio O.; Papy-Garcia, Dulce; Itri, Rosangela; Raisman-Vozari, Rita; Chehín, Rosana N.

    2017-01-01

    Synucleinophaties are progressive neurodegenerative disorders with no cure to date. An attractive strategy to tackle this problem is repurposing already tested safe drugs against novel targets. In this way, doxycycline prevents neurodegeneration in Parkinson models by modulating neuroinflammation. However, anti-inflammatory therapy per se is insufficient to account for neuroprotection. Herein we characterise novel targets of doxycycline describing the structural background supporting its effectiveness as a neuroprotector at subantibiotic doses. Our results show that doxycycline reshapes α-synuclein oligomers into off-pathway, high-molecular-weight species that do not evolve into fibrils. Off-pathway species present less hydrophobic surface than on-pathway oligomers and display different β-sheet structural arrangement. These structural changes affect the α-synuclein ability to destabilize biological membranes, cell viability, and formation of additional toxic species. Altogether, these mechanisms could act synergically giving novel targets for repurposing this drug. PMID:28155912

  7. Cell Biology and Pathophysiology of α-Synuclein

    PubMed Central

    Burré, Jacqueline; Sharma, Manu; Südhof, Thomas C.

    2017-01-01

    α-Synuclein is an abundant neuronal protein that is highly enriched in presynaptic nerve terminals. Genetics and neuropathology studies link α-synuclein to Parkinson’s disease (PD) and other neurodegenerative disorders. Accumulation of misfolded oligomers and larger aggregates of α-synuclein defines multiple neurodegenerative diseases called synucleino-pathies, but the mechanisms by which α-synuclein acts in neurodegeneration are unknown. Moreover, the normal cellular function of α-synuclein remains debated. In this perspective, we review the structural characteristics of α-synuclein, its developmental expression pattern, its cellular and subcellular localization, and its function in neurons. We also discuss recent progress on secretion of α-synuclein, which may contribute to its interneuronal spread in a prion-like fashion, and describe the neurotoxic effects of α-synuclein that are thought to be responsible for its role in neurodegeneration. PMID:28108534

  8. Asparagine endopeptidase cleaves α-synuclein and mediates pathologic activities in Parkinson's disease.

    PubMed

    Zhang, Zhentao; Kang, Seong Su; Liu, Xia; Ahn, Eun Hee; Zhang, Zhaohui; He, Li; Iuvone, P Michael; Duong, Duc M; Seyfried, Nicholas T; Benskey, Matthew J; Manfredsson, Fredric P; Jin, Lingjing; Sun, Yi E; Wang, Jian-Zhi; Ye, Keqiang

    2017-08-01

    Aggregated forms of α-synuclein play a crucial role in the pathogenesis of synucleinopathies such as Parkinson's disease (PD). However, the molecular mechanisms underlying the pathogenic effects of α-synuclein are not completely understood. Here we show that asparagine endopeptidase (AEP) cleaves human α-synuclein, triggers its aggregation and escalates its neurotoxicity, thus leading to dopaminergic neuronal loss and motor impairments in a mouse model. AEP is activated and cleaves human α-synuclein at N103 in an age-dependent manner. AEP is highly activated in human brains with PD, and it fragments α-synuclein, which is found aggregated in Lewy bodies. Overexpression of the AEP-cleaved α-synuclein 1-103 fragment in the substantia nigra induces both dopaminergic neuronal loss and movement defects in mice. In contrast, inhibition of AEP-mediated cleavage of α-synuclein (wild type and A53T mutant) diminishes α-synuclein's pathologic effects. Together, these findings support AEP's role as a key mediator of α-synuclein-related etiopathological effects in PD.

  9. Apolipoprotein Eε4: A Biomarker for Executive Dysfunction among Parkinson's Disease Patients with Mild Cognitive Impairment.

    PubMed

    Samat, Nor A; Abdul Murad, Nor A; Mohamad, Khairiyah; Abdul Razak, Mohd R; Mohamed Ibrahim, Norlinah

    2017-01-01

    Background: Cognitive impairment is prevalent in Parkinson's disease (PD), affecting 15-20% of patients at diagnosis. α-synuclein expression and genetic polymorphisms of Apolipoprotein E ( ApoE ) have been associated with the presence of cognitive impairment in PD although data have been inconsistent. Objectives: To determine the prevalence of cognitive impairment in patients with PD using Montreal Cognitive Assessment (MoCA), Comprehensive Trail Making Test (CTMT) and Parkinson's disease-cognitive rating scale (PDCRS), and its association with plasma α-synuclein and ApoE genetic polymorphisms. Methods: This was across-sectional study involving 46 PD patients. Patients were evaluated using Montreal cognitive assessment test (MoCA), and detailed neuropsychological tests. The Parkinson's disease cognitive rating scale (PDCRS) was used for cognitive function and comprehensive trail making test (CTMT) for executive function. Blood was drawn for plasma α-synuclein measurements and ApoE genetic analysis. ApoE polymorphism was detected using MutaGEL APoE from ImmunDiagnostik. Plasma α-synuclein was detected using the ELISA Technique (USCN Life Science Inc.) according to the standard protocol. Results: Based on MoCA, 26 (56.5%) patients had mild cognitive impairment (PD-MCI) and 20 (43.5%) had normal cognition (PD-NC). Based on the PDCRS, 18 (39.1%) had normal cognition (PDCRS-NC), 17 (37%) had mild cognitive impairment (PDCRS-MCI), and 11 (23.9%) had dementia (PDCRS-PDD). In the PDCRS-MCI group, 5 (25%) patients were from PD-NC group and all PDCRS-PDD patients were from PD-MCI group. CTMT scores were significantly different between patients with MCI and normal cognition on MoCA ( p = 0.003). Twenty one patients (72.4%) with executive dysfunction were from the PD-MCI group; 17 (77.3%) with severe executive dysfunction and 4 (57.1%) had mild to moderate executive dysfunction. There were no differences in the plasma α-synuclein concentration between the presence or types of cognitive impairment based on MoCA, PDCRS, and CTMT. The ApoEe4 allele carrier frequency was significantly higher in patients with executive dysfunction ( p = 0.014). Conclusion: MCI was prevalent in our PD population. PDCRS appeared to be more discriminatory in detecting MCI and PDD than MoCA. Plasma α-synuclein level was not associated with presence nor type of cognitive impairment, but the ApoEe4 allele carrier status was significantly associated with executive dysfunction in PD.

  10. Self-administration of methamphetamine alters gut biomarkers of toxicity

    PubMed Central

    Flack, Amanda; Persons, Amanda L.; Kousik, Sharanya M.; Napier, T. Celeste; Moszczynska, Anna

    2018-01-01

    Methamphetamine (METH) is a highly abused psychostimulant that is associated with an increased risk for developing Parkinson’s disease (PD). This enhanced vulnerability likely relates to the toxic effects of METH that overlap with PD pathology, for example, aberrant functioning of α-synuclein and parkin. In PD, peripheral factors are thought to contribute to central nervous system (CNS) degeneration. For example, α-synuclein levels in the enteric nervous system (ENS) are elevated, and this precedes the onset of motor symptoms. It remains unclear whether neurons of the ENS, particularly catecholaminergic neurons, exhibit signs of METH-induced toxicity as seen in the CNS. The aim of this study was to determine whether self-administered METH altered the levels of α-synuclein, parkin, tyrosine hydroxylase (TH), and dopamine-β-hydroxylase (DβH) in the myenteric plexus of the distal colon ENS. Young adult male Sprague-Dawley rats self-administered METH for 3 h per day for 14 days and controls were saline-yoked. Distal colon tissue was collected at 1, 14, or 56 days after the last operant session. Levels of α-synuclein were increased, while levels of parkin, TH, and DβH were decreased in the myenteric plexus in the METH-exposed rats at 1 day following the last operant session and returned to the control levels after 14 or 56 days of forced abstinence. The changes were not confined to neurofilament-positive neurons. These results suggest that colon biomarkers may provide early indications of METH-induced neurotoxicity, particularly in young chronic METH users who may be more susceptible to progression to PD later in life. PMID:28661099

  11. FYCO1 mediates clearance of α-synuclein aggregates through a Rab7-dependent mechanism.

    PubMed

    Saridaki, Theodora; Nippold, Markus; Dinter, Elisabeth; Roos, Andreas; Diederichs, Leonie; Fensky, Luisa; Schulz, Jörg B; Falkenburger, Björn H

    2018-05-10

    Parkinson disease can be caused by mutations in the α-synuclein gene and is characterized by aggregates of α-synuclein protein. We have previously shown that overexpression of the small GTPase Rab7 can induce clearance of α-synuclein aggregates. In this study, we investigate which Rab7 effectors mediate this effect. To model Parkinson disease we expressed the pathogenic A53T mutant of α-synuclein in HEK293T cells and Drosophila melanogaster. We tested the Rab7 effectors FYVE and coiled-coil domain-containing protein 1 (FYCO1) and Rab-interacting lysosomal protein (RILP). FYCO1-EGFP decorated vesicles containing α-synuclein. RILP-EGFP also decorated vesicular structures, but they did not contain α-synuclein. FYCO1 overexpression reduced the number of cells with α-synuclein aggregates, defined as visible particles of EGFP-tagged α-synuclein, whereas RILP did not. FYCO1 but not RILP reduced the amount of α-synuclein protein as assayed by western blot, increased the disappearance of α-synuclein aggregates in time-lapse microscopy, and decreased α-synuclein-induced toxicity assayed by the Trypan blue assay. siRNA-mediated knockdown of FYCO1 but not RILP reduced Rab7 induced aggregate clearance. Collectively, these findings indicate that FYCO1 and not RILP mediates Rab7 induced aggregate clearance. The effect of FYCO1 on aggregate clearance was blocked by the dominant negative Rab7 indicating that FYCO1 requires active Rab7 to function. Electron microscopic analysis and insertion of lysosomal membranes into the plasma membrane indicate that FYCO1 could lead to secretion of α-synuclein aggregates. Extracellular α-synuclein as assayed by ELISA was, however, not increased with FYCO1. Coexpression of FYCO1 in the fly model decreased α-synuclein aggregates as shown by the filter trap assay and rescued the locomotor deficit resulting from neuronal A53T-α-synuclein expression. This latter finding confirms that a pathway involving Rab7 and FYCO1 stimulates degradation of α-synuclein and could be beneficial in patients with Parkinson disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Accumulation and distribution of α-synuclein and ubiquitin in the CNS of Gaucher disease mouse models

    PubMed Central

    Xu, YH; Sun, Y; Ran, H; Quinn, B; Witte, D; Grabowski, GA

    2011-01-01

    Gaucher disease, a prevalent lysosomal storage disease, is caused by insufficient activity of acid β-glucosidase (GCase) and resultant glucosylceramide accumulation. Recently in Parkinson disease (PD) patients, heterozygous mutations in GCase have been associated with earlier onset and more progressive PD. To understand the pathogenic relationships between GCase variants and Parkinsonism, α-synuclein and ubiquitin distributions and levels in the brains of several mouse models containing GCase variants were evaluated by immunohistochemistry. Progressive α-synuclein and ubiquitin aggregate accumulations were observed in the cortex, hippocampus, basal ganglia, brainstem, and some cerebellar regions between 4-24 wks in mice that were homozygous for GCase [D409H (9H) or V394L (4L)] variants and also had a prosaposin hypomorphic (PS-NA) transgene. In 4L/PS-NA and 9H/PS-NA mice, this was coincident with progressive neurological manifestations and brain glucosylceramide accumulation. Ultrastructural studies showed electron dense inclusion bodies in neurons and axons of 9H/PS-NA brains. α-Synuclein aggregates were also observed in ventricular, brainstem, and cerebellar regions of older mice (>42-wk) with the GCase variant (D409H/D409H) without overt neurological disease. In a chemically induced GCase deficiency, α-synuclein aggregates and glucosylceramide accumulation also occurred. These studies demonstrate a relationship between glucosylceramide accumulation and α-synuclein aggregates, and implicate glucosylceramide accumulation as risk factor for the α-synucleinopathies. PMID:21257328

  13. Phenylbutyrate Up-regulates the DJ-1 Protein and Protects Neurons in Cell Culture and in Animal Models of Parkinson Disease*

    PubMed Central

    Zhou, Wenbo; Bercury, Kathryn; Cummiskey, Jessica; Luong, Nancy; Lebin, Jacob; Freed, Curt R.

    2011-01-01

    Parkinson disease is caused by the death of midbrain dopamine neurons from oxidative stress, abnormal protein aggregation, and genetic predisposition. In 2003, Bonifati et al. (23) found that a single amino acid mutation in the DJ-1 protein was associated with early-onset, autosomal recessive Parkinson disease (PARK7). The mutation L166P prevents dimerization that is essential for the antioxidant and gene regulatory activity of the DJ-1 protein. Because low levels of DJ-1 cause Parkinson, we reasoned that overexpression might stop the disease. We found that overexpression of DJ-1 improved tolerance to oxidative stress by selectively up-regulating the rate-limiting step in glutathione synthesis. When we imposed a different metabolic insult, A53T mutant α-synuclein, we found that DJ-1 turned on production of the chaperone protein Hsp-70 without affecting glutathione synthesis. After screening a number of small molecules, we have found that the histone deacetylase inhibitor phenylbutyrate increases DJ-1 expression by 300% in the N27 dopamine cell line and rescues cells from oxidative stress and mutant α-synuclein toxicity. In mice, phenylbutyrate treatment leads to a 260% increase in brain DJ-1 levels and protects dopamine neurons against 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP) toxicity. In a transgenic mouse model of diffuse Lewy body disease, long-term administration of phenylbutyrate reduces α-synuclein aggregation in brain and prevents age-related deterioration in motor and cognitive function. We conclude that drugs that up-regulate DJ-1 gene expression may slow the progression of Parkinson disease by moderating oxidative stress and protein aggregation. PMID:21372141

  14. In Situ Proximity Ligation Assay Reveals Co-Localization of Alpha-Synuclein and SNARE Proteins in Murine Primary Neurons.

    PubMed

    Almandoz-Gil, Leire; Persson, Emma; Lindström, Veronica; Ingelsson, Martin; Erlandsson, Anna; Bergström, Joakim

    2018-01-01

    The aggregation of alpha-synuclein (αSyn) is the pathological hallmark of Parkinson's disease, dementia with Lewy bodies and related neurological disorders. However, the physiological function of the protein and how this function relates to its pathological effects remain poorly understood. One of the proposed roles of αSyn is to promote the soluble N -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly by binding to VAMP-2. The objective of this study was to visualize the co-localization between αSyn and the SNARE proteins (VAMP-2, SNAP-25, and syntaxin-1) for the first time using in situ proximity ligation assay (PLA). Cortical primary neurons were cultured from either non-transgenic or transgenic mice expressing human αSyn with the A30P mutation under the Thy-1 promoter. With an antibody recognizing both mouse and human αSyn, a PLA signal indicating close proximity between αSyn and the three SNARE proteins was observed both in the soma and throughout the processes. No differences in the extent of PLA signals were seen between non-transgenic and transgenic neurons. With an antibody specific against human αSyn, the PLA signal was mostly located to the soma and was only present in a few cells. Taken together, in situ PLA is a method that can be used to investigate the co-localization of αSyn and the SNARE proteins in primary neuronal cultures.

  15. Evidence for Intramolecular Antiparallel Beta-Sheet Structure in Alpha-Synuclein Fibrils from a Combination of Two-Dimensional Infrared Spectroscopy and Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Roeters, Steven J.; Iyer, Aditya; Pletikapić, Galja; Kogan, Vladimir; Subramaniam, Vinod; Woutersen, Sander

    2017-01-01

    The aggregation of the intrinsically disordered protein alpha-synuclein (αS) into amyloid fibrils is thought to play a central role in the pathology of Parkinson’s disease. Using a combination of techniques (AFM, UV-CD, XRD, and amide-I 1D- and 2D-IR spectroscopy) we show that the structure of αS fibrils varies as a function of ionic strength: fibrils aggregated in low ionic-strength buffers ([NaCl] ≤ 25 mM) have a significantly different structure than fibrils grown in higher ionic-strength buffers. The observations for fibrils aggregated in low-salt buffers are consistent with an extended conformation of αS molecules, forming hydrogen-bonded intermolecular β-sheets that are loosely packed in a parallel fashion. For fibrils aggregated in high-salt buffers (including those prepared in buffers with a physiological salt concentration) the measurements are consistent with αS molecules in a more tightly-packed, antiparallel intramolecular conformation, and suggest a structure characterized by two twisting stacks of approximately five hydrogen-bonded intermolecular β-sheets each. We find evidence that the high-frequency peak in the amide-I spectrum of αS fibrils involves a normal mode that differs fundamentally from the canonical high-frequency antiparallel β-sheet mode. The high sensitivity of the fibril structure to the ionic strength might form the basis of differences in αS-related pathologies.

  16. The different faces of the p. A53T alpha-synuclein mutation: A screening of Greek patients with parkinsonism and/or dementia.

    PubMed

    Breza, Marianthi; Koutsis, Georgios; Karadima, Georgia; Potagas, Constantin; Kartanou, Chrisoula; Papageorgiou, Sokratis G; Paraskevas, George P; Kapaki, Elisabeth; Stefanis, Leonidas; Panas, Marios

    2018-04-13

    The p. A53T mutation in the alpha-synuclein (SNCA) gene is a rare cause of autosomal dominant Parkinson's disease (PD). Although generally rare, it is particularly common in the Greek population due to a founder effect. A53T-positive PD patients often develop dementia during disease course and may very rarely present with dementia. We screened for the p. A53T SNCA mutation a total of 347 cases of Greek origin with parkinsonism and/or dementia, collected over 15 years at the Neurogenetics Unit, Eginition Hospital, University of Athens. Cases were classified into: "pure parkinsonism", "pure dementia" and "parkinsonism plus dementia". In total, 4 p. A53T SNCA mutation carriers were identified. All had autosomal dominant family history and early onset. Screening of the "pure parkinsonism" category revealed 2 cases with typical PD. The other two mutation carriers were identified in the "parkinsonism plus dementia" category. One had a diagnosis of PD dementia and the other of behavioral variant frontotemporal dementia. Screening of patients with "pure dementia" failed to identify any further A53T-positive cases. Our results confirm that the p. A53T SNCA mutation is relatively common in Greek patients with PD or PD plus dementia, particularly in cases with early onset and/or autosomal dominant family history. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Evidence for Intramolecular Antiparallel Beta-Sheet Structure in Alpha-Synuclein Fibrils from a Combination of Two-Dimensional Infrared Spectroscopy and Atomic Force Microscopy

    PubMed Central

    Roeters, Steven J.; Iyer, Aditya; Pletikapić, Galja; Kogan, Vladimir; Subramaniam, Vinod; Woutersen, Sander

    2017-01-01

    The aggregation of the intrinsically disordered protein alpha-synuclein (αS) into amyloid fibrils is thought to play a central role in the pathology of Parkinson’s disease. Using a combination of techniques (AFM, UV-CD, XRD, and amide-I 1D- and 2D-IR spectroscopy) we show that the structure of αS fibrils varies as a function of ionic strength: fibrils aggregated in low ionic-strength buffers ([NaCl] ≤ 25 mM) have a significantly different structure than fibrils grown in higher ionic-strength buffers. The observations for fibrils aggregated in low-salt buffers are consistent with an extended conformation of αS molecules, forming hydrogen-bonded intermolecular β-sheets that are loosely packed in a parallel fashion. For fibrils aggregated in high-salt buffers (including those prepared in buffers with a physiological salt concentration) the measurements are consistent with αS molecules in a more tightly-packed, antiparallel intramolecular conformation, and suggest a structure characterized by two twisting stacks of approximately five hydrogen-bonded intermolecular β-sheets each. We find evidence that the high-frequency peak in the amide-I spectrum of αS fibrils involves a normal mode that differs fundamentally from the canonical high-frequency antiparallel β-sheet mode. The high sensitivity of the fibril structure to the ionic strength might form the basis of differences in αS-related pathologies. PMID:28112214

  18. Involvement of Cellular Prion Protein in α-Synuclein Transport in Neurons.

    PubMed

    Urrea, Laura; Segura-Feliu, Miriam; Masuda-Suzukake, Masami; Hervera, Arnau; Pedraz, Lucas; García Aznar, José Manuel; Vila, Miquel; Samitier, Josep; Torrents, Eduard; Ferrer, Isidro; Gavín, Rosalina; Hagesawa, Masato; Del Río, José Antonio

    2018-03-01

    The cellular prion protein, encoded by the gene Prnp, has been reported to be a receptor of β-amyloid. Their interaction is mandatory for neurotoxic effects of β-amyloid oligomers. In this study, we aimed to explore whether the cellular prion protein participates in the spreading of α-synuclein. Results demonstrate that Prnp expression is not mandatory for α-synuclein spreading. However, although the pathological spreading of α-synuclein can take place in the absence of Prnp, α-synuclein expanded faster in PrP C -overexpressing mice. In addition, α-synuclein binds strongly on PrP C -expressing cells, suggesting a role in modulating the effect of α-synuclein fibrils.

  19. Dopamine-dependent neurodegeneration in Drosophila models of familial and sporadic Parkinson's disease.

    PubMed

    Bayersdorfer, Florian; Voigt, Aaron; Schneuwly, Stephan; Botella, José A

    2010-10-01

    Parkinson's disease has been found to be caused by both, genetic and environmental factors. Despite the diversity of causes involved, a convergent pathogenic mechanism might underlie the special vulnerability of dopaminergic neurons in different forms of Parkinsonism. In recent years, a number of reports have proposed dopamine as a common player responsible in the loss of dopaminergic neurons independent of its etiology. Using RNAi lines we were able to generate flies with drastically reduced dopamine levels in the dopaminergic neurons. Combining these flies with a chemically induced Parkinson model (rotenone) and a familial form of Parkinson (mutant alpha-synuclein) we were able to show a strong reduction of neurotoxicity and a protection of the dopaminergic neurons when cellular dopamine levels were reduced. These results show that dopamine homeostasis plays a central role for the susceptibility of dopaminergic neurons to environmental and genetic factors in in vivo models of Parkinson disease. (c) 2010 Elsevier Inc. All rights reserved.

  20. The Cleavage Effect of Mesenchymal Stem Cell and Its Derived Matrix Metalloproteinase‐2 on Extracellular α‐Synuclein Aggregates in Parkinsonian Models

    PubMed Central

    Oh, Se Hee; Kim, Ha Na; Park, Hyun Jung; Shin, Jin Young; Kim, Dong Yeol

    2016-01-01

    Abstract Ample evidence has suggested that extracellular α‐synuclein aggregates would play key roles in the pathogenesis and progression of Parkinsonian disorders (PDs). In the present study, we investigated whether mesenchymal stem cells (MSCs) and their derived soluble factors could exert neuroprotective effects via proteolysis of extracellular α‐synuclein. When preformed α‐synuclein aggregates were incubated with MSC‐conditioned medium, α‐synuclein aggregates were disassembled, and insoluble and oligomeric forms of α‐synuclein were markedly decreased, thus leading to a significant increase in neuronal viability. In an animal study, MSC or MSC‐conditioned medium treatment decreased the expression of α‐synuclein oligomers and the induction of pathogenic α‐synuclein with an attenuation of apoptotic cell death signaling. Furthermore, we identified that matrix metalloproteinase‐2 (MMP‐2), a soluble factor derived from MSCs, played an important role in the degradation of extracellular α‐synuclein. Our data demonstrated that MSCs and their derived MMP‐2 exert neuroprotective properties through proteolysis of aggregated α‐synuclein in PD‐related microenvironments. Stem Cells Translational Medicine 2017;6:949–961 PMID:28297586

  1. One single method to produce native and Tat-fused recombinant human α-synuclein in Escherichia coli.

    PubMed

    Caldinelli, Laura; Albani, Diego; Pollegioni, Loredano

    2013-04-04

    Human α-synuclein is a small-sized, natively unfolded protein that in fibrillar form is the primary component of Lewy bodies, the pathological hallmark of Parkinson's disease. Experimental evidence suggests that α-synuclein aggregation is the key event that triggers neurotoxicity although additional findings have proposed a protective role of α-synuclein against oxidative stress. One way to address the mechanism of this protective action is to evaluate α-synuclein-mediated protection by delivering this protein inside cells using a chimeric protein fused with the Tat-transduction domain of HIV Tat, named TAT-α-synuclein. A reliable protocol was designed to efficiently express and purify two different forms of human α-synuclein. The synthetic cDNAs encoding for the native α-synuclein and the fusion protein with the transduction domain of Tat protein from HIV were overexpressed in a BL21(DE3) E. coli strain as His-tagged proteins. The recombinant proteins largely localized (≥ 85%) to the periplasmic space. By using a quick purification protocol, based on recovery of periplasmic space content and metal-chelating chromatography, the recombinant α-synuclein protein forms could be purified in a single step to ≥ 95% purity. Both α-synuclein recombinant proteins form fibrils and the TAT-α-synuclein is also cytotoxic in the micromolar concentration range. To further characterize the molecular mechanisms of α-synuclein neurotoxicity both in vitro and in vivo and to evaluate the relevance of extracellular α-synuclein for the pathogenesis and progression of Parkinson's disease, a suitable method to produce different high-quality forms of this pathological protein is required. Our optimized expression and purification procedure offers an easier and faster means of producing different forms (i.e., both the native and the TAT-fusion form) of soluble recombinant α-synuclein than previously described procedures.

  2. Monomeric and fibrillar α-synuclein exert opposite effects on the catalytic cycle that promotes the proliferation of Aβ42 aggregates

    PubMed Central

    Chia, Sean; Habchi, Johnny; Lattanzi, Veronica; Dobson, Christopher M.; Knowles, Tuomas P. J.; Vendruscolo, Michele

    2017-01-01

    The coaggregation of the amyloid-β peptide (Aβ) and α-synuclein is commonly observed in a range of neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. The complex interplay between Aβ and α-synuclein has led to seemingly contradictory results on whether α-synuclein promotes or inhibits Aβ aggregation. Here, we show how these conflicts can be rationalized and resolved by demonstrating that different structural forms of α-synuclein exert different effects on Aβ aggregation. Our results demonstrate that whereas monomeric α-synuclein blocks the autocatalytic proliferation of Aβ42 (the 42-residue form of Aβ) fibrils, fibrillar α-synuclein catalyses the heterogeneous nucleation of Aβ42 aggregates. It is thus the specific balance between the concentrations of monomeric and fibrillar α-synuclein that determines the outcome of the Aβ42 aggregation reaction. PMID:28698377

  3. Calcium accelerates SNARE-mediated lipid mixing through modulating α-synuclein membrane interaction.

    PubMed

    Zhang, Zeting; Jiang, Xin; Xu, Danrui; Zheng, Wenwen; Liu, Maili; Li, Conggang

    2018-04-04

    α-Synuclein is involved in Parkinson's disease, and its interaction with cell membrane is vital to its pathological and physiological functions. We have shown that Ca 2+ can regulate α-synuclein membrane interaction, but the physiological role of Ca 2+ in modulating α-synuclein membrane interaction is still unexplored. Based on the previous findings that α-synuclein inhibits membrane fusion and its inhibitory effect is highly related to its membrane binding, here we employed solution state Nuclear Magnetic Resonance (NMR) spectroscopy and the ensemble fluorescence fusion assay to show that Ca 2+ can modulate the inhibitory effect of α-synuclein on SNARE-mediated membrane fusion through disrupting α-synuclein membrane interaction, resulting in acceleration of SNARE-mediated membrane fusion. These results suggest a modulatory effect of Ca 2+ on membrane mediated normal function of α-synuclein, which of importance for the study of the Parkinson's disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Targeting α-synuclein oligomers by protein-fragment complementation for drug discovery in synucleinopathies.

    PubMed

    Moussaud, Simon; Malany, Siobhan; Mehta, Alka; Vasile, Stefan; Smith, Layton H; McLean, Pamela J

    2015-05-01

    Reducing the burden of α-synuclein oligomeric species represents a promising approach for disease-modifying therapies against synucleinopathies such as Parkinson's disease and dementia with Lewy bodies. However, the lack of efficient drug discovery strategies that specifically target α-synuclein oligomers has been a limitation to drug discovery programs. Here we describe an innovative strategy that harnesses the power of bimolecular protein-fragment complementation to monitor synuclein-synuclein interactions. We have developed two robust models to monitor α-synuclein oligomerization by generating novel stable cell lines expressing α-synuclein fusion proteins for either fluorescent or bioluminescent protein-fragment complementation under the tetracycline-controlled transcriptional activation system. A pilot screen was performed resulting in the identification of two potential hits, a p38 MAPK inhibitor and a casein kinase 2 inhibitor, thereby demonstrating the suitability of our protein-fragment complementation assay for the measurement of α-synuclein oligomerization in living cells at high throughput. The application of the strategy described herein to monitor α-synuclein oligomer formation in living cells with high throughput will facilitate drug discovery efforts for disease-modifying therapies against synucleinopathies and other proteinopathies.

  5. Expanding the spectrum of neuronal pathology in multiple system atrophy

    PubMed Central

    Cykowski, Matthew D.; Coon, Elizabeth A.; Powell, Suzanne Z.; Jenkins, Sarah M.; Benarroch, Eduardo E.; Low, Phillip A.; Schmeichel, Ann M.

    2015-01-01

    Multiple system atrophy is a sporadic alpha-synucleinopathy that typically affects patients in their sixth decade of life and beyond. The defining clinical features of the disease include progressive autonomic failure, parkinsonism, and cerebellar ataxia leading to significant disability. Pathologically, multiple system atrophy is characterized by glial cytoplasmic inclusions containing filamentous alpha-synuclein. Neuronal inclusions also have been reported but remain less well defined. This study aimed to further define the spectrum of neuronal pathology in 35 patients with multiple system atrophy (20 male, 15 female; mean age at death 64.7 years; median disease duration 6.5 years, range 2.2 to 15.6 years). The morphologic type, topography, and frequencies of neuronal inclusions, including globular cytoplasmic (Lewy body-like) neuronal inclusions, were determined across a wide spectrum of brain regions. A correlation matrix of pathologic severity also was calculated between distinct anatomic regions of involvement (striatum, substantia nigra, olivary and pontine nuclei, hippocampus, forebrain and thalamus, anterior cingulate and neocortex, and white matter of cerebrum, cerebellum, and corpus callosum). The major finding was the identification of widespread neuronal inclusions in the majority of patients, not only in typical disease-associated regions (striatum, substantia nigra), but also within anterior cingulate cortex, amygdala, entorhinal cortex, basal forebrain and hypothalamus. Neuronal inclusion pathology appeared to follow a hierarchy of region-specific susceptibility, independent of the clinical phenotype, and the severity of pathology was duration-dependent. Neuronal inclusions also were identified in regions not previously implicated in the disease, such as within cerebellar roof nuclei. Lewy body-like inclusions in multiple system atrophy followed the stepwise anatomic progression of Lewy body-spectrum disease inclusion pathology in 25.7% of patients with multiple system atrophy, including a patient with visual hallucinations. Further, the presence of Lewy body-like inclusions in neocortex, but not hippocampal alpha-synuclein pathology, was associated with cognitive impairment (P = 0.002). However, several cases had the presence of isolated Lewy body-like inclusions at atypical sites (e.g. thalamus, deep cerebellar nuclei) that are not typical for Lewy body-spectrum disease. Finally, interregional correlations (rho ≥ 0.6) in pathologic glial and neuronal lesion burden suggest shared mechanisms of disease progression between both discrete anatomic regions (e.g. basal forebrain and hippocampus) and cell types (neuronal and glial inclusions in frontal cortex and white matter, respectively). These findings suggest that in addition to glial inclusions, neuronal pathology plays an important role in the developmental and progression of multiple system atrophy. See Halliday (doi:10.1093/brain/awv151) for a scientific commentary on this article. PMID:25981961

  6. Early events in copper-ion catalyzed oxidation of α-synuclein.

    PubMed

    Tiwari, Manish K; Leinisch, Fabian; Sahin, Cagla; Møller, Ian Max; Otzen, Daniel E; Davies, Michael J; Bjerrum, Morten J

    2018-04-22

    Previous studies on metal-ion catalyzed oxidation of α-synuclein oxidation have mostly used conditions that result in extensive modification precluding an understanding of the early events in this process. In this study, we have examined time-dependent oxidative events related to α-synuclein modification using six different molar ratios of Cu 2+ /H 2 O 2 /protein and Cu 2+ /H 2 O 2 /ascorbate/protein resulting in mild to moderate extents of oxidation. For a Cu 2+ /H 2 O 2 /protein molar ratio of 2.3:7.8:1 only low levels of carbonyls were detected (0.078 carbonyls per protein), whereas a molar ratio of 4.7:15.6:1 gave 0.22 carbonyls per α-synuclein within 15 min. With the latter conditions, rapid conversion of 3 out of 4 methionines (Met) to methionine sulfoxide, and 2 out of 4 tyrosines (Tyr) were converted to products including inter- and intra-molecular dityrosine cross-links and protein oligomers, as determined by SDS-PAGE and Western blot analysis. Limited histidine (His) modification was observed. The rapid formation of dityrosine cross-links was confirmed by fluorescence and mass-spectrometry. These data indicate that Met and Tyr oxidation are early events in Cu 2+ /H 2 O 2 -mediated damage, with carbonyl formation being a minor process. With the Cu 2+ /H 2 O 2 /ascorbate system, rapid protein carbonyl formation was detected with the first 5 min, but after this time point, little additional carbonyl formation was detected. With this system, lower levels of Met and Tyr oxidation were detected (2 Met and 1 Tyr modified with a Cu 2+ /H 2 O 2 /ascorbate/protein ratio of 2.3:7.8:7.8:1), but greater His oxidation. Only low levels of intra- dityrosine cross-links and no inter- dityrosine oligomers were detected under these conditions, suggesting that ascorbate limits Cu 2+ /H 2 O 2 -induced α-synuclein modification. Copyright © 2018. Published by Elsevier Inc.

  7. Structural and functional properties of prefibrillar α-synuclein oligomers.

    PubMed

    Pieri, Laura; Madiona, Karine; Melki, Ronald

    2016-04-14

    The deposition of fibrillar alpha-synuclein (α-syn) within inclusions (Lewy bodies and Lewy neurites) in neurons and glial cells is a hallmark of synucleinopathies. α-syn populates a variety of assemblies ranging from prefibrillar oligomeric species to fibrils whose specific contribution to neurodegeneration is still unclear. Here, we compare the specific structural and biological properties of distinct soluble prefibrillar α-syn oligomers formed either spontaneously or in the presence of dopamine and glutaraldehyde. We show that both on-fibrillar assembly pathway and distinct dopamine-mediated and glutaraldehyde-cross-linked α-syn oligomers are only slightly effective in perturbing cell membrane integrity and inducing cytotoxicity, while mature fibrils exhibit the highest toxicity. In contrast to low-molecular weight and unstable oligomers, large stable α-syn oligomers seed the aggregation of soluble α-syn within reporter cells although to a lesser extent than mature α-syn fibrils. These oligomers appear elongated in shape. Our findings suggest that α-syn oligomers represent a continuum of species ranging from unstable low molecular weight particles to mature fibrils via stable elongated oligomers composed of more than 15 α-syn monomers that possess seeding capacity.

  8. Nanomechanical properties of distinct fibrillar polymorphs of the protein α-synuclein

    PubMed Central

    Makky, Ali; Bousset, Luc; Polesel-Maris, Jérôme; Melki, Ronald

    2016-01-01

    Alpha-synuclein (α-Syn) is a small presynaptic protein of 140 amino acids. Its pathologic intracellular aggregation within the central nervous system yields protein fibrillar inclusions named Lewy bodies that are the hallmarks of Parkinson’s disease (PD). In solution, pure α-Syn adopts an intrinsically disordered structure and assembles into fibrils that exhibit considerable morphological heterogeneity depending on their assembly conditions. We recently established tightly controlled experimental conditions allowing the assembly of α-Syn into highly homogeneous and pure polymorphs. The latter exhibited differences in their shape, their structure but also in their functional properties. We have conducted an AFM study at high resolution and performed a statistical analysis of fibrillar α-Syn shape and thermal fluctuations to calculate the persistence length to further assess the nanomechanical properties of α-Syn polymorphs. Herein, we demonstrated quantitatively that distinct polymorphs made of the same protein (wild-type α-Syn) show significant differences in their morphology (height, width and periodicity) and physical properties (persistence length, bending rigidity and axial Young’s modulus). PMID:27901068

  9. Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease

    PubMed Central

    Allen Reish, Heather E.; Standaert, David G.

    2015-01-01

    Alpha-synuclein (α-syn) is central to the pathogenesis of Parkinson disease (PD). Gene duplications, triplications and point mutations in SNCA1, the gene encoding α-syn, cause autosomal dominant forms of PD. Aggregated and post-translationally modified forms of α-syn are present in Lewy bodies and Lewy neurites in both sporadic and familial PD, and recent work has emphasized the prion-like ability of aggregated α-syn to produce spreading pathology. Accumulation of abnormal forms of α-syn is a trigger for PD, but recent evidence suggests that much of the downstream neurodegeneration may result from inflammatory responses. Components of both the innate and adaptive immune systems are activated in PD, and influencing interactions between innate and adaptive immune components has been shown to modify the pathological process in animal models of PD. Understanding the relationship between α-syn and subsequent inflammation may reveal novel targets for neuroprotective interventions. In this review, we examine the role of α-syn and modified forms of this protein in the initiation of innate and adaptive immune responses. PMID:25588354

  10. Effect of curcumin analogs onα-synuclein aggregation and cytotoxicity

    PubMed Central

    Jha, Narendra Nath; Ghosh, Dhiman; Das, Subhadeep; Anoop, Arunagiri; Jacob, Reeba S.; Singh, Pradeep K.; Ayyagari, Narasimham; Namboothiri, Irishi N. N.; Maji, Samir K.

    2016-01-01

    Alpha-synuclein (α-Syn) aggregation into oligomers and fibrils is associated with dopaminergic neuron loss occurring in Parkinson’s disease (PD) pathogenesis. Compounds that modulate α-Syn aggregation and interact with preformed fibrils/oligomers and convert them to less toxic species could have promising applications in the drug development efforts against PD. Curcumin is one of the Asian food ingredient which showed promising role as therapeutic agent against many neurological disorders including PD. However, the instability and low solubility makes it less attractive for the drug development. In this work, we selected various curcumin analogs and studied their toxicity, stability and efficacy to interact with different α-Syn species and modulation of their toxicity. We found a subset of curcumin analogs with higher stability and showed that curcumin and its various analogs interact with preformed fibrils and oligomers and accelerate α-Syn aggregation to produce morphologically different amyloid fibrils in vitro. Furthermore, these curcumin analogs showed differential binding with the preformed α-Syn aggregates. The present data suggest the potential role of curcumin analogs in modulating α-Syn aggregation. PMID:27338805

  11. Using Gastrocnemius sEMG and Plasma α-Synuclein for the Prediction of Freezing of Gait in Parkinson's Disease Patients

    PubMed Central

    Yang, Qiong; Zhang, Lin-Yuan; Chen, Sheng-Di; Liu, Jun

    2014-01-01

    Freezing of gait (FOG) is a complicated gait disturbance in Parkinson's disease (PD) and a relevant subclinical predictor algorithm is lacking. The main purpose of this study is to explore the potential value of surface electromyograph (sEMG) and plasma α-synuclein levels as predictors of the FOG seen in PD. 21 PD patients and 15 normal controls were recruited. Motor function was evaluated using the Unified Parkinson's Disease Rating Scale (UPDRS) and Freezing of gait questionnaire (FOG-Q). Simultaneously, gait analysis was also performed using VICON capture system in PD patients and sEMG data was recorded as well. Total plasma α-synuclein was quantitatively assessed by Luminex assay in all participants. Recruited PD patients were classified into two groups: PD patients with FOG (PD+FOG) and without FOG (PD-FOG), based on clinical manifestation, the results of the FOG-Q and VICON capture system. PD+FOG patients displayed higher FOG-Q scores, decreased walking speed, smaller step length, smaller stride length and prolonged double support time compared to the PD-FOG in the gait trial. sEMG data indicated that gastrocnemius activity in PD+FOG patients was significantly reduced compared to PD-FOG patients. In addition, plasma α-synuclein levels were significantly decreased in the PD+FOG group compared to control group; however, no significant difference was found between the PD+FOG and PD-FOG groups. Our study revealed that gastrocnemius sEMG could be used to evaluate freezing gait in PD patients, while plasma α-synuclein might discriminate freezing of gait in PD patients from normal control, though no difference was found between the PD+FOG and PD-FOG groups. PMID:24586710

  12. Destruction of {alpha}-synuclein based amyloid fibrils by a low temperature plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karakas, Erdinc; Laroussi, Mounir; Munyanyi, Agatha

    2010-10-04

    Amyloid fibrils are ordered beta-sheet aggregates that are associated with a number of neurodegenerative diseases such as Alzheimer and Parkinson. At present, there is no cure for these progressive and debilitating diseases. Here we report initial studies that indicate that low temperature atmospheric pressure plasma can break amyloid fibrils into smaller units in vitro. The plasma was generated by the 'plasma pencil', a device capable of emitting a long, low temperature plasma plume/jet. This avenue of research may facilitate the development of a plasma-based medical treatment.

  13. Genetic enhancement of macroautophagy in vertebrate models of neurodegenerative diseases.

    PubMed

    Ejlerskov, Patrick; Ashkenazi, Avraham; Rubinsztein, David C

    2018-04-03

    Most of the neurodegenerative diseases that afflict humans manifest with the intraneuronal accumulation of toxic proteins that are aggregate-prone. Extensive data in cell and neuronal models support the concept that such proteins, like mutant huntingtin or alpha-synuclein, are substrates for macroautophagy (hereafter autophagy). Furthermore, autophagy-inducing compounds lower the levels of such proteins and ameliorate their toxicity in diverse animal models of neurodegenerative diseases. However, most of these compounds also have autophagy-independent effects and it is important to understand if similar benefits are seen with genetic strategies that upregulate autophagy, as this strengthens the validity of this strategy in such diseases. Here we review studies in vertebrate models using genetic manipulations of core autophagy genes and describe how these improve pathology and neurodegeneration, supporting the validity of autophagy upregulation as a target for certain neurodegenerative diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. α-synuclein expression in the mouse cerebellum is restricted to VGluT1 excitatory terminals and is enriched in unipolar brush cells

    PubMed Central

    Lee, Sun Kyong; Sillitoe, Roy V.; Silva, Coralie; Martina, Marco; Sekerkova, Gabriella

    2015-01-01

    α-synuclein has a crucial role in synaptic vesicle release and synaptic membrane recycling. Although its general expression pattern has been described in the cerebellum, the precise cerebellar structures where α-synuclein is localized are poorly understood. To address this question, we used α-synuclein immunohistochemistry in adult mice cerebellar sections. We found that α-synuclein labels glutamatergic but not glycinergic and GABAergic synaptic terminals in the molecular and granule cell layers. α-synuclein was preferentially expressed in parallel and mossy fiber synaptic terminals that also express vesicular glutamate transporter 1 (VGluT1) while it was not detected in VGluT2-positive climbing fibers. α-synuclein was particularly enriched in lobules IX and X, a region known to contain high density of unipolar brush cells (UBCs). To elucidate whether the α-synuclein-positive mossy fibers belong to UBCs, we double labeled cerebellar sections with antibodies to α-synuclein and UBCs type specific markers(calretinin for type I and metabotropic glutamate receptor 1α (mGluR1α) for type II UBCs), and took advantage of organotypic cerebellar cultures (in which all mossy fibers are UBC axons) and moonwalker mice (in which almost all UBCs are ablated) and found that both type I and type II UBCs express α-synuclein. In moonwalker mutant cerebella, the α-synuclein/VGluT1 immunolabeling showed dramatic decrease in the vestibulocerebellum that correlated with the absence of UBC. α-synuclein appears to be an excellent marker for intrinsic mossy fibers of the VGluT1 subset in conjunction with UBCs of both subtypes. PMID:25917213

  15. α-Synuclein expression in the mouse cerebellum is restricted to VGluT1 excitatory terminals and is enriched in unipolar brush cells.

    PubMed

    Lee, Sun Kyong; Sillitoe, Roy V; Silva, Coralie; Martina, Marco; Sekerkova, Gabriella

    2015-10-01

    α-Synuclein has a crucial role in synaptic vesicle release and synaptic membrane recycling. Although its general expression pattern has been described in the cerebellum, the precise cerebellar structures where α-synuclein is localized are poorly understood. To address this question, we used α-synuclein immunohistochemistry in adult mice cerebellar sections. We found that α-synuclein labels glutamatergic but not glycinergic and GABAergic synaptic terminals in the molecular and granule cell layers. α-Synuclein was preferentially expressed in parallel and mossy fiber synaptic terminals that also express vesicular glutamate transporter 1 (VGluT1), while it was not detected in VGluT2-positive climbing fibers. α-Synuclein was particularly enriched in lobules IX and X, a region known to contain a high density of unipolar brush cells (UBCs). To elucidate whether the α-synuclein-positive mossy fibers belong to UBCs, we double-labeled cerebellar sections with antibodies to α-synuclein and UBC-type-specific markers (calretinin for type I and metabotropic glutamate receptor 1α (mGluR1α) for type II UBCs) and took advantage of organotypic cerebellar cultures (in which all mossy fibers are UBC axons) and moonwalker mice (in which almost all UBCs are ablated) and found that both type I and type II UBCs express α-synuclein. In moonwalker mutant cerebella, the α-synuclein/VGluT1 immunolabeling showed a dramatic decrease in the vestibulocerebellum that correlated with the absence of UBC. α-Synuclein appears to be an excellent marker for intrinsic mossy fibers of the VGluT1 subset in conjunction with UBCs of both subtypes.

  16. Alpha-Synuclein Pathology in Sensory Nerve Terminals of the Upper Aerodigestive Tract of Parkinson’s Disease Patients

    PubMed Central

    Mu, Liancai; Chen, Jingming; Sobotka, Stanislaw; Nyirenda, Themba; Benson, Brian; Gupta, Fiona; Sanders, Ira; Adler, Charles H.; Caviness, John N.; Shill, Holly A.; Sabbagh, Marwan; Samanta, Johan E.; Sue, Lucia I.; Beach, Thomas G.

    2015-01-01

    Dysphagia is common in Parkinson’s disease (PD) and causes significant morbidity and mortality. PD dysphagia has usually been explained as dysfunction of central motor control, much like other motor symptoms that are characteristic of the disease. However, PD dysphagia does not correlate with severity of motor symptoms nor does it respond to motor therapies. It is known that PD patients have sensory deficits in the pharynx, and that impaired sensation may contribute to dysphagia. However, the underlying cause of the pharyngeal sensory deficits in PD is not known. We hypothesized that PD dysphagia with sensory deficits may be due to degeneration of the sensory nerve terminals in the upper aerodigestive tract (UAT). We have previously shown that Lewy-type synucleinopathy (LTS) is present in the main pharyngeal sensory nerves of PD patients, but not in controls. In this study, the sensory terminals in UAT mucosa were studied to discern the presence and distribution of LTS. Whole-mount specimens (tongue-pharynx-larynx-upper esophagus) were obtained from 10 deceased human subjects with clinically diagnosed and neuropathologically confirmed PD (five with dysphagia and five without) and four age-matched healthy controls. Samples were taken from six sites and immunostained for phosphorylated α-synuclein (PAS). The results showed the presence of PAS-immunoreactive (PAS-ir) axons in all the PD subjects and in none of the controls. Notably, PD patients with dysphagia had more PAS-ir axons in the regions that are critical for initiating the swallowing reflex. These findings suggest that Lewy pathology affects mucosal sensory axons in specific regions of the UAT and may be related to PD dysphagia. PMID:26041249

  17. Alpha-Synuclein Pathology in Sensory Nerve Terminals of the Upper Aerodigestive Tract of Parkinson's Disease Patients.

    PubMed

    Mu, Liancai; Chen, Jingming; Sobotka, Stanislaw; Nyirenda, Themba; Benson, Brian; Gupta, Fiona; Sanders, Ira; Adler, Charles H; Caviness, John N; Shill, Holly A; Sabbagh, Marwan; Samanta, Johan E; Sue, Lucia I; Beach, Thomas G

    2015-08-01

    Dysphagia is common in Parkinson's disease (PD) and causes significant morbidity and mortality. PD dysphagia has usually been explained as dysfunction of central motor control, much like other motor symptoms that are characteristic of the disease. However, PD dysphagia does not correlate with severity of motor symptoms nor does it respond to motor therapies. It is known that PD patients have sensory deficits in the pharynx, and that impaired sensation may contribute to dysphagia. However, the underlying cause of the pharyngeal sensory deficits in PD is not known. We hypothesized that PD dysphagia with sensory deficits may be due to degeneration of the sensory nerve terminals in the upper aerodigestive tract (UAT). We have previously shown that Lewy-type synucleinopathy (LTS) is present in the main pharyngeal sensory nerves of PD patients, but not in controls. In this study, the sensory terminals in UAT mucosa were studied to discern the presence and distribution of LTS. Whole-mount specimens (tongue-pharynx-larynx-upper esophagus) were obtained from 10 deceased human subjects with clinically diagnosed and neuropathologically confirmed PD (five with dysphagia and five without) and four age-matched healthy controls. Samples were taken from six sites and immunostained for phosphorylated α-synuclein (PAS). The results showed the presence of PAS-immunoreactive (PAS-ir) axons in all the PD subjects and in none of the controls. Notably, PD patients with dysphagia had more PAS-ir axons in the regions that are critical for initiating the swallowing reflex. These findings suggest that Lewy pathology affects mucosal sensory axons in specific regions of the UAT and may be related to PD dysphagia.

