Sample records for level dependent minima

  1. Minima in generalized oscillator strengths for initially excited hydrogen-like atoms

    NASA Technical Reports Server (NTRS)

    Matsuzawa, M.; Omidvar, K.; Inokuti, M.

    1976-01-01

    Generalized oscillator strengths for transitions from an initially excited state of a hydrogenic atom to final states (either discrete or continuum) have complicated structures, including minima and shoulders, as functions of the momentum transfer. Extensive calculations carried out in the present work have revealed certain systematics of these structures. Some implications of the minima to the energy dependence of the inner-shell ionization cross section of heavy atoms by proton impact are discussed.

  2. Inherent Structure versus Geometric Metric for State Space Discretization

    PubMed Central

    Liu, Hanzhong; Li, Minghai; Fan, Jue; Huo, Shuanghong

    2016-01-01

    Inherent structure (IS) and geometry-based clustering methods are commonly used for analyzing molecular dynamics trajectories. ISs are obtained by minimizing the sampled conformations into local minima on potential/effective energy surface. The conformations that are minimized into the same energy basin belong to one cluster. We investigate the influence of the applications of these two methods of trajectory decomposition on our understanding of the thermodynamics and kinetics of alanine tetrapeptide. We find that at the micro cluster level, the IS approach and root-mean-square deviation (RMSD) based clustering method give totally different results. Depending on the local features of energy landscape, the conformations with close RMSDs can be minimized into different minima, while the conformations with large RMSDs could be minimized into the same basin. However, the relaxation timescales calculated based on the transition matrices built from the micro clusters are similar. The discrepancy at the micro cluster level leads to different macro clusters. Although the dynamic models established through both clustering methods are validated approximately Markovian, the IS approach seems to give a meaningful state space discretization at the macro cluster level. PMID:26915811

  3. Recovery from Maunder-like Grand Minima in a Babcock–Leighton Solar Dynamo Model

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Miesch, Mark

    2018-06-01

    The Sun occasionally goes through Maunder-like extended grand minima when its magnetic activity drops considerably from the normal activity level for several decades. Many possible theories have been proposed to explain the origin of these minima. However, how the Sun managed to recover from such inactive phases every time is even more enigmatic. The Babcock–Leighton type dynamos, which are successful in explaining many features of the solar cycle remarkably well, are not expected to operate during grand minima due to the lack of a sufficient number of sunspots. In this Letter, we explore the question of how the Sun could recover from grand minima through the Babcock–Leighton dynamo. In our three-dimensional dynamo model, grand minima are produced spontaneously as a result of random variations in the tilt angle of emerging active regions. We find that the Babcock–Leighton process can still operate during grand minima with only a minimal number of sunspots, and that the model can emerge from such phases without the need for an additional generation mechanism for the poloidal field. The essential ingredient in our model is a downward magnetic pumping, which inhibits the diffusion of the magnetic flux across the solar surface.

  4. Inherent structure versus geometric metric for state space discretization.

    PubMed

    Liu, Hanzhong; Li, Minghai; Fan, Jue; Huo, Shuanghong

    2016-05-30

    Inherent structure (IS) and geometry-based clustering methods are commonly used for analyzing molecular dynamics trajectories. ISs are obtained by minimizing the sampled conformations into local minima on potential/effective energy surface. The conformations that are minimized into the same energy basin belong to one cluster. We investigate the influence of the applications of these two methods of trajectory decomposition on our understanding of the thermodynamics and kinetics of alanine tetrapeptide. We find that at the microcluster level, the IS approach and root-mean-square deviation (RMSD)-based clustering method give totally different results. Depending on the local features of energy landscape, the conformations with close RMSDs can be minimized into different minima, while the conformations with large RMSDs could be minimized into the same basin. However, the relaxation timescales calculated based on the transition matrices built from the microclusters are similar. The discrepancy at the microcluster level leads to different macroclusters. Although the dynamic models established through both clustering methods are validated approximately Markovian, the IS approach seems to give a meaningful state space discretization at the macrocluster level in terms of conformational features and kinetics. © 2016 Wiley Periodicals, Inc.

  5. Relative electronic and free energies of octane's unique conformations

    NASA Astrophysics Data System (ADS)

    Kirschner, Karl N.; Heiden, Wolfgang; Reith, Dirk

    2017-06-01

    This study reports the geometries and electronic energies of n-octane's unique conformations using perturbation methods that best mimic CCSD(T) results. In total, the fully optimised minima of n-butane (2 conformations), n-pentane (4 conformations), n-hexane (12 conformations) and n-octane (96 conformations) were investigated at several different theory levels and basis sets. We find that DF-MP2.5/aug-cc-pVTZ is in very good agreement with the more expensive CCSD(T) results. At this level, we can clearly confirm the 96 stable minima which were previously found using a reparameterised density functional theory (DFT). Excellent agreement was found between their DFT results and our DF-MP2.5 perturbation results. Subsequent Gibbs free energy calculations, using scaled MP2/aug-cc-pVTZ zero-point vibrational energy and frequencies, indicate a significant temperature dependency of the relative energies, with a change in the predicted global minimum. The results of this work will be important for future computational investigations of fuel-related octane reactions and for optimisation of molecular force fields (e.g. lipids).

  6. Electrostatically confined quantum rings in bilayer graphene.

    PubMed

    Zarenia, M; Pereira, J M; Peeters, F M; Farias, G A

    2009-12-01

    We propose a new system where electron and hole states are electrostatically confined into a quantum ring in bilayer graphene. These structures can be created by tuning the gap of the graphene bilayer using nanostructured gates or by position-dependent doping. The energy levels have a magnetic field (B(0)) dependence that is strikingly distinct from that of usual semiconductor quantum rings. In particular, the eigenvalues are not invariant under a B(0) --> -B(0) transformation and, for a fixed total angular momentum index m, their field dependence is not parabolic, but displays two minima separated by a saddle point. The spectra also display several anticrossings, which arise due to the overlap of gate-confined and magnetically confined states.

  7. Is There a CME Rate Floor? CME and Magnetic Flux Values for the Last Four Solar Cycle Minima

    NASA Astrophysics Data System (ADS)

    Webb, D. F.; Howard, R. A.; St. Cyr, O. C.; Vourlidas, A.

    2017-12-01

    The recent prolonged activity minimum has led to the question of whether there is a base level of the solar magnetic field evolution that yields a “floor” in activity levels and also in the solar wind magnetic field strength. Recently, a flux transport model coupled with magneto-frictional simulations has been used to simulate the continuous magnetic field evolution in the global solar corona for over 15 years, from 1996 to 2012. Flux rope eruptions in the simulations are estimated (Yeates), and the results are in remarkable agreement with the shape of the SOlar Heliospheric Observatory/Large Angle and Spectrometric Coronagraph Experiment coronal mass ejection (CME) rate distribution. The eruption rates at the two recent minima approximate the observed-corrected CME rates, supporting the idea of a base level of solar magnetic activity. In this paper, we address this issue by comparing annual averages of the CME occurrence rates during the last four solar cycle minima with several tracers of the global solar magnetic field. We conclude that CME activity never ceases during a cycle, but maintains a base level of 1 CME every 1.5 to ∼3 days during minima. We discuss the sources of these CMEs.

  8. Loss surface of XOR artificial neural networks

    NASA Astrophysics Data System (ADS)

    Mehta, Dhagash; Zhao, Xiaojun; Bernal, Edgar A.; Wales, David J.

    2018-05-01

    Training an artificial neural network involves an optimization process over the landscape defined by the cost (loss) as a function of the network parameters. We explore these landscapes using optimization tools developed for potential energy landscapes in molecular science. The number of local minima and transition states (saddle points of index one), as well as the ratio of transition states to minima, grow rapidly with the number of nodes in the network. There is also a strong dependence on the regularization parameter, with the landscape becoming more convex (fewer minima) as the regularization term increases. We demonstrate that in our formulation, stationary points for networks with Nh hidden nodes, including the minimal network required to fit the XOR data, are also stationary points for networks with Nh+1 hidden nodes when all the weights involving the additional node are zero. Hence, smaller networks trained on XOR data are embedded in the landscapes of larger networks. Our results clarify certain aspects of the classification and sensitivity (to perturbations in the input data) of minima and saddle points for this system, and may provide insight into dropout and network compression.

  9. Opportunities and challenges to conserve water on the landscape in snow-dominated forests: The quest for the radiative minima and more...

    NASA Astrophysics Data System (ADS)

    Link, T. E.; Kumar, M.; Pomeroy, J. W.; Seyednasrollah, B.; Ellis, C. R.; Lawler, R.; Essery, R.

    2012-12-01

    In mountainous, forested environments, vegetation exerts a strong control on snowcover dynamics that affect ecohydrological processes, streamflow regimes, and riparian health. Snowcover deposition and ablation patterns in forests are controlled by a complex combination of canopy interception processes coupled with radiative and turbulent heat flux patterns related to topographic and canopy cover variations. In seasonal snow environments, snowcover ablation dynamics in forests are dominated by net radiation. Recent research indicates that in small canopy gaps a net radiation minima relative to both open and forested environments can occur, but depends strongly on solar angle, gap size, slope, canopy height and stem density. The optimal gap size to minimize radiation to snow was estimated to have a diameter between 1 and 2 times the surrounding vegetation height. Physically-based snowmelt simulations indicate that gaps may increase SWE and desynchronize snowmelt by approximately 3 weeks between north and south facing slopes, relative to undisturbed forests. On east and west facing slopes, small gaps cause melt to be slightly delayed relative to intact forests, and have a minimal effect on melt synchronicity between slopes. Recent research focused on canopy thinning also indicates that a net radiation minima occurs in canopies of intermediate densities. Physically-based radiative transfer simulations using a discrete tree-based model indicate that in mid-latitude level forests, the annually-integrated radiative minima occurs at a tree spacing of 2.65 relative to the canopy height. The radiative minima was found to occur in denser forests on south-facing slopes and sparser forests on north-facing slopes. The radiative minimums in thinned forests are controlled by solar angle, crown geometry and density, tree spacing, slope, and aspect. These results indicate that both gap and homogeneous forest thinning may be used to reduce snowmelt rates or alter melt synchronicity, but the exact configuration will be highly spatially variable. Development of management strategies to conserve water on the landscape to enhance forest and riparian health in a changing climate must also rigorously evaluate the effects of canopy thinning and specific hydrometeorological conditions on net radiation, turbulent fluxes, and snow interception processes.

  10. A Test of the Active-Day Fraction Method of Sunspot Group Number Calibration: Dependence on the Level of Solar Activity

    NASA Astrophysics Data System (ADS)

    Willamo, T.; Usoskin, I. G.; Kovaltsov, G. A.

    2018-04-01

    The method of active-day fraction (ADF) was proposed recently to calibrate different solar observers to standard observational conditions. The result of the calibration may depend on the overall level of solar activity during the observational period. This dependency is studied quantitatively using data of the Royal Greenwich Observatory by formally calibrating synthetic pseudo-observers to the full reference dataset. It is shown that the sunspot group number is precisely estimated by the ADF method for periods of moderate activity, may be slightly underestimated by 0.5 - 1.5 groups ({≤} 10%) for strong and very strong activity, and is strongly overestimated by up to 2.5 groups ({≤} 30%) for weak-to-moderate activity. The ADF method becomes inapplicable for the periods of grand minima of activity. In general, the ADF method tends to overestimate the overall level of activity and to reduce the long-term trends.

  11. Weiss oscillations and particle-hole symmetry at the half-filled Landau level

    NASA Astrophysics Data System (ADS)

    Cheung, Alfred K. C.; Raghu, S.; Mulligan, Michael

    2017-06-01

    Particle-hole symmetry in the lowest Landau level of the two-dimensional electron gas requires the electrical Hall conductivity to equal ±e2/2 h at half filling. We study the consequences of weakly broken particle-hole symmetry for magnetoresistance oscillations about half filling in the presence of an applied periodic one-dimensional electrostatic potential using the Dirac composite fermion theory proposed by Son [Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027]. At fixed electron density, the oscillation minima are asymmetrically biased towards higher magnetic fields, while at fixed magnetic field the oscillations occur symmetrically as the electron density is varied about half filling. We find an approximate "sum rule" obeyed for all pairs of oscillation minima that can be tested in experiment. The locations of the magnetoresistance oscillation minima for the composite fermion theory of Halperin, Lee, and Read (HLR) and its particle-hole conjugate agree exactly. Within the current experimental resolution, the locations of the oscillation minima produced by the Dirac composite fermion coincide with those of HLR. These results may indicate that all three composite fermion theories describe the same long-wavelength physics.

  12. Weiss oscillations and particle-hole symmetry at the half-filled Landau level

    DOE PAGES

    Cheung, Alfred K. C.; Raghu, S.; Mulligan, Michael

    2017-06-15

    Particle-hole symmetry in the lowest Landau level of the two-dimensional electron gas requires the electrical Hall conductivity to equal ± e 2/2h at half filling. Here, we study the consequences of weakly broken particle-hole symmetry for magnetoresistance oscillations about half filling in the presence of an applied periodic one-dimensional electrostatic potential using the Dirac composite fermion theory proposed by Son [Son, Phys. Rev. X 5, 031027 (2015)]. At fixed electron density, the oscillation minima are asymmetrically biased towards higher magnetic fields, while at fixed magnetic field the oscillations occur symmetrically as the electron density is varied about half filling. Wemore » find an approximate “sum rule” obeyed for all pairs of oscillation minima that can be tested in experiment. The locations of the magnetoresistance oscillation minima for the composite fermion theory of Halperin, Lee, and Read (HLR) and its particle-hole conjugate agree exactly. Within the current experimental resolution, the locations of the oscillation minima produced by the Dirac composite fermion coincide with those of HLR. These results may indicate that all three composite fermion theories describe the same long-wavelength physics.« less

  13. Weiss oscillations and particle-hole symmetry at the half-filled Landau level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Alfred K. C.; Raghu, S.; Mulligan, Michael

    Particle-hole symmetry in the lowest Landau level of the two-dimensional electron gas requires the electrical Hall conductivity to equal ± e 2/2h at half filling. Here, we study the consequences of weakly broken particle-hole symmetry for magnetoresistance oscillations about half filling in the presence of an applied periodic one-dimensional electrostatic potential using the Dirac composite fermion theory proposed by Son [Son, Phys. Rev. X 5, 031027 (2015)]. At fixed electron density, the oscillation minima are asymmetrically biased towards higher magnetic fields, while at fixed magnetic field the oscillations occur symmetrically as the electron density is varied about half filling. Wemore » find an approximate “sum rule” obeyed for all pairs of oscillation minima that can be tested in experiment. The locations of the magnetoresistance oscillation minima for the composite fermion theory of Halperin, Lee, and Read (HLR) and its particle-hole conjugate agree exactly. Within the current experimental resolution, the locations of the oscillation minima produced by the Dirac composite fermion coincide with those of HLR. These results may indicate that all three composite fermion theories describe the same long-wavelength physics.« less

  14. CHARACTERISTICS OF SOLAR MERIDIONAL FLOWS DURING SOLAR CYCLE 23

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, Sarbani; Antia, H. M., E-mail: sarbani.basu@yale.ed, E-mail: antia@tifr.res.i

    2010-07-01

    We have analyzed available full-disk data from the Michelson Doppler Imager on board SOHO using the 'ring diagram' technique to determine the behavior of solar meridional flows over solar cycle 23 in the outer 2% of the solar radius. We find that the dominant component of meridional flows during solar maximum was much lower than that during the minima at the beginning of cycles 23 and 24. There were differences in the flow velocities even between the two minima. The meridional flows show a migrating pattern with higher-velocity flows migrating toward the equator as activity increases. Additionally, we find thatmore » the migrating pattern of the meridional flow matches those of sunspot butterfly diagram and the zonal flows in the shallow layers. A high-latitude band in meridional flow appears around 2004, well before the current activity minimum. A Legendre polynomial decomposition of the meridional flows shows that the latitudinal pattern of the flow was also different during the maximum as compared to that during the two minima. The different components of the flow have different time dependences, and the dependence is different at different depths.« less

  15. A fucoidan fraction purified from Chnoospora minima; a potential inhibitor of LPS-induced inflammatory responses.

    PubMed

    Fernando, I P Shanura; Sanjeewa, K K Asanka; Samarakoon, Kalpa W; Lee, Won Woo; Kim, Hyun-Soo; Kang, Nalae; Ranasinghe, P; Lee, Hyi-Seung; Jeon, You-Jin

    2017-11-01

    Fucoidans are an interesting group of bioactive sulfated polysaccharides abundant in brown seaweeds. The current study highlights the enrichment and extraction of fucoidan from Chnoospora minima by means of enzyme-assistant extraction using Celluclast and evaluation of its anti-inflammatory potential through in vitro and in vivo studies. The purified C. minima fucoidan (F2,4) inhibited the nitrous oxide (NO) production (IC 50 =27.82±0.88μg/ml) and expression of PGE 2 through the subsequent downregulation of iNOS and COX-2 expression in lipopolysaccharide (LPS) stimulated RAW 264.7 macrophages. F2,4 downregulated TNF-α, IL1-β, and IL-6 in RAW 264.7 macrophages in a dose-dependent manner and suppressed NO and ROS production in LPS stimulated zebrafish embryos while exerting a protective effect against the cell damage caused by LPS. Polysaccharide structural characterization was performed using FTIR, HPAE-PAD analysis of the monosaccharide content and NMR spectroscopy. Current findings confirm the potential anti-inflammatory activity of fucoidan purified from C. minima and elaborate its potential application as a functional ingredient in consumer products. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. [Interactions of DNA bases with individual water molecules. Molecular mechanics and quantum mechanics computation results vs. experimental data].

    PubMed

    Gonzalez, E; Lino, J; Deriabina, A; Herrera, J N F; Poltev, V I

    2013-01-01

    To elucidate details of the DNA-water interactions we performed the calculations and systemaitic search for minima of interaction energy of the systems consisting of one of DNA bases and one or two water molecules. The results of calculations using two force fields of molecular mechanics (MM) and correlated ab initio method MP2/6-31G(d, p) of quantum mechanics (QM) have been compared with one another and with experimental data. The calculations demonstrated a qualitative agreement between geometry characteristics of the most of local energy minima obtained via different methods. The deepest minima revealed by MM and QM methods correspond to water molecule position between two neighbor hydrophilic centers of the base and to the formation by water molecule of hydrogen bonds with them. Nevertheless, the relative depth of some minima and peculiarities of mutual water-base positions in' these minima depend on the method used. The analysis revealed insignificance of some differences in the results of calculations performed via different methods and the importance of other ones for the description of DNA hydration. The calculations via MM methods enable us to reproduce quantitatively all the experimental data on the enthalpies of complex formation of single water molecule with the set of mono-, di-, and trimethylated bases, as well as on water molecule locations near base hydrophilic atoms in the crystals of DNA duplex fragments, while some of these data cannot be rationalized by QM calculations.

  17. Comparison of PSF maxima and minima of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems

    NASA Astrophysics Data System (ADS)

    Ratnam, Challa; Lakshmana Rao, Vadlamudi; Lachaa Goud, Sivagouni

    2006-10-01

    In the present paper, and a series of papers to follow, the Fourier analytical properties of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems are investigated. First, the transmission function for MACA and CMACA is derived using Fourier methods and, based on the Fresnel-Kirchoff diffraction theory, the formulae for the point spread function are formulated. The PSF maxima and minima are calculated for both the MACA and CMACA systems. The dependence of these properties on the number of zones is studied and reported in this paper.

  18. Optical levitation of absorbing particles with a nominally Gaussian laser beam.

    PubMed

    Huisken, Jan; Stelzer, Ernst H K

    2002-07-15

    We use a Gaussian laser beam to study the levitation of absorbing Mie particles. Several metal oxide particles are stably levitated, and their movement over time is recorded. Our studies show that the position of each particle is highly dependent on the other particles' locations. The observations are explained by the phenomenon of thermal creep. The increased local pressure that is due to a temperature gradient along the particle's surface induces levitation. The particles rest close to minima in the intensity distribution near the optical axis. An experiment is suggested that can be used to locate these minima in a laser beam.

  19. Grand minima of solar activity and sociodynamics of culture

    NASA Astrophysics Data System (ADS)

    Vladimirsky, B. M.

    2012-12-01

    Indices of creative productivity introduced by C. Murrey were used to verify S. Ertel's conclusion about a global increase in creative productivity during the prolonged minimum of solar activity in 1640-1710. It was found that these indices for mathematicians, philosophers, and scientists increase in the Maunder era by factor of 1.6 in comparison with intervals of the same length before and after the minimum. A similar effect was obtained for mathematicians and philosophers for five earlier equitype minima in total (an increase by a factor of 1.9). The regularity that is revealed is confirmed by the fact that the most important achievements of high-ranking mathematicians and philosophers during the whole time period (2300 years) considered in this study fall on epochs of reduced levels of solar activity. The rise in the probability of the generation of rational ideas during grand minima is reflected also in the fact that they precede the appearance of written language and farming. Ultra-low-frequency electromagnetic fields appear to serve as a physical agent stimulating the activity of the brain's left hemisphere during the epochs of minima.

  20. Hierarchical structure of the energy landscape of proteins revisited by time series analysis. II. Investigation of explicit solvent effects

    NASA Astrophysics Data System (ADS)

    Alakent, Burak; Camurdan, Mehmet C.; Doruker, Pemra

    2005-10-01

    Time series analysis tools are employed on the principal modes obtained from the Cα trajectories from two independent molecular-dynamics simulations of α-amylase inhibitor (tendamistat). Fluctuations inside an energy minimum (intraminimum motions), transitions between minima (interminimum motions), and relaxations in different hierarchical energy levels are investigated and compared with those encountered in vacuum by using different sampling window sizes and intervals. The low-frequency low-indexed mode relationship, established in vacuum, is also encountered in water, which shows the reliability of the important dynamics information offered by principal components analysis in water. It has been shown that examining a short data collection period (100ps) may result in a high population of overdamped modes, while some of the low-frequency oscillations (<10cm-1) can be captured in water by using a longer data collection period (1200ps). Simultaneous analysis of short and long sampling window sizes gives the following picture of the effect of water on protein dynamics. Water makes the protein lose its memory: future conformations are less dependent on previous conformations due to the lowering of energy barriers in hierarchical levels of the energy landscape. In short-time dynamics (<10ps), damping factors extracted from time series model parameters are lowered. For tendamistat, the friction coefficient in the Langevin equation is found to be around 40-60cm-1 for the low-indexed modes, compatible with literature. The fact that water has increased the friction and that on the other hand has lubrication effect at first sight contradicts. However, this comes about because water enhances the transitions between minima and forces the protein to reduce its already inherent inability to maintain oscillations observed in vacuum. Some of the frequencies lower than 10cm-1 are found to be overdamped, while those higher than 20cm-1 are slightly increased. As for the long-time dynamics in water, it is found that random-walk motion is maintained for approximately 200ps (about five times of that in vacuum) in the low-indexed modes, showing the lowering of energy barriers between the higher-level minima.

  1. Time-dependent local density approximation study of iodine photoionization delay

    NASA Astrophysics Data System (ADS)

    Magrakvelidze, Maia; Chakraborty, Himadri

    2017-04-01

    We investigate dipole quantum phases and Wigner-Smith (WS) time delays in the photoionization of iodine using Kohn-Sham time-dependent local density approximation (TDLDA) with the Leeuwen and Baerends exchange-correlation functional. Study of the effects of electron correlations on the absolute as well as relative delays in emissions from both valence 5p and 5s, and core 4d, 4p and 4s levels has been carried out. Particular emphasis is paid to unravel the role of correlations to induce structures in the delay as a function of energy at resonances and Cooper minima. The results should encourage attosecond measurements of iodine photoemission and probe the WS-temporal landscape of an open-shell atomic system. This work was supported by the U.S. National Science Foundation.

  2. A Change in the Solar He II EUV Global Network Structure as an Indicator of the Geo-Effectiveness of Solar Minima

    NASA Technical Reports Server (NTRS)

    Didkovsky, L.; Gurman, J. B.

    2013-01-01

    Solar activity during 2007 - 2009 was very low, causing anomalously low thermospheric density. A comparison of solar extreme ultraviolet (EUV) irradiance in the He II spectral band (26 to 34 nm) from the Solar Extreme ultraviolet Monitor (SEM), one of instruments on the Charge Element and Isotope Analysis System (CELIAS) on board the Solar and Heliospheric Observatory (SOHO) for the two latest solar minima showed a decrease of the absolute irradiance of about 15 +/- 6 % during the solar minimum between Cycles 23 and 24 compared with the Cycle 22/23 minimum when a yearly running-mean filter was used. We found that some local, shorter-term minima including those with the same absolute EUV flux in the SEM spectral band show a higher concentration of spatial power in the global network structure from the 30.4 nm SOHO/Extreme ultraviolet Imaging Telescope (EIT) images for the local minimum of 1996 compared with the minima of 2008 - 2011.We interpret this higher concentration of spatial power in the transition region's global network structure as a larger number of larger-area features on the solar disk. These changes in the global network structure during solar minima may characterize, in part, the geo-effectiveness of the solar He II EUV irradiance in addition to the estimations based on its absolute levels.

  3. The role of volcanic aerosols and relativistic electrons in modulating winter storm vorticity

    NASA Astrophysics Data System (ADS)

    Tinsley, Brian A.; Zhou, Limin; Liu, Weiping

    2012-09-01

    Small changes in the vorticity of winter storms, responding to solar wind variations, are found in winters from 1957 to 2011, and are greater for winters with higher levels of stratospheric volcanic aerosols. Using 1993-2011 data, the response of the vorticity area index (VAI) is shown to be of larger amplitude when the days of minima in the relativistic electron flux (REF) precipitating from the radiation belts are used, instead of heliospheric current sheet (HCS) crossings, as key days in superposed epoch analyses. The HCS crossings mostly occur within a few days of the REF minima. The VAI is an objective measure of the area of high cyclonic vorticity, and for the present work is derived from ERA-40 and ERA-Interim reanalyses of global meteorological data. The VAI dependencies on the stratospheric aerosol content (SAC) and the REF are consistent with a model in which the ionosphere-earth current density (Jz) affects cloud microphysics. One of the ways in which Jz is modulated is by changes in stratospheric column resistance (S), which is increased by stratospheric aerosols. Because S is in series with the tropospheric column resistance (T), Jz modulation by REF requires that S be not negligible with respect to T. So the Jz modulation and the VAI response appear when the SAC is very high, or the REF reductions (which also increase S) are very deep, and when the product of the SAC and the reciprocal of the REF exceeds a threshold value dependent on T.

  4. Sampling the energy landscape of Pt13 with metadynamics

    NASA Astrophysics Data System (ADS)

    Pavan, Luca; Di Paola, Cono; Baletto, Francesca

    2013-02-01

    The potential energy surface of a metallic nanoparticle formed by 13 atoms of platinum is efficiently explored using metadynamics in combination with empirical potential molecular dynamics. The scenario obtained is wider and more complex of what was previously reported: more than thirty independent energy basins are found, corresponding to different local minima of Pt. It is demonstrated that in almost all the cases these motifs are local minima even at ab-initio level, hence proving the effectiveness of the method to sample the energy landscape. A classification of the minima in structural families is proposed, and a discussion regarding the shape and the connections between energy basins is reported. ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters, edited by Kristiaan Temst, Margriet J. Van Bael, Ewald Janssens, H.-G. Boyen and Françoise Remacle.

  5. Ecological-floristic analysis of soil algae and cyanobacteria on the Tra-Tau and Yurak-Tau Mounts, Bashkiria

    NASA Astrophysics Data System (ADS)

    Bakieva, G. R.; Khaibullina, L. S.; Gaisina, L. A.; Kabirov, R. R.

    2012-09-01

    The species composition of the soil algae and cyanobacteria in the Tra-Tau and Yurak-Tau mountains is represented by 136 species belonging to five phyla: Cyanobacteria (56 species), Chlorophyta (52 species), Xanthophyta (13 species), Bacillariophyta (12 species), and Eustigmatophyta (3 species). Hantzschia amphioxys var. amphioxys, Hantzschia amphioxys var. constricta, Klebsormidium flaccidum, Leptolyngbya foveolarum, Luticola mutica, Navicula minima var. minima, Nostoc punctiforme, Phormidium jadinianum, Phormidium autumnale, and Pinnularia borealis were identified more often than other species. The composition of the algal flora depended on the soil properties; the higher plants also had a significant influence on the species composition of the soil algae.

  6. Theory after experiment on sensing mechanism of a newly developed sensor molecule: Converging or diverging?

    NASA Astrophysics Data System (ADS)

    Paul, Suvendu; Karar, Monaj; Das, Biswajit; Mallick, Arabinda; Majumdar, Tapas

    2017-12-01

    Fluoride ion sensing mechanism of 3,3‧-bis(indolyl)-4-chlorophenylmethane has been analyzed with density functional and time-dependent density functional theories. Extensive theoretical calculations on molecular geometry & energy, charge distribution, orbital energies & electronic distribution, minima on potential energy surface confirmed strong hydrogen bonded sensor-anion complex with incomplete proton transfer in S0. In S1, strong hydrogen bonding extended towards complete ESDPT. The distinct and single minima on the PES of the sensor-anion complex for both ground and first singlet excited states confirmed the concerted proton transfer mechanism. Present study well reproduced the experimental spectroscopic data and provided ESDPT as probable fluoride sensing mechanism.

  7. Evidence for the coexistence of an anisotropic superconducting gap and nonlocal effects in the nonmagnetic superconductor LuNi2B2C.

    PubMed

    Park, Tuson; Chia, Elbert E M; Salamon, M B; Bauer, E D; Vekhter, I; Thompson, J D; Choi, Eun Mi; Kim, Heon Jung; Lee, Sung-Ik; Canfield, P C

    2004-06-11

    A study of the dependence of the heat capacity C(p)(alpha) on the field angle in LuNi2B2C reveals an anomalous disorder effect. For pure samples, C(p)(alpha) exhibits a fourfold variation as the field H (alpha=0). A slightly disordered sample, however, develops anomalous secondary minima along <110> for mu(0)H>1 T, leading to an eightfold pattern at 2 K and 1.5 T. The anomalous pattern is discussed in terms of coexisting superconducting gap anisotropy and nonlocal effects.

  8. Exploring conformational preferences of alanine tetrapeptide by CCSD(T), MP2, and dispersion-corrected DFT methods

    NASA Astrophysics Data System (ADS)

    Kang, Young Kee; Park, Hae Sook

    2018-06-01

    The 129 local minima of the alanine tetrapeptide with relative energy < 10 kcal/mol were identified at the ωB97X-D/6-311++G(d,p) level of theory from initial structures generated by combining nine local minima of each residue. The CCSD(T), MP2, and dispersion-corrected DFT levels of theory with various basis sets were assessed for relative energies of the 24 representative conformations. The best performance was obtained at the double-hybrid DSD-PBEP86-D3BJ/def2-QZVP level of theory with RMSD = 0.12 kcal/mol against the CCSD(T)/CBS-limit energies. The ωB97X-D/def2-QZVP and CAM-B3LYP-D3BJ/def2-QZVP levels of theory can be an alternative level of theory with marginal deviations for conformational study of peptides.

  9. Multidimensionally constrained relativistic mean-field study of triple-humped barriers in actinides

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Lu, Bing-Nan; Vretenar, Dario; Zhao, En-Guang; Zhou, Shan-Gui

    2015-01-01

    Background: Potential energy surfaces (PES's) of actinide nuclei are characterized by a two-humped barrier structure. At large deformations beyond the second barrier, the occurrence of a third barrier was predicted by macroscopic-microscopic model calculations in the 1970s, but contradictory results were later reported by a number of studies that used different methods. Purpose: Triple-humped barriers in actinide nuclei are investigated in the framework of covariant density functional theory (CDFT). Methods: Calculations are performed using the multidimensionally constrained relativistic mean field (MDC-RMF) model, with the nonlinear point-coupling functional PC-PK1 and the density-dependent meson exchange functional DD-ME2 in the particle-hole channel. Pairing correlations are treated in the BCS approximation with a separable pairing force of finite range. Results: Two-dimensional PES's of 226,228,230,232Th and 232,235,236,238U are mapped and the third minima on these surfaces are located. Then one-dimensional potential energy curves along the fission path are analyzed in detail and the energies of the second barrier, the third minimum, and the third barrier are determined. The functional DD-ME2 predicts the occurrence of a third barrier in all Th nuclei and 238U . The third minima in 230 ,232Th are very shallow, whereas those in 226 ,228Th and 238U are quite prominent. With the functional PC-PK1 a third barrier is found only in 226 ,228 ,230Th . Single-nucleon levels around the Fermi surface are analyzed in 226Th, and it is found that the formation of the third minimum is mainly due to the Z =90 proton energy gap at β20≈1.5 and β30≈0.7 . Conclusions: The possible occurrence of a third barrier on the PES's of actinide nuclei depends on the effective interaction used in multidimensional CDFT calculations. More pronounced minima are predicted by the DD-ME2 functional, as compared to the functional PC-PK1. The depth of the third well in Th isotopes decreases with increasing neutron number. The origin of the third minimum is due to the proton Z =90 shell gap at relevant deformations.

  10. Ab initio Study on Ionization Energies of 3-Amino-1-propanol

    NASA Astrophysics Data System (ADS)

    Wang, Ke-dong; Jia, Ying-bin; Lai, Zhen-jiang; Liu, Yu-fang

    2011-06-01

    Fourteen conformers of 3-amino-1-propanol as the minima on the potential energy surface are examined at the MP2/6-311++G** level. Their relative energies calculated at B3LYP, MP3 and MP4 levels of theory indicated that two most stable conformers display the intramolecular OH···N hydrogen bonds. The vertical ionization energies of these conformers calculated with ab initio electron propagator theory in the P3/aug-cc-pVTZ approximation are in agreement with experimental data from photoelectron spectroscopy. Natural bond orbital analyses were used to explain the differences of IEs of the highest occupied molecular ortibal of conformers. Combined with statistical mechanics principles, conformational distributions at various temperatures are obtained and the temperature dependence of photoelectron spectra is interpreted.

  11. On the origin of a very close similarity between the spectra of the supernova type 1 in NGC 3198 and the absorption of DQ HeR

    NASA Technical Reports Server (NTRS)

    Mustel, E. R.

    1979-01-01

    The type 1 supernova discovered late in 1966 in NGC 3198 has broad minima in its spectrum break down into a number of significantly narrower absorption bands. The broad minima of tau, sigma and mu, which usually show no details in the spectra of type supernovas, contain a number of narrow absorption bands. The reality of most of these absorption bands is demonstrated by comparison of recordings of spectra of the supernova presented for two moments in time. These minima (particularly of tau and mu,) are a result of blending of several broad absorption bands. The minimum of tau should be a blend of intensive and very broad Fe absorption lines, in which the lower level is metastable. The wavelengths of these line are: 5169, 5198, 5235, 5276, 5317, 5363A.

  12. Energy Landscape of Social Balance

    NASA Astrophysics Data System (ADS)

    Marvel, Seth A.; Strogatz, Steven H.; Kleinberg, Jon M.

    2009-11-01

    We model a close-knit community of friends and enemies as a fully connected network with positive and negative signs on its edges. Theories from social psychology suggest that certain sign patterns are more stable than others. This notion of social “balance” allows us to define an energy landscape for such networks. Its structure is complex: numerical experiments reveal a landscape dimpled with local minima of widely varying energy levels. We derive rigorous bounds on the energies of these local minima and prove that they have a modular structure that can be used to classify them.

  13. Effect of local minima on adiabatic quantum optimization.

    PubMed

    Amin, M H S

    2008-04-04

    We present a perturbative method to estimate the spectral gap for adiabatic quantum optimization, based on the structure of the energy levels in the problem Hamiltonian. We show that, for problems that have an exponentially large number of local minima close to the global minimum, the gap becomes exponentially small making the computation time exponentially long. The quantum advantage of adiabatic quantum computation may then be accessed only via the local adiabatic evolution, which requires phase coherence throughout the evolution and knowledge of the spectrum. Such problems, therefore, are not suitable for adiabatic quantum computation.

  14. Energy landscape of social balance.

    PubMed

    Marvel, Seth A; Strogatz, Steven H; Kleinberg, Jon M

    2009-11-06

    We model a close-knit community of friends and enemies as a fully connected network with positive and negative signs on its edges. Theories from social psychology suggest that certain sign patterns are more stable than others. This notion of social "balance" allows us to define an energy landscape for such networks. Its structure is complex: numerical experiments reveal a landscape dimpled with local minima of widely varying energy levels. We derive rigorous bounds on the energies of these local minima and prove that they have a modular structure that can be used to classify them.

  15. Molecular alignment dependent electron interference in attosecond ultraviolet photoionization

    PubMed Central

    Yuan, Kai-Jun; Bandrauk, André D.

    2015-01-01

    We present molecular photoionization processes by intense attosecond ultraviolet laser pulses from numerical solutions of time-dependent Schrödinger equations. Simulations preformed on a single electron diatomic H2+ show minima in molecular photoelectron energy spectra resulting from two center interference effects which depend strongly on molecular alignment. We attribute such sensitivity to the spatial orientation asymmetry of the photoionization process from the two nuclei. A similar influence on photoelectron kinetic energies is also presented. PMID:26798785

  16. Inhomogeneous screening of gate electric field by interface states in graphene FETs

    NASA Astrophysics Data System (ADS)

    Singh, Anil Kumar; Gupta, Anjan Kumar

    2017-09-01

    The electronic states at graphene-SiO2 interface and their inhomogeneity is investigated using the back-gate-voltage dependence of local tunnel spectra acquired with a scanning tunneling microscope. The conductance spectra show two, or occasionally three, minima that evolve along the bias-voltage axis with the back gate voltage. This evolution is modeled using tip-gating and interface states. The energy dependent interface states’ density, Dit(E) , required to model the back-gate evolution of the minima, is found to have significant inhomogeneity in its energy-width. A broad Dit(E) leads to an effect similar to a reduction in the Fermi velocity while the narrow Dit(E) leads to the pinning of the Fermi energy close to the Dirac point, as observed in some places, due to enhanced screening of the gate electric field by the narrow Dit(E) . Finally, this also demonstrates STM as a tool to probe the density of interface states in various 2D Dirac materials.

  17. The role of molecular structure of sugar-phosphate backbone and nucleic acid bases in the formation of single-stranded and double-stranded DNA structures.

    PubMed

    Poltev, Valeri; Anisimov, Victor M; Danilov, Victor I; Garcia, Dolores; Sanchez, Carolina; Deriabina, Alexandra; Gonzalez, Eduardo; Rivas, Francisco; Polteva, Nina

    2014-06-01

    Our previous DFT computations of deoxydinucleoside monophosphate complexes with Na(+)-ions (dDMPs) have demonstrated that the main characteristics of Watson-Crick (WC) right-handed duplex families are predefined in the local energy minima of dDMPs. In this work, we study the mechanisms of contribution of chemically monotonous sugar-phosphate backbone and the bases into the double helix irregularity. Geometry optimization of sugar-phosphate backbone produces energy minima matching the WC DNA conformations. Studying the conformational variability of dDMPs in response to sequence permutation, we found that simple replacement of bases in the previously fully optimized dDMPs, e.g. by constructing Pyr-Pur from Pur-Pyr, and Pur-Pyr from Pyr-Pur sequences, while retaining the backbone geometry, automatically produces the mutual base position characteristic of the target sequence. Based on that, we infer that the directionality and the preferable regions of the sugar-phosphate torsions, combined with the difference of purines from pyrimidines in ring shape, determines the sequence dependence of the structure of WC DNA. No such sequence dependence exists in dDMPs corresponding to other DNA conformations (e.g., Z-family and Hoogsteen duplexes). Unlike other duplexes, WC helix is unique by its ability to match the local energy minima of the free single strand to the preferable conformations of the duplex. Copyright © 2013 Wiley Periodicals, Inc.

  18. Including Thermal Fluctuations in Actomyosin Stable States Increases the Predicted Force per Motor and Macroscopic Efficiency in Muscle Modelling

    PubMed Central

    2016-01-01

    Muscle contractions are generated by cyclical interactions of myosin heads with actin filaments to form the actomyosin complex. To simulate actomyosin complex stable states, mathematical models usually define an energy landscape with a corresponding number of wells. The jumps between these wells are defined through rate constants. Almost all previous models assign these wells an infinite sharpness by imposing a relatively simple expression for the detailed balance, i.e., the ratio of the rate constants depends exponentially on the sole myosin elastic energy. Physically, this assumption corresponds to neglecting thermal fluctuations in the actomyosin complex stable states. By comparing three mathematical models, we examine the extent to which this hypothesis affects muscle model predictions at the single cross-bridge, single fiber, and organ levels in a ceteris paribus analysis. We show that including fluctuations in stable states allows the lever arm of the myosin to easily and dynamically explore all possible minima in the energy landscape, generating several backward and forward jumps between states during the lifetime of the actomyosin complex, whereas the infinitely sharp minima case is characterized by fewer jumps between states. Moreover, the analysis predicts that thermal fluctuations enable a more efficient contraction mechanism, in which a higher force is sustained by fewer attached cross-bridges. PMID:27626630

  19. Antioxidant and anti-inflammatory activities of aqueous extract of Centipeda minima.

    PubMed

    Huang, Shyh-Shyun; Chiu, Chuan-Sung; Lin, Tsung-Hui; Lee, Min-Min; Lee, Chao-Ying; Chang, Shu-Jen; Hou, Wen-Chi; Huang, Guan-Jhong; Deng, Jeng-Shyan

    2013-05-20

    Centipeda minima (L.) is traditionally used in Chinese folk medicine for the treatments of rhinitis, sinusitis, relieving pain, reducing swelling, and treating cancer for a long history in Taiwan. However, there is no scientific evidence which supports the use in the literature. The aim of this study was to evaluate the antioxidant and anti-inflammatory activities of the aqueous extract of Centipeda minima (ACM). The following activities were investigated: antioxidant activities [2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), DPPH (1,1-diphenyl-2-picrylhydrazyl)], and anti-inflammatory [lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW264.7 macrophages and paw-edema induced by λ-carrageenan (Carr)]. We also investigated the anti-inflammatory mechanism of ACM via studies of the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) and the levels of malondialdehyde (MDA) in the edema paw. Serum NO, tumor necrosis factor α (TNF-α), and interleukin-1β (IL-1β) were also measured in vivo. In HPLC analysis, the fingerprint chromatogram of ACM was established. ACM showed the highest TEAC and DPPH radical scavenging activities, respectively. ACM also had highest contents of polyphenol and flavonoid contents. We evaluated that ACM and the reference compound of protocatechualdehyde and caffeic acid decreased the LPS-induced NO production in RAW264.7 cells. Administration of ACM showed a concentration dependent inhibition on paw edema development after Carr treatment in mice. The anti-inflammatory effects of ACM could be via NO, TNF-α, and IL-1β suppressions and associated with the increase in the activities of antioxidant enzymes. Western blotting revealed that ACM decreased Carr-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions. Anti-inflammatory mechanisms of ACM might be correlated to the decrease in the level of Malondialdehyde (MDA), iNOS, and COX-2 via increasing the activities of CAT, SOD, and GPx in the edema paw. Overall, the results showed that ACM demonstrated antioxidant and anti-inflammatory activity, which supports previous claims of the traditional use for inflammation and pain. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Analysis of B3LYP and MP2 conformational population distributions in trans-nicotine, acetylcholine, and ABT-594

    NASA Astrophysics Data System (ADS)

    Mora, M.; Castro, M. E.; Niño, A.; Melendez, F. J.; Muñoz-Caro, C.

    This work presents an analysis of the equivalence of MP2 and DFT (B3LYP functional) conformational populations. As a test case, we select three cholinergic agents (trans-nicotine, acetylcholine, and the nicotinic analgesic ABT-594), where the minima on the conformational energy hypersurfaces expand a large range of energies (˜0-30 kJ mol-1). From energetic and structural data obtained in vacuo at the MP2 and B3LYP/cc-pVDZ levels, we build conformational partition functions, including the effect of the conformational kinetic energy and the rotovibrational coupling. Our results at a physiological temperature (37°C) show qualitative agreement in all cases. Quantitative agreement, however, is only found for trans-nicotine and ABT-594. In the first case, energy minima differ by <0.2 kJ mol-1. Therefore, the equivalence of structural results translates in the equivalence of the conformational distribution. For ABT-594, the minima are separated by as much as 8.0 kJ mol-1, and the conformational energy determines the conformational distribution. In this case, the slight relative variation of conformational energy, between B3LYP and MP2, does not affect the population, since the secondary minima are high in energy and very low in population.

  1. Automatic Dependent Surveillance Benefit and Cost Analysis

    DTIC Science & Technology

    1990-11-01

    North Amarica -Caribbean flow on routes west of Puerto Rico or proximate to Puerto Rico would receive full ADS-supported reduced separation minima...from - South/Central Pacific Ocean (HAW - S/C PAC) Ś. Alaska - to/from - North Amarica /West (AK - NAM/WEST) 7. Asia - to/from - Alaska (ASIA - AK) 8

  2. On the optimization of mitred overlaps in transformer cores

    NASA Astrophysics Data System (ADS)

    Bengtsson, C.; Pfützner, H.; Schönhuber, P.

    1989-05-01

    The influence of the overlap length a on the no-load loss P and excitation power S of single phase model cores was measured for different sheet widths w. It was found that the optimum overlap length a0 shows a non-linear increase with w. The appearance of such minima, however, was irregular, and in many cases, the lowest no-load loss was obtained at the smallest investigated overlap length, an effect which may result from the assembling conditions. Minima in P will appear as a consequence of a balance between loss contributions resulting from normal flux in the overlap region, from increased longitudinal flux due to flux transfer between sheets, and from the triangular cut-outs at the inner corners of the cores. However, the dependence of a0 on w is attributed only to the triangular cut-outs. The flatness of the minima in combination with their irregular appearance, makes the effect difficult to be used in practice. It is concluded that in power transformers, the overlap length should be chosen as small as possible within the limitations set by stability requirements of the core. This is especially important in cores with a high operating flux density.

  3. Effect of electron-phonon coupling on energy and density of states renormalizations of dynamically screened graphene

    NASA Astrophysics Data System (ADS)

    Leblanc, J. P. F.; Carbotte, J. P.; Nicol, E. J.

    2012-02-01

    Motivated by recent tunneling and angle-resolved photoemission (ARPES) work [1,2], we explore the combined effect of electron-electron and electron-phonon couplings on the renormalized energy dispersion, the spectral function, and the density of states of doped graphene. We find that the plasmarons seen in ARPES are also observable in the density of states and appear as structures with quadratic dependence on energy about the minima. Further, we illustrate how knowledge of the slopes of both the density of states and the renormalized dispersion near the Fermi level can allow for the separation of momentum and frequency dependent renormalizations to the Fermi velocity. This analysis should allow for the isolation of the renormalization due to the electron-phonon interaction from that of the electron-electron interaction. [4pt] [1] Brar et al. Phys. Rev. Lett. 104, 036805 (2010) [2] Bostwick et al. Science 328, p.999 (2010)

  4. Implications of Extended Solar Minima

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Davis, J. M.

    2009-01-01

    Since the discovery of periodicity in the solar cycle, the historical record of sunspot number has been carefully examined, attempting to make predictions about the next cycle. Much emphasis has been on predicting the maximum amplitude and length of the next cycle. Because current space-based and suborbital instruments are designed to study active phenomena, there is considerable interest in estimating the length and depth of the current minimum. We have developed criteria for the definition of a minimum and applied it to the historical sunspot record starting in 1749. In doing so, we find that 1) the current minimum is not yet unusually long and 2) there is no obvious way of predicting when, using our definition, the current minimum may end. However, by grouping the data into 22- year cycles there is an interesting pattern of extended minima that recurs every fourth or fifth 22-year cycle. A preliminary comparison of this pattern with other records, suggests the possibility of a correlation between extended minima and lower levels of solar irradiance.

  5. Recent Minima of 171 Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Samolyk, G.

    2015-12-01

    This paper continues the publication of times of minima for 171 eclipsing binary stars from observations reported to the AAVSO EB section. Times of minima from observations received by the author from March 2015 thru October 2015 are presented.

  6. Description of third instars of Cochliomyia minima (Diptera: Calliphoridae) from West Indies, and updated identification key.

    PubMed

    Yusseff-Vanegas, S

    2014-09-01

    The blow fly Cochliomyia minima Shannon is endemic to the Caribbean, and it has great potential for forensic applications because of its abundance and broad distribution in the region. However, its larval stages are unknown. Here, I update previously published identification keys by describing for the first time the morphology of C. minima larvae. The larvae of C. minima are found to be very similar to those of Cochliomyia macellaria F., but the former can be easily identified by the oral sclerite completely pigmented, visible as a spike between mouth hooks. The description of C. minima larvae in this study will be useful to forensic scientists in the Caribbean region.

  7. Chemical dynamics between wells across a time-dependent barrier: Self-similarity in the Lagrangian descriptor and reactive basins.

    PubMed

    Junginger, Andrej; Duvenbeck, Lennart; Feldmaier, Matthias; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto

    2017-08-14

    In chemical or physical reaction dynamics, it is essential to distinguish precisely between reactants and products for all times. This task is especially demanding in time-dependent or driven systems because therein the dividing surface (DS) between these states often exhibits a nontrivial time-dependence. The so-called transition state (TS) trajectory has been seen to define a DS which is free of recrossings in a large number of one-dimensional reactions across time-dependent barriers and thus, allows one to determine exact reaction rates. A fundamental challenge to applying this method is the construction of the TS trajectory itself. The minimization of Lagrangian descriptors (LDs) provides a general and powerful scheme to obtain that trajectory even when perturbation theory fails. Both approaches encounter possible breakdowns when the overall potential is bounded, admitting the possibility of returns to the barrier long after the trajectories have reached the product or reactant wells. Such global dynamics cannot be captured by perturbation theory. Meanwhile, in the LD-DS approach, it leads to the emergence of additional local minima which make it difficult to extract the optimal branch associated with the desired TS trajectory. In this work, we illustrate this behavior for a time-dependent double-well potential revealing a self-similar structure of the LD, and we demonstrate how the reflections and side-minima can be addressed by an appropriate modification of the LD associated with the direct rate across the barrier.

  8. Efficient globally optimal segmentation of cells in fluorescence microscopy images using level sets and convex energy functionals.

    PubMed

    Bergeest, Jan-Philip; Rohr, Karl

    2012-10-01

    In high-throughput applications, accurate and efficient segmentation of cells in fluorescence microscopy images is of central importance for the quantification of protein expression and the understanding of cell function. We propose an approach for segmenting cell nuclei which is based on active contours using level sets and convex energy functionals. Compared to previous work, our approach determines the global solution. Thus, the approach does not suffer from local minima and the segmentation result does not depend on the initialization. We consider three different well-known energy functionals for active contour-based segmentation and introduce convex formulations of these functionals. We also suggest a numeric approach for efficiently computing the solution. The performance of our approach has been evaluated using fluorescence microscopy images from different experiments comprising different cell types. We have also performed a quantitative comparison with previous segmentation approaches. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. A parallel competitive Particle Swarm Optimization for non-linear first arrival traveltime tomography and uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Luu, Keurfon; Noble, Mark; Gesret, Alexandrine; Belayouni, Nidhal; Roux, Pierre-François

    2018-04-01

    Seismic traveltime tomography is an optimization problem that requires large computational efforts. Therefore, linearized techniques are commonly used for their low computational cost. These local optimization methods are likely to get trapped in a local minimum as they critically depend on the initial model. On the other hand, global optimization methods based on MCMC are insensitive to the initial model but turn out to be computationally expensive. Particle Swarm Optimization (PSO) is a rather new global optimization approach with few tuning parameters that has shown excellent convergence rates and is straightforwardly parallelizable, allowing a good distribution of the workload. However, while it can traverse several local minima of the evaluated misfit function, classical implementation of PSO can get trapped in local minima at later iterations as particles inertia dim. We propose a Competitive PSO (CPSO) to help particles to escape from local minima with a simple implementation that improves swarm's diversity. The model space can be sampled by running the optimizer multiple times and by keeping all the models explored by the swarms in the different runs. A traveltime tomography algorithm based on CPSO is successfully applied on a real 3D data set in the context of induced seismicity.

  10. The effect of boundary shape and minima selection on single limb stance postural stability.

    PubMed

    Cobb, Stephen C; Joshi, Mukta N; Bazett-Jones, David M; Earl-Boehm, Jennifer E

    2012-11-01

    The effect of time-to-boundary minima selection and stability limit definition was investigated during eyes open and eyes closed condition single-limb stance postural stability. Anteroposterior and mediolateral time-to-boundary were computed using the mean and standard deviation (SD) of all time-to-boundary minima during a trial, and the mean and SD of only the 10 absolute time-to-boundary minima. Time-to-boundary with rectangular, trapezoidal, and multisegmented polygon defined stability limits were also calculated. Spearman's rank correlation coefficient test results revealed significant medium-large correlations between anteroposterior and mediolateral time-to-boundary scores calculated using both the mean and SD of the 10 absolute time-to-boundary minima and of all the time-to-boundary minima. Friedman test results revealed significant mediolateral time-to-boundary differences between boundary shape definitions. Follow-up Wilcoxon signed rank test results revealed significant differences between the rectangular boundary shape and both the trapezoidal and multisegmented polygon shapes during the eyes open and eyes closed conditions when both the mean and the SD of the time-to-boundary minima were used to represent postural stability. Significant differences were also revealed between the trapezoidal and multisegmented polygon definitions during the eyes open condition when the SD of the time-to-boundary minima was used to represent postural stability. Based on these findings, the overall results (i.e., stable versus unstable participants or groups) of studies computing postural stability using different minima selection can be compared. With respect to boundary shape, the trapezoid or multisegmented polygon shapes may be more appropriate than the rectangular shape as they more closely represent the anatomical shape of the stance foot.

  11. Exploring Neural Network Models with Hierarchical Memories and Their Use in Modeling Biological Systems

    NASA Astrophysics Data System (ADS)

    Pusuluri, Sai Teja

    Energy landscapes are often used as metaphors for phenomena in biology, social sciences and finance. Different methods have been implemented in the past for the construction of energy landscapes. Neural network models based on spin glass physics provide an excellent mathematical framework for the construction of energy landscapes. This framework uses a minimal number of parameters and constructs the landscape using data from the actual phenomena. In the past neural network models were used to mimic the storage and retrieval process of memories (patterns) in the brain. With advances in the field now, these models are being used in machine learning, deep learning and modeling of complex phenomena. Most of the past literature focuses on increasing the storage capacity and stability of stored patterns in the network but does not study these models from a modeling perspective or an energy landscape perspective. This dissertation focuses on neural network models both from a modeling perspective and from an energy landscape perspective. I firstly show how the cellular interconversion phenomenon can be modeled as a transition between attractor states on an epigenetic landscape constructed using neural network models. The model allows the identification of a reaction coordinate of cellular interconversion by analyzing experimental and simulation time course data. Monte Carlo simulations of the model show that the initial phase of cellular interconversion is a Poisson process and the later phase of cellular interconversion is a deterministic process. Secondly, I explore the static features of landscapes generated using neural network models, such as sizes of basins of attraction and densities of metastable states. The simulation results show that the static landscape features are strongly dependent on the correlation strength and correlation structure between patterns. Using different hierarchical structures of the correlation between patterns affects the landscape features. These results show how the static landscape features can be controlled by adjusting the correlations between patterns. Finally, I explore the dynamical features of landscapes generated using neural network models such as the stability of minima and the transition rates between minima. The results from this project show that the stability depends on the correlations between patterns. It is also found that the transition rates between minima strongly depend on the type of bias applied and the correlation between patterns. The results from this part of the dissertation can be useful in engineering an energy landscape without even having the complete information about the associated minima of the landscape.

  12. 3D ELECTRON DENSITY DISTRIBUTIONS IN THE SOLAR CORONA DURING SOLAR MINIMA: ASSESSMENT FOR MORE REALISTIC SOLAR WIND MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patoul, Judith de; Foullon, Claire; Riley, Pete, E-mail: j.depatoul@exeter.ac.uk, E-mail: c.foullon@exeter.ac.uk, E-mail: rileype@saic.com

    Knowledge of the electron density distribution in the solar corona put constraints on the magnetic field configurations for coronal modeling and on initial conditions for solar wind modeling. We work with polarized SOHO/LASCO-C2 images from the last two recent minima of solar activity (1996–1997 and 2008–2010), devoid of coronal mass ejections. The goals are to derive the 4D electron density distributions in the corona by applying a newly developed time-dependent tomographic reconstruction method and to compare the results between the two solar minima and with two magnetohydrodynamic models. First, we confirm that the values of the density distribution in thermodynamic models aremore » more realistic than in polytropic ones. The tomography provides more accurate distributions in the polar regions, and we find that the density in tomographic and thermodynamic solutions varies with the solar cycle in both polar and equatorial regions. Second, we find that the highest-density structures do not always correspond to the predicted large-scale heliospheric current sheet or its helmet streamer but can follow the locations of pseudo-streamers. We deduce that tomography offers reliable density distributions in the corona, reproducing the slow time evolution of coronal structures, without prior knowledge of the coronal magnetic field over a full rotation. Finally, we suggest that the highest-density structures show a differential rotation well above the surface depending on how they are magnetically connected to the surface. Such valuable information on the rotation of large-scale structures could help to connect the sources of the solar wind to their in situ counterparts in future missions such as Solar Orbiter and Solar Probe Plus.« less

  13. Weevils versus no weevils: a comparison of Salvinia minima populations in Florida and Louisiana

    USDA-ARS?s Scientific Manuscript database

    Cyrtobagous salviniae Calder and Sands (Coleoptera: Curculionidae) is a successful biological control agents of aquatic weeds including common salvinia, Salvinia minima. Although S. minima has caused significant problems in Louisiana, it rarely forms persistent mats in Florida, perhaps because of t...

  14. Matrix isolation infrared spectra and photochemistry of hydantoin.

    PubMed

    Ildiz, Gulce Ogruc; Nunes, Cláudio M; Fausto, Rui

    2013-01-31

    Hydantoin (C(3)H(4)N(2)O(2), 2,4-imidazolidinedione) was isolated in argon matrix at 10 K and its infrared spectrum and unimolecular photochemistry were investigated. The molecular structure of the compound was studied both at the DFT(B3LYP) and MP2 levels of approximation with valence triple- and quadruple-ζ basis sets (6-311++G(d,p); cc-pVQZ). It was concluded that the minima in the potential energy surfaces of the molecule correspond to C(1) symmetry structures. However, the energy barrier separating the two-equivalent-by-symmetry minima stays below their zero-point energy, which makes the C(s) symmetry structure, which separates the two minima, the experimentally relevant one. The electronic structure of the molecule was studied in detail by performing the Natural Bond Orbital analysis of its electronic configuration within the DFT(B3LYP)/cc-pVQZ space. The infrared spectrum of the matrix isolated compound was fully assigned also with help of the theoretically predicted spectrum. Upon irradiation at λ = 230 nm, matrix-isolated hydantoin was found to photofragment into isocyanic acid, CO, and methylenimine.

  15. Timing of AB And eclipses

    NASA Astrophysics Data System (ADS)

    Kozyreva, V. S.; Ibrahimov, M. A.; Gaynullina, E. R.; Karimov, R. G.; Hafizov, B. M.; Satovskii, B. L.; Krushevska, V. N.; Kuznyetsova, Yu. G.; Bogomazov, A. I.; Irsmambetova, T. R.; Tutukov, A. V.

    2018-01-01

    This study aims timing the eclipses of the short period low mass binary star AB And. The times of minima are taken from the literature and from our observations in October 2013 (22 times of minima) and in August 2014 (23 times of minima). We find and discuss an inaccuracy in the determination of the types of minima in the previous investigation by Li et al. (2014). We study the secular evolution of the central binary's orbital period and the possibility of the existence of third and fourth companions in the system.

  16. Global optimization of additive potential energy functions: Predicting binary Lennard-Jones clusters

    NASA Astrophysics Data System (ADS)

    Kolossváry, István; Bowers, Kevin J.

    2010-11-01

    We present a method for minimizing additive potential-energy functions. Our hidden-force algorithm can be described as an intricate multiplayer tug-of-war game in which teams try to break an impasse by randomly assigning some players to drop their ropes while the others are still tugging until a partial impasse is reached, then, instructing the dropouts to resume tugging, for all teams to come to a new overall impasse. Utilizing our algorithm in a non-Markovian parallel Monte Carlo search, we found 17 new putative global minima for binary Lennard-Jones clusters in the size range of 90-100 particles. The method is efficient enough that an unbiased search was possible; no potential-energy surface symmetries were exploited. All new minima are comprised of three nested polyicosahedral or polytetrahedral shells when viewed as a nested set of Connolly surfaces (though the shell structure has previously gone unscrutinized, known minima are often qualitatively similar). Unlike known minima, in which the outer and inner shells are comprised of the larger and smaller atoms, respectively, in 13 of the new minima, the atoms are not as clearly separated by size. Furthermore, while some known minima have inner shells stabilized by larger atoms, four of the new minima have outer shells stabilized by smaller atoms.

  17. SGO: A fast engine for ab initio atomic structure global optimization by differential evolution

    NASA Astrophysics Data System (ADS)

    Chen, Zhanghui; Jia, Weile; Jiang, Xiangwei; Li, Shu-Shen; Wang, Lin-Wang

    2017-10-01

    As the high throughout calculations and material genome approaches become more and more popular in material science, the search for optimal ways to predict atomic global minimum structure is a high research priority. This paper presents a fast method for global search of atomic structures at ab initio level. The structures global optimization (SGO) engine consists of a high-efficiency differential evolution algorithm, accelerated local relaxation methods and a plane-wave density functional theory code running on GPU machines. The purpose is to show what can be achieved by combining the superior algorithms at the different levels of the searching scheme. SGO can search the global-minimum configurations of crystals, two-dimensional materials and quantum clusters without prior symmetry restriction in a relatively short time (half or several hours for systems with less than 25 atoms), thus making such a task a routine calculation. Comparisons with other existing methods such as minima hopping and genetic algorithm are provided. One motivation of our study is to investigate the properties of magnetic systems in different phases. The SGO engine is capable of surveying the local minima surrounding the global minimum, which provides the information for the overall energy landscape of a given system. Using this capability we have found several new configurations for testing systems, explored their energy landscape, and demonstrated that the magnetic moment of metal clusters fluctuates strongly in different local minima.

  18. Venus: radar determination of gravity potential.

    PubMed

    Shapiro, I I; Pettengill, G H; Sherman, G N; Rogers, A E; Ingalls, R P

    1973-02-02

    We describe a method for the determination of the gravity potential of Venus from multiple-frequency radar measurements. The method is based on the strong frequency dependence of the absorption of radio waves in Venus' atmosphere. Comparison of the differing radar reflection intensities at several frequencies yields the height of the surface relative to a reference pressure contour; combination with measurements of round-trip echo delays allows the pressure, and hence the gravity potential contour, to be mapped relative to the mean planet radius. Since calibration data from other frequencies are unavailable, the absorption-sensitive Haystack Observatory data have been analyzed under the assumption of uniform surface reflectivity to yield a gravity equipotential contour for the equatorial region and a tentative upper bound of 6 x 10(-4) on the fractional difference of Venus' principal equatorial moments of inertia. The minima in the equipotential contours appear to be associated with topographic minima.

  19. Methylene blue adsorption on a DMPA lipid langmuir monolayer.

    PubMed

    Giner Casares, Juan José; Camacho, Luis; Martín-Romero, Maria Teresa; López Cascales, José Javier

    2010-07-12

    Adsorption of methylene blue (MB) onto a dimyristoylphosphatidic acid (DMPA) Langmuir air/water monolayer is studied by molecular dynamics (MD) simulations, UV reflection spectroscopy and surface potential measurements. The free-energy profile associated with MB transfer from water to the lipid monolayer shows two minima of -66 and -60 kJ mol(-1) for its solid and gas phase, respectively, corresponding to a spontaneous thermodynamic process. From the position of the free-energy minima, it is possible to predict the precise location of MB in the interior of the DMPA monolayer. Thus, MB is accommodated in the phosphoryl or carbonyl region of the DMPA Langmuir air/water interface, depending on the isomorphic state (solid or gas phase, respectively). Reorientation of MB, measured from the bulk solution to the interior of the lipid monolayer, passes from a random orientation in bulk solution to an orientation parallel to the surface of the lipid monolayer when MB is absorbed.

  20. Asymmetry of projected increases in extreme temperature distributions

    PubMed Central

    Kodra, Evan; Ganguly, Auroop R.

    2014-01-01

    A statistical analysis reveals projections of consistently larger increases in the highest percentiles of summer and winter temperature maxima and minima versus the respective lowest percentiles, resulting in a wider range of temperature extremes in the future. These asymmetric changes in tail distributions of temperature appear robust when explored through 14 CMIP5 climate models and three reanalysis datasets. Asymmetry of projected increases in temperature extremes generalizes widely. Magnitude of the projected asymmetry depends significantly on region, season, land-ocean contrast, and climate model variability as well as whether the extremes of consideration are seasonal minima or maxima events. An assessment of potential physical mechanisms provides support for asymmetric tail increases and hence wider temperature extremes ranges, especially for northern winter extremes. These results offer statistically grounded perspectives on projected changes in the IPCC-recommended extremes indices relevant for impacts and adaptation studies. PMID:25073751

  1. Surface structure. Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters.

    PubMed

    Emmrich, Matthias; Huber, Ferdinand; Pielmeier, Florian; Welker, Joachim; Hofmann, Thomas; Schneiderbauer, Maximilian; Meuer, Daniel; Polesya, Svitlana; Mankovsky, Sergiy; Ködderitzsch, Diemo; Ebert, Hubert; Giessibl, Franz J

    2015-04-17

    Clusters built from individual iron atoms adsorbed on surfaces (adatoms) were investigated by atomic force microscopy (AFM) with subatomic resolution. Single copper and iron adatoms appeared as toroidal structures and multiatom clusters as connected structures, showing each individual atom as a torus. For single adatoms, the toroidal shape of the AFM image depends on the bonding symmetry of the adatom to the underlying structure [twofold for copper on copper(110) and threefold for iron on copper(111)]. Density functional theory calculations support the experimental data. The findings correct our previous work, in which multiple minima in the AFM signal were interpreted as a reflection of the orientation of a single front atom, and suggest that dual and triple minima in the force signal are caused by dimer and trimer tips, respectively. Copyright © 2015, American Association for the Advancement of Science.

  2. Implementing Badhwar-O'Neill Galactic Cosmic Ray Model for the Analysis of Space Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; O'Neill, Patrick M.; Slaba, Tony C.

    2014-01-01

    For the analysis of radiation risks to astronauts and planning exploratory space missions, accurate energy spectrum of galactic cosmic radiation (GCR) is necessary. Characterization of the ionizing radiation environment is challenging because the interplanetary plasma and radiation fields are modulated by solar disturbances and the radiation doses received by astronauts in interplanetary space are likewise influenced. A model of the Badhwar-O'Neill 2011 (BO11) GCR environment, which is represented by GCR deceleration potential theta, has been derived by utilizing all of the GCR measurements from balloons, satellites, and the newer NASA Advanced Composition Explorer (ACE). In the BO11 model, the solar modulation level is derived from the mean international sunspot numbers with time-delay, which has been calibrated with actual flight instrument measurements to produce better GCR flux data fit during solar minima. GCR fluxes provided by the BO11 model were compared with various spacecraft measurements at 1 AU, and further comparisons were made for the tissue equivalent proportional counters measurements at low Earth orbits using the high-charge and energy transport (HZETRN) code and various GCR models. For the comparison of the absorbed dose and dose equivalent calculations with the measurements by Radiation Assessment Detector (RAD) at Gale crater on Mars, the intensities and energies of GCR entering the heliosphere were calculated by using the BO11 model, which accounts for time-dependent attenuation of the local interstellar spectrum of each element. The BO11 model, which has emphasized for the last 24 solar minima, showed in relatively good agreement with the RAD data for the first 200 sols, but it was resulted in to be less well during near the solar maximum of solar cycle 24 due to subtleties in the changing heliospheric conditions. By performing the error analysis of the BO11 model and the optimization in reducing overall uncertainty, the resultant BO13 model corrects the fit at solar maxima as well as being accurate at solar minima. The BO13 model is implemented to the NASA Space Cancer Risk model for the assessment of radiation risks. Overall cumulative probability distribution of solar modulation parameters represents the percentile rank of the average interplanetary GCR environment, and the probabilistic radiation risks can be assessed for various levels of GCR environment to support mission design and operational planning for future manned space exploration missions.

  3. 14 CFR 121.625 - Alternate Airport weather minima.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Alternate Airport weather minima. 121.625... Alternate Airport weather minima. Except as provided in § 121.624 for ETOPS Alternate Airports, no person may list an airport as an alternate in the dispatch or flight release unless the appropriate weather...

  4. 14 CFR 121.625 - Alternate Airport weather minima.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Alternate Airport weather minima. 121.625... Alternate Airport weather minima. Except as provided in § 121.624 for ETOPS Alternate Airports, no person may list an airport as an alternate in the dispatch or flight release unless the appropriate weather...

  5. 14 CFR 121.625 - Alternate Airport weather minima.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Alternate Airport weather minima. 121.625... Alternate Airport weather minima. Except as provided in § 121.624 for ETOPS Alternate Airports, no person may list an airport as an alternate in the dispatch or flight release unless the appropriate weather...

  6. 14 CFR 121.625 - Alternate Airport weather minima.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Alternate Airport weather minima. 121.625... Alternate Airport weather minima. Except as provided in § 121.624 for ETOPS Alternate Airports, no person may list an airport as an alternate in the dispatch or flight release unless the appropriate weather...

  7. 14 CFR 121.625 - Alternate Airport weather minima.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Alternate Airport weather minima. 121.625... Alternate Airport weather minima. Except as provided in § 121.624 for ETOPS Alternate Airports, no person may list an airport as an alternate in the dispatch or flight release unless the appropriate weather...

  8. Multivariate Copula Analysis Toolbox (MvCAT): Describing dependence and underlying uncertainty using a Bayesian framework

    NASA Astrophysics Data System (ADS)

    Sadegh, Mojtaba; Ragno, Elisa; AghaKouchak, Amir

    2017-06-01

    We present a newly developed Multivariate Copula Analysis Toolbox (MvCAT) which includes a wide range of copula families with different levels of complexity. MvCAT employs a Bayesian framework with a residual-based Gaussian likelihood function for inferring copula parameters and estimating the underlying uncertainties. The contribution of this paper is threefold: (a) providing a Bayesian framework to approximate the predictive uncertainties of fitted copulas, (b) introducing a hybrid-evolution Markov Chain Monte Carlo (MCMC) approach designed for numerical estimation of the posterior distribution of copula parameters, and (c) enabling the community to explore a wide range of copulas and evaluate them relative to the fitting uncertainties. We show that the commonly used local optimization methods for copula parameter estimation often get trapped in local minima. The proposed method, however, addresses this limitation and improves describing the dependence structure. MvCAT also enables evaluation of uncertainties relative to the length of record, which is fundamental to a wide range of applications such as multivariate frequency analysis.

  9. D3h [A-CE3-A]- (E = Al and Ga, A = Si, Ge, Sn, and Pb): A new class of hexatomic mono-anionic species with trigonal bipyramidal carbon

    NASA Astrophysics Data System (ADS)

    Wu, Yan-Bo; Li, Yan-Qin; Bai, Hui; Lu, Hai-Gang; Li, Si-Dian; Zhai, Hua-Jin; Wang, Zhi-Xiang

    2014-03-01

    The non-classical trigonal bipyramidal carbon (TBPC) arrangement generally exists as transition states (TSs) in nucleophilic bimolecular substitution (SN2) reactions. Nevertheless, chemists have been curious about whether such a carbon bonding could be stable in equilibrium structures for decades. As the TBPC arrangement was normally realized as cationic species theoretically and experimentally, only one anionic example ([At-C(CN)3-At]-) was computationally devised. Herein, we report the design of a new class of anionic TBPC species by using the strategy similar to that for stabilizing the non-classical planar hypercoordinate carbon. When electron deficient Al and Ga were used as the equatorial ligands, eight D3h [A-CE3-A]- (E = Al and Ga, A = Si, Ge, Sn, and Pb) TBPC structures were found to be the energy minima rather than TSs at both the B3LYP and MP2 levels. Remarkably, the energetic results at the CCSD(T) optimization level further identify [Ge-CAl3-Ge]- and [Sn-CGa3-Sn]- even to be the global minima and [Si-CAl3-Si]- and [Ge-CGa3-Ge]- to be the local minima, only slightly higher than their global minima. The electronic structure analyses reveal that the substantial ionic C-E bonding, the peripheral E-A covalent bonding, and the axial mc-2e (multi center-two electrons) bonding play roles in stabilizing these TBPC structures. The structural simplicity and the high thermodynamic stability suggest that some of these species may be generated and captured in the gas phase. Furthermore, as mono-anionic species, their first vertical detachment energies are differentiable from those of their nearest isomers, which would facilitate their characterization via experiments such as the negative ion photoelectron spectroscopy.

