The role of seniority-zero states in nuclear level densities
Åberg, S.; Carlsson, B. G.; Døssing, Th.; ...
2015-06-01
At low excitation energies seniority-zero states dominate the level density of K=0 bands in deformed even–even nuclei, while they play no role at higher excitation energies. We describe the level densities in a Fermi-gas model as well as in a combinatorial level-density model and compare to detailed experimental data for some rare-earth nuclei.
Effects of Differing Energy Dependences in Three Level-Density Models on Calculated Cross Sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, C.Y.
2000-07-15
Three level-density formalisms commonly used for cross-section calculations are examined. Residual nuclides in neutron interaction with {sup 58}Ni are chosen to quantify the well-known differences in the energy dependences of the three formalisms. Level-density parameters for the Gilbert and Cameron model are determined from experimental information. Parameters for the back-shifted Fermi-gas and generalized superfluid models are obtained by fitting their level densities at two selected energies for each nuclide to those of the Gilbert and Cameron model, forcing the level densities of the three models to be as close as physically allowed. The remaining differences are in their energy dependencesmore » that, it is shown, can change the calculated cross sections and particle emission spectra significantly, in some cases or energy ranges by a factor of 2.« less
Predicting Fish Densities in Lotic Systems: a Simple Modeling Approach
Fish density models are essential tools for fish ecologists and fisheries managers. However, applying these models can be difficult because of high levels of model complexity and the large number of parameters that must be estimated. We designed a simple fish density model and te...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voinov, Alexander V.; Grimes, Steven M.; Brune, Carl R.
Proton double-differential cross sections from 59Co(α,p) 62Ni, 57Fe(α,p) 60Co, 56Fe( 7Li,p) 62Ni, and 55Mn( 6Li,p) 60Co reactions have been measured with 21-MeV α and 15-MeV lithium beams. Cross sections have been compared against calculations with the empire reaction code. Different input level density models have been tested. It was found that the Gilbert and Cameron [A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965)] level density model is best to reproduce experimental data. Level densities and spin cutoff parameters for 62Ni and 60Co above the excitation energy range of discrete levels (in continuum) have been obtainedmore » with a Monte Carlo technique. Furthermore, excitation energy dependencies were found to be inconsistent with the Fermi-gas model.« less
NASA Astrophysics Data System (ADS)
Wang, Fuliang; Zhao, Zhipeng; Wang, Feng; Wang, Yan; Nie, Nantian
2017-12-01
Through-silicon via (TSV) filling by electrochemical deposition is still a challenge for 3D IC packaging, and three-component additive systems (accelerator, suppressor, and leveler) were commonly used in the industry to achieve void-free filling. However, models considering three additive systems and the current density effect have not been fully studied. In this paper, a novel three-component model was developed to study the TSV filling mechanism and process, where the interaction behavior of the three additives (accelerator, suppressor, and leveler) were considered, and the adsorption, desorption, and consumption coefficient of the three additives were changed with the current density. Based on this new model, the three filling types (seam void, ‘V’ shape, and key hole) were simulated under different current density conditions, and the filling results were verified by experiments. The effect of the current density on the copper ion concentration, additives surface coverage, and local current density distribution during the TSV filling process were obtained. Based on the simulation and experimental results, the diffusion-adsorption-desorption-consumption competition behavior between the suppressor, the accelerator, and the leveler were discussed. The filling mechanisms under different current densities were also analyzed.
NASA Astrophysics Data System (ADS)
Su, Jun; Zhu, Long; Guo, Chenchen
2018-05-01
Background: Special attention has been paid to study the shell effect and odd-even staggering (OES) in the nuclear spallation. Purpose: In this paper, we investigate the influence of the nuclear level density on the OES in the 56Fe+p spallations at energies from 300 to 1500 MeV/nucleon. Method: The isospin-dependent quantum molecular dynamics (IQMD) model is applied to produce the highly excited and equilibrium remnants, which is then de-excited using the statistical model gemini. The excitation energy of the heaviest hot fragments is applied to match the IQMD model with the gemini model. In the gemini model, the statistical description of the evaporation are based on the Hauser-Feshbach formalism, in which level density prescriptions are applied. Results: By investigating the OES of the excited pre-fragments, it is found that the OES originates at the end of the decay process when the excitation energy is close to the nucleon-emission threshold energy, i.e., the smaller value of the neutron separation energy and proton separation energy. The strong influence of level density on the OES is noticed. Two types of the nuclear level densities, the discrepancy of which is only about 7% near the nucleon emission threshold energy, are used in the model. However, the calculated values of the OES differ by the factor of 3 for the relevant nuclei. Conclusions: It is suggested that, although the particle-separation energies play a key role in determining the OES, the level density at excitation energy lower than the particle-separation energies should be taken into consideration
Nuclear level densities of 64 , 66 Zn from neutron evaporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.
Double differential cross sections of neutrons from d+ 63,65Cu reactions have been measured at deuteron energies of 6 and 7.5 MeV. The cross sections measured at backward angles have been compared to theoretical calculations in the framework of the statistical Hauser-Feshbach model. Three different level density models were tested: the Fermi-gas model, the Gilbert-Cameron model, and the microscopic approach through the Hartree-Fock-Bogoliubov method (HFBM). The calculations using the Gilbert-Cameron model are in best agreement with our experimental data. Level densities of the residual nuclei 64Zn and 66Zn have been obtained from statistical neutron evaporation spectra. In conclusion, the angle-integrated crossmore » sections have been analyzed with the exciton model of nuclear reaction.« less
Nuclear level densities of 64 , 66 Zn from neutron evaporation
Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.; ...
2013-12-26
Double differential cross sections of neutrons from d+ 63,65Cu reactions have been measured at deuteron energies of 6 and 7.5 MeV. The cross sections measured at backward angles have been compared to theoretical calculations in the framework of the statistical Hauser-Feshbach model. Three different level density models were tested: the Fermi-gas model, the Gilbert-Cameron model, and the microscopic approach through the Hartree-Fock-Bogoliubov method (HFBM). The calculations using the Gilbert-Cameron model are in best agreement with our experimental data. Level densities of the residual nuclei 64Zn and 66Zn have been obtained from statistical neutron evaporation spectra. In conclusion, the angle-integrated crossmore » sections have been analyzed with the exciton model of nuclear reaction.« less
Fluorescent Fe K Emission from High Density Accretion Disks
NASA Astrophysics Data System (ADS)
Bautista, Manuel; Mendoza, Claudio; Garcia, Javier; Kallman, Timothy R.; Palmeri, Patrick; Deprince, Jerome; Quinet, Pascal
2018-06-01
Iron K-shell lines emitted by gas closely orbiting black holes are observed to be grossly broadened and skewed by Doppler effects and gravitational redshift. Accordingly, models for line profiles are widely used to measure the spin (i.e., the angular momentum) of astrophysical black holes. The accuracy of these spin estimates is called into question because fitting the data requires very high iron abundances, several times the solar value. Meanwhile, no plausible physical explanation has been proffered for why these black hole systems should be so iron rich. The most likely explanation for the super-solar iron abundances is a deficiency in the models, and the leading candidate cause is that current models are inapplicable at densities above 1018 cm-3. We study the effects of high densities on the atomic parameters and on the spectral models for iron ions. At high densities, Debye plasma can affect the effective atomic potential of the ions, leading to observable changes in energy levels and atomic rates with respect to the low density case. High densities also have the effec of lowering energy the atomic continuum and reducing the recombination rate coefficients. On the spectral modeling side, high densities drive level populations toward a Boltzman distribution and very large numbers of excited atomic levels, typically accounted for in theoretical spectral models, may contribute to the K-shell spectrum.
Nicolas, Xavier; Djebli, Nassim; Rauch, Clémence; Brunet, Aurélie; Hurbin, Fabrice; Martinez, Jean-Marie; Fabre, David
2018-05-03
Alirocumab, a human monoclonal antibody against proprotein convertase subtilisin/kexin type 9 (PCSK9), significantly lowers low-density lipoprotein cholesterol levels. This analysis aimed to develop and qualify a population pharmacokinetic/pharmacodynamic model for alirocumab based on pooled data obtained from 13 phase I/II/III clinical trials. From a dataset of 2799 individuals (14,346 low-density lipoprotein-cholesterol values), individual pharmacokinetic parameters from the population pharmacokinetic model presented in Part I of this series were used to estimate alirocumab concentrations. As a second step, we then developed the current population pharmacokinetic/pharmacodynamic model using an indirect response model with a Hill coefficient, parameterized with increasing low-density lipoprotein cholesterol elimination, to relate alirocumab concentrations to low-density lipoprotein cholesterol values. The population pharmacokinetic/pharmacodynamic model allowed the characterization of the pharmacokinetic/pharmacodynamic properties of alirocumab in the target population and estimation of individual low-density lipoprotein cholesterol levels and derived pharmacodynamic parameters (the maximum decrease in low-density lipoprotein cholesterol values from baseline and the difference between baseline low-density lipoprotein cholesterol and the pre-dose value before the next alirocumab dose). Significant parameter-covariate relationships were retained in the model, with a total of ten covariates (sex, age, weight, free baseline PCSK9, total time-varying PCSK9, concomitant statin administration, total baseline PCSK9, co-administration of high-dose statins, disease status) included in the final population pharmacokinetic/pharmacodynamic model to explain between-subject variability. Nevertheless, the high number of covariates included in the model did not have a clinically meaningful impact on model-derived pharmacodynamic parameters. This model successfully allowed the characterization of the population pharmacokinetic/pharmacodynamic properties of alirocumab in its target population and the estimation of individual low-density lipoprotein cholesterol levels.
Level density inputs in nuclear reaction codes and the role of the spin cutoff parameter
Voinov, A. V.; Grimes, S. M.; Brune, C. R.; ...
2014-09-03
Here, the proton spectrum from the 57Fe(α,p) reaction has been measured and analyzed with the Hauser-Feshbach model of nuclear reactions. Different input level density models have been tested. It was found that the best description is achieved with either Fermi-gas or constant temperature model functions obtained by fitting them to neutron resonance spacing and to discrete levels and using the spin cutoff parameter with much weaker excitation energy dependence than it is predicted by the Fermi-gas model.
Effect of density of states peculiarities on Hund's metal behavior
NASA Astrophysics Data System (ADS)
Belozerov, A. S.; Katanin, A. A.; Anisimov, V. I.
2018-03-01
We investigate a possibility of Hund's metal behavior in the Hubbard model with asymmetric density of states having peak(s). Specifically, we consider the degenerate two-band model and compare its results to the five-band model with realistic density of states of iron and nickel, showing that the obtained results are more general, provided that the hybridization between states of different symmetry is sufficiently small. We find that quasiparticle damping and the formation of local magnetic moments due to Hund's exchange interaction are enhanced by both the density of states asymmetry, which yields stronger correlated electron or hole excitations, and the larger density of states at the Fermi level, increasing the number of virtual electron-hole excitations. For realistic densities of states, these two factors are often interrelated because the Fermi level is attracted towards peaks of the density of states. We discuss the implication of the obtained results to various substances and compounds, such as transition metals, iron pnictides, and cuprates.
Snowden, Aleksandra J; Freiburger, Tina L
2015-05-01
We estimated spatially lagged regression and spatial regime models to determine if the variation in total, on-premise, and off-premise alcohol outlet(1) density is related to robbery density, while controlling for direct and moderating effects of social disorganization.(2) Results suggest that the relationship between alcohol outlet density and robbery density is sensitive to the measurement of social disorganization levels. Total alcohol outlet density and off-premise alcohol outlet density were significantly associated with robbery density when social disorganization variables were included separately in the models. However, when social disorganization levels were captured as a four item index, only the association between off-premise alcohol outlets and robbery density remained significant. More work is warranted in identifying the role of off-premise alcohol outlets and their characteristics in robbery incidents. Copyright © 2015 Elsevier Inc. All rights reserved.
FORGE Newberry 3D Gravity Density Model for Newberry Volcano
Alain Bonneville
2016-03-11
These data are Pacific Northwest National Lab inversions of an amalgamation of two surface gravity datasets: Davenport-Newberry gravity collected prior to 2012 stimulations and Zonge International gravity collected for the project "Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity and Productivity in Enhanced Geothermal Systems" in 2012. Inversions of surface gravity recover a 3D distribution of density contrast from which intrusive igneous bodies are identified. The data indicate a body name, body type, point type, UTM X and Y coordinates, Z data is specified as meters below sea level (negative values then indicate elevations above sea level), thickness of the body in meters, suscept, density anomaly in g/cc, background density in g/cc, and density in g/cc. The model was created using a commercial gravity inversion software called ModelVision 12.0 (http://www.tensor-research.com.au/Geophysical-Products/ModelVision). The initial model is based on the seismic tomography interpretation (Beachly et al., 2012). All the gravity data used to constrain this model are on the GDR: https://gdr.openei.org/submissions/760.
Obesity and Regional Immigrant Density.
Emerson, Scott D; Carbert, Nicole S
2017-11-24
Canada has an increasingly large immigrant population. Areas of higher immigrant density, may relate to immigrants' health through reduced acculturation to Western foods, greater access to cultural foods, and/or promotion of salubrious values/practices. It is unclear, however, whether an association exists between Canada-wide regional immigrant density and obesity among immigrants. Thus, we examined whether regional immigrant density was related to obesity, among immigrants. Adult immigrant respondents (n = 15,595) to a national population-level health survey were merged with region-level immigrant density data. Multi-level logistic regression was used to model the odds of obesity associated with increased immigrant density. The prevalence of obesity among the analytic sample was 16%. Increasing regional immigrant density was associated with lower odds of obesity among minority immigrants and long-term white immigrants. Immigrant density at the region-level in Canada may be an important contextual factor to consider when examining obesity among immigrants.
Tobacco Town: Computational Modeling of Policy Options to Reduce Tobacco Retailer Density.
Luke, Douglas A; Hammond, Ross A; Combs, Todd; Sorg, Amy; Kasman, Matt; Mack-Crane, Austen; Ribisl, Kurt M; Henriksen, Lisa
2017-05-01
To identify the behavioral mechanisms and effects of tobacco control policies designed to reduce tobacco retailer density. We developed the Tobacco Town agent-based simulation model to examine 4 types of retailer reduction policies: (1) random retailer reduction, (2) restriction by type of retailer, (3) limiting proximity of retailers to schools, and (4) limiting proximity of retailers to each other. The model examined the effects of these policies alone and in combination across 4 different types of towns, defined by 2 levels of population density (urban vs suburban) and 2 levels of income (higher vs lower). Model results indicated that reduction of retailer density has the potential to decrease accessibility of tobacco products by driving up search and purchase costs. Policy effects varied by town type: proximity policies worked better in dense, urban towns whereas retailer type and random retailer reduction worked better in less-dense, suburban settings. Comprehensive retailer density reduction policies have excellent potential to reduce the public health burden of tobacco use in communities.
The Impact of Cell Density and Mutations in a Model of Multidrug Resistance in Solid Tumors
Greene, James; Lavi, Orit; Gottesman, Michael M.; Levy, Doron
2016-01-01
In this paper we develop a mathematical framework for describing multidrug resistance in cancer. To reflect the complexity of the underlying interplay between cancer cells and the therapeutic agent, we assume that the resistance level is a continuous parameter. Our model is written as a system of integro-differential equations that are parametrized by the resistance level. This model incorporates the cell-density and mutation dependence. Analysis and simulations of the model demonstrate how the dynamics evolves to a selection of one or more traits corresponding to different levels of resistance. The emerging limit distribution with nonzero variance is the desirable modeling outcome as it represents tumor heterogeneity. PMID:24553772
Rice, Megan S; Tworoger, Shelley S; Bertrand, Kimberly A; Hankinson, Susan E; Rosner, Bernard A; Feeney, Yvonne B; Clevenger, Charles V; Tamimi, Rulla M
2015-01-01
Higher circulating prolactin levels have been associated with higher percent mammographic density among postmenopausal women in some, but not all studies. However, few studies have examined associations with dense area and non-dense breast area breast or considered associations with prolactin Nb2 lymphoma cell bioassay levels. We conducted a cross-sectional study among 1,124 premenopausal and 890 postmenopausal women who were controls in breast cancer case-control studies nested in the Nurses' Health Study (NHS) and NHSII. Participants provided blood samples in 1989-1990 (NHS) or 1996-1999 (NHSII) and mammograms were obtained from around the time of blood draw. Multivariable linear models were used to assess the associations between prolactin levels (measured by immunoassay or bioassay) with percent density, dense area, and non-dense area. Among 1,124 premenopausal women, percent density, dense area, and non-dense area were not associated with prolactin immunoassay levels in multivariable models (p trends = 0.10, 0.18, and 0.69, respectively). Among 890 postmenopausal women, those with prolactin immunoassay levels in the highest versus lowest quartile had modestly, though significantly, higher percent density (difference = 3.01 percentage points, 95 % CI 0.22, 5.80) as well as lower non-dense area (p trend = 0.02). Among women with both immunoassay and bioassay levels, there were no consistent differences in the associations with percent density between bioassay and immunoassay levels. Postmenopausal women with prolactin immunoassay levels in the highest quartile had significantly higher percent density as well as lower non-dense area compared to those in the lowest quartile. Future studies should examine the underlying biologic mechanisms, particularly for non-dense area.
Sun, Yu; Reynolds, Hayley M; Wraith, Darren; Williams, Scott; Finnegan, Mary E; Mitchell, Catherine; Murphy, Declan; Haworth, Annette
2018-04-26
There are currently no methods to estimate cell density in the prostate. This study aimed to develop predictive models to estimate prostate cell density from multiparametric magnetic resonance imaging (mpMRI) data at a voxel level using machine learning techniques. In vivo mpMRI data were collected from 30 patients before radical prostatectomy. Sequences included T2-weighted imaging, diffusion-weighted imaging and dynamic contrast-enhanced imaging. Ground truth cell density maps were computed from histology and co-registered with mpMRI. Feature extraction and selection were performed on mpMRI data. Final models were fitted using three regression algorithms including multivariate adaptive regression spline (MARS), polynomial regression (PR) and generalised additive model (GAM). Model parameters were optimised using leave-one-out cross-validation on the training data and model performance was evaluated on test data using root mean square error (RMSE) measurements. Predictive models to estimate voxel-wise prostate cell density were successfully trained and tested using the three algorithms. The best model (GAM) achieved a RMSE of 1.06 (± 0.06) × 10 3 cells/mm 2 and a relative deviation of 13.3 ± 0.8%. Prostate cell density can be quantitatively estimated non-invasively from mpMRI data using high-quality co-registered data at a voxel level. These cell density predictions could be used for tissue classification, treatment response evaluation and personalised radiotherapy.
Ghaderi, Forouzan; Ghaderi, Amir H; Ghaderi, Noushin; Najafi, Bijan
2017-01-01
Background: The thermal conductivity of fluids can be calculated by several computational methods. However, these methods are reliable only at the confined levels of density, and there is no specific computational method for calculating thermal conductivity in the wide ranges of density. Methods: In this paper, two methods, an Artificial Neural Network (ANN) approach and a computational method established upon the Rainwater-Friend theory, were used to predict the value of thermal conductivity in all ranges of density. The thermal conductivity of six refrigerants, R12, R14, R32, R115, R143, and R152 was predicted by these methods and the effectiveness of models was specified and compared. Results: The results show that the computational method is a usable method for predicting thermal conductivity at low levels of density. However, the efficiency of this model is considerably reduced in the mid-range of density. It means that this model cannot be used at density levels which are higher than 6. On the other hand, the ANN approach is a reliable method for thermal conductivity prediction in all ranges of density. The best accuracy of ANN is achieved when the number of units is increased in the hidden layer. Conclusion: The results of the computational method indicate that the regular dependence between thermal conductivity and density at higher densities is eliminated. It can develop a nonlinear problem. Therefore, analytical approaches are not able to predict thermal conductivity in wide ranges of density. Instead, a nonlinear approach such as, ANN is a valuable method for this purpose.
Ghaderi, Forouzan; Ghaderi, Amir H.; Ghaderi, Noushin; Najafi, Bijan
2017-01-01
Background: The thermal conductivity of fluids can be calculated by several computational methods. However, these methods are reliable only at the confined levels of density, and there is no specific computational method for calculating thermal conductivity in the wide ranges of density. Methods: In this paper, two methods, an Artificial Neural Network (ANN) approach and a computational method established upon the Rainwater-Friend theory, were used to predict the value of thermal conductivity in all ranges of density. The thermal conductivity of six refrigerants, R12, R14, R32, R115, R143, and R152 was predicted by these methods and the effectiveness of models was specified and compared. Results: The results show that the computational method is a usable method for predicting thermal conductivity at low levels of density. However, the efficiency of this model is considerably reduced in the mid-range of density. It means that this model cannot be used at density levels which are higher than 6. On the other hand, the ANN approach is a reliable method for thermal conductivity prediction in all ranges of density. The best accuracy of ANN is achieved when the number of units is increased in the hidden layer. Conclusion: The results of the computational method indicate that the regular dependence between thermal conductivity and density at higher densities is eliminated. It can develop a nonlinear problem. Therefore, analytical approaches are not able to predict thermal conductivity in wide ranges of density. Instead, a nonlinear approach such as, ANN is a valuable method for this purpose. PMID:29188217
The assessment of toxic exposure on wildlife populations involves the integration of organism level effects measured in toxicity tests (e.g., chronic life cycle) and population models. These modeling exercises typically ignore density dependence, primarily because information on ...
Astudillo, Mariana; Kuendig, Hervé; Centeno-Gil, Adriana; Wicki, Matthias; Gmel, Gerhard
2014-09-01
This study investigated the associations of alcohol outlet density with specific alcohol outcomes (consumption and consequences) among young men in Switzerland and assessed the possible geographically related variations. Alcohol consumption and drinking consequences were measured in a 2010-2011 study assessing substance use risk factors (Cohort Study on Substance Use Risk Factors) among 5519 young Swiss men. Outlet density was based on the number of on- and off-premise outlets in the district of residence. Linear regression models were run separately for drinking level, heavy episodic drinking (HED) and drinking consequences. Geographically weighted regression models were estimated when variations were recorded at the district level. No consistent association was found between outlet density and drinking consequences. A positive association between drinking level and HED with on-premise outlet density was found. Geographically weighted regressions were run for drinking level and HED. The predicted values for HED were higher in the southwest part of Switzerland (French-speaking part). Among Swiss young men, the density of outlets and, in particular, the abundance of bars, clubs and other on-premise outlets was associated with drinking level and HED, even when drinking consequences were not significantly affected. These findings support the idea that outlet density needs to be considered when developing and implementing regional-based prevention initiatives. © 2014 Australasian Professional Society on Alcohol and other Drugs.
Level densities and γ-ray strength functions in Sn isotopes
NASA Astrophysics Data System (ADS)
Toft, H. K.; Larsen, A. C.; Agvaanluvsan, U.; Bürger, A.; Guttormsen, M.; Mitchell, G. E.; Nyhus, H. T.; Schiller, A.; Siem, S.; Syed, N. U. H.; Voinov, A.
2010-06-01
The nuclear level densities of Sn118,119 and the γ-ray strength functions of Sn116,118,119 below the neutron separation energy are extracted with the Oslo method using the (He3,αγ) and (He3,He3'γ) reactions. The level-density function of Sn119 displays steplike structures. The microcanonical entropies are deduced from the level densities, and the single neutron entropy of Sn119 is determined to be 1.7 ± 0.2 kB. Results from a combinatorial model support the interpretation that some of the low-energy steps in the level density function are caused by neutron pair breaking. An enhancement in all the γ-ray strength functions of Sn116-119, compared to standard models for radiative strength, is observed for the γ-ray energy region of ≃4-11 MeV. These small resonances all have a centroid energy of 8.0(1) MeV and an integrated strength corresponding to 1.7(9)% of the classical Thomas-Reiche-Kuhn sum rule. The Sn resonances may be due to electric dipole neutron skin oscillations or to an enhancement of the giant magnetic dipole resonance.
Estimating Small-Body Gravity Field from Shape Model and Navigation Data
NASA Technical Reports Server (NTRS)
Park, Ryan S.; Werner, Robert A.; Bhaskaran, Shyam
2008-01-01
This paper presents a method to model the external gravity field and to estimate the internal density variation of a small-body. We first discuss the modeling problem, where we assume the polyhedral shape and internal density distribution are given, and model the body interior using finite elements definitions, such as cubes and spheres. The gravitational attractions computed from these approaches are compared with the true uniform-density polyhedral attraction and the level of accuracies are presented. We then discuss the inverse problem where we assume the body shape, radiometric measurements, and a priori density constraints are given, and estimate the internal density variation by estimating the density of each finite element. The result shows that the accuracy of the estimated density variation can be significantly improved depending on the orbit altitude, finite-element resolution, and measurement accuracy.
Tobacco Town: Computational Modeling of Policy Options to Reduce Tobacco Retailer Density
Luke, Douglas A.; Hammond, Ross A.; Combs, Todd; Sorg, Amy; Kasman, Matt; Mack-Crane, Austen; Ribisl, Kurt M.; Henriksen, Lisa
2017-01-01
Objectives To identify the behavioral mechanisms and effects of tobacco control policies designed to reduce tobacco retailer density. Methods We developed the Tobacco Town agent-based simulation model to examine 4 types of retailer reduction policies: (1) random retailer reduction, (2) restriction by type of retailer, (3) limiting proximity of retailers to schools, and (4) limiting proximity of retailers to each other. The model examined the effects of these policies alone and in combination across 4 different types of towns, defined by 2 levels of population density (urban vs suburban) and 2 levels of income (higher vs lower). Results Model results indicated that reduction of retailer density has the potential to decrease accessibility of tobacco products by driving up search and purchase costs. Policy effects varied by town type: proximity policies worked better in dense, urban towns whereas retailer type and random retailer reduction worked better in less-dense, suburban settings. Conclusions Comprehensive retailer density reduction policies have excellent potential to reduce the public health burden of tobacco use in communities. PMID:28398792
NASA Astrophysics Data System (ADS)
Knezevic, David; Jovancevic, Nikola; Sukhovoj, Anatoly M.; Mitsyna, Ludmila V.; Krmar, Miodrag; Cong, Vu D.; Hambsch, Franz-Josef; Oberstedt, Stephan; Revay, Zsolt; Stieghorst, Christian; Dragic, Aleksandar
2018-03-01
The determination of nuclear level densities and radiative strength functions is one of the most important tasks in low-energy nuclear physics. Accurate experimental values of these parameters are critical for the study of the fundamental properties of nuclear structure. The step-like structure in the dependence of the level densities p on the excitation energy of nuclei Eex is observed in the two-step gamma cascade measurements for nuclei in the 28 ≤ A ≤ 200 mass region. This characteristic structure can be explained only if a co-existence of quasi-particles and phonons, as well as their interaction in a nucleus, are taken into account in the process of gamma-decay. Here we present a new improvement to the Dubna practical model for the determination of nuclear level densities and radiative strength functions. The new practical model guarantees a good description of the available intensities of the two step gamma cascades, comparable to the experimental data accuracy.
NASA Astrophysics Data System (ADS)
Kaplan, Kyle F.; Dinerstein, Harriet L.; Oh, Heeyoung; Mace, Gregory N.; Kim, Hwihyun; Sokal, Kimberly R.; Pavel, Michael D.; Lee, Sungho; Pak, Soojong; Park, Chan; Sok Oh, Jae; Jaffe, Daniel T.
2017-04-01
We present a deep near-infrared spectrum of the Orion Bar Photodissociation Region (PDR) taken with the Immersion Grating INfrared Spectrometer (IGRINS) on the 2.7 m telescope at the McDonald Observatory. IGRINS has high spectral resolution (R˜ {{45,000}}) and instantaneous broad wavelength coverage (1.45-2.45 μm), enabling us to detect 87 emission lines from rovibrationally excited molecular hydrogen (H2) that arise from transitions out of 69 upper rovibration levels of the electronic ground state. These levels cover a large range of rotational and vibrational quantum numbers and excitation energies, making them excellent probes of the excitation mechanisms of H2 and physical conditions within the PDR. The Orion Bar PDR is thought to consist of cooler high density clumps or filaments (T=50{--}250 K, {n}H={10}5{--}{10}7 cm-3) embedded in a warmer lower density medium (T=250{--}1000 K, {n}H={10}4{--}{10}5 cm-3). We fit a grid of constant temperature and density Cloudy models, which recreate the observed H2 level populations well, to constrain the temperature to a range of 600-650 K and the density to {n}H=2.5× {10}3{--}{10}4 cm-3. The best-fit model gives T = 625 K and {n}H=5× {10}3 cm-3. This well-constrained warm temperature is consistent with kinetic temperatures found by other studies for the Orion Bar’s lower density medium. However, the range of densities well fit by the model grid is marginally lower than those reported by other studies. We could be observing lower density gas than the surrounding medium, or perhaps a density-sensitive parameter in our models is not properly estimated.
Properties of {sup 112}Cd from the (n,n'{gamma}) reaction: Levels and level densities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, P. E.; Lehmann, H.; Jolie, J.
2001-08-01
Levels in {sup 112}Cd have been studied through the (n,n'{gamma}) reaction with monoenergetic neutrons. An extended set of experiments that included excitation functions, {gamma}-ray angular distributions, and {gamma}{gamma} coincidence measurements was performed. A total of 375 {gamma} rays were placed in a level scheme comprising 200 levels (of which 238 {gamma}-ray assignments and 58 levels are newly established) up to 4 MeV in excitation. No evidence to support the existence of 47 levels as suggested in previous studies was found, and these have been removed from the level scheme. From the results, a comparison of the level density is mademore » with the constant temperature and back-shifted Fermi gas models. The back-shifted Fermi gas model with the Gilbert-Cameron spin cutoff parameter provided the best overall fit. Without using the neutron resonance information and only fitting the cumulative number of low-lying levels, the level density parameters extracted are a sensitive function of the maximum energy used in the fit.« less
Ocean Turbulence V: Mesoscale Modeling in Level Coordinates. The Effect of Random Nature of Density
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Dubovikov, M. S.
1998-01-01
The main result of this paper is the derivation of a new expression for the tracer subgrid term in level coordinates S(l) to be employed in O-GCM. The novel feature is the proper account of the random nature of the density field which strongly affects the transformation from isopycnal to level coordinates of the variables of interest, velocity and tracer fields, their correlation functions and ultimately the subgrid terms. In deriving our result we made use of measured properties of vertical ocean turbulence. The major new results are: 1) the new subgrid expression is different from that of the heuristic GM model, 2) u++(tracer)=1/2u+(thickness), where u++ and u+ are the tracer and thickness bolus velocities. In previous models, u++ = u+, 2) the subgrid for a tracer tau is not the same as that for the density rho even when one accounts for the obvious absence of a diffusion term in the latter. The difference stems from a new treatment of the stochastic nature of the density, 3) the mesoscale diffusivity enters both locally and non-locally, as the integral over all z's from the bottom of the ocean to the level z.
Wu, Jin-Yi; Zhou, Yi-Biao; Chen, Yue; Liang, Song; Li, Lin-Han; Zheng, Sheng-Bang; Zhu, Shao-ping; Ren, Guang-Hui; Song, Xiu-Xia; Jiang, Qing-Wu
2015-01-01
Background Schistosomiasis remains an important public health issue in China and worldwide. Oncomelania hupensis is the unique intermediate host of schistosoma japonicum, and its change influences the distribution of S. japonica. The Three Gorges Dam (TGD) has substantially changed the ecology and environment in the Dongting Lake region. This study investigated the impact of water level and elevation on the survival and habitat of the snails. Methods Data were collected for 16 bottomlands around 4 hydrological stations, which included water, density of living snails (form the Anxiang Station for Schistosomiasis Control) and elevation (from Google Earth). Based on the elevation, sixteen bottomlands were divided into 3 groups. ARIMA models were built to predict the density of living snails in different elevation areas. Results Before closure of TGD, 7 out of 9 years had a water level beyond the warning level at least once at Anxiang hydrological station, compared with only 3 out of 10 years after closure of TGD. There were two severe droughts that happened in 2006 and 2011, with much fewer number of flooding per year compared with other study years. Overall, there was a correlation between water level changing and density of living snails variation in all the elevations areas. The density of living snails in all elevations areas was decreasing after the TGD was built. The relationship between number of flooding per year and the density of living snails was more pronounced in the medium and high elevation areas; the density of living snails kept decreasing from 2003 to 2014. In low elevation area however, the density of living snails decreased after 2003 first and turned to increase after 2011. Our ARIMA prediction models indicated that the snails would not disappear in the Dongting Lake region in the next 7 years. In the low elevation area, the density of living snails would increase slightly, and then stabilize after the year 2017. In the medium elevation region, the change of the density of living snails would be more obvious and would increase till the year 2020. In the high elevation area, the density of living snails would remain stable after the year 2015. Conclusion The TGD influenced water levels and reduced the risk of flooding and the density of living snails in the study region. Based on our prediction models, the density of living snails in all elevations tends to be stabilized. Control of S. japonica would continue to be an important task in the study area in the coming decade. PMID:26114956
Lipfert, Frederick W; Wyzga, Ronald E; Baty, Jack D; Miller, J Philip
2009-04-01
For this paper, we considered relationships between mortality, vehicular traffic density, and ambient levels of 12 hazardous air pollutants, elemental carbon (EC), oxides of nitrogen (NOx), sulfur dioxide (SO2), and sulfate (SO4(2-)). These pollutant species were selected as markers for specific types of emission sources, including vehicular traffic, coal combustion, smelters, and metal-working industries. Pollutant exposures were estimated using emissions inventories and atmospheric dispersion models. We analyzed associations between county ambient levels of these pollutants and survival patterns among approximately 70,000 U.S. male veterans by mortality period (1976-2001 and subsets), type of exposure model, and traffic density level. We found significant associations between all-cause mortality and traffic-related air quality indicators and with traffic density per se, with stronger associations for benzene, formaldehyde, diesel particulate, NOx, and EC. The maximum effect on mortality for all cohort subjects during the 26-yr follow-up period is approximately 10%, but most of the pollution-related deaths in this cohort occurred in the higher-traffic counties, where excess risks approach 20%. However, mortality associations with diesel particulates are similar in high- and low-traffic counties. Sensitivity analyses show risks decreasing slightly over time and minor differences between linear and logarithmic exposure models. Two-pollutant models show stronger risks associated with specific traffic-related pollutants than with traffic density per se, although traffic density retains statistical significance in most cases. We conclude that tailpipe emissions of both gases and particles are among the most significant and robust predictors of mortality in this cohort and that most of those associations have weakened over time. However, we have not evaluated possible contributions from road dust or traffic noise. Stratification by traffic density level suggests the presence of response thresholds, especially for gaseous pollutants. Because of their wider distributions of estimated exposures, risk estimates based on emissions and atmospheric dispersion models tend to be more precise than those based on local ambient measurements.
Effects of LiDAR point density and landscape context on estimates of urban forest biomass
NASA Astrophysics Data System (ADS)
Singh, Kunwar K.; Chen, Gang; McCarter, James B.; Meentemeyer, Ross K.
2015-03-01
Light Detection and Ranging (LiDAR) data is being increasingly used as an effective alternative to conventional optical remote sensing to accurately estimate aboveground forest biomass ranging from individual tree to stand levels. Recent advancements in LiDAR technology have resulted in higher point densities and improved data accuracies accompanied by challenges for procuring and processing voluminous LiDAR data for large-area assessments. Reducing point density lowers data acquisition costs and overcomes computational challenges for large-area forest assessments. However, how does lower point density impact the accuracy of biomass estimation in forests containing a great level of anthropogenic disturbance? We evaluate the effects of LiDAR point density on the biomass estimation of remnant forests in the rapidly urbanizing region of Charlotte, North Carolina, USA. We used multiple linear regression to establish a statistical relationship between field-measured biomass and predictor variables derived from LiDAR data with varying densities. We compared the estimation accuracies between a general Urban Forest type and three Forest Type models (evergreen, deciduous, and mixed) and quantified the degree to which landscape context influenced biomass estimation. The explained biomass variance of the Urban Forest model, using adjusted R2, was consistent across the reduced point densities, with the highest difference of 11.5% between the 100% and 1% point densities. The combined estimates of Forest Type biomass models outperformed the Urban Forest models at the representative point densities (100% and 40%). The Urban Forest biomass model with development density of 125 m radius produced the highest adjusted R2 (0.83 and 0.82 at 100% and 40% LiDAR point densities, respectively) and the lowest RMSE values, highlighting a distance impact of development on biomass estimation. Our evaluation suggests that reducing LiDAR point density is a viable solution to regional-scale forest assessment without compromising the accuracy of biomass estimates, and these estimates can be further improved using development density.
Initialization of a mesoscale model for April 10, 1979, using alternative data sources
NASA Technical Reports Server (NTRS)
Kalb, M. W.
1984-01-01
A 35 km grid limited area mesoscale model was initialized with high density SESAME radiosonde data and high density TIROS-N satellite temperature profiles for April 10, 1979. These data sources were used individually and with low level wind fields constructed from surface wind observations. The primary objective was to examine the use of satellite temperature data for initializing a mesoscale model by comparing the forecast results with similar experiments employing radiosonde data. The impact of observed low level winds on the model forecasts was also investigated with experiments varying the method of insertion. All forecasts were compared with each other and with mesoscale observations for precipitation, mass and wind structure. Several forecasts produced convective precipitation systems with characteristics satisfying criteria for a mesoscale convective complex. High density satellite temperature data and balanced winds can be used in a mesoscale model to produce forecasts which verify favorably with observations.
Gering, Kevin L
2013-08-27
A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.
NASA Astrophysics Data System (ADS)
Gao, Yizhu; Zhai, Xiaoming; Andersson, Björn; Zeng, Pingfei; Xin, Tao
2018-06-01
We applied latent class analysis and the rule space model to verify the cumulative characteristic of conceptual change by developing a learning progression for buoyancy. For this study, we first abstracted seven attributes of buoyancy and then developed a hypothesized learning progression for buoyancy. A 14-item buoyancy instrument was administered to 1089 8th grade students to verify and refine the learning progression. The results suggest four levels of progression during conceptual change when 8th grade students understand buoyancy. Students at level 0 can only master Density. When students progress to level 1, they can grasp Direction, Identification, Submerged volume, and Relative density on the basis of the prior level. Then, students gradually master Archimedes' theory as they reach level 2. The most advanced students can further grasp Relation with motion and arrive at level 3. In addition, this four-level learning progression can be accounted for by the Qualitative-Quantitative-Integrative explanatory model.
Nikjou, A; Sadeghi, M
2018-06-01
The 123 I radionuclide (T 1/2 = 13.22 h, β+ = 100%) is one of the most potent gamma emitters for nuclear medicine. In this study, the cyclotron production of this radionuclide via different nuclear reactions namely, the 121 Sb(α,2n), 122 Te(d,n), 123 Te(p,n), 124 Te(p,2n), 124 Xe(p,2n), 127 I(p,5n) and 127 I(d,6n) were investigated. The effect of the various phenomenological nuclear level density models such as Fermi gas model (FGM), Back-shifted Fermi gas model (BSFGM), Generalized superfluid model (GSM) and Enhanced generalized superfluid model (EGSM) moreover, the three microscopic level density models were evaluated for predicting of cross sections and production yield predictions. The SRIM code was used to obtain the target thickness. The 123 I excitation function of reactions were calculated by using of the TALYS-1.8, EMPIRE-3.2 nuclear codes and with data which taken from TENDL-2015 database, and finally the theoretical calculations were compared with reported experimental measurements in which taken from EXFOR database. Copyright © 2018 Elsevier Ltd. All rights reserved.
Serum osteoprotegerin levels and mammographic density among high-risk women.
Moran, Olivia; Zaman, Tasnim; Eisen, Andrea; Demsky, Rochelle; Blackmore, Kristina; Knight, Julia A; Elser, Christine; Ginsburg, Ophira; Zbuk, Kevin; Yaffe, Martin; Narod, Steven A; Salmena, Leonardo; Kotsopoulos, Joanne
2018-06-01
Mammographic density is a risk factor for breast cancer but the mechanism behind this association is unclear. The receptor activator of nuclear factor κB (RANK)/RANK ligand (RANKL) pathway has been implicated in the development of breast cancer. Given the role of RANK signaling in mammary epithelial cell proliferation, we hypothesized this pathway may also be associated with mammographic density. Osteoprotegerin (OPG), a decoy receptor for RANKL, is known to inhibit RANK signaling. Thus, it is of interest to evaluate whether OPG levels modify breast cancer risk through mammographic density. We quantified serum OPG levels in 57 premenopausal and 43 postmenopausal women using an enzyme-linked immunosorbent assay (ELISA). Cumulus was used to measure percent density, dense area, and non-dense area for each mammographic image. Subjects were classified into high versus low OPG levels based on the median serum OPG level in the entire cohort (115.1 pg/mL). Multivariate models were used to assess the relationship between serum OPG levels and the measures of mammographic density. Serum OPG levels were not associated with mammographic density among premenopausal women (P ≥ 0.42). Among postmenopausal women, those with low serum OPG levels had higher mean percent mammographic density (20.9% vs. 13.7%; P = 0.04) and mean dense area (23.4 cm 2 vs. 15.2 cm 2 ; P = 0.02) compared to those with high serum OPG levels after covariate adjustment. These findings suggest that low OPG levels may be associated with high mammographic density, particularly in postmenopausal women. Targeting RANK signaling may represent a plausible, non-surgical prevention option for high-risk women with high mammographic density, especially those with low circulating OPG levels.
The density dilemma: limitations on juvenile production in threatened salmon populations
Walters, Annika W.; Copeland, Timothy; Venditti, David A.
2013-01-01
Density-dependent processes have repeatedly been shown to have a central role in salmonid population dynamics, but are often assumed to be negligible for populations at low abundances relative to historical records. Density dependence has been observed in overall spring/summer Snake River Chinook salmon Oncorhynchus tshawytscha production, but it is not clear how patterns observed at the aggregate level relate to individual populations within the basin. We used a Bayesian hierarchical modelling approach to explore the degree of density dependence in juvenile production for nine Idaho populations. Our results indicate that density dependence is ubiquitous, although its strength varies between populations. We also investigated the processes driving the population-level pattern and found density-dependent growth and mortality present for both common life-history strategies, but no evidence of density-dependent movement. Overwinter mortality, spatial clustering of redds and limited resource availability were identified as potentially important limiting factors contributing to density dependence. The ubiquity of density dependence for these threatened populations is alarming as stability at present low abundance levels suggests recovery may be difficult without major changes. We conclude that density dependence at the population level is common and must be considered in demographic analysis and management.
Thermospheric density and wind retrieval from Swarm observations
NASA Astrophysics Data System (ADS)
Visser, Pieter; Doornbos, Eelco; van den IJssel, Jose; Teixeira da Encarnação, João
2013-11-01
The three-satellite ESA Swarm mission aims at mapping the Earth's global geomagnetic field at unprecedented spatial and temporal resolution and precision. Swarm also aims at observing thermospheric density and possibly horizontal winds. Precise orbit determination (POD) and Thermospheric Density and Wind (TDW) chains form part of the Swarm Constellation and Application Facility (SCARF), which will provide the so-called Level 2 products. The POD and TDW chains generate the orbit, accelerometer calibration, and thermospheric density and wind Level 2 products. The POD and TDW chains have been tested with data from the CHAMP and GRACE missions, indicating that a 3D orbit precision of about 10 cm can be reached. In addition, POD allows to determine daily accelerometer bias and scale factor values with a precision of around 10-15 nm/s2 and 0.01-0.02, respectively, for the flight direction. With these accelerometer calibration parameter values, derived thermospheric density is consistent at the 9-11% level (standard deviation) with values predicted by models (taking into account that model values are 20-30% higher). The retrieval of crosswinds forms part of the processing chain, but will be challenging. The Swarm observations will be used for further developing and improving density and wind retrieval algorithms.
An Equivalent Fracture Modeling Method
NASA Astrophysics Data System (ADS)
Li, Shaohua; Zhang, Shujuan; Yu, Gaoming; Xu, Aiyun
2017-12-01
3D fracture network model is built based on discrete fracture surfaces, which are simulated based on fracture length, dip, aperture, height and so on. The interesting area of Wumishan Formation of Renqiu buried hill reservoir is about 57 square kilometer and the thickness of target strata is more than 2000 meters. In addition with great fracture density, the fracture simulation and upscaling of discrete fracture network model of Wumishan Formation are very intense computing. In order to solve this problem, a method of equivalent fracture modeling is proposed. First of all, taking the fracture interpretation data obtained from imaging logging and conventional logging as the basic data, establish the reservoir level model, and then under the constraint of reservoir level model, take fault distance analysis model as the second variable, establish fracture density model by Sequential Gaussian Simulation method. Increasing the width, height and length of fracture, at the same time decreasing its density in order to keep the similar porosity and permeability after upscaling discrete fracture network model. In this way, the fracture model of whole interesting area can be built within an accepted time.
Charge redistribution in QM:QM ONIOM model systems: a constrained density functional theory approach
NASA Astrophysics Data System (ADS)
Beckett, Daniel; Krukau, Aliaksandr; Raghavachari, Krishnan
2017-11-01
The ONIOM hybrid method has found considerable success in QM:QM studies designed to approximate a high level of theory at a significantly reduced cost. This cost reduction is achieved by treating only a small model system with the target level of theory and the rest of the system with a low, inexpensive, level of theory. However, the choice of an appropriate model system is a limiting factor in ONIOM calculations and effects such as charge redistribution across the model system boundary must be considered as a source of error. In an effort to increase the general applicability of the ONIOM model, a method to treat the charge redistribution effect is developed using constrained density functional theory (CDFT) to constrain the charge experienced by the model system in the full calculation to the link atoms in the truncated model system calculations. Two separate CDFT-ONIOM schemes are developed and tested on a set of 20 reactions with eight combinations of levels of theory. It is shown that a scheme using a scaled Lagrange multiplier term obtained from the low-level CDFT model calculation outperforms ONIOM at each combination of levels of theory from 32% to 70%.
Modeling the size-density relationship in direct-seeded slash pine stands
Quang V. Cao; Thomas J. Dean; V. Clark Baldwin
2000-01-01
The relationship between quadratic mean diameter and tree density appeared curvilinear on a logâlog scale, based on data from direct-seeded slash pine (Pinus elliotti var. elliotti Engelm.) stands. The self-thinning trajectory followed a straight line for high tree density levels and then turned away from this line as tree density...
Size-density scaling in protists and the links between consumer-resource interaction parameters.
DeLong, John P; Vasseur, David A
2012-11-01
Recent work indicates that the interaction between body-size-dependent demographic processes can generate macroecological patterns such as the scaling of population density with body size. In this study, we evaluate this possibility for grazing protists and also test whether demographic parameters in these models are correlated after controlling for body size. We compiled data on the body-size dependence of consumer-resource interactions and population density for heterotrophic protists grazing algae in laboratory studies. We then used nested dynamic models to predict both the height and slope of the scaling relationship between population density and body size for these protists. We also controlled for consumer size and assessed links between model parameters. Finally, we used the models and the parameter estimates to assess the individual- and population-level dependence of resource use on body-size and prey-size selection. The predicted size-density scaling for all models matched closely to the observed scaling, and the simplest model was sufficient to predict the pattern. Variation around the mean size-density scaling relationship may be generated by variation in prey productivity and area of capture, but residuals are relatively insensitive to variation in prey size selection. After controlling for body size, many consumer-resource interaction parameters were correlated, and a positive correlation between residual prey size selection and conversion efficiency neutralizes the apparent fitness advantage of taking large prey. Our results indicate that widespread community-level patterns can be explained with simple population models that apply consistently across a range of sizes. They also indicate that the parameter space governing the dynamics and the steady states in these systems is structured such that some parts of the parameter space are unlikely to represent real systems. Finally, predator-prey size ratios represent a kind of conundrum, because they are widely observed but apparently have little influence on population size and fitness, at least at this level of organization. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Gergs, André; Preuss, Thomas G.; Palmqvist, Annemette
2014-01-01
Population size is often regulated by negative feedback between population density and individual fitness. At high population densities, animals run into double trouble: they might concurrently suffer from overexploitation of resources and also from negative interference among individuals regardless of resource availability, referred to as crowding. Animals are able to adapt to resource shortages by exhibiting a repertoire of life history and physiological plasticities. In addition to resource-related plasticity, crowding might lead to reduced fitness, with consequences for individual life history. We explored how different mechanisms behind resource-related plasticity and crowding-related fitness act independently or together, using the water flea Daphnia magna as a case study. For testing hypotheses related to mechanisms of plasticity and crowding stress across different biological levels, we used an individual-based population model that is based on dynamic energy budget theory. Each of the hypotheses, represented by a sub-model, is based on specific assumptions on how the uptake and allocation of energy are altered under conditions of resource shortage or crowding. For cross-level testing of different hypotheses, we explored how well the sub-models fit individual level data and also how well they predict population dynamics under different conditions of resource availability. Only operating resource-related and crowding-related hypotheses together enabled accurate model predictions of D. magna population dynamics and size structure. Whereas this study showed that various mechanisms might play a role in the negative feedback between population density and individual life history, it also indicated that different density levels might instigate the onset of the different mechanisms. This study provides an example of how the integration of dynamic energy budget theory and individual-based modelling can facilitate the exploration of mechanisms behind the regulation of population size. Such understanding is important for assessment, management and the conservation of populations and thereby biodiversity in ecosystems. PMID:24626228
Comparison of precision orbit derived density estimates for CHAMP and GRACE satellites
NASA Astrophysics Data System (ADS)
Fattig, Eric Dale
Current atmospheric density models cannot adequately represent the density variations observed by satellites in Low Earth Orbit (LEO). Using an optimal orbit determination process, precision orbit ephemerides (POE) are used as measurement data to generate corrections to density values obtained from existing atmospheric models. Densities obtained using these corrections are then compared to density data derived from the onboard accelerometers of satellites, specifically the CHAMP and GRACE satellites. This comparison takes two forms, cross correlation analysis and root mean square analysis. The densities obtained from the POE method are nearly always superior to the empirical models, both in matching the trends observed by the accelerometer (cross correlation), and the magnitudes of the accelerometer derived density (root mean square). In addition, this method consistently produces better results than those achieved by the High Accuracy Satellite Drag Model (HASDM). For satellites orbiting Earth that pass through Earth's upper atmosphere, drag is the primary source of uncertainty in orbit determination and prediction. Variations in density, which are often not modeled or are inaccurately modeled, cause difficulty in properly calculating the drag acting on a satellite. These density variations are the result of many factors; however, the Sun is the main driver in upper atmospheric density changes. The Sun influences the densities in Earth's atmosphere through solar heating of the atmosphere, as well as through geomagnetic heating resulting from the solar wind. Data are examined for fourteen hour time spans between November 2004 and July 2009 for both the CHAMP and GRACE satellites. This data spans all available levels of solar and geomagnetic activity, which does not include data in the elevated and high solar activity bins due to the nature of the solar cycle. Density solutions are generated from corrections to five different baseline atmospheric models, as well as nine combinations of density and ballistic coefficient correlated half-lives. These half-lives are varied among values of 1.8, 18, and 180 minutes. A total of forty-five sets of results emerge from the orbit determination process for all combinations of baseline density model and half-lives. Each time period is examined for both CHAMP and GRACE-A, and the results are analyzed. Results are averaged from all solutions periods for 2004--2007. In addition, results are averaged after binning according to solar and geomagnetic activity levels. For any given day in this period, a ballistic coefficient correlated half-life of 1.8 minutes yields the best correlation and root mean square values for both CHAMP and GRACE. For CHAMP, a density correlated half-life of 18 minutes is best for higher levels of solar and geomagnetic activity, while for lower levels 180 minutes is usually superior. For GRACE, 180 minutes is nearly always best. The three Jacchia-based atmospheric models yield very similar results. The CIRA 1972 or Jacchia 1971 models as baseline consistently produce the best results for both satellites, though results obtained for Jacchia-Roberts are very similar to the other Jacchia-based models. Data are examined in a similar manner for the extended solar minimum period during 2008 and 2009, albeit with a much smaller sampling of data. With the exception of some atypical results, similar combinations of half-lives and baseline atmospheric model produce the best results. A greater sampling of data will aid in characterizing density in a period of especially low solar activity. In general, cross correlation values for CHAMP and GRACE revealed that the POE method matched trends observed by the accelerometers very well. However, one period of time deviated from this trend for the GRACE-A satellite. Between late October 2005 and January 2006, correlations for GRACE-A were very low. Special examination of the surrounding months revealed the extent of time this period covered. Half-life and baseline model combinations that produced the best results during this time were similar to those during normal periods. Plotting these periods revealed very short period density variations in the accelerometer that could not be reproduced by the empirical models, HASDM, or the POE method. Finally, densities produced using precision orbit data for the GRACE-B satellite were shown to be nearly indistinguishable from those produced by GRACE-A. Plots of the densities produced for both satellites during the same time periods revealed this fact. Multiple days were examined covering all possible ranges of solar and geomagnetic activity. In addition, the period in which GRACE-A correlations were low was studied. No significant differences existed between GRACE-A and GRACE-B for all of the days examined.
Using spatial mark-recapture for conservation monitoring of grizzly bear populations in Alberta.
Boulanger, John; Nielsen, Scott E; Stenhouse, Gordon B
2018-03-26
One of the challenges in conservation is determining patterns and responses in population density and distribution as it relates to habitat and changes in anthropogenic activities. We applied spatially explicit capture recapture (SECR) methods, combined with density surface modelling from five grizzly bear (Ursus arctos) management areas (BMAs) in Alberta, Canada, to assess SECR methods and to explore factors influencing bear distribution. Here we used models of grizzly bear habitat and mortality risk to test local density associations using density surface modelling. Results demonstrated BMA-specific factors influenced density, as well as the effects of habitat and topography on detections and movements of bears. Estimates from SECR were similar to those from closed population models and telemetry data, but with similar or higher levels of precision. Habitat was most associated with areas of higher bear density in the north, whereas mortality risk was most associated (negatively) with density of bears in the south. Comparisons of the distribution of mortality risk and habitat revealed differences by BMA that in turn influenced local abundance of bears. Combining SECR methods with density surface modelling increases the resolution of mark-recapture methods by directly inferring the effect of spatial factors on regulating local densities of animals.
Erosion and refilling of the plasmasphere during a geomagnetic storm modeled by a neural network
NASA Astrophysics Data System (ADS)
Chu, X. N.; Bortnik, J.; Li, W.; Ma, Q.; Angelopoulos, V.; Thorne, R. M.
2017-07-01
We present a history-dependent model of the equatorial plasma density of the inner magnetosphere using a feedforward neural network with two hidden layers. As the model inputs, we take locations and time series of SYM-H, AL, and F10.7 indices. By considering not only the instantaneous values but also the past values of geomagnetic and solar indices, the model is history dependent on levels of geomagnetic and solar activity. The modeled electron density is continuous both spatially and temporally so that the evolution of the density can be studied (such as plasmaspheric refilling). The model is trained using the electron density inferred from the spacecraft potential from three THEMIS probes. The equatorial electron density is shown to be accurately reconstructed with a correlation coefficient of r 0.953 between data and model target. Since the model is history dependent, it succeeds in reconstructing various density features and dynamic behaviors, such as the quiet time plasmasphere, erosion and recovery of the plasmasphere, as well as the plume formation during a storm on 4 February 2011. Our model may provide unprecedented insight into the behavior of the equatorial density at any time and location; as an example we show the inferred refilling rate from our model and compare it to previous estimates.
Effects of LiDAR point density and landscape context on the retrieval of urban forest biomass
NASA Astrophysics Data System (ADS)
Singh, K. K.; Chen, G.; McCarter, J. B.; Meentemeyer, R. K.
2014-12-01
Light Detection and Ranging (LiDAR), as an alternative to conventional optical remote sensing, is being increasingly used to accurately estimate aboveground forest biomass ranging from individual tree to stand levels. Recent advancements in LiDAR technology have resulted in higher point densities and better data accuracies, which however pose challenges to the procurement and processing of LiDAR data for large-area assessments. Reducing point density cuts data acquisition costs and overcome computational challenges for broad-scale forest management. However, how does that impact the accuracy of biomass estimation in an urban environment containing a great level of anthropogenic disturbances? The main goal of this study is to evaluate the effects of LiDAR point density on the biomass estimation of remnant forests in the rapidly urbanizing regions of Charlotte, North Carolina, USA. We used multiple linear regression to establish the statistical relationship between field-measured biomass and predictor variables (PVs) derived from LiDAR point clouds with varying densities. We compared the estimation accuracies between the general Urban Forest models (no discrimination of forest type) and the Forest Type models (evergreen, deciduous, and mixed), which was followed by quantifying the degree to which landscape context influenced biomass estimation. The explained biomass variance of Urban Forest models, adjusted R2, was fairly consistent across the reduced point densities with the highest difference of 11.5% between the 100% and 1% point densities. The combined estimates of Forest Type biomass models outperformed the Urban Forest models using two representative point densities (100% and 40%). The Urban Forest biomass model with development density of 125 m radius produced the highest adjusted R2 (0.83 and 0.82 at 100% and 40% LiDAR point densities, respectively) and the lowest RMSE values, signifying the distance impact of development on biomass estimation. Our evaluation suggests that reducing LiDAR point density is a viable solution to regional-scale forest biomass assessment without compromising the accuracy of estimation, which may further be improved using development density.
Local density approximation in site-occupation embedding theory
NASA Astrophysics Data System (ADS)
Senjean, Bruno; Tsuchiizu, Masahisa; Robert, Vincent; Fromager, Emmanuel
2017-01-01
Site-occupation embedding theory (SOET) is a density functional theory (DFT)-based method which aims at modelling strongly correlated electrons. It is in principle exact and applicable to model and quantum chemical Hamiltonians. The theory is presented here for the Hubbard Hamiltonian. In contrast to conventional DFT approaches, the site (or orbital) occupations are deduced in SOET from a partially interacting system consisting of one (or more) impurity site(s) and non-interacting bath sites. The correlation energy of the bath is then treated implicitly by means of a site-occupation functional. In this work, we propose a simple impurity-occupation functional approximation based on the two-level (2L) Hubbard model which is referred to as two-level impurity local density approximation (2L-ILDA). Results obtained on a prototypical uniform eight-site Hubbard ring are promising. The extension of the method to larger systems and more sophisticated model Hamiltonians is currently in progress.
Further developments in orbit ephemeris derived neutral density
NASA Astrophysics Data System (ADS)
Locke, Travis
There are a number of non-conservative forces acting on a satellite in low Earth orbit. The one which is the most dominant and also contains the most uncertainty is atmospheric drag. Atmospheric drag is directly proportional to atmospheric density, and the existing atmospheric density models do not accurately model the variations in atmospheric density. In this research, precision orbit ephemerides (POE) are used as input measurements in an optimal orbit determination scheme in order to estimate corrections to existing atmospheric density models. These estimated corrections improve the estimates of the drag experienced by a satellite and therefore provide an improvement in orbit determination and prediction as well as a better overall understanding of the Earth's upper atmosphere. The optimal orbit determination scheme used in this work includes using POE data as measurements in a sequential filter/smoother process using the Orbit Determination Tool Kit (ODTK) software. The POE derived density estimates are validated by comparing them with the densities derived from accelerometers on board the Challenging Minisatellite Payload (CHAMP) and the Gravity Recovery and Climate Experiment (GRACE). These accelerometer derived density data sets for both CHAMP and GRACE are available from Sean Bruinsma of the Centre National d'Etudes Spatiales (CNES). The trend in the variation of atmospheric density is compared quantitatively by calculating the cross correlation (CC) between the POE derived density values and the accelerometer derived density values while the magnitudes of the two data sets are compared by calculating the root mean square (RMS) values between the two. There are certain high frequency density variations that are observed in the accelerometer derived density data but not in the POE derived density data or any of the baseline density models. These high frequency density variations are typically small in magnitude compared to the overall day-night variation. However during certain time periods, such as when the satellite is near the terminator, the variations are on the same order of magnitude as the diurnal variations. These variations can also be especially prevalent during geomagnetic storms and near the polar cusps. One of the goals of this work is to see what affect these unmodeled high frequency variations have on orbit propagation. In order to see this effect, the orbits of CHAMP and GRACE are propagated during certain time periods using different sources of density data as input measurements (accelerometer, POE, HASDM, and Jacchia 1971). The resulting orbit propagations are all compared to the propagation using the accelerometer derived density data which is used as truth. The RMS and the maximum difference between the different propagations are analyzed in order to see what effect the unmodeled density variations have on orbit propagation. These results are also binned by solar and geomagnetic activity level. The primary input into the orbit determination scheme used to produce the POE derived density estimates is a precision orbit ephemeris file. This file contains position and velocity in-formation for the satellite based on GPS and SLR measurements. The values contained in these files are estimated values and therefore contain some level of error, typically thought to be around the 5-10 cm level. The other primary focus of this work is to evaluate the effect of adding different levels of noise (0.1 m, 0.5 m, 1 m, 10 m, and 100 m) to this raw ephemeris data file before it is input into the orbit determination scheme. The resulting POE derived density estimates for each level of noise are then compared with the accelerometer derived densities by computing the CC and RMS values between the data sets. These results are also binned by solar and geomagnetic activity level.
NASA Astrophysics Data System (ADS)
Capote, R.; Herman, M.; Obložinský, P.; Young, P. G.; Goriely, S.; Belgya, T.; Ignatyuk, A. V.; Koning, A. J.; Hilaire, S.; Plujko, V. A.; Avrigeanu, M.; Bersillon, O.; Chadwick, M. B.; Fukahori, T.; Ge, Zhigang; Han, Yinlu; Kailas, S.; Kopecky, J.; Maslov, V. M.; Reffo, G.; Sin, M.; Soukhovitskii, E. Sh.; Talou, P.
2009-12-01
We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released in January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and γ-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from 51V to 239Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capote, R.; Herman, M.; Oblozinsky, P.
We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through (http://www-nds.iaea.org/RIPL-3/). This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from {sup 51}V to {sup 239}Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capote, R.; Herman, M.; Capote,R.
We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from {sup 51}V to {sup 239}Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.« less
Are self-thinning constraints needed in a tree-specific mortality model?
Robert A. Monserud; Thomas Ledermann; Hubert Sterba
2005-01-01
Can a tree-specific mortality model elicit expected forest stand density dynamics without imposing stand-level constraints such as Reineke's maximum stand density index (SDImax) or the -3/2 power law of self-thinning? We examine this emergent properties question using the Austrian stand simulator PROGNAUS. This simulator was chosen...
NASA Astrophysics Data System (ADS)
Naderi, D.; Pahlavani, M. R.; Alavi, S. A.
2013-05-01
Using the Langevin dynamical approach, the neutron multiplicity and the anisotropy of angular distribution of fission fragments in heavy ion fusion-fission reactions were calculated. We applied one- and two-dimensional Langevin equations to study the decay of a hot excited compound nucleus. The influence of the level-density parameter on neutron multiplicity and anisotropy of angular distribution of fission fragments was investigated. We used the level-density parameter based on the liquid drop model with two different values of the Bartel approach and Pomorska approach. Our calculations show that the anisotropy and neutron multiplicity are affected by level-density parameter and neck thickness. The calculations were performed on the 16O+208Pb and 20Ne+209Bi reactions. Obtained results in the case of the two-dimensional Langevin with a level-density parameter based on Bartel and co-workers approach are in better agreement with experimental data.
Measuring atmospheric density using GPS-LEO tracking data
NASA Astrophysics Data System (ADS)
Kuang, D.; Desai, S.; Sibthorpe, A.; Pi, X.
2014-01-01
We present a method to estimate the total neutral atmospheric density from precise orbit determination of Low Earth Orbit (LEO) satellites. We derive the total atmospheric density by determining the drag force acting on the LEOs through centimeter-level reduced-dynamic precise orbit determination (POD) using onboard Global Positioning System (GPS) tracking data. The precision of the estimated drag accelerations is assessed using various metrics, including differences between estimated along-track accelerations from consecutive 30-h POD solutions which overlap by 6 h, comparison of the resulting accelerations with accelerometer measurements, and comparison against an existing atmospheric density model, DTM-2000. We apply the method to GPS tracking data from CHAMP, GRACE, SAC-C, Jason-2, TerraSAR-X and COSMIC satellites, spanning 12 years (2001-2012) and covering orbital heights from 400 km to 1300 km. Errors in the estimates, including those introduced by deficiencies in other modeled forces (such as solar radiation pressure and Earth radiation pressure), are evaluated and the signal and noise levels for each satellite are analyzed. The estimated density data from CHAMP, GRACE, SAC-C and TerraSAR-X are identified as having high signal and low noise levels. These data all have high correlations with anominal atmospheric density model and show common features in relative residuals with respect to the nominal model in related parameter space. On the contrary, the estimated density data from COSMIC and Jason-2 show errors larger than the actual signal at corresponding altitudes thus having little practical value for this study. The results demonstrate that this method is applicable to data from a variety of missions and can provide useful total neutral density measurements for atmospheric study up to altitude as high as 715 km, with precision and resolution between those derived from traditional special orbital perturbation analysis and those obtained from onboard accelerometers.
DOT National Transportation Integrated Search
1975-03-01
parametric variation of demand density was used to compare service level and cost of two alternative systems for providing low density feeder service. Supply models for fixed route and flexible route service were developed and applied to determine ra...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, O. E., E-mail: odd.erik.garcia@uit.no; Kube, R.; Theodorsen, A.
A stochastic model is presented for intermittent fluctuations in the scrape-off layer of magnetically confined plasmas. The fluctuations in the plasma density are modeled by a super-position of uncorrelated pulses with fixed shape and duration, describing radial motion of blob-like structures. In the case of an exponential pulse shape and exponentially distributed pulse amplitudes, predictions are given for the lowest order moments, probability density function, auto-correlation function, level crossings, and average times for periods spent above and below a given threshold level. Also, the mean squared errors on estimators of sample mean and variance for realizations of the process bymore » finite time series are obtained. These results are discussed in the context of single-point measurements of fluctuations in the scrape-off layer, broad density profiles, and implications for plasma–wall interactions due to the transient transport events in fusion grade plasmas. The results may also have wide applications for modelling fluctuations in other magnetized plasmas such as basic laboratory experiments and ionospheric irregularities.« less
A high-performance Fortran code to calculate spin- and parity-dependent nuclear level densities
NASA Astrophysics Data System (ADS)
Sen'kov, R. A.; Horoi, M.; Zelevinsky, V. G.
2013-01-01
A high-performance Fortran code is developed to calculate the spin- and parity-dependent shell model nuclear level densities. The algorithm is based on the extension of methods of statistical spectroscopy and implies exact calculation of the first and second Hamiltonian moments for different configurations at fixed spin and parity. The proton-neutron formalism is used. We have applied the method for calculating the level densities for a set of nuclei in the sd-, pf-, and pf+g- model spaces. Examples of the calculations for 28Si (in the sd-model space) and 64Ge (in the pf+g-model space) are presented. To illustrate the power of the method we estimate the ground state energy of 64Ge in the larger model space pf+g, which is not accessible to direct shell model diagonalization due to the prohibitively large dimension, by comparing with the nuclear level densities at low excitation energy calculated in the smaller model space pf. Program summaryProgram title: MM Catalogue identifier: AENM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 193181 No. of bytes in distributed program, including test data, etc.: 1298585 Distribution format: tar.gz Programming language: Fortran 90, MPI. Computer: Any architecture with a Fortran 90 compiler and MPI. Operating system: Linux. RAM: Proportional to the system size, in our examples, up to 75Mb Classification: 17.15. External routines: MPICH2 (http://www.mcs.anl.gov/research/projects/mpich2/) Nature of problem: Calculating of the spin- and parity-dependent nuclear level density. Solution method: The algorithm implies exact calculation of the first and second Hamiltonian moments for different configurations at fixed spin and parity. The code is parallelized using the Message Passing Interface and a master-slaves dynamical load-balancing approach. Restrictions: The program uses two-body interaction in a restricted single-level basis. For example, GXPF1A in the pf-valence space. Running time: Depends on the system size and the number of processors used (from 1 min to several hours).
Computing by physical interaction in neurons.
Aur, Dorian; Jog, Mandar; Poznanski, Roman R
2011-12-01
The electrodynamics of action potentials represents the fundamental level where information is integrated and processed in neurons. The Hodgkin-Huxley model cannot explain the non-stereotyped spatial charge density dynamics that occur during action potential propagation. Revealed in experiments as spike directivity, the non-uniform charge density dynamics within neurons carry meaningful information and suggest that fragments of information regarding our memories are endogenously stored in structural patterns at a molecular level and are revealed only during spiking activity. The main conceptual idea is that under the influence of electric fields, efficient computation by interaction occurs between charge densities embedded within molecular structures and the transient developed flow of electrical charges. This process of computation underlying electrical interactions and molecular mechanisms at the subcellular level is dissimilar from spiking neuron models that are completely devoid of physical interactions. Computation by interaction describes a more powerful continuous model of computation than the one that consists of discrete steps as represented in Turing machines.
Lateral cascade of indirect effects in food webs with different types of adaptive behavior.
Kamran-Disfani, Ahmad R; Golubski, Antonio J
2013-12-21
It is widely recognized that indirect effects due to adaptive behaviors can have important effects on food webs. One consequence may be to change how readily perturbations propagate through the web, because species' behaviors as well as densities may respond to perturbations. It is not well understood which types of behavior are more likely to facilitate versus inhibit propagation of disturbances through a food web, or how this might be affected by the shape of a food web or the patterns of interaction strengths within it. We model two simple, laterally expanded food webs (one with three trophic levels and one with four), and compare how various adaptive behaviors affect the potential for a newly introduced predator to change the equilibrium densities of distant species. Patterns of changes in response to the introduction were qualitatively similar across most models, as were the ways in which patterns of direct interaction strengths affected those responses. Depending on both the web structure and the specific adaptive behavior, the potential for density changes to propagate through the web could be either increased or diminished relative to the no-behavior model. Two behaviors allowed density changes to propagate through a four-level web that precluded such propagation in the no-behavior model, and each of these two behaviors led to qualitatively different patterns of density changes. In the one model (diet choice) in which density changes were able to propagate in both web structures, patterns of density changes differed qualitatively between webs. Some of our results flowed from the fact that behaviors did not interact directly in the systems we considered, so that indirect effects on distant species had to be at least partly density-mediated. Our models highlight this as an inherent limitation of considering in isolation behaviors that are strictly foraging-related or strictly defense-related, making a case for the value of simultaneously considering multiple interacting types of behavior in the same model. Copyright © 2013 Elsevier Ltd. All rights reserved.
Density-based clustering analyses to identify heterogeneous cellular sub-populations
NASA Astrophysics Data System (ADS)
Heaster, Tiffany M.; Walsh, Alex J.; Landman, Bennett A.; Skala, Melissa C.
2017-02-01
Autofluorescence microscopy of NAD(P)H and FAD provides functional metabolic measurements at the single-cell level. Here, density-based clustering algorithms were applied to metabolic autofluorescence measurements to identify cell-level heterogeneity in tumor cell cultures. The performance of the density-based clustering algorithm, DENCLUE, was tested in samples with known heterogeneity (co-cultures of breast carcinoma lines). DENCLUE was found to better represent the distribution of cell clusters compared to Gaussian mixture modeling. Overall, DENCLUE is a promising approach to quantify cell-level heterogeneity, and could be used to understand single cell population dynamics in cancer progression and treatment.
Effects of population density on corticosterone levels of prairie voles in the field
Blondel, Dimitri V.; Wallace, Gerard N.; Calderone, Stefanie; Gorinshteyn, Marija; St. Mary, Colette M.; Phelps, Steven M.
2015-01-01
High population density is often associated with increased levels of stress-related hormones, such as corticosterone (CORT). Prairie voles (Microtus ochrogaster) are a socially monogamous species known for their large population density fluctuations in the wild. Although CORT influences the social behavior of prairie voles in the lab, the effect of population density on CORT has not previously been quantified in this species in the field. We validated a non-invasive hormone assay for measuring CORT metabolites in prairie vole feces. We then used semi-natural enclosures to experimentally manipulate population density, and measured density effects on male space use and fecal CORT levels. Our enclosures generated patterns of space use and social interaction that were consistent with previous prairie vole field studies. Contrary to the positive relationship between CORT and density typical of other taxa, we found that lower population densities (80 animals/ha) produced higher fecal CORT than high densities (240/ha). Combined with prior work in the lab and field, the data suggest that high prairie vole population densities indicate favorable environments, perhaps through reduced predation risk. Lastly, we found that field animals had lower fecal CORT levels than laboratory-living animals. The data emphasize the usefulness of prairie voles as models for integrating ecological, evolutionary and mechanistic questions in social behavior. PMID:26342968
Potential misuse of avian density as a conservation metric
Skagen, Susan K.; Yackel Adams, Amy A.
2011-01-01
Effective conservation metrics are needed to evaluate the success of management in a rapidly changing world. Reproductive rates and densities of breeding birds (as a surrogate for reproductive rate) have been used to indicate the quality of avian breeding habitat, but the underlying assumptions of these metrics rarely have been examined. When birds are attracted to breeding areas in part by the presence of conspecifics and when breeding in groups influences predation rates, the effectiveness of density and reproductive rate as indicators of habitat quality is reduced. It is beneficial to clearly distinguish between individual- and population-level processes when evaluating habitat quality. We use the term reproductive rate to refer to both levels and further distinguish among levels by using the terms per capita fecundity (number of female offspring per female per year, individual level) and population growth rate (the product of density and per capita fecundity, population level). We predicted how density and reproductive rate interact over time under density-independent and density-dependent scenarios, assuming the ideal free distribution model of how birds settle in breeding habitats. We predicted population density of small populations would be correlated positively with both per capita fecundity and population growth rate due to the Allee effect. For populations in the density-dependent growth phase, we predicted no relation between density and per capita fecundity (because individuals in all patches will equilibrate to the same success rate) and a positive relation between density and population growth rate. Several ecological theories collectively suggest that positive correlations between density and per capita fecundity would be difficult to detect. We constructed a decision tree to guide interpretation of positive, neutral, nonlinear, and negative relations between density and reproductive rates at individual and population levels. ?? 2010 Society for Conservation Biology.
Influence of the Level Density Parametrization on the Effective GDR Width at High Spins
NASA Astrophysics Data System (ADS)
Mazurek, K.; Matejska, M.; Kmiecik, M.; Maj, A.; Dudek, J.
Parameterizations of the nucleonic level densities are tested by computing the effective GDR strength-functions and GDR widths at high spins. Calculations are based on the thermal shape fluctuation method with the Lublin-Strasbourg Drop (LSD) model. Results for 106Sn, 147Eu, 176W, 194Hg are compared to the experimental data.
Aberare, Ogbevire L; Okuonghae, Patrick; Mukoro, Nathaniel; Dirisu, John O; Osazuwa, Favour; Odigie, Elvis; Omoregie, Richard
2011-06-01
Deliberate and regular exposure to premium motor spirit fumes is common and could be a risk factor for liver disease in those who are occupationally exposed. A possible association between premium motor spirit fumes and plasma levels of triglyceride, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol using a rodent model could provide new insights in the pathology of diseases where cellular dysfunction is an established risk factor. The aim of this study was to evaluate the possible effect of premium motor spirit fumes on lipids and lipoproteins in workers occupationally exposed to premium motor spirit fumes using rodent model. Twenty-five Wister albino rats (of both sexes) were used for this study between the 4(th) of August and 7(th) of September, 2010. The rats were divided into five groups of five rats each. Group 1 rats were not exposed to premium motor spirit fumes (control group), group 2 rats were exposed for 1 hour daily, group 3 for 3 hours daily, group 4 for 5 hours daily and group 5 for 7 hours daily. The experiment lasted for a period of 4 weeks. Blood samples obtained from all the groups after 4 weeks of exposure were used for the estimation of plasma levels of triglyceride, total cholesterol, high density lipoprotein- cholesterol and low density lipoprotein- cholesterol. Results showed significant increase in means of plasma total cholesterol and low density lipoprotein levels (P<0.05). The mean triglyceride and total body weight were significantly lower (P<0.05) in the exposed group when compared with the unexposed. The plasma level of high density lipoprotein, the ratio of low density lipoprotein to high density lipoprotein and the ratio of total cholesterol to high density lipoprotein did not differ significantly in exposed subjects when compared with the control group. These results showed that frequent exposure to petrol fumes may be highly deleterious to the liver cells.
IGF-I and mammographic density in four geographic locations: a pooled analysis.