  18. Seeking a Mechanism for the Toxicity of Oligomeric α-Synuclein

    PubMed Central

    Roberts, Hazel L.; Brown, David R.

    2015-01-01

    In a number of neurological diseases including Parkinson’s disease (PD), α‑synuclein is aberrantly folded, forming abnormal oligomers, and amyloid fibrils within nerve cells. Strong evidence exists for the toxicity of increased production and aggregation of α-synuclein in vivo. The toxicity of α-synuclein is popularly attributed to the formation of “toxic oligomers”: a heterogenous and poorly characterized group of conformers that may share common molecular features. This review presents the available evidence on the properties of α-synuclein oligomers and the potential molecular mechanisms of their cellular disruption. Toxic α-synuclein oligomers may impact cells in a number of ways, including the disruption of membranes, mitochondrial depolarization, cytoskeleton changes, impairment of protein clearance pathways, and enhanced oxidative stress. We also examine the relationship between α-synuclein toxic oligomers and amyloid fibrils, in the light of recent studies that paint a more complex picture of α-synuclein toxicity. Finally, methods of studying and manipulating oligomers within cells are described. PMID:25816357

  19. Direct Membrane Association Drives Mitochondrial Fission by the Parkinson Disease-associated Protein α-Synuclein*♦

    PubMed Central

    Nakamura, Ken; Nemani, Venu M.; Azarbal, Farnaz; Skibinski, Gaia; Levy, Jon M.; Egami, Kiyoshi; Munishkina, Larissa; Zhang, Jue; Gardner, Brooke; Wakabayashi, Junko; Sesaki, Hiromi; Cheng, Yifan; Finkbeiner, Steven; Nussbaum, Robert L.; Masliah, Eliezer; Edwards, Robert H.

    2011-01-01

    The protein α-synuclein has a central role in Parkinson disease, but the mechanism by which it contributes to neural degeneration remains unknown. We now show that the expression of α-synuclein in mammalian cells, including neurons in vitro and in vivo, causes the fragmentation of mitochondria. The effect is specific for synuclein, with more fragmentation by α- than β- or γ-isoforms, and it is not accompanied by changes in the morphology of other organelles or in mitochondrial membrane potential. However, mitochondrial fragmentation is eventually followed by a decline in respiration and neuronal death. The fragmentation does not require the mitochondrial fission protein Drp1 and involves a direct interaction of synuclein with mitochondrial membranes. In vitro, synuclein fragments artificial membranes containing the mitochondrial lipid cardiolipin, and this effect is specific for the small oligomeric forms of synuclein. α-Synuclein thus exerts a primary and direct effect on the morphology of an organelle long implicated in the pathogenesis of Parkinson disease. PMID:21489994

  20. Human β-Synuclein Rendered Fibrillogenic by Designed Mutations

    PubMed Central

    Zibaee, Shahin; Fraser, Graham; Jakes, Ross; Owen, David; Serpell, Louise C.; Crowther, R. Anthony; Goedert, Michel

    2010-01-01

    Filamentous inclusions made of α-synuclein are found in nerve cells and glial cells in a number of human neurodegenerative diseases, including Parkinson disease, dementia with Lewy bodies, and multiple system atrophy. The assembly and spreading of these inclusions are likely to play an important role in the etiology of common dementias and movement disorders. Both α-synuclein and the homologous β-synuclein are abundantly expressed in the central nervous system; however, β-synuclein is not present in the pathological inclusions. Previously, we observed a poor correlation between filament formation and the presence of residues 73–83 of α-synuclein, which are absent in β-synuclein. Instead, filament formation correlated with the mean β-sheet propensity, charge, and hydrophilicity of the protein (global physicochemical properties) and β-strand contiguity calculated by a simple algorithm of sliding averages (local physicochemical property). In the present study, we rendered β-synuclein fibrillogenic via one set of point mutations engineered to enhance global properties and a second set engineered to enhance predominantly β-strand contiguity. Our findings show that the intrinsic physicochemical properties of synucleins influence their fibrillogenic propensity via two distinct but overlapping modalities. The implications for filament formation and the pathogenesis of neurodegenerative diseases are discussed. PMID:20833719

  1. A lysosomal lair for a pathogenic protein pair.

    PubMed

    Dawson, Ted M; Dawson, Valina L

    2011-07-13

    Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects movement. Although many of the causes of PD remain unclear, a consistent finding is the abnormal accumulation of the protein α-synuclein. In a recent issue of Cell, Mazzuli et al. provide a molecular explanation for the unexpected link between PD and Gaucher's disease, a glycolipid lysosomal storage disorder caused by loss of the enzyme glucocerebrosidase (GBA). They report a reciprocal connection between loss of GBA activity and the accumulation of α-synuclein in lysosomes that establishes a bidirectional positive feedback loop with pathogenic consequences. Understanding how lysosomes are implicated in PD may reveal new therapeutic targets for treating this disease.

  2. Involvement of Gaucher Disease Mutations in Parkinson Disease.

    PubMed

    Vilageliu, Lluisa; Grinberg, Daniel

    2017-01-01

    Gaucher disease is an autosomal recessive lysosomal storage disorder, caused by mutations in the GBA gene. The frequency of Gaucher disease patients and heterozygote carriers that developed Parkinson disease has been found to be above that of the control population. This fact suggests that mutations in the GBA gene can be involved in Parkison's etiology. Analysis of large cohorts of patients with Parkinson disease has shown that there are significantly more cases bearing GBA mutations than those found among healthy individuals. Functional studies have proven an interaction between α-synuclein and GBA, the levels of which presented an inverse correlation. Mutant GBA proteins cause increases in α-synuclein levels, while an inhibition of GBA by α-synuclein has been also demonstrated. Saposin C, a coactivator of GBA, has been shown to protect GBA from this inhibition. Among the GBA variants associated with Parkinson disease, E326K seems to be one of the most prevalent. Interestingly, it is involved in Gaucher disease only when it forms part of a double-mutant allele, usually with the L444P mutation. Structural analyses have revealed that both residues (E326 and L444) interact with Saposin C and, probably, also with α-synuclein. This could explain the antagonistic role of these two proteins in relation to GBA. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Increased lipolysis and altered lipid homeostasis protect y-synuclein null mutant mice from diet-induced obesity

    USDA-ARS?s Scientific Manuscript database

    Synucleins are a family of homologous proteins principally known for their involvement in neurodegeneration. In neurons a-synuclein promotes assembly of SNARE complexes required for fusion of synaptic vesicles with the plasma membrane during neurotransmitter release. Y-synuclein is highly expressed ...

  4. Aminochrome as a preclinical experimental model to study degeneration of dopaminergic neurons in Parkinson's disease.

    PubMed

    Paris, Irmgard; Cardenas, Sergio; Lozano, Jorge; Perez-Pastene, Carolina; Graumann, Rebecca; Riveros, Alejandra; Caviedes, Pablo; Segura-Aguilar, Juan

    2007-09-01

    Four decades after L-dopa introduction to PD therapy, the cause of Parkinson's disease (PD) remains unknown despite the intensive research and the discovery of a number of gene mutations and deletions in the pathogenesis of familial PD. Different model neurotoxins have been used as preclinical experimental models to study the neurodegenerative process in PD, such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and rotenone. The lack of success in identifying the molecular mechanism for the degenerative process in PD opens the question whether the current preclinical experimental models are suitable to understand the degeneration of neuromelanin-containing dopaminergic neurons in PD. We propose aminochrome as a model neurotoxin to study the neurodegenerative processes occurring in neuromelanin-containing dopaminergic neurons in PD. Aminochrome is an endogenous compound formed during dopamine oxidation and it is the precursor of neuromelanin, a substance whose formation is a normal process in mesencephalic dopaminergic neurons. However, aminochrome itself can induce neurotoxicity under certain aberrant conditions such as (i) one-electron reduction of aminochrome catalyzed by flavoenzymes to leukoaminochrome o-semiquinone radical, which is a highly reactive neurotoxin; or (ii) the formation of aminochrome adducts with alpha-synuclein, enhancing and stabilizing the formation of neurotoxic protofibrils. These two neurotoxic pathways of aminochrome are prevented by DT-diaphorase, an enzyme that effectively reduces aminochrome with two-electrons preventing both aminochrome one-electron reduction or formation alpha synuclein protofibrils. We propose to use aminochrome as a preclinical experimental model to study the neurodegenerative process of neuromelanin containing dopaminergic neurons in PD.

  5. The heterozygous A53T mutation in the alpha-synuclein gene in a Chinese Han patient with Parkinson disease: case report and literature review.

    PubMed

    Xiong, Wei-Xi; Sun, Yi-Min; Guan, Rong-Yuan; Luo, Su-Shan; Chen, Chen; An, Yu; Wang, Jian; Wu, Jian-Jun

    2016-10-01

    The missense mutation A53T of alpha-synuclein gene (SNCA) was reported to be a rare but definite cause of sporadic and familial Parkinson disease (PD). It seemed to be restricted geographically in Greece and Italy. We aimed to identify the SNCA mutations in a Chinese PD cohort. Ninety-one early onset PD patients or familial PD probands were collected consecutively for the screening of PD-related genes. The genetic analysis was carried out by target sequencing of the exons and the corresponding flanking regions of the PD-related genes using Illumina HiSeq 2000 sequencer and further confirmed by Sanger sequencing or restriction fragment length polymorphism. Dosage mutations of exons in these genes were carried out by multiple ligation-dependent probe amplification. Among the 91 patients, we found only one heterozygous mutation of SNCA A53T, in a 23-year-old male patient with negative family history. The [(11)C]-2β-carbomethoxy-3β-(4-fluorophenyl) tropan (CFT) PET and PD-related spatial covariance pattern (PDRP) via [(18)F]-fluorodeoxyglucos (FDG) PET confirmed a typical pattern of PD. After examining his parents, we found his mother was an asymptomatic carrier, with declined hand dexterity detected by quantitative motor tests. Reduced dopamine transporter uptake of his mother was identified by CFT PET, and abnormal PDRP pattern was found by FDG PET. Our investigation expanded the clinical and genetic spectrum of Chinese PD patients, and we suggested SNCA mutations to be screened in familial and early onset Chinese PD patients.

  6. Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes.

    PubMed

    Abounit, Saïda; Bousset, Luc; Loria, Frida; Zhu, Seng; de Chaumont, Fabrice; Pieri, Laura; Olivo-Marin, Jean-Christophe; Melki, Ronald; Zurzolo, Chiara

    2016-10-04

    Synucleinopathies such as Parkinson's disease are characterized by the pathological deposition of misfolded α-synuclein aggregates into inclusions throughout the central and peripheral nervous system. Mounting evidence suggests that intercellular propagation of α-synuclein aggregates may contribute to the neuropathology; however, the mechanism by which spread occurs is not fully understood. By using quantitative fluorescence microscopy with co-cultured neurons, here we show that α-synuclein fibrils efficiently transfer from donor to acceptor cells through tunneling nanotubes (TNTs) inside lysosomal vesicles. Following transfer through TNTs, α-synuclein fibrils are able to seed soluble α-synuclein aggregation in the cytosol of acceptor cells. We propose that donor cells overloaded with α-synuclein aggregates in lysosomes dispose of this material by hijacking TNT-mediated intercellular trafficking. Our findings thus reveal a possible novel role of TNTs and lysosomes in the progression of synucleinopathies. © 2016 The Authors.

  7. Pesticide Exposure Exacerbates α-Synucleinopathy in an A53T Transgenic Mouse Model

    PubMed Central

    Norris, Erin H.; Uryu, Kunihiro; Leight, Susan; Giasson, Benoit I.; Trojanowski, John Q.; Lee, Virginia M.-Y.

    2007-01-01

    The factors initiating or contributing to the pathogenesis of Parkinson’s disease and related neurodegenerative synucleinopathies are still largely unclear, but environmental factors such as pesticides have been implicated. In this study, A53T mutant human α-synuclein transgenic mice (M83), which develop α-synuclein neuropathology, were treated with the pesticides paraquat and maneb (either singly or together), and their effects were analyzed. Immunohistochemical and biochemical analyses showed that chronic treatment of M83 transgenic mice with both pesticides (but not with either pesticide alone) drastically increased neuronal α-synuclein pathology throughout the central nervous system including the hippocampus, cerebellum, and sensory and auditory cortices. α-Synuclein-associated mitochondrial degeneration was observed in M83 but not in wild-type α-synuclein transgenic mice. Because α-synuclein inclusions accumulated in pesticide-exposed M83 transgenic mice without a motor phenotype, we conclude that α-synuclein aggregate formation precedes disease onset. These studies support the notion that environmental factors causing nitrative damage are closely linked to mechanisms underlying the formation of α-synuclein pathologies and the onset of Parkinson’s-like neurodegeneration. PMID:17255333

  8. Plasma α-synuclein and cognitive impairment in the Parkinson's Associated Risk Syndrome: A pilot study.

    PubMed

    Wang, Hua; Atik, Anzari; Stewart, Tessandra; Ginghina, Carmen; Aro, Patrick; Kerr, Kathleen F; Seibyl, John; Jennings, Danna; Jensen, Poul Henning; Marek, Kenneth; Shi, Min; Zhang, Jing

    2018-04-27

    Plasma total and nervous system derived exosomal (NDE) α-synuclein have been determined as potential biomarkers of Parkinson's disease (PD). To explore the utility of plasma α-synuclein in the prodromal phase of PD, plasma total and NDE α-synuclein were evaluated in baseline and 2-year follow-up samples from 256 individuals recruited as part of the Parkinson's Associated Risk Syndrome (PARS) study. The results demonstrated that baseline and longitudinal increases in total α-synuclein predicted progression of cognitive decline in hyposmic individuals with dopamine transporter (DAT) binding reduction. On the other hand, a longitudinal decrease in NDE α-synuclein predicted worsening cognitive scores in hyposmic individuals with DAT binding reduction. Finally, in individuals with faster DAT progression, decreasing NDE/total α-synuclein ratio was associated with a larger reduction in DAT from baseline to follow-up. These results suggest that, though underlying mechanisms remain to be defined, alterations in plasma total and NDE α-synuclein concentrations are likely associated with PD progression, especially in the aspect of cognitive impairment, at early stages of the disease. Copyright © 2018. Published by Elsevier Inc.

  9. α-Synuclein pathology in the cranial and spinal nerves in Lewy body disease.

    PubMed

    Nakamura, Keiko; Mori, Fumiaki; Tanji, Kunikazu; Miki, Yasuo; Toyoshima, Yasuko; Kakita, Akiyoshi; Takahashi, Hitoshi; Yamada, Masahito; Wakabayashi, Koichi

    2016-06-01

    Accumulation of phosphorylated α-synuclein in neurons and glial cells is a histological hallmark of Lewy body disease (LBD) and multiple system atrophy (MSA). Recently, filamentous aggregations of phosphorylated α-synuclein have been reported in the cytoplasm of Schwann cells, but not in axons, in the peripheral nervous system in MSA, mainly in the cranial and spinal nerve roots. Here we conducted an immunohistochemical investigation of the cranial and spinal nerves and dorsal root ganglia of patients with LBD. Lewy axons were found in the oculomotor, trigeminal and glossopharyngeal-vagus nerves, but not in the hypoglossal nerve. The glossopharyngeal-vagus nerves were most frequently affected, with involvement in all of 20 subjects. In the spinal nerve roots, Lewy axons were found in all of the cases examined. Lewy axons in the anterior nerves were more frequent and numerous in the thoracic and sacral segments than in the cervical and lumbar segments. On the other hand, axonal lesions in the posterior spinal nerve roots appeared to increase along a cervical-to-sacral gradient. Although Schwann cell cytoplasmic inclusions were found in the spinal nerves, they were only minimal. In the dorsal root ganglia, axonal lesions were seldom evident. These findings indicate that α-synuclein pathology in the peripheral nerves is axonal-predominant in LBD, whereas it is restricted to glial cells in MSA. © 2015 Japanese Society of Neuropathology.

  10. HMGB1 promotes the starvation-induced autophagic degradation of α-synuclein in SH-SY5Y cells Atg 5-dependently.

    PubMed

    Guan, Yi; Li, Yiping; Zhao, Gang; Li, Yunqian

    2018-06-01

    Impaired autophagic clearance of aggregated α-synuclein is considered as one of key mechanisms underlining Parkinson disease (PD). High-mobility group protein B1 (HMGB1) has recently been demonstrated to mediate persistent neuroinflammation and consequent progressive neurodegeneration by promoting multiple inflammatory and neurotoxic factors. In this study, we examined the influence of the overexpression of wild-type (WT) and mutant-type (MT, A53T and A30P) α-synuclein on the autophagy in neuroblastoma SH-SY5Y cells under starvation, and then investigated the regulation of endogenous HMGB1 on the α-synuclein degradation and on the starvation-induced autophagy in the α-synuclein-overexpressed SH-SY5Y cells. It was demonstrated that the overexpression of WT or MT α-synuclein significantly downregulated the starvation-induced conversion of LC3I to LC3II and autophagy protein (Atg) 5 expression, whereas markedly inhibited the starvation-downregulated mTOR in SH-SY5Y cells. On the other side, the lentivirus-mediated upregulation of endogenous HMGB1 promoted the degradation of WT or MT α-synuclein in SH-SY5Y cells autophagy-dependently via promoting Atg 5, but not mTOR, the Atg 5 knockdown downregulated the HMGB1-mediated promotion to α-synuclein degeneration. Thus, we concluded that α-synuclein inhibited the starvation-induced autophagy in neuroblastoma SH-SY5Y cells via inhibiting the mTOR/Atg 5 signaling. However, the endogenous HMGB1 promoted the autophagic degradation of α-synuclein via the Atg 5-dependent autophagy-initiation pathway, implying the protective role of endogenous HMGB1 in the neuroblastoma cells against the α-synuclein accumulation. Copyright © 2018. Published by Elsevier Inc.

  11. Effects of Serine 129 Phosphorylation on α-Synuclein Aggregation, Membrane Association, and Internalization*

    PubMed Central

    Samuel, Filsy; Flavin, William P.; Iqbal, Sobia; Pacelli, Consiglia; Sri Renganathan, Sri Dushyaanthan; Trudeau, Louis-Eric; Campbell, Edward M.; Fraser, Paul E.; Tandon, Anurag

    2016-01-01

    Although trace levels of phosphorylated α-synuclein (α-syn) are detectable in normal brains, nearly all α-syn accumulated within Lewy bodies in Parkinson disease brains is phosphorylated on serine 129 (Ser-129). The role of the phosphoserine residue and its effects on α-syn structure, function, and intracellular accumulation are poorly understood. Here, co-expression of α-syn and polo-like kinase 2 (PLK2), a kinase that targets Ser-129, was used to generate phosphorylated α-syn for biophysical and biological characterization. Misfolding and fibril formation of phosphorylated α-syn isoforms were detected earlier, although the fibrils remained phosphatase- and protease-sensitive. Membrane binding of α-syn monomers was differentially affected by phosphorylation depending on the Parkinson disease-linked mutation. WT α-syn binding to presynaptic membranes was not affected by phosphorylation, whereas A30P α-syn binding was greatly increased, and A53T α-syn was slightly lower, implicating distal effects of the carboxyl- on amino-terminal membrane binding. Endocytic vesicle-mediated internalization of pre-formed fibrils into non-neuronal cells and dopaminergic neurons matched the efficacy of α-syn membrane binding. Finally, the disruption of internalized vesicle membranes was enhanced by the phosphorylated α-syn isoforms, a potential means for misfolded extracellular or lumenal α-syn to access cytosolic α-syn. Our results suggest that the threshold for vesicle permeabilization is evident even at low levels of α-syn internalization and are relevant to therapeutic strategies to reduce intercellular propagation of α-syn misfolding. PMID:26719332

  12. Oral Exposure to Paraquat Triggers Earlier Expression of Phosphorylated α-Synuclein in the Enteric Nervous System of A53T Mutant Human α-Synuclein Transgenic Mice

    PubMed Central

    Naudet, Nicolas; Antier, Emilie; Gaillard, Damien; Morignat, Eric; Lakhdar, Latifa; Baron, Thierry; Bencsik, Anna

    2017-01-01

    Abstract The misfolded α-synuclein protein, phosphorylated at serine 129 (pSer129 α-syn), is the hallmark of Parkinson disease (PD). Detected also in the enteric nervous system (ENS), it supports the recent theory that PD could start in the gut, rather than the brain. In a previous study, using a transgenic mouse model of human synucleinopathies expressing the A53T mutant α-synuclein (TgM83), in which a neurodegenerative process associated with α-synuclein occurs spontaneously in the brain, we have shown earlier onset of pSer129 α-syn in the ENS. Here, we used this model to study the impact of paraquat (PQ) a neurotoxic herbicide incriminated in PD in agricultural workers) on the enteric pSer129 α-syn expression in young mice. Orally delivered in the drinking water at 10 mg/kg/day for 6–8 weeks, the impact of PQ was measured in a time-dependent manner on weight, locomotor abilities, pSer129 α-syn, and glial fibrillary acidic protein (GFAP) expression levels in the ENS. Remarkably, pSer129 α-syn was detected in ENS earlier under PQ oral exposure and enteric GFAP expression was also increased. These findings bring additional support to the theory that neurotoxic agents such as PQ initiate idiopathic PD after oral delivery. PMID:29040593

  13. Oral Exposure to Paraquat Triggers Earlier Expression of Phosphorylated α-Synuclein in the Enteric Nervous System of A53T Mutant Human α-Synuclein Transgenic Mice.

    PubMed

    Naudet, Nicolas; Antier, Emilie; Gaillard, Damien; Morignat, Eric; Lakhdar, Latifa; Baron, Thierry; Bencsik, Anna

    2017-12-01

    The misfolded α-synuclein protein, phosphorylated at serine 129 (pSer129 α-syn), is the hallmark of Parkinson disease (PD). Detected also in the enteric nervous system (ENS), it supports the recent theory that PD could start in the gut, rather than the brain. In a previous study, using a transgenic mouse model of human synucleinopathies expressing the A53T mutant α-synuclein (TgM83), in which a neurodegenerative process associated with α-synuclein occurs spontaneously in the brain, we have shown earlier onset of pSer129 α-syn in the ENS. Here, we used this model to study the impact of paraquat (PQ) a neurotoxic herbicide incriminated in PD in agricultural workers) on the enteric pSer129 α-syn expression in young mice. Orally delivered in the drinking water at 10 mg/kg/day for 6-8 weeks, the impact of PQ was measured in a time-dependent manner on weight, locomotor abilities, pSer129 α-syn, and glial fibrillary acidic protein (GFAP) expression levels in the ENS. Remarkably, pSer129 α-syn was detected in ENS earlier under PQ oral exposure and enteric GFAP expression was also increased. These findings bring additional support to the theory that neurotoxic agents such as PQ initiate idiopathic PD after oral delivery. © 2017 American Association of Neuropathologists, Inc.

  14. Potential Role of Epigenetic Mechanism in Manganese Induced Neurotoxicity

    PubMed Central

    Tarale, Prashant; Chakrabarti, Tapan; Sivanesan, Saravanadevi; Naoghare, Pravin; Bafana, Amit; Krishnamurthi, Kannan

    2016-01-01

    Manganese is a vital nutrient and is maintained at an optimal level (2.5–5 mg/day) in human body. Chronic exposure to manganese is associated with neurotoxicity and correlated with the development of various neurological disorders such as Parkinson's disease. Oxidative stress mediated apoptotic cell death has been well established mechanism in manganese induced toxicity. Oxidative stress has a potential to alter the epigenetic mechanism of gene regulation. Epigenetic insight of manganese neurotoxicity in context of its correlation with the development of parkinsonism is poorly understood. Parkinson's disease is characterized by the α-synuclein aggregation in the form of Lewy bodies in neuronal cells. Recent findings illustrate that manganese can cause overexpression of α-synuclein. α-Synuclein acts epigenetically via interaction with histone proteins in regulating apoptosis. α-Synuclein also causes global DNA hypomethylation through sequestration of DNA methyltransferase in cytoplasm. An individual genetic difference may also have an influence on epigenetic susceptibility to manganese neurotoxicity and the development of Parkinson's disease. This review presents the current state of findings in relation to role of epigenetic mechanism in manganese induced neurotoxicity, with a special emphasis on the development of Parkinson's disease. PMID:27314012

  15. Activation of tyrosine kinase c-Abl contributes to α-synuclein–induced neurodegeneration

    PubMed Central

    Lee, Su Hyun; Kim, Donghoon; Karuppagounder, Senthilkumar S.; Kumar, Manoj; Mao, Xiaobo; Shin, Joo Ho; Lee, Yunjong; Pletnikova, Olga; Troncoso, Juan C.; Dawson, Valina L.; Dawson, Ted M.; Ko, Han Seok

    2016-01-01

    Aggregation of α-synuclein contributes to the formation of Lewy bodies and neurites, the pathologic hallmarks of Parkinson disease (PD) and α-synucleinopathies. Although a number of human mutations have been identified in familial PD, the mechanisms that promote α-synuclein accumulation and toxicity are poorly understood. Here, we report that hyperactivity of the nonreceptor tyrosine kinase c-Abl critically regulates α-synuclein–induced neuropathology. In mice expressing a human α-synucleinopathy–associated mutation (hA53Tα-syn mice), deletion of the gene encoding c-Abl reduced α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Conversely, overexpression of constitutively active c-Abl in hA53Tα-syn mice accelerated α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Moreover, c-Abl activation led to an age-dependent increase in phosphotyrosine 39 α-synuclein. In human postmortem samples, there was an accumulation of phosphotyrosine 39 α-synuclein in brain tissues and Lewy bodies of PD patients compared with age-matched controls. Furthermore, in vitro studies show that c-Abl phosphorylation of α-synuclein at tyrosine 39 enhances α-synuclein aggregation. Taken together, this work establishes a critical role for c-Abl in α-synuclein–induced neurodegeneration and demonstrates that selective inhibition of c-Abl may be neuroprotective. This study further indicates that phosphotyrosine 39 α-synuclein is a potential disease indicator for PD and related α-synucleinopathies. PMID:27348587

  16. Recombinant α- β- and γ-Synucleins Stimulate Protein Phosphatase 2A Catalytic Subunit Activity in Cell Free Assays

    PubMed Central

    Lek, Sovanarak; Vargas-Medrano, Javier; Villanueva, Ernesto; Marcus, Brian; Godfrey, Wesley; Perez, Ruth G.

    2017-01-01

    α-Synuclein (aSyn), β-Synuclein (bSyn), and γ-Synuclein (gSyn) are members of a conserved family of chaperone-like proteins that are highly expressed in vertebrate neuronal tissues. Of the three synucleins, only aSyn has been strongly implicated in neurodegenerative disorders such as Parkinson's disease, Dementia with Lewy Bodies, and Multiple System Atrophy. In studying normal aSyn function, data indicate that aSyn stimulates the activity of the catalytic subunit of an abundantly expressed dephosphorylating enzyme, PP2Ac in vitro and in vivo. Prior data show that aSyn aggregation in human brain reduces PP2Ac activity in regions with Lewy body pathology, where soluble aSyn has become insoluble. However, because all three synucleins have considerable homology in the amino acid sequences, experiments were designed to test if all can modulate PP2Ac activity. Using recombinant synucleins and recombinant PP2Ac protein, activity was assessed by malachite green colorimetric assay. Data revealed that all three recombinant synucleins stimulated PP2Ac activity in cell-free assays, raising the possibility that the conserved homology between synucleins may endow all three homologs with the ability to bind to and activate the PP2Ac. Co-immunoprecipitation data, however, suggest that PP2Ac modulation likely occurs through endogenous interactions between aSyn and PP2Ac in vivo. PMID:28829427

  17. Chronic systemic pesticide exposure reproduces features of Parkinson's disease.

    PubMed

    Betarbet, R; Sherer, T B; MacKenzie, G; Garcia-Osuna, M; Panov, A V; Greenamyre, J T

    2000-12-01

    The cause of Parkinson's disease (PD) is unknown, but epidemiological studies suggest an association with pesticides and other environmental toxins, and biochemical studies implicate a systemic defect in mitochondrial complex I. We report that chronic, systemic inhibition of complex I by the lipophilic pesticide, rotenone, causes highly selective nigrostriatal dopaminergic degeneration that is associated behaviorally with hypokinesia and rigidity. Nigral neurons in rotenone-treated rats accumulate fibrillar cytoplasmic inclusions that contain ubiquitin and alpha-synuclein. These results indicate that chronic exposure to a common pesticide can reproduce the anatomical, neurochemical, behavioral and neuropathological features of PD.

  18. Stress and serum TNF-alpha levels may predict disease outcome in patients with pemphigus: a preliminary study.

    PubMed

    Ragab, Nader; Abdallah, Marwa; El-Gohary, Eman; Elewa, Rana

    2011-04-01

    The aim of the current preliminary case-control study was to estimate the initial serum levels of tumor necrosis factor alpha (TNF-alpha) in case patients with pemphigus vulgaris (PV) and pemphigus foliaceus (PF) and correlate them with history of stress, body surface area (BSA) affected, disease severity, and disease outcome. Ten PV and 4 PF case patients as well as 7 healthy matched controls had their serum levels of TNF-alpha measured by an enzyme-linked immunosorbent assay. Case patients were treated and followed up for 2 months. A statistically significant elevation in serum levels of TNF-alpha in PV case patients compared with controls and in PV case patients compared with PF case patients was detected (P < .05), with no significant difference between PF case patients and controls (P > .05). No significant correlation was detected between the serum levels of TNF-alpha and the BSA affected (P > .05). Four PV case patients had a bad disease outcome, of which 3 had severe emotional stress a month prior to the onset of the attack. All 4 showed significantly elevated initial serum levels of TNF-alpha compared with those who had a good disease outcome (P < .05). Emotional stress is a factor affecting prognosis of the disease. Pretreatment assessment of serum TNF-alpha levels in patients with pemphigus may be a guide to the expected prognosis and selection of the proper treatment regimen.

  19. Tianma Gouteng Yin, a Traditional Chinese Medicine decoction, exerts neuroprotective effects in animal and cellular models of Parkinson’s disease

    PubMed Central

    Liu, Liang-Feng; Song, Ju-Xian; Lu, Jia-Hong; Huang, Ying-Yu; Zeng, Yu; Chen, Lei-Lei; Durairajan, Siva Sundara Kumar; Han, Quan-Bin; Li, Min

    2015-01-01

    Tianma Gouteng Yin (TGY) is a traditional Chinese medicine (TCM) decoction widely used to treat symptoms associated with typical Parkinson’s disease (PD). In this study, the neuroprotective effects of water extract of TGY were tested on rotenone-intoxicated and human α-synuclein transgenic Drosophila PD models. In addition, the neuroprotective effect of TGY was also evaluated in the human dopaminergic neuroblastoma SH-SY5Y cell line treated with rotenone and the rotenone intoxicated hemi-parkinsonian rats. In rotenone-induced PD models, TGY improved survival rate, alleviated impaired locomotor function of Drosophila, mitigated the loss of dopaminergic neurons in hemi-parkinsonian rats and alleviated apoptotic cell death in SH-SY5Y cells; in α-synuclein transgenic Drosophila, TGY reduced the level of α-synuclein and prevented degeneration of dopaminergic neurons. Conclusively, TGY is neuroprotective in PD models both in vivo and in vitro. PMID:26578166

  20. Structure and properties of a complex of α-synuclein and a single-domain camelid antibody.

    PubMed

    De Genst, Erwin J; Guilliams, Tim; Wellens, Joke; O'Day, Elizabeth M; Waudby, Christopher A; Meehan, Sarah; Dumoulin, Mireille; Hsu, Shang-Te Danny; Cremades, Nunilo; Verschueren, Koen H G; Pardon, Els; Wyns, Lode; Steyaert, Jan; Christodoulou, John; Dobson, Christopher M

    2010-09-17

    The aggregation of the intrinsically disordered protein α-synuclein to form fibrillar amyloid structures is intimately associated with a variety of neurological disorders, most notably Parkinson's disease. The molecular mechanism of α-synuclein aggregation and toxicity is not yet understood in any detail, not least because of the paucity of structural probes through which to study the behavior of such a disordered system. Here, we describe an investigation involving a single-domain camelid antibody, NbSyn2, selected by phage display techniques to bind to α-synuclein, including the exploration of its effects on the in vitro aggregation of the protein under a variety of conditions. We show using isothermal calorimetric methods that NbSyn2 binds specifically to monomeric α-synuclein with nanomolar affinity and by means of NMR spectroscopy that it interacts with the four C-terminal residues of the protein. This latter finding is confirmed by the determination of a crystal structure of NbSyn2 bound to a peptide encompassing the nine C-terminal residues of α-synuclein. The NbSyn2:α-synuclein interaction is mediated mainly by side-chain interactions while water molecules cross-link the main-chain atoms of α-synuclein to atoms of NbSyn2, a feature we believe could be important in intrinsically disordered protein interactions more generally. The aggregation behavior of α-synuclein at physiological pH, including the morphology of the resulting fibrillar structures, is remarkably unaffected by the presence of NbSyn2 and indeed we show that NbSyn2 binds strongly to the aggregated as well as to the soluble forms of α-synuclein. These results give strong support to the conjecture that the C-terminal region of the protein is not directly involved in the mechanism of aggregation and suggest that binding of NbSyn2 could be a useful probe for the identification of α-synuclein aggregation in vitro and possibly in vivo. Copyright © 2010. Published by Elsevier Ltd.

  1. Structural and functional properties of prefibrillar α-synuclein oligomers

    PubMed Central

    Pieri, Laura; Madiona, Karine; Melki, Ronald

    2016-01-01

    The deposition of fibrillar alpha-synuclein (α-syn) within inclusions (Lewy bodies and Lewy neurites) in neurons and glial cells is a hallmark of synucleinopathies. α-syn populates a variety of assemblies ranging from prefibrillar oligomeric species to fibrils whose specific contribution to neurodegeneration is still unclear. Here, we compare the specific structural and biological properties of distinct soluble prefibrillar α-syn oligomers formed either spontaneously or in the presence of dopamine and glutaraldehyde. We show that both on-fibrillar assembly pathway and distinct dopamine-mediated and glutaraldehyde-cross-linked α-syn oligomers are only slightly effective in perturbing cell membrane integrity and inducing cytotoxicity, while mature fibrils exhibit the highest toxicity. In contrast to low-molecular weight and unstable oligomers, large stable α-syn oligomers seed the aggregation of soluble α-syn within reporter cells although to a lesser extent than mature α-syn fibrils. These oligomers appear elongated in shape. Our findings suggest that α-syn oligomers represent a continuum of species ranging from unstable low molecular weight particles to mature fibrils via stable elongated oligomers composed of more than 15 α-syn monomers that possess seeding capacity. PMID:27075649

  2. Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport

    PubMed Central

    Freundt, Eric C.; Maynard, Nate; Clancy, Eileen K.; Roy, Shyamali; Bousset, Luc; Sourigues, Yannick; Covert, Markus; Melki, Ronald; Kirkegaard, Karla; Brahic, Michel

    2012-01-01

    Objective The lesions of Parkinson's disease spread through the brain in a characteristic pattern that corresponds to axonal projections. Previous observations suggest that misfolded α-synuclein could behave as a prion, moving from neuron to neuron and causing endogenous α-synuclein to misfold. Here, we characterized and quantified the axonal transport of α-synuclein fibrils and showed that fibrils could be transferred from axons to second-order neurons following anterograde transport. Methods We grew primary cortical mouse neurons in microfluidic devices to separate soma from axonal projections in fluidically isolated microenvironments. We used live-cell imaging and immunofluorescence to characterize the transport of fluorescent α-synuclein fibrils and their transfer to second-order neurons. Results Fibrillar α-synuclein was internalized by primary neurons and transported in axons with kinetics consistent with slow component-b of axonal transport (fast axonal transport with saltatory movement). Fibrillar α-synuclein was readily observed in the cell bodies of second-order neurons following anterograde axonal transport. Axon-to-soma transfer appeared not to require synaptic contacts. Interpretation These results support the hypothesis that the progression of Parkinson's disease can be caused by neuron-to-neuron spread of α-synuclein aggregates and that the anatomical pattern of progression of lesions between axonally connected areas results from the axonal transport of such aggregates. That the transfer did not appear to be transsynaptic gives hope that α-synuclein fibrils could be intercepted by drugs during the extra-cellular phase of their journey. PMID:23109146

  3. Treatment with Trehalose Prevents Behavioral and Neurochemical Deficits Produced in an AAV α-Synuclein Rat Model of Parkinson's Disease.

    PubMed

    He, Qing; Koprich, James B; Wang, Ying; Yu, Wen-bo; Xiao, Bao-guo; Brotchie, Jonathan M; Wang, Jian

    2016-05-01

    The accumulation of misfolded α-synuclein in dopamine (DA) neurons is believed to be of major importance in the pathogenesis of Parkinson's disease (PD). Animal models of PD, based on viral-vector-mediated over-expression of α-synuclein, have been developed and show evidence of dopaminergic toxicity, providing us a good tool to investigate potential therapies to interfere with α-synuclein-mediated pathology. An efficient disease-modifying therapeutic molecule should be able to interfere with the neurotoxicity of α-synuclein aggregation. Our study highlighted the ability of an autophagy enhancer, trehalose (at concentrations of 5 and 2% in drinking water), to protect against A53T α-synuclein-mediated DA degeneration in an adeno-associated virus serotype 1/2 (AAV1/2)-based rat model of PD. Behavioral tests and neurochemical analysis demonstrated a significant attenuation in α-synuclein-mediated deficits in motor asymmetry and DA neurodegeneration including impaired DA neuronal survival and DA turnover, as well as α-synuclein accumulation and aggregation in the nigrostriatal system by commencing 5 and 2% trehalose at the same time as delivery of AAV. Trehalose (0.5%) was ineffective on the above behavioral and neurochemical deficits. Further investigation showed that trehalose enhanced autophagy in the striatum by increasing formation of LC3-II. This study supports the concept of using trehalose as a novel therapeutic strategy that might prevent/reverse α-synuclein aggregation for the treatment of PD.

  4. Interaction of Synuclein and Inflammation in Dopaminergic Neurodegeneration

    DTIC Science & Technology

    2010-07-01

    synuclein in cell culture. Specific Aim II In vivo studies: we are now optimizing immunostaining for human -synuclein in order to distinguish...responsible for this response. Recent cell culture experiments seem to point us in the right direction for the answer as it has been shown that human BE-M17...synuclein. Furthermore, Zhou et al (2002) showed that, in primary cell cultures derived from the embryonic human mesencephalon overexpressing either

  5. Generation of gene-corrected iPSC line from Parkinson's disease patient iPSC line with alpha-SNCA A53T mutation.

    PubMed

    Lee, Seo-Young; Jeong, SangKyun; Kim, Janghwan; Chung, Sun-Ku

    2018-06-09

    Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder. PD can result from a mutation of alpha-synuclein (α-SNCA), such as α-SNCA A53T. Using episomal vectors, induced pluripotent stem cells (iPSCs) were generated from skin fibroblasts with the α-SNCA A53T mutation. A huge bacterial artificial chromosome (BAC) harboring the normal α-SNCA gene successfully corrected the α-SNCA A53T-mutant iPSCs. Melting curve analysis for allelic composition indicated that the BAC DNA was precisely targeted to the α-SNCA A53T mutation allele, without random integration. The corrected PD-iPSCs displayed the normal karyotype and pluripotency, with the capability to differentiate to any cell type. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  6. Intact blood-brain barrier transport of small molecular drugs in animal models of amyloid beta and alpha-synuclein pathology.

    PubMed

    Gustafsson, Sofia; Lindström, Veronica; Ingelsson, Martin; Hammarlund-Udenaes, Margareta; Syvänen, Stina

    2018-01-01

    Pathophysiological impairment of the neurovascular unit, including the integrity and dynamics of the blood-brain barrier (BBB), has been denoted both a cause and consequence of neurodegenerative diseases. Pathological impact on BBB drug delivery has also been debated. The aim of the present study was to investigate BBB drug transport, by determining the unbound brain-to-plasma concentration ratio (K p,uu,brain ), in aged AβPP-transgenic mice, α-synuclein transgenic mice, and wild type mice. Mice were dosed with a cassette of five compounds, including digoxin, levofloxacin (1 mg/kg, s.c.), paliperidone, oxycodone, and diazepam (0.25 mg/kg, s.c.). Brain and blood were collected at 0.5, 1, or 3 h after dosage. Drug concentrations were measured using LC-MS/MS. The total brain-to-plasma concentration ratio was calculated and equilibrium dialysis was used to determine the fraction of unbound drug in brain and plasma for all compounds. Together, these three measures were used to determine the K p,uu,brain value. Despite Aβ or α-synuclein pathology in the current animal models, no difference was observed in the extent of drug transport across the BBB compared to wild type animals for any of the compounds investigated. Hence, the present study shows that the concept of a leaking barrier within neurodegenerative conditions has to be interpreted with caution when estimating drug transport into the brain. The capability of the highly dynamic BBB to regulate brain drug exposure still seems to be intact despite the presence of pathology. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Mitochondrial translocation of α-synuclein is promoted by intracellular acidification

    PubMed Central

    Cole, Nelson B.; DiEuliis, Diane; Leo, Paul; Mitchell, Drake C.; Nussbaum, Robert L.

    2008-01-01

    Mitochondrial dysfunction plays a central role in the selective vulnerability of dopaminergic neurons in Parkinson’s disease (PD) and is influenced by both environmental and genetic factors. Expression of the PD protein α-synuclein or its familial mutants often sensitizes neurons to oxidative stress and to damage by mitochondrial toxins. This effect is thought to be indirect, since little evidence physically linking α-synuclein to mitochondria has been reported. Here, we show that the distribution of α-synuclein within neuronal and non-neuronal cells is dependent on intracellular pH. Cytosolic acidification induces translocation of α-synuclein from the cytosol onto the surface of mitochondria. Translocation occurs rapidly under artificially-induced low pH conditions and as a result of pH changes during oxidative or metabolic stress. Binding is likely facilitated by low pH-induced exposure of the mitochondria-specific lipid cardiolipin. These results imply a direct role for α-synuclein in mitochondrial physiology, especially under pathological conditions, and in principle, link α-synuclein to other PD genes in regulating mitochondrial homeostasis. PMID:18440504

  8. Endonuclease G mediates α-synuclein cytotoxicity during Parkinson's disease.

    PubMed

    Büttner, Sabrina; Habernig, Lukas; Broeskamp, Filomena; Ruli, Doris; Vögtle, F Nora; Vlachos, Manolis; Macchi, Francesca; Küttner, Victoria; Carmona-Gutierrez, Didac; Eisenberg, Tobias; Ring, Julia; Markaki, Maria; Taskin, Asli Aras; Benke, Stefan; Ruckenstuhl, Christoph; Braun, Ralf; Van den Haute, Chris; Bammens, Tine; van der Perren, Anke; Fröhlich, Kai-Uwe; Winderickx, Joris; Kroemer, Guido; Baekelandt, Veerle; Tavernarakis, Nektarios; Kovacs, Gabor G; Dengjel, Jörn; Meisinger, Chris; Sigrist, Stephan J; Madeo, Frank

    2013-11-27

    Malfunctioning of the protein α-synuclein is critically involved in the demise of dopaminergic neurons relevant to Parkinson's disease. Nonetheless, the precise mechanisms explaining this pathogenic neuronal cell death remain elusive. Endonuclease G (EndoG) is a mitochondrially localized nuclease that triggers DNA degradation and cell death upon translocation from mitochondria to the nucleus. Here, we show that EndoG displays cytotoxic nuclear localization in dopaminergic neurons of human Parkinson-diseased patients, while EndoG depletion largely reduces α-synuclein-induced cell death in human neuroblastoma cells. Xenogenic expression of human α-synuclein in yeast cells triggers mitochondria-nuclear translocation of EndoG and EndoG-mediated DNA degradation through a mechanism that requires a functional kynurenine pathway and the permeability transition pore. In nematodes and flies, EndoG is essential for the α-synuclein-driven degeneration of dopaminergic neurons. Moreover, the locomotion and survival of α-synuclein-expressing flies is compromised, but reinstalled by parallel depletion of EndoG. In sum, we unravel a phylogenetically conserved pathway that involves EndoG as a critical downstream executor of α-synuclein cytotoxicity.

  9. Microbiome-Gut-Brain Axis and Toll-Like Receptors in Parkinson's Disease.

    PubMed

    Caputi, Valentina; Giron, Maria Cecilia

    2018-06-06

    Parkinson’s disease (PD) is a progressively debilitating neurodegenerative disease characterized by α-synucleinopathy, which involves all districts of the brain-gut axis, including the central, autonomic and enteric nervous systems. The highly bidirectional communication between the brain and the gut is markedly influenced by the microbiome through integrated immunological, neuroendocrine and neurological processes. The gut microbiota and its relevant metabolites interact with the host via a series of biochemical and functional inputs, thereby affecting host homeostasis and health. Indeed, a dysregulated microbiota-gut-brain axis in PD might lie at the basis of gastrointestinal dysfunctions which predominantly emerge many years prior to the diagnosis, corroborating the theory that the pathological process is spread from the gut to the brain. Toll-like receptors (TLRs) play a crucial role in innate immunity by recognizing conserved motifs primarily found in microorganisms and a dysregulation in their signaling may be implicated in α-synucleinopathy, such as PD. An overstimulation of the innate immune system due to gut dysbiosis and/or small intestinal bacterial overgrowth, together with higher intestinal barrier permeability, may provoke local and systemic inflammation as well as enteric neuroglial activation, ultimately triggering the development of alpha-synuclein pathology. In this review, we provide the current knowledge regarding the relationship between the microbiota-gut⁻brain axis and TLRs in PD. A better understanding of the dialogue sustained by the microbiota-gut-brain axis and innate immunity via TLR signaling should bring interesting insights in the pathophysiology of PD and provide novel dietary and/or therapeutic measures aimed at shaping the gut microbiota composition, improving the intestinal epithelial barrier function and balancing the innate immune response in PD patients, in order to influence the early phases of the following neurodegenerative cascade.

  10. Uncovering the role of the insula in non-motor symptoms of Parkinson's disease.

    PubMed

    Christopher, Leigh; Koshimori, Yuko; Lang, Anthony E; Criaud, Marion; Strafella, Antonio P

    2014-08-01

    Patients with Parkinson's disease experience a range of non-motor symptoms, including cognitive impairment, behavioural changes, somatosensory and autonomic disturbances. The insula, which was once thought to be primarily a limbic cortical structure, is now known to be highly involved in integrating somatosensory, autonomic and cognitive-affective information to guide behaviour. Thus, it acts as a central hub for processing relevant information related to the state of the body as well as cognitive and mood states. Despite these crucial functions, the insula has been largely overlooked as a potential key region in contributing to non-motor symptoms of Parkinson's disease. The insula is affected in Parkinson's disease by alpha-synuclein deposition, disruptions in normal neurotransmitter function, alterations in connectivity as well as metabolic and structural changes. Although research focusing on the role of the insula in Parkinson's disease is scarce, there is evidence from neuroimaging studies linking the insula to cognitive decline, behavioural abnormalities and somatosensory disturbances. Here, we review imaging studies that provide insight into the potential role of the insula in Parkinson's disease non-motor symptoms. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Expanding the spectrum of neuronal pathology in multiple system atrophy.