  10. Laser probes of the potential energy landscapes and conformational isomerization dynamics of flexible biomolecules

    NASA Astrophysics Data System (ADS)

    Dian, Brian; Clarkson, Jasper; Zwier, Timothy

    2003-03-01

    Using a combination of 2-color resonant two-photon ionization (R2PI), laser-induced fluorescence excitation (LIF), resonant ion-dip infrared spectroscopy (RIDIRS), fluorescence-dip infrared spectroscopy (FDIRS), and UV-UV hole-burning spectroscopy, the conformational preferences of a series of flexible biomolecules, including melatonin, N-acetyl-tryptophan methyl amide (NATMA), and their close analogs, have been determined in a molecular beam. These molecules are sufficiently complex to have hundreds of conformational minima, yet small enough that their potential energy landscapes can be explored in some detail. Once the conformational preferences of the molecules are established, these molecules are then studied using infrared-ultraviolet hole-filling and IR-induced population transfer spectroscopy. These methods utilize selective infrared excitation of single conformations of the molecule in the early portions of a gas-phase expansion, followed by collisional re-cooling of the excited population into its conformational minima for subsequent conformation-specific detection. Efficient isomerization is induced by the infrared excitation that redistributes population between the same conformations that have population in the absence of infrared excitation. Examples will be given in which the quantum yields for transfer of the population into the various conformational minima depend both on which conformation is excited and on which hydride stretch vibration is excited within a given conformation; that is, they are both conformation-selective and mode-selective.

  11. The adventive status of Salvinia minima and S. molestain the southern United States and the related distribution of the weevil Cyrtobagous salviniae

    USGS Publications Warehouse

    Jacono, Colette C.; Davern, Tracy R.; Center, Ted D.

    2001-01-01

    The recent introduction of Salvinia molesta constitutes a serious threat to aquatic systems in the warm temperate regions of the United States. Salvinia minima, the only other member of Salviniaceae present in North America, is considered native by current floras. Evidence is presented which suggests that Salvinia minima was also introduced to North America, probably during the late 1920s and early 1930s. Likely sites of introduction and subsequent range expansions are identified. The accidentally introduced salvinia weevil, putatively Cyrtobagous salviniae, was found to occur widely on S. minima in Florida but is not established in other states. The disparate distribution of this Salvinia herbivore may account for the reduced aggressiveness of S. minima in Florida as compared to its troublesome growth in Texas and LOUisiana, where the weevil is not yet known.

  12. VizieR Online Data Catalog: UY UMa and EF Boo compiled time of minima (Yu+, 2017)

    NASA Astrophysics Data System (ADS)

    Yu, Y.-X.; Zhang, X.-D.; Hu, K.; Xiang, F.-Y.

    2017-11-01

    In order to construct the (O-C) diagram to analyze the period change of UY UMa, we have performed a careful search for all available times of light minima. A total of 76 times of light minima were collected and listed in Table 2. >From the literatures and two well-known databases (i.e., the O-C gateway (http://var.astro.cz/ocgate) and the Lichtenknecker database of the BAV (http://www.bav-astro.de/LkDB/index.php)), we have collected a total of 75 available times of light minima for EF Boo, which are summarized in Table 3. (3 data files).

  13. Angle-resolved Wigner time delay in atomic photoionization: The 4 d subshell of free and confined Xe

    NASA Astrophysics Data System (ADS)

    Mandal, A.; Deshmukh, P. C.; Kheifets, A. S.; Dolmatov, V. K.; Manson, S. T.

    2017-11-01

    The angular dependence of photoemission time delay for the inner n d3 /2 and n d5 /2 subshells of free and confined Xe is studied in the dipole relativistic random phase approximation. A finite spherical annular well potential is used to model the confinement due to fullerene C60 cage. Near cancellations in a variety of the dipole amplitudes, Cooper-like minima, are found. The effects of confinement on the angular dependence, primarily confinement resonances, are demonstrated and detailed.

  14. Fast-Flowering Mini-Maize: Seed to Seed in 60 Days

    PubMed Central

    McCaw, Morgan E.; Wallace, Jason G.; Albert, Patrice S.; Buckler, Edward S.; Birchler, James A.

    2016-01-01

    Two lines of Zea mays were developed as a short-generation model for maize. The Fast-Flowering Mini-Maize (FFMM) lines A and B are robust inbred lines with a significantly shorter generation time, much smaller stature, and better greenhouse adaptation than traditional maize varieties. Five generations a year are typical. FFMM is the result of a modified double-cross hybrid between four fast-flowering lines: Neuffer’s Early ACR (full color), Alexander’s Early Early Synthetic, Tom Thumb Popcorn, and Gaspe Flint, followed by selection for early flowering and desirable morphology throughout an 11-generation selfing regime. Lines A and B were derived from different progeny of the initial hybrid, and crosses between Mini-Maize A and B exhibit heterosis. The ancestry of each genomic region of Mini-Maize A and B was inferred from the four founder populations using genotyping by sequencing. Other genetic and genomic tools for these lines include karyotypes for both lines A and B, kernel genetic markers y1 (white endosperm) and R1-scm2 (purple endosperm and embryo) introgressed into Mini-Maize A, and ∼24× whole-genome resequencing data for Mini-Maize A. PMID:27440866

  15. Vacuum selection on axionic landscapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Gaoyuan; Battefeld, Thorsten, E-mail: gaoyuan.wang@stud.uni-goettingen.de, E-mail: tbattefe@astro.physik.uni-goettingen.de

    2016-04-01

    We compute the distribution of minima that are reached dynamically on multi-field axionic landscapes, both numerically and analytically. Such landscapes are well suited for inflationary model building due to the presence of shift symmetries and possible alignment effects (the KNP mechanism). The resulting distribution of dynamically reached minima differs considerably from the naive expectation based on counting all vacua. These differences are more pronounced in the presence of many fields due to dynamical selection effects: while low lying minima are preferred as fields roll down the potential, trajectories are also more likely to get trapped by one of the manymore » nearby minima. We show that common analytic arguments based on random matrix theory in the large D-limit to estimate the distribution of minima are insufficient for quantitative arguments pertaining to the dynamically reached ones. This discrepancy is not restricted to axionic potentials. We provide an empirical expression for the expectation value of such dynamically reached minimas' height and argue that the cosmological constant problem is not alleviated in the absence of anthropic arguments. We further comment on the likelihood of inflation on axionic landscapes in the large D-limit.« less

  16. A genetic survey of Salvinia minima in the southern United States

    USGS Publications Warehouse

    Madeira, Paul T.; Jacono, C.C.; Tipping, Phil; Van, Thai K.; Center, Ted D.

    2003-01-01

    The genetic relationships among 68 samples of Salvinia minima (Salviniaceae) were investigated using RAPD analysis. Neighbor joining, principle components, and AMOVA analyses were used to detect differences among geographically referenced samples within and outside of Florida. Genetic distances (Nei and Li) range up to 0.48, although most are under 0.30, still relatively high levels for an introduced, clonally reproducing plant. Despite the diversity AMOVA analysis yielded no indication that the Florida plants, as a group, were significantly different from the plants sampled elsewhere in its adventive, North American range. A single, genetically dissimilar population probably exists in the recent (1998) horticultural introduction to Mississippi. When the samples were grouped into 10 regional (but artificial) units and analyzed using AMOVA the between region variance was only 7.7%. Genetic similarity among these regions may indicate introduction and dispersal from common sources. The reduced aggressiveness of Florida populations (compared to other states) may be due to herbivory. The weevil Cyrtobagous salviniae, a selective feeder, is found in Florida but not other states. The genetic similarity also suggests that there are no obvious genetic obstacles to the establishment or efficacy of C. salviniae as a biological control agent on S. minima outside of Florida.

  17. Hierarchical structure of the energy landscape of proteins revisited by time series analysis. I. Mimicking protein dynamics in different time scales

    NASA Astrophysics Data System (ADS)

    Alakent, Burak; Camurdan, Mehmet C.; Doruker, Pemra

    2005-10-01

    Time series models, which are constructed from the projections of the molecular-dynamics (MD) runs on principal components (modes), are used to mimic the dynamics of two proteins: tendamistat and immunity protein of colicin E7 (ImmE7). Four independent MD runs of tendamistat and three independent runs of ImmE7 protein in vacuum are used to investigate the energy landscapes of these proteins. It is found that mean-square displacements of residues along the modes in different time scales can be mimicked by time series models, which are utilized in dividing protein dynamics into different regimes with respect to the dominating motion type. The first two regimes constitute the dominance of intraminimum motions during the first 5ps and the random walk motion in a hierarchically higher-level energy minimum, which comprise the initial time period of the trajectories up to 20-40ps for tendamistat and 80-120ps for ImmE7. These are also the time ranges within which the linear nonstationary time series are completely satisfactory in explaining protein dynamics. Encountering energy barriers enclosing higher-level energy minima constrains the random walk motion of the proteins, and pseudorelaxation processes at different levels of minima are detected in tendamistat, depending on the sampling window size. Correlation (relaxation) times of 30-40ps and 150-200ps are detected for two energy envelopes of successive levels for tendamistat, which gives an overall idea about the hierarchical structure of the energy landscape. However, it should be stressed that correlation times of the modes are highly variable with respect to conformational subspaces and sampling window sizes, indicating the absence of an actual relaxation. The random-walk step sizes and the time length of the second regime are used to illuminate an important difference between the dynamics of the two proteins, which cannot be clarified by the investigation of relaxation times alone: ImmE7 has lower-energy barriers enclosing the higher-level energy minimum, preventing the protein to relax and letting it move in a random-walk fashion for a longer period of time.

  18. Taboo Search: An Approach to the Multiple Minima Problem

    NASA Astrophysics Data System (ADS)

    Cvijovic, Djurdje; Klinowski, Jacek

    1995-02-01

    Described here is a method, based on Glover's taboo search for discrete functions, of solving the multiple minima problem for continuous functions. As demonstrated by model calculations, the algorithm avoids entrapment in local minima and continues the search to give a near-optimal final solution. Unlike other methods of global optimization, this procedure is generally applicable, easy to implement, derivative-free, and conceptually simple.

  19. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: application to SSSH.

    PubMed

    Kolmann, Stephen J; Jordan, Meredith J T

    2010-02-07

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  20. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: Application to SSSH

    NASA Astrophysics Data System (ADS)

    Kolmann, Stephen J.; Jordan, Meredith J. T.

    2010-02-01

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol-1 at the CCSD(T)/6-31G∗ level of theory, has a 4 kJ mol-1 dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol-1 lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol-1 lower in energy at the CCSD(T)/6-31G∗ level of theory. Ideally, for sub-kJ mol-1 thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  1. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOEpatents

    Kaduchak, Gregory; Ward, Michael D

    2014-10-21

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  2. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOEpatents

    Kaduchak, Gregory [Los Alamos, NM; Ward, Michael D [Los Alamos, NM

    2011-12-27

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  3. Developmental Effects in the Masking-Level Difference

    ERIC Educational Resources Information Center

    Hall, Joseph W.; Buss, Emily; Grose, John H.; Dev, Madhu B.

    2004-01-01

    Adults and children (aged 5 years 1 month to 10 years 8 months) were tested in a masking-level difference (MLD) paradigm in which detection of brief signals was contrasted for signal placement in masker envelope maxima versus masker envelope minima. Maskers were 50-Hz-wide noise bands centered on 500 Hz, and the signals were So or S[pi] 30-ms,…

  4. Quantum Dynamics Study of the Potential Energy Minima Effect on Energy Efficiency for the F- + CH3Cl → FCH3 + Cl- Reaction.

    PubMed

    Li, Yida; Wang, Yuping; Wang, Dunyou

    2017-04-13

    The Polanyi rules on the energy efficiency on reactivity are summarized solely from the locations of barriers on the potential energy surfaces. Here, our quantum dynamics study for the F - + CH 3 Cl → FCH 3 + Cl - reaction shows that the two potential energy minima in the entrance channel on the potential energy surface play an essential role in energy efficiency on reactivity. The reactivity of this reaction is dominated by the low collision energies where two distinctive reaction mechanisms involve the two minima in the entrance channel. Overall, the Cl-CH 3 stretching motion and C-H 3 umbrella motion both are more efficient than the translational motion in promoting this reaction. Although this reaction has a negative energy barrier, our study shows that it is the minima in the entrance channel, together with the energy barrier relative to these minima, that determine the energy efficacy on reactivity.

  5. Does fault strengthening in laboratory rock friction experiments really depend primarily upon time and not slip?

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pathikrit; Rubin, Allan M.; Beeler, Nicholas M.

    2017-08-01

    The popular constitutive formulations of rate-and-state friction offer two end-member views on whether friction evolves only with slip (Slip law) or with time even without slip (Aging law). While rate stepping experiments show support for the Slip law, laboratory-observed frictional behavior near-zero slip rates has traditionally been inferred as supporting Aging law style time-dependent healing, in particular, from the slide-hold-slide experiments of Beeler et al. (1994). Using a combination of new analytical results and explicit numerical (Bayesian) inversion, we show instead that the slide-hold-slide data of Beeler et al. (1994) favor slip-dependent state evolution during holds. We show that, while the stiffness-independent rate of growth of peak stress (following reslides) with hold duration is a property shared by both the Aging and (under a more restricted set of parameter combinations) Slip laws, the observed stiffness dependence of the rate of stress relaxation during long holds is incompatible with the Aging law with constant rate-state parameters. The Slip law consistently fits the evolution of the stress minima at the end of the holds well, whether fitting jointly with peak stresses or otherwise. But neither the Aging nor Slip laws fit all the data well when a - b is constrained to values derived from prior velocity steps. We also attempted to fit the evolution of stress peaks and minima with the Kato-Tullis hybrid law and the shear stress-dependent Nagata law, both of which, even with the freedom of an extra parameter, generally reproduced the best Slip law fits to the data.

  6. Effect of genome sequence on the force-induced unzipping of a DNA molecule.

    PubMed

    Singh, N; Singh, Y

    2006-02-01

    We considered a dsDNA polymer in which distribution of bases are random at the base pair level but ordered at a length of 18 base pairs and calculated its force elongation behaviour in the constant extension ensemble. The unzipping force F(y) vs. extension y is found to have a series of maxima and minima. By changing base pairs at selected places in the molecule we calculated the change in F(y) curve and found that the change in the value of force is of the order of few pN and the range of the effect depending on the temperature, can spread over several base pairs. We have also discussed briefly how to calculate in the constant force ensemble a pause or a jump in the extension-time curve from the knowledge of F(y).

  7. Exotic Structure of Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2003-12-01

    Ground state properties of C isotopes, deformation and elecromagnetic moments, as well as electric dipole transition strength are investigated. We first study the ground state properties of C isotopes using a deformed Hartree-Fock (HF) + BCS model with Skyrme interactions. Isotope dependence of the deformation properties is investigated. Shallow deformation minima are found in several neutron-rich C isotopes. It is also shown that the deformation minima appear in both the oblate and the prolate sides in 17C and 19C having almost the same binding energies. Next, we carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the clear configuration dependence of the quadrupole and magnetic moments in the odd C isotopes, which will be useful to find out the deformation and spin-parities of the ground states of these nuclei. Electric dipole states of C isotopes are studied focusing on the interplay between low energy Pigmy strength and giant dipole resonances. Low peak energies, two-peak structure and large widths of the giant resonances show deformation effects. Calculated transition strength below dipole giant resonance in heavier C isotopes than 15C is found to exhaust 12 ~ 15% of the Thomas-Reiche-Kuhn sum rule value and 50 ~ 80% of the cluster sum rule value.

  8. Dense colloidal mixtures in an external sinusoidal potential

    NASA Astrophysics Data System (ADS)

    Capellmann, R. F.; Khisameeva, A.; Platten, F.; Egelhaaf, S. U.

    2018-03-01

    Concentrated binary colloidal mixtures containing particles with a size ratio 1:2.4 were exposed to a periodic potential that was realized using a light field, namely, two crossed laser beams creating a fringe pattern. The arrangement of the particles was recorded using optical microscopy and characterized in terms of the pair distribution function along the minima, the occupation probability perpendicular to the minima, the angular bond distribution, and the average potential energy per particle. The particle arrangement was investigated in dependence of the importance of particle-potential and particle-particle interactions by changing the potential amplitude and particle concentration, respectively. An increase in the potential amplitude leads to a stronger localization, especially of the large particles, but also results in an increasing fraction of small particles being located closer to the potential maxima, which also occurs upon increasing the particle density. Furthermore, increasing the potential amplitude induces a local demixing of the two particle species, whereas an increase in the total packing fraction favors a more homogeneous arrangement.

  9. Segmentation in cohesive systems constrained by elastic environments

    NASA Astrophysics Data System (ADS)

    Novak, I.; Truskinovsky, L.

    2017-04-01

    The complexity of fracture-induced segmentation in elastically constrained cohesive (fragile) systems originates from the presence of competing interactions. The role of discreteness in such phenomena is of interest in a variety of fields, from hierarchical self-assembly to developmental morphogenesis. In this paper, we study the analytically solvable example of segmentation in a breakable mass-spring chain elastically linked to a deformable lattice structure. We explicitly construct the complete set of local minima of the energy in this prototypical problem and identify among them the states corresponding to the global energy minima. We show that, even in the continuum limit, the dependence of the segmentation topology on the stretching/pre-stress parameter in this problem takes the form of a devil's type staircase. The peculiar nature of this staircase, characterized by locking in rational microstructures, is of particular importance for biological applications, where its structure may serve as an explanation of the robustness of stress-driven segmentation. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'

  10. Comparison of solar activity during last two minima on turn of Activity Cycles 22/23 and 23/24

    NASA Astrophysics Data System (ADS)

    Gryciuk, Magdalena; Gburek, Szymon; Siarkowski, Marek; Podgorski, Piotr; Sylwester, Janusz; Farnik, Frantisek

    2013-07-01

    The subject of our work is the review and comparison of solar activity during the last two solar minima that occurred between recent activity cycles. We use the soft X-ray global solar corona observations covering the two nine-months long time intervals in 1997/98 and 2009. Data from RF15-I multichannel photometer are used for the penultimate minimum. For the last unusually deep and prolonged solar activity minimum in 2009 the data from SphinX spectrophotometer are used. Comparison of measurements from both minima takes place in the overlapping energy range 2-15 keV. We focus on the active region formation, evolution and flaring productivity during respective minima.

  11. Ab Initio and Analytic Intermolecular Potentials for Ar–CH3OH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasic, Uros; Alexeev, Yuri; Vayner, Grigoriy

    2006-09-20

    Ab initio calculations at the CCSD(T)/aug-cc-pVTZ level of theory were used to characterize the Ar–CH₃y6tOH intermolecular potential energy surface (PES). Potential energy curves were calculated for four different Ar + CH₃OH orientations and used to derive an analytic function for the intermolecular PES. A sum of Ar–C, Ar–O, Ar–H(C), and Ar–H(O) two-body potentials gives an excellent fit to these potential energy curves up to 100 kcal mol¯¹, and adding an additional r¯¹n term to the Buckingham two-body potential results in only a minor improvement in the fit. Three Ar–CH₃OH van der Waals minima were found from the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ calculations. Themore » structure of the global minimum is in overall good agreement with experiment (X.-C. Tan, L. Sun and R. L. Kuczkowski, J. Mol. Spectrosc., 1995, 171, 248). It is T-shaped with the hydroxyl H-atom syn with respect to Ar. Extrapolated to the complete basis set (CBS) limit, the global minimum has a well depth of 0.72 kcal mol¯¹ with basis set superposition error (BSSE) correction. The aug-cc-pVTZ basis set gives a well depth only 0.10 kcal mol¯¹ smaller than this value. The well depths of the other two minima are within 0.16 kcal mol¯¹ of the global minimum. The analytic Ar–CH₃OH intermolecular potential also identifies these three minima as the only van der Waals minima and the structures predicted by the analytic potential are similar to the ab initio structures. The analytic potential identifies the same global minimum and the predicted well depths for the minima are within 0.05 kcal mol¯1 of the ab initio values. Combining this Ar–CH₃OH intermolecular potential with a potential for a OH-terminated alkylthiolate self-assembled monolayer surface (i.e., HO-SAM) provides a potential to model Ar + HO-SAM collisions.« less

  12. Photometric and Polarimetric Activity of the Herbig Ae Star VX Cas

    NASA Astrophysics Data System (ADS)

    Shakhovskoi, D. N.; Rostopchina, A. N.; Grinin, V. P.; Minikulov, N. Kh.

    2003-04-01

    We present the results of our simultaneous photometric and polarimetric observations of the Herbig Ae/Be star VX Cas acquired in 1987 2001. The star belongs to the UX Ori subtype of young variable stars and exhibits a rather low level of photometric activity: only six Algol-like minima with amplitudes ΔV>1m were recorded in 15 years of observations. Two of these minima, in 1998 and 2001, were the deepest in the history of the star’s photometric studies, with V amplitudes of about 2m. In each case, the dimming was accompanied by an increase in the linear polarization in agreement with the law expected for variable circumstellar extinction. The highest V polarization was about 5%. Observations of VX Cas in the deep minima revealed a turnover of the color tracks, typical of stars of this type and due to an increased contribution from radiation scattered in the circumstellar disk. We separated the observed polarization of VX Cas into interstellar (P is) and intrinsic (P in) components. Their position angles differ by approximately 60°, with P is dominating in the bright state and P in dominating during the deep minima. The competition of these two polarization components leads to changes in both the degree and position angle of the polarization during the star’s brightness variations. Generally speaking, in terms of the behavior of the brightness, color indices, and linear polarization, VX Cas is similar to other UX Ori stars studied by us earlier. A number of episodes of photometric and polarimetric activity suggest that, in their motion along highly eccentric orbits, circumstellar gas and dust clouds can enter the close vicinity of the star (and be disrupted there).

  13. Evolutionary-inspired probabilistic search for enhancing sampling of local minima in the protein energy surface

    PubMed Central

    2012-01-01

    Background Despite computational challenges, elucidating conformations that a protein system assumes under physiologic conditions for the purpose of biological activity is a central problem in computational structural biology. While these conformations are associated with low energies in the energy surface that underlies the protein conformational space, few existing conformational search algorithms focus on explicitly sampling low-energy local minima in the protein energy surface. Methods This work proposes a novel probabilistic search framework, PLOW, that explicitly samples low-energy local minima in the protein energy surface. The framework combines algorithmic ingredients from evolutionary computation and computational structural biology to effectively explore the subspace of local minima. A greedy local search maps a conformation sampled in conformational space to a nearby local minimum. A perturbation move jumps out of a local minimum to obtain a new starting conformation for the greedy local search. The process repeats in an iterative fashion, resulting in a trajectory-based exploration of the subspace of local minima. Results and conclusions The analysis of PLOW's performance shows that, by navigating only the subspace of local minima, PLOW is able to sample conformations near a protein's native structure, either more effectively or as well as state-of-the-art methods that focus on reproducing the native structure for a protein system. Analysis of the actual subspace of local minima shows that PLOW samples this subspace more effectively that a naive sampling approach. Additional theoretical analysis reveals that the perturbation function employed by PLOW is key to its ability to sample a diverse set of low-energy conformations. This analysis also suggests directions for further research and novel applications for the proposed framework. PMID:22759582

  14. The impact of precession and obliquity on the Late-Devonian greenhouse climate

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, D.; Crucifix, M.; Bounceur, N.; Claeys, P. F.

    2012-12-01

    To date, only few general circulation model (GCM) have been used to simulate the extremely warm greenhouse climate of the Late-Devonian (~370 Ma). As a consequence, the current knowledge on Devonian climate dynamics comes almost exclusively from geological proxy data. Given the fragmentary nature of these data sources, the understanding of the Devonian climate is rather limited. Nonetheless, the Late-Devonian is a key-period in the evolution of life on Earth: the continents were no longer bare but were invaded by land plants, the first forests appeared, soils were formed, fish evolved to amphibians and 70-80% of all animal species were wiped out during the Late Devonian extinction (~376 Ma). In order to better understand the functioning of the climate system during this highly important period in Earth's history, we applied the HadSM3 climate model to the Devonian period under different astronomical configurations. This approach provides insight into the response of Late-Devonian climate to astronomical forcing due to precession and obliquity. Moreover, the assessment of the sensitivity of the Late-Devonian climate to astronomical forcing, presented here, will allow cyclostratigraphers to make better and more detailed interpretations of recurring patterns often observed in Late-Devonian sections. We simulated Late-Devonian climates by prescribing palaeogeography, vegetation distribution and pCO2 concentration (2180 ppm). Different experiments were carried out under 31 different astronomical configurations: three levels for obliquity (ɛ = 22°; 23.5° and 24.5°) and eccentricity (e = 0; 0.03 and 0.07) were chosen. For precession, 8 levels were considered (longitude of the perihelion= 0°; 45°; 90°; 135°; 180°; 235°; 270°). First results suggest that the intensity of precipitation on the tropical Euramerican continent (also known as Laurussia) is highly dependent on changes in precession: During precession maxima (= maximal insolation in SH during winter solstice), precipitation is up to 300 mm/month higher compared to precession minima during the wet season (September - May). During the dry season (June-July-August), the climate is up to 7°C colder during a precession maxima compared to a precession minima. Obliquity doesn't show a significant influence on the climate of the tropical Euramerican continent. However, the imprint of obliquity on the polar climates is extensive with up to 6°C temperature-differences between obliquity maxima and minima at both poles.

  15. A Possible Physiological Basis for the Discontinuity of Consciousness

    PubMed Central

    Pockett, Susan; Brennan, Barry J.; Bold, Gary E. J.; Holmes, Mark D.

    2011-01-01

    A comparison is made between the frequency of local minima in the analytic power (AP) of intracranial EEG (ECoG) from waking and unconscious human subjects and the frequency of putative frames of consciousness reported in earlier psychological literature. In ECoG from unconscious subjects, the frequency of deep minima in AP is found to be a linear function of bandwidth. In contrast, in ECoG from conscious subjects, the bandwidth/minima-frequency curve saturates or plateaus at minima frequencies similar to the frequencies of previously reported frames of consciousness. This result is consistent with the hypothesis that local minima in AP may act as the shutter in a cinematographic model of consciousness. The fact that artificially generated samples of black noise with power spectra similar to ECoG data give similar results in the analyses above suggests that the discontinuous nature of consciousness is not due to some specifically biological factor, but is simply a consequence of the physical properties of the 1/f (aka power law) oscillations that are widely found in nature. PMID:22203811

  16. Conformational Analysis of Retinoic Acids: Effects of Steric Interactions on Nonplanar Conjugated Polyenes

    PubMed Central

    Cox, Bryan D.; Muccio, Donald D.; Hamilton, Tracy P.

    2013-01-01

    Retinoic acids and other vitamin A analogs contain a trimethylcyclohexenyl ring in conjugation with a polyene chain joined at carbon-6 (C6) and carbon-7 (C7). A MP2-SCS/cc-pVDZ// B3LYP/6-31G(d) 2-D potential energy surface was computed for all-trans retinoic acid, which had 6 minima (3 enantiomeric pairs). The global minima were distorted s-gauche enantiomers (6–7 = 53°) with half-chair conformations of the ring. Distorted s-gauche enantiomers (6–7 = 55°) with inverted half-chair ring conformations were 1.7 kJ/mol above the global minima. The s-trans enantiomers (6–7 = 164°) were 11.3 kJ/mol above the global minima. Steric energies were computed by the method of Guo and Karplus to identify key structural elements in retinoic acids which determines their conformation. Small molecule crystal structures in the CCDC database with trimethylcyclohexenyl ring and exocyclic double bonds have ring-chain geometries near to one of the 6 energy minima of retinoic acids, except for retinaldehyde iminium cations. PMID:25798372

  17. Conformational Analysis of Retinoic Acids: Effects of Steric Interactions on Nonplanar Conjugated Polyenes.

    PubMed

    Cox, Bryan D; Muccio, Donald D; Hamilton, Tracy P

    2013-05-01

    Retinoic acids and other vitamin A analogs contain a trimethylcyclohexenyl ring in conjugation with a polyene chain joined at carbon-6 (C6) and carbon-7 (C7). A MP2-SCS/cc-pVDZ// B3LYP/6-31G(d) 2-D potential energy surface was computed for all- trans retinoic acid, which had 6 minima (3 enantiomeric pairs). The global minima were distorted s-gauche enantiomers ( 6-7 = 53°) with half-chair conformations of the ring. Distorted s-gauche enantiomers ( 6-7 = 55°) with inverted half-chair ring conformations were 1.7 kJ/mol above the global minima. The s-trans enantiomers ( 6-7 = 164°) were 11.3 kJ/mol above the global minima. Steric energies were computed by the method of Guo and Karplus to identify key structural elements in retinoic acids which determines their conformation. Small molecule crystal structures in the CCDC database with trimethylcyclohexenyl ring and exocyclic double bonds have ring-chain geometries near to one of the 6 energy minima of retinoic acids, except for retinaldehyde iminium cations.

  18. Pathological Study of Blood Parasites in Rice Field Frogs, Hoplobatrachus rugulosus (Wiegmann, 1834)

    PubMed Central

    Sailasuta, Achariya; Satetasit, Jetjun; Chutmongkonkul, Malinee

    2011-01-01

    One hundred and forty adult rice field frogs, Hoplobatrachus rugulosus (Wiegmann, 1834), were collected in Srakaew province, Thailand. For blood parasite examination, thin blood smears were made and routinely stained with Giemsa. The results showed that 70% of the frogs (98/140) were infected with 5 species of blood parasites, including a Trypanosoma rotatorium-like organism, Trypanosoma chattoni, Hepatozoon sp. a, Hepatozoon sp. b, and Lankesterella minima. Pathological examination of the liver, lung, spleen, and kidney of the frogs that were apparently infected with one of these blood parasites were collected and processed by routine histology and subsequently stained with haematoxylin and eosin. Histopathological findings associated with the Trypanosoma rotatorium-like organism and Trypanosoma chattoni-infected frogs showed no pathological lesions. Hepatozoon sp. a and Hepatozoon sp. b-infected frogs developed inflammatory lesions predominantly in the liver, demonstrating granuloma-like lesions with Hepatozoon sp. meronts at the centre. Tissue sections of Lankesterella minima-infected frogs also showed lesions. Liver and spleen showed inflammatory lesions with an accumulation of melanomacrophage centres (MMCs) surrounding the meronts and merozoites. It is suggested that Hepatozoon sp. a, Hepatozoon sp. b, and Lankesterella minima-infections are capable of producing inflammatory lesions in the visceral organs of rice field frogs, and the severity of lesions is tentatively related to levels of parasitemia. PMID:21918731

  19. Identity of Ṭaṅkārī (Physalis Minima Linn.) in Ayurvedic Classics: A Literature Review

    PubMed Central

    Kallianpur, Supriya S; Gokarn, Rohit A; Rajashekhar, N

    2016-01-01

    Proper identification of drugs and their use in proper doses are important for successful treatment. Physalis minima Linn commonly known as country gooseberry has anti-cancerous, anti-diabetic, analgesic, antipyretic and anti-inflammatory potentials. The present paper is aimed to ascertain the proper identity of Ṭaṅkārī (Physalis minima Linn.) in Ayurvedic classics by a meticulous search and hence a review of the drug Ṭaṅkārī (Physalis minima Linn) was carried out in the texts of Ayurveda, modern literature, journals and online publications. The result of the search showed that the name “Ṭaṅkārī” is not found in Vedic lore. In Saṃhitās, it is mentioned in Bhāvaprakāśa. Reference of the drug “Śārṅgeṣṭhā” is found in Bṛhattrayī, Bhela, Kāśyapa, Cakradatta and Vaṅgasena. It is variously named as Cirapoṭikā, Kākatikta, and Vāyasī by ḍalhaṇa and he describes it as gaura (pale), vartula (round), and as having avaguṇṭhita/veṣṭhita (covered) fruit which matches the description of Ṭaṅkārī (P. minima Linn). A search for terms Kākatikta and Vāyasī showed Kākatikta to be synonymous to Śārṅgeṣṭhā and Vāyasī to be synonymous to both Kākatikta and Kākamācī (Solanum nigrum). Madanapāla and Śāligrāma Nighaṇṭus have mentioned the name Cirapoṭikā to be synonymous with Ṭaṅkārī. Śodhala has used the term Parpoṭī as a synonym of Ṭaṅkārī, which is the Gujarati name of P. minima Linn. Recent authors have considered Śārṅgeṣṭhā as either P. minima or Cardiospermum helicabum. The regional names of P. minima are Cirpoṭi (Hindi), Cirboli (Marathi), also the folklore uses and pharmacological activities of P. minima are in accordance with the indications of Śārṅgeṣṭhā in classics. Thus with a complete review of both Ayurveda and modern literatures, it can be concluded that the drug mentioned as Ṭaṅkārī in Bhāvaprakāśa is the same as Śārṅgeṣṭhā mentioned in the classics. Cirapoṭikā and Kākatikta are its synonyms. Cardiospermum helicabum is Karṇaspoṭha, and hence Śārṅgeṣṭhā of classics is P. minima which is supported by the regional names, pharmacological activity and folklore claims. PMID:28182025

  20. CCD Times of Minima of Selected Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Zejda, Miloslav

    2004-12-01

    682 CCD minima observations of 259 eclipsing binaries made mainly by author are presented. The observed stars were chosen mainly from catalogue BRKA of observing programme of BRNO-Variable Star Section of CAS.

  1. Inherent structures of crystalline pentacene

    NASA Astrophysics Data System (ADS)

    Della Valle, Raffaele Guido; Venuti, Elisabetta; Brillante, Aldo; Girlando, Alberto

    2003-01-01

    Using a quasi-Monte Carlo scheme, we search the potential energy surface of crystalline pentacene to sample its local minima, which represent the "inherent" structures, i.e., the possible configurations of mechanical equilibrium. The system is described in terms of rigid molecules interacting through a standard atom-atom potential model. Several hundreds of distinct minima are encountered, with a surprising variety of structural arrangements. We find that deep minima are easily accessible because they exhibit a favorable energy distribution and their attraction basins tend to be wide. Thanks to these features of the potential surface, the localization the global minimum becomes entirely feasible, allowing reliable a priori predictions of the crystallographic structures. The results for pentacene are very satisfactory. In fact, the two deepest minima correspond to the structures of the two known experimental polymorphs, which are described correctly. Further polymorphs are also likely to exist.

  2. Coupled factors influencing detachment of nano- and micro-sized particles from primary minima.

    PubMed

    Shen, Chongyang; Lazouskaya, Volha; Jin, Yan; Li, Baoguo; Ma, Zhiqiang; Zheng, Wenjuan; Huang, Yuanfang

    2012-06-01

    This study examined the detachments of nano- and micro-sized colloids from primary minima in the presence of cation exchange by laboratory column experiments. Colloids were initially deposited in columns packed with glass beads at 0.2 M CaCl(2) in the primary minima of Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies. Then, the columns were flushed with NaCl solutions with different ionic strengths (i.e., 0.001, 0.01, 0.1 and 0.2 M). Detachments were observed at all ionic strengths and were particularly significant for the nanoparticle. The detachments increased with increasing electrolyte concentration for the nanoparticle whereas increased from 0.001 M to 0.01 M and decreased with further increasing electrolyte concentration for the micro-sized colloid. The observations were attributed to coupled influence of cation exchange, short-range repulsion, surface roughness, surface charge heterogeneity, and deposition in the secondary minima. The detachments of colloids from primary minima challenge the common belief that colloid interaction in primary minimum is irreversible and resistant to disturbance in solution ionic strength and composition. Although the significance of surface roughness, surface charge heterogeneity, and secondary minima on colloid deposition has been widely recognized, our study implies that they also play important roles in colloid detachment. Whereas colloid detachment is frequently associated with decrease of ionic strength, our results show that increase of ionic strength can also cause detachment due to influence of cation exchange. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Solar Cycle Variability and Grand Minima Induced by Joy's Law Scatter

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Miesch, Mark S.

    2017-08-01

    The strength of the solar cycle varies from one cycle to another in an irregular manner and the extreme example of this irregularity is the Maunder minimum when Sun produced only a few spots for several years. We explore the cause of these variabilities using a 3D Babcock--Leighton dynamo. In this model, based on the toroidal flux at the base of the convection zone, bipolar magnetic regions (BMRs) are produced with flux, tilt angle, and time of emergence all obtain from their observed distributions. The dynamo growth is limited by a tilt quenching.The randomnesses in the BMR emergences make the poloidal field unequal and eventually cause an unequal solar cycle. When observed fluctuations of BMR tilts around Joy's law, i.e., a standard deviation of 15 degrees, are considered, our model produces a variation in the solar cycle comparable to the observed solar cycle variability. Tilt scatter also causes occasional Maunder-like grand minima, although the observed scatter does not reproduce correct statistics of grand minima. However, when we double the tilt scatter, we find grand minima consistent with observations. Importantly, our dynamo model can operate even during grand minima with only a few BMRs, without requiring any additional alpha effect.

  4. An Atlas of O-C Diagrams of Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Kreiner, Jerzy M.; Kim, Chun-Hwey; Nha, Il-Seong

    The Atlas contains data for 1,138 eclipsing binaries represented by 91,798 minima timings, collected from the usual international and local journals, observatory publications and unpublished minima. Among this source material there is a considerable representation of amateur astronomers. Some timings were found in the card-index catalogue of the Astronomical Observatory of the Jagiellonian University, Cracow. Stars were included in the Atlas provided that they satisfied 3 criteria: (1) at least 20 minima had been times; (2) these minima spanned at least 2,500 cycles; and (3) the 2,500 cycles represented no fewer than 40 years. Some additional stars not strictly satisfying these criteria were also included if useful information was available. For each star, the Atlas contains the (O-C) diagram calculated by the authors and a table of general information containing: binary characteristics; assorted catalogue numbers; the statistics of the collected minima timings; the light elements (light ephemeris); comments and literature references. All of the data and diagrams in the Atlas are also available in electronic form on the Internet at http://www.as.ap.krakow.pl/o- c".

  5. When Gravity Fails: Local Search Topology

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Cheeseman, Peter; Stutz, John; Lau, Sonie (Technical Monitor)

    1997-01-01

    Local search algorithms for combinatorial search problems frequently encounter a sequence of states in which it is impossible to improve the value of the objective function; moves through these regions, called {\\em plateau moves), dominate the time spent in local search. We analyze and characterize {\\em plateaus) for three different classes of randomly generated Boolean Satisfiability problems. We identify several interesting features of plateaus that impact the performance of local search algorithms. We show that local minima tend to be small but occasionally may be very large. We also show that local minima can be escaped without unsatisfying a large number of clauses, but that systematically searching for an escape route may be computationally expensive if the local minimum is large. We show that plateaus with exits, called benches, tend to be much larger than minima, and that some benches have very few exit states which local search can use to escape. We show that the solutions (i.e. global minima) of randomly generated problem instances form clusters, which behave similarly to local minima. We revisit several enhancements of local search algorithms and explain their performance in light of our results. Finally we discuss strategies for creating the next generation of local search algorithms.

  6. Theoretical Studies of Interactions between O-Phosphorylated and Standard Amino-Acid Side-Chain Models in Water

    PubMed Central

    Wiśniewska, Marta; Sobolewski, Emil; Ołdziej, Stanisław; Liwo, Adam; Scheraga, Harold A.; Makowski, Mariusz

    2015-01-01

    Phosphorylation is a common post-translational modification of the amino-acid side chains (serine, tyrosine, and threonine) that contain hydroxyl groups. The transfer of the negatively charged phosphate group from an ATP molecule to such amino-acid side chains leads to changes in the local conformations of proteins and the pattern of interactions with other amino-acid side-chains. A convenient characteristic of the side chain–side chain interactions in the context of an aqueous environment is the potential of mean force (PMF) in water. A series of umbrella-sampling molecular dynamic (MD) simulations with the AMBER force field were carried out for pairs of O-phosphorylated serine (pSer), threonine (pThr), and tyrosine, (pTyr) with natural amino acids in a TIP3P water model as a solvent at 298 K. The weighted-histogram analysis method was used to calculate the four-dimensional potentials of mean force. The results demonstrate that the positions and depths of the contact minima and the positions and heights of the desolvation maxima, including their dependence on the relative orientation depend on the character of the interacting pairs. More distinct minima are observed for oppositely charged pairs such as, e.g., O-phosphorylated side-chains and positively charged ones, such as the side-chains of lysine and arginine. PMID:26100791

  7. Astronomical tuning of black cherts in the Cenomanian Scaglia Bianca as precursors of the Bonarelli level (OAE2) at Furlo, Italy

    NASA Astrophysics Data System (ADS)

    Batenburg, S. J.; Montanari, A.; Sprovieri, M.; Hilgen, F. J.; Coccioni, R.; Gale, A. S.

    2012-04-01

    Astronomical tuning of the Cenomanian Oceanic Anoxic Event (OAE2) critically depends on the phase relationship between eccentricity forcing and ocean-climate response. The mechanisms leading to oceanic anoxia are heavily debated, and both maxima and minima in eccentricity have been suggested to trigger the widespread deposition of organic-rich sediments. At the Furlo section in the north-eastern Apennines of Italy, the rhythmically bedded Scaglia Bianca formation forms a cyclic prologue to the Bonarelli level, the Tethyan sedimentary expression of OAE2. Regularly occurring black cherts are precursors of the extreme conditions leading to the oceanic anoxic event, and show the hierarchical stacking pattern of eccentricity modulated precession. Previous orbital tuning attempts have placed the occurrence of black cherts either in eccentricity maxima (Mitchell et al. 2008) or eccentricity minima (Lanci et al. 2010). These scenarios require distinctly different oceanographic regimes. Eccentricity maxima enhance the seasonal contrast, thereby intensifying monsoons, leading to an estuarine circulation in the Cretaceous North Atlantic with upwelling and increased productivity (Mitchell et al. 2008), potentially spurred by input of nutrients from volcanic activity (Trabucho Alexandre et al. 2010). Alternatively, it has been suggested that eccentricity minima could cause decreased seasonality, leading to stagnation and reduced ventilation of bottom waters (Lanci et al. 2010; Herbert and Fischer 1986), although eccentricity minima would not lower seasonality but rather avoid large seasonal extremes for a prolonged period of time. Lanci et al. (2010) attempted to establish this phase relation by measurements of CaCO3 content in carbonates, but failed to incorporate the cherts, which reflect a much larger variability in carbonate content. New high-resolution lithological, geophysical and stable isotope data from the Furlo section unequivocally indicate that the timing of black chert deposition, as well as the onset of the oceanic anoxic event itself, is related to eccentricity maxima. The stable 405-kyr periodicity of eccentricity is readily discernible in the data records and can be used for tuning to the astronomical solution (Laskar et al. 2011). A total of five and a half 405-kyr cycles can be identified below the Bonarelli level, which itself comprises a 405-kyr cycle. This cyclostratigraphy can potentially be anchored to the absolute time scale by using the newly determined Cenomanian-Turonian boundary age of 93.9 ± 0.15 Ma, which is based on intercalibration of astrochronological and radioisotopic data for the Cenomanian-Turonian boundary interval near the GSSP in Colorado, USA (Meyers et al., 2012). Correlation to the orbitally tuned Turonian interval of the nearby Gubbio and Contessa sections in Italy (De Vleeschouwer et al., this session) allows the construction of an anchored astronomical time scale for the Cenomanian-Turonian interval of > 5 Ma. Herbert, T. D., and A. G. Fischer. 1986. "Milankovitch climatic origin of mid-Cretaceous black shale rhythms in central Italy." Nature 321 (19): 739-743. Lanci, L., G. Muttoni, and E. Erba. 2010. "Astronomical tuning of the Cenomanian Scaglia Bianca Formation at Furlo, Italy." Earth and Planetary Science Letters. Laskar, J., A. Fienga, M. Gastineau, and H. Manche. 2011. "La2010: A new orbital solution for the long term motion of the Earth." Astronomy and Astrophysics arXiv:1103.1084v1. Mitchell, Ross N., David M. Bice, Alessandro Montanari, Laura C. Cleaveland, Keith T. Christianson, Rodolfo Coccioni, and Linda A. Hinnov. 2008. "Oceanic anoxic cycles? Orbital prelude to the Bonarelli Level (OAE 2)." Earth and Planetary Science Letters 267: 1-16. Trabucho Alexandre, J., E. Tuenter, G. A Henstra, K. J van der Zwan, R. S.W van de Wal, H. A Dijkstra, and P. L de Boer. 2010. "The mid-Cretaceous North Atlantic nutrient trap: Black shales and OAEs." Paleoceanography 25 (4).

  8. Method of determining dispersion dependence of refractive index of nanospheres building opals

    NASA Astrophysics Data System (ADS)

    Kępińska, Mirosława; Starczewska, Anna; Duka, Piotr

    2017-11-01

    The method of determining dispersion dependence of refractive index of nanospheres building opals is presented. In this method basing on angular dependences of the spectral positions of Bragg diffraction minima on transmission spectra for opal series of known spheres diameter, the spectrum of effective refractive index for opals and then refractive index for material building opal's spheres is determined. The described procedure is used for determination of neff(λ) for opals and nsph(λ) for material which spheres building investigated opals are made of. The obtained results are compared with literature data of nSiO2(λ) considered in the analysis and interpretation of extremes related to the light diffraction at (hkl) SiO2 opal planes.

  9. Anharmonicity and self-similarity of the free energy landscape of protein G.

    PubMed

    Pontiggia, F; Colombo, G; Micheletti, C; Orland, H

    2007-01-26

    The near-native free-energy landscape of protein G is investigated through 0.4-micros-long atomistic molecular dynamics simulations in an explicit solvent. A theoretical and computational framework is used to assess the time dependence of salient thermodynamical features. While the quasiharmonic character of the free energy is found to degrade in a few ns, the slow modes display a very mild dependence on the trajectory duration. This property originates from a striking self-similarity of the free-energy landscape embodied by the consistency of the principal directions of the local minima, where the system dwells for several ns, and of the virtual jumps connecting them.

  10. Temperature dependence of the isotope chemistry of the heavy elements.

    PubMed Central

    Bigeleisen, J

    1996-01-01

    The temperature coefficient of equilibrium isotope fractionation in the heavy elements is shown to be larger at high temperatures than that expected from the well-studied vibrational isotope effects. The difference in the isotopic behavior of the heavy elements as compared with the light elements is due to the large nuclear isotope field shifts in the heavy elements. The field shifts introduce new mechanisms for maxima, minima, crossovers, and large mass-independent isotope effects in the isotope chemistry of the heavy elements. The generalizations are illustrated by the temperature dependence of the isotopic fractionation in the redox reaction between U(VI) and U(IV) ions. PMID:8790340

  11. Design and implementation of non-linear image processing functions for CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Musa, Purnawarman; Sudiro, Sunny A.; Wibowo, Eri P.; Harmanto, Suryadi; Paindavoine, Michel

    2012-11-01

    Today, solid state image sensors are used in many applications like in mobile phones, video surveillance systems, embedded medical imaging and industrial vision systems. These image sensors require the integration in the focal plane (or near the focal plane) of complex image processing algorithms. Such devices must meet the constraints related to the quality of acquired images, speed and performance of embedded processing, as well as low power consumption. To achieve these objectives, low-level analog processing allows extracting the useful information in the scene directly. For example, edge detection step followed by a local maxima extraction will facilitate the high-level processing like objects pattern recognition in a visual scene. Our goal was to design an intelligent image sensor prototype achieving high-speed image acquisition and non-linear image processing (like local minima and maxima calculations). For this purpose, we present in this article the design and test of a 64×64 pixels image sensor built in a standard CMOS Technology 0.35 μm including non-linear image processing. The architecture of our sensor, named nLiRIC (non-Linear Rapid Image Capture), is based on the implementation of an analog Minima/Maxima Unit. This MMU calculates the minimum and maximum values (non-linear functions), in real time, in a 2×2 pixels neighbourhood. Each MMU needs 52 transistors and the pitch of one pixel is 40×40 mu m. The total area of the 64×64 pixels is 12.5mm2. Our tests have shown the validity of the main functions of our new image sensor like fast image acquisition (10K frames per second), minima/maxima calculations in less then one ms.

  12. CCD Times of Minima of Faint Eclipsing Binaries in 2000

    NASA Astrophysics Data System (ADS)

    Zejda, Miloslav

    2002-06-01

    196 CCD minima observations of 122 eclipsing binaries made by the author in 2000 are presented. The observed stars were chosen from the catalogue BRKA of observing programme of BRNO-Variable Star Section of CAS.

  13. Local Minima Free Parameterized Appearance Models

    PubMed Central

    Nguyen, Minh Hoai; De la Torre, Fernando

    2010-01-01

    Parameterized Appearance Models (PAMs) (e.g. Eigentracking, Active Appearance Models, Morphable Models) are commonly used to model the appearance and shape variation of objects in images. While PAMs have numerous advantages relative to alternate approaches, they have at least two drawbacks. First, they are especially prone to local minima in the fitting process. Second, often few if any of the local minima of the cost function correspond to acceptable solutions. To solve these problems, this paper proposes a method to learn a cost function by explicitly optimizing that the local minima occur at and only at the places corresponding to the correct fitting parameters. To the best of our knowledge, this is the first paper to address the problem of learning a cost function to explicitly model local properties of the error surface to fit PAMs. Synthetic and real examples show improvement in alignment performance in comparison with traditional approaches. PMID:21804750

  14. From sticky-hard-sphere to Lennard-Jones-type clusters

    NASA Astrophysics Data System (ADS)

    Trombach, Lukas; Hoy, Robert S.; Wales, David J.; Schwerdtfeger, Peter

    2018-04-01

    A relation MSHS →LJ between the set of nonisomorphic sticky-hard-sphere clusters MSHS and the sets of local energy minima ML J of the (m ,n ) -Lennard-Jones potential Vmn LJ(r ) =ɛ/n -m [m r-n-n r-m] is established. The number of nonisomorphic stable clusters depends strongly and nontrivially on both m and n and increases exponentially with increasing cluster size N for N ≳10 . While the map from MSHS→MSHS →LJ is noninjective and nonsurjective, the number of Lennard-Jones structures missing from the map is relatively small for cluster sizes up to N =13 , and most of the missing structures correspond to energetically unfavorable minima even for fairly low (m ,n ) . Furthermore, even the softest Lennard-Jones potential predicts that the coordination of 13 spheres around a central sphere is problematic (the Gregory-Newton problem). A more realistic extended Lennard-Jones potential chosen from coupled-cluster calculations for a rare gas dimer leads to a substantial increase in the number of nonisomorphic clusters, even though the potential curve is very similar to a (6,12)-Lennard-Jones potential.

  15. Purification, structural characterization and anticancer activity of the novel polysaccharides from Rhynchosia minima root.

    PubMed

    Jia, Xuejing; Zhang, Chao; Qiu, Jianfeng; Wang, Lili; Bao, Jiaolin; Wang, Kai; Zhang, Yulin; Chen, Meiwan; Wan, Jianbo; Su, Huanxing; Han, Jianping; He, Chengwei

    2015-11-05

    Three novel acidic polysaccharides termed PRM1, PRM3 and PRM5 were purified from Rhynchosia minima root using DEAE-52 cellulose and sephadex G-150 column chromatography. Their structures were characterized by ultraviolet (UV) and Fourier transform infrared (FTIR) spectrometry, gel permeation chromatography (GPC), gas chromatography-mass spectrometry (GC-MS), and differential scanning colorimeter (DSC) analysis. The uronic acid contents of PRM1, PRM3 and PRM5 were 30.7%, 12.7% and 47.7%, respectively. PRM1 (143.2 kDa), PRM3 (105.3 kDa) and PRM5 (162.1 kDa) were heteropolysaccharides because they were composed of arabinose, mannose, glucose and galactose. Their enthalpy values were 201.0, 111.0 and 206.8 J/g, respectively. PRM3 and PRM1 exhibited strong in vitro anticancer activity against lung cancer A549 and liver cancer HepG2 cells in a dose-dependent manner. These findings suggested that PRM1 and PRM3 could be potentially developed as natural anticancer agents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Segmentation in cohesive systems constrained by elastic environments

    PubMed Central

    Novak, I.

    2017-01-01

    The complexity of fracture-induced segmentation in elastically constrained cohesive (fragile) systems originates from the presence of competing interactions. The role of discreteness in such phenomena is of interest in a variety of fields, from hierarchical self-assembly to developmental morphogenesis. In this paper, we study the analytically solvable example of segmentation in a breakable mass–spring chain elastically linked to a deformable lattice structure. We explicitly construct the complete set of local minima of the energy in this prototypical problem and identify among them the states corresponding to the global energy minima. We show that, even in the continuum limit, the dependence of the segmentation topology on the stretching/pre-stress parameter in this problem takes the form of a devil's type staircase. The peculiar nature of this staircase, characterized by locking in rational microstructures, is of particular importance for biological applications, where its structure may serve as an explanation of the robustness of stress-driven segmentation. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications.’ PMID:28373383

  17. From sticky-hard-sphere to Lennard-Jones-type clusters.

    PubMed

    Trombach, Lukas; Hoy, Robert S; Wales, David J; Schwerdtfeger, Peter

    2018-04-01

    A relation M_{SHS→LJ} between the set of nonisomorphic sticky-hard-sphere clusters M_{SHS} and the sets of local energy minima M_{LJ} of the (m,n)-Lennard-Jones potential V_{mn}^{LJ}(r)=ɛ/n-m[mr^{-n}-nr^{-m}] is established. The number of nonisomorphic stable clusters depends strongly and nontrivially on both m and n and increases exponentially with increasing cluster size N for N≳10. While the map from M_{SHS}→M_{SHS→LJ} is noninjective and nonsurjective, the number of Lennard-Jones structures missing from the map is relatively small for cluster sizes up to N=13, and most of the missing structures correspond to energetically unfavorable minima even for fairly low (m,n). Furthermore, even the softest Lennard-Jones potential predicts that the coordination of 13 spheres around a central sphere is problematic (the Gregory-Newton problem). A more realistic extended Lennard-Jones potential chosen from coupled-cluster calculations for a rare gas dimer leads to a substantial increase in the number of nonisomorphic clusters, even though the potential curve is very similar to a (6,12)-Lennard-Jones potential.

  18. Mean-field density functional theory of a nanoconfined classical, three-dimensional Heisenberg fluid. I. The role of molecular anchoring

    NASA Astrophysics Data System (ADS)

    Cattes, Stefanie M.; Gubbins, Keith E.; Schoen, Martin

    2016-05-01

    In this work, we employ classical density functional theory (DFT) to investigate for the first time equilibrium properties of a Heisenberg fluid confined to nanoscopic slit pores of variable width. Within DFT pair correlations are treated at modified mean-field level. We consider three types of walls: hard ones, where the fluid-wall potential becomes infinite upon molecular contact but vanishes otherwise, and hard walls with superimposed short-range attraction with and without explicit orientation dependence. To model the distance dependence of the attractions, we employ a Yukawa potential. The orientation dependence is realized through anchoring of molecules at the substrates, i.e., an energetic discrimination of specific molecular orientations. If the walls are hard or attractive without specific anchoring, the results are "quasi-bulk"-like in that they can be linked to a confinement-induced reduction of the bulk mean field. In these cases, the precise nature of the walls is completely irrelevant at coexistence. Only for specific anchoring nontrivial features arise, because then the fluid-wall interaction potential affects the orientation distribution function in a nontrivial way and thus appears explicitly in the Euler-Lagrange equations to be solved for minima of the grand potential of coexisting phases.

  19. A strategy to find minimal energy nanocluster structures.

    PubMed

    Rogan, José; Varas, Alejandro; Valdivia, Juan Alejandro; Kiwi, Miguel

    2013-11-05

    An unbiased strategy to search for the global and local minimal energy structures of free standing nanoclusters is presented. Our objectives are twofold: to find a diverse set of low lying local minima, as well as the global minimum. To do so, we use massively the fast inertial relaxation engine algorithm as an efficient local minimizer. This procedure turns out to be quite efficient to reach the global minimum, and also most of the local minima. We test the method with the Lennard-Jones (LJ) potential, for which an abundant literature does exist, and obtain novel results, which include a new local minimum for LJ13 , 10 new local minima for LJ14 , and thousands of new local minima for 15≤N≤65. Insights on how to choose the initial configurations, analyzing the effectiveness of the method in reaching low-energy structures, including the global minimum, are developed as a function of the number of atoms of the cluster. Also, a novel characterization of the potential energy surface, analyzing properties of the local minima basins, is provided. The procedure constitutes a promising tool to generate a diverse set of cluster conformations, both two- and three-dimensional, that can be used as an input for refinement by means of ab initio methods. Copyright © 2013 Wiley Periodicals, Inc.

  20. Information dynamics in living systems: prokaryotes, eukaryotes, and cancer.

    PubMed

    Frieden, B Roy; Gatenby, Robert A

    2011-01-01

    Living systems use information and energy to maintain stable entropy while far from thermodynamic equilibrium. The underlying first principles have not been established. We propose that stable entropy in living systems, in the absence of thermodynamic equilibrium, requires an information extremum (maximum or minimum), which is invariant to first order perturbations. Proliferation and death represent key feedback mechanisms that promote stability even in a non-equilibrium state. A system moves to low or high information depending on its energy status, as the benefit of information in maintaining and increasing order is balanced against its energy cost. Prokaryotes, which lack specialized energy-producing organelles (mitochondria), are energy-limited and constrained to an information minimum. Acquisition of mitochondria is viewed as a critical evolutionary step that, by allowing eukaryotes to achieve a sufficiently high energy state, permitted a phase transition to an information maximum. This state, in contrast to the prokaryote minima, allowed evolution of complex, multicellular organisms. A special case is a malignant cell, which is modeled as a phase transition from a maximum to minimum information state. The minimum leads to a predicted power-law governing the in situ growth that is confirmed by studies measuring growth of small breast cancers. We find living systems achieve a stable entropic state by maintaining an extreme level of information. The evolutionary divergence of prokaryotes and eukaryotes resulted from acquisition of specialized energy organelles that allowed transition from information minima to maxima, respectively. Carcinogenesis represents a reverse transition: of an information maximum to minimum. The progressive information loss is evident in accumulating mutations, disordered morphology, and functional decline characteristics of human cancers. The findings suggest energy restriction is a critical first step that triggers the genetic mutations that drive somatic evolution of the malignant phenotype.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budagovsky, A V; Solovykh, N V; Budagovskaya, O N

    By the example of vegetable organisms differing in structure and functional properties it is shown that their response to the action of quasi-monochromatic light from laser sources does not obey the Bunsen – Roscoe dose law. The dependence of biological effect on the irradiation time has the multimodal (multiextremal) form with alternating maxima and minima of the stimulating effect. Such a property manifests itself in the spectral ranges, corresponding to photoinduced conversion of chromoproteins of photocontrol systems and is probably related to the cyclic variations of metabolic activity in vegetable cells. (biophotonics)

  2. Wealth redistribution in our small world

    NASA Astrophysics Data System (ADS)

    Iglesias, J. R.; Gonçalves, S.; Pianegonda, S.; Vega, J. L.; Abramson, G.

    2003-09-01

    We present a simplified model for the exploitation of resources by interacting agents, in an economy with small-world properties. It is shown that Gaussian distributions of wealth, with some cutoff at a poverty line are present for all values of the parameters, while the frequency of maxima and minima strongly depends on the connectivity and the disorder of the lattice. Finally, we compare a system where the commercial links are frozen with an economy where agents can choose their commercial partners at each time step.

  3. Optimizer convergence and local minima errors and their clinical importance

    NASA Astrophysics Data System (ADS)

    Jeraj, Robert; Wu, Chuan; Mackie, Thomas R.

    2003-09-01

    Two of the errors common in the inverse treatment planning optimization have been investigated. The first error is the optimizer convergence error, which appears because of non-perfect convergence to the global or local solution, usually caused by a non-zero stopping criterion. The second error is the local minima error, which occurs when the objective function is not convex and/or the feasible solution space is not convex. The magnitude of the errors, their relative importance in comparison to other errors as well as their clinical significance in terms of tumour control probability (TCP) and normal tissue complication probability (NTCP) were investigated. Two inherently different optimizers, a stochastic simulated annealing and deterministic gradient method were compared on a clinical example. It was found that for typical optimization the optimizer convergence errors are rather small, especially compared to other convergence errors, e.g., convergence errors due to inaccuracy of the current dose calculation algorithms. This indicates that stopping criteria could often be relaxed leading into optimization speed-ups. The local minima errors were also found to be relatively small and typically in the range of the dose calculation convergence errors. Even for the cases where significantly higher objective function scores were obtained the local minima errors were not significantly higher. Clinical evaluation of the optimizer convergence error showed good correlation between the convergence of the clinical TCP or NTCP measures and convergence of the physical dose distribution. On the other hand, the local minima errors resulted in significantly different TCP or NTCP values (up to a factor of 2) indicating clinical importance of the local minima produced by physical optimization.

  4. Optimizer convergence and local minima errors and their clinical importance.

    PubMed

    Jeraj, Robert; Wu, Chuan; Mackie, Thomas R

    2003-09-07

    Two of the errors common in the inverse treatment planning optimization have been investigated. The first error is the optimizer convergence error, which appears because of non-perfect convergence to the global or local solution, usually caused by a non-zero stopping criterion. The second error is the local minima error, which occurs when the objective function is not convex and/or the feasible solution space is not convex. The magnitude of the errors, their relative importance in comparison to other errors as well as their clinical significance in terms of tumour control probability (TCP) and normal tissue complication probability (NTCP) were investigated. Two inherently different optimizers, a stochastic simulated annealing and deterministic gradient method were compared on a clinical example. It was found that for typical optimization the optimizer convergence errors are rather small, especially compared to other convergence errors, e.g., convergence errors due to inaccuracy of the current dose calculation algorithms. This indicates that stopping criteria could often be relaxed leading into optimization speed-ups. The local minima errors were also found to be relatively small and typically in the range of the dose calculation convergence errors. Even for the cases where significantly higher objective function scores were obtained the local minima errors were not significantly higher. Clinical evaluation of the optimizer convergence error showed good correlation between the convergence of the clinical TCP or NTCP measures and convergence of the physical dose distribution. On the other hand, the local minima errors resulted in significantly different TCP or NTCP values (up to a factor of 2) indicating clinical importance of the local minima produced by physical optimization.

  5. Maxima and Minima Without Calculus.

    ERIC Educational Resources Information Center

    Birnbaum, Ian

    1982-01-01

    Approaches to extrema that do not require calculus are presented to help free maxima/minima problems from the confines of calculus. Many students falsely suppose that these types of problems can only be dealt with through calculus, since few, if any, noncalculus examples are usually presented. (MP)

  6. Thermodynamic stability in elastic systems: Hard spheres embedded in a finite spherical elastic solid.

    PubMed

    Solano-Altamirano, J M; Goldman, Saul

    2015-12-01

    We determined the total system elastic Helmholtz free energy, under the constraints of constant temperature and volume, for systems comprised of one or more perfectly bonded hard spherical inclusions (i.e. "hard spheres") embedded in a finite spherical elastic solid. Dirichlet boundary conditions were applied both at the surface(s) of the hard spheres, and at the outer surface of the elastic solid. The boundary conditions at the surface of the spheres were used to describe the rigid displacements of the spheres, relative to their initial location(s) in the unstressed initial state. These displacements, together with the initial positions, provided the final shape of the strained elastic solid. The boundary conditions at the outer surface of the elastic medium were used to ensure constancy of the system volume. We determined the strain and stress tensors numerically, using a method that combines the Neuber-Papkovich spherical harmonic decomposition, the Schwartz alternating method, and Least-squares for determining the spherical harmonic expansion coefficients. The total system elastic Helmholtz free energy was determined by numerically integrating the elastic Helmholtz free energy density over the volume of the elastic solid, either by a quadrature, or a Monte Carlo method, or both. Depending on the initial position of the hard sphere(s) (or equivalently, the shape of the un-deformed stress-free elastic solid), and the displacements, either stationary or non-stationary Helmholtz free energy minima were found. The non-stationary minima, which involved the hard spheres nearly in contact with one another, corresponded to lower Helmholtz free energies, than did the stationary minima, for which the hard spheres were further away from one another.

  7. Restricted random search method based on taboo search in the multiple minima problem

    NASA Astrophysics Data System (ADS)

    Hong, Seung Do; Jhon, Mu Shik

    1997-03-01

    The restricted random search method is proposed as a simple Monte Carlo sampling method to search minima fast in the multiple minima problem. This method is based on taboo search applied recently to continuous test functions. The concept of the taboo region instead of the taboo list is used and therefore the sampling of a region near an old configuration is restricted in this method. This method is applied to 2-dimensional test functions and the argon clusters. This method is found to be a practical and efficient method to search near-global configurations of test functions and the argon clusters.

  8. Elevated temperature crack growth in advanced powder metallurgy aluminum alloys

    NASA Technical Reports Server (NTRS)

    Porr, William C., Jr.; Gangloff, Richard P.

    1990-01-01

    Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging may play a role. Fractography showed that microvoid coalescence was the microscopic mode of fracture in FVS0812 under all testing conditions. However, the nature of the microvoids varied with test temperature and loading rate, and is complex for the fine grain and dipersoid sizes of FVS0812.

  9. Biaxial potential of surface-stabilized ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Kaznacheev, Anatoly; Pozhidaev, Evgeny; Rudyak, Vladimir; Emelyanenko, Alexander V.; Khokhlov, Alexei

    2018-04-01

    A biaxial surface potential Φs of smectic-C* surface-stabilized ferroelectric liquid crystals (SSFLCs) is introduced in this paper to explain the experimentally observed electric-field dependence of polarization P˜cell(E ) , in particular the shape of the static hysteresis loops. Our potential consists of three independent parts. The first nonpolar part Φn describes the deviation of the prime director n (which is the most probable orientation of the long molecular axes) from the easy alignment axis R , which is located in the boundary surface plane. It is introduced in the same manner as the uniaxial Rapini potential. The second part Φp of the potential is a polar term associated with the presence of the polar axis in a FLC. The third part Φm relates to the inherent FLC biaxiality, which has not been taken into consideration previously. The Φm part takes into account the deviations of the secondary director m (which is the most probable orientation of the short molecular axes) from the normal to the boundary surface. The overall surface potential Φs, which is a sum of Φn,Φp , and Φm, allows one to model the conditions when either one, two, or three minima of the SSFLC cell free energy are realized depending on the biaxiality extent. A monodomain or polydomain structure, as well as the bistability or monostability of SSFLC cells, depends on the number of free-energy minima, as confirmed experimentally. In this paper, we analyze the biaxiality impact on the FLC alignment. We also answer the question of whether the bistable or monostable structure can be formed in an SSFLC cell. Our approach is essentially based on a consideration of the biaxial surface potential, while the uniaxial surface potential cannot adequately describe the experimental observations in the FLC.

  10. A frozen Gaussian approximation-based multi-level particle swarm optimization for seismic inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jinglai, E-mail: jinglaili@sjtu.edu.cn; Lin, Guang, E-mail: lin491@purdue.edu; Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, WA 99352

    2015-09-01

    In this paper, we propose a frozen Gaussian approximation (FGA)-based multi-level particle swarm optimization (MLPSO) method for seismic inversion of high-frequency wave data. The method addresses two challenges in it: First, the optimization problem is highly non-convex, which makes hard for gradient-based methods to reach global minima. This is tackled by MLPSO which can escape from undesired local minima. Second, the character of high-frequency of seismic waves requires a large number of grid points in direct computational methods, and thus renders an extremely high computational demand on the simulation of each sample in MLPSO. We overcome this difficulty by threemore » steps: First, we use FGA to compute high-frequency wave propagation based on asymptotic analysis on phase plane; Then we design a constrained full waveform inversion problem to prevent the optimization search getting into regions of velocity where FGA is not accurate; Last, we solve the constrained optimization problem by MLPSO that employs FGA solvers with different fidelity. The performance of the proposed method is demonstrated by a two-dimensional full-waveform inversion example of the smoothed Marmousi model.« less

  11. Radionuclide activities and metal concentrations in sediments of the Sebou Estuary, NW Morocco, following a flooding event.

    PubMed

    Laissaoui, A; Mas, J L; Hurtado, S; Ziad, N; Villa, M; Benmansour, M

    2013-06-01

    This study presents metal concentrations (Fe, Mg, Mn, Co, Cu, Zn, Pb, As, Sr and V) and radionuclide activities ((40)K, (137)Cs, (210)Pb, (226)Ra, (228)Ac, (234)Th and (212)Pb) in surface deposits and a sediment core from the Sebou Estuary, Northwest Morocco. Samples were collected in April 2009, about 2 months after a flooding event, and analysed using a well-type coaxial gamma-ray detector and inductively coupled plasma-quadrupole mass spectrometry. Activities of radionuclides and concentrations of almost all elements in surface samples displayed only moderate spatial variation, suggesting homogenous deposition of eroded local soil in response to intense precipitation. Excess (210)Pb displayed relatively constant activity throughout the sediment core, preventing dating and precluding determination of the historical accumulation rates of pollutants at the core site. Some elements showed non-systematic trends with depth and displayed local maxima and minima. Other elements presented relatively systematic concentration trends or relatively constant levels with discrete maxima and/or minima. Except for Mn, Sr and Cr, all metal concentrations in sediment were below levels typical of polluted systems, suggesting little human impact or losses of metals from sediment particles.

  12. Allelopathic Activity and Chemical Composition of Rhynchosia minima (L.) DC. Essential Oil from Egypt.

    PubMed

    Abd El-Gawad, Ahmed M; El-Amier, Yasser A; Bonanomi, Giuliano

    2018-01-01

    Aromatic plants attract the attention of many researchers worldwide due to their worthy applications in agriculture, human prosperity, and the environment. Essential oil (EO) could be exploited as effective alternatives to synthetic compounds as it has several biological activities including allelopathy. The EO from the aerial parts of Rhynchosia minima was extracted by hydrodistillation and investigated by gas chromatography/mass spectrometry (GC/MS). Different concentrations (50, 100, 150 and 200 μL L -1 ) of the EO were prepared for investigation of their allelopathic potential on two weeds; Dactyloctenium aegyptium and Rumex dentatus. Twenty-eight compounds, mainly sesquiterpenes (69.13%) were determined. The major compounds are α-eudesmol, 2-allyl-5-tert-butylhydroquinone, caryophyllene oxide, trans-caryophyllene, and τ-cadinol. The EO from the R. minima showed a significant inhibition of D. aegyptium and R. dentatus germination, while the seedling growth was stimulated. Therefore, it is not recommended to treat these noxious weeds with the EO of R. minima before the germination. In contrast, the apparent stimulatory effect on the seedling growth offers further studies to use the EO of R. minima to enhance the fitness of different economic crops. However, characterization of green bio-herbicides such as EO (allelochemicals) from wild plants raises a new opportunity for the incorporation of new technology of bio-control against the noxious weeds. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  13. Sunrise effects on VLF signals propagating over a long north-south path

    NASA Astrophysics Data System (ADS)

    Clilverd, Mark A.; Thomson, Neil R.; Rodger, Craig J.

    1999-07-01

    We present a detailed study of the times of amplitude minima observed on the 12-Mm path from NAA (24 kHz, 1 MW, Cutler, Maine) to Faraday, Antarctica, during the period 1990-1995. (NAA is a naval transmitter call sign.) This study represents the first account of the effect of the sunrise terminator when it is parallel to a propagation path at some times of the year. Since the NAA-Faraday path is within 3° of the north-south meridian, parallel orientation happens close to the equinoxes, while the maximum angle of incidence occurs during the solstices. During the solstices the terminator takes a significant length of time to cross the entire propagation path, so modal conversion effects are observed over a range of hours. During the equinoxes, however, the leading edge of the night-day transition region crosses the whole propagation path within 20 min. The interpretation of the timing of minima is consistent with modal conversion taking place as the sunrise terminator crosses the NAA-Faraday transmission path at specific, consistent locations. The timing of minima is remarkably consistent from year to year. Long wave propagation modeling is used to show that the location of nightside minima at an altitude of 45-75 km in the subionospheric waveguide represents the location of the sunrise terminator on the great circle path when dayside minima occur.

  14. Calculation of dispersion curves and amplitude-depth distributions of Love channel waves in horizontally-layered media. [In seam; various boundary conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rader, D.; Dresen, L.; Ruter, H.

    We present dispersion curves, and amplitude-depth distributions of the fundamental and first higher mode of Love seam waves for two characteristic seam models. The first model consists of four layers, representing a coal seam underlain by a root clay of variable thickness. The second model consists of five layers, representing coal seams containing a dirt band with variable position and thickness. The simple three-layer model is used for reference. It is shown that at higher frequencies, depending on the thickness of the root clay and the dirt band, the coal layers alone act as a wave guide, whereas at lowmore » frequencies all layers act together as a channel. Depending on the thickness, and position of the dirt band and the root clay, in the dispersion curves of the group velocity, secondary minima grow in addition to the absolute minima. Furthermore, the dispersion curves of the group velocity of the two modes can overlap. In all these cases, wave groups in addition to the Airy phase of the fundamental mode (propagating with minimum group velocity) occur on the seismograms recorded in in-seam seismic surveys, thus impeding their interpretation. Hence, we suggest the estimation of the dispersion characteristics of Love seam waves in coal seams under investigation preceding actual field surveys. All numerical calculations were performed using a fast and stable phase recursion algorithm.« less

  15. Biologically important conformational features of DNA as interpreted by quantum mechanics and molecular mechanics computations of its simple fragments.