Maskarinec, Gertraud; Takata, Yumie; Chen, Zhao; Gram, Inger Torhild; Nagata, Chisato; Pagano, Ian; Hayashi, Kentaro; Arendell, Leslie; Skeie, Guri; Rinaldi, Sabina; Kaaks, Rudolph
2007-10-15
Insulin-like growth factor (IGF-I) and prolactin have been found to be associated with breast cancer risk and with mammographic density. In a pooled analysis from 4 geographic locations, we investigated the association of percent mammographic density with serum levels of IGF-I, IGFBP-3 and prolactin. The pooled data set included 1,327 pre- and postmenopausal women: Caucasians from Norway, Arizona and Hawaii, Japanese from Hawaii and Japan, Latina from Arizona, and Native Hawaiians from Hawaii. Serum samples were assayed for IGF-I, IGFBP-3 and prolactin levels using ELISA assays. Mammographic density was quantified using a computer-assisted density method. After stratification by menopausal status, multiple regression models estimated the relation between serum analytes and breast density. All serum analytes except prolactin among postmenopausal women differed significantly by location/ethnicity group. Among premenopausal subjects, IGF-I levels and the molar ratio were highest in Hawaii, intermediate in Japan and lowest in Arizona. For IGFBP-3, the order was reversed. Among postmenopausal subjects, Norwegian women had the highest IGF-I levels and women in Arizona had the lowest while women in Japan and Hawaii had intermediate levels. We observed no significant relation between percent density and IGF-I or prolactin levels among pre-and postmenopausal women. The significant differences in IGF-I levels by location but not ethnicity suggest that environmental factors influence IGF-I levels, whereas percent breast density varies more according to ethnic background than by location. Based on this analysis, the influence of circulating levels of IGF-I, IGFBP-3, and prolactin on percent density appears to be very small. (c) 2007 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostova, T; Carlsen, T
2003-11-21
We present a spatially-explicit individual-based computational model of rodent dynamics, customized for the prairie vole species, M. Ochrogaster. The model is based on trophic relationships and represents important features such as territorial competition, mating behavior, density-dependent predation and dispersal out of the modeled spatial region. Vegetation growth and vole fecundity are dependent on climatic components. The results of simulations show that the model correctly predicts the overall temporal dynamics of the population density. Time-series analysis shows a very good match between the periods corresponding to the peak population density frequencies predicted by the model and the ones reported in themore » literature. The model is used to study the relation between persistence, landscape area and predation. We introduce the notions of average time to extinction (ATE) and persistence frequency to quantify persistence. While the ATE decreases with decrease of area, it is a bell-shaped function of the predation level: increasing for 'small' and decreasing for 'large' predation levels.« less
Quantum crystallographic charge density of urea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Michael E.
Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less
Quantum crystallographic charge density of urea
Wall, Michael E.
2016-06-08
Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less
Are self-thinning contraints needed in a tree-specific mortality model.
Robert A. Monserud; Thomas Ledermann; Hubert Sterba
2005-01-01
Can a tree-specific mortality model elicit expected forest stand density dynamics without imposing stand-level constraints such as Reineke's maximum stand density index (SDI,) or the -312 power law of self-thinning? We examine this emergent properties question using the Austrian stand simulator PROGNAUS. This simulator was chosen specifically because it does not...
Noise in restaurants: levels and mathematical model.
To, Wai Ming; Chung, Andy
2014-01-01
Noise affects the dining atmosphere and is an occupational hazard to restaurant service employees worldwide. This paper examines the levels of noise in dining areas during peak hours in different types of restaurants in Hong Kong SAR, China. A mathematical model that describes the noise level in a restaurant is presented. The 1-h equivalent continuous noise level (L(eq,1-h)) was measured using a Type-1 precision integral sound level meter while the occupancy density, the floor area of the dining area, and the ceiling height of each of the surveyed restaurants were recorded. It was found that the measured noise levels using Leq,1-h ranged from 67.6 to 79.3 dBA in Chinese restaurants, from 69.1 to 79.1 dBA in fast food restaurants, and from 66.7 to 82.6 dBA in Western restaurants. Results of the analysis of variance show that there were no significant differences between means of the measured noise levels among different types of restaurants. A stepwise multiple regression analysis was employed to determine the relationships between geometrical and operational parameters and the measured noise levels. Results of the regression analysis show that the measured noise levels depended on the levels of occupancy density only. By reconciling the measured noise levels and the mathematical model, it was found that people in restaurants increased their voice levels when the occupancy density increased. Nevertheless, the maximum measured hourly noise level indicated that the noise exposure experienced by restaurant service employees was below the regulated daily noise exposure value level of 85 dBA.
Prakash Nepal; Peter J. Ince; Kenneth E. Skog; Sun J. Chang
2012-01-01
This paper describes a set of empirical net forest growth models based on forest growing-stock density relationships for three U.S. regions (North, South, and West) and two species groups (softwoods and hardwoods) at the regional aggregate level. The growth models accurately predict historical U.S. timber inventory trends when we incorporate historical timber harvests...
Estimating Density Using Precision Satellite Orbits from Multiple Satellites
NASA Astrophysics Data System (ADS)
McLaughlin, Craig A.; Lechtenberg, Travis; Fattig, Eric; Krishna, Dhaval Mysore
2012-06-01
This article examines atmospheric densities estimated using precision orbit ephemerides (POE) from several satellites including CHAMP, GRACE, and TerraSAR-X. The results of the calibration of atmospheric densities along the CHAMP and GRACE-A orbits derived using POEs with those derived using accelerometers are compared for various levels of solar and geomagnetic activity to examine the consistency in calibration between the two satellites. Densities from CHAMP and GRACE are compared when GRACE is orbiting nearly directly above CHAMP. In addition, the densities derived simultaneously from CHAMP, GRACE-A, and TerraSAR-X are compared to the Jacchia 1971 and NRLMSISE-00 model densities to observe altitude effects and consistency in the offsets from the empirical models among all three satellites.
Models for integrated pest control and their biological implications.
Tang, Sanyi; Cheke, Robert A
2008-09-01
Successful integrated pest management (IPM) control programmes depend on many factors which include host-parasitoid ratios, starting densities, timings of parasitoid releases, dosages and timings of insecticide applications and levels of host-feeding and parasitism. Mathematical models can help us to clarify and predict the effects of such factors on the stability of host-parasitoid systems, which we illustrate here by extending the classical continuous and discrete host-parasitoid models to include an IPM control programme. The results indicate that one of three control methods can maintain the host level below the economic threshold (ET) in relation to different ET levels, initial densities of host and parasitoid populations and host-parasitoid ratios. The effects of host intrinsic growth rate and parasitoid searching efficiency on host mean outbreak period can be calculated numerically from the models presented. The instantaneous pest killing rate of an insecticide application is also estimated from the models. The results imply that the modelling methods described can help in the design of appropriate control strategies and assist management decision-making. The results also indicate that a high initial density of parasitoids (such as in inundative releases) and high parasitoid inter-generational survival rates will lead to more frequent host outbreaks and, therefore, greater economic damage. The biological implications of this counter intuitive result are discussed.
Predation and fragmentation portrayed in the statistical structure of prey time series
Hendrichsen, Ditte K; Topping, Chris J; Forchhammer, Mads C
2009-01-01
Background Statistical autoregressive analyses of direct and delayed density dependence are widespread in ecological research. The models suggest that changes in ecological factors affecting density dependence, like predation and landscape heterogeneity are directly portrayed in the first and second order autoregressive parameters, and the models are therefore used to decipher complex biological patterns. However, independent tests of model predictions are complicated by the inherent variability of natural populations, where differences in landscape structure, climate or species composition prevent controlled repeated analyses. To circumvent this problem, we applied second-order autoregressive time series analyses to data generated by a realistic agent-based computer model. The model simulated life history decisions of individual field voles under controlled variations in predator pressure and landscape fragmentation. Analyses were made on three levels: comparisons between predated and non-predated populations, between populations exposed to different types of predators and between populations experiencing different degrees of habitat fragmentation. Results The results are unambiguous: Changes in landscape fragmentation and the numerical response of predators are clearly portrayed in the statistical time series structure as predicted by the autoregressive model. Populations without predators displayed significantly stronger negative direct density dependence than did those exposed to predators, where direct density dependence was only moderately negative. The effects of predation versus no predation had an even stronger effect on the delayed density dependence of the simulated prey populations. In non-predated prey populations, the coefficients of delayed density dependence were distinctly positive, whereas they were negative in predated populations. Similarly, increasing the degree of fragmentation of optimal habitat available to the prey was accompanied with a shift in the delayed density dependence, from strongly negative to gradually becoming less negative. Conclusion We conclude that statistical second-order autoregressive time series analyses are capable of deciphering interactions within and across trophic levels and their effect on direct and delayed density dependence. PMID:19419539
Dong, Q.; DeAngelis, D.L.
1998-01-01
We used an individual-based modeling approach to study the consequences of cannibalism and competition for food in a freshwater fish population. We simulated the daily foraging, growth, and survival of the age-0 fish and older juvenile individuals of a sample population to reconstruct patterns of density dependence in the age-0 fish during the growth season. Cannibalism occurs as a part of the foraging process. For age-0 fish, older juvenile fish are both potential cannibals and competitors of food. We found that competition and cannibalism produced intraclass and interclass density dependence. Our modeling results suggested the following. (1) With low density of juvenile fish and weak interclass interactions, the age-0 fish recruitment shows a Beverton-Holt type of density dependence. (2) With high density of juvenile fish and strong interclass interactions, the age-0 fish recruitment shows a Ricker type of density dependence, and overcompensation occurs. (3) Interclass competition of food is responsible for much of the overcompensation. (4) Cannibalism intensifies the changes in the recruitment that are brought about by competition. Cannibalism can (a) generally reduce the recruitment, (b) particularly reduce the maximum level of recruitment, (c) cause overcompensation to occur at lower densities, and (d) produce a stronger overcompensation. (5) Growth is also a function of density. Cannibalism generally improves average growth of cannibals. (6) Variation in the lengths of age-0 fish increases with density and with a decreased average growth. These results imply that cannibalism and competition for food could strongly affect recruitment dynamics. Our model also showed that the rate of cannibalism either could be fairly even through the whole season or could vary dramatically. The individual-based modeling approach can help ecologists understand the mechanistic connection between daily behavioral and physiological processes operating at the level of individual organisms and seasonal patterns of population structure and dynamics. ?? Copyright by the American Fisheries Society 1998.
Smargiassi, Audrey; Brand, Allan; Fournier, Michel; Tessier, François; Goudreau, Sophie; Rousseau, Jacques; Benjamin, Mario
2012-07-01
Residential wood burning can be a significant wintertime source of ambient fine particles in urban and suburban areas. We developed a statistical model to predict minute (min) levels of particles with median diameter of <1 μm (PM1) from mobile monitoring on evenings of winter weekends at different residential locations in Quebec, Canada, considering wood burning emissions. The 6 s PM1 levels were concurrently measured on 10 preselected routes travelled 3 to 24 times during the winters of 2008-2009 and 2009-2010 by vehicles equipped with a GRIMM or a dataRAM sampler and a Global Positioning System device. Route-specific and global land-use regression (LUR) models were developed using the following spatial and temporal covariates to predict 1-min-averaged PM1 levels: chimney density from property assessment data at sampling locations, PM2.5 "regional background" levels of particles with median diameter of <2.5 μm (PM2.5) and temperature and wind speed at hour of sampling, elevation at sampling locations and day of the week. In the various routes travelled, between 49% and 94% of the variability in PM1 levels was explained by the selected covariates. The effect of chimney density was not negligible in "cottage areas." The R(2) for the global model including all routes was 0.40. This LUR is the first to predict PM1 levels in both space and time with consideration of the effects of wood burning emissions. We show that the influence of chimney density, a proxy for wood burning emissions, varies by regions and that a global model cannot be used to predict PM in regions that were not measured. Future work should consider using both survey data on wood burning intensity and information from numerical air quality forecast models, in LUR models, to improve the generalisation of the prediction of fine particulate levels.
Microbial risk assessment with the OAEL approach at water abstraction points in rural Kenya
NASA Astrophysics Data System (ADS)
Yillia, Paul T.; Kreuzinger, Norbert; Mathooko, Jude M.; Ndomahina, Ernest T.
US-based models for recreational water quality were applied to characterize the potential health risk (PHR) of infection with gastroenteritis (GI) and highly credible gastroenteritis (HCGI) illnesses from single exposure at several water abstraction points (WAPs) along the Njoro River in rural Kenya. Ambient geometric mean densities of Escherichia coli (EC) and intestinal enterococci (IE) were generally high (2-4 log units of cfu/100 ml) and risk levels were grossly in excess of acceptable health risk (AHR) levels for bathing and drinking. PHR was 2-3 times higher with the Cabelli (IE) model (Equation (2)) compared to the US EPA (EC) model (Equation (1)). Risk levels varied among WAPs in concomitance to the spatial and seasonal variability of ambient EC and IE densities. With the Cabelli IE model, PHR of HCGI illness on single exposure to the dry weather 95th percentile IE density for bathing was 2.5% of the exposed population at Logoman compared to 5.2% at Turkana Flats, 4.9% at Kenyatta or Nessuit and 4.6%, 4.5% and 4.2% at Treetop, Segotik and Njoro Bridge, respectively. PHR was ⩾5% on exposure to the wet weather 95th percentile IE density at all WAPs, excepting Treetop with 4.3%. Relative risk levels increased by at least 30 and 70 times for GI and HCGI illnesses, respectively, from drinking (250 ml) raw stream water, rising erratically in wet weather by >80% of the dry weather risk at Logoman, >30% at Njoro Bridge and Kenyatta and 10-15% at Segotik, Nessuit and Turkana Flats. By stipulating freshwater bathing water quality guidelines of 126 and 33 cfu/100 ml for EC and IE, respectively, US, EPA upholds maximum AHR levels at 0.7% and 1.9% for EC and IE, respectively. Hence, reducing current PHR levels at the WAPs to the US, EPA bathing AHR levels would require at least 2-4 log reductions of IE and EC densities with even further log reductions to achieve the WHO recommended drinking water AHR level of 0.1%. This would necessitate specialized treatment, in particular point-of-use treatment at the household level, as well as the implementation of comprehensive catchment management measures to protect the stream and the WAPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuravlev, B. V., E-mail: zhurav@ippe.ru; Lychagin, A. A.; Titarenko, N. N.
The spectra of neutrons from the (p, n) reactions on {sup 47}Ti, {sup 48}Ti, {sup 49}Ti, {sup 53}Cr, and {sup 54}Cr nuclei were measured in the proton-energy range 7-11 MeV. The measurements were performed with the aid of a fast-neutron spectrometer by the time-of-flight method over the base of the EGP-15 tandem accelerator of the Institute for Physics and Power Engineering (IPPE, Obninsk). Owing to a high resolution and a high stability of the time-of-flight spectrometer used, low-lying discrete levels could be identified reliably along with a continuum section of neutron spectra. An analysis of measured data was performed withinmore » the statistical equilibrium and preequilibrium models of nuclear reactions. The relevant calculations were performed by using the exact formalism of Hauser-Feshbach statistical theory supplemented with the generalized model of a superfluid nucleus, the back-shifted Fermi gas model, and the Gilbert-Cameron composite formula for the nuclear level density. The nuclear level densities for {sup 47}V, {sup 48}V, {sup 49}V, {sup 53}Mn, and {sup 54}Mn were determined along with their energy dependences and model parameters. The results are discussed together with available experimental data and recommendations of model systematics.« less
Bust economics: foragers choose high quality habitats in lean times
Dickman, Christopher R.
2016-01-01
In environments where food resources are spatially variable and temporarily impoverished, consumers that encounter habitat patches with different food density should focus their foraging initially where food density is highest before they move to patches where food density is lower. Increasing missed opportunity costs should drive individuals progressively to patches with lower food density as resources in the initially high food density patches deplete. To test these expectations, we assessed the foraging decisions of two species of dasyurid marsupials (dunnarts: Sminthopsis hirtipes and S. youngsoni) during a deep drought, or bust period, in the Simpson Desert of central Australia. Dunnarts were allowed access to three patches containing different food densities using an interview chamber experiment. Both species exhibited clear preference for the high density over the lower food density patches as measured in total harvested resources. Similarly, when measuring the proportion of resources harvested within the patches, we observed a marginal preference for patches with initially high densities. Models analyzing behavioral choices at the population level found no differences in behavior between the two species, but models analyzing choices at the individual level uncovered some variation. We conclude that dunnarts can distinguish between habitat patches with different densities of food and preferentially exploit the most valuable. As our observations were made during bust conditions, experiments should be repeated during boom times to assess the foraging economics of dunnarts when environmental resources are high. PMID:26839751
Modelling population distribution using remote sensing imagery and location-based data
NASA Astrophysics Data System (ADS)
Song, J.; Prishchepov, A. V.
2017-12-01
Detailed spatial distribution of population density is essential for city studies such as urban planning, environmental pollution and city emergency, even estimate pressure on the environment and human exposure and risks to health. However, most of the researches used census data as the detailed dynamic population distribution are difficult to acquire, especially in microscale research. This research describes a method using remote sensing imagery and location-based data to model population distribution at the function zone level. Firstly, urban functional zones within a city were mapped by high-resolution remote sensing images and POIs. The workflow of functional zones extraction includes five parts: (1) Urban land use classification. (2) Segmenting images in built-up area. (3) Identification of functional segments by POIs. (4) Identification of functional blocks by functional segmentation and weight coefficients. (5) Assessing accuracy by validation points. The result showed as Fig.1. Secondly, we applied ordinary least square and geographically weighted regression to assess spatial nonstationary relationship between light digital number (DN) and population density of sampling points. The two methods were employed to predict the population distribution over the research area. The R²of GWR model were in the order of 0.7 and typically showed significant variations over the region than traditional OLS model. The result showed as Fig.2.Validation with sampling points of population density demonstrated that the result predicted by the GWR model correlated well with light value. The result showed as Fig.3. Results showed: (1) Population density is not linear correlated with light brightness using global model. (2) VIIRS night-time light data could estimate population density integrating functional zones at city level. (3) GWR is a robust model to map population distribution, the adjusted R2 of corresponding GWR models were higher than the optimal OLS models, confirming that GWR models demonstrate better prediction accuracy. So this method provide detailed population density information for microscale citizen studies.
NASA Astrophysics Data System (ADS)
Takano, Yukinori; Hirata, Akimasa; Fujiwara, Osamu
Human exposed to electric and/or magnetic fields at low frequencies may cause direct effect such as nerve stimulation and excitation. Therefore, basic restriction is regulated in terms of induced current density in the ICNIRP guidelines and in-situ electric field in the IEEE standard. External electric or magnetic field which does not produce induced quantities exceeding the basic restriction is used as a reference level. The relationship between the basic restriction and reference level for low-frequency electric and magnetic fields has been investigated using European anatomic models, while limited for Japanese model, especially for electric field exposures. In addition, that relationship has not well been discussed. In the present study, we calculated the induced quantities in anatomic Japanese male and female models exposed to electric and magnetic fields at reference level. A quasi static finite-difference time-domain (FDTD) method was applied to analyze this problem. As a result, spatially averaged induced current density was found to be more sensitive to averaging algorithms than that of in-situ electric field. For electric and magnetic field exposure at the ICNIRP reference level, the maximum values of the induced current density for different averaging algorithm were smaller than the basic restriction for most cases. For exposures at the reference level in the IEEE standard, the maximum electric fields in the brain were larger than the basic restriction in the brain while smaller for the spinal cord and heart.
Effects of population density on corticosterone levels of prairie voles in the field.
Blondel, Dimitri V; Wallace, Gerard N; Calderone, Stefanie; Gorinshteyn, Marija; St Mary, Colette M; Phelps, Steven M
2016-01-01
High population density is often associated with increased levels of stress-related hormones, such as corticosterone (CORT). Prairie voles (Microtus ochrogaster) are a socially monogamous species known for their large population density fluctuations in the wild. Although CORT influences the social behavior of prairie voles in the lab, the effect of population density on CORT has not previously been quantified in this species in the field. We validated a non-invasive hormone assay for measuring CORT metabolites in prairie vole feces. We then used semi-natural enclosures to experimentally manipulate population density, and measured density effects on male space use and fecal CORT levels. Our enclosures generated patterns of space use and social interaction that were consistent with previous prairie vole field studies. Contrary to the positive relationship between CORT and density typical of other taxa, we found that lower population densities (80 animals/ha) produced higher fecal CORT than higher densities (240/ha). Combined with prior work in the lab and field, the data suggest that high prairie vole population densities indicate favorable environments, perhaps through reduced predation risk. Lastly, we found that field animals had lower fecal CORT levels than laboratory-living animals. The data emphasize the usefulness of prairie voles as models for integrating ecological, evolutionary, and mechanistic questions in social behavior. Copyright © 2015 Elsevier Inc. All rights reserved.
Comparisons of thermospheric density data sets and models
NASA Astrophysics Data System (ADS)
Doornbos, Eelco; van Helleputte, Tom; Emmert, John; Drob, Douglas; Bowman, Bruce R.; Pilinski, Marcin
During the past decade, continuous long-term data sets of thermospheric density have become available to researchers. These data sets have been derived from accelerometer measurements made by the CHAMP and GRACE satellites and from Space Surveillance Network (SSN) tracking data and related Two-Line Element (TLE) sets. These data have already resulted in a large number of publications on physical interpretation and improvement of empirical density modelling. This study compares four different density data sets and two empirical density models, for the period 2002-2009. These data sources are the CHAMP (1) and GRACE (2) accelerometer measurements, the long-term database of densities derived from TLE data (3), the High Accuracy Satellite Drag Model (4) run by Air Force Space Command, calibrated using SSN data, and the NRLMSISE-00 (5) and Jacchia-Bowman 2008 (6) empirical models. In describing these data sets and models, specific attention is given to differences in the geo-metrical and aerodynamic satellite modelling, applied in the conversion from drag to density measurements, which are main sources of density biases. The differences in temporal and spa-tial resolution of the density data sources are also described and taken into account. With these aspects in mind, statistics of density comparisons have been computed, both as a function of solar and geomagnetic activity levels, and as a function of latitude and local solar time. These statistics give a detailed view of the relative accuracy of the different data sets and of the biases between them. The differences are analysed with the aim at providing rough error bars on the data and models and pinpointing issues which could receive attention in future iterations of data processing algorithms and in future model development.
Benjamin A. Crabb; James A. Powell; Barbara J. Bentz
2012-01-01
Forecasting spatial patterns of mountain pine beetle (MPB) population success requires spatially explicit information on host pine distribution. We developed a means of producing spatially explicit datasets of pine density at 30-m resolution using existing geospatial datasets of vegetation composition and structure. Because our ultimate goal is to model MPB population...
Modeling fish community dynamics in Florida Everglades: Role of temperature variation
Al-Rabai'ah, H. A.; Koh, H. L.; DeAngelis, Donald L.; Lee, Hooi-Ling
2002-01-01
The model shows that the temperature dependent starvation mortality is an important factor that influences fish population densities. It also shows high fish population densities at some temperature ranges when this consumption need is minimum. Several sensitivity analyses involving variations in temperature terms, food resources and water levels are conducted to ascertain the relative importance of temperature dependence terms.
Pediatric Dentist Density and Preventive Care Utilization for Medicaid Children.
Heidenreich, James F; Kim, Amy S; Scott, JoAnna M; Chi, Donald L
2015-01-01
The purpose of this study was to evaluate county-level pediatric dentist density and dental care utilization for Medicaid-enrolled children. This was a cross-sectional analysis of 604,885 zero- to 17-year-olds enrolled in the Washington State Medicaid Program for 11-12 months in 2012. The relationship between county-level pediatric dentist density, defined as the number of pediatric dentists per 10,000 Medicaid-enrolled children, and preventive dental care utilization was evaluated using linear regression models. In 2012, 179 pediatric dentists practiced in 16 of the 39 counties in Washington. County-level pediatric dentist density varied from zero to 5.98 pediatric dentists per 10,000 Medicaid-enrolled children. County-level preventive dental care utilization ranged from 32 percent to 81 percent, with 62 percent of Medicaid-enrolled children utilizing preventive dental services. County-level density was significantly associated with county-level dental care utilization (Slope equals 1.67, 95 percent confidence interval equals 0.02, 3.32, P<.05). There is a significant relationship between pediatric dentist density and the proportion of Medicaid-enrolled children who utilize preventive dental care services. Policies aimed at improving pediatric oral health disparities should include strategies to increase the number of oral health care providers, including pediatric dentists, in geographic areas with large proportions of Medicaid-enrolled children.
Moncho, Salvador; Autschbach, Jochen
2010-01-12
A benchmark study for relativistic density functional calculations of NMR spin-spin coupling constants has been performed. The test set contained 47 complexes with heavy metal atoms (W, Pt, Hg, Tl, Pb) with a total of 88 coupling constants involving one or two heavy metal atoms. One-, two-, three-, and four-bond spin-spin couplings have been computed at different levels of theory (nonhybrid vs hybrid DFT, scalar vs two-component relativistic). The computational model was based on geometries fully optimized at the BP/TZP scalar relativistic zeroth-order regular approximation (ZORA) and the conductor-like screening model (COSMO) to include solvent effects. The NMR computations also employed the continuum solvent model. Computations in the gas phase were performed in order to assess the importance of the solvation model. The relative median deviations between various computational models and experiment were found to range between 13% and 21%, with the highest-level computational model (hybrid density functional computations including scalar plus spin-orbit relativistic effects, the COSMO solvent model, and a Gaussian finite-nucleus model) performing best.
Attacking a Dense Problem: A Learner-Centered Approach to Teaching Density
ERIC Educational Resources Information Center
Hitt, Austin M.
2005-01-01
Density is a difficult concept for students to learn because it is abstract and because it is derived from the concepts of mass and volume. The solution is to address density at each of the three levels of scientific understanding: macroscopic, particle/modeling, and symbolic. This article demonstrates how to help students gain a conceptual…
Meijer, Mathias; Kejs, Anne Mette; Stock, Christiane; Bloomfield, Kim; Ejstrud, Bo; Schlattmann, Peter
2012-03-01
This study examines the relative effects of population density and area-level SES on all-cause mortality in Denmark. A shared frailty model was fitted with 2.7 million persons aged 30-81 years in 2,121 parishes. Residence in areas with high population density increased all-cause mortality for all age groups. For older age groups, residence in areas with higher proportions of unemployed persons had an additional effect. Area-level factors explained considerably more variation in mortality among the elderly than among younger generations. Overall this study suggests that structural prevention efforts in neighborhoods could help reduce mortality when mediating processes between area-level socioeconomic status, population density and mortality are found. Copyright © 2011 Elsevier Ltd. All rights reserved.
Plant interactions alter the predictions of metabolic scaling theory.
Lin, Yue; Berger, Uta; Grimm, Volker; Huth, Franka; Weiner, Jacob
2013-01-01
Metabolic scaling theory (MST) is an attempt to link physiological processes of individual organisms with macroecology. It predicts a power law relationship with an exponent of -4/3 between mean individual biomass and density during density-dependent mortality (self-thinning). Empirical tests have produced variable results, and the validity of MST is intensely debated. MST focuses on organisms' internal physiological mechanisms but we hypothesize that ecological interactions can be more important in determining plant mass-density relationships induced by density. We employ an individual-based model of plant stand development that includes three elements: a model of individual plant growth based on MST, different modes of local competition (size-symmetric vs. -asymmetric), and different resource levels. Our model is consistent with the observed variation in the slopes of self-thinning trajectories. Slopes were significantly shallower than -4/3 if competition was size-symmetric. We conclude that when the size of survivors is influenced by strong ecological interactions, these can override predictions of MST, whereas when surviving plants are less affected by interactions, individual-level metabolic processes can scale up to the population level. MST, like thermodynamics or biomechanics, sets limits within which organisms can live and function, but there may be stronger limits determined by ecological interactions. In such cases MST will not be predictive.
A finite element/level set model of polyurethane foam expansion and polymerization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Rekha R.; Long, Kevin Nicholas; Roberts, Christine Cardinal
Polyurethane foams are used widely for encapsulation and structural purposes because they are inexpensive, straightforward to process, amenable to a wide range of density variations (1 lb/ft3 - 50 lb/ft3), and able to fill complex molds quickly and effectively. Computational model of the filling and curing process are needed to reduce defects such as voids, out-of-specification density, density gradients, foam decomposition from high temperatures due to exotherms, and incomplete filling. This paper details the development of a computational fluid dynamics model of a moderate density PMDI structural foam, PMDI-10. PMDI is an isocyanate-based polyurethane foam, which is chemically blown withmore » water. The polyol reacts with isocyanate to produces the polymer. PMDI- 10 is catalyzed giving it a short pot life: it foams and polymerizes to a solid within 5 minutes during normal processing. To achieve a higher density, the foam is over-packed to twice or more of its free rise density of 10 lb/ft3. The goal for modeling is to represent the expansion, filling of molds, and the polymerization of the foam. This will be used to reduce defects, optimize the mold design, troubleshoot the processed, and predict the final foam properties. A homogenized continuum model foaming and curing was developed based on reaction kinetics, documented in a recent paper; it uses a simplified mathematical formalism that decouples these two reactions. The chemo-rheology of PMDI is measured experimentally and fit to a generalized- Newtonian viscosity model that is dependent on the extent of cure, gas fraction, and temperature. The conservation equations, including the equations of motion, an energy balance, and three rate equations are solved via a stabilized finite element method. The equations are combined with a level set method to determine the location of the foam-gas interface as it evolves to fill the mold. Understanding the thermal history and loads on the foam due to exothermicity and oven curing is very important to the results, since the kinetics, viscosity, and other material properties are all sensitive to temperature. Results from the model are compared to experimental flow visualization data and post-test X-ray computed tomography (CT) data for the density. Several geometries are investigated including two configurations of a mock structural part and a bar geometry to specifically test the density model. We have found that the model predicts both average density and filling profiles well. However, it under predicts density gradients, especially in the gravity direction. Further model improvements are also discussed for future work.« less
NASA Astrophysics Data System (ADS)
Buldakov, M. A.; Vershkov, V. A.; Isaev, M. Yu; Shelukhin, D. A.
2017-10-01
The antenna system of reflectometry diagnostics at the T-10 tokamak allows to study long-range toroidal correlations of plasma density fluctuations along the magnetic field lines. The antenna systems are installed in two poloidal cross-sections of the vacuum chamber separated by a 90° angle in the toroidal direction. The experiments, which were conducted at the low field side, showed that the high level of toroidal correlations is observed only for quasi-coherent fluctuations. However, broadband and stochastic low frequency fluctuations are not correlated. Numerical modeling of the plasma turbulence structure in the T-10 tokamak was conducted to interpret the experimental results and take into account non-locality of reflectometry measurements. In the model used, it was assumed that the magnitudes of density fluctuations are constant along the magnetic field lines. The 2D full-wave Tamic-RTH code was used to model the reflectometry signals. High level of correlations for quasi-coherent fluctuations was obtained during the modeling, which agrees with the experimental observations. However, the performed modeling also predicts high level of correlations for broadband fluctuations, which contradicts the experimental data. The modeling showed that the effective reflection radius, from which the information on quasi-coherent plasma turbulence is obtained, is shifted outwards from the reflection radius by approximately 7 mm.
Anero, Jesús G; Español, Pep; Tarazona, Pedro
2013-07-21
We present a generalization of Density Functional Theory (DFT) to non-equilibrium non-isothermal situations. By using the original approach set forth by Gibbs in his consideration of Macroscopic Thermodynamics (MT), we consider a Functional Thermo-Dynamics (FTD) description based on the density field and the energy density field. A crucial ingredient of the theory is an entropy functional, which is a concave functional. Therefore, there is a one to one connection between the density and energy fields with the conjugate thermodynamic fields. The connection between the three levels of description (MT, DFT, FTD) is clarified through a bridge theorem that relates the entropy of different levels of description and that constitutes a generalization of Mermin's theorem to arbitrary levels of description whose relevant variables are connected linearly. Although the FTD level of description does not provide any new information about averages and correlations at equilibrium, it is a crucial ingredient for the dynamics in non-equilibrium states. We obtain with the technique of projection operators the set of dynamic equations that describe the evolution of the density and energy density fields from an initial non-equilibrium state towards equilibrium. These equations generalize time dependent density functional theory to non-isothermal situations. We also present an explicit model for the entropy functional for hard spheres.
Memory effects in microscopic traffic models and wide scattering in flow-density data
NASA Astrophysics Data System (ADS)
Treiber, Martin; Helbing, Dirk
2003-10-01
By means of microscopic simulations we show that noninstantaneous adaptation of the driving behavior to the traffic situation together with the conventional method to measure flow-density data provides a possible explanation for the observed inverse-λ shape and the wide scattering of flow-density data in “synchronized” congested traffic. We model a memory effect in the response of drivers to the traffic situation for a wide class of car-following models by introducing an additional dynamical variable (the “subjective level of service”) describing the adaptation of drivers to the surrounding traffic situation during the past few minutes and couple this internal state to parameters of the underlying model that are related to the driving style. For illustration, we use the intelligent-driver model (IDM) as the underlying model, characterize the level of service solely by the velocity, and couple the internal variable to the IDM parameter “time gap” to model an increase of the time gap in congested traffic (“frustration effect”), which is supported by single-vehicle data. We simulate open systems with a bottleneck and obtain flow-density data by implementing “virtual detectors.” The shape, relative size, and apparent “stochasticity” of the region of the scattered data points agree nearly quantitatively with empirical data. Wide scattering is even observed for identical vehicles, although the proposed model is a time-continuous, deterministic, single-lane car-following model with a unique fundamental diagram.
NASA Astrophysics Data System (ADS)
Mao, Junjie; Kaastra, J. S.; Mehdipour, M.; Raassen, A. J. J.; Gu, Liyi; Miller, J. M.
2017-11-01
Context. Ionized outflows in active galactic nuclei (AGNs) are thought to influence their nuclear and local galactic environment. However, the distance of the outflows with respect to the central engine is poorly constrained, which limits our understanding of their kinetic power as a cosmic feedback channel. Therefore, the impact of AGN outflows on their host galaxies is uncertain. However, when the density of the outflows is known, their distance can be immediately obtained from their modeled ionization parameters. Aims: We perform a theoretical study of density diagnostics of ionized outflows using absorption lines from metastable levels in Be-like to C-like cosmic abundant ions. Methods: With the new self-consistent PhotoIONization (PION) model in the SPEX code, we are able to calculate detailed level populations, including the ground and metastable levels. This enables us to determine under what physical conditions the metastable levels are significantly populated. We then identify characteristic lines from these metastable levels in the 1-2000 Å wavelength range. Results: In the broad density range of nH ∈ (106, 1020) m-3, the metastable levels 2s2p (3P0-2) in Be-like ions can be significantly populated. For B-like ions, merely the first excited level 2s22p (2P3/2) can be used as a density probe. For C-like ions, the first two excited levels 2s22p2 (3P1 and 3P2) are better density probes than the next two excited levels 2s22p2 (1S0 and 1D2). Different ions in the same isoelectronic sequence cover not only a wide range of ionization parameters, but also a wide range of density values. On the other hand, within the same isonuclear sequence, those less ionized ions probe lower density and smaller ionization parameters. Finally, we reanalyzed the high-resolution grating spectra of NGC 5548 observed with Chandra in January 2002 using a set of PION components to account for the ionized outflow. We derive lower (or upper) limits of plasma density in five out of six PION components based on the presence (or absence) of the metastable absorption lines. Once atomic data from N-like to F-like ions are available, combined with the next generation of spectrometers that cover both X-ray and UV wavelength ranges with higher spectral resolution and larger effective areas, tight constraints on the density and thus the location and kinetic power of AGN outflows can be obtained.
Liquid-liquid critical point in a simple analytical model of water.
Urbic, Tomaz
2016-10-01
A statistical model for a simple three-dimensional Mercedes-Benz model of water was used to study phase diagrams. This model on a simple level describes the thermal and volumetric properties of waterlike molecules. A molecule is presented as a soft sphere with four directions in which hydrogen bonds can be formed. Two neighboring waters can interact through a van der Waals interaction or an orientation-dependent hydrogen-bonding interaction. For pure water, we explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility and found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations. The model exhibits also two critical points for liquid-gas transition and transition between low-density and high-density fluid. Coexistence curves and a Widom line for the maximum and minimum in thermal expansion coefficient divides the phase space of the model into three parts: in one part we have gas region, in the second a high-density liquid, and the third region contains low-density liquid.
Liquid-liquid critical point in a simple analytical model of water
NASA Astrophysics Data System (ADS)
Urbic, Tomaz
2016-10-01
A statistical model for a simple three-dimensional Mercedes-Benz model of water was used to study phase diagrams. This model on a simple level describes the thermal and volumetric properties of waterlike molecules. A molecule is presented as a soft sphere with four directions in which hydrogen bonds can be formed. Two neighboring waters can interact through a van der Waals interaction or an orientation-dependent hydrogen-bonding interaction. For pure water, we explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility and found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations. The model exhibits also two critical points for liquid-gas transition and transition between low-density and high-density fluid. Coexistence curves and a Widom line for the maximum and minimum in thermal expansion coefficient divides the phase space of the model into three parts: in one part we have gas region, in the second a high-density liquid, and the third region contains low-density liquid.
NASA Technical Reports Server (NTRS)
Ko, William L.; Olona, Timothy; Muramoto, Kyle M.
1990-01-01
Different finite element models previously set up for thermal analysis of the space shuttle orbiter structure are discussed and their shortcomings identified. Element density criteria are established for the finite element thermal modelings of space shuttle orbiter-type large, hypersonic aircraft structures. These criteria are based on rigorous studies on solution accuracies using different finite element models having different element densities set up for one cell of the orbiter wing. Also, a method for optimization of the transient thermal analysis computer central processing unit (CPU) time is discussed. Based on the newly established element density criteria, the orbiter wing midspan segment was modeled for the examination of thermal analysis solution accuracies and the extent of computation CPU time requirements. The results showed that the distributions of the structural temperatures and the thermal stresses obtained from this wing segment model were satisfactory and the computation CPU time was at the acceptable level. The studies offered the hope that modeling the large, hypersonic aircraft structures using high-density elements for transient thermal analysis is possible if a CPU optimization technique was used.
Hedley, John D; McMahon, Kathryn; Fearns, Peter
2014-01-01
A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state. The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of photosynthesis versus irradiance (P-I) curves near saturating irradiance. Therefore studies of light limitation in seagrasses should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and light environment. These plots can be used to interpret the significance of canopy changes induced as a response to decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival. By providing insight to these processes the methods developed here could be a valuable management tool for seagrass conservation during dredging or other coastal developments.
Hedley, John D.; McMahon, Kathryn; Fearns, Peter
2014-01-01
A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state. The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of photosynthesis versus irradiance (P-I) curves near saturating irradiance. Therefore studies of light limitation in seagrasses should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and light environment. These plots can be used to interpret the significance of canopy changes induced as a response to decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival. By providing insight to these processes the methods developed here could be a valuable management tool for seagrass conservation during dredging or other coastal developments. PMID:25347849
Potential misuse of avian density as a conservation metric.
Skagen, Susan K; Yackel Adams, Amy A
2011-02-01
Effective conservation metrics are needed to evaluate the success of management in a rapidly changing world. Reproductive rates and densities of breeding birds (as a surrogate for reproductive rate) have been used to indicate the quality of avian breeding habitat, but the underlying assumptions of these metrics rarely have been examined. When birds are attracted to breeding areas in part by the presence of conspecifics and when breeding in groups influences predation rates, the effectiveness of density and reproductive rate as indicators of habitat quality is reduced. It is beneficial to clearly distinguish between individual- and population-level processes when evaluating habitat quality. We use the term reproductive rate to refer to both levels and further distinguish among levels by using the terms per capita fecundity (number of female offspring per female per year, individual level) and population growth rate (the product of density and per capita fecundity, population level). We predicted how density and reproductive rate interact over time under density-independent and density-dependent scenarios, assuming the ideal free distribution model of how birds settle in breeding habitats. We predicted population density of small populations would be correlated positively with both per capita fecundity and population growth rate due to the Allee effect. For populations in the density-dependent growth phase, we predicted no relation between density and per capita fecundity (because individuals in all patches will equilibrate to the same success rate) and a positive relation between density and population growth rate. Several ecological theories collectively suggest that positive correlations between density and per capita fecundity would be difficult to detect. We constructed a decision tree to guide interpretation of positive, neutral, nonlinear, and negative relations between density and reproductive rates at individual and population levels. Journal compilation ©2010 Society for Conservation Biology. No claim to original US government works.
Grineski, Sara E; Collins, Timothy W; Kim, Young-An
2016-09-01
We used an expanded conceptualization of ethnic density at the neighborhood level, tailored to Hispanic majority communities in the USA, and a robust measure of children's acculturation at the individual level, to predict Hispanic children's respiratory health. We conducted a cross-sectional survey of 1904 children in 2012 in El Paso, TX, USA. One thousand one hundred and seven Hispanic children nested within 72 census tracts were analyzed. Multilevel logistic regression models with cross-level interactions were used to predict bronchitis, asthma and wheezing during sleep. A neighborhood-level ethnic density factor was a non-significant risk factor while individual-level acculturation was a significant risk factor for the three outcomes. Pest troubles and not having been breastfed as an infant intensified the positive association between ethnic density and bronchitis. Increases in ethnic density intensified the odds of wheezing in sleep if the child was not low birth weight or was not economically deprived. Results suggest that increasing individual-level acculturation is detrimental for US Hispanic children's respiratory health in this Hispanic majority setting, while high ethnic density neighborhoods are mildly risky and pose more significant threats when other individual-level factors are present. © The Author 2015. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Valic, Blaz; Gajsek, Peter; Miklavcic, Damijan
2009-10-01
A numerical model of a human body with an intramedullary nail in the femur was built to evaluate the effects of the implant on the current density distribution in extremely low frequency electric and magnetic fields. The intramedullary nail was chosen because it is one of the longest high conductive implants used in the human body. As such it is expected to alter the electric and magnetic fields significantly. The exposure was a simultaneous combination of inferior to superior electric field and posterior to anterior magnetic field both alternating at 50 Hz with the values corresponding to the ICNIRP reference levels: 5000 V m(-1) for electric field and 100 microT for magnetic flux density. The calculated current density distribution inside the model was compared to the ICNIRP basic restrictions for general public (2 mA m(-2)). The results show that the implant significantly increases the current density up to 9.5 mA m(-2) in the region where it is in contact with soft tissue in the model with the implant in comparison to 0.9 mA m(-2) in the model without the implant. As demonstrated the ICNIRP basic restrictions are exceeded in a limited volume of the tissue in spite of the compliance with the ICNIRP reference levels for general public, meaning that the existing safety limits do not necessarily protect implanted persons to the same extent as they protect people without implants.
Guevara, V R
2004-02-01
A nonlinear programming optimization model was developed to maximize margin over feed cost in broiler feed formulation and is described in this paper. The model identifies the optimal feed mix that maximizes profit margin. Optimum metabolizable energy level and performance were found by using Excel Solver nonlinear programming. Data from an energy density study with broilers were fitted to quadratic equations to express weight gain, feed consumption, and the objective function income over feed cost in terms of energy density. Nutrient:energy ratio constraints were transformed into equivalent linear constraints. National Research Council nutrient requirements and feeding program were used for examining changes in variables. The nonlinear programming feed formulation method was used to illustrate the effects of changes in different variables on the optimum energy density, performance, and profitability and was compared with conventional linear programming. To demonstrate the capabilities of the model, I determined the impact of variation in prices. Prices for broiler, corn, fish meal, and soybean meal were increased and decreased by 25%. Formulations were identical in all other respects. Energy density, margin, and diet cost changed compared with conventional linear programming formulation. This study suggests that nonlinear programming can be more useful than conventional linear programming to optimize performance response to energy density in broiler feed formulation because an energy level does not need to be set.
Test of level density models from reactions of Li6 on Fe58 and Li7 on Fe57
NASA Astrophysics Data System (ADS)
Oginni, B. M.; Grimes, S. M.; Voinov, A. V.; Adekola, A. S.; Brune, C. R.; Carter, D. E.; Heinen, Z.; Jacobs, D.; Massey, T. N.; O'Donnell, J. E.; Schiller, A.
2009-09-01
The reactions of Li6 on Fe58 and Li7 on Fe57 have been studied at 15 MeV beam energy. These two reactions produce the same compound nucleus, Cu64. The charged particle spectra were measured at backward angles. The data obtained have been compared with Hauser-Feshbach model calculations. The level density parameters of Ni63 and Co60 have been obtained from the particle evaporation spectra. We also find contributions from the break up of the lithium projectiles to the low energy region of the α spectra.
Kabaria, Caroline W; Gilbert, Marius; Noor, Abdisalan M; Snow, Robert W; Linard, Catherine
2017-01-26
Although malaria has been traditionally regarded as less of a problem in urban areas compared to neighbouring rural areas, the risk of malaria infection continues to exist in densely populated, urban areas of Africa. Despite the recognition that urbanization influences the epidemiology of malaria, there is little consensus on urbanization relevant for malaria parasite mapping. Previous studies examining the relationship between urbanization and malaria transmission have used products defining urbanization at global/continental scales developed in the early 2000s, that overestimate actual urban extents while the population estimates are over 15 years old and estimated at administrative unit level. This study sought to discriminate an urbanization definition that is most relevant for malaria parasite mapping using individual level malaria infection data obtained from nationally representative household-based surveys. Boosted regression tree (BRT) modelling was used to determine the effect of urbanization on malaria transmission and if this effect varied with urbanization definition. In addition, the most recent high resolution population distribution data was used to determine whether population density had significant effect on malaria parasite prevalence and if so, could population density replace urban classifications in modelling malaria transmission patterns. The risk of malaria infection was shown to decline from rural areas through peri-urban settlements to urban central areas. Population density was found to be an important predictor of malaria risk. The final boosted regression trees (BRT) model with urbanization and population density gave the best model fit (Tukey test p value <0.05) compared to the models with urbanization only. Given the challenges in uniformly classifying urban areas across different countries, population density provides a reliable metric to adjust for the patterns of malaria risk in densely populated urban areas. Future malaria risk models can, therefore, be improved by including both population density and urbanization which have both been shown to have significant impact on malaria risk in this study.
Pedersen, Kristine Bondo; Kirkelund, Gunvor M; Ottosen, Lisbeth M; Jensen, Pernille E; Lejon, Tore
2015-01-01
Chemometrics was used to develop a multivariate model based on 46 previously reported electrodialytic remediation experiments (EDR) of five different harbour sediments. The model predicted final concentrations of Cd, Cu, Pb and Zn as a function of current density, remediation time, stirring rate, dry/wet sediment, cell set-up as well as sediment properties. Evaluation of the model showed that remediation time and current density had the highest comparative influence on the clean-up levels. Individual models for each heavy metal showed variance in the variable importance, indicating that the targeted heavy metals were bound to different sediment fractions. Based on the results, a PLS model was used to design five new EDR experiments of a sixth sediment to achieve specified clean-up levels of Cu and Pb. The removal efficiencies were up to 82% for Cu and 87% for Pb and the targeted clean-up levels were met in four out of five experiments. The clean-up levels were better than predicted by the model, which could hence be used for predicting an approximate remediation strategy; the modelling power will however improve with more data included. Copyright © 2014 Elsevier B.V. All rights reserved.
Scaling tunable network model to reproduce the density-driven superlinear relation
NASA Astrophysics Data System (ADS)
Gao, Liang; Shan, Xiaoya; Qin, Yuhao; Yu, Senbin; Xu, Lida; Gao, Zi-You
2018-03-01
Previous works have shown the universality of allometric scaling under total and density values at the city level, but our understanding of the size effects of regions on the universality of allometric scaling remains inadequate. Here, we revisit the scaling relations between the gross domestic production (GDP) and the population based on the total and density values and first reveal that the allometric scaling under density values for different regions is universal. The scaling exponent β under the density value is in the range of (1.0, 2.0], which unexpectedly exceeds the range observed by Pan et al. [Nat. Commun. 4, 1961 (2013)]. For the wider range, we propose a network model based on a 2D lattice space with the spatial correlation factor α as a parameter. Numerical experiments prove that the generated scaling exponent β in our model is fully tunable by the spatial correlation factor α. Our model will furnish a general platform for extensive urban and regional studies.
Mathematical model of the current density for the 30-cm engineering model thruster
NASA Technical Reports Server (NTRS)
Cuffel, R. F.
1975-01-01
Mathematical models are presented for both the singly and doubly charged ion current densities downstream of the 30-cm engineering model thruster with 0.5% compensated dished grids. These models are based on the experimental measurements of Vahrenkamp at a 2-amp ion beam operating condition. The cylindrically symmetric beam of constant velocity ions is modeled with continuous radial source and focusing functions across 'plane' grids with similar angular distribution functions. A computer program is used to evaluate the double integral for current densities in the near field and to obtain a far field approximation beyond 10 grid radii. The utility of the model is demonstrated for (1) calculating the directed thrust and (2) determining the impingement levels on various spacecraft surfaces from a two-axis gimballed, 2 x 3 thruster array.
NASA Astrophysics Data System (ADS)
Jennewein, Stephan; Brossard, Ludovic; Sortais, Yvan R. P.; Browaeys, Antoine; Cheinet, Patrick; Robert, Jacques; Pillet, Pierre
2018-05-01
We measure the coherent scattering of low-intensity, near-resonant light by a cloud of laser-cooled two-level rubidium atoms with a size comparable to the wavelength of light. We isolate a two-level atomic structure by applying a 300-G magnetic field. We measure both the temporal and the steady-state coherent optical response of the cloud for various detunings of the laser and for atom numbers ranging from 5 to 100. We compare our results to a microscopic coupled-dipole model and to a multimode, paraxial Maxwell-Bloch model. In the low-intensity regime, both models are in excellent agreement, thus validating the Maxwell-Bloch model. Comparing to the data, the models are found in very good agreement for relatively low densities (n /k3≲0.1 ), while significant deviations start to occur at higher density. This disagreement indicates that light scattering in dense, cold atomic ensembles is still not quantitatively understood, even in pristine experimental conditions.
Humpback whale-generated ambient noise levels provide insight into singers' spatial densities.
Seger, Kerri D; Thode, Aaron M; Urbán-R, Jorge; Martínez-Loustalot, Pamela; Jiménez-López, M Esther; López-Arzate, Diana
2016-09-01
Baleen whale vocal activity can be the dominant underwater ambient noise source for certain locations and seasons. Previous wind-driven ambient-noise formulations have been adjusted to model ambient noise levels generated by random distributions of singing humpback whales in ocean waveguides and have been combined to a single model. This theoretical model predicts that changes in ambient noise levels with respect to fractional changes in singer population (defined as the noise "sensitivity") are relatively unaffected by the source level distributions and song spectra of individual humpback whales (Megaptera novaeangliae). However, the noise "sensitivity" does depend on frequency and on how the singers' spatial density changes with population size. The theoretical model was tested by comparing visual line transect surveys with bottom-mounted passive acoustic data collected during the 2013 and 2014 humpback whale breeding seasons off Los Cabos, Mexico. A generalized linear model (GLM) estimated the noise "sensitivity" across multiple frequency bands. Comparing the GLM estimates with the theoretical predictions suggests that humpback whales tend to maintain relatively constant spacing between one another while singing, but that individual singers either slightly increase their source levels or song duration, or cluster more tightly as the singing population increases.
Localized tissue mineralization regulated by bone remodelling: A computational approach
Decco, Oscar; Adams, George; Cook, Richard B.; García Aznar, José Manuel
2017-01-01
Bone is a living tissue whose main mechanical function is to provide stiffness, strength and protection to the body. Both stiffness and strength depend on the mineralization of the organic matrix, which is constantly being remodelled by the coordinated action of the bone multicellular units (BMUs). Due to the dynamics of both remodelling and mineralization, each sample of bone is composed of structural units (osteons in cortical and packets in cancellous bone) created at different times, therefore presenting different levels of mineral content. In this work, a computational model is used to understand the feedback between the remodelling and the mineralization processes under different load conditions and bone porosities. This model considers that osteoclasts primarily resorb those parts of bone closer to the surface, which are younger and less mineralized than older inner ones. Under equilibrium loads, results show that bone volumes with both the highest and the lowest levels of porosity (cancellous and cortical respectively) tend to develop higher levels of mineral content compared to volumes with intermediate porosity, thus presenting higher material densities. In good agreement with recent experimental measurements, a boomerang-like pattern emerges when plotting apparent density at the tissue level versus material density at the bone material level. Overload and disuse states are studied too, resulting in a translation of the apparent–material density curve. Numerical results are discussed pointing to potential clinical applications. PMID:28306746
NASA Astrophysics Data System (ADS)
Terada, Mio; Minobe, Shoshiro
2017-09-01
Future changes in the dynamic sea level (DSL), which is defined as sea-level deviation from the global mean sea level, is investigated over the North Pacific, by analyzing data from the Coupled Model Intercomparison Project Phase 5. The analysis provides more comprehensive descriptions of DSL responses to the global warming in this region than available from previous studies, by using surface and subsurface data until the year 2300 under middle and high greenhouse-gas emission scenarios. The DSL changes in the North Pacific are characterized by a DSL rise in the western North Pacific around the Kuroshio Extension (KE), as also reported by previous studies. Subsurface density analysis indicates that DSL rise around the KE is associated with decrease in density of subtropical mode water (STMW) and with northward KE migration, the former (latter) of which is relatively strong between 2000 and 2100 for both RCP4.5 and RCP8.5 (between 2100 and 2300 for RCP8.5). The STMW density decrease is related to large heat uptake to the south and southeast of Japan, while the northward KE migration is associated with the poleward shift of the wind stress field. These features are commonly found in multi-model ensemble means and the relations among representative quantities produced by different climate models.
NASA Astrophysics Data System (ADS)
Terada, Mio; Minobe, Shoshiro
2018-06-01
Future changes in the dynamic sea level (DSL), which is defined as sea-level deviation from the global mean sea level, is investigated over the North Pacific, by analyzing data from the Coupled Model Intercomparison Project Phase 5. The analysis provides more comprehensive descriptions of DSL responses to the global warming in this region than available from previous studies, by using surface and subsurface data until the year 2300 under middle and high greenhouse-gas emission scenarios. The DSL changes in the North Pacific are characterized by a DSL rise in the western North Pacific around the Kuroshio Extension (KE), as also reported by previous studies. Subsurface density analysis indicates that DSL rise around the KE is associated with decrease in density of subtropical mode water (STMW) and with northward KE migration, the former (latter) of which is relatively strong between 2000 and 2100 for both RCP4.5 and RCP8.5 (between 2100 and 2300 for RCP8.5). The STMW density decrease is related to large heat uptake to the south and southeast of Japan, while the northward KE migration is associated with the poleward shift of the wind stress field. These features are commonly found in multi-model ensemble means and the relations among representative quantities produced by different climate models.
Population-level effects of the mysid, Americamysis bahia, exposed to varying thiobencarb concentrations were estimated using stage-structured matrix models. A deterministic density-independent matrix model estimated the decrease in population growth rate, l, with increas...
Estimating The Probability Of Achieving Shortleaf Pine Regeneration At Variable Specified Levels
Thomas B. Lynch; Jean Nkouka; Michael M. Huebschmann; James M. Guldin
2002-01-01
A model was developed that can be used to estimate the probability of achieving regeneration at a variety of specified stem density levels. The model was fitted to shortleaf pine (Pinus echinata Mill.) regeneration data, and can be used to estimate the probability of achieving desired levels of regeneration between 300 and 700 stems per acre 9-l 0...
Shedge, Sapana V; Zhou, Xiuwen; Wesolowski, Tomasz A
2014-09-01
Recent application of the Frozen-Density Embedding Theory based continuum model of the solvent, which is used for calculating solvatochromic shifts in the UV/Vis range, are reviewed. In this model, the solvent is represented as a non-uniform continuum taking into account both the statistical nature of the solvent and specific solute-solvent interactions. It offers, therefore, a computationally attractive alternative to methods in which the solvent is described at atomistic level. The evaluation of the solvatochromic shift involves only two calculations of excitation energy instead of at least hundreds needed to account for inhomogeneous broadening. The present review provides a detailed graphical analysis of the key quantities of this model: the average charge density of the solvent (<ρB>) and the corresponding Frozen-Density Embedding Theory derived embedding potential for coumarin 153.
Pediatric dentist density and preventive care utilization for Medicaid children
Heidenreich, James F.; Kim, Amy S.; Scott, JoAnna M.; Chi, Donald L.
2014-01-01
Purpose This study evaluates the relationship between county-level pediatric dentist density and dental care utilization for Medicaid-enrolled children in Washington State. Methods This is a cross-sectional analysis of 604,885 children ages 0-17 enrolled in the Washington State Medicaid Program for ≥11 months in 2012. The relationship between county-level pediatric dentist density, defined as the number of pediatric dentists per 10,000 Medicaid-enrolled children, and preventive dental care utilization was evaluated using linear regression models. Results In 2012, 179 pediatric dentists practiced in 16 of the 39 counties in Washington. County-level pediatric dentist density varied from zero to 5.98 pediatric dentists per 10,000 Medicaid-enrolled children. County-level preventive dental care utilization ranged from 32 percent to 81 percent, with 62 percent of Medicaid-enrolled children in Washington utilizing preventive dental services. After adjusting for confounders, county-level density was significantly associated with county-level dental care utilization (β=1.67, 95 percent CI=0.02, 3.32, p=0.047). Conclusions There is a significant relationship between pediatric dentist density and the proportion of Medicaid-enrolled children who utilize preventive dental care services. Policies aimed at improving pediatric oral health disparities should include strategies to increase the number of oral health care providers, including pediatric dentists, in geographic areas with large proportions of Medicaid-enrolled children. PMID:26314606
A method for continuous monitoring of the Ground Reaction Force during daily activity
NASA Technical Reports Server (NTRS)
Whalen, Robert; Quintana, Jason; Emery, Jeff
1993-01-01
Theoretical models and experimental studies of bone remodeling have identified peak cyclic force levels (or cyclic tissue strain energy density), number of daily loading cycles, and load (strain) rate as possible contributors to bone modeling and remodeling stimulus. To test our theoretical model and further investigate the influence of mechanical forces on bone density, we have focused on the calcaneus as a model site loaded by calcaneal surface tractions which are predominantly determined by the magnitude of the external ground reaction force (GRF).
Continuum Level Density of a Coupled-Channel System in the Complex Scaling Method
NASA Astrophysics Data System (ADS)
Suzuki, R.; Kruppa, A. T.; Giraud, B. G.; Katō, K.
2008-06-01
We study the continuum level density (CLD) in the formalism of the complex scaling method (CSM) for coupled-channel systems. We apply the formalism to the ^{4}He = [^{3}H + p] + [^3{He} + n] coupled-channel cluster model where there are resonances at low energy. Numerical calculations of the CLD in the CSM with a finite number of L^{2} basis functions are consistent with the exact result calculated from the S-matrix by solving coupled-channel equations. We also study channel densities. In this framework, the extended completeness relation (ECR) plays an important role.
NASA Astrophysics Data System (ADS)
Secan, James A.
1991-05-01
Modern military communication, navigation, and surveillance systems depend on reliable, noise-free transionospheric radio-frequency channels. They can be severely impacted by small-scale electron-density irregularities in the ionosphere, which cause both phase and amplitude scintillation. Basic tools used in planning and mitigation schemes are climatological in nature and thus may greatly over- and under-estimate the effects of scintillation in a given scenario. This report summarizes the results of the first year of a three-year investigation into the methods for updating ionospheric scintillation models using observations of ionospheric plasma-density irregularities measured by DMSP Scintillation Meter (SM) sensor. Results are reported from the analysis of data from a campaign conducted in January 1990 near Tromso, Norway, in which near coincident in-situ plasma-density and transionospheric scintillation measurements were made. Estimates for the level of intensity and phase scintillation on a transionospheric UHF radio link in the early-evening auroral zone were calculated from DMSP SM data and compared to the levels actually observed.
NASA Technical Reports Server (NTRS)
Mcronald, A. D.
1975-01-01
Mean density and temperature fluctuations were measured across the turbulent, cooled-wall boundary layer in a continuous hypersonic (Mach 9.4) wind tunnel in air, using the nitrogen fluorescence excited by a 50 kV electron beam. Data were taken at three values of the tunnel stagnation pressure, the corresponding free stream densities being equivalent to 1.2, 4.0, and 7.4 torr at room temperature, and the boundary layer thicknesses about 4.0, 4.5, and 6.0 inches. The mean temperature and density profiles were similar to those previously determined in the same facility by conventional probes (static and pitot pressure, total temperature). A static pressure variation of about 50% across the boundary layer was found, the shape of the variation changing somewhat for the three stagnation pressure levels. The quadrupole model for rotational temperature spectra gave closer agreement with the free stream isentropic level (approximately 44 K) than the dipole model.
Ratios of molecular hydrogen line intensities in shocked gas - Evidence for cooling zones
NASA Technical Reports Server (NTRS)
Brand, P. W. J. L.; Moorhouse, A.; Bird, M.; Burton, M. G.; Geballe, T. R.
1988-01-01
Column densities of molecular hydrogen have been calculated from 19 infrared vibration-rotation and pure rotational line intensities measured at peak 1 of the Orion molecular outflow. The run of column density with energy level is similar to a simple coolng zone model of the line-emitting region, but is not well fitted by predictions of C-shock models current in the literature.
Ondei, Stefania; Prior, Lynda D; Williamson, Grant J; Vigilante, Tom; Bowman, David M J S
2017-03-01
The small rainforest fragments found in savanna landscapes are powerful, yet often overlooked, model systems to understand the controls of these contrasting ecosystems. We analyzed the relative effect of climatic variables on rainforest density at a subcontinental level, and employed high-resolution, regional-level analyses to assess the importance of landscape settings and fire activity in determining rainforest density in a frequently burnt Australian savanna landscape. Estimates of rainforest density (ha/km 2 ) across the Northern Territory and Western Australia, derived from preexisting maps, were used to calculate the correlations between rainforest density and climatic variables. A detailed map of the northern Kimberley (Western Australia) rainforests was generated and analyzed to determine the importance of geology and topography in controlling rainforests, and to contrast rainforest density on frequently burnt mainland and nearby islands. In the northwestern Australian, tropics rainforest density was positively correlated with rainfall and moisture index, and negatively correlated with potential evapotranspiration. At a regional scale, rainforests showed preference for complex topographic positions and more fertile geology. Compared with mainland areas, islands had significantly lower fire activity, with no differences between terrain types. They also displayed substantially higher rainforest density, even on level terrain where geomorphological processes do not concentrate nutrients or water. Our multi-scale approach corroborates previous studies that suggest moist climate, infrequent fires, and geology are important stabilizing factors that allow rainforest fragments to persist in savanna landscapes. These factors need to be incorporated in models to predict the future extent of savannas and rainforests under climate change.
Rice, Megan S; Tworoger, Shelley S; Rosner, Bernard A; Pollak, Michael N; Hankinson, Susan E; Tamimi, Rulla M
2012-12-01
Higher circulating insulin-like growth factor I (IGF-1) levels have been associated with higher mammographic density among women in some, but not all studies. Also, few studies have examined the association between mammographic density and circulating growth hormone (GH) in premenopausal women. We conducted a cross-sectional study among 783 premenopausal women and 436 postmenopausal women who were controls in breast cancer case-control studies nested in the Nurses' Health Study (NHS) and NHSII. Participants provided blood samples in 1989-1990 (NHS) or in 1996-1999 (NHSII), and mammograms were obtained near the time of blood draw. Generalized linear models were used to assess the associations of IGF-1, IGF-binding protein-3 (IGFBP-3), IGF-1:IGFBP-3 ratio, and GH with percent mammographic density, total dense area, and total non-dense area. Models were adjusted for potential confounders including age and body mass index (BMI), among others. We also assessed whether the associations varied by age or BMI. In both pre- and postmenopausal women, percent mammographic density was not associated with plasma levels of IGF-1, IGFBP-3, or the IGF-1:IGFBP-3 ratio. In addition, GH was not associated with percent density among premenopausal women in the NHSII. Similarly, total dense area and non-dense area were not significantly associated with any of these analytes. In postmenopausal women, IGF-1 was associated with higher percent mammographic density among women with BMI <25 kg/m(2), but not among overweight/obese women. Overall, plasma IGF-1, IGFBP-3, and GH levels were not associated with mammographic density in a sample of premenopausal and postmenopausal women.
BDNF levels in adipose tissue and hypothalamus were reduced in mice with MSG-induced obesity.
Jin, Yong Jun; Cao, Peng Juan; Bian, Wei Hua; Li, Ming E; Zhou, Rong; Zhang, Ling Yun; Yang, Mei Zi
2015-01-01
To observe the expression of brain-derived neurotrophic factor (BDNF) in hypothalamic and adipose tissue in mice with monosodium glutamate (MSG)-induced obesity. The effects of hypothalamic lesions, specifically arcuate nucleus (ARC) lesions, induced by MSG injection were studied in male ICR mice at the neonatal stage. The following parameters were compared: body weight, body length, Lee's index, food intake, body temperature, fat weight, and levels of total cholesterol (CHOL), triglyceride (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and blood glucose (GLU). The BDNF expression levels in hypothalamic and adipose tissue were measured using western blotting. Results Compared with the control group, the model group body had significantly higher weight, Lee's index, food intake, fat weight, CHOL, TG, LDL, HDL, and GLU levels. BDNF expression levels in hypothalamic and adipose tissue were markedly down-regulated in the model group. BDNF may be closely associated with MSG-induced hypothalamic obesity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuravlev, B. V., E-mail: zhurav@ippe.ru; Titarenko, N. N.
The spectra of neutrons from the reactions {sup 49}Ti(p, n){sup 49}V and {sup 57}Fe (p, n){sup 57}Co were measured in the range of proton energies between 8 and 11 MeV along with their counterparts from the reactions {sup 48}Ti(d, n){sup 49}V and {sup 56}Fe (d, n){sup 57}Co at the deuteron energies of 2.7 and 3.8 MeV. These measurements were conducted with the aid of a time-of-flight fast-neutron spectrometer on the basis of the EGP-15 pulsed tandem accelerator of the Institute for Physics and Power Engineering (IPPE, Obninsk). An analysis of measured data was performed within the statistical equilibrium and preequilibriummore » models of nuclear reactions. The respective calculations based on the Hauser–Feshbach formalism of statistical theory were carried out with nuclear-level densities given by the generalized superfluid model of the nucleus, the backshifted Fermi-gas model, and the Gilbert–Cameron composite formula. The nuclear-level densities of {sup 49}V and {sup 57}Co and their energy dependences were determined. The results were discussed together with available experimental data and data recommended by model systematics.« less
a Numerical Investigation of the Jamming Transition in Traffic Flow on Diluted Planar Networks
NASA Astrophysics Data System (ADS)
Achler, Gabriele; Barra, Adriano
In order to develop a toy model for car's traffic in cities, in this paper we analyze, by means of numerical simulations, the transition among fluid regimes and a congested jammed phase of the flow of kinetically constrained hard spheres in planar random networks similar to urban roads. In order to explore as timescales as possible, at a microscopic level we implement an event driven dynamics as the infinite time limit of a class of already existing model (Follow the Leader) on an Erdos-Renyi two-dimensional graph, the crossroads being accounted by standard Kirchoff density conservations. We define a dynamical order parameter as the ratio among the moving spheres versus the total number and by varying two control parameters (density of the spheres and coordination number of the network) we study the phase transition. At a mesoscopic level it respects an, again suitable, adapted version of the Lighthill-Whitham model, which belongs to the fluid-dynamical approach to the problem. At a macroscopic level, the model seems to display a continuous transition from a fluid phase to a jammed phase when varying the density of the spheres (the amount of cars in a city-like scenario) and a discontinuous jump when varying the connectivity of the underlying network.
Dissipation of ‘dark energy’ by cortex in knowledge retrieval
NASA Astrophysics Data System (ADS)
Capolupo, Antonio; Freeman, Walter J.; Vitiello, Giuseppe
2013-03-01
We have devised a thermodynamic model of cortical neurodynamics expressed at the classical level by neural networks and at the quantum level by dissipative quantum field theory. Our model is based on features in the spatial images of cortical activity newly revealed by high-density electrode arrays. We have incorporated the mechanism and necessity for so-called dark energy in knowledge retrieval. We have extended the model first using the Carnot cycle to define our measures for energy, entropy and temperature, and then using the Rankine cycle to incorporate criticality and phase transitions. We describe the dynamics of two interactive fields of neural activity that express knowledge, one at high and the other at low energy density, and the two operators that create and annihilate the fields. We postulate that the extremely high density of energy sequestered briefly in cortical activity patterns can account for the vividness, richness of associations, and emotional intensity of memories recalled by stimuli.
Dissipation of 'dark energy' by cortex in knowledge retrieval.
Capolupo, Antonio; Freeman, Walter J; Vitiello, Giuseppe
2013-03-01
We have devised a thermodynamic model of cortical neurodynamics expressed at the classical level by neural networks and at the quantum level by dissipative quantum field theory. Our model is based on features in the spatial images of cortical activity newly revealed by high-density electrode arrays. We have incorporated the mechanism and necessity for so-called dark energy in knowledge retrieval. We have extended the model first using the Carnot cycle to define our measures for energy, entropy and temperature, and then using the Rankine cycle to incorporate criticality and phase transitions. We describe the dynamics of two interactive fields of neural activity that express knowledge, one at high and the other at low energy density, and the two operators that create and annihilate the fields. We postulate that the extremely high density of energy sequestered briefly in cortical activity patterns can account for the vividness, richness of associations, and emotional intensity of memories recalled by stimuli. Copyright © 2013 Elsevier B.V. All rights reserved.
Level Densities of Residual Nuclei from particle evaporation of 64Cu
NASA Astrophysics Data System (ADS)
Oginni, B. M.; Grimes, S. M.; Voinov, A. V.; Adekola, A. S.; Brune, C. R.; Carter, D.; Heinen, Z.; Jacobs, D.; Massey, T. N.; O'Donnell, J.
2009-07-01
The reactions of 6Li on 58Fe and 7Li on 57Fe have been studied at beam energy 15 MeV. These two reactions produce the same compound nucleus, 64Cu. The neutron, proton, and alpha spectra were measured at backward angles. The data obtained have been compared with Hauser Fesh-bach model calculations. The level density parameters of the residual nuclei have been obtained from the particle evaporation spectra.
Sea Level Budget along the East Coast of North America
NASA Astrophysics Data System (ADS)
Pease, A. M.; Davis, J. L.; Vinogradova, N. T.
2016-12-01
We analyzed tide gauge data, taken from 1955 to 2015, from 29 locations along the east coast of North America. A well-documented period of sea-level acceleration began around 1990. The sea level rate (referenced to epoch 1985.0) and acceleration (post-1990) are spatially and temporally variable, due to various physical processes, each of which is also spatially and temporally variable. To determine the sea-level budgets for rate and acceleration, we considered a number of major contributors to sea level change: ocean density and dynamics, glacial isostatic adjustment (GIA), the inverted barometer effect, and mass change associated with the Greenland Ice Sheet (GIS) and the Antarctic Ice Sheet (AIS). The geographic variability in the budgets for sea-level rate is dominated by GIA. At some sites, GIA is the largest contributor to the rate. The geographic variability in the budgets for sea-level acceleration is dominated by ocean dynamics and density and GIS mass loss. The figure below shows budgets for sea-level rate (left) and acceleration (right) for Key West, Fla., (top) and The Battery in New York City (bottom). The blue represents values (with error bar shown) estimated from tide gauge observations, and the yellow represents the total values estimated from the individual model contributions (each in red, green, cyan, pink, and black). The estimated totals for rate and acceleration are good matches to the tide-gauge inferences. To achieve a reasonable fit, a scaling factor (admittance) for the combined contribution of ocean dynamics and density was estimated; this admittance may reflect the low spatial sampling of the GECCO2 model we used, or other problems in modeling coastal sea-level. The significant contributions of mass loss to the acceleration enable us to predict that, if such mass-loss continues or increases, the character of sea-level change on the North American east coast will change in the next 50-100 years. In particular, whereas GIA presently dominates the spatial variability of sea-level change, mass loss from Greenland and Antarctica will dominate it by 2050-2100. However, the long-term contribution of ocean dynamics and density remain more of a question.
Relative mass distributions of neutron-rich thermally fissile nuclei within a statistical model
NASA Astrophysics Data System (ADS)
Kumar, Bharat; Kannan, M. T. Senthil; Balasubramaniam, M.; Agrawal, B. K.; Patra, S. K.
2017-09-01
We study the binary mass distribution for the recently predicted thermally fissile neutron-rich uranium and thorium nuclei using a statistical model. The level density parameters needed for the study are evaluated from the excitation energies of the temperature-dependent relativistic mean field formalism. The excitation energy and the level density parameter for a given temperature are employed in the convolution integral method to obtain the probability of the particular fragmentation. As representative cases, we present the results for the binary yields of 250U and 254Th. The relative yields are presented for three different temperatures: T =1 , 2, and 3 MeV.
Mannocci, Laura; Roberts, Jason J; Miller, David L; Halpin, Patrick N
2017-06-01
As human activities expand beyond national jurisdictions to the high seas, there is an increasing need to consider anthropogenic impacts to species inhabiting these waters. The current scarcity of scientific observations of cetaceans in the high seas impedes the assessment of population-level impacts of these activities. We developed plausible density estimates to facilitate a quantitative assessment of anthropogenic impacts on cetacean populations in these waters. Our study region extended from a well-surveyed region within the U.S. Exclusive Economic Zone into a large region of the western North Atlantic sparsely surveyed for cetaceans. We modeled densities of 15 cetacean taxa with available line transect survey data and habitat covariates and extrapolated predictions to sparsely surveyed regions. We formulated models to reduce the extent of extrapolation beyond covariate ranges, and constrained them to model simple and generalizable relationships. To evaluate confidence in the predictions, we mapped where predictions were made outside sampled covariate ranges, examined alternate models, and compared predicted densities with maps of sightings from sources that could not be integrated into our models. Confidence levels in model results depended on the taxon and geographic area and highlighted the need for additional surveying in environmentally distinct areas. With application of necessary caution, our density estimates can inform management needs in the high seas, such as the quantification of potential cetacean interactions with military training exercises, shipping, fisheries, and deep-sea mining and be used to delineate areas of special biological significance in international waters. Our approach is generally applicable to other marine taxa and geographic regions for which management will be implemented but data are sparse. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Codimension-1 Sliding Bifurcations of a Filippov Pest Growth Model with Threshold Policy
NASA Astrophysics Data System (ADS)
Tang, Sanyi; Tang, Guangyao; Qin, Wenjie
A Filippov system is proposed to describe the stage structured nonsmooth pest growth with threshold policy control (TPC). The TPC measure is represented by the total density of both juveniles and adults being chosen as an index for decisions on when to implement chemical control strategies. The proposed Filippov system can have three pieces of sliding segments and three pseudo-equilibria, which result in rich sliding mode bifurcations and local sliding bifurcations including boundary node (boundary focus, or boundary saddle) and tangency bifurcations. As the threshold density varies the model exhibits the interesting global sliding bifurcations sequentially: touching → buckling → crossing → sliding homoclinic orbit to a pseudo-saddle → crossing → touching bifurcations. In particular, bifurcation of a homoclinic orbit to a pseudo-saddle with a figure of eight shape, to a pseudo-saddle-node or to a standard saddle-node have been observed for some parameter sets. This implies that control outcomes are sensitive to the threshold level, and hence it is crucial to choose the threshold level to initiate control strategy. One more sliding segment (or pseudo-equilibrium) is induced by the total density of a population guided switching policy, compared to only the juvenile density guided policy, implying that this control policy is more effective in terms of preventing multiple pest outbreaks or causing the density of pests to stabilize at a desired level such as an economic threshold.
Effective use of surface-water management to control saltwater intrusion
NASA Astrophysics Data System (ADS)
Hughes, J. D.; White, J.