    PubMed

    Cykowski, Matthew D; Coon, Elizabeth A; Powell, Suzanne Z; Jenkins, Sarah M; Benarroch, Eduardo E; Low, Phillip A; Schmeichel, Ann M; Parisi, Joseph E

    2015-08-01

    Multiple system atrophy is a sporadic alpha-synucleinopathy that typically affects patients in their sixth decade of life and beyond. The defining clinical features of the disease include progressive autonomic failure, parkinsonism, and cerebellar ataxia leading to significant disability. Pathologically, multiple system atrophy is characterized by glial cytoplasmic inclusions containing filamentous alpha-synuclein. Neuronal inclusions also have been reported but remain less well defined. This study aimed to further define the spectrum of neuronal pathology in 35 patients with multiple system atrophy (20 male, 15 female; mean age at death 64.7 years; median disease duration 6.5 years, range 2.2 to 15.6 years). The morphologic type, topography, and frequencies of neuronal inclusions, including globular cytoplasmic (Lewy body-like) neuronal inclusions, were determined across a wide spectrum of brain regions. A correlation matrix of pathologic severity also was calculated between distinct anatomic regions of involvement (striatum, substantia nigra, olivary and pontine nuclei, hippocampus, forebrain and thalamus, anterior cingulate and neocortex, and white matter of cerebrum, cerebellum, and corpus callosum). The major finding was the identification of widespread neuronal inclusions in the majority of patients, not only in typical disease-associated regions (striatum, substantia nigra), but also within anterior cingulate cortex, amygdala, entorhinal cortex, basal forebrain and hypothalamus. Neuronal inclusion pathology appeared to follow a hierarchy of region-specific susceptibility, independent of the clinical phenotype, and the severity of pathology was duration-dependent. Neuronal inclusions also were identified in regions not previously implicated in the disease, such as within cerebellar roof nuclei. Lewy body-like inclusions in multiple system atrophy followed the stepwise anatomic progression of Lewy body-spectrum disease inclusion pathology in 25.7% of patients with multiple system atrophy, including a patient with visual hallucinations. Further, the presence of Lewy body-like inclusions in neocortex, but not hippocampal alpha-synuclein pathology, was associated with cognitive impairment (P = 0.002). However, several cases had the presence of isolated Lewy body-like inclusions at atypical sites (e.g. thalamus, deep cerebellar nuclei) that are not typical for Lewy body-spectrum disease. Finally, interregional correlations (rho ≥ 0.6) in pathologic glial and neuronal lesion burden suggest shared mechanisms of disease progression between both discrete anatomic regions (e.g. basal forebrain and hippocampus) and cell types (neuronal and glial inclusions in frontal cortex and white matter, respectively). These findings suggest that in addition to glial inclusions, neuronal pathology plays an important role in the developmental and progression of multiple system atrophy. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Mitochondrial dynamics in Parkinson's disease: a role for α-synuclein?

    PubMed Central

    Pozo Devoto, Victorio M.

    2017-01-01

    ABSTRACT The distinctive pathological hallmarks of Parkinson's disease are the progressive death of dopaminergic neurons and the intracellular accumulation of Lewy bodies enriched in α-synuclein protein. Several lines of evidence from the study of sporadic, familial and pharmacologically induced forms of human Parkinson's disease also suggest that mitochondrial dysfunction plays an important role in disease progression. Although many functions have been proposed for α-synuclein, emerging data from human and animal models of Parkinson's disease highlight a role for α-synuclein in the control of neuronal mitochondrial dynamics. Here, we review the α-synuclein structural, biophysical and biochemical properties that influence relevant mitochondrial dynamic processes such as fusion-fission, transport and clearance. Drawing on current evidence, we propose that α-synuclein contributes to the mitochondrial defects that are associated with the pathology of this common and progressive neurodegenerative disease. PMID:28883016

  13. Mitochondrial dynamics in Parkinson's disease: a role for α-synuclein?

    PubMed

    Pozo Devoto, Victorio M; Falzone, Tomas L

    2017-09-01

    The distinctive pathological hallmarks of Parkinson's disease are the progressive death of dopaminergic neurons and the intracellular accumulation of Lewy bodies enriched in α-synuclein protein. Several lines of evidence from the study of sporadic, familial and pharmacologically induced forms of human Parkinson's disease also suggest that mitochondrial dysfunction plays an important role in disease progression. Although many functions have been proposed for α-synuclein, emerging data from human and animal models of Parkinson's disease highlight a role for α-synuclein in the control of neuronal mitochondrial dynamics. Here, we review the α-synuclein structural, biophysical and biochemical properties that influence relevant mitochondrial dynamic processes such as fusion-fission, transport and clearance. Drawing on current evidence, we propose that α-synuclein contributes to the mitochondrial defects that are associated with the pathology of this common and progressive neurodegenerative disease. © 2017. Published by The Company of Biologists Ltd.

  14. Potential Modes of Intercellular α-Synuclein Transmission

    PubMed Central

    Valdinocci, Dario; Radford, Rowan A. W.; Siow, Sue Maye; Chung, Roger S.; Pountney, Dean L.

    2017-01-01

    Intracellular aggregates of the α-synuclein protein result in cell loss and dysfunction in Parkinson’s disease and atypical Parkinsonism, such as multiple system atrophy and dementia with Lewy bodies. Each of these neurodegenerative conditions, known collectively as α-synucleinopathies, may be characterized by a different suite of molecular triggers that initiate pathogenesis. The mechanisms whereby α-synuclein aggregates mediate cytotoxicity also remain to be fully elucidated. However, recent studies have implicated the cell-to-cell spread of α-synuclein as the major mode of disease propagation between brain regions during disease progression. Here, we review the current evidence for different modes of α-synuclein cellular release, movement and uptake, including exocytosis, exosomes, tunneling nanotubes, glymphatic flow and endocytosis. A more detailed understanding of the major modes by which α-synuclein pathology spreads throughout the brain may provide new targets for therapies that halt the progression of disease. PMID:28241427

  15. Potential Modes of Intercellular α-Synuclein Transmission.

    PubMed

    Valdinocci, Dario; Radford, Rowan A W; Siow, Sue Maye; Chung, Roger S; Pountney, Dean L

    2017-02-22

    Intracellular aggregates of the α-synuclein protein result in cell loss and dysfunction in Parkinson's disease and atypical Parkinsonism, such as multiple system atrophy and dementia with Lewy bodies. Each of these neurodegenerative conditions, known collectively as α-synucleinopathies, may be characterized by a different suite of molecular triggers that initiate pathogenesis. The mechanisms whereby α-synuclein aggregates mediate cytotoxicity also remain to be fully elucidated. However, recent studies have implicated the cell-to-cell spread of α-synuclein as the major mode of disease propagation between brain regions during disease progression. Here, we review the current evidence for different modes of α-synuclein cellular release, movement and uptake, including exocytosis, exosomes, tunneling nanotubes, glymphatic flow and endocytosis. A more detailed understanding of the major modes by which α-synuclein pathology spreads throughout the brain may provide new targets for therapies that halt the progression of disease.

  16. Traumatic Brain Injury in Adult Rats Causes Progressive Nigrostriatal Dopaminergic Cell Loss and Enhanced Vulnerability to the Pesticide Paraquat

    PubMed Central

    Hutson, Che Brown; Lazo, Carlos R.; Mortazavi, Farzad; Giza, Christopher C.; Hovda, David

    2011-01-01

    Abstract Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of nigrostriatal dopaminergic neurons and the accumulation of alpha-synuclein. Both traumatic brain injury (TBI) and pesticides are risk factors for PD, but whether TBI causes nigrostriatal dopaminergic cell loss in experimental models and whether it acts synergistically with pesticides is unknown. We have examined the acute and long-term effects of TBI and exposure to low doses of the pesticide paraquat, separately and in combination, on nigrostriatal dopaminergic neurons in adult male rats. In an acute study, rats received moderate TBI by lateral fluid percussion (LFP) injury, were injected with saline or paraquat (10 mg/kg IP) 3 and 6 days after LFP, were sacrificed 5 days later, and their brains processed for immunohistochemistry. TBI alone increased microglial activation in the substantia nigra, and caused a 15% loss of dopaminergic neurons ipsilaterally. Paraquat increased the TBI effect, causing a 30% bilateral loss of dopaminergic neurons, reduced striatal tyrosine hydroxylase (TH) immunoreactivity more than TBI alone, and induced alpha-synuclein accumulation in the substantia nigra pars compacta. In a long-term study, rats received moderate LFP, were injected with saline or paraquat at 21 and 22 weeks post-injury, and were sacrificed 4 weeks later. At 26 weeks post injury, TBI alone induced a 30% bilateral loss of dopaminergic neurons that was not exacerbated by paraquat. These data suggest that TBI is sufficient to induce a progressive degeneration of nigrostriatal dopaminergic neurons. Furthermore, TBI and pesticide exposure, when occurring within a defined time frame, could combine to increase the PD risk. PMID:21644813

  17. Recent developments in biomarkers in Parkinson disease

    PubMed Central

    Schapira, Anthony H.V.

    2013-01-01

    Purpose of review Parkinson disease is the second most common neurodegenerative disease after Alzheimer disease, and current demographic trends indicate a life-time risk approaching 4% and predict a doubling of prevalence by 2030. Strategies are being developed to apply recent advances in our understanding of the cause of Parkinson disease to the development of biomarkers that will enable the identification of at-risk individuals, enable early diagnosis and reflect the progression of disease. The latter will be particularly important for the testing of disease-modifying therapies. This review summarizes recent advances in Parkinson disease biomarker development. Recent findings Recent reports continue to reflect the application of a variety of clinical, imaging or biochemical measurements, alone or in combination, to general Parkinson disease populations. Probably the most promising is the assay of alpha-synuclein in the diagnosis and evolution of Parkinson disease. At present, detection techniques are still being refined, but once accurate and reproducible assays are available, it will be important to define the relationship of these to early diagnosis and progression. Alpha-synuclein concentrations may also be modulated by certain disease-modifying agents in development and so may represent a measure of their efficacy. It has to be accepted that no single measure currently fulfils all the necessary criteria for a biomarker in Parkinson disease, but combinations of measures are more likely to deliver benefit. Summary The Parkinson disease biomarker field is approaching a stage when certain combinations of clinical, imaging and biochemical measures may identify a proportion of individuals at risk for developing the disease. However, their general applicability may be limited. Attention is now turning to stratification of Parkinson disease into certain at-risk groups defined by genotype. The application of multimodal screening to these populations may be more rewarding in the short term. PMID:23823465

  18. Decreased expression of serum- and glucocorticoid-inducible kinase 1 (SGK1) promotes alpha-synuclein increase related with down-regulation of dopaminergic cell in the Substantia Nigra of chronic MPTP-induced Parkinsonism mice and in SH-SY5Y cells.

    PubMed

    Yeo, Sujung; Sung, Backil; Hong, Yeon-Mi; van den Noort, Maurits; Bosch, Peggy; Lee, Sook-Hyun; Song, Jongbeom; Park, Sang-Kyun; Lim, Sabina

    2018-06-30

    Parkinson's disease (PD) is a chronically progressive neurodegenerative disease, with its main pathological hallmarks being a dramatic loss of dopaminergic neurons predominantly in the Substantia Nigra (SN), and the formations of intracytoplasmic Lewy bodies and dystrophic neurites. Alpha-synuclein (α-syn), widely recognized as the most prominent element of the Lewy body, is one of the representative hallmarks in PD. However, the mechanisms behind the increased α-syn expression and aggregation have not yet been clarified. To examine what causes α-syn expression to increase, we analyzed the pattern of gene expression in the SN of mice intoxicated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), where down-regulation of dopaminergic cells occurred. We identified serum- and glucocorticoid-dependent kinase 1 (SGK1) as one of the genes that is evidently downregulated in chronic MPTP-intoxication. The results of Western blot analyses showed that, together with the down-regulation of dopaminergic cells, the decrease in SGK1 expression increased α-syn expression in the SN in a chronic MPTP-induced Parkinsonism mouse. For an examination of the expression correlation between SGK1 and α-syn, SH-5YSY cells were knocked down with SGK1 siRNA then, the downregulation of dopaminergic cells and the increase in the expression of α-syn were observed. These results suggest that decreased expression of SGK1 may play a critical role in increasing the expression of α-syn, which is related with dopaminergic cell death in the SN of chronic MPTP-induced Parkinsonism mice and in SH-SY5Y cells. Copyright © 2018. Published by Elsevier B.V.

  19. Epigallocatechin Gallate (EGCG) Inhibits Alpha-Synuclein Aggregation: A Potential Agent for Parkinson's Disease.

    PubMed

    Xu, Yan; Zhang, Yanyan; Quan, Zhenzhen; Wong, Winnie; Guo, Jianping; Zhang, Rongkai; Yang, Qinghu; Dai, Rongji; McGeer, Patrick L; Qing, Hong

    2016-10-01

    Protein aggregation is a prominent feature of many neurodegenerative disorders including Parkinson's disease (PD). Aggregation of alpha-synuclein (SNCA) may underlie the pathology of PD. They are the main components of Lewy bodies and dystrophic neurites that are the intraneuronal inclusions characteristic of the disease. We have demonstrated that the polyphenol (-)-epi-gallocatechine gallate (EGCG) inhibited SNCA aggregation, which made it a candidate for therapeutic intervention in PD. Three methods were used: SNCA fibril formation inhibition by EGCG in incubates; inhibition of the SNCA fluorophore A-Syn-HiLyte488 binding to plated SNCA in microwells; and inhibition of the A-Syn-HiLyte488 probe binding to aggregated SNCA in postmortem PD tissue. Recombinant human SNCA was incubated under conditions that result in fibril formation. The aggregation was blocked by 100 nM EGCG in a concentration-dependent manner, as shown by an absence of thioflavin T binding. In the microplate assay system, the ED 50 of EGCG inhibition of A-Syn-HiLyte488 binding to coated SNCA was 250 nM. In the PD tissue based assay, SNCA aggregates were recognized by incubation with 7 nM of A-Syn-HiLyte488. This binding was blocked by EGCG in a concentration dependent manner. The SNCA amino acid sites, which potentially interacted with EGCG, were detected on peptide membranes. It was implicated that EGCG binds to SNCA by instable hydrophobic interactions. In this study, we suggested that EGCG could be a potent remodeling agent of SNCA aggregates and a potential disease modifying drug for the treatment of PD and other α-synucleinopathies.

  20. May the thyroid gland and thyroperoxidase participate in nitrosylation of serum proteins and sporadic Parkinson's disease?

    PubMed

    Fernández, Emilio; García-Moreno, José-Manuel; Martín de Pablos, Angel; Chacón, José

    2014-11-20

    The research group has detected nitrosative stress and a singular version of nitrosylated serum α-synuclein in serum of Parkinson's disease (PD) patients. Dysfunction of the thyroid gland has been proposed to be linked to this disease. The aim of the study was to know if the thyroid gland is involved in idiopathic PD and nitrosative stress. We studied 50 patients (early and advanced disease patients), 35 controls, and 6 subjects with thyroidectomy. Clinical characteristics, serum thyroperoxidase levels, and 3-nitrotyrosine proteins were analyzed. Enzyme-linked immunosorbent assay and immunoblotting methods were employed. The findings indicated that the prevalence of two thyroid dysfunctions (hyper- or hypothyroidism) was not found to be different in patients relative to controls. However, the levels of the enzyme thyroperoxidase were found to be elevated in early disease patients (p<0.006), not in advanced disease subjects, and these levels were negatively correlated with serum 3-nitrotyrosine proteins (p<0.05), the indicators of nitrosative stress. The thyroidectomized subjects showed very low levels of serum 3-nitrotyrosine proteins (78% reduction vs. controls) and, among these proteins, the nitrosylated serum α-synuclein was nearly absent. These observations lead to the hypothesis that the thyroid gland and thyroperoxidase participate in nitrosylation of serum proteins and they could influence Parkinsonian nitrosative stress as well as nitrosylation of serum α-synuclein, a potentially pathogenic factor.

  1. Development of an ultra-high sensitive immunoassay with plasma biomarker for differentiating Parkinson disease dementia from Parkinson disease using antibody functionalized magnetic nanoparticles.

    PubMed

    Yang, Shieh-Yueh; Chiu, Ming-Jang; Lin, Chin-Hsien; Horng, Herng-Er; Yang, Che-Chuan; Chieh, Jen-Jie; Chen, Hsin-Hsien; Liu, Bing-Hsien

    2016-06-08

    It is difficult to discriminate healthy subjects and patients with Parkinson disease (PD) or Parkinson disease dementia (PDD) by assaying plasma α-synuclein because the concentrations of circulating α-synuclein in the blood are almost the same as the low-detection limit using current immunoassays, such as enzyme-linked immunosorbent assay. In this work, an ultra-sensitive immunoassay utilizing immunomagnetic reduction (IMR) is developed. The reagent for IMR consists of magnetic nanoparticles functionalized with antibodies against α-synuclein and dispersed in pH-7.2 phosphate-buffered saline. A high-Tc superconducting-quantum-interference-device (SQUID) alternative-current magnetosusceptometer is used to measure the IMR signal of the reagent due to the association between magnetic nanoparticles and α-synuclein molecules. According to the experimental α-synuclein concentration dependent IMR signal, the low-detection limit is 0.3 fg/ml and the dynamic range is 310 pg/ml. The preliminary results show the plasma α-synuclein for PD patients distributes from 6 to 30 fg/ml. For PDD patients, the concentration of plasma α-synuclein varies from 0.1 to 100 pg/ml. Whereas the concentration of plasma α-synuclein for healthy subjects is significantly lower than that of PD patients. The ultra-sensitive IMR by utilizing antibody-functionalized magnetic nanoparticles and high-Tc SQUID magnetometer is promising as a method to assay plasma α-synuclein, which is a potential biomarker for discriminating patients with PD or PDD.

  2. Targeting α-synuclein for treating Parkinson’s disease: mechanistic and therapeutic considerations

    PubMed Central

    Gorry, Philippe; Przedborski, Serge; Vila, Miquel; Hunot, Stephane; Singleton, Andrew; Olanow, C. Warren; Merchant, Kalpana M.; Bezard, Erwan; Petsko, Gregory A.; Meissner, Wassilios G.

    2016-01-01

    Summary Progressive neuronal cell loss in a small subset of brainstem and mesencephalic nuclei and widespread aggregation of the α-synuclein protein in the form of Lewy bodies and Lewy neurites are neuropathological hallmarks of Parkinson’s disease. Most cases occur sporadically, but mutations in several genes, including α-synuclein, are associated with disease development. The mechanisms driving neurodegeneration remain unknown, hence limiting therapeutic strategies aimed at blocking neuronal death. This review describes current evidence for a predominant role of α-synuclein in the pathogenesis of PD, as well as some of the most promising α-synuclein-based strategies currently in development for this incurable neurodegenerative disorder. PMID:26050140

  3. Gamma Synuclein Promotes a Metastatic Phenotype in Breast and Ovarian Tumor Cells by Modulating the Rho Signal Transduction Activity

    DTIC Science & Technology

    2002-05-01

    peripheral nervous system, such as dorsal root ganglia and trigeminal ganglia . Synoretin, the newest member of the synuclein family is expressed at high...involved in neuron development and function (43). The involvement of y-synuclein in human neoplastic diseases came to light when y-synuclein was...wed) are a famnily of small, highly conserved proteins exprssed predominanly in neurons . While a- synfucein is impicatad i neurodegenerative diseases

  4. Interaction of α-synuclein with Rhus typhina tannin - Implication for Parkinson's disease.

    PubMed

    Sekowski, Szymon; Ionov, Maksim; Abdulladjanova, Nodira; Makhmudov, Rustam; Mavlyanov, Saidmukhtar; Milowska, Katarzyna; Bryszewska, Maria; Zamaraeva, Maria

    2017-07-01

    The etiology of Parkinson's disease (PD) relates to α-synuclein, a small protein with the ability to aggregate and form Lewy bodies. One of its prevention strategies is inhibition of α-synuclein oligomerization. We have investigated the interaction of α-synuclein and human serum albumin with 3,6-bis-О-di-О-galloyl-1,2,4-tri-О-galloyl-β-d-glucose (a tannin isolated from the plant Rhus typhina). Using fluorescence spectroscopy method we found that this tannin interacts strongly with α-synuclein forming complexes. Circular dichroism analysis showed a time-dependent inhibition of α-synuclein aggregation in the presence of the tannin. On the other hand, 3,6-bis-О-di-О-galloyl-1,2,4-tri-О-galloyl-β-d-glucose had a much stronger interaction with human serum albumin than α-synuclein. The calculated binding constant for tannin-protein interaction was considerably higher for albumin than α-synuclein. This tannin interacted with albumin through a "sphere of action" mechanism. The results lead to the conclusion that 3,6-bis-О-di-О-galloyl-1,2,4-tri-О-galloyl-β-d-glucose is a potent preventive compound against Parkinson's disease. However, this tannin interacts very strongly with human serum albumin, significantly reducing the bioavailability of this compound. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A Blood-Brain Barrier (BBB) Disrupter Is Also a Potent α-Synuclein (α-syn) Aggregation Inhibitor

    PubMed Central

    Shaltiel-Karyo, Ronit; Frenkel-Pinter, Moran; Rockenstein, Edward; Patrick, Christina; Levy-Sakin, Michal; Schiller, Abigail; Egoz-Matia, Nirit; Masliah, Eliezer; Segal, Daniel; Gazit, Ehud

    2013-01-01

    The development of disease-modifying therapy for Parkinson disease has been a main drug development challenge, including the need to deliver the therapeutic agents to the brain. Here, we examined the ability of mannitol to interfere with the aggregation process of α-synuclein in vitro and in vivo in addition to its blood-brain barrier-disrupting properties. Using in vitro studies, we demonstrated the effect of mannitol on α-synuclein aggregation. Although low concentration of mannitol inhibited the formation of fibrils, high concentration significantly decreased the formation of tetramers and high molecular weight oligomers and shifted the secondary structure of α-synuclein from α-helical to a different structure, suggesting alternative potential pathways for aggregation. When administered to a Parkinson Drosophila model, mannitol dramatically corrected its behavioral defects and reduced the amount of α-synuclein aggregates in the brains of treated flies. In the mThy1-human α-synuclein transgenic mouse model, a decrease in α-synuclein accumulation was detected in several brain regions following treatment, suggesting that mannitol promotes α-synuclein clearance in the cell bodies. It appears that mannitol has a general neuroprotective effect in the transgenic treated mice, which includes the dopaminergic system. We therefore suggest mannitol as a basis for a dual mechanism therapeutic agent for the treatment of Parkinson disease. PMID:23637226

  6. A blood-brain barrier (BBB) disrupter is also a potent α-synuclein (α-syn) aggregation inhibitor: a novel dual mechanism of mannitol for the treatment of Parkinson disease (PD).

    PubMed

    Shaltiel-Karyo, Ronit; Frenkel-Pinter, Moran; Rockenstein, Edward; Patrick, Christina; Levy-Sakin, Michal; Schiller, Abigail; Egoz-Matia, Nirit; Masliah, Eliezer; Segal, Daniel; Gazit, Ehud

    2013-06-14

    The development of disease-modifying therapy for Parkinson disease has been a main drug development challenge, including the need to deliver the therapeutic agents to the brain. Here, we examined the ability of mannitol to interfere with the aggregation process of α-synuclein in vitro and in vivo in addition to its blood-brain barrier-disrupting properties. Using in vitro studies, we demonstrated the effect of mannitol on α-synuclein aggregation. Although low concentration of mannitol inhibited the formation of fibrils, high concentration significantly decreased the formation of tetramers and high molecular weight oligomers and shifted the secondary structure of α-synuclein from α-helical to a different structure, suggesting alternative potential pathways for aggregation. When administered to a Parkinson Drosophila model, mannitol dramatically corrected its behavioral defects and reduced the amount of α-synuclein aggregates in the brains of treated flies. In the mThy1-human α-synuclein transgenic mouse model, a decrease in α-synuclein accumulation was detected in several brain regions following treatment, suggesting that mannitol promotes α-synuclein clearance in the cell bodies. It appears that mannitol has a general neuroprotective effect in the transgenic treated mice, which includes the dopaminergic system. We therefore suggest mannitol as a basis for a dual mechanism therapeutic agent for the treatment of Parkinson disease.

  7. α-Synuclein aggregation, seeding and inhibition by scyllo-inositol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Tarek; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M4N 3M5, ON; McLaurin, JoAnne, E-mail: jmclaurin@sri.utoronto.ca

    2016-01-15

    Recent literature demonstrates the accelerated aggregation of α-synuclein, a protein implicated in the pathogenesis of Parkinson's disease (PD), by the presence of preformed fibrillar conformers in vitro. Furthermore, these preformed fibrillar seeds are suggested to accelerate pathological induction in vivo when injected into the brains of mice. Variation in the results of in vivo studies is proposed to be caused by α-synuclein conformational variants. To investigate the impact of amino acid sequence on seeding efficiency, human and mouse α-synuclein seeds, which vary at 7 amino acid residues, were generated and cross-seeding kinetics studied. Using transmission electron microscopy (TEM), we confirmed that mouse α-synucleinmore » aggregated more rapidly than human α-synuclein. Subsequently, we determined that seeding of human and mouse α-synuclein was more rapid in the presence of seeds generated from the same species. In addition, an established amyloid inhibitor, scyllo-inositol, was examined for potential inhibitory effects on α-synuclein aggregation. TEM analysis of protein:inhibitor assays demonstrated that scyllo-inositol inhibits the aggregation of α-synuclein, suggesting the therapeutic potential of the small molecule in PD. - Highlights: • Mouse α-syn fibrillizes in a significantly shorter timeframe than human α-syn. • Seeding of monomers is more efficient when seeds originate from the same species. • scyllo-Inositol has anti-aggregation effects on mouse and human α-syn.« less

  8. Reducing C-Terminal-Truncated Alpha-Synuclein by Immunotherapy Attenuates Neurodegeneration and Propagation in Parkinson's Disease-Like Models

    PubMed Central

    Games, Dora; Valera, Elvira; Spencer, Brian; Rockenstein, Edward; Mante, Michael; Adame, Anthony; Patrick, Christina; Ubhi, Kiren; Nuber, Silke; Sacayon, Patricia; Zago, Wagner; Seubert, Peter; Barbour, Robin; Schenk, Dale

    2014-01-01

    Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are common neurodegenerative disorders of the aging population, characterized by progressive and abnormal accumulation of α-synuclein (α-syn). Recent studies have shown that C-terminus (CT) truncation and propagation of α-syn play a role in the pathogenesis of PD/DLB. Therefore, we explored the effect of passive immunization against the CT of α-syn in the mThy1-α-syn transgenic (tg) mouse model, which resembles the striato-nigral and motor deficits of PD. Mice were immunized with the new monoclonal antibodies 1H7, 5C1, or 5D12, all directed against the CT of α-syn. CT α-syn antibodies attenuated synaptic and axonal pathology, reduced the accumulation of CT-truncated α-syn (CT-α-syn) in axons, rescued the loss of tyrosine hydroxylase fibers in striatum, and improved motor and memory deficits. Among them, 1H7 and 5C1 were most effective at decreasing levels of CT-α-syn and higher-molecular-weight aggregates. Furthermore, in vitro studies showed that preincubation of recombinant α-syn with 1H7 and 5C1 prevented CT cleavage of α-syn. In a cell-based system, CT antibodies reduced cell-to-cell propagation of full-length α-syn, but not of the CT-α-syn that lacked the 118–126 aa recognition site needed for antibody binding. Furthermore, the results obtained after lentiviral expression of α-syn suggest that antibodies might be blocking the extracellular truncation of α-syn by calpain-1. Together, these results demonstrate that antibodies against the CT of α-syn reduce levels of CT-truncated fragments of the protein and its propagation, thus ameliorating PD-like pathology and improving behavioral and motor functions in a mouse model of this disease. PMID:25009275

  9. Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson's disease-like models.

    PubMed

    Games, Dora; Valera, Elvira; Spencer, Brian; Rockenstein, Edward; Mante, Michael; Adame, Anthony; Patrick, Christina; Ubhi, Kiren; Nuber, Silke; Sacayon, Patricia; Zago, Wagner; Seubert, Peter; Barbour, Robin; Schenk, Dale; Masliah, Eliezer

    2014-07-09

    Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are common neurodegenerative disorders of the aging population, characterized by progressive and abnormal accumulation of α-synuclein (α-syn). Recent studies have shown that C-terminus (CT) truncation and propagation of α-syn play a role in the pathogenesis of PD/DLB. Therefore, we explored the effect of passive immunization against the CT of α-syn in the mThy1-α-syn transgenic (tg) mouse model, which resembles the striato-nigral and motor deficits of PD. Mice were immunized with the new monoclonal antibodies 1H7, 5C1, or 5D12, all directed against the CT of α-syn. CT α-syn antibodies attenuated synaptic and axonal pathology, reduced the accumulation of CT-truncated α-syn (CT-α-syn) in axons, rescued the loss of tyrosine hydroxylase fibers in striatum, and improved motor and memory deficits. Among them, 1H7 and 5C1 were most effective at decreasing levels of CT-α-syn and higher-molecular-weight aggregates. Furthermore, in vitro studies showed that preincubation of recombinant α-syn with 1H7 and 5C1 prevented CT cleavage of α-syn. In a cell-based system, CT antibodies reduced cell-to-cell propagation of full-length α-syn, but not of the CT-α-syn that lacked the 118-126 aa recognition site needed for antibody binding. Furthermore, the results obtained after lentiviral expression of α-syn suggest that antibodies might be blocking the extracellular truncation of α-syn by calpain-1. Together, these results demonstrate that antibodies against the CT of α-syn reduce levels of CT-truncated fragments of the protein and its propagation, thus ameliorating PD-like pathology and improving behavioral and motor functions in a mouse model of this disease. Copyright © 2014 the authors 0270-6474/14/349441-14$15.00/0.

  10. Age-dependent α-synuclein aggregation in the Microcebus murinus lemur primate

    PubMed Central

    Canron, Marie-Hélène; Perret, Martine; Vital, Anne; Bézard, Erwan; Dehay, Benjamin

    2012-01-01

    Since age-dependent deposition of Aβ-amyloid has been reported in the Microcebus murinus, we posited that this animal could as well be a model of age-related synucleinopathy. We characterized the distribution of Aβ-amyloid, α-synuclein and two of its modified forms in the brain of Microcebus murinus aged from 1.5 to 10 years. Intracytoplasmic α-synuclein aggregates were observed only in aged animals in different brain regions, which were also phospho-Ser129 and nitrated α-synuclein immunoreactive. Age-dependent α-synuclein aggregation occurs spontaneously in mouse lemur primates. Microcebus murinus may provide a model to study age-associated α-synucleinopathy and for testing putative therapeutic interventions for both Alzheimer's and Parkinson's diseases. PMID:23205271

  11. Treatment with phosphotidylglycerol-based nanoparticles prevents motor deficits induced by proteasome inhibition: implications for Parkinson's disease.

    PubMed

    Fitzgerald, Patrick; Mandel, Arkady; Bolton, Anthony E; Sullivan, Aideen M; Nolan, Yvonne

    2008-12-22

    Failure of the ubiquitin-proteasome system to degrade abnormal proteins may underlie the accumulation of alpha-synuclein and dopaminergic neuronal degeneration that occurs in Parkinson's disease. Consequently, a reduction of functional proteasome activity has been implicated in Parkinson's disease. VP025 (Vasogen Inc.) is a preparation of phospholipid nanoparticles incorporating phosphatidylglycerol that has been shown to have neuroprotective effects. We show that VP025 prevents the deficits in motor coordination and dopamine observed in a proteasome inhibitor rat model of PD. Thus, VP025 may have a therapeutic effect on the impairment of dopaminergic-mediated motor activity induced by proteasome inhibition.

  12. α-Synuclein inclusions in the skin of Parkinson's disease and parkinsonism.

    PubMed

    Rodríguez-Leyva, Ildefonso; Calderón-Garcidueñas, Ana Laura; Jiménez-Capdeville, María E; Rentería-Palomo, Ana Arely; Hernandez-Rodriguez, Héctor Gerardo; Valdés-Rodríguez, Rodrigo; Fuentes-Ahumada, Cornelia; Torres-Álvarez, Bertha; Sepúlveda-Saavedra, Julio; Soto-Domínguez, Adolfo; Santoyo, Martha E; Rodriguez-Moreno, José Ildefonso; Castanedo-Cázares, Juan Pablo

    2014-07-01

    The presence in the brain of α-synuclein containing Lewy neurites, or bodies, is the histological hallmark of Parkinson's disease (PD). The discovery of α-synuclein aggregates in nerve endings of the heart, digestive tract, and skin has lent support to the concept of PD as a systemic disease. Our goals were, first, to demonstrate the presence of α-synuclein inclusions in the skin and, second, to detect quantitative differences between patients with PD and atypical parkinsonism (AP). Skin biopsies were taken from 67 patients and 20 controls. The biopsies underwent immunohistochemistry (IHC) and immunofluorescence (IF) testing for α-synuclein, whereupon its presence was quantified as the percentage of positive cells. Patients were divided into those with PD and those with AP. AP patients included AP with neurodegenerative disease (proteinopathies) and secondary AP. Sixty-seven patients (34 with PD) and 20 controls were recruited. In the PD group, α-synuclein was detected in 58% of the cells in the spinous cell layer (SCL), 62% in the pilosebaceous unit (PSU), and 58% in the eccrine glands (EG). The AP-proteinopathies group showed 7%, 7%, and 0% expression of α-synuclein, respectively. No expression was found in the skin of the control group. The expression of α-synuclein in the skin was relatively high in the PD group, scarce in AP, and null for the individuals in the control group. While these findings require further confirmation, this minimally invasive technique may aid in the improvement of the accuracy of PD diagnoses.

  13. The critical role of Nramp1 in degrading α-synuclein oligomers in microglia under iron overload condition.

    PubMed

    Wu, Kuo-Chen; Liou, Horng-Huei; Kao, Yu-Han; Lee, Chih-Yu; Lin, Chun-Jung

    2017-08-01

    Oligomeric α-synuclein is a key mediator in the pathogenesis of Parkinson's disease (PD) and is mainly cleared by autophagy-lysosomal pathway, whose dysfunction results in the accumulation and cell-to-cell transmission of α-synuclein. In this study, concomitant with the accumulation of iron and oligomeric α-synuclein, higher expression of a lysosomal iron transporter, natural resistance-associated macrophage protein-1 (Nramp1), was observed in microglia in post-mortem striatum of sporadic PD patients. Using Nramp1-deficient macrophage (RAW264.7) and microglial (BV-2) cells as in-vitro models, iron exposure significantly reduced the degradation rate of the administered human α-synuclein oligomers, which can be restored by the expression of the wild-type, but not mutant (D543N), Nramp1. Likewise, under iron overload condition, mice with functional Nramp1 (DBA/2 and C57BL/6 congenic mice carrying functional Nramp1) had a better ability to degrade infused human α-synuclein oligomers than mice with nonfunctional Nramp1 (C57BL/6) in the brain and microglia. The interplay between iron and Nramp1 exhibited parallel effects on the clearance of α-synuclein and the activity of lysosomal cathepsin D in vitro and in vivo. Collectively, these findings suggest that the function of Nramp1 contributes to microglial degradation of oligomeric α-synuclein under iron overload condition and may be implicated in the pathogenesis of PD. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Insights into the Molecular Mechanisms of Alzheimer's and Parkinson's Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology.

    PubMed

    Coskuner-Weber, Orkid; Uversky, Vladimir N

    2018-01-24

    Amyloid-β and α-synuclein are intrinsically disordered proteins (IDPs), which are at the center of Alzheimer's and Parkinson's disease pathologies, respectively. These IDPs are extremely flexible and do not adopt stable structures. Furthermore, both amyloid-β and α-synuclein can form toxic oligomers, amyloid fibrils and other type of aggregates in Alzheimer's and Parkinson's diseases. Experimentalists face challenges in investigating the structures and thermodynamic properties of these IDPs in their monomeric and oligomeric forms due to the rapid conformational changes, fast aggregation processes and strong solvent effects. Classical molecular dynamics simulations complement experiments and provide structural information at the atomic level with dynamics without facing the same experimental limitations. Artificial missense mutations are employed experimentally and computationally for providing insights into the structure-function relationships of amyloid-β and α-synuclein in relation to the pathologies of Alzheimer's and Parkinson's diseases. Furthermore, there are several natural genetic variations that play a role in the pathogenesis of familial cases of Alzheimer's and Parkinson's diseases, which are related to specific genetic defects inherited in dominant or recessive patterns. The present review summarizes the current understanding of monomeric and oligomeric forms of amyloid-β and α-synuclein, as well as the impacts of artificial and pathological missense mutations on the structural ensembles of these IDPs using molecular dynamics simulations. We also emphasize the recent investigations on residual secondary structure formation in dynamic conformational ensembles of amyloid-β and α-synuclein, such as β-structure linked to the oligomerization and fibrillation mechanisms related to the pathologies of Alzheimer's and Parkinson's diseases. This information represents an important foundation for the successful and efficient drug design studies.

  15. α-Synuclein in Parkinson's Disease

    PubMed Central

    Stefanis, Leonidas

    2012-01-01

    α-Synuclein is a presynaptic neuronal protein that is linked genetically and neuropathologically to Parkinson's disease (PD). α-Synuclein may contribute to PD pathogenesis in a number of ways, but it is generally thought that its aberrant soluble oligomeric conformations, termed protofibrils, are the toxic species that mediate disruption of cellular homeostasis and neuronal death, through effects on various intracellular targets, including synaptic function. Furthermore, secreted α-synuclein may exert deleterious effects on neighboring cells, including seeding of aggregation, thus possibly contributing to disease propagation. Although the extent to which α-synuclein is involved in all cases of PD is not clear, targeting the toxic functions conferred by this protein when it is dysregulated may lead to novel therapeutic strategies not only in PD, but also in other neurodegenerative conditions, termed synucleinopathies. PMID:22355802

  16. The measurement of alpha particle emissions from semiconductor memory materials

    NASA Astrophysics Data System (ADS)

    Bouldin, D. P.

    1981-07-01

    With the increasing concern for the affects of alpha particles on the reliability of semiconductor memories, an interest has arisen in characterizing semiconductor manufacturing materials for extremely low-level alpha-emitting contaminants. It is shown that four elements are of primary concern: uranium, thorium, radium, and polonium. Measurement of contamination levels are given relevance by first correlating them with alpha flux emission levels and then corre1ating these flux values with device soft error rates. Measurement techniques involve either measurements of elemental concentrations-applicable to only uranium and thorium - or direct measurements of alpha emission fluxes. Alpha fluxes are most usefully measured by means of ZnS scintillation counting, practical details of which are discussed. Materials measurements are reported for ceramics, solder, silicon, quartz, and various metals and organic materials. Ceramics and most metals have contamination levels of concern, but the high temperature processing normally used in semiconductor manufacturing and low total amounts reduce problems, at least for metals. Silicon, silicon compounds, and organic materials have been found to have no detectable alpha emitters. Finally, a brief discussion of the calibration of alpha sources for accelerated device testing is given, including practical details on the affects of source/chip separation and alignment variations.

  17. Mass and charge distributions of amyloid fibers involved in neurodegenerative diseases: mapping heterogeneity and polymorphism† †Electronic supplementary information (ESI) available: Experimental section and supplementary figures. See DOI: 10.1039/c7sc04542e

    PubMed Central

    Pansieri, Jonathan; Halim, Mohammad A.; Vendrely, Charlotte; Dumoulin, Mireille; Legrand, François; Sallanon, Marcelle Moulin; Chierici, Sabine; Denti, Simona; Dagany, Xavier; Dugourd, Philippe; Marquette, Christel

    2018-01-01

    Heterogeneity and polymorphism are generic features of amyloid fibers with some important effects on the related disease development. We report here the characterization, by charge detection mass spectrometry, of amyloid fibers made of three polypeptides involved in neurodegenerative diseases: Aβ1–42 peptide, tau and α-synuclein. Beside the mass of individual fibers, this technique enables to characterize the heterogeneity and the polymorphism of the population. In the case of Aβ1–42 peptide and tau protein, several coexisting species could be distinguished and characterized. In the case of α-synuclein, we show how the polymorphism affects the mass and charge distributions. PMID:29732065

  18. May the Thyroid Gland and Thyroperoxidase Participate in Nitrosylation of Serum Proteins and Sporadic Parkinson's Disease?

    PubMed Central

    García-Moreno, José-Manuel; Martín de Pablos, Angel; Chacón, José

    2014-01-01

    Abstract The research group has detected nitrosative stress and a singular version of nitrosylated serum α-synuclein in serum of Parkinson's disease (PD) patients. Dysfunction of the thyroid gland has been proposed to be linked to this disease. The aim of the study was to know if the thyroid gland is involved in idiopathic PD and nitrosative stress. We studied 50 patients (early and advanced disease patients), 35 controls, and 6 subjects with thyroidectomy. Clinical characteristics, serum thyroperoxidase levels, and 3-nitrotyrosine proteins were analyzed. Enzyme-linked immunosorbent assay and immunoblotting methods were employed. The findings indicated that the prevalence of two thyroid dysfunctions (hyper- or hypothyroidism) was not found to be different in patients relative to controls. However, the levels of the enzyme thyroperoxidase were found to be elevated in early disease patients (p<0.006), not in advanced disease subjects, and these levels were negatively correlated with serum 3-nitrotyrosine proteins (p<0.05), the indicators of nitrosative stress. The thyroidectomized subjects showed very low levels of serum 3-nitrotyrosine proteins (78% reduction vs. controls) and, among these proteins, the nitrosylated serum α-synuclein was nearly absent. These observations lead to the hypothesis that the thyroid gland and thyroperoxidase participate in nitrosylation of serum proteins and they could influence Parkinsonian nitrosative stress as well as nitrosylation of serum α-synuclein, a potentially pathogenic factor. Antioxid. Redox Signal. 21, 2143–2148. PMID:25125346

  19. Inhibition of neuroinflammation and mitochondrial dysfunctions by carbenoxolone in the rotenone model of Parkinson's disease.

    PubMed

    Thakur, Poonam; Nehru, Bimla

    2015-02-01

    α-Synuclein aggregation contributes to the Parkinson's disease (PD) pathology in multiple ways-the two most important being the activation of neuroinflammation and mitochondrial dysfunction. Our recent studies have shown the beneficial effects of a heat shock protein (HSP) inducer, carbenoxolone (Cbx), in reducing the aggregation of α-synuclein in a rotenone-based rat model of PD. The present study was designed to explore its ability to attenuate the α-synuclein-mediated alterations in neuroinflammation and mitochondrial functions. The PD model was generated by the rotenone administration (2 mg/kg b.wt.) to the male SD rats for a period of 5 weeks. Cbx (20 mg/kg b.wt.) co-administration was seen to reduce the activation of astrocytes incited by rotenone. Subsequently, the release of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β was inhibited. Further, the expression level of various inflammatory mediators such as COX-2, iNOS, and NF-κB was also reduced following Cbx co-treatment. Cbx was also shown to reduce the rotenone-induced decline in activity of mitochondrial complexes-I, -II, and -IV. Protection of mitochondrial functions and reduction in neuroinflammation lead to the lesser production of ROS and subsequently reduced oxidative stress. This was reflected by the increase in both the cytosolic and mitochondrial GSH levels as well as SOD activity during Cbx co-treatment. Thus, Cbx reduces the inflammatory response and improves the mitochondrial dysfunctions by reducing α-synuclein aggregation. In addition, it also reduces the associated oxidative stress. Due to its ability to target the multiple pathways implicated in the PD, Cbx can serve as a highly beneficial prophylactic agent.

  20. Development of a diamond waveguide sensor for sensitive protein analysis using IR quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Piron, P.; Vargas Catalan, E.; Haas, J.; Österlund, L.; Nikolajeff, F.; Andersson, P. O.; Bergström, J.; Mizaikoff, B.; Karlsson, M.

    2018-02-01

    Microfabricated diamond waveguides, between 5 and 20 μm thick, manufactured by chemical vapor deposition of diamond, followed by standard lithographic techniques and inductively coupled plasma etching of diamond, are used as bio-chemical sensors in the mid infrared domain: 5-11 μm. Infrared light, emitted from a broadly tunable quantum cascade laser with a wavelength resolution smaller than 20 nm, is coupled through the diamond waveguides for attenuated total reflection spectroscopy. The expected advantages of these waveguides are a high sensitivity due to the high number of internal reflections along the propagation direction, a high transmittance in the mid-IR domain, the bio-compatibility of diamond and the possibility of functionalizing the surface layer. The sensor will be used for analyzing different forms of proteins such as α-synuclein which is relevant in understanding the mechanism behind Parkinson's disease. The fabrication process of the waveguide, its characteristics and several geometries are introduced. The optical setup of the biosensor is described and our first measurements on two analytes to demonstrate the principle of the sensing method will be presented. Future use of this sensor includes the functionalization of the diamond waveguide sensor surface to be able to fish out alpha-synuclein from cerebrospinal fluid.

  1. Chemical Compensation of Mitochondrial Phospholipid Depletion in Yeast and Animal Models of Parkinson’s Disease

    PubMed Central

    Wang, Shaoxiao; Zhang, Siyuan; Xu, Chuan; Barron, Addie; Galiano, Floyd; Patel, Dhaval; Lee, Yong Joo; Caldwell, Guy A.; Caldwell, Kim A.

    2016-01-01

    We have been investigating the role that phosphatidylethanolamine (PE) and phosphatidylcholine (PC) content plays in modulating the solubility of the Parkinson’s disease protein alpha-synuclein (α-syn) using Saccharomyces cerevisiae and Caenorhabditis elegans. One enzyme that synthesizes PE is the conserved enzyme phosphatidylserine decarboxylase (Psd1/yeast; PSD-1/worms), which is lodged in the inner mitochondrial membrane. We previously found that decreasing the level of PE due to knockdown of Psd1/psd-1 affects the homeostasis of α-syn in vivo. In S. cerevisiae, the co-occurrence of low PE and α-syn in psd1Δ cells triggers mitochondrial defects, stress in the endoplasmic reticulum, misprocessing of glycosylphosphatidylinositol-anchored proteins, and a 3-fold increase in the level of α-syn. The goal of this study was to identify drugs that rescue this phenotype. We screened the Prestwick library of 1121 Food and Drug Administration-approved drugs using psd1Δ + α-syn cells and identified cyclosporin A, meclofenoxate hydrochloride, and sulfaphenazole as putative protective compounds. The protective activity of these drugs was corroborated using C. elegans in which α-syn is expressed specifically in the dopaminergic neurons, with psd-1 depleted by RNAi. Worm populations were examined for dopaminergic neuron survival following psd-1 knockdown. Exposure to cyclosporine, meclofenoxate, and sulfaphenazole significantly enhanced survival at day 7 in α-syn-expressing worm populations whereby 50–55% of the populations displayed normal neurons, compared to only 10–15% of untreated animals. We also found that all three drugs rescued worms expressing α-syn in dopaminergic neurons that were deficient in the phospholipid cardiolipin following cardiolipin synthase (crls-1) depletion by RNAi. We discuss how these drugs might block α-syn pathology in dopaminergic neurons. PMID:27736935

  2. Site-specific structural dynamics of α-Synuclein revealed by time-resolved fluorescence spectroscopy: a review

    NASA Astrophysics Data System (ADS)

    Sahay, Shruti; Krishnamoorthy, G.; Maji, Samir K.

    2016-12-01

    Aggregation of α-Synuclein (α-Syn) into amyloid fibrils is known to be associated with the pathogenesis of Parkinson’s disease (PD). Several missense mutations of the α-Syn gene have been associated with rare, early onset familial forms of PD. Despite several studies done so far, the local/residue-level structure and dynamics of α-Syn in its soluble and aggregated fibril form and how these are affected by the familial PD associated mutations are still not clearly understood. Here, we review studies performed by our group as well as other research groups, where time-resolved fluorescence spectroscopy has been used to understand the site-specific structure and dynamics of α-Syn under physiological conditions as well as under conditions that alter the aggregation properties of the protein such as low pH, high temperature, presence of membrane mimics and familial PD associated mutations. These studies have provided important insights into the critical structural properties of α-Syn that may govern its aggregation. The review also highlights time-resolved fluorescence as a promising tool to study the critical conformational transitions associated with early oligomerization of α-Syn, which are otherwise not accessible using other commonly used techniques such as thioflavin T (ThT) binding assay.

  3. Developmental manganese neurotoxicity in rats: Cognitive deficits in allocentric and egocentric learning and memory.

    PubMed

    Amos-Kroohs, Robyn M; Davenport, Laurie L; Atanasova, Nina; Abdulla, Zuhair I; Skelton, Matthew R; Vorhees, Charles V; Williams, Michael T

    Manganese (Mn) is an essential element but neurotoxic at higher exposure levels. The effects of Mn overexposure (MnOE) on hippocampal and striatal-dependent learning and memory in rats were tested in combination with iron deficiency (FeD) and developmental stress that often co-occur with MnOE. Moderate FeD affects up to 15% of U.S. children and developmental stress is common in lower socio-economic areas where MnOE occurs. Pregnant Sprague-Dawley rats and their litters were housed in cages with or without (barren cage (BAR)) standard bedding from embryonic day (E)7 to postnatal day (P)28. Dams were fed a 90% FeD or iron sufficient (FeS) diet from E15-P28. Within each litter, separate offspring were treated with 100mg/kg Mn (MnOE) or vehicle (VEH) by gavage on alternate days from P4-28. Offspring were tested as adults in the Morris and Cincinnati water mazes. FeD and developmental stress interactively impaired spatial learning in the Morris water maze. Developmental stress and MnOE impaired learning and memory in both mazes. MnOE resulted in reduced CA1 hippocampal long-term potentiation (LTP) and increased levels of α-synuclein. Preweaning MnOE resulted in cognitive deficits on multiple domains of learning and memory accompanied by impaired LTP and α-synuclein changes, effects worsened by developmental stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Atomic force microscopy based nanoassay: a new method to study α-Synuclein-dopamine bioaffinity interactions

    NASA Astrophysics Data System (ADS)

    Corvaglia, Stefania; Sanavio, Barbara; Sorce, Barbara; Bosco, Alessandro; Sabella, Stefania; Pompa, Pierpaolo; Scoles, Giacinto; Casalis, Loredana

    2015-03-01

    Intrinsically Disordered Proteins (IDPs) are characterized by the lack of well-defined 3-D structure and show high conformational plasticity. For this reason, they are a strong challenge for the traditional characterization of structure, supramolecular assembly and biorecognition phenomena. We show here how the fine tuning of protein orientation on a surface turns useful in the reliable testing of biorecognition interactions of IDPs, in particular α-Synuclein. We exploited atomic force microscopy (AFM) for the selective, nanoscale confinement of α-Synuclein on gold to study the early stages of α-Synuclein aggregation and the effect of small molecules, like dopamine, on the aggregation process. Capitalizing on the high sensitivity of AFM topographic height measurements we determined, for the first time in the literature, the dissociation constant of dopamine- α-Synuclein adducts.