    PubMed

    Poltev, V; Anisimov, V M; Dominguez, V; Gonzalez, E; Deriabina, A; Garcia, D; Rivas, F; Polteva, N A

    2018-02-01

    Deciphering the mechanism of functioning of DNA as the carrier of genetic information requires identifying inherent factors determining its structure and function. Following this path, our previous DFT studies attributed the origin of unique conformational characteristics of right-handed Watson-Crick duplexes (WCDs) to the conformational profile of deoxydinucleoside monophosphates (dDMPs) serving as the minimal repeating units of DNA strand. According to those findings, the directionality of the sugar-phosphate chain and the characteristic ranges of dihedral angles of energy minima combined with the geometric differences between purines and pyrimidines determine the dependence on base sequence of the three-dimensional (3D) structure of WCDs. This work extends our computational study to complementary deoxydinucleotide-monophosphates (cdDMPs) of non-standard conformation, including those of Z-family, Hoogsteen duplexes, parallel-stranded structures, and duplexes with mispaired bases. For most of these systems, except Z-conformation, computations closely reproduce experimental data within the tolerance of characteristic limits of dihedral parameters for each conformation family. Computation of cdDMPs with Z-conformation reveals that their experimental structures do not correspond to the internal energy minimum. This finding establishes the leading role of external factors in formation of the Z-conformation. Energy minima of cdDMPs of non-Watson-Crick duplexes demonstrate different sequence-dependence features than those known for WCDs. The obtained results provide evidence that the biologically important regularities of 3D structure distinguish WCDs from duplexes having non-Watson-Crick nucleotide pairing.

  16. Sensitivity of the nuclear deformability and fission barriers to the equation of state

    NASA Astrophysics Data System (ADS)

    Seif, W. M.; Anwer, Hisham

    2018-07-01

    The model-dependent analysis of the fission data impacts the extracted fission-related quantities, which are not directly observables, such as the super- and hyperdeformed isomeric states and their energies. We investigated the model dependence of the deformability of a nucleus and its fission barriers on the nuclear equation of state. Within the microscopic-macroscopic model based on a large number of Skyrme nucleon-nucleon interactions, the total energy surfaces and the double-humped fission barrier of 230Th are calculated in a multidimensional deformation space. In addition to the ground-state (GS) and the superdeformed (SD) minima, all the investigated forces yielded a hyperdeformed (HD) minimum. The contour map of the shell-plus-pairing energy clearly displayed the three minima. We found that the GS binding energy and the deformation energy of the different deformation modes along the fission path increase with the incompressibility coefficient K0, while the fission barrier heights and the excitation energies of the SD and HD modes decrease with it. Conversely, the surface-energy coefficient asurf, the symmetry-energy, and its density-slope parameter decrease the GS energy and the deformation energies, but increase the fission barrier heights and the excitation energies. The obtained deformation parameters of the different deformation modes exhibit almost independence on K0, and on the symmetry-energy and its density-slope. The principle deformation parameters of the SD and HD isomeric states tend to decrease with asurf.

  17. Dielectric properties and the monoclinictriclinic inversion in albite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, P.; Duba, A.; Piwinskii, A.J.

    1976-12-01

    Dielectric properties (epsilon', real part of complex permittivity; epsilon'', imaginary part of complex permittivity; tan delta, loss tangent = epsilon''/epsilon') of single crystal Amelia albite have been measured parallel to the b-axis under controlled oxygen fugacity near the QFM buffer in the temperature range 1000 to 1373/sup 0/K at frequencies (..nu..) of 0.2 to 10 kHz. Plots of epsilon' and epsilon'' as a function of temperature exhibit minima which depend on time and ..nu.. in this albite. In addition, plots of tan delta as a function of temperature develop maxima which are also time-dependent. When epsilon', epsilon'', and tan deltamore » were investigated between 1220 and 1320/sup 0/K as a function of time, a break in these dielectric parameters with temperature was found. Epsilon' and epsilon'' increased with time above this break, while they decreased with time below the break. Values of loss tangent were also non-linear functions of temperature. Epsilon' and epsilon'' minima, tan delta maxima, and the temperature break in these dielectric properties were found to converge at approximately 1283/sup 0/K as time increases. Assuming that the epsilon' and epsilon'' increase and the tan delta decrease are the result of increasing disorder in this albite, these experimental data suggest that 1283 +- 20/sup 0/K is the temperature of the monoclinic-triclinic transition in this albite. This agrees well with electrical conductivity results which indicate 1253 +- 30/sup 0/K.« less

  18. Fast-flowering mini-maize: seed to seed in 60 days

    USDA-ARS?s Scientific Manuscript database

    Two lines of Zea mays were developed as a short-generation model for maize. The Fast-Flowering Mini-Maize (FFMM) lines A and B are robust inbred lines with a significantly shorter generation time, much smaller stature, and better greenhouse adaptation than traditional maize varieties. Five generatio...

  19. Kepler-Daten von BR Cyg

    NASA Astrophysics Data System (ADS)

    Pagel, Lienhard

    2015-01-01

    In the Kepler field is the eclipsing binary BR Cyg. He is a BAV program star. In the KIC (Kepler Input Catalogue) he is associated with the identifier kplr009899416 [1]. There have been determined 1084 minima and as many secondary minima. Acknowledgement: This paper makes use of data from the Kepler exoplanetarchive.

  20. Saddle point localization of molecular wavefunctions.

    PubMed

    Mellau, Georg Ch; Kyuberis, Alexandra A; Polyansky, Oleg L; Zobov, Nikolai; Field, Robert W

    2016-09-15

    The quantum mechanical description of isomerization is based on bound eigenstates of the molecular potential energy surface. For the near-minimum regions there is a textbook-based relationship between the potential and eigenenergies. Here we show how the saddle point region that connects the two minima is encoded in the eigenstates of the model quartic potential and in the energy levels of the [H, C, N] potential energy surface. We model the spacing of the eigenenergies with the energy dependent classical oscillation frequency decreasing to zero at the saddle point. The eigenstates with the smallest spacing are localized at the saddle point. The analysis of the HCN ↔ HNC isomerization states shows that the eigenstates with small energy spacing relative to the effective (v1, v3, ℓ) bending potentials are highly localized in the bending coordinate at the transition state. These spectroscopically detectable states represent a chemical marker of the transition state in the eigenenergy spectrum. The method developed here provides a basis for modeling characteristic patterns in the eigenenergy spectrum of bound states.

  1. Dimensional oscillation. A fast variation of energy embedding gives good results with the AMBER potential energy function.

    PubMed

    Snow, M E; Crippen, G M

    1991-08-01

    The structure of the AMBER potential energy surface of the cyclic tetrapeptide cyclotetrasarcosyl is analyzed as a function of the dimensionality of coordinate space. It is found that the number of local energy minima decreases as the dimensionality of the space increases until some limit at which point equipotential subspaces appear. The applicability of energy embedding methods to finding global energy minima in this type of energy-conformation space is explored. Dimensional oscillation, a computationally fast variant of energy embedding is introduced and found to sample conformation space widely and to do a good job of finding global and near-global energy minima.

  2. Nonlinear optimization simplified by hypersurface deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillinger, F.H.; Weber, T.A.

    1988-09-01

    A general strategy is advanced for simplifying nonlinear optimization problems, the ant-lion method. This approach exploits shape modifications of the cost-function hypersurface which distend basins surrounding low-lying minima (including global minima). By intertwining hypersurface deformations with steepest-descent displacements, the search is concentrated on a small relevant subset of all minima. Specific calculations demonstrating the value of this method are reported for the partitioning of two classes of irregular but nonrandom graphs, the prime-factor graphs and the pi graphs. We also indicate how this approach can be applied to the traveling salesman problem and to design layout optimization, and that itmore » may be useful in combination with simulated annealing strategies.« less

  3. Unambiguous Signature of the Berry Phase in Intense Laser Dissociation of Diatomic Molecules.

    PubMed

    Bouakline, Foudhil

    2018-05-03

    We report strong evidence of Berry phase effects in intense laser dissociation of D 2 + molecules, manifested as Aharonov-Bohm-like oscillations in the photofragment angular distribution (PAD). Our calculations show that this interference pattern strongly depends on the parity of the diatom initial rotational state, (-1) j . Indeed, the PAD local maxima (minima) observed in one case ( j odd) correspond to local minima (maxima) in the other case ( j even). Using simple topological arguments, we clearly show that such interference conversion is a direct signature of the Berry phase. The sole effect of the latter on the rovibrational wave function is a sign change of the relative phase between two interfering components, which wind in opposite senses around a light-induced conical intersection (LICI). Therefore, encirclement of the LICI leads to constructive ( j odd) or destructive ( j even) self-interference of the initial nuclear wavepacket in the dissociative limit. To corroborate our theoretical findings, we suggest an experiment of strong-field indirect dissociation of D 2 + molecules, comparing the PAD of the ortho and para molecular species in directions nearly perpendicular to the laser polarization axis.

  4. Cytotoxic Activities of Physalis minima L. Chloroform Extract on Human Lung Adenocarcinoma NCI-H23 Cell Lines by Induction of Apoptosis

    PubMed Central

    Leong, Ooi Kheng; Muhammad, Tengku Sifzizul Tengku; Sulaiman, Shaida Fariza

    2011-01-01

    Physalis minima L. is reputed for having anticancer property. In this study, the chloroform extract of this plant exhibited remarkable cytotoxic activities on NCI-H23 (human lung adenocarcinoma) cell line at dose- and time-dependent manners (after 24, 48 and 72 h of incubation). Analysis of cell-death mechanism demonstrated that the extract exerted apoptotic programed cell death in NCI-H23 cells with typical DNA fragmentation, which is a biochemical hallmark of apoptosis. Morphological observation using transmission electron microscope (TEM) also displayed apoptotic characteristics in the treated cells, including clumping and margination of chromatins, followed by convolution of the nuclear and budding of the cells to produce membrane-bound apoptotic bodies. Different stages of apoptotic programed cell death as well as phosphatidylserine externalization were confirmed using annexin V and propidium iodide staining. Furthermore, acute exposure to the extract produced a significant regulation of c-myc, caspase-3 and p53 mRNA expression in this cell line. Due to its apoptotic effect on NCI-H23 cells, it is strongly suggested that the extract could be further developed as an anticancer drug. PMID:19541726

  5. Conformational Sampling of a Biomolecular Rugged Energy Landscape.

    PubMed

    Rydzewski, Jakub; Jakubowski, Rafal; Nicosia, Giuseppe; Nowak, Wieslaw

    2018-01-01

    The protein structure refinement using conformational sampling is important in hitherto protein studies. In this paper, we examined the protein structure refinement by means of potential energy minimization using immune computing as a method of sampling conformations. The method was tested on the x-ray structure and 30 decoys of the mutant of [Leu]Enkephalin, a paradigmatic example of the biomolecular multiple-minima problem. In order to score the refined conformations, we used a standard potential energy function with the OPLSAA force field. The effectiveness of the search was assessed using a variety of methods. The robustness of sampling was checked by the energy yield function which measures quantitatively the number of the peptide decoys residing in an energetic funnel. Furthermore, the potential energy-dependent Pareto fronts were calculated to elucidate dissimilarities between peptide conformations and the native state as observed by x-ray crystallography. Our results showed that the probed potential energy landscape of [Leu]Enkephalin is self-similar on different metric scales and that the local potential energy minima of the peptide decoys are metastable, thus they can be refined to conformations whose potential energy is decreased by approximately 250 kJ/mol.

  6. Quantum tomography for collider physics: illustrations with lepton-pair production

    NASA Astrophysics Data System (ADS)

    Martens, John C.; Ralston, John P.; Takaki, J. D. Tapia

    2018-01-01

    Quantum tomography is a method to experimentally extract all that is observable about a quantum mechanical system. We introduce quantum tomography to collider physics with the illustration of the angular distribution of lepton pairs. The tomographic method bypasses much of the field-theoretic formalism to concentrate on what can be observed with experimental data. We provide a practical, experimentally driven guide to model-independent analysis using density matrices at every step. Comparison with traditional methods of analyzing angular correlations of inclusive reactions finds many advantages in the tomographic method, which include manifest Lorentz covariance, direct incorporation of positivity constraints, exhaustively complete polarization information, and new invariants free from frame conventions. For example, experimental data can determine the entanglement entropy of the production process. We give reproducible numerical examples and provide a supplemental standalone computer code that implements the procedure. We also highlight a property of complex positivity that guarantees in a least-squares type fit that a local minimum of a χ 2 statistic will be a global minimum: There are no isolated local minima. This property with an automated implementation of positivity promises to mitigate issues relating to multiple minima and convention dependence that have been problematic in previous work on angular distributions.

  7. OAO/MITSuME photometry of dwarf novae. II. HV Virginis and OT J012059.6+325545

    NASA Astrophysics Data System (ADS)

    Imada, Akira; Isogai, Keisuke; raki, Takahiro; Tanada, Shunsuke; Yanagisawa, Kenshi; Kawai, Nobuyuki

    2018-01-01

    We report on multicolor photometry of WZ Sge-type dwarf novae HV Vir and OT J012059.6+325545 during superoutbursts. These systems show early superhumps with mean periods of 0.057093(45) d for HV Vir and 0.057147(15) d for OT J012059.6+325545. The observed early superhumps showed a common feature that the brightness minima corresponded to the bluest peaks in color variations, which may be a ubiquitous phenomenon among early superhumps of WZ Sge-type dwarf novae. We confirmed that the amplitudes of early superhumps depend on wavelength: amplitudes with longer bandpass filters show larger values. This indicates that the light source of early superhumps is generated at the outer region of the vertically extended accretion disk. On the other hand, amplitudes of ordinary superhumps are likely to be independent of wavelength. This implies that the superhump light source is geometrically thin. We also examined color variations of ordinary superhumps and found that the bluest peaks in g΄ - Ic tend to coincide with the brightness minima, particularily in stage B superhumps. This may reflect that the pressure effect plays a dominant role during stage B superhumps.

  8. Structures, Energetics and Spectroscopic Fingerprints of Water Clusters n=2-24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Soohaeng; Xantheas, Sotiris S.

    This chapter discusses the structures, energetics, and vibrational spectra of the first few (n$24) water clusters obtained from high-level electronic structure calculations. The results are discussed in the perspective of being used to parameterize/assess the accuracy of classical and quantum force fields for water. To this end, a general introduction with the classification of those force fields is presented. Several low-lying families of minima for the medium cluster sizes are considered. The transition from the “all surface” to the “fully coordinated” cluster structures occurring at nD17 and its spectroscopic signature is presented. The various families of minima for nD20 aremore » discussed together with the low energy networks of the pentagonal dodecahedron (H2O)20 water cage. Finally, the low-energy networks of the tetrakaidecahedron (T-cage) (H2O)24 cluster are shown and their significance in the construction of periodic lattices of structure I (sI) of the hydrate lattices is discussed.« less

  9. A Topside Equatorial Ionospheric Density and Composition Climatology During and After Extreme Solar Minimum

    NASA Technical Reports Server (NTRS)

    Klenzing, J. H.; Simoes, F.; Ivanov, S.; Heelis, R. A.; Bilitza, D.; Pfaff, R. F.; Rowland, D. E.

    2011-01-01

    During the recent solar minimum, solar activity reached the lowest levels observed during the space age. This extremely low solar activity has accompanied a number of unexpected observations in the Earth's ionosphere and thermosphere when compared to previous solar minima. Among these are the fact that the ionosphere is significantly contracted beyond expectations based on empirical models. Climatological altitude profiles of ion density and composition measurements near the magnetic dip equator are constructed from the C/NOFS satellite to characterize the shape of the top side ionosphere during the recent solar minimum and into the new solar cycle. The variation of the profiles with respect to local time, season, and solar activity are compared to the IRI-2007 model. Building on initial results reported by Heelis et al. [2009], here we describe the extent of the contracted ionosphere, which is found to persist throughout 2009. The shape of the ionosphere during 2010 is found to be consistent with observations from previous solar minima.

  10. Topside Equatorial Ionospheric Density and Composition During and After Extreme Solar Minimum

    NASA Technical Reports Server (NTRS)

    Klenzing, J.; Simoes, F.; Ivanov, S.; Heelis, R. A.; Bilitza, D.; Pfaff, R.; Rowland, D.

    2011-01-01

    During the recent solar minimum, solar activity reached the lowest levels observed during the space age. This extremely low solar activity has accompanied a number of unexpected observations in the Earth s ionosphere-thermosphere system when compared to previous solar minima. Among these are the fact that the ionosphere is significantly contracted beyond expectations based on empirical models. Altitude profiles of ion density and composition measurements near the magnetic dip equator are constructed from the Communication/Navigation Outage Forecast System (C/NOFS) satellite to characterize the shape of the topside ionosphere during the recent solar minimum and into the new solar cycle. The variation of the profiles with respect to local time, season, and solar activity are compared to the IRI-2007 model. Building on initial results reported by Heelis et al. (2009), here we describe the extent of the contracted ionosphere, which is found to persist throughout 2009. The shape of the ionosphere during 2010 is found to be consistent with observations from previous solar minima.

  11. On the ion-pair dissociation mechanisms in the small NaCl·(H2 O)6 cluster: A perspective from reaction path search calculations.

    PubMed

    Takayanagi, Toshiyuki; Nakatomi, Taiki; Yonetani, Yoshiteru

    2018-04-20

    We performed reaction path search calculations for the NaCl·(H 2 O) 6 cluster using the global reaction route mapping (GRRM) code to understand the atomic-level mechanisms of the NaCl → Na +  + Cl - ionic dissociation induced by water solvents. Low-lying minima, transition states connecting two local minima and corresponding intrinsic reaction coordinates on the potential energy surface are explored. We found that the NaCl distances at the transitions states for the dissociation pathways were distributed in a relatively wide range of 2.7-3.7 Å and that the NaCl distance at the transition state did not correlate with the commonly used solvation coordinates. This suggests that the definition of the transition states with specific structures as well as good reaction coordinate is very difficult for the ionic dissociation process even in a small water cluster. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  12. Minimal S U ( 3 ) × S U ( 3 ) symmetry breaking patterns

    DOE PAGES

    Bai, Yang; Dobrescu, Bogdan A.

    2018-03-16

    Here, we study the vacua of anmore » $$SU(3)\\times SU(3)$$-symmetric model with a bifundamental scalar. Structures of this type appear in various gauge theories such as the Renormalizable Coloron Model, which is an extension of QCD, or the Trinification extension of the electroweak group. In other contexts, such as chiral symmetry, $$SU(3)\\times SU(3)$$ is a global symmetry. As opposed to more general $$SU(N)\\times SU(N)$$ symmetric models, the $N=3$ case is special due to the presence of a trilinear scalar term in the potential. We find that the most general tree-level potential has only three types of minima: one that preserves the diagonal $SU(3)$ subgroup, one that is $$SU(2)\\times SU(2)\\times U(1)$$ symmetric, and a trivial one where the full symmetry remains unbroken. The phase diagram is complicated, with some regions where there is a unique minimum, and other regions where two minima coexist.« less

  13. Minimal S U ( 3 ) × S U ( 3 ) symmetry breaking patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Yang; Dobrescu, Bogdan A.

    Here, we study the vacua of anmore » $$SU(3)\\times SU(3)$$-symmetric model with a bifundamental scalar. Structures of this type appear in various gauge theories such as the Renormalizable Coloron Model, which is an extension of QCD, or the Trinification extension of the electroweak group. In other contexts, such as chiral symmetry, $$SU(3)\\times SU(3)$$ is a global symmetry. As opposed to more general $$SU(N)\\times SU(N)$$ symmetric models, the $N=3$ case is special due to the presence of a trilinear scalar term in the potential. We find that the most general tree-level potential has only three types of minima: one that preserves the diagonal $SU(3)$ subgroup, one that is $$SU(2)\\times SU(2)\\times U(1)$$ symmetric, and a trivial one where the full symmetry remains unbroken. The phase diagram is complicated, with some regions where there is a unique minimum, and other regions where two minima coexist.« less

  14. Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications.

    PubMed

    Hahn, Melinda W; O'Meliae, Charles R

    2004-01-01

    The deposition and reentrainment of particles in porous media have been examined theoretically and experimentally. A Brownian Dynamics/Monte Carlo (MC/BD) model has been developed that simulates the movement of Brownian particles near a collector under "unfavorable" chemical conditions and allows deposition in primary and secondary minima. A simple Maxwell approach has been used to estimate particle attachment efficiency by assuming deposition in the secondary minimum and calculating the probability of reentrainment. The MC/BD simulations and the Maxwell calculations support an alternative view of the deposition and reentrainment of Brownian particles under unfavorable chemical conditions. These calculations indicate that deposition into and subsequent release from secondary minima can explain reported discrepancies between classic model predictions that assume irreversible deposition in a primary well and experimentally determined deposition efficiencies that are orders of magnitude larger than Interaction Force Boundary Layer (IFBL) predictions. The commonly used IFBL model, for example, is based on the notion of transport over an energy barrier into the primary well and does not address contributions of secondary minimum deposition. A simple Maxwell model based on deposition into and reentrainment from secondary minima is much more accurate in predicting deposition rates for column experiments at low ionic strengths. It also greatly reduces the substantial particle size effects inherent in IFBL models, wherein particle attachment rates are predicted to decrease significantly with increasing particle size. This view is consistent with recent work by others addressing the composition and structure of the first few nanometers at solid-water interfaces including research on modeling water at solid-liquid interfaces, surface speciation, interfacial force measurements, and the rheological properties of concentrated suspensions. It follows that deposition under these conditions will depend on the depth of the secondary minimum and that some transition between secondary and primary depositions should occur when the height of the energy barrier is on the order of several kT. When deposition in secondary minima predominates, observed deposition should increase with increasing ionic strength, particle size, and Hamaker constant. Since an equilibrium can develop between bound and bulk particles, the collision efficiency [alpha] can no longer be considered a constant for a given physical and chemical system. Rather, in many cases it can decrease over time until it eventually reaches zero as equilibrium is established.

  15. Adults of the Waterfern Weevil, Stenopelmus rufinasus Gyllenhal (Coleoptera: Curculionidae) feed on a Non-Host Plant Salvinia minima Baker, in Louisiana

    USDA-ARS?s Scientific Manuscript database

    The waterfern weevil, Stenopelmus refinasus Gyllenhal, has previously been reported as host-specific, only feeding on plants in the genus Azolla. We report the first observations of S. rufinasus feeding on a non-host plant, Salvinia minima Baker, within the United States....

  16. The Nature of Grand Minima and Maxima from Fully Nonlinear Flux Transport Dynamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inceoglu, Fadil; Arlt, Rainer; Rempel, Matthias, E-mail: finceoglu@aip.de

    We aim to investigate the nature and occurrence characteristics of grand solar minimum and maximum periods, which are observed in the solar proxy records such as {sup 10}Be and {sup 14}C, using a fully nonlinear Babcock–Leighton type flux transport dynamo including momentum and entropy equations. The differential rotation and meridional circulation are generated from the effect of turbulent Reynolds stress and are subjected to back-reaction from the magnetic field. To generate grand minimum- and maximum-like periods in our simulations, we used random fluctuations in the angular momentum transport process, namely the Λ-mechanism, and in the Babcock–Leighton mechanism. To characterize themore » nature and occurrences of the identified grand minima and maxima in our simulations, we used the waiting time distribution analyses, which reflect whether the underlying distribution arises from a random or a memory-bearing process. The results show that, in the majority of the cases, the distributions of grand minima and maxima reveal that the nature of these events originates from memoryless processes. We also found that in our simulations the meridional circulation speed tends to be smaller during grand maximum, while it is faster during grand minimum periods. The radial differential rotation tends to be larger during grand maxima, while it is smaller during grand minima. The latitudinal differential rotation, on the other hand, is found to be larger during grand minima.« less

  17. Thermoelectric efficiency of single-molecule junctions with long molecular linkers.

    PubMed

    Zimbovskaya, Natalya A

    2018-06-18

    We report results of theoretical studies of thermoelectric efficiency of single-molecule junctions with long molecular linkers. The linker is simulated by a chain of identical sites described using a tight-binding model. It is shown that thermoelectric figure of merit ZT strongly depends on the bridge length, being controlled by the lineshape of electron transmission function within the tunnel energy range corresponding to HOMO/LUMO transport channel. Using the adopted model we demonstrate that ZT may significantly increase as the linker lengthens, and that gateway states on the bridge (if any) may noticeably affect the length-dependent ZT. Temperature dependences of ZT for various bridge lengths are analyzed. It is shown that broad minima emerge in ZT versus temperature curves whose positions are controlled by the bridge lengths. © 2018 IOP Publishing Ltd.

  18. Chemopreventive Agents from Physalis minima Function as Michael Reaction Acceptors

    PubMed Central

    Men, Ruizhi; Li, Ning; Ding, Chihong; Tang, Yingzhan; Xing, Yachao; Ding, Wanjing; Ma, Zhongjun

    2016-01-01

    Background: The fruits of some varieties of genus Physalis have been used as delicious fruits and functional food in the Northeast of China. Materials and Methods: To reveal the functional material basis, we performed bioactivity-guided phytochemical research and chemopreventive effect assay of the constituents from Physalis minima. Results: It was demonstrated that the ethyl acetate extract of P. minima L. (EEPM) had potential quinone reductase (QR) inducing activity with induction ratio (IR, QR induction activity) value of 1.47 ± 0.24, and glutathione binding property as potential Michael reaction acceptors (with an α, β-unsaturated ketone moiety). Furthermore, bioactivity-guided phytochemical research led eight compounds (1–8), which were elucidated as 3-isopropyl-5-acetoxycyclohexene-2-one-1 (1), isophysalin B (2), physalin G (3), physalin D (4), physalin I (5), physordinose B (6), stigmasterol-3-O-β-D-glucopyranoside (7) and 5α-6β-dihydroxyphysalin R (8) on the basis of nuclear magnetic resonance spectroscopy analyses and HRESIMS. Then, isophysalin B (2) and physordinose B (6) showed significant QR inducing activity with IR value of 2.80 ± 0.19 and 2.38 ± 0.46, respectively. SUMMARY An ultra-performance liquid chromatographic method with glutathione as the substrate was used to detect the Michael reaction acceptors in extracts of Physalis minima (EPM)We investigated the chemical constituents of EPM guided by biological activity methodIsophysalin B (1) and physordinose B (6) showed strong quinone reductase inducing activity with induction ratio values of 2.80 ± 0.19 and 2.38 ± 0.46This study generated useful information for consumers and many encourage researchers to utilize edible fruits from Physalis as a source of phytochemicals Abbreviations used: EPM: Extracts of Physalis minima, EEPM: Ethyl acetate extract of Physalis minima L., GSH: Glutathione, MRAs: Michael reaction acceptors, QR: Quinone reductase. PMID:27279713

  19. Rapid sampling of local minima in protein energy surface and effective reduction through a multi-objective filter

    PubMed Central

    2013-01-01

    Background Many problems in protein modeling require obtaining a discrete representation of the protein conformational space as an ensemble of conformations. In ab-initio structure prediction, in particular, where the goal is to predict the native structure of a protein chain given its amino-acid sequence, the ensemble needs to satisfy energetic constraints. Given the thermodynamic hypothesis, an effective ensemble contains low-energy conformations which are similar to the native structure. The high-dimensionality of the conformational space and the ruggedness of the underlying energy surface currently make it very difficult to obtain such an ensemble. Recent studies have proposed that Basin Hopping is a promising probabilistic search framework to obtain a discrete representation of the protein energy surface in terms of local minima. Basin Hopping performs a series of structural perturbations followed by energy minimizations with the goal of hopping between nearby energy minima. This approach has been shown to be effective in obtaining conformations near the native structure for small systems. Recent work by us has extended this framework to larger systems through employment of the molecular fragment replacement technique, resulting in rapid sampling of large ensembles. Methods This paper investigates the algorithmic components in Basin Hopping to both understand and control their effect on the sampling of near-native minima. Realizing that such an ensemble is reduced before further refinement in full ab-initio protocols, we take an additional step and analyze the quality of the ensemble retained by ensemble reduction techniques. We propose a novel multi-objective technique based on the Pareto front to filter the ensemble of sampled local minima. Results and conclusions We show that controlling the magnitude of the perturbation allows directly controlling the distance between consecutively-sampled local minima and, in turn, steering the exploration towards conformations near the native structure. For the minimization step, we show that the addition of Metropolis Monte Carlo-based minimization is no more effective than a simple greedy search. Finally, we show that the size of the ensemble of sampled local minima can be effectively and efficiently reduced by a multi-objective filter to obtain a simpler representation of the probed energy surface. PMID:24564970

  20. Efimov effect for heteronuclear three-body systems at positive scattering length and finite temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmons, Samuel B.; Kang, Daekyoung; Acharya, Bijaya

    2017-09-08

    Here, we study the recombination process of three atoms scattering into an atom and diatomic molecule in heteronuclear mixtures of ultracold atomic gases with large and positive interspecies scattering length at finite temperature. We calculate the temperature dependence of the three-body recombination rates by extracting universal scaling functions that parametrize the energy dependence of the scattering matrix. We compare our results to experimental data for the 40K– 87Rb mixture and make a prediction for 6Li– 87Rb. We find that contributions from higher partial wave channels significantly impact the total rate and, in systems with particularly large mass imbalance, can evenmore » obliterate the recombination minima associated with the Efimov effect.« less

  1. Fast Recall for Complex-Valued Hopfield Neural Networks with Projection Rules.

    PubMed

    Kobayashi, Masaki

    2017-01-01

    Many models of neural networks have been extended to complex-valued neural networks. A complex-valued Hopfield neural network (CHNN) is a complex-valued version of a Hopfield neural network. Complex-valued neurons can represent multistates, and CHNNs are available for the storage of multilevel data, such as gray-scale images. The CHNNs are often trapped into the local minima, and their noise tolerance is low. Lee improved the noise tolerance of the CHNNs by detecting and exiting the local minima. In the present work, we propose a new recall algorithm that eliminates the local minima. We show that our proposed recall algorithm not only accelerated the recall but also improved the noise tolerance through computer simulations.

  2. Antibiotic activity of Emerimicin IV isolated from Emericellopsis minima from Talcahuano Bay, Chile.

    PubMed

    Inostroza, Alejandro; Lara, Liliana; Paz, Cristian; Perez, Andrés; Galleguillos, Felipe; Hernandez, Victor; Becerra, José; González-Rocha, Gerardo; Silva, Mario

    2018-06-01

    Due to the increasing emergence of resistance of bacterial pathogens to current antibiotics, we have examined the marine fungi present in sea sediments obtained 200 m offshore to discover new antibacterial compounds active against multidrug-resistant bacteria. One strain, identified as Emericellopsis minima, was isolated from sediments of Talcahuano Bay (Chile). From the liquid culture of E. minima, we isolated Emerimicin IV, a unique fungal peptaibol that exhibited antibacterial activity. The structure of this compound was assigned by interpretation of 1 H NMR and HR-LCMS data. Emerimicin IV showed bacteriostatic activity against clinical isolates of methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis with MIC values ranging between 100 and 12.5 μg/mL.

  3. Investigation of transition States in bulk and freestanding film polymer glasses.

    PubMed

    Jain, Tushar S; de Pablo, Juan J

    2004-04-16

    We have performed transition state searches on the potential energy landscape for bulk and freestanding film polymer glasses and identified connected minima. An analysis of the displacements between minima shows that the sites that undergo the greatest displacement are highly localized in space for both the bulk and the thin-film systems studied. In the case of the thin film, the clusters originate at the surface and penetrate into the center of the film thereby coupling the relaxation in the center of the film to the mobile surface layer. Furthermore, the energy barriers between minima are lower in the thin film than in the bulk system. These findings can rationalize the experimentally observed depression of the glass transition temperature in freestanding polymer films.

  4. Systems and methods for separating particles utilizing engineered acoustic contrast capture particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduchak, Gregory; Ward, Michael D.

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minimamore » for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.« less

  5. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduchak, Gregory; Ward, Michael D

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minimamore » for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.« less

  6. WS-BP: An efficient wolf search based back-propagation algorithm

    NASA Astrophysics Data System (ADS)

    Nawi, Nazri Mohd; Rehman, M. Z.; Khan, Abdullah

    2015-05-01

    Wolf Search (WS) is a heuristic based optimization algorithm. Inspired by the preying and survival capabilities of the wolves, this algorithm is highly capable to search large spaces in the candidate solutions. This paper investigates the use of WS algorithm in combination with back-propagation neural network (BPNN) algorithm to overcome the local minima problem and to improve convergence in gradient descent. The performance of the proposed Wolf Search based Back-Propagation (WS-BP) algorithm is compared with Artificial Bee Colony Back-Propagation (ABC-BP), Bat Based Back-Propagation (Bat-BP), and conventional BPNN algorithms. Specifically, OR and XOR datasets are used for training the network. The simulation results show that the WS-BP algorithm effectively avoids the local minima and converge to global minima.

  7. Evaluating lake stratification and temporal trends by using near-continuous water-quality data from automated profiling systems for water years 2005-09, Lake Mead, Arizona and Nevada

    USGS Publications Warehouse

    Veley, Ronald J.; Moran, Michael J.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service and Southern Nevada Water Authority, collected near-continuous depth-dependent water-quality data at Lake Mead, Arizona and Nevada, as part of a multi-agency monitoring network maintained to provide resource managers with basic data and to gain a better understanding of the hydrodynamics of the lake. Water-quality data-collection stations on Lake Mead were located in shallow water (less than 20 meters) at Las Vegas Bay (Site 3) and Overton Arm, and in deep water (greater than 20 meters) near Sentinel Island and at Virgin and Temple Basins. At each station, near-continual depth-dependent water-quality data were collected from October 2004 through September 2009. The data were collected by using automatic profiling systems equipped with multiparameter water-quality sondes. The sondes had sensors for temperature, specific conductance, dissolved oxygen, pH, turbidity, and depth. Data were collected every 6 hours at 2-meter depth intervals (for shallow-water stations) or 5-meter depth intervals (for deep-water stations) beginning at 1 meter below water surface. Data were analyzed to determine water-quality conditions related to stratification of the lake and temporal trends in water-quality parameters. Three water-quality parameters were the main focus of these analyses: temperature, specific conductance, and dissolved oxygen. Statistical temporal-trend analyses were performed for a single depth at shallow-water stations [Las Vegas Bay (Site 3) and Overton Arm] and for thermally-stratified lake layers at deep-water stations (Sentinel Island and Virgin Basin). The limited period of data collection at the Temple Basin station prevented the application of statistical trend analysis. During the summer months, thermal stratification was not observed at shallow-water stations, nor were major maxima or minima observed for specific-conductance or dissolved-oxygen profiles. A clearly-defined thermocline and well-defined maxima and minima in specific-conductance and dissolved-oxygen profiles were observed at deep-water stations during the summer months. Specific-conductance maxima were likely the result of inflow of water from either the Las Vegas Wash or Muddy/Virgin Rivers or both, while the minima were likely the result of inflow of water from the Colorado River. Maxima and minima for dissolved oxygen were likely the result of primary productivity blooms and their subsequent decay. Temporal-trend analyses indicated that specific conductance decreased at all stations over the period of record, except for Las Vegas Bay (Site 3), where specific conductance increased. Temperature also decreased over the period of record at deep-water stations for certain lake layers. Decreasing temperature and specific conductance at deep-water stations is the result of decreasing values in these parameters in water coming from the Colorado River. Quagga mussels (Dreissena rostriformis bugensis), however, could play a role in trends of decreasing specific conductance through incorporation of calcite in their shells. Trends of decreasing turbidity and pH at deep-water stations support the hypothesis that quagga mussels could be having an effect on the physical properties and water chemistry of Lake Mead. Unlike other stations, Las Vegas Bay (Site 3) had increasing specific conductance and is interpreted as the result of lowering lake levels decreasing the volume of lake water available for mixing and dilution of the high-conductance water coming from Las Vegas Wash. Dissolved oxygen increased over the period of record in some lake layers at the deep-water stations. Increasing dissolved oxygen at deep-water stations is believed to result, in part, from a reduction of phosphorus entering Lake Mead and the concomitant reduction of biological oxygen demand.

  8. Tidal effects in differentiated viscoelastic bodies: a numerical approach

    NASA Astrophysics Data System (ADS)

    Walterová, M.; Běhounková, M.

    2017-09-01

    The majority of confirmed terrestrial exoplanets orbits close to their host stars and their evolution was likely altered by tidal interaction. Nevertheless, due to their viscoelastic properties on the tidal frequencies, their response cannot be described exactly by standardly employed constant-lag models. We therefore introduce a tidal model based on the numerical evaluation of a continuum mechanics problem describing the deformation of viscoelastic (Maxwell or Andrade) planetary mantles subjected to external force. We apply the method on a model Earth-size planet orbiting a low-mass star and study the effect of the orbital eccentricity, the mantle viscosity and the chosen rheology on the tidal dissipation, the complex Love numbers and the tidal torque. The number of stable spin states (i.e., zero tidal torque) grows with increasing mantle viscosity, similarly to the analytical model of Correia et al. (Astron Astrophys 571:A50, 2014) for homogeneous bodies. This behavior is only slightly influenced by the rheology used. Similarly, the Love numbers do not distinctly depend on the considered rheological model. The increase in viscosity affects the amplitude of their variations. The tidal heating described by the Maxwell rheology attains local minima associated with low spin-orbit resonances, with depth and shape depending on both the eccentricity and the viscosity. For the Andrade rheology, the minima at low resonances are very shallow and the tidal heating for all viscosities resembles a "fluid limit." The tidal heating is the quantity influenced the most by the rheology, having thus possible impact on the internal thermal evolution.

  9. Computationally efficient characterization of potential energy surfaces based on fingerprint distances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, Bastian; Goedecker, Stefan, E-mail: stefan.goedecker@unibas.ch

    2016-07-21

    An analysis of the network defined by the potential energy minima of multi-atomic systems and their connectivity via reaction pathways that go through transition states allows us to understand important characteristics like thermodynamic, dynamic, and structural properties. Unfortunately computing the transition states and reaction pathways in addition to the significant energetically low-lying local minima is a computationally demanding task. We here introduce a computationally efficient method that is based on a combination of the minima hopping global optimization method and the insight that uphill barriers tend to increase with increasing structural distances of the educt and product states. This methodmore » allows us to replace the exact connectivity information and transition state energies with alternative and approximate concepts. Without adding any significant additional cost to the minima hopping global optimization approach, this method allows us to generate an approximate network of the minima, their connectivity, and a rough measure for the energy needed for their interconversion. This can be used to obtain a first qualitative idea on important physical and chemical properties by means of a disconnectivity graph analysis. Besides the physical insight obtained by such an analysis, the gained knowledge can be used to make a decision if it is worthwhile or not to invest computational resources for an exact computation of the transition states and the reaction pathways. Furthermore it is demonstrated that the here presented method can be used for finding physically reasonable interconversion pathways that are promising input pathways for methods like transition path sampling or discrete path sampling.« less

  10. Geomagnetic detection of the sectorial solar magnetic field and the historical peculiarity of minimum 23-24

    USGS Publications Warehouse

    Love, Jeffrey J.; Rigler, J.

    2012-01-01

    [1] Analysis is made of the geomagnetic-activityaaindex covering solar cycle 11 to the beginning of 24, 1868–2011. Autocorrelation shows 27.0-d recurrent geomagnetic activity that is well-known to be prominent during solar-cycle minima; some minima also exhibit a smaller amount of 13.5-d recurrence. Previous work has shown that the recent solar minimum 23–24 exhibited 9.0 and 6.7-d recurrence in geomagnetic and heliospheric data, but those recurrence intervals were not prominently present during the preceding minima 21–22 and 22–23. Using annual-averages and solar-cycle averages of autocorrelations of the historicalaadata, we put these observations into a long-term perspective: none of the 12 minima preceding 23–24 exhibited prominent 9.0 and 6.7-d geomagnetic activity recurrence. We show that the detection of these recurrence intervals can be traced to an unusual combination of sectorial spherical-harmonic structure in the solar magnetic field and anomalously low sunspot number. We speculate that 9.0 and 6.7-d recurrence is related to transient large-scale, low-latitude organization of the solar dynamo, such as seen in some numerical simulations.

  11. Energy landscapes and properties of biomolecules.

    PubMed

    Wales, David J

    2005-11-09

    Thermodynamic and dynamic properties of biomolecules can be calculated using a coarse-grained approach based upon sampling stationary points of the underlying potential energy surface. The superposition approximation provides an overall partition function as a sum of contributions from the local minima, and hence functions such as internal energy, entropy, free energy and the heat capacity. To obtain rates we must also sample transition states that link the local minima, and the discrete path sampling method provides a systematic means to achieve this goal. A coarse-grained picture is also helpful in locating the global minimum using the basin-hopping approach. Here we can exploit a fictitious dynamics between the basins of attraction of local minima, since the objective is to find the lowest minimum, rather than to reproduce the thermodynamics or dynamics.

  12. Four-Dimensional Golden Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenimore, Edward E.

    2015-02-25

    The Golden search technique is a method to search a multiple-dimension space to find the minimum. It basically subdivides the possible ranges of parameters until it brackets, to within an arbitrarily small distance, the minimum. It has the advantages that (1) the function to be minimized can be non-linear, (2) it does not require derivatives of the function, (3) the convergence criterion does not depend on the magnitude of the function. Thus, if the function is a goodness of fit parameter such as chi-square, the convergence does not depend on the noise being correctly estimated or the function correctly followingmore » the chi-square statistic. And, (4) the convergence criterion does not depend on the shape of the function. Thus, long shallow surfaces can be searched without the problem of premature convergence. As with many methods, the Golden search technique can be confused by surfaces with multiple minima.« less

  13. Ab initio/GIAO-CCSD(T) study of structures, energies, and 13C NMR chemical shifts of C4H7(+) and C5H9(+) ions: relative stability and dynamic aspects of the cyclopropylcarbinyl vs bicyclobutonium ions.

    PubMed

    Olah, George A; Surya Prakash, G K; Rasul, Golam

    2008-07-16

    The structures and energies of the carbocations C 4H 7 (+) and C 5H 9 (+) were calculated using the ab initio method. The (13)C NMR chemical shifts of the carbocations were calculated using the GIAO-CCSD(T) method. The pisigma-delocalized bisected cyclopropylcarbinyl cation, 1 and nonclassical bicyclobutonium ion, 2 were found to be the minima for C 4H 7 (+) at the MP2/cc-pVTZ level. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level the structure 2 is 0.4 kcal/mol more stable than the structure 1. The (13)C NMR chemical shifts of 1 and 2 were calculated by the GIAO-CCSD(T) method. Based on relative energies and (13)C NMR chemical shift calculations, an equilibrium involving the 1 and 2 in superacid solutions is most likely responsible for the experimentally observed (13)C NMR chemical shifts, with the latter as the predominant equilibrating species. The alpha-methylcyclopropylcarbinyl cation, 4, and nonclassical bicyclobutonium ion, 5, were found to be the minima for C 5H 9 (+) at the MP2/cc-pVTZ level. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level ion 5 is 5.9 kcal/mol more stable than the structure 4. The calculated (13)C NMR chemical shifts of 5 agree rather well with the experimental values of C 5H 9 (+).

  14. B.R.N.O. Contributions #40 Times of minima

    NASA Astrophysics Data System (ADS)

    Juryšek, J.; Hoňková, K.; Šmelcer, L.; Mašek, M.; Lehký, M.; Bílek, F.; Mazanec, J.; Hanžl, D.; Magris, M.; Nosál, P.; Bragagnolo, U.; Medulka, T.; Vraš&tacute; ák, M.; Urbaník, M.; Auer, R. F.; Sergey, I.; Jacobsen, J.; Alessandroni, M. R.; Andreatta, C.; Antonio, Ch. F.; Artola, R.; Audejean, M.; Balanzino, L.; Banfi, M.; Bazán, R. S.; Borgonovo, M.; Cagaš, P.; Čaloud, J.; Campos, F.; Čapková, H.; Černíková, V.; Červinka, L.; Chiavassa, A.; Dřevěný, R.; Durantini, L. H.; Ferraro, M. E.; Ferrero, G.; Girardini, C.; Gudmundsson, S.; Guzzo, P.; Guevara, N.; Hladík, B.; Horník, M.; Jakš, S.; Janoštiak, L.; Jelínek, M.; Kalášek, J.; Kalmbach, R.; Kubica, T.; Kučáková, H.; Liška, J.; Lomoz, F.; López, O. Ch.; Lovato, B. M.; Morero, S.; Mrllák, R.; Mrňák, P.; Persha, G.; Pignata, R.; Pintr, P.; Popov, A.; Portillo, L. F. T.; Quiñones, C.; Rodriguez, E.; Ruocco, N.; Scaggiante, F.; Scavuzzo, A.; Šebela, P.; Šimkovič, S.; Školník, V.; Skubák, P.; Smolka, M.; Špecián, M.; Šuchaň, J.; Tornatore, M.; Trnka, J.; Tylšar, M.; Walter, F.; Zardin, D.; Zejda, M.; Zíbar, M.; Ziková, A.

    2017-03-01

    This paper presents 3394 times of minima for 1096 objects acquired by 82 members and cooperating observers of the Variable Star and Exoplanet Section of the Czech Astronomical Society (B.R.N.O. Observing project). Observations were carried out between October 2014 and November 2016. Some newly discovered stars by the observers of project B.R.N.O. are included in the list.

  15. Interminimum foF1 Differences and Their Physical Interpretation

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. V.; Perrone, L.

    2018-01-01

    Interminimum changes of June noontime monthly median foF1 were analyzed for European and Japanese ionosonde stations over the period of five (Moscow six) solar cycles. The magnitude of these changes is different at different stations and depends on the solar minima considered. In particular, both European and Japanese stations manifest a pronounced foF1 change between 1996/1997 and 2008/2009 solar minima, the latter being the deepest one. For the first time, the total EUV solar flux with λ ≤ 1,050 Å has been retrieved for the 1946-2015 period using observed June monthly median foF1. The deep solar minimum in 2008/2009 was the lowest one among the last six solar cycles comparing the retrieved EUV. The change from 1996/1997 to 2008/2009 in the retrieved EUV is 2.0%, and this is much less than the difference of 10-12% being discussed in the literature. A 10% interminimum change in the total EUV flux results in neutral temperature and gas density, which are larger in 2008 than in 1996, and this contradicts the satellite drag neutral gas density observations. The mechanism of foF1 interminimum changes is based on an interplay between molecular (NO+ and O2+) and O+ ions. The main contribution (>72%) to the interminimum NmF1 change provides [M+] ions via the total ion production rate variation, the rest is provided via O+ ions. The absence (or inversed) difference in foF1 between 1996 and 2008 minima implies that neutral temperature and density are larger in 2008 than in 1996, and this contradicts the satellite drag observations.

  16. [Hormonal changes during relaxation].

    PubMed

    Gallois, P; Forzy, G; Dhont, J L

    1984-01-01

    Among 10 subjects who practiced autogenic training (AT) and 10 subjects who practiced transcendental meditation (TM), compared to 10 control subjects during 40 minutes, have been observed the following results: --decrease in cortisol plasma level (reaching a minima of 2 g/100 ml), --decrease in prolactin plasma level, --the basal plasma level of cortisol and prolactin were significantly lower in the TM group. Lastly, the urinary catecholamines (UC) increase after 40 minutes of rest in the control group, whereas the UC decrease in the TA group and most certainly in the TM group. All these variations indicate a humoral modification which seems to be the opposite of the state induced by stress.

  17. Bubble and skyrmion crystals in frustrated magnets with easy-axis anisotropy

    DOE PAGES

    Hayami, Satoru; Lin, Shi-Zeng; Batista, Cristian D.

    2016-05-12

    We clarify the conditions for the emergence of multiple-Q structures out of lattice and easy-axis spin anisotropy in frustrated magnets. By considering magnets whose exchange interaction has multiple global minima in momentum space, we find that both types of anisotropy stabilize triple-Q orderings. Moderate anisotropy leads to a magnetic field-induced skyrmion crystal, which evolves into a bubble crystal for increasing spatial and spin anisotropy. Finally, the bubble crystal exhibits a quasi-continuous (devil’s staircase) temperature dependent ordering wave-vector, characteristic of the competition between frustrated exchange and strong easy-axis anisotropy.

  18. A Minimum Variance Algorithm for Overdetermined TOA Equations with an Altitude Constraint.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Louis A; Mason, John J.

    We present a direct (non-iterative) method for solving for the location of a radio frequency (RF) emitter, or an RF navigation receiver, using four or more time of arrival (TOA) measurements and an assumed altitude above an ellipsoidal earth. Both the emitter tracking problem and the navigation application are governed by the same equations, but with slightly different interpreta- tions of several variables. We treat the assumed altitude as a soft constraint, with a specified noise level, just as the TOA measurements are handled, with their respective noise levels. With 4 or more TOA measurements and the assumed altitude, themore » problem is overdetermined and is solved in the weighted least squares sense for the 4 unknowns, the 3-dimensional position and time. We call the new technique the TAQMV (TOA Altitude Quartic Minimum Variance) algorithm, and it achieves the minimum possible error variance for given levels of TOA and altitude estimate noise. The method algebraically produces four solutions, the least-squares solution, and potentially three other low residual solutions, if they exist. In the lightly overdermined cases where multiple local minima in the residual error surface are more likely to occur, this algebraic approach can produce all of the minima even when an iterative approach fails to converge. Algorithm performance in terms of solution error variance and divergence rate for bas eline (iterative) and proposed approach are given in tables.« less

  19. Total ozone influence on the surface UV-B radiation in the late spring-summer 1963-1997: An analysis of multiple timescales

    NASA Astrophysics Data System (ADS)

    KrzyśCin, Janusz W.

    2000-02-01

    Monthly means and minima of total ozone for the late springs and summers (May-August) of 1963-1997 have been examined for the European Dobson stations (Arosa, Belsk, Hohenpeissenberg, Hradec Kralove, Uccle). It is shown that long-term tendencies in total ozone means were almost similar to those in the total ozone minima. Analyses of the late spring/summer means of UV daily doses, total ozone, and global solar radiation (proxy for the overall atmospheric transparency), measured at Belsk (52°N, 21°E) for the period 1976-1996, show that an importance of the total ozone changes for the UV-B level increases with the timescale. Decadal variations in total ozone are the main source of the UV trend at Belsk. Frequency of appearance of extreme daily total ozone values in the selected late spring/summer season seems to be important for analyses of the ozone forcing in the interannual timescale. Regional and temporal differences in the number of days with extreme low ozone values are discussed using the total ozone extrema taken at Arosa, Belsk, and Hradec Kralove in the 1963-1997 period. A statistical model is developed for diagnosis of the next day value of the UV-B level. The changes in the overall atmospheric transparency are essential for the UV-B level when the day-to-day variations in the UV forcing factors are examined.

  20. Detection-dependent kinetics as a probe of folding landscape microstructure.

    PubMed

    Yang, Wei Yuan; Gruebele, Martin

    2004-06-30

    The folding landscapes of polypeptides and proteins exhibit a hierarchy of local minima. The causes range from proline isomerization all the way down to microstructure in the free energy caused by residual frustration inherent in even the best 20 amino acid design. The corresponding time scales range from hours to submicroseconds. The smallest microstructures are difficult to detect. We have measured the folding/unfolding kinetics of the engineered trpzip2 peptide at different tryptophan fluorescence wavelengths, each yielding a different rate. Wavelength-dependent folding kinetics on 0.1-2 mus time scales show that different microstructures with a range of solvent exposure and local dynamics are populated. We estimate a lower limit for the roughness of the free energy surface based on the range of rates observed.

  1. Water-level monitoring in the area of the Palmdale Uplift, Southern California

    USGS Publications Warehouse

    Lamar, D.L.; Merifield, P.M.

    1978-01-01

    Abnormal behavior of water levels in wells has been observed prior to a number of earthquakes. For instance, water-level minima have been noted in the Cienega Winery well before earthquakes on the San Andreas fault. Abnormal water-level fluctuations were used in conjunctions with other precursors to predict the February 4, 1975, Haicheng earthquake in northeastern China. That such changes should occur prior to earthquakes is not surprising. Ground water that occupies the void spaces in porous rocks or alluvium can be expected to rise in wells when an aquifer is squeezed and fall when it is distended. COnfined aquifers, in particualr, have been found to be highly sensitive to Earth strain changes. 

  2. The influence of nonstationarity of the solar activity and general solar field on modulation of cosmic rays

    NASA Technical Reports Server (NTRS)

    Zusmanovich, A. G.; Kryakunova, O. N.; Churunova, L. F.; Shvartsman, Y. E.

    1985-01-01

    A numerical model of the propagation of galactic cosmic rays in interplanetary space was constructed for the case when the modulation depth determined by the level of solar activity changed in time. Also the contribution of particle drift in the regular field was calculated, and the agreement with experimental data concerning the ratio of protons and electrons in two solar activity minima is shown.

  3. Coherent diffractive photoproduction of ρ0 mesons on gold nuclei at 200 GeV/nucleon-pair at the Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration

    2017-11-01

    The STAR Collaboration reports on the photoproduction of π+π- pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly real photon emitted by one ion scatters from the other ion. We fit the π+π- invariant-mass spectrum with a combination of ρ0 and ω resonances and a direct π+π- continuum. This is the first observation of the ω in ultraperipheral collisions, and the first measurement of ρ -ω interference at energies where photoproduction is dominated by Pomeron exchange. The ω amplitude is consistent with the measured γ p →ω p cross section, a classical Glauber calculation, and the ω →π+π- branching ratio. The ω phase angle is similar to that observed at much lower energies, showing that the ρ -ω phase difference does not depend significantly on photon energy. The ρ0 differential cross section d σ /d t exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with two minima visible. The positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.

  4. An analysis of interplanetary space radiation exposure for various solar cycles

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Cucinotta, F. A.; O'Neill, P. M.; Wilson, J. W. (Principal Investigator)

    1994-01-01

    The radiation dose received by crew members in interplanetary space is influenced by the stage of the solar cycle. Using the recently developed models of the galactic cosmic radiation (GCR) environment and the energy-dependent radiation transport code, we have calculated the dose at 0 and 5 cm water depth; using a computerized anatomical man (CAM) model, we have calculated the skin, eye and blood-forming organ (BFO) doses as a function of aluminum shielding for various solar minima and maxima between 1954 and 1989. These results show that the equivalent dose is within about 15% of the mean for the various solar minima (maxima). The maximum variation between solar minimum and maximum equivalent dose is about a factor of three. We have extended these calculations for the 1976-1977 solar minimum to five practical shielding geometries: Apollo Command Module, the least and most heavily shielded locations in the U.S. space shuttle mid-deck, center of the proposed Space Station Freedom cluster and sleeping compartment of the Skylab. These calculations, using the quality factor of ICRP 60, show that the average CAM BFO equivalent dose is 0.46 Sv/year. Based on an approach that takes fragmentation into account, we estimate a calculation uncertainty of 15% if the uncertainty in the quality factor is neglected.

  5. Exploratory Bifactor Analysis: The Schmid-Leiman Orthogonalization and Jennrich-Bentler Analytic Rotations

    PubMed Central

    Mansolf, Maxwell; Reise, Steven P.

    2017-01-01

    Analytic bifactor rotations (Jennrich & Bentler, 2011, 2012) have been recently developed and made generally available, but are not well understood. The Jennrich-Bentler analytic bifactor rotations (bi-quartimin and bi-geomin) are an alternative to, and arguably an improvement upon, the less technically sophisticated Schmid-Leiman orthogonalization (Schmid & Leiman, 1957). We review the technical details that underlie the Schmid-Leiman and Jennrich-Bentler bifactor rotations, using simulated data structures to illustrate important features and limitations. For the Schmid-Leiman, we review the problem of inaccurate parameter estimates caused by the linear dependencies, sometimes called “proportionality constraints,” that are required to expand a p correlated factors solution into a (p+1) (bi)factor space. We also review the complexities involved when the data depart from perfect cluster structure (e.g., item cross-loading on group factors). For the Jennrich-Bentler rotations, we describe problems in parameter estimation caused by departures from perfect cluster structure. In addition, we illustrate the related problems of: (a) solutions that are not invariant under different starting values (i.e., local minima problems); and, (b) group factors collapsing onto the general factor. Recommendations are made for substantive researchers including examining all local minima and applying multiple exploratory techniques in an effort to identify an accurate model. PMID:27612521

  6. Singularities in the lineshape of a second-order perturbed quadrupolar nucleus and their use in data fitting.

    PubMed

    Field, Timothy R; Bain, Alex D

    2014-01-01

    Even for large quadrupolar interactions, the powder spectrum of the central transition for a half-integral spin is relatively narrow, because it is unperturbed to first order. However, the second-order perturbation is still orientation dependent, so it generates a characteristic lineshape. This lineshape has both finite step discontinuities and singularities where the spectrum is infinite, in theory. The relative positions of these features are well-known and they play an important role in fitting experimental data. However, there has been relatively little discussion of how high the steps are, so we present explicit formulae for these heights. This gives a full characterization of the features in this lineshape which can lead to an analysis of the spectrum without the usual laborious powder average. The transition frequency, as a function of the orientation angles, shows critical points: maxima, minima and saddle points. The maxima and minima correspond to the step discontinuities and the saddle points generate the singularities. Near a maximum, the contours are ellipses, whose dimensions are determined by the second derivatives of the frequency with respect to the polar and azimuthal angles. The density of points is smooth as the contour levels move up and down, but then drops to zero when a maximum is passed, giving a step. The height of the step is determined by the Hessian matrix-the matrix of all partial second derivatives. The points near the poles and the saddle points require a more detailed analysis, but this can still be done analytically. The resulting formulae are then compared to numerical simulations of the lineshape. We expand this calculation to include a relatively simple case where there is chemical shielding anisotropy and use this to fit experimental (139)La spectra of La2O3. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. On the Importance of Cycle Minimum in Sunspot Cycle Prediction

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.; Reichmann, Edwin J.

    1996-01-01

    The characteristics of the minima between sunspot cycles are found to provide important information for predicting the amplitude and timing of the following cycle. For example, the time of the occurrence of sunspot minimum sets the length of the previous cycle, which is correlated by the amplitude-period effect to the amplitude of the next cycle, with cycles of shorter (longer) than average length usually being followed by cycles of larger (smaller) than average size (true for 16 of 21 sunspot cycles). Likewise, the size of the minimum at cycle onset is correlated with the size of the cycle's maximum amplitude, with cycles of larger (smaller) than average size minima usually being associated with larger (smaller) than average size maxima (true for 16 of 22 sunspot cycles). Also, it was found that the size of the previous cycle's minimum and maximum relates to the size of the following cycle's minimum and maximum with an even-odd cycle number dependency. The latter effect suggests that cycle 23 will have a minimum and maximum amplitude probably larger than average in size (in particular, minimum smoothed sunspot number Rm = 12.3 +/- 7.5 and maximum smoothed sunspot number RM = 198.8 +/- 36.5, at the 95-percent level of confidence), further suggesting (by the Waldmeier effect) that it will have a faster than average rise to maximum (fast-rising cycles have ascent durations of about 41 +/- 7 months). Thus, if, as expected, onset for cycle 23 will be December 1996 +/- 3 months, based on smoothed sunspot number, then the length of cycle 22 will be about 123 +/- 3 months, inferring that it is a short-period cycle and that cycle 23 maximum amplitude probably will be larger than average in size (from the amplitude-period effect), having an RM of about 133 +/- 39 (based on the usual +/- 30 percent spread that has been seen between observed and predicted values), with maximum amplitude occurrence likely sometime between July 1999 and October 2000.

  8. Influence of solar activity on the state of the wheat market in medieval England

    NASA Astrophysics Data System (ADS)

    Pustil'Nik, Lev A.; Din, Gregory Yom

    2004-09-01

    The database of professor Rogers (1887), which includes wheat prices in England in the Middle Ages, was used to search for a possible influence of solar activity on the wheat market. Our approach was based on the following: (1) Existence of the correlation between cosmic ray flux entering the terrestrial atmosphere and cloudiness of the atmosphere. (2) Cosmic ray intensity in the solar system changes with solar activity, (3) Wheat production depends on weather conditions as a nonlinear function with threshold transitions. (4) A wheat market with a limited supply (as it was in medieval England) has a highly nonlinear sensitivity to variations in wheat production with boundary states, where small changes in wheat supply could lead to bursts of prices or to prices falling. We present a conceptual model of possible modes for sensitivity of wheat prices to weather conditions, caused by solar cycle variations, and compare expected price fluctuations with price variations recorded in medieval England. We compared statistical properties of the intervals between wheat price bursts during the years 1249-1703 with statistical properties of the intervals between the minima of solar cycles during the years 1700-2000. We show that statistical properties of these two samples are similar, both for characteristics of the distributions and for histograms of the distributions. We analyze a direct link between wheat prices and solar activity in the 17th century, for which wheat prices and solar activity data (derived from 10Be isotope) are available. We show that for all 10 time moments of the solar activity minima the observed prices were higher than prices for the corresponding time moments of maximal solar activity (100% sign correlation, on a significance level < 0.2%). We consider these results a direct evidence of the causal connection between wheat prices bursts and solar activity.

  9. Flow-duration-frequency behaviour of British rivers based on annual minima data

    NASA Astrophysics Data System (ADS)

    Zaidman, Maxine D.; Keller, Virginie; Young, Andrew R.; Cadman, Daniel

    2003-06-01

    A comparison of different probability distribution models for describing the flow-duration-frequency behaviour of annual minima flow events in British rivers is reported. Twenty-five catchments were included in the study, each having stable and natural flow records of at least 30 years in length. Time series of annual minima D-day average flows were derived for each record using durations ( D) of 1, 7, 30, 60, 90, and 365 days and used to construct low flow frequency curves. In each case the Gringorten plotting position formula was used to determine probabilities (of non-exceedance). Four distribution types—Generalised Extreme Value (GEV), Generalised Logistic (GL), Pearson Type-3 (PE3) and Generalised Pareto (GP)—were used to model the probability distribution function for each site. L-moments were used to parameterise individual models, whilst goodness-of-fit tests were used to assess their match to the sample data. The study showed that where short durations (i.e. 60 days or less) were considered, high storage catchments tended to be best represented by GL and GEV distribution models whilst low storage catchments were best described by PE3 or GEV models. However, these models produced reasonable results only within a limited range (e.g. models for high storage catchments did not produce sensible estimates of return periods where the prescribed flow was less than 10% of the mean flow). For annual minima series derived using long duration flow averages (e.g. more than 90 days), GP and GEV models were generally more applicable. The study suggests that longer duration minima do not conform to the same distribution types as short durations, and that catchment properties can influence the type of distribution selected.

  10. Space climate and space weather over the past 400 years: 2. Proxy indicators of geomagnetic storm and substorm occurrence

    NASA Astrophysics Data System (ADS)

    Lockwood, Mike; Owens, Mathew J.; Barnard, Luke A.; Scott, Chris J.; Watt, Clare E.; Bentley, Sarah

    2018-02-01

    Using the reconstruction of power input to the magnetosphere presented in Paper 1 Lockwood et al. [J Space Weather Space Clim 7 (2017a)], we reconstruct annual means of the geomagnetic Ap and AE indices over the past 400 years to within a 1-sigma error of ±20%. In addition, we study the behaviour of the lognormal distribution of daily and hourly values about these annual means and show that we can also reconstruct the fraction of geomagnetically-active (storm-like) days and (substorm-like) hours in each year to accuracies of to accuracies of 50%, including the large percentage uncertainties in near-zero values. The results are the first physics-based quantification of the space weather conditions in both the Dalton and Maunder minima. Looking to the future, the weakening of Earth's magnetic moment means that the terrestrial disturbance levels during a future repeats of the solar Dalton and Maunder minima will be weaker and we here quantify this effect for the first time.

  11. Computationally Efficient Characterization of Potential Energy Surfaces Based on Fingerprint Distances

    NASA Astrophysics Data System (ADS)

    Schaefer, Bastian; Goedecker, Stefan; Goedecker Group Team

    Based on Lennard-Jones, Silicon, Sodium-Chloride and Gold clusters, it was found that uphill barrier energies of transition states between directly connected minima tend to increase with increasing structural differences of the two minima. Based on this insight it also turned out that post-processing minima hopping data at a negligible computational cost allows to obtain qualitative topological information on potential energy surfaces that can be stored in so called qualitative connectivity databases. These qualitative connectivity databases are used for generating fingerprint disconnectivity graphs that allow to obtain a first qualitative idea on thermodynamic and kinetic properties of a system of interest. This research was supported by the NCCR MARVEL, funded by the Swiss National Science Foundation. Computer time was provided by the Swiss National Supercomputing Centre (CSCS) under Project ID No. s499.

  12. MinFinder: Locating all the local minima of a function

    NASA Astrophysics Data System (ADS)

    Tsoulos, Ioannis G.; Lagaris, Isaac E.

    2006-01-01

    A new stochastic clustering algorithm is introduced that aims to locate all the local minima of a multidimensional continuous and differentiable function inside a bounded domain. The accompanying software (MinFinder) is written in ANSI C++. However, the user may code his objective function either in C++, C or Fortran 77. We compare the performance of this new method to the performance of Multistart and Topographical Multilevel Single Linkage Clustering on a set of benchmark problems. Program summaryTitle of program:MinFinder Catalogue identifier:ADWU Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWU Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which is has been tested:The tool is designed to be portable in all systems running the GNU C++ compiler Installation:University of Ioannina, Greece Programming language used:GNU-C++, GNU-C, GNU Fortran 77 Memory required to execute with typical data:200 KB No. of bits in a word:32 No. of processors used:1 Has the code been vectorized or parallelized?:no No. of lines in distributed program, including test data, etc.:5797 No. of bytes in distributed program, including test data, etc.:588 121 Distribution format:gzipped tar file Nature of the physical problem:A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques can be trapped in any local minimum. Global optimization is then the appropriate tool. For example, solving a non-linear system of equations via optimization, employing a "least squares" type of objective, one may encounter many local minima that do not correspond to solutions, i.e. they are far from zero. Method of solution:Using a uniform pdf, points are sampled from the rectangular search domain. A clustering technique, based on a typical distance and a gradient criterion, is used to decide from which points a local search should be started. The employed local procedure is a BFGS version due to Powell. Further searching is terminated when all the local minima inside the search domain are thought to be found. This is accomplished via the double-box rule. Typical running time:Depending on the objective function

  13. Increasing Slew Performance of Reaction Wheel Attitude Control Systems

    DTIC Science & Technology

    2013-09-01

    vectors in any arbitrary direction creates the momentum envelope (Chapter IV). The shape of the reaction wheel momentum envelope is a polyhedron [15...performance. This procedural limitation further reduces the operable reaction wheel momentum space polyhedron to the largest inscribed sphere, which...respective plane. These minima are also the global minima, each marked in magenta. The four-wheel polyhedron is again shown in three orthogonal views in

  14. Minima de L'intégrale D'action du Problème Newtoniende 4 Corps de Masses Égales Dans R3: Orbites `Hip-Hop'

    NASA Astrophysics Data System (ADS)

    Chenciner, Alain; Venturelli, Andrea

    2000-09-01

    We consider the problem of 4 bodies of equal masses in R 3 for the Newtonian r-1 potential. We address the question of the absolute minima of the action integral among (anti)symmetric loops of class H 1 whose period is fixed. It is the simplest case for which the results of [4] (corrected in [5]) do not apply: the minima cannot be the relative equilibria whose configuration is an absolute minimum of the potential among the configurations having a given moment of inertia with respect to their center of mass. This is because the regular tetrahedron cannot have a relative equilibrium motion in R 3 (see [2]). We show that the absolute minima of the action are not homographic motions. We also show that if we force the configuration to admit a certain type of symmetry of order 4, the absolute minimum is a collisionless orbit whose configuration ‘hesitates’ between the central configuration of the square and the one of the tetrahedron. We call these orbits ‘hip-hop’. A similar result holds in case of a symmetry of order 3 where the central configuration of the equilateral triangle with a body at the center of mass replaces the square.

  15. Matching shapes with self-intersections: application to leaf classification.

    PubMed

    Mokhtarian, Farzin; Abbasi, Sadegh

    2004-05-01

    We address the problem of two-dimensional (2-D) shape representation and matching in presence of self-intersection for large image databases. This may occur when part of an object is hidden behind another part and results in a darker section in the gray level image of the object. The boundary contour of the object must include the boundary of this part which is entirely inside the outline of the object. The Curvature Scale Space (CSS) image of a shape is a multiscale organization of its inflection points as it is smoothed. The CSS-based shape representation method has been selected for MPEG-7 standardization. We study the effects of contour self-intersection on the Curvature Scale Space image. When there is no self-intersection, the CSS image contains several arch shape contours, each related to a concavity or a convexity of the shape. Self intersections create contours with minima as well as maxima in the CSS image. An efficient shape representation method has been introduced in this paper which describes a shape using the maxima as well as the minima of its CSS contours. This is a natural generalization of the conventional method which only includes the maxima of the CSS image contours. The conventional matching algorithm has also been modified to accommodate the new information about the minima. The method has been successfully used in a real world application to find, for an unknown leaf, similar classes from a database of classified leaf images representing different varieties of chrysanthemum. For many classes of leaves, self-intersection is inevitable during the scanning of the image. Therefore the original contributions of this paper is the generalization of the Curvature Scale Space representation to the class of 2-D contours with self-intersection, and its application to the classification of Chrysanthemum leaves.

  16. Evolution of cooperation with shared costs and benefits

    PubMed Central

    Brown, Joel S; Vincent, Thomas L

    2008-01-01

    The quest to determine how cooperation evolves can be based on evolutionary game theory, in spite of the fact that evolutionarily stable strategies (ESS) for most non-zero-sum games are not cooperative. We analyse the evolution of cooperation for a family of evolutionary games involving shared costs and benefits with a continuum of strategies from non-cooperation to total cooperation. This cost–benefit game allows the cooperator to share in the benefit of a cooperative act, and the recipient to be burdened with a share of the cooperator's cost. The cost–benefit game encompasses the Prisoner's Dilemma, Snowdrift game and Partial Altruism. The models produce ESS solutions of total cooperation, partial cooperation, non-cooperation and coexistence between cooperation and non-cooperation. Cooperation emerges from an interplay between the nonlinearities in the cost and benefit functions. If benefits increase at a decelerating rate and costs increase at an accelerating rate with the degree of cooperation, then the ESS has an intermediate level of cooperation. The game also exhibits non-ESS points such as unstable minima, convergent-stable minima and unstable maxima. The emergence of cooperative behaviour in this game represents enlightened self-interest, whereas non-cooperative solutions illustrate the Tragedy of the Commons. Games having either a stable maximum or a stable minimum have the property that small changes in the incentive structure (model parameter values) or culture (starting frequencies of strategies) result in correspondingly small changes in the degree of cooperation. Conversely, with unstable maxima or unstable minima, small changes in the incentive structure or culture can result in a switch from non-cooperation to total cooperation (and vice versa). These solutions identify when human or animal societies have the potential for cooperation and whether cooperation is robust or fragile. PMID:18495622

  17. Pyrrole multimers and pyrrole-acetylene hydrogen bonded complexes studied in N2 and para-H2 matrixes using matrix isolation infrared spectroscopy and ab initio computations

    NASA Astrophysics Data System (ADS)

    Sarkar, Shubhra; Ramanathan, N.; Gopi, R.; Sundararajan, K.

    2017-12-01

    Hydrogen bonded interaction of pyrrole multimer and acetylene-pyrrole complexes were studied in N2 and p-H2 matrixes. DFT computations showed T-shaped geometry for the pyrrole dimer and cyclic complex for the trimer and tetramer were the most stable structures, stabilized by Nsbnd H⋯π interactions. The experimental vibrational wavenumbers observed in N2 and p-H2 matrixes for the pyrrole multimers were correlated with the computed wavenumbers. Computations performed at MP2/aug-cc-pVDZ level of theory showed that C2H2 and C4H5N forms 1:1 hydrogen-bonded complexes stabilized by Csbnd H⋯π interaction (Complex A), Nsbnd H⋯π interaction (Complex B) and π⋯π interaction (Complex C), where the former complex is the global minimum and latter two complexes were the first and second local minima, respectively. Experimentally, 1:1 C2H2sbnd C4H5N complexes A (global minimum) and B (first local minimum) were identified from the shifts in the Nsbnd H stretching, Nsbnd H bending, Csbnd H bending region of pyrrole and Csbnd H asymmetric stretching and bending region of C2H2 in N2 and p-H2 matrixes. Computations were also performed for the higher complexes and found two minima corresponding to the 1:2 C2H2sbnd C4H5N and three minima for the 2:1 C2H2sbnd C4H5N complexes. Experimentally the global minimum 1:2 and 2:1 C2H2sbnd C4H5N complexes were identified in N2 and p-H2 matrixes.

  18. Detailed Structure of the Tropical Upper Troposphere and Lower Stratosphere as Revealed by Balloon Sonde Observations of Water Vapor, Ozone, Temperature, and Winds During the NASA TCSP and TC4 Campaigns

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Vomel, Holger; Canossa, Jessica Maria Valverde; Pfister, Leonhard; Diaz, Jorge Andres; Fernandez, Walter; Amador, Jorge; Stolz, Werner; Peng, Grace S.