2012-12-01
The Biscayne aquifer in southeast Florida is susceptible to saltwater intrusion and inundation from rising sea-level as a result of high groundwater withdrawal rates and low topographic relief. Groundwater levels in the Biscayne aquifer are managed by an extensive canal system that is designed to control flooding, supply recharge to municipal well fields, and control saltwater intrusion. We present results from an integrated surface-water/groundwater model of a portion of the Biscayne aquifer to evaluate the ability of the existing managed surface-water control network to control saltwater intrusion. Surface-water stage and flow are simulated using a hydrodynamic model that solves the diffusive-wave approximation of the depth-integrated shallow surface-water equations. Variable-density groundwater flow and fluid density are solved using the Oberbeck--Boussinesq approximation of the three-dimensional variable-density groundwater flow equation and a sharp interface approximation, respectively. The surface-water and variable-density groundwater domains are implicitly coupled during each Picard iteration. The Biscayne aquifer is discretized into a multi-layer model having a 500-m square horizontal grid spacing. All primary and secondary surface-water features in the active model domain are discretized into segments using the 500-m square horizontal grid. A 15-year period of time is simulated and the model includes 66 operable surface-water control structures, 127 municipal production wells, and spatially-distributed daily internal and external hydrologic stresses. Numerical results indicate that the existing surface-water system can be effectively used in many locations to control saltwater intrusion in the Biscayne aquifer resulting from increases in groundwater withdrawals or sea-level rise expected to occur over the next 25 years. In other locations, numerical results indicate surface-water control structures and/or operations may need to be modified to control saltwater intrusion.
An ecological analysis of alcohol-outlet density and campus-reported violence at 32 U.S. colleges.
Scribner, Richard A; Mason, Karen E; Simonsen, Neal R; Theall, Katherine; Chotalia, Jigar; Johnson, Sandy; Schneider, Shari Kessel; DeJong, William
2010-03-01
The purpose of this study was to assess the relationships among campus violence, student drinking levels, and the physical availability of alcohol at off-campus outlets in a multisite design. An ecological analysis of on-campus violence was conducted at 32 U.S. colleges. Dependent variables included campus-reported rates of rape, robbery, assault, and burglary obtained from a U.S. Department of Education online database for the years 2000-2004. Measures of student alcohol use and demographics were obtained from student surveys conducted for the Social Norms Marketing Research Project from 2000 to 2004. Measures of alcohol-outlet density within 3 miles of each campus were obtained from state alcohol-licensing authorities for 2004. Both on- and off-premise alcohol-outlet densities were associated with the campus rape-offense rate but not with the assault or robbery rates. Student drinking level was associated with both campus rape and assault rates but not with the campus robbery rate. The apparent effect of on-premise outlet density on campus rape-offense rates was reduced when student drinking level was included in the model, suggesting that the effect of on-premise outlet density may be mediated by student drinking level. Separate analyses revealed a similar mediational role for off-premise outlet density. These findings demonstrate that there is a campus-level association between sexual violence and the campus-community alcohol environment.
Steady state and transient simulation of anion exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Dekel, Dario R.; Rasin, Igal G.; Page, Miles; Brandon, Simon
2018-01-01
We present a new model for anion exchange membrane fuel cells. Validation against experimental polarization curve data is obtained for current densities ranging from zero to above 2 A cm-2. Experimental transient data is also successfully reproduced. The model is very flexible and can be used to explore the system's sensitivity to a wide range of material properties, cell design specifications, and operating parameters. We demonstrate the impact of gas inlet relative humidity (RH), operating current density, ionomer loading and ionomer ion exchange capacity (IEC) values on cell performance. In agreement with the literature, high air RH levels are shown to improve cell performance. At high current densities (>1 A cm-2) this effect is observed to be especially significant. Simulated hydration number distributions across the cell reveal the related critical dependence of cathode hydration on air RH and current density values. When exploring catalyst layer design, optimal intermediate ionomer loading values are demonstrated. The benefits of asymmetric (cathode versus anode) electrode design are revealed, showing enhanced performance using higher cathode IEC levels. Finally, electrochemical reaction profiles across the electrodes uncover inhomogeneous catalyst utilization. Specifically, at high current densities the cathodic reaction is confined to a narrow region near the membrane.
Urban characteristics attributable to density-driven tie formation
NASA Astrophysics Data System (ADS)
Pan, Wei; Ghoshal, Gourab; Krumme, Coco; Cebrian, Manuel; Pentland, Alex
2013-06-01
Motivated by empirical evidence on the interplay between geography, population density and societal interaction, we propose a generative process for the evolution of social structure in cities. Our analytical and simulation results predict both super-linear scaling of social-tie density and information contagion as a function of the population. Here we demonstrate that our model provides a robust and accurate fit for the dependency of city characteristics with city-size, ranging from individual-level dyadic interactions (number of acquaintances, volume of communication) to population level variables (contagious disease rates, patenting activity, economic productivity and crime) without the need to appeal to heterogeneity, modularity, specialization or hierarchy.
(Fe II) emission from high-density regions in the Orion Nebula
NASA Technical Reports Server (NTRS)
Bautista, Manuel A.; Pradhan, Anil K.; Osterbrock, Donald E.
1994-01-01
Direct spectroscopic evidence of high-density regions in the Orion Nebula, N(sub e) approximately equals 10(exp 5)-10(exp 7)/cu cm, is obtained from the forbidden optical and near-IR (Fe II) emission lines, using new atomic data. Calculations for level populations and line ratios are carried out using 16, 35, and 142 level collisional-radiative models for Fe II. Estimates of Fe(+) abundances derived from the near-infrared and the optical line intensities are consistent with a high density of 10(exp 6)/cu cm in the (Fe II) emitting regions. Important consequences for abundance determinations in the nebula are pointed out.
NASA Astrophysics Data System (ADS)
Cech, R.; Leitgeb, N.; Pediaditis, M.
2008-01-01
The pregnant woman model SILVY was studied to ascertain to what extent the electric current densities induced by 50 Hz homogeneous electric and magnetic fields increase in the case of simultaneous exposure. By vectorial addition of the electric current densities, it could be shown that under worst case conditions the basic restrictions recommended by ICNIRP (International Commission on Non-Ionizing Radiation Protection) guidelines are exceeded within the central nervous system (CNS) of the mother, whereas in sole field exposure they are not. However, within the foetus the induced current densities do not comply with basic restrictions, either from single reference-level electric fields or from simultaneous exposure to electric and magnetic fields. Basic limits were considerably exceeded.
Atomic structure data based on average-atom model for opacity calculations in astrophysical plasmas
NASA Astrophysics Data System (ADS)
Trzhaskovskaya, M. B.; Nikulin, V. K.
2018-03-01
Influence of the plasmas parameters on the electron structure of ions in astrophysical plasmas is studied on the basis of the average-atom model in the local thermodynamic equilibrium approximation. The relativistic Dirac-Slater method is used for the electron density estimation. The emphasis is on the investigation of an impact of the plasmas temperature and density on the ionization stages required for calculations of the plasmas opacities. The level population distributions and level energy spectra are calculated and analyzed for all ions with 6 ≤ Z ≤ 32 occurring in astrophysical plasmas. The plasma temperature range 2 - 200 eV and the density range 2 - 100 mg/cm3 are considered. The validity of the method used is supported by good agreement between our values of ionization stages for a number of ions, from oxygen up to uranium, and results obtained earlier by various methods among which are more complicated procedures.
Venus Global Reference Atmospheric Model
NASA Technical Reports Server (NTRS)
Justh, Hilary L.
2017-01-01
Venus Global Reference Atmospheric Model (Venus-GRAM) is an engineering-level atmospheric model developed by MSFC that is widely used for diverse mission applications including: Systems design; Performance analysis; Operations planning for aerobraking, Entry, Descent and Landing, and aerocapture; Is not a forecast model; Outputs include density, temperature, pressure, wind components, and chemical composition; Provides dispersions of thermodynamic parameters, winds, and density; Optional trajectory and auxiliary profile input files Has been used in multiple studies and proposals including NASA Engineering and Safety Center (NESC) Autonomous Aerobraking and various Discovery proposals; Released in 2005; Available at: https://software.nasa.gov/software/MFS-32314-1.
NASA Astrophysics Data System (ADS)
Skene, Katherine J.; Gent, Janneane F.; McKay, Lisa A.; Belanger, Kathleen; Leaderer, Brian P.; Holford, Theodore R.
2010-12-01
An integrated exposure model was developed that estimates nitrogen dioxide (NO 2) concentration at residences using geographic information systems (GIS) and variables derived within residential buffers representing traffic volume and landscape characteristics including land use, population density and elevation. Multiple measurements of NO 2 taken outside of 985 residences in Connecticut were used to develop the model. A second set of 120 outdoor NO 2 measurements as well as cross-validation were used to validate the model. The model suggests that approximately 67% of the variation in NO 2 levels can be explained by: traffic and land use primarily within 2 km of a residence; population density; elevation; and time of year. Potential benefits of this model for health effects research include improved spatial estimations of traffic-related pollutant exposure and reduced need for extensive pollutant measurements. The model, which could be calibrated and applied in areas other than Connecticut, has importance as a tool for exposure estimation in epidemiological studies of traffic-related air pollution.
Prenatal stress changes courtship vocalizations and bone mineral density in mice.
Schmidt, Michaela; Lapert, Florian; Brandwein, Christiane; Deuschle, Michael; Kasperk, Christian; Grimsley, Jasmine M; Gass, Peter
2017-01-01
Stress during the prenatal period has various effects on social and sexual behavior in both human and animal offspring. The present study examines the effects of chronic restraint stress in the second vs third trimester in pregnancy and glucocorticoid receptor (GR) heterozygous mutation on C57BL/6N male offspring's vocal courtship behavior in adulthood by applying a novel analyzing method. Finally, corticosterone and testosterone levels as well as bone mineral density were measured. Prenatal stress in the third, but not in the second trimester caused a significant qualitative change in males' courtship vocalizations, independent of their GR genotype. Bone mineral density was decreased also by prenatal stress exclusively in the third trimester in GR mutant and wildtype mice and - in contrast to corticosterone and testosterone - highly correlated with courtship vocalizations. In Gr +/- males corticosterone serum levels were significantly increased in animals that had experienced prenatal stress in the third trimester. Testosterone serum levels were overall increased in Gr +/- males in comparison to wildtypes as a tendency - whereas prenatal stress had no influence. Prenatal stress alters adult males' courtship vocalizations exclusively when applied in the third trimester, with closely related changes in bone mineral density. Bone mineral density seems to reflect best the complex neuroendocrine mechanisms underlying the production of courtship vocalizations. Besides, we demonstrated for the first time elevated basal corticosterone levels in Gr +/- males after prenatal stress which suggests that the Gr +/- mouse model of depression might also serve as a model of prenatal stress in male offspring. Copyright © 2016 Elsevier Ltd. All rights reserved.
Community Alcohol Outlet Density and Underage Drinking
Chen, Meng-Jinn; Grube, Joel W.; Gruenewald, Paul J.
2009-01-01
Aim This study examined how community alcohol outlet density may be associated with drinking among youths. Methods Longitudinal data were collected from 1091 adolescents (aged 14–16 at baseline) recruited from 50 zip codes in California with varying levels of alcohol outlet density and median household income. Hierarchical linear models were used to examine the associations between zip code alcohol outlet density and frequency rates of general alcohol use and excessive drinking, taking into account zip code median household income and individual-level variables (age, gender, race/ethnicity, personal income, mobility, and perceived drinking by parents and peers). Findings When all other factors were controlled, higher initial levels of drinking and excessive drinking were observed among youths residing in zip codes with higher alcohol outlet densities. Growth in drinking and excessive drinking was on average more rapid in zip codes with lower alcohol outlet densities. The relation of zip code alcohol outlet density with drinking appeared to be mitigated by having friends with access to a car. Conclusion Alcohol outlet density may play a significant role in initiation of underage drinking during early teen ages, especially when youths have limited mobility. Youth who reside in areas with low alcohol outlet density may overcome geographic constraints through social networks that increase their mobility and the ability to seek alcohol and drinking opportunities beyond the local community. PMID:20078485
Population-level analysis and validation of an individual-based cutthroat trout model
Steven F. Railsback; Bret C. Harvey; Roland H. Lamberson; Derek E. Lee; Claasen Nathan J.; Shuzo Yoshihara
2002-01-01
Abstract - An individual-based model of stream trout is analyzed by testing its ability to reproduce patterns of population-level behavior observed in real trout: (1) "self-thinning," a negative power relation between weight and abundance; (2) a "critical period" of density-dependent mortality in young-of-the-year; (3) high and age-speci...
Density-dependent adjustment of inducible defenses.
Tollrian, Ralph; Duggen, Sonja; Weiss, Linda C; Laforsch, Christian; Kopp, Michael
2015-08-03
Predation is a major factor driving evolution, and organisms have evolved adaptations increasing their survival chances. However, most defenses incur trade-offs between benefits and costs. Many organisms save costs by employing inducible defenses as responses to fluctuating predation risk. The level of defense often increases with predator densities. However, individual predation risk should not only depend on predator density but also on the density of conspecifics. If the predator has a saturating functional response one would predict a negative correlation between prey density and individual predation risk and hence defense expression. Here, we tested this hypothesis using six model systems, covering a taxonomic range from protozoa to rotifers and crustaceans. In all six systems, we found that the level of defense expression increased with predator density but decreased with prey density. In one of our systems, i.e. in Daphnia, we further show that the response to prey density is triggered by a chemical cue released by conspecifics and congeners. Our results indicate that organisms adjust the degree of defense to the acute predation risk, rather than merely to predators' densities. Our study suggests that density-dependent defense expression reflects accurate predation-risk assessment and is a general principle in many inducible-defense systems.
Density-dependent adjustment of inducible defenses
Tollrian, Ralph; Duggen, Sonja; Weiss, Linda C.; Laforsch, Christian; Kopp, Michael
2015-01-01
Predation is a major factor driving evolution, and organisms have evolved adaptations increasing their survival chances. However, most defenses incur trade-offs between benefits and costs. Many organisms save costs by employing inducible defenses as responses to fluctuating predation risk. The level of defense often increases with predator densities. However, individual predation risk should not only depend on predator density but also on the density of conspecifics. If the predator has a saturating functional response one would predict a negative correlation between prey density and individual predation risk and hence defense expression. Here, we tested this hypothesis using six model systems, covering a taxonomic range from protozoa to rotifers and crustaceans. In all six systems, we found that the level of defense expression increased with predator density but decreased with prey density. In one of our systems, i.e. in Daphnia, we further show that the response to prey density is triggered by a chemical cue released by conspecifics and congeners. Our results indicate that organisms adjust the degree of defense to the acute predation risk, rather than merely to predators’ densities. Our study suggests that density-dependent defense expression reflects accurate predation-risk assessment and is a general principle in many inducible-defense systems. PMID:26235428
Species richness and patterns of invasion in plants, birds, and fishes in the United States
Stohlgren, Thomas J.; Barnett, David; Flather, Curtis; Fuller, Pamela L.; Peterjohn, Bruce G.; Kartesz, John; Master, Lawrence L.
2006-01-01
We quantified broad-scale patterns of species richness and species density (mean # species/km2) for native and non-indigenous plants, birds, and fishes in the continental USA and Hawaii. We hypothesized that the species density of native and non-indigenous taxa would generally decrease in northern latitudes and higher elevations following declines in potential evapotranspiration, mean temperature, and precipitation. County data on plants (n = 3004 counties) and birds (n=3074 counties), and drainage (6 HUC) data on fishes (n = 328 drainages) showed that the densities of native and non-indigenous species were strongly positively correlated for plant species (r = 0.86, P < 0.0001), bird species (r = 0.93, P<0.0001), and fish species (r = 0.41, P<0.0001). Multiple regression models showed that the densities of native plant and bird species could be strongly predicted (adj. R2 = 0.66 in both models) at county levels, but fish species densities were less predictable at drainage levels (adj. R2 = 0.31,P<0.0001). Similarly, non-indigenous plant and bird species densities were strongly predictable (adj. R2 = 0.84 and 0.91 respectively), but non-indigenous fish species density was less predictable (adj. R2 = 0.38). County level hotspots of native and non-indigenous plants, birds, and fishes were located in low elevation areas close to the coast with high precipitation and productivity (vegetation carbon). We show that (1) native species richness can be moderately well predicted with abiotic factors; (2) human populations have tended to settle in areas rich in native species; and (3) the richness and density of non-indigenous plant, bird, and fish species can be accurately predicted from biotic and abiotic factors largely because they are positively correlated to native species densities. We conclude that while humans facilitate the initial establishment, invasions of non-indigenous species, the spread and subsequent distributions of non-indigenous species may be controlled largely by environmental factors.
Light dark matter through assisted annihilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dey, Ujjal Kumar; Maity, Tarak Nath; Ray, Tirtha Sankar, E-mail: ujjal@cts.iitkgp.ernet.in, E-mail: tarak.maity.physics@gmail.com, E-mail: tirthasankar.ray@gmail.com
2017-03-01
In this paper we investigate light dark matter scenarios where annihilation to Standard Model particles at tree-level is kinematically forbidden. In such cases annihilation can be aided by massive Standard Model-like species, called assisters , in the initial state that enhances the available phase space opening up novel tree-level processes. We investigate the feasibility of such non-standard assisted annihilation processes to reproduce the observed relic density of dark matter. We present a simple scalar dark matter-scalar assister model where this is realised. We find that if the dark matter and assister are relatively degenerate the required relic density can bemore » achieved for a keV-MeV scale dark matter. We briefly discuss the cosmological constraints on such dark matter scenarios.« less
Li, Changyang; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Yin, Yong; Dagan Feng, David
2015-01-01
Automated and general medical image segmentation can be challenging because the foreground and the background may have complicated and overlapping density distributions in medical imaging. Conventional region-based level set algorithms often assume piecewise constant or piecewise smooth for segments, which are implausible for general medical image segmentation. Furthermore, low contrast and noise make identification of the boundaries between foreground and background difficult for edge-based level set algorithms. Thus, to address these problems, we suggest a supervised variational level set segmentation model to harness the statistical region energy functional with a weighted probability approximation. Our approach models the region density distributions by using the mixture-of-mixtures Gaussian model to better approximate real intensity distributions and distinguish statistical intensity differences between foreground and background. The region-based statistical model in our algorithm can intuitively provide better performance on noisy images. We constructed a weighted probability map on graphs to incorporate spatial indications from user input with a contextual constraint based on the minimization of contextual graphs energy functional. We measured the performance of our approach on ten noisy synthetic images and 58 medical datasets with heterogeneous intensities and ill-defined boundaries and compared our technique to the Chan-Vese region-based level set model, the geodesic active contour model with distance regularization, and the random walker model. Our method consistently achieved the highest Dice similarity coefficient when compared to the other methods.
NASA Astrophysics Data System (ADS)
Delafontaine-Martel, P.; Lefebvre, J.; Damseh, R.; Castonguay, A.; Tardif, P.; Lesage, F.
2018-02-01
In this study, an automated serial two-photon microscope was used to image a fluorescent gelatin filled rodent's brain in 3D. A method to compute vascular density using automatic segmentation was combined with coregistration techniques to build group-level vasculature metrics. By studying the medial prefrontal cortex and the hippocampal formation of 3 age groups (2, 4.5 and 8 months old), we compared vascular density for both WT and an Alzheimer model transgenic brain (APP/PS1). We observe a loss of vascular density caused by the ageing process and we propose further analysis to confirm our results.
Pervasive randomness in physics: an introduction to its modelling and spectral characterisation
NASA Astrophysics Data System (ADS)
Howard, Roy
2017-10-01
An introduction to the modelling and spectral characterisation of random phenomena is detailed at a level consistent with a first exposure to the subject at an undergraduate level. A signal framework for defining a random process is provided and this underpins an introduction to common random processes including the Poisson point process, the random walk, the random telegraph signal, shot noise, information signalling random processes, jittered pulse trains, birth-death random processes and Markov chains. An introduction to the spectral characterisation of signals and random processes, via either an energy spectral density or a power spectral density, is detailed. The important case of defining a white noise random process concludes the paper.
Kimura, Satoko; Akamatsu, Tomonari; Li, Songhai; Dong, Shouyue; Dong, Lijun; Wang, Kexiong; Wang, Ding; Arai, Nobuaki
2010-09-01
A method is presented to estimate the density of finless porpoises using stationed passive acoustic monitoring. The number of click trains detected by stereo acoustic data loggers (A-tag) was converted to an estimate of the density of porpoises. First, an automated off-line filter was developed to detect a click train among noise, and the detection and false-alarm rates were calculated. Second, a density estimation model was proposed. The cue-production rate was measured by biologging experiments. The probability of detecting a cue and the area size were calculated from the source level, beam patterns, and a sound-propagation model. The effect of group size on the cue-detection rate was examined. Third, the proposed model was applied to estimate the density of finless porpoises at four locations from the Yangtze River to the inside of Poyang Lake. The estimated mean density of porpoises in a day decreased from the main stream to the lake. Long-term monitoring during 466 days from June 2007 to May 2009 showed variation in the density 0-4.79. However, the density was fewer than 1 porpoise/km(2) during 94% of the period. These results suggest a potential gap and seasonal migration of the population in the bottleneck of Poyang Lake.
Storkel, Holly L.; Bontempo, Daniel E.; Aschenbrenner, Andrew J.; Maekawa, Junko; Lee, Su-Yeon
2013-01-01
Purpose Phonotactic probability or neighborhood density have predominately been defined using gross distinctions (i.e., low vs. high). The current studies examined the influence of finer changes in probability (Experiment 1) and density (Experiment 2) on word learning. Method The full range of probability or density was examined by sampling five nonwords from each of four quartiles. Three- and 5-year-old children received training on nonword-nonobject pairs. Learning was measured in a picture-naming task immediately following training and 1-week after training. Results were analyzed using multi-level modeling. Results A linear spline model best captured nonlinearities in phonotactic probability. Specifically word learning improved as probability increased in the lowest quartile, worsened as probability increased in the midlow quartile, and then remained stable and poor in the two highest quartiles. An ordinary linear model sufficiently described neighborhood density. Here, word learning improved as density increased across all quartiles. Conclusion Given these different patterns, phonotactic probability and neighborhood density appear to influence different word learning processes. Specifically, phonotactic probability may affect recognition that a sound sequence is an acceptable word in the language and is a novel word for the child, whereas neighborhood density may influence creation of a new representation in long-term memory. PMID:23882005
The ecology of domestic violence: the role of alcohol outlet density.
Livingston, Michael
2010-11-01
Studies have consistently found positive associations between the density of alcohol outlets and levels of violence in areas. Few studies have examined whether this relationship holds for domestic violence. This study assesses whether alcohol outlet density is related to domestic violence and whether this relationship is due to alcohol availability or to co-occurring economic disadvantage and social disorganisation. Cross-sectional data on family incidents, liquor outlets and socio-demographic characteristics were obtained for 217 postcodes in Melbourne, Australia. These data were used to construct models assessing the association between alcohol outlet density and domestic violence, both with and without controlling for socio-demographic factors. Models were tested for spatial autocorrelation, and spatial- error models were developed to control for its influence. Outlet density was significantly associated with rates of domestic violence, even controlling for socio-demographic factors. The density of hotels (pubs) was positively associated with domestic violence rates and the density of restaurants and bars was negatively associated with domestic violence. Socio-economic disadvantage was also associated with domestic violence rates. The density of packaged liquor outlets was not associated with rates of domestic violence. The results present a mixed picture, and further study is required to develop a clearer understanding of the links between alcohol availability and domestic violence.
A cross-comparison of different techniques for modeling macro-level cyclist crashes.
Guo, Yanyong; Osama, Ahmed; Sayed, Tarek
2018-04-01
Despite the recognized benefits of cycling as a sustainable mode of transportation, cyclists are considered vulnerable road users and there are concerns about their safety. Therefore, it is essential to investigate the factors affecting cyclist safety. The goal of this study is to evaluate and compare different approaches of modeling macro-level cyclist safety as well as investigating factors that contribute to cyclist crashes using a comprehensive list of covariates. Data from 134 traffic analysis zones (TAZs) in the City of Vancouver were used to develop macro-level crash models (CM) incorporating variables related to actual traffic exposure, socio-economics, land use, built environment, and bike network. Four types of CMs were developed under a full Bayesian framework: Poisson lognormal model (PLN), random intercepts PLN model (RIPLN), random parameters PLN model (RPPLN), and spatial PLN model (SPLN). The SPLN model had the best goodness of fit, and the results highlighted the significant effects of spatial correlation. The models showed that the cyclist crashes were positively associated with bike and vehicle exposure measures, households, commercial area density, and signal density. On the other hand, negative associations were found between cyclist crashes and some bike network indicators such as average edge length, average zonal slope, and off-street bike links. Copyright © 2018 Elsevier Ltd. All rights reserved.
The importance of multi-level Rydberg interaction in electric field tuned Förster resonances
NASA Astrophysics Data System (ADS)
Kondo, Jorge; Booth, Donald; Gonçalves, Luis; Shaffer, James; Marcassa, Luis
2016-05-01
Many-body physics has been investigated in ultracold Rydberg atom systems, mainly because important parameters, such as density and interaction strength, can be controlled. Several puzzling experimental observations on Förster resonances have been associated to many-body effects, usually by comparison to complex theoretical models. In this work, we investigate the dc electric field dependence of 2 Förster resonant processes in ultracold 85 Rb, 37D5 / 2 + 37D5 / 2 --> 35 L(L = O , Q) + 39P3 / 2 , as a function of the atomic density in an optical dipole trap. At low densities, the 39 P yield as a function of electric field exhibits resonances. With increasing density, the linewidths increase until the peaks merge. Even under these extreme conditions, where many-body effects were expected to play a role, the 39 P population depends quadratically on the total Rydberg atom population. In order to explain our results, we implement a theoretical model which takes into account the multi-level character of the interactions and Rydberg atom blockade process using only atom pair interactions. The comparison between the experimental data and the model is very good, suggesting that the Förster resonant processes are dominated by 2-body interactions. This work is supported by FAPESP, AFOSR, NSF, INCT-IQ and CNPq.
Assessment of Galileo modal test results for mathematical model verification
NASA Technical Reports Server (NTRS)
Trubert, M.
1984-01-01
The modal test program for the Galileo Spacecraft was completed at the Jet Propulsion Laboratory in the summer of 1983. The multiple sine dwell method was used for the baseline test. The Galileo Spacecraft is a rather complex 2433 kg structure made of a central core on which seven major appendages representing 30 percent of the total mass are attached, resulting in a high modal density structure. The test revealed a strong nonlinearity in several major modes. This nonlinearity discovered in the course of the test necessitated running additional tests at the unusually high response levels of up to about 21 g. The high levels of response were required to obtain a model verification valid at the level of loads for which the spacecraft was designed. Because of the high modal density and the nonlinearity, correlation between the dynamic mathematical model and the test results becomes a difficult task. Significant changes in the pre-test analytical model are necessary to establish confidence in the upgraded analytical model used for the final load verification. This verification, using a test verified model, is required by NASA to fly the Galileo Spacecraft on the Shuttle/Centaur launch vehicle in 1986.
NASA Astrophysics Data System (ADS)
Xu, Zexuan; Hu, Bill
2016-04-01
Dual-permeability karst aquifers of porous media and conduit networks with significant different hydrological characteristics are widely distributed in the world. Discrete-continuum numerical models, such as MODFLOW-CFP and CFPv2, have been verified as appropriate approaches to simulate groundwater flow and solute transport in numerical modeling of karst hydrogeology. On the other hand, seawater intrusion associated with fresh groundwater resources contamination has been observed and investigated in numbers of coastal aquifers, especially under conditions of sea level rise. Density-dependent numerical models including SEAWAT are able to quantitatively evaluate the seawater/freshwater interaction processes. A numerical model of variable-density flow and solute transport - conduit flow process (VDFST-CFP) is developed to provide a better description of seawater intrusion and submarine groundwater discharge in a coastal karst aquifer with conduits. The coupling discrete-continuum VDFST-CFP model applies Darcy-Weisbach equation to simulate non-laminar groundwater flow in the conduit system in which is conceptualized and discretized as pipes, while Darcy equation is still used in continuum porous media. Density-dependent groundwater flow and solute transport equations with appropriate density terms in both conduit and porous media systems are derived and numerically solved using standard finite difference method with an implicit iteration procedure. Synthetic horizontal and vertical benchmarks are created to validate the newly developed VDFST-CFP model by comparing with other numerical models such as variable density SEAWAT, couplings of constant density groundwater flow and solute transport MODFLOW/MT3DMS and discrete-continuum CFPv2/UMT3D models. VDFST-CFP model improves the simulation of density dependent seawater/freshwater mixing processes and exchanges between conduit and matrix. Continuum numerical models greatly overestimated the flow rate under turbulent flow condition but discrete-continuum models provide more accurate results. Parameters sensitivities analysis indicates that conduit diameter and friction factor, matrix hydraulic conductivity and porosity are important parameters that significantly affect variable-density flow and solute transport simulation. The pros and cons of model assumptions, conceptual simplifications and numerical techniques in VDFST-CFP are discussed. In general, the development of VDFST-CFP model is an innovation in numerical modeling methodology and could be applied to quantitatively evaluate the seawater/freshwater interaction in coastal karst aquifers. Keywords: Discrete-continuum numerical model; Variable density flow and transport; Coastal karst aquifer; Non-laminar flow
Yang, Ya; Gao, Jianchuan; Cheng, Wanting; Pan, Xiang; Yang, Yu; Chen, Yue; Dai, Qingqing; Zhu, Lan; Zhou, Yibiao; Jiang, Qingwu
2018-03-14
Schistosomiasis remains a major public health concern in China. Oncomelania hupensis (O. hupensis) is the sole intermediate host of Schistosoma japonicum, and its change in distribution and density influences the endemic S. japonicum. The Three Gorges Dam (TGD) has substantially changed the downstream water levels of the dam. This study investigated the quantitative relationship between flooding duration and the density of the snail population. Two bottomlands without any control measures for snails were selected in Yueyang City, Hunan Province. Data for the density of the snail population and water level in both spring and autumn were collected for the period 2009-2015. Polynomial regression analysis was applied to explore the relationship between flooding duration and the density of the snail population. Data showed a convex relationship between spring snail density and flooding duration of the previous year (adjusted R 2 , aR 2 = 0.61). The spring snail density remained low when the flooding duration was fewer than 50 days in the previous year, was the highest when the flooding duration was 123 days, and decreased thereafter. There was a similar convex relationship between autumn snail density and flooding duration of the current year (aR 2 = 0.77). The snail density was low when the flooding duration was fewer than 50 days and was the highest when the flooding duration was 139 days. There was a convex relationship between flooding duration and the spring or autumn snail density. The snail density was the highest when flooding lasted about four to 5 months.
Density diagnostics of ionized outflows in active galacitc nuclei
NASA Astrophysics Data System (ADS)
Mao, J.; Kaastra, J.; Mehdipour, M.; Raassen, T.; Gu, L.
2017-10-01
Ionized outflows in Active Galactic Nuclei are thought to influence their nuclear and local galactic environment. However, the distance of outflows with respect to the central engine is poorly constrained, which limits our understanding of the kinetic power by the outflows. Therefore, the impact of AGN outflows on their host galaxies is uncertain. Given the density of the outflows, their distance can be immediately obtained by the definition of the ionization parameter. Here we carry out a theoretical study of density diagnostics of AGN outflows using absorption lines from metastable levels in Be-like to F-like ions. With the new self-consistent photoionization model (PION) in the SPEX code, we are able to calculate ground and metastable level populations. This enable us to determine under what physical conditions these levels are significantly populated. We then identify characteristic transitions from these metastable levels in the X-ray band. Firm detections of absorption lines from such metastable levels are challenging for current grating instruments. The next generation of spectrometers like X-IFU onboard Athena will certainly identify the presence/absence of these density- sensitive absorption lines, thus tightly constraining the location and the kinetic power of AGN outflows.
Modeling ecological traps for the control of feral pigs
Dexter, Nick; McLeod, Steven R
2015-01-01
Ecological traps are habitat sinks that are preferred by dispersing animals but have higher mortality or reduced fecundity compared to source habitats. Theory suggests that if mortality rates are sufficiently high, then ecological traps can result in extinction. An ecological trap may be created when pest animals are controlled in one area, but not in another area of equal habitat quality, and when there is density-dependent immigration from the high-density uncontrolled area to the low-density controlled area. We used a logistic population model to explore how varying the proportion of habitat controlled, control mortality rate, and strength of density-dependent immigration for feral pigs could affect the long-term population abundance and time to extinction. Increasing control mortality, the proportion of habitat controlled and the strength of density-dependent immigration decreased abundance both within and outside the area controlled. At higher levels of these parameters, extinction was achieved for feral pigs. We extended the analysis with a more complex stochastic, interactive model of feral pig dynamics in the Australian rangelands to examine how the same variables as the logistic model affected long-term abundance in the controlled and uncontrolled area and time to extinction. Compared to the logistic model of feral pig dynamics, the stochastic interactive model predicted lower abundances and extinction at lower control mortalities and proportions of habitat controlled. To improve the realism of the stochastic interactive model, we substituted fixed mortality rates with a density-dependent control mortality function, empirically derived from helicopter shooting exercises in Australia. Compared to the stochastic interactive model with fixed mortality rates, the model with the density-dependent control mortality function did not predict as substantial decline in abundance in controlled or uncontrolled areas or extinction for any combination of variables. These models demonstrate that pest eradication is theoretically possible without the pest being controlled throughout its range because of density-dependent immigration into the area controlled. The stronger the density-dependent immigration, the better the overall control in controlled and uncontrolled habitat combined. However, the stronger the density-dependent immigration, the poorer the control in the area controlled. For feral pigs, incorporating environmental stochasticity improves the prospects for eradication, but adding a realistic density-dependent control function eliminates these prospects. PMID:26045954
Photo-detachment of negative ions in Ar-CO2 dc discharge employing Langmuir probe
NASA Astrophysics Data System (ADS)
Rodríguez, Jannet; Yousif, Farook Bashir; Fuentes, Beatriz E.; Vázquez, Federico; Rivera, Marco; López-Patiño, J.; Figueroa, Aldo; Martínez, Horacio
2018-05-01
The electronegativity of the A r - C O 2 gas mixture was investigated, and the total relative negative oxygen ion density O2- + O- in the bulk of a dc discharge has been determined employing Langmuir probe assisted laser photo-detachment. The relative electron density and absolute temperature were obtained for the mixture at discharge powers between 200 and 3000 mW and pressures between 0.2 and 0.6 mbar, employing the collisional radiative model for several Ar gas mixtures. The absolute metastable number density for 1s3 and 1s5 levels was measured, and both showed an increasing trend as a function of pressure and power. The absolute number density of the 1s5 level was found to be higher than that of the 1s3 level. Electronegativity was found to decrease as a function of power and as a function of the increasing Ar percentage in the gas mixture.
Measurements of continuum lowering in solid-density plasmas created from elements and compounds
Ciricosta, O.; Vinko, S. M.; Barbrel, B.; ...
2016-05-23
The effect of a dense plasma environment on the energy levels of an embedded ion is usually described in terms of the lowering of its continuum level. For strongly coupled plasmas, the phenomenon is intimately related to the equation of state; hence, an accurate treatment is crucial for most astrophysical and inertial-fusion applications, where the case of plasma mixtures is of particular interest. In this study, we present an experiment showing that the standard density-dependent analytical models are inadequate to describe solid-density plasmas at the temperatures studied, where the reduction of the binding energies for a given species is unaffectedmore » by the different plasma environment (ion density) in either the element or compounds of that species, and can be accurately estimated by calculations only involving the energy levels of an isolated neutral atom. Lastly, the results have implications for the standard approaches to the equation of state calculations.« less
Can only poorer European countries afford large carnivores?
Kojola, Ilpo; Hallikainen, Ville; Helle, Timo; Swenson, Jon E
2018-01-01
One of the classic approaches in environmental economics is the environmental Kuznets curve, which predicts that when a national economy grows from low to medium levels, threats to biodiversity conservation increase, but they decrease when the economy moves from medium to high. We evaluated this approach by examining how population densities of the brown bear (Ursus arctos), gray wolf (Canis lupus), and Eurasian lynx (Lynx lynx) were related to the national economy in 24 European countries. We used forest proportions, the existence of a compensation system, and country group (former socialist countries, Nordic countries, other countries) as covariates in a linear model with the first- and the second-order polynomial terms of per capita gross domestic product (GDP). Country group was treated as a random factor, but remained insignificant and was ignored. All models concerning brown bear and wolf provided evidence that population densities decreased with increasing GDP, but densities of lynx were virtually independent of GDP. Models for the wolf explained >80% of the variation in densities, without a difference between the models with all independent variables and the model with only GDP. For the bear, the model with GDP alone accounted for 10%, and all three variables 33%, of the variation in densities. Wolves exhibit a higher capacity for dispersal and reproduction than bear or lynx, but still exists at the lowest densities in wealthy European countries. We are aware that several other factors, not available for our models, influenced large carnivore densities. Based on the pronounced differences among large carnivore species in their countrywide relationships between densities and GDP, and a strikingly high relationship for the gray wolf, we suggest that our results reflected differences in political history and public acceptance of these species among countries. The compensation paid for the damages caused by the carnivores is not a key to higher carnivore densities, but might be necessity for the presence of large carnivores to be accepted in countries with high GDP.
NASA Astrophysics Data System (ADS)
Wong, Michael H.; Atreya, Sushil K.; Kuhn, William R.; Romani, Paul N.; Mihalka, Kristen M.
2015-01-01
Models of cloud condensation under thermodynamic equilibrium in planetary atmospheres are useful for several reasons. These equilibrium cloud condensation models (ECCMs) calculate the wet adiabatic lapse rate, determine saturation-limited mixing ratios of condensing species, calculate the stabilizing effect of latent heat release and molecular weight stratification, and locate cloud base levels. Many ECCMs trace their heritage to Lewis (Lewis, J.S. [1969]. Icarus 10, 365-378) and Weidenschilling and Lewis (Weidenschilling, S.J., Lewis, J.S. [1973]. Icarus 20, 465-476). Calculation of atmospheric structure and gas mixing ratios are correct in these models. We resolve errors affecting the cloud density calculation in these models by first calculating a cloud density rate: the change in cloud density with updraft length scale. The updraft length scale parameterizes the strength of the cloud-forming updraft, and converts the cloud density rate from the ECCM into cloud density. The method is validated by comparison with terrestrial cloud data. Our parameterized updraft method gives a first-order prediction of cloud densities in a “fresh” cloud, where condensation is the dominant microphysical process. Older evolved clouds may be better approximated by another 1-D method, the diffusive-precipitative Ackerman and Marley (Ackerman, A.S., Marley, M.S. [2001]. Astrophys. J. 556, 872-884) model, which represents a steady-state equilibrium between precipitation and condensation of vapor delivered by turbulent diffusion. We re-evaluate observed cloud densities in the Galileo Probe entry site (Ragent, B. et al. [1998]. J. Geophys. Res. 103, 22891-22910), and show that the upper and lower observed clouds at ∼0.5 and ∼3 bars are consistent with weak (cirrus-like) updrafts under conditions of saturated ammonia and water vapor, respectively. The densest observed cloud, near 1.3 bar, requires unexpectedly strong updraft conditions, or higher cloud density rates. The cloud density rate in this layer may be augmented by a composition with non-NH4SH components (possibly including adsorbed NH3).
Efficacy of bacteriophage therapy in a model of Burkholderia cenocepacia pulmonary infection
Carmody, Lisa A.; Gill, Jason J.; Summer, Elizabeth J.; Sajjan, Uma S.; Gonzalez, Carlos F.; Young, Ryland F.; LiPuma, John J.
2009-01-01
The therapeutic potential of bacteriophage (phage) in a mouse model of acute B. cenocepacia pulmonary infection was assessed. Phage were administered by either intranasal (i.n.) inhalation or intraperitoneal (i.p.) injection. Bacterial density, macrophage inflammatory protein-2 (MIP-2), and tumor necrosis factor-α (TNFα) levels were significantly reduced in lungs of mice treated with i.p. phage. No significant differences in lung bacterial density or MIP-2 levels were found between untreated mice and mice treated with i.n. phage, i.p. UV-inactivated phage, or i.p. λ phage controls. Mock-infected mice treated with phage showed no significant increase in lung MIP-2 or TNFα levels compared to mock-infected / mock-treated mice. We have demonstrated the efficacy of phage therapy in an acute B. cenocepacia lung infection model. Systemic administration of phage was more effective than inhalational administration, suggesting that circulating phage have better access to bacteria in lung compared to topical phage. PMID:20001604
A geographic analysis of population density thresholds in the influenza pandemic of 1918-19.
Chandra, Siddharth; Kassens-Noor, Eva; Kuljanin, Goran; Vertalka, Joshua
2013-02-20
Geographic variables play an important role in the study of epidemics. The role of one such variable, population density, in the spread of influenza is controversial. Prior studies have tested for such a role using arbitrary thresholds for population density above or below which places are hypothesized to have higher or lower mortality. The results of such studies are mixed. The objective of this study is to estimate, rather than assume, a threshold level of population density that separates low-density regions from high-density regions on the basis of population loss during an influenza pandemic. We study the case of the influenza pandemic of 1918-19 in India, where over 15 million people died in the short span of less than one year. Using data from six censuses for 199 districts of India (n=1194), the country with the largest number of deaths from the influenza of 1918-19, we use a sample-splitting method embedded within a population growth model that explicitly quantifies population loss from the pandemic to estimate a threshold level of population density that separates low-density districts from high-density districts. The results demonstrate a threshold level of population density of 175 people per square mile. A concurrent finding is that districts on the low side of the threshold experienced rates of population loss (3.72%) that were lower than districts on the high side of the threshold (4.69%). This paper introduces a useful analytic tool to the health geographic literature. It illustrates an application of the tool to demonstrate that it can be useful for pandemic awareness and preparedness efforts. Specifically, it estimates a level of population density above which policies to socially distance, redistribute or quarantine populations are likely to be more effective than they are for areas with population densities that lie below the threshold.
A geographic analysis of population density thresholds in the influenza pandemic of 1918–19
2013-01-01
Background Geographic variables play an important role in the study of epidemics. The role of one such variable, population density, in the spread of influenza is controversial. Prior studies have tested for such a role using arbitrary thresholds for population density above or below which places are hypothesized to have higher or lower mortality. The results of such studies are mixed. The objective of this study is to estimate, rather than assume, a threshold level of population density that separates low-density regions from high-density regions on the basis of population loss during an influenza pandemic. We study the case of the influenza pandemic of 1918–19 in India, where over 15 million people died in the short span of less than one year. Methods Using data from six censuses for 199 districts of India (n=1194), the country with the largest number of deaths from the influenza of 1918–19, we use a sample-splitting method embedded within a population growth model that explicitly quantifies population loss from the pandemic to estimate a threshold level of population density that separates low-density districts from high-density districts. Results The results demonstrate a threshold level of population density of 175 people per square mile. A concurrent finding is that districts on the low side of the threshold experienced rates of population loss (3.72%) that were lower than districts on the high side of the threshold (4.69%). Conclusions This paper introduces a useful analytic tool to the health geographic literature. It illustrates an application of the tool to demonstrate that it can be useful for pandemic awareness and preparedness efforts. Specifically, it estimates a level of population density above which policies to socially distance, redistribute or quarantine populations are likely to be more effective than they are for areas with population densities that lie below the threshold. PMID:23425498
Population density and racial differences in the performance of emergency medical services.
David, Guy; Harrington, Scott E
2010-07-01
This paper analyzes the existence and scope of possible racial differences/disparities in the provision of emergency medical services (EMS) response capability (time from dispatch to arrival at the scene and level of training of the responding team) using data on approximately 120,000 cardiac incidents in the state of Mississippi during 1995-2004. The conceptual framework and empirical analysis focus on the likely effects of population density on the efficient production of EMS as a local public good subject to congestion, and on the need to control adequately for population density to avoid bias in testing for racial differences. Models that control for aggregate population density at the county-level indicate "reverse" disparities: faster estimated response times for African-Americans than for whites. When a refined county-level measure of population density is used that incorporates differences in African-American and white population density by Census tract, the reverse disparity in response times disappears. There also is little or no evidence of race-related differences in the certification level of EMS responders. However, there is evidence that, controlling for response time, African-Americans on average were significantly more likely to be deceased than whites upon EMS arrival at the scene. The overall results are germane to the debate over the scope of conditioning variables that should be included when testing for racial disparities in health care.
Zheng, Xuefeng; Wu, Jiajia; Zhu, Yaofeng; Chen, Si; Chen, Zhi; Chen, Tao; Huang, Ziyun; Wei, Jiayou; Li, Yanmei; Lei, Wanlong
2018-04-16
Striatal-direct and -indirect Pathway Neurons showed different vulnerability in basal ganglia disorders. Therefore, present study aimed to examine and compare characteristic changes of densities, protein and mRNA levels of soma, dendrites, and spines between striatal-direct and -indirect pathway neurons after DA depletion by using immunohistochemistry, Western blotting, real-time PCR and immunoelectron microscopy techniques. Experimental results showed that: 1) 6OHDA-induced DA depletion decreased the soma density of striatal-direct pathway neurons (SP+), but no significant changes for striatal-indirect pathway neurons (ENK+). 2) DA depletion resulted in a decline of dendrite density for both striatal-direct (D1+) and -indirect (D2+) pathway neurons, and D2+ dendritic density declined more obviously. At the ultrastructure level, the densities of D1+ and D2+ dendritic spines reduced in the 6OHDA groups compared with their control groups, but the density of D2+ dendritic spines reduced more significant than that of D1. 3) Striatal DA depletion down-regulated protein and mRNA expression levels of SP and D1, on the contrary, ENK and D2 protein and mRNA levels of indirect pathway neurons were up-regulated significantly. Present results suggested that indirect pathway neurons be more sensitive to 6OHDA-induced DA depletion. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pancheva, D.; Miyoshi, Y.; Mukhtarov, P.; Jin, H.; Shinagawa, H.; Fujiwara, H.
2012-07-01
This paper for the first time presents a detailed comparison between simulated and observed global electron density responses to different atmospheric tides forced from below. The recently developed Earth's whole atmospheric model from the troposphere to the ionosphere, called GAIA, has been used for the simulation of the electron density tidal responses. They have been compared with the extracted from the COSMIC electron density data tidal responses for the period of time October 2007 to March 2009. Particular attention has been paid to the nonmigrating DE3/DE2 and migrating DW1, SW2 and TW3 electron density responses. The GAIA model reproduced quite well the COSMIC DE3/DE2 responses. Both simulations and observations revealed three altitude regions of enhanced electron density responses: (1) an upper level response, above 300 km height, apparently shaped mainly by the “fountain effect” (2) a response located near altitudes of ˜200-270 km, and (3) a lower thermospheric response situated near 120-150 km height. A possible mechanism is suggested for explaining the two lower level responses. For the first time the GAIA model simulations supported the observational evidence found in the COSMIC measurements that the ionospheric WN4 (WN3) longitude structure is not generated only by the DE3 (DE2) tide as it has been often assumed. As regards the comparison of the migrating DW1, SW2 and TW3 responses the obtained results clearly demonstrate that the GAIA model reproduce very well of the SW2 and TW3 COSMIC electron density responses. The only main discrepancy is seen in the migrating DW1 response; the observation does not support the splitting of the simulated response at both sides of the equator. This is due mainly to the difference between the SABER and GAIA SW2 tide in the lower thermosphere as it turned out that the DW1 electron density response strongly depends on the mean features of the lower thermospheric SW2 tide.
Beyond supermarkets: Food outlet location selection in four U.S. cities over time
Rummo, Pasquale E.; Guilkey, David K.; Ng, Shu Wen; Popkin, Barry M.; Evenson, Kelly R.; Gordon-Larsen, P.
2017-01-01
Introduction Understanding what influences where food outlets locate is important for mitigating disparities in access to healthy food outlets. However, few studies have examined how neighborhood characteristics influence the neighborhood food environment over time, and whether these relationships differ by neighborhood-level income. Methods Neighborhood-level data from four U.S. cities (Birmingham, AL; Chicago, IL; Minneapolis, MN; Oakland, CA) from 1986, 1993, 1996, 2001, 2006, and 2011 were used with two-step econometric models to estimate longitudinal associations between neighborhood-level characteristics (z-scores) and the log-transformed count/km2 (density) of food outlets within real-estate-derived neighborhoods. We examined associations with lagged neighborhood-level sociodemographics and lagged density of food outlets, with interaction terms for neighborhood-level income. Data were analyzed in 2016. Results Neighborhood-level income at earlier years was negatively associated with the current density of convenience stores (β= −0.27; 95% CI: −0.16, −0.38; p<0.001). The percentage of neighborhood white population was negatively associated with fast food restaurant density in low income neighborhoods (10th percentile of income: β= −0.17; 95% CI: −0.34, −0.002; p=0.05), and the density of smaller grocery stores across all income levels (β= −0.27; 95% CI: −0.45, −0.09; p=0.003). There was a lack of policy-relevant associations between the pre-existing food environment and the current density of food outlet types, including supermarkets. Conclusions Socioeconomically-disadvantaged populations and minority populations may attract ‘unhealthy’ food outlets over time. To support equal access to healthy food outlets, the availability of ‘less healthy’ food outlets types may be relatively more important than the potential lack of supermarkets or full-service restaurants. PMID:27865651
Beyond Supermarkets: Food Outlet Location Selection in Four U.S. Cities Over Time.
Rummo, Pasquale E; Guilkey, David K; Ng, Shu Wen; Popkin, Barry M; Evenson, Kelly R; Gordon-Larsen, Penny
2017-03-01
Understanding what influences where food outlets locate is important for mitigating disparities in access to healthy food outlets. However, few studies have examined how neighborhood characteristics influence the neighborhood food environment over time, and whether these relationships differ by neighborhood-level income. Neighborhood-level data from four U.S. cities (Birmingham, AL; Chicago, IL; Minneapolis, MN; Oakland, CA) from 1986, 1993, 1996, 2001, 2006, and 2011 were used with two-step econometric models to estimate longitudinal associations between neighborhood-level characteristics (z-scores) and the log-transformed count/km 2 (density) of food outlets within real estate-derived neighborhoods. Associations were examined with lagged neighborhood-level sociodemographics and lagged density of food outlets, with interaction terms for neighborhood-level income. Data were analyzed in 2016. Neighborhood-level income at earlier years was negatively associated with the current density of convenience stores (β= -0.27, 95% CI= -0.16, -0.38, p<0.001). The percentage of neighborhood white population was negatively associated with fast food restaurant density in low-income neighborhoods (10th percentile of income: β= -0.17, 95% CI= -0.34, -0.002, p=0.05), and the density of smaller grocery stores across all income levels (β= -0.27, 95% CI= -0.45, -0.09, p=0.003). There was a lack of policy-relevant associations between the pre-existing food environment and the current density of food outlet types, including supermarkets. Socioeconomically disadvantaged and minority populations may attract "unhealthy" food outlets over time. To support equal access to healthy food outlets, the availability of "less healthy" food outlets types may be relatively more important than the potential lack of supermarkets or full-service restaurants. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Densities and temperatures in the polar thermosphere
NASA Technical Reports Server (NTRS)
Gardner, L. J.
1977-01-01
The atomic oxygen density at 120 km, the 630 nm airglow temperature, the helium density at 300 km and the molecular nitrogen density near 400 km were examined as functions of geomagnetic latitude, geomagnetic time, season and magnetic activity level. The long-term averages of these quantities were examined so as to provide a baseline of these thermospheric parameters from which future studies may be made for comparison. The hours around magnetic noon are characterized by low temperatures, high 0 and He densities, and median nitrogen densities. The pre-midnight hours exhibit high temperatures, high He density, low nitrogen density and median 0 densities. The post-midnight sector shows low 0 and He densities, median temperatures and high nitrogen densities. These results are compared to recent models and observations and are discussed with respect to their causes due to divergence of the wind field and energy deposition in the thermosphere.
NASA Astrophysics Data System (ADS)
Li, Yanli; Zhou, Maoqing; Zheng, Tingcai; Yao, Bo; Peng, Yingquan
2013-12-01
Based on drift-diffusion theory, a numerical model of the doping of a single energy level trap in the emission layer of an organic light emitting device (OLED) was developed, and the effects of doping of this single energy level trap on the distribution of the charge density, the recombination rate density, and the electric field in single- and double-layer OLEDs were studied numerically. The results show that by doping the n-type (p-type) emission layer with single energy electron (hole) traps, the distribution of the recombination rate density can be tuned and shifted, which is useful for improvement of the device performance by reduced electrode quenching or for realization of desirable special functions, e.g., emission spectrum tuning in multiple dye-doped white OLEDs.
Drinking, driving, and crashing: a traffic-flow model of alcohol-related motor vehicle accidents.
Gruenewald, Paul J; Johnson, Fred W
2010-03-01
This study examined the influence of on-premise alcohol-outlet densities and of drinking-driver densities on rates of alcohol-related motor vehicle crashes. A traffic-flow model is developed to represent geographic relationships between residential locations of drinking drivers, alcohol outlets, and alcohol-related motor vehicle crashes. Cross-sectional and time-series cross-sectional spatial analyses were performed using data collected from 144 geographic units over 4 years. Data were obtained from archival and survey sources in six communities. Archival data were obtained within community areas and measured activities of either the resident population or persons visiting these communities. These data included local and highway traffic flow, locations of alcohol outlets, population density, network density of the local roadway system, and single-vehicle nighttime (SVN) crashes. Telephone-survey data obtained from residents of the communities were used to estimate the size of the resident drinking and driving population. Cross-sectional analyses showed that effects relating on-premise densities to alcohol-related crashes were moderated by highway trafficflow. Depending on levels of highway traffic flow, 10% greater densities were related to 0% to 150% greater rates of SVN crashes. Time-series cross-sectional analyses showed that changes in the population pool of drinking drivers and on-premise densities interacted to increase SVN crash rates. A simple traffic-flow model can assess the effects of on-premise alcohol-outlet densities and of drinking-driver densities as they vary across communities to produce alcohol-related crashes. Analyses based on these models can usefully guide policy decisions on the sitting of on-premise alcohol outlets.
Kleemeyer, Maike Margarethe; Kühn, Simone; Prindle, John; Bodammer, Nils Christian; Brechtel, Lars; Garthe, Alexander; Kempermann, Gerd; Schaefer, Sabine; Lindenberger, Ulman
2016-05-01
This study investigates the effects of fitness changes on hippocampal microstructure and hippocampal volume. Fifty-two healthy participants aged 59-74years with a sedentary lifestyle were randomly assigned to either of two levels of exercise intensity. Training lasted for six months. Physical fitness, hippocampal volumes, and hippocampal microstructure were measured before and after training. Hippocampal microstructure was assessed by mean diffusivity, which inversely reflects tissue density; hence, mean diffusivity is lower for more densely packed tissue. Mean changes in fitness did not differ reliably across intensity levels of training, so data were collapsed across groups. Multivariate modeling of pretest-posttest differences using structural equation modeling (SEM) revealed that individual differences in latent change were reliable for all three constructs. More positive changes in fitness were associated with more positive changes in tissue density (i.e., more negative changes in mean diffusivity), and more positive changes in tissue density were associated with more positive changes in volume. We conclude that fitness-related changes in hippocampal volume may be brought about by changes in tissue density. The relative contributions of angiogenesis, gliogenesis, and/or neurogenesis to changes in tissue density remain to be identified. Copyright © 2015 Elsevier Inc. All rights reserved.
Benson, Emily R.; Wipfli, Mark S.; Clapcott, Joanne E.; Hughes, Nicholas F.
2013-01-01
Relationships between environmental variables, ecosystem metabolism, and benthos are not well understood in sub-arctic ecosystems. The goal of this study was to investigate environmental drivers of river ecosystem metabolism and macroinvertebrate density in a sub-arctic river. We estimated primary production and respiration rates, sampled benthic macroinvertebrates, and monitored light intensity, discharge rate, and nutrient concentrations in the Chena River, interior Alaska, over two summers. We employed Random Forests models to identify predictor variables for metabolism rates and benthic macroinvertebrate density and biomass, and calculated Spearman correlations between in-stream nutrient levels and metabolism rates. Models indicated that discharge and length of time between high water events were the most important factors measured for predicting metabolism rates. Discharge was the most important variable for predicting benthic macroinvertebrate density and biomass. Primary production rate peaked at intermediate discharge, respiration rate was lowest at the greatest time since last high water event, and benthic macroinvertebrate density was lowest at high discharge rates. The ratio of dissolved inorganic nitrogen to soluble reactive phosphorus ranged from 27:1 to 172:1. We found that discharge plays a key role in regulating stream ecosystem metabolism, but that low phosphorous levels also likely limit primary production in this sub-arctic stream.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolić, M.; Newton, J.; Sukenik, C. I.
2015-01-14
We present a new approach to measure population densities of Ar I metastable and resonant excited states in low temperature Ar plasmas at pressures higher than 1 Torr. This approach combines the time resolved laser induced fluorescence technique with the kinetic model of Ar. The kinetic model of Ar is based on calculating the population rates of metastable and resonant levels by including contributions from the processes that affect population densities of Ar I excited states. In particular, we included collisional quenching processes between atoms in the ground state and excited states, since we are investigating plasma at higher pressures. Wemore » also determined time resolved population densities of Ar I 2 p excited states by employing optical emission spectroscopy technique. Time resolved Ar I excited state populations are presented for the case of the post-discharge of the supersonic flowing microwave discharge at pressures of 1.7 and 2.3 Torr. The experimental set-up consists of a pulsed tunable dye laser operating in the near infrared region and a cylindrical resonance cavity operating in TE{sub 111} mode at 2.45 GHz. Results show that time resolved population densities of Ar I metastable and resonant states oscillate with twice the frequency of the discharge.« less
Smith, David R.; Robinson, Timothy J.
2015-01-01
A Delaware Bay, USA, standardized survey of spawning horseshoe crabs, Limulus polyphemus, was carried out in 1999 − 2013 through a citizen science network. Previous trend analyses of the data were at the state (DE or NJ) or bay-wide levels. Here, an alternative mixed-model regression analysis was used to estimate trends in female and male spawning densities at the beach level (n = 26) with the objective of inferring their causes. For females, there was no overall trend and no single explanation applies to the temporal and spatial patterns in their densities. Individual beaches that initially had higher densities tended to experience a decrease, while beaches that initially had lower densities tended to experience an increase. As a result, densities of spawning females at the end of the study period were relatively similar among beaches, suggesting a redistribution of females among the beaches over the study period. For males, there was a positive overall trend in spawning abundance from 1999 to 2013, and this increase occurred broadly among beaches. Moreover, the beaches with below-average initial male density tended to have the greatest increases. Possible explanations for these patterns include harvest reduction, sampling artifact, habitat change, density-dependent habitat selection, or mate selection. The broad and significant increase in male spawning density, which occurred after enactment of harvest controls, is consistent with the harvest reduction explanation, but there is no single explanation for the temporal or spatial pattern in female densities. These results highlight the continued value of a citizen-science-based spawning survey in understanding horseshoe crab ecology and conservation.
Smith, D.R.
2007-01-01
Because the Delaware Bay horseshoe crab (Limulus polyphemus) population is managed to provide for dependent species, such as migratory shorebirds, there is a need to understand the process of egg exhumation and to predict eggs available to foraging shorebirds. A simple spatial model was used to simulate horseshoe crab spawning that would occur on a typical Delaware Bay beach during spring tide cycles to quantify density-dependent nest disturbance. At least 20% of nests and eggs were disturbed for levels of spawning greater than one third of the average density in Delaware Bay during 2004. Nest disturbance increased approximately linearly as spawning density increased from one half to twice the 2004 level. As spawning density increased further, the percentage of eggs that were disturbed reached an asymptote of 70% for densities up to 10 times the density in 2004. Nest disturbance was heaviest in the mid beach zone. Nest disturbance precedes entrainment and begins the process of exhumation of eggs to surface sediments. Model predictions were combined with observations from egg surveys to estimate a snap-shot exhumation rate of 5-9% of disturbed eggs. Because an unknown quantity of eggs were exhumed and removed from the beach prior to the survey, cumulative exhumation rate was likely to have been higher than the snap-shot estimate. Because egg exhumation is density-dependent, in addition to managing for a high population size, identification and conservation of beaches where spawning horseshoe crabs concentrate in high densities (i.e., hot spots) are important steps toward providing a reliable food supply for migratory shorebirds. ?? 2007 Estuarine Research Federation.
Ciuluvică, R; Grădinaru, S; Popescu, M; Piticescu, RM; Cergan, R
2015-01-01
Introduction: This study was meant to test a new type of bone graft on an animal model. This material was a nanostructured hydroxyapatite. Materials and Methods: the study was conducted according to Ethic Committee Regulation on animal model (Oryctolagus cuniculus – rabbit) between August and November 2014, at “Carol Davila” University of Medicine and Pharmacy, Bucharest. The animals were tested by using a CT at the level of the mandible before and after using the nanostructured hydroxyapatite. Results: The animals were CT scanned at 1, 2 and respectively 3 months, noticing a growth of the mandibular bone density. After 3 months, a bone density equal with the density of the healthy bone was noticed. Conclusions: The use of the bone graft could be a viable alternative to available materials. The advantage was that bone recovery had a density similar to the density of the healthy bone and the cost of production was low because it was made out of Calcium azotate and monobasic ammonium phosphate. PMID:25914749
Increased consumer density reduces the strength of neighborhood effects in a model system.
Merwin, Andrew C; Underwood, Nora; Inouye, Brian D
2017-11-01
An individual's susceptibility to attack can be influenced by conspecific and heterospecifics neighbors. Predicting how these neighborhood effects contribute to population-level processes such as competition and evolution requires an understanding of how the strength of neighborhood effects is modified by changes in the abundances of both consumers and neighboring resource species. We show for the first time that consumer density can interact with the density and frequency of neighboring organisms to determine the magnitude of neighborhood effects. We used the bean beetle, Callosobruchus maculatus, and two of its host beans, Vigna unguiculata and V. radiata, to perform a response-surface experiment with a range of resource densities and three consumer densities. At low beetle density, damage to beans was reduced with increasing conspecific density (i.e., resource dilution) and damage to the less preferred host, V. unguiculata, was reduced with increasing V. radiata frequency (i.e., frequency-dependent associational resistance). As beetle density increased, however, neighborhood effects were reduced; at the highest beetle densities neither focal nor neighboring resource density nor frequency influenced damage. These findings illustrate the importance of consumer density in mediating indirect effects among resources, and suggest that accounting for consumer density may improve our ability to predict population-level outcomes of neighborhood effects and our use of them in applications such as mixed-crop pest management. © 2017 by the Ecological Society of America.
Gruden, Maja; Andjeklović, Ljubica; Jissy, Akkarapattiakal Kuriappan; Stepanović, Stepan; Zlatar, Matija; Cui, Qiang; Elstner, Marcus
2017-09-30
Density Functional Tight Binding (DFTB) models are two to three orders of magnitude faster than ab initio and Density Functional Theory (DFT) methods and therefore are particularly attractive in applications to large molecules and condensed phase systems. To establish the applicability of DFTB models to general chemical reactions, we conduct benchmark calculations for barrier heights and reaction energetics of organic molecules using existing databases and several new ones compiled in this study. Structures for the transition states and stable species have been fully optimized at the DFTB level, making it possible to characterize the reliability of DFTB models in a more thorough fashion compared to conducting single point energy calculations as done in previous benchmark studies. The encouraging results for the diverse sets of reactions studied here suggest that DFTB models, especially the most recent third-order version (DFTB3/3OB augmented with dispersion correction), in most cases provide satisfactory description of organic chemical reactions with accuracy almost comparable to popular DFT methods with large basis sets, although larger errors are also seen for certain cases. Therefore, DFTB models can be effective for mechanistic analysis (e.g., transition state search) of large (bio)molecules, especially when coupled with single point energy calculations at higher levels of theory. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Padgett-Vasquez, Steve; Garris, Heath W.; Nagy, Tim R.; D'Abramo, Louis R.; Watts, Stephen A.
2010-01-01
Abstract Zebrafish (Danio rerio) skeletal bone possesses properties similar to human bone, which suggests that they may be used as a model to study mineralization characteristics of the human Haversian system, as well as human bone diseases. One prerequisite for the use of zebrafish as an alternative osteoporotic bone model is to determine whether their bone displays functional plasticity similar to that observed in other bone models. Strontium citrate was supplemented into a laboratory-prepared diet (45% crude protein) to produce dietary strontium levels of 0%, 0.63%, 1.26%, 1.89%, and 2.43% and fed ad libitum twice daily for 12 weeks to 28-day-old intact zebrafish. Length was determined at 4-week intervals, and both weight and length were recorded at 12 weeks. At 12 weeks, seven zebrafish from each dietary level were analyzed for total bone mineral density by microcomputed tomography. Dietary strontium citrate supplementation significantly (p < 0.05) increased zebrafish whole-body and spinal column bone mineral density. In addition, trace amounts of strontium were incorporated into the scale matrix in those zebrafish that consumed strontium-supplemented diets. These findings suggest that zebrafish bone displays plasticity similar to that reported for other bone models (i.e., rat, mouse, and monkey) that received supplements of strontium compounds and zebrafish should be viewed as an increasingly valuable bone model. PMID:20874492
Modeling abundance effects in distance sampling
Royle, J. Andrew; Dawson, D.K.; Bates, S.
2004-01-01
Distance-sampling methods are commonly used in studies of animal populations to estimate population density. A common objective of such studies is to evaluate the relationship between abundance or density and covariates that describe animal habitat or other environmental influences. However, little attention has been focused on methods of modeling abundance covariate effects in conventional distance-sampling models. In this paper we propose a distance-sampling model that accommodates covariate effects on abundance. The model is based on specification of the distance-sampling likelihood at the level of the sample unit in terms of local abundance (for each sampling unit). This model is augmented with a Poisson regression model for local abundance that is parameterized in terms of available covariates. Maximum-likelihood estimation of detection and density parameters is based on the integrated likelihood, wherein local abundance is removed from the likelihood by integration. We provide an example using avian point-transect data of Ovenbirds (Seiurus aurocapillus) collected using a distance-sampling protocol and two measures of habitat structure (understory cover and basal area of overstory trees). The model yields a sensible description (positive effect of understory cover, negative effect on basal area) of the relationship between habitat and Ovenbird density that can be used to evaluate the effects of habitat management on Ovenbird populations.
Ethnic density of regions and psychiatric disorders among ethnic minority individuals.
Emerson, Scott Daniel; Minh, Anita; Guhn, Martin
2018-03-01
Ethnic minorities form an increasingly large proportion of Canada's population. Living in areas of greater ethnic density may help protect mental health among ethnic minorities through psychosocial pathways such as accessibility to culturally appropriate provision of mental health care, less discrimination and a greater sense of belonging. Mood and anxiety disorders are common psychiatric disorders. This study examined whether ethnic density of regions was related to mood and anxiety disorders among ethnic minorities in Canada. Responses by ethnic minority individuals to the 2011-2014 administrations of the Canadian Community Health Survey ( n = 33,201) were linked to health region ethnic density data. Multilevel logistic regression was employed to model the odds of having mood and/or anxiety disorders associated with increasing region-level ethnic density and to examine whether sense of community belonging helped explain variance in such associations. Analyses were adjusted for individual-level demographic factors as well as region-level socio-economic factors. Higher ethnic density related to lower odds of mood and/or anxiety disorders for Canadian-born (but not foreign-born) ethnic minorities. Sense of community belonging did not help explain such associations, but independently related to lower odds of mood and/or anxiety disorders. These findings remained after adjusting for regional population density and after excluding (rural/remote) regions of very low ethnic density. Ethnic density of regions in Canada may be an important protective factor against mental illness among Canadian-born ethnic minorities. It is important to better understand how, and for which specific ethno-cultural groups, ethnic density may influence mental health.
NASA Astrophysics Data System (ADS)
Li, Yanggui; Geng, Xingguo; Wang, Heping; Zhuang, Xin; Ouyang, Jie
2016-06-01
The frontal instability of lock-exchange density currents is numerically investigated using dissipative particle dynamics (DPD) at the mesoscopic particle level. For modeling two-phase flow, the “color” repulsion model is adopted to describe binary fluids according to Rothman-Keller method. The present DPD simulation can reproduce the flow phenomena of lock-exchange density currents, including the lobe-and-cleft instability that appears at the head, as well as the formation of coherent billow structures at the interface behind the head due to the growth of Kelvin-Helmholtz instability. Furthermore, through the DPD simulation, some small-scale characteristics can be observed, which are difficult to be captured in macroscopic simulation and experiment.
Simulation of Groundwater Flow in the Coastal Plain Aquifer System of Virginia
Heywood, Charles E.; Pope, Jason P.
2009-01-01
The groundwater model documented in this report simulates the transient evolution of water levels in the aquifers and confining units of the Virginia Coastal Plain and adjacent portions of Maryland and North Carolina since 1890. Groundwater withdrawals have lowered water levels in Virginia Coastal Plain aquifers and have resulted in drawdown in the Potomac aquifer exceeding 200 feet in some areas. The discovery of the Chesapeake Bay impact crater and a revised conceptualization of the Potomac aquifer are two major changes to the hydrogeologic framework that have been incorporated into the groundwater model. The spatial scale of the model was selected on the basis of the primary function of the model of assessing the regional water-level responses of the confined aquifers beneath the Coastal Plain. The local horizontal groundwater flow through the surficial aquifer is not intended to be accurately simulated. Representation of recharge, evapotranspiration, and interaction with surface-water features, such as major rivers, lakes, the Chesapeake Bay, and the Atlantic Ocean, enable simulation of shallow flow-system details that influence locations of recharge to and discharge from the deeper confined flow system. The increased density of groundwater associated with the transition from fresh to salty groundwater near the Atlantic Ocean affects regional groundwater flow and was simulated with the Variable Density Flow Process of SEAWAT (a U.S. Geological Survey program for simulation of three-dimensional variable-density groundwater flow and transport). The groundwater density distribution was generated by a separate 108,000-year simulation of Pleistocene freshwater flushing around the Chesapeake Bay impact crater during transient sea-level changes. Specified-flux boundaries simulate increasing groundwater underflow out of the model domain into Maryland and minor underflow from the Piedmont Province into the model domain. Reported withdrawals accounted for approximately 75 percent of the total groundwater withdrawn from Coastal Plain aquifers during the year 2000. Unreported self-supplied withdrawals were simulated in the groundwater model by specifying their probable locations, magnitudes, and aquifer assignments on the basis of a separate study of domestic-well characteristics in Virginia. The groundwater flow model was calibrated to 7,183 historic water-level observations from 497 observation wells with the parameter-estimation codes UCODE-2005 and PEST. Most water-level observations were from the Potomac aquifer system, which permitted a more complex spatial distribution of simulated hydraulic conductivity within the Potomac aquifer than was possible for other aquifers. Zone, function, and pilot-point approaches were used to distribute assigned hydraulic properties within the aquifer system. The good fit (root mean square error = 3.6 feet) of simulated to observed water levels and reasonableness of the estimated parameter values indicate the model is a good representation of the physical groundwater flow system. The magnitudes and temporal and spatial distributions of residuals indicate no appreciable model bias. The model is intended to be useful for predicting changes in regional groundwater levels in the confined aquifer system in response to future pumping. Because the transient release of water stored in low-permeability confining units is simulated, drawdowns resulting from simulated pumping stresses may change substantially through time before reaching steady state. Consequently, transient simulations of water levels at different future times will be more accurate than a steady-state simulation for evaluating probable future aquifer-system responses to proposed pumping.
Langmuir turbulence driven by beams in solar wind plasmas with long wavelength density fluctuations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krafft, C., E-mail: catherine.krafft@u-psud.fr; Universite´ Paris Sud, 91405 Orsay Cedex; Volokitin, A., E-mail: a.volokitin@mail.ru
2016-03-25
The self-consistent evolution of Langmuir turbulence generated by electron beams in solar wind plasmas with density inhomogeneities is calculated by numerical simulations based on a 1D Hamiltonian model. It is shown, owing to numerical simulations performed with parameters relevant to type III solar bursts’ conditions at 1 AU, that the presence of long-wavelength random density fluctuations of sufficiently large average level crucially modifies the well-known process of beam interaction with Langmuir waves in homogeneous plasmas.
Huang, Rong; Zheng, Jun; Li, Shengxian; Tao, Tao; Ma, Jing; Liu, Wei
2015-05-01
To investigate the different characteristics in Chinese Han women with polycystic ovary syndrome, and to analyze the significance of hyperandrogenism in insulin resistance and other metabolic profiles. A cross-sectional study. Medical university hospital. A total of 229 women with polycystic ovary syndrome aged 18-45 years. Women with polycystic ovary syndrome, diagnosed by Rotterdam criteria, were divided into four groups according to the quartile intervals of free androgen index levels. Comparisons between groups were performed using one-way analysis of variance. Stepwise logistic regression analysis was performed to investigate the association between homeostasis model assessment-insulin resistance and independent variables. Within the four phenotypes, women with phenotype 1 (hyperandrogenism, oligo/anovulation, and polycystic ovaries) exhibited higher total testosterone, free androgen index, androstenedione, low-density lipoprotein, and lower quantitative insulin sensitivity check index (p < 0.05); women with phenotype 4 (oligo/anovulation and polycystic ovaries) showed lower total cholesterol, low-density lipoprotein, and homeostasis model assessment-insulin resistance, but higher high-density lipoprotein (p < 0.05). The levels of triglycerides, total cholesterol, low-density lipoprotein, and homeostasis model assessment-insulin resistance significantly increased, but high-density lipoprotein and quantitative insulin sensitivity check index decreased with the elevation of free androgen index intervals. After adjustment for lipid profiles, free androgen index was significantly associated with homeostasis model assessment-insulin resistance in both lean and overweight/obese women (odds ratio 1.302, p = 0.039 in lean vs. odds ratio 1.132, p = 0.036 in overweight/obese). Phenotypes 1 and 4 represent groups with the most and least severe metabolic profiles, respectively. Hyperandrogenism, particularly with elevated free androgen index, is likely a key contributing factor for insulin resistance and for the aggravation of other metabolic profiles. © 2015 Nordic Federation of Societies of Obstetrics and Gynecology.
Midplane neutral density profiles in the National Spherical Torus Experiment
Stotler, D. P.; Scotti, F.; Bell, R. E.; ...
2015-08-13
Atomic and molecular density data in the outer midplane of NSTX [Ono et al., Nucl. Fusion 40, 557 (2000)] are inferred from tangential camera data via a forward modeling procedure using the DEGAS 2 Monte Carlo neutral transport code. The observed Balmer-β light emission data from 17 shots during the 2010 NSTX campaign display no obvious trends with discharge parameters such as the divertor Balmer-α emission level or edge deuterium ion density. Simulations of 12 time slices in 7 of these discharges produce molecular densities near the vacuum vessel wall of 2–8 × 10 17 m –3 and atomic densitiesmore » ranging from 1 to 7 ×10 16 m –3; neither has a clear correlation with other parameters. Validation of the technique, begun in an earlier publication, is continued with an assessment of the sensitivity of the simulated camera image and neutral densities to uncertainties in the data input to the model. The simulated camera image is sensitive to the plasma profiles and virtually nothing else. The neutral densities at the vessel wall depend most strongly on the spatial distribution of the source; simulations with a localized neutral source yield densities within a factor of two of the baseline, uniform source, case. Furthermore, the uncertainties in the neutral densities associated with other model inputs and assumptions are ≤ 50%.« less
Modeling the chemical kinetics of atmospheric plasma for cell treatment in a liquid solution
NASA Astrophysics Data System (ADS)
Kim, H. Y.; Lee, H. W.; Kang, S. K.; Wk. Lee, H.; Kim, G. C.; Lee, J. K.
2012-07-01
Low temperature atmospheric pressure plasmas have been known to be effective for living cell inactivation in a liquid solution but it is not clear yet which species are key factors for the cell treatment. Using a global model, we elucidate the processes through which pH level in the solution is changed from neutral to acidic after plasma exposure and key components with pH and air variation. First, pH level in a liquid solution is changed by He+ and He(21S) radicals. Second, O3 density decreases as pH level in the solution decreases and air concentration decreases. It can be a method of removing O3 that causes chest pain and damages lung tissue when the density is very high. H2O2, HO2, and NO radicals are found to be key factors for cell inactivation in the solution with pH and air variation.
Hert, Kerrie A; Fisk, Paul S; Rhee, Yeong S; Brunt, Ardith R
2014-01-01
Consumption of sugar-sweetened beverages (SSBs) increased greatly from the late 1970s to the early part of this decade. Although recent data show that consumption of SSB may now be declining, consumption levels still remain much higher than recommended. Using data from the National Health and Nutrition Examination Survey, we assessed trends in intakes of SSB and levels of chronic disease biomarkers from 1999 to 2010 and examined the associations of SSB intake and biomarkers of chronic disease risk. We hypothesized that SSB intake will decrease and biomarkers of chronic disease risk will improve, therefore indicating that high intake of SSB is associated with greater chronic disease risk. Univariate analysis showed that from 1999 to 2010, SSB consumption decreased (P for trend = .0026), high-density lipoprotein increased (P for trend < .0001), low-density lipoprotein decreased (P for trend = .0007), and C-reactive protein decreased (P for trend = .0096). Using multivariate analysis, we showed that higher intakes of SSB were associated with lower high-density lipoprotein (P for trend < .0001), in an unadjusted model and all models with increasing numbers of covariates, and higher C-reactive protein (P for trend < .05), in an unadjusted model and in models with age, race/ethnicity, sex, education level, and poverty income ratio adjustments. We conclude that SSB consumption is associated with biomarkers of chronic disease risk, independent of demographic and lifestyle factors. © 2014.