  5. Atomic force microscopy based nanoassay: a new method to study α-Synuclein-dopamine bioaffinity interactions

    NASA Astrophysics Data System (ADS)

    Corvaglia, Stefania; Sanavio, Barbara; Hong Enriquez, Rolando P.; Sorce, Barbara; Bosco, Alessandro; Scaini, Denis; Sabella, Stefania; Pompa, Pier Paolo; Scoles, Giacinto; Casalis, Loredana

    2014-06-01

    Intrinsically Disordered Proteins (IDPs) are characterized by the lack of well-defined 3-D structure and show high conformational plasticity. For this reason, they are a strong challenge for the traditional characterization of structure, supramolecular assembly and biorecognition phenomena. We show here how the fine tuning of protein orientation on a surface turns useful in the reliable testing of biorecognition interactions of IDPs, in particular α-Synuclein. We exploited atomic force microscopy (AFM) for the selective, nanoscale confinement of α-Synuclein on gold to study the early stages of α-Synuclein aggregation and the effect of small molecules, like dopamine, on the aggregation process. Capitalizing on the high sensitivity of AFM topographic height measurements we determined, for the first time in the literature, the dissociation constant of dopamine-α-Synuclein adducts.

  6. Effect of ginsenoside Rg3 on tyrosine hydroxylase and related mechanisms in the forced swimming-induced fatigue rats.

    PubMed

    Xu, Yuxia; Zhang, Peng; Wang, Chu; Shan, Ye; Wang, Dandan; Qian, Fenglei; Sun, Mengwei; Zhu, Cuiqing

    2013-10-28

    Ginsenoside Rg3 has shown multiple pharmacological activities and been considered as one of the most promising approaches for fatigue treatment. However, little is known about the cellular and molecular mechanisms of Rg3 on anti-fatigue and the effect of Rg3 on dopaminergic system has not been reported yet. The major aim of this study is to investigate the effect of Rg3 on TH expression and the related biochemical parameters, such as PKAα, ERK1/2, Akt and α-synuclein in brain of fatigue rats. Weight-loaded forced swimming was performed to establish an animal model of fatigue. Rg3 (10mg/kg, 50mg/kg and 100mg/kg) was intragastrically administrated before swimming. The effect of Rg3 on the expression and phosphorylation of TH and TH-related proteins in fatigue rats or in SH-SY5Y cells was assessed with western blotting. HPLC was used to examine the level of DA and DOPAC in the fatigue rats tissues. TH and phosphorylated TH were decreased in different brain regions of which ventral midbrain were less affected in weight-loaded forced swimming rats. Pretreatment with Rg3 significantly suppressed fatigue-induced decrease expression of TH and TH phosphorylation. Also treatment with Rg3 reversed the decrease expression of PKAα as well as the phosphorylation of ERK1/2 and Akt which were induced by weight-loaded forced swimming. Moreover, weight-loaded swimming could induce the increase expression of α-synuclein in hippocampus and midbrain, while suppressed α-synuclein expression in striatum and prefrontal cortex. Furthermore, Rg3 could induce the increase of TH expression and phosphorylation which was accompanied with elevated expression and phosphorylation of related kinase proteins in vitro, while the inhibitors of kinase proteins could suppress these effects of Rg3. In addition, HPLC results showed that Rg3 could reverse the weight-loaded swimming-induced increase of DOPAC/DA ratio. Our data suggest that fatigue can induce the decrease of DA which might partially result from the change of TH expression and phosphorylation, and Rg3 can reverse these fatigue-induced changes. The underling mechanisms may include the activity changes of PKAα, ERK1/2, Akt and α-synuclein. © 2013 Published by Elsevier Ireland Ltd.

  7. The Synaptic Function of α-Synuclein

    PubMed Central

    Burré, Jacqueline

    2015-01-01

    α-Synuclein is an abundant neuronal protein which localizes predominantly to presynaptic terminals, and is strongly linked genetically and pathologically to Parkinson’s disease and other neurodegenerative diseases. While the accumulation of α-synuclein in the form of misfolded oligomers and large aggregates defines multiple neurodegenerative diseases called “synucleinopathies”, its cellular function has remained largely unclear, and is the subject of intense investigation. In this review, I focus on the structural characteristics of α-synuclein, its cellular and subcellular localization, and discuss how this relates to its function in neurons, in particular at the neuronal synapse. PMID:26407041

  8. Stress-induced Cdk5 activity enhances cytoprotective basal autophagy in Drosophila melanogaster by phosphorylating acinus at serine437.

    PubMed

    Nandi, Nilay; Tyra, Lauren K; Stenesen, Drew; Krämer, Helmut

    2017-12-11

    Cdk5 is a post-mitotic kinase with complex roles in maintaining neuronal health. The various mechanisms by which Cdk5 inhibits and promotes neurodegeneration are still poorly understood. Here, we show that in Drosophila melanogaster Cdk5 regulates basal autophagy, a key mechanism suppressing neurodegeneration. In a targeted screen, Cdk5 genetically interacted with Acinus (Acn), a primarily nuclear protein, which promotes starvation-independent, basal autophagy. Loss of Cdk5, or its required cofactor p35, reduces S437-Acn phosphorylation, whereas Cdk5 gain-of-function increases pS437-Acn levels. The phospho-mimetic S437D mutation stabilizes Acn and promotes basal autophagy. In p35 mutants, basal autophagy and lifespan are reduced, but restored to near wild-type levels in the presence of stabilized Acn S437D . Expression of aggregation-prone polyQ-containing proteins or the Amyloid-β42 peptide, but not alpha-Synuclein, enhances Cdk5-dependent phosphorylation of S437-Acn. Our data indicate that Cdk5 is required to maintain the protective role of basal autophagy in the initial responses to a subset of neurodegenerative challenges.

  9. Metabolites of Purine Nucleoside Phosphorylase (NP) in Serum Have the Potential to Delineate Pancreatic Adenocarcinoma

    PubMed Central

    Thompson, Christopher; Vasu, Vihas T.; Fermin, Damian; Choi, Hyungwon; Creighton, Chad J.; Gayatri, Sitaram; Lan, Ling; Putluri, Nagireddy; Thangjam, Gagan Singh; Kaur, Punit; Shabahang, Mohsen; Giri, Judith G.; Nesvizhskii, Alexey I.; Asea, Alexander A. A.; Cashikar, Anil G.; Rao, Arundhati; McLoughlin, James; Sreekumar, Arun

    2011-01-01

    Pancreatic Adenocarcinoma (PDAC), the fourth highest cause of cancer related deaths in the United States, has the most aggressive presentation resulting in a very short median survival time for the affected patients. Early detection of PDAC is confounded by lack of specific markers that has motivated the use of high throughput molecular approaches to delineate potential biomarkers. To pursue identification of a distinct marker, this study profiled the secretory proteome in 16 PDAC, 2 carcinoma in situ (CIS) and 7 benign patients using label-free mass spectrometry coupled to 1D-SDS-PAGE and Strong Cation-Exchange Chromatography (SCX). A total of 431 proteins were detected of which 56 were found to be significantly elevated in PDAC. Included in this differential set were Parkinson disease autosomal recessive, early onset 7 (PARK 7) and Alpha Synuclein (aSyn), both of which are known to be pathognomonic to Parkinson's disease as well as metabolic enzymes like Purine Nucleoside Phosphorylase (NP) which has been exploited as therapeutic target in cancers. Tissue Microarray analysis confirmed higher expression of aSyn and NP in ductal epithelia of pancreatic tumors compared to benign ducts. Furthermore, extent of both aSyn and NP staining positively correlated with tumor stage and perineural invasion while their intensity of staining correlated with the existence of metastatic lesions in the PDAC tissues. From the biomarker perspective, NP protein levels were higher in PDAC sera and furthermore serum levels of its downstream metabolites guanosine and adenosine were able to distinguish PDAC from benign in an unsupervised hierarchical classification model. Overall, this study for the first time describes elevated levels of aSyn in PDAC as well as highlights the potential of evaluating NP protein expression and levels of its downstream metabolites to develop a multiplex panel for non-invasive detection of PDAC. PMID:21448452

  10. Metabolites of purine nucleoside phosphorylase (NP) in serum have the potential to delineate pancreatic adenocarcinoma.

    PubMed

    Vareed, Shaiju K; Bhat, Vadiraja B; Thompson, Christopher; Vasu, Vihas T; Fermin, Damian; Choi, Hyungwon; Creighton, Chad J; Gayatri, Sitaram; Lan, Ling; Putluri, Nagireddy; Thangjam, Gagan Singh; Kaur, Punit; Shabahang, Mohsen; Giri, Judith G; Nesvizhskii, Alexey I; Asea, Alexander A A; Cashikar, Anil G; Rao, Arundhati; McLoughlin, James; Sreekumar, Arun

    2011-03-23

    Pancreatic Adenocarcinoma (PDAC), the fourth highest cause of cancer related deaths in the United States, has the most aggressive presentation resulting in a very short median survival time for the affected patients. Early detection of PDAC is confounded by lack of specific markers that has motivated the use of high throughput molecular approaches to delineate potential biomarkers. To pursue identification of a distinct marker, this study profiled the secretory proteome in 16 PDAC, 2 carcinoma in situ (CIS) and 7 benign patients using label-free mass spectrometry coupled to 1D-SDS-PAGE and Strong Cation-Exchange Chromatography (SCX). A total of 431 proteins were detected of which 56 were found to be significantly elevated in PDAC. Included in this differential set were Parkinson disease autosomal recessive, early onset 7 (PARK 7) and Alpha Synuclein (aSyn), both of which are known to be pathognomonic to Parkinson's disease as well as metabolic enzymes like Purine Nucleoside Phosphorylase (NP) which has been exploited as therapeutic target in cancers. Tissue Microarray analysis confirmed higher expression of aSyn and NP in ductal epithelia of pancreatic tumors compared to benign ducts. Furthermore, extent of both aSyn and NP staining positively correlated with tumor stage and perineural invasion while their intensity of staining correlated with the existence of metastatic lesions in the PDAC tissues. From the biomarker perspective, NP protein levels were higher in PDAC sera and furthermore serum levels of its downstream metabolites guanosine and adenosine were able to distinguish PDAC from benign in an unsupervised hierarchical classification model. Overall, this study for the first time describes elevated levels of aSyn in PDAC as well as highlights the potential of evaluating NP protein expression and levels of its downstream metabolites to develop a multiplex panel for non-invasive detection of PDAC.

  11. Impact of hydrostatic pressure on an intrinsically disordered protein: a high-pressure NMR study of α-synuclein.

    PubMed

    Roche, Julien; Ying, Jinfa; Maltsev, Alexander S; Bax, Ad

    2013-09-23

    The impact of pressure on the backbone (15) N, (1) H and (13) C chemical shifts in N-terminally acetylated α-synuclein has been evaluated over a pressure range 1-2500 bar. Even while the chemical shifts fall very close to random coil values, as expected for an intrinsically disordered protein, substantial deviations in the pressure dependence of the chemical shifts are seen relative to those in short model peptides. In particular, the nonlinear pressure response of the (1) H(N) chemical shifts, which commonly is associated with the presence of low-lying "excited states", is much larger in α-synuclein than in model peptides. The linear pressure response of (1) H(N) chemical shift, commonly linked to H-bond length change, correlates well with those in short model peptides, and is found to be anticorrelated with its temperature dependence. The pressure dependence of (13) C chemical shifts shows remarkably large variations, even when accounting for residue type, and do not point to a clear shift in population between different regions of the Ramachandran map. However, a nearly universal decrease in (3) JHN-Hα by 0.22 ± 0.05 Hz suggests a slight increase in population of the polyproline II region at 2500 bar. The first six residues of N-terminally acetylated synuclein show a transient of approximately 15% population of α-helix, which slightly diminishes at 2500 bar. The backbone dynamics of the protein is not visibly affected beyond the effect of slight increase in water viscosity at 2500 bar. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Biophysical characterization of α-synuclein and its controversial structure

    PubMed Central

    Alderson, T Reid; Markley, John L

    2013-01-01

    α-synuclein, a presynaptic protein of poorly defined function, constitutes the main component of Parkinson disease-associated Lewy bodies. Extensive biophysical investigations have provided evidence that isolated α-synuclein is an intrinsically disordered protein (IDP) in vitro. Subsequently serving as a model IDP in numerous studies, α-synuclein has aided in the development of many technologies used to characterize IDPs and arguably represents the most thoroughly analyzed IDP to date. Recent reports, however, have challenged the disordered nature of α-synuclein inside cells and have instead proposed a physiologically relevant helical tetramer. Despite α-synuclein’s rich biophysical history, a single coherent picture has not yet emerged concerning its in vivo structure, dynamics, and physiological role(s). We present herein a review of the biophysical discoveries, developments, and models pertinent to the characterization of α-synuclein’s structure and analysis of the native tetramer controversy. PMID:24634806

  13. The NACP/synuclein gene: chromosomal assignment and screening for alterations in Alzheimer disease.

    PubMed

    Campion, D; Martin, C; Heilig, R; Charbonnier, F; Moreau, V; Flaman, J M; Petit, J L; Hannequin, D; Brice, A; Frebourg, T

    1995-03-20

    The major component of the vascular and plaque amyloid deposits in Alzheimer disease is the amyloid beta peptide (A beta). A second intrinsic component of amyloid, the NAC (non-A beta component of amyloid) peptide, has recently been identified, and its precursor protein was named NACP. A computer homology search allowed us to establish that the human NACP gene was homologous to the rat synuclein gene. We mapped the NACP/synuclein gene to chromosome 4 and cloned three alternatively spliced transcripts in lymphocytes derived from a normal subject. We analyzed by RT-PCR and direct sequencing the entire coding region of the NACP/synuclein gene in a group of patients with familial early onset Alzheimer disease. No mutation was found in 26 unrelated patients. Further studies are required to investigate the implication of the NACP/synuclein gene in Alzheimer disease.

  14. The NACP/synuclein gene: Chromosomal assignment and screening for alterations in Alzheimer disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campion, D.; Martin, C.; Charbonnier, F.

    1995-03-20

    The major component of the vascular and plaque amyloid deposits in Alzheimer disease is the amyloid {beta} peptide (A{beta}). A second intrinsic component of amyloid, the NAC (non-A{beta} component of amyloid) peptide, has recently been identified, and its precursor protein was named NACP. A computer homology search allowed us to establish that the human NACP gene was homologous to the rat synuclein gene. We mapped the NACP/synuclein gene to chromosome 4 and cloned three alternatively spliced transcripts in lymphocytes derived from a normal subject. We analyzed by RT-PCR and direct sequencing the entire coding region of the NACP/synuclein gene inmore » a group of patients with familial early onset Alzheimer disease. No mutation was found in 26 unrelated patients. Further studies are required to investigate the implication of the NACP/synuclein gene in Alzheimer disease. 21 refs., 3 tabs.« less

  15. Biophysics of α-Synuclein Membrane Interactions

    PubMed Central

    Pfefferkorn, Candace M.; Jiang, Zhiping; Lee, Jennifer C.

    2011-01-01

    Membrane proteins participate in nearly all cellular processes; however, because of experimental limitations, their characterization lags far behind that of soluble proteins. Peripheral membrane proteins are particularly challenging to study because of their inherent propensity to adopt multiple and/or transient conformations in solution and upon membrane association. In this review, we summarize useful biophysical techniques for the study of peripheral membrane proteins and their application in the characterization of the membrane interactions of the natively unfolded and Parkinson’s disease (PD) related protein, α-synuclein (α-syn). We give particular focus to studies that have led to the current understanding of membrane-bound α-syn structure and the elucidation of specific membrane properties that affect α-syn-membrane binding. Finally, we discuss biophysical evidence supporting a key role for membranes and α-syn in PD pathogenesis. PMID:21819966

  16. NMR of α-synuclein–polyamine complexes elucidates the mechanism and kinetics of induced aggregation

    PubMed Central

    Fernández, Claudio O; Hoyer, Wolfgang; Zweckstetter, Markus; Jares-Erijman, Elizabeth A; Subramaniam, Vinod; Griesinger, Christian; Jovin, Thomas M

    2004-01-01

    The aggregation of α-synuclein is characteristic of Parkinson's disease (PD) and other neurodegenerative synucleinopathies. The 140-aa protein is natively unstructured; thus, ligands binding to the monomeric form are of therapeutic interest. Biogenic polyamines promote the aggregation of α-synuclein and may constitute endogenous agents modulating the pathogenesis of PD. We characterized the complexes of natural and synthetic polyamines with α-synuclein by NMR and assigned the binding site to C-terminal residues 109–140. Dissociation constants were derived from chemical shift perturbations. Greater polyamine charge (+2 → +5) correlated with increased affinity and enhancement of fibrillation, for which we propose a simple kinetic mechanism involving a dimeric nucleation center. According to the analysis, polyamines increase the extent of nucleation by ∼104 and the rate of monomer addition ∼40-fold. Significant secondary structure is not induced in monomeric α-synuclein by polyamines at 15°C. Instead, NMR reveals changes in a region (aa 22–93) far removed from the polyamine binding site and presumed to adopt the β-sheet conformation characteristic of fibrillar α-synuclein. We conclude that the C-terminal domain acts as a regulator of α-synuclein aggregation. PMID:15103328

  17. Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures.

    PubMed

    Testa, Claudia M; Sherer, Todd B; Greenamyre, J Timothy

    2005-03-24

    Rotenone, a pesticide and complex I inhibitor, causes nigrostriatal degeneration similar to Parkinson disease pathology in a chronic, systemic, in vivo rodent model [M. Alam, W.J. Schmidt, Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats, Behav. Brain Res. 136 (2002) 317-324; R. Betarbet, T.B. Sherer, G. MacKenzie, M. Garcia-Osuna, A.V. Panov, J.T. Greenamyre, Chronic systemic pesticide exposure reproduces features of Parkinson's disease, Nat. Neurosci. 3 (2000) 1301-1306; S.M. Fleming, C. Zhu, P.O. Fernagut, A. Mehta, C.D. DiCarlo, R.L. Seaman, M.F. Chesselet, Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone, Exp. Neurol. 187 (2004) 418-429; T.B. Sherer, J.H. Kim, R. Betarbet, J.T. Greenamyre, Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation, Exp. Neurol. 179 (2003) 9-16.]. To better investigate the role of mitochondria and complex I inhibition in chronic, progressive neurodegenerative disease, we developed methods for long-term culture of rodent postnatal midbrain organotypic slices. Chronic complex I inhibition over weeks by low dose (10-50 nM) rotenone in this system lead to dose- and time-dependent destruction of substantia nigra pars compacta neuron processes, morphologic changes, some neuronal loss, and decreased tyrosine hydroxylase (TH) protein levels. Chronic complex I inhibition also caused oxidative damage to proteins, measured by protein carbonyl levels. This oxidative damage was blocked by the antioxidant alpha-tocopherol (vitamin E). At the same time, alpha-tocopherol also blocked rotenone-induced reductions in TH protein and TH immunohistochemical changes. Thus, oxidative damage is a primary mechanism of mitochondrial toxicity in intact dopaminergic neurons. The organotypic culture system allows close study of this and other interacting mechanisms over a prolonged time period in mature dopaminergic neurons with intact processes, surrounding glia, and synaptic connections.

  18. Interaction between subclinical doses of the Parkinson's disease associated gene, α-synuclein, and the pesticide, rotenone, precipitates motor dysfunction and nigrostriatal neurodegeneration in rats.

    PubMed

    Naughton, Carol; O'Toole, Daniel; Kirik, Deniz; Dowd, Eilís

    2017-01-01

    In most patients, Parkinson's disease is thought to emerge after a lifetime of exposure to, and interaction between, various genetic and environmental risk factors. One of the key genetic factors linked to this condition is α-synuclein, and the α-synuclein protein is pathologically associated with idiopathic cases. However, α-synuclein pathology is also present in presymptomatic, clinically "normal" individuals suggesting that environmental factors, such as Parkinson's disease-linked agricultural pesticides, may be required to precipitate Parkinson's disease in these individuals. In this context, the aim of this study was to assess the behavioural and neuropathological impact of exposing rats with a subclinical load of α-synuclein to subclinical doses of the organic pesticide, rotenone. Rats were randomly assigned to two groups for intra-nigral infusion of AAV 2/5- GFP or AAV 2/5 -α-synuclein. Post viral motor function was assessed at 8, 10 and 12 weeks in the Corridor, Stepping and Whisker tests of lateralised motor function. At week 12, animals were performance-matched to receive a subsequent intra-striatal challenge of the organic pesticide rotenone (or its vehicle) to yield four final groups (Control, Rotenone, AAV 2/5 -α-synuclein and Combined). Behavioural testing resumed one week after rotenone surgery and continued for 5 weeks. We found that, when administered alone, neither intra-nigral AAV-α-synuclein nor intra-striatal rotenone caused sufficient nigrostriatal neurodegeneration to induce a significant motor impairment in their own right. However, when these were administered sequentially to the same rats, the interaction between the two Parkinsonian challenges significantly exacerbated nigrostriatal neurodegeneration which precipitated a pronounced impairment in motor function. These results indicate that exposing rats with a subclinical α-synuclein-induced pathology to the pesticide, rotenone, profoundly exacerbates their Parkinsonian neuropathology and dysfunction, and highlights the potential importance of this interaction in the etiology of, and in driving the pathogenesis of Parkinson's disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Life-time expression of the proteins peroxiredoxin, beta-synuclein, PARK7/DJ-1, and stathmin in the primary visual and primary somatosensory cortices in rats

    PubMed Central

    Böhm, Michael R. R.; Melkonyan, Harutyun; Thanos, Solon

    2015-01-01

    Four distinct proteins are regulated in the aging neuroretina and may be regulated in the cerebral cortex, too: peroxiredoxin, beta-synuclein, PARK[Parkinson disease(autosomal recessive, early onset)]7/DJ-1, and Stathmin. Thus, we performed a comparative analysis of these proteins in the the primary somatosensory cortex (S1) and primary visual cortex (V1) in rats, in order to detect putative common development-, maturation- and age-related changes. The expressions of peroxiredoxin, beta-synuclein, PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1, and Stathmin were compared in the newborn, juvenile, adult, and aged S1 and V1. Western blot (WB), quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and immunohistochemistry (IHC) analyses were employed to determine whether the changes identified by proteomics were verifiable at the cellular and molecular levels. All of the proteins were detected in both of the investigated cortical areas. Changes in the expressions of the four proteins were found throughout the life-time of the rats. Peroxiredoxin expression remained unchanged over life-time. Beta-Synuclein expression was massively increased up to the adult stage of life in both the S1 and V1. PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1 exhibited a massive up-regulation in both the S1 and V1 at all ages. Stathmin expression was massively down regulated after the neonatal period in both the S1 and V1. The detected protein alterations were analogous to their retinal profiles. This study is the first to provide evidence that peroxiredoxin, beta-synuclein, PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1, and Stathmin are associated with postnatal maturation and aging in both the S1 and V1 of rats. These changes may indicate their involvement in key functional pathways and may account for the onset or progression of age-related pathologies. PMID:25788877

  20. Insights into the Molecular Mechanisms of Alzheimer’s and Parkinson’s Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology

    PubMed Central

    Coskuner-Weber, Orkid

    2018-01-01

    Amyloid-β and α-synuclein are intrinsically disordered proteins (IDPs), which are at the center of Alzheimer’s and Parkinson’s disease pathologies, respectively. These IDPs are extremely flexible and do not adopt stable structures. Furthermore, both amyloid-β and α-synuclein can form toxic oligomers, amyloid fibrils and other type of aggregates in Alzheimer’s and Parkinson’s diseases. Experimentalists face challenges in investigating the structures and thermodynamic properties of these IDPs in their monomeric and oligomeric forms due to the rapid conformational changes, fast aggregation processes and strong solvent effects. Classical molecular dynamics simulations complement experiments and provide structural information at the atomic level with dynamics without facing the same experimental limitations. Artificial missense mutations are employed experimentally and computationally for providing insights into the structure-function relationships of amyloid-β and α-synuclein in relation to the pathologies of Alzheimer’s and Parkinson’s diseases. Furthermore, there are several natural genetic variations that play a role in the pathogenesis of familial cases of Alzheimer’s and Parkinson’s diseases, which are related to specific genetic defects inherited in dominant or recessive patterns. The present review summarizes the current understanding of monomeric and oligomeric forms of amyloid-β and α-synuclein, as well as the impacts of artificial and pathological missense mutations on the structural ensembles of these IDPs using molecular dynamics simulations. We also emphasize the recent investigations on residual secondary structure formation in dynamic conformational ensembles of amyloid-β and α-synuclein, such as β-structure linked to the oligomerization and fibrillation mechanisms related to the pathologies of Alzheimer’s and Parkinson’s diseases. This information represents an important foundation for the successful and efficient drug design studies. PMID:29364151

  1. Comparative Analysis of the Conformation, Aggregation, Interaction, and Fibril Morphologies of Human α-, β-, and γ-Synuclein Proteins.

    PubMed

    Jain, Manish Kumar; Singh, Priyanka; Roy, Sneha; Bhat, Rajiv

    2018-06-13

    The human synuclein (syn) family is comprised of α-, β-, and γ-syn proteins. α-syn has the highest propensity for aggregation, and its aggregated forms accumulate in Lewy bodies (LB) and Lewy neurites, which are involved in Parkinson's disease (PD). β- and γ-syn are absent in LB, and their exact role is still enigmatic. β-syn does not form aggregates under physiological conditions (pH 7.4), while γ-syn is associated with neural and non-neural diseases like breast cancer. Because of their similar regional distribution in the brain, natively unfolded structure, and high degree of sequence homology, studying the effect of the environment on their conformation, interactions, fibrillation, and fibril morphologies has become important. Our studies show that high temperatures, low pH values, and high concentrations increase the rate of fibrillation of α- and γ-syn, while β-syn forms fibrils only at low pH. Fibril morphologies are strongly dependent on the immediate environment of the proteins. The high molar ratio of β-syn inhibits the fibrillation in α- and γ-syn. However, preformed seed fibrils of β- and γ-syn do not affect fibrillation of α-syn. Surface plasmon resonance data show that interactions between α- and β-syn, β- and γ-syn, and α- and γ-syn are weak to moderate in nature and can be physiologically significant in counteracting several adverse conditions in the cells that trigger their aggregation. These studies could be helpful in understanding collective human synuclein behavior in various protein environments and in the modulation of the homeostasis between β-syn and healthy versus corrupt α- and γ-syn that can potentially affect PD pathology.

  2. Sodium Butyrate Improves Locomotor Impairment and Early Mortality in a Rotenone-Induced Drosophila Model of Parkinson’s Disease

    PubMed Central

    St. Laurent, Robyn; O’Brien, Liam M.; Ahmad, S. Tariq

    2013-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder primarily affecting the dopaminergic neurons in the nigrastriatal pathway resulting in debilitating motor impairment in both familial and sporadic cases. Histone deacetylase (HDAC) inhibitors have been recently implicated as a therapeutic candidate because of their ability to correct the disrupted HDAC activity in PD and other neurodegenerative diseases. Sodium butyrate (SB), an HDAC inhibitor, reduces degeneration of dopaminergic neurons in a mutant alpha-synuclein Drosophila transgenic model of familial PD. Chronic exposure to the pesticide rotenone also causes selective degeneration of dopaminergic neurons and causes locomotor impairment and early mortality in a Drosophila model of chemically-induced PD. This study investigated the effects of sodium butyrate on locomotor impairment and early mortality in a rotenone-induced PD model. We show that treatment with 10 mM SB-supplemented food rescued the rotenone-induced locomotor impairment and early mortality in flies. Additionally, flies with the genetic knockdown of HDAC activity through Sin3A loss-of-function mutation (Sin3Alof) were resistant to rotenone-induced locomotor impairment and early mortality. Furthermore, SB-supplemented Sin3Alof flies had a modest additive effect for improving locomotor impairment. We also show SB-mediated improvement of rotenone-induced locomotor impairment was associated with elevated dopamine levels in the brain. However, the possibility of SB-mediated protective role through mechanisms independent from dopamine system is also discussed. These findings demonstrate that HDAC inhibitors like SB can ameliorate locomotor impairment in a rotenone-induced PD model. PMID:23623990

  3. Comparison of independent screens on differentially vulnerable motor neurons reveals alpha-synuclein as a common modifier in motor neuron diseases

    PubMed Central

    Kaifer, Kevin A.; Osman, Erkan Y.; Carella, Francesco; Tiberi, Ariana; Ross, Jolill; Pennetta, Giuseppa; Lorson, Christian L.

    2017-01-01

    The term “motor neuron disease” encompasses a spectrum of disorders in which motor neurons are the primary pathological target. However, in both patients and animal models of these diseases, not all motor neurons are equally vulnerable, in that while some motor neurons are lost very early in disease, others remain comparatively intact, even at late stages. This creates a valuable system to investigate the factors that regulate motor neuron vulnerability. In this study, we aim to use this experimental paradigm to identify potential transcriptional modifiers. We have compared the transcriptome of motor neurons from healthy wild-type mice, which are differentially vulnerable in the childhood motor neuron disease Spinal Muscular Atrophy (SMA), and have identified 910 transcriptional changes. We have compared this data set with published microarray data sets on other differentially vulnerable motor neurons. These neurons were differentially vulnerable in the adult onset motor neuron disease Amyotrophic Lateral Sclerosis (ALS), but the screen was performed on the equivalent population of neurons from neurologically normal human, rat and mouse. This cross species comparison has generated a refined list of differentially expressed genes, including CELF5, Col5a2, PGEMN1, SNCA, Stmn1 and HOXa5, alongside a further enrichment for synaptic and axonal transcripts. As an in vivo validation, we demonstrate that the manipulation of a significant number of these transcripts can modify the neurodegenerative phenotype observed in a Drosophila line carrying an ALS causing mutation. Finally, we demonstrate that vector-mediated expression of alpha-synuclein (SNCA), a transcript decreased in selectively vulnerable motor neurons in all four screens, can extend life span, increase weight and decrease neuromuscular junction pathology in a mouse model of SMA. In summary, we have combined multiple data sets to identify transcripts, which are strong candidates for being phenotypic modifiers, and demonstrated SNCA is a modifier of pathology in motor neuron disease. PMID:28362802

  4. Comparison of independent screens on differentially vulnerable motor neurons reveals alpha-synuclein as a common modifier in motor neuron diseases.

    PubMed

    Kline, Rachel A; Kaifer, Kevin A; Osman, Erkan Y; Carella, Francesco; Tiberi, Ariana; Ross, Jolill; Pennetta, Giuseppa; Lorson, Christian L; Murray, Lyndsay M

    2017-03-01

    The term "motor neuron disease" encompasses a spectrum of disorders in which motor neurons are the primary pathological target. However, in both patients and animal models of these diseases, not all motor neurons are equally vulnerable, in that while some motor neurons are lost very early in disease, others remain comparatively intact, even at late stages. This creates a valuable system to investigate the factors that regulate motor neuron vulnerability. In this study, we aim to use this experimental paradigm to identify potential transcriptional modifiers. We have compared the transcriptome of motor neurons from healthy wild-type mice, which are differentially vulnerable in the childhood motor neuron disease Spinal Muscular Atrophy (SMA), and have identified 910 transcriptional changes. We have compared this data set with published microarray data sets on other differentially vulnerable motor neurons. These neurons were differentially vulnerable in the adult onset motor neuron disease Amyotrophic Lateral Sclerosis (ALS), but the screen was performed on the equivalent population of neurons from neurologically normal human, rat and mouse. This cross species comparison has generated a refined list of differentially expressed genes, including CELF5, Col5a2, PGEMN1, SNCA, Stmn1 and HOXa5, alongside a further enrichment for synaptic and axonal transcripts. As an in vivo validation, we demonstrate that the manipulation of a significant number of these transcripts can modify the neurodegenerative phenotype observed in a Drosophila line carrying an ALS causing mutation. Finally, we demonstrate that vector-mediated expression of alpha-synuclein (SNCA), a transcript decreased in selectively vulnerable motor neurons in all four screens, can extend life span, increase weight and decrease neuromuscular junction pathology in a mouse model of SMA. In summary, we have combined multiple data sets to identify transcripts, which are strong candidates for being phenotypic modifiers, and demonstrated SNCA is a modifier of pathology in motor neuron disease.

  5. Mitochondria and α-Synuclein: Friends or Foes in the Pathogenesis of Parkinson's Disease?

    PubMed

    Faustini, Gaia; Bono, Federica; Valerio, Alessandra; Pizzi, Marina; Spano, PierFranco; Bellucci, Arianna

    2017-12-08

    Parkinson's disease (PD) is a movement disorder characterized by dopaminergic nigrostriatal neuron degeneration and the formation of Lewy bodies (LB), pathological inclusions containing fibrils that are mainly composed of α-synuclein. Dopaminergic neurons, for their intrinsic characteristics, have a high energy demand that relies on the efficiency of the mitochondria respiratory chain. Dysregulations of mitochondria, deriving from alterations of complex I protein or oxidative DNA damage, change the trafficking, size and morphology of these organelles. Of note, these mitochondrial bioenergetics defects have been related to PD. A series of experimental evidence supports that α-synuclein physiological action is relevant for mitochondrial homeostasis, while its pathological aggregation can negatively impinge on mitochondrial function. It thus appears that imbalances in the equilibrium between the reciprocal modulatory action of mitochondria and α-synuclein can contribute to PD onset by inducing neuronal impairment. This review will try to highlight the role of physiological and pathological α-synuclein in the modulation of mitochondrial functions.

  6. α - synuclein under the magnifying glass. Insights from atomistic and coarse-grain simulations

    NASA Astrophysics Data System (ADS)

    Ilie, Ioana M.; Nayar, Divya; den Otter, Wouter K.; van der Vegt, Nico F. A.; Briels, Wim J.; University of Twente Collaboration; University of Darmstadt Collaboration

    Neurodegenerative diseases are linked to the accumulation of misfolded intrinsically disordered proteins in the brain. Here, we use both all-atom and coarse-grain simulations to explore the intricate dynamics and the aggregation of α-synuclein, the protein implicated in Parkinson's disease. We explore the free energy landscapes of α-synuclein by using Molecular Dynamics simulations and extract information on the structure of the protein as well as on its binding affinities. Next, to study the aggregation, we proceed with representing α-synuclein as a chain of deformable particles that can adapt their geometry, binding affinities and can rearrange into different disordered and ordered structures. We use Brownian Dynamics to simulate the translational and rotational motions of the particles, as well as their interaction properties. The simulations show valuable insight into the internal dynamics of α-synuclein and the formation of ordered and disordered aggregates. In addition, the study is extended to investigate the attachment and folding of a protein to a fiber.

  7. Influence of somatic cell count and breed on capillary electrophoretic protein profiles of ewes' milk: a chemometric study.

    PubMed

    Rodríguez-Nogales, J M; Vivar-Quintana, A M; Revilla, I

    2007-07-01

    Bulk tank ewe milk from the Assaf, Castellana, and Churra breeds categorized into 3 somatic cell count (SCC) groups (<500,000; 1,000,000 to 1,500,000; and >2,500,000 cells/mL) was used to investigate changes in chemical composition and capillary electrophoresis protein profiles. The results obtained indicated that breed affected fat, protein, and total solids levels, and differences were also observed for the following milk proteins: beta-, beta1-, beta2-, and alpha(s1)-III-casein, alpha-lactalbumin, and beta-lactoglobulin. High SCC affected fat and protein contents and bacterial counts. The level of beta1-, beta2-, and alpha(s1)-I-casein, and alpha-lactalbumin were significantly lower in milk with SCC scores >2,500,000 cells/mL. A preliminary study of the chemical, microbiological, and electrophoretic data was performed by cluster analysis and principal components analysis. Applying discriminant analysis, it was possible to group the milk samples according to breed and level of SCC, obtaining a prediction of 100 and 97% of the samples, respectively.

  8. Prying into the Prion Hypothesis for Parkinson's Disease.

    PubMed

    Brundin, Patrik; Melki, Ronald

    2017-10-11

    In Parkinson's disease, intracellular α-synuclein inclusions form in neurons. We suggest that prion-like behavior of α-synuclein is a key component in Parkinson's disease pathogenesis. Although multiple molecular changes are involved in the triggering of the disease process, we propose that neuron-to-neuron transfer is a crucial event that is essential for Lewy pathology to spread from one brain region to another. In this review, we describe key findings in human postmortem brains, cultured cells, and animal models of disease that support the idea that α-synuclein can act as a prion. We consider potential triggers of the α-synuclein misfolding and why the aggregates escape cellular degradation under disease conditions. We also discuss whether different strains of α-synuclein fibrils can underlie differences in cellular and regional distribution of aggregates in different synucleinopathies. Our conclusion is that α-synuclein probably acts as a prion in human diseases, and a deeper understanding of this step in the pathogenesis of Parkinson's disease can facilitate the development of disease-modifying therapies in the future. Dual Perspectives Companion Paper: Parkinson's Disease Is Not Simply a Prion Disorder, by D. James Surmeier, José A. Obeso, and Glenda M. Halliday. Copyright © 2017 the authors 0270-6474/17/379808-11$15.00/0.

  9. The chaperonin CCT inhibits assembly of α-synuclein amyloid fibrils by a specific, conformation-dependent interaction

    PubMed Central

    Sot, Begoña; Rubio-Muñoz, Alejandra; Leal-Quintero, Ahudrey; Martínez-Sabando, Javier; Marcilla, Miguel; Roodveldt, Cintia; Valpuesta, José M.

    2017-01-01

    The eukaryotic chaperonin CCT (chaperonin containing TCP-1) uses cavities built into its double-ring structure to encapsulate and to assist folding of a large subset of proteins. CCT can inhibit amyloid fibre assembly and toxicity of the polyQ extended mutant of huntingtin, the protein responsible for Huntington’s disease. This raises the possibility that CCT modulates other amyloidopathies, a still-unaddressed question. We show here that CCT inhibits amyloid fibre assembly of α-synuclein A53T, one of the mutants responsible for Parkinson’s disease. We evaluated fibrillation blockade in α-synuclein A53T deletion mutants and CCT interactions of full-length A53T in distinct oligomeric states to define an inhibition mechanism specific for α-synuclein. CCT interferes with fibre assembly by interaction of its CCTζ and CCTγ subunits with the A53T central hydrophobic region (NAC). This interaction is specific to NAC conformation, as it is produced once soluble α-synuclein A53T oligomers form and blocks the reaction before fibres begin to grow. Finally, we show that this association inhibits α-synuclein A53T oligomer toxicity in neuroblastoma cells. In summary, our results and those for huntingtin suggest that CCT is a general modulator of amyloidogenesis via a specific mechanism. PMID:28102321

  10. Structure of the toxic core of α-synuclein from invisible crystals

    DOE PAGES

    Rodriguez, Jose A.; Ivanova, Magdalena I.; Sawaya, Michael R.; ...

    2015-09-09

    We report that the protein α-synuclein is the main component of Lewy bodies, the neuron-associated aggregates seen in Parkinson disease and other neurodegenerative pathologies. An 11-residue segment, which we term NACore, appears to be responsible for amyloid formation and cytotoxicity of human α-synuclein. Here we describe crystals of NACore that have dimensions smaller than the wavelength of visible light and thus are invisible by optical microscopy. As the crystals are thousands of times too small for structure determination by synchrotron X-ray diffraction, we use micro-electron diffraction to determine the structure at atomic resolution. The 1.4 Å resolution structure demonstrates thatmore » this method can determine previously unknown protein structures and here yields, to our knowledge, the highest resolution achieved by any cryo-electron microscopy method to date. The structure exhibits protofibrils built of pairs of face-to-face β-sheets. X-ray fibre diffraction patterns show the similarity of NACore to toxic fibrils of full-length α-synuclein. Finally, the NACore structure, together with that of a second segment, inspires a model for most of the ordered portion of the toxic, full-length α-synuclein fibril, presenting opportunities for the design of inhibitors of α-synuclein fibrils.« less

  11. Increased Frequency of α-Synuclein in the Substantia Nigra in HIV Infection

    PubMed Central

    Khanlou, Negar; Moore, David J.; Chana, Gursharan; Cherner, Mariana; Lazzaretto, Deborah; Dawes, Sharron; Grant, Igor; Masliah, Eliezer; Everall, Ian P.

    2014-01-01

    The frequency of neurodegenerative markers among long surviving HIV infected individuals is unknown, therefore, the present study investigated the frequency of α-synuclein, β-amyloid and HIV-associated brain pathology in the brains of older HIV infected individuals. We examined the substantia nigra of 73 clinically well-characterized HIV infected individuals aged 50 to 76 years from the National NeuroAIDS Tissue Consortium. We also examined the frontal and temporal cortical regions of a subset of 36 individuals. The brain regions were examined for the presence of α-synuclein, β-amyloid and HIV-associated brain pathology. Neuritic α-synuclein expression was found in 16% (12/73) of the substantia nigra of the HIV+ cases and none of the older control cases (0/18). β-amyloid deposits were prevalent and found in nearly all of the HIV+ cases (35/36). Despite these increases of degenerative pathology, HIV-associated brain pathology was present in only 10% of cases. Among older HIV+ adults HIV-associated brain pathology does not appear elevated; however, the frequency of both α-synuclein and β-amyloid is higher than that found in older healthy persons. The increased prevalence of α-synuclein and β-amyloid in the brains of older HIV-infected individuals may predict an increased risk of developing neurodegenerative disease. PMID:19115126

  12. α-Synuclein binds to the ER-mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production.

    PubMed

    Paillusson, Sébastien; Gomez-Suaga, Patricia; Stoica, Radu; Little, Daniel; Gissen, Paul; Devine, Michael J; Noble, Wendy; Hanger, Diane P; Miller, Christopher C J

    2017-07-01

    α-Synuclein is strongly linked to Parkinson's disease but the molecular targets for its toxicity are not fully clear. However, many neuronal functions damaged in Parkinson's disease are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. This signalling involves close physical associations between the two organelles that are mediated by binding of the integral ER protein vesicle-associated membrane protein-associated protein B (VAPB) to the outer mitochondrial membrane protein, protein tyrosine phosphatase-interacting protein 51 (PTPIP51). VAPB and PTPIP51 thus act as a scaffold to tether the two organelles. Here we show that α-synuclein binds to VAPB and that overexpression of wild-type and familial Parkinson's disease mutant α-synuclein disrupt the VAPB-PTPIP51 tethers to loosen ER-mitochondria associations. This disruption to the VAPB-PTPIP51 tethers is also seen in neurons derived from induced pluripotent stem cells from familial Parkinson's disease patients harbouring pathogenic triplication of the α-synuclein gene. We also show that the α-synuclein induced loosening of ER-mitochondria contacts is accompanied by disruption to Ca 2+ exchange between the two organelles and mitochondrial ATP production. Such disruptions are likely to be particularly damaging to neurons that are heavily dependent on correct Ca 2+ signaling and ATP.

  13. Prolyl oligopeptidase and dipeptidyl peptidase II/dipeptidyl peptidase IV ratio in the cerebrospinal fluid in Parkinson's disease: historical overview and future prospects.

    PubMed

    Nagatsu, Toshiharu

    2017-06-01

    Prolyl oligopeptidase (also named prolyl endopeptidase; PREP) hydrolyzes the Pro-Xaa bonds of biologically active oligopeptides on their carboxyl side. In 1987, we detected PREP activity in human cerebrospinal fluid (CSF) using highly sensitive liquid chromatography-fluorometry with succinyl-Gly-Pro-4-methyl-coumarin amide as a new synthetic substrate, and found a marked decrease in its activity in the cerebrospinal fluid (CSF) from patients with Parkinson's disease (PD) as compared with its level in control patients without neurological diseases. In 2013, Hannula et al. found co-localization of PREP with α-synuclein in the postmortem PD brain. Several recent studies also suggest that the level of PREP in the brain of PD patients may be related to dopamine (DA) cell death via promotion of α-synuclein oligomerization and that inhibitors of PREP may play a neuroprotective role in PD. Although the relationship between another family of prolyl oligopeptidase enzymes, dipeptidyl peptidase II (DPP II) and dipeptidyl peptidase IV (DPP IV), and α-synuclein in the PD brain is not yet clear, we found that the DPP II activity/DPP IV activity ratio in the CSF was significantly increased in PD patients. This review discusses the possibility of PREP as well as the DPP II/DPP IV ratio in the CSF as potential biomarkers of PD.

  14. Quantitative proteomics in A30P*A53T α-synuclein transgenic mice reveals upregulation of Sel1l.

    PubMed

    Yan, Jianguo; Zhang, Pei; Jiao, Fengjuan; Wang, Qingzhi; He, Feng; Zhang, Qian; Zhang, Zheng; Lv, Zexi; Peng, Xiang; Cai, Hongwei; Tian, Bo

    2017-01-01

    α-Synuclein is an abundantly expressed neuronal protein that is at the center of focus in understanding a group of neurodegenerative disorders called synucleinopathies, which are characterized by the intracellular presence of aggregated α-synuclein. However, the mechanism of α-synuclein biology in synucleinopathies pathogenesis is not fully understood. In this study, mice overexpressing human A30P*A53T α-synuclein were evaluated by a motor behavior test and count of TH-positive neurons, and then two-dimensional liquid chromatography-tandem mass spectrometry coupled with tandem mass tags (TMTs) labeling was employed to quantitatively identify the differentially expressed proteins of substantia nigra pars compacta (SNpc) tissue samples that were obtained from the α-synuclein transgenic mice and wild type controls. The number of SNpc dopaminergic neurons and the motor behavior were unchanged in A30P*A53T transgenic mice at the age of 6 months. Of the 4,715 proteins identified by proteomic techniques, 271 were differentially expressed, including 249 upregulated and 22 downregulated proteins. These alterations were primarily associated with mitochondrial dysfunction, oxidative stress, ubiquitin-proteasome system impairment, and endoplasmic reticulum (ER) stress. Some obviously changed proteins, which were validated by western blotting and immunofluorescence staining, including Sel1l and Sdhc, may be involved in the α-synuclein pathologies of synucleinopathies. A biological pathway analysis of common related proteins showed that the proteins were linked to a total of 31 KEGG pathways. Our findings suggest that these identified proteins may serve as novel therapeutic targets for synucleinopathies.

  15. Binding Interactions of Agents That Alter α-Synuclein Aggregation

    PubMed Central

    Sivanesam, K.; Byrne, A.; Bisaglia, M.; Bubacco, L.