    2010-01-01

    We report on balloon sonde measurements of water vapor and ozone using the cryogenic frost point hygrometer and electrochemical concentration cell ozonesondes made at Alajuela, Costa Rica (10.0 N, 84.2 W) during two NASA airborne campaigns: the Tropical Convective Systems and Processes (TCSP) mission in July 2005 and the Tropical Composition, Clouds, and Climate Coupling Experiment (TC4), July - August 2007. In both campaigns we found an upper troposphere that was frequently supersaturated but no evidence that deep convection had reached the tropopause. The balloon sondes were complemented by campaigns of 4 times daily high-resolution radiosondes from mid-June through mid-August in both years. The radiosonde data reveal vertically propagating equatorial waves that caused a large increase in the variability of temperature in the tropical tropopause layer (TTL). These waves episodically produced cold point tropopauses (CPTs) above 18 km, yet in neither campaign was saturation observed above approx 380 K or 17 km. The averages of the water vapor minima below this level were 5.2 ppmv in TCSP and 4.8 ppmv in TC4, and the individual profile minima all lay at or above approx 360 K. The average minima in this 360 C380 K layer provide a better estimate of the effective stratospheric entry value than the average mixing ratio at the CPT. We refer to this upper portion of the TTL as the tropopause saturation layer and consider it to be the locus of the final dehydration of nascent stratospheric air. As such, it is the local equivalent to the tape head of the water vapor tape recorder.

  19. Understanding density functional theory (DFT) and completing it in practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagayoko, Diola

    2014-12-15

    We review some salient points in the derivation of density functional theory (DFT) and of the local density approximation (LDA) of it. We then articulate an understanding of DFT and LDA that seems to be ignored in the literature. We note the well-established failures of many DFT and LDA calculations to reproduce the measured energy gaps of finite systems and band gaps of semiconductors and insulators. We then illustrate significant differences between the results from self consistent calculations using single trial basis sets and those from computations following the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma andmore » Franklin (BZW-EF). Unlike the former, the latter calculations verifiably attain the absolute minima of the occupied energies, as required by DFT. These minima are one of the reasons for the agreement between their results and corresponding, experimental ones for the band gap and a host of other properties. Further, we note predictions of DFT BZW-EF calculations that have been confirmed by experiment. Our subsequent description of the BZW-EF method ends with the application of the Rayleigh theorem in the selection, among the several calculations the method requires, of the one whose results have a full, physics content ascribed to DFT. This application of the Rayleigh theorem adds to or completes DFT, in practice, to preserve the physical content of unoccupied, low energy levels. Discussions, including implications of the method, and a short conclusion follow the description of the method. The successive augmentation of the basis set in the BZW-EF method, needed for the application of the Rayleigh theorem, is also necessary in the search for the absolute minima of the occupied energies, in practice.« less

  20. Category (CAT) IIIb Level 1 Test Plan for Global Positioning System (GPS)

    DTIC Science & Technology

    1993-09-01

    applications. CAT 11Tb is defined in Advisory Circular ( AC ) 120-28C [1] as "a precision instrument approach and landing with no decision height (DH), or...2) FAA AC 20-57A (Automatic Landing Systems) [31, AC 120-28C (Criteria for Approval of CAT III Landing Weather Minima) [I] and the FAA tunnel-in...AD-A274 098I I~II l~iiUIRII 11111ilIII2 DOT/FAA/RD-93/21 Category ( CAT ) IIb Level 1 MTR 93W0000102 Research and Test Plan for Global Development

  1. A new ab initio potential energy surface of LiClH (1A') system and quantum dynamics calculation for Li + HCl (v = 0, j = 0-2) → LiCl + H reaction

    NASA Astrophysics Data System (ADS)

    Tan, Rui Shan; Zhai, Huan Chen; Yan, Wei; Gao, Feng; Lin, Shi Ying

    2017-04-01

    A new ab initio potential energy surface (PES) for the ground state of Li + HCl reactive system has been constructed by three-dimensional cubic spline interpolation of 36 654 ab initio points computed at the MRCI+Q/aug-cc-pV5Z level of theory. The title reaction is found to be exothermic by 5.63 kcal/mol (9 kcal/mol with zero point energy corrections), which is very close to the experimental data. The barrier height, which is 2.99 kcal/mol (0.93 kcal/mol for the vibrationally adiabatic barrier height), and the depth of van der Waals minimum located near the entrance channel are also in excellent agreement with the experimental findings. This study also identified two more van der Waals minima. The integral cross sections, rate constants, and their dependence on initial rotational states are calculated using an exact quantum wave packet method on the new PES. They are also in excellent agreement with the experimental measurements.

  2. Incrementing data quality of multi-frequency echograms using the Adaptive Wiener Filter (AWF) denoising algorithm

    NASA Astrophysics Data System (ADS)

    Peña, M.

    2016-10-01

    Achieving acceptable signal-to-noise ratio (SNR) can be difficult when working in sparsely populated waters and/or when species have low scattering such as fluid filled animals. The increasing use of higher frequencies and the study of deeper depths in fisheries acoustics, as well as the use of commercial vessels, is raising the need to employ good denoising algorithms. The use of a lower Sv threshold to remove noise or unwanted targets is not suitable in many cases and increases the relative background noise component in the echogram, demanding more effectiveness from denoising algorithms. The Adaptive Wiener Filter (AWF) denoising algorithm is presented in this study. The technique is based on the AWF commonly used in digital photography and video enhancement. The algorithm firstly increments the quality of the data with a variance-dependent smoothing, before estimating the noise level as the envelope of the Sv minima. The AWF denoising algorithm outperforms existing algorithms in the presence of gaussian, speckle and salt & pepper noise, although impulse noise needs to be previously removed. Cleaned echograms present homogenous echotraces with outlined edges.

  3. Assessing the density functional theory-based multireference configuration interaction (DFT/MRCI) method for transition metal complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escudero, Daniel, E-mail: escudero@kofo.mpg.de, E-mail: thiel@kofo.mpg.de; Thiel, Walter, E-mail: escudero@kofo.mpg.de, E-mail: thiel@kofo.mpg.de

    2014-05-21

    We report an assessment of the performance of density functional theory-based multireference configuration interaction (DFT/MRCI) calculations for a set of 3d- and 4d-transition metal (TM) complexes. The DFT/MRCI results are compared to published reference data from reliable high-level multi-configurational ab initio studies. The assessment covers the relative energies of different ground-state minima of the highly correlated CrF{sub 6} complex, the singlet and triplet electronically excited states of seven typical TM complexes (MnO{sub 4}{sup −}, Cr(CO){sub 6}, [Fe(CN){sub 6}]{sup 4−}, four larger Fe and Ru complexes), and the corresponding electronic spectra (vertical excitation energies and oscillator strengths). It includes comparisons withmore » results from different flavors of time-dependent DFT (TD-DFT) calculations using pure, hybrid, and long-range corrected functionals. The DFT/MRCI method is found to be superior to the tested TD-DFT approaches and is thus recommended for exploring the excited-state properties of TM complexes.« less

  4. 3D electron density distributions in the solar corona during solar minima: assessment for more realistic solar wind modeling

    NASA Astrophysics Data System (ADS)

    de Patoul, J.; Foullon, C.; Riley, P.

    2015-12-01

    Knowledge of the electron density distribution in the solar corona put constraints on the magnetic field configurations for coronal modeling, and on initial conditions for solar wind modeling. We work with polarized SOHO/LASCO-C2 images from the last two recent minima of solar activity (1996-1997 and 2008-2010), devoid of coronal mass ejections. We derive the 4D electron density distributions in the corona by applying a newly developed time-dependent tomographic reconstruction method. First we compare the density distributions obtained from tomography with magnetohydrodynamic (MHD) solutions. The tomography provides more accurate distributions of electron densities in the polar regions, and we find that the observed density varies with the solar cycle in both polar and equatorial regions. Second, we find that the highest-density structures do not always correspond to the predicted large-scale heliospheric current sheet or its helmet streamer but can follow the locations of pseudo-streamers. We conclude that tomography offers reliable density distribution in the corona, reproducing the slow time evolution of coronal structures, without prior knowledge of the coronal magnetic field over a full rotation. Finally, we suggest that the highest-density structures show a differential rotation well above the surface depending on how it is magnetically connected to the surface. Such valuable information on the rotation of large-scale structures could help to connect the sources of the solar wind to their in-situ counterparts in future missions such as Solar Orbiter and Solar Probe Plus. This research combined with the MHD coronal modeling efforts has the potential to increase the reliability for future space weather forecasting.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewitte, Steven; Nevens, Stijn

    We present the composite measurements of total solar irradiance (TSI) as measured by an ensemble of space instruments. The measurements of the individual instruments are put on a common absolute scale, and their quality is assessed by intercomparison. The composite time series is the average of all available measurements. From 1984 April to the present the TSI shows a variation in phase with the 11 yr solar cycle and no significant changes of the quiet-Sun level in between the three covered solar minima.

  6. Location of protons in N-H···N hydrogen-bonded systems: a theoretical study on intramolecular pyridine-dihydropyridine and pyridine-pyridinium pairs.

    PubMed

    Mori, Yukie; Takano, Keiko

    2012-08-21

    Two-dimensional potential energy surfaces (PESs) were calculated for the degenerate intramolecular proton transfer (PT) in two N-H···N hydrogen-bonded systems, (Z)-2-(2-pyridylmethylidene)-1,2-dihydropyridine (1) and monoprotonated di(2-pyridyl) ether (2), at the MP2/cc-pVDZ level of theory. The calculated PES had two minima in both cases. The energy barrier in 1 was higher than the zero-point energy (ZPE) level, while that in 2 was close to the ZPE. Vibrational wavefunctions were obtained by solving time-independent Schrödinger equations with the calculated PESs. The maximum points of the probability density were shifted from the energy minima towards the region where the covalent N-H bond was elongated and the N···N distance shortened. The effects of a polar solvent on the PES were investigated with the continuum or cluster models in such a way that the solute-solvent electrostatic interactions could be taken into account under non-equilibrated conditions. A solvated contact ion-pair was modelled by a cluster consisting of one cation 2, one chloride ion and 26 molecules of acetonitrile. The calculation with this model suggested that the bridging proton is localised in the deeper well due to the significant asymmetry of the PES and the high potential barrier.

  7. Free energy landscape of a biomolecule in dihedral principal component space: sampling convergence and correspondence between structures and minima.

    PubMed

    Maisuradze, Gia G; Leitner, David M

    2007-05-15

    Dihedral principal component analysis (dPCA) has recently been developed and shown to display complex features of the free energy landscape of a biomolecule that may be absent in the free energy landscape plotted in principal component space due to mixing of internal and overall rotational motion that can occur in principal component analysis (PCA) [Mu et al., Proteins: Struct Funct Bioinfo 2005;58:45-52]. Another difficulty in the implementation of PCA is sampling convergence, which we address here for both dPCA and PCA using a tetrapeptide as an example. We find that for both methods the sampling convergence can be reached over a similar time. Minima in the free energy landscape in the space of the two largest dihedral principal components often correspond to unique structures, though we also find some distinct minima to correspond to the same structure. 2007 Wiley-Liss, Inc.

  8. Is there a stable B2Π state for the CNO molecule?

    NASA Astrophysics Data System (ADS)

    Marian, Christel; Hess, Bernd A.; Schöttke, Sigrid; Buenker, Robert J.

    1987-07-01

    We report MRD-CI calculations on the ground state X2Π and the excited states A2Σ + and B2Π of the CNO molecule in linear geometry. The surfaces for oxygen and carbon extraction are calculated using a limited CI expansion of 47 configuration state functions; in the vicinity of the minima obtained with this procedure large-scale CI calculations are carried out including deter-mination of the spin-orbit splitting of the 2Π states of the minima. We find that the B2Π state will be difficult to detect spectroscopically due to an avoided crossing just at the equilibrium geometry of the ground state at RCN = 2.25 a.u., RNO = 2.30 a.u. Accordingly we find two shallow minima for B2Π at RCN = 2.33 a.u., RNO = 2.91 a.u. and RCN = 2.78 a.u., RNO = 2.28 a.u., respectively.

  9. Many-body optimization using an ab initio monte carlo method.

    PubMed

    Haubein, Ned C; McMillan, Scott A; Broadbelt, Linda J

    2003-01-01

    Advances in computing power have made it possible to study solvated molecules using ab initio quantum chemistry. Inclusion of discrete solvent molecules is required to determine geometric information about solute/solvent clusters. Monte Carlo methods are well suited to finding minima in many-body systems, and ab initio methods are applicable to the widest range of systems. A first principles Monte Carlo (FPMC) method was developed to find minima in many-body systems, and emphasis was placed on implementing moves that increase the likelihood of finding minimum energy structures. Partial optimization and molecular interchange moves aid in finding minima and overcome the incomplete sampling that is unavoidable when using ab initio methods. FPMC was validated by studying the boron trifluoride-water system, and then the method was used to examine the methyl carbenium ion in water to demonstrate its application to solvation problems.

  10. Atlantic forcing of Western Mediterranean winter rain minima during the last 12,000 years

    NASA Astrophysics Data System (ADS)

    Zielhofer, Christoph; Fletcher, William J.; Mischke, Steffen; De Batist, Marc; Campbell, Jennifer F. E.; Joannin, Sebastien; Tjallingii, Rik; El Hamouti, Najib; Junginger, Annett; Stele, Andreas; Bussmann, Jens; Schneider, Birgit; Lauer, Tobias; Spitzer, Katrin; Strupler, Michael; Brachert, Thomas; Mikdad, Abdeslam

    2017-02-01

    The limited availability of high-resolution continuous archives, insufficient chronological control, and complex hydro-climatic forcing mechanisms lead to many uncertainties in palaeo-hydrological reconstructions for the Western Mediterranean. In this study we present a newly recovered 19.63 m long core from Lake Sidi Ali in the North African Middle Atlas, a transition zone of Atlantic, Western Mediterranean and Saharan air mass trajectories. With a multi-proxy approach based on magnetic susceptibility, carbonate and total organic C content, core-scanning and quantitative XRF, stable isotopes of ostracod shells, charcoal counts, Cedrus pollen abundance, and a first set of diatom data, we reconstruct Western Mediterranean hydro-climatic variability, seasonality and forcing mechanisms during the last 12,000 yr. A robust chronological model based on AMS 14C dated pollen concentrates supports our high-resolution multi-proxy study. Long-term trends reveal low lake levels at the end of the Younger Dryas, during the mid-Holocene interval 6.6 to 5.4 cal ka BP, and during the last 3000 years. In contrast, lake levels are mostly high during the Early and Mid-Holocene. The record also shows sub-millennial- to centennial-scale decreases in Western Mediterranean winter rain at 11.4, 10.3, 9.2, 8.2, 7.2, 6.6, 6.0, 5.4, 5.0, 4.4, 3.5, 2.9, 2.2, 1.9, 1.7, 1.5, 1.0, 0.7, and 0.2 cal ka BP. Early Holocene winter rain minima are in phase with cooling events and millennial-scale meltwater discharges in the sub-polar North Atlantic. Our proxy parameters do not show so far a clear impact of Saharan air masses on Mediterranean hydro-climate in North Africa. However, a significant hydro-climatic shift at the end of the African Humid Period (∼5 ka) indicates a change in climate forcing mechanisms. The Late Holocene climate variability in the Middle Atlas features a multi-centennial-scale NAO-type pattern, with Atlantic cooling and Western Mediterranean winter rain maxima generally associated with solar minima.

  11. Distribution and ventilation of water masses in the western Ross Sea inferred from CFC measurements

    NASA Astrophysics Data System (ADS)

    Rivaro, Paola; Ianni, Carmela; Magi, Emanuele; Massolo, Serena; Budillon, Giorgio; Smethie, William M.

    2015-03-01

    During the CLIMA Project (R.V. Italica cruise PNRA XVI, January-February 2001), hydrographic and chlorofluorocarbons (CFCs) observations were obtained, particularly in the western Ross Sea. Their distribution demonstrated water mass structure and ventilation processes in the investigated areas. In the surface waters (AASW) the CFC saturation levels varied spatially: CFCs were undersaturated in all the areas (range from 80 to 90%), with the exception of few stations sampled near Ross Island. In particular, the Terra Nova Bay polynya, where high salinity shelf water (HSSW) is produced, was a low-saturated surface area (74%) with respect to CFCs. Throughout most of the shelf area, the presence of modified circumpolar deep water (MCDW) was reflected in a mid-depth CFC concentration minima. Beneath the MCDW, CFC concentrations generally increased in the shelf waters towards the seafloor. We estimated that the corresponding CFCs saturation level in the source water region for HSSW was about 68-70%. Waters with high CFC concentrations were detected in the western Ross Sea on the down slope side of the Drygalski Trough, indicating that AABW was being supplied to the deep Antarctic Basin. Estimates of ventilation ages depend strongly on the saturation levels. We calculated ventilation ages using the saturation level calibrated tracer ratio, CFC11/CFC12. We deduced a mean residence time of the shelf waters of about 6-7 years between the western Ross Sea source and the shelf break.

  12. Attosecond relative delay among xenon 5p, 5s, and 4d photoionization

    NASA Astrophysics Data System (ADS)

    Magrakvelidze, Maia; Madjet, Mohamed; Chakraborty, Himadri

    2017-04-01

    Attosecond Wigner-Smith (WS) time delays of the photoemissions of Xe valence 5p, 5s, and core 4d electrons are investigated in details using the time-dependent local density approximation (TDLDA). Electron correlations determine the energy-dependent structures in ionization phases of the dipole channels and in the resulting WS delays at various shape resonances, induced by the collective motion of 4d electrons, and at various Cooper minima. We find that our calculation closely agrees with the streaking measurement for the delay of 4d relative to 5s, and predicts accelerated emission of 5p with respect to 4d as was experimentally observed at similar photon energies for Xe atoms adsorbed on the tungsten surface. This work was supported by the U.S. National Science Foundation.

  13. Stochastic generators of multi-site daily temperature: comparison of performances in various applications

    NASA Astrophysics Data System (ADS)

    Evin, Guillaume; Favre, Anne-Catherine; Hingray, Benoit

    2018-02-01

    We present a multi-site stochastic model for the generation of average daily temperature, which includes a flexible parametric distribution and a multivariate autoregressive process. Different versions of this model are applied to a set of 26 stations located in Switzerland. The importance of specific statistical characteristics of the model (seasonality, marginal distributions of standardized temperature, spatial and temporal dependence) is discussed. In particular, the proposed marginal distribution is shown to improve the reproduction of extreme temperatures (minima and maxima). We also demonstrate that the frequency and duration of cold spells and heat waves are dramatically underestimated when the autocorrelation of temperature is not taken into account in the model. An adequate representation of these characteristics can be crucial depending on the field of application, and we discuss potential implications in different contexts (agriculture, forestry, hydrology, human health).

  14. Bottom water production variability in the Ross Sea slope during the Late Pleistocene-Holocene as revealed by benthic foraminifera and sediment geochemistry

    NASA Astrophysics Data System (ADS)

    Langone, Leonardo; Asioli, Alessandra; Tateo, Fabio; Giglio, Federico; Ridente, Domenico; Summa, Vito; Carraro, Anna; Luigia Giannossi, Maria; Piva, Andrea; Trincardi, Fabio

    2010-05-01

    The Antarctic area produces bottom waters that ventilate the vast majority of the deep basins in the rest of the world ocean. The rate of formation in the source area and the strength of these cold bottom waters are key factors affecting the Global Thermohaline Circulation during modern and past climate conditions. The western Ross Sea is considered a formation site for a particularly salty variety of AABW as well as an important area of off-shelf transfer of water as plumes entraining in Lower CDW and as rapid downhill cascades. The results here presented were obtained within the frame of the PNRA project 4.8. Among the goals of the project, the main is to detect a qualitative signal of possible changes in the rate of bottom water production during the Late Pleistocene-Holocene by integrating data on foraminifera assemblages with sediment geochemistry (bulk mineralogy, Total Organic Carbon, biogenic silica, C and N stable isotopes) and IRD. A gravity core was collected at 2377m water depth off Drygalski Basin on the slope adjacent the western continental shelf of the Ross Sea, along the pathway of bottom water spreading. The chronology is based on the best fitting of twelve control points selected among twenty-two 14C AMS datings performed on the bulk organic carbon and 210Pb excess data. The trend of the parameters allows the following observations: 1) two main intervals (15-10 and 7.5-6 cab kyr BP) mark a subsequent enhanced nutrient supply. Indeed, δ15N variations depend on the utilization degree of nitrates, in turn reflecting productivity/nutrient supply changes. The concurrent increase of OC and biogenic silica suggests an increase of the nutrient availability. As the Upper CDW is a water mass rich in nutrients we interpret these intervals as characterized by a higher efficiency in the Upper CDW upwelling; 2) around 7.5-7kyr BP (part of the Middle Holocene Climatic Optimum) the IRD content drops, suggesting the reduction of iceberg production or a change of the iceberg path. Within this general context, an oscillatory trend is present from 15 kyr BP to present time. Two hypotheses are proposed: a) minima in foraminifera concentrations reflect relatively stronger dissolution, weaker bottom currents (minima in dry density) and lower nutrient supply (lighter values of δ15N). These intervals may reflect a lower rate of bottom water formation; the intervals corresponding to maxima in foraminifers concentration should indicate better preservation, higher benthic productivity and/or better oxygenation at bottom, stronger bottom currents (maxima in dry density) and relatively higher nutrient supply reflecting a relatively higher rate of bottom water formation. b) alternatively, minima in foraminifers, corresponding to minima in %OC and to reversal of 14C (relative increase of older carbon), reflect dilution in the sediment because of rapid accumulation of fine sediment re-suspended at the shelf edge by the cascading currents. Therefore, the minima represent higher rate of bottom water formation. The comparison of the D/H ratio in ice-cores from the Ross Sea sector with the core AS05-10 record indicates that the foraminifers minima always correspond to colder condition. This scenario also correlates to the record reported in literature on the slope off Wilkes-Adelie Land. At last, a condensed/hiatus interval at ca. 3.5-4 kyr BP does not seems to mark a major change in the general pattern of our variables, apart from biogenic silica and sheets silicates showing an increase of the oscillation amplitude. Nevertheless, this feature is coeval to the base of the Neoglacial and it is time-equivalent to the beginning of major changes in the Antarctic environment.

  15. Unusual Internal Rotation Coupling in the Microwave Spectrum of Pinacolone

    NASA Astrophysics Data System (ADS)

    Zhao, YueYue; Nguyen, Ha Vinh Lam; Stahl, Wolfgang; Hougen, Jon T.

    2015-06-01

    The molecular-beam Fourier-transform microwave spectrum of pinacolone (methyl tert-butyl ketone) has been measured in several regions between 2 and 40 GHz. Assignments of a large number of A and E transitions were confirmed by combination differences, but fits of the assigned spectrum using several torsion-rotation computer programs based on different models led to the unexpected conclusion that no existing program correctly captures the internal dynamics of this molecule. A second puzzle arose when it became clear that roughly half of the spectrum remained unassigned even after all predicted transitions were added to the assignment list. Quantum chemical calculations carried out at the MP2/6-311++G(d,p) level indicate that this molecule does not have a plane of symmetry at equilibrium, and that internal rotation of the light methyl group induces a large oscillatory motion of the heavy tert-butyl group from one side of the C_s saddle point to the other. The effect of this non-C_s equilibrium structure was modeled for J = 0 levels by a simple two-top torsional Hamiltonian, where magnitudes of the strong top-top coupling terms were determined directly from the ab initio two-dimensional potential surface. A plot of the resultant torsional levels on the same scale as a one-dimensional potential curve along the zig-zag path connecting the six (unequally spaced) minima bears a striking resemblance to the 1:2:1 splitting pattern of levels in an internal rotation problem with a six-fold barrier. A plot of the six minima closely resembles the potential surface for methylamine. This talk will focus on implications of these resemblances for future work.

  16. A population-based evolutionary search approach to the multiple minima problem in de novo protein structure prediction

    PubMed Central

    2013-01-01

    Background Elucidating the native structure of a protein molecule from its sequence of amino acids, a problem known as de novo structure prediction, is a long standing challenge in computational structural biology. Difficulties in silico arise due to the high dimensionality of the protein conformational space and the ruggedness of the associated energy surface. The issue of multiple minima is a particularly troublesome hallmark of energy surfaces probed with current energy functions. In contrast to the true energy surface, these surfaces are weakly-funneled and rich in comparably deep minima populated by non-native structures. For this reason, many algorithms seek to be inclusive and obtain a broad view of the low-energy regions through an ensemble of low-energy (decoy) conformations. Conformational diversity in this ensemble is key to increasing the likelihood that the native structure has been captured. Methods We propose an evolutionary search approach to address the multiple-minima problem in decoy sampling for de novo structure prediction. Two population-based evolutionary search algorithms are presented that follow the basic approach of treating conformations as individuals in an evolving population. Coarse graining and molecular fragment replacement are used to efficiently obtain protein-like child conformations from parents. Potential energy is used both to bias parent selection and determine which subset of parents and children will be retained in the evolving population. The effect on the decoy ensemble of sampling minima directly is measured by additionally mapping a conformation to its nearest local minimum before considering it for retainment. The resulting memetic algorithm thus evolves not just a population of conformations but a population of local minima. Results and conclusions Results show that both algorithms are effective in terms of sampling conformations in proximity of the known native structure. The additional minimization is shown to be key to enhancing sampling capability and obtaining a diverse ensemble of decoy conformations, circumventing premature convergence to sub-optimal regions in the conformational space, and approaching the native structure with proximity that is comparable to state-of-the-art decoy sampling methods. The results are shown to be robust and valid when using two representative state-of-the-art coarse-grained energy functions. PMID:24565020

  17. Seeking Global Minima

    NASA Astrophysics Data System (ADS)

    Tajuddin, Wan Ahmad

    1994-02-01

    Ease in finding the configuration at the global energy minimum in a symmetric neural network is important for combinatorial optimization problems. We carry out a comprehensive survey of available strategies for seeking global minima by comparing their performances in the binary representation problem. We recall our previous comparison of steepest descent with analog dynamics, genetic hill-climbing, simulated diffusion, simulated annealing, threshold accepting and simulated tunneling. To this, we add comparisons to other strategies including taboo search and one with field-ordered updating.

  18. Two-Color V and R CCD Photometry of the SW Sex-Type Eclipsing Cataclysmic Variable V1315 Aql

    NASA Astrophysics Data System (ADS)

    Andronov, I. L.; Baklanov, A. V.; Burwitz, V.

    2005-08-01

    The V-R color index shows a complicated behaviour during the eclipse, being largest at the brightness minimum, but showing asymmetric minima at phases -0.07 and +0.13. The hump at the light curve occurs after the eclipse, contrary to systems with the "hot spot". The phases of minima in V and R are 0.0092(17) and 0.0062(17), respectively, for the mean date JD=2453202.

  19. The complex lightcurve of 1992 NA

    NASA Technical Reports Server (NTRS)

    Wisniewski, Wieslaw Z.; Harris, A. W.

    1994-01-01

    Amor asteroid 1992 NA was monitored during three nights at a large phase angle of -65 deg. The lightcurves obtained did not reveal a repeatable curve with two maxima and two minima. However, some features suggested a periodicity with three maxima and three minima. A satisfactory composite lightcurve of this form was obtained by means of an 'eyeball' fit and by Fourier analysis. Individual and composite lightcurves are presented. The observed colors are consistent with the C class.

  20. Optical Model and Cross Section Uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  1. Instabilities in rapid solidification of multi-component alloys

    NASA Astrophysics Data System (ADS)

    Altieri, Anthony L.; Davis, Stephen H.

    2017-10-01

    Rapid solidification of multi-component liquids occurs in many modern applications such as additive manufacturing. In the present work the interface departures from equilibrium consist of the segregation coefficient and liquidus slope depending on front speed, the one-sided, frozen-temperature approximation, and the alloy behaving as the superposition of individual components. Linear-stability theory is applied, showing that the cellular and oscillatory instabilities of the binary case are modified. The addition of components tends to destabilize the interface while the addition of a single large-diffusivity material can entirely suppress the oscillatory mode. Multiple minima in the neutral curve for the cellular mode occur.

  2. Ultracold Heteronuclear Three-Body Systems: How Diabaticity Limits the Universality of Recombination into Shallow Dimers

    NASA Astrophysics Data System (ADS)

    Giannakeas, P.; Greene, Chris H.

    2018-01-01

    The mass-imbalanced three-body recombination process that forms a shallow dimer is shown to possess a rich Efimov-Stückelberg landscape, with corresponding spectra that differ fundamentally from the homonuclear case. A semianalytical treatment of the three-body recombination predicts unusual spectra with intertwined resonance peaks and minima and yields in-depth insight into the behavior of the corresponding Efimov spectra. In particular, the patterns of the Efimov-Stückelberg landscape are shown to depend inherently on the degree of diabaticity of the three-body collisions, which strongly affects the universality of the heteronuclear Efimov states.

  3. A phenomenological study of the long-term cosmic ray modulation, 850-1958 AD

    NASA Astrophysics Data System (ADS)

    McCracken, K. G.; McDonald, F. B.; Beer, J.; Raisbeck, G.; Yiou, F.

    2004-12-01

    The modulation of the galactic cosmic radiation over the past 1150 years is investigated using 10Be data from Greenland and the South Pole. For this purpose, we introduce the use of 22-year averages to study the long-term modulation. After allowance for secular changes in the geomagnetic dipole, it is shown that the 22-year mean intensity of the galactic cosmic radiation (GCR) in the vicinity of 1-2 GeV/nucleon returned to approximately the same high level at the widely separated times of the Oort (1050 AD), Spoerer (1420-1540), and the latter portion of the Maunder (1645-1715) periods of low solar activity. In terms of the modulation potential, ϕ, this asymptotic intensity corresponds to a mean residual modulation of ˜84 MV. The GCR intensity was significantly less during the Wolf (˜1320) and Dalton (1810) minima, and ϕ ˜ 200 MV. The higher temporal resolution data from Greenland shows that there were large 11-year and other fluctuations superimposed upon these high intensities during the Spoerer and Maunder minima (Δϕ ≈ 200-300 MV), indicating the continued presence of a substantial and time-dependent heliomagnetic field. Throughout the Spoerer minimum, the GCR intensity repeatedly returned to a condition of very low modulation, indicating that the cosmic ray spectrum incident on the Earth approached the level of the local interstellar spectrum. These results imply the continued presence of either (or both) (1) the normal cyclic variation of the heliospheric current sheet and/or (2) a cyclic variation of the diffusion coefficients throughout these periods of low solar activity. The data indicate that the modulation (i.e., depression) of the cosmic ray intensity during the instrumental era (1933-present) has been one of the greatest in the past 1150 years. Further, approximately the same low value has been attained on five previous widely separated occasions since 850 AD, and we speculate that the heliospheric magnetic field has reached an asymptotic limit at those times. The 10Be data exhibit a previously unrecognized feature, which we have named "the precipitous decrease," in which the 1-2 GeV/nucleon intensity decreased by ˜40-45% between 1700 and 1739 corresponding to Δϕ > 500 MV, at a time of low but increasing solar activity. A lower cosmic ray intensity than that attained in 1739 was not observed again until after 1950, at a time of high solar activity. These features and the large 11-year modulation events during the Spoerer and Maunder minima indicate that the long-term variations in the GCR intensity are poorly related to sunspot number during epochs of low solar activity. It is shown that there is better agreement between the variations in the 10Be data, and the changes in the open solar magnetic flux predicted by the [2002] and [2002] models based on historic sunspot numbers. In particular, they both exhibit characteristics consistent with the precipitous decrease in the 10Be data, although the amplitudes are smaller than implied by the 10Be data.

  4. A theoretical study on the geometry and spectroscopic properties of ground-state and local minima isomers of (CuS)n=2-6 clusters

    NASA Astrophysics Data System (ADS)

    Luque-Ceballos, Jonathan C.; Posada-Borbón, Alvaro; Herrera-Urbina, Ronaldo; Aceves, R.; Juárez-Sánchez, J. Octavio; Posada-Amarillas, Alvaro

    2018-03-01

    Spectroscopic properties of gas-phase copper sulfide clusters (CuS)n (n = 2-6) are calculated using Density Functional Theory (DFT) and time-dependent (TD) DFT approaches. The energy landscape of the potential energy surface is explored through a basin-hopping DFT methodology. Ground-state and low-lying isomer structures are obtained. The global search was performed at the B3PW91/SDD level of theory. Normal modes are calculated to validate the existence of optimal cluster structures. Energetic properties are obtained for the ground-state and isomer clusters and their relative energies are evaluated for probing isomerization. This is a few tenths of an eV, except for (CuS)2 cluster, which presents energy differences of ∼1 eV. Notable differences in the infrared spectra exist between the ground-state and first isomer structures, even for the (CuS)5 cluster, which has in both configurations a core copper pyramid. TDDFT provides the simulated absorption spectrum, presenting a theoretical description of optical absorption bands in terms of electronic excitations in the UV and visible regions. Results exhibit a significant dependence of the calculated UV/vis spectra on clusters size and shape regarding the ground state structures. Optical absorption is strong in the UV region, and weak or forbidden in the visible region of the spectrum.

  5. Minimum free-energy paths for the self-organization of polymer brushes.

    PubMed

    Gleria, Ignacio; Mocskos, Esteban; Tagliazucchi, Mario

    2017-03-22

    A methodology to calculate minimum free-energy paths based on the combination of a molecular theory and the improved string method is introduced and applied to study the self-organization of polymer brushes under poor solvent conditions. Polymer brushes in a poor solvent cannot undergo macroscopic phase separation due to the physical constraint imposed by the grafting points; therefore, they microphase separate forming aggregates. Under some conditions, the theory predicts that the homogeneous brush and the aggregates can exist as two different minima of the free energy. The theoretical methodology introduced in this work allows us to predict the minimum free-energy path connecting these two minima as well as the morphology of the system along the path. It is shown that the transition between the homogeneous brush and the aggregates may involve a free-energy barrier or be barrierless depending on the relative stability of the two morphologies and the chain length and grafting density of the polymer. In the case where a free-energy barrier exists, one of the morphologies is a metastable structure and, therefore, the properties of the brush as the quality of the solvent is cycled are expected to display hysteresis. The theory is also applied to study the adhesion/deadhesion transition between two opposing surfaces modified by identical polymer brushes and it is shown that this process may also require surpassing a free-energy barrier.

  6. Intermolecular interactions and the thermodynamic properties of supercritical fluids.

    PubMed

    Yigzawe, Tesfaye M; Sadus, Richard J

    2013-05-21

    The role of different contributions to intermolecular interactions on the thermodynamic properties of supercritical fluids is investigated. Molecular dynamics simulation results are reported for the energy, pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient, and speed of sound of fluids interacting via both the Lennard-Jones and Weeks-Chandler-Andersen potentials. These properties were obtained for a wide range of temperatures, pressures, and densities. For each thermodynamic property, an excess value is determined to distinguish between attraction and repulsion. It is found that the contributions of intermolecular interactions have varying effects depending on the thermodynamic property. The maxima exhibited by the isochoric and isobaric heat capacities, isothermal compressibilities, and thermal expansion coefficient are attributed to interactions in the Lennard-Jones well. Repulsion is required to obtain physically realistic speeds of sound and both repulsion and attraction are necessary to observe a Joule-Thomson inversion curve. Significantly, both maxima and minima are observed for the isobaric and isochoric heat capacities of the supercritical Lennard-Jones fluid. It is postulated that the loci of these maxima and minima converge to a common point via the same power law relationship as the phase coexistence curve with an exponent of β = 0.32. This provides an explanation for the terminal isobaric heat capacity maximum in supercritical fluids.

  7. Coherent diffractive photoproduction of ρ 0 mesons on gold nuclei at 200 GeV/nucleon-pair at the Relativistic Heavy Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.

    The STAR Collaboration reports on the photoproduction of π + π - pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly real photon emitted by one ion scatters from the other ion. In this work, we fit the π + π - invariant-mass spectrum with a combination of ρ 0 and ω resonances and a direct π + π - continuum. This is the first observation of the ω in ultraperipheral collisions, and the first measurement of ρ - ω interference at energies where photoproduction is dominated by Pomeron exchange.more » The ω amplitude is consistent with the measured γp → ωp cross section, a classical Glauber calculation, and the ω → π + π - branching ratio. The ω phase angle is similar to that observed at much lower energies, showing that the ρ - ω phase difference does not depend significantly on photon energy. The ρ 0 differential cross section dσ/dt exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with two minima visible. In conclusion, the positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.« less

  8. CALIBRATING NON-CONVEX PENALIZED REGRESSION IN ULTRA-HIGH DIMENSION.

    PubMed

    Wang, Lan; Kim, Yongdai; Li, Runze

    2013-10-01

    We investigate high-dimensional non-convex penalized regression, where the number of covariates may grow at an exponential rate. Although recent asymptotic theory established that there exists a local minimum possessing the oracle property under general conditions, it is still largely an open problem how to identify the oracle estimator among potentially multiple local minima. There are two main obstacles: (1) due to the presence of multiple minima, the solution path is nonunique and is not guaranteed to contain the oracle estimator; (2) even if a solution path is known to contain the oracle estimator, the optimal tuning parameter depends on many unknown factors and is hard to estimate. To address these two challenging issues, we first prove that an easy-to-calculate calibrated CCCP algorithm produces a consistent solution path which contains the oracle estimator with probability approaching one. Furthermore, we propose a high-dimensional BIC criterion and show that it can be applied to the solution path to select the optimal tuning parameter which asymptotically identifies the oracle estimator. The theory for a general class of non-convex penalties in the ultra-high dimensional setup is established when the random errors follow the sub-Gaussian distribution. Monte Carlo studies confirm that the calibrated CCCP algorithm combined with the proposed high-dimensional BIC has desirable performance in identifying the underlying sparsity pattern for high-dimensional data analysis.

  9. CALIBRATING NON-CONVEX PENALIZED REGRESSION IN ULTRA-HIGH DIMENSION

    PubMed Central

    Wang, Lan; Kim, Yongdai; Li, Runze

    2014-01-01

    We investigate high-dimensional non-convex penalized regression, where the number of covariates may grow at an exponential rate. Although recent asymptotic theory established that there exists a local minimum possessing the oracle property under general conditions, it is still largely an open problem how to identify the oracle estimator among potentially multiple local minima. There are two main obstacles: (1) due to the presence of multiple minima, the solution path is nonunique and is not guaranteed to contain the oracle estimator; (2) even if a solution path is known to contain the oracle estimator, the optimal tuning parameter depends on many unknown factors and is hard to estimate. To address these two challenging issues, we first prove that an easy-to-calculate calibrated CCCP algorithm produces a consistent solution path which contains the oracle estimator with probability approaching one. Furthermore, we propose a high-dimensional BIC criterion and show that it can be applied to the solution path to select the optimal tuning parameter which asymptotically identifies the oracle estimator. The theory for a general class of non-convex penalties in the ultra-high dimensional setup is established when the random errors follow the sub-Gaussian distribution. Monte Carlo studies confirm that the calibrated CCCP algorithm combined with the proposed high-dimensional BIC has desirable performance in identifying the underlying sparsity pattern for high-dimensional data analysis. PMID:24948843

  10. Learning, memory, and the role of neural network architecture.

    PubMed

    Hermundstad, Ann M; Brown, Kevin S; Bassett, Danielle S; Carlson, Jean M

    2011-06-01

    The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network architectures during sequential tasks that require both acquisition and retention of information, thereby identifying tradeoffs between learning and memory processes. During the task of supervised, sequential function approximation, networks produce and adapt representations of external information. Performance is evaluated by statistically analyzing the error in these representations while varying the initial network state, the structure of the external information, and the time given to learn the information. We link performance to complexity in network architecture by characterizing local error landscape curvature. We find that variations in error landscape structure give rise to tradeoffs in performance; these include the ability of the network to maximize accuracy versus minimize inaccuracy and produce specific versus generalizable representations of information. Parallel networks generate smooth error landscapes with deep, narrow minima, enabling them to find highly specific representations given sufficient time. While accurate, however, these representations are difficult to generalize. In contrast, layered networks generate rough error landscapes with a variety of local minima, allowing them to quickly find coarse representations. Although less accurate, these representations are easily adaptable. The presence of measurable performance tradeoffs in both layered and parallel networks has implications for understanding the behavior of a wide variety of natural and artificial learning systems.

  11. Coherent diffractive photoproduction of ρ 0 mesons on gold nuclei at 200 GeV/nucleon-pair at the Relativistic Heavy Ion Collider

    DOE PAGES

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...

    2017-11-13

    The STAR Collaboration reports on the photoproduction of π + π - pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly real photon emitted by one ion scatters from the other ion. In this work, we fit the π + π - invariant-mass spectrum with a combination of ρ 0 and ω resonances and a direct π + π - continuum. This is the first observation of the ω in ultraperipheral collisions, and the first measurement of ρ - ω interference at energies where photoproduction is dominated by Pomeron exchange.more » The ω amplitude is consistent with the measured γp → ωp cross section, a classical Glauber calculation, and the ω → π + π - branching ratio. The ω phase angle is similar to that observed at much lower energies, showing that the ρ - ω phase difference does not depend significantly on photon energy. The ρ 0 differential cross section dσ/dt exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with two minima visible. In conclusion, the positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.« less

  12. New Light-Time Curve of Eclipsing Binary AM Leo

    NASA Astrophysics Data System (ADS)

    Gorda, S. Yu.; Matveeva, E. A.

    2017-12-01

    We present 72 photoelectric and CCD times of minima of eclipsing binary AM Leo obtained mainly during at Kourovka Astronomical Observatory of the Ural Federal University in Russia. We obtained new values of period of 50.5 years and eccentricity of 0.28 of the orbit of the eclipsing pair around the mass center of the system AM Leo with the third body. These results have been received taking into account the times of minima taken from literature and obtained from to .

  13. Screw dislocation-induced growth spirals as emissive exciton localization centers in Al-rich AlGaN/AlN quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funato, Mitsuru, E-mail: funato@kuee.kyoto-u.ac.jp; Banal, Ryan G.; Kawakami, Yoichi

    2015-11-15

    Screw dislocations in Al-rich AlGaN/AlN quantum wells cause growth spirals with an enhanced Ga incorporation, which create potential minima. Although screw dislocations and their surrounding potential minima suggest non-radiative recombination processes within growth spirals, in reality, screw dislocations are not major non-radiative sinks for carriers. Consequently, carriers localized within growth spirals recombine radiatively without being captured by non-radiative recombination centers, resulting in intense emissions from growth spirals.

  14. Method and apparatus for thickness measurement using microwaves

    DOEpatents

    Woskov, Paul [Bedford, MA; Lamar, David A [West Richland, WA

    2001-01-01

    The method for measuring the thickness of a material which transmits a detectable amount of microwave radiation includes irradiating the material with coherent microwave radiation tuned over a frequency range. Reflected microwave radiation is detected, the reflected radiation having maxima and minima over the frequency range as a result of coherent interference of microwaves reflected from reflecting surfaces of the material. The thickness of the material is determined from the period of the maxima and minima along with knowledge of the index of refraction of the material.

  15. Oxygen-induced recombination centers in as-grown Czochralski silicon crystals

    NASA Technical Reports Server (NTRS)

    Nauka, K.; Gatos, H. C.; Lagowski, J.

    1983-01-01

    Simultaneous quantitative microprofiles of the interstitial oxygen concentration and of the excess carrier lifetime are obtained in Czochralski-grown Si crystals employing double laser absorption scanning. It is found that oxygen concentration maxima and minima along the crystal growth direction coincide with lifetime minima and maxima, respectively. Another finding is that the magnitude of oxygen-induced lifetime changes increases dramatically in going from the center to the periphery of the crystal. The findings discussed imply that 'as-grown' oxygen precipitates figure in lifetime-limiting processes.

  16. Potential-Energy and Free-Energy Surfaces of Glycyl-Phenylalanyl-Alanine (GFA) Tripeptide. Experiment and Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdes, Haydee; Spiwok, Vojtech; Rezac, Jan

    2008-04-17

    The free-energy surface (FES) of glycyl-phenylalanyl-alanine (GFA) tripeptide was explored by molecular dynamics (MD) simulations in combination with high-level correlated ab initio quantum chemical calculations and metadynamics. Both the MD and metadynamics employed the tightbinding DFT-D method instead of the AMBER force field, which yielded inaccurate results. We classified the minima localised in the FESs as follows: a) the backbone-conformational arrangement; and b) the existence of a COOH---OC intramolecular H-bond (families CO₂Hfree and CO₂Hbonded). Comparison with experimental results showed that the most stable minima in the FES correspond to the experimentally observed structures. Remarkably, however, we did not observe experimentallymore » the CO₂Hbonded family (also predicted by metadynamics), although its stability is comparable to that of the CO₂Hfree structures. This fact was explained by the former’s short excited state lifetime. We also carried out ab initio calculations using DFT-D and the M06-2X functional. The importance of the dispersion energy in stabilizing peptide conformers is well reflected by our pioneer analysis using the DFT-SAPT method to explore the nature of the backbone/side-chain interactions.« less

  17. Tight-binding approach to overdamped Brownian motion on a bichromatic periodic potential.

    PubMed

    Nguyen, P T T; Challis, K J; Jack, M W

    2016-02-01

    We present a theoretical treatment of overdamped Brownian motion on a time-independent bichromatic periodic potential with spatially fast- and slow-changing components. In our approach, we generalize the Wannier basis commonly used in the analysis of periodic systems to define a basis of S states that are localized at local minima of the potential. We demonstrate that the S states are orthonormal and complete on the length scale of the periodicity of the fast-changing potential, and we use the S-state basis to transform the continuous Smoluchowski equation for the system to a discrete master equation describing hopping between local minima. We identify the parameter regime where the master equation description is valid and show that the interwell hopping rates are well approximated by Kramers' escape rate in the limit of deep potential minima. Finally, we use the master equation to explore the system dynamics and determine the drift and diffusion for the system.

  18. The Multiple-Minima Problem in Protein Folding

    NASA Astrophysics Data System (ADS)

    Scheraga, Harold A.

    1991-10-01

    The conformational energy surface of a polypeptide or protein has many local minima, and conventional energy minimization procedures reach only a local minimum (near the starting point of the optimization algorithm) instead of the global minimum (the multiple-minima problem). Several procedures have been developed to surmount this problem, the most promising of which are: (a) build up procedure, (b) optimization of electrostatics, (c) Monte Carlo-plus-energy minimization, (d) electrostatically-driven Monte Carlo, (e) inclusion of distance restraints, (f) adaptive importance-sampling Monte Carlo, (g) relaxation of dimensionality, (h) pattern-recognition, and (i) diffusion equation method. These procedures have been applied to a variety of polypeptide structural problems, and the results of such computations are presented. These include the computation of the structures of open-chain and cyclic peptides, fibrous proteins and globular proteins. Present efforts are being devoted to scaling up these procedures from small polypeptides to proteins, to try to compute the three-dimensional structure of a protein from its amino sequence.

  19. Ultrasound-Assisted Extraction, Antioxidant and Anticancer Activities of the Polysaccharides from Rhynchosia minima Root.

    PubMed

    Jia, Xuejing; Zhang, Chao; Hu, Jie; He, Muxue; Bao, Jiaolin; Wang, Kai; Li, Peng; Chen, Meiwan; Wan, Jianbo; Su, Huanxing; Zhang, Qingwen; He, Chengwei

    2015-11-23

    Box-Behnken design (BBD), one of the most common response surface methodology (RSM) methods, was used to optimize the experimental conditions for ultrasound-assisted extraction of polysaccharides from Rhynchosia minima root (PRM). The antioxidant abilities and anticancer activity of purified polysaccharide fractions were also measured. The results showed that optimal extraction parameters were as follows: ultrasound exposure time, 21 min; ratio of water to material, 46 mL/g; ultrasound extraction temperature, 63 °C. Under these conditions, the maximum yield of PRM was 16.95%±0.07%. Furthermore, the main monosaccharides of purified fractions were Ara and Gal. PRM3 and PRM5 exhibited remarkable DPPH radical scavenging activities and reducing power in vitro. PRM3 showed strong inhibitory activities on the growth of MCF-7 cells in vitro. The above results indicate that polysaccharides from R. minima root have the potential to be developed as natural antioxidants and anticancer ingredients for the food and pharmaceutical industries.

  20. Structures and electron affinities of the di-arsenic fluorides As2Fn/As2Fn- (n=1-8).

    PubMed

    Kasalová, Veronika; Schaefer, Henry F

    2005-04-15

    Developments in the preparation of new materials for microelectronics are focusing new attention on molecular systems incorporating several arsenic atoms. A systematic investigation of the As2Fn/As2Fn- systems was carried out using Density Functional Theory methods and a DZP++ quality basis set. Global and low-lying local geometric minima and relative energies are discussed and compared. The three types of neutral-anion separations reported in this work are: the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). Harmonic vibrational frequencies pertaining to the global minimum for each compound are reported. From the first four studied species (As2Fn, n=1-4), all neutral molecules and their anions are shown to be stable with respect to As-As bond breaking. The neutral As2F molecule and its anion are predicted to have Cs symmetry. We find the trans F-As-As-F isomer of C2h symmetry and a pyramidalized vinylidene-like As-As-F2- isomer of Cs symmetry to be the global minima for the As2F2 and As2F2- species, respectively. The lowest lying minima of As2F3 and As2F3- are vinyl radical-like structures F-As-As-F2 of Cs symmetry. The neutral As2F4 global minimum is a trans-bent (like Si2H4) F2-As-As-F2 isomer of C2 symmetry, while its anion is predicted to have an unusual fluorine-bridged (C(1)) structure. The global minima of the neutral As2Fn species, n=5-8, are weakly bound complexes, held together by dipole-dipole interactions. All such structures have the AsFm-AsFn form, where (m,n) is (2,3) for As2F5, (3,3) for As2F6, (4,3) for As2F7), and (5,3) for As2F8. For As2F8 the beautiful pentavalent F4As-AsF4 structure (analogous to the stable AsF5 molecule) lies about 30 kcal/mol above the AsF3 . . . AsF5 complex. The stability of AsF(5) depends crucially on the strong As-F bonds, and replacing one of these with an As-As bond (in F4As-AsF4) has a very negative impact on the molecule's stability. The anions As2Fn-, n=5-8, are shown to be stable with respect to the As-As bond breaking, and we predict that all of them have fluorine-bridged or fluorine-linked structures. The zero-point vibrational energy corrected adiabatic electron affinities are predicted to be 2.28 eV (As2F), 1.95 eV (As2F2), 2.39 eV (As2F3), 1.71 eV (As2F4), 2.72 eV (As2F5), 1.79 eV (As2F6), 5.26 eV (As2F7), and 3.40 eV (As2F8) from the BHLYP method. Vertical detachment energies are rather large, especially for species with fluorine-bridged global minima, having values up to 6.45 eV (As2F7, BHLYP).

  1. 3D Clumped Cell Segmentation Using Curvature Based Seeded Watershed.

    PubMed

    Atta-Fosu, Thomas; Guo, Weihong; Jeter, Dana; Mizutani, Claudia M; Stopczynski, Nathan; Sousa-Neves, Rui

    2016-12-01

    Image segmentation is an important process that separates objects from the background and also from each other. Applied to cells, the results can be used for cell counting which is very important in medical diagnosis and treatment, and biological research that is often used by scientists and medical practitioners. Segmenting 3D confocal microscopy images containing cells of different shapes and sizes is still challenging as the nuclei are closely packed. The watershed transform provides an efficient tool in segmenting such nuclei provided a reasonable set of markers can be found in the image. In the presence of low-contrast variation or excessive noise in the given image, the watershed transform leads to over-segmentation (a single object is overly split into multiple objects). The traditional watershed uses the local minima of the input image and will characteristically find multiple minima in one object unless they are specified (marker-controlled watershed). An alternative to using the local minima is by a supervised technique called seeded watershed, which supplies single seeds to replace the minima for the objects. Consequently, the accuracy of a seeded watershed algorithm relies on the accuracy of the predefined seeds. In this paper, we present a segmentation approach based on the geometric morphological properties of the 'landscape' using curvatures. The curvatures are computed as the eigenvalues of the Shape matrix, producing accurate seeds that also inherit the original shape of their respective cells. We compare with some popular approaches and show the advantage of the proposed method.

  2. Computational study of the rovibrational spectrum of CO₂-CS₂.

    PubMed

    Brown, James; Wang, Xiao-Gang; Carrington, Tucker; Grubbs, G S; Dawes, Richard

    2014-03-21

    A new intermolecular potential energy surface, rovibrational transition frequencies, and line strengths are computed for CO2-CS2. The potential is made by fitting energies obtained from explicitly correlated coupled-cluster calculations using an interpolating moving least squares method. The rovibrational Schrödinger equation is solved with a symmetry-adapted Lanczos algorithm and an uncoupled product basis set. All four intermolecular coordinates are included in the calculation. In agreement with previous experiments, the global minimum of the potential energy surface (PES) is cross shaped. The PES also has slipped-parallel minima. Rovibrational wavefunctions are localized in the cross minima and the slipped-parallel minima. Vibrational parent analysis was used to assign vibrational labels to rovibrational states. Tunneling occurs between the two cross minima. Because more than one symmetry operation interconverts the two wells, the symmetry (-oo) of the upper component of the tunneling doublet is different from the symmetry (-ee) of the tunneling coordinate. This unusual situation is due to the multidimensional nature of the double well tunneling. For the cross ground vibrational state, calculated rotational constants differ from their experimental counterparts by less than 0.0001 cm(-1). Most rovibrational states were found to be incompatible with the standard effective rotational Hamiltonian often used to fit spectra. This appears to be due to coupling between internal and overall rotation of the dimer. A simple 2D model accounting for internal rotation was used for two cross-shaped fundamentals to obtain good fits.

  3. [Supercomputer investigation of the protein-ligand system low-energy minima].

    PubMed

    Oferkin, I V; Sulimov, A V; Katkova, E V; Kutov, D K; Grigoriev, F V; Kondakova, O A; Sulimov, V B

    2015-01-01

    The accuracy of the protein-ligand binding energy calculations and ligand positioning is strongly influenced by the choice of the docking target function. This work demonstrates the evaluation of the five different target functions used in docking: functions based on MMFF94 force field and functions based on PM7 quantum-chemical method accounting or without accounting the implicit solvent model (PCM, COSMO or SGB). For these purposes the ligand positions corresponding to the minima of the target function and the experimentally known ligand positions in the protein active site (crystal ligand positions) were compared. Each function was examined on the same test-set of 16 protein-ligand complexes. The new parallelized docking program FLM based on Monte Carlo search algorithm was developed to perform the comprehensive low-energy minima search and to calculate the protein-ligand binding energy. This study demonstrates that the docking target function based on the MMFF94 force field can be used to detect the crystal or near crystal positions of the ligand by the finding the low-energy local minima spectrum of the target function. The importance of solvent accounting in the docking process for the accurate ligand positioning is also shown. The accuracy of the ligand positioning as well as the correlation between the calculated and experimentally determined protein-ligand binding energies are improved when the MMFF94 force field is substituted by the new PM7 method with implicit solvent accounting.

  4. Noise in Graphene Superlattices Grown on Hexagonal Boron Nitride.

    PubMed

    Li, Xuefei; Lu, Xiaobo; Li, Tiaoyang; Yang, Wei; Fang, Jianming; Zhang, Guangyu; Wu, Yanqing

    2015-11-24

    Existing in almost all electronic systems, the current noise spectral density, originated from the fluctuation of current, is by nature far more sensitive than the mean value of current, the most common characteristic parameter in electronic devices. Existing models on its origin of either carrier number or mobility are adopted in practically all electronic devices. For the past few decades, there has been no experimental evidence for direct association between 1/f noise and any other kinetic phenomena in solid state devices. Here, in the study of a van der Waals heterostructure of graphene on hexagonal BN superlattice, satellite Dirac points have been characterized through 1/f noise spectral density with pronounced local minima and asymmetric magnitude associated with its unique energy dispersion spectrum, which can only be revealed by scanning tunneling microscopy and low temperature magneto-transport measurement. More importantly, these features even emerge in the noise spectra of devices showing no minima in electric current, and are robust at all temperatures down to 4.3 K. In addition, graphene on h-BN exhibits a record low noise level of 1.6 × 10(-9) μm(2) Hz(-1) at 10 Hz, more than 1 order of magnitude lower than previous results for graphene on SiO2. Such an epitaxial van der Waals material system not only enables an unprecedented characterization of fundamentals in solids by 1/f noise, but its superior interface also provides a key and feasible solution for further improvement of the noise level for graphene devices.

  5. Tunable antireflection from conformal Al-doped ZnO films on nanofaceted Si templates

    PubMed Central

    2014-01-01

    Photon harvesting by reducing reflection loss is the basis of photovoltaic devices. Here, we show the efficacy of Al-doped ZnO (AZO) overlayer on ion beam-synthesized nanofaceted silicon for suppressing reflection loss. In particular, we demonstrate thickness-dependent tunable antireflection (AR) from conformally grown AZO layer, showing a systematic shift in the reflection minima from ultraviolet to visible to near-infrared ranges with increasing thickness. Tunable AR property is understood in light of depth-dependent refractive index of nanofaceted silicon and AZO overlayer. This improved AR property significantly increases the fill factor of such textured heterostructures, which reaches its maximum for 60-nm AZO compared to the ones based on planar silicon. This thickness matches with the one that shows the maximum reduction in surface reflectance. PACS 81.07.-b; 42.79.Wc; 81.16.Rf; 81.15.Cd PMID:24808799

  6. Individual electron and hole localization in submonolayer InN quantum sheets embedded in GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feix, F., E-mail: feix@pdi-berlin.de; Flissikowski, T.; Chèze, C.

    2016-07-25

    We investigate sub-monolayer InN quantum sheets embedded in GaN(0001) by temperature-dependent photoluminescence spectroscopy under both continuous-wave and pulsed excitation. Both the peak energy and the linewidth of the emission band associated with the quantum sheets exhibit an anomalous dependence on temperature indicative of carrier localization. Photoluminescence transients reveal a power law decay at low temperatures reflecting that the recombining electrons and holes occupy spatially separate, individual potential minima reminiscent of conventional (In,Ga)N(0001) quantum wells exhibiting the characteristic disorder of a random alloy. At elevated temperatures, carrier delocalization sets in and is accompanied by a thermally activated quenching of the emission.more » We ascribe the strong nonradiative recombination to extended states in the GaN barriers and confirm our assumption by a simple rate-equation model.« less

  7. From metadynamics to dynamics.

    PubMed

    Tiwary, Pratyush; Parrinello, Michele

    2013-12-06

    Metadynamics is a commonly used and successful enhanced sampling method. By the introduction of a history dependent bias which depends on a restricted number of collective variables it can explore complex free energy surfaces characterized by several metastable states separated by large free energy barriers. Here we extend its scope by introducing a simple yet powerful method for calculating the rates of transition between different metastable states. The method does not rely on a previous knowledge of the transition states or reaction coordinates, as long as collective variables are known that can distinguish between the various stable minima in free energy space. We demonstrate that our method recovers the correct escape rates out of these stable states and also preserves the correct sequence of state-to-state transitions, with minimal extra computational effort needed over ordinary metadynamics. We apply the formalism to three different problems and in each case find excellent agreement with the results of long unbiased molecular dynamics runs.

  8. From Metadynamics to Dynamics

    NASA Astrophysics Data System (ADS)

    Tiwary, Pratyush; Parrinello, Michele

    2013-12-01

    Metadynamics is a commonly used and successful enhanced sampling method. By the introduction of a history dependent bias which depends on a restricted number of collective variables it can explore complex free energy surfaces characterized by several metastable states separated by large free energy barriers. Here we extend its scope by introducing a simple yet powerful method for calculating the rates of transition between different metastable states. The method does not rely on a previous knowledge of the transition states or reaction coordinates, as long as collective variables are known that can distinguish between the various stable minima in free energy space. We demonstrate that our method recovers the correct escape rates out of these stable states and also preserves the correct sequence of state-to-state transitions, with minimal extra computational effort needed over ordinary metadynamics. We apply the formalism to three different problems and in each case find excellent agreement with the results of long unbiased molecular dynamics runs.

  9. Influence of stocking, site quality, stand age, low-severity canopy disturbance, and forest composition on sub-boreal aspen mixedwood carbon stocks

    USGS Publications Warehouse

    Reinikainen, Michael; D’Amato, Anthony W.; Bradford, John B.; Fraver, Shawn

    2014-01-01

    Low-severity canopy disturbance presumably influences forest carbon dynamics during the course of stand development, yet the topic has received relatively little attention. This is surprising because of the frequent occurrence of such events and the potential for both the severity and frequency of disturbances to increase as a result of climate change. We investigated the impacts of low-severity canopy disturbance and average insect defoliation on forest carbon stocks and rates of carbon sequestration in mature aspen mixedwood forests of varying stand age (ranging from 61 to 85 years), overstory composition, stocking level, and site quality. Stocking level and site quality positively affected the average annual aboveground tree carbon increment (CAAI), while stocking level, site quality, and stand age positively affected tree carbon stocks (CTREE) and total ecosystem carbon stocks (CTOTAL). Cumulative canopy disturbance (DIST) was reconstructed using dendroecological methods over a 29-year period. DIST was negatively and significantly related to soil carbon (CSOIL), and it was negatively, albeit marginally, related to CTOTAL. Minima in the annual aboveground carbon increment of trees (CAI) occurred at sites during defoliation of aspen (Populus tremuloides Michx.) by forest tent caterpillar (Malacosoma disstria Hubner), and minima were more extreme at sites dominated by trembling aspen than sites mixed with conifers. At sites defoliated by forest tent caterpillar in the early 2000s, increased sequestration by the softwood component (Abies balsamea (L.) Mill. and Picea glauca (Moench) Voss) compensated for overall decreases in CAI by 17% on average. These results underscore the importance of accounting for low-severity canopy disturbance events when developing regional forest carbon models and argue for the restoration and maintenance of historically important conifer species within aspen mixedwoods to enhance stand-level resilience to disturbance agents and maintain site-level carbon stocks.

  10. A hybrid Q-learning sine-cosine-based strategy for addressing the combinatorial test suite minimization problem

    PubMed Central

    Zamli, Kamal Z.; Din, Fakhrud; Bures, Miroslav

    2018-01-01

    The sine-cosine algorithm (SCA) is a new population-based meta-heuristic algorithm. In addition to exploiting sine and cosine functions to perform local and global searches (hence the name sine-cosine), the SCA introduces several random and adaptive parameters to facilitate the search process. Although it shows promising results, the search process of the SCA is vulnerable to local minima/maxima due to the adoption of a fixed switch probability and the bounded magnitude of the sine and cosine functions (from -1 to 1). In this paper, we propose a new hybrid Q-learning sine-cosine- based strategy, called the Q-learning sine-cosine algorithm (QLSCA). Within the QLSCA, we eliminate the switching probability. Instead, we rely on the Q-learning algorithm (based on the penalty and reward mechanism) to dynamically identify the best operation during runtime. Additionally, we integrate two new operations (Lévy flight motion and crossover) into the QLSCA to facilitate jumping out of local minima/maxima and enhance the solution diversity. To assess its performance, we adopt the QLSCA for the combinatorial test suite minimization problem. Experimental results reveal that the QLSCA is statistically superior with regard to test suite size reduction compared to recent state-of-the-art strategies, including the original SCA, the particle swarm test generator (PSTG), adaptive particle swarm optimization (APSO) and the cuckoo search strategy (CS) at the 95% confidence level. However, concerning the comparison with discrete particle swarm optimization (DPSO), there is no significant difference in performance at the 95% confidence level. On a positive note, the QLSCA statistically outperforms the DPSO in certain configurations at the 90% confidence level. PMID:29771918

  11. A hybrid Q-learning sine-cosine-based strategy for addressing the combinatorial test suite minimization problem.

    PubMed

    Zamli, Kamal Z; Din, Fakhrud; Ahmed, Bestoun S; Bures, Miroslav

    2018-01-01

    The sine-cosine algorithm (SCA) is a new population-based meta-heuristic algorithm. In addition to exploiting sine and cosine functions to perform local and global searches (hence the name sine-cosine), the SCA introduces several random and adaptive parameters to facilitate the search process. Although it shows promising results, the search process of the SCA is vulnerable to local minima/maxima due to the adoption of a fixed switch probability and the bounded magnitude of the sine and cosine functions (from -1 to 1). In this paper, we propose a new hybrid Q-learning sine-cosine- based strategy, called the Q-learning sine-cosine algorithm (QLSCA). Within the QLSCA, we eliminate the switching probability. Instead, we rely on the Q-learning algorithm (based on the penalty and reward mechanism) to dynamically identify the best operation during runtime. Additionally, we integrate two new operations (Lévy flight motion and crossover) into the QLSCA to facilitate jumping out of local minima/maxima and enhance the solution diversity. To assess its performance, we adopt the QLSCA for the combinatorial test suite minimization problem. Experimental results reveal that the QLSCA is statistically superior with regard to test suite size reduction compared to recent state-of-the-art strategies, including the original SCA, the particle swarm test generator (PSTG), adaptive particle swarm optimization (APSO) and the cuckoo search strategy (CS) at the 95% confidence level. However, concerning the comparison with discrete particle swarm optimization (DPSO), there is no significant difference in performance at the 95% confidence level. On a positive note, the QLSCA statistically outperforms the DPSO in certain configurations at the 90% confidence level.

  12. Temperature-dependent thermal properties of ex vivo liver undergoing thermal ablation.

    PubMed

    Guntur, Sitaramanjaneya Reddy; Lee, Kang Il; Paeng, Dong-Guk; Coleman, Andrew John; Choi, Min Joo

    2013-10-01

    Thermotherapy uses a heat source that raises temperatures in the target tissue, and the temperature rise depends on the thermal properties of the tissue. Little is known about the temperature-dependent thermal properties of tissue, which prevents us from accurately predicting the temperature distribution of the target tissue undergoing thermotherapy. The present study reports the key thermal parameters (specific heat capacity, thermal conductivity and heat diffusivity) measured in ex vivo porcine liver while being heated from 20 ° C to 90 ° C and then naturally cooled down to 20 ° C. The study indicates that as the tissue was heated, all the thermal parameters resulted in plots with asymmetric quasi-parabolic curves with temperature, being convex downward with their minima at the turning temperature of 35-40 ° C. The largest change was observed for thermal conductivity, which decreased by 9.6% from its initial value (at 20 ° C) at the turning temperature (35 ° C) and rose by 45% at 90 ° C from its minimum (at 35 ° C). The minima were 3.567 mJ/(m(3) ∙ K) for specific heat capacity, 0.520 W/(m.K) for thermal conductivity and 0.141 mm(2)/s for thermal diffusivity. The minimum at the turning temperature was unique, and it is suggested that it be taken as a characteristic value of the thermal parameter of the tissue. On the other hand, the thermal parameters were insensitive to temperature and remained almost unchanged when the tissue cooled down, indicating that their variations with temperature were irreversible. The rate of the irreversible rise at 35 ° C was 18% in specific heat capacity, 40% in thermal conductivity and 38.3% in thermal diffusivity. The study indicates that the key thermal parameters of ex vivo porcine liver vary largely with temperature when heated, as described by asymmetric quasi-parabolic curves of the thermal parameters with temperature, and therefore, substantial influence on the temperature distribution of the tissue undergoing thermotherapy is expected. 2013. Published by Elsevier Inc

  13. Recent developments in the theory of protein folding: searching for the global energy minimum.

    PubMed

    Scheraga, H A

    1996-04-16

    Statistical mechanical theories and computer simulation are being used to gain an understanding of the fundamental features of protein folding. A major obstacle in the computation of protein structures is the multiple-minima problem arising from the existence of many local minima in the multidimensional energy landscape of the protein. This problem has been surmounted for small open-chain and cyclic peptides, and for regular-repeating sequences of models of fibrous proteins. Progress is being made in resolving this problem for globular proteins.

  14. Lone pairs: an electrostatic viewpoint.

    PubMed

    Kumar, Anmol; Gadre, Shridhar R; Mohan, Neetha; Suresh, Cherumuttathu H

    2014-01-16

    A clear-cut definition of lone pairs has been offered in terms of characteristics of minima in molecular electrostatic potential (MESP). The largest eigenvalue and corresponding eigenvector of the Hessian at the minima are shown to distinguish lone pair regions from the other types of electron localization (such as π bonds). A comparative study of lone pairs as depicted by various other scalar fields such as the Laplacian of electron density and electron localization function is made. Further, an attempt has been made to generalize the definition of lone pairs to the case of cations.

  15. Basics of SAR Polarimetry II

    DTIC Science & Technology

    2007-02-01

    on the Poincare sphere are considered, which reduces to 3K ε for the mono-static reciprocal case. It plays an essential role in Czyz’s alternate...from above derivations that the co-pol-null minima ’ 1cn ρ and ’ 2cn ρ lie in a plane spanned by the co-pol-maxima (cross-pol-minima) and the ...maxima ( 2211 , xncmxncm ρρρρ == ) and the pair ( S1, S2 ) of cross-pol maxima ( ’ 2,1xm ρ ) lie in one main cross-sectional plane of the

  16. Energy as a witness of multipartite entanglement in chains of arbitrary spins

    NASA Astrophysics Data System (ADS)

    Troiani, F.; Siloi, I.

    2012-09-01

    We develop a general approach for deriving the energy minima of biseparable states in chains of arbitrary spins s, and we report numerical results for spin values s≤5/2 (with N≤8). The minima provide a set of threshold values for exchange energy that allow us to detect different degrees of multipartite entanglement in one-dimensional spin systems. We finally demonstrate that the Heisenberg exchange Hamiltonian of N spins has a nondegenerate N-partite entangled ground state, and it can thus witness such correlations in all finite spin chains.

  17. Watching Nanoscale Self-Assembly Kinetics of Gold Prisms in Liquids

    NASA Astrophysics Data System (ADS)

    Kim, Juyeong; Ou, Zihao; Jones, Matthew R.; Chen, Qian

    We use liquid-phase transmission electron microscopy to watch self-assembly of gold triangular prisms into polymer-like structures. The in situ dynamics monitoring enabled by liquid-phase transmission electron microscopy, single nanoparticle tracking, and the marked conceptual similarity between molecular reactions and nanoparticle self-assembly combined elucidate the following mechanistic understanding: a step-growth polymerization based assembly statistics, kinetic pathways sampling particle curvature dependent energy minima and their interconversions, and directed assembly into polymorphs (linear or cyclic chains) through in situ modulation of the prism bonding geometry. Our study bridges the constituent kinetics on the molecular and nanoparticle length scales, which enriches the design rules in directed self-assembly of anisotropic nanoparticles.

  18. Fast globally optimal segmentation of cells in fluorescence microscopy images.

    PubMed

    Bergeest, Jan-Philip; Rohr, Karl

    2011-01-01

    Accurate and efficient segmentation of cells in fluorescence microscopy images is of central importance for the quantification of protein expression in high-throughput screening applications. We propose a new approach for segmenting cell nuclei which is based on active contours and convex energy functionals. Compared to previous work, our approach determines the global solution. Thus, the approach does not suffer from local minima and the segmentation result does not depend on the initialization. We also suggest a numeric approach for efficiently computing the solution. The performance of our approach has been evaluated using fluorescence microscopy images of different cell types. We have also performed a quantitative comparison with previous segmentation approaches.

  19. [Analysis of Conformational Features of Watson-Crick Duplex Fragments by Molecular Mechanics and Quantum Mechanics Methods].

    PubMed

    Poltev, V I; Anisimov, V M; Sanchez, C; Deriabina, A; Gonzalez, E; Garcia, D; Rivas, F; Polteva, N A

    2016-01-01

    It is generally accepted that the important characteristic features of the Watson-Crick duplex originate from the molecular structure of its subunits. However, it still remains to elucidate what properties of each subunit are responsible for the significant characteristic features of the DNA structure. The computations of desoxydinucleoside monophosphates complexes with Na-ions using density functional theory revealed a pivotal role of DNA conformational properties of single-chain minimal fragments in the development of unique features of the Watson-Crick duplex. We found that directionality of the sugar-phosphate backbone and the preferable ranges of its torsion angles, combined with the difference between purines and pyrimidines. in ring bases, define the dependence of three-dimensional structure of the Watson-Crick duplex on nucleotide base sequence. In this work, we extended these density functional theory computations to the minimal' fragments of DNA duplex, complementary desoxydinucleoside monophosphates complexes with Na-ions. Using several computational methods and various functionals, we performed a search for energy minima of BI-conformation for complementary desoxydinucleoside monophosphates complexes with different nucleoside sequences. Two sequences are optimized using ab initio method at the MP2/6-31++G** level of theory. The analysis of torsion angles, sugar ring puckering and mutual base positions of optimized structures demonstrates that the conformational characteristic features of complementary desoxydinucleoside monophosphates complexes with Na-ions remain within BI ranges and become closer to the corresponding characteristic features of the Watson-Crick duplex crystals. Qualitatively, the main characteristic features of each studied complementary desoxydinucleoside monophosphates complex remain invariant when different computational methods are used, although the quantitative values of some conformational parameters could vary lying within the limits typical for the corresponding family. We observe that popular functionals in density functional theory calculations lead to the overestimated distances between base pairs, while MP2 computations and the newer complex functionals produce the structures that have too close atom-atom contacts. A detailed study of some complementary desoxydinucleoside monophosphate complexes with Na-ions highlights the existence of several energy minima corresponding to BI-conformations, in other words, the complexity of the relief pattern of the potential energy surface of complementary desoxydinucleoside monophosphate complexes. This accounts for variability of conformational parameters of duplex fragments with the same base sequence. Popular molecular mechanics force fields AMBER and CHARMM reproduce most of the conformational characteristics of desoxydinucleoside monophosphates and their complementary complexes with Na-ions but fail to reproduce some details of the dependence of the Watson-Crick duplex conformation on the nucleotide sequence.