NASA Astrophysics Data System (ADS)
Theodorsen, A.; E Garcia, O.; Rypdal, M.
2017-05-01
Filtered Poisson processes are often used as reference models for intermittent fluctuations in physical systems. Such a process is here extended by adding a noise term, either as a purely additive term to the process or as a dynamical term in a stochastic differential equation. The lowest order moments, probability density function, auto-correlation function and power spectral density are derived and used to identify and compare the effects of the two different noise terms. Monte-Carlo studies of synthetic time series are used to investigate the accuracy of model parameter estimation and to identify methods for distinguishing the noise types. It is shown that the probability density function and the three lowest order moments provide accurate estimations of the model parameters, but are unable to separate the noise types. The auto-correlation function and the power spectral density also provide methods for estimating the model parameters, as well as being capable of identifying the noise type. The number of times the signal crosses a prescribed threshold level in the positive direction also promises to be able to differentiate the noise type.
Applying complex models to poultry production in the future--economics and biology.
Talpaz, H; Cohen, M; Fancher, B; Halley, J
2013-09-01
The ability to determine the optimal broiler feed nutrient density that maximizes margin over feeding cost (MOFC) has obvious economic value. To determine optimal feed nutrient density, one must consider ingredient prices, meat values, the product mix being marketed, and the projected biological performance. A series of 8 feeding trials was conducted to estimate biological responses to changes in ME and amino acid (AA) density. Eight different genotypes of sex-separate reared broilers were fed diets varying in ME (2,723-3,386 kcal of ME/kg) and AA (0.89-1.65% digestible lysine with all essential AA acids being indexed to lysine) levels. Broilers were processed to determine carcass component yield at many different BW (1.09-4.70 kg). Trial data generated were used in model constructed to discover the dietary levels of ME and AA that maximize MOFC on a per broiler or per broiler annualized basis (bird × number of cycles/year). The model was designed to estimate the effects of dietary nutrient concentration on broiler live weight, feed conversion, mortality, and carcass component yield. Estimated coefficients from the step-wise regression process are subsequently used to predict the optimal ME and AA concentrations that maximize MOFC. The effects of changing feed or meat prices across a wide spectrum on optimal ME and AA levels can be evaluated via parametric analysis. The model can rapidly compare both biological and economic implications of changing from current practice to the simulated optimal solution. The model can be exploited to enhance decision making under volatile market conditions.
NASA Astrophysics Data System (ADS)
Ramaprabhu, P.; Karkhanis, V.; Banerjee, R.; Varshochi, H.; Khan, M.; Lawrie, A. G. W.
2016-01-01
From nonlinear models and direct numerical simulations we report on several findings of relevance to the single-mode Rayleigh-Taylor (RT) instability driven by time-varying acceleration histories. The incompressible, direct numerical simulations (DNSs) were performed in two (2D) and three dimensions (3D), and at a range of density ratios of the fluid combinations (characterized by the Atwood number). We investigated several acceleration histories, including acceleration profiles of the general form g (t ) ˜tn , with n ≥0 and acceleration histories reminiscent of the linear electric motor experiments. For the 2D flow, results from numerical simulations compare well with a 2D potential flow model and solutions to a drag-buoyancy model reported as part of this work. When the simulations are extended to three dimensions, bubble and spike growth rates are in agreement with the so-called level 2 and level 3 models of Mikaelian [K. O. Mikaelian, Phys. Rev. E 79, 065303(R) (2009), 10.1103/PhysRevE.79.065303], and with corresponding 3D drag-buoyancy model solutions derived in this article. Our generalization of the RT problem to study variable g (t ) affords us the opportunity to investigate the appropriate scaling for bubble and spike amplitudes under these conditions. We consider two candidates, the displacement Z and width s2, but find the appropriate scaling is dependent on the density ratios between the fluids—at low density ratios, bubble and spike amplitudes are explained by both s2 and Z , while at large density differences the displacement collapses the spike data. Finally, for all the acceleration profiles studied here, spikes enter a free-fall regime at lower Atwood numbers than predicted by all the models.
Growth rates of rainbow smelt in Lake Champlain: Effects of density and diet
Stritzel, Thomson J.L.; Parrish, D.L.; Parker-Stetter, S. L.; Rudstam, L. G.; Sullivan, P.J.
2011-01-01
Stritzel Thomson JL, Parrish DL, Parker-Stetter SL, Rudstam LG, Sullivan PJ. Growth rates of rainbow smelt in Lake Champlain: effects of density and diet. Ecology of Freshwater Fish 2010. ?? 2010 John Wiley & Sons A/S Abstract- We estimated the densities of rainbow smelt (Osmerus mordax) using hydroacoustics and obtained specimens for diet analysis and groundtruthed acoustics data from mid-water trawl sampling in four areas of Lake Champlain, USA-Canada. Densities of rainbow smelt cohorts alternated during the 2-year study; age-0 rainbow smelt were very abundant in 2001 (up to 6fish per m2) and age-1 and older were abundant (up to 1.2fish per m2) in 2002. Growth rates and densities varied among areas and years. We used model selection on eight area-year-specific variables to investigate biologically plausible predictors of rainbow smelt growth rates. The best supported model of growth rates of age-0 smelt indicated a negative relationship with age-0 density, likely associated with intraspecific competition for zooplankton. The next best-fit model had age-1 density as a predictor of age-0 growth. The best supported models (N=4) of growth rates of age-1 fish indicated a positive relationship with availability of age-0 smelt and resulting levels of cannibalism. Other plausible models were contained variants of these parameters. Cannibalistic rainbow smelt consumed younger conspecifics that were up to 53% of their length. Prediction of population dynamics for rainbow smelt requires an understanding of the relationship between density and growth as age-0 fish outgrow their main predators (adult smelt) by autumn in years with fast growth rates, but not in years with slow growth rates. ?? 2011 John Wiley & Sons A/S.
Zarychta, Bartosz; Lyubimov, Artem; Ahmed, Maqsood; Munshi, Parthapratim; Guillot, Benoît; Vrielink, Alice; Jelsch, Christian
2015-04-01
Examination of protein structure at the subatomic level is required to improve the understanding of enzymatic function. For this purpose, X-ray diffraction data have been collected at 100 K from cholesterol oxidase crystals using synchrotron radiation to an optical resolution of 0.94 Å. After refinement using the spherical atom model, nonmodelled bonding peaks were detected in the Fourier residual electron density on some of the individual bonds. Well defined bond density was observed in the peptide plane after averaging maps on the residues with the lowest thermal motion. The multipolar electron density of the protein-cofactor complex was modelled by transfer of the ELMAM2 charge-density database, and the topology of the intermolecular interactions between the protein and the flavin adenine dinucleotide (FAD) cofactor was subsequently investigated. Taking advantage of the high resolution of the structure, the stereochemistry of main-chain bond lengths and of C=O···H-N hydrogen bonds was analyzed with respect to the different secondary-structure elements.
NASA Astrophysics Data System (ADS)
Xia, Junchao; Carter, Emily
2014-03-01
We propose a density decomposition scheme using a Wang-Govind-Carter (WGC)-based kinetic energy density functional (KEDF) to accurately and efficiently simulate covalent systems within orbital-free (OF) density functional theory (DFT). By using a local, density-dependent scale function, the total density is decomposed into a localized density within covalent bond regions and a flattened delocalized density, with the former described by semilocal KEDFs and the latter treated by the WGC KEDF. The new model predicts reasonable equilibrium volumes, bulk moduli, and phase ordering energies for various semiconductors compared to Kohn-Sham (KS) DFT benchmarks. The surface energy of Si(100) also agrees well with KSDFT. We further apply the model to study mechanical properties of Li-Si alloys, which have been recently recognized as a promising candidate for next-generation anodes of Li-ion batteries with outstanding capacity. We study multiple crystalline Li-Si alloys. The WGCD KEDF predicts accurate cell lattice vectors, equilibrium volumes, elastic moduli, electron densities, alloy formation and Li adsorption energies. Because of its quasilinear scaling, coupled with the level of accuracy shown here, OFDFT appears quite promising for large-scale simulation of such materials phenomena. Office of Naval Research, National Science Foundation, Tigress High Performance Computing Center.
COST VS. QUALITY IN DEMOGRAPHIC MODELLING: WHEN IS A VITAL RATE GOOD ENOUGH?
This presentation will focus on the assessment of quality for demographic parameters to be used in population-level risk assessment. Current population models can handle genetic, demographic, and environmental stochasticity, density dependence, and multiple stressors. However, cu...
Validation of Mars-GRAM and Planned New Features
NASA Technical Reports Server (NTRS)
Justus, C. G.; Duvall, Aleta; Keller, Vernon W.
2004-01-01
For altitudes below 80 km, Mars Global Reference Atmospheric Model (Mars-GRAM 2001) is based on output climatology from NASA Ames Mars General Circulation Model (MGCM). At COSPAR 2002, results were presented of validation tests of Mars-GRAM versus data from Mars Global Surveyor Thermal Emission Spectrometer (TES) and Radio Science (RS) experiment. Further validation tests are presented comparing Mars- GRAM densities with those from the European Mars Climate Database (MCD), and comparing densities from both Mars-GRAM and MCD against TES observations. Throughout most of the height and latitude range of TES data (040 km and 70s to 70N), good agreement is found between atmospheric densities from Mars-GRAM and MCD. However, at the season and latitude zone for Mars Phoenix arrival and landing (Ls = 65 to 80 degrees and latitude 65 to 75N), Mars-GRAM densities are about 30 to 45 percent higher than MCD densities near 40 km altitude. Further evaluation is warranted concerning potential impact of these model differences on planning for Phoenix entry and descent. Three planned features for Mars-GRAM update are also discussed: (1) new MGCM and Thermospheric General Circulation Model data sets to be used as a revised basis for Mars-GRAM mean atmosphere, (2) a new feature to represent planetary-scale traveling waves for upper altitude density variations (such as found during Mars Odyssey aerobraking), and (3) a new model for effects of high resolution topographic slope on winds near the surface (0 to 4.5 km above MOLA topography level). Mars-GRAM slope winds will be computed from a diagnostic (algebraic) relationship based on Ye, Segal, and Pielke (1990). This approach differs from mesoscale models (such as MRAMS and Mars MM5), which use prognostic, full-physics solutions of the time- and space-dependent differential equations of motion. As such, slope winds in Mars-GRAM will be consistent with its "engineering-level" approach, and will be extremely fast and easy to evaluate, compared with mesoscale model solutions. Mars-GRAM slope winds are not being suggested as a replacement for sophisticated, full-physics Mars mesoscale models, but may have value, particularly for preliminary screening of large numbers of candidate landing sites for future Mars missions, such as Phoenix and Mars Science Laboratory. Test output is presented from Mars-GRAM slope winds in the area of Gusev Crater and Valles Marineris.
Balabin, Roman M; Lomakina, Ekaterina I
2009-08-21
Artificial neural network (ANN) approach has been applied to estimate the density functional theory (DFT) energy with large basis set using lower-level energy values and molecular descriptors. A total of 208 different molecules were used for the ANN training, cross validation, and testing by applying BLYP, B3LYP, and BMK density functionals. Hartree-Fock results were reported for comparison. Furthermore, constitutional molecular descriptor (CD) and quantum-chemical molecular descriptor (QD) were used for building the calibration model. The neural network structure optimization, leading to four to five hidden neurons, was also carried out. The usage of several low-level energy values was found to greatly reduce the prediction error. An expected error, mean absolute deviation, for ANN approximation to DFT energies was 0.6+/-0.2 kcal mol(-1). In addition, the comparison of the different density functionals with the basis sets and the comparison of multiple linear regression results were also provided. The CDs were found to overcome limitation of the QD. Furthermore, the effective ANN model for DFT/6-311G(3df,3pd) and DFT/6-311G(2df,2pd) energy estimation was developed, and the benchmark results were provided.
Study on the physical and non-physical drag coefficients for spherical satellites
NASA Astrophysics Data System (ADS)
Man, Haijun; Li, Huijun; Tang, Geshi
In this study, the physical and non-physical drag coefficients (C_D) for spherical satellites in ANDERR are retrieved from the number density of atomic oxygen and the orbit decay data, respectively. We concern on what changes should be taken to the retrieved physical C_D and non-physical C_D as the accuracy of the atmospheric density model is improved. Firstly, Lomb-Scargle periodograms to these C_D series as well as the environmental parameters indicate that: (1) there are obvious 5-, 7-, and 9-day periodic variations in the daily Ap indices and the solar wind speed at 1 AU as well as the model density, which has been reported as a result from the interaction between the corotating solar wind and the magnetosphere; (2) The same short periods also exist in the retrieved C_D except for the significance level for each C_D series; (3) the physical and non-physical C_D have behaved almost homogeneously with model densities along the satellite trajectory. Secondly, corrections to each type of C_D are defined as the differences between the values derived from the density model of NRLMSISE-00 and that of JB2008. It has shown that: (1) the bigger the density corrections are, the bigger the corrections to C_D of both types have. In addition, corrections to the physical C_D distribute within an extension of 0.05, which is about an order lower than the extension that the non-physical C_D distribute (0.5). (2) Corrections to the non-physical C_D behaved reciprocally to the density corrections, while a similar relationship is also existing between corrections to the physical C_D and that of the model density. (3) As the orbital altitude are lower than 200 km, corrections to the C_D and the model density are both decreased asymptotically to zero. Results in this study highlight that the physical C_D for spherical satellites should play an important role in technique renovations for accurate density corrections with the orbital decay data or in searching for a way to decouple the product of density and C_D wrapped in the orbital decay data.
Decreasing annual nest counts in a globally important loggerhead sea turtle population.
Witherington, Blair; Kubilis, Paul; Brost, Beth; Meylan, Anne
2009-01-01
The loggerhead sea turtle (Caretta caretta) nests on sand beaches, has both oceanic and neritic life stages, and migrates internationally. We analyzed an 18-year time series of Index Nesting Beach Survey (Index) nest-count data to describe spatial and temporal trends in loggerhead nesting on Florida (USA) beaches. The Index data were highly resolved: 368 fixed zones (mean length 0.88 km) were surveyed daily during annual 109-day survey seasons. Spatial and seasonal coverage averaged 69% of estimated total nesting by loggerheads in the state. We carried out trend analyses on both annual survey-region nest-count totals (N = 18) and annual zone-level nest densities (N = 18 x 368 = 6624). In both analyses, negative binomial regression models were used to fit restricted cubic spline curves to aggregated nest counts. Between 1989 and 2006, loggerhead nest counts on Florida Index beaches increased and then declined, with a net decrease over the 18-year period. This pattern was evident in both a trend model of annual survey-region nest-count totals and a mixed-effect, "single-region" trend model of annual zone-level nest densities that took into account both spatial and temporal correlation between counts. We also saw this pattern in a zone-level model that allowed trend line shapes to vary between six coastal subregions. Annual mean zone-level nest density declined significantly (-28%; 95% CI: -34% to -21%) between 1989 and 2006 and declined steeply (-43%; 95% CI: -48% to -39%) during 1998-2006. Rates of change in annual mean nest density varied more between coastal subregions during the "mostly increasing" period prior to 1998 than during the "steeply declining" period after 1998. The excellent fits (observed vs. expected count R2 > 0.91) of the mixed-effect zone-level models confirmed the presence of strong, positive, within-zone autocorrelation (R > 0.93) between annual counts, indicating a remarkable year-to-year consistency in the longshore spatial distribution of nests over the survey region. We argue that the decline in annual loggerhead nest counts in peninsular Florida can best be explained by a decline in the number of adult female loggerheads in the population. Causes of this decline are explored.
Profound Effects of Population Density on Fitness-Related Traits in an Invasive Freshwater Snail
Zachar, Nicholas; Neiman, Maurine
2013-01-01
Population density can profoundly influence fitness-related traits and population dynamics, and density dependence plays a key role in many prominent ecological and evolutionary hypotheses. Here, we evaluated how individual-level changes in population density affect growth rate and embryo production early in reproductive maturity in two different asexual lineages of Potamopyrgus antipodarum, a New Zealand freshwater snail that is an important model system for ecotoxicology and the evolution of sexual reproduction as well as a potentially destructive worldwide invader. We showed that population density had a major influence on individual growth rate and early-maturity embryo production, effects that were often apparent even when comparing treatments that differed in population density by only one individual. While individual growth rate generally decreased as population density increased, we detected a hump-shaped relationship between embryo production and density, with females from intermediate-density treatments producing the most embryos and females from low- and high-density treatments producing the fewest embryos. The two lineages responded similarly to the treatments, indicating that these effects of population density might apply more broadly across P. antipodarum. These results indicate that there are profound and complex relationships between population density, growth rate, and early-maturity embryo production in at least two lineages of this important model system, with potential implications for the study of invasive populations, research on the maintenance of sex, and approaches used in ecotoxicology. PMID:24278240
Profound effects of population density on fitness-related traits in an invasive freshwater snail.
Zachar, Nicholas; Neiman, Maurine
2013-01-01
Population density can profoundly influence fitness-related traits and population dynamics, and density dependence plays a key role in many prominent ecological and evolutionary hypotheses. Here, we evaluated how individual-level changes in population density affect growth rate and embryo production early in reproductive maturity in two different asexual lineages of Potamopyrgus antipodarum, a New Zealand freshwater snail that is an important model system for ecotoxicology and the evolution of sexual reproduction as well as a potentially destructive worldwide invader. We showed that population density had a major influence on individual growth rate and early-maturity embryo production, effects that were often apparent even when comparing treatments that differed in population density by only one individual. While individual growth rate generally decreased as population density increased, we detected a hump-shaped relationship between embryo production and density, with females from intermediate-density treatments producing the most embryos and females from low- and high-density treatments producing the fewest embryos. The two lineages responded similarly to the treatments, indicating that these effects of population density might apply more broadly across P. antipodarum. These results indicate that there are profound and complex relationships between population density, growth rate, and early-maturity embryo production in at least two lineages of this important model system, with potential implications for the study of invasive populations, research on the maintenance of sex, and approaches used in ecotoxicology.
Pearce, Jamie; Rind, Esther; Shortt, Niamh; Tisch, Catherine; Mitchell, Richard
2016-02-01
Many neighborhood characteristics may constrain or enable smoking. This study investigated whether the neighborhood tobacco retail environment was associated with individual-level smoking and cessation in Scottish adults, and whether inequalities in smoking status were related to tobacco retailing. Tobacco outlet density measures were developed for neighborhoods across Scotland using the September 2012 Scottish Tobacco Retailers Register. The outlet data were cleaned and geocoded (n = 10,161) using a Geographic Information System. Kernel density estimation was used to calculate an outlet density measure for each postcode. The kernel density estimation measures were then appended to data on individuals included in the 2008-2011 Scottish Health Surveys (n = 28,751 adults aged ≥16), via their postcode. Two-level logistic regression models examined whether neighborhood density of tobacco retailing was associated with current smoking status and smoking cessation and whether there were differences in the relationship between household income and smoking status, by tobacco outlet density. After adjustment for individual- and area-level confounders, compared to residents of areas with the lowest outlet densities, those living in areas with the highest outlet densities had a 6% higher chance of being a current smoker, and a 5% lower chance of being an ex-smoker. There was little evidence to suggest that inequalities in either current smoking or cessation were narrower in areas with lower availability of tobacco retailing. The findings suggest that residents of environments with a greater availability of tobacco outlets are more likely to start and/or sustain smoking, and less likely to quit. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Rijgersberg, Hajo; Franz, Eelco; Nierop Groot, Masja; Tromp, Seth-Oscar
2013-07-01
Within a microbial risk assessment framework, modeling the maximum population density (MPD) of a pathogenic microorganism is important but often not considered. This paper describes a model predicting the MPD of Salmonella on alfalfa as a function of the initial contamination level, the total count of the indigenous microbial population, the maximum pathogen growth rate and the maximum population density of the indigenous microbial population. The model is parameterized by experimental data describing growth of Salmonella on sprouting alfalfa seeds at inoculum size, native microbial load and Pseudomonas fluorescens 2-79. The obtained model fits well to the experimental data, with standard errors less than ten percent of the fitted average values. The results show that the MPD of Salmonella is not only dictated by performance characteristics of Salmonella but depends on the characteristics of the indigenous microbial population like total number of cells and its growth rate. The model can improve the predictions of microbiological growth in quantitative microbial risk assessments. Using this model, the effects of preventive measures to reduce pathogenic load and a concurrent effect on the background population can be better evaluated. If competing microorganisms are more sensitive to a particular decontamination method, a pathogenic microorganism may grow faster and reach a higher level. More knowledge regarding the effect of the indigenous microbial population (size, diversity, composition) of food products on pathogen dynamics is needed in order to make adequate predictions of pathogen dynamics on various food products.
Unscreening Modified Gravity in the Matter Power Spectrum.
Lombriser, Lucas; Simpson, Fergus; Mead, Alexander
2015-06-26
Viable modifications of gravity that may produce cosmic acceleration need to be screened in high-density regions such as the Solar System, where general relativity is well tested. Screening mechanisms also prevent strong anomalies in the large-scale structure and limit the constraints that can be inferred on these gravity models from cosmology. We find that by suppressing the contribution of the screened high-density regions in the matter power spectrum, allowing a greater contribution of unscreened low densities, modified gravity models can be more readily discriminated from the concordance cosmology. Moreover, by variation of density thresholds, degeneracies with other effects may be dealt with more adequately. Specializing to chameleon gravity as a worked example for screening in modified gravity, employing N-body simulations of f(R) models and the halo model of chameleon theories, we demonstrate the effectiveness of this method. We find that a percent-level measurement of the clipped power at k<0.3h/Mpc can yield constraints on chameleon models that are more stringent than what is inferred from Solar System tests or distance indicators in unscreened dwarf galaxies. Finally, we verify that our method is also applicable to the Vainshtein mechanism.
Experimental signature of collective enhancement in nuclear level density
NASA Astrophysics Data System (ADS)
Pandit, Deepak; Bhattacharya, Srijit; Mondal, Debasish; Roy, Pratap; Banerjee, K.; Mukhopadhyay, S.; Pal, Surajit; De, A.; Dey, Balaram; Banerjee, S. R.
2018-04-01
We present a probable experimental signature of collective enhancement in the nuclear level density (NLD) by measuring the neutron and the giant dipole resonance (GDR) γ rays emitted from the rare-earth 169Tm compound nucleus populated at 26.1 MeV excitation energy. An enhanced yield is observed in both neutron and γ -ray spectra corresponding to the same excitation energy in the daughter nuclei. The enhancement could only be reproduced by including a collective enhancement factor in the Fermi gas model of NLD to explain the neutron and GDR spectra simultaneously. The experimental results show that the relative enhancement factor is of the order of 10 and the fadeout occurs at ˜14 MeV excitation energy, much before the commonly accepted transition from deformed to spherical shape. We also explain how the collective enhancement contribution changes the inverse level density parameter k from 8 to 9.5 MeV observed recently in several deformed nuclei.
Improving the Nightside Mid-latitude Ionospheric Density in the Global Ionosphere-Thermosphere Model
NASA Astrophysics Data System (ADS)
Wu, C.; Ridley, A. J.
2017-12-01
The ionosphere and plasmasphere interact with each other through upwelling of plasma into the plasmasphere during the day and downwelling of the plasma into the ionosphere during the night. The storage of ion density in the plasmasphere and subsequent downwelling maintains the ion density in the nighttime mid-latitude ionosphere. Global models of the upper atmosphere that do not contain a plasmasphere, but are limited in altitude, such as the Thermosphere Ionosphere Electrodynamics Global Circulation Model (TIEGCM) and the Global Ionosphere-Thermosphere Model(GITM) need a boundary condition that allows for some sort of downwelling to occur. In the TIEGCM, this has been set to a constant downward flux, while GITM has had no downwelling specification at all, which has caused the nighttime mid-latitude densities to be much too low. We present a new boundary condition in GITM, where there is downward ion flux from the upper boundary, allowing the ionosphere to be maintained during the night. This new boundary condition is dependent on the the Disturbance Storm Time (Dst), since, as the activity level increases (i.e., Dst decreases), the plasmasphere is eroded and will not serve to supply the ionosphere at night. Various quiet time and active time comparisons to ionosonde electron density and total electron content data will be presented that show that the ionospheric density in GITM is improved due to this new boundary condition.
A Study of Oil Viscosity Mental Model
NASA Astrophysics Data System (ADS)
Albaiti; Liliasari; Sumarna, Omay; Abdulkadir Martoprawiro, Muhamad
2017-02-01
There is no study regarding on how to learn viscosity of the liquid (e.g. oil) by interconnecting macroscopic, sub-microscopic and symbolic levels. Therefore, the purpose of this research was to study the mental model of the oil viscosity. Intermolecular attractive force of oil constituent on the sub-microscopic level is depicted in the form of mental models. In this research, the viscosity data for some types of oil was measured by using Hoppler method. Viscosity of mineral oil SAE 20W-50, mineral oil SAE 15W-40 and synthetic oil SAE 10W-40 were 1.75, 1.31, and 1.03 Pa s, and the densities of these oils were 908.64, 885.04, and 877.02 kg/m3, respectively. The results showed that the greater density of the mineral oil that is assumed to be composed of linear chains of hydrocarbons, the longer the chain of hydrocarbon linear. Consequently, there are stronger the London force and greater the oil viscosity. The density and viscosity of synthetic oil are lower than that of both mineral oils. Synthetic oil structurally forms polymers with large branching. This structure affects a lower synthetic oil viscosity. This study contributes to construct a mental model of pre-service chemistry teachers.
Population density and suicide in Scotland.
Stark, Cameron; Hopkins, Paddy; Gibbs, Diane; Belbin, Alan; Hay, Alistair
2007-01-01
Suicide rates among men have increased in Scotland while falling in neighbouring countries. A national suicide prevention strategy has been produced. Previous work found that some rural areas of Scotland had higher than average rates of male suicide and undetermined deaths. This article describes the association between population density and suicide and undetermined death rates in Scotland. Anonymised information on deaths from suicide and undetermined cause in Scotland were obtained from the General Registrar Office for 1981-1999, including information on postcode sector. Each postcode sector was assigned a deprivation and population density score. Loglinear models were used to examine the effects of time period (grouped into four periods), deprivation quintiles, population density (grouped into four categories) and their interactions in each sex in three age groups. A significance level of 5% was used throughout. Adjusted rate ratios and 95% confidence intervals were based on models that included only significant factors and interactions. In men, there were higher rate ratios in the most densely populated and least densely populated quartiles, with intermediate rate ratios in other areas. There was no association with population density in women aged less than 25 years, a similar pattern to men in 25-44 year old women, and lower rates in rural areas in older women. Higher levels of deprivation were associated with higher rate ratios of suicide in both sexes and all age groups. Rate ratios over time increased in younger men and women, remained stable in older men, and declined in older women. Deprivation is associated with higher rates of suicide and undetermined deaths at all levels of population density and in all age groups. The highest rates of suicide among men are in the most and least densely populated areas, after adjusting for deprivation. The effect is different among women, with no effect among younger women, and lower rates among older women in areas with lower population density.
Sievänen, Risto; Raumonen, Pasi; Perttunen, Jari; Nikinmaa, Eero; Kaitaniemi, Pekka
2018-05-24
Functional-structural plant models (FSPMs) allow simulation of tree crown development as the sum of modular (e.g. shoot-level) responses triggered by the local environmental conditions. The actual process of space filling by the crowns can be studied. Although the FSPM simulations are at organ scale, the data for their validation have usually been at more aggregated levels (whole-crown or whole-tree). Measurements made by terrestrial laser scanning (TLS) that have been segmented into elementary units (internodes) offer a phenotyping tool to validate the FSPM predictions at levels comparable with their detail. We demonstrate the testing of different formulations of crown development of Scots pine trees in the LIGNUM model using segmented TLS data. We made TLS measurements from four sample trees growing in a forest on a relatively poor soil from sapling size to mature stage. The TLS data were segmented into internodes. The segmentation also produced information on whether needles were present in the internode. We applied different formulations of crown development (flushing of buds and length of growth of new internodes) in LIGNUM. We optimized the parameter values of each formulation using genetic algorithms to observe the best fit of LIGNUM simulations to the measured trees. The fitness function in the estimation combined both tree-level characteristics (e.g. tree height and crown length) and measures of crown shape (e.g. spatial distribution of needle area). Comparison of different formulations against the data indicates that the Extended Borchert-Honda model for shoot elongation works best within LIGNUM. Control of growth by local density in the crown was important for all shoot elongation formulations. Modifying the number of lateral buds as a function of local density in the crown was the best way to accomplish density control. It was demonstrated how segmented TLS data can be used in the context of a shoot-based model to select model components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuravlev, B. V., E-mail: zhurav@ippe.ru; Lychagin, A. A., E-mail: Lychagin1@yandex.ru; Titarenko, N. N.
Level densities and their energy dependences for nuclei in the mass range of 47 {<=} A {<=} 59 were determined from the results obtained by measuring neutron-evaporation spectra in respective (p, n) reactions. The spectra of neutrons originating from the (p, n) reactions on {sup 47}Ti, {sup 48}Ti, {sup 49}Ti, {sup 53}Cr, {sup 54}Cr, {sup 57}Fe, and {sup 59}Co nuclei were measured in the proton-energy range of 7-11 MeV. These measurements were performed with the aid of a fast-neutron spectrometer by the time-of-flight method over the base of the EGP-15 pulsed tandem accelerator installed at the Institute for Physics andmore » Power Engineering (Obninsk, Russia). A high resolution of the spectrometer and its stability in the time of flight made it possible to identify reliably discrete low-lying levels along with the continuum part of neutron spectra. Our measured data were analyzed within the statistical equilibrium and preequilibrium models of nuclear reactions. The respective calculations were performed with the aid of the Hauser-Feshbach formalismof statistical theory supplemented with the generalized model of a superfluid nucleus, the back-shifted Fermi gas model, and the Gilbert-Cameron composite formula for nuclear level densities. Nuclear level densities for {sup 47}V, {sup 48}V, {sup 49}V, {sup 53}Mn, {sup 54}Mn, {sup 57}Co, and {sup 59}Ni and their energy dependences were determined. The results are discussed and compared with available experimental data and with recommendations of model-based systematics.« less
Neutrino mass in flavor dependent gauged lepton model
NASA Astrophysics Data System (ADS)
Nomura, Takaaki; Okada, Hiroshi
2018-03-01
We study a neutrino model introducing an additional nontrivial gauged lepton symmetry where the neutrino masses are induced at two-loop level, while the first and second charged-leptons of the standard model are done at one-loop level. As a result of the model structure, we can predict one massless active neutrino, and there is a dark matter candidate. Then we discuss the neutrino mass matrix, muon anomalous magnetic moment, lepton flavor violations, oblique parameters, and relic density of dark matter, taking into account the experimental constraints.
Using live algae at the anode of a microbial fuel cell to generate electricity.
Xu, Chang; Poon, Karen; Choi, Martin M F; Wang, Ruihua
2015-10-01
Live green microalgae Chlorella pyrenoidosa was introduced in the anode of a microbial fuel cell (MFC) to act as an electron donor. By controlling the oxygen content, light intensity, and algal cell density at the anode, microalgae would generate electricity without requiring externally added substrates. Two models of algal microbial fuel cells (MFCs) were constructed with graphite/carbon electrodes and no mediator. Model 1 algal MFC has live microalgae grown at the anode and potassium ferricyanide at the cathode, while model 2 algal MFC had live microalgae in both the anode and cathode in different growth conditions. Results indicated that a higher current produced in model 1 algal MFC was obtained at low light intensity of 2500 lx and algal cell density of 5 × 10(6) cells/ml, in which high algal density would limit the electricity generation, probably by increasing oxygen level and mass transfer problem. The maximum power density per unit anode volume obtained in model 1 algal MFC was relatively high at 6030 mW/m(2), while the maximum power density at 30.15 mW/m(2) was comparable with that of previous reported bacteria-driven MFC with graphite/carbon electrodes. A much smaller power density at 2.5 mW/m(2) was observed in model 2 algal MFC. Increasing the algal cell permeability by 4-nitroaniline would increase the open circuit voltage, while the mitochondrial acting and proton leak promoting agents resveratrol and 2,4-dinitrophenol would increase the electric current production in algal MFC.
Rowland, B; Evans-Whipp, Tracy; Hemphill, Sheryl; Leung, Rachel; Livingston, M; Toumbourou, J W
2016-01-01
Higher density of alcohol outlets has been linked to increased levels of adolescent alcohol-related behaviour. Research to date has been cross-sectional. A longitudinal design using two waves of annual survey data from the Australian arm of the International Youth Development Study was used. The sample comprised 2835 individuals with average age at wave 2 of 14 years (SD=1.67; range=11-17 years). GSEM was used to examine how absolute levels of alcohol outlet density was associated with student-reported alcohol use one year later, while controlling for prior alcohol use, risk factors at wave one and changes in density over the 2 years. Adolescents' perception of alcohol availability and friends' alcohol use were tested as potential mediators of the association between alcohol outlet density and adolescent alcohol use. Elasticity modelling identified a 10% increase in overall density at wave one was associated with an approximately 17% increase in odds of adolescent alcohol consumption at wave two. Living in areas with a higher density of outlets was associated with a statistically significant increase in the likelihood of adolescents developing early age alcohol consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multi-level molecular modelling for plasma medicine
NASA Astrophysics Data System (ADS)
Bogaerts, Annemie; Khosravian, Narjes; Van der Paal, Jonas; Verlackt, Christof C. W.; Yusupov, Maksudbek; Kamaraj, Balu; Neyts, Erik C.
2016-02-01
Modelling at the molecular or atomic scale can be very useful for obtaining a better insight in plasma medicine. This paper gives an overview of different atomic/molecular scale modelling approaches that can be used to study the direct interaction of plasma species with biomolecules or the consequences of these interactions for the biomolecules on a somewhat longer time-scale. These approaches include density functional theory (DFT), density functional based tight binding (DFTB), classical reactive and non-reactive molecular dynamics (MD) and united-atom or coarse-grained MD, as well as hybrid quantum mechanics/molecular mechanics (QM/MM) methods. Specific examples will be given for three important types of biomolecules, present in human cells, i.e. proteins, DNA and phospholipids found in the cell membrane. The results show that each of these modelling approaches has its specific strengths and limitations, and is particularly useful for certain applications. A multi-level approach is therefore most suitable for obtaining a global picture of the plasma-biomolecule interactions.
Kwan, Paul; Welch, Mitchell
2017-01-01
In order to understand the distribution and prevalence of Ommatissus lybicus (Hemiptera: Tropiduchidae) as well as analyse their current biographical patterns and predict their future spread, comprehensive and detailed information on the environmental, climatic, and agricultural practices are essential. The spatial analytical techniques such as Remote Sensing and Spatial Statistics Tools, can help detect and model spatial links and correlations between the presence, absence and density of O. lybicus in response to climatic, environmental, and human factors. The main objective of this paper is to review remote sensing and relevant analytical techniques that can be applied in mapping and modelling the habitat and population density of O. lybicus. An exhaustive search of related literature revealed that there are very limited studies linking location-based infestation levels of pests like the O. lybicus with climatic, environmental, and human practice related variables. This review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future studies, and gives suggestions on monitoring and surveillance methods in designing both local and regional level integrated pest management strategies of palm tree and other affected cultivated crops. PMID:28875085
Al-Kindi, Khalifa M; Kwan, Paul; R Andrew, Nigel; Welch, Mitchell
2017-01-01
In order to understand the distribution and prevalence of Ommatissus lybicus (Hemiptera: Tropiduchidae) as well as analyse their current biographical patterns and predict their future spread, comprehensive and detailed information on the environmental, climatic, and agricultural practices are essential. The spatial analytical techniques such as Remote Sensing and Spatial Statistics Tools, can help detect and model spatial links and correlations between the presence, absence and density of O. lybicus in response to climatic, environmental, and human factors. The main objective of this paper is to review remote sensing and relevant analytical techniques that can be applied in mapping and modelling the habitat and population density of O. lybicus . An exhaustive search of related literature revealed that there are very limited studies linking location-based infestation levels of pests like the O. lybicus with climatic, environmental, and human practice related variables. This review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future studies, and gives suggestions on monitoring and surveillance methods in designing both local and regional level integrated pest management strategies of palm tree and other affected cultivated crops.
NASA Astrophysics Data System (ADS)
Ghanbari, Azadeh; Dehghany, Jaber; Schwebs, Timo; Müsken, Mathias; Häussler, Susanne; Meyer-Hermann, Michael
2016-09-01
Pseudomonas aeruginosa often colonises immunocompromised patients and the lungs of cystic fibrosis patients. It exhibits resistance to many antibiotics by forming biofilms, which makes it hard to eliminate. P. aeruginosa biofilms form mushroom-shaped structures under certain circumstances. Bacterial motility and the environment affect the eventual mushroom morphology. This study provides an agent-based model for the bacterial dynamics and interactions influencing bacterial biofilm shape. Cell motility in the model relies on recently published experimental data. Our simulations show colony formation by immotile cells. Motile cells escape from a single colony by nutrient chemotaxis and hence no mushroom shape develops. A high number density of non-motile colonies leads to migration of motile cells onto the top of the colonies and formation of mushroom-shaped structures. This model proposes that the formation of mushroom-shaped structures can be predicted by parameters at the time of bacteria inoculation. Depending on nutrient levels and the initial number density of stalks, mushroom-shaped structures only form in a restricted regime. This opens the possibility of early manipulation of spatial pattern formation in bacterial colonies, using environmental factors.
Ghanbari, Azadeh; Dehghany, Jaber; Schwebs, Timo; Müsken, Mathias; Häussler, Susanne; Meyer-Hermann, Michael
2016-09-09
Pseudomonas aeruginosa often colonises immunocompromised patients and the lungs of cystic fibrosis patients. It exhibits resistance to many antibiotics by forming biofilms, which makes it hard to eliminate. P. aeruginosa biofilms form mushroom-shaped structures under certain circumstances. Bacterial motility and the environment affect the eventual mushroom morphology. This study provides an agent-based model for the bacterial dynamics and interactions influencing bacterial biofilm shape. Cell motility in the model relies on recently published experimental data. Our simulations show colony formation by immotile cells. Motile cells escape from a single colony by nutrient chemotaxis and hence no mushroom shape develops. A high number density of non-motile colonies leads to migration of motile cells onto the top of the colonies and formation of mushroom-shaped structures. This model proposes that the formation of mushroom-shaped structures can be predicted by parameters at the time of bacteria inoculation. Depending on nutrient levels and the initial number density of stalks, mushroom-shaped structures only form in a restricted regime. This opens the possibility of early manipulation of spatial pattern formation in bacterial colonies, using environmental factors.
Johnson, Elizabeth K; Fields, Henry W; Beck, F Michael; Firestone, Allen R; Rosenstiel, Stephen F
2017-02-01
Previous eye-tracking research has demonstrated that laypersons view the range of dental attractiveness levels differently depending on facial attractiveness levels. How the borderline levels of dental attractiveness are viewed has not been evaluated in the context of facial attractiveness and compared with those with near-ideal esthetics or those in definite need of orthodontic treatment according to the Aesthetic Component of the Index of Orthodontic Treatment Need scale. Our objective was to determine the level of viewers' visual attention in its treatment need categories levels 3 to 7 for persons considered "attractive," "average," or "unattractive." Facial images of persons at 3 facial attractiveness levels were combined with 5 levels of dental attractiveness (dentitions representing Aesthetic Component of the Index of Orthodontic Treatment Need levels 3-7) using imaging software to form 15 composite images. Each image was viewed twice by 66 lay participants using eye tracking. Both the fixation density (number of fixations per facial area) and the fixation duration (length of time for each facial area) were quantified for each image viewed. Repeated-measures analysis of variance was used to determine how fixation density and duration varied among the 6 facial interest areas (chin, ear, eye, mouth, nose, and other). Viewers demonstrated excellent to good reliability among the 6 interest areas (intraviewer reliability, 0.70-0.96; interviewer reliability, 0.56-0.93). Between Aesthetic Component of the Index of Orthodontic Treatment Need levels 3 and 7, viewers of all facial attractiveness levels showed an increase in attention to the mouth. However, only with the attractive models were significant differences in fixation density and duration found between borderline levels with female viewers. Female viewers paid attention to different areas of the face than did male viewers. The importance of dental attractiveness is amplified in facially attractive female models compared with average and unattractive female models between near-ideal and borderline-severe dentally unattractive levels. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Statistical Measures of Large-Scale Structure
NASA Astrophysics Data System (ADS)
Vogeley, Michael; Geller, Margaret; Huchra, John; Park, Changbom; Gott, J. Richard
1993-12-01
\\inv Mpc} To quantify clustering in the large-scale distribution of galaxies and to test theories for the formation of structure in the universe, we apply statistical measures to the CfA Redshift Survey. This survey is complete to m_{B(0)}=15.5 over two contiguous regions which cover one-quarter of the sky and include ~ 11,000 galaxies. The salient features of these data are voids with diameter 30-50\\hmpc and coherent dense structures with a scale ~ 100\\hmpc. Comparison with N-body simulations rules out the ``standard" CDM model (Omega =1, b=1.5, sigma_8 =1) at the 99% confidence level because this model has insufficient power on scales lambda >30\\hmpc. An unbiased open universe CDM model (Omega h =0.2) and a biased CDM model with non-zero cosmological constant (Omega h =0.24, lambda_0 =0.6) match the observed power spectrum. The amplitude of the power spectrum depends on the luminosity of galaxies in the sample; bright (L>L(*) ) galaxies are more strongly clustered than faint galaxies. The paucity of bright galaxies in low-density regions may explain this dependence. To measure the topology of large-scale structure, we compute the genus of isodensity surfaces of the smoothed density field. On scales in the ``non-linear" regime, <= 10\\hmpc, the high- and low-density regions are multiply-connected over a broad range of density threshold, as in a filamentary net. On smoothing scales >10\\hmpc, the topology is consistent with statistics of a Gaussian random field. Simulations of CDM models fail to produce the observed coherence of structure on non-linear scales (>95% confidence level). The underdensity probability (the frequency of regions with density contrast delta rho //lineρ=-0.8) depends strongly on the luminosity of galaxies; underdense regions are significantly more common (>2sigma ) in bright (L>L(*) ) galaxy samples than in samples which include fainter galaxies.
Thermospheric density and satellite drag modeling
NASA Astrophysics Data System (ADS)
Mehta, Piyush Mukesh
The United States depends heavily on its space infrastructure for a vast number of commercial and military applications. Space Situational Awareness (SSA) and Threat Assessment require maintaining accurate knowledge of the orbits of resident space objects (RSOs) and the associated uncertainties. Atmospheric drag is the largest source of uncertainty for low-perigee RSOs. The uncertainty stems from inaccurate modeling of neutral atmospheric mass density and inaccurate modeling of the interaction between the atmosphere and the RSO. In order to reduce the uncertainty in drag modeling, both atmospheric density and drag coefficient (CD) models need to be improved. Early atmospheric density models were developed from orbital drag data or observations of a few early compact satellites. To simplify calculations, densities derived from orbit data used a fixed CD value of 2.2 measured in a laboratory using clean surfaces. Measurements from pressure gauges obtained in the early 1990s have confirmed the adsorption of atomic oxygen on satellite surfaces. The varying levels of adsorbed oxygen along with the constantly changing atmospheric conditions cause large variations in CD with altitude and along the orbit of the satellite. Therefore, the use of a fixed CD in early development has resulted in large biases in atmospheric density models. A technique for generating corrections to empirical density models using precision orbit ephemerides (POE) as measurements in an optimal orbit determination process was recently developed. The process generates simultaneous corrections to the atmospheric density and ballistic coefficient (BC) by modeling the corrections as statistical exponentially decaying Gauss-Markov processes. The technique has been successfully implemented in generating density corrections using the CHAMP and GRACE satellites. This work examines the effectiveness, specifically the transfer of density models errors into BC estimates, of the technique using the CHAMP and GRACE satellites. Moving toward accurate atmospheric models and absolute densities requires physics based models for CD. Closed-form solutions of CD have been developed and exist for a handful of simple geometries (flat plate, sphere, and cylinder). However, for complex geometries, the Direct Simulation Monte Carlo (DSMC) method is an important tool for developing CD models. DSMC is computationally intensive and real-time simulations for CD are not feasible. Therefore, parameterized models for CD are required. Modeling CD for an RSO requires knowledge of the gas-surface interaction (GSI) that defines the manner in which the atmospheric particles exchange momentum and energy with the surface. The momentum and energy exchange is further influenced by likely adsorption of atomic oxygen that may partially or completely cover the surface. An important parameter that characterizes the GSI is the energy accommodation coefficient, α. An innovative and state-of-the-art technique of developing parameterized drag coefficient models is presented and validated using the GRACE satellite. The effect of gas-surface interactions on physical drag coefficients is examined. An attempt to reveal the nature of gas-surface interactions at altitudes above 500 km is made using the STELLA satellite. A model that can accurately estimate CD has the potential to: (i) reduce the sources of uncertainty in the drag model, (ii) improve density estimates by resolving time-varying biases and moving toward absolute densities, and (iii) increase data sources for density estimation by allowing for the use of a wide range of RSOs as information sources. Results from this work have the potential to significantly improve the accuracy of conjunction analysis and SSA.
Development of Weeds Density Evaluation System Based on RGB Sensor
NASA Astrophysics Data System (ADS)
Solahudin, M.; Slamet, W.; Wahyu, W.
2018-05-01
Weeds are plant competitors which potentially reduce the yields due to competition for sunlight, water and soil nutrients. Recently, for chemical-based weed control, site-specific weed management that accommodates spatial and temporal diversity of weeds attack in determining the appropriate dose of herbicide based on Variable Rate Technology (VRT) is preferable than traditional approach with single dose herbicide application. In such application, determination of the level of weed density is an important task. Several methods have been studied to evaluate the density of weed attack. The objective of this study is to develop a system that is able to evaluate weed density based on RGB (Red, Green, and Blue) sensors. RGB sensor was used to acquire the RGB values of the surface of the field. An artificial neural network (ANN) model was then used for determining the weed density. In this study the ANN model was trained with 280 training data (70%), 60 validation data (15%), and 60 testing data (15%). Based on the field test, using the proposed method the weed density could be evaluated with an accuracy of 83.75%.
Density dependence in group dynamics of a highly social mongoose, Suricata suricatta.
Bateman, Andrew W; Ozgul, Arpat; Coulson, Tim; Clutton-Brock, Tim H
2012-05-01
1. For social species, the link between individual behaviour and population dynamics is mediated by group-level demography. 2. Populations of obligate cooperative breeders are structured into social groups, which may be subject to inverse density dependence (Allee effects) that result from a dependence on conspecific helpers, but evidence for population-wide Allee effects is rare. 3. We use field data from a long-term study of cooperative meerkats (Suricata suricatta; Schreber, 1776) - a species for which local Allee effects are not reflected in population-level dynamics - to empirically model interannual group dynamics. 4. Using phenomenological population models, modified to incorporate environmental conditions and potential Allee effects, we first investigate overall patterns of group dynamics and find support only for conventional density dependence that increases after years of low rainfall. 5. To explain the observed patterns, we examine specific demographic rates and assess their contributions to overall group dynamics. Although per-capita meerkat mortality is subject to a component Allee effect, it contributes relatively little to observed variation in group dynamics, and other (conventionally density dependent) demographic rates - especially emigration - govern group dynamics. 6. Our findings highlight the need to consider demographic processes and density dependence in subpopulations before drawing conclusions about how behaviour affects population processes in socially complex systems. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
Interactive classification and content-based retrieval of tissue images
NASA Astrophysics Data System (ADS)
Aksoy, Selim; Marchisio, Giovanni B.; Tusk, Carsten; Koperski, Krzysztof
2002-11-01
We describe a system for interactive classification and retrieval of microscopic tissue images. Our system models tissues in pixel, region and image levels. Pixel level features are generated using unsupervised clustering of color and texture values. Region level features include shape information and statistics of pixel level feature values. Image level features include statistics and spatial relationships of regions. To reduce the gap between low-level features and high-level expert knowledge, we define the concept of prototype regions. The system learns the prototype regions in an image collection using model-based clustering and density estimation. Different tissue types are modeled using spatial relationships of these regions. Spatial relationships are represented by fuzzy membership functions. The system automatically selects significant relationships from training data and builds models which can also be updated using user relevance feedback. A Bayesian framework is used to classify tissues based on these models. Preliminary experiments show that the spatial relationship models we developed provide a flexible and powerful framework for classification and retrieval of tissue images.
Anomalous Transport Properties of Dense QCD in a Magnetic Field
NASA Astrophysics Data System (ADS)
de la Incera, Vivian
2017-06-01
Despite recent advancements in the study and understanding of the phase diagram of strongly interacting matter, the region of high baryonic densities and low temperatures has remained difficult to reach in the lab. Things are expected to change with the planned HIC experiments at FAIR in Germany and NICA in Russia, which will open a window to the high-density-low-temperature segment of the QCD phase map, providing a unique opportunity to test the validity of model calculations that have predicted the formation of spatially inhomogeneous phases with broken chiral symmetry at intermediate-to-high densities. Such a density region is also especially relevant for the physics of neutron stars, as they have cores that can have several times the nuclear saturation density. On the other hand, strong magnetic fields, whose presence is fairly common in HIC and in neutron stars, can affect the properties of these exotic phases and lead to signatures potentially observable in these two settings. In this paper, I examine the anomalous transport properties produced by the spectral asymmetry of the lowest Landau level (LLL) in a QCD-inspired NJL model with a background magnetic field that exhibits chiral symmetry breaking at high density via the formation of a Dual Chiral Density Wave (DCDW) condensate. It turns out that in this model the electromagnetic interactions are described by the axion electrodynamics equations and there is a dissipationless Hall current.
Rupert Seidl; Thomas A. Spies; Werner Rammer; E. Ashley Steel; Robert J. Pabst; Keith. Olsen
2012-01-01
Forest ecosystems are the most important terrestrial carbon (C) storage globally, and presently mitigate anthropogenic climate change by acting as a large and persistent sink for atmospheric CO2. Yet, forest C density varies greatly in space, both globally and at stand and landscape levels. Understanding the multi-scale drivers of this variation...
Silva, Carlos Alberto; Hudak, Andrew Thomas; Klauberg, Carine; Vierling, Lee Alexandre; Gonzalez-Benecke, Carlos; de Padua Chaves Carvalho, Samuel; Rodriguez, Luiz Carlos Estraviz; Cardil, Adrián
2017-12-01
LiDAR remote sensing is a rapidly evolving technology for quantifying a variety of forest attributes, including aboveground carbon (AGC). Pulse density influences the acquisition cost of LiDAR, and grid cell size influences AGC prediction using plot-based methods; however, little work has evaluated the effects of LiDAR pulse density and cell size for predicting and mapping AGC in fast-growing Eucalyptus forest plantations. The aim of this study was to evaluate the effect of LiDAR pulse density and grid cell size on AGC prediction accuracy at plot and stand-levels using airborne LiDAR and field data. We used the Random Forest (RF) machine learning algorithm to model AGC using LiDAR-derived metrics from LiDAR collections of 5 and 10 pulses m -2 (RF5 and RF10) and grid cell sizes of 5, 10, 15 and 20 m. The results show that LiDAR pulse density of 5 pulses m -2 provides metrics with similar prediction accuracy for AGC as when using a dataset with 10 pulses m -2 in these fast-growing plantations. Relative root mean square errors (RMSEs) for the RF5 and RF10 were 6.14 and 6.01%, respectively. Equivalence tests showed that the predicted AGC from the training and validation models were equivalent to the observed AGC measurements. The grid cell sizes for mapping ranging from 5 to 20 also did not significantly affect the prediction accuracy of AGC at stand level in this system. LiDAR measurements can be used to predict and map AGC across variable-age Eucalyptus plantations with adequate levels of precision and accuracy using 5 pulses m -2 and a grid cell size of 5 m. The promising results for AGC modeling in this study will allow for greater confidence in comparing AGC estimates with varying LiDAR sampling densities for Eucalyptus plantations and assist in decision making towards more cost effective and efficient forest inventory.
A model for heliospheric flux-ropes
NASA Astrophysics Data System (ADS)
Nieves-Chinchilla, T.; Linton, M.; Vourlidas, A.; Hidalgo, M. A. U.
2017-12-01
This work is presents an analytical flux-rope model, which explores different levels of complexity starting from a circular-cylindrical geometry. The framework of this series of models was established by Nieves-Chinchilla et al. 2016 with the circular-cylindrical analytical flux rope model. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in a non-orthogonal geometry. The Maxwell equations are solved using tensor calculus consistent with the geometry chosen, invariance along the axial direction, and with the assumption of no radial current density. The model is generalized in terms of the radial and azimuthal dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for several example profiles of the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. For reconstruction of the heliospheric flux-ropes, the circular-cylindrical reconstruction technique has been adapted to the new geometry and applied to in situ ICMEs with a flux-rope entrained and tested with cases with clear in situ signatures of distortion. The model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures that should be evaluated with the ultimate goal of reconciling in-situ reconstructions with imaging 3D remote sensing CME reconstructions. Other effects such as axial curvature and/or expansion could be incorporated in the future to fully understand the magnetic structure.
Jeong, Woo Chul; Chauhan, Munish; Sajib, Saurav Z K; Kim, Hyung Joong; Serša, Igor; Kwon, Oh In; Woo, Eung Je
2014-09-07
Magnetic Resonance Electrical Impedance Tomography (MREIT) is an MRI method that enables mapping of internal conductivity and/or current density via measurements of magnetic flux density signals. The MREIT measures only the z-component of the induced magnetic flux density B = (Bx, By, Bz) by external current injection. The measured noise of Bz complicates recovery of magnetic flux density maps, resulting in lower quality conductivity and current-density maps. We present a new method for more accurate measurement of the spatial gradient of the magnetic flux density gradient (∇ Bz). The method relies on the use of multiple radio-frequency receiver coils and an interleaved multi-echo pulse sequence that acquires multiple sampling points within each repetition time. The noise level of the measured magnetic flux density Bz depends on the decay rate of the signal magnitude, the injection current duration, and the coil sensitivity map. The proposed method uses three key steps. The first step is to determine a representative magnetic flux density gradient from multiple receiver coils by using a weighted combination and by denoising the measured noisy data. The second step is to optimize the magnetic flux density gradient by using multi-echo magnetic flux densities at each pixel in order to reduce the noise level of ∇ Bz and the third step is to remove a random noise component from the recovered ∇ Bz by solving an elliptic partial differential equation in a region of interest. Numerical simulation experiments using a cylindrical phantom model with included regions of low MRI signal to noise ('defects') verified the proposed method. Experimental results using a real phantom experiment, that included three different kinds of anomalies, demonstrated that the proposed method reduced the noise level of the measured magnetic flux density. The quality of the recovered conductivity maps using denoised ∇ Bz data showed that the proposed method reduced the conductivity noise level up to 3-4 times at each anomaly region in comparison to the conventional method.
Marco, Miriam; Gracia, Enrique; López-Quílez, Antonio; Lila, Marisol
2018-04-30
Previous research has shown that neighborhood-level variables such as social deprivation, social fragmentation or rurality are related to suicide risk, but most of these studies have been conducted in the U.S. or northern European countries. The aim of this study was to analyze the spatio-temporal distribution of suicide in a southern European city (Valencia, Spain), and determine whether this distribution was related to a set of neighborhood-level characteristics. We used suicide-related calls for service as an indicator of suicide cases (n = 6,537), and analyzed the relationship of the outcome variable with several neighborhood-level variables: economic status, education level, population density, residential instability, one-person households, immigrant concentration, and population aging. A Bayesian autoregressive model was used to study the spatio-temporal distribution at the census block group level for a 7-year period (2010-2016). Results showed that neighborhoods with lower levels of education and population density, and higher levels of residential instability, one-person households, and an aging population had higher levels of suicide-related calls for service. Immigrant concentration and economic status did not make a relevant contribution to the model. These results could help to develop better-targeted community-level suicide prevention strategies.
Modelling the distribution of domestic ducks in Monsoon Asia
Van Bockel, Thomas P.; Prosser, Diann; Franceschini, Gianluca; Biradar, Chandra; Wint, William; Robinson, Tim; Gilbert, Marius
2011-01-01
Domestic ducks are considered to be an important reservoir of highly pathogenic avian influenza (HPAI), as shown by a number of geospatial studies in which they have been identified as a significant risk factor associated with disease presence. Despite their importance in HPAI epidemiology, their large-scale distribution in Monsoon Asia is poorly understood. In this study, we created a spatial database of domestic duck census data in Asia and used it to train statistical distribution models for domestic duck distributions at a spatial resolution of 1km. The method was based on a modelling framework used by the Food and Agriculture Organisation to produce the Gridded Livestock of the World (GLW) database, and relies on stratified regression models between domestic duck densities and a set of agro-ecological explanatory variables. We evaluated different ways of stratifying the analysis and of combining the prediction to optimize the goodness of fit of the predictions. We found that domestic duck density could be predicted with reasonable accuracy (mean RMSE and correlation coefficient between log-transformed observed and predicted densities being 0.58 and 0.80, respectively), using a stratification based on livestock production systems. We tested the use of artificially degraded data on duck distributions in Thailand and Vietnam as training data, and compared the modelled outputs with the original high-resolution data. This showed, for these two countries at least, that these approaches could be used to accurately disaggregate provincial level (administrative level 1) statistical data to provide high resolution model distributions.
A mass-density model can account for the size-weight illusion
Bergmann Tiest, Wouter M.; Drewing, Knut
2018-01-01
When judging the heaviness of two objects with equal mass, people perceive the smaller and denser of the two as being heavier. Despite the large number of theories, covering bottom-up and top-down approaches, none of them can fully account for all aspects of this size-weight illusion and thus for human heaviness perception. Here we propose a new maximum-likelihood estimation model which describes the illusion as the weighted average of two heaviness estimates with correlated noise: One estimate derived from the object’s mass, and the other from the object’s density, with estimates’ weights based on their relative reliabilities. While information about mass can directly be perceived, information about density will in some cases first have to be derived from mass and volume. However, according to our model at the crucial perceptual level, heaviness judgments will be biased by the objects’ density, not by its size. In two magnitude estimation experiments, we tested model predictions for the visual and the haptic size-weight illusion. Participants lifted objects which varied in mass and density. We additionally varied the reliability of the density estimate by varying the quality of either visual (Experiment 1) or haptic (Experiment 2) volume information. As predicted, with increasing quality of volume information, heaviness judgments were increasingly biased towards the object’s density: Objects of the same density were perceived as more similar and big objects were perceived as increasingly lighter than small (denser) objects of the same mass. This perceived difference increased with an increasing difference in density. In an additional two-alternative forced choice heaviness experiment, we replicated that the illusion strength increased with the quality of volume information (Experiment 3). Overall, the results highly corroborate our model, which seems promising as a starting point for a unifying framework for the size-weight illusion and human heaviness perception. PMID:29447183
A mass-density model can account for the size-weight illusion.
Wolf, Christian; Bergmann Tiest, Wouter M; Drewing, Knut
2018-01-01
When judging the heaviness of two objects with equal mass, people perceive the smaller and denser of the two as being heavier. Despite the large number of theories, covering bottom-up and top-down approaches, none of them can fully account for all aspects of this size-weight illusion and thus for human heaviness perception. Here we propose a new maximum-likelihood estimation model which describes the illusion as the weighted average of two heaviness estimates with correlated noise: One estimate derived from the object's mass, and the other from the object's density, with estimates' weights based on their relative reliabilities. While information about mass can directly be perceived, information about density will in some cases first have to be derived from mass and volume. However, according to our model at the crucial perceptual level, heaviness judgments will be biased by the objects' density, not by its size. In two magnitude estimation experiments, we tested model predictions for the visual and the haptic size-weight illusion. Participants lifted objects which varied in mass and density. We additionally varied the reliability of the density estimate by varying the quality of either visual (Experiment 1) or haptic (Experiment 2) volume information. As predicted, with increasing quality of volume information, heaviness judgments were increasingly biased towards the object's density: Objects of the same density were perceived as more similar and big objects were perceived as increasingly lighter than small (denser) objects of the same mass. This perceived difference increased with an increasing difference in density. In an additional two-alternative forced choice heaviness experiment, we replicated that the illusion strength increased with the quality of volume information (Experiment 3). Overall, the results highly corroborate our model, which seems promising as a starting point for a unifying framework for the size-weight illusion and human heaviness perception.
Rogers, James A.; Vit, Oliver; Bexon, Martin; Sandhaus, Robert A.; Burdon, Jonathan; Chorostowska‐Wynimko, Joanna; Thompson, Philip; Stocks, James; McElvaney, Noel G.; Chapman, Kenneth R.; Edelman, Jonathan M.
2017-01-01
Aims Early‐onset emphysema attributed to α‐1 antitrypsin deficiency (AATD) is frequently overlooked and undertreated. RAPID‐RCT/RAPID‐OLE, the largest clinical trials of purified human α‐1 proteinase inhibitor (A1‐PI; 60 mg kg–1 week–1) therapy completed to date, demonstrated for the first time that A1‐PI is clinically effective in slowing lung tissue loss in AATD. A posthoc pharmacometric analysis was undertaken to further explore dose, exposure and response. Methods A disease progression model was constructed, utilizing observed A1‐PI exposure and lung density decline rates (measured by computed tomography) from RAPID‐RCT/RAPID‐OLE, to predict effects of population variability and higher doses on A1‐PI exposure and clinical response. Dose–exposure and exposure–response relationships were characterized using nonlinear and linear mixed effects models, respectively. The dose–exposure model predicts summary exposures and not individual concentration kinetics; covariates included baseline serum A1‐PI, forced expiratory volume in 1 s and body weight. The exposure–response model relates A1‐PI exposure to lung density decline rate at varying exposure levels. Results A dose of 60 mg kg–1 week–1 achieved trough serum levels >11 μmol l–1 (putative ‘protective threshold’) in ≥98% patients. Dose–exposure–response simulations revealed increasing separation between A1‐PI and placebo in the proportions of patients achieving higher reductions in lung density decline rate; improvements in decline rates ≥0.5 g l–1 year–1 occurred more often in patients receiving A1‐PI: 63 vs. 12%. Conclusion Weight‐based A1‐PI dosing reliably raises serum levels above the 11 μmol l–1 threshold. However, our exposure–response simulations question whether this is the maximal, clinically effective threshold for A1‐PI therapy in AATD. The model suggested higher doses of A1‐PI would yield greater clinical effects. PMID:28662542
Is the density of alcohol establishments related to nonviolent crime?
Toomey, Traci L; Erickson, Darin J; Carlin, Bradley P; Quick, Harrison S; Harwood, Eileen M; Lenk, Kathleen M; Ecklund, Alexandra M
2012-01-01
We examined the associations between the density of alcohol establishments and five types of nonviolent crime across urban neighborhoods. Data from the city of Minneapolis, MN, in 2009 were aggregated and analyzed at the neighborhood level. We examined the association between alcohol establishment density and five categories of nonviolent crime: vandalism, nuisance crime, public alcohol consumption, driving while intoxicated, and underage alcohol possession/consumption. A Bayesian approach was used for model estimation accounting for spatial auto-correlation and controlling for relevant neighborhood demographics. Models were estimated for total alcohol establishment density and then separately for off-premise establishments (e.g., liquor and convenience stores) and on-premise establishments (e.g., bars and restaurants). We found positive associations between density and each crime category. The association was strongest for public consumption and weakest for vandalism. We estimated that a 3.3%-10.9% increase across crime categories would result from a 20% increase in neighborhood establishment density. Similar results were seen for on- and off-premise establishments, although the strength of the associations was lower for off-premise density. Our results indicate that communities should consider the potential increase in nonviolent crime associated with an increase in the number of alcohol establishments within neighborhoods.
NASA Astrophysics Data System (ADS)
Keller, Brad M.; Nathan, Diane L.; Conant, Emily F.; Kontos, Despina
2012-03-01
Breast percent density (PD%), as measured mammographically, is one of the strongest known risk factors for breast cancer. While the majority of studies to date have focused on PD% assessment from digitized film mammograms, digital mammography (DM) is becoming increasingly common, and allows for direct PD% assessment at the time of imaging. This work investigates the accuracy of a generalized linear model-based (GLM) estimation of PD% from raw and postprocessed digital mammograms, utilizing image acquisition physics, patient characteristics and gray-level intensity features of the specific image. The model is trained in a leave-one-woman-out fashion on a series of 81 cases for which bilateral, mediolateral-oblique DM images were available in both raw and post-processed format. Baseline continuous and categorical density estimates were provided by a trained breast-imaging radiologist. Regression analysis is performed and Pearson's correlation, r, and Cohen's kappa, κ, are computed. The GLM PD% estimation model performed well on both processed (r=0.89, p<0.001) and raw (r=0.75, p<0.001) images. Model agreement with radiologist assigned density categories was also high for processed (κ=0.79, p<0.001) and raw (κ=0.76, p<0.001) images. Model-based prediction of breast PD% could allow for a reproducible estimation of breast density, providing a rapid risk assessment tool for clinical practice.
A study of adverse birth outcomes and agricultural land use practices in Missouri.
Almberg, Kirsten S; Turyk, Mary; Jones, Rachael M; Anderson, Robert; Graber, Judith; Banda, Elizabeth; Waller, Lance A; Gibson, Roger; Stayner, Leslie T
2014-10-01
Missouri is an agriculturally intensive state, primarily growing corn and soybeans with additional rice and cotton farming in some southeastern counties. Communities located in close proximity to pesticide-treated fields are known to have increased exposure to pesticides and may be at increased risk of adverse birth outcomes. The study aims were to assess the relationship between county-level measures of crop-specific agricultural production and adverse birth outcomes in Missouri and to evaluate the most appropriate statistical methodologies for doing so. Potential associations between county level data on the densities of particular crops and low birth weight and preterm births were examined in Missouri between 2004-2006. Covariates considered as potential confounders and effect modifiers included gender, maternal race/ethnicity, maternal age at delivery, maternal smoking, access to prenatal care, quarter of birth, county median household income, and population density. These data were analyzed using both standard Poisson regression models as well as models allowing for temporal and spatial correlation of the data. There was no evidence of an association between corn, soybean, or wheat densities with low birth weight or preterm births. Significant positive associations between both rice and cotton density were observed with both low birth weight and preterm births. Model results were consistent using Poisson and alternative models accounting for spatial and temporal variability. The associations of rice and cotton with low birth weight and preterm births warrant further investigation. Study limitations include the ecological study design and limited available covariate information. Copyright © 2014 Elsevier Inc. All rights reserved.
Utility of texture analysis for quantifying hepatic fibrosis on proton density MRI.
Yu, HeiShun; Buch, Karen; Li, Baojun; O'Brien, Michael; Soto, Jorge; Jara, Hernan; Anderson, Stephan W
2015-11-01
To evaluate the potential utility of texture analysis of proton density maps for quantifying hepatic fibrosis in a murine model of hepatic fibrosis. Following Institutional Animal Care and Use Committee (IACUC) approval, a dietary model of hepatic fibrosis was used and 15 ex vivo murine liver tissues were examined. All images were acquired using a 30 mm bore 11.7T magnetic resonance imaging (MRI) scanner with a multiecho spin-echo sequence. A texture analysis was employed extracting multiple texture features including histogram-based, gray-level co-occurrence matrix-based (GLCM), gray-level run-length-based features (GLRL), gray level gradient matrix (GLGM), and Laws' features. Texture features were correlated with histopathologic and digital image analysis of hepatic fibrosis. Histogram features demonstrated very weak to moderate correlations (r = -0.29 to 0.51) with hepatic fibrosis. GLCM features correlation and contrast demonstrated moderate-to-strong correlations (r = -0.71 and 0.59, respectively) with hepatic fibrosis. Moderate correlations were seen between hepatic fibrosis and the GLRL feature short run low gray-level emphasis (SRLGE) (r = -0. 51). GLGM features demonstrate very weak to weak correlations with hepatic fibrosis (r = -0.27 to 0.09). Moderate correlations were seen between hepatic fibrosis and Laws' features L6 and L7 (r = 0.58). This study demonstrates the utility of texture analysis applied to proton density MRI in a murine liver fibrosis model and validates the potential utility of texture-based features for the noninvasive, quantitative assessment of hepatic fibrosis. © 2015 Wiley Periodicals, Inc.
Bremer, Andrew A; Auinger, Peggy; Byrd, Robert S
2009-04-01
To evaluate the relationship between insulin resistance-associated metabolic parameters and anthropometric measurements with sugar-sweetened beverage intake and physical activity levels. A cross-sectional analysis of the National Health and Nutrition Examination Survey data collected by the National Center for Health Statistics. Nationally representative samples of US adolescents participating in the National Health and Nutrition Examination Survey during the years 1999-2004. A total of 6967 adolescents aged 12 to 19 years. Sugar-sweetened beverage consumption and physical activity levels. Glucose and insulin concentrations, a homeostasis model assessment of insulin resistance (HOMA-IR), total, high-density lipoprotein, and low-density lipoprotein cholesterol concentrations, triglyceride concentrations, systolic and diastolic blood pressure, waist circumference, and body mass index (calculated as weight in kilograms divided by height in meters squared) percentile for age and sex. Multivariate linear regression analyses showed that increased sugar-sweetened beverage intake was independently associated with increased HOMA-IR, systolic blood pressure, waist circumference, and body mass index percentile for age and sex and decreased HDL cholesterol concentrations; alternatively, increased physical activity levels were independently associated with decreased HOMA-IR, low-density lipoprotein cholesterol concentrations, and triglyceride concentrations and increased high-density lipoprotein cholesterol concentrations. Furthermore, low sugar-sweetened beverage intake and high physical activity levels appear to modify each others' effects of decreasing HOMA-IR and triglyceride concentrations and increasing high-density lipoprotein cholesterol concentrations. Sugar-sweetened beverage intake and physical activity levels are each independently associated with insulin resistance-associated metabolic parameters and anthropometric measurements in adolescents. Moreover, low sugar-sweetened beverage intake and high physical activity levels appear to modify each others' effects on several health-related outcome variables.
NASA Astrophysics Data System (ADS)
Kobayashi, Katsushi
1997-06-01
The possibility of a spin density wave (SDW) state in a metallic carbon nanotube (CN) and its electronic properties are investigated within the Hartree-Fock self consistent field (SCF) energy-band calculation. Two kinds of spatial SDW states are assumed in this study. Each assumed SDW on the wave function is constructed with the degenerate π orbital in the metallic CN system. The results calculated for the one SDW model of CN always have a relative stability (˜ 0.1 eV/cell) in SCF total energy compared with the original model in which no SDW is assumed. All the results calculated for another SDW model are completely equal to the original one. Moreover, in the energy dispersion of the former stable SDW model, the degenerate π level found in the original model disappears and the band gap (3-5 eV) occurs around at the Fermi level. The energetic stability and the band gap are also found in the π-electron band calculation within the Hubbard Hamiltonian.
Modeling take-over performance in level 3 conditionally automated vehicles.
Gold, Christian; Happee, Riender; Bengler, Klaus
2018-07-01
Taking over vehicle control from a Level 3 conditionally automated vehicle can be a demanding task for a driver. The take-over determines the controllability of automated vehicle functions and thereby also traffic safety. This paper presents models predicting the main take-over performance variables take-over time, minimum time-to-collision, brake application and crash probability. These variables are considered in relation to the situational and driver-related factors time-budget, traffic density, non-driving-related task, repetition, the current lane and driver's age. Regression models were developed using 753 take-over situations recorded in a series of driving simulator experiments. The models were validated with data from five other driving simulator experiments of mostly unrelated authors with another 729 take-over situations. The models accurately captured take-over time, time-to-collision and crash probability, and moderately predicted the brake application. Especially the time-budget, traffic density and the repetition strongly influenced the take-over performance, while the non-driving-related tasks, the lane and drivers' age explained a minor portion of the variance in the take-over performances. Copyright © 2017 Elsevier Ltd. All rights reserved.
Describing a Strongly Correlated Model System with Density Functional Theory.
Kong, Jing; Proynov, Emil; Yu, Jianguo; Pachter, Ruth
2017-07-06
The linear chain of hydrogen atoms, a basic prototype for the transition from a metal to Mott insulator, is studied with a recent density functional theory model functional for nondynamic and strong correlation. The computed cohesive energy curve for the transition agrees well with accurate literature results. The variation of the electronic structure in this transition is characterized with a density functional descriptor that yields the atomic population of effectively localized electrons. These new methods are also applied to the study of the Peierls dimerization of the stretched even-spaced Mott insulator to a chain of H 2 molecules, a different insulator. The transitions among the two insulating states and the metallic state of the hydrogen chain system are depicted in a semiquantitative phase diagram. Overall, we demonstrate the capability of studying strongly correlated materials with a mean-field model at the fundamental level, in contrast to the general pessimistic view on such a feasibility.
Low intrinsic carrier density LSMO/Alq3/AlOx/Co organic spintronic devices
NASA Astrophysics Data System (ADS)
Riminucci, Alberto; Graziosi, Patrizio; Calbucci, Marco; Cecchini, Raimondo; Prezioso, Mirko; Borgatti, Francesco; Bergenti, Ilaria; Dediu, Valentin Alek
2018-04-01
The understanding of spin injection and transport in organic spintronic devices is still incomplete, with some experiments showing magnetoresistance and others not detecting it. We have investigated the transport properties of a large number of tris-(8-hydroxyquinoline)aluminum-based organic spintronic devices with an electrical resistance greater than 5 MΩ that did not show magnetoresistance. Their transport properties could be described satisfactorily by known models for organic semiconductors. At high voltages (>2 V), the results followed the model of space charge limited current with a Poole-Frenkel mobility. At low voltages (˜0.1 V), that are those at which the spin valve behavior is usually observed, the charge transport was modelled by nearest neighbor hopping in intra-gap impurity levels, with a charge carrier density of n0 = (1.44 ± 0.21) × 1015 cm-3 at room temperature. Such a low carrier density can explain why no magnetoresistance was observed.
Delacrétaz, Aurélie; Vandenberghe, Frederik; Gholam-Rezaee, Mehdi; Saigi Morgui, Nuria; Glatard, Anaïs; Thonney, Jacques; Solida-Tozzi, Alessandra; Kolly, Stéphane; Gallo, Sylfa Fassassi; Baumann, Philipp; Berney, Sylvie; Zulauff, Sandrine Valloton; Aubry, Jean-Michel; Hasler, Roland; Ebbing, Karsten; von Gunten, Armin; Conus, Philippe; Eap, Chin B
Cardiovascular diseases and dyslipidemia represent a major health issue in psychiatry. Many psychotropic drugs can induce a rapid and substantial increase of blood lipid levels. This study aimed to determine the potential predictive power of an early change of blood lipid levels during psychotropic treatment on long-term change and on dyslipidemia development. Data were obtained from a prospective study including 181 psychiatric patients with metabolic parameters monitored during the first year of treatment and with adherence ascertained. Blood lipid levels (ie, total cholesterol [TC], low-density lipoprotein cholesterol [LDL-C], high-density lipoprotein cholesterol [HDL-C], non-high-density lipoprotein cholesterol [non-HDL-C], and fasting triglycerides [TGs]) were measured at baseline and after 1, 3, and/or 12 months of treatment. Receiver-operating characteristic analyses indicated that early (ie, after 1 month of psychotropic treatment) increases (≥5%) for TC, LDL-C, TG, and non-HDL-C and decrease (≥5%) for HDL-C were the best predictors for clinically relevant modifications of blood lipid levels after 3 months of treatment (≥30% TC, ≥40% LDL-C, ≥45% TG, ≥55% non-HDL-C increase, and ≥20% HDL-C decrease; sensitivity 70%-100%, specificity 53%-72%). Predictive powers of these models were confirmed by fitting longitudinal multivariate models in the same cohort (P ≤ .03) as well as in a replication cohort (n = 79; P ≤ .003). Survival models showed significantly higher incidences of new onset dyslipidemia (TC, LDL-C, and non-HDL-C hypercholesterolemia, HDL-C hypocholesterolemia, and hypertriglyceridemia) for patients with early changes of blood lipid levels compared to others (P ≤ .01). Early modifications of blood lipid levels following prescription of psychotropic drugs inducing dyslipidemia should therefore raise questions on clinical strategies to control long-term dyslipidemia. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Ultraviolet luminosity density of the universe during the epoch of reionization
Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph
2015-01-01
The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be . This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys. PMID:26348033
Ultraviolet luminosity density of the universe during the epoch of reionization
NASA Astrophysics Data System (ADS)
Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph
2015-09-01
The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be . This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys.