    2015-01-01

    Further examination of peptides with well-folded antiparallel β strands as inhibitors of amyloid formation from α-synuclein has resulted in more potent inhibitors. Several of these had multiple Tyr residues and represent a new lead for inhibitor design by small peptides that do not divert α-synuclein to non-amyloid aggregate formation. The most potent inhibitor obtained in this study is a backbone cyclized version of a previously studied β hairpin, designated as WW2, with a cross-strand Trp/Trp cluster. The cyclization was accomplished by adding a d-Pro-l-Pro turn locus across strand termini. At a 2:1 peptide to α-synuclein ratio, cyclo-WW2 displays complete inhibition of β-structure formation. Trp-bearing antiparallel β-sheets held together by a disulphide bond are also potent inhibitors. 15N HSQC spectra of α-synuclein provided new mechanistic details. The time course of 15N HSQC spectral changes observed during β-oligomer formation has revealed which segments of the structure become part of the rigid core of an oligomer at early stages of amyloidogenesis and that the C-terminus remains fully flexible throughout the process. All of the effective peptide inhibitors display binding-associated titration shifts in 15N HSQC spectra of α-synuclein in the C-terminal Q109-E137 segment. Cyclo-WW2, the most potent inhibitor, also displays titration shifts in the G41-T54 span of α-synuclein, an additional binding site. The earliest aggregation event appears to be centered about H50 which is also a binding site for our most potent inhibitor. PMID:25705374

  16. Binding Interactions of Agents That Alter α-Synuclein Aggregation.

    PubMed

    Sivanesam, K; Byrne, A; Bisaglia, M; Bubacco, L; Andersen, N

    Further examination of peptides with well-folded antiparallel β strands as inhibitors of amyloid formation from α-synuclein has resulted in more potent inhibitors. Several of these had multiple Tyr residues and represent a new lead for inhibitor design by small peptides that do not divert α-synuclein to non-amyloid aggregate formation. The most potent inhibitor obtained in this study is a backbone cyclized version of a previously studied β hairpin, designated as WW2, with a cross-strand Trp/Trp cluster. The cyclization was accomplished by adding a d-Pro-l-Pro turn locus across strand termini. At a 2:1 peptide to α-synuclein ratio, cyclo-WW2 displays complete inhibition of β-structure formation. Trp-bearing antiparallel β-sheets held together by a disulphide bond are also potent inhibitors. 15 N HSQC spectra of α-synuclein provided new mechanistic details. The time course of 15 N HSQC spectral changes observed during β-oligomer formation has revealed which segments of the structure become part of the rigid core of an oligomer at early stages of amyloidogenesis and that the C-terminus remains fully flexible throughout the process. All of the effective peptide inhibitors display binding-associated titration shifts in 15 N HSQC spectra of α-synuclein in the C-terminal Q109-E137 segment. Cyclo-WW2, the most potent inhibitor, also displays titration shifts in the G41-T54 span of α-synuclein, an additional binding site. The earliest aggregation event appears to be centered about H50 which is also a binding site for our most potent inhibitor.

  17. FLZ Attenuates α-Synuclein-Induced Neurotoxicity by Activating Heat Shock Protein 70.

    PubMed

    Bao, Xiu-Qi; Wang, Xiao-Liang; Zhang, Dan

    2017-01-01

    Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. The pathology of PD is caused by progressive degeneration of dopaminergic neurons and is characterized by the presence of intracellular inclusions known as Lewy bodies, composed mainly of α-synuclein. Heat shock proteins (HSPs) are crucial in protein quality control in cells. HSP70 in particular prevents the aggregation of protein aggregation, such as α-synuclein, providing a degree of protection against PD. The compound FLZ has been shown to protect several PD models in previous studies and was reported as an HSP inducer to protect against MPP + -induced neurotoxicity, but the mechanism remains unclear. In this study, we investigated the effects of FLZ-mediated HSP70 induction in α-synuclein transgenic mice and cells. FLZ treatment alleviated motor dysfunction and improved dopaminergic neuronal function in α-synuclein transgenic mice. HSP70 protein expression and transcriptional activity were increased by FLZ treatment, eliciting a reduction of α-synuclein aggregation and associated toxicity. The inhibition of HSP70 by quercetin or HSP70 siRNA markedly attenuated the neuroprotective effects of FLZ, confirming that FLZ exerted a neuroprotective effect through HSP70. We revealed that FLZ directly bound to and increased the expression of Hip, a cochaperone of HSP70, which in turn enhanced HSP70 activity. In conclusion, we defined a critical role for HSP70 and its cochaperones activated by FLZ in preventing neurodegeneration and proposed that targeting the HSP70 system may represent a potential therapy for α-synuclein-related diseases, such as PD.

  18. Fibrillar α-Synuclein and Huntingtin Exon 1 Assemblies Are Toxic to the Cells

    PubMed Central

    Pieri, Laura; Madiona, Karine; Bousset, Luc; Melki, Ronald

    2012-01-01

    The aggregation of alpha-synuclein (α-syn) and huntingtin (htt) into fibrillar assemblies in nerve and glial cells is a molecular hallmark of Parkinson's and Huntington's diseases. Within the aggregation process, prefibrillar and fibrillar oligomeric species form. Prefibrillar assemblies rather than fibrils are nowadays considered cytotoxic. However, recent reports describing spreading of fibrillar assemblies from one cell to another, in cell cultures, animal models, and brains of grafted patients suggest a critical role for fibrillar assemblies in pathogenesis. Here we compare the cytotoxic effect of defined and comparable particle concentrations of on-assembly pathway oligomeric and fibrillar α-syn and Htt fragment corresponding to the first exon of the protein (HttEx1). We show that homogeneous populations of α-syn and HttEx1 fibrils, rather than their precursor on-assembly pathway oligomers, are highly toxic to cultured cells and induce apoptotic cell death. We document the reasons that make fibrils toxic. We show that α-syn and HttEx1 fibrils bind and permeabilize lipid vesicles. We also show that fibrils binding to the plasma membrane in cultured cells alter Ca2+ homeostasis. Overall, our data indicate that fibrillar α-syn and HttEx1, rather than their precursor oligomers, are highly cytotoxic, the toxicity being associated to their ability to bind and permeabilize the cell membranes. PMID:22735540

  19. Specificity and kinetics of alpha-synuclein binding to model membranes determined with fluorescent excited state intramolecular proton transfer (ESIPT) probe.

    PubMed

    Shvadchak, Volodymyr V; Falomir-Lockhart, Lisandro J; Yushchenko, Dmytro A; Jovin, Thomas M

    2011-04-15

    Parkinson disease is characterized cytopathologically by the deposition in the midbrain of aggregates composed primarily of the presynaptic neuronal protein α-synuclein (AS). Neurotoxicity is currently attributed to oligomeric microaggregates subjected to oxidative modification and promoting mitochondrial and proteasomal dysfunction. Unphysiological binding to membranes of these and other organelles is presumably involved. In this study, we performed a systematic determination of the influence of charge, phase, curvature, defects, and lipid unsaturation on AS binding to model membranes using a new sensitive solvatochromic fluorescent probe. The interaction of AS with vesicular membranes is fast and reversible. The protein dissociates from neutral membranes upon thermal transition to the liquid disordered phase and transfers to vesicles with higher affinity. The binding of AS to neutral and negatively charged membranes occurs by apparently different mechanisms. Interaction with neutral bilayers requires the presence of membrane defects; binding increases with membrane curvature and rigidity and decreases in the presence of cholesterol. The association with negatively charged membranes is much stronger and much less sensitive to membrane curvature, phase, and cholesterol content. The presence of unsaturated lipids increases binding in all cases. These findings provide insight into the relation between membrane physical properties and AS binding affinity and dynamics that presumably define protein localization in vivo and, thereby, the role of AS in the physiopathology of Parkinson disease.

  20. Effects of different force fields on the structural character of α synuclein β-hairpin peptide (35-56) in aqueous environment.

    PubMed

    Kundu, Sangeeta

    2018-02-01

    The hallmark of Parkinson's disease (PD) is the intracellular protein aggregation forming Lewy Bodies (LB) and Lewy neuritis which comprise mostly of a protein, alpha synuclein (α-syn). Molecular dynamics (MD) simulation methods can augment experimental techniques to understand misfolding and aggregation pathways with atomistic resolution. The quality of MD simulations for proteins and peptides depends greatly on the accuracy of empirical force fields. The aim of this work is to investigate the effects of different force fields on the structural character of β hairpin fragment of α-syn (residues 35-56) peptide in aqueous solution. Six independent MD simulations are done in explicit solvent using, AMBER03, AMBER99SB, GROMOS96 43A1, GROMOS96 53A6, OPLS-AA, and CHARMM27 force fields with CMAP corrections. The performance of each force field is assessed from several structural parameters such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), formation of β-turn, the stability of folded β-hairpin structure, and the favourable conformations obtained for different force fields. In this study, CMAP correction of CHARMM27 force field is found to overestimate the helical conformation, while GROMOS96 53A6 is found to most successfully capture the conformational dynamics of α-syn β-hairpin fragment as elicited from NMR.

  1. Fusion Peptide Improves Stability and Bioactivity of Single Chain Antibody against Rabies Virus.

    PubMed

    Xi, Hualong; Zhang, Kaixin; Yin, Yanchun; Gu, Tiejun; Sun, Qing; Shi, Linqing; Zhang, Renxia; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2017-04-28

    The combination of rabies immunoglobulin (RIG) with a vaccine is currently effective against rabies infections, but improvements are needed. Genetic engineering antibody technology is an attractive approach for developing novel antibodies to replace RIG. In our previous study, a single-chain variable fragment, scFv57R, against rabies virus glycoprotein was constructed. However, its inherent weak stability and short half-life compared with the parent RIG may limit its diagnostic and therapeutic application. Therefore, an acidic tail of synuclein (ATS) derived from the C-terminal acidic tail of human alpha-synuclein protein was fused to the C-terminus of scFv57R in order to help it resist adverse stress and improve the stability and halflife. The tail showed no apparent effect on the preparation procedure and affinity of the protein, nor did it change the neutralizing potency in vitro. In the ELISA test of molecular stability, the ATS fusion form of the protein, scFv57R-ATS, showed an increase in thermal stability and longer half-life in serum than scFv57R. The protection against fatal rabies virus challenge improved after fusing the tail to the scFv, which may be attributed to the improved stability. Thus, the ATS fusion approach presented here is easily implemented and can be used as a new strategy to improve the stability and half-life of engineered antibody proteins for practical applications.

  2. Methyl-branched lipids promote the membrane adsorption of α-synuclein by enhancing shallow lipid-packing defects.

    PubMed

    Garten, Matthias; Prévost, Coline; Cadart, Clotilde; Gautier, Romain; Bousset, Luc; Melki, Ronald; Bassereau, Patricia; Vanni, Stefano

    2015-06-28

    Alpha-synuclein (AS) is a synaptic protein that is directly involved in Parkinson's disease due to its tendency to form protein aggregates. Since AS aggregation can be dependent on the interactions between the protein and the cell plasma membrane, elucidating the membrane binding properties of AS is of crucial importance to establish the molecular basis of AS aggregation into toxic fibrils. Using a combination of in vitro reconstitution experiments based on Giant Unilamellar Vesicles (GUVs), confocal microscopy and all-atom molecular dynamics simulations, we have investigated the membrane binding properties of AS, with a focus on the relative contribution of hydrophobic versus electrostatic interactions. In contrast with previous observations, we did not observe any binding of AS to membranes containing the ganglioside GM1, even at relatively high GM1 content. AS, on the other hand, showed a stronger affinity for neutral flat membranes consisting of methyl-branched lipids. To rationalize these results, we used all-atom molecular dynamics simulations to investigate the influence of methyl-branched lipids on interfacial membrane properties. We found that methyl-branched lipids promote the membrane adsorption of AS by creating shallow lipid-packing defects to a larger extent than polyunsaturated and monounsaturated lipids. Our findings suggest that methyl-branched lipids may constitute a remarkably adhesive substrate for peripheral proteins that adsorb on membranes via hydrophobic insertions.

  3. Biophysics of α-synuclein membrane interactions.

    PubMed

    Pfefferkorn, Candace M; Jiang, Zhiping; Lee, Jennifer C

    2012-02-01

    Membrane proteins participate in nearly all cellular processes; however, because of experimental limitations, their characterization lags far behind that of soluble proteins. Peripheral membrane proteins are particularly challenging to study because of their inherent propensity to adopt multiple and/or transient conformations in solution and upon membrane association. In this review, we summarize useful biophysical techniques for the study of peripheral membrane proteins and their application in the characterization of the membrane interactions of the natively unfolded and Parkinson's disease (PD) related protein, α-synuclein (α-syn). We give particular focus to studies that have led to the current understanding of membrane-bound α-syn structure and the elucidation of specific membrane properties that affect α-syn-membrane binding. Finally, we discuss biophysical evidence supporting a key role for membranes and α-syn in PD pathogenesis. This article is part of a Special Issue entitled: Membrane protein structure and function. Copyright © 2011. Published by Elsevier B.V.

  4. Accumulated α-synuclein affects the progression of GM2 gangliosidoses.

    PubMed

    Suzuki, Kyoko; Yamaguchi, Akira; Yamanaka, Shoji; Kanzaki, Seiichi; Kawashima, Masato; Togo, Takashi; Katsuse, Omi; Koumitsu, Noriko; Aoki, Naoya; Iseki, Eizo; Kosaka, Kenji; Yamaguchi, Kayoko; Hashimoto, Makoto; Aoki, Ichiro; Hirayasu, Yoshio

    2016-10-01

    The accumulation of α-synuclein (ASyn) has been observed in several lysosomal storage diseases (LSDs) but it remains unclear if ASyn accumulation contributes to LSD pathology. ASyn also accumulates in the neurons of Sandhoff disease (SD) patients and SD model mice (Hexb-/- ASyn+/+ mice). SD is a lysosomal storage disorder caused by the absence of a functional β-subunit on the β-hexosaminidase A and B enzymes, which leads to the accumulation of ganglioside in the central nervous system. Here, we explored the role of accumulated ASyn in the progression of Hexb-/- mice by creating a Hexb-/- ASyn-/- double-knockout mice. Our results show that Hexb-/- ASyn-/- mice demonstrated active microglia levels and less dopaminergic neuron loss, without altering the neuronal storage of ganglioside. The autophagy and ubiquitin proteasome pathways are defective in the neurons of Hexb-/- ASyn+/+ mice. In ultrastructural physiological studies, the mitochondria structures look degenerated and dysfunctional. As a result, expression of manganese superoxide dismutase 2 are reduced, and reactive oxygen species-mediated oxidative damage in the neurons of Hexb-/- ASyn+/+ mice. Interestingly, these dysfunctions improved in Hexb-/- ASyn-/- mice. But any clinical improvement were hardly observed in Hexb-/- ASyn-/- mice. Taken together, these findings suggest that ASyn accumulation plays an important role in the pathogenesis of neuropathy in SD and other LSDs, and is therefore a target for novel therapies. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Evidence of native α-synuclein conformers in the human brain.

    PubMed

    Gould, Neal; Mor, Danielle E; Lightfoot, Richard; Malkus, Kristen; Giasson, Benoit; Ischiropoulos, Harry

    2014-03-14

    α-Synuclein aggregation is central to the pathogenesis of several brain disorders. However, the native conformations and functions of this protein in the human brain are not precisely known. The native state of α-synuclein was probed by gel filtration coupled with native gradient gel separation, an array of antibodies with non-overlapping epitopes, and mass spectrometry. The existence of metastable conformers and stable monomer was revealed in the human brain.

  6. Parkinson's disease and α-synuclein expression.

    PubMed

    Devine, Michael J; Gwinn, Katrina; Singleton, Andrew; Hardy, John

    2011-10-01

    Genetic studies of Parkinson's disease over the last decade or more have revolutionized our understanding of this condition. α-Synuclein was the first gene to be linked to Parkinson's disease, and is arguably the most important: the protein is the principal constituent of Lewy bodies, and variation at its locus is the major genetic risk factor for sporadic disease. Intriguingly, duplications and triplications of the locus, as well as point mutations, cause familial disease. Therefore, subtle alterations of α-synuclein expression can manifest with a dramatic phenotype. We outline the clinical impact of α-synuclein locus multiplications, and the implications that this has for Parkinson's disease pathogenesis. Finally, we discuss potential strategies for disease-modifying therapies for this currently incurable disorder. Copyright © 2011 Movement Disorder Society.

  7. Parkinson’s Disease and α-synuclein Expression

    PubMed Central

    Devine, Michael J.; Gwinn, Katrina; Singleton, Andrew; Hardy, John

    2015-01-01

    Genetic studies of Parkinson’s disease over the last decade or more have revolutionized our understanding of this condition. α-Synuclein was the first gene to be linked to Parkinson’s disease, and is arguably the most important: the protein is the principal constituent of Lewy bodies, and variation at its locus is the major genetic risk factor for sporadic disease. Intriguingly, duplications and triplications of the locus, as well as point mutations, cause familial disease. Therefore, subtle alterations of α-synuclein expression can manifest with a dramatic phenotype. We outline the clinical impact of α-synuclein locus multiplications, and the implications that this has for Parkinson’s disease pathogenesis. Finally, we discuss potential strategies for disease-modifying therapies for this currently incurable disorder. PMID:21887711

  8. Parkinson disease.

    PubMed

    Poewe, Werner; Seppi, Klaus; Tanner, Caroline M; Halliday, Glenda M; Brundin, Patrik; Volkmann, Jens; Schrag, Anette-Eleonore; Lang, Anthony E

    2017-03-23

    Parkinson disease is the second-most common neurodegenerative disorder that affects 2-3% of the population ≥65 years of age. Neuronal loss in the substantia nigra, which causes striatal dopamine deficiency, and intracellular inclusions containing aggregates of α-synuclein are the neuropathological hallmarks of Parkinson disease. Multiple other cell types throughout the central and peripheral autonomic nervous system are also involved, probably from early disease onwards. Although clinical diagnosis relies on the presence of bradykinesia and other cardinal motor features, Parkinson disease is associated with many non-motor symptoms that add to overall disability. The underlying molecular pathogenesis involves multiple pathways and mechanisms: α-synuclein proteostasis, mitochondrial function, oxidative stress, calcium homeostasis, axonal transport and neuroinflammation. Recent research into diagnostic biomarkers has taken advantage of neuroimaging in which several modalities, including PET, single-photon emission CT (SPECT) and novel MRI techniques, have been shown to aid early and differential diagnosis. Treatment of Parkinson disease is anchored on pharmacological substitution of striatal dopamine, in addition to non-dopaminergic approaches to address both motor and non-motor symptoms and deep brain stimulation for those developing intractable L-DOPA-related motor complications. Experimental therapies have tried to restore striatal dopamine by gene-based and cell-based approaches, and most recently, aggregation and cellular transport of α-synuclein have become therapeutic targets. One of the greatest current challenges is to identify markers for prodromal disease stages, which would allow novel disease-modifying therapies to be started earlier.

  9. Structures of the E46K Mutant-Type α-Synuclein Protein and Impact of E46K Mutation on the Structures of the Wild-Type α-Synuclein Protein

    PubMed Central

    2013-01-01

    The E46K genetic missense mutation of the wild-type α-synuclein protein was recently identified in a family of Spanish origin with hereditary Parkinson’s disease. Detailed understanding of the structures of the monomeric E46K mutant-type α-synuclein protein as well as the impact of the E46K missense mutation on the conformations and free energy landscapes of the wild-type α-synuclein are required for gaining insights into the pathogenic mechanism of Parkinson’s disease. In this study, we use extensive parallel tempering molecular dynamics simulations along with thermodynamic calculations to assess the secondary and tertiary structural properties as well as the conformational preferences of the monomeric wild-type and E46K mutant-type α-synuclein proteins in an aqueous solution environment. We also present the residual secondary structure component conversion stabilities with dynamics using a theoretical strategy, which we most recently developed. To the best of our knowledge, this study presents the first detailed comparison of the structural and thermodynamic properties of the wild-type and E46K mutant-type α-synuclein proteins in an aqueous solution environment at the atomic level with dynamics. We find that the E46K mutation results not only in local but also in long-range changes in the structural properties of the wild-type α-synuclein protein. The mutation site shows a significant decrease in helical content as well as a large increase in β-sheet structure formation upon E46K mutation. In addition, the β-sheet content of the C-terminal region increases significantly in the E46K mutant-type αS in comparison to the wild-type αS. Our theoretical strategy developed to assess the thermodynamic preference of secondary structure transitions indicates that this shift in secondary structure is the result of a decrease in the thermodynamic preference of turn to helix conversions while the coil to β-sheet preference increases for these residues. Long-range intramolecular protein interactions of the C-terminal with the N-terminal and NAC regions increase upon E46K mutation, resulting in more compact structures for the E46K mutant-type rather than wild-type αS. However, the E46K mutant-type αS structures are less stable than the wild-type αS. Overall, our results show that the E46K mutant-type αS has a higher propensity to aggregate than the wild-type αS and that the N-terminal and C-terminal regions are reactive toward fibrillization and aggregation upon E46K mutation and we explain the associated reasons based on the structural properties herein. Small molecules or drugs that can block the specific residues forming abundant β-sheet structure, which we report here, might help to reduce the reactivity of these intrinsically disordered fibrillogenic proteins toward aggregation and their toxicity. PMID:23374074

  10. Combined exposure to Maneb and Paraquat alters transcriptional regulation of neurogenesis-related genes in mice models of Parkinson's disease.

    PubMed

    Desplats, Paula; Patel, Pruthul; Kosberg, Kori; Mante, Michael; Patrick, Christina; Rockenstein, Edward; Fujita, Masayo; Hashimoto, Makoto; Masliah, Eliezer

    2012-09-28

    Parkinson's disease (PD) is a multifactorial disease where environmental factors act on genetically predisposed individuals. Although only 5% of PD manifestations are associated with specific mutations, majority of PD cases are of idiopathic origin, where environment plays a prominent role. Concurrent exposure to Paraquat (PQ) and Maneb (MB) in rural workers increases the risk for PD and exposure of adult mice to MB/PQ results in dopamine fiber loss and decreased locomotor activity. While PD is characterized by neuronal loss in the substantia nigra, we previously showed that accumulation of α-synuclein in the limbic system contributes to neurodegeneration by interfering with adult neurogenesis. We investigated the effect of pesticides on adult hippocampal neurogenesis in two transgenic models: Line 61, expressing the human wild type SNCA gene and Line LRRK2(G2019S), expressing the human LRRK2 gene with the mutation G2019S. Combined exposure to MB/PQ resulted in significant reduction of neuronal precursors and proliferating cells in non-transgenic animals, and this effect was increased in transgenic mice, in particular for Line 61, suggesting that α-synuclein accumulation and environmental toxins have a synergistic effect. We further investigated the transcription of 84 genes with direct function on neurogenesis. Overexpresion of α-synuclein resulted in the downregulation of 12% of target genes, most of which were functionally related to cell differentiation, while LRRK2 mutation had a minor impact on gene expression. MB/PQ also affected transcription in non-transgenic backgrounds, but when transgenic mice were exposed to the pesticides, profound alterations in gene expression affecting 27% of the studied targets were observed in both transgenic lines. Gene enrichment analysis showed that 1:3 of those genes were under the regulation of FoxF2 and FoxO3A, suggesting a primary role of these proteins in the response to genetic and environmental cues. We report that adult neurogenesis is highly susceptible to multiple "risk factors" for PD, including α-synuclein accumulation, LRRK2 G2019 mutation and exposure to environmental toxins. We identified specific groups of genes that are responsive to each stressor, while uncovering a novel function for Fox transcription factors in PD.

  11. Anle138b and related compounds are aggregation specific fluorescence markers and reveal high affinity binding to α-synuclein aggregates.

    PubMed

    Deeg, Andreas A; Reiner, Anne M; Schmidt, Felix; Schueder, Florian; Ryazanov, Sergey; Ruf, Viktoria C; Giller, Karin; Becker, Stefan; Leonov, Andrei; Griesinger, Christian; Giese, Armin; Zinth, Wolfgang

    2015-09-01

    Special diphenyl-pyrazole compounds and in particular anle138b were found to reduce the progression of prion and Parkinson's disease in animal models. The therapeutic impact of these compounds was attributed to the modulation of α-synuclein and prion-protein aggregation related to these diseases. Photophysical and photochemical properties of the diphenyl-pyrazole compounds anle138b, anle186b and sery313b and their interaction with monomeric and aggregated α-synuclein were studied by fluorescence techniques. The fluorescence emission of diphenyl-pyrazole is strongly increased upon incubation with α-synuclein fibrils, while no change in fluorescence emission is found when brought in contact with monomeric α-synuclein. This points to a distinct interaction between diphenyl-pyrazole and the fibrillar structure with a high binding affinity (Kd=190±120nM) for anle138b. Several α-synuclein proteins form a hydrophobic binding pocket for the diphenyl-pyrazole compound. A UV-induced dehalogenation reaction was observed for anle138b which is modulated by the hydrophobic environment of the fibrils. Fluorescence of the investigated diphenyl-pyrazole compounds strongly increases upon binding to fibrillar α-synuclein structures. Binding at high affinity occurs to hydrophobic pockets in the fibrils. The observed particular fluorescence properties of the diphenyl-pyrazole molecules open new possibilities for the investigation of the mode of action of these compounds in neurodegenerative diseases. The high binding affinity to aggregates and the strong increase in fluorescence upon binding make the compounds promising fluorescence markers for the analysis of aggregation-dependent epitopes. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. α-Synuclein staging in the amygdala of a Parkinson's disease model: cell types involved.

    PubMed

    Flores-Cuadrado, Alicia; Ubeda-Bañon, Isabel; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Martinez-Marcos, Alino

    2015-01-01

    Lewy bodies (ubiquitin and α-synuclein aggregates) can be detected in brain areas in a predictable sequence of six neuropathological stages in Parkinson's disease. Brainstem and olfactory structures are involved in stage 1, whereas the substantia nigra and amygdala are involved in stage 3, prior to cortical spreading. Amygdaloid pathology has been suggested to contribute to non-motor symptoms such as olfactory dysfunction and emotional impairment. This work analysed the distribution of α-synuclein at 16, 30, 43 and 56 weeks in the basolateral, central and cortical amygdaloid complexes of A53T transgenic mice. The expression of calbindin, calretinin and somatostatin was compared in control and transgenic animals. Co-localisation of these markers with α-synuclein was performed. Triple labeling of calbindin, somatostatin and α-synuclein was also investigated. Quantification was carried out using an optical dissector, ImageJ software and confocal microscopy. α-Synuclein-positive cells were mainly concentrated in the basolateral and cortical amygdaloid complexes with a non-significant increase over time from 16 to 30-43 weeks and a significant decrease thereafter. The expression of interneuron markers showed a significant decrease with aging in control animals. When comparing these markers between control and transgenic mice, calretinin was moderately decreased, but calbindin and somatostatin were highly reduced, particularly in the cortical amygdaloid complex. α-Synuclein mostly co-localised with calbindin and a number of these cells also co-expressed somatostatin. These data on α-synucleinopathy staging in the amygdala could help to explain non-motor symptoms as well as to understand the progression of Parkinson's disease in the brain. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Inhibition of Protein Ubiquitination by Paraquat and 1-Methyl-4-Phenylpyridinium Impairs Ubiquitin-Dependent Protein Degradation Pathways.

    PubMed

    Navarro-Yepes, Juliana; Anandhan, Annadurai; Bradley, Erin; Bohovych, Iryna; Yarabe, Bo; de Jong, Annemieke; Ovaa, Huib; Zhou, You; Khalimonchuk, Oleh; Quintanilla-Vega, Betzabet; Franco, Rodrigo

    2016-10-01

    Intracytoplasmic inclusions of protein aggregates in dopaminergic cells (Lewy bodies) are the pathological hallmark of Parkinson's disease (PD). Ubiquitin (Ub), alpha (α)-synuclein, p62/sequestosome 1, and oxidized proteins are the major components of Lewy bodies. However, the mechanisms involved in the impairment of misfolded/oxidized protein degradation pathways in PD are still unclear. PD is linked to mitochondrial dysfunction and environmental pesticide exposure. In this work, we evaluated the effects of the pesticide paraquat (PQ) and the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP(+)) on Ub-dependent protein degradation pathways. No increase in the accumulation of Ub-bound proteins or aggregates was observed in dopaminergic cells (SK-N-SH) treated with PQ or MPP(+), or in mice chronically exposed to PQ. PQ decreased Ub protein content, but not its mRNA transcription. Protein synthesis inhibition with cycloheximide depleted Ub levels and potentiated PQ-induced cell death. The inhibition of proteasomal activity by PQ was found to be a late event in cell death progression and had neither effect on the toxicity of either MPP(+) or PQ, nor on the accumulation of oxidized sulfenylated, sulfonylated (DJ-1/PARK7 and peroxiredoxins), and carbonylated proteins induced by PQ. PQ- and MPP(+)-induced Ub protein depletion prompted the dimerization/inactivation of the Ub-binding protein p62 that regulates the clearance of ubiquitinated proteins by autophagy. We confirmed that PQ and MPP(+) impaired autophagy flux and that the blockage of autophagy by the overexpression of a dominant-negative form of the autophagy protein 5 (dnAtg5) stimulated their toxicity, but there was no additional effect upon inhibition of the proteasome. PQ induced an increase in the accumulation of α-synuclein in dopaminergic cells and membrane-associated foci in yeast cells. Our results demonstrate that the inhibition of protein ubiquitination by PQ and MPP(+) is involved in the dysfunction of Ub-dependent protein degradation pathways.

  14. Inhibition of protein ubiquitination by paraquat and 1-methyl-4-phenylpyridinium impairs ubiquitin-dependent protein degradation pathways

    PubMed Central

    Navarro-Yepes, Juliana; Anandhan, Annadurai; Bradley, Erin; Bohovych, Iryna; Yarabe, Bo; de Jong, Annemieke; Ovaa, Huib; Zhou, You; Khalimonchuk, Oleh; Quintanilla-Vega, Betzabet; Franco, Rodrigo

    2016-01-01

    Intracytoplasmic inclusions of protein aggregates in dopaminergic cells (Lewy bodies) are the pathological hallmark of Parkinson’s disease (PD). Ubiquitin (Ub), alpha [α]-synuclein, p62/sequestosome 1 and oxidized proteins are major components of Lewy bodies. However, the mechanisms involved in the impairment of misfolded/oxidized protein degradation pathways in PD are still unclear. PD is linked to mitochondrial dysfunction and environmental pesticide exposure. In this work, we evaluated the effect of the pesticide paraquat (PQ) and the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP+) on Ub-dependent protein degradation pathways. No increase in the accumulation of Ub-bound proteins or aggregates was observed in dopaminergic cells (SK-N-SH) treated with PQ or MPP+, or in mice chronically exposed to PQ. PQ decreased Ub protein content, but not its mRNA transcription. Protein synthesis inhibition with cycloheximide depleted Ub levels and potentiated PQ–induced cell death. Inhibition of proteasomal activity by PQ was found to be a late event in cell death progression, and had no effect on either the toxicity of MPP+ or PQ, or the accumulation of oxidized sulfenylated, sulfonylated (DJ-1/PARK7 and peroxiredoxins) and carbonylated proteins induced by PQ. PQ- and MPP+-induced Ub protein depletion prompted the dimerization/inactivation of the Ub-binding protein p62 that regulates the clearance of ubiquitinated proteins by autophagic. We confirmed that PQ and MPP+ impaired autophagy flux, and that the blockage of autophagy by the overexpression of a dominant-negative form of the autophagy protein 5 (dnAtg5) stimulated their toxicity, but there was no additional effect upon inhibition of the proteasome. PQ induced an increase in the accumulation of α-synuclein in dopaminergic cells and membrane associated foci in yeast cells. Our results demonstrate that inhibition of protein ubiquitination by PQ and MPP+ is involved in the dysfunction of Ub-dependent protein degradation pathways. PMID:26409479

  15. Interaction of Synuclein and Inflammation in Dopaminergic Neurodegeneration

    DTIC Science & Technology

    2014-06-01

    are less responsive to the blocking effects of anti-CD36 antibodies. The CD36 inhibitor, ursolic acid , at concentrations of 10-5 and 10-6, reduced...N9 chemotaxis across native synuclein by almost 50%. Equally interesting is the fact that ursolic acid had a small effect on CD36-deficient N9 cell...chemotaxis across synuclein which suggests that ursolic acid may also inhibit other scavenger receptors such as SR1 and RAGE. Ursolic acid was

  16. Cu(II) promotes amyloid pore formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hangyu, E-mail: hangyuz@uw.edu; Rochet, Jean-Christophe; Stanciu, Lia A.

    2015-08-14

    The aggregation of α-synuclein is associated with dopamine neuron death in Parkinson's disease. There is controversy in the field over the question of which species of the aggregates, fibrils or protofibrils, are toxic. Moreover, compelling evidence suggested the exposure to heavy metals to be a risk of PD. Nevertheless, the mechanism of metal ions in promoting PD remains unclear. In this research, we investigated the structural basis of Cu(II) induced aggregation of α-synuclein. Using transmission electron microscopy experiments, Cu(II) was found to promote in vitro aggregation of α-synuclein by facilitating annular protofibril formation rather than fibril formation. Furthermore, neuroprotective baicalein disaggregatedmore » annular protofibrils accompanied by considerable decrease of β-sheet content. These results strongly support the hypothesis that annular protofibrils are the toxic species, rather than fibrils, thereby inspiring us to search novel therapeutic strategies for the suppression of the toxic annular protofibril formation. - Highlights: • Cu(II) promoted the annular protofibril formation of α-synuclein in vitro. • Cu(II) postponed the in vitro fibrillization of α-synuclein. • Neuroprotective baicalein disaggregated annular protofibrils.« less

  17. SUMO-1 is associated with a subset of lysosomes in glial protein aggregate diseases.

    PubMed

    Wong, Mathew B; Goodwin, Jacob; Norazit, Anwar; Meedeniya, Adrian C B; Richter-Landsberg, Christiane; Gai, Wei Ping; Pountney, Dean L

    2013-01-01

    Oligodendroglial inclusion bodies characterize a subset of neurodegenerative diseases. Multiple system atrophy (MSA) is characterized by α-synuclein glial cytoplasmic inclusions and progressive supranuclear palsy (PSP) is associated with glial tau inclusions. The ubiquitin homologue, SUMO-1, has been identified in inclusion bodies in MSA, located in discrete sub-domains in α-synuclein-positive inclusions. We investigated SUMO-1 associated with oligodendroglial inclusion bodies in brain tissue from MSA and PSP and in glial cell models. We examined MSA and PSP cases and compared to age-matched normal controls. Fluorescence immunohistochemistry revealed frequent SUMO-1 sub-domains within and surrounding inclusions bodies in both diseases and showed punctate co-localization of SUMO-1 and the lysosomal marker, cathepsin D, in affected brain regions. Cell counting data revealed that 70-75 % of lysosomes in inclusion body-positive oligodendrocytes were SUMO-1-positive consistently across MSA and PSP cases, compared to 20 % in neighbouring inclusion body negative oligodendrocytes and 10 % in normal brain tissue. Hsp90 co-localized with some SUMO-1 puncta. We examined the SUMO-1 status of lysosomes in 1321N1 human glioma cells over-expressing α-synuclein and in immortalized rat oligodendrocyte cells over-expressing the four repeat form of tau following treatment with the proteasome inhibitor, MG132. We also transfected 1321N1 cells with the inherently aggregation-prone huntingtin exon 1 mutant, HttQ74-GFP. Each cell model showed the association of SUMO-1-positive lysosomes around focal cytoplasmic accumulations of α-synuclein, tau or HttQ74-GFP, respectively. Association of SUMO-1 with lysosomes was also detected in glial cells bearing α-synuclein aggregates in a rotenone-lesioned rat model. SUMO-1 labelling of lysosomes showed a major increase between 24 and 48 h post-incubation of 1321N1 cells with MG132 resulting in an increase in a 90 kDa SUMO-1-positive band that was immunopositive for Hsp90 and immunoprecipitated with an anti-SUMO-1 antibody. That SUMO-1 co-localizes with a subset of lysosomes in neurodegenerative diseases with glial protein aggregates and in glial cell culture models of protein aggregation suggests a role for SUMO-1 in lysosome function.

  18. Cerebrospinal Fluid Biomarker Candidates for Parkinsonian Disorders

    PubMed Central

    Constantinescu, Radu; Mondello, Stefania

    2013-01-01

    The Parkinsonian disorders are a large group of neurodegenerative diseases including idiopathic Parkinson’s disease (PD) and atypical Parkinsonian disorders (APD), such as multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration, and dementia with Lewy bodies. The etiology of these disorders is not known although it is considered to be a combination of genetic and environmental factors. One of the greatest obstacles for developing efficacious disease-modifying treatment strategies is the lack of biomarkers. Reliable biomarkers are needed for early and accurate diagnosis, to measure disease progression, and response to therapy. In this review several of the most promising cerebrospinal biomarker candidates are discussed. Alpha-synuclein seems to be intimately involved in the pathogenesis of synucleinopathies and its levels can be measured in the cerebrospinal fluid and in plasma. In a similar way, tau protein accumulation seems to be involved in the pathogenesis of tauopathies. Urate, a potent antioxidant, seems to be associated to the risk of developing PD and with its progression. Neurofilament light chain levels are increased in APD compared with PD and healthy controls. The new “omics” techniques are potent tools offering new insights in the patho-etiology of these disorders. Some of the difficulties encountered in developing biomarkers are discussed together with future perspectives. PMID:23346074

  19. Aminochrome decreases NGF, GDNF and induces neuroinflammation in organotypic midbrain slice cultures.

    PubMed

    de Araújo, Fillipe M; Ferreira, Rafael S; Souza, Cleide S; Dos Santos, Cleonice Creusa; Rodrigues, Tácio L R S; E Silva, Juliana Helena C; Gasparotto, Juciano; Gelain, Daniel Pens; El-Bachá, Ramon S; D Costa, Maria de Fátima; Fonseca, José Claudio M; Segura-Aguilar, Juan; Costa, Silvia L; Silva, Victor Diogenes A

    2018-05-01

    Recent evidence shows that aminochrome induces glial activation related to neuroinflammation. This dopamine derived molecule induces formation and stabilization of alpha-synuclein oligomers, mitochondria dysfunction, oxidative stress, dysfunction of proteasomal and lysosomal systems, endoplasmic reticulum stress and disruption of the microtubule network, but until now there has been no evidence of effects on production of cytokines and neurotrophic factors, that are mechanisms involved in neuronal loss in Parkinson's disease (PD). This study examines the potential role of aminochrome on the regulation of NGF, GDNF, TNF-α and IL-1β production and microglial activation in organotypic midbrain slice cultures from P8 - P9 Wistar rats. We demonstrated aminochrome (25 μM, for 24 h) induced reduction of GFAP expression, reduction of NGF and GDNF mRNA levels, morphological changes in Iba1 + cells, and increase of both TNF-α, IL-1β mRNA and protein levels. Moreover, aminochrome (25 μM, for 48 h) induced morphological changes in the edge of slices and reduction of TH expression. These results demonstrate neuroinflammation, as well as negative regulation of neurotrophic factors (GDNF and NGF), may be involved in aminochrome-induced neurodegeneration, and they contribute to a better understanding of PD pathogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers.

    PubMed

    Fusco, Giuliana; Chen, Serene W; Williamson, Philip T F; Cascella, Roberta; Perni, Michele; Jarvis, James A; Cecchi, Cristina; Vendruscolo, Michele; Chiti, Fabrizio; Cremades, Nunilo; Ying, Liming; Dobson, Christopher M; De Simone, Alfonso

    2017-12-15

    Oligomeric species populated during the aggregation process of α-synuclein have been linked to neuronal impairment in Parkinson's disease and related neurodegenerative disorders. By using solution and solid-state nuclear magnetic resonance techniques in conjunction with other structural methods, we identified the fundamental characteristics that enable toxic α-synuclein oligomers to perturb biological membranes and disrupt cellular function; these include a highly lipophilic element that promotes strong membrane interactions and a structured region that inserts into lipid bilayers and disrupts their integrity. In support of these conclusions, mutations that target the region that promotes strong membrane interactions by α-synuclein oligomers suppressed their toxicity in neuroblastoma cells and primary cortical neurons. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. Reynosin protects against neuronal toxicity in dopamine-induced SH-SY5Y cells and 6-hydroxydopamine-lesioned rats as models of Parkinson's disease: Reciprocal up-regulation of E6-AP and down-regulation of α-synuclein.

    PubMed

    Ham, Ahrom; Kim, Dong-Woo; Kim, Kyeong Ho; Lee, Sung-Jin; Oh, Ki-Bong; Shin, Jongheon; Mar, Woongchon

    2013-08-02

    Aggregation of α-synuclein (ASYN) is considered a major determinant of neuronal loss in Parkinson's disease (PD). E6-associated protein (E6-AP), an E3 ubiquitin protein ligase, has been known to promote the degradation of α-synuclein. The aim of this study was to assess the effects of the sesquiterpene lactone reynosin on dopamine (DA)-induced neuronal toxicity and regulation of E6-associated protein and α-synuclein proteins in both in vitro and in vivo models of Parkinson's disease. Usi"ng flow cytometry and western blot analysis, we determined that reynosin significantly protected both against cell death from dopamine-induced toxicity in human neuroblastoma SH-SY5Y cells and against the loss of tyrosine hydroxylase (TH)-positive cells in 6-hydroxydopamine (6-OHDA)-lesioned rats (a rodent Parkinson's disease model system). In addition, reynosin made up-regulation of E6-associated protein expression and down-regulation of the over-expression of α-synuclein protein in both dopamine-treated SH-SY5Y cells and 6-hydroxydopamine-lesioned rats. These results suggest that the protective effect of reynosin against dopamine-induced neuronal cell death may be due to the reciprocal up-regulation of E6-associated protein and down-regulation of α-synuclein protein expression. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A53T-α-synuclein overexpression in murine locus coeruleus induces Parkinson's disease-like pathology in neurons and glia.

    PubMed

    Henrich, Martin Timo; Geibl, Fanni Fruzsina; Lee, Bolam; Chiu, Wei-Hua; Koprich, James Benjamin; Brotchie, Jonathan Michael; Timmermann, Lars; Decher, Niels; Matschke, Lina Anita; Oertel, Wolfgang Hermann

    2018-05-10

    Degeneration of noradrenergic locus coeruleus neurons occurs during the prodromal phase of Parkinson's disease and contributes to a variety of non-motor symptoms, e.g. depression, anxiety and REM sleep behavior disorder. This study was designed to establish the first locus coeruleus α-synucleinopathy mouse model, which should provide sufficient information about the time-course of noradrenergic neurodegeneration, replicate cardinal histopathological features of the human Parkinson's disease neuropathology and finally lead to robust histological markers, which are sufficient to assess the pathological changes in a quantitative and qualitative way. We show that targeted viral vector-mediated overexpression of human mutant A53T-α-synuclein in vivo in locus coeruleus neurons of wild-type mice resulted in progressive noradrenergic neurodegeneration over a time frame of 9 weeks. Observed neuronal cell loss was accompanied by progressive α-synuclein phosphorylation, formation of proteinase K-resistant α-synuclein-aggregates, accumulation of Ubi-1- and p62-positive inclusions in microglia and induction of progressive micro- and astrogliosis. Apart from this local pathology, abundant α-synuclein-positive axons were found in locus coeruleus output regions, indicating rapid anterograde axonal transport of A53T-α-synuclein. Taken together, we present the first model of α-synucleinopathy in the murine locus coeruleus, replicating essential morphological features of human Parkinson's disease pathology. This new model may contribute to the research on prodromal Parkinson's disease, in respect to pathophysiology and the development of disease-modifying therapy.

  3. Structural characterization of heparin-induced glyceraldehyde-3-phosphate dehydrogenase protofibrils preventing α-synuclein oligomeric species toxicity.

    PubMed

    Ávila, César L; Torres-Bugeau, Clarisa M; Barbosa, Leandro R S; Sales, Elisa Morandé; Ouidja, Mohand O; Socías, Sergio B; Celej, M Soledad; Raisman-Vozari, Rita; Papy-Garcia, Dulce; Itri, Rosangela; Chehín, Rosana N

    2014-05-16

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme that has been associated with neurodegenerative diseases. GAPDH colocalizes with α-synuclein in amyloid aggregates in post-mortem tissue of patients with sporadic Parkinson disease and promotes the formation of Lewy body-like inclusions in cell culture. In a previous work, we showed that glycosaminoglycan-induced GAPDH prefibrillar species accelerate the conversion of α-synuclein to fibrils. However, it remains to be determined whether the interplay among glycosaminoglycans, GAPDH, and α-synuclein has a role in pathological states. Here, we demonstrate that the toxic effect exerted by α-synuclein oligomers in dopaminergic cell culture is abolished in the presence of GAPDH prefibrillar species. Structural analysis of prefibrillar GAPDH performed by small angle x-ray scattering showed a particle compatible with a protofibril. This protofibril is shaped as a cylinder 22 nm long and a cross-section diameter of 12 nm. Using biocomputational techniques, we obtained the first all-atom model of the GAPDH protofibril, which was validated by cross-linking coupled to mass spectrometry experiments. Because GAPDH can be secreted outside the cell where glycosaminoglycans are present, it seems plausible that GAPDH protofibrils could be assembled in the extracellular space kidnapping α-synuclein toxic oligomers. Thus, the role of GAPDH protofibrils in neuronal proteostasis must be considered. The data reported here could open alternative ways in the development of therapeutic strategies against synucleinopathies like Parkinson disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Increased alpha 2-macroglobulin in diabetes: a hyperglycemia related phenomenon associated with reduced antithrombin III activity.

    PubMed

    Ceriello, A; Giugliano, D; Quatraro, A; Stante, A; Dello Russo, P; Torella, R

    1989-01-01

    Increased alpha 2-macroglobulin (alpha 2M) activity and concentration, and decreased antithrombin III (ATIII) plasma concentration are reported in diabetic subjects. In diabetes an inverse correlation between ATIII activity and blood glucose, HbA1, alpha 2M activity and alpha 2M concentration, and a direct correlation between both alpha 2M activity and alpha 2M concentration with blood glucose and HbA1 are found. Moreover, a direct correlation between alpha 2M activity and alpha 2M concentration fails. In both diabetic and normal subjects induced hyperglycemia increases alpha 2M activity and alpha 2M concentration reduces ATIII activity, while ATIII concentration is not affected. These data which show that hyperglycemia may increase alpha 2M molecule levels while altering only the biological function of ATIII, provide evidence that hyperglycemia may decrease, directly, the biological function of some proteins and may condition the levels of some risk factors for the development of diabetic complications such as alpha 2M.

  5. Genetics and genomics of Parkinson’s disease

    PubMed Central

    2014-01-01

    Parkinson’s disease (PD) is a progressively debilitating neurodegenerative syndrome. Although best described as a movement disorder, the condition has prominent autonomic, cognitive, psychiatric, sensory and sleep components. Striatal dopaminergic innervation and nigral neurons are progressively lost, with associated Lewy pathology readily apparent on autopsy. Nevertheless, knowledge of the molecular events leading to this pathophysiology is limited. Current therapies offer symptomatic benefit but they fail to slow progression and patients continue to deteriorate. Recent discoveries in sporadic, Mendelian and more complex forms of parkinsonism provide novel insight into disease etiology; 28 genes, including those encoding alpha-synuclein (SNCA), leucine-rich repeat kinase 2 (LRRK2) and microtubule-associated protein tau (MAPT), have been linked and/or associated with PD. A consensus regarding the affected biological pathways and molecular processes has also started to emerge. In early-onset and more a typical PD, deficits in mitophagy pathways and lysosomal function appear to be prominent. By contrast, in more typical late-onset PD, chronic, albeit subtle, dysfunction in synaptic transmission, early endosomal trafficking and receptor recycling, as well as chaperone-mediated autophagy, provide a unifying synthesis of the molecular pathways involved. Disease-modification (neuroprotection) is no longer such an elusive goal given the unparalleled opportunity for diagnosis, translational neuroscience and therapeutic development provided by genetic discovery. PMID:25061481

  6. Mice lacking major brain gangliosides develop parkinsonism.

    PubMed

    Wu, Gusheng; Lu, Zi-Hua; Kulkarni, Neil; Amin, Ruchi; Ledeen, Robert W

    2011-09-01

    Parkinson's disease (PD) is the second most prevalent late-onset neurodegenerative disorder that affects nearly 1% of the global population aged 65 and older. Whereas palliative treatments are in use, the goal of blocking progression of motor and cognitive disability remains unfulfilled. A better understanding of the basic pathophysiological mechanisms underlying PD would help to advance that goal. The present study provides evidence that brain ganglioside abnormality, in particular GM1, may be involved. This is based on use of the genetically altered mice with disrupted gene Galgt1 for GM2/GD2 synthase which depletes GM2/GD2 and all the gangliotetraose gangliosides that constitute the major molecular species of brain. These knockout mice show overt motor disability on aging and clear indications of motor impairment with appropriate testing at an earlier age. This disability was rectified by L-dopa administration. These mice show other characteristic symptoms of PD, including depletion of striatal dopamine (DA), loss of DA neurons of the substantia nigra pars compacta, and aggregation of alpha synuclein. These manifestations of parkinsonism were largely attenuated by administration of LIGA-20, a membrane permeable analog of GM1 that penetrates the blood brain barrier and enters living neurons. These results suggest that perturbation of intracellular mechanisms mediated by intracellular GM1 may be a contributing factor to PD.