  20. An improved quasi-diabatic representation of the 1, 2, 3{sup 1}A coupled adiabatic potential energy surfaces of phenol in the full 33 internal coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaolei, E-mail: virtualzx@gmail.com; Malbon, Christopher L., E-mail: clmalbon@gmail.com; Yarkony, David R., E-mail: yarkony@jhu.edu

    2016-03-28

    In a recent work we constructed a quasi-diabatic representation, H{sup d}, of the 1, 2, 3{sup 1}A adiabatic states of phenol from high level multireference single and double excitation configuration interaction electronic structure data, energies, energy gradients, and derivative couplings. That H{sup d} accurately describes surface minima, saddle points, and also regions of strong nonadiabatic interactions, reproducing the locus of conical intersection seams and the coordinate dependence of the derivative couplings. The present work determines the accuracy of H{sup d} for describing phenol photodissociation. Additionally, we demonstrate that a modest energetic shift of two diabats yields a quantifiably more accuratemore » H{sup d} compared with experimental energetics. The analysis shows that in favorable circumstances it is possible to use single point energies obtained from the most reliable electronic structure methods available, including methods for which the energy gradients and derivative couplings are not available, to improve the quality of a global representation of several coupled potential energy surfaces. Our data suggest an alternative interpretation of kinetic energy release measurements near λ{sub phot} ∼ 248 nm.« less

  1. Asymmetry in Time Evolution of Magnetization in Magnetic Nanostructures

    DOE PAGES

    Tóbik, Jaroslav; Cambel, Vladimir; Karapetrov, Goran

    2015-07-22

    Strong interest in nanomagnetism stems from the promise of high storage densities of information through control of ever smaller and smaller ensembles of spins. There is a broad consensus that the Landau-Lifshitz-Gilbert equation reliably describes the magnetization dynamics on classical phenomenological level. On the other hand, it is not so evident that the magnetization dynamics governed by this equation contains built-in asymmetry in the case of broad topology sets of symmetric total energy functional surfaces. The magnetization dynamics in such cases shows preference for one particular state from many energetically equivalent available minima. Here, we demonstrate this behavior on amore » simple one-spin model which can be treated analytically. Depending on the ferromagnet geometry and material parameters, this asymmetric behavior can be robust enough to survive even at high temperatures opening simplified venues for controlling magnetic states of nanodevices in practical applications. Using micromagnetic simulations we demonstrate the asymmetry in magnetization dynamics in a real system with reduced symmetry such as Pacman-like nanodot. Finally, exploiting the built-in asymmetry in the dynamics could lead to practical methods of preparing desired spin configurations on nanoscale. Introduction« less

  2. A computational protocol for the study of circularly polarized phosphorescence and circular dichroism in spin-forbidden absorption.

    PubMed

    Kamiński, Maciej; Cukras, Janusz; Pecul, Magdalena; Rizzo, Antonio; Coriani, Sonia

    2015-07-15

    We present a computational methodology to calculate the intensity of circular dichroism (CD) in spin-forbidden absorption and of circularly polarized phosphorescence (CPP) signals, a manifestation of the optical activity of the triplet-singlet transitions in chiral compounds. The protocol is based on the response function formalism and is implemented at the level of time-dependent density functional theory. It has been employed to calculate the spin-forbidden circular dichroism and circularly polarized phosphorescence signals of valence n → π* and n ← π* transitions, respectively, in several chiral enones and diketones. Basis set effects in the length and velocity gauge formulations have been explored, and the accuracy achieved when employing approximate (mean-field and effective nuclear charge) spin-orbit operators has been investigated. CPP is shown to be a sensitive probe of the triplet excited state structure. In many cases the sign of the spin-forbidden CD and CPP signals are opposite. For the β,γ-enones under investigation, where there are two minima on the lowest triplet excited state potential energy surface, each minimum exhibits a CPP signal of a different sign.

  3. Refined method for predicting electrochemical windows of ionic liquids and experimental validation studies.

    PubMed

    Zhang, Yong; Shi, Chaojun; Brennecke, Joan F; Maginn, Edward J

    2014-06-12

    A combined classical molecular dynamics (MD) and ab initio MD (AIMD) method was developed for the calculation of electrochemical windows (ECWs) of ionic liquids. In the method, the liquid phase of ionic liquid is explicitly sampled using classical MD. The electrochemical window, estimated by the energy difference between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), is calculated at the density functional theory (DFT) level based on snapshots obtained from classical MD trajectories. The snapshots were relaxed using AIMD and quenched to their local energy minima, which assures that the HOMO/LUMO calculations are based on stable configurations on the same potential energy surface. The new procedure was applied to a group of ionic liquids for which the ECWs were also experimentally measured in a self-consistent manner. It was found that the predicted ECWs not only agree with the experimental trend very well but also the values are quantitatively accurate. The proposed method provides an efficient way to compare ECWs of ionic liquids in the same context, which has been difficult in experiments or simulation due to the fact that ECW values sensitively depend on experimental setup and conditions.

  4. Electronic band structure and Shubnikov-de Haas effect in two-dimensional semimetallic InAs/GaSb nanostructure superlattice

    NASA Astrophysics Data System (ADS)

    Boutramine, Abderrazak; Nafidi, Abdelhakim; Barkissy, Driss; El-Frikhe, Es-Said; Charifi, Hicham; Elanique, Abdellatif; Chaib, Hassan

    2016-02-01

    We have investigated the band structure E( d = d 1 + d 2), E( k z) and E( k p), respectively, as a function of the SL period, d, in the growth direction and in plan of InAs( d 1 = 160 Å)/GaSb( d 2 = 105 Å) type II superlattice, performed in the envelope function formalism with the valence band offset, Λ, of 510 meV at 4.2 K. For the ratio d 1/ d 2 = 1.52, d and Λ dependence of the SL energy band gap show that the semiconductor-to-semimetal transition takes place at d c = 173 Å and Λ c = 463 meV. Therefore, this sample is semimetallic. The position of the Fermi level, E F = 500.2 meV, indicates n type conductivity. The spectra of energy, E( k z, k p), show a negative band gap of -48.3 meV. The cutoff wavelength | λ c| = 25.7 µm indicates that this sample can be used as a far-infrared detector. Further, we have interpreted the minima of the magnetoresistance oscillations, Shubnikov-de Haas effect, observed by D. M. Symons et al.

  5. A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine.

    PubMed

    Malar, E; Kandaswamy, A; Chakravarthy, D; Giri Dharan, A

    2012-09-01

    The objective of this paper is to reveal the effectiveness of wavelet based tissue texture analysis for microcalcification detection in digitized mammograms using Extreme Learning Machine (ELM). Microcalcifications are tiny deposits of calcium in the breast tissue which are potential indicators for early detection of breast cancer. The dense nature of the breast tissue and the poor contrast of the mammogram image prohibit the effectiveness in identifying microcalcifications. Hence, a new approach to discriminate the microcalcifications from the normal tissue is done using wavelet features and is compared with different feature vectors extracted using Gray Level Spatial Dependence Matrix (GLSDM) and Gabor filter based techniques. A total of 120 Region of Interests (ROIs) extracted from 55 mammogram images of mini-Mias database, including normal and microcalcification images are used in the current research. The network is trained with the above mentioned features and the results denote that ELM produces relatively better classification accuracy (94%) with a significant reduction in training time than the other artificial neural networks like Bayesnet classifier, Naivebayes classifier, and Support Vector Machine. ELM also avoids problems like local minima, improper learning rate, and over fitting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. The motion of a charged particle on a Riemannian surface under a non-zero magnetic field

    NASA Astrophysics Data System (ADS)

    Castilho, Cesar Augusto Rodrigues

    In this thesis we study the motion of a charged particle on a Riemmanian surface under the influence of a positive magnetic field B. Using Moser's Twist Theorem and ideas from classical pertubation theory we find sufficient conditions to perpetually trap the motion of a particle with a sufficient large charge in a neighborhood of a level set of the magnetic field. The conditions on the level set of the magnetic field that guarantee the trapping are local and hold near all non- degenerate critical local minima or maxima of B. Using sympletic reduction we apply the results of our work to certain S1-invariant magnetic fields on R3.

  7. The Motion of a Charged Particle on a Riemannian Surface under a Non-Zero Magnetic Field

    NASA Astrophysics Data System (ADS)

    Castilho, César

    2001-03-01

    In this paper we study the motion of a charged particle on a Riemmanian surface under the influence of a positive magnetic field B. Using Moser's Twist Theorem and ideas from classical pertubation theory we find sufficient conditions to perpetually trap the motion of a particle with a sufficient large charge in a neighborhood of a level set of the magnetic field. The conditions on the level set of the magnetic field that guarantee the trapping are local and hold near all non-degenerate critical local minima or maxima of B. Using symplectic reduction we apply the results of our work to certain S1-invariant magnetic fields on R3.

  8. Lowest-energy structures of (C60)nX (X=Li+,Na+,K+,Cl-) and (C60)nYCl (Y=Li,Na,K) clusters for n

    PubMed

    Hernández-Rojas, J; Bretón, J; Gomez Llorente, J M; Wales, D J

    2004-12-22

    Basin-hopping global optimization is used to find likely candidates for the lowest minima on the potential energy surface of (C(60))(n)X (X=Li(+),Na(+),K(+),Cl(-)) and (C(60))(n)YCl (Y=Li,Na,K) clusters with n

  9. A comparison of climatological observing windows and their impact on detecting daily temperature extrema

    NASA Astrophysics Data System (ADS)

    Žaknić-Ćatović, Ana; Gough, William A.

    2018-04-01

    Climatological observing window (COW) is defined as a time frame over which continuous or extreme air temperature measurements are collected. A 24-h time interval, ending at 00UTC or shifted to end at 06UTC, has been associated with difficulties in characterizing daily temperature extrema. A fixed 24-h COW used to obtain the temperature minima leads to potential misidentification due to fragmentation of "nighttime" into two subsequent nighttime periods due to the time discretization interval. The correct identification of air temperature extrema is achievable using a COW that identifies daily minimum over a single nighttime period and maximum over a single daytime period, as determined by sunrise and sunset. Due to a common absence of hourly air temperature observations, the accuracy of the mean temperature estimation is dependent on the accuracy of determination of diurnal air temperature extrema. Qualitative and quantitative criteria were used to examine the impact of the COW on detecting daily air temperature extrema. The timing of the 24-h observing window occasionally affects the determination of daily extrema through a mischaracterization of the diurnal minima and by extension can lead to errors in determining daily mean temperature. Hourly air temperature data for the time period from year 1987 to 2014, obtained from Toronto Buttonville Municipal Airport weather station, were used in analysis of COW impacts on detection of daily temperature extrema and calculation of annual temperature averages based on such extrema.

  10. An optimization approach for observation association with systemic uncertainty applied to electro-optical systems

    NASA Astrophysics Data System (ADS)

    Worthy, Johnny L.; Holzinger, Marcus J.; Scheeres, Daniel J.

    2018-06-01

    The observation to observation measurement association problem for dynamical systems can be addressed by determining if the uncertain admissible regions produced from each observation have one or more points of intersection in state space. An observation association method is developed which uses an optimization based approach to identify local Mahalanobis distance minima in state space between two uncertain admissible regions. A binary hypothesis test with a selected false alarm rate is used to assess the probability that an intersection exists at the point(s) of minimum distance. The systemic uncertainties, such as measurement uncertainties, timing errors, and other parameter errors, define a distribution about a state estimate located at the local Mahalanobis distance minima. If local minima do not exist, then the observations are not associated. The proposed method utilizes an optimization approach defined on a reduced dimension state space to reduce the computational load of the algorithm. The efficacy and efficiency of the proposed method is demonstrated on observation data collected from the Georgia Tech Space Object Research Telescope.

  11. Smoothing of cost function leads to faster convergence of neural network learning

    NASA Astrophysics Data System (ADS)

    Xu, Li-Qun; Hall, Trevor J.

    1994-03-01

    One of the major problems in supervised learning of neural networks is the inevitable local minima inherent in the cost function f(W,D). This often makes classic gradient-descent-based learning algorithms that calculate the weight updates for each iteration according to (Delta) W(t) equals -(eta) (DOT)$DELwf(W,D) powerless. In this paper we describe a new strategy to solve this problem, which, adaptively, changes the learning rate and manipulates the gradient estimator simultaneously. The idea is to implicitly convert the local- minima-laden cost function f((DOT)) into a sequence of its smoothed versions {f(beta t)}Ttequals1, which, subject to the parameter (beta) t, bears less details at time t equals 1 and gradually more later on, the learning is actually performed on this sequence of functionals. The corresponding smoothed global minima obtained in this way, {Wt}Ttequals1, thus progressively approximate W-the desired global minimum. Experimental results on a nonconvex function minimization problem and a typical neural network learning task are given, analyses and discussions of some important issues are provided.

  12. Using tethered triblock copolymers to mediate the interaction between substrates

    NASA Astrophysics Data System (ADS)

    Chern, Shyh-Shi; Zhulina, Ekaterina B.; Pickett, Galen T.; Balazs, Anna C.

    1998-04-01

    Using scaling analysis and a self-consistent field (SCF) theory, we compress two copolymer-coated surfaces and isolate conditions that yield multiple, distinct minima in the interaction profile. We focus on planar surfaces that are coated with ABC triblock copolymers. Tethered to the surface by the last monomer in the C block, the copolymers are grafted at relatively low densities. The surrounding solution is a poor solvent for both the A and C blocks, and is a good solvent for the B blocks. Through scaling theory, we pinpoint the parameters that yield two minima in the interaction profile. The SCF calculations reveal the changes in the morphology of the polymers as the layers are compressed. Through both studies, we determine how the morphological changes give rise to the observed surface interactions. The results provide guidelines for creating polymer-coated colloidal systems that can form two stable crystal structures. Such systems could be used for bistable, optical switches. The findings also yield a prescription for creating systems that exhibit additional minima in the free energy of interaction.

  13. The first orbital parameters and period variation of the short-period eclipsing binary AQ Boo

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Zhang, Liyun; Pi, Qingfeng; Han, Xianming L.; Zhang, Xiliang; Lu, Hongpeng; Wang, Daimei; Li, TongAn

    2016-10-01

    We obtained the first VRI CCD light curves of the short-period contact eclipsing binary AQ Boo, which was observed on March 22 and April 19 in 2014 at Xinglong station of National Astronomical Observatories, and on January 20, 21 and February 28 in 2015 at Kunming station of Yunnan Observatories of Chinese Academy of Sciences, China. Using our six newly obtained minima and the minima that other authors obtained previously, we revised the ephemeris of AQ Boo. By fitting the O-C (observed minus calculated) values of the minima, the orbital period of AQ Boo shows a decreasing tendency P˙ = - 1.47(0.17) ×10-7 days/year. We interpret the phenomenon by mass transfer from the secondary (more massive) component to the primary (less massive) one. By using the updated Wilson & Devinney program, we also derived the photometric orbital parameters of AQ Boo for the first time. We conclude that AQ Boo is a near contact binary with a low contact factor of 14.43%, and will become an over-contact system as the mass transfer continues.

  14. Minimum of the order parameter fluctuations of seismicity before major earthquakes in Japan.

    PubMed

    Sarlis, Nicholas V; Skordas, Efthimios S; Varotsos, Panayiotis A; Nagao, Toshiyasu; Kamogawa, Masashi; Tanaka, Haruo; Uyeda, Seiya

    2013-08-20

    It has been shown that some dynamic features hidden in the time series of complex systems can be uncovered if we analyze them in a time domain called natural time χ. The order parameter of seismicity introduced in this time domain is the variance of χ weighted for normalized energy of each earthquake. Here, we analyze the Japan seismic catalog in natural time from January 1, 1984 to March 11, 2011, the day of the M9 Tohoku earthquake, by considering a sliding natural time window of fixed length comprised of the number of events that would occur in a few months. We find that the fluctuations of the order parameter of seismicity exhibit distinct minima a few months before all of the shallow earthquakes of magnitude 7.6 or larger that occurred during this 27-y period in the Japanese area. Among the minima, the minimum before the M9 Tohoku earthquake was the deepest. It appears that there are two kinds of minima, namely precursory and nonprecursory, to large earthquakes.

  15. A pulse-shape discrimination method for improving Gamma-ray spectrometry based on a new digital shaping filter

    NASA Astrophysics Data System (ADS)

    Qin, Zhang-jian; Chen, Chuan; Luo, Jun-song; Xie, Xing-hong; Ge, Liang-quan; Wu, Qi-fan

    2018-04-01

    It is a usual practice for improving spectrum quality by the mean of designing a good shaping filter to improve signal-noise ratio in development of nuclear spectroscopy. Another method is proposed in the paper based on discriminating pulse-shape and discarding the bad pulse whose shape is distorted as a result of abnormal noise, unusual ballistic deficit or bad pulse pile-up. An Exponentially Decaying Pulse (EDP) generated in nuclear particle detectors can be transformed into a Mexican Hat Wavelet Pulse (MHWP) and the derivation process of the transform is given. After the transform is performed, the baseline drift is removed in the new MHWP. Moreover, the MHWP-shape can be discriminated with the three parameters: the time difference between the two minima of the MHWP, and the two ratios which are from the amplitude of the two minima respectively divided by the amplitude of the maximum in the MHWP. A new type of nuclear spectroscopy was implemented based on the new digital shaping filter and the Gamma-ray spectra were acquired with a variety of pulse-shape discrimination levels. It had manifested that the energy resolution and the peak-Compton ratio were both improved after the pulse-shape discrimination method was used.

  16. A gentic survey of Salvinia minima in the southern United States

    USGS Publications Warehouse

    Madeira, Paul T.; Jacono, Colette C.; Tipping, Phil; Van, Thai K.; Center, Ted D.

    2003-01-01

    The genetic relationships among 68 samples of Salvinia minima (Salviniaceae) were investigated using RAPD analysis. Neighbor joining, principle components, and AMOVA analyses were used to detect differences among geographically referenced samples within and outside of Florida. Genetic distances (Nei and Li) range up to 0.48, although most are under 0.30, still relatively high levels for an introduced, clonally reproducing plant. Despite the diversity AMOVA analysis yielded no indication that the Florida plants, as a group, were significantly different from the plants sampled elsewhere in its adventive, North American range. A single, genetically dissimilar population probably exists in the recent (1998) horticultural introduction to Mississippi. When the samples were grouped into 10 regional (but artificial) units and analyzed using AMOVA the between region variance was only 7.7%. Genetic similarity among these regions may indicate introduction and dispersal from common sources. The reduced aggressiveness of Florida populations (compared to other states) may be due to herbivory. The weevilCyrtobagous salviniae, a selective feeder, is found in Florida but not other states. The genetic similarity also suggests that there are no obvious genetic obstacles to the establishment or efficacy of C. salviniae as a biological control agent on S. minimaoutside of Florida.

  17. A dynamic and harmonic damped finite element analysis model of stapedotomy.

    PubMed

    Blayney, A W; Williams, K R; Rice, H J

    1997-03-01

    This study was undertaken in an attempt to better understand the mechanics of sound transmission at the footplate following stapedotomy. The insertion of a Teflon (polytetrafluoroethylene) stapes prosthesis introduces new constraints within the reconstructed ossicular chain which have an effect on the normal vibration patterns of the tympanic membrane. In a finite element model of the ear, constraints have been reproduced as a series of spring constants in the incus/prosthesis/footplate interfaces incorporating damping to simulate the impedance of the inner ear. At zero damping, the frequency response at the pseudo stapes footplate exhibit several maxima and minima between 800 Hz and 2.5 Hz. At higher damping values, these maxima and minima become smoothened out with two or three naturals occurring over the same frequency range. Severe ankylosis of a diseased footplate is reproduced by over-damped conditions. The umbo, incus and stapes footplate vibrate in phase with similar frequencies at light damping levels. The movement of the prosthesis at the pseudo-footplate can be large in the out of plane axis of the ossicular chain, unless sufficient support is provided at the reconstructed footplate. Clinically, this would suggest the vein graft interposed between the piston and stapedotomy hole should endow resistance and elasticity to the system.

  18. Application of Simulated Annealing and Related Algorithms to TWTA Design

    NASA Technical Reports Server (NTRS)

    Radke, Eric M.

    2004-01-01

    Simulated Annealing (SA) is a stochastic optimization algorithm used to search for global minima in complex design surfaces where exhaustive searches are not computationally feasible. The algorithm is derived by simulating the annealing process, whereby a solid is heated to a liquid state and then cooled slowly to reach thermodynamic equilibrium at each temperature. The idea is that atoms in the solid continually bond and re-bond at various quantum energy levels, and with sufficient cooling time they will rearrange at the minimum energy state to form a perfect crystal. The distribution of energy levels is given by the Boltzmann distribution: as temperature drops, the probability of the presence of high-energy bonds decreases. In searching for an optimal design, local minima and discontinuities are often present in a design surface. SA presents a distinct advantage over other optimization algorithms in its ability to escape from these local minima. Just as high-energy atomic configurations are visited in the actual annealing process in order to eventually reach the minimum energy state, in SA highly non-optimal configurations are visited in order to find otherwise inaccessible global minima. The SA algorithm produces a Markov chain of points in the design space at each temperature, with a monotonically decreasing temperature. A random point is started upon, and the objective function is evaluated at that point. A stochastic perturbation is then made to the parameters of the point to arrive at a proposed new point in the design space, at which the objection function is evaluated as well. If the change in objective function values (Delta)E is negative, the proposed new point is accepted. If (Delta)E is positive, the proposed new point is accepted according to the Metropolis criterion: rho((Delta)f) = exp((-Delta)E/T), where T is the temperature for the current Markov chain. The process then repeats for the remainder of the Markov chain, after which the temperature is decremented and the process repeats. Eventually (and hopefully), a near-globally optimal solution is attained as T approaches zero. Several exciting variants of SA have recently emerged, including Discrete-State Simulated Annealing (DSSA) and Simulated Tempering (ST). The DSSA algorithm takes the thermodynamic analogy one step further by categorizing objective function evaluations into discrete states. In doing so, many of the case-specific problems associated with fine-tuning the SA algorithm can be avoided; for example, theoretical approximations for the initial and final temperature can be derived independently of the case. In this manner, DSSA provides a scheme that is more robust with respect to widely differing design surfaces. ST differs from SA in that the temperature T becomes an additional random variable in the optimization. The system is also kept in equilibrium as the temperature changes, as opposed to the system being driven out of equilibrium as temperature changes in SA. ST is designed to overcome obstacles in design surfaces where numerous local minima are separated by high barriers. These algorithms are incorporated into the optimal design of the traveling-wave tube amplifier (TWTA). The area under scrutiny is the collector, in which it would be ideal to use negative potential to decelerate the spent electron beam to zero kinetic energy just as it reaches the collector surface. In reality this is not plausible due to a number of physical limitations, including repulsion and differing levels of kinetic energy among individual electrons. Instead, the collector is designed with multiple stages depressed below ground potential. The design of this multiple-stage collector is the optimization problem of interest. One remaining problem in SA and DSSA is the difficulty in determining when equilibrium has been reached so that the current Markov chain can be terminated. It has been suggested in recent literature that simulating the thermodynamic properties opecific heat, entropy, and internal energy from the Boltzmann distribution can provide good indicators of having reached equilibrium at a certain temperature. These properties are tested for their efficacy and implemented in SA and DSSA code with respect to TWTA collector optimization.

  19. Statistical mechanics of neocortical interactions. Derivation of short-term-memory capacity

    NASA Astrophysics Data System (ADS)

    Ingber, Lester

    1984-06-01

    A theory developed by the author to describe macroscopic neocortical interactions demonstrates that empirical values of chemical and electrical parameters of synaptic interactions establish several minima of the path-integral Lagrangian as a function of excitatory and inhibitory columnar firings. The number of possible minima, their time scales of hysteresis and probable reverberations, and their nearest-neighbor columnar interactions are all consistent with well-established empirical rules of human short-term memory. Thus, aspects of conscious experience are derived from neuronal firing patterns, using modern methods of nonlinear nonequilibrium statistical mechanics to develop realistic explicit synaptic interactions.

  20. Comparative Magnetic Minima: Characterizing Quiet Times in the Sun and Stars. Symposium of the International Astronomical Union (286th) Held in Mendoza, Argentina on October 3-7, 2011

    DTIC Science & Technology

    2011-10-01

    11:15 – 11:45 Invited Talk – Stars in Magnetic Grand Minima: Where Are They and What Are They Like? Steven Saar (Presentation file) 11:45 – 12:00...of Archaeology and Ancient History, University Rd, Leicester LE1 7RH, United Kingdom IAUS 279 Death of Massive Stars: Supernovae and Gamma-Ray Bursts...of Astronomy & Astrophysics, 525 Davey Lab, University Park, PA 16802, USA IAUS 283 Planetary Nebulae: an Eye to the Future A. MANCHADO, Instituto de

  1. Photometric geodesy of main-belt asteroids. III - Additional lightcurves

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.; Chapman, C. R.; Davis, D. R.; Greenberg, R.; Levy, D. H.

    1990-01-01

    A total of 107 complete or partial lightcurves are presented for 59 different asteroids over the 1982-1989 period. Unusual lightcurves with unequal minima and maxima at large amplitudes are preferentially seen for M-type asteroids. Some asteroids, such as 16 Psyche and 201 Penelope, exhibit lightcurves combining large amplitude with very unequal brightness for both maxima and both minima, even at small phase angles. An M-type asteroid is believed to consist of a metal core of a differentiated parent body that has had its rocky mantle completely removed by one or more large impacts.

  2. Derivative, maxima and minima in a graphical context

    NASA Astrophysics Data System (ADS)

    Rivera-Figueroa, Antonio; Ponce-Campuzano, Juan Carlos

    2013-03-01

    A deeper learning of the properties and applications of the derivative for the study of functions may be achieved when teachers present lessons within a highly graphic context, linking the geometric illustrations to formal proofs. Each concept is better understood and more easily retained when it is presented and explained visually using graphs. In this article, we explore the conditions of necessity or sufficiency of the criteria for determining the maxima and minima of a function. The implications for the teaching of derivatives and functions in undergraduate courses are discussed in light of our analysis of textbooks.

  3. Photometric geodesy of main-belt asteroids. III. Additional lightcurves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weidenschilling, S.J.; Chapman, C.R.; Davis, D.R.

    1990-08-01

    A total of 107 complete or partial lightcurves are presented for 59 different asteroids over the 1982-1989 period. Unusual lightcurves with unequal minima and maxima at large amplitudes are preferentially seen for M-type asteroids. Some asteroids, such as 16 Psyche and 201 Penelope, exhibit lightcurves combining large amplitude with very unequal brightness for both maxima and both minima, even at small phase angles. An M-type asteroid is believed to consist of a metal core of a differentiated parent body that has had its rocky mantle completely removed by one or more large impacts. 39 refs.

  4. The Effect of the Ionosphere on Radiowave Signals and Systems Performance Based on Ionospheric Effects Symposium Held on 1-3 May 1990

    DTIC Science & Technology

    1990-05-03

    winter and a minimum in summer ; in contrast, at sunspot maximum the seasonal peaks tend to occur around the equinoxes and the minima in summer . ’riis is...more clearly seen in Figures 4(b) ahnd 4(c). Note that around sunspot maximum the summer noon value may be less than the summer midnight value. (3) The...seasonal variation of the midnight values show summer peaks and winter minima with high values near the peaks of the sunspot cycles and low values

  5. Experimental evidence for the blue-shifted hydrogen-bonded complexes of CHF3 with π-electron donors.

    PubMed

    Gopi, R; Ramanathan, N; Sundararajan, K

    2017-06-15

    Blue-shifted hydrogen-bonded complexes of fluoroform (CHF 3 ) with benzene (C 6 H 6 ) and acetylene (C 2 H 2 ) have been investigated using matrix isolation infrared spectroscopy and ab initio computations. For CHF 3 -C 6 H 6 complex, calculations performed at the B3LYP and MP2 levels of theory using 6-311++G (d,p) and aug-cc-pVDZ basis sets discerned two minima corresponding to a 1:1 hydrogen-bonded complex. The global minimum correlated to a structure, where the interaction is between the hydrogen of CHF 3 and the π-electrons of C 6 H 6 and a weak local minimum was stabilized through H…F interaction. For the CHF 3 -C 2 H 2 complex, computation performed at MP2/aug-cc-pVDZ level of theory yielded two minima, corresponding to the cyclic C-H…π complex A (global) and a linear C-H…F (n-σ) complex B (local). Experimentally a blue-shift of 32.3cm -1 and 7.7cm -1 was observed in the ν 1 C-H stretching mode of CHF 3 sub-molecule in Ar matrix for the 1:1 C-H…π complexes of CHF 3 with C 6 H 6 and C 2 H 2 respectively. Natural bond orbital (NBO), Atoms-in-molecule (AIM) and energy decomposition (EDA) analyses were carried out to explain the blue-shifting and the nature of the interaction in these complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Dietary pyridoxine potentiates thermal tolerance, heat shock protein and protect against cellular stress of Milkfish (Chanos chanos) under endosulfan-induced stress.

    PubMed

    Kumar, Neeraj; Ambasankar, K; Krishnani, K K; Kumar, Prem; Akhtar, M S; Bhushan, Shashi; Minhas, P S

    2016-08-01

    We herein report the protective role of pyridoxine in enhancing thermal tolerance of Milkfish Chanos chanos reared under endosulfan-induced stress. Four isocaloric and isonitrogenous diets were prepared with graded levels of pyridoxine (0, 50, 75 and 100 mg/kg). Two hundred and twenty five fishes were randomly distributed into four treatment groups in triplicate, reared under endosulfan-treated water, which were fed with pyridoxine supplemented diet, while the negative control group was reared without endosulfan-treatment and control fed. The concentration of endosulfan in treated water was maintained at a level of 1/40th of LC50 i.e. 0.52 μg/L. Dietary pyridoxine supplementation had significant (p < 0.01) effect on temperature tolerance viz. CTmax (Critical temperature maxima), LTmax (Lethal temperature maxima), CTmin (Critical temperature minima) and LTmin (Lethal temperature minima) of milkfish. The positive correlation was observed between CT max and LTmax (Y = -1.54 + 15.6x, R(2), 0.943) as well as CTmin and LTmin (Y = -1.44 + 1.021x, R(2), 0.941). At the end of the thermal tolerance study, antioxidative status and HSP 70 were significantly reduced in pyridoxine supplemented groups, whereas brain AChE was significantly (p < 0.01) elevated compared to positive and negative control. It is concluded that CTmax, LTmax, CTmin and LTmin, antioxidative status, neurotransmitter enzyme and HSP 70 strengthened the enhancement of thermal tolerance of Milkfish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The electric field standing wave effect in infrared transflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Mayerhöfer, Thomas G.; Popp, Jürgen

    2018-02-01

    We show that an electric field standing wave effect is responsible for the oscillations and the non-linear dependence of the absorbance on the layer thickness in thin layers on a reflective surface. This effect is connected to the occurrence of interference inside these layers. Consequently, the absorptance undergoes a maximum electric field intensity enhancement at spectral positions close to those where corresponding non-absorbing layers on a metal show minima in the reflectance. The effect leads to changes of peak maxima ratios with layer thickness and shows the same periodicity as oscillations in the peak positions. These peculiarities are fully based on and described by Maxwell's equations but cannot be understood and described if the strongly simplifying model centered on reflectance absorbance is employed.

  8. Energy barriers, entropy barriers, and non-Arrhenius behavior in a minimal glassy model.

    PubMed

    Du, Xin; Weeks, Eric R

    2016-06-01

    We study glassy dynamics using a simulation of three soft Brownian particles confined to a two-dimensional circular region. If the circular region is large, the disks freely rearrange, but rearrangements are rarer for smaller system sizes. We directly measure a one-dimensional free-energy landscape characterizing the dynamics. This landscape has two local minima corresponding to the two distinct disk configurations, separated by a free-energy barrier that governs the rearrangement rate. We study several different interaction potentials and demonstrate that the free-energy barrier is composed of a potential-energy barrier and an entropic barrier. The heights of both of these barriers depend on temperature and system size, demonstrating how non-Arrhenius behavior can arise close to the glass transition.

  9. Memory effects in soap film arrangements

    NASA Astrophysics Data System (ADS)

    Vandewalle, Nicolas; Dorbolo, Stephane; Lumay, Geoffroy; Schockmel, Julien; Noirhomme, Martial

    2012-02-01

    We report experiments on soap film configurations in a triangular prism for which the shape factor can be changed continuously. Two stable configurations can be observed for a range of the shape factor h. A hysteretic behaviour is found, due to the occurence of another local minima in the free energy. Experiments demonstrate that soap films can be trapped in a particular configuration being different from a global surface minimization. This metastability can be evidenced from a geometrical model based on idealized structures. Depending on the configuration, providing clues on the structural relaxations taking place into 3D foams, such as T1 rearrangements. The composition of the liquid is also investigated leading to dynamical picture of the transition. (Phys. Rev. E 83, 021403 (2011))

  10. First report of a gryporhynchid tapeworm (Cestoda: Cyclophyllidea) from New Zealand and from an eleotrid fish, described from metacestodes and in vitro-grown worms.

    PubMed

    Presswell, B; Poulin, R; Randhawa, H S

    2012-12-01

    Metacestodes are often found in the body cavity of the common bully (Gobiomorphus cotidianus McDowall), from freshwater habitats in Otago, New Zealand. Identification of metacestodes relies only on the number, size and shape of the rostellar hooks. To attempt species determination, we cultivated metacestodes in vitro for up to 23 days, during which they matured to at least the male stage of development, although female organs were not discernable. Identified as members of the genus Paradilepis Hsü, 1935 (family Gryporhynchidae), these specimens are compared to previously described species, in particular P. minima (Goss, 1940), from Australia, the closest species, both geographically and morphologically. Although the size of scolex, suckers and proglottids differ significantly from those of P. minima, we are cautious about interpreting 'adults' grown in vitro, because we are unsure whether the artificial conditions alter development. For this reason, and because of the lack of female organs, we refrain from erecting a new species, and refer to the specimens as Paradilepis cf. minima until such time as the adults are found in the definitive host. With this proviso we present here a description of the in vitro-grown worms and the metacestodes as a preliminary study of this cestode. A molecular analysis of small subunit (SSU) rDNA sequences, shows the position of P. cf. minima and another gryporhynchid, Neogryporhynchus cheilancristrotus (Wedl, 1855), to be equivocal, but confirms their exclusion from the Dilepididae and Hymenolepididae. This is the first record of a gryporhynchid from New Zealand, and the first from the fish family Eleotridae.

  11. Precision of Times-of-Minima and the Detection of Low-Mass Third Bodies Orbiting Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Genet, R. M.; Smith, T. C.

    2004-12-01

    Low-mass third bodies orbiting eclipsing binaries are difficult to detect by way of periodic shifts in photometric times-of-minima because the observational precision of these timings are of the same order as the expected effects of any low-mass companions. We are implementing three approaches to increasing the precision of our times-of-minima. First, we are obtaining many times-of-minima by utilizing relatively low-cost, dedicated telescopes and CCD cameras (10- and 14-inch Meade LX-200 telescopes and SBIG ST7-XE cameras). Operating in a semiautomatic mode, we select an eclipsing binary system, based on its placement in the sky, and observe it all night long - usually many nights in a row. We choose binaries with short enough periods to assure us of obtaining a complete light curve (and hence an eclipse) every night we observe. Second, we are striving to increase the photometric precision of each observation through the use of multiple comparison stars (ensemble photometry). We are also, in conjunction with California Polytechnic State University, investigating other ways of increasing the photometric precision of these low-cost systems (see E. Sturm this conference). Finally, we are utilizing complete, as opposed to partial, light curves in our analysis. Information outside primary eclipses is gathered as a matter of course, and its use can improve precision. A total of 186 complete light curves were obtained at the Dark Ridge and Orion Observatories during the 2004 observing season on six eclipsing binaries (TZ Boo, V523 Cas, RW Com, V1191 Cyg, GM Dra, and V400 Lyr). Please see T. Smith and R. Genet (this conference) for preliminary results on V523 Cas (30+ complete light curves).

  12. Total variation regularization for seismic waveform inversion using an adaptive primal dual hybrid gradient method

    NASA Astrophysics Data System (ADS)

    Yong, Peng; Liao, Wenyuan; Huang, Jianping; Li, Zhenchuan

    2018-04-01

    Full waveform inversion is an effective tool for recovering the properties of the Earth from seismograms. However, it suffers from local minima caused mainly by the limited accuracy of the starting model and the lack of a low-frequency component in the seismic data. Because of the high velocity contrast between salt and sediment, the relation between the waveform and velocity perturbation is strongly nonlinear. Therefore, salt inversion can easily get trapped in the local minima. Since the velocity of salt is nearly constant, we can make the most of this characteristic with total variation regularization to mitigate the local minima. In this paper, we develop an adaptive primal dual hybrid gradient method to implement total variation regularization by projecting the solution onto a total variation norm constrained convex set, through which the total variation norm constraint is satisfied at every model iteration. The smooth background velocities are first inverted and the perturbations are gradually obtained by successively relaxing the total variation norm constraints. Numerical experiment of the projection of the BP model onto the intersection of the total variation norm and box constraints has demonstrated the accuracy and efficiency of our adaptive primal dual hybrid gradient method. A workflow is designed to recover complex salt structures in the BP 2004 model and the 2D SEG/EAGE salt model, starting from a linear gradient model without using low-frequency data below 3 Hz. The salt inversion processes demonstrate that wavefield reconstruction inversion with a total variation norm and box constraints is able to overcome local minima and inverts the complex salt velocity layer by layer.

  13. Theoretical investigation of existence of meta-stability in iron and cobalt clusters

    NASA Astrophysics Data System (ADS)

    Berry, Habte Dulla; Zhang, Qinfang; Wang, Baolin

    2018-03-01

    Nowadays considerable attention has been given for researches on magnetic properties of transition metal clusters (specifically FeN and CoN). This is because these clusters offer big hopes for the possibility of presenting significant magnetic anisotropy energy which is critical for technological applications. This study intends to find out the causes for the existence of the two states (ground and meta-stable) in Iron and Cobalt clusters. The study also explains the role of valence electrons for the existence of magnetism in the two states by using the concept of ionization potential, electron dipole polarizabilities, chemical hardness and softness of the clusters. Assuming that, when all itinerant electrons are at s-level and also at the d-level (ns = n andns → 0.) the ground state and meta-stable state energies with distinct energy minima are (Egs = l / 2 n +εc n - 2μB hn andEms =εd n - gμB hn) respectively. The findings also showed that polarizability of small cluster of the specified elements are increased compared with the bulk value, which means that there is an effective increase in the cluster radius due to the spilling out of the electronic charge. Furthermore, it is obvious that 4s electrons are more delocalized than the 3d electrons so that they spill out more than the 3d electrons. This leads to the conclusion that 4s electrons are primarily responsible for the enhanced polarizabilities and for shell structure effects. This indicates that polarizability at the meta-stable state is less than that of the ground state i.e. the meta-stable state loses its s electron. Therefore the two minima represent a ground state of configuration 3 d↑5 3 d↓ 2 + δ 4s 2 - δ with energy Egs and meta-stable state of configuration 3 d↑5 3 d↓ 3 + δ 4s 1 - δ with energy Ems for Co clusters and a ground state configuration 3 d↑5 3 d↓ 1 + δ 4s 2 - δ with energy Egs an meta-stable state of configuration 3 d↑5 3 d↓ 2 + δ 4s 1 - δ with energy Ems for Fe clusters. Hence, the existence of the two states (meta-stable & ground state) is due to the large disproportion in electronic configurations of the two clusters at their respective states. Furthermore, the chemical hardness and softness of the clusters also provide evidence for the existence of stability of the two states depending on the cluster size.

  14. Estimation of cold stress effect on dairy cows

    NASA Astrophysics Data System (ADS)

    Brouček, J.; Letkovičová, M.; Kovalčuj, K.

    1991-03-01

    Twelve crossbred heifers (Slovak Spotted x Holstein-Friesian) were housed in an open, uninsulated barn with straw bedding and a concrete-floored yard. Minimum temperatures inside the barn were as low as -19°C. The average milk yield decreased as the temperatures approached these minima. Compared with the temperate conditions, the feed intake and blood levels of glucose and free fatty acids increased. The level of sodium declined significantly during the second cold period. Correlations and regressions between milk yield and biochemical parameters were calculated, and the results indicate that the concentrations of free fatty acids, cholesterol, and triiodothyronine and the haematocrit values may serve to predict milk production during periods of cold stress, or in lactations of 305 days.

  15. Acoustic concentration of particles in fluid flow

    DOEpatents

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  16. Viscosity minima in binary mixtures of ionic liquids + molecular solvents.

    PubMed

    Tariq, M; Shimizu, K; Esperança, J M S S; Canongia Lopes, J N; Rebelo, L P N

    2015-05-28

    The viscosity (η) of four binary mixtures (ionic liquids plus molecular solvents, ILs+MSs) was measured in the 283.15 < T/K < 363.15 temperature range. Different IL/MS combinations were selected in such a way that the corresponding η(T) functions exhibit crossover temperatures at which both pure components present identical viscosity values. Consequently, most of the obtained mixture isotherms, η(x), exhibit clear viscosity minima in the studied T-x range. The results are interpreted using auxiliary molecular dynamics (MD) simulation data in order to correlate the observed η(T,x) trends with the interactions in each mixture, including the balance between electrostatic forces and hydrogen bonding.

  17. On the sound field radiated by a tuning fork

    NASA Astrophysics Data System (ADS)

    Russell, Daniel A.

    2000-12-01

    When a sounding tuning fork is brought close to the ear, and rotated about its long axis, four distinct maxima and minima are heard. However, when the same tuning fork is rotated while being held at arm's length from the ear only two maxima and minima are heard. Misconceptions concerning this phenomenon are addressed and the fundamental mode of the fork is described in terms of a linear quadrupole source. Measured directivity patterns in the near field and far field of several forks agree very well with theoretical predictions for a linear quadrupole. Other modes of vibration are shown to radiate as dipole and lateral quadrupole sources.

  18. Power-law distributions for the areas of the basins of attraction on a potential energy landscape.

    PubMed

    Massen, Claire P; Doye, Jonathan P K

    2007-03-01

    Energy landscape approaches have become increasingly popular for analyzing a wide variety of chemical physics phenomena. Basic to many of these applications has been the inherent structure mapping, which divides up the potential energy landscape into basins of attraction surrounding the minima. Here, we probe the nature of this division by introducing a method to compute the basin area distribution and applying it to some archetypal supercooled liquids. We find that this probability distribution is a power law over a large number of decades with the lower-energy minima having larger basins of attraction. Interestingly, the exponent for this power law is approximately the same as that for a high-dimensional Apollonian packing, providing further support for the suggestion that there is a strong analogy between the way the energy landscape is divided into basins, and the way that space is packed in self-similar, space-filling hypersphere packings, such as the Apollonian packing. These results suggest that the basins of attraction provide a fractal-like tiling of the energy landscape, and that a scale-free pattern of connections between the minima is a general property of energy landscapes.

  19. Phase Transition to Exact Susy

    NASA Astrophysics Data System (ADS)

    Clavelli, L.

    2007-04-01

    The anthropic principle is based on the observation that, within narrow bounds, the laws of physics are such as to have allowed the evolution of life. The string theoretic approach to understanding this observation is based on the expectation that the effective potential has an enormous number of local minima with different particle masses and perhaps totally different fundamental couplings and space time topology. The vast majority of these alternative universes are totally inhospitable to life, having, for example, vacuum energies near the natural (Planck) scale. The statistics, however, are assumed to be such that a few of these local minima (and not more) have a low enough vacuum energy and suitable other properties to support life. In the inflationary era, the "multiverse" made successive transitions between the available minima until arriving at our current state of low vacuum energy. String theory, however, also suggests that the absolute minimum of the effective potential is exactly supersymmetric. Questions then arise as to why the inflationary era did not end by a transition to one of these, when will the universe make the phase transition to the exactly supersymmetric ground state, and what will be the properties of this final state.

  20. On the origin of pure optical rotation in twisted-cross metamaterials

    PubMed Central

    Barr, Lauren E.; Díaz-Rubio, Ana; Tremain, Ben; Carbonell, Jorge; Sánchez-Dehesa, José; Hendry, Euan; Hibbins, Alastair P.

    2016-01-01

    We present an experimental and computational study of the response of twisted-cross metamaterials that provide near dispersionless optical rotation across a broad band of frequencies from 19 GHz to 37 GHz. We compare two distinct geometries: firstly, a bilayer structure comprised of arrays of metallic crosses where the crosses in the second layer are twisted about the layer normal; and secondly where the second layer is replaced by the complementary to the original, i.e. an array of cross-shaped holes. Through numerical modelling we determine the origin of rotatory effects in these two structures. In both, pure optical rotation occurs in a frequency band between two transmission minima, where alignment of electric and magnetic dipole moments occurs. In the cross/cross metamaterial, the transmission minima occur at the symmetric and antisymmetric resonances of the coupled crosses. By contrast, in the cross/complementary-cross structure the transmission minima are associated with the dipole and quadrupole modes of the cross, the frequencies of which appear intrinsic to the cross layer alone. Hence the bandwidth of optical rotation is found to be relatively independent of layer separation. PMID:27457405

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarlis, N. V., E-mail: nsarlis@phys.uoa.gr; Christopoulos, S.-R. G.; Skordas, E. S.

    It has been recently shown [N. V. Sarlis, Phys. Rev. E 84, 022101 (2011) and N. V. Sarlis and S.-R. G. Christopoulos, Chaos 22, 023123 (2012)] that earthquakes of magnitude M greater or equal to 7 are globally correlated. Such correlations were identified by studying the variance κ{sub 1} of natural time which has been proposed as an order parameter for seismicity. Here, we study the fluctuations of this order parameter using the Global Centroid Moment Tensor catalog for a magnitude threshold M{sub thres} = 5.0 and focus on its behavior before major earthquakes. Natural time analysis reveals that distinct minima ofmore » the fluctuations of the order parameter of seismicity appear within almost five and a half months on average before all major earthquakes of magnitude larger than 8.4. This phenomenon corroborates the recent finding [N. V. Sarlis et al., Proc. Natl. Acad. Sci. U.S.A. 110, 13734 (2013)] that similar minima of the seismicity order parameter fluctuations had preceded all major shallow earthquakes in Japan. Moreover, on the basis of these minima a statistically significant binary prediction method for earthquakes of magnitude larger than 8.4 with hit rate 100% and false alarm rate 6.67% is suggested.« less

  2. Numerically Exact Calculation of Rovibrational Levels of Cl^-H_2O

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2014-06-01

    Large amplitude vibrations of Van der Waals clusters are important because they reveal large regions of a potential energy surface (PES). To calculate spectra of Van der Waals clusters it is common to use an adiabatic approximation. When coupling between intra- and inter-molecular coordinates is important non-adiabatic coupling cannot be neglected and it is therefore critical to develop and test theoretical methods that couple both types of coordinates. We have developed new product basis and contracted basis Lanczos methods for Van der Waals complexes and tested them by computing rovibrational energy levels of Cl^-H_2O. The new product basis is made of functions of the inter-monomer distance, Wigner functions that depend on Euler angles specifying the orientation of H_2O with respect to a frame attached to the inter-monomer Jacobi vector, basis functions for H_2O vibration, and Wigner functions that depend on Euler angles specifying the orientation of the inter-monomer Jacobi vector with respect to a space-fixed frame. An advantage of this product basis is that it can be used to make an efficient contracted basis by replacing the vibrational basis functions for the monomer with monomer vibrational wavefunctions. Due to weak coupling between intra- and inter-molecular coordinates, only a few tens of monomer vibrational wavefunctions are necessary. The validity of the two new methods is established by comparing energy levels with benchmark rovibrational levels obtained with polyspherical coordinates and spherical harmonic type basis functions. For all bases, product structure is exploited to calculate eigenvalues with the Lanczos algorithm. For Cl^-H_2O, we are able, for the first time, to compute accurate splittings due to tunnelling between the two equivalent C_s minima. We use the PES of Rheinecker and Bowman (RB). Our results are in good agreement with experiment for the five fundamental bands observed. J. Rheinecker and J. M. Bowman, J. Chem. Phys. 124 131102 (2006) J. Rheinecker and J. M. Bowman, J. Chem. Phys. 125 133206 (2006)} S. Horvath, A. B. McCoy, B. M. Elliott, G. H. Weddle, J. R. Roscioli, and M. A. Johnson J. Phys. Chem. A 114 1556 (2010)

  3. Quantum dynamics of the vibrations of helium bound to the nanosurface of a large planar organic molecule: phthalocyanine . He van der Waals complex.

    PubMed

    Gibbons, Brittney R; Xu, Minzhong; Bacić, Zlatko

    2009-04-23

    We report rigorous quantum three-dimensional calculations of highly excited intermolecular vibrational states of the van der Waals (vdW) complex phthalocyanine.He (Pc.He). The Pc molecule was treated as rigid and the intermolecular potential energy surface (IPES) was represented as a sum of atom-atom Lennard-Jones pair potentials. The IPES has four equivalent global minima on the diagonals of the square-shaped Pc, inside its five-membered rings, and four slightly shallower local minima between them, creating a distinctive corrugation pattern of the molecular nanosurface. The vdW vibrational states analyzed in this work extend to about two-thirds of the well depth of the IPES. For the assignment of the in-plane (xy) vdW vibrational excitations it was necessary to resort to two sets of quantum numbers, the Cartesian quantum numbers [nu(x), nu(y)] and the quantum numbers (v, l) of the 2D isotropic oscillator, depending on the nodal structure and the symmetry of the wave functions. The delocalization of the He atom parallel to the molecular surface is large already in the ground vdW state. It increases rapidly with the number of quanta in the in-plane vdW vibrations, with the maximum root-mean-square amplitudes Deltax and Deltay of about 7 au at the excitation energies around 40 cm(-1). The wave functions of the highly excited states tend to be delocalized over the entire nanosurface and often have a square shape, reflecting that of the substrate.

  4. Spectroscopic and theoretical investigation of the electronic states of layered perovskite oxyfluoride S r2Ru O3F2 thin films

    NASA Astrophysics Data System (ADS)

    Chikamatsu, Akira; Kurauchi, Yuji; Kawahara, Keisuke; Onozuka, Tomoya; Minohara, Makoto; Kumigashira, Hiroshi; Ikenaga, Eiji; Hasegawa, Tetsuya

    2018-06-01

    We investigated the electronic structure of a layered perovskite oxyfluoride S r2Ru O3F2 thin film by hard x-ray photoemission spectroscopy (HAXPES) and soft x-ray absorption spectroscopy (XAS) as well as density functional theory (DFT)-based calculations. The core-level HAXPES spectra suggested that S r2Ru O3F2 is a Mott insulator. The DFT calculations described the total and site-projected density of states and the band dispersion for the optimized crystal structure of S r2Ru O3F2 , predicting that R u4 + takes a high-spin configuration of (xy ) ↑(yz ,z x ) ↑↑(3z2-r2 ) ↑ and that S r2Ru O3F2 has an indirect band gap of 0.7 eV with minima at the M ,A and X ,R points. HAXPES spectra near the Fermi level and the angular-dependent O 1 s XAS spectra of the S r2Ru O3F2 thin film, corresponding to the valence band and conduction band density of states, respectively, were drastically different compared to those of the S r2Ru O4 film, suggesting that the changes in the electronic states were mainly driven by the substitution of an oxygen atom coordinated to Ru by fluorine and subsequent modification of the crystal field.

  5. An anchored astronomical time-scale for the Turonian reference sections in the Umbria-Marche Basin, Italy

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, D.; Montanari, A.; Coccioni, R.

    2012-04-01

    In the Umbria-Marche basin, the aftermath of Ocean Anoxic Event 2 (OAE2, Bonarelli Level) is represented by the Turonian part of the Scaglia Rossa Formation. The Scaglia Rossa pelagic limestones were studied in the classic Contessa and Bottaccione sections near Gubbio, in the Umbria-Marche region of the northeastern Apennines of Italy. Oscillations between radiolarian cherts interbedded with foram-coccolith pelagic limestones are interpreted to follow the rhythm of precession and show hierarchical bundles, which are suggestive of eccentricity-related grouping. Eccentricity-bundles are correlated amongst the two studied sections. Moreover, the magnetic susceptibility signal of the Bottaccione section and the δ18O and δ13C record of both sections clearly demonstrate the imprint of precession and eccentricity. Eccentricity minima are associated with relatively warm periods (δ18O minima), characterized by an increased magnetic susceptibility signal and radiolarian blooms, which are expressed by frequent chert beds. Radiolarian blooms seem to hamper primary productivity, given that they correlate with δ13C minima. The delineated astronomical cycles constitute an eccentricity-based cyclostratigraphy for the Turonian part of the Scaglia Rossa. Moreover, the constructed cyclostratigraphy is anchored to numerical time by calibration with the astronomical solution La2010 (Laskar et al., 2011) and with recent radioisotopic ages from the Cenomanian-Turonian boundary interval near the GSSP in Colorado, USA (Meyers et al., 2012). The numerical age (93.9 ± 0.15 Ma; Meyers et al., 2012) of the Cenomanian-Turonian boundary (0.75 m above the top of the Bonarelli Level in the Contessa section; Tsikos et al., 2004; Kennedy et al., 2005) is used as the pinpoint to which our astronomical time-scale is anchored. Using the anchored astronomical time-scale for the Turonian of the Umbria-Marche basin, the top of the Bonarelli Level is placed at 93.97 ± 0.25 Ma, and the boundary between the Whiteinella archaeocretacea and Helvetoglobotruncana helvetica planktonic foraminiferal zones is put at 93.48 ± 0.25 Ma. These ages are consistent with the numerical ages obtained from radioisotopic dating of the near-GSSP USGS #1 Portland core (Meyers et al., 2012). High-resolution XRF geochemical analysis through the 82 cm thick Bonarelli Level in the Bottaccione section at Gubbio, reveals four strong ~21 cm thick cycles. Spectral analyses on the SiO2 and Al2O3 concentration and in the Si/Al ratio suggest an eccentricity and precession signature if one assumes an average sedimentation rate of 2.0 m/Myr during the OAE2 in this pelagic basin. These results indicate a duration of ~410 kyr for the Bonarelli Level and place the bottom of this anoxic interval at 94.38 ± 0.25 Ma. In the near future, the latter marker-bed could be used to connect the astronomical time-scale presented in this abstract to the Cenomanian astronomical time-scale based on the nearby Furlo section (Batenburg et al., this session), in order to obtain a considerably long (> 5 Myr) astronomically calibrated time-scale across a an intriguing time interval in Earth history, with unprecedented precision and accuracy.

  6. High-level ab initio calculations for the four low-lying families of minima of (H2O)(20): 1. Estimates of MP2/CBS binding energies and comparison with empirical potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fanourgakis, Georgios S.; Apra, Edoardo; Xantheas, Sotiris S.

    2004-08-08

    We report estimates of complete basis set (CBS) limits at the second-order Møller-Plesset perturbation level of theory (MP2) for the binding energies of the lowest lying isomers within each of the four major families of minima of (H2O)20. These were obtained by performing MP2 calculations with the family of correlation-consistent basis sets up to quadruple zeta quality, augmented with additional diffuse functions (aug-cc-pVnZ, n=D, T, Q). The MP2/CBS estimates are: -200.1 kcal/mol (dodecahedron, 30 hydrogen bonds), -212.6 kcal/mol (fused cubes, 36 hydrogen bonds), -215.0 (face-sharing pentagonal prisms, 35 hydrogen bonds) and –217.9 kcal/mol (edge-sharing pentagonal prisms, 34 hydrogen bonds). Themore » energetic ordering of the various (H2O)20 isomers does not follow monotonically the number of hydrogen bonds as in the case of smaller clusters such as the different isomers of the water hexamer. The dodecahedron lies ca. 18 kcal/mol higher in energy than the most stable edge-sharing pentagonal prism isomer. The TIP4P, ASP-W4, TTM2-R, AMOEBA and TTM2-F empirical potentials also predict the energetic stabilization of the edge-sharing pentagonal prisms with respect to the dodecahedron, albeit they universally underestimate the cluster binding energies with respect to the MP2/CBS result. Among them, the TTM2-F potential was found to predict the absolute cluster binding energies to within < 1% from the corresponding MP2/CBS values, whereas the error for the rest of the potentials considered in this study ranges from 3-5%.« less

  7. Late Quaternary Productivity Records from Coccolith Sr/Ca

    NASA Astrophysics Data System (ADS)

    Stoll, H. M.; Burke, A.; Mejia Ramirez, L. M.; Shimizu, N.; Ziveri, P. P. I.

    2014-12-01

    The Sr/Ca of coccoliths has been proposed as an indicator of productivity on the basis of correlation with export production in sediment traps and across upwelling productivity gradients, although the mechanism responsable for this relationship is not clear. For diverse oceanographic settings in the Late Quaternary, we compare coccolith Sr/Ca productivity records with those of other productivity indicators and proxies for mechanisms of productivity forcing. For the Somalia Basin in the Arabian Sea, coccolith Sr/Ca shows a large variation coherent with precessional forcing of wind strength as a mechanism for productivity regulation. During the glacial, the Sr/Ca peak is decoupled from productivity indicators based on organic C accumulation rate. For the Northern Bay of Bengal, coccolith Sr/Ca, Ba/Ti, and relative abundance of G. bulloides, all suggest greater productivity during the interglacial periods, consisted with Nd isotopic evidence for greater riverine nutrient inputs. In the Andaman Sea, coccolith Sr/Ca is highest during precessional maxima in the summer monsoon, consistent with proxies for chemical weathering in the Irawaddy rivershed. In the Eastern Mediterranean, coccolith Sr/Ca is on average low, and peaks during the E. Holocene interval characterized by deposition of sapropel S1. The peak in Sr/Ca however is comparable to the level maintained throughout the Holocene in the Western Mediterranean, where no sapropel occurs, implicating deepwater oxygen levels as a significant contributor to sapropel formation. Finally, on the Agulhas Bank, minima in coccolith Sr/Ca occur during obliquity minima which are periods of anomalous equatorward deposition of IRD in the Southern Ocean. Northward explansion of the westerly wind field during these cold intervals, block upwelling on the Agulhas Bank and result in low productivity.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, P.; Purdue University, West Lafayette, Indiana 47907; Verma, K.

    Borazine is isoelectronic with benzene and is popularly referred to as inorganic benzene. The study of non-covalent interactions with borazine and comparison with its organic counterpart promises to show interesting similarities and differences. The motivation of the present study of the borazine-water interaction, for the first time, stems from such interesting possibilities. Hydrogen-bonded complexes of borazine and water were studied using matrix isolation infrared spectroscopy and quantum chemical calculations. Computations were performed at M06-2X and MP2 levels of theory using 6-311++G(d,p) and aug-cc-pVDZ basis sets. At both the levels of theory, the complex involving an N–H⋯O interaction, where the N–Hmore » of borazine serves as the proton donor to the oxygen of water was found to be the global minimum, in contrast to the benzene-water system, which showed an H–π interaction. The experimentally observed infrared spectra of the complexes corroborated well with our computations for the complex corresponding to the global minimum. In addition to the global minimum, our computations also located two local minima on the borazine-water potential energy surface. Of the two local minima, one corresponded to a structure where the water was the proton donor to the nitrogen of borazine, approaching the borazine ring from above the plane of the ring; a structure that resembled the global minimum in the benzene-water H–π complex. The second local minimum corresponded to an interaction of the oxygen of water with the boron of borazine, which can be termed as the boron bond. Clearly the borazine-water system presents a richer landscape than the benzene-water system.« less

  9. Effect of Methyl Substitution on the N-H···O Interaction in Complexes of Pyrrole with Water, Methanol, and Dimethyl Ether: Matrix Isolation Infrared Spectroscopy and ab Initio Computational Studies.

    PubMed

    Sarkar, Shubhra; Ramanathan, N; Sundararajan, K

    2018-03-08

    Hydrogen-bonded interactions of pyrrole with water and methanol have been studied using matrix isolation infrared spectroscopy and compared with the calculation performed on dimethyl ether. Computations carried out at MP2/aug-cc-pVDZ level of theory yielded two minima for the pyrrole-water and pyrrole-methanol complexes. The global and local minima correspond to the N-H···O and O-H···π complexes, respectively, where the N-H group of pyrrole interacts with oxygen of water/methanol and O-H of water and methanol interacts with the π cloud of pyrrole. Computations performed on the pyrrole-dimethyl ether gave only N-H···O type complex. From the experimental vibrational wavenumber shifts in the N-H stretching and N-H bending modes of pyrrole, as well as in the O-H stretching modes of water and methanol, the 1:1 N-H···O complexes were discerned. The strength of the N-H···O hydrogen bond and the corresponding shift in the N-H stretching vibrational wavenumbers increases in the order pyrrole-water < pyrrole-methanol < pyrrole-dimethyl ether, where a proton is successively replaced by a methyl group. Apart from the 1:1 complexes, higher clusters of 2:1 and 1:2 pyrrole-water and pyrrole-methanol complexes were also generated in N 2 matrix. Atoms in molecules and natural bond orbital analyses were carried out at the MP2/aug-cc-pVDZ level to understand the nature of interaction in the 1:1 pyrrole-water, pyrrole-methanol and pyrrole-dimethyl ether complexes.

  10. Characterization of the X~ 2A1, A~ 2B1, and X~ 2Π electronic states of the Ga2H molecule and the X~ 2A' and A~ 2A'' isomerization transition states connecting the three minima

    NASA Astrophysics Data System (ADS)

    Wang, Hongyan; Wang, Suyun; Yan, Ge; Yamaguchi, Yukio; Schaefer, Henry F.

    2006-01-01

    A wide range of highly correlated ab initio methods has been used to predict the geometrical parameters of the linear (X˜Π2) and H-bridged (X˜A12 and ÃB12) Ga2H isomers and two isomerization transition states (X˜A'2 and ÃA″2) connecting the three minima. Dipole moments and vibrational frequencies are also obtained. The global minimum X˜A12 ground state of the H-bridged GaHGa isomer is predicted to lie only 1.6 [1.9 with the zero-point vibrational energy (ZPVE) corrections] kcalmol-1 below the ÃB12 state. The X˜A12 state lies 5.4kcalmol-1 below the X˜Π2 ground state of the linear GaGaH isomer at the coupled-cluster with single, double, and perturbative triple excitations [CCSD(T)] level of theory with the augmented correlation-consistent polarized valence quadruple-zeta (aug-cc-pVQZ) basis set. The full triples coupled-cluster method is found to alter these CCSD(T) predictions by as much as 0.3kcalmol-1. The forward isomerization barriers from the linear ground state to the X˜A'2 and ÃA″2 transition states are determined to be 3.3 and 5.3kcalmol-1, respectively. The reverse isomerization barrier between the X˜A12 GaHGa structure and the X˜Π2 GaGaH structure is predicted to be 8.6 (8.2 with the ZPVE corrections) kcalmol-1 at the aug-cc-pVQZ CCSD(T) level of theory.

  11. Emission properties of Ga2O3 nano-flakes: effect of excitation density.

    PubMed

    Pozina, G; Forsberg, M; Kaliteevski, M A; Hemmingsson, C

    2017-02-08

    In the quest of developing high performance electronic and optical devices and more cost effective fabrication processes of monoclinic β-Ga 2 O 3 , new growth techniques and fundamental electronic and optical properties of defects have to be explored. By heating of dissolved metallic Ga in HCl in a NH 3 and N 2 atmosphere, nano-flake films of monoclinic β-phase Ga 2 O 3 were grown as confirmed by XRD. From optical measurements, we observe two strong emissions. A red band peaking at ~2.0 eV and a UV band at ~3.8 eV. The band at ~2.0 eV is attributed to donor-acceptor pair recombination where the donor and acceptor level is suggested to be related to V O and nitrogen, respectively. By studying the dependence of the intensity of the UV band at 3.8 eV versus excitation density, a model is suggested. In the model, it is assumed that local potential fluctuations forming minima (maxima), where the carriers would be localized with a summarized band offset for conduction and valence band of 1 eV. The origin of the fluctuations is tentatively suggested to be related to micro-inclusions of different phases in the film.

  12. Emission properties of Ga2O3 nano-flakes: effect of excitation density

    PubMed Central

    Pozina, G.; Forsberg, M.; Kaliteevski, M. A.; Hemmingsson, C.

    2017-01-01

    In the quest of developing high performance electronic and optical devices and more cost effective fabrication processes of monoclinic β-Ga2O3, new growth techniques and fundamental electronic and optical properties of defects have to be explored. By heating of dissolved metallic Ga in HCl in a NH3 and N2 atmosphere, nano-flake films of monoclinic β-phase Ga2O3 were grown as confirmed by XRD. From optical measurements, we observe two strong emissions. A red band peaking at ~2.0 eV and a UV band at ~3.8 eV. The band at ~2.0 eV is attributed to donor-acceptor pair recombination where the donor and acceptor level is suggested to be related to VO and nitrogen, respectively. By studying the dependence of the intensity of the UV band at 3.8 eV versus excitation density, a model is suggested. In the model, it is assumed that local potential fluctuations forming minima (maxima), where the carriers would be localized with a summarized band offset for conduction and valence band of 1 eV. The origin of the fluctuations is tentatively suggested to be related to micro-inclusions of different phases in the film. PMID:28176841

  13. Automated Training of ReaxFF Reactive Force Fields for Energetics of Enzymatic Reactions.

    PubMed

    Trnka, Tomáš; Tvaroška, Igor; Koča, Jaroslav

    2018-01-09

    Computational studies of the reaction mechanisms of various enzymes are nowadays based almost exclusively on hybrid QM/MM models. Unfortunately, the success of this approach strongly depends on the selection of the QM region, and computational cost is a crucial limiting factor. An interesting alternative is offered by empirical reactive molecular force fields, especially the ReaxFF potential developed by van Duin and co-workers. However, even though an initial parametrization of ReaxFF for biomolecules already exists, it does not provide the desired level of accuracy. We have conducted a thorough refitting of the ReaxFF force field to improve the description of reaction energetics. To minimize the human effort required, we propose a fully automated approach to generate an extensive training set comprised of thousands of different geometries and molecular fragments starting from a few model molecules. Electrostatic parameters were optimized with QM electrostatic potentials as the main target quantity, avoiding excessive dependence on the choice of reference atomic charges and improving robustness and transferability. The remaining force field parameters were optimized using the VD-CMA-ES variant of the CMA-ES optimization algorithm. This method is able to optimize hundreds of parameters simultaneously with unprecedented speed and reliability. The resulting force field was validated on a real enzymatic system, ppGalNAcT2 glycosyltransferase. The new force field offers excellent qualitative agreement with the reference QM/MM reaction energy profile, matches the relative energies of intermediate and product minima almost exactly, and reduces the overestimation of transition state energies by 27-48% compared with the previous parametrization.

  14. Unexpected Decrease in Moment of Inertia Between N = 98-100 in 162,164Gd

    NASA Astrophysics Data System (ADS)

    Jones, E. F.; Hamilton, J. H.; Gore, P. M.; Ramayya, A. V.; Hwang, J. K.; Delima, A. P.; Zhu, S. J.; Beyer, C. J.; Luo, Y. X.; Kormicki, J.; Zhang, X. Q.; Ma, W. C.; Rasmussen, J. O.; Lee, I. Y.; Wu, S. C.; Folden, C. M.; Fallon, P.; Zielinski, P.; Gregorich, K. E.; Macchiavelli, A. O.; Ginter, T. N.; Stoyer, M.; Cole, J. D.; Janssens, R. V. F.; Ahmad, I.; Daniel, A. V.; Ter-Akopian, G. M.; Oganessian, Yu. Ts.; Donangelo, R.; Asztalos, S. J.

    2003-10-01

    From γ-γ-γ coincidence studies of the prompt γ-rays emitted in the spontaneous fission (SF) of 252Cf with Gammasphere, the yrast energy levels in neutron-rich 162,164Gd were identified for the first time from 2+ to 16+ and from 2+ to 14+, respectively. The 2+ level energies are 71.6 and 73.3 keV in 162,164Gd, respectively. The transition energies from every level in 164Gd are higher than those from the same levels in 162Gd. There is a systematic decrease at every level of the moment of inertia (MOI) and similarly β2 deformation in N = 100 164Gd compared to N = 98 162Gd. The minimum in E(2+) and maxima in MOI and β2 occur at N = 98. This behavior is unexpected compared to the E(2+) and β2 trends in Er, Yb, and Hf nuclei where the minima and maxima occur at neutron midshell, N = 104.

  15. Potential generated inner and outside a circular wire in its plane. Application to Saturn's ring

    NASA Astrophysics Data System (ADS)

    Najid, N.-E.; Zegoumou, M.; El Ourabi, E. H.

    2012-12-01

    In this article we derive the development of the potential generated by a homogeneous wire bent into a circular shape (Najid, Jammari & Zegoumou, 2005). We develop the potential as a power series of the distance from an appropriate origin to the test particle. The potential is expressed as a function of Legendre polynomials. We study both, the case where the test particle is inside or outside the circular wire. By Lagrangian formulation, we establish the differential equation of motion. The numerical resolution leads us to different orbits. Outside the wire we get a case where the test particle is confined between a maxima and minima of the radial position; while inner the wire the test particle is subjected to an escape case depending on the time of integration.

  16. Dissolution of multicomponent bubbles. [gases in glass melts

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.; Subramanian, R. S.

    1980-01-01

    The behavior of an isolated, stationary, multicomponent gas bubble in a glassmelt containing several dissolved gases is considered. The relevant mass-transport equations are formulated and calculations are performed for the case of two diffusing gases using a quasi-stationary model and a numerical solution of the exact mass-transfer equations. The results obtained from these two approaches are compared. The factors which govern the dissolution or growth of a bubble are thermodynamic and kinetic in origin. The tendency of a bubble to grow or shrink at long times is controlled by departure from overall equilibrium, whereas the short-time bubble dynamics may be dominated by kinetic effects. As a result of the existence of these dual influences, maxima and/or minima occur in the functional dependence of the bubble radius on time.

  17. Mathematics of gravitational lensing: multiple imaging and magnification

    NASA Astrophysics Data System (ADS)

    Petters, A. O.; Werner, M. C.

    2010-09-01

    The mathematical theory of gravitational lensing has revealed many generic and global properties. Beginning with multiple imaging, we review Morse-theoretic image counting formulas and lower bound results, and complex-algebraic upper bounds in the case of single and multiple lens planes. We discuss recent advances in the mathematics of stochastic lensing, discussing a general formula for the global expected number of minimum lensed images as well as asymptotic formulas for the probability densities of the microlensing random time delay functions, random lensing maps, and random shear, and an asymptotic expression for the global expected number of micro-minima. Multiple imaging in optical geometry and a spacetime setting are treated. We review global magnification relation results for model-dependent scenarios and cover recent developments on universal local magnification relations for higher order caustics.

  18. Study of the Structural Stability in Intermetallics Using Displacive Transformation Paths

    NASA Astrophysics Data System (ADS)

    Sob, M.; Wang, L. G.; Vitek, V.

    1997-03-01

    Relative structural stability of TiAl, FeAl, NiAl and NiTi is studied by investigating displacive phase transformation paths. These include the well known tetragonal (Bain's) and trigonal deformation paths which correspond to large homogeneous straining, and also more complex paths that include the shuffling of atomic planes. The results of full-potential APW total energy calculations show that all higher-energy cubic structures studied are locally unstable with respect to some deformation modes. There may or may not be symmetry-dictated energy extrema corresponding to cubic lattices depending on the atomic ordering. However, other energy extrema that are not imposed by symmetry requirements occur along the transformation paths. Configurations corresponding to energy minima may represent metastable structures that can play an important role in interfaces and other extended defects.

  19. Free-energy landscape for cage breaking of three hard disks.

    PubMed

    Hunter, Gary L; Weeks, Eric R

    2012-03-01

    We investigate cage breaking in dense hard-disk systems using a model of three Brownian disks confined within a circular corral. This system has a six-dimensional configuration space, but can be equivalently thought to explore a symmetric one-dimensional free-energy landscape containing two energy minima separated by an energy barrier. The exact free-energy landscape can be calculated as a function of system size by a direct enumeration of states. Results of simulations show the average time between cage breaking events follows an Arrhenius scaling when the energy barrier is large. We also discuss some of the consequences of using a one-dimensional representation to understand dynamics through a multidimensional space, such as diffusion acquiring spatial dependence and discontinuities in spatial derivatives of free energy.

  20. Seasonal changes in frequency of diseases in dab, Limanda limanda, from the southern North Sea

    NASA Astrophysics Data System (ADS)

    Wolthaus, B.-G.

    1984-03-01

    Infestation rates of flatfish Limanda limanda from the southern North Sea (German Bight) were investigated in 1981 and 1982. At three stations, including a dumping area of acid-iron wastes northwest of Helgoland, dabs were examined for the occurrence of lymphocystis and epidermal papillomas. Marked seasonal changes of infestation rates were observed with maxima of diseased fish in March and May (epidermal papillomas 2 % in 1981, 4.1 % in 1982; lymphocystis 7.5 % in 1981, 17.2 % in 1982). Infestation minima were found from June to October. Differences in incidence rates were observed between stations in winter and spring, but not in summer. Both diseases turned out to be size-dependent. Seasonality of the two diseases is discussed in relation to spawning cycle and water quality, including pollution.

  1. Josephson oscillation and self-trapping in momentum space

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Feng, Shiping; Yang, Shi-Jie

    2018-04-01

    The Creutz ladder model is studied in the presence of unconventional flux induced by complex tunneling rates along and between the two legs. In the vortex phase, the double-minima band structure is regarded as a double well. By introducing a tunable coupling between the two momentum minima, we demonstrate a phenomenon of Josephson oscillations in momentum space. The condensate density locked in one of the momentum valleys is referred to as macroscopic quantum self-trapping. The on-site interaction of the lattice provides an effective analogy to the double-well model within the two-mode approximation which allows for a quantitative understanding of the Josephson effect and the self-trapping in momentum space.