Flockhart, D. T. Tyler; Martin, Tara G.; Norris, D. Ryan
2012-01-01
A central goal of population ecology is to identify the factors that regulate population growth. Monarch butterflies (Danaus plexippus) in eastern North America re-colonize the breeding range over several generations that result in population densities that vary across space and time during the breeding season. We used laboratory experiments to measure the strength of density-dependent intraspecific competition on egg laying rate and larval survival and then applied our results to density estimates of wild monarch populations to model the strength of density dependence during the breeding season. Egg laying rates did not change with density but larvae at high densities were smaller, had lower survival, and weighed less as adults compared to lower densities. Using mean larval densities from field surveys resulted in conservative estimates of density-dependent population reduction that varied between breeding regions and different phases of the breeding season. Our results suggest the highest levels of population reduction due to density-dependent intraspecific competition occur early in the breeding season in the southern portion of the breeding range. However, we also found that the strength of density dependence could be almost five times higher depending on how many life-stages were used as part of field estimates. Our study is the first to link experimental results of a density-dependent reduction in vital rates to observed monarch densities in the wild and show that the effects of density dependent competition in monarchs varies across space and time, providing valuable information for developing robust, year-round population models in this migratory organism. PMID:22984614
Cross sections of proton-induced nuclear reactions on bismuth and lead up to 100 MeV
NASA Astrophysics Data System (ADS)
Mokhtari Oranj, L.; Jung, N. S.; Bakhtiari, M.; Lee, A.; Lee, H. S.
2017-04-01
Production cross sections of 209Bi(p , x n )207,206,205,204,203Po, 209Bi(p , pxn) 207,206,205,204,203,202Bi, and natPb(p , x n ) 206,205,204,203,202,201Bi reactions were measured to fill the gap in the excitation functions up to 100 MeV as well as to figure out the effects of different nuclear properties on proton-induced reactions including heavy nuclei. The targets were arranged in two different stacks consisting of Bi, Pb, Al, Au foils and Pb plates. The proton beam intensity was determined by the activation analysis method using 27Al(p ,3 p n )24Na, 197Au(p ,p n )196Au, and 197Au(p , p 3 n )194Au monitor reactions in parallel as well as the Gafchromic film dosimetry method. The activities of produced radionuclei in the foils were measured by the HPGe spectroscopy system. Over 40 new cross sections were measured in the investigated energy range. A satisfactory agreement was observed between the present experimental data and the previously published data. Excitation functions of mentioned reactions were calculated by using the theoretical model based on the latest version of the TALYS code and compared to the new data as well as with other data in the literature. Additionally, the effects of various combinations of the nuclear input parameters of different level density models, optical model potentials, and γ-ray strength functions were considered. It was concluded that if certain level density models are used, the calculated cross sections could be comparable to the measured data. Furthermore, the effects of optical model potential and γ-ray strength functions were considerably lower than that of nuclear level densities.
Modeling and Numerical Simulation of Microwave Pulse Propagation in Air Breakdown Environment
NASA Technical Reports Server (NTRS)
Kuo, S. P.; Kim, J.
1991-01-01
Numerical simulation is used to investigate the extent of the electron density at a distant altitude location which can be generated by a high-power ground-transmitted microwave pulse. This is done by varying the power, width, shape, and carrier frequency of the pulse. The results show that once the breakdown threshold field is exceeded in the region below the desired altitude location, electron density starts to build up in that region through cascading breakdown. The generated plasma attenuates the pulse energy (tail erosion) and thus deteriorates the energy transmission to the destined altitude. The electron density saturates at a level limited by the pulse width and the tail erosion process. As the pulse continues to travel upward, though the breakdown threshold field of the background air decreases, the pulse energy (width) is reduced more severely by the tail erosion process. Thus, the electron density grows more quickly at the higher altitude, but saturates at a lower level. Consequently, the maximum electron density produced by a single pulse at 50 km altitude, for instance, is limited to a value below 10(exp 6) cm(exp -3). Three different approaches are examined to determine if the ionization at the destined location can be improved: a repetitive pulse approach, a focused pulse approach, and two intersecting beams. Only the intersecting beam approach is found to be practical for generating the desired density level.
Inequalities in Specialist Hand Surgeon Distribution across the United States.
Rios-Diaz, Arturo J; Metcalfe, David; Singh, Mansher; Zogg, Cheryl K; Olufajo, Olubode A; Ramos, Margarita S; Caterson, Edward J; Talbot, Simon G
2016-05-01
Unequal access to hospital specialists for emergency care is an issue in the United States. The authors sought to describe the geographic distribution of specialist hand surgeons and associated factors in the United States. Geographic distributions of surgeons holding a Subspecialty Certificate in Surgery of the Hand and hand surgery fellowship positions were identified from the American Board of Medical Specialties Database and the literature (2013), respectively. State-level population and per capita income were ascertained using U.S. Census data. Variations in hand trauma admissions were determined using Healthcare Cost and Utilization Project national/state inpatient databases. Risk-adjusted generalized linear models were used to assess independent association between hand surgeon density and hand trauma admission density, fellowship position density, and per capita income. Among 2019 specialist hand surgeons identified, 72.1 percent were orthopedic surgeons, 18.3 percent were plastic surgeons, and 9.6 percent were general surgeons. There were 157 hand surgery fellowship positions nationwide. There were 149,295 annual hand trauma admissions. The national density of specialist hand surgeons and density of trauma admission were 0.6 and 47.6, respectively. The density of specialist hand surgeons varied significantly between states. State-level variations in density of surgeons were independent and significantly associated with median per capita income (p < 0.001) and with density of fellowships (p = 0.014). Specialist hand surgeons are distributed unevenly across the United States. State-level analyses suggest that states with lower per capita incomes may be particularly underserved, which may contribute to regional disparities in access to emergency hand trauma care.
Lipperman-Kreda, Sharon; Grube, Joel W; Friend, Karen B; Mair, Christina
2016-03-01
To estimate the relationships of tobacco outlet density, cigarette sales without ID checks and local enforcement of underage tobacco laws with youth's life-time cigarette smoking, perceived availability of tobacco and perceived enforcement of underage tobacco laws and changes over time. The study involved: (a) three annual telephone surveys, (b) two annual purchase surveys in 2000 tobacco outlets and (c) interviews with key informants from local law enforcement agencies. Analyses were multi-level models (city, individual, time). A sample of 50 mid-sized non-contiguous cities in California, USA. A total of 1478 youths (aged 13-16 at wave 1, 52.2% male); 1061 participated in all waves. Measures at the individual level included life-time cigarette smoking, perceived availability and perceived enforcement. City-level measures included tobacco outlet density, cigarette sales without ID checks and compliance checks. Outlet density was associated positively with life-time smoking [OR = 1.12, P < 0.01]. An interaction between outlet density and wave (OR = 0.96, P < 0.05) suggested that higher density was associated more closely with life-time smoking at the earlier waves when respondents were younger. Greater density was associated positively with perceived availability (β = 0.02, P < 0.05) and negatively with perceived enforcement (β = -0.02, P < 0.01). Sales rate without checking IDs was related to greater perceived availability (β = 0.01, P < 0.01) and less perceived enforcement (β = -0.01, P < 0.01). Enforcement of underage tobacco laws was related positively to perceived enforcement (β = 0.06, P < 0.05). Higher tobacco outlet density may contribute to life-time smoking among youths. Density, sales without ID checks and enforcement levels may influence beliefs about access to cigarettes and enforcement of underage tobacco sales laws. © 2015 Society for the Study of Addiction.
Interface effects on calculated defect levels for oxide defects
NASA Astrophysics Data System (ADS)
Edwards, Arthur; Barnaby, Hugh; Schultz, Peter; Pineda, Andrew
2014-03-01
Density functional theory (DFT) has had impressive recent success predicting defect levels in insulators and semiconductors [Schultz and von Lillienfeld, 2009]. Such success requires care in accounting for long-range electrostatic effects. Recently, Komsa and Pasquarello have started to address this problem in systems with interfaces. We report a multiscale technique for calculating electrostatic energies for charged defects in oxide of the metal-oxide-silicon (MOS) system, but where account is taken of substrate doping density, oxide thickness, and gate bias. We use device modeling to calculate electric fields for a point charge a fixed distance from the interface, and used the field to numerically calculate the long-range electrostatic interactions. We find, for example, that defect levels in the oxide do depend on both the magnitude and the polarity the substrate doping density. Furthermore, below 20 Å, oxide thickness also has significant effects. So, transferring results directly from bulk calculations leads to inaccuracies up to 0.5 eV- half of the silicon band gap. We will present trends in defect levels as a function of device parameters. We show that these results explain previous experimental results, and we comment on their potential impact on models for NBTI. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under co.
Analysis and IbM simulation of the stages in bacterial lag phase: basis for an updated definition.
Prats, Clara; Giró, Antoni; Ferrer, Jordi; López, Daniel; Vives-Rego, Josep
2008-05-07
The lag phase is the initial phase of a culture that precedes exponential growth and occurs when the conditions of the culture medium differ from the pre-inoculation conditions. It is usually defined by means of cell density because the number of individuals remains approximately constant or slowly increases, and it is quantified with the lag parameter lambda. The lag phase has been studied through mathematical modelling and by means of specific experiments. In recent years, Individual-based Modelling (IbM) has provided helpful insights into lag phase studies. In this paper, the definition of lag phase is thoroughly examined. Evolution of the total biomass and the total number of bacteria during lag phase is tackled separately. The lag phase lasts until the culture reaches a maximum growth rate both in biomass and cell density. Once in the exponential phase, both rates are constant over time and equal to each other. Both evolutions are split into an initial phase and a transition phase, according to their growth rates. A population-level mathematical model is presented to describe the transitional phase in cell density. INDividual DIScrete SIMulation (INDISIM) is used to check the outcomes of this analysis. Simulations allow the separate study of the evolution of cell density and total biomass in a batch culture, they provide a depiction of different observed cases in lag evolution at the individual-cell level, and are used to test the population-level model. The results show that the geometrical lag parameter lambda is not appropriate as a universal definition for the lag phase. Moreover, the lag phase cannot be characterized by a single parameter. For the studied cases, the lag phases of both the total biomass and the population are required to fully characterize the evolution of bacterial cultures. The results presented prove once more that the lag phase is a complex process that requires a more complete definition. This will be possible only after the phenomena governing the population dynamics at an individual level of description, and occurring during the lag and exponential growth phases, are well understood.
Spatial capture-recapture models allowing Markovian transience or dispersal
Royle, J. Andrew; Fuller, Angela K.; Sutherland, Chris
2016-01-01
Spatial capture–recapture (SCR) models are a relatively recent development in quantitative ecology, and they are becoming widely used to model density in studies of animal populations using camera traps, DNA sampling and other methods which produce spatially explicit individual encounter information. One of the core assumptions of SCR models is that individuals possess home ranges that are spatially stationary during the sampling period. For many species, this assumption is unlikely to be met and, even for species that are typically territorial, individuals may disperse or exhibit transience at some life stages. In this paper we first conduct a simulation study to evaluate the robustness of estimators of density under ordinary SCR models when dispersal or transience is present in the population. Then, using both simulated and real data, we demonstrate that such models can easily be described in the BUGS language providing a practical framework for their analysis, which allows us to evaluate movement dynamics of species using capture–recapture data. We find that while estimators of density are extremely robust, even to pathological levels of movement (e.g., complete transience), the estimator of the spatial scale parameter of the encounter probability model is confounded with the dispersal/transience scale parameter. Thus, use of ordinary SCR models to make inferences about density is feasible, but interpretation of SCR model parameters in relation to movement should be avoided. Instead, when movement dynamics are of interest, such dynamics should be parameterized explicitly in the model.
Krause, Peter J.; Niccolai, Linda; Steeves, Tanner; O’Keefe, Corrine Folsom; Diuk-Wasser, Maria A.
2014-01-01
Peridomestic exposure to Borrelia burgdorferi-infected Ixodes scapularis nymphs is considered the dominant means of infection with black-legged tick-borne pathogens in the eastern United States. Population level studies have detected a positive association between the density of infected nymphs and Lyme disease incidence. At a finer spatial scale within endemic communities, studies have focused on individual level risk behaviors, without accounting for differences in peridomestic nymphal density. This study simultaneously assessed the influence of peridomestic tick exposure risk and human behavior risk factors for Lyme disease infection on Block Island, Rhode Island. Tick exposure risk on Block Island properties was estimated using remotely sensed landscape metrics that strongly correlated with tick density at the individual property level. Behavioral risk factors and Lyme disease serology were assessed using a longitudinal serosurvey study. Significant factors associated with Lyme disease positive serology included one or more self-reported previous Lyme disease episodes, wearing protective clothing during outdoor activities, the average number of hours spent daily in tick habitat, the subject’s age and the density of shrub edges on the subject’s property. The best fit multivariate model included previous Lyme diagnoses and age. The strength of this association with previous Lyme disease suggests that the same sector of the population tends to be repeatedly infected. The second best multivariate model included a combination of environmental and behavioral factors, namely hours spent in vegetation, subject’s age, shrub edge density (increase risk) and wearing protective clothing (decrease risk). Our findings highlight the importance of concurrent evaluation of both environmental and behavioral factors to design interventions to reduce the risk of tick-borne infections. PMID:24416278
Finch, Casey; Al-Damluji, Mohammed Salim; Krause, Peter J; Niccolai, Linda; Steeves, Tanner; O'Keefe, Corrine Folsom; Diuk-Wasser, Maria A
2014-01-01
Peridomestic exposure to Borrelia burgdorferi-infected Ixodes scapularis nymphs is considered the dominant means of infection with black-legged tick-borne pathogens in the eastern United States. Population level studies have detected a positive association between the density of infected nymphs and Lyme disease incidence. At a finer spatial scale within endemic communities, studies have focused on individual level risk behaviors, without accounting for differences in peridomestic nymphal density. This study simultaneously assessed the influence of peridomestic tick exposure risk and human behavior risk factors for Lyme disease infection on Block Island, Rhode Island. Tick exposure risk on Block Island properties was estimated using remotely sensed landscape metrics that strongly correlated with tick density at the individual property level. Behavioral risk factors and Lyme disease serology were assessed using a longitudinal serosurvey study. Significant factors associated with Lyme disease positive serology included one or more self-reported previous Lyme disease episodes, wearing protective clothing during outdoor activities, the average number of hours spent daily in tick habitat, the subject's age and the density of shrub edges on the subject's property. The best fit multivariate model included previous Lyme diagnoses and age. The strength of this association with previous Lyme disease suggests that the same sector of the population tends to be repeatedly infected. The second best multivariate model included a combination of environmental and behavioral factors, namely hours spent in vegetation, subject's age, shrub edge density (increase risk) and wearing protective clothing (decrease risk). Our findings highlight the importance of concurrent evaluation of both environmental and behavioral factors to design interventions to reduce the risk of tick-borne infections.
NASA Astrophysics Data System (ADS)
Moshonkin, Sergey; Bagno, Alexey; Gritsun, Andrey; Gusev, Anatoly
2017-04-01
Numerical experiments were performed with the global atmosphere-ocean model INMCM5 (for version of the international project CMIP6, resolution for atmosphere is 2°x1.5°, 21 level) and with the three-dimensional, free surface, sigma coordinate eddy-permitting ocean circulation model for Atlantic (from 30°S) - Arctic and Bering sea domain (0.25 degrees resolution, Institute of Numerical Mathematics Ocean Model or INMOM). Spatial resolution of the INMCM5 oceanic component is 0.5°x0.25°. Both models have 40 s-levels in ocean. Previously, the simulations were carried out for INMCM5 to generate climatic system stable state. Then model was run for 180 years. In the experiment with INMOM, CORE-II data for 1948-2009 were used. As the goal for comparing results of two these numerical models, we selected evolution of the density and velocity anomalies in the 0-300m active ocean layer near Fram Strait in the Greenland Sea, where oceanic cyclonic circulation influences Atlantic-Arctic water exchange. Anomalies were count without climatic seasonal cycle for time scales smaller than 30 years. We use Singular Value Decomposition analysis (SVD) for density-velocity anomalies with time lag from minus one to six months. Both models perform identical stable physical result. They reveal that changes of heat and salt transports by West Spitsbergen and East Greenland currents, caused by atmospheric forcing, produce the baroclinic modes of velocity anomalies in 0-300m layer, thereby stabilizing ocean response on the atmospheric forcing, which stimulates keeping water exchange between the North Atlantic and Arctic Ocean at the certain climatological level. The first SVD-mode of density-velocity anomalies is responsible for the cyclonic circulation variability. The second and third SVD-modes stabilize existing ocean circulation by the anticyclonic vorticity generation. The second and third SVD-modes give 35% of the input to the total dispersion of density anomalies and 16-18% of the input to the total dispersion of velocity anomalies for numerical results as in INMCM5 so in INMOM models. Input to the total dispersion of velocity anomalies for the first SVD-mode is equal to 50% for INMCM5 and only 19% for INMOM. The research was done in the INM RAS. The model INMOM was supported by Russian Foundation for Basic Research (grant №16-05-00534), and the model INMCM was supported by the Russian Scientific Foundation (grant №14-27-00126).
NASA Astrophysics Data System (ADS)
Hoffie, Andreas Frank
Large eddy simulation (LES) combined with the one-dimensional turbulence (ODT) model is used to simulate spatially developing turbulent reacting shear layers with high heat release and high Reynolds numbers. The LES-ODT results are compared to results from direct numerical simulations (DNS), for model development and validation purposes. The LES-ODT approach is based on LES solutions for momentum and pressure on a coarse grid and solutions for momentum and reactive scalars on a fine, one-dimensional, but three-dimensionally coupled ODT subgrid, which is embedded into the LES computational domain. Although one-dimensional, all three velocity components are transported along the ODT domain. The low-dimensional spatial and temporal resolution of the subgrid scales describe a new modeling paradigm, referred to as autonomous microstructure evolution (AME) models, which resolve the multiscale nature of turbulence down to the Kolmogorv scales. While this new concept aims to mimic the turbulent cascade and to reduce the number of input parameters, AME enables also regime-independent combustion modeling, capable to simulate multiphysics problems simultaneously. The LES as well as the one-dimensional transport equations are solved using an incompressible, low Mach number approximation, however the effects of heat release are accounted for through variable density computed by the ideal gas equation of state, based on temperature variations. The computations are carried out on a three-dimensional structured mesh, which is stretched in the transverse direction. While the LES momentum equation is integrated with a third-order Runge-Kutta time-integration, the time integration at the ODT level is accomplished with an explicit Forward-Euler method. Spatial finite-difference schemes of third (LES) and first (ODT) order are utilized and a fully consistent fractional-step method at the LES level is used. Turbulence closure at the LES level is achieved by utilizing the Smagorinsky model. The chemical reaction is simulated with a global single-step, second-order equilibrium reaction with an Arrhenius reaction rate. The two benchmark cases of constant density reacting and variable density non-reacting shear layers used to determine ODT parameters yield perfect agreement with regards to first and second-order flow statistics as well as shear layer growth rate. The variable density non-reacting shear layer also serves as a testing case for the LES-ODT model to simulate passive scalar mixing. The variable density, reacting shear layer cases only agree reasonably well and indicate that more work is necessary to improve variable density coupling of ODT and LES. The disagreement is attributed to the fact that the ODT filtered density is kept constant across the Runge-Kutta steps. Furthermore, a more in-depth knowledge of large scale and subgrid turbulent kinetic energy (TKE) spectra at several downstream locations as well as TKE budgets need to be studied to obtain a better understanding about the model as well as about the flow under investigation. The local Reynolds number based on the one-percent thickness at the exit is Redelta ≈ 5300, for the constant density reacting and for the variable density non-reacting case. For the variable density reacting shear layer, the Reynolds number based on the 1% thickness is Redelta ≈ 2370. The variable density reacting shear layers show suppressed growth rates due to density variations caused by heat release. This has also been reported in literature. A Lewis number parameter study is performed to extract non-unity Lewis number effects. An increase in the Lewis number leads to a further suppression of the growth rate, however to an increase spread of second-order flow statistics. Major focus and challenge of this work is to improve and advance the three-dimensional coupling of the one-dimensional ODT domains while keeping the solution correct. This entails major restructuring of the model. The turbulent reacting shear layer poses a physical challenge to the model because of its nature being a statistically stationary, non-decaying inhomogeneous and anisotropic turbulent flow. This challenge also requires additions to the eddy sampling procedure. Besides physical advancements, the LES-ODT code is also improved regarding its ability to use general cuboid geometries, an array structure that allows to apply boundary conditions based on ghost-cells and non-uniform structured meshes. The use of transverse grid-stretching requires the implementation of the ODT triplet map on a stretched grid. Further, advancing subroutine structure handling with global variables that enable serial code speed-up and parallelization with OpenMP are undertaken. Porting the code to a higher-level language, object oriented, finite-volume based CFD platform, like OpenFoam for example that allows more advanced array and parallelization features with graphics processing units (GPUs) as well as parallelization with the message passing interface (MPI) to simulate complex geometries is recommended for future work.
Electronic damping of anharmonic adsorbate vibrations at metallic surfaces
NASA Astrophysics Data System (ADS)
Tremblay, Jean Christophe; Monturet, Serge; Saalfrank, Peter
2010-03-01
The nonadiabatic coupling of an adsorbate close to a metallic surface leads to electronic damping of adsorbate vibrations and line broadening in vibrational spectroscopy. Here, a perturbative treatment of the electronic contribution to the lifetime broadening serves as a building block for a new approach, in which anharmonic vibrational transition rates are calculated from a position-dependent coupling function. Different models for the coupling function will be tested, all related to embedding theory. The first two are models based on a scattering approach with (i) a jellium-type and (ii) a density functional theory based embedding density, respectively. In a third variant a further refined model is used for the embedding density, and a semiempirical approach is taken in which a scaling factor is chosen to match harmonic, single-site, first-principles transition rates, obtained from periodic density functional theory. For the example of hydrogen atoms on (adsorption) and below (subsurface absorption) a Pd(111) surface, lifetimes of and transition rates between vibrational levels are computed. The transition rates emerging from different models serve as input for the selective subsurface adsorption of hydrogen in palladium starting from an adsorption site, by using sequences of infrared laser pulses in a laser distillation scheme.
Modeling of dynamic bipolar plasma sheaths
NASA Astrophysics Data System (ADS)
Grossmann, J. M.; Swanekamp, S. B.; Ottinger, P. F.
1991-08-01
The behavior of a one dimensional plasma sheath is described in regimes where the sheath is not in equilibrium because it carries current densities that are either time dependent, or larger than the bipolar Child-Langmuir level determined from the injected ion flux. Earlier models of dynamic bipolar sheaths assumed that ions and electrons evolve in a series of quasi-equilibria. In addition, sheath growth was described by the equation Zenoxs = (ji)-Zenouo, where xs is the velocity of the sheath edge, ji is the ion current density, nouo is the injected ion flux density, and Ze is the ion charge. In this paper, a generalization of the bipolar electron-to-ion current density ratio formula is derived to study regimes where ions are not in equilibrium. A generalization of the above sheath growth equation is also developed which is consistent with the ion continuity equation and which reveals new physics of sheath behavior associated with the emitted electrons and their evolution. Based on these findings, two new models of dynamic bipolar sheaths are developed. Larger sheath sizes and potentials than those of earlier models are found. In certain regimes, explosive sheath growth is predicted.
Gas pressure and electron density at the level of the active zone of hollow cathode arc discharges
NASA Technical Reports Server (NTRS)
Minoo, M. H.
1984-01-01
A model for the longitudinal variations of the partial pressures of electrons, ions, and neutral particles is proposed as a result of an experimental study of pressure variations at the level of the active zone as a function of the various discharge parameters of a hollow cathode arc. The cathode region where the temperature passes through its maximum is called active zone. The proposed model embodies the very important variations which the partial electron and neutral particles pressures undergo at the level of the active zone.
Schmidt, Wolf-Peter; Suzuki, Motoi; Thiem, Vu Dinh; White, Richard G; Tsuzuki, Ataru; Yoshida, Lay-Myint; Yanai, Hideki; Haque, Ubydul; Tho, Le Huu; Anh, Dang Duc; Ariyoshi, Koya
2011-08-01
Aedes aegypti, the major vector of dengue viruses, often breeds in water storage containers used by households without tap water supply, and occurs in high numbers even in dense urban areas. We analysed the interaction between human population density and lack of tap water as a cause of dengue fever outbreaks with the aim of identifying geographic areas at highest risk. We conducted an individual-level cohort study in a population of 75,000 geo-referenced households in Vietnam over the course of two epidemics, on the basis of dengue hospital admissions (n = 3,013). We applied space-time scan statistics and mathematical models to confirm the findings. We identified a surprisingly narrow range of critical human population densities between around 3,000 to 7,000 people/km² prone to dengue outbreaks. In the study area, this population density was typical of villages and some peri-urban areas. Scan statistics showed that areas with a high population density or adequate water supply did not experience severe outbreaks. The risk of dengue was higher in rural than in urban areas, largely explained by lack of piped water supply, and in human population densities more often falling within the critical range. Mathematical modeling suggests that simple assumptions regarding area-level vector/host ratios may explain the occurrence of outbreaks. Rural areas may contribute at least as much to the dissemination of dengue fever as cities. Improving water supply and vector control in areas with a human population density critical for dengue transmission could increase the efficiency of control efforts. Please see later in the article for the Editors' Summary.
Interactions of task and subject variables among continuous performance tests.
Denney, Colin B; Rapport, Mark D; Chung, Kyong-Mee
2005-04-01
Contemporary models of working memory suggest that target paradigm (TP) and target density (TD) should interact as influences on error rates derived from continuous performance tests (CPTs). The present study evaluated this hypothesis empirically in a typically developing, ethnically diverse sample of children. The extent to which scores based on different combinations of these task parameters showed different patterns of relationship to age, intelligence, and gender was also assessed. Four continuous performance tests were derived by combining two target paradigms (AX and repeated letter target stimuli) with two levels of target density (8.3% and 33%). Variations in mean omission (OE) and commission (CE) error rates were examined within and across combinations of TP and TD. In addition, a nested series of structural equation models was utilized to examine patterns of relationship among error rates, age, intelligence, and gender. Target paradigm and target density interacted as influences on error rates. Increasing density resulted in higher OE and CE rates for the AX paradigm. In contrast, the high density condition yielded a decline in OE rates accompanied by a small increase in CEs using the repeated letter CPT. Target paradigms were also distinguishable on the basis of age when using OEs as the performance measure, whereas combinations of age and intelligence distinguished between density levels but not target paradigms using CEs as the dependent measure. Different combinations of target paradigm and target density appear to yield scores that are conceptually and psychometrically distinguishable. Consequently, developmentally appropriate interpretation of error rates across tasks may require (a) careful analysis of working memory and attentional resources required for successful performance, and (b) normative data bases that are differently stratified with respect to combinations of age and intelligence.
Schmidt, Wolf-Peter; Suzuki, Motoi; Dinh Thiem, Vu; White, Richard G.; Tsuzuki, Ataru; Yoshida, Lay-Myint; Yanai, Hideki; Haque, Ubydul; Huu Tho, Le; Anh, Dang Duc; Ariyoshi, Koya
2011-01-01
Background Aedes aegypti, the major vector of dengue viruses, often breeds in water storage containers used by households without tap water supply, and occurs in high numbers even in dense urban areas. We analysed the interaction between human population density and lack of tap water as a cause of dengue fever outbreaks with the aim of identifying geographic areas at highest risk. Methods and Findings We conducted an individual-level cohort study in a population of 75,000 geo-referenced households in Vietnam over the course of two epidemics, on the basis of dengue hospital admissions (n = 3,013). We applied space-time scan statistics and mathematical models to confirm the findings. We identified a surprisingly narrow range of critical human population densities between around 3,000 to 7,000 people/km2 prone to dengue outbreaks. In the study area, this population density was typical of villages and some peri-urban areas. Scan statistics showed that areas with a high population density or adequate water supply did not experience severe outbreaks. The risk of dengue was higher in rural than in urban areas, largely explained by lack of piped water supply, and in human population densities more often falling within the critical range. Mathematical modeling suggests that simple assumptions regarding area-level vector/host ratios may explain the occurrence of outbreaks. Conclusions Rural areas may contribute at least as much to the dissemination of dengue fever as cities. Improving water supply and vector control in areas with a human population density critical for dengue transmission could increase the efficiency of control efforts. Please see later in the article for the Editors' Summary PMID:21918642
Reducing Spatial Data Complexity for Classification Models
NASA Astrophysics Data System (ADS)
Ruta, Dymitr; Gabrys, Bogdan
2007-11-01
Intelligent data analytics gradually becomes a day-to-day reality of today's businesses. However, despite rapidly increasing storage and computational power current state-of-the-art predictive models still can not handle massive and noisy corporate data warehouses. What is more adaptive and real-time operational environment requires multiple models to be frequently retrained which further hinders their use. Various data reduction techniques ranging from data sampling up to density retention models attempt to address this challenge by capturing a summarised data structure, yet they either do not account for labelled data or degrade the classification performance of the model trained on the condensed dataset. Our response is a proposition of a new general framework for reducing the complexity of labelled data by means of controlled spatial redistribution of class densities in the input space. On the example of Parzen Labelled Data Compressor (PLDC) we demonstrate a simulatory data condensation process directly inspired by the electrostatic field interaction where the data are moved and merged following the attracting and repelling interactions with the other labelled data. The process is controlled by the class density function built on the original data that acts as a class-sensitive potential field ensuring preservation of the original class density distributions, yet allowing data to rearrange and merge joining together their soft class partitions. As a result we achieved a model that reduces the labelled datasets much further than any competitive approaches yet with the maximum retention of the original class densities and hence the classification performance. PLDC leaves the reduced dataset with the soft accumulative class weights allowing for efficient online updates and as shown in a series of experiments if coupled with Parzen Density Classifier (PDC) significantly outperforms competitive data condensation methods in terms of classification performance at the comparable compression levels.
Fakunle, D O; Milam, A J; Furr-Holden, C D; Butler, J; Thorpe, R J; LaVeist, T A
2016-07-01
Studies have shown that communities with higher concentrations of low-income racial and ethnic minorities correlate with a greater presence of tobacco outlets. Community-level income has consistently been among the strongest predictors of tobacco outlet density. This study analyzes two Maryland geopolitical areas with similar racial concentrations yet differing income levels in an attempt to disentangle the race-income relationship with tobacco outlet density. In this cross-sectional examination of tobacco outlet and census tract-level sociodemographic data, Baltimore City, Maryland, and Prince George's County, Maryland, were geocoded to determine tobacco outlet density. Tobacco outlet density was defined as the mean number of tobacco outlets per 1000 persons per census tract. Comparisons of tobacco outlet density and sociodemographic variables were analysed via two-sample t-tests, and the direct effect of sociodemographic variables on tobacco outlet density for each area was analysed via spatial lag regressions. Prince George's County, the area with the higher income level ($77,190 vs $43,571), has a significantly lower tobacco outlet density than Baltimore City (P < 0.001). Prince George's County has a 67.5% Black population and an average of 3.94 tobacco outlets per 1000 persons per tract. By contrast, Baltimore City has a 65.3% Black population and an average of 7.95 tobacco outlets per 1000 persons per tract. Spatial lag regression model results indicate an inverse relationship between income and tobacco outlet density in Baltimore City and Prince George's County (β = -0.03, P < 0.01 &β = -0.01, P = 0.02, respectively), and a significant interaction term indicating a greater magnitude in the relationship between income and tobacco outlet density in Baltimore City (β = -0.05, P < 0.01). Results suggest that higher socio-economic status, even in primarily underrepresented racial and ethnic geopolitical areas, is linked to lower tobacco outlet density. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Liver Enzymes and Bone Mineral Density in the General Population.
Breitling, Lutz Philipp
2015-10-01
Liver enzyme serum levels within and just above the normal range are strong predictors of incident morbidity and mortality in the general population. However, despite the close links between hepatic pathology and impaired bone health, the association of liver enzymes with osteoporosis has hardly been investigated. The aim of the present study was to clarify whether serum liver enzyme levels in the general population are associated with bone mineral density. This was an observational, cross-sectional study. Participants and Main Outcome: Data on 13 849 adult participants of the Third National Health and Nutrition Examination Survey were used to quantify the independent associations of γ-glutamyltransferase, alanine transaminase, and aspartate transaminase with femoral neck bone mineral density assessed by dual-energy x-ray absorptiometry. In multiple regression models adjusting for numerous confounding variables, γ-glutamyltransferase showed a weak inverse association with bone mineral density (P = .0063). There also was limited evidence of a nonmonotonous relationship with alanine transaminase, with peak bone mineral density in the second quartile of enzyme activity (P = .0039). No association was found for aspartate transaminase. Although mechanistically plausible associations were found in the present study, the rather weak nature of these patterns renders it unlikely that liver enzyme levels could be of substantial use for osteoporosis risk stratification in the general population.
Schrier, Agnes C; Peen, Jaap; de Wit, Matty A S; van Ameijden, Erik J C; Erdem, Ozcan; Verhoeff, Arnoud P; Dekker, Jack J M; Beekman, Aartjan T F
2014-10-01
Ethnic density, the proportion of people of the same ethnic group in the neighbourhood, has been identified as a protective factor with regard to mental health in ethnic minorities. Research on the putative intermediating factors, exposure to discrimination and improved social support, has not yielded conclusive evidence. We investigated the association between ethnic density and psychological well-being in three ethnic minority groups in the Netherlands. We also assessed whether a protective ethnic density effect is related to the degree to which each group experiences discrimination and social support at group level. Using multi-level linear regression modelling, we studied the influence of ethnic density at neighbourhood level on psychological distress, measured with the Kessler Psychological Distress scale (K10), in 13,864 native Dutch, 1,206 Surinamese-Dutch, 978 Turkish-Dutch and 784 Moroccan-Dutch citizens of the four major cities in the Netherlands. Based on a nationwide survey among ethnic minorities on social integration, ethnic groups were ordered with respect to the intermediating factors. Ethnic density was not associated with psychological distress in any of the three ethnic minority groups. As a consequence, we found no support for either experiences of discrimination or for own-group social interactions at group level as intermediating factors. In all three ethnic minority groups, as well as in the native Dutch group, individual demographic and socio-economic factors emerged as the main explanations for individuals' mental well-being. These results suggest that individual demographic and socio-economic risk characteristics outweigh the influence of neighbourhood attributes on mental health.
Urologist Density and County-Level Urologic Cancer Mortality
Odisho, Anobel Y.; Cooperberg, Matthew R.; Fradet, Vincent; Ahmad, Ardalan E.; Carroll, Peter R.
2010-01-01
Purpose The surgical work force distribution at the county level varies widely across the United States, and the impact of differential access on cancer outcomes is unclear. We used urologists as a test case because they are the first care providers for urologic cancers, can easily be identified from available data sources, and are unevenly distributed throughout the country. The goal of this study was to determine the effect of increasing urologist density on local prostate, bladder, and kidney cancer mortality. Patients and Methods Using county-level data from the Area Resource File, US Census, National Cancer Institute, and Centers for Disease Control, regression models were built for prostate, bladder, and kidney cancer mortality, controlling for categorized urologist density, county demographics, socioeconomic factors, and preexisting health care infrastructure. Results For each of the three cancers, there was a statistically significant cancer-specific mortality reduction associated with counties that had more than zero urologists (16% to 22% reduction for prostate cancer, 17% to 20% reduction for bladder cancer, and 8% to 14% reduction for kidney cancer with increasing urologist density) relative to zero urologists. However, increasing density greater than two urologists per 100,000 people had no statistically significant impact on mortality for any of the tumors studied. Conclusion The presence of a urologist is associated with lower mortality for urologic cancers in that county, but increasing urologist density does not yield further improvements. Therefore, a nuanced and geographically aware policy toward the size and distribution of the future work force is most likely to provide the greatest population-level improvement in cancer mortality outcomes. PMID:20406931
Computational Design of Materials: Planetary Entry to Electric Aircraft and Beyond
NASA Technical Reports Server (NTRS)
Thompson, Alexander; Lawson, John W.
2014-01-01
NASA's projects and missions push the bounds of what is possible. To support the agency's work, materials development must stay on the cutting edge in order to keep pace. Today, researchers at NASA Ames Research Center perform multiscale modeling to aid the development of new materials and provide insight into existing ones. Multiscale modeling enables researchers to determine micro- and macroscale properties by connecting computational methods ranging from the atomic level (density functional theory, molecular dynamics) to the macroscale (finite element method). The output of one level is passed on as input to the next level, creating a powerful predictive model.
Substructure Versus Property-Level Dispersed Modes Calculation
NASA Technical Reports Server (NTRS)
Stewart, Eric C.; Peck, Jeff A.; Bush, T. Jason; Fulcher, Clay W.
2016-01-01
This paper calculates the effect of perturbed finite element mass and stiffness values on the eigenvectors and eigenvalues of the finite element model. The structure is perturbed in two ways: at the "subelement" level and at the material property level. In the subelement eigenvalue uncertainty analysis the mass and stiffness of each subelement is perturbed by a factor before being assembled into the global matrices. In the property-level eigenvalue uncertainty analysis all material density and stiffness parameters of the structure are perturbed modified prior to the eigenvalue analysis. The eigenvalue and eigenvector dispersions of each analysis (subelement and property-level) are also calculated using an analytical sensitivity approximation. Two structural models are used to compare these methods: a cantilevered beam model, and a model of the Space Launch System. For each structural model it is shown how well the analytical sensitivity modes approximate the exact modes when the uncertainties are applied at the subelement level and at the property level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masson-Laborde, P. E.; Depierreux, S.; Loiseau, P.
2014-03-15
The origin of the low level of stimulated Brillouin scattering (SBS) observed in laser-plasma experiments carried out with a single laser speckle is investigated by means of three-dimensional simulations and modeling in the limit when the laser beam power P is well above the critical power for ponderomotive self-focusing We find that the order of magnitude of the time averaged reflectivities, together with the temporal and spatial SBS localization observed in our simulations, are correctly reproduced by our modeling. It is observed that, after a short transient stage, SBS reaches a significant level only (i) as long as the incidentmore » laser pulse is increasing in amplitude and (ii) in a single self-focused speckle located in the low-density front part of the plasma. In order to describe self-focusing in an inhomogeneous expanding plasma, we have derived a new Lagrangian density describing this process. Using then a variational approach, our model reproduces the position and the peak intensity of the self-focusing hot spot in the front part of the plasma density profile as well as the local density depletion in this hot spot. The knowledge of these parameters then makes it possible to estimate the spatial amplification of SBS as a function of the laser beam power and consequently to explain the experimentally observed SBS reflectivity, considerably reduced with respect to standard theory in the regime of large laser beam power.« less
Role of moisture and density of sand for microwave enhancement of thermal detection of buried mines
NASA Astrophysics Data System (ADS)
Swiderski, Waldemar; Hlosta, Pawel; Jarzemski, Jozef; Szugajew, Leszek; Usowicz, Jerzy
2012-06-01
The main disadvantage of applying the IRT method is presence of plenty false indications in thermograms. A simple use of IRT equipment with better temperature resolution would not help in distinguishing the mines, since noise comes not from a camera, but from soil surface. Recognizing the role of moisture and density of sand and possibilities to express it quantitatively plays an important role. In our model of thermal properties of the soil the volumetric unit of the soil consists of mineral and organic particles, as well as water and air. All needed parameters can be calculated. Calculations of thermal signatures of the underground objects were made basing on 3D-heat equation for the sinus type heating of 3D model and cooling by convection. Measurements were made for field and laboratory stand-ups, using methodologies typical for "single-shot" measurements as well as analyses of transient processes based on sequence of thermograms. Results of simulations and measurements confirm expectation tha that high level of "radiant noises" is caused mainly by differences in the moisture and sand density levels.
Park, Rebecca Sejung; Shulaker, Max Marcel; Hills, Gage; Suriyasena Liyanage, Luckshitha; Lee, Seunghyun; Tang, Alvin; Mitra, Subhasish; Wong, H-S Philip
2016-04-26
We present a measurement technique, which we call the Pulsed Time-Domain Measurement, for characterizing hysteresis in carbon nanotube field-effect transistors, and demonstrate its applicability for a broad range of 1D and 2D nanomaterials beyond carbon nanotubes. The Pulsed Time-Domain Measurement enables the quantification (density, energy level, and spatial distribution) of charged traps responsible for hysteresis. A physics-based model of the charge trapping process for a carbon nanotube field-effect transistor is presented and experimentally validated using the Pulsed Time-Domain Measurement. Leveraging this model, we discover a source of traps (surface traps) unique to devices with low-dimensional channels such as carbon nanotubes and nanowires (beyond interface traps which exist in today's silicon field-effect transistors). The different charge trapping mechanisms for interface traps and surface traps are studied based on their temperature dependencies. Through these advances, we are able to quantify the interface trap density for carbon nanotube field-effect transistors (∼3 × 10(13) cm(-2) eV(-1) near midgap), and compare this against a range of previously studied dielectric/semiconductor interfaces.
Characteristic Structure of Star-forming Clouds
NASA Astrophysics Data System (ADS)
Myers, Philip C.
2015-06-01
This paper presents a new method to diagnose the star-forming potential of a molecular cloud region from the probability density function of its column density (N-pdf). This method provides expressions for the column density and mass profiles of a symmetric filament having the same N-pdf as a filamentary region. The central concentration of this characteristic filament can distinguish regions and can quantify their fertility for star formation. Profiles are calculated for N-pdfs which are pure lognormal, pure power law, or a combination. In relation to models of singular polytropic cylinders, characteristic filaments can be unbound, bound, or collapsing depending on their central concentration. Such filamentary models of the dynamical state of N-pdf gas are more relevant to star-forming regions than are spherical collapse models. The star formation fertility of a bound or collapsing filament is quantified by its mean mass accretion rate when in radial free fall. For a given mass per length, the fertility increases with the filament mean column density and with its initial concentration. In selected regions the fertility of their characteristic filaments increases with the level of star formation.
Two dimensional analytical model for a reconfigurable field effect transistor
NASA Astrophysics Data System (ADS)
Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.
2018-02-01
This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.
Space plasma contactor research, 1987
NASA Technical Reports Server (NTRS)
Wilbur, Paul J.
1988-01-01
A simple model describing the process of electron collection from a low pressure ambient plasma in the absence of magnetic field and contactor velocity effects is presented. Experimental measurments of the plasma surrounding the contactor are used to demonstrate that a double-sheath generally develops and separates the ambient plasma from a higher density, anode plasma located adjacent to the contactor. Agreement between the predictions of the model and experimental measurements obtained at the electron collection current levels ranging to 1 A suggests the surface area at the ambient plasma boundary of the double-sheath is equal to the electron current being collected divided by the ambient plasma random electron current density; the surface area of the higher density anode plasma boundary of the double-sheath is equal to the ion current being emitted across this boundary divided by the ion current density required to sustain a stable sheath; and the voltage drop across the sheath is determined by the requirement that the ion and electron currents counterflowing across the boundaries be at space-charge limited levels. The efficiency of contactor operation is shown to improve when significant ionization and excitation is induced by electrons that stream from the ambient plasma through the double-sheath and collide with neutral atoms being supplied through the hollow cathode.
NASA Astrophysics Data System (ADS)
Panda, Saswati; Sahoo, D. D.; Rout, G. C.
2018-04-01
We report here a tight binding model for colossal magnetoresistive (CMR) manganites to study the pseudo gap (PG) behavior near Fermi level. In the Kubo-Ohata type DE model, we consider first and second nearest neighbor interactions for transverse spin fluctuations in core band and hopping integrals in conduction band, in the presence of static band Jahn-Teller distortion. The model Hamiltonian is solved using Zubarev's Green's function technique. The electron density of states (DOS) is found out from the Green's functions. We observe clear PG near Fermi level in the electron DOS.
NASA Astrophysics Data System (ADS)
Tripathi, O. P.; Godin-Beekmann, S.; Lefevre, F.; Marchand, M.; Pazmino, A.; Hauchecorne, A.
2005-12-01
Model simulations of ozone loss rates during recent arctic and Antarctic winters are compared with the observed ozone loss rates from the match technique. Arctic winters 1994/1995, 1999/2000, 2002/2003 and the Antarctic winter 2003 were considered for the analysis. We use a high resolution chemical transport model MIMOSA-CHIM and REPROBUS box model for the calculation of ozone loss rates. Trajectory model calculations show that the ozone loss rates are dependent on the initialization fields. On the one hand when chemical fields are initialized by UCAM (University of Cambridge SLIMCAT model simulated fields) the loss rates were underestimated by a factor of two whereas on the other hand when it is initialized by UL (University of Leeds) fields the model loss rates are in a very good agreement with match loss rates at lower levels. The study shows a very good agreement between MIMOSA-CHIM simulation and match observation in 1999/2000 winter at both levels, 450 and 500 K, except slight underestimation in March at 500 K. But in January we have a very good agreement. This is also true for 1994/1995 when we consider simulated ozone loss rate in view of the ECMWF wind deficiency assuming that match observations were not made on isolated trajectories. Sensitivity tests, by changing JCl2O2 value, particle number density and heating rates, performed for the arctic winter 1999/2000 shows that we need to improve our understanding of particle number density and heating rate calculation mechanism. Burkholder JCl2O2 has improved the comparison of MIMOSA-CHIM model results with observations (Tripathi et al., 2005). In the same study the comparison results were shown to improved by changing heating rates and number density through NAT particle sedimentation.
Thompson, Jason; Savino, Giovanni; Stevenson, Mark
2015-01-01
Increasing levels of active transport provide benefits in relation to chronic disease and emissions reduction but may be associated with an increased risk of road trauma. The safety in numbers (SiN) effect is often regarded as a solution to this issue; however, the mechanisms underlying its influence are largely unknown. We aimed to (1) replicate the SiN effect within a simple, simulated environment and (2) vary bicycle density within the environment to better understand the circumstances under which SiN applies. Using an agent-based modeling approach, we constructed a virtual transport system that increased the number of bicycles from 9% to 35% of total vehicles over a period of 1,000 time units while holding the number of cars in the system constant. We then repeated this experiment under conditions of progressively decreasing bicycle density. We demonstrated that the SiN effect can be reproduced in a virtual environment, closely approximating the exponential relationships between cycling numbers and the relative risk of collision as shown in observational studies. The association, however, was highly contingent upon bicycle density. The relative risk of collisions between cars and bicycles with increasing bicycle numbers showed an association that is progressively linear at decreasing levels of density. Agent-based modeling may provide a useful tool for understanding the mechanisms underpinning the relationships previously observed between volume and risk under the assumptions of SiN. The SiN effect may apply only under circumstances in which bicycle density also increases over time. Additional mechanisms underpinning the SiN effect, independent of behavioral adjustment by drivers, are explored.
Silicon chemistry in interstellar clouds
NASA Technical Reports Server (NTRS)
Langer, William D.; Glassgold, A. E.
1989-01-01
Interstellar SiO was discovered shortly after CO but it has been detected mainly in high density and high temperature regions associated with outflow sources. A new model of interstellar silicon chemistry that explains the lack of SiO detections in cold clouds is presented which contains an exponential temperature dependence for the SiO abundance. A key aspect of the model is the sensitivity of SiO production by neutral silicon reactions to density and temperature, which arises from the dependence of the rate coefficients on the population of the excited fine structure levels of the silicon atom. This effect was originally pointed out in the context of neutral reactions of carbon and oxygen by Graff, who noted that the leading term in neutral atom-molecule interactions involves the quadrupole moment of the atom. Similar to the case of carbon, the requirement that Si has a quadrupole moment requires population of the J = 1 level, which lies 111K above the J = 0 ground state and has a critical density n(cr) equal to or greater than 10(6)/cu cm. The SiO abundance then has a temperature dependence proportional to exp(-111/T) and a quadratic density dependence for n less than n(cr). As part of the explanation of the lack of SiO detections at low temperatures and densities, this model also emphasizes the small efficiencies of the production routes and the correspondingly long times needed to reach equilibrium. Measurements of the abundance of SiO, in conjunction with theory, can provide information on the physical properties of interstellar clouds such as the abundances of oxygen bearing molecules and the depletion of interstellar silicon.
Lee, Sanghun; Park, Sung Soo
2011-11-03
Dielectric constants of electrolytic organic solvents are calculated employing nonpolarizable Molecular Dynamics simulation with Electronic Continuum (MDEC) model and Density Functional Theory. The molecular polarizabilities are obtained by the B3LYP/6-311++G(d,p) level of theory to estimate high-frequency refractive indices while the densities and dipole moment fluctuations are computed using nonpolarizable MD simulations. The dielectric constants reproduced from these procedures are evaluated to provide a reliable approach for estimating the experimental data. An additional feature, two representative solvents which have similar molecular weights but are different dielectric properties, i.e., ethyl methyl carbonate and propylene carbonate, are compared using MD simulations and the distinctly different dielectric behaviors are observed at short times as well as at long times.
A new approach to modeling the influence of image features on fixation selection in scenes
Nuthmann, Antje; Einhäuser, Wolfgang
2015-01-01
Which image characteristics predict where people fixate when memorizing natural images? To answer this question, we introduce a new analysis approach that combines a novel scene-patch analysis with generalized linear mixed models (GLMMs). Our method allows for (1) directly describing the relationship between continuous feature value and fixation probability, and (2) assessing each feature's unique contribution to fixation selection. To demonstrate this method, we estimated the relative contribution of various image features to fixation selection: luminance and luminance contrast (low-level features); edge density (a mid-level feature); visual clutter and image segmentation to approximate local object density in the scene (higher-level features). An additional predictor captured the central bias of fixation. The GLMM results revealed that edge density, clutter, and the number of homogenous segments in a patch can independently predict whether image patches are fixated or not. Importantly, neither luminance nor contrast had an independent effect above and beyond what could be accounted for by the other predictors. Since the parcellation of the scene and the selection of features can be tailored to the specific research question, our approach allows for assessing the interplay of various factors relevant for fixation selection in scenes in a powerful and flexible manner. PMID:25752239
Study of short-haul aircraft operating economics, volume 1
NASA Technical Reports Server (NTRS)
1975-01-01
A short-haul air transportation operating cost model is developed. The effect is identified of such factors as level of service provided, traffic density of the market, stage length, number of flight cycles, level of automation, as well as aircraft type and other operational factors on direct and indirect operating costs.
Boehmer, Ulrike; Miao, Xiaopeng; Maxwell, Nancy I; Ozonoff, Al
2014-03-26
Risk factors for breast, colorectal, and lung cancer are known to be more common among lesbian, gay, and bisexual (LGB) individuals, suggesting they may be more likely to develop these cancers. Our objective was to determine differences in cancer incidence by sexual orientation, using sexual orientation data aggregated at the county level. Data on cancer incidence were obtained from the California Cancer Registry and data on sexual orientation were obtained from the California Health Interview Survey, from which a measure of age-specific LGB population density by county was calculated. Using multivariable Poisson regression models, the association between the age-race-stratified incident rate of breast, lung and colorectal cancer in each county and LGB population density was examined, with race, age group and poverty as covariates. Among men, bisexual population density was associated with lower incidence of lung cancer and with higher incidence of colorectal cancer. Among women, lesbian population density was associated with lower incidence of lung and colorectal cancer and with higher incidence of breast cancer; bisexual population density was associated with higher incidence of lung and colorectal cancer and with lower incidence of breast cancer. These study findings clearly document links between county-level LGB population density and cancer incidence, illuminating an important public health disparity.
Vásquez, Elizabeth; Shaw, Benjamin A; Gensburg, Lenore; Okorodudu, Daniel; Corsino, Leonor
2013-12-26
Participation in regular physical activity (PA) may help maintain bone health as people age. However, most American adults do not engage in the recommended minimum levels of PA, and there are racial/ethnic differences in PA participation. This study aimed to determine whether current physical activity is related to bone density in a racially/ethnically diverse sample after controlling for age, sex, body mass index, poverty-income ratio, tobacco use, vitamin D and calcium intake, and use of osteoporosis medications. We obtained data on femoral bone mineral density for 2,819 adults aged 40 to 80 years who self-reported their race/ethnicity on the 2007-2008 National Health and Nutrition Examination Survey. Data on PA levels were obtained by self-report. We used linear regression models to examine the association between PA and bone density for each racial/ethnic group. A greater percentage of non-Hispanic blacks (60.9%) and Hispanics (53.3%) reported low levels of PA than non-Hispanic whites (45.3%, P < .001). Non-Hispanic blacks (16.3%) and Hispanics (18.5%) had a lower prevalence of osteopenia than non-Hispanic whites (25.5%; P = .01) but were similar in the prevalence of normal and osteoporosis categories when compared with whites. There was a 0.031 g/cm(2) difference in bone density between those in the high PA versus the low PA category (P = .003). This association remained (β = 0.027, P < .001) after adjusting for race/ethnicity, sex, body mass index, poverty-income ratio, tobacco use, and use of osteoporosis medications. Despite lower levels of activity, blacks and Hispanics were not more likely to have osteoporosis, and high levels of activity were significantly associated with higher bone density even when controlling for race/ethnicity and confounders. The lack of consistency in bone density differences suggests that the cause of the differences maybe multifactorial.
Calculation of Quasi-Particle Energies of Aromatic Self-Assembled Monolayers on Au(111).
Li, Yan; Lu, Deyu; Galli, Giulia
2009-04-14
We present many-body perturbation theory calculations of the electronic properties of phenylene diisocyanide self-assembled monolayers (SAMs) on a gold surface. Using structural models obtained within density functional theory (DFT), we have investigated how the SAM molecular energies are modified by self-energy corrections and how they are affected by the presence of the surface. We have employed a combination of GW (G = Green's function; W = screened Coulomb interaction) calculations of the SAM quasi-particle energies and a semiclassical image potential model to account for surface polarization effects. We find that it is essential to include both quasi-particle corrections and surface screening in order to provide a reasonable estimate of the energy level alignment at a SAM-metal interface. In particular, our results show that within the GW approximation the energy distance between phenylene diisocyanide SAM energy levels and the gold surface Fermi level is much larger than that found within DFT, e.g., more than double in the case of low packing densities of the SAM.
Meijer, Mathias; Bloomfield, Kim; Engholm, Gerda
2013-01-01
Previous studies have shown that cancer incidence is related to a number of individual factors, including socioeconomic status. The aim of this study was to refine the current knowledge about indicators associated with cancer incidence by evaluating the influence of neighbourhood characteristics on breast, prostate and lung cancer incidence in Denmark. All women aged 30-83 years were followed for breast cancer between 2004 and 2008, men between 50 and 83 years were followed for prostate cancer and both sexes between ages 50 and 83 were followed for lung cancer. Registry data obtained from Statistics Denmark included age, sex, availability of breast cancer screening, marital status, education, disposable income and occupational socioeconomic status on the individual level and population density and neighbourhood socioeconomic status (the proportion of unemployed) on the parish level. Frailty modelling with individuals on the first level and parishes on the second level was conducted. A significantly lower HR of breast cancer was found in areas with low population density (HR=0.93; CI 0.88 to 0.99), while neighbourhood unemployment had no effect. Inhabitants of lower unemployment areas had a higher risk of prostate cancer (HR=1.14; CI 1.08 to 1.21) compared with those in higher unemployment areas, whereas population density had no effect. Risk of lung cancer was lower in areas with lowest population density (HR=0.80; CI 0.74 to 0.85) and lowest in areas with lowest unemployment (HR=0.88; CI 0.84 to 0.92). In addition to individual-level factors, characteristics on the neighbourhood level also have an influence on breast, prostate and lung cancer incidence.
NRLMSISE-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues
NASA Technical Reports Server (NTRS)
Aikin, A. C.; Picone, J. M.; Hedin, A. E.; Drob, D. P.
2001-01-01
The new NRLMSISE-00 model and the associated NRLMSIS database now include the following data: (1) total mass density from satellite accelerometers and from orbit determination, including the Jacchia and Barlier data; (2) temperature from incoherent scatter radar, and; (3) molecular oxygen number density, [O2], from solar ultraviolet occultation aboard the Solar Maximum Mission (SMM). A new component, 'anomalous oxygen,' allows for appreciable O(+) and hot atomic oxygen contributions to the total mass density at high altitudes and applies primarily to drag estimation above 500 km. Extensive tables compare our entire database to the NRLMSISE-00, MSISE-90, and Jacchia-70 models for different altitude bands and levels of geomagnetic activity. We also investigate scientific issues related to the new data sets in the NRLMSIS database. Especially noteworthy is the solar activity dependence of the Jacchia data, with which we investigate a large O(+) contribution to the total mass density under the combination of summer, low solar activity, high latitudes, and high altitudes. Under these conditions, except at very low solar activity, the Jacchia data and the Jacchia-70 model indeed show a significantly higher total mass density than does MSISE-90. However, under the corresponding winter conditions, the MSIS-class models represent a noticeable improvement relative to Jacchia-70 over a wide range of F(sub 10.7). Considering the two regimes together, NRLMSISE-00 achieves an improvement over both MSISE-90 and Jacchia-70 by incorporating advantages of each.
NASA Astrophysics Data System (ADS)
Piotrowska, M. J.; Bodnar, M.
2018-01-01
We present a generalisation of the mathematical models describing the interactions between the immune system and tumour cells which takes into account distributed time delays. For the analytical study we do not assume any particular form of the stimulus function describing the immune system reaction to presence of tumour cells but we only postulate its general properties. We analyse basic mathematical properties of the considered model such as existence and uniqueness of the solutions. Next, we discuss the existence of the stationary solutions and analytically investigate their stability depending on the forms of considered probability densities that is: Erlang, triangular and uniform probability densities separated or not from zero. Particular instability results are obtained for a general type of probability densities. Our results are compared with those for the model with discrete delays know from the literature. In addition, for each considered type of probability density, the model is fitted to the experimental data for the mice B-cell lymphoma showing mean square errors at the same comparable level. For estimated sets of parameters we discuss possibility of stabilisation of the tumour dormant steady state. Instability of this steady state results in uncontrolled tumour growth. In order to perform numerical simulation, following the idea of linear chain trick, we derive numerical procedures that allow us to solve systems with considered probability densities using standard algorithm for ordinary differential equations or differential equations with discrete delays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Alasdair; Thomsen, Edwin; Reed, David
2016-04-20
A chemistry agnostic cost performance model is described for a nonaqueous flow battery. The model predicts flow battery performance by estimating the active reaction zone thickness at each electrode as a function of current density, state of charge, and flow rate using measured data for electrode kinetics, electrolyte conductivity, and electrode-specific surface area. Validation of the model is conducted using a 4kW stack data at various current densities and flow rates. This model is used to estimate the performance of a nonaqueous flow battery with electrode and electrolyte properties used from the literature. The optimized cost for this system ismore » estimated for various power and energy levels using component costs provided by vendors. The model allows optimization of design parameters such as electrode thickness, area, flow path design, and operating parameters such as power density, flow rate, and operating SOC range for various application duty cycles. A parametric analysis is done to identify components and electrode/electrolyte properties with the highest impact on system cost for various application durations. A pathway to 100$kWh -1 for the storage system is identified.« less
Csenteri, Orsolya Karola; Sándor, János; Kalina, Edit; Bhattoa, Harjit Pal; Gődény, Sándor
2017-01-01
The aim of this study was to utilize various insulin resistance measuring methods to determine whether insulin resistance and other parameters impact the serum lipid levels of polycystic ovary syndrome (PCOS) patients and how the serum lipid levels in these patients are affected by the body mass index (BMI). Our dataset included patients between the ages of 16 and 42 (N = 228) from the outpatient endocrinology clinic of the Department of Obstetrics and Gynecology, who demonstrated increased hair growth and bleeding disorders and came for a routine oral glucose tolerance test (OGTT). Differences in the serum lipid levels were evaluated by t-test and linear regression analysis after adjusting for BMI. A stepwise regression model was constructed to evaluate the influence of each variable on the lipid levels. In PCOS patients, we found that dyslipidemia is more prevalent among hyperinsulinemic women compared with normoinsulinemic women, even after normalizing for BMI. PCOS patients with insulin resistance, determined by the insulin sensitivity index (ISI) method, showed more significant lipid abnormalities such as low high-density lipoprotein (HDL) and apo-A levels and high total cholesterol, low-density lipoprotein (LDL) and apo-B levels than if insulin resistance (IR) determination was based on insulin level or homeostatic model assessment (HOMA).
Optimal atomic structure of amorphous silicon obtained from density functional theory calculations
NASA Astrophysics Data System (ADS)
Pedersen, Andreas; Pizzagalli, Laurent; Jónsson, Hannes
2017-06-01
Atomic structure of amorphous silicon consistent with several reported experimental measurements has been obtained from annealing simulations using electron density functional theory calculations and a systematic removal of weakly bound atoms. The excess energy and density with respect to the crystal are well reproduced in addition to radial distribution function, angular distribution functions, and vibrational density of states. No atom in the optimal configuration is locally in a crystalline environment as deduced by ring analysis and common neighbor analysis, but coordination defects are present at a level of 1%-2%. The simulated samples provide structural models of this archetypal disordered covalent material without preconceived notion of the atomic ordering or fitting to experimental data.
Vengerovsky, A I; Yakimova, T V; Nasanova, O N
2015-01-01
The influence of low-fat diet, nettle (Urtica dioica) leafs and burdock (Arctium lappa) roots extracts on lipid metabolism and glycosylation reactions has been investigated in experimental diabetes mellitus. These extracts were applied in diets with both high and low fat content. The experiments were performed on 90 noninbred male albino rats (200–220 g) that were divided into 9 experimental groups. Diabetes mellitus was modeled with twice-repeated intraperitoneal streptozotocin (30 mg/kg) injections. The animals received food with increased fat content (proteins – 8%, fats – 30%, carbohydrates – 62% of total daily caloric content) during 4 weeks before streptozotocine injections and 8 weeks after its discontinuation. Simultaneously the rats were daily administered nettle leafs (100 mg/kg), burdock roots (25 mg/kg) extracts or metformin (100 mg/kg) into the stomach during 10 days. During the period of agents introduction half the animals continued to receive food with high fat content, the other half received low fat diet (proteins – 20%, fats – 8%, carbohydrates – 72% of the total daily caloric content). The forth (control) group received low fat food only without extracts or metformin administration. The levels of blood glucose, glycosylated hemoglobin, malonic dialdehyde, lipid and lipoprotein fractions content were measured. It has been shown that after streptozotocine injections and 30% fat diet consumption the blood glucose level increased by 5.3 fold compared to that of the intact animals, the content of atherogenic lipid fractions increased by 2–8.3 fold and the protein glycosylation reactions were intensified by 1.9–2.5 fold. In animals fed with 8% fat diet the blood glucose and malonic dialdehyde content decreased by 1.8–2.3 fold. In this experiment the levels of triglycerides, total cholesterol, cholesterol of nonhigh-density lipoproteins, low-density and very low-density lipoproteins, as well as the cholesterol and protein content of high-density lipoproteins normalized. The low fat food did not cause glycosylation reactions regression. With the administration of nettle, burdock extracts or metformin to animals that continued to receive high fat food the blood glucose, triglycerides, total cholesterol, cholesterol of nonhigh-density lipoproteins, low-density and very low-density lipoproteins levels decreased by l.6–7.l fold as compared to the parameters in streptozotocine diabetes mellitus. Cholesterol and protein content of high-density lipoproteins increased by l.4–3.7 fold. The herbal extracts also prevented malonic dialdehyde formation, high-density lipoproteins and hemoglobin glycosylation. The nettle and burdock extracts more effectively decreased hyperglycemia, hypertriglyceridemia and lipoperoxidation in animals fed with low fat food. Metformin in the experiment with low fat intake decreased the glucose, low-density and very low-density lipoproteins content to a maximal degree and prevented high-density lipoproteins glycosylation.
Vibrational Power Flow Analysis of Rods and Beams
NASA Technical Reports Server (NTRS)
Wohlever, James Christopher; Bernhard, R. J.
1988-01-01
A new method to model vibrational power flow and predict the resulting energy density levels in uniform rods and beams is investigated. This method models the flow of vibrational power in a manner analogous to the flow of thermal power in a heat conduction problem. The classical displacement solutions for harmonically excited, hysteretically damped rods and beams are used to derive expressions for the vibrational power flow and energy density in the rod and beam. Under certain conditions, the power flow in these two structural elements will be shown to be proportional to the energy density gradient. Using the relationship between power flow and energy density, an energy balance on differential control volumes in the rod and beam leads to a Poisson's equation which models the energy density distribution in the rod and beam. Coupling the energy density and power flow solutions for rods and beams is also discussed. It is shown that the resonant behavior of finite structures complicates the coupling of solutions, especially when the excitations are single frequency inputs. Two coupling formulations are discussed, the first based on the receptance method, and the second on the travelling wave approach used in Statistical Energy Analysis. The receptance method is the more computationally intensive but is capable of analyzing single frequency excitation cases. The traveling wave approach gives a good approximation of the frequency average of energy density and power flow in coupled systems, and thus, is an efficient technique for use with broadband frequency excitation.
NASA Astrophysics Data System (ADS)
Crane, D. T.
2011-05-01
High-power-density, segmented, thermoelectric (TE) elements have been intimately integrated into heat exchangers, eliminating many of the loss mechanisms of conventional TE assemblies, including the ceramic electrical isolation layer. Numerical models comprising simultaneously solved, nonlinear, energy balance equations have been created to simulate these novel architectures. Both steady-state and transient models have been created in a MATLAB/Simulink environment. The models predict data from experiments in various configurations and applications over a broad range of temperature, flow, and current conditions for power produced, efficiency, and a variety of other important outputs. Using the validated models, devices and systems are optimized using advanced multiparameter optimization techniques. Devices optimized for particular steady-state operating conditions can then be dynamically simulated in a transient operating model. The transient model can simulate a variety of operating conditions including automotive and truck drive cycles.
Spatial heterogeneity in the carrying capacity of sika deer in Japan.
Iijima, Hayato; Ueno, Mayumi
2016-06-09
Carrying capacity is 1 driver of wildlife population dynamics. Although in previous studies carrying capacity was considered to be a fixed entity, it may differ among locations due to environmental variation. The factors underlying variability in carrying capacity, however, have rarely been examined. Here, we investigated spatial heterogeneity in the carrying capacity of Japanese sika deer ( Cervus nippon ) from 2005 to 2014 in Yamanashi Prefecture, central Japan (mesh with grid cells of 5.5×4.6 km) by state-space modeling. Both carrying capacity and density dependence differed greatly among cells. Estimated carrying capacities ranged from 1.34 to 98.4 deer/km 2 . According to estimated population dynamics, grid cells with larger proportions of artificial grassland and deciduous forest were subject to lower density dependence and higher carrying capacity. We conclude that population dynamics of ungulates may vary spatially through spatial variation in carrying capacity and that the density level for controlling ungulate abundance should be based on the current density level relative to the carrying capacity for each area.
Distance determination to Broad Line Absorbers in AGN
NASA Astrophysics Data System (ADS)
Bautista, Manuel; Arav, N.; Dunn, J.; Edmonds, D.; Korista, K. T.; Moe, M.; Benn, C.; Ignacio, G.
2009-01-01
We present various techniques for the determination of the physical conditions (density, temperature, total hydrogen column density, and ionization structure), chemical composition, and distances of Broad Line Absorbers (BAL) to the central engine in AGN. We start by discussing various density diagnostics from absorption lines from species such as C II, Si II, and Fe III. On the other hand, lines from metastable levels Fe II are often affected by Bowen fluorescence by scattered C IV photons. Lines from metastable levels of Ni II are usually excited by continuum fluorescence and mostly sensitive to the strength of the radiation field shortward of the Lyman continuum and as such they cam be used as direct distance indicators. Further, we show how the total hydrogen density of the absorber, its ionization parameter and distance can be determined through photoionization modeling of the absorber. Finally, we present our results for outflows of three different quasars: QSO 2359-1241 and SDSS J0318-0600.
Modelling density-dependent resistance in insect-pathogen interactions.
White, K A; Wilson, K
1999-10-01
We consider a mathematical model for a host-pathogen interaction where the host population is split into two categories: those susceptible to disease and those resistant to disease. Since the model was motivated by studies on insect populations, we consider a discrete-time model to reflect the discrete generations which are common among insect species. Whether an individual is born susceptible or resistant to disease depends on the local population levels at the start of each generation. In particular, we are interested in the case where the fraction of resistant individuals in the population increases as the total population increases. This may be seen as a positive feedback mechanism since disease is the only population control imposed upon the system. Moreover, it reflects recent experimental observations from noctuid moth-baculovirus interactions that pathogen resistance may increase with larval density. We find that the inclusion of a resistant class can stabilise unstable host-pathogen interactions but there is greatest regulation when the fraction born resistant is density independent. Nonetheless, inclusion of density dependence can still allow intrinsically unstable host-pathogen dynamics to be stabilised provided that this effect is sufficiently small. Moreover, inclusion of density-dependent resistance to disease allows the system to give rise to bistable dynamics in which the final outcome is dictated by the initial conditions for the model system. This has implications for the management of agricultural pests using biocontrol agents-in particular, it is suggested that the propensity for density-dependent resistance be determined prior to such a biocontrol attempt in order to be sure that this will result in the prevention of pest outbreaks, rather than their facilitation. Finally we consider how the cost of resistance to disease affects model outcomes and discover that when there is no cost to resistance, the model predicts stable periodic outbreaks of the insect population. The results are interpreted ecologically and future avenues for research to address the shortfalls in the present model system are discussed. Copyright 1999 Academic Press.
Model for determination of mid-gap states in amorphous metal oxides from thin film transistors
NASA Astrophysics Data System (ADS)
Bubel, S.; Chabinyc, M. L.
2013-06-01
The electronic density of states in metal oxide semiconductors like amorphous zinc oxide (a-ZnO) and its ternary and quaternary oxide alloys with indium, gallium, tin, or aluminum are different from amorphous silicon, or disordered materials such as pentacene, or P3HT. Many ZnO based semiconductors exhibit a steep decaying density of acceptor tail states (trap DOS) and a Fermi level (EF) close to the conduction band energy (EC). Considering thin film transistor (TFT) operation in accumulation mode, the quasi Fermi level for electrons (Eq) moves even closer to EC. Classic analytic TFT simulations use the simplification EC-EF> `several'kT and cannot reproduce exponential tail states with a characteristic energy smaller than 1/2 kT. We demonstrate an analytic model for tail and deep acceptor states, valid for all amorphous metal oxides and include the effect of trap assisted hopping instead of simpler percolation or mobility edge models, to account for the observed field dependent mobility.
Madenjian, Charles P.; David, Solomon R.; Pothoven, Steven A.
2012-01-01
We evaluated the performance of the Wisconsin bioenergetics model for lake trout Salvelinus namaycush that were fed ad libitum in laboratory tanks under regimes of low activity and high activity. In addition, we compared model performance under two different model algorithms: (1) balancing the lake trout energy budget on day t based on lake trout energy density on day t and (2) balancing the lake trout energy budget on day t based on lake trout energy density on day t + 1. Results indicated that the model significantly underestimated consumption for both inactive and active lake trout when algorithm 1 was used and that the degree of underestimation was similar for the two activity levels. In contrast, model performance substantially improved when using algorithm 2, as no detectable bias was found in model predictions of consumption for inactive fish and only a slight degree of overestimation was detected for active fish. The energy budget was accurately balanced by using algorithm 2 but not by using algorithm 1. Based on the results of this study, we recommend the use of algorithm 2 to estimate food consumption by fish in the field. Our study results highlight the importance of accurately accounting for changes in fish energy density when balancing the energy budget; furthermore, these results have implications for the science of evaluating fish bioenergetics model performance and for more accurate estimation of food consumption by fish in the field when fish energy density undergoes relatively rapid changes.
Chesnokova, Arina; French, Benjamin; Weibe, Douglas; Camenga, Deepa R; Yun, Katherine
2015-01-01
We examined whether or not high maternal smoking rates at the neighborhood level increase the likelihood of individual smoking by Latina women in the three months prior to and during pregnancy, independent of other individual and neighborhood factors. This study was observational in nature, using linked vital statistics records for 24,443 Latina women in Pennsylvania (2009-2010) and U.S. Census data for 2,398 census tracts. We used multilevel logistic regression models to determine the individual odds of self-reported maternal smoking given different census tract-level rates of maternal smoking in the previous three years (2006-2008), adjusting for maternal and census-tract characteristics, including ethnic density, population density, and poverty. Higher levels of maternal smoking at the census-tract level were associated with increased individual odds of smoking among Latina mothers. In the fully adjusted model, a 10% increase in the neighborhood smoking rate was associated with a 1.28 (95% confidence interval 1.22, 1.34) increase in the individual odds of smoking. Latina women living in census tracts where more women have smoked during or immediately prior to pregnancy are themselves at higher risk of smoking during this period.
Estimations of population density for selected periods between the Neolithic and AD 1800.
Zimmermann, Andreas; Hilpert, Johanna; Wendt, Karl Peter
2009-04-01
Abstract We describe a combination of methods applied to obtain reliable estimations of population density using archaeological data. The combination is based on a hierarchical model of scale levels. The necessary data and methods used to obtain the results are chosen so as to define transfer functions from one scale level to another. We apply our method to data sets from western Germany that cover early Neolithic, Iron Age, Roman, and Merovingian times as well as historical data from AD 1800. Error margins and natural and historical variability are discussed. Our results for nonstate societies are always lower than conventional estimations compiled from the literature, and we discuss the reasons for this finding. At the end, we compare the calculated local and global population densities with other estimations from different parts of the world.
Use of spatial capture-recapture modeling and DNA data to estimate densities of elusive animals
Kery, Marc; Gardner, Beth; Stoeckle, Tabea; Weber, Darius; Royle, J. Andrew
2011-01-01
Assessment of abundance, survival, recruitment rates, and density (i.e., population assessment) is especially challenging for elusive species most in need of protection (e.g., rare carnivores). Individual identification methods, such as DNA sampling, provide ways of studying such species efficiently and noninvasively. Additionally, statistical methods that correct for undetected animals and account for locations where animals are captured are available to efficiently estimate density and other demographic parameters. We collected hair samples of European wildcat (Felis silvestris) from cheek-rub lure sticks, extracted DNA from the samples, and identified each animals' genotype. To estimate the density of wildcats, we used Bayesian inference in a spatial capture-recapture model. We used WinBUGS to fit a model that accounted for differences in detection probability among individuals and seasons and between two lure arrays. We detected 21 individual wildcats (including possible hybrids) 47 times. Wildcat density was estimated at 0.29/km2 (SE 0.06), and 95% of the activity of wildcats was estimated to occur within 1.83 km from their home-range center. Lures located systematically were associated with a greater number of detections than lures placed in a cell on the basis of expert opinion. Detection probability of individual cats was greatest in late March. Our model is a generalized linear mixed model; hence, it can be easily extended, for instance, to incorporate trap- and individual-level covariates. We believe that the combined use of noninvasive sampling techniques and spatial capture-recapture models will improve population assessments, especially for rare and elusive animals.
Spreadsheet Modeling of Electron Distributions in Solids
ERIC Educational Resources Information Center
Glassy, Wingfield V.
2006-01-01
A series of spreadsheet modeling exercises constructed as part of a new upper-level elective course on solid state materials and surface chemistry is described. The spreadsheet exercises are developed to provide students with the opportunity to interact with the conceptual framework where the role of the density of states and the Fermi-Dirac…
Beveridge, Oliver S; Humphries, Stuart; Petchey, Owen L
2010-05-01
1. While much is known about the independent effects of trophic structure and temperature on density and ecosystem processes, less is known about the interaction(s) between the two. 2. We manipulated the temperature of laboratory-based bacteria-protist communities that contained communities with one, two, or three trophic levels, and recorded species' densities and bacterial decomposition. 3. Temperature, food chain length and their interaction produced significant responses in microbial density and bacterial decomposition. Prey and resource density expressed different patterns of temperature dependency during different phases of population dynamics. The addition of a predator altered the temperature-density relationship of prey, from a unimodal trend to a negative one. Bacterial decomposition was greatest in the presence of consumers at higher temperatures. 4. These results are qualitatively consistent with a recent model of direct and indirect temperature effects on resource-consumer population dynamics. Results highlight and reinforce the importance of indirect effects of temperature mediated through trophic interactions. Understanding and predicting the consequences of environmental change will require that indirect effects, trophic structure, and individual species' tolerances be incorporated into theory and models.