  7. Gut Microbiota Dysfunction as Reliable Non-invasive Early Diagnostic Biomarkers in the Pathophysiology of Parkinson’s Disease: A Critical Review

    PubMed Central

    Nair, Arun T; Ramachandran, Vadivelan; Joghee, Nanjan M; Antony, Shanish; Ramalingam, Gopalakrishnan

    2018-01-01

    Recent investigations suggest that gut microbiota affects the brain activity through the microbiota-gut-brain axis under both physiological and pathological disease conditions like Parkinson’s disease. Further dopamine synthesis in the brain is induced by dopamine producing enzymes that are controlled by gut microbiota via the microbiota-gut-brain axis. Also alpha synuclein deposition and the associated neurodegeneration in the enteric nervous system that increase intestinal permeability, oxidative stress, and local inflammation, accounts for constipation in Parkinson’s disease patients. The trigger that causes blood brain barrier leakage, immune cell activation and inflammation, and ultimately neuroinflammation in the central nervous system is believed to be due to the chronic low-grade inflammation in the gut. The non-motor symptoms that appear years before motor symptoms could be reliable early biomarkers, if they could be correlated with the established and reliable neuroimaging techniques or behavioral indices. The future directions should therefore, focus on the exploration of newer investigational techniques to identify these reliable early biomarkers and define the specific gut microbes that contribute to the development of Parkinson’s disease. This ultimately should pave the way to safer and novel therapeutic approaches that avoid the complications of the drugs delivered today to the brain of Parkinson’s disease patients. PMID:29291606

  8. Intrinsic Conformational Preferences and Interactions in α-Synuclein Fibrils: Insights from Molecular Dynamics Simulations.

    PubMed

    Ilie, Ioana M; Nayar, Divya; den Otter, Wouter K; van der Vegt, Nico F A; Briels, Wim J

    2018-06-12

    Amyloid formation by the intrinsically disordered α-synuclein protein is the hallmark of Parkinson's disease. We present atomistic Molecular Dynamics simulations of the core of α-synuclein using enhanced sampling techniques to describe the conformational and binding free energy landscapes of fragments implicated in fibril stabilization. The theoretical framework is derived to combine the free energy profiles of the fragments into the reaction free energy of a protein binding to a fibril. Our study shows that individual fragments in solution have a propensity toward attaining non-β conformations, indicating that in a fibril β-strands are stabilized by interactions with other strands. We show that most dimers of hydrogen-bonded fragments are unstable in solution, while hydrogen bonding stabilizes the collective binding of five fragments to the end of a fibril. Hydrophobic effects make further contributions to the stability of fibrils. This study is the first of its kind where structural and binding preferences of the five major fragments of the hydrophobic core of α-synuclein have been investigated. This approach improves sampling of intrinsically disordered proteins, provides information on the binding mechanism between the core sequences of α-synuclein, and enables the parametrization of coarse grained models.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Jose A.; Ivanova, Magdalena I.; Sawaya, Michael R.

    We report that the protein α-synuclein is the main component of Lewy bodies, the neuron-associated aggregates seen in Parkinson disease and other neurodegenerative pathologies. An 11-residue segment, which we term NACore, appears to be responsible for amyloid formation and cytotoxicity of human α-synuclein. Here we describe crystals of NACore that have dimensions smaller than the wavelength of visible light and thus are invisible by optical microscopy. As the crystals are thousands of times too small for structure determination by synchrotron X-ray diffraction, we use micro-electron diffraction to determine the structure at atomic resolution. The 1.4 Å resolution structure demonstrates thatmore » this method can determine previously unknown protein structures and here yields, to our knowledge, the highest resolution achieved by any cryo-electron microscopy method to date. The structure exhibits protofibrils built of pairs of face-to-face β-sheets. X-ray fibre diffraction patterns show the similarity of NACore to toxic fibrils of full-length α-synuclein. Finally, the NACore structure, together with that of a second segment, inspires a model for most of the ordered portion of the toxic, full-length α-synuclein fibril, presenting opportunities for the design of inhibitors of α-synuclein fibrils.« less

  10. Lysosomal impairment in Parkinson's disease.

    PubMed

    Dehay, Benjamin; Martinez-Vicente, Marta; Caldwell, Guy A; Caldwell, Kim A; Yue, Zhenyue; Cookson, Mark R; Klein, Christine; Vila, Miquel; Bezard, Erwan

    2013-06-01

    Impairment of autophagy-lysosomal pathways (ALPs) is increasingly regarded as a major pathogenic event in neurodegenerative diseases, including Parkinson's disease (PD). ALP alterations are observed in sporadic PD brains and in toxic and genetic rodent models of PD-related neurodegeneration. In addition, PD-linked mutations and post-translational modifications of α-synuclein impair its own lysosomal-mediated degradation, thereby contributing to its accumulation and aggregation. Furthermore, other PD-related genes, such as leucine-rich repeat kinase-2 (LRRK2), parkin, and phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), have been mechanistically linked to alterations in ALPs. Conversely, mutations in lysosomal-related genes, such as glucocerebrosidase (GBA) and lysosomal type 5 P-type ATPase (ATP13A2), have been linked to PD. New data offer mechanistic molecular evidence for such a connection, unraveling a causal link between lysosomal impairment, α-synuclein accumulation, and neurotoxicity. First, PD-related GBA deficiency/mutations initiate a positive feedback loop in which reduced lysosomal function leads to α-synuclein accumulation, which, in turn, further decreases lysosomal GBA activity by impairing the trafficking of GBA from the endoplasmic reticulum-Golgi to lysosomes, leading to neurodegeneration. Second, PD-related mutations/deficiency in the ATP13A2 gene lead to a general lysosomal impairment characterized by lysosomal membrane instability, impaired lysosomal acidification, decreased processing of lysosomal enzymes, reduced degradation of lysosomal substrates, and diminished clearance of autophagosomes, collectively contributing to α-synuclein accumulation and cell death. According to these new findings, primary lysosomal defects could potentially account for Lewy body formation and neurodegeneration in PD, laying the groundwork for the prospective development of new neuroprotective/disease-modifying therapeutic strategies aimed at restoring lysosomal levels and function. Copyright © 2013 Movement Disorder Society.

  11. Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited α-synuclein accumulation and age-dependent sensorimotor deficits

    PubMed Central

    Schultheis, Patrick J.; Fleming, Sheila M.; Clippinger, Amy K.; Lewis, Jada; Tsunemi, Taiji; Giasson, Benoit; Dickson, Dennis W.; Mazzulli, Joseph R.; Bardgett, Mark E.; Haik, Kristi L.; Ekhator, Osunde; Chava, Anil Kumar; Howard, John; Gannon, Matt; Hoffman, Elizabeth; Chen, Yinhuai; Prasad, Vikram; Linn, Stephen C.; Tamargo, Rafael J.; Westbroek, Wendy; Sidransky, Ellen; Krainc, Dimitri; Shull, Gary E.

    2013-01-01

    Mutations in ATP13A2 (PARK9), encoding a lysosomal P-type ATPase, are associated with both Kufor–Rakeb syndrome (KRS) and neuronal ceroid lipofuscinosis (NCL). KRS has recently been classified as a rare genetic form of Parkinson's disease (PD), whereas NCL is a lysosomal storage disorder. Although the transport activity of ATP13A2 has not been defined, in vitro studies show that its loss compromises lysosomal function, which in turn is thought to cause neuronal degeneration. To understand the role of ATP13A2 dysfunction in disease, we disrupted its gene in mice. Atp13a2−/− and Atp13a2+/+ mice were tested behaviorally to assess sensorimotor and cognitive function at multiple ages. In the brain, lipofuscin accumulation, α-synuclein aggregation and dopaminergic pathology were measured. Behaviorally, Atp13a2−/− mice displayed late-onset sensorimotor deficits. Accelerated deposition of autofluorescent storage material (lipofuscin) was observed in the cerebellum and in neurons of the hippocampus and the cortex of Atp13a2−/− mice. Immunoblot analysis showed increased insoluble α-synuclein in the hippocampus, but not in the cortex or cerebellum. There was no change in the number of dopaminergic neurons in the substantia nigra or in striatal dopamine levels in aged Atp13a2−/− mice. These results show that the loss of Atp13a2 causes sensorimotor impairments, α-synuclein accumulation as occurs in PD and related synucleinopathies, and accumulation of lipofuscin deposits characteristic of NCL, thus providing the first direct demonstration that null mutations in Atp13a2 can cause pathological features of both diseases in the same organism. PMID:23393156

  12. Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation.

    PubMed

    Diógenes, Maria José; Dias, Raquel B; Rombo, Diogo M; Vicente Miranda, Hugo; Maiolino, Francesca; Guerreiro, Patrícia; Näsström, Thomas; Franquelim, Henri G; Oliveira, Luís M A; Castanho, Miguel A R B; Lannfelt, Lars; Bergström, Joakim; Ingelsson, Martin; Quintas, Alexandre; Sebastião, Ana M; Lopes, Luísa V; Outeiro, Tiago Fleming

    2012-08-22

    Parkinson's disease (PD) is the most common representative of a group of disorders known as synucleinopathies, in which misfolding and aggregation of α-synuclein (a-syn) in various brain regions is the major pathological hallmark. Indeed, the motor symptoms in PD are caused by a heterogeneous degeneration of brain neurons not only in substantia nigra pars compacta but also in other extrastriatal areas of the brain. In addition to the well known motor dysfunction in PD patients, cognitive deficits and memory impairment are also an important part of the disorder, probably due to disruption of synaptic transmission and plasticity in extrastriatal areas, including the hippocampus. Here, we investigated the impact of a-syn aggregation on AMPA and NMDA receptor-mediated rat hippocampal (CA3-CA1) synaptic transmission and long-term potentiation (LTP), the neurophysiological basis for learning and memory. Our data show that prolonged exposure to a-syn oligomers, but not monomers or fibrils, increases basal synaptic transmission through NMDA receptor activation, triggering enhanced contribution of calcium-permeable AMPA receptors. Slices treated with a-syn oligomers were unable to respond with further potentiation to theta-burst stimulation, leading to impaired LTP. Prior delivery of a low-frequency train reinstated the ability to express LTP, implying that exposure to a-syn oligomers drives the increase of glutamatergic synaptic transmission, preventing further potentiation by physiological stimuli. Our novel findings provide mechanistic insight on how a-syn oligomers may trigger neuronal dysfunction and toxicity in PD and other synucleinopathies.

  13. Cerebrospinal Fluid Biomarkers in Highly Exposed PM2.5 Urbanites: The Risk of Alzheimer's and Parkinson's Diseases in Young Mexico City Residents.

    PubMed

    Calderón-Garcidueñas, Lilian; Avila-Ramírez, José; Calderón-Garcidueñas, Ana; González-Heredia, Tonatiuh; Acuña-Ayala, Hilda; Chao, Chih-Kai; Thompson, Charles; Ruiz-Ramos, Rubén; Cortés-González, Victor; Martínez-Martínez, Luz; García-Pérez, Mario Alberto; Reis, Jacques; Mukherjee, Partha S; Torres-Jardón, Ricardo; Lachmann, Ingolf

    2016-09-06

    Exposure to fine particulate matter (PM2.5) and ozone (O3) above US EPA standards is associated with Alzheimer's disease (AD) risk, while Mn toxicity induces parkinsonism. Mexico City Metropolitan Area (MCMA) children have pre- and postnatal sustained and high exposures to PM2.5, O3, polycyclic aromatic hydrocarbons, and metals. Young MCMA residents exhibit frontal tau hyperphosphorylation and amyloid-β (Aβ)1 - 42 diffuse plaques, and aggregated and hyperphosphorylated α-synuclein in olfactory nerves and key brainstem nuclei. We measured total prion protein (TPrP), total tau (T-tau), tau phosphorylated at threonine 181 (P-Tau), Aβ1-42, α-synuclein (t-α-syn and d-α-synuclein), BDNF, insulin, leptin, and/or inflammatory mediators, in 129 normal CSF samples from MCMA and clean air controls. Aβ1-42 and BDNF concentrations were significantly lower in MCMA children versus controls (p = 0.005 and 0.02, respectively). TPrP increased with cumulative PM2.5 up to 5 μg/m3 and then decreased, regardless of cumulative value or age (R2 = 0.56). TPrP strongly correlated with T-Tau and P-Tau, while d-α-synuclein showed a significant correlation with TNFα, IL10, and IL6 in MCMA children. Total synuclein showed an increment in childhood years related to cumulated PM2.5, followed by a decrease after age 12 years (R2 = 0.47), while d-α-synuclein exhibited a tendency to increase with cumulated PM2.5 (R2 = 0.30). CSF Aβ1-42, BDNF, α-synuclein, and TPrP changes are evolving in young MCMA urbanites historically showing underperformance in cognitive processes, odor identification deficits, downregulation of frontal cellular PrP, and neuropathological AD and PD hallmarks. Neuroprotection of young MCMA residents ought to be a public health priority.

  14. A Novel Hsp90 Inhibitor Activates Compensatory Heat Shock Protein Responses and Autophagy and Alleviates Mutant A53T α-Synuclein Toxicity

    PubMed Central

    Xiong, Rui; Zhou, Wenbo; Siegel, David; Kitson, Russell R. A.; Freed, Curt R.; Moody, Christopher J.

    2015-01-01

    A potential cause of neurodegenerative diseases, including Parkinson’s disease (PD), is protein misfolding and aggregation that in turn leads to neurotoxicity. Targeting Hsp90 is an attractive strategy to halt neurodegenerative diseases, and benzoquinone ansamycin (BQA) Hsp90 inhibitors such as geldanamycin (GA) and 17-(allylamino)-17-demethoxygeldanamycin have been shown to be beneficial in mutant A53T α-synuclein PD models. However, current BQA inhibitors result in off-target toxicities via redox cycling and/or arylation of nucleophiles at the C19 position. We developed novel 19-substituted BQA (19BQA) as a means to prevent arylation. In this study, our data demonstrated that 19-phenyl-GA, a lead 19BQA in the GA series, was redox stable and exhibited little toxicity relative to its parent quinone GA in human dopaminergic SH-SY5Y cells as examined by oxygen consumption, trypan blue, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), and apoptosis assays. Meanwhile, 19-phenyl-GA retained the ability to induce autophagy and potentially protective heat shock proteins (HSPs) such as Hsp70 and Hsp27. We found that transduction of A53T, but not wild type (WT) α-synuclein, induced toxicity in SH-SY5Y cells. 19-Phenyl-GA decreased oligomer formation and toxicity of A53T α-synuclein in transduced cells. Mechanistic studies indicated that mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase signaling was activated by A53T but not WT α-synuclein, and 19-phenyl-GA decreased mTOR activation that may be associated with A53T α-synuclein toxicity. In summary, our results indicate that 19BQAs such as 19-phenyl-GA may provide a means to modulate protein-handling systems including HSPs and autophagy, thereby reducing the aggregation and toxicity of proteins such as mutant A53T α-synuclein. PMID:26405178

  15. α–Synuclein and PolyUnsaturated Fatty Acids Promote Clathrin Mediated Endocytosis and Synaptic Vesicle Recycling

    PubMed Central

    Ben Gedalya, Tziona; Loeb, Virginie; Israeli, Eitan; Altschuler, Yoram; Selkoe, Dennis J.; Sharon, Ronit

    2009-01-01

    α-Synuclein (αS) is an abundant neuronal cytoplasmic protein implicated in Parkinson’s disease (PD), but its physiological function remains unknown. Consistent with its having structural motifs shared with class A1 apolipoproteins, αS can reversibly associate with membranes and help regulate membrane fatty acid (FA) composition. We previously observed that variations in αS expression level in dopaminergic cultured cells or brains are associated with changes in polyunsaturated fatty acid (PUFA) levels and altered membrane fluidity. We now report that αS acts with PUFAs to enhance the internalization of the membrane-binding dye, FM 1-43. Specifically, αS expression coupled with exposure to physiological levels of certain PUFAs enhanced clathrin-mediated endocytosis in neuronal and non-neuronal cultured cells. Moreover, αS expression and PUFA enhanced basal and evoked synaptic vesicle endocytosis in primary hippocampal cultures of wt and genetically depleted αS mouse brains. We suggest that αS, and PUFAs normally functions in endocytic mechanisms and are specifically involved in synaptic vesicle recycling upon neuronal stimulation. PMID:18980610

  16. Novel animal model defines genetic contributions for neuron-to-neuron transfer of α-synuclein.

    PubMed

    Tyson, Trevor; Senchuk, Megan; Cooper, Jason F; George, Sonia; Van Raamsdonk, Jeremy M; Brundin, Patrik

    2017-08-08

    Cell-to-cell spreading of misfolded α-synuclein (α-syn) is suggested to contribute to the progression of neuropathology in Parkinson's disease (PD). Compelling evidence supports the hypothesis that misfolded α-syn transmits from neuron-to-neuron and seeds aggregation of the protein in the recipient cells. Furthermore, α-syn frequently appears to propagate in the brains of PD patients following a stereotypic pattern consistent with progressive spreading along anatomical pathways. We have generated a C. elegans model that mirrors this progression and allows us to monitor α-syn neuron-to-neuron transmission in a live animal over its lifespan. We found that modulation of autophagy or exo/endocytosis, affects α-syn transfer. Furthermore, we demonstrate that silencing C. elegans orthologs of PD-related genes also increases the accumulation of α-syn. This novel worm model is ideal for screening molecules and genes to identify those that modulate prion-like spreading of α-syn in order to target novel strategies for disease modification in PD and other synucleinopathies.

  17. Effect of Dioxygen on Copper(II) Binding to α-Synuclein

    PubMed Central

    Lucas, Heather R.; Lee, Jennifer C.

    2010-01-01

    Using the fluorescent amino acid tryptophan (Trp), we have characterized the copper(II) binding of F4W α-synuclein in the presence and absence of dioxygen at neutral pH. Variations in Trp fluorescence indicate that copper(II) binding is enhanced by the presence of dioxygen, with the apparent dissociation constant (Kd(app)) changing from 100 nM (anaerobic) to 10 nM (aerobic). To investigate the possible role of methionine oxidation, complementary work focused on synthetic peptide models of the N-terminal Cu(II)-α-syn site, MDV(F/W) and M*DV(F/W), where M*= methionine sulfoxide. Furthermore, we employed circular dichroism (CD) spectroscopy to demonstrate that the phenyl-to-indole (F→W) substitution does not alter copper(II) binding properties and to confirm the 1:1 metal-peptide binding stoichiometry. CD comparisons also revealed that Met1 oxidation does not affect the copper-peptide conformation and further suggested the possible existence of a CuII-Trp/Phe (cation-π) interaction. PMID:20064662

  18. Late stages of hematopoiesis and B cell lymphopoiesis are regulated by α-synuclein, a key player in Parkinson's disease.

    PubMed

    Xiao, Wenbin; Shameli, Afshin; Harding, Clifford V; Meyerson, Howard J; Maitta, Robert W

    2014-11-01

    α-Synuclein plays a crucial role in Parkinson's disease and dementias defined as synucleinopathies. α-Synuclein is expressed in hematopoietic and immune cells, but its functions in hematopoiesis and immune responses are unknown. We utilized α-synuclein(-/-) (KO) mice to investigate its role in hematopoiesis and B cell lymphopoiesis. We demonstrated hematologic abnormalities including mild anemia, smaller platelets, lymphopenia but relatively normal early hematopoiesis in KO mice compared to wild-type (WT) as measured in hematopoietic stem cells and progenitors of the different cell lineages. However, the absolute number of B220(+)IgM(+) B cells in bone marrow was reduced by 4-fold in KO mice (WT: 104±23×10(5) vs. KO: 27±5×10(5)). B cells were also reduced in KO spleens associated with effacement of splenic and lymph node architecture. KO mice showed reduced total serum IgG but no abnormality in serum IgM was noted. When KO mice were challenged with a T cell-dependent antigen, production of antigen specific IgG1 and IgG2b was abolished, but antigen specific IgM was not different from WT mice. Our study shows hematologic abnormalities including anemia and smaller platelets, reduced B cell lymphopoiesis and defects in IgG production in the absence of α-synuclein. This is the first report to show an important role of α-synuclein late in hematopoiesis, B cell lymphopoiesis and adaptive immune response. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Study of the peak shape in alpha spectra measured by liquid scintillation

    NASA Astrophysics Data System (ADS)

    Vera Tomé, F.; Gómez Escobar, V.; Martín Sánchez, A.

    2002-06-01

    Liquid-scintillation counting allows the measurement of alpha and beta activities jointly or only of the alpha-emitting nuclides in a sample. Although the resolution of the alpha spectra is poorer than that attained with semiconductor detectors, it is still an attractive alternative. We describe here attempts to fit a peak shape to experimental liquid-scintillation alpha spectra and discuss the parameters affecting this shape, such as the PSA (pulse-shape analyser) level, vial type, shaking the sample, etc. Spectral analysis has been applied for complex alpha spectra.

  20. Onjisaponin B derived from Radix Polygalae enhances autophagy and accelerates the degradation of mutant α-synuclein and huntingtin in PC-12 cells.

    PubMed

    Wu, An-Guo; Wong, Vincent Kam-Wai; Xu, Su-Wei; Chan, Wai-Kit; Ng, Choi-In; Liu, Liang; Law, Betty Yuen-Kwan

    2013-11-15

    Emerging evidence indicates important protective roles being played by autophagy in neurodegenerative disorders through clearance of aggregate-prone or mutant proteins. In the current study, we aimed to identify autophagy inducers from Chinese medicinal herbs as a potential neuroprotective agent that enhances the clearance of mutant huntingtin and α-synuclein in PC-12 cells. Through intensive screening using the green fluorescent protein-light chain 3 (GFP-LC3) autophagy detection platform, we found that the ethanol extracts of Radix Polygalae (Yuan Zhi) were capable of inducing autophagy. Further investigation showed that among three single components derived from Radix Polygalae--i.e., polygalacic acid, senegenin and onjisaponin B--onjisaponin B was able to induce autophagy and accelerate both the removal of mutant huntingtin and A53T α-synuclein, which are highly associated with Huntington disease and Parkinson disease, respectively. Our study further demonstrated that onjisaponin B induces autophagy via the AMPK-mTOR signaling pathway. Therefore, findings in the current study provide detailed insights into the protective mechanism of a novel autophagy inducer, which is valuable for further investigation as a new candidate agent for modulating neurodegenerative disorders through the reduction of toxicity and clearance of mutant proteins in the cellular level.

  1. Onjisaponin B Derived from Radix Polygalae Enhances Autophagy and Accelerates the Degradation of Mutant α-Synuclein and Huntingtin in PC-12 Cells

    PubMed Central

    Wu, An-Guo; Wong, Vincent Kam-Wai; Xu, Su-Wei; Chan, Wai-Kit; Ng, Choi-In; Liu, Liang; Law, Betty Yuen-Kwan

    2013-01-01

    Emerging evidence indicates important protective roles being played by autophagy in neurodegenerative disorders through clearance of aggregate-prone or mutant proteins. In the current study, we aimed to identify autophagy inducers from Chinese medicinal herbs as a potential neuroprotective agent that enhances the clearance of mutant huntingtin and α-synuclein in PC-12 cells. Through intensive screening using the green fluorescent protein-light chain 3 (GFP-LC3) autophagy detection platform, we found that the ethanol extracts of Radix Polygalae (Yuan Zhi) were capable of inducing autophagy. Further investigation showed that among three single components derived from Radix Polygalae—i.e., polygalacic acid, senegenin and onjisaponin B—onjisaponin B was able to induce autophagy and accelerate both the removal of mutant huntingtin and A53T α-synuclein, which are highly associated with Huntington disease and Parkinson disease, respectively. Our study further demonstrated that onjisaponin B induces autophagy via the AMPK-mTOR signaling pathway. Therefore, findings in the current study provide detailed insights into the protective mechanism of a novel autophagy inducer, which is valuable for further investigation as a new candidate agent for modulating neurodegenerative disorders through the reduction of toxicity and clearance of mutant proteins in the cellular level. PMID:24248062

  2. VPS35 in Dopamine Neurons Is Required for Endosome-to-Golgi Retrieval of Lamp2a, a Receptor of Chaperone-Mediated Autophagy That Is Critical for α-Synuclein Degradation and Prevention of Pathogenesis of Parkinson's Disease

    PubMed Central

    Tang, Fu-Lei; Erion, Joanna R.; Tian, Yun; Liu, Wei; Yin, Dong-Min; Ye, Jian; Tang, Baisha; Mei, Lin

    2015-01-01

    Vacuolar protein sorting-35 (VPS35) is essential for endosome-to-Golgi retrieval of membrane proteins. Mutations in the VPS35 gene have been identified in patients with autosomal dominant PD. However, it remains poorly understood if and how VPS35 deficiency or mutation contributes to PD pathogenesis. Here we provide evidence that links VPS35 deficiency to PD-like neuropathology. VPS35 was expressed in mouse dopamine (DA) neurons in substantia nigra pars compacta (SNpc) and STR (striatum)—regions that are PD vulnerable. VPS35-deficient mice exhibited PD-relevant deficits including accumulation of α-synuclein in SNpc-DA neurons, loss of DA transmitter and DA neurons in SNpc and STR, and impairment of locomotor behavior. Further mechanical studies showed that VPS35-deficient DA neurons or DA neurons expressing PD-linked VPS35 mutant (D620N) had impaired endosome-to-Golgi retrieval of lysosome-associated membrane glycoprotein 2a (Lamp2a) and accelerated Lamp2a degradation. Expression of Lamp2a in VPS35-deficient DA neurons reduced α-synuclein, supporting the view for Lamp2a as a receptor of chaperone-mediated autophagy to be critical for α-synuclein degradation. These results suggest that VPS35 deficiency or mutation promotes PD pathogenesis and reveals a crucial pathway, VPS35-Lamp2a-α-synuclein, to prevent PD pathogenesis. SIGNIFICANCE STATEMENT VPS35 is a key component of the retromer complex that is essential for endosome-to-Golgi retrieval of membrane proteins. Mutations in the VPS35 gene have been identified in patients with PD. However, if and how VPS35 deficiency or mutation contributes to PD pathogenesis remains unclear. We demonstrated that VPS35 deficiency or mutation (D620N) in mice leads to α-synuclein accumulation and aggregation in the substantia nigra, accompanied with DA neurodegeneration. VPS35-deficient DA neurons exhibit impaired endosome-to-Golgi retrieval of Lamp2a, which may contribute to the reduced α-synuclein degradation through chaperone-mediated autophagy. These results suggest that VPS35 deficiency or mutation promotes PD pathogenesis, and reveals a crucial pathway, VPS35-Lamp2a-α-synuclein, to prevent PD pathogenesis. PMID:26203154

  3. Glucose Metabolism and AMPK Signaling Regulate Dopaminergic Cell Death Induced by Gene (α-Synuclein)-Environment (Paraquat) Interactions.

    PubMed

    Anandhan, Annadurai; Lei, Shulei; Levytskyy, Roman; Pappa, Aglaia; Panayiotidis, Mihalis I; Cerny, Ronald L; Khalimonchuk, Oleh; Powers, Robert; Franco, Rodrigo

    2017-07-01

    While environmental exposures are not the single cause of Parkinson's disease (PD), their interaction with genetic alterations is thought to contribute to neuronal dopaminergic degeneration. However, the mechanisms involved in dopaminergic cell death induced by gene-environment interactions remain unclear. In this work, we have revealed for the first time the role of central carbon metabolism and metabolic dysfunction in dopaminergic cell death induced by the paraquat (PQ)-α-synuclein interaction. The toxicity of PQ in dopaminergic N27 cells was significantly reduced by glucose deprivation, inhibition of hexokinase with 2-deoxy-D-glucose (2-DG), or equimolar substitution of glucose with galactose, which evidenced the contribution of glucose metabolism to PQ-induced cell death. PQ also stimulated an increase in glucose uptake, and in the levels of glucose transporter type 4 (GLUT4) and Na + -glucose transporters isoform 1 (SGLT1) proteins, but only inhibition of GLUT-like transport with STF-31 or ascorbic acid reduced PQ-induced cell death. Importantly, while autophagy protein 5 (ATG5)/unc-51 like autophagy activating kinase 1 (ULK1)-dependent autophagy protected against PQ toxicity, the inhibitory effect of glucose deprivation on cell death progression was largely independent of autophagy or mammalian target of rapamycin (mTOR) signaling. PQ selectively induced metabolomic alterations and adenosine monophosphate-activated protein kinase (AMPK) activation in the midbrain and striatum of mice chronically treated with PQ. Inhibition of AMPK signaling led to metabolic dysfunction and an enhanced sensitivity of dopaminergic cells to PQ. In addition, activation of AMPK by PQ was prevented by inhibition of the inducible nitric oxide syntase (iNOS) with 1400W, but PQ had no effect on iNOS levels. Overexpression of wild type or A53T mutant α-synuclein stimulated glucose accumulation and PQ toxicity, and this toxic synergism was reduced by inhibition of glucose metabolism/transport and the pentose phosphate pathway (6-aminonicotinamide). These results demonstrate that glucose metabolism and AMPK regulate dopaminergic cell death induced by gene (α-synuclein)-environment (PQ) interactions.

  4. ATP Maintenance via Two Types of ATP Regulators Mitigates Pathological Phenotypes in Mouse Models of Parkinson's Disease.

    PubMed

    Nakano, Masaki; Imamura, Hiromi; Sasaoka, Norio; Yamamoto, Masamichi; Uemura, Norihito; Shudo, Toshiyuki; Fuchigami, Tomohiro; Takahashi, Ryosuke; Kakizuka, Akira

    2017-08-01

    Parkinson's disease is assumed to be caused by mitochondrial dysfunction in the affected dopaminergic neurons in the brain. We have recently created small chemicals, KUSs (Kyoto University Substances), which can reduce cellular ATP consumption. By contrast, agonistic ligands of ERRs (estrogen receptor-related receptors) are expected to raise cellular ATP levels via enhancing ATP production. Here, we show that esculetin functions as an ERR agonist, and its addition to culture media enhances glycolysis and mitochondrial respiration, leading to elevated cellular ATP levels. Subsequently, we show the neuroprotective efficacies of KUSs, esculetin, and GSK4716 (an ERRγ agonist) against cell death in Parkinson's disease models. In the surviving neurons, ATP levels and expression levels of α-synuclein and CHOP (an ER stress-mediated cell death executor) were all rectified. We propose that maintenance of ATP levels, by inhibiting ATP consumption or enhancing ATP production, or both, would be a promising therapeutic strategy for Parkinson's disease. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Preventing α-synuclein aggregation: the role of the small heat-shock molecular chaperone proteins.

    PubMed

    Cox, Dezerae; Carver, John A; Ecroyd, Heath

    2014-09-01

    Protein homeostasis, or proteostasis, is the process of maintaining the conformational and functional integrity of the proteome. The failure of proteostasis can result in the accumulation of non-native proteins leading to their aggregation and deposition in cells and in tissues. The amyloid fibrillar aggregation of the protein α-synuclein into Lewy bodies and Lewy neuritis is associated with neurodegenerative diseases classified as α-synucleinopathies, which include Parkinson's disease and dementia with Lewy bodies. The small heat-shock proteins (sHsps) are molecular chaperones that are one of the cell's first lines of defence against protein aggregation. They act to stabilise partially folded protein intermediates, in an ATP-independent manner, to maintain cellular proteostasis under stress conditions. Thus, the sHsps appear ideally suited to protect against α-synuclein aggregation, yet these fail to do so in the context of the α-synucleinopathies. This review discusses how sHsps interact with α-synuclein to prevent its aggregation and, in doing so, highlights the multi-faceted nature of the mechanisms used by sHsps to prevent the fibrillar aggregation of proteins. It also examines what factors may contribute to α-synuclein escaping the sHsp chaperones in the context of the α-synucleinopathies. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  6. Curcumin Pyrazole and its derivative (N-(3-Nitrophenylpyrazole) Curcumin inhibit aggregation, disrupt fibrils and modulate toxicity of Wild type and Mutant α-Synuclein

    PubMed Central

    Ahsan, Nuzhat; Mishra, Satyendra; Jain, Manish Kumar; Surolia, Avadhesha; Gupta, Sarika

    2015-01-01

    Accumulating evidence suggests that deposition of neurotoxic α-synuclein aggregates in the brain during the development of neurodegenerative diseases like Parkinson’s disease can be curbed by anti-aggregation strategies that either disrupt or eliminate toxic aggregates. Curcumin, a dietary polyphenol exhibits anti-amyloid activity but the use of this polyphenol is limited owing to its instability. As chemical modifications in curcumin confiscate this limitation, such efforts are intensively performed to discover molecules with similar but enhanced stability and superior properties. This study focuses on the inhibitory effect of two stable analogs of curcumin viz. curcumin pyrazole and curcumin isoxazole and their derivatives against α-synuclein aggregation, fibrillization and toxicity. Employing biochemical, biophysical and cell based assays we discovered that curcumin pyrazole (3) and its derivative N-(3-Nitrophenylpyrazole) curcumin (15) exhibit remarkable potency in not only arresting fibrillization and disrupting preformed fibrils but also preventing formation of A11 conformation in the protein that imparts toxic effects. Compounds 3 and 15 also decreased neurotoxicity associated with fast aggregating A53T mutant form of α-synuclein. These two analogues of curcumin described here may therefore be useful therapeutic inhibitors for the treatment of α-synuclein amyloidosis and toxicity in Parkinson’s disease and other synucleinopathies. PMID:25985292

  7. Stilbene Glucoside, a Putative Sleep Promoting Constituent from Polygonum multiflorum Affects Sleep Homeostasis by Affecting the Activities of Lactate Dehydrogenase and Salivary Alpha Amylase.

    PubMed

    Wei, Qian; Ta, Guang; He, Wenjing; Wang, Wei; Wu, Qiucheng

    2017-01-01

    Chinese herbal medicine (CHM) has been used for treating insomnia for centuries. The most used CHM for insomnia was Polygonum multiflorum. However, the molecular mechanism for CHM preventing insomnia is unknown. Stilbene glucoside (THSG), an important active component of P. multiflorum, may play an important role for treating insomnia. To test the hypothesis, Kunming mice were treated with different dosages of THSG. To examine the sleep duration, a computer-controlled sleep-wake detection system was implemented. Electroencephalogram (EEG) and electromyogram (EMG) electrodes were implanted to determine sleep-wake state. RT-PCR and Western blot was used to measure the levels of lactate dehydrogenase (LDH) and saliva alpha amylase. Spearman's rank correlation coefficient was used to identify the strength of correlation between the variables. The results showed that THSG significantly prolonged the sleep time of the mice (p<0.01). THSG changed sleep profile by reducing wake and rapid eye movement (REM) period, and increasing non-REM period. RT-PCR and Western blot analysis showed that THSG could down-regulate the levels of LDH and saliva alpha amylase (p<0.05). The level of lactate and glucose was positively related with the activity of LDH and saliva alpha amylase (p<0.05), respectively. On the other hand, the activities of LDH and amylase were negatively associated with sleep duration (p<0.05). The levels of lactate and glucose affect sleep homeostasis. Thus, THSG may prevent insomnia by regulating sleep duration via LDH and salivary alpha amylase.

  8. Partial Oxygen Pressure Affects the Expression of Prognostic Biomarkers HIF-1 Alpha, Ki67, and CK20 in the Microenvironment of Colorectal Cancer Tissue.

    PubMed

    Zhang, Lirong; Hu, Yu; Xi, Ning; Song, Jie; Huang, Wenjing; Song, Shanshan; Liu, Yiting; Liu, Xianying; Xie, Yingjun

    2016-01-01

    Hypoxia is prognostically important in colorectal cancer (CRC) therapy. Partial oxygen pressure (pO 2 ) is an important parameter of hypoxia. The correlation between pO 2 levels and expression levels of prognostic biomarkers was measured in CRC tissues. Human CRC tissues were collected and pO 2 levels were measured by OxyLite. Three methods for tissue fixation were compared, including formalin, Finefix, and Finefix-plus-microwave. Immunohistochemistry (IHC) staining was conducted by using the avidin-biotin complex technique for detecting the antibodies to hypoxia inducible factor-1 (HIF-1) alpha, cytokeratin 20 (CK20), and cell proliferation factor Ki67. The levels of pO 2 were negatively associated with the size of CRC tissues. Finefix-plus-microwave fixation has the potential to replace formalin. Additionally, microwave treatment improved Finefix performance in tissue fixation and protein preservation. The percentage of positive cells and gray values of HIF-1 alpha, CK20, and Ki67 were associated with CRC development ( P < 0.05). The levels of pO 2 were positively related with the gray values of Ki67 and negatively related with the values of HIF-1 alpha and CK20 ( P < 0.05). Thus, the levels of microenvironmental pO 2 affect the expression of predictive biomarkers HIF-1 alpha, CK20, and Ki67 in the development of CRC tissues.

  9. Solid-State NMR Structure of a Pathogenic Fibril of Full-Length Human α-Synuclein

    PubMed Central

    Tuttle, Marcus D.; Comellas, Gemma; Nieuwkoop, Andrew J.; Covell, Dustin J.; Berthold, Deborah A.; Kloepper, Kathryn D.; Courtney, Joseph M.; Kim, Jae K.; Barclay, Alexander M.; Kendall, Amy; Wan, William; Stubbs, Gerald; Schwieters, Charles D.; Lee, Virginia M. Y.; George, Julia M.; Rienstra, Chad M.

    2016-01-01

    Misfolded α-synuclein amyloid fibrils are the principal components of Lewy bodies and neurites, hallmarks of Parkinson’s disease (PD). Here we present a high-resolution structure of an α-synuclein fibril, in a form that induces robust pathology in primary neuronal culture, determined by solid-state NMR spectroscopy and validated by electron microscopy and X-ray fiber diffraction. Over 200 unique long-range distance restraints define a consensus structure with common amyloid features including parallel in-register β-sheets and hydrophobic core residues, but also substantial complexity, arising from diverse structural features: an intermolecular salt bridge, a glutamine ladder, close backbone interactions involving small residues, and several steric zippers stabilizing a novel, orthogonal Greek-key topology. These characteristics contribute to the robust propagation of this fibril form, as evidenced by structural similarity of early-onset PD mutants. The structure provides a framework for understanding the interactions of α-synuclein with other proteins and small molecules to diagnose and treat PD. PMID:27018801

  10. Pathogenesis of Mortalin in Manganese-induced Parkinsonism

    NASA Astrophysics Data System (ADS)

    Cook, Travis J.

    Manganese (Mn) is an essential dietary micronutrient for which excessive exposure has long been known to be neurotoxic. Historically, short-term, high-intensity exposure in occupational settings was recognized to cause acute-onset parkinsonism (PS) termed manganism. Although modern day exposures are typically several orders of magnitude lower than those necessary to cause manganism, chronic, low-level exposures are not uncommon among a number of occupations and communities. Recent epidemiologic studies have demonstrated an association between Mn exposure and risk of PS, and in this regard Mn remains a public health concern. The work described here was designed to provide insight toward questions which remain with respect to Mn exposure and its toxic effect on the brain, and includes studies utilizing Mn exposed human populations and in vitro model systems to address these objectives. Blood plasma samples obtained from a cohort of welders, whose work is recognized as generating appreciable amounts of airborne Mn, and post-mortem brain tissue of Mn mine workers were both found to have discernable alterations related to the mitochondrial chaperone protein mortalin. Furthermore, in vitro studies demonstrated that reduced astroglial expression of mortalin confers neuronal susceptibility to toxicity elicited by low levels of Mn, possibly via mechanisms of endoplasmic reticulum and oxidative stress mediated by alpha-synuclein. Taken together, the results of these studies indicate that Mn exposures experienced by modern day populations are sufficient to cause biological alterations in humans that are potentially neurotoxic.

  11. Comparative proteomic analyses of macular and peripheral retina of cynomolgus monkeys (Macaca fascicularis).

    PubMed

    Okamoto, Haru; Umeda, Shinsuke; Nozawa, Takehiro; Suzuki, Michihiro T; Yoshikawa, Yasuhiro; Matsuura, Etsuko T; Iwata, Takeshi

    2010-01-01

    The central region of the primate retina is called the macula. The fovea is located at the center of the macula, where the photoreceptors are concentrated to create a neural network adapted for high visual acuity. Damage to the fovea, e.g., by macular dystrophies and age-related macular degeneration, can reduce central visual acuity. The molecular mechanisms leading to these diseases are most likely dependent on the proteins in the macula which differ from those in the peripheral retina in expression level. To investigate whether the distribution of proteins in the macula is different from the peripheral retina, proteomic analyses of tissues from these two regions of cynomolgus monkeys were compared. Two-dimensional gel electrophoresis and mass spectrometry identified 26 proteins that were present only in the macular gel spots. The expression levels of five proteins, cone photoreceptor specific arrestin-C, gamma-synuclein, epidermal fatty acid binding protein, tropomyosin 1alpha chain, and heterogeneous nuclear ribonucleoproteins A2/B1, were significantly higher in the macula than in the peripheral retina. Immunostaining of macula sections by antibodies to each identified protein revealed unique localization in the retina, retinal pigment epithelial cells and the choroidal layer. Some of these proteins were located in cells with higher densities in the macula. We suggest that it will be important to study these proteins to determine their contribution to the pathogenesis and progression of macula diseases.

  12. Metabolic Investigations of the Molecular Mechanisms Associated with Parkinson’s Disease

    PubMed Central

    Powers, Robert; Lei, Shulei; Anandhan, Annadurai; Marshall, Darrell D.; Worley, Bradley; Cerny, Ronald L.; Dodds, Eric D.; Huang, Yuting; Panayiotidis, Mihalis I.; Pappa, Aglaia; Franco, Rodrigo

    2017-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder characterized by fibrillar cytoplasmic aggregates of α-synuclein (i.e., Lewy bodies) and the associated loss of dopaminergic cells in the substantia nigra. Mutations in genes such as α-synuclein (SNCA) account for only 10% of PD occurrences. Exposure to environmental toxicants including pesticides and metals (e.g., paraquat (PQ) and manganese (Mn)) is also recognized as an important PD risk factor. Thus, aging, genetic alterations, and environmental factors all contribute to the etiology of PD. In fact, both genetic and environmental factors are thought to interact in the promotion of idiopathic PD, but the mechanisms involved are still unclear. In this study, we summarize our findings to date regarding the toxic synergistic effect between α-synuclein and paraquat treatment. We identified an essential role for central carbon (glucose) metabolism in dopaminergic cell death induced by paraquat treatment that is enhanced by the overexpression of α-synuclein. PQ “hijacks” the pentose phosphate pathway (PPP) to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. PQ also stimulated an increase in glucose uptake, the translocation of glucose transporters to the plasma membrane, and AMP-activated protein kinase (AMPK) activation. The overexpression of α-synuclein further stimulated an increase in glucose uptake and AMPK activity, but impaired glucose metabolism, likely directing additional carbon to the PPP to supply paraquat redox cycling. PMID:28538683

  13. α-Synuclein oligomers and clinical implications for Parkinson disease

    PubMed Central

    Kalia, Lorraine V.; Kalia, Suneil K.; McLean, Pamela J.; Lozano, Andres M.; Lang, Anthony E.

    2012-01-01

    Protein aggregation within the central nervous system has been recognized as a defining feature of neurodegenerative diseases since the early 20th century. Since that time, there has been a growing list of neurodegenerative disorders, including Parkinson disease, which are characterized by inclusions of specific pathogenic proteins. This has led to the long-held dogma that these characteristic protein inclusions, which are composed of large insoluble fibrillar protein aggregates and visible by light microscopy, are responsible for cell death in these diseases. However, the correlation between protein inclusion formation and cytotoxicity is inconsistent suggesting another form of the pathogenic proteins may be contributing to neurodegeneration. There is emerging evidence implicating soluble oligomers, smaller protein aggregates not detectable by conventional microscopy, as potential culprits in the pathogenesis of neurodegenerative diseases. The protein α-synuclein is well recognized to contribute to the pathogenesis of Parkinson disease and is the major component of Lewy bodies and Lewy neurites. However, α-synuclein also forms oligomeric species with certain conformations being toxic to cells. The mechanisms by which these α-synuclein oligomers cause cell death are being actively investigated as they may provide new strategies for diagnosis and treatment of Parkinson disease and related disorders. Here we review the possible role of α-synuclein oligomers in cell death in Parkinson disease and discuss the potential clinical implications. PMID:23225525

  14. Neuroinflammation in Parkinson's disease: role in neurodegeneration and tissue repair.

    PubMed

    Vivekanantham, Sayinthen; Shah, Savan; Dewji, Rizwan; Dewji, Abbas; Khatri, Chetan; Ologunde, Rele

    2015-01-01

    Neuroinflammation in Parkinson's disease [PD] is a process that occurs alongside the loss of dopaminergic neurons, and is associated with alterations to many cell types, most notably microglia. This review examines the key evidence contributing to our understanding of the role of inflammation-mediated degeneration of the dopaminergic (DA) nigrostriatal pathway in PD. It will consider the potential role inflammation plays in tissue repair within the brain, inflammation linked gene products that are associated with sporadic Parkinsonian phenotypes (alpha-synuclein, Parkin and Nurr 1), and developing anti-inflammatory drug treatments in PD. With growing evidence supporting the key role of neuroinflammation in PD pathogenesis, new molecular targets are being found that could potentially prevent or delay nigrostriatal DA neuron loss. Hence, this creates the opportunity for disease modifying treatment, to currently what is an incurable disease.

  15. Derivation of mouse embryonic stem cell lines from tyrosine hydroxylase reporter mice crossed with a human SNCA transgenic mouse model of Parkinson's disease.

    PubMed

    Chumarina, Margarita; Azevedo, Carla; Bigarreau, Julie; Vignon, Clémentine; Kim, Kwang-Soo; Li, Jia-Yi; Roybon, Laurent

    2017-03-01

    Mouse embryonic stem cell (mESC) lines were derived by crossing heterozygous transgenic (tg) mice expressing green fluorescent protein (GFP) under the control of the rat tyrosine hydroxylase (TH) promoter, with homozygous alpha-synuclein (aSYN) mice expressing human mutant SNCA A53T under the control of the mouse Prion promoter (MoPrP), or wildtype (WT) mice. The expression of GFP and human aSYN was validated by immunocytochemistry in midbrain neuron cultures upon differentiation of mESC lines using stromal cell-derived inducing activity. These mESC lines can help to study the impact of human aSYN expression in neurons and oligodendrocytes, and also trace GFP-expressing midbrain neurons. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. An overview of coefficient alpha and a reliability matrix for estimating adequacy of internal consistency coefficients with psychological research measures.

    PubMed

    Ponterotto, Joseph G; Ruckdeschel, Daniel E

    2007-12-01

    The present article addresses issues in reliability assessment that are often neglected in psychological research such as acceptable levels of internal consistency for research purposes, factors affecting the magnitude of coefficient alpha (alpha), and considerations for interpreting alpha within the research context. A new reliability matrix anchored in classical test theory is introduced to help researchers judge adequacy of internal consistency coefficients with research measures. Guidelines and cautions in applying the matrix are provided.

  17. Sestrin2 Protects Dopaminergic Cells against Rotenone Toxicity through AMPK-Dependent Autophagy Activation

    PubMed Central

    Hou, Yi-Sheng; Guan, Jun-Jie; Xu, Hai-Dong; Wu, Feng; Sheng, Rui

    2015-01-01

    Dysfunction of the autophagy-lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) was thought to be an important pathogenic mechanism in synuclein pathology and Parkinson's disease (PD). In the present study, we investigated the role of sestrin2 in autophagic degradation of α-synuclein and preservation of cell viability in a rotenone-induced cellular model of PD. We speculated that AMP-activated protein kinase (AMPK) was involved in regulation of autophagy and protection of dopaminergic cells against rotenone toxicity by sestrin2. The results showed that both the mRNA and protein levels of sestrin2 were increased in a TP53-dependent manner in Mes 23.5 cells after treatment with rotenone. Genetic knockdown of sestrin2 compromised the autophagy induction in response to rotenone, while overexpression of sestrin2 increased the basal autophagy activity. Sestrin2 presumably enhanced autophagy in an AMPK-dependent fashion, as sestrin2 overexpression activated AMPK, and genetic knockdown of AMPK abrogated autophagy induction by rotenone. Restoration of AMPK activity by metformin after sestrin2 knockdown recovered the autophagy activity. Sestrin2 overexpression ameliorated α-synuclein accumulation, inhibited caspase 3 activation, and reduced the cytotoxicity of rotenone. These results suggest that sestrin2 upregulation attempts to maintain autophagy activity and suppress rotenone cytotoxicity through activation of AMPK, and that sestrin2 exerts a protective effect on dopaminergic cells. PMID:26031332

  18. Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking

    PubMed Central

    Choi, Bong-Kyu; Choi, Mal-Gi; Kim, Jae-Yeol; Yang, Yoosoo; Lai, Ying; Kweon, Dae-Hyuk; Lee, Nam Ki; Shin, Yeon-Kyun

    2013-01-01

    Parkinson disease and dementia with Lewy bodies are featured with the formation of Lewy bodies composed mostly of α-synuclein (α-Syn) in the brain. Although evidence indicates that the large oligomeric or protofibril forms of α-Syn are neurotoxic agents, the detailed mechanisms of the toxic functions of the oligomers remain unclear. Here, we show that large α-Syn oligomers efficiently inhibit neuronal SNARE-mediated vesicle lipid mixing. Large α-Syn oligomers preferentially bind to the N-terminal domain of a vesicular SNARE protein, synaptobrevin-2, which blocks SNARE-mediated lipid mixing by preventing SNARE complex formation. In sharp contrast, the α-Syn monomer has a negligible effect on lipid mixing even with a 30-fold excess compared with the case of large α-Syn oligomers. Thus, the results suggest that large α-Syn oligomers function as inhibitors of dopamine release, which thus provides a clue, at the molecular level, to their neurotoxicity. PMID:23431141

  19. An Anacardiaceae preparation reduces the expression of inflammation-related genes in murine macrophages.

    PubMed

    Leiro, J; García, D; Arranz, J A; Delgado, R; Sanmartín, M L; Orallo, F

    2004-08-01

    This study investigated the effects of an aqueous extract of the stem bark of Mangifera indica L. (Anacardiaceae; Vimang), which contains a defined mixture of components including polyphenols (principally mangiferin, MA), triterpenes, phytosteroids, fatty acids and microelements, on expression of inflammation mediators in inflammatory murine macrophages after stimulation in vitro with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). In vitro treatment with Vimang at 4 microg/ml reduced levels of NOS-2 mRNA and NOS-2, while treatment at 40 microg/ml also reduced levels of COX-2 mRNA, COX-2, and prostaglandin E2 (PGE2). Results suggested that MA is involved in these effects. In vitro treatment with Vimang at 40 microg/ml also inhibited mRNA levels of the proinflammatory cytokines interleukin 1beta (IL-1beta), tumor necrosis factor alpha (TNF-alpha) and colony-stimulating factor (GM-CSF), but did not affect mRNA levels of IL-6 or tumor growth factor-beta (TGF-beta). Extracellular release of TNF-alpha by inflammatory macrophages was inhibited by in vitro treatment with Vimang at the same concentrations that showed inhibition of TNF-alpha mRNA levels. The inhibition of TNF-alpha production appears to be at least partially attributable to MA. Vimang at 4 microg/ml decreased mRNA levels of nuclear factor-kappaB (NF-kappaB) but did not affect expression of the NF-kappaB inhibitor (IkappaB). These data indicate that the potent anti-inflammatory effects of Vimang are due to selective modulation of the expression of inflammation-related genes, leading to attenuation of macrophage activation.