  2. Energy landscapes for a machine learning application to series data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballard, Andrew J.; Stevenson, Jacob D.; Das, Ritankar

    2016-03-28

    Methods developed to explore and characterise potential energy landscapes are applied to the corresponding landscapes obtained from optimisation of a cost function in machine learning. We consider neural network predictions for the outcome of local geometry optimisation in a triatomic cluster, where four distinct local minima exist. The accuracy of the predictions is compared for fits using data from single and multiple points in the series of atomic configurations resulting from local geometry optimisation and for alternative neural networks. The machine learning solution landscapes are visualised using disconnectivity graphs, and signatures in the effective heat capacity are analysed in termsmore » of distributions of local minima and their properties.« less

  3. Fractional quantization of the magnetic flux in cylindrical unconventional superconductors.

    PubMed

    Loder, F; Kampf, A P; Kopp, T

    2013-07-26

    The magnetic flux threading a conventional superconducting ring is typically quantized in units of Φ0=hc/2e. The factor of 2 in the denominator of Φ0 originates from the existence of two different types of pairing states with minima of the free energy at even and odd multiples of Φ0. Here we show that spatially modulated pairing states exist with energy minima at fractional flux values, in particular, at multiples of Φ0/2. In such states, condensates with different center-of-mass momenta of the Cooper pairs coexist. The proposed mechanism for fractional flux quantization is discussed in the context of cuprate superconductors, where hc/4e flux periodicities were observed.

  4. Acoustic concentration of particles in fluid flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Michael W.; Kaduchak, Gregory

    Disclosed herein is a acoustic concentration of particles in a fluid flow that includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluidmore » flow path to the at least one pressure minima.« less

  5. Augmenting Photoinduced Charge Transport in a Single-Component Gel System: Controlled In Situ Gel-Crystal Transformation at Room Temperature.

    PubMed

    Satapathy, Sitakanta; Prabakaran, Palani; Prasad, Edamana

    2018-04-20

    Smart single-component materials with versatile functions require pre-programming of a higher order molecular assembly. An electroactive supergelator (c=0.07 wt %) triphenylamine core-appended poly(aryl ether) dendron (TPAPAE) is described, where substantial dendritic effects improve the order and crystallinity by switching the local minima from self-assembled molecular wires to thermodynamically favorable global minima of ordered crystals, ripened within the fibers. Controlled in situ phase change at room temperature ultimately stabilized the mixed valence states in the single-component supramolecular assembly with photoluminescence and photoinduced charge transport amplified by two orders of magnitude. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Metastable phases of silver and gold in hexagonal structure

    NASA Astrophysics Data System (ADS)

    Jona, F.; Marcus, P. M.

    2004-07-01

    Metastable phases of silver and gold in hexagonal close-packed structures are investigated by means of first-principles total-energy calculations. Two different methods are employed to find the equilibrium states: determination of the minima along the hexagonal epitaxial Bain path, and direct determination of minima of the total energy by a new minimum-path procedure. Both metals have two equilibrium states at different values of the hexagonal axial ratio c/a. For both metals, the elastic constants show that the high-c/a states are stable, hence, since the ground states are face-centred cubic, these states represent hexagonal close-packed metastable phases. The elastic constants of the low-c/a states show that they are unstable.

  7. Dust Around Herbig Ae Stars: Additional Constraints from their Photometric and Polarimetric Variability

    NASA Technical Reports Server (NTRS)

    Krivova, N. A.; Ilin, V. B.; Fischer, O.

    1996-01-01

    For the Herbig Ae stars with Algol-like minima (UX Ori, WW Vul, etc), the effects of circumstellar dust include: excess infrared emission, anomalous ultraviolet extinction, the 'blueing' of the stars in minima accompanying by an increase of intrinsic polarization. Using a Monte-Carlo code for polarized radiation transfer we have simulated these effects and compared the results obtained for different models with the observational data available. We found that the photometric and polarimetric behavior of the stars provided essential additional constraints on the circumstellar dust models. The models with spheroidal shell geometry and compact (non-fluffy) dust grains do not appear to be able to explain all the data.

  8. Off-Centre Effects in the Triplet Relaxed Excited State of Ga+ Centres in CsBr:Ga Crystal

    NASA Astrophysics Data System (ADS)

    Kalder, K.; Korrovits, V.; Nagirnyi, V.; Stolovits, A.; Zazubovich, S.; Babin, V.

    1997-06-01

    Spectra, polarization and decay kinetics of the triplet and singlet emission of Ga+ centres in CsBr:Ga crystals have been studied in the temperature range of 0.1 to 400 K. It has been found that the triplet AX and AT emission bands coincide. Two slow components have been observed in the decay kinetics of each emission at T < 1.5 K and explained by the tunnel splitting of the metastable minima of the corresponding triplet relaxed excited state. It points to the off-centre displacement of a Ga+ ion from a crystal lattice site both in the tetragonal (T) and in the trigonal (X) Jahn-Teller minima.

  9. Puckering transitions in cyclohexane: Revisited

    NASA Astrophysics Data System (ADS)

    Kang, Young Kee; Park, Hae Sook

    2018-06-01

    The interconversion pathways along the puckering transitions in cyclohexane were explored on the two-dimensional projection of the Cremer-Pople sphere using DFT methods and the CCSD(T), MP2, and dispersion-corrected DFT methods with various basis sets were assessed for the relative energies of local minima and transition states for the representative puckering transition pathways. The ωB97X-D/cc-pVTZ and ωB97X-D/def2-QZVP levels of theory well reproduced the relative energies with RMSD = 0.13 kcal/mol against the CCSD(T)/CBS-limit energies. The calculated activation parameters for chair to twist-boat interconversion of cyclohexane at the ωB97X-D/cc-pVTZ//(PCM) M06-2X/6-31+G(d) level of theory were consistent with the observed values.

  10. A theoretical study of the reaction of Ti+ with ethane

    NASA Astrophysics Data System (ADS)

    Moc, Jerzy; Fedorov, Dmitri G.; Gordon, Mark S.

    2000-06-01

    The doublet and quartet potential energy surfaces for the Ti++C2H6→TiC2H4++H2 and Ti++C2H6→TiCH2++CH4 reactions are studied using density functional theory (DFT) with the B3LYP functional and ab initio coupled cluster CCSD(T) methods with high quality basis sets. Structures have been optimized at the DFT level and the minima connected to each transition state (TS) by following the intrinsic reaction coordinate (IRC). Relative energies are calculated both at the DFT and coupled-cluster levels of theory. The relevant parts of the potential energy surface, especially key transition states, are also studied using multireference wave functions with the final energetics obtained with multireference second-order perturbation theory.

  11. Anomalous density and elastic properties of basalt at high pressure: Reevaluating of the effect of melt fraction on seismic velocity in the Earth's crust and upper mantle

    NASA Astrophysics Data System (ADS)

    Clark, Alisha N.; Lesher, Charles E.; Jacobsen, Steven D.; Wang, Yanbin

    2016-06-01

    Independent measurements of the volumetric and elastic properties of Columbia River basalt glass were made up to 5.5 GPa by high-pressure X-ray microtomography and GHz-ultrasonic interferometry, respectively. The Columbia River basalt displays P and S wave velocity minima at 4.5 and 5 GPa, respectively, violating Birch's law. These data constrain the pressure dependence of the density and elastic moduli at high pressure, which cannot be modeled through usual equations of state nor determined by stepwise integrating the bulk sound velocity as is common practice. We propose a systematic variation in compression behavior of silicate glasses that is dependent on the degree of polymerization and arises from the flexibility of the aluminosilicate network. This behavior likely persists into the liquid state for basaltic melts resulting in weak pressure dependence for P wave velocities perhaps to depths of the transition zone. Modeling the effect of partial melt on P wave velocity reductions suggests that melt fraction determined by seismic velocity variations may be significantly overestimated in the crust and upper mantle.

  12. Gap structure of FeSe determined by angle-resolved specific heat measurements in applied rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Kittaka, Shunichiro; Nakamura, Shota; Sakakibara, Toshiro; Irie, Koki; Nomoto, Takuya; Machida, Kazushige; Chen, Jingting; Tamegai, Tsuyoshi

    2017-12-01

    Quasiparticle excitations in FeSe were studied by means of specific heat (C ) measurements on a high-quality single crystal under rotating magnetic fields. The field dependence of C shows three-stage behavior with different slopes, indicating the existence of three gaps (Δ1,Δ2, and Δ3). In the low-temperature and low-field region, the azimuthal angle (ϕ ) dependence of C shows a fourfold symmetric oscillation with a sign change. On the other hand, the polar angle (θ ) dependence manifests as an anisotropy-inverted twofold symmetry with unusual shoulder behavior. Combining the angle-resolved results and the theoretical calculation, the smaller gap Δ1 is proved to have two vertical-line nodes or gap minima along the kz direction, and is determined to reside on the electron-type ɛ band. Δ2 is found to be related to the electron-type δ band, and is isotropic in the a b plane but largely anisotropic out of the plane. Δ3 residing on the hole-type α band shows a small out-of-plane anisotropy with a strong Pauli paramagnetic effect.

  13. Anomalous density and elastic properties of basalt at high pressure: Reevaluating of the effect of melt fraction on seismic velocity in the Earth's crust and upper mantle

    DOE PAGES

    Clark, Alisha N.; Lesher, Charles E.; Jacobsen, Steven D.; ...

    2016-06-27

    Independent measurements of the volumetric and elastic properties of Columbia River basalt glass were made up to 5.5 GPa by high-pressure X-ray microtomography and GHz-ultrasonic interferometry, respectively. The Columbia River basalt displays P and S wave velocity minima at 4.5 and 5 GPa, respectively, violating Birch’s law. These data constrain the pressure dependence of the density and elastic moduli at high pressure, which cannot be modeled through usual equations of state nor determined by stepwise integrating the bulk sound velocity as is common practice. We propose a systematic variation in compression behavior of silicate glasses that is dependent on themore » degree of polymerization and arises from the flexibility of the aluminosilicate network. Likewise, this behavior likely persists into the liquid state for basaltic melts resulting in weak pressure dependence for P wave velocities perhaps to depths of the transition zone. By modeling the effect of partial melt on P wave velocity reductions it is suggested that melt fraction determined by seismic velocity variations may be significantly overestimated in the crust and upper mantle.« less

  14. Speed and convergence properties of gradient algorithms for optimization of IMRT.

    PubMed

    Zhang, Xiaodong; Liu, Helen; Wang, Xiaochun; Dong, Lei; Wu, Qiuwen; Mohan, Radhe

    2004-05-01

    Gradient algorithms are the most commonly employed search methods in the routine optimization of IMRT plans. It is well known that local minima can exist for dose-volume-based and biology-based objective functions. The purpose of this paper is to compare the relative speed of different gradient algorithms, to investigate the strategies for accelerating the optimization process, to assess the validity of these strategies, and to study the convergence properties of these algorithms for dose-volume and biological objective functions. With these aims in mind, we implemented Newton's, conjugate gradient (CG), and the steepest decent (SD) algorithms for dose-volume- and EUD-based objective functions. Our implementation of Newton's algorithm approximates the second derivative matrix (Hessian) by its diagonal. The standard SD algorithm and the CG algorithm with "line minimization" were also implemented. In addition, we investigated the use of a variation of the CG algorithm, called the "scaled conjugate gradient" (SCG) algorithm. To accelerate the optimization process, we investigated the validity of the use of a "hybrid optimization" strategy, in which approximations to calculated dose distributions are used during most of the iterations. Published studies have indicated that getting trapped in local minima is not a significant problem. To investigate this issue further, we first obtained, by trial and error, and starting with uniform intensity distributions, the parameters of the dose-volume- or EUD-based objective functions which produced IMRT plans that satisfied the clinical requirements. Using the resulting optimized intensity distributions as the initial guess, we investigated the possibility of getting trapped in a local minimum. For most of the results presented, we used a lung cancer case. To illustrate the generality of our methods, the results for a prostate case are also presented. For both dose-volume and EUD based objective functions, Newton's method far outperforms other algorithms in terms of speed. The SCG algorithm, which avoids expensive "line minimization," can speed up the standard CG algorithm by at least a factor of 2. For the same initial conditions, all algorithms converge essentially to the same plan. However, we demonstrate that for any of the algorithms studied, starting with previously optimized intensity distributions as the initial guess but for different objective function parameters, the solution frequently gets trapped in local minima. We found that the initial intensity distribution obtained from IMRT optimization utilizing objective function parameters, which favor a specific anatomic structure, would lead to a local minimum corresponding to that structure. Our results indicate that from among the gradient algorithms tested, Newton's method appears to be the fastest by far. Different gradient algorithms have the same convergence properties for dose-volume- and EUD-based objective functions. The hybrid dose calculation strategy is valid and can significantly accelerate the optimization process. The degree of acceleration achieved depends on the type of optimization problem being addressed (e.g., IMRT optimization, intensity modulated beam configuration optimization, or objective function parameter optimization). Under special conditions, gradient algorithms will get trapped in local minima, and reoptimization, starting with the results of previous optimization, will lead to solutions that are generally not significantly different from the local minimum.

  15. An investigation of isomerization pathways of epoxysaccharides

    NASA Astrophysics Data System (ADS)

    Andrianov, V. M.; Kirillova, S. G.; Zhbankov, R. G.

    1997-07-01

    Direct and reverse interconversion pathways of six epoxysaccharide molecules, namely, three molecules with epoxypyranose rings: methyl 2,3-anhydro-2,3,4-trideoxy- β- D-lyxohexopyranoside, methyl 2,3-anhydro-4-deoxy- α- D, L-ribo- and - α- D, L-lyxohexopyranosides and three molecules with epoxypyranose rings: methyl 2,6-di- O-acetyl-3,4-anhydro- α- D, L-( 6,6- 2H2) derivatives of talopyranoside and galactopyranoside, and methyl 3,4-anhydro- α- D, L-allopyranoside were simulated by the Wiberg and Boyd method. This made it possible to determine all stationary and intermediate forms in which anhydropyranose rings can exist. Calculations of barrier heights for interconversion and energies of global minima have shown that conformations revealed in X-ray studies are more favorable. Most of the local minima found lie in the vicinity of the boat (B) forms, the other minima correspond to conformations possessing symmetry elements of the skew-boat (S) and twist (T) forms. The interconversion pathways of the molecules investigated are presented on the Cremer-Pople diagram. We studied the effect of various structural factors on the character of conformational transformations, heights of transition barriers, the form of the ground state, and the energy of stationary forms, and their number and location on the Cremer-Pople diagram.

  16. Dimer formation of perylene: An ultracold spectroscopic and computational study

    NASA Astrophysics Data System (ADS)

    Birer, Ö.; Yurtsever, E.

    2015-10-01

    The electronic spectra of perylene inside helium nanodroplets recorded by the depletion method are presented. The results show two broad peaks in addition to sharp monomer vibronic transitions due to dimer formation. In order to understand the details of the spectra, first the dimer formation is studied by DFT and SCS-MP2 calculations and then the electronic spectra are calculated at the minima of the potential energy surface (PES). Theoretical calculations show that there are two low-lying energetically degenerate dimer structures; namely a parallel displaced one and a rotated stacked one. PES around these minima is very flat with a number of local minima at higher energies which at the experimental temperatures cannot be populated. Even though thermodynamically these two structures are equally populated, dynamical considerations point out that in helium droplet the parallel displaced geometry is encouraged by the natural alignment of the molecules due to the acquired angular momentum following the pick-up process. The calculated spectrum of the parallel displaced geometry predicts the positions of the dimer transitions within 30 nm of the experimental spectrum. Furthermore, the difference between the two dimer transitions is accurately predicted to be about 25 nm while the experimental difference was about 20 nm. Such a small difference could only be detected due to the ultracold conditions helium nanodroplets provided.

  17. Astronomically paced changes in deep-water circulation in the western North Atlantic during the middle Eocene

    NASA Astrophysics Data System (ADS)

    Vahlenkamp, Maximilian; Niezgodzki, Igor; De Vleeschouwer, David; Bickert, Torsten; Harper, Dustin; Kirtland Turner, Sandra; Lohmann, Gerrit; Sexton, Philip; Zachos, James; Pälike, Heiko

    2018-02-01

    North Atlantic Deep Water (NADW) currently redistributes heat and salt between Earth's ocean basins, and plays a vital role in the ocean-atmosphere CO2 exchange. Despite its crucial role in today's climate system, vigorous debate remains as to when deep-water formation in the North Atlantic started. Here, we present datasets from carbonate-rich middle Eocene sediments from the Newfoundland Ridge, revealing a unique archive of paleoceanographic change from the progressively cooling climate of the middle Eocene. Well-defined lithologic alternations between calcareous ooze and clay-rich intervals occur at the ∼41-kyr beat of axial obliquity. Hence, we identify obliquity as the driver of middle Eocene (43.5-46 Ma) Northern Component Water (NCW, the predecessor of modern NADW) variability. High-resolution benthic foraminiferal δ18O and δ13C suggest that obliquity minima correspond to cold, nutrient-depleted, western North Atlantic deep waters. We thus link stronger NCW formation with obliquity minima. In contrast, during obliquity maxima, Deep Western Boundary Currents were weaker and warmer, while abyssal nutrients were more abundant. These aspects reflect a more sluggish NCW formation. This obliquity-paced paleoceanographic regime is in excellent agreement with results from an Earth system model, in which obliquity minima configurations enhance NCW formation.

  18. New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking.

    PubMed

    Sulimov, Alexey V; Kutov, Danil C; Katkova, Ekaterina V; Ilin, Ivan S; Sulimov, Vladimir B

    2017-11-01

    Discovery of new inhibitors of the protein associated with a given disease is the initial and most important stage of the whole process of the rational development of new pharmaceutical substances. New inhibitors block the active site of the target protein and the disease is cured. Computer-aided molecular modeling can considerably increase effectiveness of new inhibitors development. Reliable predictions of the target protein inhibition by a small molecule, ligand, is defined by the accuracy of docking programs. Such programs position a ligand in the target protein and estimate the protein-ligand binding energy. Positioning accuracy of modern docking programs is satisfactory. However, the accuracy of binding energy calculations is too low to predict good inhibitors. For effective application of docking programs to new inhibitors development the accuracy of binding energy calculations should be higher than 1kcal/mol. Reasons of limited accuracy of modern docking programs are discussed. One of the most important aspects limiting this accuracy is imperfection of protein-ligand energy calculations. Results of supercomputer validation of several force fields and quantum-chemical methods for docking are presented. The validation was performed by quasi-docking as follows. First, the low energy minima spectra of 16 protein-ligand complexes were found by exhaustive minima search in the MMFF94 force field. Second, energies of the lowest 8192 minima are recalculated with CHARMM force field and PM6-D3H4X and PM7 quantum-chemical methods for each complex. The analysis of minima energies reveals the docking positioning accuracies of the PM7 and PM6-D3H4X quantum-chemical methods and the CHARMM force field are close to one another and they are better than the positioning accuracy of the MMFF94 force field. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Loop propensity of the sequence YKGQP from staphylococcal nuclease: implications for the folding of nuclease.

    PubMed

    Patel, Sunita; Sasidhar, Yellamraju U

    2007-10-01

    Recently we performed molecular dynamics (MD) simulations on the folding of the hairpin peptide DTVKLMYKGQPMTFR from staphylococcal nuclease in explicit water. We found that the peptide folds into a hairpin conformation with native and nonnative hydrogen-bonding patterns. In all the folding events observed in the folding of the hairpin peptide, loop formation involving the region YKGQP was an important event. In order to trace the origins of the loop propensity of the sequence YKGQP, we performed MD simulations on the sequence starting from extended, polyproline II and native type I' turn conformations for a total simulation length of 300 ns, using the GROMOS96 force field under constant volume and temperature (NVT) conditions. The free-energy landscape of the peptide YKGQP shows minima corresponding to loop conformation with Tyr and Pro side-chain association, turn and extended conformational forms, with modest free-energy barriers separating the minima. To elucidate the role of Gly in facilitating loop formation, we also performed MD simulations of the mutated peptide YKAQP (Gly --> Ala mutation) under similar conditions starting from polyproline II conformation for 100 ns. Two minima corresponding to bend/turn and extended conformations were observed in the free-energy landscape for the peptide YKAQP. The free-energy barrier between the minima in the free-energy landscape of the peptide YKAQP was also modest. Loop conformation is largely sampled by the YKGQP peptide, while extended conformation is largely sampled by the YKAQP peptide. We also explain why the YKGQP sequence samples type II turn conformation in these simulations, whereas the sequence as part of the hairpin peptide DTVKLMYKGQPMTFR samples type I' turn conformation both in the X-ray crystal structure and in our earlier simulations on the folding of the hairpin peptide. We discuss the implications of our results to the folding of the staphylococcal nuclease. Copyright (c) 2007 European Peptide Society and John Wiley & Sons, Ltd.

  20. Characteristics of surface ozone and nitrogen oxides at urban, suburban and rural sites in Ningbo, China

    NASA Astrophysics Data System (ADS)

    Tong, Lei; Zhang, Huiling; Yu, Jie; He, Mengmeng; Xu, Nengbin; Zhang, Jingjing; Qian, Feizhong; Feng, Jiayong; Xiao, Hang

    2017-05-01

    Surface ozone (O3) is a harmful air pollutant that has attracted growing concern in China. In this study, the mixing ratios of O3 and nitrogen oxides (NOx) at three different sites (urban, suburban and rural) of Ningbo were continuously measured to investigate the spatiotemporal characteristics of O3 and its relationships with environmental variables. The diurnal O3 variations were characterized by afternoon maxima (38.7-53.1 ppb on annual average) and early morning minima (11.7-26.2 ppb) at all the three sites. Two seasonal peaks of O3 were observed in spring (April or May) and autumn (October) with minima being observed in winter (December). NOx levels showed generally opposite variations to that of O3 with diurnal and seasonal maxima occurring in morning/evening rush-hours and in winter, respectively. As to the inter-annual variations of air pollutants, generally decreasing and increasing trends were observed in NO and O3 levels, respectively, from 2012 to 2015 at both urban and suburban sites. O3 levels were positively correlated with temperature but negatively correlated with relative humidity and NOx levels. Significant differences in O3 levels were observed for different wind speeds and wind directions (p < 0.001). O3 levels varied non-linearly with wind speed ranges with an increasing trend within 4 m/s. Higher mixing ratio of O3 was observed for wind blowing from the sea, which indicates that the coastal air mass might carry more O3. A decreasing trend in O3 levels was observed from weekdays to weekends at all the three sites. As to the spatial variation, higher levels of O3 were observed at the suburban and rural sites where less O3 was depleted by NO titration. In contrast, the urban site exhibited lower O3 but higher NOx levels due to the influence of traffic emissions. Larger amplitudes of diurnal and monthly O3 variations were observed at the suburban site than those at the urban and rural sites. In general, the O3 levels at the non-urban sites were more affected by the background transport, while both the local and regional contributions played roles in urban O3 variations. The annual average O3 mixing ratios (22.7-37.7 ppb) in Ningbo were generally similar to those of other regions around the world. However, the recommended air quality standards for O3 were often exceeded during warm seasons, which could be a potential threat to both local population and plant growth.

  1. Cross-flow vortex structure and transition measurements using multi-element hot films

    NASA Technical Reports Server (NTRS)

    Agarwal, Naval K.; Mangalam, Siva M.; Maddalon, Dal V.; Collier, Fayette S., Jr.

    1991-01-01

    An experiment on a 45-degree swept wing was conducted to study three-dimensional boundary-layer characteristics using surface-mounted, micro-thin, multi-element hot-film sensors. Cross-flow vortex structure and boundary-layer transition were measured from the simultaneously acquired signals of the hot films. Spanwise variation of the root-mean-square (RMS) hot-film signal show a local minima and maxima. The distance between two minima corresponds to the stationary cross-flow vortex wavelength and agrees with naphthalene flow-visualization results. The chordwise and spanwise variation of amplified traveling (nonstationary) cross-flow disturbance characteristics were measured as Reynolds number was varied. The frequency of the most amplified cross-flow disturbances agrees with linear stability theory.

  2. Efficiency of quantum vs. classical annealing in nonconvex learning problems

    PubMed Central

    Zecchina, Riccardo

    2018-01-01

    Quantum annealers aim at solving nonconvex optimization problems by exploiting cooperative tunneling effects to escape local minima. The underlying idea consists of designing a classical energy function whose ground states are the sought optimal solutions of the original optimization problem and add a controllable quantum transverse field to generate tunneling processes. A key challenge is to identify classes of nonconvex optimization problems for which quantum annealing remains efficient while thermal annealing fails. We show that this happens for a wide class of problems which are central to machine learning. Their energy landscapes are dominated by local minima that cause exponential slowdown of classical thermal annealers while simulated quantum annealing converges efficiently to rare dense regions of optimal solutions. PMID:29382764

  3. Learning in fully recurrent neural networks by approaching tangent planes to constraint surfaces.

    PubMed

    May, P; Zhou, E; Lee, C W

    2012-10-01

    In this paper we present a new variant of the online real time recurrent learning algorithm proposed by Williams and Zipser (1989). Whilst the original algorithm utilises gradient information to guide the search towards the minimum training error, it is very slow in most applications and often gets stuck in local minima of the search space. It is also sensitive to the choice of learning rate and requires careful tuning. The new variant adjusts weights by moving to the tangent planes to constraint surfaces. It is simple to implement and requires no parameters to be set manually. Experimental results show that this new algorithm gives significantly faster convergence whilst avoiding problems like local minima. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Control of the Effective Free-Energy Landscape in a Frustrated Magnet by a Field Pulse

    NASA Astrophysics Data System (ADS)

    Wan, Yuan; Moessner, Roderich

    2017-10-01

    Thermal fluctuations can lift the degeneracy of a ground state manifold, producing a free-energy landscape without accidentally degenerate minima. In a process known as order by disorder, a subset of states incorporating symmetry breaking may be selected. Here, we show that such a free-energy landscape can be controlled in a nonequilibrium setting as the slow motion within the ground state manifold is governed by the fast modes out of it. For the paradigmatic case of the classical pyrochlore X Y antiferromagnet, we show that a uniform magnetic field pulse can excite these fast modes to generate a tunable effective free-energy landscape with minima at thermodynamically unstable portions of the ground state manifold.

  5. Control of the Effective Free-Energy Landscape in a Frustrated Magnet by a Field Pulse.

    PubMed

    Wan, Yuan; Moessner, Roderich

    2017-10-20

    Thermal fluctuations can lift the degeneracy of a ground state manifold, producing a free-energy landscape without accidentally degenerate minima. In a process known as order by disorder, a subset of states incorporating symmetry breaking may be selected. Here, we show that such a free-energy landscape can be controlled in a nonequilibrium setting as the slow motion within the ground state manifold is governed by the fast modes out of it. For the paradigmatic case of the classical pyrochlore XY antiferromagnet, we show that a uniform magnetic field pulse can excite these fast modes to generate a tunable effective free-energy landscape with minima at thermodynamically unstable portions of the ground state manifold.

  6. Magnetically Sleepy Stars: An X-ray Survey of Candidate Stars in Extended Magnetic Minima

    NASA Astrophysics Data System (ADS)

    Saar, Steven

    2010-09-01

    The Sun occasionally slips into periods of extended magnetic quiescence where the normal magnetic cycle largely ceases (e.g., the Maunder minimum). Understanding these episodes is important for understanding non-linear magnetic dynamos and the Earth's radiation budget. We have developed a new method for determining which stars may be in the stellar analog of these magnetic minima. We propose to study five such stars with Chandra ACIS-S. Combined with archival spectra of more stars, we can 1) explore (by proxy) properties of the solar corona in a Maunder-like minimum, 2) determine what stellar properties affect this state, and 3) investigate the coronal product of the residual turbulent dynamo in a solar mass star.

  7. From sine-Gordon to vacuumless systems in flat and curved spacetimes

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Moreira, D. C.

    2017-12-01

    In this work we start from the Higgs prototype model to introduce a new model, which makes a smooth transition between systems with well-located minima and systems that support no minima at all. We implement this possibility using the deformation procedure, which allows the obtaining a sine-Gordon-like model, controlled by a real parameter that gives rise to a family of models, reproducing the sine-Gordon and the so-called vacuumless models. We also study the thick brane scenarios associated with these models and investigate their stability and renormalization group flow. In particular, it is shown how gravity can change from the 5-dimensional warped geometry with a single extra dimension of infinite extent to the conventional 5-dimensional Minkowski geometry.

  8. Atlas of reflectance spectra of terrestrial, lunar and meteoritic powders and frosts from 92 to 1800 nm

    NASA Technical Reports Server (NTRS)

    Wagner, Jeffrey; Hapke, Bruce; Wells, Eddie

    1987-01-01

    The reflectance spectra of powdered samples of selected minerals, meteorites, lunar materials and frosts are presented as an aid in the interpretation of present and future remote sensing data of solar system objects. Spectra obtained in separate wavelength regions have been combined and normalized, yielding coverage from 92 to 1800 nm. Spectral features include reflectance maxima in the far UV region produced by valence-conduction interband transitions, and reflectance minima in the near UV, visible and near IR regions, produced by charge transfer and crystal field transitions. Specific maxima and minima are diagnostic of mineral type and composition; additionally, the minerals present in mixtures such as meteorites and lunar samples can be determined.

  9. Energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Cruz, Philip Christopher S.; Bernardo, Reginald Christian S.; Esguerra, Jose Perico H.

    2017-04-01

    We calculate the energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in uniform electric and magnetic fields. Using separation of variables method and a change of independent variable, we show that the problem can be reduced to a one-dimensional Schrödinger equation for a periodic potential. The effects of varying the shape of the cross-section while keeping the same perimeter and the strengths of the electric and magnetic fields are investigated for elliptical, corrugated, and nearly-rectangular tubes with radial dimensions of the order of a nanometer. The geometric potential has minima at the angular positions where there is a significant amount of curvature. For the elliptical and corrugated tubes, it is shown that as the tube departs from the circular shape of cross-section the double-degeneracy between the energy levels is lifted. For the nearly-rectangular tube, it is shown that energy level crossings occur as the horizontal dimension of the tube is varied while keeping the same perimeter and radius of circular corners. The interplay between the curvature and the strength of the electric and magnetic fields determines the overall behavior of the energy levels. As the strength of the electric field increases, the overall potential gets skewed creating a potential well on the side corresponding to the more negative electric potential. The energy levels of the first few excited states approach more positive values while the ground state energy level approaches a more negative value. For large electric fields, all bound state energy levels tend to more negative values. The contribution of weak magnetic fields to the overall potential behaves in the same way as the electric field contribution but with its sign depending on the direction of the component of the momentum parallel to the cylindrical axis. Large magnetic fields lead to pairing of energy levels reminiscent of 2D Landau levels for the elliptical and nearly-rectangular tubes.

  10. Energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in electric and magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz, Philip Christopher S., E-mail: pscruz1@up.edu.ph; Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph

    We calculate the energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in uniform electric and magnetic fields. Using separation of variables method and a change of independent variable, we show that the problem can be reduced to a one-dimensional Schrödinger equation for a periodic potential. The effects of varying the shape of the cross-section while keeping the same perimeter and the strengths of the electric and magnetic fields are investigated for elliptical, corrugated, and nearly-rectangular tubes with radial dimensions of the order of a nanometer. The geometric potential has minima at the angular positions wheremore » there is a significant amount of curvature. For the elliptical and corrugated tubes, it is shown that as the tube departs from the circular shape of cross-section the double-degeneracy between the energy levels is lifted. For the nearly-rectangular tube, it is shown that energy level crossings occur as the horizontal dimension of the tube is varied while keeping the same perimeter and radius of circular corners. The interplay between the curvature and the strength of the electric and magnetic fields determines the overall behavior of the energy levels. As the strength of the electric field increases, the overall potential gets skewed creating a potential well on the side corresponding to the more negative electric potential. The energy levels of the first few excited states approach more positive values while the ground state energy level approaches a more negative value. For large electric fields, all bound state energy levels tend to more negative values. The contribution of weak magnetic fields to the overall potential behaves in the same way as the electric field contribution but with its sign depending on the direction of the component of the momentum parallel to the cylindrical axis. Large magnetic fields lead to pairing of energy levels reminiscent of 2D Landau levels for the elliptical and nearly-rectangular tubes.« less

  11. Microstructure from ferroelastic transitions using strain pseudospin clock models in two and three dimensions: A local mean-field analysis

    NASA Astrophysics Data System (ADS)

    Vasseur, Romain; Lookman, Turab; Shenoy, Subodh R.

    2010-09-01

    We show how microstructure can arise in first-order ferroelastic structural transitions, in two and three spatial dimensions, through a local mean-field approximation of their pseudospin Hamiltonians, that include anisotropic elastic interactions. Such transitions have symmetry-selected physical strains as their NOP -component order parameters, with Landau free energies that have a single zero-strain “austenite” minimum at high temperatures, and spontaneous-strain “martensite” minima of NV structural variants at low temperatures. The total free energy also has gradient terms, and power-law anisotropic effective interactions, induced by “no-dislocation” St Venant compatibility constraints. In a reduced description, the strains at Landau minima induce temperature dependent, clocklike ZNV+1 Hamiltonians, with NOP -component strain-pseudospin vectors S⃗ pointing to NV+1 discrete values (including zero). We study elastic texturing in five such first-order structural transitions through a local mean-field approximation of their pseudospin Hamiltonians, that include the power-law interactions. As a prototype, we consider the two-variant square/rectangle transition, with a one-component pseudospin taking NV+1=3 values of S=0,±1 , as in a generalized Blume-Capel model. We then consider transitions with two-component (NOP=2) pseudospins: the equilateral to centered rectangle (NV=3) ; the square to oblique polygon (NV=4) ; the triangle to oblique (NV=6) transitions; and finally the three-dimensional (3D) cubic to tetragonal transition (NV=3) . The local mean-field solutions in two-dimensional and 3D yield oriented domain-wall patterns as from continuous-variable strain dynamics, showing the discrete-variable models capture the essential ferroelastic texturings. Other related Hamiltonians illustrate that structural transitions in materials science can be the source of interesting spin models in statistical mechanics.

  12. Effects of focal ankle joint cooling on unipedal static balance in individuals with and without chronic ankle instability.

    PubMed

    Kim, Kyung-Min; Hart, Joseph M; Saliba, Susan A; Hertel, Jay

    2015-01-01

    Application of cryotherapy over an injured joint has been shown to improve muscle function, yet it is unknown how ankle cryotherapy affects postural control. Our purpose was to determine the effects of a 20-min focal ankle joint cooling on unipedal static stance in individuals with and without chronic ankle instability (CAI). Fifteen young subjects with CAI (9 males, 6 females) and 15 healthy gender-matched controls participated. All subjects underwent two intervention sessions on different days in which they had a 1.5L plastic bag filled with either crushed ice (active treatment) or candy corn (sham) applied to the ankle. Unipedal stance with eyes closed for 10s were assessed with a forceplate before and after each intervention. Center of pressure (COP) data were used to compute 10 specific dependent measures including velocity, area, standard deviation (SD), and percent range of COP excursions, and mean and SD of time-to-boundary (TTB) minima in the anterior-posterior (AP) and mediolateral directions. For each measure a three-way (Group-Intervention-Time) repeated ANOVAs found no significant interactions and main effects involving intervention (all Ps > 0.05). There were group main effects found for mean velocity (F(1,28) = 6.46, P = .017), area (F(1,28) = 12.83, P = .001), and mean of TTB minima in the AP direction (F(1,28) = 5.19, P = .031) indicating that the CAI group demonstrated greater postural instability compared to the healthy group. Postural control of unipedal stance was not significantly altered following focal ankle joint cooling in groups both with and without CAI. Ankle joint cryotherapy was neither beneficial nor harmful to single leg balance. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Elastic scattering, polarization and absorption of relativistic antiprotons on nuclei

    NASA Astrophysics Data System (ADS)

    Larionov, A. B.; Lenske, H.

    2017-01-01

    We perform Glauber model calculations of the antiproton-nucleus elastic and quasielastic scattering and absorption in the beam momentum range ∼ 0.5 ÷ 10 GeV / c. A good agreement of our calculations with available LEAR data and with earlier Glauber model studies of the p bar A elastic scattering allows us to make predictions at the beam momenta of ∼10 GeV/c, i.e. at the regime of the PANDA experiment at FAIR. The comparison with the proton-nucleus elastic scattering cross sections shows that the diffractive minima are much deeper in the p bar A case due to smaller absolute value of the ratio of the real-to-imaginary part of the elementary elastic amplitude. Significant polarization signal for p bar A elastic scattering at 10 GeV/c is expected. We have also revealed a strong dependence of the p bar A absorption cross section on the slope parameter of the transverse momentum dependence of the elementary p bar N amplitude. The p bar A optical potential is discussed.

  14. Slow and fast solar wind - data selection and statistical analysis

    NASA Astrophysics Data System (ADS)

    Wawrzaszek, Anna; Macek, Wiesław M.; Bruno, Roberto; Echim, Marius

    2014-05-01

    In this work we consider the important problem of selection of slow and fast solar wind data measured in-situ by the Ulysses spacecraft during two solar minima (1995-1997, 2007-2008) and solar maximum (1999-2001). To recognise different types of solar wind we use a set of following parameters: radial velocity, proton density, proton temperature, the distribution of charge states of oxygen ions, and compressibility of magnetic field. We present how this idea of the data selection works on Ulysses data. In the next step we consider the chosen intervals for fast and slow solar wind and perform statistical analysis of the fluctuating magnetic field components. In particular, we check the possibility of identification of inertial range by considering the scale dependence of the third and fourth orders scaling exponents of structure function. We try to verify the size of inertial range depending on the heliographic latitudes, heliocentric distance and phase of the solar cycle. Research supported by the European Community's Seventh Framework Programme (FP7/2007 - 2013) under grant agreement no 313038/STORM.

  15. Video shot boundary detection using region-growing-based watershed method

    NASA Astrophysics Data System (ADS)

    Wang, Jinsong; Patel, Nilesh; Grosky, William

    2004-10-01

    In this paper, a novel shot boundary detection approach is presented, based on the popular region growing segmentation method - Watershed segmentation. In image processing, gray-scale pictures could be considered as topographic reliefs, in which the numerical value of each pixel of a given image represents the elevation at that point. Watershed method segments images by filling up basins with water starting at local minima, and at points where water coming from different basins meet, dams are built. In our method, each frame in the video sequences is first transformed from the feature space into the topographic space based on a density function. Low-level features are extracted from frame to frame. Each frame is then treated as a point in the feature space. The density of each point is defined as the sum of the influence functions of all neighboring data points. The height function that is originally used in Watershed segmentation is then replaced by inverting the density at the point. Thus, all the highest density values are transformed into local minima. Subsequently, Watershed segmentation is performed in the topographic space. The intuitive idea under our method is that frames within a shot are highly agglomerative in the feature space and have higher possibilities to be merged together, while those frames between shots representing the shot changes are not, hence they have less density values and are less likely to be clustered by carefully extracting the markers and choosing the stopping criterion.

  16. An Alternative Mechanism for the Dimerization of Formic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, Nicole R.; Tschumper, Gregory; Yan, Ge

    Gas-phase formic acid exists primarily as a cyclic dimer. The mechanism of dimerization has been traditionally considered to be a synchronous process; however, recent experimental findings suggest a possible alternative mechanism by which two formic acid monomers proceed through an acyclic dimer to the cyclic dimer in a stepwise process. To investigate this newly proposed process of dimerization in formic acid, density functional theory and second-order Moeller-Plesset perturbation theory (MP2) have been used to optimize cis and trans monomers of formic acid, the acyclic and cyclic dimers, and the acyclic and cyclic transition states between minima. Single-point energies of themore » trans monomer, dimer minima, and transition states at the MP2/TZ2P+diff optimized geometries were computed at the coupled-cluster level of theory including singles and doubles with perturbatively applied triple excitations [CCSD(T)] with an aug-cc-pVTZ basis set to obtain an accurate determination of energy barriers and dissociation energies. A counterpoise correction was performed to determine an estimate of the basis set superposition error in computing relative energies. The explicitly correlated MP2 method of Kutzelnigg and Klopper (MP2-R12) was used to provide an independent means for obtaining the MP2 one-particle limit. The cyclic minimum is predicted to be 6.3 kcal/mol more stable than the acyclic minimum, and the barrier to double proton transfer is 7.1 kcal/mol.« less

  17. Investigations of the Rg-BrCl (Rg = He, Ne, Ar, Kr, Xe) binary van der Waals complexes: ab initio intermolecular potential energy surfaces, vibrational states and predicted pure rotational transition frequencies

    NASA Astrophysics Data System (ADS)

    Li, Song; Zheng, Rui; Chen, Shan-Jun; Chen, Yan; Chen, Peng

    2017-03-01

    The intermolecular potential energy surfaces (PESs) of the ground electronic state for the Rg-BrCl (Rg = He, Ne, Ar, Kr, Xe) van der Waals complexes have been constructed by using the coupled-cluster method in combination with the augmented quadruple-zeta correlation-consistent basis sets supplemented with an additional set of bond functions. The features of the anisotropic PESs for these complexes are remarkably similar, which are characterized by three minima and two saddle points between them. The global minimum corresponds to a collinear Rg-Br-Cl configuration. Two local minima, correlate with an anti-linear Rg-Cl-Br geometry and a nearly T-shaped structure, can also be located on each PES. The quantum bound state calculations enable us to investigate intermolecular vibrational states and rotational energy levels of the complexes. The transition frequencies are predicted and are fitted to obtain their corresponding spectroscopic constants. In general, the periodic trends are observed for this complex family. Comparisons with available experimental data for the collinear isomer of Ar-BrCl demonstrate reliability of our theoretical predictions, and our results for the other two isomers of Ar-BrCl as well as for other members of the complex family are also anticipated to be trustable. Except for the collinear isomer of Ar-BrCl, the data presented in this paper would be beneficial to improve our knowledge for these experimentally unknown species.

  18. [INVITED] Sensing properties of micro-cavity in-line Mach-Zehnder interferometer enhanced by reactive ion etching

    NASA Astrophysics Data System (ADS)

    Janik, Monika; Koba, Marcin; Celebańska, Anna; Bock, Wojtek J.; Śmietana, Mateusz

    2018-07-01

    In this work, we discuss an application of reactive ion etching (RIE) for enhancing the sensing properties of a micro-cavity in-line Mach-Zehnder interferometer (μIMZI). The μIMZI was fabricated using femtosecond laser micromachining in a standard single-mode fiber as a circular hole with a diameter of 54 μm. Next, the structures underwent two kinds of RIE using as reactive gases: sulfur hexafluoride (SF6) and oxygen (O2) mixtures (SF6/O2) or O2 itself. When RIE with SF6/O2 was applied, it allowed for an efficient and well-controlled etching of the fabricated structure at nanometers level observed as an increase in spectral depths of the minima in the μIMZI transmission spectrum. A similar RIE process with O2 alone was ineffective. The well-defined minima obtained with the SF6/O2 RIE significantly improved the resolution of measurements made with the μIMZI. The effect was demonstrated for high-resolution refractive index (RI) measurements of liquids in the cavity. The result of the RIE process was to clean the micro-cavity bottom, increase its depth, and smooth its sidewalls. As an additional effect, the wettability of the micro-cavity surface was improved, making the RI measurements faster and more repeatable. Moreover, we demonstrated that RIE with SF6/O2 results in more stable wettability improvement than when O2 is applied as a reactive gas.

  19. Dissipative vibrational model for chiral recognition in olfaction

    NASA Astrophysics Data System (ADS)

    Tirandaz, Arash; Taher Ghahramani, Farhad; Shafiee, Afshin

    2015-09-01

    We examine the olfactory discrimination of left- and right-handed enantiomers of chiral odorants based on the odorant-mediated electron transport from a donor to an acceptor of the olfactory receptors embodied in a biological environment. The chiral odorant is effectively described by an asymmetric double-well potential whose minima are associated to the left- and right-handed enantiomers. The introduced asymmetry is considered an overall measure of chiral interactions. The biological environment is conveniently modeled as a bath of harmonic oscillators. The resulting spin-boson model is adapted by a polaron transformation to derive the corresponding Born-Markov master equation with which we obtain the elastic and inelastic electron tunneling rates. We show that the inelastic tunneling through left- and right-handed enantiomers occurs with different rates. The discrimination mechanism depends on the ratio of tunneling frequency to localization frequency.

  20. THE MINIMUM OF SOLAR CYCLE 23: AS DEEP AS IT COULD BE?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muñoz-Jaramillo, Andrés; Longcope, Dana W.; Senkpeil, Ryan R.

    2015-05-01

    In this work we introduce a new way of binning sunspot group data with the purpose of better understanding the impact of the solar cycle on sunspot properties and how this defined the characteristics of the extended minimum of cycle 23. Our approach assumes that the statistical properties of sunspots are completely determined by the strength of the underlying large-scale field and have no additional time dependencies. We use the amplitude of the cycle at any given moment (something we refer to as activity level) as a proxy for the strength of this deep-seated magnetic field. We find that themore » sunspot size distribution is composed of two populations: one population of groups and active regions and a second population of pores and ephemeral regions. When fits are performed at periods of different activity level, only the statistical properties of the former population, the active regions, are found to vary. Finally, we study the relative contribution of each component (small-scale versus large-scale) to solar magnetism. We find that when hemispheres are treated separately, almost every one of the past 12 solar minima reaches a point where the main contribution to magnetism comes from the small-scale component. However, due to asymmetries in cycle phase, this state is very rarely reached by both hemispheres at the same time. From this we infer that even though each hemisphere did reach the magnetic baseline, from a heliospheric point of view the minimum of cycle 23 was not as deep as it could have been.« less

  1. Conformational Characteristics of Poly(tetrafluoroethylene) (PTFE) Based Upon Ab Initio Electronic Structure Calculations on Model Molecules

    NASA Technical Reports Server (NTRS)

    Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)

    1994-01-01

    Conformational energy contours of perfluoroalkanes, determined from ab initio calculations, confirm the well-known spitting of trans states into two minima at plus or minus 17 degrees but also show that the gauche states split as well, with minima at plus or minus 124 degrees and plus or minus 84 in order to relieve steric crowding. The directions of such split distortions from the perfectly staggered states are strongly coupled for adjacent pairs of bonds in a manner identical to the intradyad pair for poly (isobutylene) chains. These conformational characteristics are fully represented by a six-state rotational isomeric state (RIS) model for PTFE comprised of t(+), t(-), g(sup +)+, g(sup +)-, g(sup -) + and g(sup -)-states, located at the split energy minima. The resultant 6 x 6 statistical weight matrix is described by first-order interaction parameters for the g+(+) (ca. 0.6 kcal/mol) and g+- (ca. 2.0 kcal/mol) states, and second order parameters for the g(sup +)+g(sup +)+ (ca 0.6 kcal/mol) and g(sup +)+g(sup -)+ (ca. 1.0 kcal/mol) states. This six-state RIS model, without adjustment of the geometric or energy parameters as determined from the ab initio calculations, predicts the unperturbed chain dimensions and the fraction of gauche bonds as a function of temperature for PTFE in good agreement with available experimental values.

  2. PAH chemistry at eV internal energies. 1. H-shifted isomers

    NASA Astrophysics Data System (ADS)

    Trinquier, Georges; Simon, Aude; Rapacioli, Mathias; Gadéa, Florent Xavier

    2017-06-01

    The PAH family of organic compounds (polycyclic aromatic hydrocarbons), involved in several fields of chemistry, has received particular attention in astrochemistry, where their vibrational spectroscopy, thermodynamics, dynamics, and fragmentation properties are now abundantly documented. This survey aims at drawing trends for low spin-multiplicity surfaces of PAHs bearing internal energies in the range 1-10 eV. It addresses some typical alternatives to the ground-state regular structures of PAHs, making explicit possible intramolecular rearrangements leading to high-lying minima. These isomerisations should be taken into consideration when addressing PAH processing in astrophysical conditions. The first part of this double-entry study focuses on the hydrogen-shifted forms, which bear both a carbene center and a saturated carbon. It rests upon DFT calculations mainly performed on two emblematic PAH representatives, coronene and pyrene, in their neutral and mono- and multi-cationic states. Systematically searched for in neutral species, these H-shifted minima are lying 4-5 eV above the regular all-conjugated forms, and are separated by barriers of about 1 eV. General hydrogen-shifting is found to be easier for cationic species as the relative energies of their H-shifted minima are 1-1.5 eV lower than those for neutral species. As much as possible, classical knowledge and concepts of organic chemistry such as aromaticity and Clar's rules are invoked for result interpretation.

  3. Anisotropy of the apparent frequency dependence of backscatter in formalin fixed human myocardium.

    PubMed

    Hall, C S; Verdonk, E D; Wickline, S A; Perez, J E; Miller, J G

    1997-01-01

    Measurements of the frequency dependence of ultrasonic backscatter are presented for specific angles of insonification for regions of infarcted and noninfarcted human myocardium. A 5-MHz transducer was used to insonify cylindrical cores taken from 7 noninfarcted regions and 12 infarcted regions of the left ventricular free wall of 6 formalin-fixed human hearts explanted because of ischemic cardiomyopathy. The dependence of apparent (uncompensated for diffraction effects and attenuation) backscatter on frequency was approximated by a power-law dependence, magnitude of B(f)2 = afn. Under ideal conditions in a lossless medium, the effect of not compensating for the effects of diffraction and attenuation leads to the value of n to be 2.0 for Rayleigh scatterers while the frequency dependence of the fully compensated backscatter coefficient would be f4. The value of n was determined over the frequency range, 3-7 MHz. Both nonifarcted and infarcted myocardium exhibited anisotropy of the frequency dependence of backscatter, with maxima occurring at angles that were perpendicular to the predominant myofiber direction and minima when parallel to the fibers. Perpendicular insonification yielded results for n of 1.8 +/- 0.1 for noninfarcted myocardium and 1.2 +/- 0.1 for infarcted myocardium while parallel insonification yielded results of 0.4 +/- 0.1 for noninfarcted and 0.0 +/- 0.1 for infarcted myocardium. The functional form of the angle-dependent backscatter is similar for both noninfarcted and infarcted myocardium, although the frequency dependence is clearly different for both tissue states for all angles of insonification. The results of this study indicate that the anisotropy of the frequency dependence of backscatter may play a significant role in ultrasonic imaging and is an important consideration for ultrasonic tissue characterization in myocardium.

  4. Specific features of electron scattering in uniaxially deformed n-Ge single crystals in the presence of radiation defects

    NASA Astrophysics Data System (ADS)

    Luniov, S. V.; Zimych, A. I.; Nazarchuk, P. F.; Maslyuk, V. T.; Megela, I. G.

    2016-12-01

    Temperature dependencies for concentration of electrons and the Hall mobility for unirradiated and irradiated by the flow of electrons ? single crystals ?, with the energy of ?, for different values of uniaxial pressures along the crystallographic directions ?, ? and ? are obtained on the basis of piezo-Hall effect measurements. Non-typical growth of the Hall mobility of electrons for irradiated single crystals ? in comparison with unirradiated with the increasing of value of uniaxial pressures along the crystallographic directions ? (for the entire range of the investigated temperatures) and ? (to temperatures ?) has been revealed. Such an effect of the Hall mobility increase for uniaxially deformed single crystals ? is explained by the reduction of gradients of a resistance as a result of reduction in the amplitude of a large-scale potential with deformation and concentration of charged A-centers in the process of their recharge by the increasing of uniaxial pressure and consequently the probability of scattering on these centers. Theoretical calculations for temperature dependencies of the Hall mobility for uniaxially deformed single crystals ? in terms of the electrons scattering on the ions of shallow donors, acoustic, optical and intervalley phonons, regions of disordering and large-scale potential is good conformed to the corresponding experimental results at temperatures T<220 K for the case of uniaxial pressures along the crystallographic directions ? and ? and for temperatures ? when the uniaxial pressure is directed along the crystallographic directions ?. The mechanism of electron scattering on a charged radiation defects (which correspond to the deep energy levels of A-centers) 'is turned off' for the given temperatures due to the uniaxial pressure. Reduction of the Hall mobility in transition through a maximum of dependence ? with the increasing temperature for cases of the uniaxial deformation of the irradiated single crystals ? along the crystallographic directions ? and ? is explained by the deforming redistribution of electrons between the minima of conduction band of germanium with different mobility.

  5. Trend and variability of atmospheric ozone over middle Indo-Gangetic Plain: impacts of seasonality and precursor gases.

    PubMed

    Shukla, K; Srivastava, Prashant K; Banerjee, T; Aneja, Viney P

    2017-01-01

    Ozone dynamics in two urban background atmospheres over middle Indo-Gangetic Plain (IGP) were studied in two contexts: total columnar and ground-level ozone. In terms of total columnar ozone (TCO), emphases were made to compare satellite-based retrieval with ground-based observation and existing trend in decadal and seasonal variation was also identified. Both satellite-retrieved (Aura Ozone Monitoring Instrument-Differential Optical Absorption Spectroscopy (OMI-DOAS)) and ground-based observations (IMD-O 3 ) revealed satisfying agreement with OMI-DOAS observation over predicting TCO with a positive bias of 7.24 % under all-sky conditions. Minor variation between daily daytime (r = 0.54; R 2  = 29 %; n = 275) and satellite overpass time-averaged TCO (r = 0.58; R 2  = 34 %; n = 208) was also recognized. A consistent and clear seasonal trend in columnar ozone (2005-2015) was noted with summertime (March-June) maxima (Varanasi, 290.9 ± 8.8; Lucknow, 295.6 ± 9.5 DU) and wintertime (December-February) minima (Varanasi, 257.4 ± 10.1; Lucknow, 258.8 ± 8.8 DU). Seasonal trend decomposition based on locally weighted regression smoothing technique identified marginally decreasing trend (Varanasi, 0.0084; Lucknow, 0.0096 DU year -1 ) especially due to reduction in monsoon time minima and summertime maxima. In continuation to TCO, variation in ground-level ozone in terms of seasonality and precursor gases were also analysed from September 2014 to August 2015. Both stations registered similar pattern of variation with Lucknow representing slightly higher annual mean (44.3 ± 30.6; range, 1.5-309.1 μg/m 3 ) over Varanasi (38.5 ± 17.7; range, 4.9-104.2 μg/m 3 ). Variation in ground-level ozone was further explained in terms water vapour, atmospheric boundary layer height and solar radiation. Ambient water vapour content was found to associate negatively (r = -0.28, n = 284) with ground-level ozone with considerable seasonal variation in Varanasi. Implication of solar radiation on formation of ground-level ozone was overall positive (Varanasi, 0.60; Lucknow, 0.26), while season-specific association was recorded in case of atmospheric boundary layer.

  6. Magnetic Properties of A Bulgarian Loess/paleosol Profile Related To The Pedogenic Enhancement Model

    NASA Astrophysics Data System (ADS)

    van Velzen, A. J.; Jordanova, D.; Bachtadse, V.

    Magnetic susceptibility variations along the loess/palaeosol profile at Lubenovo (Cen- tral North Bulgaria) covering the last 800 ky show strong discrimination between loess and palaeosol units. Variations in susceptibility () and its frequency dependent part (FD) are consistent with a varying pedogenic component with fixed grain-size distri- bution superimposed on a background level (BG) of pristine loess material through- out the 62 m long profile. In the lower half a BG of 1.9*10-6 m3/kg was extrap- olated, opposed to 2.7*10-6 m3/kg in the upper half (with the exception of a 1 m interval at the base of a paleosol at 10 m depth). A variation in source material can be inferred. After subtraction of BG, FD is close to 14 % in paleosol and in loess layers, compliant with a log-normal grain-size distribution for the pedogenic magnetic fraction. Thermomagnetic measurements identify both magnetite and maghemite. The presence of superficially oxidised magnetite grains is inferred from measurements of rockmagnetic parameters before and after heating to 150 C. Hysteresis and back-field measurements show minima for Hc and Hcr in paleosol layers. Viscous magnetisation in paleosol layers is an order of magnitude larger than in loess layers. Magnetic pa- rameters in the top half and the bottom half of the profile react in a different way to heating to 150 C. The magnitude of the changes after heating is proposed as a new analytical parameter. Measurements of hysteresis loops at several temperatures up to 500 C and at room temperature after these heating steps allow monitoring of temper- ature dependence of magnetic parameters and the detection of alterations involving magnetic minerals.

  7. Air Stagnations for China (1985-2014): Climatological Mean Features and Trends

    NASA Astrophysics Data System (ADS)

    Huang, Qianqian; Cai, Xuhui; Song, Yu; Zhu, Tong

    2017-04-01

    Air stagnation is an important meteorological measurement for unfavourable air pollution conditions, but little is known about it in China. We conducted a comprehensive investigation of air stagnation in China, based on sounding and surface observations of 81 stations, from January 1985 to December 2014. The stagnation criteria were revised to be topographically dependent for the great physical diversity in this country. It is found that the annual mean air stagnation occurrences are closely related to general topography and climate features. Two basins in the northwest and southwest of China—Tarim and Sichuan Basins—exhibit the most frequent stagnation occurrence (50% days per year), whereas two plateaus (Tibet-Qinghai and Inner Mongolia Plateau) and the east coastal areas experience the least (20% days per year). Over the whole country, air stagnations achieve maxima in summer and minima in winter, except for Urumqi, a major city in the northwest of China, where stagnations keep a rather constant value yearly around with a minimum in spring. There is a nationwide positive trend in stagnation occurrence during 1985-2014, with the strongest increasing centres over Shandong Peninsula in eastern China and the south of Shaanxi in central China. Dependence degrees of air stagnations on three components (upper- and lower-air winds, precipitation-free days) are examined. It shows that the spatial distribution and trend of air stagnations are mainly driven by the behaviours of upper-air wind speeds. Air stagnation climatology presents a specific view to the natural background of atmosphere features being responsible to air pollution levels. The results presented in this paper may have significant implication to air pollution research, and may be used in atmospheric environment management or air pollution control.

  8. Eccentric binaries - still interesting targets

    NASA Astrophysics Data System (ADS)

    Zasche, P.

    2018-04-01

    Eccentric binaries still provides us with valuable results and new observations of these systems are welcome. Especially these ones never analysed before should be observed for their light curves and minima.

  9. Thermal emission from interstellar dust in and near the Pleiades

    NASA Technical Reports Server (NTRS)

    White, Richard E.

    1989-01-01

    IRAS survey coadds for a 8.7 deg x 4.3 deg field near the Pleiades provide evidence for dynamical interaction between the cluster and the surrounding interstellar medium. The far-infrared images show large region of faint emission with bright rims east of the cluster, suggestive of a wake. Images of the far-infrared color temperature and 100 micron optical depth reveal temperature maxima and optical depth minima near the bright cluster stars, as well as a strong optical depth peak at the core of the adjacent CO cloud. Models for thermal dust emission near the stars indicate that most of the apparent optical depth minima near stars are illusory, but also provide indirect evidence for small interaction between the stars and the encroaching dust cloud.

  10. Real-time obstacle avoidance using harmonic potential functions

    NASA Technical Reports Server (NTRS)

    Kim, Jin-Oh; Khosla, Pradeep K.

    1992-01-01

    This paper presents a new formulation of the artificial potential approach to the obstacle avoidance problem for a mobile robot or a manipulator in a known environment. Previous formulations of artificial potentials for obstacle avoidance have exhibited local minima in a cluttered environment. To build an artificial potential field, harmonic functions that completely eliminate local minima even for a cluttered environment are used. The panel method is employed to represent arbitrarily shaped obstacles and to derive the potential over the whole space. Based on this potential function, an elegant control strategy is proposed for the real-time control of a robot. The harmonic potential, the panel method, and the control strategy are tested with a bar-shaped mobile robot and a three-degree-of-freedom planar redundant manipulator.

  11. A concept for reducing oceanic separation minima through the use of a TCAS-derived CDTI

    NASA Technical Reports Server (NTRS)

    Love, W. D.; Mcfarland, A. L.; Ludwick, J. S.

    1984-01-01

    A concept for using a cockpit display of traffic information (CDTI), as derived from a modified version of the Traffic Alert and Collision Avoidance System 2 (TCAS 2), to support reductions in air traffic separation minima for an oceanic track system is presented. The concept, and the TCAS modifications required to support it, are described. The feasibility of the concept is examined from a number of standpoints, including expected benefits, maximum alert rates, and possible transition strategies. Various implementation issues are analyzed. Pilot procedures are suggested for dealing with alert situations. Possible variations of the concept are also examined. Finally, recommendations are presented for other studies and simulation experiments which can be used to further verify the feasibility of the concept.

  12. Symmetry breaking in linear multipole traps

    NASA Astrophysics Data System (ADS)

    Pedregosa-Gutierrez, J.; Champenois, C.; Kamsap, M. R.; Hagel, G.; Houssin, M.; Knoop, M.

    2018-03-01

    Radiofrequency multipole traps have been used for some decades in cold collision experiments and are gaining interest for precision spectroscopy due to their low micromotion contribution and the predicted unusual cold-ion structures. However, the experimental realisation is not yet fully controlled, and open questions in the operation of these devices remain. We present experimental observations of symmetry breaking of the trapping potential in a macroscopic octupole trap with laser-cooled ions. Numerical simulations have been performed in order to explain the appearance of additional local potential minima and be able to control them in a next step. We characterise these additional potential minima, in particular with respect to their position, their potential depth and their probability of population as a function of the radial and angular displacement of the trapping rods.

  13. Robust Speech Enhancement Using Two-Stage Filtered Minima Controlled Recursive Averaging

    NASA Astrophysics Data System (ADS)

    Ghourchian, Negar; Selouani, Sid-Ahmed; O'Shaughnessy, Douglas

    In this paper we propose an algorithm for estimating noise in highly non-stationary noisy environments, which is a challenging problem in speech enhancement. This method is based on minima-controlled recursive averaging (MCRA) whereby an accurate, robust and efficient noise power spectrum estimation is demonstrated. We propose a two-stage technique to prevent the appearance of musical noise after enhancement. This algorithm filters the noisy speech to achieve a robust signal with minimum distortion in the first stage. Subsequently, it estimates the residual noise using MCRA and removes it with spectral subtraction. The proposed Filtered MCRA (FMCRA) performance is evaluated using objective tests on the Aurora database under various noisy environments. These measures indicate the higher output SNR and lower output residual noise and distortion.

  14. Relaxation dynamics of C60

    NASA Astrophysics Data System (ADS)

    Walsh, Tiffany R.; Wales, David J.

    1998-10-01

    The relaxation dynamics of C60 from high-energy isomers to Buckminsterfullerene is examined using a master equation approach. An exhaustive catalog of the C60 fullerene isomers containing only five- and six-membered rings is combined with knowledge of the Stone-Wales rearrangements that connect all such isomers. Full geometry optimizations have been performed for all the minima and the transition states which connect them up to six Stone-Wales steps away from the global minimum. A density-functional tight-binding potential was employed to provide a quantum mechanical description of the bonding. The resulting picture of the potential energy landscape reveals a "weeping willow" structure which offers a clear explanation for the relatively long relaxation times observed experimentally. We also predict the most important transient local minima on the annealing pathway.

  15. Forecasting Kp from solar wind data: input parameter study using 3-hour averages and 3-hour range values

    NASA Astrophysics Data System (ADS)

    Wintoft, Peter; Wik, Magnus; Matzka, Jürgen; Shprits, Yuri

    2017-11-01

    We have developed neural network models that predict Kp from upstream solar wind data. We study the importance of various input parameters, starting with the magnetic component Bz, particle density n, and velocity V and then adding total field B and the By component. As we also notice a seasonal and UT variation in average Kp we include functions of day-of-year and UT. Finally, as Kp is a global representation of the maximum range of geomagnetic variation over 3-hour UT intervals we conclude that sudden changes in the solar wind can have a big effect on Kp, even though it is a 3-hour value. Therefore, 3-hour solar wind averages will not always appropriately represent the solar wind condition, and we introduce 3-hour maxima and minima values to some degree address this problem. We find that introducing total field B and 3-hour maxima and minima, derived from 1-minute solar wind data, have a great influence on the performance. Due to the low number of samples for high Kp values there can be considerable variation in predicted Kp for different networks with similar validation errors. We address this issue by using an ensemble of networks from which we use the median predicted Kp. The models (ensemble of networks) provide prediction lead times in the range 20-90 min given by the time it takes a solar wind structure to travel from L1 to Earth. Two models are implemented that can be run with real time data: (1) IRF-Kp-2017-h3 uses the 3-hour averages of the solar wind data and (2) IRF-Kp-2017 uses in addition to the averages, also the minima and maxima values. The IRF-Kp-2017 model has RMS error of 0.55 and linear correlation of 0.92 based on an independent test set with final Kp covering 2 years using ACE Level 2 data. The IRF-Kp-2017-h3 model has RMSE = 0.63 and correlation = 0.89. We also explore the errors when tested on another two-year period with real-time ACE data which gives RMSE = 0.59 for IRF-Kp-2017 and RMSE = 0.73 for IRF-Kp-2017-h3. The errors as function of Kp and for different years are also studied.

  16. Empirical analysis of electromagnetic profiles for groundwater prospecting in rural areas of Ibadan, southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Ehinola, O. A.; Opoola, A. O.

    2005-05-01

    The Slingram electromagnetic (EM) survey using a coil separation of 60 and 100 meters was carried out in 10 villages in Akinyele area of Ibadan, southwestern Nigeria to aid in the development of groundwater. Five main rock types including an undifferentiated gneiss complex (Su), biotite-garnet schist/gneiss (Bs), quartzite and quartz schist (Q), migmatised undifferentiated biotite/hornblende gneiss (M) and pegmatite/quartz vein (P) underlie the study area. A total of 31 EM profiles was made to accurately locate prospective borehole sites in the field. Four main groups with different behavioural pattern were categorized from the EM profiles. Group 1 is characterized by high density of positive (HDP) or high density of negative (HDN) real and imaginary curves, Group 2 by parallel real and imaginary curves intersecting with negligible amplitude (PNA), Group 3 by frequent intersection of high density of negative minima (FHN) real and imaginary curves, and Group 4 by separate and approximately parallel (SAP) real and imaginary curves. Qualitative pictures of the overburden thickness and the extent of fracturing have been proposed from these behavioural patterns. A comparison of the borehole yield with the overburden thickness and the level of fracturing show that borehole yield depends more on the fracture density than on the overburden thickness. Asymmetry of the anomaly was also found useful in the determination of the inclination of the conductor/fracture.

  17. Liquid-Vapor Interfacial Properties of Aqueous Solutions of Guanidinium and Methyl Guanidinium Chloride: Influence of Molecular Orientation on Interface Fluctuations

    PubMed Central

    Ou, Shuching; Cui, Di; Patel, Sandeep

    2014-01-01

    The guanidinium cation (C(NH2)3+) is a highly stable cation in aqueous solution due to its efficient solvation by water molecules and resonance stabilization of the charge. Its salts increase the solubility of nonpolar molecules (”salting-in”) and decrease the ordering of water. It is one of the strongest denaturants used in biophysical studies of protein folding. We investigate the behavior of guanidinium and its derivative, methyl guanidinium (an amino acid analogue) at the air-water surface, using atomistic molecular dynamics (MD) simulations and calculation of potentials of mean force. Methyl guanidinium cation is less excluded from the air-water surface than guanidinium cation, but both cations show orientational dependence of surface affinity. Parallel orientations of the guanidinium ring (relative to the Gibbs dividing surface) show pronounced free energy minima in the interfacial region, while ring orientations perpendicular to the GDS exhibit no discernible surface stability. Calculations of surface fluctuations demonstrate that near the air-water surface, the parallel-oriented cations generate significantly greater interfacial fluctuations compared to other orientations, which induces more long-ranged perturbations and solvent density redistribution. Our results suggest a strong correlation with induced interfacial fluctuations and ion surface stability. These results have implications for interpreting molecular-level, mechanistic action of this osmolyte’s interaction with hydrophobic interfaces as they impact protein denaturation (solubilization). PMID:23937431

  18. Do rivers really obey power-laws? Using continuous high resolution measurements to define bankfull channel and evaluate downstream hydraulic-scaling over large changes in drainage area

    NASA Astrophysics Data System (ADS)

    Scher, C.; Tennant, C.; Larsen, L.; Bellugi, D. G.

    2016-12-01

    Advances in remote-sensing technology allow for cost-effective, accurate, high-resolution mapping of river-channel topography and shallow aquatic bathymetry over large spatial scales. A combination of near-infrared and green spectra airborne laser swath mapping was used to map river channel bathymetry and watershed geometry over 90+ river-kilometers (75-1175 km2) of the Greys River in Wyoming. The day of flight wetted channel was identified from green LiDAR returns, and more than 1800 valley-bottom cross-sections were extracted at regular 50-m intervals. The bankfull channel geometry was identified using a "watershed-based" algorithm that incrementally filled local minima to a "spill" point, thereby constraining areas of local convergence and delineating all the potential channels along the cross-section for each distinct "spill stage." Multiple potential channels in alluvial floodplains and lack of clearly defined channel banks in bedrock reaches challenge identification of the bankfull channel based on topology alone. Here we combine a variety of topological measures, geometrical considerations, and stage levels to define a stage-dependent bankfull channel geometry, and compare the results with day of flight wetted channel data. Initial results suggest that channel hydraulic geometry and basin hydrology power-law scaling may not accurately capture downstream channel adjustments for rivers draining complex mountain topography.

  19. Secondary Growth and Carbohydrate Storage Patterns Differ between Sexes in Juniperus thurifera

    PubMed Central

    DeSoto, Lucía; Olano, José M.; Rozas, Vicente

    2016-01-01

    Differences in reproductive costs between male and female plants have been shown to foster sex-related variability in growth and C-storage patterns. The extent to which differential secondary growth in dioecious trees is associated with changes in stem carbohydrate storage patterns, however, has not been fully assessed. We explored the long-term radial growth and the seasonal variation of non-structural carbohydrate (NSC) content in sapwood of 40 males and 40 females Juniperus thurifera trees at two sites. NSC content was analyzed bimonthly for 1 year, and tree-ring width was measured for the 1931–2010 period. Sex-related differences in secondary growth and carbohydrate storage were site-dependent. Under less restrictive environmental conditions females grew more and stored more non-soluble sugars than males. Our results reinforce that sex-related differences in growth and resource storage may be a consequence of local adaptation to environmental conditions. Seasonal variation in soluble sugars concentration was opposite to cambial activity, with minima seen during periods of maximal secondary growth, and did not differ between the sexes or sites. Trees with higher stem NSC levels at critical periods showed higher radial growth, suggesting a common mechanism irrespective of site or sex. Sex-related patterns of secondary growth were linked to differences in non-soluble sugars content indicating sex-specific strategies of long-term performance. PMID:27303418

  20. Interactions of CO2, temperature and management practices: simulations with a modified version of CERES-Wheat

    NASA Technical Reports Server (NTRS)

    Tubiello, F. N.; Rosenzweig, C.; Volk, T.

    1995-01-01

    A new growth subroutine was developed for CERES-Wheat, a computer model of wheat (Triticum aestivum) growth and development. The new subroutine simulates canopy photosynthetic response to CO2 concentrations and light levels, and includes the effects of temperature on canopy light-use efficiency. Its performance was compared to the original CERES-Wheat V-2 10 in 30 different cases. Biomass and yield predictions of the two models were well correlated (correlation coefficient r > 0.95). As an application, summer growth of spring wheat was simulated at one site. Modeled crop responses to higher mean temperatures, different amounts of minimum and maximum warming, and doubled CO2 concentrations were compared to observations. The importance of irrigation and nitrogen fertilization in modulating the wheat crop climatic responses were also analyzed. Specifically, in agreement with observations, rainfed crops were found to be more sensitive to CO2 increases than irrigated ones. On the other hand, low nitrogen applications depressed the ability of the wheat crop to respond positively to CO2 increases. In general, the positive effects of high CO2 on grain yield were found to be almost completely counterbalanced by the negative effects of high temperatures. Depending on how temperature minima and maxima were increased, yield changes averaged across management practices ranged from -4% to 8%.

  1. Shallow to deep transformation of Se donors in GaSb under hydrostatic pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navarro-Contreras, H.; de Anda-Salazar, F.; Olvera-Hernandez, J.

    1999-03-01

    We have observed that highly doped GaSb:Se, which is opaque to far IR radiation, becomes transparent at hydrostatic pressures above 9.8{plus_minus}2&hthinsp;kbar. We discuss how this behavior may be explained by the transformation of Se shallow donors into Se-DX (where DX is the unknown donor or X donor) centers in GaSb. Under this assumption the position of the Se-DX energy level at zero pressure is calculated to lie 80{plus_minus}30 meV above the conduction band at atmospheric pressure. The onset of transparency allowed us to observe several multiphonon absorbance features. We assign six of them to two-phonon absorptions. From the measured pressuremore » dependence of the TO phonon, the Gr{umlt u}neisen parameter for this compound is calculated to be {gamma}{sub TO}=1.23{plus_minus}0.18. No persistent photoconductivity is observed for these Se-DX centers, a fact that may be explained by the expectation that the optical energy necessary to transform them back into the shallow form is larger than the band-gap energy of GaSb at all pressures examined, although it may be also an indication that the Se shallow donors change to deep donors associated with the L{sub 1} minima of ionization energy larger than 90 meV. {copyright} {ital 1999} {ital The American Physical Society}« less

  2. Data inversion immune to cycle-skipping using AWI

    NASA Astrophysics Data System (ADS)

    Guasch, L.; Warner, M.; Umpleby, A.; Yao, G.; Morgan, J. V.