Klobucar, Stephen L.; Budy, Phaedra
2016-01-01
In reservoirs, seasonal drawdown can alter the physical environment and may influence predatory fish performance. We investigated the performance of lake trout (Salvelinus namaycush) in a western reservoir by coupling field measurements with visual foraging and bioenergetic models at four distinct states (early summer, mid-summer, late summer, and fall). The models suggested that lake trout prey, juvenile kokanee (Oncorhynchus nerka), are limited seasonally by suitable temperature and dissolved oxygen. Accordingly, prey densities were greatest in late summer when reservoir volume was lowest and fish were concentrated by stratification. Prey encounter rates (up to 68 fish·day−1) and predator consumption are also predicted to be greatest during late summer. However, our models suggested that turbidity negatively correlates with prey detection and consumption across reservoir states. Under the most turbid conditions, lake trout did not meet physiological demands; however, during less turbid periods, predator consumption reached maximum bioenergetic efficiency. Overall, our findings demonstrate that rapid reservoir fluctuations and associated abiotic conditions can influence predator–prey interactions, and our models describe the potential impacts of water level fluctuation on valuable sport fishes.
Ng, Kenney; Steinhubl, Steven R; deFilippi, Christopher; Dey, Sanjoy; Stewart, Walter F
2016-11-01
Using electronic health records data to predict events and onset of diseases is increasingly common. Relatively little is known, although, about the tradeoffs between data requirements and model utility. We examined the performance of machine learning models trained to detect prediagnostic heart failure in primary care patients using longitudinal electronic health records data. Model performance was assessed in relation to data requirements defined by the prediction window length (time before clinical diagnosis), the observation window length (duration of observation before prediction window), the number of different data domains (data diversity), the number of patient records in the training data set (data quantity), and the density of patient encounters (data density). A total of 1684 incident heart failure cases and 13 525 sex, age-category, and clinic matched controls were used for modeling. Model performance improved as (1) the prediction window length decreases, especially when <2 years; (2) the observation window length increases but then levels off after 2 years; (3) the training data set size increases but then levels off after 4000 patients; (4) more diverse data types are used, but, in order, the combination of diagnosis, medication order, and hospitalization data was most important; and (5) data were confined to patients who had ≥10 phone or face-to-face encounters in 2 years. These empirical findings suggest possible guidelines for the minimum amount and type of data needed to train effective disease onset predictive models using longitudinal electronic health records data. © 2016 American Heart Association, Inc.
Semiconductor technology program. Progress briefs
NASA Technical Reports Server (NTRS)
Bullis, W. M.
1980-01-01
Measurement technology for semiconductor materials, process control, and devices is reviewed. Activities include: optical linewidth and thermal resistance measurements; device modeling; dopant density profiles; resonance ionization spectroscopy; and deep level measurements. Standardized oxide charge terminology is also described.
Large-scale forcing of the European Slope Current and associated inflows to the North Sea
NASA Astrophysics Data System (ADS)
Marsh, Robert; Haigh, Ivan; Cunningham, Stuart; Inall, Mark; Porter, Marie; Moat, Ben
2017-04-01
Drifters drogued at 50 m in the European Slope Current at the Hebridean shelf break follow a wide range of pathways, indicating highly variable Atlantic inflow to the North Sea. Slope Current pathways, timescales and transports over 1988-2007 are further quantified in an eddy-resolving ocean model hindcast. Particle trajectories calculated with model currents indicate that Slope Current water is largely "recruited" from the eastern subpolar North Atlantic. Observations of absolute dynamic topography and climatological density support theoretical expectations that Slope Current transport is to first order associated with meridional density gradients in the eastern subpolar gyre, which support a geostrophic inflow towards the slope. In the model hindcast, Slope Current transport variability is dominated by abrupt 25-50% reductions of these density gradients over 1996-1998. Concurrent changes in wind forcing, expressed in terms of density gradients, act in the same sense to reduce Slope Current transport. This indicates that coordinated regional changes of buoyancy and wind forcing acted together to reduce Slope Current transport during the 1990s. Particle trajectories further show that 10-40% of Slope Current water is destined for the northern North Sea within 6 months of passing to the west of Scotland, with a clear decline in this Atlantic inflow over 1988-2007. The influence of variable Slope Current transport on the northern North Sea is also expressed in salinity variations. A proxy for Atlantic inflow may be found in sea level records. Variability of Slope Current transport is implicit in mean sea level differences between Lerwick (Shetland) and Torshavn (Faeroes), in both tide gauge records and a longer model hindcast spanning 1958-2013. Potential impacts of this variability on North Sea biogeochemistry and ecosystems, via associated changes in temperature and seasonal stratification, are discussed.
Optimal control of Atlantic population Canada geese
Hauser, C.E.; Runge, M.C.; Cooch, E.G.; Johnson, F.A.; Harvey, W.F.
2007-01-01
Management of Canada geese (Branta canadensis) can be a balance between providing sustained harvest opportunity while not allowing populations to become overabundant and cause damage. In this paper, we focus on the Atlantic population of Canada geese and use stochastic dynamic programming to determine the optimal harvest strategy over a range of plausible models for population dynamics. There is evidence to suggest that the population exhibits significant age structure, and it is possible to reconstruct age structure from surveys. Consequently the harvest strategy is a function of the age composition, as well as the abundance, of the population. The objective is to maximize harvest while maintaining the number of breeding adults in the population between specified upper and lower limits. In addition, the total harvest capacity is limited and there is uncertainty about the strength of density-dependence. We find that under a density-independent model, harvest is maximized by maintaining the breeding population at the highest acceptable abundance. However if harvest capacity is limited, then the optimal long-term breeding population size is lower than the highest acceptable level, to reduce the risk of the population growing to an unacceptably large size. Under the proposed density-dependent model, harvest is maximized by maintaining the breeding population at an intermediate level between the bounds on acceptable population size; limits to harvest capacity have little effect on the optimal long-term population size. It is clear that the strength of density-dependence and constraints on harvest significantly affect the optimal harvest strategy for this population. Model discrimination might be achieved in the long term, while continuing to meet management goals, by adopting an adaptive management strategy.
Micro-bias and macro-performance.
Seaver, S M D; Moreira, A A; Sales-Pardo, M; Malmgren, R D; Diermeier, D; Amaral, L A N
2009-02-01
We use agent-based modeling to investigate the effect of conservatism and partisanship on the efficiency with which large populations solve the density classification task - a paradigmatic problem for information aggregation and consensus building. We find that conservative agents enhance the populations' ability to efficiently solve the density classification task despite large levels of noise in the system. In contrast, we find that the presence of even a small fraction of partisans holding the minority position will result in deadlock or a consensus on an incorrect answer. Our results provide a possible explanation for the emergence of conservatism and suggest that even low levels of partisanship can lead to significant social costs.
Charles Essien; Brian K. Via; Qingzheng Cheng; Thomas Gallagher; Timothy McDonald; Xiping Wang; Lori G. Eckhardt
2017-01-01
The polymeric angle and concentration within the S2 layer of the softwood fiber cell wall are very critical for molecular and microscopic properties that influence strength, stiffness and acoustic velocity of wood at the macroscopic level. The main objective of this study was to elucidate the effect of cellulose, hemicellulose, lignin, microfibril angle and density on...
Pan, Ping; Han, Tian Yi; OuYang, Xun Zhi; Liu, Yuan Qiu; Zang, Hao; Ning, Jin Kui; Yang, Yang
2017-12-01
The distribution characteristics of carbon density under aerially seeded Pinus massoniana plantations in Ganzhou City of Jiangxi Province were studied. Total 15 factors, including site, stand, understory vegetation, litter and so on were selected to establish a relationship model between stand carbon density and influencing factors, and the main influencing factors were also screened. The results showed that the average carbon density was 98.29 t·hm -2 at stand level with soil layer (49.58 t·hm -2 ) > tree layer (45.25 t·hm -2 ) > understory vegetation layer (2.23 t·hm -2 ) > litter layer (1.23 t·hm -2 ). Significantly positive correlations were found among the tree, litter and soil layers, but not among the other layers. The main factors were tree density, avera-ge diameter at breast height (DBH), soil thickness, slope position, stand age and canopy density to affect carbon density in aerially seeded P. massoniana plantations. The partial correlation coefficients of the six main factors ranged from 0.331 to 0.434 with significance by t test. The multiple correlation coefficient of quantitative model I reached 0.796 with significance by F test (F=9.28). For stand density, the best tree density and canopy density were 1500-2100 plants·hm -2 and 0.4-0.7, respectively. The moderate density was helpful to improve ecosystem carbon sequestration. The carbon density increased with increasing stand age, DBH and soil thickness, and was higher in lower than middle and upper slope positions.
Role of Excited Nitrogen In The Ionosphere
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.; Cartwright, D. C.; Bolorizadeh, M. A.
2006-12-01
Sunlight photoionises atoms and molecules in the Earth's upper atmosphere, producing ions and photoelectrons. The photoelectrons then produce further ionisation by electron impact. These processes produce the ionosphere, which contains various positive ions, such as NO+, N+, and O+, and an equal density of free electrons. O+(4S) ions are long-lived and so the electron density is determined mainly by the density of O+(4S). This density is dependent on ambipolar diffusion and on loss processes, which are principally reactions with O2 and N2. The reaction with N2 is known to be strongly dependent on the vibrational state of N2 but the rate constants are not well determined for the ionosphere. Vibrational excitation of N2 is produced by direct excitation by thermal electrons and photoelectrons and by cascade from the excited states of N2 that are produced by photoelectron impact. It can also be produced by a chemical reaction and by vibrational-translational transitions. The vibrational excitation is lost by deexcitation by electron impact, by step-wise quenching in collisions with O atoms, and in the reaction with O+(4S). The distribution of vibrational levels is rearranged by vibrational-vibrational transitions, and by molecular diffusion vertically in the atmosphere. A computational model that includes these processes and predicts the electron density as a function of height in the ionosphere is described. This model is a combination of a "statistical equilibrium" calculation, which is used to predict the populations of the excited states of N2, and a time-step calculation of the atmospheric reactions and processes. The latter includes a calculation of photoionisation down through the atmosphere as a function of time of day and solar activity, and calculations at 0.1 s intervals of the changing densities of positive ions, electrons and N2 in the different vibrational levels. The validity of the model is tested by comparison of the predicted electron densities with the International Reference Ionosphere (IRI) of electron density measurements. The contribution of various input parameters can be investigated by their effect on the accuracy of the calculated electron densities. Here the effects of two different sets of rate constants for the reaction of vibrationally excited N2 with O+(4S) are investigated. For reference, predictions using the different sets are compared with laboratory measurements. Then the effect of using the different sets in the computational model of the ionosphere is investigated. It is shown that one set gives predictions of electron densities that are in reasonable agreement with the IRI, while the other set does not. Both sets result in underestimation of the electron density at the height of the peak electron density in the atmosphere, suggesting that either the amount of vibrational excitation or the rate constants may be overestimated. Our comparison is made for two cases with different conditions, to give an indication of the limitations of the atmospheric modeling and also insight into ways in which the sets of rate constants may be deficient.
NASA Technical Reports Server (NTRS)
Rafferty, Connor S.; Biegel, Bryan A.; Yu, Zhi-Ping; Ancona, Mario G.; Bude, J.; Dutton, Robert W.; Saini, Subhash (Technical Monitor)
1998-01-01
A density-gradient (DG) model is used to calculate quantum-mechanical corrections to classical carrier transport in MOS (Metal Oxide Semiconductor) inversion/accumulation layers. The model is compared to measured data and to a fully self-consistent coupled Schrodinger and Poisson equation (SCSP) solver. Good agreement is demonstrated for MOS capacitors with gate oxide as thin as 21 A. It is then applied to study carrier distribution in ultra short MOSFETs (Metal Oxide Semiconductor Field Effect Transistor) with surface roughness. This work represents the first implementation of the DG formulation on multidimensional unstructured meshes. It was enabled by a powerful scripting approach which provides an easy-to-use and flexible framework for solving the fourth-order PDEs (Partial Differential Equation) of the DG model.
Statistics of cosmic density profiles from perturbation theory
NASA Astrophysics Data System (ADS)
Bernardeau, Francis; Pichon, Christophe; Codis, Sandrine
2014-11-01
The joint probability distribution function (PDF) of the density within multiple concentric spherical cells is considered. It is shown how its cumulant generating function can be obtained at tree order in perturbation theory as the Legendre transform of a function directly built in terms of the initial moments. In the context of the upcoming generation of large-scale structure surveys, it is conjectured that this result correctly models such a function for finite values of the variance. Detailed consequences of this assumption are explored. In particular the corresponding one-cell density probability distribution at finite variance is computed for realistic power spectra, taking into account its scale variation. It is found to be in agreement with Λ -cold dark matter simulations at the few percent level for a wide range of density values and parameters. Related explicit analytic expansions at the low and high density tails are given. The conditional (at fixed density) and marginal probability of the slope—the density difference between adjacent cells—and its fluctuations is also computed from the two-cell joint PDF; it also compares very well to simulations. It is emphasized that this could prove useful when studying the statistical properties of voids as it can serve as a statistical indicator to test gravity models and/or probe key cosmological parameters.
2011-01-01
Background Population antimicrobial use may influence resistance emergence. Resistance is an ecological phenomenon due to potential transmissibility. We investigated spatial and temporal patterns of ciprofloxacin (CIP) population consumption related to E. coli resistance emergence and dissemination in a major Brazilian city. A total of 4,372 urinary tract infection E. coli cases, with 723 CIP resistant, were identified in 2002 from two outpatient centres. Cases were address geocoded in a digital map. Raw CIP consumption data was transformed into usage density in DDDs by CIP selling points influence zones determination. A stochastic model coupled with a Geographical Information System was applied for relating resistance and usage density and for detecting city areas of high/low resistance risk. Results E. coli CIP resistant cluster emergence was detected and significantly related to usage density at a level of 5 to 9 CIP DDDs. There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. Conclusions There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. The usage density of 5-9 CIP DDDs per 1,000 inhabitants within the same influence zone was the resistance triggering level. This level led to E. coli resistance clustering, proving that individual resistance emergence and dissemination was affected by antimicrobial population consumption. PMID:21356088
Characteristics of spacecraft charging in low Earth orbit
NASA Astrophysics Data System (ADS)
Anderson, Phillip C.
2012-07-01
It has been found that the DMSP spacecraft at 840 km can charge to very large negative voltages (up to -2000 V) when encountering intense precipitating electron events (auroral arcs). We present an 11-year study of over 1600 charging events, defined as when the spacecraft charged to levels exceeding 100 V negative during an auroral crossing. The occurrence frequency of events was highly correlated with the 11-year solar cycle with the largest number of events occurring during solar minimum. This was due to the requirement that the background thermal plasma density be low, at most 104 cm-3. During solar maximum, the plasma density is typically well above that level due to the solar EUV ionizing radiation, and although the occurrence frequency of auroral arcs is considerably greater than at solar minimum, the occurrence of high-level charging is minimal. As a result of this study, we produced a model spectrum for precipitating electrons that can be used as a specification for the low-altitude auroral charging environment. There are implications from this study on a number of LEO satellite programs, including the International Space Station, which does enter the auroral zone, particularly during geomagnetic activity when the auroral boundary can penetrate to very low latitudes. The plasma density in the ISS orbit is usually well above the minimum required density for charging. However, in the wake of the ISS, the plasma density can be 2 orders of magnitude or more lower than the background density and thus conditions are ripe for charging.
Ahn, Yongjun; Yeo, Hwasoo
2015-01-01
The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric vehicles.
Karslake, Jason; Maltas, Jeff; Brumm, Peter; Wood, Kevin B
2016-10-01
The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments.
Maltas, Jeff; Brumm, Peter; Wood, Kevin B.
2016-01-01
The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments. PMID:27764095
Provost, Alden M.; Payne, Dorothy F.; Voss, Clifford I.
2006-01-01
A digital model was developed to simulate ground-water flow and solute transport for the Upper Floridan aquifer in the Savannah, Georgia-Hilton Head Island, South Carolina, area. The model was used to (1) simulate trends of saltwater intrusion from predevelopment to the present day (1885-2004), (2) project these trends from the present day into the future, and (3) evaluate the relative influence of different assumptions regarding initial and boundary conditions and physical properties. The model is based on a regional, single-density ground-water flow model of coastal Georgia and adjacent parts of South Carolina and Florida. Variable-density ground-water flow and solute transport were simulated using the U.S. Geological Survey finite-element, variable-density solute-transport simulator SUTRA, 1885-2004. The model comprises seven layers: the surficial aquifer system, the Brunswick aquifer system, the Upper Floridan aquifer, the Lower Floridan aquifer, and the intervening confining units. The model was calibrated to September 1998 water levels, for single-density freshwater conditions, then refined using variable density and chloride concentration to give a reasonable match to the trend in the chloride distribution in the Upper Floridan aquifer inferred from field measurements of specific conductance made during 2000, 2002, 2003, and 2004. The model was modified to simulate solute transport by allowing saltwater to enter the system through localized areas near the northern end of Hilton Head Island, at Pinckney Island, and near the Colleton River, and was calibrated to match chloride concentrations inferred from field measurements of specific conductance. This simulation is called the 'Base Case.'
Browder, Joan A.; Restrepo, V.R.; Rice, J.K.; Robblee, M.B.; Zein-Eldin, Z.
1999-01-01
Two modeling approaches were used to explore the basis for variation in recruitment of pink shrimp, Farfantepenaeus duorarum, to the Tortugas fishing grounds. Emphasis was on development and juvenile densities on the nursery grounds. An exploratory simulation modeling exercise demonstrated large year-to-year variations in recruitment contributions to the Tortugas rink shrimp fishery may occur on some nursery grounds, and production may differ considerably among nursery grounds within the same year, simply on the basis of differences in temperature and salinity. We used a growth and survival model to simulate cumulative harvests from a July-centered cohort of early-settlement-stage postlarvae from two parts of Florida Bay (western Florida Bay and northcentral Florida Bay), using historic temperature and salinity data from these areas. Very large year-to-year differences in simulated cumulative harvests were found for recruits from Whipray Basin. Year-to-year differences in simulated harvests of recruits from Johnson Key Basin were much smaller. In a complementary activity, generalized linear and additive models and intermittent, historic density records were used to develop an uninterrupted multi-year time series of monthly density estimates for juvenile rink shrimp in the Johnson Key Basin. The developed data series was based on relationships of density with environmental variables. The strongest relationship was with sea-surface temperature. Three other environmental variables (rainfall, water level at Everglades National Park Well P35, and mean wind speed) also contributed significantly to explaining variation in juvenile densities. Results of the simulation model and two of the three statistical models yielded similar interannual patterns for Johnson Key Basin. While it is not possible to say that one result validates the other, the concordance of the annual patterns from the two models is supportive of both approaches.
Global Summary MGS TES Data and Mars-Gram Validation
NASA Technical Reports Server (NTRS)
Justus, C.; Johnson, D.; Parker, Nelson C. (Technical Monitor)
2002-01-01
Mars Global Reference Atmospheric Model (Mars-GRAM 2001) is an engineering-level Mars atmosphere model widely used for many Mars mission applications. From 0-80 km, it is based on NASA Ames Mars General Circulation Model (MGCM), while above 80 km it is based on University of Arizona Mars Thermospheric General Circulation Model. Mars-GRAM 2001 and MGCM use surface topograph$ from Mars Global Surveyor Mars Orbiting Laser Altimeter (MOLA). Validation studies are described comparing Mars-GRAM with a global summary data set of Mars Global Surveyor Thermal Emission Spectrometer (TES) data. TES averages and standard deviations were assembled from binned TES data which covered surface to approx. 40 km, over more than a full Mars year (February, 1999 - June, 2001, just before start of a Mars global dust storm). TES data were binned in 10-by-10 degree latitude-longitude bins (i.e. 36 longitude bins by 19 latitude bins), 12 seasonal bins (based on 30 degree increments of Ls angle). Bin averages and standard deviations were assembled at 23 data levels (temperature at 21 pressure levels, plus surface temperature and surface pressure). Two time-of day bins were used: local time near 2 or 14 hours local time). Two dust optical depth bins wereused: infrared optical depth either less than or greater than 0.25 (which corresponds to visible optical depth either less than or greater than about 0.5). For interests in aerocapture and precision entry and landing, comparisons focused on atmospheric density. TES densities versus height were computed from TES temperature versus pressure, using assumptions of perfect gas law and hydrostatics. Mars-GRAM validation studies used density ratio (TES/Mars-GRAM) evaluated at data bin center points in space and time. Observed average TES/Mars-GRAM density ratios were generally 1+/-0.05, except at high altitudes (15-30 km, depending on season) and high latitudes (> 45 deg N), or at most altitudes in the southern hemisphere at Ls approx. 90 and 180deg). Compared to TES averages for a given latitude and season, TES data had average density standard deviation about the mean of approx. 65-10.5% (varying with height) for all data, or approx. 5-12%, depending on time of day and dust optical depth. Average standard deviation of TES/Mars-GRAM density ratio was 8.9% for local time 2 hours and 7.1% for local time 14 hours. Thus standard deviation of observed TES/Mars-GRAM density ratio, evaluated at matching positions and times, is about the same as the standard deviation of TES data about the TES mean value at a given position and season.
Porosity development in coastal carbonate aquifers
Sanford, W.E.; Konikow, Leonard F.
1989-01-01
Combines geochemical mixing theory with the hydrodynamics of fresh-water-salt-water mixing zones in a coupled reaction-transport model. Results from the reaction-path model PHREEQE are used with a variable-density groundwater flow and solute-transport model to simulate an idealized cross section of a coastal carbonate aquifer. The dissolution process is sensitive to fresh-water chemistry, groundwater velocities, and sea-level movement. -from Authors
Qorbani, Mostafa; Farzadfar, Farshad; Majdzadeh, Reza; Mohammad, Kazem; Motevalian, Abbas
2017-01-01
Our aim was to explore the technical efficiency (TE) of the Iranian rural primary healthcare (PHC) system for diabetes treatment coverage rate using the stochastic frontier analysis (SFA) as well as to examine the strength and significance of the effect of human resources density on diabetes treatment. In the SFA model diabetes treatment coverage rate, as a output, is a function of health system inputs (Behvarz worker density, physician density, and rural health center density) and non-health system inputs (urbanization rate, median age of population, and wealth index) as a set of covariates. Data about the rate of self-reported diabetes treatment coverage was obtained from the Non-Communicable Disease Surveillance Survey, data about health system inputs were collected from the health census database and data about non-health system inputs were collected from the census data and household survey. In 2008, rate of diabetes treatment coverage was 67% (95% CI: 63%-71%) nationally, and at the provincial level it varied from 44% to 81%. The TE score at the national level was 87.84%, with considerable variation across provinces (from 59.65% to 98.28%).Among health system and non-health system inputs, only the Behvarz density (per 1000 population)was significantly associated with diabetes treatment coverage (β (95%CI): 0.50 (0.29-0.70), p < 0.001). Our findings show that although the rural PHC system can considered efficient in diabetes treatment at the national level, a wide variation exists in TE at the provincial level. Because the only variable that is predictor of TE is the Behvarz density, the PHC system may extend the diabetes treatment coverage by using this group of health care workers.
van Witteloostuijn, Arjen
2018-01-01
In this paper, we develop an ecological, multi-level model that can be used to study the evolution of emerging technology. More specifically, by defining technology as a system composed of a set of interacting components, we can build upon the argument of multi-level density dependence from organizational ecology to develop a distribution-independent model of technological evolution. This allows us to distinguish between different stages of component development, which provides more insight into the emergence of stable component configurations, or dominant designs. We validate our hypotheses in the biotechnology industry by using patent data from the USPTO from 1976 to 2003. PMID:29795575
Development and validation of a turbulent-mix model for variable-density and compressible flows.
Banerjee, Arindam; Gore, Robert A; Andrews, Malcolm J
2010-10-01
The modeling of buoyancy driven turbulent flows is considered in conjunction with an advanced statistical turbulence model referred to as the BHR (Besnard-Harlow-Rauenzahn) k-S-a model. The BHR k-S-a model is focused on variable-density and compressible flows such as Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) driven mixing. The BHR k-S-a turbulence mix model has been implemented in the RAGE hydro-code, and model constants are evaluated based on analytical self-similar solutions of the model equations. The results are then compared with a large test database available from experiments and direct numerical simulations (DNS) of RT, RM, and KH driven mixing. Furthermore, we describe research to understand how the BHR k-S-a turbulence model operates over a range of moderate to high Reynolds number buoyancy driven flows, with a goal of placing the modeling of buoyancy driven turbulent flows at the same level of development as that of single phase shear flows.
Neighborhood walkability and particulate air pollution in a nationwide cohort of women.
James, Peter; Hart, Jaime E; Laden, Francine
2015-10-01
Features of neighborhoods associated with walkability (i.e., connectivity, accessibility, and density) may also be correlated with levels of ambient air pollution, which would attenuate the health benefits of walkability. We examined the relationship between neighborhood walkability and ambient air pollution in a cross-sectional analysis of a cohort study spanning the entire United States using residence-level exposure assessment for ambient air pollution and the built environment. Using data from the Nurses' Health Study, we used linear regression to estimate the association between a neighborhood walkability index, combining neighborhood intersection count, business count, and population density (defined from Census data, infoUSA business data, and StreetMap USA data), and air pollution, defined from a GIS-based spatiotemporal PM2.5 model. After adjustment for Census tract median income, median home value, and percent with no high school education, the highest tertile of walkability index, intersection count, business count, and population density was associated with a with 1.58 (95% CI 1.54, 1.62), 1.20 (95% CI 1.16, 1.24), 1.31 (95% CI 1.27, 1.35), and 1.84 (95% CI 1.80, 1.88) µg/m(3) higher level of PM2.5 respectively, compared to the lowest tertile. Results varied somewhat by neighborhood socioeconomic status and greatly by region. This nationwide analysis showed a positive relationship between neighborhood walkability and modeled air pollution levels, which were consistent after adjustment for neighborhood-level socioeconomic status. Regional differences in the air pollution-walkability relationship demonstrate that there are factors that vary from region to region that allow for walkable neighborhoods with low levels of air pollution. Copyright © 2015 Elsevier Inc. All rights reserved.
Exposures to Walkability and Particulate Air Pollution in a Nationwide Cohort of Women
James, Peter; Hart, Jaime E.; Laden, Francine
2015-01-01
Background Features of neighborhoods associated with walkability (i.e., connectivity, accessibility, and density) may also be correlated with levels of ambient air pollution, which would attenuate the health benefits of walkability. Objectives We examined the relationship between neighborhood walkability and ambient air pollution in a cross-sectional analysis of a cohort study spanning the entire United States using residence-level exposure assessment for ambient air pollution and the built environment. Methods Using data from the Nurses’ Health Study, we used linear regression to estimate the association between a neighborhood walkability index, combining neighborhood intersection count, business count, and population density (defined from Census data, infoUSA business data, and StreetMap USA data), and air pollution, defined from a GIS-based spatiotemporal PM2.5 model. Results After adjustment for Census tract median income, median home value, and percent with no high school education, the highest tertile of walkability index, intersection count, business count, and population density was associated with a with 1.58 (95% CI 1.54, 1.62), 1.20 (95% CI 1.16, 1.24), 1.31 (95% CI 1.27, 1.35), and 1.84 (95% CI 1.80, 1.88) μg/m3 higher level of PM2.5 respectively, compared to the lowest tertile. Results varied somewhat by neighborhood socioeconomic status and greatly by region. Conclusions This nationwide analysis showed a positive relationship between neighborhood walkability and modeled air pollution levels, which were consistent after adjustment for neighborhood-level socioeconomic status. Regional differences in the air pollution-walkability relationship demonstrate that there are factors that vary across region that allow for walkable neighborhoods with low levels of air pollution. PMID:26397775
Correction to the Beer-Lambert-Bouguer law for optical absorption.
Abitan, Haim; Bohr, Henrik; Buchhave, Preben
2008-10-10
The Beer-Lambert-Bouguer absorption law, known as Beer's law for absorption in an optical medium, is precise only at power densities lower than a few kW. At higher power densities this law fails because it neglects the processes of stimulated emission and spontaneous emission. In previous models that considered those processes, an analytical expression for the absorption law could not be obtained. We show here that by utilizing the Lambert W-function, the two-level energy rate equation model is solved analytically, and this leads into a general absorption law that is exact because it accounts for absorption as well as stimulated and spontaneous emission. The general absorption law reduces to Beer's law at low power densities. A criterion for its application is given along with experimental examples. (c) 2008 Optical Society of America
Study of laser cooling in deep optical lattice: two-level quantum model
NASA Astrophysics Data System (ADS)
Prudnikov, O. N.; Il'enkov, R. Ya.; Taichenachev, A. V.; Yudin, V. I.; Rasel, E. M.
2018-01-01
We study a possibility of laser cooling of 24Mg atoms in deep optical lattice formed by intense off-resonant laser field in a presence of cooling field resonant to narrow (3s3s) 1 S 0 → (3s3p)3 P 1 (λ = 457 nm) optical transition. For description of laser cooling with taking into account quantum recoil effects we consider two quantum models. The first one is based on direct numerical solution of quantum kinetic equation for atom density matrix and the second one is simplified model based on decomposition of atom density matrix over vibration states in the lattice wells. We search cooling field intensity and detuning for minimum cooling energy and fast laser cooling.
Level density and mechanism of deuteron-induced reactions on Fe 54 , 56 , 58
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.
Here, deuteron elastic cross sections, as well as neutron, proton, and α-particle emission spectra, from d+ 54,56,58Fe reactions have been measured with deuteron beam energies of 5, 7, and 9 MeV. Optical model parameters have been tested against our experimental data. The fraction of total reaction cross section responsible for the formation of compound nuclei has been deduced from the angular distributions. The degree of discrepancy between calculated and experimental compound cross sections was found to increase with increasing neutron number. The nuclear level densities of the residual nuclei 55Co, 57Co, 55Fe, 57Fe, 52Mn, and 54Mn have been deduced frommore » the compound double differential cross sections. The Gilbert-Cameron model with Iljinov parameter systematics [A. S. Iljinov and M. V. Mebel, Nucl. Phys. A 543, 517 (1992)] was found to have a good agreement with our results.« less
Level density and mechanism of deuteron-induced reactions on Fe 54 , 56 , 58
Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.; ...
2015-07-06
Here, deuteron elastic cross sections, as well as neutron, proton, and α-particle emission spectra, from d+ 54,56,58Fe reactions have been measured with deuteron beam energies of 5, 7, and 9 MeV. Optical model parameters have been tested against our experimental data. The fraction of total reaction cross section responsible for the formation of compound nuclei has been deduced from the angular distributions. The degree of discrepancy between calculated and experimental compound cross sections was found to increase with increasing neutron number. The nuclear level densities of the residual nuclei 55Co, 57Co, 55Fe, 57Fe, 52Mn, and 54Mn have been deduced frommore » the compound double differential cross sections. The Gilbert-Cameron model with Iljinov parameter systematics [A. S. Iljinov and M. V. Mebel, Nucl. Phys. A 543, 517 (1992)] was found to have a good agreement with our results.« less
Organic semiconductor density of states controls the energy level alignment at electrode interfaces
Oehzelt, Martin; Koch, Norbert; Heimel, Georg
2014-01-01
Minimizing charge carrier injection barriers and extraction losses at interfaces between organic semiconductors and metallic electrodes is critical for optimizing the performance of organic (opto-) electronic devices. Here, we implement a detailed electrostatic model, capable of reproducing the alignment between the electrode Fermi energy and the transport states in the organic semiconductor both qualitatively and quantitatively. Covering the full phenomenological range of interfacial energy level alignment regimes within a single, consistent framework and continuously connecting the limiting cases described by previously proposed models allows us to resolve conflicting views in the literature. Our results highlight the density of states in the organic semiconductor as a key factor. Its shape and, in particular, the energy distribution of electronic states tailing into the fundamental gap is found to determine both the minimum value of practically achievable injection barriers as well as their spatial profile, ranging from abrupt interface dipoles to extended band-bending regions. PMID:24938867
Representation of radiative strength functions within a practical model of cascade gamma decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vu, D. C., E-mail: vuconghnue@gmail.com; Sukhovoj, A. M., E-mail: suchovoj@nf.jinr.ru; Mitsyna, L. V., E-mail: mitsyna@nf.jinr.ru
A practical model developed at the Joint Institute for Nuclear Research (JINR, Dubna) in order to describe the cascade gamma decay of neutron resonances makes it possible to determine simultaneously, from an approximation of the intensities of two-step cascades, parameters of nuclear level densities and partial widths with respect to the emission of nuclear-reaction products. The number of the phenomenological ideas used isminimized in themodel version considered in the present study. An analysis of new results confirms what was obtained earlier for the dependence of dynamics of the interaction of fermion and boson nuclear states on the nuclear shape. Frommore » the ratio of the level densities for excitations of the vibrational and quasiparticle types, it also follows that this interaction manifests itself in the region around the neutron binding energy and is probably different in nuclei that have different parities of nucleons.« less
Planck intermediate results. LII. Planet flux densities
NASA Astrophysics Data System (ADS)
Planck Collaboration; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carron, J.; Chiang, H. C.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Ducout, A.; Dupac, X.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Finelli, F.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hivon, E.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kim, J.; Kisner, T. S.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Lellouch, E.; Levrier, F.; Liguori, M.; Lilje, P. B.; Lindholm, V.; López-Caniego, M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Moreno, R.; Morgante, G.; Natoli, P.; Oxborrow, C. A.; Paoletti, D.; Partridge, B.; Patanchon, G.; Patrizii, L.; Perdereau, O.; Piacentini, F.; Plaszczynski, S.; Polenta, G.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Romelli, E.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirri, G.; Spencer, L. D.; Suur-Uski, A.-S.; Tauber, J. A.; Tavagnacco, D.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wehus, I. K.; Zacchei, A.
2017-11-01
Measurements of flux density are described for five planets, Mars, Jupiter, Saturn, Uranus, and Neptune, across the six Planck High Frequency Instrument frequency bands (100-857 GHz) and these are then compared with models and existing data. In our analysis, we have also included estimates of the brightness of Jupiter and Saturn at the three frequencies of the Planck Low Frequency Instrument (30, 44, and 70 GHz). The results provide constraints on the intrinsic brightness and the brightness time-variability of these planets. The majority of the planet flux density estimates are limited by systematic errors, but still yield better than 1% measurements in many cases. Applying data from Planck HFI, the Wilkinson Microwave Anisotropy Probe (WMAP), and the Atacama Cosmology Telescope (ACT) to a model that incorporates contributions from Saturn's rings to the planet's total flux density suggests a best fit value for the spectral index of Saturn's ring system of βring = 2.30 ± 0.03 over the 30-1000 GHz frequency range. Estimates of the polarization amplitude of the planets have also been made in the four bands that have polarization-sensitive detectors (100-353 GHz); this analysis provides a 95% confidence level upper limit on Mars's polarization of 1.8, 1.7, 1.2, and 1.7% at 100, 143, 217, and 353 GHz, respectively. The average ratio between the Planck-HFI measurements and the adopted model predictions for all five planets (excluding Jupiter observations for 353 GHz) is 1.004, 1.002, 1.021, and 1.033 for 100, 143, 217, and 353 GHz, respectively. Model predictions for planet thermodynamic temperatures are therefore consistent with the absolute calibration of Planck-HFI detectors at about the three-percent level. We compare our measurements with published results from recent cosmic microwave background experiments. In particular, we observe that the flux densities measured by Planck HFI and WMAP agree to within 2%. These results allow experiments operating in the mm-wavelength range to cross-calibrate against Planck and improve models of radiative transport used in planetary science.
NASA Astrophysics Data System (ADS)
Stone, J. R.; Danielewicz, P.; Iwata, Y.
2017-07-01
Background: The distribution of protons and neutrons in the matter created in heavy-ion collisions is one of the main points of interest for the collision physics, especially at supranormal densities. These distributions are the basis for predictions of the density dependence of the symmetry energy and the density range that can be achieved in a given colliding system. We report results of the first systematic simulation of proton and neutron density distributions in central heavy-ion collisions within the beam energy range of Ebeam≤800 MeV /nucl . The symmetric 40Ca+40Ca , 48Ca+48Ca , 100Sn+100Sn , and 120Sn+120Sn and asymmetric 40Ca+48Ca and 100Sn+120Sn systems were chosen for the simulations. Purpose: We simulate development of proton and neutron densities and asymmetries as a function of initial state, beam energy, and system size in the selected collisions in order to guide further experiments pursuing the density dependence of the symmetry energy. Methods: The Boltzmann-Uhlenbeck-Uehling (pBUU) transport model with four empirical models for the density dependence of the symmetry energy was employed. Results of simulations using pure Vlasov dynamics were added for completeness. In addition, the time-dependent Hartree-Fock (TDHF) model, with the SV-bas Skyrme interaction, was used to model the heavy-ion collisions at Ebeam≤40 MeV /nucl . Maximum proton and neutron densities ρpmax and ρnmax, reached in the course of a collision, were determined from the time evolution of ρp and ρn. Results: The highest total densities predicted at Ebeam=800 MeV /nucl . were of the order of ˜2.5 ρ0 (ρ0=0.16 fm-3 ) for both Sn and Ca systems. They were found to be only weakly dependent on the initial conditions, beam energy, system size, and a model of the symmetry energy. The proton-neutron asymmetry δ =(ρnmax-ρpmax) /(ρnmax+ρpmax) at maximum density does depend, though, on these parameters. The highest value of δ found in all systems and at all investigated beam energies was ˜0.17 . Conclusions: We find that the initial state, beam energy, system size, and a symmetry energy model affect very little the maximum proton and neutron densities, but have a subtle impact on the proton-neutron asymmetry. Most importantly, the variations in the proton-neutron asymmetry at maximum densities are related at most at 50% level to the details in the symmetry energy at supranormal density. The reminder is due to the details in the symmetry energy at subnormal densities and proton and neutron distributions in the initial state. This result brings to the forefront the need for a proper initialization of the nuclei in the simulation, but also brings up the question of microscopy, such as shell effects, that affect initial proton and neutron densities, but cannot be consistently incorporated into semiclassical transport models.
Density of American black bears in New Mexico
Gould, Matthew J.; Cain, James W.; Roemer, Gary W.; Gould, William R.; Liley, Stewart
2018-01-01
Considering advances in noninvasive genetic sampling and spatially explicit capture–recapture (SECR) models, the New Mexico Department of Game and Fish sought to update their density estimates for American black bear (Ursus americanus) populations in New Mexico, USA, to aide in setting sustainable harvest limits. We estimated black bear density in the Sangre de Cristo, Sandia, and Sacramento Mountains, New Mexico, 2012–2014. We collected hair samples from black bears using hair traps and bear rubs and used a sex marker and a suite of microsatellite loci to individually genotype hair samples. We then estimated density in a SECR framework using sex, elevation, land cover type, and time to model heterogeneity in detection probability and the spatial scale over which detection probability declines. We sampled the populations using 554 hair traps and 117 bear rubs and collected 4,083 hair samples. We identified 725 (367 male, 358 female) individuals. Our density estimates varied from 16.5 bears/100 km2 (95% CI = 11.6–23.5) in the southern Sacramento Mountains to 25.7 bears/100 km2 (95% CI = 13.2–50.1) in the Sandia Mountains. Overall, detection probability at the activity center (g0) was low across all study areas and ranged from 0.00001 to 0.02. The low values of g0 were primarily a result of half of all hair samples for which genotypes were attempted failing to produce a complete genotype. We speculate that the low success we had genotyping hair samples was due to exceedingly high levels of ultraviolet (UV) radiation that degraded the DNA in the hair. Despite sampling difficulties, we were able to produce density estimates with levels of precision comparable to those estimated for black bears elsewhere in the United States.
Magnus, Per; Bakke, Eirin; Hoff, Dominic A; Høiseth, Gudrun; Graff-Iversen, Sidsel; Knudsen, Gun Peggy; Myhre, Ronny; Normann, Per Trygve; Næss, Øyvind; Tambs, Kristian; Thelle, Dag S; Mørland, Jørg
2011-11-22
This study tested the hypothesis that moderate alcohol intake exerts its cardioprotective effect mainly through an increase in the serum level of high-density lipoprotein cholesterol. In the Cohort of Norway (CONOR) study, 149 729 adult participants, recruited from 1994 to 2003, were followed by linkage to the Cause of Death Registry until 2006. At recruitment, questionnaire data on alcohol intake were collected, and the concentration of high-density lipoprotein cholesterol in serum was measured. Using Cox regression, we found that the adjusted hazard ratio for men for dying from coronary heart disease was 0.52 (95% confidence interval, 0.39-0.69) when consuming alcohol more than once a week compared with never or rarely. The ratio changed only slightly, to 0.55 (0.41-0.73), after the regression model included the serum level of high-density cholesterol. For women, the corresponding hazard ratios were 0.62 (0.32-1.23) and 0.68 (0.34-1.34), respectively. Alcohol intake is related to a reduced risk of death from coronary heart disease in the follow-up of a large, population-based Norwegian cohort study with extensive control for confounding factors. Our findings suggest that the serum level of high-density cholesterol is not an important intermediate variable in the possible causal pathway between moderate alcohol intake and coronary heart disease.
Widmann, Gerlig; Al-Shawaf, Reema; Schullian, Peter; Al-Sadhan, Ra'ed; Hörmann, Romed; Al-Ekrish, Asma'a A
2017-05-01
Differences in noise and density values in MDCT images obtained using ultra-low doses with FBP, ASIR, and MBIR may possibly affect implant site density analysis. The aim of this study was to compare density and noise measurements recorded from dental implant sites using ultra-low doses combined with FBP, ASIR, and MBIR. Cadavers were scanned using a standard protocol and four low-dose protocols. Scans were reconstructed using FBP, ASIR-50, ASIR-100, and MBIR, and either a bone or standard reconstruction kernel. Density (mean Hounsfield units [HUs]) of alveolar bone and noise levels (mean standard deviation of HUs) was recorded from all datasets and measurements were compared by paired t tests and two-way ANOVA with repeated measures. Significant differences in density and noise were found between the reference dose/FBP protocol and almost all test combinations. Maximum mean differences in HU were 178.35 (bone kernel) and 273.74 (standard kernel), and in noise, were 243.73 (bone kernel) and 153.88 (standard kernel). Decreasing radiation dose increased density and noise regardless of reconstruction technique and kernel. The effect of reconstruction technique on density and noise depends on the reconstruction kernel used. • Ultra-low-dose MDCT protocols allowed more than 90 % reductions in dose. • Decreasing the dose generally increased density and noise. • Effect of IRT on density and noise varies with reconstruction kernel. • Accuracy of low-dose protocols for interpretation of bony anatomy not known. • Effect of low doses on accuracy of computer-aided design models unknown.
de Brito Fontana, Heiliane; Ruschel, Caroline; Dell'Antonio, Elisa; Haupenthal, Alessandro; Pereira, Gustavo Soares; Roesler, Helio
2018-04-01
The aim of this study was to analyze the effect of cadence, immersion level as well as body density on the vertical component (Fy max ) of ground reaction force (GRF) during stationary running (SR). In a controlled, laboratory study, thirty-two subjects ran at a wide range of cadences (85-210 steps/min) in water, immersed to the hip and to the chest, and on dry land. Fy max. was verified by a waterproof force measurement system and predicted based on a statistical model including cadence, immersion ratio and body density. The effect of cadence was shown to depend on the environment: while Fy max increases linearly with increasing cadence on land; in water, Fy max reaches a plateau at both hip and chest immersions. All factors analyzed, cadence, immersion level and body density affected Fy max significantly, with immersion (aquatic × land environment) showing the greatest effect. In water, different cadences may lead to bigger changes in Fy max than the changes obtained by moving subjects from hip to chest immersion. A regression model able to predict 69% of Fy max variability in water was proposed and validated. Cadence, Immersion and body density affect Fy max in a significant and non-independent way. Besides a model of potential use in the prescription of stationary running in water, our analysis provides insights into the different responses of GRF to changes in exercise parameters between land and aquatic environment. Copyright © 2018 Elsevier B.V. All rights reserved.
Kuzu, Guray; Keskin, Ozlem; Nussinov, Ruth; Gursoy, Attila
2016-10-01
The structures of protein assemblies are important for elucidating cellular processes at the molecular level. Three-dimensional electron microscopy (3DEM) is a powerful method to identify the structures of assemblies, especially those that are challenging to study by crystallography. Here, a new approach, PRISM-EM, is reported to computationally generate plausible structural models using a procedure that combines crystallographic structures and density maps obtained from 3DEM. The predictions are validated against seven available structurally different crystallographic complexes. The models display mean deviations in the backbone of <5 Å. PRISM-EM was further tested on different benchmark sets; the accuracy was evaluated with respect to the structure of the complex, and the correlation with EM density maps and interface predictions were evaluated and compared with those obtained using other methods. PRISM-EM was then used to predict the structure of the ternary complex of the HIV-1 envelope glycoprotein trimer, the ligand CD4 and the neutralizing protein m36.
Spectral decompositions of multiple time series: a Bayesian non-parametric approach.
Macaro, Christian; Prado, Raquel
2014-01-01
We consider spectral decompositions of multiple time series that arise in studies where the interest lies in assessing the influence of two or more factors. We write the spectral density of each time series as a sum of the spectral densities associated to the different levels of the factors. We then use Whittle's approximation to the likelihood function and follow a Bayesian non-parametric approach to obtain posterior inference on the spectral densities based on Bernstein-Dirichlet prior distributions. The prior is strategically important as it carries identifiability conditions for the models and allows us to quantify our degree of confidence in such conditions. A Markov chain Monte Carlo (MCMC) algorithm for posterior inference within this class of frequency-domain models is presented.We illustrate the approach by analyzing simulated and real data via spectral one-way and two-way models. In particular, we present an analysis of functional magnetic resonance imaging (fMRI) brain responses measured in individuals who participated in a designed experiment to study pain perception in humans.
Zhang, Yan-Hong; Zhang, Ying; Li, Jing; Tong, Wen-Xin; Xu, Feng-Qin
2017-05-01
To observe the effects of Xiongshao Capsule (, XSC) on anti-inflflammatory properties of high-density lipoprotein (HDL), myeloperoxidase (MPO) and paraoxonase 1 (PON1) in serum of atherosclerosis (AS) rabbit model and explore the anti-inflflammatory protective effects of XSC on HDL. Sixty rabbits were randomized into the control, the model, XSC low-, medium- and high-dose (Rhizoma Chuanxiong + Radix Paeoniae rubra: 0.6+0.3, 1.2+0.6, 2.4+1.2g·kg -1 ·day -1 , respectively), and simvastatin (1g·kg -1 ·day -1 ) groups. The model rabbits were fed with high-fat diet and drugs for 15 weeks. The blood and thoracic aortas samples were collected at the end of 15 weeks. The levels of serum MPO and PON1 as well as total cholesterol (TC) and free cholesterol (FC) in aorta wall cells were tested by enzyme linked immunosorbent assay. TC and FC in the model group were significantly higher than those in the control group (P<0.01). Compared with the model group, TC and FC in the XSC groups were signifificantly lower (P<0.05 or P<0.01), so was simvastatin group (P<0.01). There was no signifificant difference in PON1 level between groups (P>0.05), even between model and control groups (P>0.05). The serum MPO level in the model group was signifificantly higher than that in the control group (P<0.05), which was signifificantly lower in XSC groups as well as simvastatin group (P<0.05 or P<0.01), and no difference was found between XSC groups and simvastatin group (P>0.05). XSC can reduce the serum MPO level in AS rabbits to protect the anti-inflammatory function of HDL, maintaining the normal lipid transport function. TC and FC levels in aorta cells decline, and this process initiated by XSC plays an anti-AS role.
Fabian C.C. Uzoh; William W. Oliver
2008-01-01
A diameter increment model is developed and evaluated for individual trees of ponderosa pine throughout the species range in the United States using a multilevel linear mixed model. Stochastic variability is broken down among period, locale, plot, tree and within-tree components. Covariates acting at tree and stand level, as breast height diameter, density, site index...
NASA Astrophysics Data System (ADS)
Stigebrandt, Anders
1990-10-01
Baroclinic water exchange through a fjord mouth, driven by a slowly varying density field outside the mouth, is modelled by a simple quasi-steady frictionless model. It is assumed that a certain fraction of the horizontal pressure difference between the coastal water and the fjord is used to accelerate the fluid into the mouth. The continuous vertical density distribution in the fjord, which changes in response to the water exchange, is modelled using a time-dependent, one-dimensional advective-diffusive 'filling-box' type of model. The model has been tested against an almost one-year-long time series of salinity and temperature from the Ørsta fjord (horizontal surface area about 15km2) on the Norwegian west coast. It is found that for this particular fjord, the mean externally forced baroclinic water exchange is one order of magnitude greater than the mean water exchange driven by the estuarine circulation (600 and 60m3 s
1 respectively). Such a vigorous water exchange between a fjord and the external area implies that the time-averaged concentrations of many biological and chemical species above the sill level in the fjord are approximately equal to those in the coastal water outside the fjords.
Choi, Sunha; Kim, Giyeon
2016-01-01
Using the 2004–2007 Medical Expenditure Panel Survey data that are linked to county-level data from the Area Health Resources Files, this study examined whether the healthy immigrant effect applies to mental health of foreign-born older adults. Additionally, testing a protective ethnic density effect on older foreign-born individuals’ mental health, this study examined how the percentage of foreign-born population in the county affected the relationship between older adults’ immigration status (U.S.-nativity and length of residence in the U.S.) and their mental health status. The sample included 29,011 individuals (level-1) from 920 counties (level-2) across 50 states and D.C. Using the Mental Component Summary of the Short-Form 12, the Kessler Index (K-6), and the Patient Health Questionnaire (PHQ-2), U.S.-born individuals (n = 24,225), earlier immigrants (≥15 years in the U.S.; n = 3866), and recent immigrants (<15 years in the U.S.; n = 920) were compared. The results indicate that recent immigrants showed worse mental health on all three measures compared with U.S.-born individuals and on the K-6 and PHQ-2 compared with earlier immigrants. Higher county-level foreign-born densities were associated with worse mental health status of individuals. However, the significant interactions found in the full conditional multilevel models indicated that the high foreign-born density functioned as a risk factor for worse mental health only among recent immigrants but not among the U.S.-born. In conclusion, the results revealed the vulnerability of older recent immigrants, especially those living in the counties with high foreign-born densities. PMID:26910461
Choi, Sunha; Kim, Giyeon; Lee, Sungkyu
2016-12-01
Using the 2004-2007 Medical Expenditure Panel Survey data that are linked to county-level data from the Area Health Resources Files, this study examined whether the healthy immigrant effect applies to mental health of foreign-born older adults. Additionally, testing a protective ethnic density effect on older foreign-born individuals' mental health, this study examined how the percentage of foreign-born population in the county affected the relationship between older adults' immigration status (U.S.-nativity and length of residence in the U.S.) and their mental health status. The sample included 29,011 individuals (level-1) from 920 counties (level-2) across 50 states and D.C. Using the Mental Component Summary of the Short-Form 12, the Kessler Index (K-6), and the Patient Health Questionnaire (PHQ-2), U.S.-born individuals (n = 24,225), earlier immigrants (≥15 years in the U.S.; n = 3866), and recent immigrants (<15 years in the U.S.; n = 920) were compared. The results indicate that recent immigrants showed worse mental health on all three measures compared with U.S.-born individuals and on the K-6 and PHQ-2 compared with earlier immigrants. Higher county-level foreign-born densities were associated with worse mental health status of individuals. However, the significant interactions found in the full conditional multilevel models indicated that the high foreign-born density functioned as a risk factor for worse mental health only among recent immigrants but not among the U.S.-born. In conclusion, the results revealed the vulnerability of older recent immigrants, especially those living in the counties with high foreign-born densities.
The latitudinal gradient of the NO peak density
NASA Technical Reports Server (NTRS)
Fesen, C. G.; Rusch, D. W.; Gerard, J.-C.
1990-01-01
Results are presented from SME observations of the latitudinal gradients of peak NO densities at about 110-km altitude during the solstice and equinox periods from 1982 through 1985. It is shown that the response of the peak NO densities to the declining level of solar activity varies with latitude, with the polar regions exhibiting low sensitivity and the low-latitude regions responding strongly. The SME data also revealed marked asymmetries in the latitudinal structure of the two hemispheres for each season and considerable day-to-day variations in the NO densities. The solar cycle minimum data for June were simulated using a two-dimensional model; results of sensitivity studies performed with varied quenching rate and eddy diffusion coefficient are presented.
NASA Astrophysics Data System (ADS)
Lipfert, F. W.; Wyzga, R. E.; Baty, J. D.; Miller, J. P.
Vehicular traffic is an ubiquitous source of air pollution in developed nations, yet relatively few epidemiology studies have considered its long-term health effects. This paper uses an areal measure of traffic density as a surrogate index of exposure to vehicular traffic. We present associations between county-level traffic density (annual vehicle-km traveled km -2), ambient air quality, and mortality in a cohort of about 70,000 male US veterans (the Washington University-EPRI Veterans Cohort) who were enrolled in 1976 and followed through 2001. Traffic density is seen to be a significant and robust predictor of survival in this cohort, more so than ambient air quality, with the possible exception of ozone. Stronger effects of traffic density are seen in the counties that have ambient air quality monitoring data, which also tend to have higher levels of traffic density. These proportional-hazard modeling results indicate only modest changes in traffic-related mortality risks over time, from 1976-2001, despite the decline in regulated tailpipe emissions per vehicle since the mid-1970s. This suggests that other environmental effects may be involved, such as particles from brake, tire, and road wear, traffic noise, psychological stress, and spatial gradients in socioeconomic status.
Vonesh, James R; De la Cruz, Omar
2002-11-01
In the last decade there has been increasing evidence of amphibian declines from relatively pristine areas. Some declines are hypothesized to be the result of egg mortality caused by factors such as elevated solar UV-B irradiation, chemical pollutants, pathogenic fungi, and climate change. However, the population-level consequences of egg mortality have not been examined explicitly, and may be complicated by density dependence in intervening life-history stages. Here we develop a demographic model for two amphibians with contrasting life-history strategies, Bufo boreas and Ambystoma macrodactylum. We then use the complementary approaches of elasticity and limitation to examine the relationships among stage-specific survival rates, larval-stage density dependence and amphibian population dynamics. Elasticity analyses showed that for a range of density dependence scenarios both species were more sensitive to changes in post-embryonic survival parameters, particularly juvenile survival, than to egg survival, suggesting that mortality of later stages may play an important role in driving declines. Limitation analyses revealed that larval density dependence can dramatically alter the consequences of early mortality, reducing or even reversing the expected population-level effects of egg mortality. Thus, greater focus on later life stages and density dependence is called for to accurately assess how stressors are likely to affect amphibian populations of conservation concern.
Ultrasonic characterization of engineering performanace of oriented strandboard
NASA Astrophysics Data System (ADS)
Vun, Ronnie Yunheu
Direct-contact (DC) and non-contact (NC) ultrasonic transmission (UT) methods were developed to characterize the structural performance of oriented strandboard (OSB). The UT variable velocity was shown to be sensitive to the physical impediments caused by flake interfacial boundaries and embedded voids. Both attenuation and root mean square (RMS) voltage were good indicators of the "zero void" densification level for OSB, a point of the greatest transmissivity of the stress wave energy. For both DC and NC methods, the predicted densities of the model were validated for spatial distribution over each OSB type. Based on the control limits of +/-10% of the panel average density, density prediction improved with higher resin content (RC) and higher nominal density (ND) levels. From the out-of-limits plots, the predicted in-situ densities produced a reasonably spatial coherence to the measured values. All panels made with ND 0.60 g/cm3 or greater conformed well within the limits, with declining conformity towards lower RC panels. For each composite type made of different particle sizes, the equilibrium moisture content showed a decreasing trend toward smaller particle panels. The attenuation and RMS were good indicators for moisture change and densification level for each composite type. The velocity, sensitive to physical resistance of particle sizes, increased with increasing IB strength and sample density, manifesting the positive influence of layering, resin content, and the negative effect of bark as a constituent. The results of the creep rupture tests on commercial OSB using an acoustic emission (AE) technique indicated that the cumulative AE event count parameter was highly correlated with deflection parameter and appropriately represented the accumulation of incipient damage. Under high stress levels, specimens with high moisture content (MC) sustained the worse damages having the shortest creep rupture time followed by specimens with dynamically rising MC. Defects on the compression-side of the bending specimen were found critical to creep rupture than those on the tension-side. The in-plane fracture patterns tended to follow the defect trenches of low-density valleys, and worsened with greater variability of the horizontal density, indicating the need to measure and control the horizontal density variation within reasonable limits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rother, Gernot; Vlcek, Lukas; Gruszkiewicz, Miroslaw
2014-01-01
Adsorption of supercritical CO2 in nanoporous silica aerogel was investigated by a combination of experiments and molecular-level computer modeling. High-pressure gravimetric and vibrating tube densimetry techniques were used to measure the mean pore fluid density and excess sorption at 35 C and 50 C and pressures of 0-200 bar. Densification of the pore fluid was observed at bulk fluid densities below 0.7 g/cm3. Far above the bulk fluid density, near-zero sorption or weak depletion effects were measured, while broad excess sorption maxima form in the vicinity of the bulk critical density region. The CO2 sorption properties are very similar formore » two aerogels with different bulk densities of 0.1 g/cm3 and 0.2 g/cm3, respectively. The spatial distribution of the confined supercritical fluid was analyzed in terms of sorption- and bulk-phase densities by means of the Adsorbed Phase Model (APM), which used data from gravimetric sorption and small-angle neutron scattering experiments. To gain more detailed insight into supercritical fluid sorption, large-scale lattice gas GCMC simulations were utilized and tuned to resemble the experimental excess sorption data. The computed three-dimensional pore fluid density distributions show that the observed maximum of the excess sorption near the critical density originates from large density fluctuations pinned to the pore walls. At this maximum, the size of these fluctuations is comparable to the prevailing pore sizes.« less
Arnedo, Mireia; Taffé, Patrick; Sahli, Roland; Furrer, Hansjakob; Hirschel, Bernard; Elzi, Luigia; Weber, Rainer; Vernazza, Pietro; Bernasconi, Enos; Darioli, Roger; Bergmann, Sven; Beckmann, Jacques S; Telenti, Amalio; Tarr, Philip E
2007-09-01
HIV-1 infected individuals have an increased cardiovascular risk which is partially mediated by dyslipidemia. Single nucleotide polymorphisms in multiple genes involved in lipid transport and metabolism are presumed to modulate the risk of dyslipidemia in response to antiretroviral therapy. The contribution to dyslipidemia of 20 selected single nucleotide polymorphisms of 13 genes reported in the literature to be associated with plasma lipid levels (ABCA1, ADRB2, APOA5, APOC3, APOE, CETP, LIPC, LIPG, LPL, MDR1, MTP, SCARB1, and TNF) was assessed by longitudinally modeling more than 4400 plasma lipid determinations in 438 antiretroviral therapy-treated participants during a median period of 4.8 years. An exploratory genetic score was tested that takes into account the cumulative contribution of multiple gene variants to plasma lipids. Variants of ABCA1, APOA5, APOC3, APOE, and CETP contributed to plasma triglyceride levels, particularly in the setting of ritonavir-containing antiretroviral therapy. Variants of APOA5 and CETP contributed to high-density lipoprotein-cholesterol levels. Variants of CETP and LIPG contributed to non-high-density lipoprotein-cholesterol levels, a finding not reported previously. Sustained hypertriglyceridemia and low high-density lipoprotein-cholesterol during the study period was significantly associated with the genetic score. Single nucleotide polymorphisms of ABCA1, APOA5, APOC3, APOE, and CETP contribute to plasma triglyceride and high-density lipoprotein-cholesterol levels during antiretroviral therapy exposure. Genetic profiling may contribute to the identification of patients at risk for antiretroviral therapy-related dyslipidemia.
Parameterization of the Porous-Material Model for Sand with Different Levels of Water Saturation
2008-01-01
equation of state defines pressures dependence on mass density and internal-energy density (and in the case of anisotropic materials, on deviatoric ...strain). The strength and failure equations define the evolutions of the deviatoric stress in the elastic regime, elastic–plastic regime, and in the...via the so-called ‘‘pore pressure’’) [6]. Furthermore, the deformation of soil is controlled by the effective stress since the water and gas do not
Advanced space power PEM fuel cell systems
NASA Technical Reports Server (NTRS)
Vanderborgh, N. E.; Hedstrom, J.; Huff, J. R.
1989-01-01
A model showing mass and heat transfer in proton exchange membrane (PEM) single cells is presented. For space applications, stack operation requiring combined water and thermal management is needed. Advanced hardware designs able to combine these two techniques are available. Test results are shown for membrane materials which can operate with sufficiently fast diffusive water transport to sustain current densities of 300 ma per square centimeter. Higher power density levels are predicted to require active water removal.
Fuel treatment effects on modeled landscape level fire behavior in the northern Sierra Nevada
J.J. Moghaddas; B.M. Collins; K. Menning; E.E.Y. Moghaddas; S.L. Stephens
2010-01-01
Across the western United States, decades of fire exclusion combined with past management history have contributed to the current condition of extensive areas of high-density, shade-tolerant coniferous stands that are increasingly prone to high-severity fires. Here, we report the modeled effects of constructed defensible fuel profile zones and group selection...
On the design of paleoenvironmental data networks for estimating large-scale patterns of climate
NASA Astrophysics Data System (ADS)
Kutzbach, J. E.; Guetter, P. J.
1980-09-01
Guidelines are determined for the spatial density and location of climatic variables (temperature and precipitation) that are appropriate for estimating the continental- to hemispheric-scale pattern of atmospheric circulation (sea-level pressure). Because instrumental records of temperature and precipitation simulate the climatic information that is contained in certain paleoenvironmental records (tree-ring, pollen, and written-documentary records, for example), these guidelines provide useful sampling strategies for reconstructing the pattern of atmospheric circulation from paleoenvironmental records. The statistical analysis uses a multiple linear regression model. The sampling strategies consist of changes in site density (from 0.5 to 2.5 sites per million square kilometers) and site location (from western North American sites only to sites in Japan, North America, and western Europe) of the climatic data. The results showed that the accuracy of specification of the pattern of sea-level pressure: (1) is improved if sites with climatic records are spread as uniformly as possible over the area of interest; (2) increases with increasing site density-at least up to the maximum site density used in this study; (3) is improved if sites cover an area that extends considerably beyond the limits of the area of interest. The accuracy of specification was lower for independent data than for the data that were used to develop the regression model; some skill was found for almost all sampling strategies.
Detectability of landscape effects on recolonization increases with regional population density
Liman, Anna-Sara; Dalin, Peter; Björkman, Christer
2015-01-01
Variation in population size over time can influence our ability to identify landscape-moderated differences in community assembly. To date, however, most studies at the landscape scale only cover snapshots in time, thereby overlooking the temporal dynamics of populations and communities. In this paper, we present data that illustrate how temporal variation in population density at a regional scale can influence landscape-moderated variation in recolonization and population buildup in disturbed habitat patches. Four common insect species, two omnivores and two herbivores, were monitored over 8 years in 10 willow short-rotation coppice bio-energy stands with a four-year disturbance regime (coppice cycle). The population densities in these regularly disturbed stands were compared to densities in 17 undisturbed natural Salix cinerea (grey willow) stands in the same region. A time series approach was used, utilizing the natural variation between years to statistically model recolonization as a function of landscape composition under two different levels of regional density. Landscape composition, i.e. relative amount of forest vs. open agricultural habitats, largely determined the density of re-colonizing populations following willow coppicing in three of the four species. However, the impact of landscape composition was not detectable in years with low regional density. Our results illustrate that landscape-moderated recolonization can change over time and that considering the temporal dynamics of populations may be crucial when designing and evaluating studies at landscape level. PMID:26257881
Detectability of landscape effects on recolonization increases with regional population density.
Liman, Anna-Sara; Dalin, Peter; Björkman, Christer
2015-07-01
Variation in population size over time can influence our ability to identify landscape-moderated differences in community assembly. To date, however, most studies at the landscape scale only cover snapshots in time, thereby overlooking the temporal dynamics of populations and communities. In this paper, we present data that illustrate how temporal variation in population density at a regional scale can influence landscape-moderated variation in recolonization and population buildup in disturbed habitat patches. Four common insect species, two omnivores and two herbivores, were monitored over 8 years in 10 willow short-rotation coppice bio-energy stands with a four-year disturbance regime (coppice cycle). The population densities in these regularly disturbed stands were compared to densities in 17 undisturbed natural Salix cinerea (grey willow) stands in the same region. A time series approach was used, utilizing the natural variation between years to statistically model recolonization as a function of landscape composition under two different levels of regional density. Landscape composition, i.e. relative amount of forest vs. open agricultural habitats, largely determined the density of re-colonizing populations following willow coppicing in three of the four species. However, the impact of landscape composition was not detectable in years with low regional density. Our results illustrate that landscape-moderated recolonization can change over time and that considering the temporal dynamics of populations may be crucial when designing and evaluating studies at landscape level.
Ultraviolet luminosity density of the universe during the epoch of reionization.
Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph
2015-09-08
The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be log ρ(UV) = 27.4(+0.2)(-1.2) ergs(-1) Hz(-1) Mpc(-3) (1σ). This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys.
Electric emissions from electrical appliances.
Leitgeb, N; Cech, R; Schröttner, J
2008-01-01
Electric emissions from electric appliances are frequently considered negligible, and standards consider electric appliances to comply without testing. By investigating 122 household devices of 63 different categories, it could be shown that emitted electric field levels do not justify general disregard. Electric reference values can be exceeded up to 11-fold. By numerical dosimetry with homogeneous human models, induced intracorporal electric current densities were determined and factors calculated to elevate reference levels to accounting for reduced induction efficiency of inhomogeneous fields. These factors were found not high enough to allow generally concluding on compliance with basic restrictions without testing. Electric appliances usually simultaneously emit both electric and magnetic fields exposing almost the same body region. Since the sum of induced current densities is limited, one field component reduces the available margin for the other. Therefore, superposition of electric current densities induced by either field would merit consideration.
NASA Astrophysics Data System (ADS)
Huang, Wei; Tan, Rongqing; Li, Zhiyong; Han, Gaoce; Li, Hui
2017-03-01
A theoretical model based on common pump structure is proposed to analyze the output characteristics of a diode-pumped alkali vapor laser (DPAL) and XPAL (exciplex-pumped alkali laser). Cs-DPAL and Cs-Ar XPAL systems are used as examples. The model predicts that an optical-to-optical efficiency approaching 80% can be achieved for continuous-wave four- and five-level XPAL systems with broadband pumping, which is several times the pumped linewidth for DPAL. Operation parameters including pumped intensity, temperature, cell's length, mixed gas concentration, pumped linewidth, and output coupler are analyzed for DPAL and XPAL systems based on the kinetic model. In addition, the predictions of selection principal of temperature and cell's length are also presented. The concept of the equivalent "alkali areal density" is proposed. The result shows that the output characteristics with the same alkali areal density but different temperatures turn out to be equal for either the DPAL or the XPAL system. It is the areal density that reflects the potential of DPAL or XPAL systems directly. A more detailed analysis of similar influences of cavity parameters with the same areal density is also presented.
Cooperation in the dark: signalling and collective action in quorum-sensing bacteria.
Brown, S P; Johnstone, R A
2001-05-07
The study of quorum-sensing bacteria has revealed a widespread mechanism of coordinating bacterial gene expression with cell density. By monitoring a constitutively produced signal molecule, individual bacteria can limit their expression of group-beneficial phenotypes to cell densities that guarantee an effective group outcome. In this paper, we attempt to move away from a commonly expressed view that these impressive feats of coordination are examples of multicellularity in prokaryotic populations. Here, we look more closely at the individual conflict underlying this cooperation, illustrating that, even under significant levels of genetic conflict, signalling and resultant cooperative behaviour can stably exist. A predictive two-trait model of signal strength and of the extent of cooperation is developed as a function of relatedness (reflecting multiplicity of infection) and basic population demographic parameters. The model predicts that the strength of quorum signalling will increase as conflict (multiplicity of infecting strains) increases, as individuals attempt to coax more cooperative contributions from their competitors, leading to a devaluation of the signal as an indicator of density. Conversely, as genetic conflict increases, the model predicts that the threshold density for cooperation will increase and the subsequent strength of group cooperation will be depressed.
Mangen, M-J J; Nielen, M; Burrell, A M
2002-12-18
We examined the importance of pig-population density in the area of an outbreak of classical swine fever (CSF) for the spread of the infection and the choice of control measures. A spatial, stochastic, dynamic epidemiological simulation model linked to a sector-level market-and-trade model for The Netherlands were used. Outbreaks in sparsely and densely populated areas were compared under four different control strategies and with two alternative trade assumptions. The obligatory control strategy required by current EU legislation was predicted to be enough to eradicate an epidemic starting in an area with sparse pig population. By contrast, additional control measures would be necessary if the outbreak began in an area with high pig density. The economic consequences of using preventive slaughter rather than emergency vaccination as an additional control measure depended strongly on the reactions of trading partners. Reducing the number of animal movements significantly reduced the size and length of epidemics in areas with high pig density. The phenomenon of carrier piglets was included in the model with realistic probabilities of infection by this route, but it made a negligible contribution to the spread of the infection.
Paul, Keryn I; Roxburgh, Stephen H; Chave, Jerome; England, Jacqueline R; Zerihun, Ayalsew; Specht, Alison; Lewis, Tom; Bennett, Lauren T; Baker, Thomas G; Adams, Mark A; Huxtable, Dan; Montagu, Kelvin D; Falster, Daniel S; Feller, Mike; Sochacki, Stan; Ritson, Peter; Bastin, Gary; Bartle, John; Wildy, Dan; Hobbs, Trevor; Larmour, John; Waterworth, Rob; Stewart, Hugh T L; Jonson, Justin; Forrester, David I; Applegate, Grahame; Mendham, Daniel; Bradford, Matt; O'Grady, Anthony; Green, Daryl; Sudmeyer, Rob; Rance, Stan J; Turner, John; Barton, Craig; Wenk, Elizabeth H; Grove, Tim; Attiwill, Peter M; Pinkard, Elizabeth; Butler, Don; Brooksbank, Kim; Spencer, Beren; Snowdon, Peter; O'Brien, Nick; Battaglia, Michael; Cameron, David M; Hamilton, Steve; McAuthur, Geoff; Sinclair, Jenny
2016-06-01
Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were <1% if generalized models were used in place of species-specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species-specific models is only warranted when gains in accuracy of stand-based predictions are relatively high (e.g. high-value monocultures). © 2015 John Wiley & Sons Ltd.
Plasma simulations that meet the challenges of HST & JWST Active Nuclei & Starburst observations
NASA Astrophysics Data System (ADS)
Ferland, Gary
2017-08-01
Recent HST AGN monitoring programs, such as the STORM Campaign, have resulted in the definitive set of emission-line-continuum lag measurements. The goals are to measure the structure of the inner regions of an AGN, understand the physics driving the variability, and use this to place black hole mass determinations on an even firmer footing. Photoionization models make it possible to convert these observations into physical parameters such as cloud density or location. Here I propose to improve the treatment of emission from species like C IV, C III], Mg II, or Fe II in the spectral / plasma simulation code Cloudy. Like all plasma codes, Cloudy uses a modified two-level approximation to solve for the ionization of many-electron ions. I have participated in meetings on modeling Tokamak plasmas, which share many of the properties of the BLR of AGN and have the advantage of being a controlled laboratory environment. These discussions have led to the development of tests to show the density range over which the two-level approximation is valid. It fails at the densities where the strong UV lines form. I will use the atomic data available within the fusion modeling community, along with the methods they have developed, to improve Cloudy models so that they can better inform us of the message in the UV spectrum. The improvements will be part of future releases of Cloudy, which is openly available and updated on a regular basis.
Extending density functional embedding theory for covalently bonded systems.
Yu, Kuang; Carter, Emily A
2017-12-19
Quantum embedding theory aims to provide an efficient solution to obtain accurate electronic energies for systems too large for full-scale, high-level quantum calculations. It adopts a hierarchical approach that divides the total system into a small embedded region and a larger environment, using different levels of theory to describe each part. Previously, we developed a density-based quantum embedding theory called density functional embedding theory (DFET), which achieved considerable success in metals and semiconductors. In this work, we extend DFET into a density-matrix-based nonlocal form, enabling DFET to study the stronger quantum couplings between covalently bonded subsystems. We name this theory density-matrix functional embedding theory (DMFET), and we demonstrate its performance in several test examples that resemble various real applications in both chemistry and biochemistry. DMFET gives excellent results in all cases tested thus far, including predicting isomerization energies, proton transfer energies, and highest occupied molecular orbital-lowest unoccupied molecular orbital gaps for local chromophores. Here, we show that DMFET systematically improves the quality of the results compared with the widely used state-of-the-art methods, such as the simple capped cluster model or the widely used ONIOM method.
Modeling molecular hydrogen emission in M dwarf exoplanetary systems
NASA Astrophysics Data System (ADS)
Evonosky, William; France, Kevin; Kruczek, Nick E.; Youngblood, Allison; Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanet host Stars (MUSCLES)
2017-01-01
Exoplanets orbiting low-mass stars are prime candidates for atmospheric characterization due to their astronomical abundance and short orbital periods. These planets orbit stars that are often more active than main sequence solar-type stars. They are exposed to differing levels of ultraviolet radiation which can cause traditional “biosignature” gases to be generated abiotically, potentially causing false-positive identifications of life. We modeled the recently discovered molecular hydrogen emission in the ultraviolet spectra (1350 - 1650 Å) as arising from the stellar surface, excited by radiation generated in the upper chromosphere. The model was compared with observed hydrogen emission from the “Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanet host Stars” (MUSCLES) survey by conducting a grid search and implementing a chi-squared minimization routine. We considered only progressions from the [1, 4] and [1, 7] first excited electronic levels. Our modeling procedure varied the atomic hydrogen column density (in the chromosphere) as well as the photospheric molecular hydrogen column density and temperature. The model required as an input a reconstructed intrinsic Lyman α profile which served as the pumping radiation for the molecular hydrogen. We found that an atomic hydrogen column density of log10N(H I) = 14.13 ± 0.16 cm-2 represents a breaking point above which there is not enough Lyman α flux available to excite a significant molecular hydrogen population into the [1, 7] state. We also present H2 temperatures which may suggest that star spots on low mass stars persist longer, and encompass more area than star spots on solar-type stars.
Modeling Molecular Hydrogen Emission in M-Dwarf Exoplanetary Systems
NASA Astrophysics Data System (ADS)
Evonosky, W. R.; France, K.; Kruczek, N.; Youngblood, A.
2016-12-01
Exoplanets orbiting low-mass stars are prime candidates for atmospheric characterization due to their astronomical abundance and short orbital periods. These planets orbit stars that are often more active than main sequence solar-type stars. They are exposed to differing levels of ultraviolet radiation which can cause traditional "biosignature" gases to be generated abiotically, potentially causing false-positive identifications of life. We modeled the recently discovered molecular hydrogen emission in the ultraviolet spectra (1350 - 1650 Å) as arising from the stellar surface, excited by radiation generated in the upper chromosphere. The model was compared with observed hydrogen emission from the "Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanet host Stars" (MUSCLES) survey by conducting a grid search and implementing a chi-squared minimization routine. We considered only progressions from the [1, 4] and [1, 7] first excited electronic levels. Our modeling procedure varied the atomic hydrogen column density (in the chromosphere) as well as the photospheric molecular hydrogen column density and temperature. The model required as an input a reconstructed intrinsic Lyman α profile which served as the pumping radiation for the molecular hydrogen. We found that an atomic hydrogen column density of log10N(H I) = 14.13 ± 0.16 cm-2 represents a breaking point above which there is not enough Lyman α flux available to excite a significant molecular hydrogen population into the [1, 7] state. We also present H2 temperatures which may suggest that star spots on low mass stars persist longer, and encompass more area than star spots on solar-type stars.
Fluorescent H2 Emission Lines from the Reflection Nebula NGC 7023 Observed with IGRINS
NASA Astrophysics Data System (ADS)
Le, Huynh Anh N.; Pak, Soojong; Kaplan, Kyle; Mace, Gregory; Lee, Sungho; Pavel, Michael; Jeong, Ueejeong; Oh, Heeyoung; Lee, Hye-In; Chun, Moo-Young; Yuk, In-Soo; Pyo, Tae-Soo; Hwang, Narae; Kim, Kang-Min; Park, Chan; Sok Oh, Jae; Yu, Young Sam; Park, Byeong-Gon; Minh, Young Chol; Jaffe, Daniel T.