  20. Excess amounts of 3-iodo-l-tyrosine induce Parkinson-like features in experimental approaches of Parkinsonism.

    PubMed

    Fernández-Espejo, Emilio; Bis-Humbert, Cristian

    2018-06-06

    3-iodo-l-tyrosine might play a role in Parkinson's disease since this molecule is able, at high concentration, to inhibit tyrosine-hydroxylase activity, the rate-limiting enzyme in dopamine biosynthesis. The possible Parkinson-like effects of 3-iodo-l-tyrosine were tested on three experimental approaches in mice: cultured substantia nigra neurons, the enteric nervous system of the jejunum after intra-peritoneal infusions, and the nigrostriatal system following unilateral intrabrain injections. 3-iodo-l-tyrosine, a physiological molecule, was used at concentrations higher than its serum levels in humans. Parkinson-like signs were evaluated through abnormal aggregation of α-synuclein and tyrosine-hydroxylase, loss of tyrosine-hydroxylase-expressing and striatum-projecting neurons and fibers, reduced tyrosine-hydroxylase density, and Parkinson-like motor and non-motor deficits. The retrograde tracer FluoroGold was used in the brain model. The findings revealed that excess amounts of 3-iodo-l-tyrosine induce Parkinson-like effects in the three experimental approaches. Thus, culture neurons of substantia nigra show, after 3-iodo-l-tyrosine exposure, intracytoplasmic inclusions that express α-synuclein and tyrosine-hydroxylase. Intra-peritoneal infusions of 3-iodo-l-tyrosine cause, in the long-term, α-synuclein aggregation, thicker α-synuclein-positive fibers, and loss of tyrosine-hydroxylase-positive cells and fibers in intramural plexuses and ganglia of the jejunum. Infusion of 3-iodo-l-tyrosine into the left dorsal striata of mice damages the nigrostriatal system, as revealed through lower striatal tyrosine-hydroxylase density, reduced number of tyrosine-hydroxylase-expressing and striatum-projecting neurons in the left substantia nigra, as well as the emergence of Parkinson-like behavioral deficits such as akinesia, bradykinesia, motor disbalance, and locomotion directional bias. In conclusion, excess amounts of 3-iodo-l-tyrosine induce Parkinson-like features in cellular, enteric and brain approaches of Parkinsonism in mice. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Effect of alpha(1)-acid glycoprotein on the pharmacokinetics of tamsulosin in rats treated with turpentine oil.

    PubMed

    Matsushima, H; Watanabe, T; Higuchi, S

    2000-04-01

    The pharmacokinetics of tamsulosin (TAM) was investigated using male Sprague-Dawley rats in which plasma alpha(1)-acid glycoprotein (alpha(1)-AGP) levels were elevated by the subcutaneous injection of 0.2 mL/kg of turpentine oil. alpha(1)-AGP levels increased about eight times after turpentine oil treatment, causing a threefold decrease in plasma unbound fraction (f(u)) of TAM. When 0.3 mg/kg of TAM was dosed intravenously, total and nonrenal clearances (CL(tot) and CL(nr)) in turpentine-treated rats were 47% and 44% lower than those in nontreated controls, respectively. The area under the concentration-time curve of plasma unbound TAM (AUC(inf,u)) was lower than that in the control. When 1 mg/kg of TAM was dosed orally, oral clearance (CL(oral)) in alpha1-AGP-induced rats was 65% lower than in the control. The AUC(inf,u) and unbound oral clearance (CL(oral,u)) were nearly equal in both groups. Moreover, a positive correlation was observed between fu and CL(oral) of TAM (r(2) = 0.603, P < 0.01), whereas no correlation was observed between f(u) and CL(oral,u). The absolute bioavailability (BA) increased from 19.2% to 46.9% by induction of alpha(1)-AGP. These results suggest that decreased f(u) caused by the elevation of plasma alpha(1)-AGP level affects the pharmacokinetics of TAM, but does not affect the CL(oral,u,) which represents the hepatic metabolism of TAM. Copyright 2000 Wiley-Liss, Inc.

  2. Newly developed PPAR-alpha agonist (R)-K-13675 inhibits the secretion of inflammatory markers without affecting cell proliferation or tube formation.

    PubMed

    Kitajima, Ken; Miura, Shin-Ichiro; Mastuo, Yoshino; Uehara, Yoshinari; Saku, Keijiro

    2009-03-01

    Peroxisome proliferator-activated receptor-alpha (PPAR-alpha) is a key regulator of lipid and glucose metabolism and has been implicated in inflammation. The vascular effects of activator for PPARs, particularly PPAR-alpha, on vascular cells remain to be fully elucidated. Therefore, we analyzed the hypothesis that newly developed (R)-K-13675 decreases the secretion of inflammatory markers without affecting cell proliferation or tube formation. Human coronary endothelial cells (HCECs) were maintained in different doses of (R)-K-13675 under serum starvation. After 20h, the levels of monocyte chemoattractant protein-1 (MCP-1), regulated on activation, normal T expressed and secreted (RANTES), interleukin-6 (IL-6) and interferon-gamma (INF-gamma) secreted in the medium and nuclear factor kappa B (NFkappaB) in cell lysate were analyzed using enzyme-linked immunosorbent assays (ELISA). Upon treatment with (R)-K-13675 at 0, 10, 20, 50 and 100nM, with the inflammatory markers at 0nM as 100 (arbitrary units), MCP-1 levels were significantly suppressed (94+/-9, 88+/-2, 80+/-5 and 74+/-11, respectively). RANTES, IL-6 and INF-gamma levels were also significantly suppressed (RANTES: 92+/-2, 74+/-9, 64+/-7 and 60+/-2, respectively, IL-6: 97+/-2, 89+/-10, 82+/-1 and 66+/-7, respectively, INF-gamma: 98+/-7, 94+/-3, 76+/-8 and 64+/-8, respectively). NFkappaB levels were also decreased to 91+/-5, 90+/-5, 84+/-7 and 82+/-8, respectively. In addition, (R)-K-13675 did not affect HCEC proliferation or tube formation at up to 100nM. Thus, (R)-K-13675 was associated with the inhibition of inflammatory responses without affecting cell proliferation or angiogenesis, and subsequently may induce an anti-atherosclerotic effect.

  3. Sex-dependent alterations in motor and anxiety-like behavior of aged bacterial peptidoglycan sensing molecule 2 knockout mice.

    PubMed

    Arentsen, Tim; Khalid, Roksana; Qian, Yu; Diaz Heijtz, Rochellys

    2018-01-01

    Peptidoglycan recognition proteins (PGRPs) are key sensing-molecules of the innate immune system that specifically detect bacterial peptidoglycan (PGN) and its derivates. PGRPs have recently emerged as potential key regulators of normal brain development and behavior. To test the hypothesis that PGRPs play a role in motor control and anxiety-like behavior in later life, we used 15-month old male and female peptidoglycan recognition protein 2 (Pglyrp2) knockout (KO) mice. Pglyrp2 is an N-acetylmuramyl-l-alanine amidase that hydrolyzes PGN between the sugar backbone and the peptide chain (which is unique among the mammalian PGRPs). Using a battery of behavioral tests, we demonstrate that Pglyrp2 KO male mice display decreased levels of anxiety-like behavior compared with wild type (WT) males. In contrast, Pglyrp2 KO female mice show reduced rearing activity and increased anxiety-like behavior compared to WT females. In the accelerated rotarod test, however, Pglyrp2 KO female mice performed better compared to WT females (i.e., they had longer latency to fall off the rotarod). Further, Pglyrp2 KO male mice exhibited decreased expression levels of synaptophysin, gephyrin, and brain-derived neurotrophic factor in the frontal cortex, but not in the amygdala. Pglyrp2 KO female mice exhibited increased expression levels of spinophilin and alpha-synuclein in the frontal cortex, while exhibiting decreased expression levels of synaptophysin, gephyrin and spinophilin in the amygdala. Our findings suggest a novel role for Pglyrp2asa key regulator of motor and anxiety-like behavior in late life. Copyright © 2017. Published by Elsevier Inc.

  4. In vivo alterations in calcium buffering capacity in transgenic mouse model of synucleinopathy.

    PubMed

    Reznichenko, Lidia; Cheng, Qun; Nizar, Krystal; Gratiy, Sergey L; Saisan, Payam A; Rockenstein, Edward M; González, Tanya; Patrick, Christina; Spencer, Brian; Desplats, Paula; Dale, Anders M; Devor, Anna; Masliah, Eliezer

    2012-07-18

    Abnormal accumulation of α-synuclein is centrally involved in the pathogenesis of many disorders with Parkinsonism and dementia. Previous in vitro studies suggest that α-synuclein dysregulates intracellular calcium. However, it is unclear whether these alterations occur in vivo. For this reason, we investigated calcium dynamics in transgenic mice expressing human WT α-synuclein using two-photon microscopy. We imaged spontaneous and stimulus-induced neuronal activity in the barrel cortex. Transgenic mice exhibited augmented, long-lasting calcium transients characterized by considerable deviation from the exponential decay. The most evident pathology was observed in response to a repetitive stimulation in which subsequent stimuli were presented before relaxation of calcium signal to the baseline. These alterations were detected in the absence of significant increase in neuronal spiking response compared with age-matched controls, supporting the possibility that α-synuclein promoted alterations in calcium dynamics via interference with intracellular buffering mechanisms. The characteristic shape of calcium decay and augmented response during repetitive stimulation can serve as in vivo imaging biomarkers in this model of neurodegeneration, to monitor progression of the disease and screen candidate treatment strategies.

  5. Mechanisms of α-Synuclein Induced Synaptopathy in Parkinson's Disease

    PubMed Central

    Bridi, Jessika C.; Hirth, Frank

    2018-01-01

    Parkinson's disease (PD) is characterized by intracellular inclusions of aggregated and misfolded α-Synuclein (α-Syn), and the loss of dopaminergic (DA) neurons in the brain. The resulting motor abnormalities mark the progression of PD, while non-motor symptoms can already be identified during early, prodromal stages of disease. Recent studies provide evidence that during this early prodromal phase, synaptic and axonal abnormalities occur before the degenerative loss of neuronal cell bodies. These early phenotypes can be attributed to synaptic accumulation of toxic α-Syn. Under physiological conditions, α-Syn functions in its native conformation as a soluble monomer. However, PD patient brains are characterized by intracellular inclusions of insoluble fibrils. Yet, oligomers and protofibrils of α-Syn have been identified to be the most toxic species, with their accumulation at presynaptic terminals affecting several steps of neurotransmitter release. First, high levels of α-Syn alter the size of synaptic vesicle pools and impair their trafficking. Second, α-Syn overexpression can either misregulate or redistribute proteins of the presynaptic SNARE complex. This leads to deficient tethering, docking, priming and fusion of synaptic vesicles at the active zone (AZ). Third, α-Syn inclusions are found within the presynaptic AZ, accompanied by a decrease in AZ protein levels. Furthermore, α-Syn overexpression reduces the endocytic retrieval of synaptic vesicle membranes during vesicle recycling. These presynaptic alterations mediated by accumulation of α-Syn, together impair neurotransmitter exocytosis and neuronal communication. Although α-Syn is expressed throughout the brain and enriched at presynaptic terminals, DA neurons are the most vulnerable in PD, likely because α-Syn directly regulates dopamine levels. Indeed, evidence suggests that α-Syn is a negative modulator of dopamine by inhibiting enzymes responsible for its synthesis. In addition, α-Syn is able to interact with and reduce the activity of VMAT2 and DAT. The resulting dysregulation of dopamine levels directly contributes to the formation of toxic α-Syn oligomers. Together these data suggest a vicious cycle of accumulating α-Syn and deregulated dopamine that triggers synaptic dysfunction and impaired neuronal communication, ultimately causing synaptopathy and progressive neurodegeneration in Parkinson's disease. PMID:29515354

  6. The Val192Leu mutation in the alpha-subunit of beta-hexosaminidase A is not associated with the B1-variant form of Tay-Sachs disease.

    PubMed Central

    Hou, Y.; Vavougios, G.; Hinek, A.; Wu, K. K.; Hechtman, P.; Kaplan, F.; Mahuran, D. J.

    1996-01-01

    Substitution mutations adversely affecting the alpha-subunit of beta-hexosaminidase A (alphabeta) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-alpha chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an "active-site" residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all alpha-specific activity. This biochemical phenotype is referred to as the "B1-variant form" of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and both subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, alpha-Val192Leu. Chinese hamster ovary cells were permanently cotransfected with an alpha-cDNA-construct encoding the substitution and a mutant beta-cDNA (beta-Arg211Lys), encoding a beta-subunit that is inactive but normal in all other respects. We were surprised to find that the Val192Leu substitution, produced a pro-alpha chain that did not form alpha-beta dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val192Leu substitution does not specifically affect the alpha-active site. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8659543

  7. The Val192Leu mutation in the alpha-subunit of beta-hexosaminidase A is not associated with the B1-variant form of Tay-Sachs disease.

    PubMed

    Hou, Y; Vavougios, G; Hinek, A; Wu, K K; Hechtman, P; Kaplan, F; Mahuran, D J

    1996-07-01

    Substitution mutations adversely affecting the alpha-subunit of beta-hexosaminidase A (alphabeta) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-alpha chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an "active-site" residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all alpha-specific activity. This biochemical phenotype is referred to as the "B1-variant form" of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and both subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, alpha-Val192Leu. Chinese hamster ovary cells were permanently cotransfected with an alpha-cDNA-construct encoding the substitution and a mutant beta-cDNA (beta-Arg211Lys), encoding a beta-subunit that is inactive but normal in all other respects. We were surprised to find that the Val192Leu substitution, produced a pro-alpha chain that did not form alpha-beta dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val192Leu substitution does not specifically affect the alpha-active site.

  8. Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides.

    PubMed

    Di Scala, Coralie; Yahi, Nouara; Flores, Alessandra; Boutemeur, Sonia; Kourdougli, Nazim; Chahinian, Henri; Fantini, Jacques

    2016-02-01

    Growing evidence supports a role for brain gangliosides in the pathogenesis of neurodegenerative diseases including Alzheimer's and Parkinson's. Recently we deciphered the ganglioside-recognition code controlling specific ganglioside binding to Alzheimer's β-amyloid (Aβ1-42) peptide and Parkinson's disease-associated protein α-synuclein. Cracking this code allowed us to engineer a short chimeric Aβ/α-synuclein peptide that recognizes all brain gangliosides. Here we show that ganglioside-deprived neural cells do no longer sustain the formation of zinc-sensitive amyloid pore channels induced by either Aβ1-42 or α-synuclein, as assessed by single-cell Ca(2+) fluorescence microscopy. Thus, amyloid channel formation, now considered a key step in neurodegeneration, is a ganglioside-dependent process. Nanomolar concentrations of chimeric peptide competitively inhibited amyloid pore formation induced by Aβ1-42 or α-synuclein in cultured neural cells. Moreover, this peptide abrogated the intracellular calcium increases induced by Parkinson's-associated mutant forms of α-synuclein (A30P, E46K and A53T). The chimeric peptide also prevented the deleterious effects of Aβ1-42 on synaptic vesicle trafficking and decreased the Aβ1-42-induced impairment of spontaneous activity in rat hippocampal slices. Taken together, these data show that the chimeric peptide has broad anti-amyloid pore activity, suggesting that a common therapeutic strategy based on the prevention of amyloid-ganglioside interactions is a reachable goal for both Alzheimer's and Parkinson's diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Cytokines in the sera of patients with pemphigus vulgaris: interleukin-6 and tumour necrosis factor-alpha levels are significantly increased as compared to healthy subjects and correlate with disease activity.

    PubMed

    D'Auria, L; Bonifati, C; Mussi, A; D'Agosto, G; De Simone, C; Giacalone, B; Ferraro, C; Ameglio, F

    1997-12-01

    Cytokine serum levels, when detectable, are currently measured in many disease states, both to evaluate a possible pathogenetic involvement of such molecules and for clinical purposes. No data are currently available on the cytokine levels in the sera of patients with pemphigus vulgaris (PV), a rare bullous disease of autoimmune origin. This study presents data concerning the levels of 13 different cytokines assayed in the sera of 25 patients affected with PV as compared with 20 healthy subjects using high sensitivity ELISA kits. Of the 13 molecules analyzed, no differences in the levels of most cytokines were observed between pemphigus and control sera, with the exception of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6). Serum TNF-alpha and IL-6 levels were found to be significantly higher in PV patients than in normal controls (p < 0.001). Furthermore, the levels of the two cytokines decreased after one month of corticosteroid therapy. A significant correlation was found between the serum levels of both TNF-alpha and IL-6 and the number of lesions for each patient (p < 0.001). The data presented support an involvement of at least IL-6 and TNF-alpha in the biological modifications associated with PV manifestations.

  10. Association of α-, β-, and γ-Synuclein With Diffuse Lewy Body Disease

    PubMed Central

    Nishioka, Kenya; Wider, Christian; Vilariño-Güell, Carles; Soto-Ortolaza, Alexandra I.; Lincoln, Sarah J.; Kachergus, Jennifer M.; Jasinska-Myga, Barbara; Ross, Owen A.; Rajput, Alex; Robinson, Christopher A.; Ferman, Tanis J.; Wszolek, Zbigniew K.; Dickson, Dennis W.; Farrer, Matthew J.

    2016-01-01

    Objective To determine the association of the genes that encode α-, β-, and γ-synuclein (SNCA, SNCB, and SNCG, respectively) with diffuse Lewy body disease (DLBD). Design Case-control study. Subjects A total of 172 patients with DLBD consistent with a clinical diagnosis of Parkinson disease dementia/dementia with Lewy bodies and 350 clinically and 97 pathologically normal controls. Interventions Sequencing of SNCA, SNCB, and SNCG and genotyping of single-nucleotide polymorphisms performed on an Applied Biosystems capillary sequencer and a Sequenom MassArray pLEX platform, respectively. Associations were determined using χ2 or Fisher exact tests. Results Initial sequencing studies of the coding regions of each gene in 89 patients with DLBD did not detect any pathogenic substitutions. Nevertheless, genotyping of known polymorphic variability in sequence-conserved regions detected several single-nucleotide polymorphisms in the SNCA and SNCG genes that were significantly associated with disease (P=.05 to <.001). Significant association was also observed for 3 single-nucleotide polymorphisms located in SNCB when comparing DLBD cases and pathologically confirmed normal controls (P=.03-.01); however, this association was not significant for the clinical controls alone or the combined clinical and pathological controls (P>.05). After correction for multiple testing, only 1 single-nucleotide polymorphism in SNCG (rs3750823) remained significant in all of the analyses (P=.05-.009). Conclusion These findings suggest that variants in all 3 members of the synuclein gene family, particularly SNCA and SNCG, affect the risk of developing DLBD and warrant further investigation in larger, pathologically defined data sets as well as clinically diagnosed Parkinson disease/dementia with Lewy bodies case-control series. PMID:20697047

  11. Hyperglycemia-conditioned increase in alpha-2-macroglobulin in healthy normal subjects: a phenomenon correlated with deficient antithrombin III activity.

    PubMed

    Ceriello, A; Quatraro, A; Dello Russo, P; Marchi, E; Barbanti, M; Giugliano, D

    1989-01-01

    Induced hyperglycemia in normal subjects increases alpha 2-macroglobulin (alpha 2M) activity and alpha 2M concentration and reduces antithrombin III (ATIII) activity, while it does not affect ATIII plasma concentration. Hyperglycemia-determined variations in ATIII activity and alpha 2M molecules are correlated in an inverse and parallel fashion. A compensatory role for the increase in alpha 2M in the regulation of the coagulation system may be hypothesized. Moreover, these data provide evidence that hyperglycemia may decrease, directly, the biological function of some proteins and may influence the levels of some risk factors for the development of complications in diabetes.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lashuel, Hilal A.; Aljabari, Bayan; Sigurdsson, Einar M.

    We demonstrate herein that human macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine expressed in the brain and not previously considered to be amyloidogenic, forms amyloid fibrils similar to those derived from the disease associated amyloidogenic proteins {beta}-amyloid and {alpha}-synuclein. Acid denaturing conditions were found to readily induce MIF to undergo amyloid fibril formation. MIF aggregates to form amyloid-like structures with a morphology that is highly dependent on pH. The mechanism of MIF amyloid formation was probed by electron microscopy, turbidity, Thioflavin T binding, circular dichroism spectroscopy, and analytical ultracentrifugation. The fibrillar structures formed by MIF bind Congo red andmore » exhibit the characteristic green birefringence under polarized light. These results are consistent with the notion that amyloid fibril formation is not an exclusive property of a select group of amyloidogenic proteins, and contribute to a better understanding of the factors which govern protein conformational changes and amyloid fibril formation in vivo.« less

  13. Oxidative stress and its association with coronary artery disease and different atherogenic risk factors.

    PubMed

    Vassalle, C; Petrozzi, L; Botto, N; Andreassi, M G; Zucchelli, G C

    2004-10-01

    It is well known that free radicals contribute to endothelial dysfunction and are involved in the pathogenesis and development of cardiovascular diseases, such as atherosclerosis. The aim of this study was to provide evidence for enhanced oxidative stress in coronary artery disease (CAD). Plasma levels of 8-isoprostane (8-epiPGF(2alpha)), marker of lipid peroxidation, were measured in 68 subjects (age: 60 +/- 2 years, mean +/- SEM). Subjects included 30 healthy control subjects and 38 patients with angiographically proven CAD. In addition, the total antioxidant power (PAO) was evaluated in a subgroup (40 subjects, 12 healthy and 28 CAD). Levels of 8-epiPGF(2alpha) increased with the number of affected vessels (one- and multi-vessel disease versus control subjects, P < 0.001) and considering different risk determinants for atherosclerosis (i.e. hypertension, gender, hypercholesterolaemia, P < 0.01). In multivariate regression models the number of affected vessels was independently correlated with 8-epiPGF(2alpha) (P < 0.05). PAO values significantly decreased with increased number of affected vessels (P < 0.05) and in hypertensive patients when compared with those without hypertension (P < 0.05). In multivariate regression models the number of affected vessels resulted an independent determinant for PAO (P < 0.05). Concentration of 8-epiPGF(2alpha) and PAO also correlated with the number of cardiovascular risk factors (P < 0.01 and P = 0.07, respectively). These findings indicate that elevated levels of plasma 8-epiPGF(2alpha) and reduced antioxidant capacity are associated with the extent and the severity of CAD and with the occurrence and number of different atherogenic risk factors. This observation may assist in providing more information as to how oxidative stress may predispose to atherogenesis and suggest attractive therapeutic strategies in the prevention and treatment of cardiovascular disease.

  14. Parkinson disease: α-synuclein mutational screening and new clinical insight into the p.E46K mutation.

    PubMed

    Pimentel, Márcia M G; Rodrigues, Fabíola C; Leite, Marco Antônio A; Campos Júnior, Mário; Rosso, Ana Lucia; Nicaretta, Denise H; Pereira, João S; Silva, Delson José; Della Coletta, Marcus V; Vasconcellos, Luiz Felipe R; Abreu, Gabriella M; Dos Santos, Jussara M; Santos-Rebouças, Cíntia B

    2015-06-01

    Amongst Parkinson's disease-causing genetic factors, missense mutations and genomic multiplications in the gene encoding α-synuclein are well established causes of the disease, although genetic data in populations with a high degree of admixture, such as the Brazilian one, are still scarce. In this study, we conducted a molecular screening of α-synuclein point mutations and copy number variation in the largest cohort of Brazilian patients with Parkinson's disease (n = 549) and also in twelve Portuguese and one Bolivian immigrants. Genomic DNA was isolated from peripheral blood leukocytes or saliva, and the mutational screening was performed by quantitative and qualitative real-time PCR. The only alteration identified was the p.E46K mutation in a 60-year-old man, born in Bolivia, with a familial history of autosomal dominant Parkinson's disease. This is the second family ever reported, in which this rare pathogenic mutation is segregating. The same mutation was firstly described ten years ago in a Spanish family with a neurodegenerative syndrome combining parkinsonism, dementia and visual hallucinations. The clinical condition of our proband reveals a less aggressive phenotype than previously described and reinforces that marked phenotypic heterogeneity is common among patients with Parkinson's disease, even among those carriers sharing the same mutation. Our findings add new insight into the preexisting information about α-synuclein p.E46K, improving our understanding about the endophenotypes associated to this mutation and corroborate that missense alterations and multiplications in α-synuclein are uncommon among Brazilian patients with Parkinson's disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Pathological α-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients.

    PubMed

    Stokholm, Morten Gersel; Danielsen, Erik Hvid; Hamilton-Dutoit, Stephen Jacques; Borghammer, Per

    2016-06-01

    It has been hypothesized that Lewy pathology initiates in the enteric nervous system years prior to debut of clinical motor symptoms in Parkinson disease patients. This study investigates whether Lewy pathology is present in various gastrointestinal tract tissues from Parkinson disease patients in the prodromal phase. We used the Danish National Pathology Registry to identify archived paraffin-embedded tissue blocks from 57 Parkinson disease patients (98 blocks) and 90 control subjects (98 blocks). We employed 2 different immunohistochemistry techniques visualizing aggregated α-synuclein and phosphorylated α-synuclein. Thirty-nine Parkinson disease patients contributed tissues obtained in the prodromal disease phase, whereas 18 Parkinson disease patients contributed tissues obtained solely after Parkinson diagnosis. Prodromal tissues were obtained on average 7.0 years prior to diagnosis (range = 20 years to 4 months), and postdiagnosis tissue on average 2.8 years after diagnosis (range = 2 days to 18 years). Phosphorylated α-synuclein positivity was seen in 22 of 39 (56%) prodromal Parkinson disease subjects and 30 of 67 (45%) prodromal tissue blocks. These fractions were significantly higher compared to control subjects (p = 0.0001 and p = 0.0032, respectively). In contrast, no significant difference was seen in the positivity rate between prodromal Parkinson disease patients and controls when using the aggregated α-synuclein immunohistochemistry technique. We detected Lewy pathology in the gastrointestinal tract of patients up to 20 years prior to their Parkinson disease diagnosis. These findings are in accordance with a hypothesized prodromal disease phase spanning 10 to 20 years. Ann Neurol 2016;79:940-949. © 2016 American Neurological Association.

  16. The Val{sup 192}Leu mutation in the {alpha}-subunit of {beta}-hexosaminidase A is not associated with the B1-variant form of Tay-Sachs disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Y.; Vavougios, G.; Hinek, A.

    1996-07-01

    Substitution mutations adversely affecting the {alpha}-subunit of {beta}-hexosaminidase A ({alpha}{beta}) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-{alpha} chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an {open_quotes}active-site{close_quotes} residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all {alpha}-specific activity. This biochemical phenotype is referred to as the {open_quotes}B1-variant form{close_quotes} of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and bothmore » subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, {alpha}-Val{sup 192}Leu. Chinese hamster ovary cells were permanently cotransfected with an {alpha}-cDNA-construct encoding the substitution and a mutant {beta}-cDNA ({beta}-Arg{sup 211}Lys), encoding a {beta}-subunit that is inactive but normal in all other respects. We were surprised to find that the Val{sup 192}Leu substitution produced a pro-{alpha} chain that did not form {alpha}-{beta} dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val{sup 192}Leu substitution does not specifically affect the {alpha}-active site. 23 refs., 4 figs., 2 tabs.« less

  17. Evaluation of the synuclein-y (SNCG) gene as a PPARy target in murine adipocytes, dorsal root ganglia somatosensory neurons, and human adipose tissue

    USDA-ARS?s Scientific Manuscript database

    Synuclein-gamma is highly expressed in both adipocytes and peripheral nervous system (PNS) somatosensory neurons. Its mRNA is induced during adipogenesis, increased in obese human white adipose tissue (WAT), may be coordinately regulated with leptin, and is decreased following treatment of murine 3T...

  18. Transcriptional profiling of striatal neurons in response to single or concurrent activation of dopamine D2, adenosine A(2A) and metabotropic glutamate type 5 receptors: focus on beta-synuclein expression.

    PubMed

    Canela, Laia; Selga, Elisabet; García-Martínez, Juan Manuel; Amaral, Olavo B; Fernández-Dueñas, Víctor; Alberch, Jordi; Canela, Enric I; Franco, Rafael; Noé, Véronique; Lluís, Carme; Ciudad, Carlos J; Ciruela, Francisco

    2012-10-25

    G protein-coupled receptor oligomerization is a concept which is changing the understanding of classical pharmacology. Both, oligomerization and functional interaction between adenosine A(2A,) dopamine D(2) and metabotropic glutamate type 5 receptors have been demonstrated in the striatum. However, the transcriptional consequences of receptors co-activation are still unexplored. We aim here to determine the changes in gene expression of striatal primary cultured neurons upon isolated or simultaneous receptor activation. Interestingly, we found that 95 genes of the total analyzed (15,866 transcripts and variants) changed their expression in response to simultaneous stimulation of all three receptors. Among these genes, we focused on the β-synuclein (β-Syn) gene (SCNB). Quantitative PCR verified the magnitude and direction of change in expression of SCNB. Since β-Syn belongs to the homologous synuclein family and may be considered a natural regulator of α-synuclein (α-Syn), it has been proposed that β-Syn might act protectively against α-Syn neuropathology. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Bullous pemphigoid and pemphigus vulgaris: correlated behaviour of serum VEGF, sE-selectin and TNF-alpha levels.

    PubMed

    Ameglio, F; D'Auria, L; Cordiali-Fei, P; Mussi, A; Valenzano, L; D'Agosto, G; Ferraro, C; Bonifati, C; Giacalone, B

    1997-01-01

    Recently, we reported that soluble E-selectin (sE-selectin), an isoform of the cell membrane E-selectin, an adhesion molecule synthesized only by endothelial cells, is significantly increased in sera of the patients with bullous pemphigoid (PB) or pemphigus vulgaris. A significant correlation was also found between the serum sE-selectin levels and the number of skin lesions, suggesting the possible use of this molecule to gauge disease intensity before therapy. One of the sE-selectin inducers is tumor nerosis factor-alpha (TNF-alpha), that is also able to enhance vascular endothelial growth factor (VEGF), a strong endothelium activator. On the basis of these observations, the present study was conducted to analyze the serum levels of VEGF, sE-selectin, and TNF-alpha in 8 patients with BP (age: 82, range 54-87, 7 males, 1 female) and in 6 patients affected affected with PV (age: 55, range 44-65; 5 males, 1 female) and to verify possible correlations between these variables and the disease activity, In addition, serum sE-selectin levels were measured over time and compared with the serum anti-epithelium antibodies titers. The sE-selectin, VEGF and TNF-alpha levels were measured in the samples by means of commercially available ELISA kit. The same samples were also employed to measure the anti-epithelium antibody titers. Serum VEGF, sE-selectin and TNF-alpha levels were significantly correlated each other (p at least < 0.01). All three variables were also significantly correlated with the number of lesions (p at least < 0.01). Serum VEGF levels were found increased (median = 178 pg/ml, range 37-595) as compared to 28 healthy controls (median = 135 pg/ml, range 18/269, p < 0.05). Also serum TNF-alpha levels were found increased (median = 5.5 pg/ml, range < 0.1-41.0) as compared to 28 healthy controls (median < 0.1 pg/ml, range < 0.1-5.3), p < 0.01). When the patients were observed over time, serum sE-selectin levels highly correlated with the disease intensity in both dermatoses, although with different regression curves. These data further underline the endothelium involvement in these bullous dermatoses and stress the possibility of employing sE-selectin as a non-specific follow-up marker of both BP and PV.

  20. Differential expression of largemouth bass (Micropterus salmoides) estrogen receptor isotypes alpha, beta, and gamma by estradiol.

    PubMed

    Sabo-Attwood, Tara; Kroll, Kevin J; Denslow, Nancy D

    2004-04-15

    The expression levels of three estrogen receptor (ER) isotypes alpha, beta, and gamma were quantified in female largemouth bass (Micropterus salmoides) (LMB) liver, ovary, brain, and pituitary tissues. ER alpha and beta expression predominated in the liver, while ERs beta and gamma predominated in the other tissues. Temporally in females, ER alpha was highly up-regulated, ER gamma was slightly up-regulated, and ER beta levels remained unchanged in the liver when plasma 17-beta estradiol (E2) and vitellogenin (Vtg) levels were elevated in the spring. In ovarian tissue from these same fish, all three ERs were maximally expressed in the fall, during early oocyte development and prior to peak plasma E2 levels. When males were injected with E2, ER alpha was highly inducible, ER gamma was moderately up-regulated, and ER beta levels were not affected. None of the ER isotypes were induced by E2 in gonadal tissues. These results combined suggest that the ERs themselves are not regulated in the same manner by E2, and furthermore, do not contribute equally to the transcriptional regulation of genes involved in fish reproduction such as Vtg.

  1. Ginsenoside Rb1 inhibits fibrillation and toxicity of alpha-synuclein and disaggregates preformed fibrils.

    PubMed

    Ardah, Mustafa T; Paleologou, Katerina E; Lv, Guohua; Menon, Sindhu A; Abul Khair, Salema B; Lu, Jia-Hong; Safieh-Garabedian, Bared; Al-Hayani, Abdulmonem A; Eliezer, David; Li, Min; El-Agnaf, Omar M A

    2015-02-01

    Compelling evidence indicates that α-synuclein (α-syn) aggregation plays a central role in the pathogenesis of Parkinson's disease (PD) and other synucleinopathies. Identification of compounds that inhibit or reverse the aggregation process may thus represent a viable therapeutic strategy against PD and related disorders. Ginseng is a well-known medicinal plant that has been used in East Asia for more than two thousand years to treat several conditions. It is now understood that the pharmacological properties of ginseng can be attributed to its biologically active components, the ginsenosides, which in turn have been shown to have neuroprotective properties. We therefore sought to determine for the first time, the potential of the most frequently used and studied ginsenosides, namely Rg1, Rg3 and Rb1, as anti-amyloidogenic agents. The effect of Rg1, Rg3 and Rb1 on α-syn aggregation and toxicity was determined by an array of biophysical, biochemical and cell-culture-based techniques. Among the screened ginsenosides, only Rb1 was shown to be a potent inhibitor of α-syn fibrillation and toxicity. Additionally, Rb1 exhibited a strong ability to disaggregate preformed fibrils and to inhibit the seeded polymerization of α-syn. Interestingly, Rb1 was found to stabilize soluble non-toxic oligomers with no β-sheet content, that were susceptible to proteinase K digestion, and the binding of Rb1 to those oligomers may represent a potential mechanism of action. Thus, Rb1 could represent the starting point for designing new molecules that could be utilized as drugs for the treatment of PD and related disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. In-silico analysis for RNA-interference mechanism of α-synuclein to treat Parkinson's disease.

    PubMed

    Seema, S; Seenivasagam, R; Hemavathi, K

    2013-01-01

    Parkinson's Disease (PD) causing mutations in α-synuclein gene are ALA30PRO, GLU46LYS and ALA53THR. The conformational changes in proteins with respect to all the three mutations were analysed. These were used to predict the structures of Short Interfering RNA (siRNA) antisense strand and siRNA region. The siRNA binds with the argonaute protein forming RNA Induced Silencing Complex (RISC). Then, siRNA antisense-strand was attached to RISC. The structure of dicer (RNase-III-enzyme) cleaves double-stranded RNA (dsRNA) into two siRNA-strands. Incorporation of single siRNA-strand into RISC guides to pair with the complementary α-synuclein target-messenger RNA (mRNA) thereby enabling it to cleave the target.

  3. Involvement of Sp1 elements in the promoter activity of genes affected in keratoconus.

    PubMed

    Maruyama, Y; Wang, X; Li, Y; Sugar, J; Yue, B Y

    2001-08-01

    Keratoconus is a progressive disease that thins and scars the corneal stroma. In keratoconus corneas, levels of degradative enzymes, including lysosomal acid phosphatase (LAP) and cathepsin B, are elevated, and those of the inhibitors alpha1-proteinase inhibitor (alpha 1-PI) and alpha 2-macroglobulin (alpha 2-M) are reduced, especially in the epithelial layer. An increased expression of the transcription factor Sp1 was also demonstrated. The role of Sp1 in regulation of the genes affected in keratoconus was examined in this study. DNA segments, containing 5'-flanking promoter sequences of the alpha 1-PI, LAP, cathepsin B, and alpha 2-M genes were ligated into the secreted alkaline phosphatase (SEAP) reporter gene vector. These constructs, along with the pSV beta-galactosidase control vector, were transfected into cultured human corneal epithelial and stromal cells and skin fibroblasts. Cotransfection with the Sp1 expression vector was performed in parallel. SEAP and beta-galactosidase enzyme activities were assayed. In corneal epithelial cells, as in stromal cells, alpha 1-PI promoter activity was suppressed by cotransfection of pPacSp1. The LAP, cathepsin B, and alpha 2-M promoters were functional in corneal cells, whereas activities of these promoters were much lower in skin fibroblasts. Cotransfection experiments indicated that the up- or downregulation of LAP, cathepsin B, and alpha 2-M observed in keratoconus-affected corneas was not mediated by Sp1. These results support the theory that the corneal epithelium, along with the stroma, is involved in keratoconus. An upstream role of Sp1 is indicated and the Sp1-mediated downregulation of the alpha 1-PI gene may be a key event in the disease development.

  4. Pharmacological and therapeutic directions in ADHD: Specificity in the PFC.

    PubMed

    Levy, Florence

    2008-02-28

    Recent directions in the treatment of ADHD have involved both a broadening of pharmacological perspectives to include nor-adrenergic as well as dopaminergic agents. A review of animal and human studies of pharmacological and therapeutic directions in ADHD suggests that the D1 receptor is a specific site for dopaminergic regulation of the PFC, but optimal levels of dopamine (DA) are required for beneficial effects on working memory. Animal and human studies indicate that the alpha-2A receptor is also important for prefrontal regulation, leaving open the question of the relative importance of these receptor sites. The therapeutic effects of ADHD medications in the prefrontal cortex have focused attention on the development of working memory capacity in ADHD. The actions of dopaminergic vs noradrenergic agents, currently available for the treatment of ADHD have overlapping, but different actions in the prefrontal cortex (PFC) and subcortical centers. While stimulants act on D1 receptors in the dorsolateral prefrontal cortex, they also have effects on D2 receptors in the corpus striatum and may also have serotonergic effects at orbitofrontal areas. At therapeutic levels, dopamine (DA) stimulation (through DAT transporter inhibition) decreases noise level acting on subcortical D2 receptors, while NE stimulation (through alpha-2A agonists) increases signal by acting preferentially in the PFC possibly on DAD1 receptors. On the other hand, alpha-2A noradrenergic transmission is more limited to the prefrontal cortex (PFC), and thus less likely to have motor or stereotypic side effects, while alpha-2B and alpha-2C agonists may have wider cortical effects. The data suggest a possible hierarchy of specificity in the current medications used in the treatment of ADHD, with guanfacine likely to be most specific for the treatment of prefrontal attentional and working memory deficits. Stimulants may have broader effects on both vigilance and motor impulsivity, depending on dose levels, while atomoxetine may have effects on attention, anxiety, social affect, and sedation via noradrenergic transmission. At a theoretical level, the advent of possible specific alpha-2A noradrenergic therapies has posed the question of the role of working memory in ADHD. Head to head comparisons of stimulant and noradrenergic alpha-2A, alpha-2B and alpha-2C agonists, utilizing vigilance and affective measures should help to clarify pharmacological and therapeutic differences.

  5. A Protein Aggregation Inhibitor, Leuco-Methylthioninium Bis(Hydromethanesulfonate), Decreases α-Synuclein Inclusions in a Transgenic Mouse Model of Synucleinopathy

    PubMed Central

    Schwab, Karima; Frahm, Silke; Horsley, David; Rickard, Janet E.; Melis, Valeria; Goatman, Elizabeth A.; Magbagbeolu, Mandy; Douglas, Morag; Leith, Michael G.; Baddeley, Thomas C.; Storey, John M. D.; Riedel, Gernot; Wischik, Claude M.; Harrington, Charles R.; Theuring, Franz

    2018-01-01

    α-Synuclein (α-Syn) aggregation is a pathological feature of synucleinopathies, neurodegenerative disorders that include Parkinson’s disease (PD). We have tested whether N,N,N′,N′-tetramethyl-10H-phenothiazine-3,7-diaminium bis(hydromethanesulfonate) (leuco-methylthioninium bis(hydromethanesulfonate); LMTM), a tau aggregation inhibitor, affects α-Syn aggregation in vitro and in vivo. Both cellular and transgenic models in which the expression of full-length human α-Syn (h-α-Syn) fused with a signal sequence peptide to promote α-Syn aggregation were used. Aggregated α-Syn was observed following differentiation of N1E-115 neuroblastoma cells transfected with h-α-Syn. The appearance of aggregated α-Syn was inhibited by LMTM, with an EC50 of 1.1 μM, with minimal effect on h-α-Syn mRNA levels being observed. Two independent lines of mice (L58 and L62) transgenic for the same fusion protein accumulated neuronal h-α-Syn that, with aging, developed into fibrillary inclusions characterized by both resistance to proteinase K (PK)-cleavage and their ability to bind thiazin red. There was a significant decrease in α-Syn-positive neurons in multiple brain regions following oral treatment of male and female mice with LMTM administered daily for 6 weeks at 5 and 15 mg MT/kg. The early aggregates of α-Syn and the late-stage fibrillar inclusions were both susceptible to inhibition by LMTM, a treatment that also resulted in the rescue of movement and anxiety-related traits in these mice. The results suggest that LMTM may provide a potential disease modification therapy in PD and other synucleinopathies through the inhibition of α-Syn aggregation. PMID:29375308

  6. Protection against cyanide-induced convulsions with alpha-ketoglutarate.

    PubMed

    Yamamoto, H

    1990-04-30

    Protection against convulsions induced by cyanide was observed after treatment with alpha-ketoglutarate, either alone or in combination with sodium thiosulfate, a classical antagonist for cyanide intoxication. However, sodium thiosulfate alone did not protect against cyanide (30 mg/kg)-induced convulsions. gamma-Aminobutyric acid (GABA) levels in brain were decreased by 31% in KCN-treated mice exhibiting convulsions. The combined administration of alpha-ketoglutarate and sodium thiosulfate completely abolished the decrease of GABA levels induced by cyanide. Furthermore, sodium thiosulfate alone also completely abolished the decrease of GABA levels. These results suggest that the depletion of brain GABA levels may not directly contribute to the development of convulsions induced by cyanide. On the other hand, cyanide increased calcium levels by 32% in brain crude mitochondrial fractions in mice with convulsions. The increased calcium levels were completely abolished by the combined administration of alpha-ketoglutarate and sodium thiosulfate, but not affected by sodium thiosulfate alone. These findings support the hypothesis proposed by Johnson et al. (Toxicol. Appl. Pharmacol., 84 (1986) 464) and Robinson et al. (Toxicology, 35 (1985) 59) that calcium may play an important role in mediating cyanide neurotoxicity.

  7. Conformational ensemble of human α-synuclein physiological form predicted by molecular simulations.

    PubMed

    Rossetti, G; Musiani, F; Abad, E; Dibenedetto, D; Mouhib, H; Fernandez, C O; Carloni, P

    2016-02-17

    We perform here enhanced sampling simulations of N-terminally acetylated human α-synuclein, an intrinsically disordered protein involved in Parkinson's disease. The calculations, consistent with experiments, suggest that the post-translational modification leads to the formation of a transient amphipathic α-helix. The latter, absent in the non-physiological form, alters protein dynamics at the N-terminal and intramolecular interactions.

  8. Spine Topographical Distribution of Skin α-Synuclein Deposits in Idiopathic Parkinson Disease.

    PubMed

    Donadio, Vincenzo; Incensi, Alex; Rizzo, Giovanni; Scaglione, Cesa; Capellari, Sabina; Fileccia, Enrico; Avoni, Patrizia; Liguori, Rocco

    2017-05-01

    Phosphorylated α-synuclein (p-syn) in skin nerves mainly in the proximal sites is a promising neurodegenerative biomarker for idiopathic Parkinson disease (IPD). However, the p-syn spine distribution particularly in patients with unilateral motor dysfunctions remains undefined. This study aimed to investigate in IPD p-syn differences between left and right cervical spine sites in patients with prevalent unilateral motor symptoms, and cervical and thoracic spine sites in patients with bilateral motor symptoms. We enrolled 28 IPD patients fulfilling clinical diagnostic criteria associated with abnormal nigro-striatal DatScan and cardiac MIBG: 15 with prevalently unilateral motor symptoms demonstrated by DatScan; 13 with bilateral motor symptoms and DatScan abnormalities. Patients underwent skin biopsy searching for intraneural p-syn deposits: skin samples were taken from C7 paravertebral left and right sites in unilateral patients and from cervical (C7) and thoracic (Th12) paravertebral spine regions in bilateral patients. Unilateral patients displayed 20% of abnormal p-syn deposits in the affected motor site, 60% in both sites and 20% only in the non-affected site. P-syn was found in all patients in C7 but in only 62% of patients in Th12. Our data showed that cervical p-syn deposits displayed a uniform distribution between both sides not following the motor dysfunction in unilateral patients, and skin nerve p-syn deposits demonstrated a spine gradient with the cervical site expressing the highest positivity. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  9. Ubiquitin proteasome system in Parkinson's disease: a keeper or a witness?

    PubMed

    Martins-Branco, Diogo; Esteves, Ana R; Santos, Daniel; Arduino, Daniela M; Swerdlow, Russell H; Oliveira, Catarina R; Januario, Cristina; Cardoso, Sandra M

    2012-12-01

    The aim of this work was to evaluate the role of ubiquitin-proteasome system (UPS) on mitochondrial-driven alpha-synuclein (aSN) clearance in in vitro, ex vivo and in vivo Parkinson's disease (PD) cellular models. We used SH-SY5Y ndufa2 knock-down (KD) cells, PD cybrids and peripheral blood mononuclear cells (PBMC) from patients meeting the diagnostic criteria for PD. We quantified aSN aggregation, proteasome activity and protein ubiquitination levels. In PBMC of PD patient population we evaluated the aSN levels in the plasma and the influence of several demographic characteristics in the above mentioned determinations. We found that ubiquitin-independent proteasome activity was up-regulated in SH-SY5Y ndufa2 KD cells while a downregulation was observed in PD cybrids and PBMC. Moreover, we observed an increase in protein ubiquitination that correlates with a decrease in ubiquitin-dependent proteasome activity. Accordingly, proteasome inhibition prevented ubiquitin-dependent aSN clearance. Ubiquitin-independent proteasome activity was positively correlated with ubiquitination in PBMC. We also report a negative correlation of chymotrypsin-like activity with age in control and late-onset PD groups. Total ubiquitin content is positively correlated with aSN oligomer levels, which leads to an age-dependent increase of aSN ubiquitination in LOPD. Moreover, aSN levels are increased in the plasma of PD patients. aSN oligomers are ubiquitinated and we identified a ubiquitin-dependent clearance insufficiency with the accumulation of both aSN and ubiquitin. However, SH-SY5Y ndufa2 KD cells showed a significant up-regulation of ubiquitin-independent proteasomal enzymatic activity that could mean a cell rescue attempt. Moreover, we identified that UPS function is age-dependent in PBMC. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Ubiquitin Proteasome System in Parkinson Disease: a keeper or a witness?