    2014-12-01

    Over the last decade, 3D Full Waveform Inversion (FWI) has become a standard model-building tool in exploration seismology, especially in oil and gas applications -thanks to the high quality (spatial density of sources and receivers) datasets acquired by the industry. FWI provides superior quantitative images than its travel-time counterparts (travel-time based inversion methods) because it aims to match all the information in the observations instead of a severely restricted subset of them, namely picked arrivals.The downside is that the solution space explored by FWI has a high number of local minima, and since the solution is restricted to local optimization methods (due to the objective function evaluation cost), the success of the inversion is subject to starting within the basin of attraction of the global minimum.Local minima can exist for a wide variety of reasons, and it seems unlikely that a formulation of the problem that can eliminate all of them -by defining the optimization problem in a form that results in a monotonic objective function- exist. However, a significant amount of local minima are created by the definition of data misfit. In its standard formulation FWI compares observed data (field data) with predicted data (generated with a synthetic model) by subtracting one from the other, and the objective function is defined as some norm of this difference. The combination of this criteria and the fact that seismic data is oscillatory produces the well-known phenomenon of cycle-skipping, where model updates try to match nearest cycles from one dataset to the other.In order to avoid cycle-skipping we propose a different comparison between observed and predicted data, based on Wiener filters, which exploits the fact that the "identity" Wiener filter is a spike at zero lag. This gives rise to a new objective function without cycle-skipped related local minima, and therefore suppress the need of accurate starting models or low frequencies in the data. This new technique, called Adaptive Waveform Inversion (AWI) appears always superior to conventional FWI.

  3. Physiological effects of environmentally relevant, multi-day thermal stress on wild juvenile Atlantic salmon (Salmo salar).

    PubMed

    Corey, Emily; Linnansaari, Tommi; Cunjak, Richard A; Currie, Suzanne

    2017-01-01

    The frequency of extreme thermal events in temperate freshwater systems is expected to increase alongside global surface temperature. The Miramichi River, located in eastern Canada, is a prominent Atlantic salmon ( Salmo salar ) river where water temperatures can exceed the proposed upper thermal limit for the species (~27°C). Current legislation closes the river to recreational angling when water temperatures exceed 20°C for two consecutive nights. We aimed to examine how natural thermal variation, representative of extreme high thermal events, affected the thermal tolerance and physiology of wild, juvenile Atlantic salmon. We acclimated fish to four thermal cycles, characteristic of real-world thermal conditions while varying daily thermal minima (16°C, 18°C, 20°C or 22°C) and diel thermal fluctuation (e.g. Δ5°C-Δ9°C). In each cycling condition, we assessed the role that thermal minima played on the acute thermal tolerance (critical thermal maximum, (CTMax)), physiological (e.g. heat shock protein 70 (HSP70), ubiquitin) and energetic (e.g. hepatic glycogen, blood glucose and lactate) status of juvenile Atlantic salmon throughout repeated thermal cycles. Exposure to 16-21°C significantly increased CTMax (+0.9°C) compared to a stable acclimation temperature (16°C), as did exposure to diel thermal fluctuations of 18-27°C, 20-27°C and 22-27°C, yet repeated exposure provided no further increases in acute thermal tolerance. In comparison to the reference condition (16-21°C), consecutive days of high temperature cycling with different thermal minima resulted in significant increases in HSP70 and ubiquitin, a significant decrease in liver glycogen, and no significant cumulative effect on either blood glucose or lactate. However, comparison between thermally taxed treatments suggested the diel thermal minima had little influence on the physiological or energetic response of juvenile salmon, despite the variable thermal cycling condition. Our results suggest that relatively cooler night temperatures in the summer months may play a limited role in mitigating physiological stress throughout warm diel cycle events.

  4. Modification and optimization of the united-residue (UNRES) potential-energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins

    PubMed Central

    Liwo, Adam; Khalili, Mey; Czaplewski, Cezary; Kalinowski, Sebastian; Ołdziej, Stanisław; Wachucik, Katarzyna; Scheraga, Harold A.

    2011-01-01

    We report the modification and parameterization of the united-residue (UNRES) force field for energy-based protein-structure prediction and protein-folding simulations. We tested the approach on three training proteins separately: 1E0L (β), 1GAB (α), and 1E0G (α + β). Heretofore, the UNRES force field had been designed and parameterized to locate native-like structures of proteins as global minima of their effective potential-energy surfaces, which largely neglected the conformational entropy because decoys composed of only lowest-energy conformations were used to optimize the force field. Recently, we developed a mesoscopic dynamics procedure for UNRES, and applied it with success to simulate protein folding pathways. How ever, the force field turned out to be largely biased towards α-helical structures in canonical simulations because the conformational entropy had been neglected in the parameterization. We applied the hierarchical optimization method developed in our earlier work to optimize the force field, in which the conformational space of a training protein is divided into levels each corresponding to a certain degree of native-likeness. The levels are ordered according to increasing native-likeness; level 0 corresponds to structures with no native-like elements and the highest level corresponds to the fully native-like structures. The aim of optimization is to achieve the order of the free energies of levels, decreasing as their native-likeness increases. The procedure is iterative, and decoys of the training protein(s) generated with the energy-function parameters of the preceding iteration are used to optimize the force field in a current iteration. We applied the multiplexing replica exchange molecular dynamics (MREMD) method, recently implemented in UNRES, to generate decoys; with this modification, conformational entropy is taken into account. Moreover, we optimized the free-energy gaps between levels at temperatures corresponding to a predominance of folded or unfolded structures, as well as to structures at the putative folding-transition temperature, changing the sign of the gaps at the transition temperature. This enabled us to obtain force fields characterized by a single peak in the heat capacity at the transition temperature. Furthermore, we introduced temperature dependence to the UNRES force field; this is consistent with the fact that it is a free-energy and not a potential-energy function. PMID:17201450

  5. Biocatalytic induction of supramolecular order

    NASA Astrophysics Data System (ADS)

    Hirst, Andrew R.; Roy, Sangita; Arora, Meenakshi; Das, Apurba K.; Hodson, Nigel; Murray, Paul; Marshall, Stephen; Javid, Nadeem; Sefcik, Jan; Boekhoven, Job; van Esch, Jan H.; Santabarbara, Stefano; Hunt, Neil T.; Ulijn, Rein V.

    2010-12-01

    Supramolecular gels, which demonstrate tunable functionalities, have attracted much interest in a range of areas, including healthcare, environmental protection and energy-related technologies. Preparing these materials in a reliable manner is challenging, with an increased level of kinetic defects observed at higher self-assembly rates. Here, by combining biocatalysis and molecular self-assembly, we have shown the ability to more quickly access higher-ordered structures. By simply increasing enzyme concentration, supramolecular order expressed at molecular, nano- and micro-levels is dramatically enhanced, and, importantly, the gelator concentrations remain identical. Amphiphile molecules were prepared by attaching an aromatic moiety to a dipeptide backbone capped with a methyl ester. Their self-assembly was induced by an enzyme that hydrolysed the ester. Different enzyme concentrations altered the catalytic activity and size of the enzyme clusters, affecting their mobility. This allowed structurally diverse materials that represent local minima in the free energy landscape to be accessed based on a single gelator structure.

  6. Mountain evaporation profiles on the island of Hawai'i

    NASA Astrophysics Data System (ADS)

    Bean, Christine; Juvik, James O.; Nullet, Dennis

    1994-04-01

    Evaporation was measured along three altitudinal transects on Mauna Loa, on the island of Hawai'i. Stations lie between 70 and 3400 m a.s.l. and included environments ranging from tropical rainforest with 6 m year -1 annual rainfall to barren, subalpine lava fields in a dry environment above a persistent, subsidence temperature inversion. Average daily evaporation decreased with elevation between sea-level and about 1200 m, and then increased with elevation above that level. Evaporation minima ranged from 1.9 to 2.2 mm day -1. The maximum evaporation rate, 6.1 mm day -1, was at the highest site, Mauna Loa Observatory at 3400 m. Analysis of pan-evaporation data collected at 3400 m showed that standard formulae based on other meteorological variables provided good approximations of measured evaporation. Transect data were also compared with similar measurements from mountains on other Hawaiian islands.

  7. Have We Entered a 21st Century Prolonged Minimum of Solar Activity? Updated Implications of a 1987 Prediction

    NASA Astrophysics Data System (ADS)

    Shirley, James H.

    2009-05-01

    Fairbridge and Shirley (1987) predicted that a new prolonged minimum of solar activity would be underway by the year 2013 (Solar Physics 110, 191). While it is much too early to tell if this prediction will be fully realized, recent observations document a striking reduction in the Sun's general level of activity. While other forecasts of reduced future activity levels on decadal time scales have appeared, the Fairbridge-Shirley (FS) prediction is unique in pinpointing the current epoch. We are unaware of any forecast method that shows a better correspondence with the actual behavior of the Sun to this point. The FS prediction was based on the present-day recurrence of two physical indicators that were correlated in time with the occurrence of the Wolf, Sporer, and Maunder Minima. The amplitude of the inertial revolution of the axis of symmetry of the Sun's orbital motion about the solar system barycenter, and the direction in space of that axis, each bear a relationship to the occurrence of the prolonged minima of the historic record. The FS prediction appeared before the importance of solar meridional flows was generally appreciated, and before the existence and role of the tachocline was suspected. We will update and restate some of the physical implications of the FS results, along with those of some more recent investigations, particularly with reference to orbit-spin coupling hypotheses (Shirley, 2006: M.N.R.A.S. 368, 280). New investigations combining and integrating modern dynamo models with physical solutions describing key aspects of the variability of the solar motion may lead to significant advances in our ability to forecast future changes in the Sun. Acknowledgement: This work was supported by the resources of the author. No part of this work was performed at the Jet Propulsion Laboratory under a contract from NASA.

  8. Cool Spot and Flare Activities of a RS CVn Binary KIC 7885570

    NASA Astrophysics Data System (ADS)

    Kunt, M.; Dal, H. A.

    2017-12-01

    We present here the results of our studies on the physical nature and chromospheric activity of a RS CVn binary KIC 7885570 based on the Kepler Mission data. Assuming the primary component temperature, 6530 K, the temperature of the secondary component was found to be 5732±4 K. The mass ratio of the components (q) was found to be 0.43±0.01, while the inclination (i) of the system - 80.6°±0.1°. Additionally, the data were separated into 35 subsets to model the sinusoidal variation due to the rotational modulation, using the SpotModel program, as the light curve analysis indicated the chromospherically active secondary component. It was found that there are generally two spotted areas, whose radii, longitudes and latitudes are rapidly changing, located around the latitudes of +50° and +90° on the active component. Moreover, 113 flares were detected and their parameters were computed from the available data. The One Phase Exponential Association function model was derived from the parameters of these flares. Using the regression calculations, the Plateau value was found to be 1.9815±0.1177, while the half-life value was computed as 3977.2 s. In addition, the flare frequency (N1) - the flare number per hour, was estimated to be 0.00362 h-1, while flare frequency (N2) - the flare-equivalent duration emitted per hour, was computed as 0.00001. Finally, the times of eclipses were computed for 278 minima of the light curves, whose analysis indicated that the chromosphere activity nature of the system causes some effects on these minima times. Comparing the chromospheric activity patterns with the analogues of the secondary component, it is seen that the magnetic activity level is remarkably low. However, it is still at the expected level according to the B-V color index of 0.643 mag for the secondary component.

  9. Silicon dynamics in the Oder estuary, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Pastuszak, Marianna; Conley, Daniel J.; Humborg, Christoph; Witek, Zbigniew; Sitek, Stanisław

    2008-10-01

    Studies on dissolved silicate (DSi) and biogenic silica (BSi) dynamics were carried out in the Oder estuary, Baltic Sea in 2000-2005. The Oder estuary proved to be an important component of the Oder River-Baltic Sea continuum where very intensive seasonal DSi uptake during spring and autumn, but also BSi regeneration during summer take place. Owing to the regeneration process annual DSi patterns in the river and the estuary distinctly differed; the annual patterns of DSi in the estuary showed two maxima and two minima in contrast to one maximum- and one minimum-pattern in the Oder River. DSi concentrations in the river and in the estuary were highest in winter (200-250 μmol dm - 3 ) and lowest (often less than 1 μmol dm - 3 ) in spring, concomitant with diatom growth; such low values are known to be limiting for new diatom growth. Secondary DSi summer peaks at the estuary exit exceeded 100 μmol dm - 3 , and these maxima were followed by autumn minima coinciding with the autumn diatom bloom. Seasonal peaks in BSi concentrations (ca. 100 μmol dm - 3 ) occurred during the spring diatom bloom in the Oder River. Mass balance calculations of DSi and BSi showed that DSi + BSi import to the estuary over a two year period was 103.2 kt and that can be compared with the DSi export of 98.5 kt. The difference between these numbers gives room for ca. 2.5 kt BSi to be annually exported to the Baltic Sea. Sediment cores studies point to BSi annual accumulation on the level of 2.5 kt BSi. BSi import to the estuary is on the level of ca. 10.5 kt, thus ca. 5 kt of BSi is annually converted into the DSi, increasing the pool of DSi that leaves the system. BSi concentrations being ca. 2 times higher at the estuary entrance than at its exit remain in a good agreement with the DSi and BSi budgeting presented in the paper.

  10. Dietary lecithin potentiates thermal tolerance and cellular stress protection of milk fish (Chanos Chanos) reared under low dose endosulfan-induced stress.

    PubMed

    Kumar, Neeraj; Minhas, P S; Ambasankar, K; Krishnani, K K; Rana, R S

    2014-12-01

    Endosulfan is an organochlorine pesticide commonly found in aquatic environments that has been found to reduce thermal tolerance of fish. Lipotropes such as the food additive, Lecithin has been shown to improve thermal tolerance in fish species. This study was conducted to evaluate the role of lipotropes (lecithin) for enhancing the thermal tolerance of Chanos chanos reared under sublethal low dose endosulfan-induced stress. Two hundred and twenty-five fish were distributed randomly into five treatments, each with three replicates. Four isocaloric and isonitrogenous diets were prepared with graded levels of lecithin: normal water and fed with control diet (En0/L0), endosulfan-treated water and fed with control diet (En/L0), endosulfan-treated water and fed with 1% (En/L1%), 1.5% (En/L 1.5%) and 2% (En/L 2%) lecithin supplemented feed. The endosulfan in treated water was maintained at the level of 1/40th of LC50 (0.52ppb). At the end of the five weeks, critical temperature maxima (CTmax), lethal temperature maxima (LTmax), critical temperature minima (CTmin) and lethal temperature minima (LTmin) were Determined. There was a significant (P<0.01) effect of dietary lecithin on temperature tolerance (CTmax, LTmax, CTmin and LTmin) of the groups fed with 1, 1.5 and 2% lecithin-supplemented diet compared to control and endosulfan-exposed groups. Positive correlations were observed between CT max and LTmax (R(2)=0.934) as well as between CTmin and LTmin (R(2)=0.9313). At the end of the thermal tolerance study, endosulfan-induced changes in cellular stress enzymes (Catalase, SOD and GST in liver and gill and neurotansmitter enzyme, brain AChE) were significantly (p<0.01) improved by dietary lecithin. We herein report the role of lecithin in enhancing the thermal tolerance and protection against cellular stress in fish exposed to an organochlorine pesticide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Large effective mass and interaction-enhanced Zeeman splitting of K -valley electrons in MoSe2

    NASA Astrophysics Data System (ADS)

    Larentis, Stefano; Movva, Hema C. P.; Fallahazad, Babak; Kim, Kyounghwan; Behroozi, Armand; Taniguchi, Takashi; Watanabe, Kenji; Banerjee, Sanjay K.; Tutuc, Emanuel

    2018-05-01

    We study the magnetotransport of high-mobility electrons in monolayer and bilayer MoSe2, which show Shubnikov-de Haas (SdH) oscillations and quantum Hall states in high magnetic fields. An electron effective mass of 0.8 me is extracted from the SdH oscillations' temperature dependence; me is the bare electron mass. At a fixed electron density the longitudinal resistance shows minima at filling factors (FFs) that are either predominantly odd, or predominantly even, with a parity that changes as the density is tuned. The SdH oscillations are insensitive to an in-plane magnetic field, consistent with an out-of-plane spin orientation of electrons at the K point. We attribute the FF parity transitions to an interaction enhancement of the Zeeman energy as the density is reduced, resulting in an increased Zeeman-to-cyclotron energy ratio.

  12. Method to estimate drag coefficient at the air/ice interface over drifting open pack ice from remotely sensed data

    NASA Technical Reports Server (NTRS)

    Feldman, U.

    1984-01-01

    A knowledge in near real time, of the surface drag coefficient for drifting pack ice is vital for predicting its motions. And since this is not routinely available from measurements it must be replaced by estimates. Hence, a method for estimating this variable, as well as the drag coefficient at the water/ice interface and the ice thickness, for drifting open pack ice was developed. These estimates were derived from three-day sequences of LANDSAT-1 MSS images and surface weather charts and from the observed minima and maxima of these variables. The method was tested with four data sets in the southeastern Beaufort sea. Acceptable results were obtained for three data sets. Routine application of the method depends on the availability of data from an all-weather air or spaceborne remote sensing system, producing images with high geometric fidelity and high resolution.

  13. Direct measurement of the free energy of aging hard sphere colloidal glasses.

    PubMed

    Zargar, Rojman; Nienhuis, Bernard; Schall, Peter; Bonn, Daniel

    2013-06-21

    The nature of the glass transition is one of the most important unsolved problems in condensed matter physics. The difference between glasses and liquids is believed to be caused by very large free energy barriers for particle rearrangements; however, so far it has not been possible to confirm this experimentally. We provide the first quantitative determination of the free energy for an aging hard sphere colloidal glass. The determination of the free energy allows for a number of new insights in the glass transition, notably the quantification of the strong spatial and temporal heterogeneity in the free energy. A study of the local minima of the free energy reveals that the observed variations are directly related to the rearrangements of the particles. Our main finding is that the probability of particle rearrangements shows a power law dependence on the free energy changes associated with the rearrangements similar to the Gutenberg-Richter law in seismology.

  14. Global Distributions of Temperature Variances At Different Stratospheric Altitudes From Gps/met Data

    NASA Astrophysics Data System (ADS)

    Gavrilov, N. M.; Karpova, N. V.; Jacobi, Ch.

    The GPS/MET measurements at altitudes 5 - 35 km are used to obtain global distribu- tions of small-scale temperature variances at different stratospheric altitudes. Individ- ual temperature profiles are smoothed using second order polynomial approximations in 5 - 7 km thick layers centered at 10, 20 and 30 km. Temperature inclinations from the averaged values and their variances obtained for each profile are averaged for each month of year during the GPS/MET experiment. Global distributions of temperature variances have inhomogeneous structure. Locations and latitude distributions of the maxima and minima of the variances depend on altitudes and season. One of the rea- sons for the small-scale temperature perturbations in the stratosphere could be internal gravity waves (IGWs). Some assumptions are made about peculiarities of IGW gener- ation and propagation in the tropo-stratosphere based on the results of GPS/MET data analysis.

  15. Best dispersal strategies in spatially heterogeneous environments: optimization of the principal eigenvalue for indefinite fractional Neumann problems.

    PubMed

    Pellacci, Benedetta; Verzini, Gianmaria

    2018-05-01

    We study the positive principal eigenvalue of a weighted problem associated with the Neumann spectral fractional Laplacian. This analysis is related to the investigation of the survival threshold in population dynamics. Our main result concerns the optimization of such threshold with respect to the fractional order [Formula: see text], the case [Formula: see text] corresponding to the standard Neumann Laplacian: when the habitat is not too fragmented, the principal positive eigenvalue can not have local minima for [Formula: see text]. As a consequence, the best strategy for survival is either following the diffusion with [Formula: see text] (i.e. Brownian diffusion), or with the lowest possible s (i.e. diffusion allowing long jumps), depending on the size of the domain. In addition, we show that analogous results hold for the standard fractional Laplacian in [Formula: see text], in periodic environments.

  16. Intrinsic folding of small peptide chains: spectroscopic evidence for the formation of beta-turns in the gas phase.

    PubMed

    Chin, Wutharath; Dognon, Jean-Pierre; Piuzzi, François; Tardivel, Benjamin; Dimicoli, Iliana; Mons, Michel

    2005-01-19

    Laser desorption of model peptides coupled to laser spectroscopic techniques enables the gas-phase observation of genuine secondary structures of biology. Spectroscopic evidence for the formation of beta-turns in gas-phase peptide chains containing glycine and phenylalanine residues establishes the intrinsic stability of these forms and their ability to compete with other stable structures. The precise characterization of local minima on the potential energy surface from IR spectroscopy constitutes an acute assessment for the state-of-the-art quantum mechanical calculations also presented. The observation of different types of beta-turns depending upon the residue order within the sequence is found to be consistent with the residue propensities in beta-turns of proteins, which suggests that the prevalence of glycine in type II and II' turns stems essentially from an energetic origin, already at play under isolated conditions.

  17. Spiral stellar density waves and the flattening of abundance gradients in the warm gas component of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Vorobyov, E. I.

    2006-08-01

    Motivated by recent observations of plateaus and minima in the radial abundance distributions of heavy elements in the Milky Way and some other spiral galaxies, we propose a dynamical mechanism for the formation of such features around corotation. Our numerical simulations show that the non-axisymmetric gravitational field of spiral density waves generates cyclone and anticylone gas flows in the vicinity of corotation. The anticyclones flatten the pre-existing negative abundance gradients by exporting many more atoms of heavy elements outside corotation than importing inside it. This process is very efficient and forms plateaus of several kiloparsec in size around corotation after two revolution periods of a galaxy. The strength of anticyclones and, consequently, the sizes of plateaus depend on the pitch angle of spiral arms and are expected to increase along the Hubble sequence.

  18. Test-Wave Measurements of Microwave Absorption Efficiency in a Planar Surface-Wave Plasma Reactor

    NASA Astrophysics Data System (ADS)

    Ghanashev, Ivan; Morita, Shin; \\scToyoda, Naoki; Nagatsu, Masaaki; Sugai, Hideo

    1999-07-01

    A major obstacle for experimental surface-wave (SW) excitationand propagation studies in SW plasma is the self-consistentbehaviour of the latter, which does not permit continuousvariation of the electron density ne. In the presentstudy, we demonstrate how this obstacle can be overcome by anindependent plasma source, in our case, an inductively coupledplasma (ICP) created by a high-power RF (13.56 MHz) generator.Through a rectangular waveguide short-circuited at its end by amovable plunger, we introduced into the ICP a weak (powerless than 20 W) nonionising 2.4 GHz microwave.This permitted us to highlight important SW excitation andpropagation phenomena. In particular, we confirmed the existenceof the predicted [Jpn. J. Appl. Phys. 36 (1997) 4704]resonance minima in the ne dependence of the powerreflection coefficient. The influence of the plunger positionon the chamber matching was studied systematically and fourdifferent coupling aperture geometries were compared.

  19. ACRIM total solar irradiance monitoring during solar cycles 21 - 23

    NASA Astrophysics Data System (ADS)

    Willson, R.; Mordvinov, A.

    A series of Active Cavity Radiometer Irradiance Monitoring experiments have provided state of the art Total Solar Irradiance (TSI) results during the 20 of past 22 years during solar activity cycles 21 - 23. A composite TSI record of more than 23 years has been constructed using results from the Nimbus7/ERB, SMM/ACRIM1, UARS/ACRIM2, SOHO/VIRGO and ACRIMSAT/ACRIM3 experiments. An upward trend in TSI between the successive solar cycle minima of 1986 and 1996 has been found in this r cord with a slope of 0.04 % per decade. If a trend ofe comparable magnitude were sustained on multi-decadal or century timescales, TSI variation could be an important component of climate change. Overlap and redundancy of TSI flight experiments have been e sential in the compilation of as precision TSI database. The strategy required to extend it depends crucially on the accuracy, precision and redundancy of future experiments.

  20. Mean Field Limits for Interacting Diffusions in a Two-Scale Potential

    NASA Astrophysics Data System (ADS)

    Gomes, S. N.; Pavliotis, G. A.

    2018-06-01

    In this paper, we study the combined mean field and homogenization limits for a system of weakly interacting diffusions moving in a two-scale, locally periodic confining potential, of the form considered in Duncan et al. (Brownian motion in an N-scale periodic potential, arXiv:1605.05854, 2016b). We show that, although the mean field and homogenization limits commute for finite times, they do not, in general, commute in the long time limit. In particular, the bifurcation diagrams for the stationary states can be different depending on the order with which we take the two limits. Furthermore, we construct the bifurcation diagram for the stationary McKean-Vlasov equation in a two-scale potential, before passing to the homogenization limit, and we analyze the effect of the multiple local minima in the confining potential on the number and the stability of stationary solutions.

  1. Surface periodicity of Ir(110) from time-of-flight scattering and recoiling spectrometry (TOF-SARS)

    NASA Astrophysics Data System (ADS)

    Bu, H.; Shi, M.; Rabalais, J. W.

    1991-03-01

    The surface periodicity of the Ir(110) surface in both the clean reconstructed (1×3) and oxygen stabilized unreconstructed (1×1) phases have been investigated using time-of-flight scattering and recoiling spectrometry (TOF-SARS). A pulsed 4 keV Ar + ion beam is directed at a grazing incident angle to the surface and the scattered neutral plus ion flux is monitored as a function of beam exit angle and crystal azimuthal angle. It is demonstrated that either maxima or minima are obtained in the scattered flux along the low-index crystallographic directions depending on whether near-specular or off-specular scattering conditions, respectively, are used. These scattering intensity patterns as a function of crystal azimuthal angle provide a direct measure of the surface periodicity. These intensity variations are explained in terms of the Lindhard critical angle, semichannel focusing effects, and trajectory simulations.

  2. Weekly cycles of formaldehyde and nitrogen dioxide in the atmosphere over Northern Eurasia: anthropogenic or natural?

    NASA Astrophysics Data System (ADS)

    Sitnov, S. I.; Mokhov, I. I.

    2017-11-01

    Using data from the OMI (Aura) satellite instrument, the weekly cycles in the regional atmospheric contents of formaldehyde (CH2O) and nitrogen dioxide (NO2) over European Russia (ER) and Western Siberia (WS) are investigated. The weekly signals in the regional CH2O content are found to be in the opposite phase over ER and WS, but in phase with the weekly signals in the regional surface temperatures in the corresponding regions. Contrary with CH2O, the weekly signals in the regional NO2 content over ER and WS are in phase, manifesting themselves as the "weekend effects" with minima on Sunday and maxima on weekdays. The antiphase weekly signals in the regional CH2O contents over ER and WS can be associated with the dependence of biogenic isoprene emission on the regional surface temperature, influenced by the long Rossby-type waves.

  3. The isobaric heat capacity of liquid water at low temperatures and high pressures

    NASA Astrophysics Data System (ADS)

    Troncoso, Jacobo

    2017-08-01

    Isobaric heat capacity for water shows a rather strong anomalous behavior, especially at low temperature. However, almost all experimental studies supporting this statement have been carried out at low pressure; very few experimental data were reported above 100 MPa. In order to explore the behavior of this magnitude for water up to 500 MPa, a new heat flux calorimeter was developed. With the aim of testing the experimental methodology and comparing with water results, isobaric heat capacity was also measured for methanol and hexane. Good agreement with indirect heat capacity estimations from the literature was obtained for the three liquids. Experimental results show large anomalies in water heat capacity. This is especially true as regards its temperature dependence, qualitatively different from that observed for other liquids. Heat capacity versus temperature curves show minima for most studied isobars, whose location decreases with the pressure up to around 100 MPa but increases at higher pressures.

  4. Monte Carlo method for computing density of states and quench probability of potential energy and enthalpy landscapes.

    PubMed

    Mauro, John C; Loucks, Roger J; Balakrishnan, Jitendra; Raghavan, Srikanth

    2007-05-21

    The thermodynamics and kinetics of a many-body system can be described in terms of a potential energy landscape in multidimensional configuration space. The partition function of such a landscape can be written in terms of a density of states, which can be computed using a variety of Monte Carlo techniques. In this paper, a new self-consistent Monte Carlo method for computing density of states is described that uses importance sampling and a multiplicative update factor to achieve rapid convergence. The technique is then applied to compute the equilibrium quench probability of the various inherent structures (minima) in the landscape. The quench probability depends on both the potential energy of the inherent structure and the volume of its corresponding basin in configuration space. Finally, the methodology is extended to the isothermal-isobaric ensemble in order to compute inherent structure quench probabilities in an enthalpy landscape.

  5. Was the Universe actually radiation dominated prior to nucleosynthesis?

    NASA Astrophysics Data System (ADS)

    Giblin, John T.; Kane, Gordon; Nesbit, Eva; Watson, Scott; Zhao, Yue

    2017-08-01

    Maybe not. String theory approaches to both beyond the Standard Model and inflationary model building generically predict the existence of scalars (moduli) that are light compared to the scale of quantum gravity. These moduli become displaced from their low energy minima in the early Universe and lead to a prolonged matter-dominated epoch prior to big bang nucleosynthesis (BBN). In this paper, we examine whether nonperturbative effects such as parametric resonance or tachyonic instabilities can shorten, or even eliminate, the moduli condensate and matter-dominated epoch. Such effects depend crucially on the strength of the couplings, and we find that unless the moduli become strongly coupled, the matter-dominated epoch is unavoidable. In particular, we find that in string and M-theory compactifications where the lightest moduli are near the TeV scale, a matter-dominated epoch will persist until the time of big bang nucleosynthesis.

  6. Path Integral Metadynamics.

    PubMed

    Quhe, Ruge; Nava, Marco; Tiwary, Pratyush; Parrinello, Michele

    2015-04-14

    We develop a new efficient approach for the simulation of static properties of quantum systems using path integral molecular dynamics in combination with metadynamics. We use the isomorphism between a quantum system and a classical one in which a quantum particle is mapped into a ring polymer. A history dependent biasing potential is built as a function of the elastic energy of the isomorphic polymer. This enhances fluctuations in the shape and size of the necklace in a controllable manner and allows escaping deep energy minima in a limited computer time. In this way, we are able to sample high free energy regions and cross barriers, which would otherwise be insurmountable with unbiased methods. This substantially improves the ability of finding the global free energy minimum as well as exploring other metastable states. The performance of the new technique is demonstrated by illustrative applications on model potentials of varying complexity.

  7. Fermentation-medium rheology in antibiotic production

    NASA Astrophysics Data System (ADS)

    Penchev, I.; Kyrsheva, M.; Chaushev, S.; Romanov, D.

    1991-05-01

    Measurements have been made on the rheological characteristics of antibiotics under industrial conditions; a power-law relationship applies closely. Maxima occur in the consistency index and minima in the rheological index as the fermentation develops.

  8. Exploring Neutrino Oscillation Parameter Space with a Monte Carlo Algorithm

    NASA Astrophysics Data System (ADS)

    Espejel, Hugo; Ernst, David; Cogswell, Bernadette; Latimer, David

    2015-04-01

    The χ2 (or likelihood) function for a global analysis of neutrino oscillation data is first calculated as a function of the neutrino mixing parameters. A computational challenge is to obtain the minima or the allowed regions for the mixing parameters. The conventional approach is to calculate the χ2 (or likelihood) function on a grid for a large number of points, and then marginalize over the likelihood function. As the number of parameters increases with the number of neutrinos, making the calculation numerically efficient becomes necessary. We implement a new Monte Carlo algorithm (D. Foreman-Mackey, D. W. Hogg, D. Lang and J. Goodman, Publications of the Astronomical Society of the Pacific, 125 306 (2013)) to determine its computational efficiency at finding the minima and allowed regions. We examine a realistic example to compare the historical and the new methods.

  9. A finite-temperature Hartree-Fock code for shell-model Hamiltonians

    NASA Astrophysics Data System (ADS)

    Bertsch, G. F.; Mehlhaff, J. M.

    2016-10-01

    The codes HFgradZ.py and HFgradT.py find axially symmetric minima of a Hartree-Fock energy functional for a Hamiltonian supplied in a shell model basis. The functional to be minimized is the Hartree-Fock energy for zero-temperature properties or the Hartree-Fock grand potential for finite-temperature properties (thermal energy, entropy). The minimization may be subjected to additional constraints besides axial symmetry and nucleon numbers. A single-particle operator can be used to constrain the minimization by adding it to the single-particle Hamiltonian with a Lagrange multiplier. One can also constrain its expectation value in the zero-temperature code. Also the orbital filling can be constrained in the zero-temperature code, fixing the number of nucleons having given Kπ quantum numbers. This is particularly useful to resolve near-degeneracies among distinct minima.

  10. Robust spike sorting of retinal ganglion cells tuned to spot stimuli.

    PubMed

    Ghahari, Alireza; Badea, Tudor C

    2016-08-01

    We propose an automatic spike sorting approach for the data recorded from a microelectrode array during visual stimulation of wild type retinas with tiled spot stimuli. The approach first detects individual spikes per electrode by their signature local minima. With the mixture probability distribution of the local minima estimated afterwards, it applies a minimum-squared-error clustering algorithm to sort the spikes into different clusters. A template waveform for each cluster per electrode is defined, and a number of reliability tests are performed on it and its corresponding spikes. Finally, a divisive hierarchical clustering algorithm is used to deal with the correlated templates per cluster type across all the electrodes. According to the measures of performance of the spike sorting approach, it is robust even in the cases of recordings with low signal-to-noise ratio.

  11. Neural Network and Nearest Neighbor Algorithms for Enhancing Sampling of Molecular Dynamics.

    PubMed

    Galvelis, Raimondas; Sugita, Yuji

    2017-06-13

    The free energy calculations of complex chemical and biological systems with molecular dynamics (MD) are inefficient due to multiple local minima separated by high-energy barriers. The minima can be escaped using an enhanced sampling method such as metadynamics, which apply bias (i.e., importance sampling) along a set of collective variables (CV), but the maximum number of CVs (or dimensions) is severely limited. We propose a high-dimensional bias potential method (NN2B) based on two machine learning algorithms: the nearest neighbor density estimator (NNDE) and the artificial neural network (ANN) for the bias potential approximation. The bias potential is constructed iteratively from short biased MD simulations accounting for correlation among CVs. Our method is capable of achieving ergodic sampling and calculating free energy of polypeptides with up to 8-dimensional bias potential.

  12. Simulated annealing in orbital flight planning

    NASA Technical Reports Server (NTRS)

    Soller, Jeffrey

    1990-01-01

    Simulated annealing is used to solve a minimum fuel trajectory problem in the space station environment. The environment is unique because the space station will define the first true multivehicle environment in space. The optimization yields surfaces which are potentially complex, with multiple local minima. Because of the likelihood of these local minima, descent techniques are unable to offer robust solutions. Other deterministic optimization techniques were explored without success. The simulated annealing optimization is capable of identifying a minimum-fuel, two-burn trajectory subject to four constraints. Furthermore, the computational efforts involved in the optimization are such that missions could be planned on board the space station. Potential applications could include the on-site planning of rendezvous with a target craft of the emergency rescue of an astronaut. Future research will include multiwaypoint maneuvers, using a knowledge base to guide the optimization.

  13. Isotopic orientational order in acetyl salicylic acid

    NASA Astrophysics Data System (ADS)

    Schiebel, P.; Prandl, W.; Papoular, R.; Paulus, W.; Detken, A.; Haeberlen, U.; Zimmermann, H.

    2000-03-01

    Isotopically mixed methyl groups CD xH 3- x with zero averaged deuteron/hydrogen scattering length 0=< a>= xaD+(3- x) aH are expected to be invisible in a neutron diffraction experiment. We find, indeed, in the scattering length density of aspirin-CD xH 3- x, reconstructed by maximum-entropy methods, at room temperature only three very week minima. At 10 K, however, one positive and two negative extrema are visible: unique evidence for orientational isotopic order. From a combination of 1-d-Fourier and algebraic methods we deconvolute < a> and derive the orientational distribution function f( φ) which has three equivalent maxima/minima at 300 K and loses this 3 φ periodicity at 10 K. f( φ) is the basis for the determination of the hindrance potential with cos( φ) as the leading term.

  14. Stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete time measurements.

    PubMed

    Leander, Jacob; Lundh, Torbjörn; Jirstrand, Mats

    2014-05-01

    In this paper we consider the problem of estimating parameters in ordinary differential equations given discrete time experimental data. The impact of going from an ordinary to a stochastic differential equation setting is investigated as a tool to overcome the problem of local minima in the objective function. Using two different models, it is demonstrated that by allowing noise in the underlying model itself, the objective functions to be minimized in the parameter estimation procedures are regularized in the sense that the number of local minima is reduced and better convergence is achieved. The advantage of using stochastic differential equations is that the actual states in the model are predicted from data and this will allow the prediction to stay close to data even when the parameters in the model is incorrect. The extended Kalman filter is used as a state estimator and sensitivity equations are provided to give an accurate calculation of the gradient of the objective function. The method is illustrated using in silico data from the FitzHugh-Nagumo model for excitable media and the Lotka-Volterra predator-prey system. The proposed method performs well on the models considered, and is able to regularize the objective function in both models. This leads to parameter estimation problems with fewer local minima which can be solved by efficient gradient-based methods. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Automatic procedure for stable tetragonal or hexagonal structures: application to tetragonal Y and Cd

    NASA Astrophysics Data System (ADS)

    Marcus, P. M.; Jona, F.

    2005-05-01

    A simple effective procedure (MNP) for finding equilibrium tetragonal and hexagonal states under pressure is described and applied. The MNP procedure finds a path to minima of the Gibbs free energy G at T=0 K (G=E+pV, E=energy per atom, p=pressure, V=volume per atom) for tetragonal and hexagonal structures by using the approximate expansion of G in linear and quadratic strains at an arbitrary initial structure to find a change in the strains which moves toward a minimum of G. Iteration automatically proceeds to a minimum within preset convergence criteria on the calculation of the minimum. Comparison is made with experimental results for the ground states of seven metallic elements in hexagonal close-packed (hcp), face- and body-centered cubic structures, and with a previous procedure for finding minima based on tracing G along the epitaxial Bain path (EBP) to a minimum; the MNP is more easily generalized than the EBP procedure to lower symmetry and more atoms in the unit cell. Comparison is also made with a molecular-dynamics program for crystal equilibrium structures under pressure and with CRYSTAL, a program for crystal equilibrium structures at zero pressure. Application of MNP to the elements Y and Cd, which have hcp ground states at zero pressure, finds minima of E at face-centered cubic (fcc) structure for both Y and Cd. Evaluation of all the elastic constants shows that fcc Y is stable, hence a metastable phase, but fcc Cd is unstable.

  16. Recent X-ray Variability of eta Carinae: the Quick Road to Recovery

    NASA Technical Reports Server (NTRS)

    Corcoran, M. Francis; Hamaguchi, K.; Pittard, J. M.; Russell, C. M. P.; Owocki, S. P.; Parkin, E. R.; Okazaki, A.

    2010-01-01

    We report continued monitoring of the superluminous binary system eta Car by the Proportional Counter Array on the Rossi X-ray Timing Observatory (RXTE) through the 2009 X-ray minimum. The RXTE campaign shows that the minimum began on 2009 January 16, consistent with the phasings of the two previous minima, and overall, the temporal behavior of the X-ray emission was similar to that observed by RXTE in the previous two cycles. However, important differences did occur. The 2-10 keV X-ray flux and X-ray hardness decreased in the 2.5-year interval leading up to the 2009 minimum compared to the previous cycle. Most intriguingly, the 2009 X-ray minimum was about one month shorter than either of the previous two minima. During the egress from the 2009 minimum the X-ray hardness increased markedly as it had during egress from the previous two minima, although the maximum X-ray hardness achieved was less than the maximum observed after the two previous recoveries. We suggest that the cycle-to-cycle variations, especially the unexpectedly early recovery from the 2009 X-ray minimum, might have been the result of a decline in eta Car's wind momentum flux produced by a drop in eta Car's mass loss rate or wind terminal velocity (or some combination), though if so the change in wind momentum flux required to match the X-ray variation is surprisingly large.

  17. Physical Properties and Evolution of the Eclipsing Binary System XZ Canis Minoris

    NASA Astrophysics Data System (ADS)

    Poochaum, R.; Komonjinda, S.; Soonthornthum, B.; Rattanasoon, S.

    2010-07-01

    This research aims to study the eclipse binary system so that its physical properties and evolution can be determined and used as an example to teach high school astronomy. The study of an eclipsing binary system XZ Canis Minoris (XZ CMi) was done at Sirindhorn Observatory, Chiang Mai University using a 0.5-meter reflecting telescope with CCD photometric system (2184×1417 pixel) in B V and R bands of UVB System. The data obtained were used to construct the light curve for each wavelength band and to compute the times of its light minima. New elements were derived using observations with linear to all available minima. As a result, linear ephemeris is HDJmin I = .578 808 948+/-0.000 000 121+2450 515.321 26+/-0.001 07 E, and the new orbital period of XZ CMi is 0.578 808 948+/-0.000 000 121 day. The values obtained were used with the previously published times of minima to get O-C curve of XZ CMi. The result revealed that the orbital period of XZ CMi is continuously decreased at a rate of 0.007 31+/-0.000 57 sec/year. This result indicates that the binary stars are moving closer continuously. From the O-C residuals, there is significant change to indicate the existence of the third body or magnetic activity cycle on the star. However, further analysis of the physical properties of XZ CMi is required.

  18. Direct measurements of multiple adhesive alignments and unbinding trajectories between cadherin extracellular domains.

    PubMed Central

    Sivasankar, S; Gumbiner, B; Leckband, D

    2001-01-01

    Direct measurements of the interactions between antiparallel, oriented monolayers of the complete extracellular region of C-cadherin demonstrate that, rather than binding in a single unique orientation, the cadherins adhere in three distinct alignments. The strongest adhesion is observed when the opposing extracellular fragments are completely interdigitated. A second adhesive alignment forms when the interdigitated proteins separate by 70 +/- 10 A. A third complex forms at a bilayer separation commensurate with the approximate overlap of cadherin extracellular domains 1 and 2 (CEC1-2). The locations of the energy minima are independent of both the surface density of bound cadherin and the stiffness of the force transducer. Using surface element integration, we show that two flat surfaces that interact through an oscillatory potential will exhibit discrete minima at the same locations in the force profile measured between hemicylinders covered with identical materials. The measured interaction profiles, therefore, reflect the relative separations at which the antiparallel proteins adhere, and are unaffected by the curvature of the underlying substrate. The successive formation and rupture of multiple protein contacts during detachment can explain the observed sluggish unbinding of cadherin monolayers. Velocity-distance profiles, obtained by quantitative video analysis of the unbinding trajectory, exhibit three velocity regimes, the transitions between which coincide with the positions of the adhesive minima. These findings suggest that cadherins undergo multiple stage unbinding, which may function to impede adhesive failure under force. PMID:11259289

  19. Iterative h-minima-based marker-controlled watershed for cell nucleus segmentation.

    PubMed

    Koyuncu, Can Fahrettin; Akhan, Ece; Ersahin, Tulin; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem

    2016-04-01

    Automated microscopy imaging systems facilitate high-throughput screening in molecular cellular biology research. The first step of these systems is cell nucleus segmentation, which has a great impact on the success of the overall system. The marker-controlled watershed is a technique commonly used by the previous studies for nucleus segmentation. These studies define their markers finding regional minima on the intensity/gradient and/or distance transform maps. They typically use the h-minima transform beforehand to suppress noise on these maps. The selection of the h value is critical; unnecessarily small values do not sufficiently suppress the noise, resulting in false and oversegmented markers, and unnecessarily large ones suppress too many pixels, causing missing and undersegmented markers. Because cell nuclei show different characteristics within an image, the same h value may not work to define correct markers for all the nuclei. To address this issue, in this work, we propose a new watershed algorithm that iteratively identifies its markers, considering a set of different h values. In each iteration, the proposed algorithm defines a set of candidates using a particular h value and selects the markers from those candidates provided that they fulfill the size requirement. Working with widefield fluorescence microscopy images, our experiments reveal that the use of multiple h values in our iterative algorithm leads to better segmentation results, compared to its counterparts. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  20. Molecular characterization of the species Salvinia (Salviniaceae) from the upper Paraná River floodplain.

    PubMed

    Machado, S A; Oliveira, A V; Fabrin, T M C; Prioli, S M A P; Prioli, A J

    2016-08-12

    The pteridophytes Salvinia minima, S. herzogii, and S. auriculata are among the most abundant aquatic macrophytes in the upper Paraná River floodplain. Since some species have highly similar morphological features, it is very difficult to identify members of this genus to the species level. An indication of this difficulty is a set of poorly differentiated taxa comprising S. auriculata and S. herzogii known as the 'S. auriculata complex', which is found in the Paraná River together with other Salvinia species such as S. biloba and S. molesta. Some authors have reported the existence of inter-species hybrids. Despite the complex Salvinia taxonomy, few genetic studies have been performed on purported species within the genus to resolve this complexity. The present study was conducted to determine useful molecular sequences for the discrimination of Salvinia species of the upper Paraná River floodplain. Molecular data were compared with data of other species of the genus to clarify phylogenetic relationships, employing the nucleotide sequence trnL-trnF from the chloroplast DNA. The results revealed that Salvinia populations in the upper Paraná River floodplain belong to different species and indicated that species of the S. auriculata complex may be distinguished from one another after the division of the S. minima group, corroborating results by other researchers. Although the taxonomic position of S. oblongifolia was clarified, as high closeness between S. oblongifolia and the S. auriculata complex was reported, Salvinia kinship is still not thoroughly established and further investigations in morphology and molecular diversity are required.

  1. Determination of Fermi contour and spin polarization of ν = 3 2 composite fermions via ballistic commensurability measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamburov, D.; Mueed, M. A.; Jo, I.

    2014-12-01

    We report ballistic transport commensurability minima in the magnetoresistance of nu = 3/2 composite fermions (CFs). The CFs are formed in high-quality two-dimensional electron systems confined to wide GaAs quantum wells and subjected to an in-plane, unidirectional periodic potential modulation. We observe a slight asymmetry of the CF commensurability positions with respect to nu = 3/2, which we explain quantitatively by comparing three CF density models and concluding that the nu = 3/2 CFs are likely formed by the minority carriers in the upper energy spin state of the lowest Landau level. Our data also allow us to probe themore » shape and size of the CF Fermi contour. At a fixed electron density of similar or equal to 1.8x10(11) cm(-2), as the quantum well width increases from 30 to 60 nm, the CFs show increasing spin polarization. We attribute this to the enhancement of the Zeeman energy relative to the Coulomb energy in wider wells where the latter is softened because of the larger electron layer thickness. The application of an additional parallel magnetic field (B-parallel to) leads to a significant distortion of the CF Fermi contour as B-parallel to couples to the CFs' out-of-plane orbital motion. The distortion is much more severe compared to the nu = 1/2 CF case at comparable B-parallel to. Moreover, the applied B-parallel to further spin-polarizes the nu = 3/2 CFs as deduced from the positions of the commensurability minima.« less

  2. Investigations of the Rg-BrCl (Rg=He, Ne, Ar, Kr, Xe) binary van der Waals complexes: ab initio intermolecular potential energy surfaces, vibrational states and predicted pure rotational transition frequencies.

    PubMed

    Li, Song; Zheng, Rui; Chen, Shan-Jun; Chen, Yan; Chen, Peng

    2017-03-05

    The intermolecular potential energy surfaces (PESs) of the ground electronic state for the Rg-BrCl (Rg=He, Ne, Ar, Kr, Xe) van der Waals complexes have been constructed by using the coupled-cluster method in combination with the augmented quadruple-zeta correlation-consistent basis sets supplemented with an additional set of bond functions. The features of the anisotropic PESs for these complexes are remarkably similar, which are characterized by three minima and two saddle points between them. The global minimum corresponds to a collinear Rg-Br-Cl configuration. Two local minima, correlate with an anti-linear Rg-Cl-Br geometry and a nearly T-shaped structure, can also be located on each PES. The quantum bound state calculations enable us to investigate intermolecular vibrational states and rotational energy levels of the complexes. The transition frequencies are predicted and are fitted to obtain their corresponding spectroscopic constants. In general, the periodic trends are observed for this complex family. Comparisons with available experimental data for the collinear isomer of Ar-BrCl demonstrate reliability of our theoretical predictions, and our results for the other two isomers of Ar-BrCl as well as for other members of the complex family are also anticipated to be trustable. Except for the collinear isomer of Ar-BrCl, the data presented in this paper would be beneficial to improve our knowledge for these experimentally unknown species. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Tetrazole acetic acid: Tautomers, conformers, and isomerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araujo-Andrade, C.; Department of Chemistry, University of Coimbra, 3004-535 Coimbra; Reva, I., E-mail: reva@qui.uc.pt

    2014-02-14

    Monomers of (tetrazol-5-yl)-acetic acid (TAA) were obtained by sublimation of the crystalline compound and the resulting vapors were isolated in cryogenic nitrogen matrices at 13 K. The conformational and tautomeric composition of TAA in the matrix was characterized by infrared spectroscopy and vibrational calculations carried out at the B3LYP/6-311++G(d,p) level. TAA may adopt two tautomeric modifications, 1H- and 2H-, depending on the position of the annular hydrogen atom. Two-dimensional potential energy surfaces (PESs) of TAA were theoretically calculated at the MP2/6-311++G(d,p) level, for each tautomer. Four and six symmetry-unique minima were located on these PESs, for 1H- and 2H-TAA, respectively.more » The energetics of the detected minima was subsequently refined by calculations at the QCISD level. Two 1H- and three 2H-conformers fall within the 0–8 kJ mol{sup −1} energy range and should be appreciably populated at the sublimation temperature (∼330 K). Observation of only one conformer for each tautomer (1ccc and 2pcc) is explained in terms of calculated barriers to conformational rearrangements. All conformers with the cis O=COH moiety are separated by low barriers (less than 10 kJ mol{sup −1}) and collapse to the most stable 1ccc (1H-) and 2pcc (2H-) forms during deposition of the matrix. On the trans O=COH surfaces, the relative energies are very high (between 12 and 27 kJ mol{sup −1}). The trans forms are not thermally populated at the sublimation conditions and were not detected in matrices. One high-energy form in each tautomer, 1cct (1H-) and 2pct (2H-), was found to differ from the most stable form only by rotation of the OH group and separated from other forms by high barriers. This opened a perspective for their stabilization in a matrix. 1cct and 2pct were generated in the matrices selectively by means of narrow-band near-infrared (NIR) irradiations of the samples at 6920 and 6937 cm{sup −1}, where the first OH stretching overtone vibrations of 1ccc and 2pcc occur. The reverse transformations could be induced by irradiations at 7010 and 7030 cm{sup −1}, transforming 1cct and 2pct back to 1ccc and 2pcc, also selectively. Besides the NIR-induced transformations, the photogenerated 1cct and 2pct forms also decay in N{sub 2} matrices back to 1ccc and 2pcc spontaneously, with characteristic decay times of hours (1H) and tens of minutes (2H). The decay mechanism is rationalized in terms of the proton tunneling. In crystals, TAA exists exclusively as 1H-tautomer. By contrast, the tautomeric composition of the matrix-isolated monomers was found to consist of both 1H- and 2H-tautomers, in comparable amounts. A mechanistic discussion of the tautomerization process occurring during sublimation, accounting also for the observed minor decomposition of TAA leading to CO{sub 2} and 5-methyl-tetrazole, is proposed.« less

  4. Diary of a Wimpy Cycle

    NASA Technical Reports Server (NTRS)

    Hathaway, David; Upton, Lisa

    2013-01-01

    The cause of the low and extended minimum in solar activity between Sunspot Cycles 23 and 24 was the small size of Sunspot Cycle 24 itself - small cycles start late and leave behind low minima. Cycle 24 is small because the polar fields produced during Cycle 23 were substantially weaker than those produced during the previous cycles and those (weak) polar fields are the seeds for the activity of the following cycle. Here we discuss the observed characteristics of Cycle 24 and contrast them to the characteristics of previous cycles. We present observations and Magnetic Flux Transport simulations with data assimilated from SOHO/MDI and SDO/HMI that help to explain these differences and point the way to predictions of future activity levels.

  5. Study of Synthetic Vision Systems (SVS) and Velocity-vector Based Command Augmentation System (V-CAS) on Pilot Performance

    NASA Technical Reports Server (NTRS)

    Liu, Dahai; Goodrich, Ken; Peak, Bob

    2006-01-01

    This study investigated the effects of synthetic vision system (SVS) concepts and advanced flight controls on single pilot performance (SPP). Specifically, we evaluated the benefits and interactions of two levels of terrain portrayal, guidance symbology, and control-system response type on SPP in the context of lower-landing minima (LLM) approaches. Performance measures consisted of flight technical error (FTE) and pilot perceived workload. In this study, pilot rating, control type, and guidance symbology were not found to significantly affect FTE or workload. It is likely that transfer from prior experience, limited scope of the evaluation task, specific implementation limitations, and limited sample size were major factors in obtaining these results.

  6. Diffusion of major and trace elements in natural silicate melts as a tool to investigate timescales in magma mixing

    NASA Astrophysics Data System (ADS)

    González-García, Diego; Zezza, Angela; Behrens, Harald; Vetere, Francesco; Petrelli, Maurizio; Morgavi, Daniele; Perugini, Diego

    2016-04-01

    New melt injection into a shallow magma chamber is regarded as one of the potential triggers for explosive volcanic eruptions. Chemical diffusion occurring between the two mixing melts is a time-dependent process, and thus has the potential to shed light on the timescales involved in magma mixing events leading to an eruption. In order to achieve this, a complete database of diffusion coefficients in natural melts is a necessary prerequisite. We have carried out a set of 12 diffusion couple experiments in order to determine diffusion coefficients (D) of major and trace elements in two natural silicate melts. Two end-members from the Vulcano island (Aeolian archipelago, Italy) have been chosen for the experiments: a shoshonite (Vulcanello lava platform) and a rhyolitic obsidian (Pietre Cotte lava flow, La Fossa cone). Glasses from each end-member with added water contents of 0 wt%, 1 wt% and 2 wt% were produced in an Internally Heated Pressure Vessel (IHPV). Two glass cylinders with similar water content but different base composition are inserted in Au-Pd capsules and experiments are run in the IHPV at 1200° C with pressure from 0.5 to 3 kbar. Experiment capsules are rapidly quenched and analyzed by FTIR, EPMA and LA-ICP-MS for H2O, major and trace elements, respectively, along 2 mm linear profiles extending across the interface. A Boltzmann-Matano approach is used to obtain concentration-dependent diffusivities. The obtained concentration-distance profiles are asymmetric and extend deeper into the shoshonite relative to the rhyolite, indicating that diffusion is slower in the latter. Results show that diffusivities are notably accelerated by the presence of H2O in the melt. Experiments performed by using water-free glass show diffusivities one order of magnitude lower compared to glasses containing up to 2 wt% H2O. The effect of pressure, in the investigated range, is negligible and falls within measurement error. Among major elements, Si and Ti are the slowest diffusing components, while Na is the fastest. Uphill diffusion minima are observed in Al, Na and some trace elements (Y, Nb, Pb). In contrast to other trace elements, light REE show prominent minima next to the interface between the two melts, with the minimum depth diminishing towards HREE.

  7. Modulation of galactic cosmic rays in solar cycles 22-24: Analysis and physical interpretation

    NASA Astrophysics Data System (ADS)

    Kalinin, M. S.; Bazilevskaya, G. A.; Krainev, M. B.; Svirzhevskaya, A. K.; Svirzhevsky, N. S.; Starodubtsev, S. A.

    2017-09-01

    This work represents a physical interpretation of cosmic ray modulation in the 22nd-24th solar cycles, including an interpretation of an unusual behavior of their intensity in the last minimum of the solar activity (2008-2010). In terms of the Parker modulation model, which deals with regularly measured heliospheric characteristics, it is shown that the determining factor of the increased intensity of the galactic cosmic rays in the minimum of the 24th solar cycle is an anomalous reduction of the heliospheric magnetic field strength during this time interval under the additional influence of the solar wind velocity and the tilt angle of the heliospheric current sheet. We have used in the calculations the dependence of the diffusion tensor on the rigidity in the form K ij ∝ R 2-μ with μ = 1.2 in the sector zones of the heliospheric magnetic field and with μ = 0.8 outside the sector zones, which leads to an additional amplification of the diffusion mechanism of cosmic ray modulation. The proposed approach allows us to describe quite satisfactorily the integral intensity of protons with an energy above 0.1 GeV and the energy spectra in the minima of the 22nd-24th solar cycles at the same value of the free parameter. The determining factor of the anomalously high level of the galactic cosmic ray intensity in the minimum of the 24th solar cycle is the significant reduction of the heliospheric magnetic field strength during this time interval. The forecast of the intensity level in the minimum of the 25th solar cycle is provided.

  8. Chemical dynamics simulations of X- + CH3Y → XCH3 + Y- gas-phase S(N)2 nucleophilic substitution reactions. Nonstatistical dynamics and nontraditional reaction mechanisms.

    PubMed

    Manikandan, Paranjothy; Zhang, Jiaxu; Hase, William L

    2012-03-29

    Extensive classical chemical dynamics simulations of gas-phase X(-) + CH(3)Y → XCH(3) + Y(-) S(N)2 nucleophilic substitution reactions are reviewed and discussed and compared with experimental measurements and predictions of theoretical models. The primary emphasis is on reactions for which X and Y are halogen atoms. Both reactions with the traditional potential energy surface (PES), which include pre- and postreaction potential energy minima and a central barrier, and reactions with nontraditional PESs are considered. These S(N)2 reactions exhibit important nonstatistical atomic-level dynamics. The X(-) + CH(3)Y → X(-)---CH(3)Y association rate constant is less than the capture model as a result of inefficient energy transfer from X(-)+ CH(3)Y relative translation to CH(3)Y rotation and vibration. There is weak coupling between the low-frequency intermolecular modes of the X(-)---CH(3)Y complex and higher frequency CH(3)Y intramolecular modes, resulting in non-RRKM kinetics for X(-)---CH(3)Y unimolecular decomposition. Recrossings of the [X--CH(3)--Y](-) central barrier is important. As a result of the above dynamics, the relative translational energy and temperature dependencies of the S(N)2 rate constants are not accurately given by statistical theory. The nonstatistical dynamics results in nonstatistical partitioning of the available energy to XCH(3) +Y(-) reaction products. Besides the indirect, complex forming atomic-level mechanism for the S(N)2 reaction, direct mechanisms promoted by X(-) + CH(3)Y relative translational or CH(3)Y vibrational excitation are possible, e.g., the roundabout mechanism.

  9. Qualitative optical evaluation of malignancies related to cutaneous phototype

    NASA Astrophysics Data System (ADS)

    Borisova, E.; Avramov, L.; Pavlova, P.; Pavlova, E.; Troyanova, P.

    2010-02-01

    Spectral techniques used for early diagnosis of skin cancer give to the investigators diagnostically important features usually in the process of comparison of signals received from normal and abnormal skin sites. In this study are presented some initial results of fluorescence for early detection of cutaneous tumors. However, due to great variety of optical properties and choromophores' distribution spectra of "normal" skin could have observable differences between themselves. Diagnostically significant features, such as intensity, appearance of specific minima or maxima in the spectra received, depend from anatomic place, ages, cutaneous phototype, when are measured in vivo. Therefore, development of objective differentiation algorithms for early diagnosis of skin pathologies will strongly depend from our understanding - what is the influence of major fluorophores and absorbers in the spectra observed in defined as "healthy" skin sites, and how these spectral peculiarities could influent the spectra received from lesion sites, distorting our diagnosis. In such way, we could obtain complete picture of normal skin fluorescence properties, which will be the background for comparison with any cutaneous pathology, appearing on the patient skin surface, useful for early diagnostics and alert for pre-cancerous conditions and large areas observations.

  10. Coercivity Enhancement in Exchange Biased Bilayers

    NASA Astrophysics Data System (ADS)

    Leighton, C.

    2001-03-01

    The well-known enhancement in coercivity in ferromagnet / antiferromagnet bilayers has been studied in the model epitaxial system MnF2 / Fe. We have investigated how the coercivity depends on temperature, cooling field, layer thickness and interfacial disorder. In all cases a typical enhancement is observed on cooling below the Neel temperature of the antiferromagnet. However, for the case of positively exchange biased layers we observe an extra coercivity enhancement which occurs when the interface is deliberately driven to a situation of maximum magnetic frustration(C. Leighton, J. Nogues, B.J. Jonsson-Akerman and I.K. Schuller, Phys. Rev. Lett. 84 3466 (2000)). This situation is controlled by the magnitude of the cooling field, giving us an external parameter through which we can vary the coercivity. We propose a model where a frustrated interface provides local energy minima which effectively pin domain walls leading to an increase in coercivity. We further examine the ferromagnet thickness dependence of the effect as a probe of the coercive mechanisms(Z. Li and S. Zhang, Phys. Rev. B61 R14897 (2000) ; S. Zhang et al J. Mag. Mag. Mat. 198-199 468 (1999)). Work supported by the US DoE and the NSF.

  11. Communication: Ion mobility of the radical cation dimers: (Naphthalene)2+• and naphthalene+•-benzene: Evidence for stacked sandwich and T-shape structures

    NASA Astrophysics Data System (ADS)

    Platt, Sean P.; Attah, Isaac K.; Aziz, Saadullah; El-Shall, M. Samy

    2015-05-01

    Dimer radical cations of aromatic and polycyclic aromatic molecules are good model systems for a fundamental understanding of photoconductivity and ferromagnetism in organic materials which depend on the degree of charge delocalization. The structures of the dimer radical cations are difficult to determine theoretically since the potential energy surface is often very flat with multiple shallow minima representing two major classes of isomers adopting the stacked parallel or the T-shape structure. We present experimental results, based on mass-selected ion mobility measurements, on the gas phase structures of the naphthalene+ṡ ṡ naphthalene homodimer and the naphthalene+ṡ ṡ benzene heterodimer radical cations at different temperatures. Ion mobility studies reveal a persistence of the stacked parallel structure of the naphthalene+ṡ ṡ naphthalene homodimer in the temperature range 230-300 K. On the other hand, the results reveal that the naphthalene+ṡ ṡ benzene heterodimer is able to exhibit both the stacked parallel and T-shape structural isomers depending on the experimental conditions. Exploitation of the unique structural motifs among charged homo- and heteroaromatic-aromatic interactions may lead to new opportunities for molecular design and recognition involving charged aromatic systems.

  12. Lidar measurements of mesospheric temperature inversion at a low latitude

    NASA Astrophysics Data System (ADS)

    Siva Kumar, V.; Bhavani Kumar, Y.; Raghunath, K.; Rao, P. B.; Krishnaiah, M.; Mizutani, K.; Aoki, T.; Yasui, M.; Itabe, T.

    2001-08-01

    The Rayleigh lidar data collected on 119 nights from March 1998 to February 2000 were used to study the statistical characteristics of the low latitude mesospheric temperature inversion observed over Gadanki (13.5° N, 79.2° E), India. The occurrence frequency of the inversion showed semiannual variation with maxima in the equinoxes and minima in the summer and winter, which was quite different from that reported for the mid-latitudes. The peak of the inversion layer was found to be confined to the height range of 73 to 79 km with the maximum occurrence centered around 76 km, with a weak seasonal dependence that fits well to an annual cycle with a maximum in June and a minimum in December. The magnitude of the temperature deviation associated with the inversion was found to be as high as 32 K, with the most probable value occurring at about 20 K. Its seasonal dependence seems to follow an annual cycle with a maximum in April and a minimum in October. The observed characteristics of the inversion layer are compared with that of the mid-latitudes and discussed in light of the current understanding of the source mechanisms.

  13. Microbubbles and Blood Brain Barrier Opening: A Numerical Study on Acoustic Emissions and Wall Stress Predictions

    PubMed Central

    Goertz, David E.; Hynynen, Kullervo

    2015-01-01

    Focused ultrasound with microbubbles is an emerging technique for blood brain barrier (BBB) opening. Here, a comprehensive theoretical model of a bubble-fluid-vessel system has been developed which accounts for the bubble’s non-spherical oscillations inside a microvessel, and its resulting acoustic emissions. Numerical simulations of unbound and confined encapsulated bubbles were performed to evaluate the effect of the vessel wall on acoustic emissions and vessel wall stresses. Using a Marmottant shell model, the normalized second harmonic to fundamental emissions first decreased as a function of pressure (>50 kPa) until reaching a minima ("transition point") at which point they increased. The transition point of unbound compared to confined bubble populations occurred at different pressures and was associated with an accompanying increase in shear and circumferential wall stresses. As the wall stresses depend on the bubble to vessel wall distance, the stresses were evaluated for bubbles with their wall at a constant distance to a flat wall. As a result, the wall stresses were bubble size and frequency dependent and the peak stress values induced by bubbles larger than resonance remained constant versus frequency at a constant mechanical index. PMID:25546853

  14. Ab initio study of the temperature-dependent structural properties of Al(110)

    NASA Astrophysics Data System (ADS)

    Scharoch, Pawel

    2009-09-01

    Temperature-dependent structural properties of Al(110) surface have been studied ab initio employing the concepts of the potential-energy surface (PES) and the free-energy surface (FES), with the latter based on the harmonic approximation for lattice dynamics. Three effects have been identified as contributing to the temperature-dependent multilayer relaxation: the bulk-substrate thermal expansion, the effect of asymmetry of PESs, and the entropy-driven shift of the minima of FESs. Thanks to the proper choice of constraints for PESs and FESs, it was possible to find relative contribution of the three effects to variation with temperature of the first three interlayer distances. A very satisfactory agreement of the calculation results with experimental data has been obtained. Also, a reference of the theoretical data to the experimentally observed anisotropic surface melting has been noticed. A softening phonon mode has been identified which is responsible for both: the entropy-driven spectacular expansion of the second interlayer distance and the loss of the surface stability. The latter can be associated with the anisotropic surface melting. The methodology applied has been found to be complementary to previous theoretical works [N. Marzari, D. Vanderbilt, A. De Vita, and M. C. Payne, Phys. Rev. Lett. 82, 3296 (1999); S. Narasimhan, Phys. Rev. B 64, 125409 (2001)], by offering another point of view and additional insight into the relative contribution of different physical effects to the temperature-dependent structural phenomena in Al(110) surface.

  15. Cloud and convection frequencies over the southeast United States as related to small-scale geographic features

    NASA Technical Reports Server (NTRS)

    Gibson, Harold M.; Vonder Haar, Thomas H.

    1990-01-01

    Based on relatively high spatial and temporal resolution satelite data collected at 0700 CST and at each hour from 1000 CST to 1700 CST during the summer of 1986, cloud and convection variations over the area from Mississippi east to Georgia and from the Gulf of Mexico north to Tennessee are discussed. The data analyses show an average maximum cloud frequency over the land areas at 1400 local time and a maximum of deep convection one hour later. Both cloudiness and deep convection are found to be at a maximum during the nocturnal hours over the Gulf of Mexico. Cloud frequency shows a strong relationship to small terrain features. Small fresh water bodies have cloud minima relative to the surroundings in the afternoon hours. Higher, steep terrain shows cloud maxima and the adjacent lower terrain exhibits afternoon cloud minima due to a divergence of mountain breeze caused by the valley.

  16. Data classification using metaheuristic Cuckoo Search technique for Levenberg Marquardt back propagation (CSLM) algorithm

    NASA Astrophysics Data System (ADS)

    Nawi, Nazri Mohd.; Khan, Abdullah; Rehman, M. Z.

    2015-05-01

    A nature inspired behavior metaheuristic techniques which provide derivative-free solutions to solve complex problems. One of the latest additions to the group of nature inspired optimization procedure is Cuckoo Search (CS) algorithm. Artificial Neural Network (ANN) training is an optimization task since it is desired to find optimal weight set of a neural network in training process. Traditional training algorithms have some limitation such as getting trapped in local minima and slow convergence rate. This study proposed a new technique CSLM by combining the best features of two known algorithms back-propagation (BP) and Levenberg Marquardt algorithm (LM) for improving the convergence speed of ANN training and avoiding local minima problem by training this network. Some selected benchmark classification datasets are used for simulation. The experiment result show that the proposed cuckoo search with Levenberg Marquardt algorithm has better performance than other algorithm used in this study.

  17. A theoretical investigation on optimal structures of ethane clusters (C2H6)n with n ≤ 25 and their building-up principle.

    PubMed

    Takeuchi, Hiroshi

    2011-05-01

    Geometry optimization of ethane clusters (C(2)H(6))(n) in the range of n ≤ 25 is carried out with a Morse potential. A heuristic method based on perturbations of geometries is used to locate global minima of the clusters. The following perturbations are carried out: (1) the molecule or group with the highest energy is moved to the interior of a cluster, (2) it is moved to stable positions on the surface of a cluster, and (3) orientations of one and two molecules are randomly modified. The geometry obtained after each perturbation is optimized by a quasi-Newton method. The global minimum of the dimer is consistent with that previously reported. The putative global minima of the clusters with 3 ≤ n ≤ 25 are first proposed and their building-up principle is discussed. Copyright © 2010 Wiley Periodicals, Inc.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez-Cantano, Rocío; Pérez de Tudela, Ricardo; Bartolomei, Massimiliano

    Coronene-doped helium clusters have been studied by means of classical and quantum mechanical (QM) methods using a recently developed He–C{sub 24}H{sub 12} global potential based on the use of optimized atom-bond improved Lennard-Jones functions. Equilibrium energies and geometries at global and local minima for systems with up to 69 He atoms were calculated by means of an evolutive algorithm and a basin-hopping approach and compared with results from path integral Monte Carlo (PIMC) calculations at 2 K. A detailed analysis performed for the smallest sizes shows that the precise localization of the He atoms forming the first solvation layer overmore » the molecular substrate is affected by differences between relative potential minima. The comparison of the PIMC results with the predictions from the classical approaches and with diffusion Monte Carlo results allows to examine the importance of both the QM and thermal effects.« less

  19. Long-range memory and multifractality in gold markets

    NASA Astrophysics Data System (ADS)

    Mali, Provash; Mukhopadhyay, Amitabha

    2015-03-01

    Long-range correlation and fluctuation in the gold market time series of the world's two leading gold consuming countries, namely China and India, are studied. For both the market series during the period 1985-2013 we observe a long-range persistence of memory in the sequences of maxima (minima) of returns in successive time windows of fixed length, but the series, as a whole, are found to be uncorrelated. Multifractal analysis for these series as well as for the sequences of maxima (minima) is carried out in terms of the multifractal detrended fluctuation analysis (MF-DFA) method. We observe a weak multifractal structure for the original series that mainly originates from the fat-tailed probability distribution function of the values, and the multifractal nature of the original time series is enriched into their sequences of maximal (minimal) returns. A quantitative measure of multifractality is provided by using a set of ‘complexity parameters’.

  20. A combinatorial framework to quantify peak/pit asymmetries in complex dynamics.

    PubMed

    Hasson, Uri; Iacovacci, Jacopo; Davis, Ben; Flanagan, Ryan; Tagliazucchi, Enzo; Laufs, Helmut; Lacasa, Lucas

    2018-02-23

    We explore a combinatorial framework which efficiently quantifies the asymmetries between minima and maxima in local fluctuations of time series. We first showcase its performance by applying it to a battery of synthetic cases. We find rigorous results on some canonical dynamical models (stochastic processes with and without correlations, chaotic processes) complemented by extensive numerical simulations for a range of processes which indicate that the methodology correctly distinguishes different complex dynamics and outperforms state of the art metrics in several cases. Subsequently, we apply this methodology to real-world problems emerging across several disciplines including cases in neurobiology, finance and climate science. We conclude that differences between the statistics of local maxima and local minima in time series are highly informative of the complex underlying dynamics and a graph-theoretic extraction procedure allows to use these features for statistical learning purposes.

  1. Energies of the X- and L-valleys in In{sub 0.53}Ga{sub 0.47}As from electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene-Diniz, Gabriel; Greer, J. C.; Fischetti, M. V.

    2016-02-07

    Several theoretical electronic structure methods are applied to study the relative energies of the minima of the X- and L-conduction-band satellite valleys of In{sub x}Ga{sub 1−x}As with x = 0.53. This III-V semiconductor is a contender as a replacement for silicon in high-performance n-type metal-oxide-semiconductor transistors. The energy of the low-lying valleys relative to the conduction-band edge governs the population of channel carriers as the transistor is brought into inversion, hence determining current drive and switching properties at gate voltages above threshold. The calculations indicate that the position of the L- and X-valley minima are ∼1 eV and ∼1.2 eV, respectively, higher in energymore » with respect to the conduction-band minimum at the Γ-point.« less

  2. Amyloid Polymorphism in the Protein Folding and Aggregation Energy Landscape.

    PubMed

    Adamcik, Jozef; Mezzenga, Raffaele

    2018-02-15

    Protein folding involves a large number of steps and conformations in which the folding protein samples different thermodynamic states characterized by local minima. Kinetically trapped on- or off-pathway intermediates are metastable folding intermediates towards the lowest absolute energy minima, which have been postulated to be the natively folded state where intramolecular interactions dominate, and the amyloid state where intermolecular interactions dominate. However, this view largely neglects the rich polymorphism found within amyloid species. We review the protein folding energy landscape in view of recent findings identifying specific transition routes among different amyloid polymorphs. Observed transitions such as twisted ribbon→crystal or helical ribbon→nanotube, and forbidden transitions such helical ribbon↛crystal, are discussed and positioned within the protein folding and aggregation energy landscape. Finally, amyloid crystals are identified as the ground state of the protein folding and aggregation energy landscape. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Size-guided multi-seed heuristic method for geometry optimization of clusters: Application to benzene clusters.