2017-05-01
We have analyzed the temperature, velocity, and density of H2 gas in NGC 7023 with a high-resolution near-infrared spectrum of the northwestern filament of the reflection nebula. By observing NGC 7023 in the H and K bands at R ≃ 45,000 with the Immersion GRating INfrared Spectrograph, we detected 68 H2 emission lines within the 1″ × 15″ slit. The diagnostic ratio of 2-1 S(1)/1-0 S(1) is 0.41-0.56. In addition, the estimated ortho-to-para ratio (OPR) is 1.63-1.82, indicating that the H2 emission transitions in the observed region arise mostly from gas excited by UV fluorescence. Gradients in the temperature, velocity, and OPR within the observed area imply motion of the photodissociation region (PDR) relative to the molecular cloud. In addition, we derive the column density of H2 from the observed emission lines and compare these results with PDR models in the literature covering a range of densities and incident UV field intensities. The notable difference between PDR model predictions and the observed data, in high rotational J levels of ν = 1, is that the predicted formation temperature for newly formed H2 should be lower than that of the model predictions. To investigate the density distribution, we combine pixels in 1″ × 1″ areas and derive the density distribution at the 0.002 pc scale. The derived gradient of density suggests that NGC 7023 has a clumpy structure, including a high clump density of ˜105 cm-3 with a size smaller than ˜5 × 10-3 pc embedded in lower-density regions of 103-104 cm-3.
Uplifting the Stable Crust of the Colorado Plateau through Crustal Hydration and Warming
NASA Astrophysics Data System (ADS)
Porter, R. C.; Holt, W. E.
2016-12-01
The Colorado Plateau (CP) is a high ( 2 km above sea level), low-relief, orogenic plateau located within the interior of the southwestern United States that presents several outstanding geologic questions, most notably about the timing and mechanism(s) for uplift. The CP was located below sea level during the Cretaceous and was uplifted to its modern elevation with little crustal shortening, making the cause of uplift enigmatic. Numerous mechanisms have been hypothesized to explain the uplift of this stable block and include delamination, mantle heating/phase changes, mantle convection, volatile addition, and various combinations of these. In order to better understand the crustal contribution to uplift, we utilize data from the EarthScope Transportable Array network to image the CP lithosphere and inform thermodynamic models of CP lower crustal composition. Rayleigh wave phase velocities calculated using ambient noise tomography and surface wave gradiometry were inverted for shear velocity resulting in a high-resolution velocity model of the CP crust and upper mantle. In order to provide greater context to these results, the thermodynamic modeling code Perple_X was utilized to forward model crustal densities, seismic velocities, and water content based on psuedosections calculated using published major element chemistry. Our seismic and modeling results show that uplift of the plateau is partially driven by hydration and extension of the lower crust, both of which reduce its density. Hydration of the CP crust likely occurred due to dewatering of the Farallon slab during flat-slab subduction and reduced lower crustal density by 70 kg/m3. Warming and extension further reduced the lower crustal density by 90 kg/m3 at the CP margins. Though these processes played a role in the uplift of the CP, additional mechanisms, likely due to mantle processes, are required to fully explain its high elevation. Additionally, hydration and subsequent dehydration may play an important role in the recent encroachment of deformation and volcanism into the interior of the CP.
Gaillard, F O; Boudin, C; Chau, N P; Robert, V; Pichon, G
2003-11-01
Previous experimental gametocyte infections of Anopheles arabiensis on 3 volunteers naturally infected with Plasmodium falciparum were conducted in Senegal. They showed that gametocyte counts in the mosquitoes are, like macroparasite intakes, heterogeneous (overdispersed). They followed a negative binomial distribution, the overdispersion coefficient seeming constant (k = 3.1). To try to explain this heterogeneity, we used an individual-based model (IBM), simulating the behaviour of gametocytes in the human blood circulation and their ingestion by mosquitoes. The hypothesis was that there exists a clustering of the gametocytes in the capillaries. From a series of simulations, in the case of clustering the following results were obtained: (i) the distribution of the gametocytes ingested by the mosquitoes followed a negative binomial, (ii) the k coefficient significantly increased with the density of circulating gametocytes. To validate this model result, 2 more experiments were conducted in Cameroon. Pooled experiments showed a distinct density dependency of the k-values. The simulation results and the experimental results were thus in agreement and suggested that an aggregation process at the microscopic level might produce the density-dependent overdispersion at the macroscopic level. Simulations also suggested that the clustering of gametocytes might facilitate fertilization of gametes.
Investigation of Parametric Influence on the Properties of Al6061-SiCp Composite
NASA Astrophysics Data System (ADS)
Adebisi, A. A.; Maleque, M. A.; Bello, K. A.
2017-03-01
The influence of process parameter in stir casting play a major role on the development of aluminium reinforced silicon carbide particle (Al-SiCp) composite. This study aims to investigate the influence of process parameters on wear and density properties of Al-SiCp composite using stir casting technique. Experimental data are generated based on a four-factors-five-level central composite design of response surface methodology. Analysis of variance is utilized to confirm the adequacy and validity of developed models considering the significant model terms. Optimization of the process parameters adequately predicts the Al-SiCp composite properties with stirring speed as the most influencing factor. The aim of optimization process is to minimize wear and maximum density. The multiple objective optimization (MOO) achieved an optimal value of 14 wt% reinforcement fraction (RF), 460 rpm stirring speed (SS), 820 °C processing temperature (PTemp) and 150 secs processing time (PT). Considering the optimum parametric combination, wear mass loss achieved a minimum of 1 x 10-3 g and maximum density value of 2.780g/mm3 with a confidence and desirability level of 95.5%.
Sassani, Farrokh
2014-01-01
The simulation results for electromagnetic energy harvesters (EMEHs) under broad band stationary Gaussian random excitations indicate the importance of both a high transformation factor and a high mechanical quality factor to achieve favourable mean power, mean square load voltage, and output spectral density. The optimum load is different for random vibrations and for sinusoidal vibration. Reducing the total damping ratio under band-limited random excitation yields a higher mean square load voltage. Reduced bandwidth resulting from decreased mechanical damping can be compensated by increasing the electrical damping (transformation factor) leading to a higher mean square load voltage and power. Nonlinear EMEHs with a Duffing spring and with linear plus cubic damping are modeled using the method of statistical linearization. These nonlinear EMEHs exhibit approximately linear behaviour under low levels of broadband stationary Gaussian random vibration; however, at higher levels of such excitation the central (resonant) frequency of the spectral density of the output voltage shifts due to the increased nonlinear stiffness and the bandwidth broadens slightly. Nonlinear EMEHs exhibit lower maximum output voltage and central frequency of the spectral density with nonlinear damping compared to linear damping. Stronger nonlinear damping yields broader bandwidths at stable resonant frequency. PMID:24605063
Axonal loss in the multiple sclerosis spinal cord revisited.
Petrova, Natalia; Carassiti, Daniele; Altmann, Daniel R; Baker, David; Schmierer, Klaus
2018-05-01
Preventing chronic disease deterioration is an unmet need in people with multiple sclerosis, where axonal loss is considered a key substrate of disability. Clinically, chronic multiple sclerosis often presents as progressive myelopathy. Spinal cord cross-sectional area (CSA) assessed using MRI predicts increasing disability and has, by inference, been proposed as an indirect index of axonal degeneration. However, the association between CSA and axonal loss, and their correlation with demyelination, have never been systematically investigated using human post mortem tissue. We extensively sampled spinal cords of seven women and six men with multiple sclerosis (mean disease duration= 29 years) and five healthy controls to quantify axonal density and its association with demyelination and CSA. 396 tissue blocks were embedded in paraffin and immuno-stained for myelin basic protein and phosphorylated neurofilaments. Measurements included total CSA, areas of (i) lateral cortico-spinal tracts, (ii) gray matter, (iii) white matter, (iv) demyelination, and the number of axons within the lateral cortico-spinal tracts. Linear mixed models were used to analyze relationships. In multiple sclerosis CSA reduction at cervical, thoracic and lumbar levels ranged between 19 and 24% with white (19-24%) and gray (17-21%) matter atrophy contributing equally across levels. Axonal density in multiple sclerosis was lower by 57-62% across all levels and affected all fibers regardless of diameter. Demyelination affected 24-48% of the gray matter, most extensively at the thoracic level, and 11-13% of the white matter, with no significant differences across levels. Disease duration was associated with reduced axonal density, however not with any area index. Significant association was detected between focal demyelination and decreased axonal density. In conclusion, over nearly 30 years multiple sclerosis reduces axonal density by 60% throughout the spinal cord. Spinal cord cross sectional area, reduced by about 20%, appears to be a poor predictor of axonal density. © 2017 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.
Kheirbek, Iyad; Johnson, Sarah; Ross, Zev; Pezeshki, Grant; Ito, Kazuhiko; Eisl, Holger; Matte, Thomas
2012-07-31
Hazardous air pollutant exposures are common in urban areas contributing to increased risk of cancer and other adverse health outcomes. While recent analyses indicate that New York City residents experience significantly higher cancer risks attributable to hazardous air pollutant exposures than the United States as a whole, limited data exist to assess intra-urban variability in air toxics exposures. To assess intra-urban spatial variability in exposures to common hazardous air pollutants, street-level air sampling for volatile organic compounds and aldehydes was conducted at 70 sites throughout New York City during the spring of 2011. Land-use regression models were developed using a subset of 59 sites and validated against the remaining 11 sites to describe the relationship between concentrations of benzene, total BTEX (benzene, toluene, ethylbenzene, xylenes) and formaldehyde to indicators of local sources, adjusting for temporal variation. Total BTEX levels exhibited the most spatial variability, followed by benzene and formaldehyde (coefficient of variation of temporally adjusted measurements of 0.57, 0.35, 0.22, respectively). Total roadway length within 100 m, traffic signal density within 400 m of monitoring sites, and an indicator of temporal variation explained 65% of the total variability in benzene while 70% of the total variability in BTEX was accounted for by traffic signal density within 450 m, density of permitted solvent-use industries within 500 m, and an indicator of temporal variation. Measures of temporal variation, traffic signal density within 400 m, road length within 100 m, and interior building area within 100 m (indicator of heating fuel combustion) predicted 83% of the total variability of formaldehyde. The models built with the modeling subset were found to predict concentrations well, predicting 62% to 68% of monitored values at validation sites. Traffic and point source emissions cause substantial variation in street-level exposures to common toxic volatile organic compounds in New York City. Land-use regression models were successfully developed for benzene, formaldehyde, and total BTEX using spatial indicators of on-road vehicle emissions and emissions from stationary sources. These estimates will improve the understanding of health effects of individual pollutants in complex urban pollutant mixtures and inform local air quality improvement efforts that reduce disparities in exposure.
A longitudinal analysis of alcohol outlet density and assault.
Livingston, Michael
2008-06-01
The majority of studies that have examined the local-level relationship between alcohol outlet density and violence have utilized cross-sectional data. These studies have consistently demonstrated that there is a spatial link between outlets and violence, but because of their design they have not been able to determine whether changes in outlet density result in changes in rates of violence. The few studies that have examined this question over time have found that the violence rates are related to changes in outlet density. This study provides further evidence of this link and examines the characteristics of regions in which changes in outlet density are most strongly associated with changes in violence rates. The study examined 9 years of data measuring alcohol outlet density (using liquor licensing records) and alcohol-related violence (using police recorded night-time assaults) from 186 postcodes in the metropolitan area of Melbourne, Australia. The relationships between 3 types of alcohol outlet density and alcohol-related violence were assessed using fixed-effects models. The postcodes were then grouped into 5 clusters based on their socio-demographic profile and separate fixed-effects models were fitted to assess whether the relationships between outlets and violence differed based on the type of region being examined. The initial models found overall positive relationships between all 3 types of alcohol outlets and violence. When separate models were developed for postcode clusters, they demonstrated that the link between outlet density and violence was significant in all neighborhood types, but the specific relationships varied substantially. Changes in the number of alcohol outlets in a community are linked to changes in the amount of violence the community experiences. This relationship varies across the clusters of suburbs examined, with packaged liquor outlets consistently associated with violence in suburban areas and general (hotel) and on-premise (nightclubs, restaurants, and bars) licenses associated with violence in inner-city and inner-suburban areas.
Economies of density for on-site waste water treatment.
Eggimann, Sven; Truffer, Bernhard; Maurer, Max
2016-09-15
Decentralised wastewater treatment is increasingly gaining interest as a means of responding to sustainability challenges. Cost comparisons are a crucial element of any sustainability assessment. While the cost characteristics of centralised waste water management systems (WMS) have been studied extensively, the economics of decentralised WMS are less understood. A key motivation for studying the costs of decentralised WMS is to compare the cost of centralised and decentralised WMS in order to decide on cost-efficient sanitation solutions. This paper outlines a model designed to assess those costs which depend on the spatial density of decentralised wastewater treatment plants in a region. Density-related costs are mostly linked to operation and maintenance activities which depend on transportation, like sludge removal or the visits of professionals to the plants for control, servicing or repairs. We first specify a modelled cost-density relationship for a region in a geometric two-dimensional space by means of heuristic routing algorithms that consider time and load-capacity restrictions. The generic model is then applied to a Swiss case study for which we specify a broad range of modelling parameters. As a result, we identify a 'hockey-stick'-shaped cost curve that is characterised by strong cost reductions at high density values which level out at around 1 to 1.5 plants per km(2). Variations in the cost curves are mostly due to differences in management approaches (scheduled or unscheduled emptying). In addition to the well-known diseconomies of scale in the case of centralised sanitation, we find a similar generic cost behaviour for decentralised sanitation due to economies of density. Low densities in sparsely populated regions thus result in higher costs for both centralised and decentralised system. Policy implications are that efforts to introduce decentralised options in a region should consider the low-density/high-cost problem when comparing centralised and decentralised options. Copyright © 2016 Elsevier Ltd. All rights reserved.
Improved understanding of the recombination rate at inverted p+ silicon surfaces
NASA Astrophysics Data System (ADS)
To, Alexander; Ma, Fajun; Hoex, Bram
2017-08-01
The effect of positive fixed charge on the recombination rate at SiN x -passivated p+ surfaces is studied in this work. It is shown that a high positive fixed charge on a low defect density, passivated doped surface can result in a near injection level independent lifetime in a certain injection level range. This behaviour is modelled with advanced computer simulations using Sentaurus TCAD, which replicates the measurements conditions during a photoconductance based effective minority carrier lifetime measurement. The resulting simulations show that the shape of the injection level dependent lifetime is a result of the surface recombination rate, which is non-linear due to the surfaces moving into inversion with increasing injection level. As a result, the surface recombination rate switches from being limited by electrons to holes. Equations describing the surface saturation current density, J 0s, during this regime are also derived in this work.
Watari, Yuya; Nishijima, Shota; Fukasawa, Marina; Yamada, Fumio; Abe, Shintaro; Miyashita, Tadashi
2013-11-01
For maintaining social and financial support for eradication programs of invasive species, quantitative assessment of recovery of native species or ecosystems is important because it provides a measurable parameter of success. However, setting a concrete goal for recovery is often difficult owing to lack of information prior to the introduction of invaders. Here, we present a novel approach to evaluate the achievement level of invasive predator management based on the carrying capacity of endangered species estimated using long-term monitoring data. In Amami-Oshima Island, Japan, where the eradication project of introduced small Indian mongoose is ongoing since 2000, we surveyed the population densities of four endangered species threatened by the mongoose (Amami rabbit, the Otton frog, Amami tip-nosed frog, and Amami Ishikawa's frog) at four time points ranging from 2003 to 2011. We estimated the carrying capacities of these species using the logistic growth model combined with the effects of mongoose predation and environmental heterogeneity. All species showed clear tendencies toward increasing their density in line with decreased mongoose density, and they exhibited density-dependent population growth. The estimated carrying capacities of three endangered species had small confidence intervals enough to measure recovery levels by the mongoose management. The population density of each endangered species has recovered to the level of the carrying capacity at about 20-40% of all sites, whereas no individuals were observed at more than 25% of all sites. We propose that the present approach involving appropriate monitoring data of native organism populations will be widely applicable to various eradication projects and provide unambiguous goals for management of invasive species.
Hussain, Saddam; Khaliq, Abdul; Matloob, Amar; Fahad, Shah; Tanveer, Asif
2015-01-01
Little seed canary grass (LCG) is a pernicious weed of wheat crop causing enormous yield losses. Information on the interference and economic threshold (ET) level of LCG is of prime significance to rationalize the use of herbicide for its effective management in wheat fields. The present study was conducted to quantify interference and ET density of LCG in mid-sown (20 November) and late-sown (10 December) wheat. Experiment was triplicated in randomized split-plot design with sowing dates as the main plots and LCG densities (10, 20, 30, and 40 plants m(-2)) as the subplots. Plots with two natural infestations of weeds including and excluding LCG were maintained for comparing its interference in pure stands with designated densities. A season-long weed-free treatment was also run. Results indicated that composite stand of weeds, including LCG, and density of 40 LCG plants m(-2) were more competitive with wheat, especially when crop was sown late in season. Maximum weed dry biomass was attained by composite stand of weeds including LCG followed by 40 LCG plants m(-2) under both sowing dates. Significant variations in wheat growth and yield were observed under the influence of different LCG densities as well as sowing dates. Presence of 40 LCG plants m(-2) reduced wheat yield by 28 and 34% in mid- and late-sown wheat crop, respectively. These losses were much greater than those for infestation of all weeds, excluding LCG. Linear regression model was effective in simulating wheat yield losses over a wide range of LCG densities, and the regression equations showed good fit to observed data. The ET levels of LCG were 6-7 and 2.2-3.3 plants m(-2) in mid- and late-sown wheat crop, respectively. Herbicide should be applied in cases when LCG density exceeds these levels under respective sowing dates.
Yield modeling of acoustic charge transport transversal filters
NASA Technical Reports Server (NTRS)
Kenney, J. S.; May, G. S.; Hunt, W. D.
1995-01-01
This paper presents a yield model for acoustic charge transport transversal filters. This model differs from previous IC yield models in that it does not assume that individual failures of the nondestructive sensing taps necessarily cause a device failure. A redundancy in the number of taps included in the design is explained. Poisson statistics are used to describe the tap failures, weighted over a uniform defect density distribution. A representative design example is presented. The minimum number of taps needed to realize the filter is calculated, and tap weights for various numbers of redundant taps are calculated. The critical area for device failure is calculated for each level of redundancy. Yield is predicted for a range of defect densities and redundancies. To verify the model, a Monte Carlo simulation is performed on an equivalent circuit model of the device. The results of the yield model are then compared to the Monte Carlo simulation. Better than 95% agreement was obtained for the Poisson model with redundant taps ranging from 30% to 150% over the minimum.
Inverse problems and computational cell metabolic models: a statistical approach
NASA Astrophysics Data System (ADS)
Calvetti, D.; Somersalo, E.
2008-07-01
In this article, we give an overview of the Bayesian modelling of metabolic systems at the cellular and subcellular level. The models are based on detailed description of key biochemical reactions occurring in tissue, which may in turn be compartmentalized into cytosol and mitochondria, and of transports between the compartments. The classical deterministic approach which models metabolic systems as dynamical systems with Michaelis-Menten kinetics, is replaced by a stochastic extension where the model parameters are interpreted as random variables with an appropriate probability density. The inverse problem of cell metabolism in this setting consists of estimating the density of the model parameters. After discussing some possible approaches to solving the problem, we address the issue of how to assess the reliability of the predictions of a stochastic model by proposing an output analysis in terms of model uncertainties. Visualization modalities for organizing the large amount of information provided by the Bayesian dynamic sensitivity analysis are also illustrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Rekha R.; Mondy, Lisa Ann; Noble, David R.
We are studying PMDI polyurethane with a fast catalyst, such that filling and polymerization occur simultaneously. The foam is over-packed to tw ice or more of its free rise density to reach the density of interest. Our approach is to co mbine model development closely with experiments to discover new physics, to parameterize models and to validate the models once they have been developed. The model must be able to repres ent the expansion, filling, curing, and final foam properties. PMDI is chemically blown foam, wh ere carbon dioxide is pr oduced via the reaction of water and isocyanate. Themore » isocyanate also re acts with polyol in a competing reaction, which produces the polymer. A new kinetic model is developed and implemented, which follows a simplified mathematical formalism that decouple s these two reactions. The model predicts the polymerization reaction via condensation chemis try, where vitrification and glass transition temperature evolution must be included to correctly predict this quantity. The foam gas generation kinetics are determined by tracking the molar concentration of both water and carbon dioxide. Understanding the therma l history and loads on the foam due to exothermicity and oven heating is very important to the results, since the kinetics and ma terial properties are all very sensitive to temperature. The conservation eq uations, including the e quations of motion, an energy balance, and thr ee rate equations are solved via a stabilized finite element method. We assume generalized-Newtonian rheology that is dependent on the cure, gas fraction, and temperature. The conservation equations are comb ined with a level set method to determine the location of the free surface over time. Results from the model are compared to experimental flow visualization data and post-te st CT data for the density. Seve ral geometries are investigated including a mock encapsulation part, two configur ations of a mock stru ctural part, and a bar geometry to specifically test the density model. We have found that the model predicts both average density and filling profiles well. However, it under predicts density gradients, especially in the gravity direction. Thoughts on m odel improvements are also discussed.« less
Treno, Andrew J; Ponicki, William R; Stockwell, Tim; Macdonald, Scott; Gruenewald, Paul J; Zhao, Jinhui; Martin, Gina; Greer, Alissa
2013-05-01
Alcohol beverage prices or taxes have been shown to be related to alcohol sales and use and related problems. What is not clear are the mechanisms underlying these relationships. This study examines the relationship between alcohol outlet density under conditions of the partial privatization of off-premise consumption in British Columbia (BC) occurring over the past decade. Two hypotheses are tested. First, reflecting basic supply-demand principles, greater geographic densities of alcohol outlets will be directly related to reductions in beverage prices in response to greater competition. Second, reflecting the effects of niche marketing and resulting market stratification, increased densities of private liquor stores will be especially related to reductions in beverage prices within this outlet category. Data were collected from: (i) a survey of BC private store prices and practices, (ii) alcohol outlet location information, and (iii) data on demographic characteristics. Multilevel models examine the relationships between prices at individual private liquor stores and the densities of government liquor stores, private liquor stores, bars, and restaurants, controlling for background demographics and geographic unit level effects. Spatial dependencies were also examined. Increased densities of private liquor stores were associated with lower mean prices of beer and all alcohol aggregated across brands at the store level. There appeared to be no outlet level effect on discounting patterns, however, with the mean price differences apparently reflecting differences in the quality of brands carried rather than unequal prices for any given brand. Increased densities of private off-sale alcohol outlets appear to result in lower prices charged at said establishments independently of other types of alcohol outlets suggesting that they represent an emerging marketing niche in the context of off-sale outlet privatization. Copyright © 2012 by the Research Society on Alcoholism.
Vape Shop Density and Socio-Demographic Disparities: A US Census Tract Analysis.
Dai, Hongying; Hao, Jianqiang; Catley, Delwyn
2017-11-01
Vape shops are an emerging business specializing in the sales and promotion of e-cigarette, e-juice, and other vaping products. This study sought to evaluate the associations between vape shop density and socio-demographic characteristics at the US census tract level. Vape shop data (n = 9943) were collected from three online directories: Yelp.com, Yellowpages.com, and Guidetovaping.com. Addresses of vape shops were geocoded and the density per 10 000 people was estimated at each US census tract. Zero inflated negative binomial regression model was performed to examine the socio-demographic factors associated with vape shop density. Overall, there was a higher vape shop density in urban versus nonurban census tracts. In urban areas, higher vape shop density was associated with larger proportions of Hispanics and Asians, adults aged 18-44 years old and higher poverty, while the decrease in vape shop density was associated with larger proportions of population under 18 years old, higher education, larger household size, and a higher percentage of owner occupied housing units. In nonurban areas, higher vape shop density was associated larger proportions of African Americans and Hispanics, smaller household size and a lower percentage of owner occupied housing units. At the national level, there are inequalities of vape shop density by some socio-demographic characteristics and heterogeneity between urban and nonurban areas. Vape shops are more likely to be concentrated in areas where people with a higher risk for vaping and smoking reside. Our findings could inform initiatives aimed at a stronger licensing requirement for vape shops and federal and state-level regulations of this industry to prevent vape shop from targeting minority and other socially disadvantaged groups. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Das-Munshi, Jayati; Becares, Laia; Dewey, Michael E; Stansfeld, Stephen A; Prince, Martin J
2010-10-21
To determine if living in areas where higher proportions of people of the same ethnicity reside is protective for common mental disorders, and associated with a reduced exposure to discrimination and improved social support. Finally, to determine if any protective ethnic density effects are mediated by reduced exposure to racism and improved social support. Multi-level logistic regression analysis of national survey data, with area-level, own-group ethnic density modelled as the main exposure. Participants and setting 4281 participants of Irish, black Caribbean, Indian, Pakistani, Bangladeshi, and white British ethnicity, aged 16-74 years, randomly sampled from 892 "middle layer super output areas" in England. Common mental disorders (assessed via structured interviews); discrimination (assessed via structured questionnaire); and social support and social networks (assessed via structured questionnaire). Although the most ethnically dense areas were also the poorest, for each 10 percentage point increase in own-group ethnic density, there was evidence of a decreased risk of common mental disorders, for the full ethnic minority sample (odds ratio 0.94 (95% confidence interval 0.89 to 0.99); P=0.02, trend), for the Irish group (odds ratio 0.21 (0.06 to 0.74); P=0.01, trend), and for the Bangladeshi group (odds ratio 0.75 (0.62 to 0.91); P=0.005, trend), after adjusting for a priori confounders. For some groups, living in areas of higher own-group density was associated with a reduction in the reporting of discrimination and with improved social support and improved social networks. However, none of these factors mediated ethnic density effects. A protective effect of living in areas of higher own-group ethnic density was present for common mental disorders for some minority groups. People living in areas of higher own-group density may report improved social support and less discrimination, but these associations did not fully account for density effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athay, R.G.; House, L.L.
Comparisons of intensities of Mg I and O I emission lines in the flash- spectrum of the low chromosphere reveal evidence of marked departures from a Boltzmann distribution of populations of energy levels. These departures are in the same sense as those found earlier for He I, viz., an overpopulation of the levels connected to the ground state through optically forbidden transitions relative to the levels with permitted transitions. A search for a similar effect in the populations of the excited singlets and triplets of Ca I did not indicate a significant departure from a Boltzmann distribution for the levelsmore » studied. Evidence is found that the ratio Ca I/Ca II is much greater than would be expected in thermodynnmic equilibrium. For Mg I, the optical thickness of the chromosphere in the triplet lines is obtained directly from the observed intensity of the forbidden ibtercombination line lambda 4571 (3/sup 3/P-3/sup 1/ S). Computed populations of energy levels for a model Mg I atom under a range of temperature and density show agreement with observational data for choices of chromospheric temperatures and densities consistent with a model departing from spherical symmetry. (auth)« less
NASA Technical Reports Server (NTRS)
Coles, W. A.; Harmon, J. K.; Lazarus, A. J.; Sullivan, J. D.
1978-01-01
Solar wind velocities measured by earth-orbiting spacecraft are compared with velocities determined from interplanetary scintillation (IPS) observations for 1973, a period when high-velocity streams were prevalent. The spacecraft and IPS velocities agree well in the mean and are highly correlated. No simple model for the distribution of enhanced turbulence within streams is sufficient to explain the velocity comparison results for the entire year. Although a simple proportionality between density fluctuation level and bulk density is consistent with IPS velocities for some periods, some streams appear to have enhanced turbulence in the high-velocity region, where the density is low.
NASA Astrophysics Data System (ADS)
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-03-01
We calculate the frequency-dependent equilibrium noise of a mesoscopic capacitor in time-dependent density functional theory (TDDFT). The capacitor is modeled as a single-level quantum dot with on-site Coulomb interaction and tunnel coupling to a nearby reservoir. The noise spectra are derived from linear-response conductances via the fluctuation-dissipation theorem. Thereby, we analyze the performance of a recently derived exchange-correlation potential with time-nonlocal density dependence in the finite-frequency linear-response regime. We compare our TDDFT noise spectra with real-time perturbation theory and find excellent agreement for noise frequencies below the reservoir temperature.
Photoionization Modeling and the K Lines of Iron
NASA Technical Reports Server (NTRS)
Kallman, T. R.; Palmeri, P.; Bautista, M. A.; Mendoza, C.; Krolik, J. H.
2004-01-01
We calculate the efficiency of iron K line emission and iron K absorption in photoionized models using a new set of atomic data. These data are more comprehensive than those previously applied to the modeling of iron K lines from photoionized gases, and allow us to systematically examine the behavior of the properties of line emission and absorption as a function of the ionization parameter, density and column density of model constant density clouds. We show that, for example, the net fluorescence yield for the highly charged ions is sensitive to the level population distribution produced by photoionization, and these yields are generally smaller than those predicted assuming the population is according to statistical weight. We demonstrate that the effects of the many strongly damped resonances below the K ionization thresholds conspire to smear the edge, thereby potentially affecting the astrophysical interpretation of absorption features in the 7-9 keV energy band. We show that the centroid of the ensemble of K(alpha) lines, the K(beta) energy, and the ratio of the K(alpha(sub 1)) to K(alpha(sub 2)) components are all diagnostics of the ionization parameter of our model slabs.
The evolution of a Müllerian mimic in a spatially distributed community.
Joron, Mathieu; Iwasa, Yoh
2005-11-07
Strong positive density-dependence should lead to a loss of diversity, but warning-colour and Müllerian mimicry systems show extraordinary levels of diversity. Here, we propose an analytical model to explore the dynamics of two forms of a Müllerian mimic in a heterogeneous environment with two alternative model species. Two connected populations of a dimorphic, chemically defended mimic are allowed to evolve and disperse. The proportions of the respective model species vary spatially. We use a nonlinear approximation of Müller's number-dependent equations to model a situation where the mortality for either form of the mimic decreases hyberbolically when its local density increases. A first non-spatial analysis confirms that the positive density-dependence makes coexistence of mimetic forms unstable in a single isolated patch, but shows that mimicry of the rarer model can be stable once established. The two-patch analysis shows that when models have different abundance in different places, local mimetic diversity in the mimic is maintained only if spatial heterogeneity is strong, or, more interestingly, if the mimic is not too strongly distasteful. Therefore, mildly toxic species can become polymorphic in a wider range of ecological settings. Spatial dynamics thus reveal a region of Müllerian polymorphism separating classical Batesian polymorphism and Müllerian monomorphism along the mimic's palatability spectrum. Such polymorphism-palatability relationship in a spatial environment provides a parsimonious hypothesis accounting for the observed Müllerian polymorphism that does not require quasi-Batesian dynamics. While the stability of coexistence depends on all factors, only the migration rate and strength of selection appear to affect the level of diversity at the polymorphic equilibrium. Local adaptation is predicted in most polymorphic cases. These results are in very good accordance with recent empirical findings on the polymorphic butterflies Heliconius numata and H. cydno.
Interfacial welding of dynamic covalent network polymers
NASA Astrophysics Data System (ADS)
Yu, Kai; Shi, Qian; Li, Hao; Jabour, John; Yang, Hua; Dunn, Martin L.; Wang, Tiejun; Qi, H. Jerry
2016-09-01
Dynamic covalent network (or covalent adaptable network) polymers can rearrange their macromolecular chain network by bond exchange reactions (BERs) where an active unit replaces a unit in an existing bond to form a new bond. Such macromolecular events, when they occur in large amounts, can attribute to unusual properties that are not seen in conventional covalent network polymers, such as shape reforming and surface welding; the latter further enables the important attributes of material malleability and powder-based reprocessing. In this paper, a multiscale modeling framework is developed to study the surface welding of thermally induced dynamic covalent network polymers. At the macromolecular network level, a lattice model is developed to describe the chain density evolution across the interface and its connection to bulk stress relaxation due to BERs. The chain density evolution rule is then fed into a continuum level interfacial model that takes into account surface roughness and applied pressure to predict the effective elastic modulus and interfacial fracture energy of welded polymers. The model yields particularly accessible results where the moduli and interfacial strength of the welded samples as a function of temperature and pressure can be predicted with four parameters, three of which can be measured directly. The model identifies the dependency of surface welding efficiency on the applied thermal and mechanical fields: the pressure will affect the real contact area under the consideration of surface roughness of dynamic covalent network polymers; the chain density increment on the real contact area of interface is only dependent on the welding time and temperature. The modeling approach shows good agreement with experiments and can be extended to other types of dynamic covalent network polymers using different stimuli for BERs, such as light and moisture etc.
Evaluating mallard adaptive management models with time series
Conn, P.B.; Kendall, W.L.
2004-01-01
Wildlife practitioners concerned with midcontinent mallard (Anas platyrhynchos) management in the United States have instituted a system of adaptive harvest management (AHM) as an objective format for setting harvest regulations. Under the AHM paradigm, predictions from a set of models that reflect key uncertainties about processes underlying population dynamics are used in coordination with optimization software to determine an optimal set of harvest decisions. Managers use comparisons of the predictive abilities of these models to gauge the relative truth of different hypotheses about density-dependent recruitment and survival, with better-predicting models giving more weight to the determination of harvest regulations. We tested the effectiveness of this strategy by examining convergence rates of 'predictor' models when the true model for population dynamics was known a priori. We generated time series for cases when the a priori model was 1 of the predictor models as well as for several cases when the a priori model was not in the model set. We further examined the addition of different levels of uncertainty into the variance structure of predictor models, reflecting different levels of confidence about estimated parameters. We showed that in certain situations, the model-selection process favors a predictor model that incorporates the hypotheses of additive harvest mortality and weakly density-dependent recruitment, even when the model is not used to generate data. Higher levels of predictor model variance led to decreased rates of convergence to the model that generated the data, but model weight trajectories were in general more stable. We suggest that predictive models should incorporate all sources of uncertainty about estimated parameters, that the variance structure should be similar for all predictor models, and that models with different functional forms for population dynamics should be considered for inclusion in predictor model! sets. All of these suggestions should help lower the probability of erroneous learning in mallard ABM and adaptive management in general.
Ecological Modeling of Aedes aegypti (L.) Pupal Production in Rural Kamphaeng Phet, Thailand
Aldstadt, Jared; Koenraadt, Constantianus J. M.; Fansiri, Thanyalak; Kijchalao, Udom; Richardson, Jason; Jones, James W.; Scott, Thomas W.
2011-01-01
Background Aedes aegypti (L.) is the primary vector of dengue, the most important arboviral infection globally. Until an effective vaccine is licensed and rigorously administered, Ae. aegypti control remains the principal tool in preventing and curtailing dengue transmission. Accurate predictions of vector populations are required to assess control methods and develop effective population reduction strategies. Ae. aegypti develops primarily in artificial water holding containers. Release recapture studies indicate that most adult Ae. aegypti do not disperse over long distances. We expect, therefore, that containers in an area of high development site density are more likely to be oviposition sites and to be more frequently used as oviposition sites than containers that are relatively isolated from other development sites. After accounting for individual container characteristics, containers more frequently used as oviposition sites are likely to produce adult mosquitoes consistently and at a higher rate. To this point, most studies of Ae. aegypti populations ignore the spatial density of larval development sites. Methodology Pupal surveys were carried out from 2004 to 2007 in rural Kamphaeng Phet, Thailand. In total, 84,840 samples of water holding containers were used to estimate model parameters. Regression modeling was used to assess the effect of larval development site density, access to piped water, and seasonal variation on container productivity. A varying-coefficients model was employed to account for the large differences in productivity between container types. A two-part modeling structure, called a hurdle model, accounts for the large number of zeroes and overdispersion present in pupal population counts. Findings The number of suitable larval development sites and their density in the environment were the primary determinants of the distribution and abundance of Ae. aegypti pupae. The productivity of most container types increased significantly as habitat density increased. An ecological approach, accounting for development site density, is appropriate for predicting Ae. aegypti population levels and developing efficient vector control programs. PMID:21267055
Vega-Garzon, Lina Patricia; Gomez-Miranda, Ingry Natalia; Peñuela, Gustavo A
2018-05-01
Response Surface Methodology was used for optimizing operating variables for a multi-frequency ultrasound reactor using BP-3 as a model compound. The response variable was the Triclosan degradation percent after 10 sonication min. Frequency at levels from 574, 856 and 1134 kHz were used. Power density, pulse time (PT), silent time (ST) and PT/ST ratio effects were also analyzed. 2 2 and 2 3 experimental designs were used for screening purposes and a central composite design was used for optimization. An optimum value of 79.2% was obtained for a frequency of 574 kHz, a power density of 200 W/L, and a PT/ST ratio of 10. Significant variables were frequency and power level, the first having an optimum value after which degradation decreases while power density level had a strong positive effect on the whole operational range. PT, ST, and PT/ST ratio were not significant variables although it was shown that pulsed mode ultrasound has better degradation rates than continuous mode ultrasound; the effect less significant at higher power levels. Copyright © 2017. Published by Elsevier B.V.
Plausible carrier transport model in organic-inorganic hybrid perovskite resistive memory devices
NASA Astrophysics Data System (ADS)
Park, Nayoung; Kwon, Yongwoo; Choi, Jaeho; Jang, Ho Won; Cha, Pil-Ryung
2018-04-01
We demonstrate thermally assisted hopping (TAH) as an appropriate carrier transport model for CH3NH3PbI3 resistive memories. Organic semiconductors, including organic-inorganic hybrid perovskites, have been previously speculated to follow the space-charge-limited conduction (SCLC) model. However, the SCLC model cannot reproduce the temperature dependence of experimental current-voltage curves. Instead, the TAH model with temperature-dependent trap densities and a constant trap level are demonstrated to well reproduce the experimental results.
Experimental level densities of atomic nuclei
Guttormsen, M.; Aiche, M.; Bello Garrote, F. L.; ...
2015-12-23
It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. Furthermore, trom the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least upmore » to the neutron threshold.« less
Measurement of Initial Conditions at Nozzle Exit of High Speed Jets
NASA Technical Reports Server (NTRS)
Panda, J.; Zaman, K. B. M. Q.; Seasholtz, R. G.
2004-01-01
The time averaged and unsteady density fields close to the nozzle exit (0.1 less than or = x/D less than or = 2, x: downstream distance, D: jet diameter) of unheated free jets at Mach numbers of 0.95, 1.4, and 1.8 were measured using a molecular Rayleigh scattering based technique. The initial thickness of shear layer and its linear growth rate were determined from time-averaged density survey and a modeling process, which utilized the Crocco-Busemann equation to relate density profiles to velocity profiles. The model also corrected for the smearing effect caused by a relatively long probe length in the measured density data. The calculated shear layer thickness was further verified from a limited hot-wire measurement. Density fluctuations spectra, measured using a two-Photomultiplier-tube technique, were used to determine evolution of turbulent fluctuations in various Strouhal frequency bands. For this purpose spectra were obtained from a large number of points inside the flow; and at every axial station spectral data from all radial positions were integrated. The radially-integrated fluctuation data show an exponential growth with downstream distance and an eventual saturation in all Strouhal frequency bands. The initial level of density fluctuations was calculated by extrapolation to nozzle exit.
Ramesh, Tharmalingam; Kalle, Riddhika; Rosenlund, Havard; Downs, Colleen T
2017-03-01
Identifying the primary causes affecting population densities and distribution of flagship species are necessary in developing sustainable management strategies for large carnivore conservation. We modeled drivers of spatial density of the common leopard ( Panthera pardus ) using a spatially explicit capture-recapture-Bayesian approach to understand their population dynamics in the Maputaland Conservation Unit, South Africa. We camera-trapped leopards in four protected areas (PAs) of varying sizes and disturbance levels covering 198 camera stations. Ours is the first study to explore the effects of poaching level, abundance of prey species (small, medium, and large), competitors (lion Panthera leo and spotted hyenas Crocuta crocuta ), and habitat on the spatial distribution of common leopard density. Twenty-six male and 41 female leopards were individually identified and estimated leopard density ranged from 1.6 ± 0.62/100 km 2 (smallest PA-Ndumo) to 8.4 ± 1.03/100 km 2 (largest PA-western shores). Although dry forest thickets and plantation habitats largely represented the western shores, the plantation areas had extremely low leopard density compared to native forest. We found that leopard density increased in areas when low poaching levels/no poaching was recorded in dry forest thickets and with high abundance of medium-sized prey, but decreased with increasing abundance of lion. Because local leopard populations are vulnerable to extinction, particularly in smaller PAs, the long-term sustainability of leopard populations depend on developing appropriate management strategies that consider a combination of multiple factors to maintain their optimal habitats.
Fingolimod modulates multiple neuroinflammatory markers in a mouse model of Alzheimer’s disease
Aytan, Nurgul; Choi, Ji-Kyung; Carreras, Isabel; Brinkmann, Volker; Kowall, Neil W.; Jenkins, Bruce G.; Dedeoglu, Alpaslan
2016-01-01
Sphingosine 1-phosphate (SP1) receptors may be attractive targets for modulation of inflammatory processes in neurodegenerative diseases. Recently fingolimod, a functional S1P1 receptor antagonist, was introduced for treatment of multiple sclerosis. We postulated that anti-inflammatory mechanisms of fingolimod might also be protective in Alzheimer’s disease (AD). Therefore, we treated a mouse model of AD, the 5xFAD model, with two doses of fingolimod (1 and 5 mg/kg/day) and measured the response of numerous markers of Aβ pathology as well as inflammatory markers and neurochemistry using biochemical, immunohistochemistry and high resolution magic angle spinning magnetic resonance spectroscopy (MRS). In mice at 3 months of age, we found that fingolimod decreased plaque density as well as soluble plus insoluble Aβ measured by ELISA. Fingolimod also decreased GFAP staining and the number of activated microglia. Taurine has been demonstrated to play a role as an endogenous anti-inflammatory molecule. Taurine levels, measured using MRS, showed a very strong inverse correlation with GFAP levels and ELISA measurements of Aβ, but not with plaque density or activated microglia levels. MRS also showed an effect of fingolimod on glutamate levels. Fingolimod at 1 mg/kg/day provided better neuroprotection than 5 mg/kg/day. Together, these data suggest a potential therapeutic role for fingolimod in AD. PMID:27117087
Fingolimod modulates multiple neuroinflammatory markers in a mouse model of Alzheimer's disease.
Aytan, Nurgul; Choi, Ji-Kyung; Carreras, Isabel; Brinkmann, Volker; Kowall, Neil W; Jenkins, Bruce G; Dedeoglu, Alpaslan
2016-04-27
Sphingosine 1-phosphate (SP1) receptors may be attractive targets for modulation of inflammatory processes in neurodegenerative diseases. Recently fingolimod, a functional S1P1 receptor antagonist, was introduced for treatment of multiple sclerosis. We postulated that anti-inflammatory mechanisms of fingolimod might also be protective in Alzheimer's disease (AD). Therefore, we treated a mouse model of AD, the 5xFAD model, with two doses of fingolimod (1 and 5 mg/kg/day) and measured the response of numerous markers of Aβ pathology as well as inflammatory markers and neurochemistry using biochemical, immunohistochemistry and high resolution magic angle spinning magnetic resonance spectroscopy (MRS). In mice at 3 months of age, we found that fingolimod decreased plaque density as well as soluble plus insoluble Aβ measured by ELISA. Fingolimod also decreased GFAP staining and the number of activated microglia. Taurine has been demonstrated to play a role as an endogenous anti-inflammatory molecule. Taurine levels, measured using MRS, showed a very strong inverse correlation with GFAP levels and ELISA measurements of Aβ, but not with plaque density or activated microglia levels. MRS also showed an effect of fingolimod on glutamate levels. Fingolimod at 1 mg/kg/day provided better neuroprotection than 5 mg/kg/day. Together, these data suggest a potential therapeutic role for fingolimod in AD.
The Effects of Sand Sediment Volume Heterogeneities on Sound Propagation and Scattering
2012-09-30
modulus of a poroelastic medium,” J. Acoust . Soc. Am. 127, 3372–3384 (2010). 3. K. L. Williams, “An effective density fluid model for acoustic ...previously developed at APL- UW for the study of high-frequency acoustics . These models include perturbation models applied to scattering from the...scattering levels that may mask target detection. RELATED PROJECTS 1. “ Acoustic Color of mines and mine-like objects: Finite Element modeling (FEM
French, Benjamin; Weibe, Douglas; Camenga, Deepa R.; Yun, Katherine
2015-01-01
Objective We examined whether or not high maternal smoking rates at the neighborhood level increase the likelihood of individual smoking by Latina women in the three months prior to and during pregnancy, independent of other individual and neighborhood factors. Methods This study was observational in nature, using linked vital statistics records for 24,443 Latina women in Pennsylvania (2009–2010) and U.S. Census data for 2,398 census tracts. We used multilevel logistic regression models to determine the individual odds of self-reported maternal smoking given different census tract-level rates of maternal smoking in the previous three years (2006–2008), adjusting for maternal and census-tract characteristics, including ethnic density, population density, and poverty. Results Higher levels of maternal smoking at the census-tract level were associated with increased individual odds of smoking among Latina mothers. In the fully adjusted model, a 10% increase in the neighborhood smoking rate was associated with a 1.28 (95% confidence interval 1.22, 1.34) increase in the individual odds of smoking. Conclusion Latina women living in census tracts where more women have smoked during or immediately prior to pregnancy are themselves at higher risk of smoking during this period. PMID:26556939
Trinh, Thang; Eriksson, Mikael; Darabi, Hatef; Bonn, Stephanie E; Brand, Judith S; Cuzick, Jack; Czene, Kamila; Sjölander, Arvid; Bälter, Katarina; Hall, Per
2015-04-02
High physical activity has been shown to decrease the risk of breast cancer, potentially by a mechanism that also reduces mammographic density. We tested the hypothesis that the risk of developing breast cancer in the next 10 years according to the Tyrer-Cuzick prediction model influences the association between physical activity and mammographic density. We conducted a population-based cross-sectional study of 38,913 Swedish women aged 40-74 years. Physical activity was assessed using the validated web-questionnaire Active-Q and mammographic density was measured by the fully automated volumetric Volpara method. The 10-year risk of breast cancer was estimated using the Tyrer-Cuzick (TC) prediction model. Linear regression analyses were performed to assess the association between physical activity and volumetric mammographic density and the potential interaction with the TC breast cancer risk. Overall, high physical activity was associated with lower absolute dense volume. As compared to women with the lowest total activity level (<40 metabolic equivalent hours [MET-h] per day), women with the highest total activity level (≥50 MET-h/day) had an estimated 3.4 cm(3) (95% confidence interval, 2.3-4.7) lower absolute dense volume. The inverse association was seen for any type of physical activity among women with <3.0% TC 10-year risk, but only for total and vigorous activities among women with 3.0-4.9% TC risk, and only for vigorous activity among women with ≥5.0% TC risk. The association between total activity and absolute dense volume was modified by the TC breast cancer risk (P interaction = 0.05). As anticipated, high physical activity was also associated with lower non-dense volume. No consistent association was found between physical activity and percent dense volume. Our results suggest that physical activity may decrease breast cancer risk through reducing mammographic density, and that the physical activity needed to reduce mammographic density may depend on background risk of breast cancer.
Levrero-Florencio, Francesc; Pankaj, Pankaj
2018-01-01
Realistic macro-level finite element simulations of the mechanical behavior of trabecular bone, a cellular anisotropic material, require a suitable constitutive model; a model that incorporates the mechanical response of bone for complex loading scenarios and includes post-elastic phenomena, such as plasticity (permanent deformations) and damage (permanent stiffness reduction), which bone is likely to experience. Some such models have been developed by conducting homogenization-based multiscale finite element simulations on bone micro-structure. While homogenization has been fairly successful in the elastic regime and, to some extent, in modeling the macroscopic plastic response, it has remained a challenge with respect to modeling damage. This study uses a homogenization scheme to upscale the damage behavior from the tissue level (microscale) to the organ level (macroscale) and assesses the suitability of different damage constitutive laws. Ten cubic specimens were each subjected to 21 strain-controlled load cases for a small range of macroscopic post-elastic strains. Isotropic and anisotropic criteria were considered, density and fabric relationships were used in the formulation of the damage law, and a combined isotropic/anisotropic law with tension/compression asymmetry was formulated, based on the homogenized results, as a possible alternative to the currently used single scalar damage criterion. This computational study enhances the current knowledge on the macroscopic damage behavior of trabecular bone. By developing relationships of damage progression with bone's micro-architectural indices (density and fabric) the study also provides an aid for the creation of more precise macroscale continuum models, which are likely to improve clinical predictions.
Mao, Zhun; Saint-André, Laurent; Bourrier, Franck; Stokes, Alexia; Cordonnier, Thomas
2015-01-01
Background and Aims In mountain ecosystems, predicting root density in three dimensions (3-D) is highly challenging due to the spatial heterogeneity of forest communities. This study presents a simple and semi-mechanistic model, named ChaMRoots, that predicts root interception density (RID, number of roots m–2). ChaMRoots hypothesizes that RID at a given point is affected by the presence of roots from surrounding trees forming a polygon shape. Methods The model comprises three sub-models for predicting: (1) the spatial heterogeneity – RID of the finest roots in the top soil layer as a function of tree basal area at breast height, and the distance between the tree and a given point; (2) the diameter spectrum – the distribution of RID as a function of root diameter up to 50 mm thick; and (3) the vertical profile – the distribution of RID as a function of soil depth. The RID data used for fitting in the model were measured in two uneven-aged mountain forest ecosystems in the French Alps. These sites differ in tree density and species composition. Key Results In general, the validation of each sub-model indicated that all sub-models of ChaMRoots had good fits. The model achieved a highly satisfactory compromise between the number of aerial input parameters and the fit to the observed data. Conclusions The semi-mechanistic ChaMRoots model focuses on the spatial distribution of root density at the tree cluster scale, in contrast to the majority of published root models, which function at the level of the individual. Based on easy-to-measure characteristics, simple forest inventory protocols and three sub-models, it achieves a good compromise between the complexity of the case study area and that of the global model structure. ChaMRoots can be easily coupled with spatially explicit individual-based forest dynamics models and thus provides a highly transferable approach for modelling 3-D root spatial distribution in complex forest ecosystems. PMID:26173892
The Meyer-Neldel rule and the statistical shift of the Fermi level in amorphous semiconductors
NASA Astrophysics Data System (ADS)
Kikuchi, Minoru
1988-11-01
The statistical model is used to study the origin of the Meyer-Neldel (MN) rule [σ0∝exp(AEσ)] in a tetrahedral amorphous system. It is shown that a deep minimum in the gap density of states spectrum can lead to the linearity of the Fermi energy F(T) to the derivative (dF/dkT), as required from the rule. An expression is derived which relates the constant A in the rule to the gap density of states spectrum. The dispersion ranges of σ0 and Eσ are found to be related with the constant A. Model calculations show a magnitude of A and a wide dispersion of σ0 and Eσ in fair agreement with the experimental observations. A discussion is given to what extent the MN rule is dependent on the gap density of states spectrum.
Li, Xiuli; Li, Jin; Lu, Xiaolan; Ma, Huihui; Shi, Haitao; Li, Hong; Xie, Danhong; Dong, Lei; Liang, Chunlian
2015-09-01
Non-alcoholic fatty liver disease (NAFLD) is an increasingly common condition which is associated with certain features of metabolic syndrome and insulin resistance. Peroxisome proliferator‑activated receptor (PPAR)δ is an important regulator of energy metabolism and insulin resistance in diabetes. However, the function of PPARδ in NAFLD has not yet been fully elucidated. In the present study, in order to explore the function of PPARδ in NAFLD, we created a rat model of NALFD induced by a high-fat diet (HFD) and treated the rats with GW501516, a PPARδ agonist. We found that the lipid levels decreased, and hepatocellular ballooning and inflammatory cell infiltration were also significantly decreased following treatment of the rats with GW501516 compared to the untreated rats. Treatment with GW501516 also significantly decreased the homeostasis model assessment of insulin resistance (HOMA-IR) index, as well as the low‑density lipoprotein (LDL) levels. In addition, treatment with GW501516 increased the levels of insulin‑like growth factor‑1 (IGF-1) and high‑density lipoprotein (HDL) compared to the HFD group. Furthermore, the elevated levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma‑glutamyl transpeptidase (GGT) and alkaline phosphatase (ALP) in the HFD group were all restored to the normal control levels following treatment with GW501516. RT‑qPCR and immunohistochemical staining revealed that the expression levels of sterol regulatory element binding protein‑1c (SREBP‑1c) and glucose transporter 2 (GLUT‑2) were both restored to normal control levels following treatment with GW501516. Also, the levels of enzymes related to lipid metabolism were increased following treatment with GW501516. In conclusion, our findings demonstrate that treatment with GW501516 alleviates NAFLD by modulating glucose and fatty acid metabolism.
Transport properties in magnetic field of Pb1-xSnxTe alloys doped with Indium
NASA Astrophysics Data System (ADS)
Jovovic, V.; Joottu-Thiagaraj, S.; West, J.; Heremans, J. P.; Khokhlov, D.
2007-03-01
The galvanomagnetic and thermomagnetic transport properties of single-crystal In-doped Pb1-xSnxTe are presented as a function of Sn (10 to 30%) and In (0 to 10%) concentrations. The concept is that the In level might pin the Fermi energy in a position with and enhanced density of states, which might increase the thermoelectric figure of merit. The transport properties were measured in a transverse magnetic field and at temperatures varying from 80 to 380K. Depending on the Sn concentrations, the prepared samples are p and n type semiconductors. The measurements of the electrical conductivity, Hall, Seebeck and transverse Nernst-Ettingshausen effects yield the carrier density and mobility, the density of states effective mass, and the scattering exponent, following the method of the four coefficients. The transport properties are interpreted in terms of hybridization of the In levels and density of state of the host alloy and observations are discussed in terms of Mahan-Sofo theory. The model provides an explanation for unexpected variation in thermoelectric and thermomagnetic properties of these alloys.
Gemmel, Mary; Rayen, Ine; Lotus, Tiffany; van Donkelaar, Eva; Steinbusch, Harry W; De Lacalle, Sonsoles; Kokras, Nikolaos; Dalla, Christina; Pawluski, Jodi L
2016-04-01
Selective serotonin reuptake inhibitor medication exposure during the perinatal period can have a long term impact in adult offspring on neuroplasticity and the serotonergic system, but the impact of these medications during early development is poorly understood. The aim of this study was to determine the effects of developmental exposure to the SSRI, fluoxetine, on the serotonergic system, dopaminergic system, and synaptophysin density in the prefrontal cortex and hippocampus, as well as number of immature neurons in the dentate gyrus, in juvenile rat offspring at weaning. To model aspects of maternal depression, prenatal restraint stress was used. Sprague-Dawley rat offspring were exposed to either prenatal stress and/or fluoxetine. Main findings show that developmental fluoxetine exposure to prenatally stressed offspring decreased 5-HT and 5-HIAA levels and altered the dopaminergic system in the hippocampus. Prenatal stress, regardless of fluoxetine, increased synaptophysin density in the PFC. This work indicates that early exposure to maternal stress and SSRI medication can alter brain monoamine levels and synaptophysin density in offspring at weaning. © 2015 Wiley Periodicals, Inc.
Spatial heterogeneity in the carrying capacity of sika deer in Japan
Iijima, Hayato; Ueno, Mayumi
2016-01-01
Abstract Carrying capacity is 1 driver of wildlife population dynamics. Although in previous studies carrying capacity was considered to be a fixed entity, it may differ among locations due to environmental variation. The factors underlying variability in carrying capacity, however, have rarely been examined. Here, we investigated spatial heterogeneity in the carrying capacity of Japanese sika deer ( Cervus nippon ) from 2005 to 2014 in Yamanashi Prefecture, central Japan (mesh with grid cells of 5.5×4.6 km) by state-space modeling. Both carrying capacity and density dependence differed greatly among cells. Estimated carrying capacities ranged from 1.34 to 98.4 deer/km 2 . According to estimated population dynamics, grid cells with larger proportions of artificial grassland and deciduous forest were subject to lower density dependence and higher carrying capacity. We conclude that population dynamics of ungulates may vary spatially through spatial variation in carrying capacity and that the density level for controlling ungulate abundance should be based on the current density level relative to the carrying capacity for each area. PMID:29692470
Freisthler, Bridget; Johnson-Motoyama, Michelle; Kepple, Nancy J.
2014-01-01
Supervisory neglect, or the failure of a caregiver to appropriately supervise a child, is one of the predominant types of neglectful behaviors, with alcohol use being considered a key antecedent to inadequate supervision of children. The current study builds on previous work by examining the role of parental drinking and alcohol outlet densities while controlling for caregiver and child characteristics. Data were obtained from 3,023 participants via a telephone survey from 50 cities throughout California. The telephone survey included items on neglectful parenting practices, drinking behaviors, and socio-demographic characteristics. Densities of alcohol outlets were measured for each of the 202 zip codes in the study. Multilevel Bernoulli models were used to analyze the relationship between four supervisory neglect parenting practices and individual-level and zip code-level variables. In our study, heavy drinking was only significantly related to one of our four outcome variables (leaving a child where he or she may not be safe). The density of on premise alcohol outlets was positively related to leaving a child home alone when an adult should be present. This study demonstrates that discrete relationships exist between alcohol related variables, social support, and specific supervisory neglect subtypes at the ecological and individual levels. PMID:25061256
Intersection crash prediction modeling with macro-level data from various geographic units.
Lee, Jaeyoung; Abdel-Aty, Mohamed; Cai, Qing
2017-05-01
There have been great efforts to develop traffic crash prediction models for various types of facilities. The crash models have played a key role to identify crash hotspots and evaluate safety countermeasures. In recent, many macro-level crash prediction models have been developed to incorporate highway safety considerations in the long-term transportation planning process. Although the numerous macro-level studies have found that a variety of demographic and socioeconomic zonal characteristics have substantial effects on traffic safety, few studies have attempted to coalesce micro-level with macro-level data from existing geographic units for estimating crash models. In this study, the authors have developed a series of intersection crash models for total, severe, pedestrian, and bicycle crashes with macro-level data for seven spatial units. The study revealed that the total, severe, and bicycle crash models with ZIP-code tabulation area data performs the best, and the pedestrian crash models with census tract-based data outperforms the competing models. Furthermore, it was uncovered that intersection crash models can be drastically improved by only including random-effects for macro-level entities. Besides, the intersection crash models are even further enhanced by including other macro-level variables. Lastly, the pedestrian and bicycle crash modeling results imply that several macro-level variables (e.g., population density, proportions of specific age group, commuters who walk, or commuters using bicycle, etc.) can be a good surrogate exposure for those crashes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rios-Diaz, Arturo J; Metcalfe, David; Olufajo, Olubode A; Zogg, Cheryl K; Yorkgitis, Brian; Singh, Mansher; Haider, Adil H; Salim, Ali
2016-12-01
The association between the need for trauma care and trauma services has not been characterized previously. We compared the distribution of trauma admissions with state-level availability of trauma centers (TCs), surgical critical care (SCC) providers, and SCC fellowships, and assessed the association between trauma care provision and state-level trauma mortality. We obtained 2013 state-level data on trauma admissions, TCs, SCC providers, SCC fellowship positions, per-capita income, population size, and age-adjusted mortality rates. Normalized densities (per million population [PMP]) were calculated and generalized linear models were used to test associations between provision of trauma services (higher-level TCs, SCC providers, and SCC fellowship positions) and trauma burden, per-capita income, and age-adjusted mortality rates. There were 1,345,024 trauma admissions (4,250 PMP), 2,496 SCC providers (7.89 PMP), and 1,987 TCs across the country, of which 521 were Level I or II (1.65 PMP). There was considerable variation between the top 5 and bottom 5 states in terms of Level I/Level II TCs and SCC surgeon availability (approximately 8.0/1.0), despite showing less variation in trauma admission density (1.5/1.0). Distribution of trauma admissions was positively associated with SCC provider density and age-adjusted trauma mortality (p ≤ 0.001), and inversely associated with per-capita income (p < 0.001). Age-adjusted mortality was inversely associated with the number of SCC providers PMP. For every additional SCC provider PMP, there was a decrease of 618 deaths per year. There is an inequitable distribution of trauma services across the US. Increases in the density of SCC providers are associated with decreases in mortality. There was no association between density of trauma admissions and location of Level I/Level II TCs. In the wake of efforts to regionalize TCs, additional efforts are needed to address disparities in the provision of quality care to trauma patients. Copyright © 2016 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Cetacean population density estimation from single fixed sensors using passive acoustics.
Küsel, Elizabeth T; Mellinger, David K; Thomas, Len; Marques, Tiago A; Moretti, David; Ward, Jessica
2011-06-01
Passive acoustic methods are increasingly being used to estimate animal population density. Most density estimation methods are based on estimates of the probability of detecting calls as functions of distance. Typically these are obtained using receivers capable of localizing calls or from studies of tagged animals. However, both approaches are expensive to implement. The approach described here uses a MonteCarlo model to estimate the probability of detecting calls from single sensors. The passive sonar equation is used to predict signal-to-noise ratios (SNRs) of received clicks, which are then combined with a detector characterization that predicts probability of detection as a function of SNR. Input distributions for source level, beam pattern, and whale depth are obtained from the literature. Acoustic propagation modeling is used to estimate transmission loss. Other inputs for density estimation are call rate, obtained from the literature, and false positive rate, obtained from manual analysis of a data sample. The method is applied to estimate density of Blainville's beaked whales over a 6-day period around a single hydrophone located in the Tongue of the Ocean, Bahamas. Results are consistent with those from previous analyses, which use additional tag data. © 2011 Acoustical Society of America
Van Allen Probes Observations of Plasmasphere Refilling Inside and Outside the Plasmapause
NASA Astrophysics Data System (ADS)
De Pascuale, S.; Kletzing, C.; Kurth, W. S.; Jordanova, V. K.
2017-12-01
We survey several geomagnetic storms observed by the Van Allen Probes to determine the rate of plasmasphere refilling following the initial erosion of the plasmapause region. The EMFISIS instrument on board the spacecraft provides near-equatorial in situ electron density measurements, which are accurate to 10% error in the detectable range 2 < L < 6. Two-dimensional plasmasphere density simulations, providing global context of local observations, are driven by the incident solar wind electric field as a proxy for geomagnetic activity. The simulations utilize a semi-empirical model of convection and a semi-empirical model of ionospheric outflow to dynamically evolve plasmaspheric densities. We find that at high L the plasmasphere undergoes orders of magnitude density depletion (from 100s - 10s cm-3) in response to a geomagnetic event and recovers to pre-storm levels over many days. At low L ( 1000s cm-3), and within the plasmapause, the plasmasphere loses density by a factor of 2 to 3 (from 3000 - 1000 cm-3) producing a depletion that can persist over weeks during sustained geomagnetic activity. We describe the impact of these results on the challenge of defining a saturated quiet state of the plasmasphere.
Quantum dynamics of a two-atom-qubit system
NASA Astrophysics Data System (ADS)
Van Hieu, Nguyen; Bich Ha, Nguyen; Linh, Le Thi Ha
2009-09-01
A physical model of the quantum information exchange between two qubits is studied theoretically. The qubits are two identical two-level atoms, the physical mechanism of the quantum information exchange is the mutual dependence of the reduced density matrices of two qubits generated by their couplings with a multimode radiation field. The Lehmberg-Agarwal master equation is exactly solved. The explicit form of the mutual dependence of two reduced density matrices is established. The application to study the entanglement of two qubits is discussed.
On the Possibility of Superconductivity in Bilayer Heterostructures
NASA Astrophysics Data System (ADS)
Iordansky, S. V.
2018-04-01
A model is created for bilayer heterostructures in a strong magnetic field which makes it possible to neglect the Coulomb interaction. The thermodynamic instability of states of the electron system in a strong magnetic field leads to the formation of a periodic vortex lattice. The case is considered where the electron density is close to the density of the half-filled Landau level. An electron spectrum is found and an analog of the Cooper effect appearing under the Bogoliubov canonical transformation for electron Fermi operators is studied.
Costa, Michel Iskin da Silveira; Meza, Magno Enrique Mendoza
2006-12-01
In a plant-herbivore system, a management strategy called threshold policy is proposed to control grazing intensity where the vegetation dynamics is described by a plant-water interaction model. It is shown that this policy can lead the vegetation density to a previously chosen level under an overgrazing regime. This result is obtained despite both the potential occurrence of vegetation collapse due to overgrazing and the possibility of complex dynamics sensitive to vegetation initial densities and parameter uncertainties.
Carlos Alberto Silva; Andrew Thomas Hudak; Carine Klauberg; Lee Alexandre Vierling; Carlos Gonzalez‑Benecke; Samuel de Padua Chaves Carvalho; Luiz Carlos Estraviz Rodriguez; Adrian Cardil
2017-01-01
LiDAR measurements can be used to predict and map AGC across variable-age Eucalyptus plantations with adequate levels of precision and accuracy using 5 pulses mâ 2 and a grid cell size of 5 m. The promising results for AGC modeling in this study will allow for greater confidence in comparing AGC estimates with varying LiDAR sampling densities for Eucalyptus plantations...
Assessment of thermal comfort level at pedestrian level in high-density urban area of Hong Kong
NASA Astrophysics Data System (ADS)
Ma, J.; Ng, E.; Yuan, C.; Lai, A.
2015-12-01
Hong Kong is a subtropical city which is very hot and humid in the summer. Pedestrians commonly experience thermal discomfort. Various studies have shown that the tall bulky buildings intensify the urban heat island effect and reduce urban air ventilation. However, relatively few studies have focused on modeling the thermal load at pedestrian level (~ 2 m). This study assesses the thermal comfort level, quantified by PET (Physiological Equivalent Temperature), using a GIS - based simulation approach. A thermal comfort level map shows the PET value of a typical summer afternoon in the high building density area. For example, the averaged PET in Sheung Wan is about 41 degree Celsius in a clear day and 38 degree Celsius in a cloudy day. This map shows where the walkways, colonnades, and greening is most needed. In addition, given a start point, a end point, and weather data, we generate the most comfort walking routes weighted by the PET. In the simulation, shortwave irradiance is calculated using the topographic radiation model (Fu and Rich, 1999) under various cloud cover scenarios; longwave irradiance is calculated based the radiative transfer equation (Swinbank, 1963). Combining these two factors, Tmrt (mean radiant temperature) is solved. And in some cases, the Tmrt differ more than 40 degree Celsius between areas under the sun and under the shades. Considering thermal load and wind information, we found that shading from buildings has stronger effect on PET than poor air ventilation resulted from dense buildings. We predict that pedestrians would feel more comfortable (lower PET) in a hot summer afternoon when walking in the higher building density area.
Energy spectrum and electrical conductivity of graphene with a nitrogen impurity
NASA Astrophysics Data System (ADS)
Repetskii, S. P.; Vyshivanaya, I. G.; Skotnikov, V. A.; Yatsenyuk, A. A.
2015-04-01
The electronic structure of graphene with a nitrogen impurity has been studied based on the model of tight binding using exchange-correlation potentials in the density-functional theory. Wave functions of 2 s and 2 p states of neutral noninteracting carbon atoms have been chosen as the basis. When studying the matrix elements of the Hamiltonian, the first three coordination shells have been taken into account. It has been established that the hybridization of electron-energy bands leads to the splitting of the electron energy spectrum near the Fermi level. Due to the overlap of the energy bands, the arising gap behaves as a quasi-gap, in which the density of the electron levels is much lower than in the rest of the spectrum. It has been established that the conductivity of graphene decreases with increasing nitrogen concentration. Since the increase in the nitrogen concentration leads to an increase in the density of states at the Fermi level, the decrease in the conductivity is due to a sharper decrease in the time of relaxation of the electron sates.
Level densities of residual nuclei from the reactions ^6Li on ^58Fe and ^7Li on ^57Fe
NASA Astrophysics Data System (ADS)
Oginni, Babatunde; Grimes, Steven; Voinov, Alexander; Adekola, Aderemi; Brune, Carl; Heinen, Zachary; Hornish, Michael; Massey, Thomas; Matei, Catalin; Carter, Don; O'Donnell, John
2008-04-01
The reactions ^6Li on ^58Fe and ^7Li on ^57Fe have been studied; these two reactions give the same compound nucleus, ^64Cu. The neutron, proton and alpha spectra were measured at backward angles, and the level densities of the residual nuclei from the particle evaporation spectra have been obtained. The contribution of the breakup mechanism to the reaction cross-section was studied from ^6Li on ^197Au reaction. The data obtained have been compared with Hauser Feshbach model calculations performed with HF and Empire codes. Three other reactions were also studied to see how level densities change as we move away from the nuclear stability line. These are: ^18O on ^64Ni reaction, this gives ^82Kr as compound nucleus which is on the stability line; ^24Mg on ^58Fe, this gives ^82Sr as compound nucleus and ^24Mg on ^58Ni which gives ^82Zr as compound nucleus; these are two and four steps away from the stability line respectively. Some results are presented.
Interplanetary radio storms. 2: Emission levels and solar wind speed in the range 0.05-0.8 AU
NASA Technical Reports Server (NTRS)
Bougeret, J. L.; Fainberg, J.; Stone, R. G.
1982-01-01
Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetry medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the Sun. Usng a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the central meridian passage of the storm. The comparison with average in situ density measurements compiled from the HELIOS 1-2 observations favors type III storm burst radio emission at the harmonic of the local plasma frequency.
NASA Technical Reports Server (NTRS)
Rees, D.; Fuller-Rowell, T. J.
1989-01-01
A 2-Dimensional zonally-averaged thermospheric model and the global University College London (UCL) thermospheric model have been used to investigate the seasonal, solar activity and geomagnetic variation of atomic oxygen and nitric oxide. The 2-dimensional model includes detailed oxygen and nitrogen chemistry, with appropriate completion of the energy equation, by adding the thermal infrared cooling by O and NO. This solution includes solar and auroral production of odd nitrogen compounds and metastable species. This model has been used for three investigations; firstly, to study the interactions between atmospheric dynamics and minor species transport and density; secondly, to examine the seasonal variations of atomic oxygen and nitric oxide within the upper mesosphere and thermosphere and their response to solar and geomagnetic activity variations; thirdly, to study the factor of 7 to 8 peak nitric oxide density increase as solar F sub 10.7 cm flux increases from 70 to 240 reported from the Solar Mesospheric Explorer. Auroral production of NO is shown to be the dominant source at high latitudes, generating peak NO densities a factor of 10 greater than typical number densities at low latitudes. At low latitudes, the predicted variation of the peak NO density, near 110 km, with the solar F sub 10.7 cm flux is rather smaller than is observed. This is most likely due to an overestimate of the soft X-ray flux at low solar activity, for times of extremely low support number, as occurred in June 1986. As observed on pressure levels, the variation of O density is small. The global circulation during solstice and periods of elevated geomagnetic activity causes depletion of O in regions of upwelling, and enhancements in regions of downwelling.
Mars-GRAM: Increasing the Precision of Sensitivity Studies at Large Optical Depths
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, C. G.; Badger, Andrew M.
2010-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM's perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). It has been discovered during the Mars Science Laboratory (MSL) site selection process that Mars-GRAM, when used for sensitivity studies for MapYear=0 and large optical depth values such as tau=3, is less than realistic. A comparison study between Mars atmospheric density estimates from Mars-GRAM and measurements by Mars Global Surveyor (MGS) has been undertaken for locations of varying latitudes, Ls, and LTST on Mars. The preliminary results from this study have validated the Thermal Emission Spectrometer (TES) limb data. From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). MGCM results that were used for Mars-GRAM with MapYear=0 were from a MGCM run with a fixed value of tau=3 for the entire year at all locations. This has resulted in an imprecise atmospheric density at all altitudes. To solve this pressure-density problem, density factor values were determined for tau=.3, 1 and 3 that will adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear 0 with TES observations for MapYears 1 and 2 at comparable dust loading. The addition of these density factors to Mars-GRAM will improve the results of the sensitivity studies done for large optical depths.
Updating Mars-GRAM to Increase the Accuracy of Sensitivity Studies at Large Optical Depths
NASA Technical Reports Server (NTRS)
Justh, Hiliary L.; Justus, C. G.; Badger, Andrew M.
2010-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). During the Mars Science Laboratory (MSL) site selection process, it was discovered that Mars-GRAM, when used for sensitivity studies for MapYear=0 and large optical depth values such as tau=3, is less than realistic. From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). MGCM results that were used for Mars-GRAM with MapYear set to 0 were from a MGCM run with a fixed value of tau=3 for the entire year at all locations. This has resulted in an imprecise atmospheric density at all altitudes. As a preliminary fix to this pressure-density problem, density factor values were determined for tau=0.3, 1 and 3 that will adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear 0 with Thermal Emission Spectrometer (TES) observations for MapYears 1 and 2 at comparable dust loading. Currently, these density factors are fixed values for all latitudes and Ls. Results will be presented from work being done to derive better multipliers by including variation with latitude and/or Ls by comparison of MapYear 0 output directly against TES limb data. The addition of these more precise density factors to Mars-GRAM 2005 Release 1.4 will improve the results of the sensitivity studies done for large optical depths.
Casha, Aaron R; Camilleri, Liberato; Manché, Alexander; Gatt, Ruben; Attard, Daphne; Gauci, Marilyn; Camilleri-Podesta, Marie-Therese; Mcdonald, Stuart; Grima, Joseph N
2015-11-01
The human rib cage resembles a masonry dome in shape. Masonry domes have a particular construction that mimics stress distribution. Rib cortical thickness and bone density were analyzed to determine whether the morphology of the rib cage is sufficiently similar to a shell dome for internal rib structure to be predicted mathematically. A finite element analysis (FEA) simulation was used to measure stresses on the internal and external surfaces of a chest-shaped dome. Inner and outer rib cortical thickness and bone density were measured in the mid-axillary lines of seven cadaveric rib cages using computerized tomography scanning. Paired t tests and Pearson correlation were used to relate cortical thickness and bone density to stress. FEA modeling showed that the stress was 82% higher on the internal than the external surface, with a gradual decrease in internal and external wall stresses from the base to the apex. The inner cortex was more radio-dense, P < 0.001, and thicker, P < 0.001, than the outer cortex. Inner cortical thickness was related to internal stress, r = 0.94, P < 0.001, inner cortical bone density to internal stress, r = 0.87, P = 0.003, and outer cortical thickness to external stress, r = 0.65, P = 0.035. Mathematical models were developed relating internal and external cortical thicknesses and bone densities to rib level. The internal anatomical features of ribs, including the inner and outer cortical thicknesses and bone densities, are similar to the stress distribution in dome-shaped structures modeled using FEA computer simulations of a thick-walled dome pressure vessel. Fixation of rib fractures should include the stronger internal cortex. © 2015 Wiley Periodicals, Inc.
Ardila, Carlos M; Guzmán, Isabel C
2016-11-01
To investigate the association between the presence of Porphyromonas gingivalis-induced immunoglobulin G antibodies and the high-density lipoprotein (HDL) level. A total of 108 individuals were examined. The presence of P. gingivalis was detected using primers designed to target the 16S rRNA gene sequence. Peripheral blood was collected from each subject to determine the levels of P. gingivalis-induced IgG1 and IgG2 serum antibodies. The HDL levels were determined using fully enzymatic methods. A higher proportion of periodontitis patients had high levels of P. gingivalis-induced IgG1 and IgG2, and the proportion of subjects with a HDL level of < 35 md/dL was higher in the group of chronic periodontitis patients. In the unadjusted regression model, the presence of high levels of P. gingivalis-induced IgG2 was associated with a HDL level of < 35 md/dL. The adjusted model indicated that periodontitis patients with high levels of P. gingivalis-induced IgG2 showed 3.2 more chances of having pathological HDL levels (odds ratio = 3.2, 95% confidence interval = 1.2-9.8). High levels of P. gingivalis-induced IgG2 were associated with low HDL concentrations in patients with periodontitis, which suggests that the response of the host to periodontal infection may play an important role in the pathogenesis of cardiovascular diseases. © 2015 Wiley Publishing Asia Pty Ltd.