    PubMed Central

    Martins-Branco, Diogo; Esteves, Ana R.; Santos, Daniel; Arduino, Daniela M.; Swerdlow, Russell H.; Oliveira, Catarina R.; Januario, Cristina; Cardoso, Sandra M.

    2014-01-01

    Objective The aim of this work was to evaluate the role of Ubiquitin-Proteasome System (UPS) on mitochondrial-driven alpha-synuclein (aSN) clearance in in vitro, ex vivo and in vivo Parkinson disease (PD) cellular models. Method We used SH-SY5Y ndufa2 knock-down (KD) cells, PD cybrids and peripheral blood mononuclear cells (PBMC) from patients meeting the diagnostic criteria for PD. We quantified aSN aggregation, proteasome activity and protein ubiquitination levels. In PBMC of PD patients population we evaluated aSN levels in plasma and the influence of several demographic characteristics in the above mentioned determinations. Results We found that ubiquitin-independent proteasome activity was up-regulated in SH-SY5Y ndufa2 KD cells while a down regulation was observed in PD cybrids and PBMC. Moreover, we observed an increase in protein ubiquitination that correlates with a decrease in ubiquitin-dependent proteasome activity. Accordingly, proteasome inhibition prevented ubiquitin-dependent aSN clearance. Ubiquitin-independent proteasome activity was positively correlated with ubiquitination in PBMC. We also report a negative correlation of chymotrypsin-like activity with age in control and late-onset PD groups. Total ubiquitin content is positively correlated with aSN oligomers levels, which leads to an age-dependent increase of aSN ubiquitination in LOPD. Moreover, aSN levels are increased in the plasma of PD patients. Interpretation aSN oligomers are ubiquitinated and we identified an ubiquitin-dependent clearance insufficiency with accumulation of both aSN and ubiquitin. However, SH-SY5Y ndufa2 KD cells showed a significant up-regulation of ubiquitin-independent proteasomal enzymatic activity that could mean a cell rescue attempt. Moreover, we identified that UPS function is age-dependent in PBMC. PMID:22921536

  11. Cytokine profiling in the prefrontal cortex of Parkinson's Disease and Multiple System Atrophy patients.

    PubMed

    Rydbirk, Rasmus; Elfving, Betina; Andersen, Mille Dahl; Langbøl, Mia Aggergaard; Folke, Jonas; Winge, Kristian; Pakkenberg, Bente; Brudek, Tomasz; Aznar, Susana

    2017-10-01

    Parkinson's Disease (PD) and Multiple System Atrophy (MSA) are neurodegenerative diseases characterized neuropathologically by alpha-synuclein accumulation in brain cells. This accumulation is hypothesized to contribute to constitutive neuroinflammation, and to participate in the neurodegeneration. Cytokines, which are the main inflammatory signalling molecules, have been identified in blood and cerebrospinal fluid of PD patients, but studies investigating the human brain levels are scarce. It is documented that neurotrophins, necessary for survival of brain cells and known to interact with cytokines, are altered in the basal ganglia of PD patients. In regards to MSA, no major study has investigated brain cytokine or neurotrophin protein expression. Here, we measured protein levels of 18 cytokines (IL-2, 4-8, 10, 12, 13, 17, G-CSF, GM-CSF, IFN-γ, MCP-1, MIP-1α and 1β, TNF-α) and 5 neurotrophins (BDNF, GDNF, bFGF, PDGF-BB, VEGF) in the dorsomedial prefrontal cortex in brains of MSA and PD patients and control subjects. We found altered expression of IL-2, IL-13, and G-CSF, but no differences in neurotrophin levels. Further, in MSA patients we identified increased mRNA levels of GSK3β that is involved in neuroinflammatory pathways. Lastly, we identified increased expression of the neurodegenerative marker S100B, but not CRP, in PD and MSA patients, indicating local rather than systemic inflammation. Supporting this, in both diseases we observed increased MHC class II + and CD45 + positive cells, and low numbers of infiltrating CD3 + cells. In conclusion, we identified neuroinflammatory responses in PD and MSA which seems more widespread in the brain than neurotrophic changes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Unbiased Proteomics of Early Lewy Body Formation Model Implicates Active Microtubule Affinity-Regulating Kinases (MARKs) in Synucleinopathies

    PubMed Central

    Riddle, Dawn M.; Zhang, Bin

    2017-01-01

    Parkinson's disease (PD) patients progressively accumulate intracytoplasmic inclusions formed by misfolded α-synuclein known as Lewy bodies (LBs). LBs also contain other proteins that may or may not be relevant in the disease process. To identify proteins involved early in LB formation, we performed proteomic analysis of insoluble proteins in a primary neuron culture model of α-synuclein pathology. We identified proteins previously found in authentic LBs in PD as well as several novel proteins, including the microtubule affinity-regulating kinase 1 (MARK1), one of the most enriched proteins in this model of LB formation. Activated MARK proteins (MARKs) accumulated in LB-like inclusions in this cell-based model as well as in a mouse model of LB disease and in LBs of postmortem synucleinopathy brains. Inhibition of MARKs dramatically exacerbated α-synuclein pathology. These findings implicate MARKs early in synucleinopathy pathogenesis and as potential therapeutic drug targets. SIGNIFICANCE STATEMENT Neurodegenerative diseases are diagnosed definitively only in postmortem brains by the presence of key misfolded and aggregated disease proteins, but cellular processes leading to accumulation of these proteins have not been well elucidated. Parkinson's disease (PD) patients accumulate misfolded α-synuclein in LBs, the diagnostic signatures of PD. Here, unbiased mass spectrometry was used to identify the microtubule affinity-regulating kinase family (MARKs) as activated and insoluble in a neuronal culture PD model. Aberrant activation of MARKs was also found in a PD mouse model and in postmortem PD brains. Further, inhibition of MARKs led to increased pathological α-synuclein burden. We conclude that MARKs play a role in PD pathogenesis. PMID:28522732

  13. Modulating the Effects of the Bacterial Chaperonin GroEL on Fibrillogenic Polypeptides through Modification of Domain Hinge Architecture.

    PubMed

    Fukui, Naoya; Araki, Kiho; Hongo, Kunihiro; Mizobata, Tomohiro; Kawata, Yasushi

    2016-11-25

    The isolated apical domain of the Escherichia coli GroEL subunit displays the ability to suppress the irreversible fibrillation of numerous amyloid-forming polypeptides. In previous experiments, we have shown that mutating Gly-192 (located at hinge II that connects the apical domain and the intermediate domain) to a tryptophan results in an inactive chaperonin whose apical domain is disoriented. In this study, we have utilized this disruptive effect of Gly-192 mutation to our advantage, by substituting this residue with amino acid residues of varying van der Waals volumes with the intent to modulate the affinity of GroEL toward fibrillogenic peptides. The affinities of GroEL toward fibrillogenic polypeptides such as Aβ(1-40) (amyloid-β(1-40)) peptide and α-synuclein increased in accordance to the larger van der Waals volume of the substituent amino acid side chain in the G192X mutants. When we compared the effects of wild-type GroEL and selected GroEL G192X mutants on α-synuclein fibril formation, we found that the effects of the chaperonin on α-synuclein fibrillation were different; the wild-type chaperonin caused changes in both the initial lag phase and the rate of fibril extension, whereas the effects of the G192X mutants were more specific toward the nucleus-forming lag phase. The chaperonins also displayed differential effects on α-synuclein fibril morphology, suggesting that through mutation of Gly-192, we may induce changes to the intermolecular affinities between GroEL and α-synuclein, leading to more efficient fibril suppression, and in specific cases, modulation of fibril morphology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a humanmore » adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected effects of PPAR{alpha} activation are very valuable for managing diabetic conditions accompanied by obesity, because PPAR{gamma} agonists, usually used as antidiabetic drugs, induce excessive lipid accumulation in adipocytes in addition to improvement of insulin resistance.« less

  15. Alpha lipoic acid protects the heart against myocardial post ischemia-reperfusion arrhythmias via KATP channel activation in isolated rat hearts.

    PubMed

    Dudek, Magdalena; Knutelska, Joanna; Bednarski, Marek; Nowiński, Leszek; Zygmunt, Małgorzata; Bilska-Wilkosz, Anna; Iciek, Małgorzata; Otto, Monika; Żytka, Iwona; Sapa, Jacek; Włodek, Lidia; Filipek, Barbara

    2014-06-01

    The cardiovascular effects of alpha lipoic acid were evaluated in isolated rat hearts exposed to ischemia-reperfusion injury in vitro. Alpha-lipoic acid raised the level of sulfane sulfur playing an important role in the release of hydrogen sulfide. H2S was shown to prevent the post-reperfusion arrhythmias and to protect the cardiomyocytes from death caused by hypoxia. The activation of potassium ATP-sensitive channels (K(ATP) channels) is one of the most important mechanisms of action of hydrogen sulfide in the cardiovascular system. The aim of this study was to investigate whether alpha lipoic acid can prevent the occurrence of post-reperfusion arrhythmias in vitro using a Langendorff model of ischemia-reperfusion in rats affecting the K(ATP) channels. Alpha lipoic acid significantly improved post-reperfusion cardiac function (reducing incidence of arrhythmias), especially in a dose of 10(-7)M. These cardiovascular effects of this compound on the measured parameters were reversed by glibenclamide, a selective K(ATP) blocker. Alpha lipoic acid increased the level of sulfane sulfur in the hearts. This may suggest that the positive effects caused by alpha lipoic acid in the cardiovascular system are not only related to its strong antioxidant activity, and the influence on the activity of such enzymes as aldehyde dehydrogenase 2, as previously suggested, but this compound can affect K(ATP) channels. It is possible that this indirect effect of alpha lipoic acid is connected with changes in the release of sulfane sulfur and hydrogen sulfide. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  16. Valproic acid ameliorates C. elegans dopaminergic neurodegeneration with implications for ERK-MAPK signaling.

    PubMed

    Kautu, Bwarenaba B; Carrasquilla, Alejandro; Hicks, Matthew L; Caldwell, Kim A; Caldwell, Guy A

    2013-04-29

    Parkinson's disease (PD) is a currently incurable neurodegenerative disorder that affects the aging population. The loss of dopaminergic neurons in the substantia nigra is one of the pathological features of PD. The precise causes of PD remain unresolved but evidence supports both environmental and genetic contributions. Current efforts for the treatment of PD are directed toward the discovery of compounds that show promise in impeding age-dependent neurodegeneration in PD patients. Alpha-synuclein (α-Syn) is a human protein that is mutated in specific populations of patients with familial PD. Overexpression of α-Syn in animal models of PD replicates key symptoms of PD, including neurodegeneration. Here, we use the nematode Caenorhabditis elegans as a model system, whereby α-Syn toxicity causes dopaminergic neurodegeneration, to test the capacity of valproic acid (VA) to protect neurons. The results of our study showed that treatment of nematodes with moderate concentrations of VA significantly protects dopaminergic neurons against α-Syn toxicity. Consistent with previously established knowledge related to the mechanistic action of VA in the cell, we showed through genetic analysis that the neuroprotection conferred by VA is inhibited by cell-specific depletion of the C. elegans ortholog of the MAP extracellular signal-regulated kinase (ERK), MPK-1, in the dopaminergic neurons. These findings suggest that VA may exert its neuroprotective effect via ERK-MAPK, or alternately could act with MAPK signaling to additively provide dopaminergic neuroprotection. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Emerging (and converging) pathways in Parkinson's disease: keeping mitochondrial wellness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieri, Domenico; Brini, Marisa; Calì, Tito

    The selective cell loss in the ventral component of the substantia nigra pars compacta and the presence of alpha-synuclein (α-syn)-rich intraneuronal inclusions called Lewy bodies are the pathological hallmarks of Parkinson's disease (PD), the most common motor system disorder whose aetiology remains largely elusive. Although most cases of PD are idiopathic, there are rare familial forms of the disease that can be traced to single gene mutations that follow Mendelian inheritance pattern. The study of several nuclear encoded proteins whose mutations are linked to the development of autosomal recessive and dominant forms of familial PD enhanced our understanding of biochemicalmore » and cellular mechanisms contributing to the disease and suggested that many signs of neurodegeneration result from compromised mitochondrial function. Here we present an overview of the current understanding of PD-related mitochondrial dysfunction including defects in bioenergetics and Ca{sup 2+} homeostasis, mitochondrial DNA mutations, altered mitochondrial dynamics and autophagy. We emphasize, in particular, the convergence of many “apparently” different pathways towards a common route involving mitochondria. Understanding whether mitochondrial dysfunction in PD represents the cause or the consequence of the disease is challenging and will help to define the pathogenic processes at the basis of the PD onset and progression. - Highlights: • Mitochondrial dysfunctions are a common feature of neurodegenerative diseases. • Many familial PD related proteins ensure mitochondrial function. • Mutations in PD genes differently affect mitochondria related activities.« less

  18. Regulation of acetylcholine receptor alpha subunit variants in human myasthenia gravis. Quantification of steady-state levels of messenger RNA in muscle biopsy using the polymerase chain reaction.

    PubMed Central

    Guyon, T; Levasseur, P; Truffault, F; Cottin, C; Gaud, C; Berrih-Aknin, S

    1994-01-01

    Myasthenia gravis (MG) is an autoimmune disease mediated by auto-antibodies that attack the nicotinic acetylcholine receptor (AChR). To elucidate the molecular mechanisms underlying the decrease in AChR levels at the neuromuscular junction, we investigated the regulation of AChR expression by analyzing mRNA of the two AChR alpha subunit isoforms (P3A+ and P3A-) in muscle samples from myasthenic patients relative to controls. We applied a quantitative method based on reverse transcription of total RNA followed by polymerase chain reaction (PCR), using an internal standard we constructed by site-directed mutagenesis. An increased expression of mRNA coding for the alpha subunit of the AChR isoforms was observed in severely affected patients (P < 0.003 versus controls) but not in moderately affected patients, independently of the anti-AChR antibody titer. Study of mRNA precursor levels indicates a higher expression in severely affected patients compared to controls, suggesting an enhanced rate of transcription of the message coding for the alpha subunit isoforms in these patients. We have also reported that mRNA encoding both isoforms are expressed at an approximate 1:1 ratio in controls and in patients. We have thus identified a new biological parameter correlated with disease severity, and provide evidence of a compensatory mechanism to balance the loss of AChR in human myasthenia gravis, which is probably triggered only above a certain degree of AChR loss. Images PMID:8040257

  19. Nanomechanical properties of α-synuclein amyloid fibrils: a comparative study by nanoindentation, harmonic force microscopy, and Peakforce QNM

    PubMed Central

    2011-01-01

    We report on the use of three different atomic force spectroscopy modalities to determine the nanomechanical properties of amyloid fibrils of the human α-synuclein protein. α-Synuclein forms fibrillar nanostructures of approximately 10 nm diameter and lengths ranging from 100 nm to several microns, which have been associated with Parkinson's disease. Atomic force microscopy (AFM) has been used to image the morphology of these protein fibrils deposited on a flat surface. For nanomechanical measurements, we used single-point nanoindentation, in which the AFM tip as the indenter is moved vertically to the fibril surface and back while the force is being recorded. We also used two recently developed AFM surface property mapping techniques: Harmonic force microscopy (HarmoniX) and Peakforce QNM. These modalities allow extraction of mechanical parameters of the surface with a lateral resolution and speed comparable to tapping-mode AFM imaging. Based on this phenomenological study, the elastic moduli of the α-synuclein fibrils determined using these three different modalities are within the range 1.3-2.1 GPa. We discuss the relative merits of these three methods for the determination of the elastic properties of protein fibrils, particularly considering the differences and difficulties of each method. PMID:21711775

  20. Preserved functional autonomic phenotype in adult mice overexpressing moderate levels of human alpha‐synuclein in oligodendrocytes

    PubMed Central

    Tank, Jens; da Costa‐Goncalves, Andrey C.; Kamer, Ilona; Qadri, Fatimunnisa; Ubhi, Kiren; Rockenstein, Edward; Diedrich, André; Masliah, Eliezer; Gross, Volkmar; Jordan, Jens

    2014-01-01

    Abstract Mice overexpressing human alpha‐synuclein in oligodendrocytes (MBP1‐α‐syn) recapitulate some key functional and neuropathological features of multiple system atrophy (MSA). Whether or not these mice develop severe autonomic failure, which is a key feature of human MSA, remains unknown. We explored cardiovascular autonomic regulation using long‐term blood pressure (BP) radiotelemetry and pharmacological testing. We instrumented 12 MBP1‐α‐syn mice and 11 wild‐type mice aged 9 months for radiotelemetry. Animals were tested with atropine, metoprolol, clonidine, and trimethaphan at 9 and 12 months age. We applied spectral and cross‐spectral analysis to assess heart rate (HR) and BP variability. At 9 months of age daytime BP (transgenic: 101 ± 2 vs. wild type: 99 ± 2 mmHg) and HR (497 ± 11 vs. 505 ± 16 beats/min) were similar. Circadian BP and HR rhythms were maintained. Nighttime BP (109 ± 2 vs. 108 ± 2 mmHg) and HR (575 ± 15 vs. 569 ± 14 beats/min), mean arterial BP responses to trimethaphan (−21 ± 8 vs. −10 ± 5 mmHg, P = 0.240) and to clonidine (−8 ± 3 vs. −5 ± 2 mmHg, P = 0.314) were similar. HR responses to atropine (+159 ± 24 vs. +146 ± 22 beats/min), and to clonidine (−188 ± 21 vs. −163 ± 33 beats/min) did not differ between strains. Baroreflex sensitivity (4 ± 1 vs. 4 ± 1 msec/mmHg) and HR variability (total power, 84 ± 17 vs. 65 ± 21 msec²) were similar under resting conditions and during pharmacological testing. Repeated measurements at 12 months of age provided similar results. In mice, moderate overexpression of human alpha‐synuclein in oligodendrocytes is not sufficient to induce overt autonomic failure. Additional mechanisms may be required to express the autonomic failure phenotype including higher levels of expression or more advanced age. PMID:25428949

  1. Effect of diazinon and/or praziquantel on selected protein aspects in healthy and Schistosoma mansoni infected mice.

    PubMed

    Hanna, Laila S; Medhat, Amina M; Abdel-Menem, Hanan A

    2003-04-01

    In Egypt, schistosomiasis is still a major public health problem and praziquantel is the drug of choice for its treatment, whereas diazinon is globally used as an insecticide for controlling pests. They adversely affect the environment. Therefore, the authors studied the effect of 1/20 LD50 diazinon given orally to healthy and Schistosoma mansoni infected mice for 5 successive days up to 9 and 17 weeks coupled with a therapeutic dose (2 x 500 mg/kg Bwt) of praziquantel, 2 weeks before sacrificing. The results showed that non significant differences were obtained from total proteins, albumin, globulins, and albumin/globulin ratio. However, significant differences were revealed from alpha1-, alpha2-, beta1-, beta2-, and gamma-globubins in addition to plasma ceruloplasmin. Diazinon changed the levels of alpha2-, beta1-, and gamma-globubins, while diazinon coupled with schistosomiasis affected the levels of most studied parameters. Consequently, exposure to insecticides should be avoided specially in the rural areas where schistosomiasis is still endemic.

  2. c-Abl phosphorylates α-synuclein and regulates its degradation: implication for α-synuclein clearance and contribution to the pathogenesis of Parkinson's disease

    PubMed Central

    Mahul-Mellier, Anne-Laure; Fauvet, Bruno; Gysbers, Amanda; Dikiy, Igor; Oueslati, Abid; Georgeon, Sandrine; Lamontanara, Allan J.; Bisquertt, Alejandro; Eliezer, David; Masliah, Eliezer; Halliday, Glenda; Hantschel, Oliver; Lashuel, Hilal A.

    2014-01-01

    Increasing evidence suggests that the c-Abl protein tyrosine kinase could play a role in the pathogenesis of Parkinson's disease (PD) and other neurodegenerative disorders. c-Abl has been shown to regulate the degradation of two proteins implicated in the pathogenesis of PD, parkin and α-synuclein (α-syn). The inhibition of parkin's neuroprotective functions is regulated by c-Abl-mediated phosphorylation of parkin. However, the molecular mechanisms by which c-Abl activity regulates α-syn toxicity and clearance remain unknown. Herein, using NMR spectroscopy, mass spectrometry, in vitro enzymatic assays and cell-based studies, we established that α-syn is a bona fide substrate for c-Abl. In vitro studies demonstrate that c-Abl directly interacts with α-syn and catalyzes its phosphorylation mainly at tyrosine 39 (pY39) and to a lesser extent at tyrosine 125 (pY125). Analysis of human brain tissues showed that pY39 α-syn is detected in the brains of healthy individuals and those with PD. However, only c-Abl protein levels were found to be upregulated in PD brains. Interestingly, nilotinib, a specific inhibitor of c-Abl kinase activity, induces α-syn protein degradation via the autophagy and proteasome pathways, whereas the overexpression of α-syn in the rat midbrains enhances c-Abl expression. Together, these data suggest that changes in c-Abl expression, activation and/or c-Abl-mediated phosphorylation of Y39 play a role in regulating α-syn clearance and contribute to the pathogenesis of PD. PMID:24412932

  3. The impact of binaural beats on creativity

    PubMed Central

    Reedijk, Susan A.; Bolders, Anne; Hommel, Bernhard

    2013-01-01

    Human creativity relies on a multitude of cognitive processes, some of which are influenced by the neurotransmitter dopamine. This suggests that creativity could be enhanced by interventions that either modulate the production or transmission of dopamine directly, or affect dopamine-driven processes. In the current study we hypothesized that creativity can be influenced by means of binaural beats, an auditory illusion that is considered a form of cognitive entrainment that operates through stimulating neuronal phase locking. We aimed to investigate whether binaural beats affect creative performance at all, whether they affect divergent thinking, convergent thinking, or both, and whether possible effects may be mediated by the individual striatal dopamine level. Binaural beats were presented at alpha and gamma frequency. Participants completed a divergent and a convergent thinking task to assess two important functions of creativity, and filled out the Positive And Negative Affect Scale—mood State questionnaire (PANAS-S) and an affect grid to measure current mood. Dopamine levels in the striatum were estimated using spontaneous eye blink rates (EBRs). Results showed that binaural beats, regardless of the presented frequency, can affect divergent but not convergent thinking. Individuals with low EBRs mostly benefitted from alpha binaural beat stimulation, while individuals with high EBRs were unaffected or even impaired by both alpha and gamma binaural beats. This suggests that binaural beats, and possibly other forms of cognitive entrainment, are not suited for a one-size-fits-all approach, and that individual cognitive-control systems need to be taken into account when studying cognitive enhancement methods. PMID:24294202

  4. The impact of binaural beats on creativity.

    PubMed

    Reedijk, Susan A; Bolders, Anne; Hommel, Bernhard

    2013-01-01

    Human creativity relies on a multitude of cognitive processes, some of which are influenced by the neurotransmitter dopamine. This suggests that creativity could be enhanced by interventions that either modulate the production or transmission of dopamine directly, or affect dopamine-driven processes. In the current study we hypothesized that creativity can be influenced by means of binaural beats, an auditory illusion that is considered a form of cognitive entrainment that operates through stimulating neuronal phase locking. We aimed to investigate whether binaural beats affect creative performance at all, whether they affect divergent thinking, convergent thinking, or both, and whether possible effects may be mediated by the individual striatal dopamine level. Binaural beats were presented at alpha and gamma frequency. Participants completed a divergent and a convergent thinking task to assess two important functions of creativity, and filled out the Positive And Negative Affect Scale-mood State questionnaire (PANAS-S) and an affect grid to measure current mood. Dopamine levels in the striatum were estimated using spontaneous eye blink rates (EBRs). Results showed that binaural beats, regardless of the presented frequency, can affect divergent but not convergent thinking. Individuals with low EBRs mostly benefitted from alpha binaural beat stimulation, while individuals with high EBRs were unaffected or even impaired by both alpha and gamma binaural beats. This suggests that binaural beats, and possibly other forms of cognitive entrainment, are not suited for a one-size-fits-all approach, and that individual cognitive-control systems need to be taken into account when studying cognitive enhancement methods.

  5. RNA interference targeting α-synuclein attenuates methamphetamine-induced neurotoxicity in SH-SY5Y cells.

    PubMed

    Chen, Ling; Huang, Enping; Wang, Huijun; Qiu, Pingming; Liu, Chao

    2013-07-12

    The protein α-synuclein (α-syn) is abundant in neurons and has been claimed to play critical roles in the pathophysiology of Parkinson's disease. Overexpression of α-syn has been shown to be toxicity in methamphetamine (METH)-induced model in vivo and in vitro which has Parkinson's-like pathology. However, the exact mechanisms underlying toxicity of α-syn mediated METH-induced neuron remain unknown. In the present study, human dopaminergic-like neuroblastoma SH-SY5Y cells were used as METH-induced model in vitro. Cell viability was found to be dramatically increased after silencing α-syn expression followed by METH treatment compared with a-syn wild-type cells and the morphological damage to cells after METH treatment was abated through knockdown of α-syn expression in this model. The expression levels of tyrosine hydroxylase (TH), dopamine transporter (DAT) and vesicular monoamine transporter 2(VMAT-2) were significantly decreased and the activity/levels of reactive oxygen species (ROS), nitric oxide synthase (NOS) and nitrogen (NO) were notably increased after METH treatment. However, the changes of these expression levels were reversed in cells transfected with α-syn-shRNA. These results suggested that TH, DAT, VMAT-2, ROS and NOS maybe involved in α-syn mediated METH-induced neuronal toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Anxiolytic and neuroprotective effects of the Traditional Chinese Medicinal formulation Dan-zhi-xiao-yao-san in a rat model of chronic stress.

    PubMed

    Cao, Guo-Ping; Gui, Dan; Fu, Lu-Di; Guo, Zhou-Ke; Fu, Wen-Jun

    2016-08-01

    Dan-zhi-xiao-yao-san is a Traditional Chinese Medicinal formulation widely used for the treatment of neuropsychological disorders. The present study examined the anxiolytic and neuroprotective effects of Dan-zhi-xiao-yao-san in a rat model of chronic stress. The results of an elevated plus maze test showed that Dan‑zhi‑xiao‑yao‑san significantly attenuated the levels of anxiety-induced stress as evidenced by increases in the time spent in the open arm region, as well as the percentage of entries into this area. In addition, Dan-zhi-xiao-yao-san alleviated stress‑induced neuronal death, as indicated by histological examination. Furthermore, mechanistic studies suggested that the anxiolytic and neuroprotective effects of Dan-zhi-xiao-yao-san may be mediated via attenuation of chronic stress‑induced upregulation of α‑synuclein and corticosterone, and downregulation of protein phosphatase 2A (PP2A) in the hippocampal region of the brain at the mRNA and protein level. In addition, Dan‑zhi‑xiao‑yao‑san decreased the serum levels of stress‑induced corticosterone in the model animals. In conclusion, the present study demonstrated that Dan‑zhi‑xiao‑yao‑san exerted anxiolytic and neuroprotective effects in a rat model of chronic stress via attenuation of stress‑induced upregulation of α‑synuclein and corticosterone, and downregulation of PP2A in the hippocampus.

  7. Protection against dexamethasone-induced muscle atrophy is related to modulation by testosterone of FOXO1 and PGC-1{alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Weiping, E-mail: weiping.qin@mssm.edu; Department of Medicine, Mount Sinai School of Medicine, NY; Pan, Jiangping

    Research highlights: {yields} In rat gastrocnemius muscle, dexamethasone reduced PGC-1{alpha} cellular and nuclear levels without altering mRNA levels for this factor. {yields} Dexamethasone reduced phosphorylating of p38 MAPK, which stabilizes PGC-1{alpha} and promotes its nuclear entry. {yields} Co-administration of testosterone with dexamethasone increased cellular and nuclear levels of PGC-1{alpha} protein without changing its mRNA levels. {yields} Co-administration of testosterone restored p38 MAPK levels to those of controls. -- Abstract: Glucocorticoid-induced muscle atrophy results from muscle protein catabolism and reduced protein synthesis, associated with increased expression of two muscle-specific ubiquitin ligases (MAFbx and MuRF1), and of two inhibitors of protein synthesis,more » REDD1 and 4EBP1. MAFbx, MuRF1, REDD1 and 4EBP1 are up-regulated by the transcription factors FOXO1 and FOXO3A. The transcriptional co-activator PGC-1{alpha} has been shown to attenuate many forms of muscle atrophy and to repress FOXO3A-mediated transcription of atrophy-specific genes. Dexamethasone-induced muscle atrophy can be prevented by testosterone, which blocks up-regulation by dexamethasone of FOXO1. Here, an animal model of dexamethasone-induced muscle atrophy was used to further characterize effects of testosterone to abrogate adverse actions of dexamethasone on FOXO1 levels and nuclear localization, and to determine how these agents affect PGC-1{alpha}, and its upstream activators, p38 MAPK and AMPK. In rat gastrocnemius muscle, testosterone blunted the dexamethasone-mediated increase in levels of FOXO1 mRNA, and FOXO1 total and nuclear protein. Dexamethasone reduced total and nuclear PGC-1{alpha} protein levels in the gastrocnemius; co-administration of testosterone with dexamethasone increased total and nuclear PGC-1{alpha} levels above those present in untreated controls. Testosterone blocked dexamethasone-induced decreases in activity of p38 MAPK in the gastrocnemius muscle. Regulation of FOXO1, PGC-1{alpha} and p38 MAPK by testosterone may represent a novel mechanism by which this agent protects against dexamethasone-induced muscle atrophy.« less

  8. Further exploration of the conformational space of α-synuclein fibrils: solid-state NMR assignment of a high-pH polymorph.

    PubMed

    Verasdonck, Joeri; Bousset, Luc; Gath, Julia; Melki, Ronald; Böckmann, Anja; Meier, Beat H

    2016-04-01

    Polymorphism is a common and important phenomenon for protein fibrils which has been linked to the appearance of strains in prion and other neurodegenerative diseases. Parkinson disease is a frequently occurring neurodegenerative pathology, tightly associated with the formation of Lewy bodies. These deposits mainly consist of α-synuclein in fibrillar, β-sheet-rich form. α-synuclein is known to form numerous different polymorphs, which show distinct structural features. Here, we describe the chemical shift assignments, and derive the secondary structure, of a polymorph that was fibrillized at higher-than-physiological pH conditions. The fibrillar core contains residues 40-95, with both the C- and N-terminus not showing any ordered, rigid parts. The chemical shifts are similar to those recorded previously for an assigned polymorph that was fibrillized at neutral pH.

  9. The α‐synuclein gene in multiple system atrophy

    PubMed Central

    Ozawa, T; Healy, D G; Abou‐Sleiman, P M; Ahmadi, K R; Quinn, N; Lees, A J; Shaw, K; Wullner, U; Berciano, J; Moller, J C; Kamm, C; Burk, K; Josephs, K A; Barone, P; Tolosa, E; Goldstein, D B; Wenning, G; Geser, F; Holton, J L; Gasser, T; Revesz, T; Wood, N W

    2006-01-01

    Background The formation of α‐synuclein aggregates may be a critical event in the pathogenesis of multiple system atrophy (MSA). However, the role of this gene in the aetiology of MSA is unknown and untested. Method The linkage disequilibrium (LD) structure of the α‐synuclein gene was established and LD patterns were used to identify a set of tagging single nucleotide polymorphisms (SNPs) that represent 95% of the haplotype diversity across the entire gene. The effect of polymorphisms on the pathological expression of MSA in pathologically confirmed cases was also evaluated. Results and conclusion In 253 Gilman probable or definite MSA patients, 457 possible, probable, and definite MSA cases and 1472 controls, a frequency difference for the individual tagging SNPs or tag‐defined haplotypes was not detected. No effect was observed of polymorphisms on the pathological expression of MSA in pathologically confirmed cases. PMID:16543523

  10. Diarylheptanoids from Rhizomes of Alpinia officinarum Inhibit Aggregation of α-Synuclein.

    PubMed

    Fu, Guangmiao; Zhang, Wei; Du, Dongsheng; Ng, Yu Pong; Ip, Fanny C F; Tong, Rongbiao; Ip, Nancy Y

    2017-08-09

    Two new diarylheptanoids, alpinin A (1) and alpinin B (2), together with 18 known diarylheptanoids (3-20), were isolated from the rhizomes of Alpinia officinarum. Their structures were elucidated by comprehensive spectroscopic analysis, including high-resolution mass spectrometry, infrared spectroscopy, and one- and two-dimensional nuclear magnetic resonance spectroscopy. Structurally, alpinin A is a new member of the small family of oxa-bridged diarylheptanoids and contains the characteristic 2,6-cis-configured tetrahydropyran motif (C 1 -C 5 oxa bridge). The absolute configuration of alpinin A was confirmed by asymmetric total synthesis of the enantiomer (ent-1), corroborating the assignment of the molecular structure. The absolute configuration of alpinin B was determined on the basis of the analysis of the circular dichroism exciton chirality spectrum. We evaluated the inhibitory activity of all isolated diarylheptanoids against α-synuclein aggregation at 10 μM. Alpinins A and B significantly inhibited α-synuclein aggregation by 66 and 67%, respectively.

  11. The effects of thalidomide on the stimulation of NF-kappaB activity and TNF-alpha production by lipopolysaccharide in a human colonic epithelial cell line.

    PubMed

    Kim, You Sun; Kim, Joo Sung; Jung, Hyun Chae; Song, In Sung

    2004-04-30

    The immunomodulatory and anti-inflammatory effects of thalidomide are associated with inhibition of TNF-alpha levels. However, the mechanism by which thalidomide reduces TNF-alpha production remains elusive. NF-kappaB is known to play a central role in regulating inflammatory responses in patients with inflammatory bowel disease (IBD). We tested whether thalidomide acts through inhibiting NF-kappaB activity. HT-29 cells were stimulated with LPS (1 microg/ml) alone, or after pretreatment with thalidomide (100 microg/ml), and NF-kappaB activity was determined by gel mobility shift assays. RT-PCR was used to measure expression of the proinflammatory cytokine genes TNF-alpha, IL-1beta and IL-8. The level of TNF-alpha mRNA was also analyzed by real-time quantitative RT-PCR, and TNF-alpha protein was measured by ELISA. Thalidomide pretreatment did not affect NF-kappaB activity in HT-29 cells stimulated with LPS but production of TNF-alpha was depressed. Thalidomide was found to accelerate the degradation of TNF-alpha mRNA, but had little effect on IL-1beta or IL-8. These observations suggest that the immunomodulatory effect of thalidomide in colonic epithelial cells is associated with inhibition of TNF-alpha. However, it does not act by inhibiting NF-kappaB but rather by inducing degradation of TNF-alpha mRNA.

  12. The relation between plasma α-synuclein level and clinical symptoms or signs of Parkinson's disease.

    PubMed

    Malec-Litwinowicz, Michalina; Plewka, Andrzej; Plewka, Danuta; Bogunia, Edyta; Morek, Michał; Szczudlik, Andrzej; Szubiga, Michał; Rudzińska-Bar, Monika

    2018-03-01

    Parkinson disease (PD) is the common neurodegenerative disease. α-Synuclein (ASN), main aggregating protein in neural cells of CNS in PD, was found in peripheral fluids. Testing ASN in plasma is potential test for diagnose PD, but previous studies are controversial. The aim of this study was to investigate if plasma ASN level may be a valuable biomarker, is the level of plasma ASN concentration different in various motor subtypes of diseases, is there a relation between the level of plasma ASN and the severity of motor symptoms. Patients with PD hospitalized in Neurology Department, Medical College were performed sequencing the 8th and 9th exon of GBA gene. Next plasma ASN level was tested in 58 patients with sequenced GBA gene and in 38 healthy volunteers (HV), matched by the age (respectively 68.43 vs. 64.57 years of age) and sex (female %, respectively: 43.10 vs.44.74). Patients were assessed with the scales: UPDRS (II, III, IV), Hoehn-Yahr (HY) and qualified to PIGD or TD subtype. For homogeneity of the group patients with GBA mutation were excluded from the analysis. The ASN level did not differ between patients and HV (respectively: 4.53 vs. 3.73ng/ml) and between patients with different subtypes. There was inverse correlation between ASN and HY in PIGD subtype. Plasma ASN level is not valuable marker of the disease. It does not differ in subtypes of the disease. There is relation between plasma ASN level and the severity of the disease in PIGD subtype. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  13. Suppression of α-synuclein toxicity and vesicle trafficking defects by phosphorylation at S129 in yeast depends on genetic context

    PubMed Central

    Sancenon, Vicente; Lee, Sue-Ann; Patrick, Christina; Griffith, Janice; Paulino, Amy; Outeiro, Tiago F.; Reggiori, Fulvio; Masliah, Eliezer; Muchowski, Paul J.

    2012-01-01

    The aggregation of α-synuclein (αSyn) is a neuropathologic hallmark of Parkinson's disease and other synucleinopathies. In Lewy bodies, αSyn is extensively phosphorylated, predominantly at serine 129 (S129). Recent studies in yeast have shown that, at toxic levels, αSyn disrupts Rab homeostasis, causing an initial endoplasmic reticulum-to-Golgi block that precedes a generalized trafficking collapse. However, whether αSyn phosphorylation modulates trafficking defects has not been evaluated. Here, we show that constitutive expression of αSyn in yeast impairs late-exocytic, early-endocytic and/or recycling trafficking. Although members of the casein kinase I (CKI) family phosphorylate αSyn at S129, they attenuate αSyn toxicity and trafficking defects by an S129 phosphorylation-independent mechanism. Surprisingly, phosphorylation of S129 modulates αSyn toxicity and trafficking defects in a manner strictly determined by genetic background. Abnormal endosome morphology, increased levels of the endosome marker Rab5 and co-localization of mammalian CKI with αSyn aggregates are observed in brain sections from αSyn-overexpressing mice and human synucleinopathies. Our results contribute to evidence that suggests αSyn-induced defects in endocytosis, exocytosis and/or recycling of vesicles involved in these cellular processes might contribute to the pathogenesis of synucleinopathies. PMID:22357655

  14. Stimulation of Estrogen Receptor Signaling in Breast Cancer by a Novel Chaperone Synuclein Gamma

    DTIC Science & Technology

    2007-06-01

    fertilized eggs (5 ng/ml) of FVB/N mouse. Injected cells were transferred into the oviduct of pseudopregnant ICR female mice and allowed to develop to term...dependent cancers of breast and ovary promoted us to investigate the role of SNCG in regulation of ERα. SNCG strongly stimulated the ligand-dependent...breast tissue. Aberrant expression of SNCG was also associated with ovary cancer progression. Synucleins are a family of small proteins consisting of

  15. Structure based aggregation studies reveal the presence of helix-rich intermediate during α-Synuclein aggregation

    PubMed Central

    Ghosh, Dhiman; Singh, Pradeep K.; Sahay, Shruti; Jha, Narendra Nath; Jacob, Reeba S.; Sen, Shamik; Kumar, Ashutosh; Riek, Roland; Maji, Samir K.

    2015-01-01

    Mechanistic understanding of nucleation dependent polymerization by α-synuclein (α-Syn) into toxic oligomers and amyloids is important for the drug development against Parkinson's disease. However the structural and morphological characterization during nucleation and subsequent fibrillation process of α-Syn is not clearly understood. Using a variety of complementary biophysical techniques monitoring entire pathway of nine different synucleins, we found that transition of unstructured conformation into β-sheet rich fibril formation involves helix-rich intermediates. These intermediates are common for all aggregating synucleins, contain high solvent-exposed hydrophobic surfaces, are cytotoxic to SHSY-5Y cells and accelerate α-Syn aggregation efficiently. A multidimensional NMR study characterizing the intermediate accompanied with site-specific fluorescence study suggests that the N-terminal and central portions mainly participate in the helix-rich intermediate formation while the C-terminus remained in an extended conformation. However, significant conformational transitions occur at the middle and at the C-terminus during helix to β-sheet transition as evident from Trp fluorescence study. Since partial helix-rich intermediates were also observed for other amyloidogenic proteins such as Aβ and IAPP, we hypothesize that this class of intermediates may be one of the important intermediates for amyloid formation pathway by many natively unstructured protein/peptides and represent a potential target for drug development against amyloid diseases. PMID:25784353

  16. Treadmill exercise alleviates nigrostriatal dopaminergic loss of neurons and fibers in rotenone-induced Parkinson rats.

    PubMed

    Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Ji, Eun-Sang; Lim, Baek-Vin

    2017-02-01

    Parkinson disease is one of the common brain diseases caused by dopaminergic neuronal loss in the substantia nigra and dopaminergic fiber loss in the striatum. In the present study, the effects of treadmill exercise on motor performance, dopaminergic loss of neurons and fibers, and α-synuclein expression in the nigrostriatum were evaluated using rotenone-induced Parkinson rats. For the induction of Parkinson rats, 3-mg/kg rotenone was injected, once a day for 14 consecutive days. Treadmill running was conducted for 30 min once a day during 14 consecutive days. Rota-rod test for motor balance and coordination and immunohistochemistry for tyrosine hydroxylase and α-synuclein in the nigrostriatum were performed. In the present study, motor balance and coordination was disturbed by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated motor dysfunction in the rotenone-induced Parkinson rats. Nigrostriatal dopaminergic loss of neurons and fibers was occurred by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated nigrostriatal dopaminergic loss of neurons and fibers in the rotenone-induced Parkinson rats. α-Synuclein expression in the nigrostriatum was enhanced by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise suppressed α-synuclein expression in the rotenone-induced Parkinson rats. Treadmill exercise improved motor function through preservation of nigrostriatal dopaminergic neurons and fibers and suppression of nigrostriatal formation of Lewy bodies in rotenone-induced Parkinson rats.

  17. Induction of autocrine factor inhibiting cell motility from murine B16-BL6 melanoma cells by alpha-melanocyte stimulating hormone.

    PubMed

    Murata, J; Ayukawa, K; Ogasawara, M; Watanabe, H; Saiki, I

    1999-03-15

    We have previously reported that neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH) successfully inhibited Matrigel invasion and haptotactic migration of B16-BL6 melanoma cells towards both fibronectin and laminin without affecting their growth. In the present study, we investigated the inhibitory mechanism of tumor cell motility by alpha-MSH. Alpha-MSH significantly blocked the autocrine motility factor (AMF)-enhanced cell motility. However, alpha-MSH did neither prevent the secretion of AMF from B16-BL6 cells nor alter the expression level of AMF receptor (gp78). On the other hand, alpha-MSH induced the secretion of the motility inhibitory factor(s) from B16-BL6 cells in a concentration- and time-dependent manner. The induction of the motility inhibitor(s) was proportional to increasing levels of intracellular cAMP induced by alpha-MSH as well as forskolin, and the activity was abolished by an adenylate cyclase inhibitor, 2',5'-dideoxyadenosine (DDA). The motility-inhibiting activity in conditioned medium (CM) from alpha-MSH-treated B16-BL6 cells was found to have a m.w. below 3 kDa after fractionation. This activity was abolished by boiling but insensitive to trypsin. The treatment of tumor cells with cycloheximide reduced the activity in alpha-MSH-stimulated CM. Our results suggest that alpha-MSH inhibited the motility of B16-BL6 cells through induction of autocrine factor(s).

  18. CSF biomarkers associated with disease heterogeneity in early Parkinson’s disease: the Parkinson’s Progression Markers Initiative study

    PubMed Central

    Kang, Ju-Hee; Mollenhauer, Brit; Coffey, Christopher S.; Toledo, Jon B.; Weintraub, Daniel; Galasko, Douglas R.; Irwin, David J.; Van Deerlin, Vivianna; Chen-Plotkin, Alice S.; Caspell-Garcia, Chelsea; Waligórska, Teresa; Taylor, Peggy; Shah, Nirali; Pan, Sarah; Zero, Pawel; Frasier, Mark; Marek, Kenneth; Kieburtz, Karl; Jennings, Danna; Tanner, Caroline M.; Simuni, Tanya; Singleton, Andrew; Toga, Arthur W.; Chowdhury, Sohini; Trojanowski, John Q.; Shaw, Leslie M.

    2016-01-01

    The development of biomarkers to predict the progression of Parkinson’s disease (PD) from its earliest stage through its heterogeneous course is critical for research and therapeutic development. The Parkinson’s Progression Markers Initiative (PPMI) study is an ongoing international multicenter, prospective study to validate biomarkers in drug-naïve PD patients and matched healthy controls (HC). We quantified cerebrospinal fluid (CSF) alpha-synuclein (α-syn), amyloid-beta1–42 (Aβ1–42), total tau (t-tau), and tau phosphorylated at Thr181 (p-tau) in 660 PPMI subjects at baseline, and correlated these data with measures of the clinical features of these subjects. We found that CSF α-syn, t-tau and p-tau levels, but not Aβ1–42, were significantly lower in PD compared with HC, while the diagnostic value of the individual CSF biomarkers for PD diagnosis was limited due to large overlap. The level of α-syn, but not other biomarkers, was significantly lower in PD patients with non-tremor-dominant phenotype compared with tremor-dominant phenotype. In addition, in PD patients the lowest Aβ1–42, or highest t-tau/Aβ1–42 and t-tau/α-syn quintile in PD patients were associated with more severe non-motor dysfunction compared with the highest or lowest quintiles, respectively. In a multivariate regression model, lower α-syn was significantly associated with worse cognitive test performance. APOE ε4 genotype was associated with lower levels of Aβ1–42, but neither with PD diagnosis nor cognition. Our data suggest that the measurement of CSF biomarkers in early-stage PD patients may relate to disease heterogeneity seen in PD. Longitudinal observations in PPMI subjects are needed to define their prognostic performance. PMID:27021906

  19. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection.

    PubMed

    Chung, Chee Yeun; Seo, Hyemyung; Sonntag, Kai Christian; Brooks, Andrew; Lin, Ling; Isacson, Ole

    2005-07-01

    Molecular differences between dopamine (DA) neurons may explain why the mesostriatal DA neurons in the A9 region preferentially degenerate in Parkinson's disease (PD) and toxic models, whereas the adjacent A10 region mesolimbic and mesocortical DA neurons are relatively spared. To characterize innate physiological differences between A9 and A10 DA neurons, we determined gene expression profiles in these neurons in the adult mouse by laser capture microdissection, microarray analysis and real-time PCR. We found 42 genes relatively elevated in A9 DA neurons, whereas 61 genes were elevated in A10 DA neurons [> 2-fold; false discovery rate (FDR) < 1%]. Genes of interest for further functional analysis were selected by criteria of (i) fold differences in gene expression, (ii) real-time PCR validation and (iii) potential roles in neurotoxic or protective biochemical pathways. Three A9-elevated molecules [G-protein coupled inwardly rectifying K channel 2 (GIRK2), adenine nucleotide translocator 2 (ANT-2) and the growth factor IGF-1] and three A10-elevated peptides (GRP, CGRP and PACAP) were further examined in both alpha-synuclein overexpressing PC12 (PC12-alphaSyn) cells and rat primary ventral mesencephalic (VM) cultures exposed to MPP+ neurotoxicity. GIRK2-positive DA neurons were more vulnerable to MPP+ toxicity and overexpression of GIRK2 increased the vulnerability of PC12-alphaSyn cells to the toxin. Blocking of ANT decreased vulnerability to MPP+ in both cell culture systems. Exposing cells to IGF-1, GRP and PACAP decreased vulnerability of both cell types to MPP+, whereas CGRP protected PC12-alphaSyn cells but not primary VM DA neurons. These results indicate that certain differentially expressed molecules in A9 and A10 DA neurons may play key roles in their relative vulnerability to toxins and PD.

  20. Current and future therapeutic strategies for Parkinson's disease.

    PubMed

    Outeiro, Tiago Fleming; Ferreira, Joaquim

    2009-01-01

    The heterogeneity of symptoms and disease progression observed in synucleinopathies, of which Parkinson's disease (PD) is the most common representative, poses large problems for its treatment and for the discovery of novel therapeutics. The molecular basis for pathology is currently unclear, both in familial and in sporadic cases. While the therapeutic effects of L-DOPA and dopamine receptor agonists are still the gold standards for symptomatic treatment in PD, the development of neuroprotective and/or neurorestorative treatments for these disorders faces significant challenges due to the poor knowledge of the putative targets involved. Recent experimental evidence strongly suggests a central role for neurotoxic alpha-synuclein oligomeric species in neurodegeneration. The events leading to protein oligomerization, as well as the oligomeric species themselves, are likely amenable to modulation by small molecules, which are beginning to emerge in high throughput compound screens in a variety of model organisms. The therapeutic potential of small molecule modulators of oligomer formation demands further exploration and validation in cellular and animal disease models in order to accelerate human drug development.

Top