    PubMed

    Takeuchi, Hiroshi

    2018-05-08

    Since searching for the global minimum on the potential energy surface of a cluster is very difficult, many geometry optimization methods have been proposed, in which initial geometries are randomly generated and subsequently improved with different algorithms. In this study, a size-guided multi-seed heuristic method is developed and applied to benzene clusters. It produces initial configurations of the cluster with n molecules from the lowest-energy configurations of the cluster with n - 1 molecules (seeds). The initial geometries are further optimized with the geometrical perturbations previously used for molecular clusters. These steps are repeated until the size n satisfies a predefined one. The method locates putative global minima of benzene clusters with up to 65 molecules. The performance of the method is discussed using the computational cost, rates to locate the global minima, and energies of initial geometries. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  4. Light equation in eclipsing binary CV Boo: third body candidate in elliptical orbit

    NASA Astrophysics Data System (ADS)

    Bogomazov, A. I.; Kozyreva, V. S.; Satovskii, B. L.; Krushevska, V. N.; Kuznyetsova, Y. G.; Ehgamberdiev, S. A.; Karimov, R. G.; Khalikova, A. V.; Ibrahimov, M. A.; Irsmambetova, T. R.; Tutukov, A. V.

    2016-12-01

    A short period eclipsing binary star CV Boo is tested for the possible existence of additional bodies in the system with a help of the light equation method. We use data on the moments of minima from the literature as well as from our observations during 2014 May-July. A variation of the CV Boo's orbital period is found with a period of {≈}75 d. This variation can be explained by the influence of a third star with a mass of {≈}0.4 M_{⊙} in an eccentric orbit with e≈0.9. A possibility that the orbital period changes on long time scales is discussed. The suggested tertiary companion is near the chaotic zone around the central binary, so CV Boo represents an interesting example to test its dynamical evolution. A list of 14 minima moments of the binary obtained from our observations is presented.

  5. Structural study of gold clusters.

    PubMed

    Xiao, Li; Tollberg, Bethany; Hu, Xiankui; Wang, Lichang

    2006-03-21

    Density functional theory (DFT) calculations were carried out to study gold clusters of up to 55 atoms. Between the linear and zigzag monoatomic Au nanowires, the zigzag nanowires were found to be more stable. Furthermore, the linear Au nanowires of up to 2 nm are formed by slightly stretched Au dimers. These suggest that a substantial Peierls distortion exists in those structures. Planar geometries of Au clusters were found to be the global minima till the cluster size of 13. A quantitative correlation is provided between various properties of Au clusters and the structure and size. The relative stability of selected clusters was also estimated by the Sutton-Chen potential, and the result disagrees with that obtained from the DFT calculations. This suggests that a modification of the Sutton-Chen potential has to be made, such as obtaining new parameters, in order to use it to search the global minima for bigger Au clusters.

  6. Hysteretic Vortex-Matching Effects in High-Tc Superconductors with Nanoscale Periodic Pinning Landscapes Fabricated by He Ion-Beam Projection

    NASA Astrophysics Data System (ADS)

    Zechner, G.; Jausner, F.; Haag, L. T.; Lang, W.; Dosmailov, M.; Bodea, M. A.; Pedarnig, J. D.

    2017-07-01

    Square arrays of submicrometer columnar defects in thin YBa2 Cu3 O7 -δ (YBCO) films with spacings down to 300 nm are fabricated by a He ion-beam projection technique. Pronounced peaks in the critical current and corresponding minima in the resistance demonstrate the commensurate arrangement of flux quanta with the artificial pinning landscape, despite the strong intrinsic pinning in epitaxial YBCO films. While these vortex-matching signatures are exactly at the predicted values in field-cooled experiments, they are displaced in zero-field-cooled, magnetic-field-ramped experiments, conserving the equidistance of the matching peaks and minima. These observations reveal an unconventional critical state in a cuprate superconductor with an artificial, periodic pinning array. The long-term stability of such out-of-equilibrium vortex arrangements paves the way for electronic applications employing fluxons.

  7. Acceleration of the Particle Swarm Optimization for Peierls-Nabarro modeling of dislocations in conventional and high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Pei, Zongrui; Eisenbach, Markus

    2017-06-01

    Dislocations are among the most important defects in determining the mechanical properties of both conventional alloys and high-entropy alloys. The Peierls-Nabarro model supplies an efficient pathway to their geometries and mobility. The difficulty in solving the integro-differential Peierls-Nabarro equation is how to effectively avoid the local minima in the energy landscape of a dislocation core. Among the other methods to optimize the dislocation core structures, we choose the algorithm of Particle Swarm Optimization, an algorithm that simulates the social behaviors of organisms. By employing more particles (bigger swarm) and more iterative steps (allowing them to explore for longer time), the local minima can be effectively avoided. But this would require more computational cost. The advantage of this algorithm is that it is readily parallelized in modern high computing architecture. We demonstrate the performance of our parallelized algorithm scales linearly with the number of employed cores.

  8. Alien Genetic Algorithm for Exploration of Search Space

    NASA Astrophysics Data System (ADS)

    Patel, Narendra; Padhiyar, Nitin

    2010-10-01

    Genetic Algorithm (GA) is a widely accepted population based stochastic optimization technique used for single and multi objective optimization problems. Various versions of modifications in GA have been proposed in last three decades mainly addressing two issues, namely increasing convergence rate and increasing probability of global minima. While both these. While addressing the first issue, GA tends to converge to a local optima and addressing the second issue corresponds the large computational efforts. Thus, to reduce the contradictory effects of these two aspects, we propose a modification in GA by adding an alien member in the population at every generation. Addition of an Alien member in the current population at every generation increases the probability of obtaining global minima at the same time maintaining higher convergence rate. With two test cases, we have demonstrated the efficacy of the proposed GA by comparing with the conventional GA.

  9. Dynamical evolution of domain walls in an expanding universe

    NASA Technical Reports Server (NTRS)

    Press, William H.; Ryden, Barbara S.; Spergel, David N.

    1989-01-01

    Whenever the potential of a scalar field has two or more separated, degenerate minima, domain walls form as the universe cools. The evolution of the resulting network of domain walls is calculated for the case of two potential minima in two and three dimensions, including wall annihilation, crossing, and reconnection effects. The nature of the evolution is found to be largely independent of the rate at which the universe expands. Wall annihilation and reconnection occur almost as fast as causality allows, so that the horizon volume is 'swept clean' and contains, at any time, only about one, fairly smooth, wall. Quantitative statistics are given. The total area of wall per volume decreases as the first power of time. The relative slowness of the decrease and the smoothness of the wall on the horizon scale make it impossible for walls to both generate large-scale structure and be consistent with quadrupole microwave background anisotropy limits.

  10. Host-Guest Complexes with Protein-Ligand-Like Affinities: Computational Analysis and Design

    PubMed Central

    Moghaddam, Sarvin; Inoue, Yoshihisa

    2009-01-01

    It has recently been discovered that guests combining a nonpolar core with cationic substituents bind cucurbit[7]uril (CB[7]) in water with ultra-high affinities. The present study uses the Mining Minima algorithm to study the physics of these extraordinary associations and to computationally test a new series of CB[7] ligands designed to bind with similarly high affinity. The calculations reproduce key experimental observations regarding the affinities of ferrocene-based guests with CB[7] and β-cyclodextrin and provide a coherent view of the roles of electrostatics and configurational entropy as determinants of affinity in these systems. The newly designed series of compounds is based on a bicyclo[2.2.2]octane core, which is similar in size and polarity to the ferrocene core of the existing series. Mining Minima predicts that these new compounds will, like the ferrocenes, bind CB[7] with extremely high affinities. PMID:19133781

  11. Accelerated Enveloping Distribution Sampling: Enabling Sampling of Multiple End States while Preserving Local Energy Minima.

    PubMed

    Perthold, Jan Walther; Oostenbrink, Chris

    2018-05-17

    Enveloping distribution sampling (EDS) is an efficient approach to calculate multiple free-energy differences from a single molecular dynamics (MD) simulation. However, the construction of an appropriate reference-state Hamiltonian that samples all states efficiently is not straightforward. We propose a novel approach for the construction of the EDS reference-state Hamiltonian, related to a previously described procedure to smoothen energy landscapes. In contrast to previously suggested EDS approaches, our reference-state Hamiltonian preserves local energy minima of the combined end-states. Moreover, we propose an intuitive, robust and efficient parameter optimization scheme to tune EDS Hamiltonian parameters. We demonstrate the proposed method with established and novel test systems and conclude that our approach allows for the automated calculation of multiple free-energy differences from a single simulation. Accelerated EDS promises to be a robust and user-friendly method to compute free-energy differences based on solid statistical mechanics.

  12. Analyses of bifurcation of reaction pathways on a global reaction route map: A case study of gold cluster Au5

    NASA Astrophysics Data System (ADS)

    Harabuchi, Yu; Ono, Yuriko; Maeda, Satoshi; Taketsugu, Tetsuya

    2015-07-01

    A global reaction route map is generated for Au5 by the anharmonic downward distortion following method in which 5 minima and 14 transition states (TSs) are located. Through vibrational analyses in the 3N - 7 (N = 5) dimensional space orthogonal to the intrinsic reaction coordinate (IRC), along all the IRCs, four IRCs are found to have valley-ridge transition (VRT) points on the way where a potential curvature changes its sign from positive to negative in a direction orthogonal to the IRC. The detailed mechanisms of bifurcations related to the VRTs are discussed by surveying a landscape of the global reaction route map, and the connectivity of VRT points and minima is clarified. Branching of the products through bifurcations is confirmed by ab initio molecular dynamics simulations starting from the TSs. A new feature of the reaction pathways, unification, is found and discussed.

  13. Atomistic simulation of trace element incorporation into garnets - comparison with experimental garnet-melt partitioning data

    NASA Astrophysics Data System (ADS)

    van Westrenen, W.; Allan, N. L.; Blundy, J. D.; Purton, J. A.; Wood, B. J.

    2000-05-01

    We have studied the energetics of trace element incorporation into pure almandine (Alm), grossular (Gros), pyrope (Py) and spessartine (Spes) garnets (X 3Al 2Si 3O 12, with X = Fe, Ca, Mg, Mn respectively), by means of computer simulations of perfect and defective lattices in the static limit. The simulations use a consistent set of interatomic potentials to describe the non-Coulombic interactions between the ions, and take explicit account of lattice relaxation associated with trace element incorporation. The calculated relaxation (strain) energies Urel are compared to those obtained using the Brice (1975) model of lattice relaxation, and the results compared to experimental garnet-melt trace element partitioning data interpreted using the same model. Simulated Urel associated with a wide range of homovalent (Ni, Mg, Co, Fe, Mn, Ca, Eu, Sr, Ba) and charge-compensated heterovalent (Sc, Lu, Yb, Ho, Gd, Eu, Nd, La, Li, Na, K, Rb) substitutions onto the garnet X-sites show a near-parabolic dependence on trace element radius, in agreement with the Brice model. From application of the Brice model we derived apparent X-site Young's moduli EX(1+, 2+, 3+) and the 'ideal' ionic radii r0(1+, 2+, 3+), corresponding to the minima in plots of Urel vs. radius. For both homovalent and heterovalent substitutions r0 increases in the order Py-Alm-Spes-Gros, consistent with crystallographic data on the size of garnet X-sites and with the results of garnet-melt partitioning studies. Each end-member also shows a marked increase in both the apparent EX and r0 with increasing trace element charge ( Zc). The increase in EX is consistent with values obtained by fitting to the Brice model of experimental garnet-melt partitioning data. However, the increase in r0 with increasing Zc is contrary to experimental observation. To estimate the influence of melt on the energetics of trace element incorporation, solution energies ( Usol) were calculated for appropriate exchange reactions between garnet and melt, using binary and other oxides to simulate cation co-ordination environment in the melt. Usol also shows a parabolic dependence on trace element radius, with inter-garnet trends in EX and r0 similar to those found for relaxation energies. However, r0( i+) obtained from minima in plots of Usol vs. radius are located at markedly different positions, especially for heterovalent substitutions ( i = 1, 3). For each end-member garnet, r0 now decreases with increasing Zc, consistent with experiment. Furthermore, although different assumptions for trace element environment in the melt, e.g., REE 3+ (VI) vs. REE 3+ (VIII), lead to parabolae with differing curvatures and minima, relative differences between end-members are always preserved. We conclude that: 1. The simulated variation in r0 and EX between garnets is largely governed by the solid phase. This stresses the overriding influence of crystal local environment on trace element partitioning. 2. Simulations suggest r0 in garnets varies with trace element charge, as experimentally observed. 3. Absolute values of r0 and EX can be influenced by the presence and structure of a coexisting melt. Thus, quantitative relations between r0, E and crystal chemistry should be derived from well-constrained systematic mineral-melt partitioning studies, and cannot be predicted from crystal-structural data alone.

  14. Biosynthesis of lead nanoparticles by the aquatic water fern, Salvinia minima Baker, when exposed to high lead concentration.

    PubMed

    Castro-Longoria, E; Trejo-Guillén, K; Vilchis-Nestor, A R; Avalos-Borja, M; Andrade-Canto, S B; Leal-Alvarado, D A; Santamaría, J M

    2014-02-01

    Salvinia minima Baker is a small floating aquatic fern that is efficient for the removal and storage of heavy metals such as lead and cadmium. In this study, we report that lead removal by S. minima causes large accumulation of lead inside the cells in the form of nanoparticles (PbNPs). The accumulation pattern of lead was analyzed in both, submerged root-like modified fronds (here named "roots"), and in its aerial leaf-like fronds ("leaves"). Analysis by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) confirmed the biosynthesis of PbNPs by the plant. In both, roots and leaves, PbNPs were found to accumulate almost exclusively at the cell wall and closely associated to the cell membrane. Two types of PbNPs shapes were found in cells of both tissues, those associated to the cell wall were quasi-spherical with 17.2±4.2 nm of diameter, while those associated to the cell membrane/cytoplasm were elongated. Elongated particles were 53.7±29.6 nm in length and 11.1±2.4 nm wide. Infrared spectroscopy (IR) results indicate that cellulose, lignin and pectin are the major components that may be acting as the reducing agents for lead ions; these findings strongly suggest the potential use of this fern to further explore the bio-assisted synthesis of heavy metal nanostructures. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Experimental conformational energy maps of proteins and peptides.

    PubMed

    Balaji, Govardhan A; Nagendra, H G; Balaji, Vitukudi N; Rao, Shashidhar N

    2017-06-01

    We have presented an extensive analysis of the peptide backbone dihedral angles in the PDB structures and computed experimental Ramachandran plots for their distributions seen under a various constraints on X-ray resolution, representativeness at different sequence identity percentages, and hydrogen bonding distances. These experimental distributions have been converted into isoenergy contour plots using the approach employed previously by F. M. Pohl. This has led to the identification of energetically favored minima in the Ramachandran (ϕ, ψ) plots in which global minima are predominantly observed either in the right-handed α-helical or the polyproline II regions. Further, we have identified low energy pathways for transitions between various minima in the (ϕ,ψ) plots. We have compared and presented the experimental plots with published theoretical plots obtained from both molecular mechanics and quantum mechanical approaches. In addition, we have developed and employed a root mean square deviation (RMSD) metric for isoenergy contours in various ranges, as a measure (in kcal.mol -1 ) to compare any two plots and determine the extent of correlation and similarity between their isoenergy contours. In general, we observe a greater degree of compatibility with experimental plots for energy maps obtained from molecular mechanics methods compared to most quantum mechanical methods. The experimental energy plots we have investigated could be helpful in refining protein structures obtained from X-ray, NMR, and electron microscopy and in refining force field parameters to enable simulations of peptide and protein structures that have higher degree of consistency with experiments. Proteins 2017; 85:979-1001. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Invertebrate and fish assemblage relations to dissolved Oxygen minima in lowland streams of southwestern Louisiana

    USGS Publications Warehouse

    Justus, B.G.; Mize, Scott V.; Kroes, Daniel; Wallace, James E.

    2012-01-01

    Dissolved oxygen (DO) concentrations in lowland streams are naturally lower than those in upland streams; however, in some regions where monitoring data are lacking, DO criteria originally established for upland streams have been applied to lowland streams. This study investigated the DO concentrations at which fish and invertebrate assemblages at 35 sites located on lowland streams in southwestern Louisiana began to demonstrate biological thresholds.Average threshold values for taxa richness, diversity and abundance metrics were 2.6 and 2.3 mg/L for the invertebrate and fish assemblages, respectively. These thresholds are approximately twice the DO concentration that some native fish species are capable of tolerating and are comparable with DO criteria that have been recently applied to some coastal streams in Louisiana and Texas. DO minima >2.5 mg/L were favoured for all but extremely tolerant taxa. Extremely tolerant taxa had respiratory adaptations that gave them a competitive advantage, and their success when DO minima were <2 mg/L could be related more to reductions in competition or predation than to DO concentration directly.DO generally had an inverse relation to the amount of agriculture in the buffer area; however, DO concentrations at sites with both low and high amounts of agriculture (including three least-disturbed sites) declined to <2.5 mg/L. Thus, although DO fell below a concentration that was identified as an approximate biological threshold, sources of this condition were sometimes natural (allochthonous material) and had little relation to anthropogenic activity.

  17. Psychometric considerations in the measurement of event-related brain potentials: Guidelines for measurement and reporting.

    PubMed

    Clayson, Peter E; Miller, Gregory A

    2017-01-01

    Failing to consider psychometric issues related to reliability and validity, differential deficits, and statistical power potentially undermines the conclusions of a study. In research using event-related brain potentials (ERPs), numerous contextual factors (population sampled, task, data recording, analysis pipeline, etc.) can impact the reliability of ERP scores. The present review considers the contextual factors that influence ERP score reliability and the downstream effects that reliability has on statistical analyses. Given the context-dependent nature of ERPs, it is recommended that ERP score reliability be formally assessed on a study-by-study basis. Recommended guidelines for ERP studies include 1) reporting the threshold of acceptable reliability and reliability estimates for observed scores, 2) specifying the approach used to estimate reliability, and 3) justifying how trial-count minima were chosen. A reliability threshold for internal consistency of at least 0.70 is recommended, and a threshold of 0.80 is preferred. The review also advocates the use of generalizability theory for estimating score dependability (the generalizability theory analog to reliability) as an improvement on classical test theory reliability estimates, suggesting that the latter is less well suited to ERP research. To facilitate the calculation and reporting of dependability estimates, an open-source Matlab program, the ERP Reliability Analysis Toolbox, is presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A solar cycle dependence of nonlinearity in magnetospheric activity

    NASA Astrophysics Data System (ADS)

    Johnson, Jay R.; Wing, Simon

    2005-04-01

    The nonlinear dependencies inherent to the historical Kp data stream (1932-2003) are examined using mutual information and cumulant-based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original Kp data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maxima. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solar minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to 1 week. Because the solar wind driver variables, VBs, and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics, suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.

  19. Accurate representation of B-DNA double helical structure with implicit solvent and counterions.

    PubMed Central

    Wang, Lihua; Hingerty, Brian E; Srinivasan, A R; Olson, Wilma K; Broyde, Suse

    2002-01-01

    High-resolution nuclear magnetic resonance (NMR) and crystallographic data have been taken to refine the force field used in the torsion angle space nucleic acids molecular mechanics program DUPLEX. The population balance deduced from NMR studies of two carcinogen-modified DNA conformers in equilibrium was used to fine tune a sigmoidal, distance-dependent dielectric function so that reasonable relative energies could be obtained. In addition, the base-pair and backbone geometry from high-resolution crystal structures of the Dickerson-Drew dodecamer was used to re-evaluate the deoxyribose pseudorotation profile and the Lennard-Jones nonbonded energy terms. With a modified dielectric function that assumes a very steep distance-dependent form, a deoxyribose pseudorotation profile with reduced energy barriers between C2'- and C3'-endo minima, and a shift of the Lennard-Jones potential energy minimum to a distance approximately 0.4 A greater than the sum of the van der Waals' radii, the sequence-dependent conformational features of the Dickerson-Drew dodecamer in both the solid state and the aqueous liquid crystalline phase are well reproduced. The robust performance of the revised force field, in conjunction with its efficiency through implicit treatment of solvent and counterions, provides a valuable tool for elucidating conformations and structure-function relationships of DNA, including those of molecules modified by carcinogens and other ligands. PMID:12080128

  20. Radiative Heating of the ISCCP Upper Level Cloud Regimes and its Impact on the Large-scale Tropical Circulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Schumacher, Courtney; McFarlane, Sally A.

    2013-01-31

    Radiative heating profiles of the International Satellite Cloud Climatology Project (ISCCP) cloud regimes (or weather states) were estimated by matching ISCCP observations with radiative properties derived from cloud radar and lidar measurements from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) sites at Manus, Papua New Guinea, and Darwin, Australia. Focus was placed on the ISCCP cloud regimes containing the majority of upper level clouds in the tropics, i.e., mesoscale convective systems (MCSs), deep cumulonimbus with cirrus, mixed shallow and deep convection, and thin cirrus. At upper levels, these regimes have average maximum cloud occurrences ranging from 30% tomore » 55% near 12 km with variations depending on the location and cloud regime. The resulting radiative heating profiles have maxima of approximately 1 K/day near 12 km, with equal heating contributions from the longwave and shortwave components. Upper level minima occur near 15 km, with the MCS regime showing the strongest cooling of 0.2 K/day and the thin cirrus showing no cooling. The gradient of upper level heating ranges from 0.2 to 0.4 K/(day∙km), with the most convectively active regimes (i.e., MCSs and deep cumulonimbus with cirrus) having the largest gradient. When the above heating profiles were applied to the 25-year ISCCP data set, the tropics-wide average profile has a radiative heating maximum of 0.45Kday-1 near 250 hPa. Column-integrated radiative heating of upper level cloud accounts for about 20% of the latent heating estimated by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The ISCCP radiative heating of tropical upper level cloud only slightly modifies the response of an idealized primitive equation model forced with the tropics-wide TRMM PR latent heating, which suggests that the impact of upper level cloud is more important to large-scale tropical circulation variations because of convective feedbacks rather than direct forcing by the cloud radiative heating profiles. However, the height of the radiative heating maxima and gradient of the heating profiles are important to determine the sign and patterns of the horizontal circulation anomaly driven by radiative heating at upper levels.« less

  1. First observed roost site of Vervain Hummingbird (mellisuga minima)

    Treesearch

    P.B. Hamel

    2012-01-01

    An observation of a roost site of a male Vervain Hummingbird in the Dominican Republic on 7 November 2010 is the first for this species. The bird chose an entirely exposed position on a very thin twig,

  2. Reconciling Structural and Thermodynamic Predictions Using All-Atom and Coarse-Grain Force Fields: The Case of Charged Oligo-Arginine Translocation into DMPC Bilayers

    PubMed Central

    2015-01-01

    Using the translocation of short, charged cationic oligo-arginine peptides (mono-, di-, and triarginine) from bulk aqueous solution into model DMPC bilayers, we explore the question of the similarity of thermodynamic and structural predictions obtained from molecular dynamics simulations using all-atom and Martini coarse-grain force fields. Specifically, we estimate potentials of mean force associated with translocation using standard all-atom (CHARMM36 lipid) and polarizable and nonpolarizable Martini force fields, as well as a series of modified Martini-based parameter sets. We find that we are able to reproduce qualitative features of potentials of mean force of single amino acid side chain analogues into model bilayers. In particular, modifications of peptide–water and peptide–membrane interactions allow prediction of free energy minima at the bilayer–water interface as obtained with all-atom force fields. In the case of oligo-arginine peptides, the modified parameter sets predict interfacial free energy minima as well as free energy barriers in almost quantitative agreement with all-atom force field based simulations. Interfacial free energy minima predicted by a modified coarse-grained parameter set are −2.51, −4.28, and −5.42 for mono-, di-, and triarginine; corresponding values from all-atom simulations are −0.83, −3.33, and −3.29, respectively, all in units of kcal/mol. We found that a stronger interaction between oligo-arginine and the membrane components and a weaker interaction between oligo-arginine and water are crucial for producing such minima in PMFs using the polarizable CG model. The difference between bulk aqueous and bilayer center states predicted by the modified coarse-grain force field are 11.71, 14.14, and 16.53 kcal/mol, and those by the all-atom model are 6.94, 8.64, and 12.80 kcal/mol; those are of almost the same order of magnitude. Our simulations also demonstrate a remarkable similarity in the structural aspects of the ensemble of configurations generated using the all-atom and coarse-grain force fields. Both resolutions show that oligo-arginine peptides adopt preferential orientations as they translocate into the bilayer. The guiding theme centers on charged groups maintaining coordination with polar and charged bilayer components as well as local water. We also observe similar behaviors related with membrane deformations. PMID:25290376

  3. Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: the case of charged oligo-arginine translocation into DMPC bilayers.

    PubMed

    Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep

    2014-10-16

    Using the translocation of short, charged cationic oligo-arginine peptides (mono-, di-, and triarginine) from bulk aqueous solution into model DMPC bilayers, we explore the question of the similarity of thermodynamic and structural predictions obtained from molecular dynamics simulations using all-atom and Martini coarse-grain force fields. Specifically, we estimate potentials of mean force associated with translocation using standard all-atom (CHARMM36 lipid) and polarizable and nonpolarizable Martini force fields, as well as a series of modified Martini-based parameter sets. We find that we are able to reproduce qualitative features of potentials of mean force of single amino acid side chain analogues into model bilayers. In particular, modifications of peptide-water and peptide-membrane interactions allow prediction of free energy minima at the bilayer-water interface as obtained with all-atom force fields. In the case of oligo-arginine peptides, the modified parameter sets predict interfacial free energy minima as well as free energy barriers in almost quantitative agreement with all-atom force field based simulations. Interfacial free energy minima predicted by a modified coarse-grained parameter set are -2.51, -4.28, and -5.42 for mono-, di-, and triarginine; corresponding values from all-atom simulations are -0.83, -3.33, and -3.29, respectively, all in units of kcal/mol. We found that a stronger interaction between oligo-arginine and the membrane components and a weaker interaction between oligo-arginine and water are crucial for producing such minima in PMFs using the polarizable CG model. The difference between bulk aqueous and bilayer center states predicted by the modified coarse-grain force field are 11.71, 14.14, and 16.53 kcal/mol, and those by the all-atom model are 6.94, 8.64, and 12.80 kcal/mol; those are of almost the same order of magnitude. Our simulations also demonstrate a remarkable similarity in the structural aspects of the ensemble of configurations generated using the all-atom and coarse-grain force fields. Both resolutions show that oligo-arginine peptides adopt preferential orientations as they translocate into the bilayer. The guiding theme centers on charged groups maintaining coordination with polar and charged bilayer components as well as local water. We also observe similar behaviors related with membrane deformations.

  4. TMI Rain Rate Estimation Over Land and Ocean Utilizing Convective and Stratiform Discrimination

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Weinman, J. A.; Dalu, G.

    1999-01-01

    Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometer brightness temperature data in the 85 GHz channel (T85) reveal distinct local minima in a regional map containing a Mesoscale Convective System (MCS). This is because of relatively small footprint size (approximately 5.5 km) and strong extinction properties in this channel of the TMI. A map of rain rate for that region, deduced from simultaneous measurements made by the Precipitation Radar (PR) on board the TRMM satellite, reveals that these T85 minima, produced by scattering, correspond to local PR rain maxima. Utilizing the PR rain rate map as a guide, we infer from TMI data the presence of three different kinds of thunderstorms or Cbs. They are young, mature, and decaying Cbs that have a scale of about 20 km on the average. Two parameters enable us to infer these three kinds of Cbs objectively: a) the magnitude of scattering depression deduced from local T85 minima and b) the mean horizontal gradient of T85 around such minima. Knowing the category of a given Cb, we can estimate the rain rate associated with it. Such estimation is done with the help of relationships linking T85 minimum to rain rate in each Cb type. Similarly, a weak background rain rate in all the areas where T85 is less than 260 K is deduced with another relationship linking T85 to rain rate. In our rain retrieval model, this background rain constitutes the stratiform rain where the Cbs are absent. Initially, these relationships are optimized or tuned utilizing the PR and TMI data of a few MCS events. After such tuning, the model is applied to independent MCS cases. The areal distribution of light (1-10 mm/hr), moderate (10-20 mm/hr), and intense (> 20 mm/hr) rain rates are retrieved satisfactorally. Accuracy in the estimates of the light, moderate and intense rain areas and the mean rain rates associated with such areas in these independent MCS cases is on the average about 15%. Taking advantage of this ability of our retrieval method, one could derive the latent heat input into the atmosphere over the 760 km wide swath of the TMI radiometer in the tropics.

  5. Modeling photoacoustic spectral features of micron-sized particles

    NASA Astrophysics Data System (ADS)

    Strohm, Eric M.; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael C.

    2014-10-01

    The photoacoustic signal generated from particles when irradiated by light is determined by attributes of the particle such as the size, speed of sound, morphology and the optical absorption coefficient. Unique features such as periodically varying minima and maxima are observed throughout the photoacoustic signal power spectrum, where the periodicity depends on these physical attributes. The frequency content of the photoacoustic signals can be used to obtain the physical attributes of unknown particles by comparison to analytical solutions of homogeneous symmetric geometric structures, such as spheres. However, analytical solutions do not exist for irregularly shaped particles, inhomogeneous particles or particles near structures. A finite element model (FEM) was used to simulate photoacoustic wave propagation from four different particle configurations: a homogeneous particle suspended in water, a homogeneous particle on a reflecting boundary, an inhomogeneous particle with an absorbing shell and non-absorbing core, and an irregularly shaped particle such as a red blood cell. Biocompatible perfluorocarbon droplets, 3-5 μm in diameter containing optically absorbing nanoparticles were used as the representative ideal particles, as they are spherical, homogeneous, optically translucent, and have known physical properties. The photoacoustic spectrum of micron-sized single droplets in suspension and on a reflecting boundary were measured over the frequency range of 100-500 MHz and compared directly to analytical models and the FEM. Good agreement between the analytical model, FEM and measured values were observed for a droplet in suspension, where the spectral minima agreed to within a 3.3 MHz standard deviation. For a droplet on a reflecting boundary, spectral features were correctly reproduced using the FEM but not the analytical model. The photoacoustic spectra from other common particle configurations such as particle with an absorbing shell and a biconcave-shaped red blood cell were also investigated, where unique features in the power spectrum could be used to identify them.

  6. A novel analytical solution for estimating aquifer properties within a horizontally anisotropic aquifer bounded by a stream

    NASA Astrophysics Data System (ADS)

    Huang, Yibin; Zhan, Hongbin; Knappett, Peter S. K.

    2018-04-01

    Past studies modeling stream-aquifer interaction commonly account for vertical anisotropy in hydraulic conductivity, but rarely address horizontal anisotropy, which may exist in certain sedimentary environments. If present, horizontal anisotropy will greatly impact stream depletion and the amount of recharge a pumped aquifer captures from the river. This scenario requires a different and somewhat more sophisticated mathematical approach to model and interpret pumping test results than previous models used to describe captured recharge from rivers. In this study, a new mathematical model is developed to describe the spatiotemporal distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model is used to estimate four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. In order to approve the efficacy of the new model, a MATLAB script file is programmed to conduct a four-parameter inversion to estimate the four parameters of concern. By comparing the results of analytical and numerical inversions, the accuracy of estimated results from both inversions is acceptable, but the MATLAB program sometimes becomes problematic because of the difficulty of separating the local minima from the global minima. It appears that the new analytical model of this study is applicable and robust in estimating parameter values for a horizontally anisotropic aquifer laterally bounded by a stream. Besides that, the new model calculates stream depletion rate as a function of stream-bank pumping. Unique to horizontally anisotropic and homogeneous aquifers, the stream depletion rate at any given pumping rate depends closely on the horizontal anisotropy ratio and the direction of the principle transmissivities relative to the stream-bank.

  7. Two-dimensional pH distributions and dynamics in bioturbated marine sediments

    NASA Astrophysics Data System (ADS)

    Zhu, Qingzhi; Aller, Robert C.; Fan, Yanzhen

    2006-10-01

    The seafloor is the site of intense biogeochemical and mineral dissolution-precipitation reactions which generate strong gradients in pH near the sediment-overlying water interface. These gradients are usually measured in one-dimension vertically with depth. Two-dimensional pH distributions in marine sediments were examined at high resolution (65 × 65 μm pixel) and analytical precision over areas of ˜150 to 225 cm 2 using a newly developed pH planar fluorosensor. Dramatic three-dimensional gradients, complex heterogeneity, and dynamic changes of pH occur in the surficial zone of deposits inhabited by macrofauna. pH can vary by ±2 units horizontally as well as vertically over millimeter scales. pH minima zones often form in association with redoxclines within a few millimeters of inner burrow walls, and become more pronounced with time if burrows remain stable and irrigated for extended periods. Microenvironmental pH minima also form locally around decaying biomass and relict burrow tracks, and dissipate with time (˜5 d). H + concentrations and fluxes in sandy mud show complex acid-base reaction distributions with net H + fluxes around burrows up to ˜12 nmol cm -2 d -1 and maximum net reaction rates varying between -90 (consumption) to 120 (production) μM d -1 (˜90 nmol cm -1 d -1 burrow length). Acid producing zones that surround irrigated burrows are largely balanced by acid titration zones along inner burrow walls and outer radial boundaries. The geometry and scaling of pH microenvironments are functions of diagenetic reaction rates and three-dimensional transport patterns determined by sediment properties, such as diffusive tortuosity, and by benthic community characteristics such as the abundance, mobility, and size of infauna. Previously, undocumented biogeochemical phenomena such as low pH regions associated with in-filled relict biogenic structures and burrowing tracks are readily demonstrated by two-dimensional and time-dependent images of pH and sedimentary structure.

  8. A Method to Retrieve Rainfall Rate over Land from TRMM Observations

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.

    2002-01-01

    Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) observations over mesoscale convective systems (MCSs) reveal that there are localized maxima in the rain rate with a scale of about 10 to 20 km that represent thunderstorms (Cbs). Some of these Cbs are developing or intense, while others are decaying or weak. These Cbs constitute only about 20 % of the rain area of a given MCS. Outside of Cbs, the average rain rate is much weaker than that within Cbs. From an analysis of the PR data, we find that the spatial distribution of rain and its character, convective or stratiform, is highly inhomogeneous. This complex nature of rain exists on a scale comparable to that of a Cb. The 85 GHz brightness temperature, T85, observations of the TRMM Microwave Imager (TMI) radiometer taken over an MCS reflect closely the PR rain rate pattern over land. Local maxima in rain rate shown by PR are observed as local minima in T85. Where there are no minima in T85, PR observations indicate there is light rain. However, the TMI brightness temperature measurements (Tbs) have poor ability to discriminate convective rain from stratiform rain. For this reason, a TMI rain retrieval procedure that depends primarily on the magnitude of Tbs performs poorly. In order to retrieve rain rate from TMI data on land one has to include the spatial distribution information deduced from the T85 data in the retrieval method. Then, quantitative estimation of rain rate can be accomplished. A TMI rain retrieval method developed along these lines can yield estimates of rain rate and its frequency distribution which agree closely with that given by PR. We find the current TRMM project TMI (Version 5) rain retrieval algorithm on land could be improved with the retrieval scheme developed here. To support the conceptual frame work of the rain retrieval method developed here, a theoretical analysis of the TMI brightness temperatures in convective and stratiform regions is presented.

  9. Helium as a Dynamical Tracer in the Thermosphere

    NASA Astrophysics Data System (ADS)

    Thayer, J. P.; Liu, X.; Wang, W.; Burns, A. G.

    2014-12-01

    Helium has been a missing constituent in current thermosphere general circulation models. Although typically a minor gas relative to the more abundant major gasses, its unique properties of being chemically inert and light make it an excellent tracer of thermosphere dynamics. Studying helium can help simplify understanding of transport effects. This understanding can then be projected to other gasses whose overall structure and behavior are complex but, by contrasting with helium, can be evaluated for its transport dependencies. The dynamical influences on composition impact estimates of thermosphere mass density, where helium during solar minima can have a direct contribution, as well as ionosphere electron density. Furthermore, helium estimates in the upper thermosphere during solar minima have not been observed since the 1976 minimum. Indirect estimates of helium in the upper thermosphere during the recent extreme solar minimum indicates winter-time helium concentrations exceeded NRL-MSISE00 estimates by 30%-70% during periods of quiet geomagnetic activity. For times of active geomagnetic conditions, helium concentrations near ~450 km altitude are estimated to decrease while oxygen concentrations increase. An investigation of the altitude structure in thermosphere mass density storm-time perturbations reveal the important effects of composition change with maximum perturbation occurring near the He/O transition region and a much weaker maximum occurring near the O/N2 transition region. However, evaluating helium behavior and its role as a dynamical tracer is not straightforward and model development is necessary to adequately establish the connection to specific dynamical processes. Fortunately recent efforts have led to the implementation of helium modules in the NCAR TIEGCM and TIME-GCM. In this invited talk, the simulated helium behavior and structure will be shown to reproduce observations (such as the wintertime helium bulge and storm-time response) and its utility as a dynamical tracer of thermosphere dynamics will be elucidated.

  10. Tracking polypeptide folds on the free energy surface: effects of the chain length and sequence.

    PubMed

    Brukhno, Andrey V; Ricchiuto, Piero; Auer, Stefan

    2012-07-26

    Characterization of the folding transition in polypeptides and assessing the thermodynamic stability of their structured folds are of primary importance for approaching the problem of protein folding. We use molecular dynamics simulations for a coarse grained polypeptide model in order to (1) obtain the equilibrium conformation diagram of homopolypeptides in a broad range of the chain lengths, N = 10, ..., 100, and temperatures, T (in a multicanonical ensemble), and (2) determine free energy profiles (FEPs) projected onto an optimal, so-called "natural", reaction coordinate that preserves the height of barriers and the diffusion coefficients on the underlying free energy hyper-surface. We then address the following fundamental questions. (i) How well does a kinetically determined free energy landscape of a single chain represent the polypeptide equilibrium (ensemble) behavior? In particular, under which conditions might the correspondence be lost, and what are the possible implications for the folding processes? (ii) How does the free energy landscape depend on the chain length (homopolypeptides) and the monomer interaction sequence (heteropolypeptides)? Our data reveal that at low T values equilibrium structures adopted by relatively short homopolypeptides (N < 60) are dominated by α-helical folds which correspond to the primary and secondary minima of the FEP. In contrast, longer homopolypeptides (N > 70), upon quasi-equilibrium cooling, fold preferentially in β-bundles with small helical portions, while the FEPs exhibit no distinct global minima. Moreover, subject to the choice of the initial configuration, at sufficiently low T, essentially metastable structures can be found and prevail far from the true thermodynamic equilibrium. We also show that, by sequence-enabling the polypeptide model, it is possible to restrict the chain to a very specific part of the configuration space, which results in substantial simplification and smoothing of the free energy landscape as compared to the case of the corresponding homopolypeptide.

  11. Solar Variability Controls on Rainfall in the Last Millennia: Evidence from a Highly Resolved Stalagmite Record from DeSoto Caverns (USA)

    NASA Astrophysics Data System (ADS)

    Aharon, P.; Lambert, W.; Hellstrom, J.

    2009-12-01

    Moisture transport from the Gulf of Mexico (GOM) inland has a considerable influence on both regional and continental rainfall patterns. Recent episodes of drought in the Southeastern USA exposed the vulnerability of the regional infrastructure to climate changes and gave rise to inter-state “water wars”. In order to better understand the cause of these periodic droughts and their controlling climate factors we have initiated a study of stalagmites from the DeSoto Caverns (Alabama, USA) that intersect the moisture flow from GOM. Combination of unusually high growth rates (up to 2 mm/decade), prominent dark and light seasonal layers, pristine aragonite mineralogy, precise U/Th dates acquired from mg-size samples and tight sampling (n=195) afforded generation of biannual (δ18O and δ13C of exceptional clarity spanning the last 700 yrs. The stalagmite (DSSG1) top yields isotope values (δ18O=-5.5 per-mill VPDB; δ13C=-10.1 per-mill VPDB) that are in good agreement with the predicted equilibrium isotope values. The oxygen and carbon isotope records exhibit a number of alternating negative and positive phase changes of

  12. On the Horn Effect of a Tyre/road Interface, Part i: Experiment and Computation

    NASA Astrophysics Data System (ADS)

    Graf, R. A. G.; Kuo, C.-Y.; Dowling, A. P.; Graham, W. R.

    2002-09-01

    Near the tyre/road contact area, the road surface and the tyre belt form a horn-like geometry, which provides a significant amplification mechanism for sound sources. Measurements have been carried out on a stationary tyre placed on a plane surface in an otherwise anechoic chamber. Following the reciprocal theorem a microphone was placed in the road surface near the contact patch and a white noise source was used in the far field. The amplification by the horn effect can then be determined as a function of frequency for an array of microphone positions relative to the contact patch and the centre of the tyre. These experimental measurements show that the horn effect is responsible for about 10-20dB increase in noise level. The amplification function shows a distinct interference pattern for higher frequencies and is independent of the longitudinal source position for low frequencies and source positions close to the contact patch. Numerical calculations using the indirect boundary element method have been carried out. These show excellent agreement with the measurements in the frequency regime of the BEM, i.e., up to 2500 Hz. The dependence of the horn effect on primary geometrical parameters such as the effect of the radius of curvature of the shoulders, the load and the width of the tyre has been investigated experimentally and numerically. The broad features of the horn effect are given by the cylindrical geometry of the tyre. The rounded edges of the tyre tend to increase the levels of the minima and shift them to higher frequencies, while slightly decreasing the levels of the maxima. Shape variations due to load can be accounted for by correcting the source distance to the edge of the formed contact patch. The amplification at low frequencies increases with width, the results collapsing onto a single curve as a function of the dimensionless width ω / λ.

  13. Empirical analysis of electromagnetic profiles for groundwater prospecting in rural areas of Ibadan, southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Ehinola, O. A.; Opoola, A. O.; Adesokan, H. A.

    2006-04-01

    The Slingram electromagnetic (EM) survey using a coil separation of 60 and 100 m was carried out in ten villages in the Akinyele area of Ibadan, southwestern Nigeria to aid in the development of groundwater. Five main rock types including an undifferentiated gneiss complex (Su), biotite-garnet schist/gneiss (Bs), quartzite and quartz schist (Q), migmatized undifferentiated biotite/hornblende gneiss (M) and pegmatite/quartz vein (P) underlie the study area. A total of 31 EM profiles was made to accurately locate prospective borehole sites in the field. Four main groups with different behavioural patterns were categorized from the EM profiles. Group 1 is characterized by a high density of positive (HDP) or a high density of negative (HDN) real and imaginary curves, Group 2 by parallel real and imaginary curves intersecting with negligible amplitude (PNA), Group 3 by frequent intersection of a high density of negative minima (FHN) real and imaginary curves, and Group 4 by separate and approximately parallel (SAP) real and imaginary curves. Qualitative pictures of the overburden thickness and the extent of fracturing have been proposed from these behavioural patterns. A comparison of the borehole yield with the overburden thickness and the level of fracturing shows that the borehole yield depends more on the fracture density than on the overburden thickness. The asymmetry of the anomaly was also found to be useful in the determination of the inclination of the conductor/fracture.

  14. Ab initio calculation of potential energy surfaces for the three lowest triplet states (1 3A'',1 3A,2 3A'') of PH(X,A)-He

    NASA Astrophysics Data System (ADS)

    Kolczewski, Ch.; Fink, K.; Staemmler, V.; Neitsch, L.

    1997-05-01

    Quantum chemical ab initio calculations at the complete active space SCF level and with inclusion of correlation effects have been performed for the potential energy surfaces of PH in its X 3Σ- ground state and its first excited triplet state, A 3Π, colliding with He atoms. The PH distance was fixed at its experimental value (of the A 3Π state), the PH-He distance and the HePH angle were varied. All three potential energy surfaces [1 3A'' for PH(X)-He and 1 3A,2 3A'' for the two components of PH(A)-He] are purely repulsive, except for very shallow van der Waals minima with well depths of about 15-40 cm-1. The interaction potentials decay approximately exponentially with increasing PH-He distance and show large angular anisotropies. Legendre expansions for the angular dependence of the potential surfaces converge slowly for V(1 3A'') and the sum potential 1/2[V(2 3A'')+V(1 3A)], but rapidly for the corresponding difference potential 1/2[V(2 3A'')-V(1 3A)]. The present PH(A)-He potentials have been used in the companion paper by Neitsch et al. [J. Chem. Phys. 106, 7642 (1997)], for the calculation of thermal state-to-state rate constants for inelastic PH(A)-He collisions.

  15. Enhanced sampling techniques in molecular dynamics simulations of biological systems.

    PubMed

    Bernardi, Rafael C; Melo, Marcelo C R; Schulten, Klaus

    2015-05-01

    Molecular dynamics has emerged as an important research methodology covering systems to the level of millions of atoms. However, insufficient sampling often limits its application. The limitation is due to rough energy landscapes, with many local minima separated by high-energy barriers, which govern the biomolecular motion. In the past few decades methods have been developed that address the sampling problem, such as replica-exchange molecular dynamics, metadynamics and simulated annealing. Here we present an overview over theses sampling methods in an attempt to shed light on which should be selected depending on the type of system property studied. Enhanced sampling methods have been employed for a broad range of biological systems and the choice of a suitable method is connected to biological and physical characteristics of the system, in particular system size. While metadynamics and replica-exchange molecular dynamics are the most adopted sampling methods to study biomolecular dynamics, simulated annealing is well suited to characterize very flexible systems. The use of annealing methods for a long time was restricted to simulation of small proteins; however, a variant of the method, generalized simulated annealing, can be employed at a relatively low computational cost to large macromolecular complexes. Molecular dynamics trajectories frequently do not reach all relevant conformational substates, for example those connected with biological function, a problem that can be addressed by employing enhanced sampling algorithms. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Spatio-Temporal Variability of Groundwater Storage in India

    NASA Technical Reports Server (NTRS)

    Bhanja, Soumendra; Rodell, Matthew; Li, Bailing; Mukherjee, Abhijit

    2016-01-01

    Groundwater level measurements from 3907 monitoring wells, distributed within 22 major river basins of India, are assessed to characterize their spatial and temporal variability. Ground water storage (GWS) anomalies (relative to the long-term mean) exhibit strong seasonality, with annual maxima observed during the monsoon season and minima during pre-monsoon season. Spatial variability of GWS anomalies increases with the extent of measurements, following the power law relationship, i.e., log-(spatial variability) is linearly dependent on log-(spatial extent).In addition, the impact of well spacing on spatial variability and the power law relationship is investigated. We found that the mean GWS anomaly sampled at a 0.25 degree grid scale closes to unweighted average over all wells. The absolute error corresponding to each basin grows with increasing scale, i.e., from 0.25 degree to 1 degree. It was observed that small changes in extent could create very large changes in spatial variability at large grid scales. Spatial variability of GWS anomaly has been found to vary with climatic conditions. To our knowledge, this is the first study of the effects of well spacing on groundwater spatial variability. The results may be useful for interpreting large scale groundwater variations from unevenly spaced or sparse groundwater well observations or for siting and prioritizing wells in a network for groundwater management. The output of this study could be used to maintain a cost effective groundwater monitoring network in the study region and the approach can also be used in other parts of the globe.

  17. Ar(n)HF van der Waals clusters revisited: II. Energetics and HF vibrational frequency shifts from diffusion Monte Carlo calculations on additive and nonadditive potential-energy surfaces for n=1-12.

    PubMed

    Jiang, Hao; Xu, Minzhong; Hutson, Jeremy M; Bacić, Zlatko

    2005-08-01

    The ground-state energies and HF vibrational frequency shifts of Ar(n)HF clusters have been calculated on the nonadditive potential-energy surfaces (PESs) for n=2-7 and on the pairwise-additive PESs for the clusters with n=1-12, using the diffusion Monte Carlo (DMC) method. For n>3, the calculations have been performed for the lowest-energy isomer and several higher-lying isomers which are the closest in energy. They provide information about the isomer dependence of the HF redshift, and enable direct comparison with the experimental data recently obtained in helium nanodroplets. The agreement between theory and experiment is excellent, in particular, for the nonadditive DMC redshifts. The relative, incremental redshifts are reproduced accurately even at the lower level of theory, i.e., the DMC and quantum five-dimensional (rigid Ar(n)) calculations on the pairwise-additive PESs. The nonadditive interactions make a significant contribution to the frequency shift, on the order of 10%-12%, and have to be included in the PESs in order for the theory to yield accurate magnitude of the HF redshift. The energy gaps between the DMC ground states of the cluster isomers are very different from the energy separation of their respective minima on the PES, due to the considerable variations in the intermolecular zero-point energy of different Ar(n)HF isomers.

  18. Spatio-temporal variability of groundwater storage in India.

    PubMed

    Bhanja, Soumendra N; Rodell, Matthew; Li, Bailing; Mukherjee, Abhijit

    2017-01-01

    Groundwater level measurements from 3907 monitoring wells, distributed within 22 major river basins of India, are assessed to characterize their spatial and temporal variability. Groundwater storage (GWS) anomalies (relative to the long-term mean) exhibit strong seasonality, with annual maxima observed during the monsoon season and minima during pre-monsoon season. Spatial variability of GWS anomalies increases with the extent of measurements, following the power law relationship, i.e., log-(spatial variability) is linearly dependent on log-(spatial extent). In addition, the impact of well spacing on spatial variability and the power law relationship is investigated. We found that the mean GWS anomaly sampled at a 0.25 degree grid scale closes to unweighted average over all wells. The absolute error corresponding to each basin grows with increasing scale, i.e., from 0.25 degree to 1 degree. It was observed that small changes in extent could create very large changes in spatial variability at large grid scales. Spatial variability of GWS anomaly has been found to vary with climatic conditions. To our knowledge, this is the first study of the effects of well spacing on groundwater spatial variability. The results may be useful for interpreting large scale groundwater variations from unevenly spaced or sparse groundwater well observations or for siting and prioritizing wells in a network for groundwater management. The output of this study could be used to maintain a cost effective groundwater monitoring network in the study region and the approach can also be used in other parts of the globe.

  19. Tetrel bond of pseudohalide anions with XH3F (X = C, Si, Ge, and Sn) and its role in SN2 reaction

    NASA Astrophysics Data System (ADS)

    Liu, Mingxiu; Li, Qingzhong; Cheng, Jianbo; Li, Wenzuo; Li, Hai-Bei

    2016-12-01

    The complexes of XH3F⋯ N3-/OCN-/SCN- (X = C, Si, Ge, and Sn) have been investigated at the MP2/aug-cc-pVTZ(PP) level. The σ-hole of X atom in XH3F acts as a Lewis acid forming a tetrel bond with pseudohalide anions. Interaction energies of these complexes vary from -8 to -50 kcal/mol, mainly depending on the nature of X and pseudohalide anions. Charge transfer from N/O/S lone pair to X-F and X-H σ* orbitals results in the stabilization of these complexes, and the former orbital interaction is responsible for the large elongation of X-F bond length and the remarkable red shift of its stretch vibration. The tetrel bond in the complexes of XH3F (X = Si, Ge, and Sn) exhibits a significant degree of covalency with XH3F distorted significantly in these complexes. A breakdown of the individual forces involved attributes the stability of the interaction to mainly electrostatic energy, with a relatively large contribution from polarization. The transition state structures that connect the two minima for CH3Br⋯ N3-complexhave been localized and characterized. The energetic, geometrical, and topological parameters of the complexes were analyzed in the different stages of the SN2 reaction N3- + CH3Br → Br- + CH3N3.

  20. Tetrel bond of pseudohalide anions with XH3F (X = C, Si, Ge, and Sn) and its role in SN2 reaction.

    PubMed

    Liu, Mingxiu; Li, Qingzhong; Cheng, Jianbo; Li, Wenzuo; Li, Hai-Bei

    2016-12-14

    The complexes of XH 3 F⋯N 3 - /OCN - /SCN - (X = C, Si, Ge, and Sn) have been investigated at the MP2/aug-cc-pVTZ(PP) level. The σ-hole of X atom in XH 3 F acts as a Lewis acid forming a tetrel bond with pseudohalide anions. Interaction energies of these complexes vary from -8 to -50 kcal/mol, mainly depending on the nature of X and pseudohalide anions. Charge transfer from N/O/S lone pair to X-F and X-H σ * orbitals results in the stabilization of these complexes, and the former orbital interaction is responsible for the large elongation of X-F bond length and the remarkable red shift of its stretch vibration. The tetrel bond in the complexes of XH 3 F (X = Si, Ge, and Sn) exhibits a significant degree of covalency with XH 3 F distorted significantly in these complexes. A breakdown of the individual forces involved attributes the stability of the interaction to mainly electrostatic energy, with a relatively large contribution from polarization. The transition state structures that connect the two minima for CH 3 Br⋯N 3 - complex have been localized and characterized. The energetic, geometrical, and topological parameters of the complexes were analyzed in the different stages of the S N 2 reaction N 3 - + CH 3 Br → Br - + CH 3 N 3 .

  1. Contralateral acoustic stimulation alters the magnitude and phase of distortion product otoacoustic emissions.

    PubMed

    Deeter, Ryan; Abel, Rebekah; Calandruccio, Lauren; Dhar, Sumitrajit

    2009-11-01

    Activation of medial olivocochlear efferents through contralateral acoustic stimulation (CAS) has been shown to modulate distortion product otoacoustic emission (DPOAE) level in various ways (enhancement, reduction, or no change). The goal of this study was to investigate the effect of a range of CAS levels on DPOAE fine structure. The 2f(1)-f(2) DPOAE was recorded (f(2)/f(1)=1.22, L(1)=55 dB, and L(2)=40 dB) from eight normal-hearing subjects, using both a frequency-sweep paradigm and a fixed frequency paradigm. Contamination due to the middle ear muscle reflex was avoided by monitoring the magnitude and phase of a probe in the test ear and by monitoring DPOAE stimulus levels throughout testing. Results show modulations in both level and frequency of DPOAE fine structure patterns. Frequency shifts observed at DPOAE level minima could explain reports of enhancement in DPOAE level due to efferent activation. CAS affected the magnitude and phase of the DPOAE component from the characteristic frequency region to a greater extent than the component from the overlap region between the stimulus tones. This differential effect explains the occasional enhancement observed in DPOAE level as well as the frequency shift in fine structure patterns.

  2. Long-term trends in ozone in baseline and European regionally-polluted air at Mace Head, Ireland over a 30-year period

    NASA Astrophysics Data System (ADS)

    Derwent, Richard G.; Manning, Alistair J.; Simmonds, Peter G.; Spain, T. Gerard; O'Doherty, Simon

    2018-04-01

    Observations of surface ozone, O3, have been made at the Mace Head Atmospheric Research Station on the North Atlantic Ocean coastline of Ireland over a 30-year period from April 1987 through to April 2017. Using meteorological analyses and a sophisticated Lagrangian dispersion model, the hourly observations have been sorted by air mass histories to separate out the observations for northern hemisphere mid-latitude baseline air masses. Monthly average baseline levels showed a pronounced seasonal cycle with spring maxima and summer minima. Baseline levels have shown an increase during the 1980s and 1990s which has been stronger in the winter and spring and weaker in the summer. The rate of this increase has slowed to the extent that baseline levels have been relatively constant through the 2000s and started to decline in 2010s. The unsorted O3 data has shown different long-term trends from the baseline data because of the influence of European regional NOx and VOC emissions which have reduced wintertime O3 levels below the baseline levels and enhanced summertime O3 levels above them. Episodic peak O3 levels have declined steadily during the study period but 50 ppb 1 h exceedances are likely to continue for the foreseeable future.

  3. Mass spectrometric and theoretical investigation of sulfate clusters in nanoscale water droplets

    NASA Astrophysics Data System (ADS)

    Lemke, K.

    2017-12-01

    The solvation of sulfate clusters of varying size and charge in water clusters and in nanoscale water droplets has been studied using electrospray ionization (ESI) FT-MS and density functional theory (DFT) molecular simulations. ESI mass spectra of solvated [Mg(MgSO4)m]2+(H2O)n with m≤10 and up to 15 water molecules have been recorded, and ion cluster experiments have been undertaken using a custom-modified FT-ICR mass spectrometer with the ability of IRMPD for ion dissociation. We present equilibrium geometries and energies for [Mg(MgSO4)m]2+(H2O)n, water-free and solvated with up to 100 water molecules, using swarm-based optimizers and DFT level calculations. Dominant cluster species identified following ESI of dilute (1-5 mM) MgSO4 solutions include hexa- and octa-nuclear magnesium sulfate ions, water-free and with a full first shell of water molecules. The largest clusters identified are magnesium sulfate decamers, i.e. [Mg(MgSO4)10]2+(H2O)n, with n≤15. As a very first step towards understanding the distribution and intensity of ESI ion mass spectra, we have identified the global minima of [Mg(MgSO4)m]2+(H2O)n with m≤10 and n≤100, and located likely global minima of magnesium sulfate clusters in the gas phase and in nano-scale water droplets. We will present a summary of the structural and energetic trends of solvated magnesium sulfate clusters, with a particular focus on structural transitions induced by cluster growth and solvation, the occurrence of "magic" number cluster species, their energetic properties and their potential role as atmospheric aqueous species.

  4. CH(X2∏, a4∑-) ... OH2 and CH2(X˜3B1, ã1A1) ... OH2 interactions. A first principles investigation

    NASA Astrophysics Data System (ADS)

    Tzeli, Demeter; Mavridis, Aristides

    We have investigated the interaction of the methylidene, CH(X2∏, a4∑-) and methylene, CH2(X˜3B1, ã1A1) with H2O, employing the (P)MPn (n = 2, 4) techniques in conjunction with the sequence of correlation consistent basis sets aug-cc-pVxZ, x = 2, 3, and 4. For the CH ... OH2 system, we have located four minima (m) and three transition states (ts) and for the CH2 ... OH2, five minima and four transition states. All our results have been corrected for zero-point energy (ZPE) and basis set superposition errors (BSSE), while for the most important m_ structures, we report complete basis set (CBS) interaction limits. We also report fully optimized geometries, harmonic frequencies, dipole moments, Mulliken charges, and potential energy curves. The highest CH(X2∏) ... OH2 (m1_2∏) and CH2(ã1A1) ... OH2 (m1_1A1) interactions are the result of electron transfer from the oxygen atom to the empty pπ orbitals of CH(X2∏) and CH2(ã1A1), respectively (ylide-like structures). At the (P)MP4/AQZ//MP2/ATZ level, including ZPE, BSSE, and CBS extrapolation, we obtain ΔE0(BSSE)+CBS = -9.36 kcal/mol at rC ... O = 1.752 Å, and -9.73 kcal/mol at rC ... O = 1.741 Å for the m1_2∏ and m1_1A1, respectively.

  5. A discussion of the links between solar variability and high-storm-surge events in Venice

    NASA Astrophysics Data System (ADS)

    Barriopedro, David; GarcíA-Herrera, Ricardo; Lionello, Piero; Pino, Cosimo

    2010-07-01

    This study explores the long-term frequency variability of high-surge events (HSEs) in the North Adriatic, the so-called acqua alta, which, particularly during autumn, cause flooding of the historical city center of Venice. The period 1948-2008, when hourly observations of sea level are available, is considered. The frequency of HSEs is correlated with the 11 year solar cycle, solar maxima being associated with a significant increase in the October-November-December HSE frequency. The seasonal geopotential height pattern at 1000 hPa (storm surge pattern; SSP) associated with the increased frequency of HSEs is identified for the whole time period and found to be similar to the positive phase of the main variability mode of the regional atmospheric circulation (empirical orthogonal function 1; EOF1). However, further analysis indicates that solar activity modulates the spatial patterns of the atmospheric circulation (EOF) and the favorable conditions for HSE occurrence (SSP). Under solar maxima, the occurrence of HSEs is enhanced by the main mode of regional atmospheric variability, namely, a large-scale wave train pattern that is symptomatic of storm track paths over northern Europe. Solar minima reveal a substantially different and less robust SSP, consisting of a meridionally oriented dipole with a preferred southward path of storm track activity, which is not associated with any dominant mode of atmospheric variability during low-solar periods. It is concluded that solar activity plays an indirect role in the frequency of HSEs by modulating the spatial patterns of the main modes of atmospheric regional variability, the favorable patterns for HSE occurrence, and their mutual relationships, so that constructive interaction between them is enhanced during solar maxima and inhibited in solar minima.

  6. Jan Hudde and the Quotient Rule before Newton and Leibniz

    ERIC Educational Resources Information Center

    Curtin, Daniel J.

    2005-01-01

    This article describes some of the work of Jan Hudde who anticipated some results of calculus. Prior to a career as a Burgomaster of Amsterdam, Hudde engaged in mathematics. His method of finding maxima and minima is especially interesting.

  7. The use of plastic debris as nesting material by a colonial seabird and associated entanglement mortality.

    PubMed

    Votier, Stephen C; Archibald, Kirsten; Morgan, Greg; Morgan, Lisa

    2011-01-01

    Entanglement with plastic debris is a major cause of mortality in marine taxa, but the population-level consequences are unknown. Some seabirds collect marine debris for nesting material, which may lead to entanglement. Here we investigate the use of plastics as nesting material by northern gannets Morus bassanus and assess the associated levels of mortality. On average gannet nests contained 469.91 g (range 0-1293 g) of plastic, equating to an estimated colony total of 18.46 tones (range 4.47-42.34 tones). The majority of nesting material was synthetic rope, which appears to be used preferentially. On average 62.85 ± 26.84 (range minima 33-109) birds were entangled each year, totalling 525 individuals over eight years, the majority of which were nestlings. Although mortality rates are high, they are unlikely to have population-level effects. The use of synthetic fibres as nesting material is a common strategy among seabirds, but the impacts of entanglement warrants further investigation. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  8. Hyperspherical nuclear motion of H3 + and D3 + in the electronic triplet state, a 3Sigmau +.

    PubMed

    Ferreira, Tiago Mendes; Alijah, Alexander; Varandas, António J C

    2008-02-07

    The potential energy surface of H(3) (+) in the lowest electronic triplet state, a (3)Sigma(u) (+), shows three equivalent minima at linear nuclear configurations. The vibrational levels of H(3) (+) and D(3) (+) on this surface can therefore be described as superimposed linear molecule states. Owing to such a superposition, each vibrational state characterized by quantum numbers of an isolated linear molecule obtains a one- and a two-dimensional component. The energy splittings between the two components have now been rationalized within a hyperspherical picture. It is shown that nuclear motion along the hyperangle phi mainly accounts for the splittings and provides upper bounds. This hyperspherical motion can be considered an extension of the antisymmetric stretching motion of the individual linear molecule.

  9. Rotational spectrum of 1,1-difluoroethane-argon: influence of the interaction with the Ar atom on the V 3 barrier to internal rotation of the methyl group

    NASA Astrophysics Data System (ADS)

    Velino, Biagio; Melandri, Sonia; Favero, Paolo G.; Dell'Erba, Adele; Caminati, Walther

    2000-01-01

    The free-jet millimeter-wave absorption spectrum of 1,1-difluoroethane-Ar is reported. Most of the measured lines are split due to internal rotation of the methyl group and the tunnelling motion of Ar connecting two equivalent potential energy minima. The Ar atom, close to the CHF 2 group, eclipses one of the methylic hydrogens in the symmetryless geometry of the complex, reducing in this way the barrier to the internal rotation of the methyl group with respect to isolated 1,1-difluoroethane. For high J levels the distance of Ar from the molecule increases, however, due to the centrifugal distortion, and the barrier increases towards the value for 1,1-difluoroethane.

  10. Relativistic effects in the photoionization of hydrogen-like ions with screened Coulomb interaction

    NASA Astrophysics Data System (ADS)

    Xie, L. Y.; Wang, J. G.; Janev, R. K.

    2014-06-01

    The relativistic effects in the photoionization of hydrogen-like ion with screened Coulomb interaction of Yukawa type are studied for a broad range of screening lengths and photoelectron energies. The bound and continuum wave functions have been determined by solving the Dirac equation. The study is focused on the relativistic effects manifested in the characteristic features of photoionization cross section for electric dipole nl →ɛ,l±1 transitions: shape resonances, Cooper minima and cross section enhancements due to near-zero-energy states. It is shown that the main source of relativistic effects in these cross section features is the fine-structure splitting of bound state energy levels. The relativistic effects are studied in the photoionization of Fe25+ ion, as an example.

  11. Asymptotic form of the charge exchange cross section in the three body rearrangement collisions

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1975-01-01

    A three body general rearrangement collision is considered where the initial and final bound states are described by the hydrogen-like wave functions. Mathematical models are developed to establish the relationships of quantum number, the reduced mass, and the nuclear charge of the final state. It is shown that for the low lying levels, the reciprocal of n cubed scaling law at all incident energies is only approximately satisfied. The case of the symmetric collisions is considered and it is shown that for high n and high incident energy, E, the cross section behaves as the reciprocal of E cubed. Zeros and minima in the differential cross sections in the limit of high n for protons on atomic hydrogen and positrons on atomic hydrogen are given.

  12. Relativistic effects in the photoionization of hydrogen-like ions with screened Coulomb interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, L. Y.; Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009-26, Beijing 100088; Wang, J. G.

    2014-06-15

    The relativistic effects in the photoionization of hydrogen-like ion with screened Coulomb interaction of Yukawa type are studied for a broad range of screening lengths and photoelectron energies. The bound and continuum wave functions have been determined by solving the Dirac equation. The study is focused on the relativistic effects manifested in the characteristic features of photoionization cross section for electric dipole nl→ε,l±1 transitions: shape resonances, Cooper minima and cross section enhancements due to near-zero-energy states. It is shown that the main source of relativistic effects in these cross section features is the fine-structure splitting of bound state energy levels.more » The relativistic effects are studied in the photoionization of Fe{sup 25+} ion, as an example.« less

  13. Superposed epoch analysis and storm statistics from 25 years of the global geomagnetic disturbance index, USGS-Dst

    USGS Publications Warehouse

    Gannon, J.L.

    2012-01-01

    Statistics on geomagnetic storms with minima below -50 nanoTesla are compiled using a 25-year span of the 1-minute resolution disturbance index, U.S. Geological Survey Dst. A sudden commencement, main phase minimum, and time between the two has a magnitude of 35 nanoTesla, -100 nanoTesla, and 12 hours, respectively, at the 50th percentile level. The cumulative distribution functions for each of these features are presented. Correlation between sudden commencement magnitude and main phase magnitude is shown to be low. Small, medium, and large storm templates at the 33rd, 50th, and 90th percentile are presented and compared to real examples. In addition, the relative occurrence of rates of change in Dst are presented.

  14. Localization or tunneling in asymmetric double-well potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Dae-Yup, E-mail: dsong@sunchon.ac.kr

    An asymmetric double-well potential is considered, assuming that the wells are parabolic around the minima. The WKB wave function of a given energy is constructed inside the barrier between the wells. By matching the WKB function to the exact wave functions of the parabolic wells on both sides of the barrier, for two almost degenerate states, we find a quantization condition for the energy levels which reproduces the known energy splitting formula between the two states. For the other low-lying non-degenerate states, we show that the eigenfunction should be primarily localized in one of the wells with negligible magnitude inmore » the other. Using Dekker’s method (Dekker, 1987), the present analysis generalizes earlier results for weakly biased double-well potentials to systems with arbitrary asymmetry.« less

  15. Dynamic generation and coherent control of beating stationary light pulses by a microwave coupling field in five-level cold atoms

    NASA Astrophysics Data System (ADS)

    Bao, Qian-Qian; Zhang, Yan; Cui, Cui-Li; Meng, Shao-Ying; Fang, You-Wei; Tian, Xue-Dong

    2018-04-01

    We propose an efficient scheme for generating and controlling beating stationary light pulses in a five-level atomic sample driven into electromagnetically induced transparency condition. This scheme relies on an asymmetrical procedure of light storage and retrieval tuned by two counter-propagating control fields where an additional coupling field, such as the microwave field, is introduced in the retrieval stage. A quantum probe field, incident upon such an atomic sample, is first transformed into spin coherence excitation of the atoms and then retrieved as beating stationary light pulses exhibiting a series of maxima and minima in intensity due to the alternative constructive and destructive interference. It is convenient to control the beating stationary light pulses just by manipulating the intensity and detuning of the additional microwave field. This interesting phenomenon involves in fact the coherent manipulation of dark-state polaritons and could be explored to achieve the efficient temporal splitting of stationary light pulses and accurate measurement of the microwave intensity.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hormain, Laureline; Monnerville, Maurice, E-mail: maurice.monnerville@univ-lille1.fr; Toubin, Céline

    The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl{sub 2} molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl{sub 2} − H{sub 2}O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by themore » comparison of ab initio results of Cl{sub 2} interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl{sub 2} on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results.« less

  17. Regulation of Auxin Homeostasis and Gradients in Arabidopsis Roots through the Formation of the Indole-3-Acetic Acid Catabolite 2-Oxindole-3-Acetic Acid[C][W][OPEN

    PubMed Central

    Pěnčík, Aleš; Simonovik, Biljana; Petersson, Sara V.; Henyková, Eva; Simon, Sibu; Greenham, Kathleen; Zhang, Yi; Kowalczyk, Mariusz; Estelle, Mark; Zažímalová, Eva; Novák, Ondřej; Sandberg, Göran; Ljung, Karin

    2013-01-01

    The native auxin, indole-3-acetic acid (IAA), is a major regulator of plant growth and development. Its nonuniform distribution between cells and tissues underlies the spatiotemporal coordination of many developmental events and responses to environmental stimuli. The regulation of auxin gradients and the formation of auxin maxima/minima most likely involve the regulation of both metabolic and transport processes. In this article, we have demonstrated that 2-oxindole-3-acetic acid (oxIAA) is a major primary IAA catabolite formed in Arabidopsis thaliana root tissues. OxIAA had little biological activity and was formed rapidly and irreversibly in response to increases in auxin levels. We further showed that there is cell type–specific regulation of oxIAA levels in the Arabidopsis root apex. We propose that oxIAA is an important element in the regulation of output from auxin gradients and, therefore, in the regulation of auxin homeostasis and response mechanisms. PMID:24163311

  18. IMF orientation, solar wind velocity, and Pc 3-4 signals - A joint distribution

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.; Singer, H. J.; Russell, C. T.; Olson, J. V.

    1979-01-01

    Separate studies using the same micropulsation data base in the period range 10-150 s have shown earlier that signal levels recorded during September, October, and November 1969 at Calgary correlated positively with both solar-wind alignment of the IMF and solar-wind speed, but each correlation contained enough scatter to allow for the influence of the other factor. In this report, joint correlations of velocity and field direction with parameters representing hourly distributions rather than minima of IMF orientation angle display the relative effect of the two agents on magnetic pulsation signal levels. The joint correlations reduce the overall scatter and show that solar-wind speeds above 200-300 km/s and angles between the IMF and the sun-earth line of less than 50-60 deg are associated with enlarged magnetic pulsation amplitudes. These threshold effects tend to support both the bow-shock origin and the Kelvin-Helmholtz amplification of daytime signal transients in the Pc 3, 4 period ranges.

  19. Geometry for Pie Lovers.

    ERIC Educational Resources Information Center

    Fisher, William

    1982-01-01

    An approach to the instruction of maxima and minima problems that works with tools of geometry and algebra is presented. The focus is on a classic pie-cutting problem, which is viewed as an interesting and instructive task that is an excellent application of transformation geometry. (MP)

  20. In-stream biotic control on nutrient biogeochemistry in a forested sheadwater tream, West Fork of Walker Branch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Brian J; Mulholland, Patrick J

    2007-01-01

    A growing body of evidence demonstrates the importance of in-stream processing in regulating nutrient export, yet the influence of temporal variability in stream metabolism on net nutrient uptake has not been explicitly addressed. Streamwater DIN and SRP concentrations in Walker Branch, a first-order deciduous forest stream in eastern Tennessee, show a repeated pattern of annual maxima in summer and biannual minima in spring and autumn. Temporal variations in catchment hydrologic flowpaths result in lower winter and higher summer nutrient concentrations, but do not explain the spring and autumn nutrient minima. Ambient nutrient uptake rates were measured 2-3 times per weekmore » over an 18-mo period and compared to daily rates of gross primary production (GPP) and ecosystem respiration (ER) to examine the influence of in-stream biotic activity on nutrient export. GPP and ER rates explained 85% of the variation in net DIN retention with high net NO3- uptake (and lower net NH4+ release) rates occurring during spring and autumn and net DIN release in summer. Diel nutrient concentration patterns were examined several times throughout the year to determine the relative importance of autotrophic and heterotrophic activity on net nutrient uptake. High spring GPP corresponded to daily decreases in NO3- over the illuminated hours resulting in high diel NO3- amplitude which dampened as the canopy closed. GPP explained 91% of the variance in diel NO3- amplitude. In contrast, the autumn nutrient minima was largely explained by heterotrophic respiration since GPP remained low and little diel NO3- variation was observed during the autumn.« less

Top