Sakai, Rie; Fink, Günther; Wang, Wei; Kawachi, Ichiro
2015-01-01
Background In industrialized countries, assessment of the causal effect of physician supply on population health has yielded mixed results. Since the scope of child vaccination is an indicator of preventive health service utilization, this study investigates the correlation between vaccination coverage and pediatrician supply as a reflection of overall pediatric health during a time of increasing pediatrician numbers in Japan. Methods Cross-sectional data were collected from publicly available sources for 2010. Dependent variables were vaccination coverage for measles and diphtheria, pertussis, and tetanus (DPT) by region. The primary predictor of interest was number of pediatricians per 10 000-child population (pediatrician density) at the municipality level. Multivariate logistic regression models were used to estimate associations of interest, conditional on a large range of demographic and infrastructure-related factors as covariates, including non-pediatric physician density, total population, per capita income, occupation, unemployment rate, prevalence of single motherhood, number of hospital beds per capita, length of roads, crime rate, accident rate, and metropolitan area code as urban/rural status. The percentage of the population who completed college-level education or higher in 2010 was included in the model as a proxy for education level. Results Pediatrician density was positively and significantly associated with vaccination coverage for both vaccine series. On average, each unit of pediatrician density increased odds by 1.012 for measles (95% confidence interval, 1.010–1.015) and 1.019 for DPT (95% confidence interval, 1.016–1.022). Conclusions Policies increasing pediatrician supply contribute to improved preventive healthcare services utilization, such as immunizations, and presumably improved child health status in Japan. PMID:25817986
Does alcohol outlet density differ by area-level disadvantage in metropolitan Perth?
Foster, Sarah; Hooper, Paula; Knuiman, Matthew; Trapp, Georgina; Wood, Lisa
2017-09-01
Research suggests that there are area-level disparities in alcohol outlets, with greater density in disadvantaged areas. In part, this might be explained by the inequitable distribution of retail, attracted by lower rents to disadvantaged neighbourhoods. This ecological study examines the distribution of liquor licences in Perth, Australia, and whether discrepancies in the distribution of retail land-uses could account for a socio-economic gradient. Area disadvantage was determined for each Statistical Area 1 (SA1) using the Australian Bureau of Statistics Index of Relative Socio-economic Disadvantage, and licence locations were mapped in GIS. Negative binomial loglinear models examined whether licence densities within SA1s differed by area disadvantage, controlling for demographics and spatial correlation. Models included an offset term, so the estimated effects of area-level disadvantage were on licences per km 2 , or licences per retail destination. In the area-based analyses, for every unit increase in disadvantage decile (i.e. a reduction in relative disadvantage), general licences reduced by 15% (P = 0.000) and liquor stores reduced by 7% (P = 0.004). These gradients were not apparent when licences were examined as a function of retail; however, for every unit increase in disadvantage decile, the density of on-premise licences per retail destination increased by 14% (P = 0.000). The direction of the socio-economic gradient for general licences and liquor stores in Perth is concerning, as all licences selling packaged alcohol were more abundant in disadvantaged areas. However, the over-representation of packaged liquor in disadvantaged areas may relate to the increased provision of retail. © 2017 Australasian Professional Society on Alcohol and other Drugs.
NASA Astrophysics Data System (ADS)
Siskind, David E.; Zawdie, K. A.; Sassi, F.; Drob, D.; Friedrich, M.
2017-01-01
We compare D and lower E region ionospheric model calculations driven by the Whole Atmosphere Community Climate Model (WACCM) with a selection of electron density profiles made by sounding rockets over the past 50 years. The WACCM model, in turn, is nudged by winds and temperatures from the Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS-ALPHA). This nudging has been shown to greatly improve the representation of key neutral constituents, such as nitric oxide (NO), that are used as inputs to the ionospheric model. We show that with this improved representation, we greatly improve the comparison between calculated and observed electron densities relative to older studies. At midlatitudes, for both winter and equinoctal conditions, the model agrees well with the data. At tropical latitudes, our results confirm a previous suggestion that there is a model deficit in the calculated electron density in the lowermost D region. We then apply the calculated electron densities to examine the variation of HF absorption with altitude, latitude, and season and from 2008 to 2009. For low latitudes, our results agree with recent studies showing a primary peak absorption in the lower E region with a secondary peak below 75 km. For midlatitude to high latitude, the absorption contains a significant contribution from the middle D region where ionization of NO drives the ion chemistry. The difference in middle- to high-latitude absorption from 2008 to 2009 is due to changes in the NO abundance near 80 km from changes in the wintertime mesospheric residual circulation.
NASA Astrophysics Data System (ADS)
Frauendorf, S.
2018-04-01
The key elements of the Unified Model are reviewed. The microscopic derivation of the Bohr Hamiltonian by means of adiabatic time-dependent mean field theory is presented. By checking against experimental data the limitations of the Unified Model are delineated. The description of the strong coupling between the rotational and intrinsic degrees of freedom in framework of the rotating mean field is presented from a conceptual point of view. The classification of rotational bands as configurations of rotating quasiparticles is introduced. The occurrence of uniform rotation about an axis that differs from the principle axes of the nuclear density distribution is discussed. The physics behind this tilted-axis rotation, unknown in molecular physics, is explained on a basic level. The new symmetries of the rotating mean field that arise from the various orientations of the angular momentum vector with respect to the triaxial nuclear density distribution and their manifestation by the level sequence of rotational bands are discussed. Resulting phenomena, as transverse wobbling, rotational chirality, magnetic rotation and band termination are discussed. Using the concept of spontaneous symmetry breaking the microscopic underpinning of the rotational degrees is refined.
Hurvitz, Philip M; Moudon, Anne V; Rehm, Colin D; Streichert, Laura C; Drewnowski, Adam
2009-01-01
Background Fast food restaurants reportedly target specific populations by locating in lower-income and in minority neighborhoods. Physical proximity to fast food restaurants has been associated with higher obesity rates. Objective To examine possible associations, at the census tract level, between area demographics, arterial road density, and fast food restaurant density in King County, WA, USA. Methods Data on median household incomes, property values, and race/ethnicity were obtained from King County and from US Census data. Fast food restaurant addresses were obtained from Public Health-Seattle & King County and were geocoded. Fast food density was expressed per tract unit area and per capita. Arterial road density was a measure of vehicular and pedestrian access. Multivariate logistic regression models containing both socioeconomic status and road density were used in data analyses. Results Over one half (53.1%) of King County census tracts had at least one fast food restaurant. Mean network distance from dwelling units to a fast food restaurant countywide was 1.40 km, and 1.07 km for census tracts containing at least one fast food restaurant. Fast food restaurant density was significantly associated in regression models with low median household income (p < 0.001) and high arterial road density (p < 0.001) but not with percent of residents who were nonwhite. Conclusion No significant association was observed between census tract minority status and fast food density in King County. Although restaurant density was linked to low household incomes, that effect was attenuated by arterial road density. Fast food restaurants in King County are more likely to be located in lower income neighborhoods and higher traffic areas. PMID:19630979
NASA Astrophysics Data System (ADS)
Ostriker, Eve C.; Gammie, Charles F.; Stone, James M.
1999-03-01
The molecular component of the Galaxy is comprised of turbulent, magnetized clouds, many of which are self-gravitating and form stars. To develop an understanding of how these clouds' kinetic and structural evolution may depend on their level of turbulence, mean magnetization, and degree of self-gravity, we perform a survey of direct numerical MHD simulations in which three parameters are independently varied. Our simulations consist of solutions to the time-dependent MHD equations on a two-dimensional grid with periodic boundary conditions; an additional ``half'' dimension is also incorporated as dependent variables in the third Cartesian direction. Two of our survey parameters, the mean magnetization parameter β≡c2sound/v2Alfven and the Jeans number nJ≡Lcloud/LJeans, allow us to model clouds that either meet or fail conditions for magneto-Jeans stability and magnetic criticality. Our third survey parameter, the sonic Mach number M≡σvelocity/csound, allows us to initiate turbulence of either sub- or super-Alfvénic amplitude; we employ an isothermal equation of state throughout. We evaluate the times for each cloud model to become gravitationally bound and measure each model's kinetic energy loss over the fluid-flow crossing time. We compare the evolution of density and magnetic field structural morphology and quantify the differences in the density contrast generated by internal stresses for models of differing mean magnetization. We find that the values of β and nJ, but not the initial Mach number M, determine the time for cloud gravitational binding and collapse: for mean cloud density nH2=100 cm-3, unmagnetized models collapse after ~5 Myr, and magnetically supercritical models generally collapse after 5-10 Myr (although the smallest magneto-Jeans stable clouds survive gravitational collapse until t~15 Myr), while magnetically subcritical clouds remain uncollapsed over the entire simulations; these cloud collapse times scale with the mean density as tg~n-1/2H2. We find, contrary to some previous expectations, less than a factor of 2 difference between turbulent decay times for models with varying magnetic field strength; the maximum decay time, for B~14 μG and nH2=100 cm-3, is 1.4 flow crossing times tcross=L/σvelocity (or 8 Myr for typical giant molecular cloud parameters). In all models we find turbulent amplification in the magnetic field strength up to at least the level βpert≡c2sound/δv2Alfven=0.1, with the turbulent magnetic energy between 25% and 60% of the turbulent kinetic energy after one flow crossing time. We find that for non-self-gravitating stages of evolution, when clouds have M=5-10, the mass-averaged density contrast magnitudes
Managing the Cayo Santiago rhesus macaque population: The role of density.
Hernandez-Pacheco, Raisa; Delgado, Diana L; Rawlins, Richard G; Kessler, Matthew J; Ruiz-Lambides, Angelina V; Maldonado, Elizabeth; Sabat, Alberto M
2016-01-01
Cayo Santiago is the oldest continuously operating free-ranging rhesus monkey colony in the world. Population control of this colony has historically been carried out by periodic live capture and removal of animals. However, the effect of such a strategy on the size, growth rate, age structure, and sex ratio of the population has not been analyzed. This study reviews past removal data and uses a population projection model to simulate the effects of different removal schemes based on Cayo Santiago demographic data from 2000-2012. The model incorporates negative density-dependence in female fertility, as well as male and female survival rates, to determine the population-level effects of selective removal by age and sex. Modeling revealed that removal of sexually immature individuals has negligible effects on the population dynamics explaining why with an initial population of 1309 in 2000 and annual removals of immature monkeys a mean annual population growth rate of 12% and a final population size of ∼1,435 individuals by 2012 (∼0.009 animal/m(2) ) was observed. With no removals, the population is expected to exhibit dampened oscillations until reaching equilibrium at ∼1,690 individuals (∼0.0111 animal/m(2) ) in 2,100. In contrast, removal of adult females (≥4 yrs) would significantly reduce the population size, but would also promote an increase in population growth rate due to density feedback. A maximum annual production of 275 births is expected when 550 adult females are present in the population. Sensitivity analyses showed that removing females, in contrast to controlling their fertility through invasive treatments would contribute the most to changes in population growth rate. Given the density compensation on fertility, stabilizing the population would require removing ∼80% of the current population of adult females. This study highlights the importance of addressing the population-level density effects, as well as sensitivity analyses, to optimize management strategies. © 2016 Wiley Periodicals, Inc.
Analyzing Study of Path loss Propagation Models in Wireless Communications at 0.8 GHz
NASA Astrophysics Data System (ADS)
Kadhim Hoomod, Haider; Al-Mejibli, Intisar; Issa Jabboory, Abbas
2018-05-01
The paths loss propagation model is an important tool in wireless network planning, allowing network planner to optimize the cell towers distribution and meet expected service level requirements. However, each type of path loss propagation model is designed to predict path loss in a particular environment that may be inaccurate in other different environment. In this research different propagation models (Hata Model, ICC-33 Model, Ericson Model and Coast-231 Model) have been analyzed and compared based on the measured data. The measured data represent signal strength of two cell towers placed in two different environments which obtained by a drive test of them. First one in AL-Habebea represents an urban environment (high-density region) and the second in AL-Hindea district represents a rural environment (low-density region) with operating frequency 0.8 GHz. The results of performing the analysis and comparison conclude that Hata model and Ericsson model shows small deviation from real measurements in urban environment and Hata model generally gives better prediction in the rural environment.
Statistics of excitations in the electron glass model
NASA Astrophysics Data System (ADS)
Palassini, Matteo
2011-03-01
We study the statistics of elementary excitations in the classical electron glass model of localized electrons interacting via the unscreened Coulomb interaction in the presence of disorder. We reconsider the long-standing puzzle of the exponential suppression of the single-particle density of states near the Fermi level, by measuring accurately the density of states of charged and electron-hole pair excitations via finite temperature Monte Carlo simulation and zero-temperature relaxation. We also investigate the statistics of large charge rearrangements after a perturbation of the system, which may shed some light on the slow relaxation and glassy phenomena recently observed in a variety of Anderson insulators. In collaboration with Martin Goethe.
4D computerized ionospheric tomography by using GPS measurements and IRI-Plas model
NASA Astrophysics Data System (ADS)
Tuna, Hakan; Arikan, Feza; Arikan, Orhan
2016-07-01
Ionospheric imaging is an important subject in ionospheric studies. GPS based TEC measurements provide very accurate information about the electron density values in the ionosphere. However, since the measurements are generally very sparse and non-uniformly distributed, computation of 3D electron density estimation from measurements alone is an ill-defined problem. Model based 3D electron density estimations provide physically feasible distributions. However, they are not generally compliant with the TEC measurements obtained from GPS receivers. In this study, GPS based TEC measurements and an ionosphere model known as International Reference Ionosphere Extended to Plasmasphere (IRI-Plas) are employed together in order to obtain a physically accurate 3D electron density distribution which is compliant with the real measurements obtained from a GPS satellite - receiver network. Ionospheric parameters input to the IRI-Plas model are perturbed in the region of interest by using parametric perturbation models such that the synthetic TEC measurements calculated from the resultant 3D electron density distribution fit to the real TEC measurements. The problem is considered as an optimization problem where the optimization parameters are the parameters of the parametric perturbation models. Proposed technique is applied over Turkey, on both calm and storm days of the ionosphere. Results show that the proposed technique produces 3D electron density distributions which are compliant with IRI-Plas model, GPS TEC measurements and ionosonde measurements. The effect of the GPS receiver station number on the performance of the proposed technique is investigated. Results showed that 7 GPS receiver stations in a region as large as Turkey is sufficient for both calm and storm days of the ionosphere. Since the ionization levels in the ionosphere are highly correlated in time, the proposed technique is extended to the time domain by applying Kalman based tracking and smoothing approaches onto the obtained results. Combining Kalman methods with the proposed 3D CIT technique creates a robust 4D ionospheric electron density estimation model, and has the advantage of decreasing the computational cost of the proposed method. Results applied on both calm and storm days of the ionosphere show that, new technique produces more robust solutions especially when the number of GPS receiver stations in the region is small. This study is supported by TUBITAK 114E541, 115E915 and Joint TUBITAK 114E092 and AS CR 14/001 projects.
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, Carl G.
2008-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. One new feature of Mars-GRAM 2005 is the 'auxiliary profile' option. In this option, an input file of temperature and density versus altitude is used to replace mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. An auxiliary profile can be generated from any source of data or alternate model output. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5)model) and a global Thermal Emission Spectrometer(TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components,averaged over 5-by-5 degree latitude-longitude bins and 15 degree L(s) bins, for each of three Mars years of TES nadir data. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate Mars Science Laboratory (MSL) landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.
Li, Xing; Tang, Hailin; Wang, Jin; Xie, Xinhua; Liu, Peng; Kong, Yanan; Ye, Feng; Shuang, Zeyu; Xie, Zeming; Xie, Xiaoming
2017-04-01
Although dyslipidemia has been documented to be associated with several types of cancer including breast cancer, it remains uncertainty the prognostic value of serum lipid in breast cancer. The purpose of this study is to evaluate the association between the preoperative plasma lipid profile and the prognostic of breast cancer patients. The levels of preoperative serum lipid profile (including cholesterol [CHO], Triglycerides [TG], high-density lipoprotein-cholesterol [HDL-C], low-density lipoprotein-cholesterol [LDL-C], apolipoprotein A-I [ApoAI], and apolipoprotein B [ApoB]) and the clinical data were retrospectively collected and reviewed in 1044 breast cancer patients undergoing operation. Kaplan-Meier method and the Cox proportional hazards regression model were used in analyzing the overall survival [OS] and disease-free survival [DFS]. Combining the receiver-operating characteristic and Kaplan-Meier analysis, we found that preoperative lower TG and HDL-C level were risk factors of breast cancer patients. In multivariate analyses, a decreased HDL-C level showed significant association with worse OS (HR: 0.528; 95% CI: 0.302-0.923; P = 0.025), whereas a decreased TG level showed significant association with worse DFS (HR: 0.569; 95% CI: 0.370-0.873; P = 0.010). Preoperative serum levels of TG and HDL-C may be independent factor to predict outcome in breast cancer patient. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anti-levitation of Landau levels in vanishing magnetic fields
NASA Astrophysics Data System (ADS)
Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.
Soon after the discovery of the quantum Hall effects in two-dimensional electron systems, the question on the fate of the extended states in a Landau level in vanishing magnetic (B) field arose. Many theoretical models have since been proposed, and experimental results remain inconclusive. In this talk, we report experimental observation of anti-levitation behavior of Landau levels in vanishing B fields (down to as low as B 58 mT) in a high quality heterojunction insulated-gated field-effect transistor (HIGFET). We observed that, in the Landau fan diagram of electron density versus magnetic field, the positions of the magneto-resistance minima at Landau level fillings ν = 4, 5, 6 move below the ``traditional'' Landau level line to lower electron densities. This clearly differs from what was observed in the earlier experiments where in the same Landau fan plot the density moved up. Our result strongly supports the anti-levitation behavior predicted recently. Moreover, the even and odd Landau level filling states show quantitatively different behaviors in anti-levitation, suggesting that the exchange interactions, which are important at odd fillings, may play a role. SNL is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.
A more accurate profile of Achyrocline satureioides hypocholesterolemic activity.
Espiña, Débora Corrêa; Carvalho, Fabiano Barbosa; Zanini, Daniela; Schlemmer, Josiane Bizzi; Coracini, Juliane Dors; Rubin, Maribel Antonello; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina; Leal, Daniela Bitencourt Rosa; Baiotto, Cléia Rosani; Jaques, Jeandre Augusto dos Santos
2012-06-01
The aim of this study was to investigate the effect of the aqueous extract (AE) of Achyrocline satureioides on serum lipid profile, liver oxidative profile and Na(+),K(+)-ATPase activity of rats submitted to a hyperlipidic diet. The animals were divided into four groups: control (C), AE 10% (A(10)), hyperlipidic (H) and hyperlipidic/AE 10% (HA(10)). In serum, we measured the levels of total cholesterol (TC), high-density lipoprotein, very-low-density lipoprotein, low-density lipoprotein (LDL) and triglyceride (TG). In liver homogenates, we measured the thiobarbituric acid reactive substances, the carbonyl proteins, the non-protein thiols (NPSHs) and the activity of superoxide dismutase, catalase (CAT) and Na(+),K(+)-ATPase. We observed a significant increase in the TC and LDL levels in the H group. A. satureioides prevented these effects, decreased the TG levels in the HA(10) group and increased the NPSH levels in the A(10) and HA(10) groups. The H group showed an increase in the carbonyl protein level and a decrease in CAT and Na(+),K(+)-ATPase activities. With the use of this model, results show that increased levels of lipids are related to a redox imbalance in the liver, which is also related to the inhibition of Na(+),K(+)-ATPase activity, and that chronic administration of the AE of A. satureioides is capable of changing this profile. Copyright © 2012 John Wiley & Sons, Ltd.
Spatially structured superinfection and the evolution of disease virulence.
Caraco, Thomas; Glavanakov, Stephan; Li, Shengua; Maniatty, William; Szymanski, Boleslaw K
2006-06-01
When pathogen strains differing in virulence compete for hosts, spatial structuring of disease transmission can govern both evolved levels of virulence and patterns in strain coexistence. We develop a spatially detailed model of superinfection, a form of contest competition between pathogen strains; the probability of superinfection depends explicitly on the difference in levels of virulence. We apply methods of adaptive dynamics to address the interplay of spatial dynamics and evolution. The mean-field approximation predicts evolution to criticality; any small increase in virulence capable of dynamical persistence is favored. Both pair approximation and simulation of the detailed model indicate that spatial structure constrains disease virulence. Increased spatial clustering reduces the maximal virulence capable of single-strain persistence and, more importantly, reduces the convergent-stable virulence level under strain competition. The spatially detailed model predicts that increasing the probability of superinfection, for given difference in virulence, increases the likelihood of between-strain coexistence. When strains differing in virulence can coexist ecologically, our results may suggest policies for managing diseases with localized transmission. Comparing equilibrium densities from the pair approximation, we find that introducing a more virulent strain into a host population infected by a less virulent strain can sometimes reduce total host mortality and increase global host density.
Feng, Weiwei; Zhao, Ting; Mao, Guanghua; Wang, Wei; Feng, Yun; Li, Fang; Zheng, Daheng; Wu, Huiyu; Jin, Dun; Yang, Liuqing; Wu, Xiangyang
2015-01-01
Our previous study showed that chromium malate improved the regulation of blood glucose in mice with alloxan-induced diabetes. The present study was designed to evaluate the effect of chromium malate on glycometabolism, glycometabolism-related enzymes and lipid metabolism in type 2 diabetic rats. Our results showed that fasting blood glucose, serum insulin level, insulin resistance index and C-peptide level in the high dose group had a significant downward trend when compared with the model group, chromium picolinate group and chromium trichloride group. The hepatic glycogen, glucose-6-phosphate dehydrogenase, glucokinase, Glut4, phosphor-AMPKβ1 and Akt levels in the high dose group were significantly higher than those of the model, chromium picolinate and chromium trichloride groups. Chromium malate in a high dose group can significantly increase high density lipoprotein cholesterol level while decreasing the total cholesterol, low density lipoprotein cholesterol and triglyceride levels when compared with chromium picolinate and chromium trichloride. The serum chromium content in chromium malate and chromium picolinate group is significantly higher than that of the chromium trichloride group. The results indicated that the curative effects of chromium malate on glycometabolism, glycometabolism-related enzymes and lipid metabolism changes are better than those of chromium picolinate and chromium trichloride. Chromium malate contributes to glucose uptake and transport in order to improved glycometabolism and glycometabolism-related enzymes. PMID:25942313
Feng, Weiwei; Zhao, Ting; Mao, Guanghua; Wang, Wei; Feng, Yun; Li, Fang; Zheng, Daheng; Wu, Huiyu; Jin, Dun; Yang, Liuqing; Wu, Xiangyang
2015-01-01
Our previous study showed that chromium malate improved the regulation of blood glucose in mice with alloxan-induced diabetes. The present study was designed to evaluate the effect of chromium malate on glycometabolism, glycometabolism-related enzymes and lipid metabolism in type 2 diabetic rats. Our results showed that fasting blood glucose, serum insulin level, insulin resistance index and C-peptide level in the high dose group had a significant downward trend when compared with the model group, chromium picolinate group and chromium trichloride group. The hepatic glycogen, glucose-6-phosphate dehydrogenase, glucokinase, Glut4, phosphor-AMPKβ1 and Akt levels in the high dose group were significantly higher than those of the model, chromium picolinate and chromium trichloride groups. Chromium malate in a high dose group can significantly increase high density lipoprotein cholesterol level while decreasing the total cholesterol, low density lipoprotein cholesterol and triglyceride levels when compared with chromium picolinate and chromium trichloride. The serum chromium content in chromium malate and chromium picolinate group is significantly higher than that of the chromium trichloride group. The results indicated that the curative effects of chromium malate on glycometabolism, glycometabolism-related enzymes and lipid metabolism changes are better than those of chromium picolinate and chromium trichloride. Chromium malate contributes to glucose uptake and transport in order to improved glycometabolism and glycometabolism-related enzymes.
The economic impact of state cigarette taxes and smoke-free air policies on convenience stores.
Huang, Jidong; Chaloupka, Frank J
2013-03-01
To investigate whether increasing state cigarette taxes and/or enacting stronger smoke-free air (SFA) policies have negative impact on convenience store density in a state, a proxy that is determined by store openings and closings, which reflects store profits. State-level business count estimates for convenience stores for 50 states and District of Columbia from 1997 to 2009 were analysed using two-way fixed effects regression techniques that control for state-specific and year-specific determinants of convenience store density. The impact of tax and SFA policies was examined using a quasi-experimental research design that exploits changes in cigarette taxes and SFA policies within a state over time. Taxes are found to be uncorrelated with the density of combined convenience stores and gas stations in a state. Taxes are positively correlated with the density of convenience stores; however, the magnitude of this correlation is small, with a 10% increase in state cigarette taxes associated with a 0.19% (p<0.05) increase in the number of convenience stores per million people in a state. State-level SFA policies do not correlate with convenience store density in a state, regardless whether gas stations were included. These results are robust across different model specifications. In addition, they are robust with regard to the inclusion/exclusion of other state-level tobacco control measures and gasoline prices. Contrary to tobacco industry and related organisations' claims, higher cigarette taxes and stronger SFA policies do not negatively affect convenience stores.
Posthumus, Anke G; Borsboom, Gerard J; Poeran, Jashvant; Steegers, Eric A P; Bonsel, Gouke J
2016-01-01
All women in the Netherlands should have equal access to obstetric care. However, utilization of care is shaped by demand and supply factors. Demand is increased in high risk groups (non-Western women, low socio-economic status (SES)), and supply is influenced by availability of hospital facilities (hospital density). To explore the dynamics of obstetric care utilization we investigated the joint association of hospital density and individual characteristics with prototype obstetric interventions. A logistic multi-level model was fitted on retrospective data from the Netherlands Perinatal Registry (years 2000-2008, 1.532.441 singleton pregnancies). In this analysis, the first level comprised individual maternal characteristics, the second of neighbourhood SES and hospital density. The four outcome variables were: referral during pregnancy, elective caesarean section (term and post-term breech pregnancies), induction of labour (term and post-term pregnancies), and birth setting in assumed low-risk pregnancies. Higher hospital density is not associated with more obstetric interventions. Adjusted for maternal characteristics and hospital density, living in low SES neighbourhoods, and non-Western ethnicity were generally associated with a lower probability of interventions. For example, non-Western women had considerably lower odds for induction of labour in all geographical areas, with strongest effects in the more rural areas (non-Western women: OR 0.78, 95% CI 0.77-0.80, p<0.001). Our results suggest inequalities in obstetric care utilization in the Netherlands, and more specifically a relative underservice to the deprived, independent of level of supply.
Earth GRAM-99 and Trace Constituents
NASA Technical Reports Server (NTRS)
Justus, C. G.; Duvall, Aleta; Keller, Vernon W.
2004-01-01
Global Reference Atmospheric Model (GRAM-99) is an engineering-level model of Earth's atmosphere. It provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthly- and geographically-varying trace constituent concentrations. From 0-27 km, GRAM thermodynamics and winds are based on National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. Above 120 km, GRAM is based on the NASA Marshall Engineering Thermosphere (MET) model. In the intervening altitude region, GRAM is based on Middle Atmosphere Program (MAP) climatology that also forms the basis of the 1986 COSPAR International Reference Atmosphere (CIRA). Atmospheric composition is represented in GRAM by concentrations of both major and minor species. Above 120 km, MET provides concentration values for N2, O2, Ar, O, He, and H. Below 120 km, species represented also include H2O, O3, N2O, CO, CH4, and CO2. At COSPAR 2002 a comparison was made between GRAM constituents below 120 km and those provided by Naval Research Laboratory (NRL) climatology. No current need to update GRAM constituent climatology in that height range was identified. This report examines GRAM (MET) constituents between 100 and 1000 km altitudes. Discrepancies are noted between GRAM (MET) constituent number densities and mass density or molecular weight. Near 110 km altitude, there is up to about 25% discrepancy between MET number density and mass density (with mass density being valid and number densities requiring adjustment). Near 700 km altitude there is also up to about 25% discrepancy between MET number density and mean molecular weight (with molecular weight requiring adjustment). In neither case are MET mass density estimates invalidated. These discrepancies have been traced to MET subroutines SLV (which affects 90-170 km height range) and SLVH (which affects helium above 440 km altitude). With these discrepancies corrected, results are presented to illustrate GRAM (MET) constituent mole fractions in terms of height-latitude cross sections from 100 to 1000 km altitude, and latitude-longitude 'maps' at 450 km (approximate height of International Space Station). Plans are discussed for an update of MET (and GRAM) to correct these constituent inconsistencies and to incorporate several new thermospheric model features.
Horning, Markus; Mellish, Jo-Ann E.
2012-01-01
The endangered western stock of the Steller sea lion (Eumetopias jubatus) – the largest of the eared seals – has declined by 80% from population levels encountered four decades ago. Current overall trends from the Gulf of Alaska to the Aleutian Islands appear neutral with strong regional heterogeneities. A published inferential model has been used to hypothesize a continuous decline in natality and depressed juvenile survival during the height of the decline in the mid-late 1980's, followed by the recent recovery of juvenile survival to pre-decline rates. However, these hypotheses have not been tested by direct means, and causes underlying past and present population trajectories remain unresolved and controversial. We determined post-weaning juvenile survival and causes of mortality using data received post-mortem via satellite from telemetry transmitters implanted into 36 juvenile Steller sea lions from 2005 through 2011. Data show high post-weaning mortality by predation in the eastern Gulf of Alaska region. To evaluate the impact of such high levels of predation, we developed a conceptual framework to integrate density dependent with density independent effects on vital rates and population trajectories. Our data and model do not support the hypothesized recent recovery of juvenile survival rates and reduced natality. Instead, our data demonstrate continued low juvenile survival in the Prince William Sound and Kenai Fjords region of the Gulf of Alaska. Our results on contemporary predation rates combined with the density dependent conceptual framework suggest predation on juvenile sea lions as the largest impediment to recovery of the species in the eastern Gulf of Alaska region. The framework also highlights the necessity for demographic models based on age-structured census data to incorporate the differential impact of predation on multiple vital rates. PMID:22272296
Nonlinear effects of climate and density in the dynamics of a fluctuating population of reindeer.
Tyler, Nicholas J C; Forchhammer, Mads C; Øritsland, Nils Are
2008-06-01
Nonlinear and irregular population dynamics may arise as a result of phase dependence and coexistence of multiple attractors. Here we explore effects of climate and density in the dynamics of a highly fluctuating population of wild reindeer (Rangifer tarandus platyrhynchus) on Svalbard observed over a period of 29 years. Time series analyses revealed that density dependence and the effects of local climate (measured as the degree of ablation [melting] of snow during winter) on numbers were both highly nonlinear: direct negative density dependence was found when the population was growing (Rt > 0) and during phases of the North Atlantic Oscillation (NAO) characterized by winters with generally high (1979-1995) and low (1996-2007) indices, respectively. A growth-phase-dependent model explained the dynamics of the population best and revealed the influence of density-independent processes on numbers that a linear autoregressive model missed altogether. In particular, the abundance of reindeer was enhanced by ablation during phases of growth (Rt > 0), an observation that contrasts with the view that periods of mild weather in winter are normally deleterious for reindeer owing to icing of the snowpack. Analyses of vital rates corroborated the nonlinearity described in the population time series and showed that both starvation mortality in winter and fecundity were nonlinearly related to fluctuations in density and the level of ablation. The erratic pattern of growth of the population of reindeer in Adventdalen seems, therefore, to result from a combination of the effects of nonlinear density dependence, strong density-dependent mortality, and variable density independence related to ablation in winter.
Huckle, Taisia; Huakau, John; Sweetsur, Paul; Huisman, Otto; Casswell, Sally
2008-10-01
This study examines the relationship between physical, socio-economic and social environments and alcohol consumption and drunkenness among a general population sample of drinkers aged 12-17 years. DESIGN, SETTING, PARTICIPANTS AND MEASURES: The study was conducted in Auckland, New Zealand. The design comprised two components: (i) environmental measures including alcohol outlet density, locality-based measure of willingness to sell alcohol (derived from purchase surveys of outlets) and a locality-based neighbourhood deprivation measure calculated routinely in New Zealand (known as NZDEP); and (ii) the second component was a random telephone survey to collect individual-level information from respondents aged 12-17 years including ethnicity, frequency of alcohol supplied socially (by parents, friends and others), young person's income; frequency of exposure to alcohol advertising; recall of brands of alcohol and self-reported purchase from alcohol outlets. A multi-level model was fitted to predict typical-occasion quantity, frequency of drinking and drunkenness in drinkers aged 12-17 years. Typical-occasion quantity was predicted by: frequency of social supply (by parents, friends and others); ethnicity and outlet density; and self-reported purchasing approached significance. NZDEP was correlated highly with outlet density so could not be analysed in the same model. In a separate model, NZDEP was associated with quantity consumed on a typical drinking occasion. Annual frequency was predicted by: frequency of social supply of alcohol, self-reported purchasing from alcohol outlets and ethnicity. Feeling drunk was predicted by frequency of social supply of alcohol, self-reported purchasing from alcohol outlets and ethnicity; outlet density approached significance. Age and gender also had effects in the models, but retailers' willingness to sell to underage patrons had no effects on consumption, nor did the advertising measures. The young person's income was influential on typical-occasion quantity once deprivation was taken into account. Alcohol outlet density was associated with quantities consumed among teenage drinkers in this study, as was neighbourhood deprivation. Supply by family, friends and others also predicted quantities consumed among underage drinkers and both social supply and self-reported purchase were associated with frequency of drinking and drunkenness. The ethnic status of young people also had an effect on consumption.
Lee, Jui-Huna; Wu, Chang-Fu; Hoek, Gerard; de Hoogh, Kees; Beelen, Rob; Brunekreef, Bert; Chan, Chang-Chuan
2015-05-01
Traffic intensity, length of road, and proximity to roads are the most common traffic indicators in the land use regression (LUR) models for particulate matter in ESCAPE study areas in Europe. This study explored what local variables can improve the performance of LUR models in an Asian metropolis with high densities of roads and strong activities of industry, commerce and construction. By following the ESCAPE procedure, we derived LUR models of PM₂.₅, PM₂.₅ absorbance, PM₁₀, and PMcoarse (PM₂.₅-₁₀) in Taipei. The overall annual average concentrations of PM₂.₅, PM₁₀, and PMcoarse were 26.0 ± 5.6, 48.6 ± 5.9, and 23.3 ± 3.1 μg/m(3), respectively, and the absorption coefficient of PM₂.₅ was 2.0 ± 0.4 × 10(-5)m(-1). Our LUR models yielded R(2) values of 95%, 96%, 87%, and 65% for PM₂.₅, PM₂.₅ absorbance, PM₁₀, and PMcoarse, respectively. PM₂.₅ levels were increased by local traffic variables, industrial, construction, and residential land-use variables and decreased by rivers; while PM₂.₅ absorbance levels were increased by local traffic variables, industrial, and commercial land-use variables in the models. PMcoarse levels were increased by elevated highways. Road area explained more variance than road length by increasing the incremental value of 27% and 6% adjusted R(2) for PM₂.₅ and PM₁₀ models, respectively. In the PM₂.₅ absorbance model, road area and transportation facility explain 29% more variance than road length. In the PMcoarse model, industrial and new local variables instead of road length improved the incremental value of adjusted R(2) from 39% to 60%. We concluded that road area can better explain the spatial distribution of PM₂.₅ and PM₂.₅ absorbance concentrations than road length. By incorporating road area and other new local variables, the performance of each PM LUR model was improved. The results suggest that road area is a better indicator of traffic intensity rather than road length in a city with high density of road network and traffic. Copyright © 2015 Elsevier B.V. All rights reserved.
Effects of Disturbance on Populations of Marine Mammals
2015-09-30
will respond to alternative scenarios of human activities, from those that produce sound to climate change to changes in human density and...develop transferable models of the population-level effects of anthropogenic and natural disturbances on marine mammals. Disturbances can affect the...physiology or behavior of animals, which in turn may lead to changes in demographic rates and viability. Population-level effects of disturbance
DSMC Simulation and Experimental Validation of Shock Interaction in Hypersonic Low Density Flow
2014-01-01
Direct simulation Monte Carlo (DSMC) of shock interaction in hypersonic low density flow is developed. Three collision molecular models, including hard sphere (HS), variable hard sphere (VHS), and variable soft sphere (VSS), are employed in the DSMC study. The simulations of double-cone and Edney's type IV hypersonic shock interactions in low density flow are performed. Comparisons between DSMC and experimental data are conducted. Investigation of the double-cone hypersonic flow shows that three collision molecular models can predict the trend of pressure coefficient and the Stanton number. HS model shows the best agreement between DSMC simulation and experiment among three collision molecular models. Also, it shows that the agreement between DSMC and experiment is generally good for HS and VHS models in Edney's type IV shock interaction. However, it fails in the VSS model. Both double-cone and Edney's type IV shock interaction simulations show that the DSMC errors depend on the Knudsen number and the models employed for intermolecular interaction. With the increase in the Knudsen number, the DSMC error is decreased. The error is the smallest in HS compared with those in the VHS and VSS models. When the Knudsen number is in the level of 10−4, the DSMC errors, for pressure coefficient, the Stanton number, and the scale of interaction region, are controlled within 10%. PMID:24672360
Continuous fiber ceramic matrix composites for heat engine components
NASA Technical Reports Server (NTRS)
Tripp, David E.
1988-01-01
High strength at elevated temperatures, low density, resistance to wear, and abundance of nonstrategic raw materials make structural ceramics attractive for advanced heat engine applications. Unfortunately, ceramics have a low fracture toughness and fail catastrophically because of overload, impact, and contact stresses. Ceramic matrix composites provide the means to achieve improved fracture toughness while retaining desirable characteristics, such as high strength and low density. Materials scientists and engineers are trying to develop the ideal fibers and matrices to achieve the optimum ceramic matrix composite properties. A need exists for the development of failure models for the design of ceramic matrix composite heat engine components. Phenomenological failure models are currently the most frequently used in industry, but they are deterministic and do not adequately describe ceramic matrix composite behavior. Semi-empirical models were proposed, which relate the failure of notched composite laminates to the stress a characteristic distance away from the notch. Shear lag models describe composite failure modes at the micromechanics level. The enhanced matrix cracking stress occurs at the same applied stress level predicted by the two models of steady state cracking. Finally, statistical models take into consideration the distribution in composite failure strength. The intent is to develop these models into computer algorithms for the failure analysis of ceramic matrix composites under monotonically increasing loads. The algorithms will be included in a postprocessor to general purpose finite element programs.
Hatala, J.A.; Dietze, M.C.; Crabtree, R.L.; Kendall, Katherine C.; Six, D.; Moorcroft, P.R.
2011-01-01
The introduction of nonnative pathogens is altering the scale, magnitude, and persistence of forest disturbance regimes in the western United States. In the high-altitude whitebark pine (Pinus albicaulis) forests of the Greater Yellowstone Ecosystem (GYE), white pine blister rust (Cronartium ribicola) is an introduced fungal pathogen that is now the principal cause of tree mortality in many locations. Although blister rust eradication has failed in the past, there is nonetheless substantial interest in monitoring the disease and its rate of progression in order to predict the future impact of forest disturbances within this critical ecosystem.This study integrates data from five different field-monitoring campaigns from 1968 to 2008 to create a blister rust infection model for sites located throughout the GYE. Our model parameterizes the past rates of blister rust spread in order to project its future impact on high-altitude whitebark pine forests. Because the process of blister rust infection and mortality of individuals occurs over the time frame of many years, the model in this paper operates on a yearly time step and defines a series of whitebark pine infection classes: susceptible, slightly infected, moderately infected, and dead. In our analysis, we evaluate four different infection models that compare local vs. global density dependence on the dynamics of blister rust infection. We compare models in which blister rust infection is: (1) independent of the density of infected trees, (2) locally density-dependent, (3) locally density-dependent with a static global infection rate among all sites, and (4) both locally and globally density-dependent. Model evaluation through the predictive loss criterion for Bayesian analysis supports the model that is both locally and globally density-dependent. Using this best-fit model, we predicted the average residence times for the four stages of blister rust infection in our model, and we found that, on average, whitebark pine trees within the GYE remain susceptible for 6.7 years, take 10.9 years to transition from slightly infected to moderately infected, and take 9.4 years to transition from moderately infected to dead. Using our best-fit model, we project the future levels of blister rust infestation in the GYE at critical sites over the next 20 years.
How to be a good neighbour: Facilitation and competition between two co-flowering species.
Mesgaran, Mohsen B; Bouhours, Juliette; Lewis, Mark A; Cousens, Roger D
2017-06-07
Empirical evidence suggests that co-flowering species can facilitate each other through shared pollinators. However, the extent to which one co-flowering species can relieve pollination limitation of another while simultaneously competing for abiotic resource has rarely been examined. Using a deterministic model we explored the demographic outcome for one ("focal") species of its co-occurrence with a species that shares pollinators and competes for both pollinator visitation and abiotic resources. In this paper we showed how the overall impact can be positive or negative, depending on the balance between enhanced fertilization versus increased competition. Our model could predict the density of co-flowering species that will maximize the pollination rate of the focal species by attracting pollinators. Because that density will also give rise to competitive effects, a lower density of co-flowering species is required for optimizing the trade-off between enhanced fertilization and competition so as to give the maximum possible facilitation of reproduction in the focal species. Results were qualitatively different when we considered attractiveness of the co-flowering species, as opposed to its density, because attractiveness, unlike density, had no effect on competition for abiotic resources. Whereas unattractive neighbours would not bring in pollinators, very attractive neighbours would captivate pollinators, not sharing them with the focal species. Thus optimal benefit to the focal species came at intermediate levels of attractiveness in the co-flowering species. This intermediate level of attractiveness in co-flowering species simultaneously maximized pollination and overall facilitation of reproduction for the focal species. The likelihood of facilitation was predicted to decline with the selfing rate of the focal species, revealing an indirect cost for an inbreeding mating system. Whether a co-flowering species can be facilitative depends on the way pollinators respond to the plant density: only a Type III functional response for visitation rate can result in facilitation. Our model provided both a conceptual framework and precise quantitative measures for determining the impacts of a neighbouring co-flowering species on reproduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sándor, Renáta; Ehrhardt, Fiona; Brilli, Lorenzo; Carozzi, Marco; Recous, Sylvie; Smith, Pete; Snow, Val; Soussana, Jean-François; Dorich, Christopher D; Fuchs, Kathrin; Fitton, Nuala; Gongadze, Kate; Klumpp, Katja; Liebig, Mark; Martin, Raphaël; Merbold, Lutz; Newton, Paul C D; Rees, Robert M; Rolinski, Susanne; Bellocchi, Gianni
2018-06-11
Simulation models quantify the impacts on carbon (C) and nitrogen (N) cycling in grassland systems caused by changes in management practices. To support agricultural policies, it is however important to contrast the responses of alternative models, which can differ greatly in their treatment of key processes and in their response to management. We applied eight biogeochemical models at five grassland sites (in France, New Zealand, Switzerland, United Kingdom and United States) to compare the sensitivity of modelled C and N fluxes to changes in the density of grazing animals (from 100% to 50% of the original livestock densities), also in combination with decreasing N fertilization levels (reduced to zero from the initial levels). Simulated multi-model median values indicated that input reduction would lead to an increase in the C sink strength (negative net ecosystem C exchange) in intensive grazing systems: -64 ± 74 g C m -2 yr -1 (animal density reduction) and -81 ± 74 g C m -2 yr -1 (N and animal density reduction), against the baseline of -30.5 ± 69.5 g C m -2 yr -1 (LSU [livestock units] ≥ 0.76 ha -1 yr -1 ). Simulations also indicated a strong effect of N fertilizer reduction on N fluxes, e.g. N 2 O-N emissions decreased from 0.34 ± 0.22 (baseline) to 0.1 ± 0.05 g N m -2 yr -1 (no N fertilization). Simulated decline in grazing intensity had only limited impact on the N balance. The simulated pattern of enteric methane emissions was dominated by high model-to-model variability. The reduction in simulated offtake (animal intake + cut biomass) led to a doubling in net primary production per animal (increased by 11.6 ± 8.1 t C LSU -1 yr -1 across sites). The highest N 2 O-N intensities (N 2 O-N/offtake) were simulated at mown and extensively grazed arid sites. We show the possibility of using grassland models to determine sound mitigation practices while quantifying the uncertainties associated with the simulated outputs. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil
2011-07-01
The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.
Spin-polarized density-matrix functional theory of the single-impurity Anderson model
NASA Astrophysics Data System (ADS)
Töws, W.; Pastor, G. M.
2012-12-01
Lattice density functional theory (LDFT) is used to investigate spin excitations in the single-impurity Anderson model. In this method, the single-particle density matrix γijσ with respect to the lattice sites replaces the wave function as the basic variable of the many-body problem. A recently developed two-level approximation (TLA) to the interaction-energy functional W[γ] is extended to systems having spin-polarized density distributions and bond orders. This allows us to investigate the effect of external magnetic fields and, in particular, the important singlet-triplet gap ΔE, which determines the Kondo temperature. Applications to finite Anderson rings and square lattices show that the gap ΔE as well as other ground-state and excited-state properties are very accurately reproduced. One concludes that the spin-polarized TLA is reliable in all interaction regimes, from weak to strong correlations, for different hybridization strengths and for all considered impurity valence states. In this way the efficiency of LDFT to account for challenging electron-correlation effects is demonstrated.
Two-component scattering model and the electron density spectrum
NASA Astrophysics Data System (ADS)
Zhou, A. Z.; Tan, J. Y.; Esamdin, A.; Wu, X. J.
2010-02-01
In this paper, we discuss a rigorous treatment of the refractive scintillation caused by a two-component interstellar scattering medium and a Kolmogorov form of density spectrum. It is assumed that the interstellar scattering medium is composed of a thin-screen interstellar medium (ISM) and an extended interstellar medium. We consider the case that the scattering of the thin screen concentrates in a thin layer represented by a δ function distribution and that the scattering density of the extended irregular medium satisfies the Gaussian distribution. We investigate and develop equations for the flux density structure function corresponding to this two-component ISM geometry in the scattering density distribution and compare our result with the observations. We conclude that the refractive scintillation caused by this two-component ISM scattering gives a more satisfactory explanation for the observed flux density variation than does the single extended medium model. The level of refractive scintillation is strongly sensitive to the distribution of scattering material along the line of sight (LOS). The theoretical modulation indices are comparatively less sensitive to the scattering strength of the thin-screen medium, but they critically depend on the distance from the observer to the thin screen. The logarithmic slope of the structure function is sensitive to the scattering strength of the thin-screen medium, but is relatively insensitive to the thin-screen location. Therefore, the proposed model can be applied to interpret the structure functions of flux density observed in pulsar PSR B2111 + 46 and PSR B0136 + 57. The result suggests that the medium consists of a discontinuous distribution of plasma turbulence embedded in the interstellar medium. Thus our work provides some insight into the distribution of the scattering along the LOS to the pulsar PSR B2111 + 46 and PSR B0136 + 57.
Competing Quantum Orderings in Cuprate Superconductors: A Minimal Model
NASA Astrophysics Data System (ADS)
Martin, Ivar; Ortiz, Gerardo; Balatsky, A. V.; Bishop, A. R.
2001-03-01
We present a minimal model for cuprate superconductors. At the unrestricted mean-field level, the model produces homogeneous superconductivity at large doping, striped superconductivity in the underdoped regime and various antiferromagnetic phases at low doping and for high temperatures. On the underdoped side, the superconductor is intrinsically inhomogeneous and global phase coherence is achieved through Josephson-like coupling of the superconducting stripes. The model is applied to calculate experimentally measurable ARPES spectra, and local density of states measurable by STM.
NASA Astrophysics Data System (ADS)
Timoshenko, Yu K.; Shunina, V. A.; Shashkin, A. I.
2018-03-01
In the present work we used semiempirical and non-empirical models for electronic states of KCl nanocrystal containing edge dislocation for comparison of the obtained results. Electronic levels and local densities of states were calculated. As a result we found a reasonable qualitative correlation of semiempirical and non-empirical results. Using the results of computer modelling we discuss the problem of localization of electronic states near the line of edge dislocation.
Nonuniform continuum model for solvatochromism based on frozen-density embedding theory.
Shedge, Sapana Vitthal; Wesolowski, Tomasz A
2014-10-20
Frozen-density embedding theory (FDET) provides the formal framework for multilevel numerical simulations, such that a selected subsystem is described at the quantum mechanical level, whereas its environment is described by means of the electron density (frozen density; ${\\rho _{\\rm{B}} (\\vec r)}$). The frozen density ${\\rho _{\\rm{B}} (\\vec r)}$ is usually obtained from some lower-level quantum mechanical methods applied to the environment, but FDET is not limited to such choices for ${\\rho _{\\rm{B}} (\\vec r)}$. The present work concerns the application of FDET, in which ${\\rho _{\\rm{B}} (\\vec r)}$ is the statistically averaged electron density of the solvent ${\\left\\langle {\\rho _{\\rm{B}} (\\vec r)} \\right\\rangle }$. The specific solute-solvent interactions are represented in a statistical manner in ${\\left\\langle {\\rho _{\\rm{B}} (\\vec r)} \\right\\rangle }$. A full self-consistent treatment of solvated chromophore, thus involves a single geometry of the chromophore in a given state and the corresponding ${\\left\\langle {\\rho _{\\rm{B}} (\\vec r)} \\right\\rangle }$. We show that the coupling between the two descriptors might be made in an approximate manner that is applicable for both absorption and emission. The proposed protocol leads to accurate (error in the range of 0.05 eV) descriptions of the solvatochromic shifts in both absorption and emission. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Feng, Weiwei; Mao, Guanghua; Li, Qian; Wang, Wei; Chen, Yao; Zhao, Ting; Li, Fang; Zou, Ye; Wu, Huiyu; Yang, Liuqing; Wu, Xiangyang
2015-01-01
Aims/Introduction The present study was designed to evaluate the effect of chromium malate on glycometabolism, glycometabolism-related enzyme levels and lipid metabolism in type 2 diabetic rats, and dose–response and curative effects. Materials and Methods The model of type 2 diabetes rats was developed, and daily treatment with chromium malate was given for 4 weeks. A rat enzyme-linked immunosorbent assay kit was used to assay glycometabolism, glycometabolism-related enzyme levels and lipid metabolism changes. Results The results showed that the antihyperglycemic activity increased with administration of chromium malate in a dose–dependent manner. The serum insulin level, insulin resistance index and C-peptide level of the chromium malate groups at a dose of 17.5, 20.0 and 20.8 μg chromium/kg bodyweight were significantly lower than that of the model, chromium trichloride and chromium picolinate groups. The hepatic glycogen, glucose-6-phosphate dehydrogenase and glucokinase levels of the chromium malate groups at a dose of 17.5, 20.0 and 20.8 μg chromium/kg bodyweight were significantly higher than that of the model, chromium trichloride and chromium picolinate groups. Chromium malate at a dose of 20.0 and 20.8 μg chromium/kg bodyweight significantly changed the total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides levels compared with the chromium trichloride and chromium picolinate groups. Conclusions The results showed that chromium malate exhibits greater benefits in treating type 2 diabetes, and the curative effect of chromium malate is superior to chromium trichloride and chromium picolinate. PMID:26221518
NASA Astrophysics Data System (ADS)
Babcock, Chad; Finley, Andrew O.; Andersen, Hans-Erik; Pattison, Robert; Cook, Bruce D.; Morton, Douglas C.; Alonzo, Michael; Nelson, Ross; Gregoire, Timothy; Ene, Liviu; Gobakken, Terje; Næsset, Erik
2018-06-01
The goal of this research was to develop and examine the performance of a geostatistical coregionalization modeling approach for combining field inventory measurements, strip samples of airborne lidar and Landsat-based remote sensing data products to predict aboveground biomass (AGB) in interior Alaska's Tanana Valley. The proposed modeling strategy facilitates pixel-level mapping of AGB density predictions across the entire spatial domain. Additionally, the coregionalization framework allows for statistically sound estimation of total AGB for arbitrary areal units within the study area---a key advance to support diverse management objectives in interior Alaska. This research focuses on appropriate characterization of prediction uncertainty in the form of posterior predictive coverage intervals and standard deviations. Using the framework detailed here, it is possible to quantify estimation uncertainty for any spatial extent, ranging from pixel-level predictions of AGB density to estimates of AGB stocks for the full domain. The lidar-informed coregionalization models consistently outperformed their counterpart lidar-free models in terms of point-level predictive performance and total AGB precision. Additionally, the inclusion of Landsat-derived forest cover as a covariate further improved estimation precision in regions with lower lidar sampling intensity. Our findings also demonstrate that model-based approaches that do not explicitly account for residual spatial dependence can grossly underestimate uncertainty, resulting in falsely precise estimates of AGB. On the other hand, in a geostatistical setting, residual spatial structure can be modeled within a Bayesian hierarchical framework to obtain statistically defensible assessments of uncertainty for AGB estimates.
The influence of provider characteristics and market forces on response to financial incentives.
O'Neil, Brock; Tyson, Mark; Graves, Amy J; Barocas, Daniel A; Chang, Sam S; Penson, David F; Resnick, Matthew J
2017-11-01
Alternative payment models, such as accountable care organizations, use financial incentives as levers for change to facilitate the transition from volume to value. However, implementation raises concerns about adverse changes in market competition and the resultant physician response. We sought to identify physician characteristics and market-level factors associated with variation in response to financial incentives for cancer care that may ultimately be leveraged in risk-shared payment models. Retrospective cohort study of physicians providing minimally invasive bladder cancer procedures to fee-for-service Medicare beneficiaries. We examined the relationship of between-group differences in market-level factors (competition [Herfindahl-Hirschman Index (HHI)] and provider density) and physician-level factors (use of unique billing codes, number of billing codes per patient, and competing financial interest) to responsiveness to financial incentives. Incentive-responsive providers had increased odds (odds ratio [OR], 1.19; 95% CI, 1.04-1.35) of practicing in markets with the highest quartile of provider density but not HHI (OR, 0.96; 95% CI, 0.87-1.05). Incentive-responsive providers were more likely to bill in the highest quartile for unique codes (OR, 1.49; 95% CI, 1.32-1.69) and codes per patient (OR, 1.18; 95% CI, 1.11-1.25) and less likely to have a competing financial interest (OR, 0.76; 95% CI, 0.72-0.81). Responsiveness to financial incentives in cancer care is associated with high market provider density, profit-maximizing billing behavior, and lack of competing financial ownership interests. Identifying physicians and markets responsive to financial incentives may ultimately promote the successful implementation of alternative payment models in cancer care.
NASA Astrophysics Data System (ADS)
Hendges, Carla D.; Melo, Geruza L.; Gonçalves, Alberto S.; Cerezer, Felipe O.; Cáceres, Nilton C.
2017-10-01
Neotropical primates are among the most well studied forest mammals concerning their population densities. However, few studies have evaluated the factors that influence the spatial variation in the population density of primates, which limits the possibility of inferences towards this animal group, especially at the landscape-level. Here, we compiled density data of Sapajus nigritus from 21 forest patches of the Brazilian Atlantic Forest. We tested the effects of climatic variables (temperature, precipitation), landscape attributes (number of patches, mean inter-patch isolation distance, matrix modification index) and patch size on the population density using linear models and the Akaike information criterion. Our findings showed that the density of S. nigritus is influenced by landscape attributes, particularly by fragmentation and matrix modification. Overall, moderately fragmented landscapes and those surrounded by matrices with intermediate indexes of temporal modification (i.e., crop plantations, forestry) are related to high densities of this species. These results support the assumptions that ecologically flexible species respond positively to forest fragmentation. However, the non-linear relationship between S. nigritus density and number of patches suggests that even the species that are most tolerant to forest cover changes seem to respond positively only at an intermediate level of habitat fragmentation, being dependent of both a moderate degree of forest cover and a high quality matrix. The results we found here can be a common response to fragmentation for those forest dweller species that are able to use the matrix as complementary foraging sites.
Rochman, Chelsea M; Lewison, Rebecca L; Eriksen, Marcus; Allen, Harry; Cook, Anna-Marie; Teh, Swee J
2014-04-01
The accumulation of plastic debris in pelagic habitats of the subtropical gyres is a global phenomenon of growing concern, particularly with regard to wildlife. When animals ingest plastic debris that is associated with chemical contaminants, they are at risk of bioaccumulating hazardous pollutants. We examined the relationship between the bioaccumulation of hazardous chemicals in myctophid fish associated with plastic debris and plastic contamination in remote and previously unmonitored pelagic habitats in the South Atlantic Ocean. Using a published model, we defined three sampling zones where accumulated densities of plastic debris were predicted to differ. Contrary to model predictions, we found variable levels of plastic debris density across all stations within the sampling zones. Mesopelagic lanternfishes, sampled from each station and analyzed for bisphenol A (BPA), alkylphenols, alkylphenol ethoxylates, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), exhibited variability in contaminant levels, but this variability was not related to plastic debris density for most of the targeted compounds with the exception of PBDEs. We found that myctophid sampled at stations with greater plastic densities did have significantly larger concentrations of BDE#s 183 -209 in their tissues suggesting that higher brominated congeners of PBDEs, added to plastics as flame-retardants, are indicative of plastic contamination in the marine environment. Our results provide data on a previously unsampled pelagic gyre and highlight the challenges associated with characterizing plastic debris accumulation and associated risks to wildlife. Copyright © 2014 Elsevier B.V. All rights reserved.
Cottrell, Gilles; Kouwaye, Bienvenue; Pierrat, Charlotte; le Port, Agnès; Bouraïma, Aziz; Fonton, Noël; Hounkonnou, Mahouton Norbert; Massougbodji, Achille; Corbel, Vincent; Garcia, André
2012-01-01
Malaria remains endemic in tropical areas, especially in Africa. For the evaluation of new tools and to further our understanding of host-parasite interactions, knowing the environmental risk of transmission--even at a very local scale--is essential. The aim of this study was to assess how malaria transmission is influenced and can be predicted by local climatic and environmental factors.As the entomological part of a cohort study of 650 newborn babies in nine villages in the Tori Bossito district of Southern Benin between June 2007 and February 2010, human landing catches were performed to assess the density of malaria vectors and transmission intensity. Climatic factors as well as household characteristics were recorded throughout the study. Statistical correlations between Anopheles density and environmental and climatic factors were tested using a three-level Poisson mixed regression model. The results showed both temporal variations in vector density (related to season and rainfall), and spatial variations at the level of both village and house. These spatial variations could be largely explained by factors associated with the house's immediate surroundings, namely soil type, vegetation index and the proximity of a watercourse. Based on these results, a predictive regression model was developed using a leave-one-out method, to predict the spatiotemporal variability of malaria transmission in the nine villages.This study points up the importance of local environmental factors in malaria transmission and describes a model to predict the transmission risk of individual children, based on environmental and behavioral characteristics.
Pierrat, Charlotte; le Port, Agnès; Bouraïma, Aziz; Fonton, Noël; Hounkonnou, Mahouton Norbert; Massougbodji, Achille; Corbel, Vincent; Garcia, André
2012-01-01
Malaria remains endemic in tropical areas, especially in Africa. For the evaluation of new tools and to further our understanding of host-parasite interactions, knowing the environmental risk of transmission—even at a very local scale—is essential. The aim of this study was to assess how malaria transmission is influenced and can be predicted by local climatic and environmental factors. As the entomological part of a cohort study of 650 newborn babies in nine villages in the Tori Bossito district of Southern Benin between June 2007 and February 2010, human landing catches were performed to assess the density of malaria vectors and transmission intensity. Climatic factors as well as household characteristics were recorded throughout the study. Statistical correlations between Anopheles density and environmental and climatic factors were tested using a three-level Poisson mixed regression model. The results showed both temporal variations in vector density (related to season and rainfall), and spatial variations at the level of both village and house. These spatial variations could be largely explained by factors associated with the house's immediate surroundings, namely soil type, vegetation index and the proximity of a watercourse. Based on these results, a predictive regression model was developed using a leave-one-out method, to predict the spatiotemporal variability of malaria transmission in the nine villages. This study points up the importance of local environmental factors in malaria transmission and describes a model to predict the transmission risk of individual children, based on environmental and behavioral characteristics. PMID:22238582
Electron particle transport and turbulence studies in the T-10 tokamak
NASA Astrophysics Data System (ADS)
Vershkov, V. A.; Borisov, M. A.; Subbotin, G. F.; Shelukhin, D. A.; Dnestrovskii, Yu. N.; Danilov, A. V.; Cherkasov, S. V.; Gorbunov, E. P.; Sergeev, D. S.; Grashin, S. A.; Krylov, S. V.; Kuleshin, E. O.; Myalton, T. B.; Skosyrev, Yu. V.; Chistiakov, V. V.
2013-08-01
The goals of this paper are to compare the results of electron particle transport measurements in ohmic (OH) plasmas by means of a small perturbation technique, high-level gas puff and gas switch off, investigate the phenomenon of ‘density pump out’ during electron cyclotron resonance heating (ECRH) and to correlate density behaviour with turbulence. Two approaches for plasma particle transport studies were compared: the low perturbation technique of periodic puff (δn/ne = 0.3%) and strong density variations (δn/ne < 50%), including density ramp-up by gas puff and ramp-down with gas switch off. The model with constant in time diffusion coefficients and pinch velocities could describe the core density perturbations but failed at the edge. In the case of strong puff three stages were distinguished. Degraded energy confinement and, respectively, low turbulence frequencies were observed during density ramp-up and ramp-down, while enhanced confinement and higher turbulence frequencies were typical for the intermediate stage. Density profile variation during this intermediate phase could be described in the framework of the transport model with constant in time coefficients. The application of ECRH at the density ramp-up phase provided the possibility of postponing the ‘density pump out’. The increase in the low-frequency modes in turbulence spectra was observed at the ‘density pump out’ phase during central ECRH. Although the high- and low-frequency bands of turbulence spectra behaved as trapped electron mode and ion temperature gradient, respectively, they both rotated at the same angular velocity as a rigid body together with magnetohydrodynamic mode m/n = 2/1 and [E × B] plasma rotation.
Uddin, Md Nazim; Robinson, Randall William
2017-12-01
Phragmites australis, a ubiquitous wetland plant, has been considered one of the most invasive species in the world. Allelopathy appears to be one of the invasion mechanisms, however, the effects could be masked by resource competition among target plants. The difficulty of distinguishing allelopathy from resource competition among plants has hindered investigations of the role of phytotoxic allelochemicals in plant communities. This has been addressed via experiments conducted in both the greenhouse and laboratory by growing associated plants, Melaleuca ericifolia, Rumex conglomeratus, and model plant, Lactuca sativa at varying densities with the allelopathic plant, P. australis, its litter and leachate of P. australis litter. This study investigated the potential interacting influences of allelopathy and resource competition on plant growth-density relationships. In greenhouse, the root exudates mediated effects showed the strongest growth inhibition of M. ericifolia at high density whereas litter mediated results revealed increased growth at medium density treatments compared to low and high density. Again, laboratory experiments related to seed germination and seedling growth of L. sativa and R. conglomeratus exhibited phytotoxicity decreased showing positive growth as plant density increased and vice versa. Overall, the differential effects were observed among experiments but maximum individual plant biomass and some other positive effects on plant traits such as root and shoot length, chlorophyll content occurred at an intermediate density. This was attributed to the sharing of the available phytotoxin among plants at high densities which is compatible to density-dependent phytotoxicity model. The results demonstrated that plant-plant interference is the combined effect of allelopathy and resource competition with many other factors but this experimental design, target-neighbor mixed-culture in combination of plant grown at varying densities with varying level of phytotoxins, mono-culture, can successfully separate allelopathic effects from competition.
Ahn, Yongjun; Yeo, Hwasoo
2015-01-01
The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station’s density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric vehicles. PMID:26575845
Vitamin D and endothelial vasodilation in older individuals: data from the PIVUS study.
Maggio, Marcello; De Vita, Francesca; Lauretani, Fulvio; Ceda, Gian Paolo; Volpi, Elena; Giallauria, Francesco; De Cicco, Giuseppe; Cattabiani, Chiara; Melhus, Håkan; Michaëlsson, Karl; Cederholm, Tommy; Lind, Lars
2014-09-01
Vitamin D plays a role in a wide range of extraskeletal processes, including vascular function. Endothelial dysfunction is a predictor of cardiovascular disease, especially in older subjects. However, the relationship between vitamin D levels and indexes of endothelial vasodilation has never been fully addressed in older individuals. The objective of this study was to examine the association between vitamin D and endothelial function in a large community-based sample of older subjects. This cross-sectional study involved 852 community-dwelling men and women aged 70 years from the Prospective Study of the Vasculature in Uppsala Seniors (PIVUS), with complete data on vascular function and 25-hydroxyvitamin D. We evaluated endothelium-dependent vasodilation by an invasive forearm technique with acetylcholine, endothelium-independent vasodilation by sodium nitroprussiate, flow-mediated vasodilation, and the pulse wave analysis (reflectance index). Vitamin D levels were measured by chemiluminescence. We used multivariate regression models adjusted for body mass index (model 1) and for multiple confounders (high-sensitivity C-reactive protein, insulin, total cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, smoking, sex hormones, season of blood collection, hypertension, diabetes, cardiovascular medications and diseases, statin usage, plasma calcium and calcium intake, PTH, physical exercise, liver and kidney function tests, albumin; model 2). In women, but not in men, vitamin D levels were positively associated with endothelium-independent vasodilation in both model 1 (β ± SE = 1.41 ± 0.54; P = .001), and model 2 (β ± SE = 2.01 ± 0.68; P = .003).We found no significant relationship between vitamin D levels and endothelium-dependent vasodilation, flow-mediated vasodilation, and reflectance index in both sexes. In older women, but not in men, vitamin D is positively and independently associated with EIDV.
Vitamin D and Endothelial Vasodilation in Older Individuals: Data From the PIVUS Study
De Vita, Francesca; Lauretani, Fulvio; Ceda, Gian Paolo; Volpi, Elena; Giallauria, Francesco; De Cicco, Giuseppe; Cattabiani, Chiara; Melhus, Håkan; Michaëlsson, Karl; Cederholm, Tommy; Lind, Lars
2014-01-01
Context: Vitamin D plays a role in a wide range of extraskeletal processes, including vascular function. Endothelial dysfunction is a predictor of cardiovascular disease, especially in older subjects. However, the relationship between vitamin D levels and indexes of endothelial vasodilation has never been fully addressed in older individuals. Objective: The objective of this study was to examine the association between vitamin D and endothelial function in a large community-based sample of older subjects. Methods: This cross-sectional study involved 852 community-dwelling men and women aged 70 years from the Prospective Study of the Vasculature in Uppsala Seniors (PIVUS), with complete data on vascular function and 25-hydroxyvitamin D. We evaluated endothelium-dependent vasodilation by an invasive forearm technique with acetylcholine, endothelium-independent vasodilation by sodium nitroprussiate, flow-mediated vasodilation, and the pulse wave analysis (reflectance index). Vitamin D levels were measured by chemiluminescence. We used multivariate regression models adjusted for body mass index (model 1) and for multiple confounders (high-sensitivity C-reactive protein, insulin, total cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, smoking, sex hormones, season of blood collection, hypertension, diabetes, cardiovascular medications and diseases, statin usage, plasma calcium and calcium intake, PTH, physical exercise, liver and kidney function tests, albumin; model 2). Results: In women, but not in men, vitamin D levels were positively associated with endothelium-independent vasodilation in both model 1 (β ± SE = 1.41 ± 0.54; P = .001), and model 2 (β ± SE = 2.01 ± 0.68; P = .003).We found no significant relationship between vitamin D levels and endothelium-dependent vasodilation, flow-mediated vasodilation, and reflectance index in both sexes. Conclusions: In older women, but not in men, vitamin D is positively and independently associated with EIDV. PMID:24892991
Vaissi, Somaye; Sharifi, Mozafar
2016-11-01
In this study, we examined cannibalistic behavior, growth, metamorphosis, and survival in larval and post-metamorph endangered yellow spotted mountain newts Neurergus microspilotus hatched and reared in a captive breeding facility. We designed a 2 × 2 factorial experiment, crossing two levels of food with two levels of density including high food/high density, high food/low density, low food/high density, and low food/low density. The level of cannibalistic behavior (including the loss of fore and hind limbs, missing toes, tail, gills, body damage, and whole body consumption) changed as the larvae grew, from a low level during the first 4 weeks, peaking from weeks 7 to 12, and then dropped during weeks 14-52. Both food level and density had a significant effect on cannibalism. The highest frequency of cannibalism was recorded for larvae reared in the low food/high density and lowest in high food/low density treatments. Growth, percent of larval metamorphosed, and survival were all highest in the high food/low density and lowest in low food/high density treatment. Food level had a significant effect on growth, metamorphosis, and survival. However, the two levels of density did not influence growth and metamorphosis but showed a significant effect on survival. Similarly, combined effects of food level and density showed significant effects on growth, metamorphosis, and survival over time. Information obtained from current experiment could improve productivity of captive breeding facilities to ensure the release of adequate numbers of individuals for reintroduction programs. Zoo Biol. 35:513-521, 2016. © 2016 The Authors. Zoo Biology published by Wiley Periodicals, Inc. © 2016 The Authors. Zoo Biology published by Wiley Periodicals, Inc.
Double-cavity radiometer for high-flux density solar radiation measurements.
Parretta, A; Antonini, A; Armani, M; Nenna, G; Flaminio, G; Pellegrino, M
2007-04-20
A radiometric method has been developed, suitable for both total power and flux density profile measurement of concentrated solar radiation. The high-flux density radiation is collected by a first optical cavity, integrated, and driven to a second optical cavity, where, attenuated, it is measured by a conventional radiometer operating under a stationary irradiation regime. The attenuation factor is regulated by properly selecting the aperture areas in the two cavities. The radiometer has been calibrated by a pulsed solar simulator at concentration levels of hundreds of suns. An optical model and a ray-tracing study have also been developed and validated, by which the potentialities of the radiometer have been largely explored.
Bécares, Laia; Nazroo, James; Jackson, James
2014-12-01
We examined the association between Black ethnic density and depressive symptoms among African Americans. We sought to ascertain whether a threshold exists in the association between Black ethnic density and an important mental health outcome, and to identify differential effects of this association across social, economic, and demographic subpopulations. We analyzed the African American sample (n = 3570) from the National Survey of American Life, which we geocoded to the 2000 US Census. We determined the threshold with a multivariable regression spline model. We examined differential effects of ethnic density with random-effects multilevel linear regressions stratified by sociodemographic characteristics. The protective association between Black ethnic density and depressive symptoms changed direction, becoming a detrimental effect, when ethnic density reached 85%. Black ethnic density was protective for lower socioeconomic positions and detrimental for the better-off categories. The masking effects of area deprivation were stronger in the highest levels of Black ethnic density. Addressing racism, racial discrimination, economic deprivation, and poor services-the main drivers differentiating ethnic density from residential segregation-will help to ensure that the racial/ethnic composition of a neighborhood is not a risk factor for poor mental health.
Nazroo, James; Jackson, James
2014-01-01
Objectives. We examined the association between Black ethnic density and depressive symptoms among African Americans. We sought to ascertain whether a threshold exists in the association between Black ethnic density and an important mental health outcome, and to identify differential effects of this association across social, economic, and demographic subpopulations. Methods. We analyzed the African American sample (n = 3570) from the National Survey of American Life, which we geocoded to the 2000 US Census. We determined the threshold with a multivariable regression spline model. We examined differential effects of ethnic density with random-effects multilevel linear regressions stratified by sociodemographic characteristics. Results. The protective association between Black ethnic density and depressive symptoms changed direction, becoming a detrimental effect, when ethnic density reached 85%. Black ethnic density was protective for lower socioeconomic positions and detrimental for the better-off categories. The masking effects of area deprivation were stronger in the highest levels of Black ethnic density. Conclusions. Addressing racism, racial discrimination, economic deprivation, and poor services—the main drivers differentiating ethnic density from residential segregation—will help to ensure that the racial/ethnic composition of a neighborhood is not a risk factor for poor mental health. PMID:25322307
NASA Astrophysics Data System (ADS)
Riva, Fabio; Milanese, Lucio; Ricci, Paolo
2017-10-01
To reduce the computational cost of the uncertainty propagation analysis, which is used to study the impact of input parameter variations on the results of a simulation, a general and simple to apply methodology based on decomposing the solution to the model equations in terms of Chebyshev polynomials is discussed. This methodology, based on the work by Scheffel [Am. J. Comput. Math. 2, 173-193 (2012)], approximates the model equation solution with a semi-analytic expression that depends explicitly on time, spatial coordinates, and input parameters. By employing a weighted residual method, a set of nonlinear algebraic equations for the coefficients appearing in the Chebyshev decomposition is then obtained. The methodology is applied to a two-dimensional Braginskii model used to simulate plasma turbulence in basic plasma physics experiments and in the scrape-off layer of tokamaks, in order to study the impact on the simulation results of the input parameter that describes the parallel losses. The uncertainty that characterizes the time-averaged density gradient lengths, time-averaged densities, and fluctuation density level are evaluated. A reasonable estimate of the uncertainty of these distributions can be obtained with a single reduced-cost simulation.
NASA Astrophysics Data System (ADS)
Kelly, R.; Andrews, T.; Dietze, M.
2015-12-01
Shifts in ecological communities in response to environmental change have implications for biodiversity, ecosystem function, and feedbacks to global climate change. Community composition is fundamentally the product of demography, but demographic processes are simplified or missing altogether in many ecosystem, Earth system, and species distribution models. This limitation arises in part because demographic data are noisy and difficult to synthesize. As a consequence, demographic processes are challenging to formulate in models in the first place, and to verify and constrain with data thereafter. Here, we used a novel analysis of the USFS Forest Inventory Analysis to improve the representation of demography in an ecosystem model. First, we created an Empirical Succession Mapping (ESM) based on ~1 million individual tree observations from the eastern U.S. to identify broad demographic patterns related to forest succession and disturbance. We used results from this analysis to guide reformulation of the Ecosystem Demography model (ED), an existing forest simulator with explicit tree demography. Results from the ESM reveal a coherent, cyclic pattern of change in temperate forest tree size and density over the eastern U.S. The ESM captures key ecological processes including succession, self-thinning, and gap-filling, and quantifies the typical trajectory of these processes as a function of tree size and stand density. Recruitment is most rapid in early-successional stands with low density and mean diameter, but slows as stand density increases; mean diameter increases until thinning promotes recruitment of small-diameter trees. Strikingly, the upper bound of size-density space that emerges in the ESM conforms closely to the self-thinning power law often observed in ecology. The ED model obeys this same overall size-density boundary, but overestimates plot-level growth, mortality, and fecundity rates, leading to unrealistic emergent demographic patterns. In particular, the current ED formulation cannot capture steady state dynamics evident in the ESM. Ongoing efforts are aimed at reformulating ED to more closely approach overall forest dynamics evident in the ESM, and then assimilating inventory data to constrain model parameters and initial conditions.
The factors controlling species density in herbaceous plant communities: An assessment
Grace, J.B.
1999-01-01
This paper evaluates both the ideas and empirical evidence pertaining to the control of species density in herbaceous plant communities. While most theoretical discussions of species density have emphasized the importance of habitat productivity and disturbance regimes, many other factors (e.g. species pools, plant litter accumulation, plant morphology) have been proposed to be important. A review of literature presenting observations on the density of species in small plots (in the vicinity of a few square meters or less), as well as experimental studies, suggests several generalizations: (1) Available data are consistent with an underlying unimodal relationship between species density and total community biomass. While variance in species density is often poorly explained by predictor variables, there is strong evidence that high levels of community biomass are antagonistic to high species density. (2) Community biomass is just one of several factors affecting variations in species density. Multivariate analyses typically explain more than twice as much variance in species density as can be explained by community biomass alone. (3) Disturbance has important and sometimes complex effects on species density. In general, the evidence is consistent with the intermediate disturbance hypothesis but exceptions exist and effects can be complex. (4) Gradients in the species pool can have important influences on patterns of species density. Evidence is mounting that a considerable amount of the observed variability in species density within a landscape or region may result from environmental effects on the species pool. (5) Several additional factors deserve greater consideration, including time lags, species composition, plant morphology, plant density and soil microbial effects. Based on the available evidence, a conceptual model of the primary factors controlling species density is presented here. This model suggests that species density is controlled by the effects of disturbance, total community biomass, colonization, the species pool and spatial heterogeneity. The structure of the model leads to two main expectations: (1) while community biomass is important, multivariate approaches will be required to understand patterns of variation in species density, and (2) species density will be more highly correlated with light penetration to the soil surface, than with above-ground biomass, and even less well correlated with plant growth rates (productivity) or habitat fertility. At present, data are insufficient to evaluate the relative importance of the processes controlling species density. Much more work is needed if we are to adequately predict the effects of environmental changes on plant communities and species diversity.