Science.gov

Sample records for level high resolution

  1. A high-resolution time-to-digital converter using a three-level resolution

    NASA Astrophysics Data System (ADS)

    Dehghani, Asma; Saneei, Mohsen; Mahani, Ali

    2016-08-01

    In this article, a three-level resolution Vernier delay line time-to-digital converter (TDC) was proposed. The proposed TDC core was based on the pseudo-differential digital architecture that made it insensitive to nMOS and pMOS transistor mismatches. It also employed a Vernier delay line (VDL) in conjunction with an asynchronous read-out circuitry. The time interval resolution was equal to the difference of delay between buffers of upper and lower chains. Then, via the extra chain included in the lower delay line, resolution was controlled and power consumption was reduced. This method led to high resolution and low power consumption. The measurement results of TDC showed a resolution of 4.5 ps, 12-bit output dynamic range, and integral nonlinearity of 1.5 least significant bits. This TDC achieved the consumption of 68.43 µW from 1.1-V supply.

  2. A high resolution water level forecast for the German Bight

    NASA Astrophysics Data System (ADS)

    Niehüser, Sebastian; Dangendorf, Sönke; Arns, Arne; Jensen, Jürgen

    2016-04-01

    Many coastal regions worldwide are potentially endangered by storm surges which can cause disastrous damages and loss of life. Due to climate change induced sea level rise, an accumulation of such events is expected by the end of the 21th century. Therefore, advanced storm surge warnings are needed to be prepared when another storm surge hits the coast. In the shallow southeastern North Sea these storm surge warnings are nowadays routinely provided for selected tide gauge locations along a coastline through state-of-the-art forecast systems, which are based on a coupled system of empirical tidal predictions and numerical storm surge forecasts. Along the German North Sea coastline, the Federal Maritime and Hydrographic Agency in cooperation with the German Weather Service is responsible for the storm surge warnings. They provide accurate, high frequency and real-time water level forecasts for up to six days ahead at selected tide gauge sites via internet, telephone and broadcast. Since water levels along the German North Sea coastline are dominated by shallow water effects and a very complex bathymetric structure of the seabed, the pointwise forecast is not necessarily transferable to un-gauged areas between the tide gauges. Here we aim to close this existing gap and develop water level forecasts with a high spatial (continuously with a resolution of at least 1 kilometer) as well as a high temporal (at least 15-minute values) resolution along the entire German North Sea coastline. We introduce a new methodology for water level forecasts which combines empirical or statistical and numerical models. While the tidal forecast is performed by non-parametric interpolation techniques between un-gauged and gauged sites, storm surges are estimated on the basis of statistical/empirical storm surge formulas taken from a numerical model hindcast. The procedure will be implemented in the operational mode forced with numerical weather forecasts.

  3. High-level waste issues and resolutions document

    SciTech Connect

    Not Available

    1994-05-01

    The High-Level Waste (HLW) Issues and Resolutions Document recognizes US Department of Energy (DOE) complex-wide HLW issues and offers potential corrective actions for resolving these issues. Westinghouse Management and Operations (M&O) Contractors are effectively managing HLW for the Department of Energy at four sites: Idaho National Engineering Laboratory (INEL), Savannah River Site (SRS), West Valley Demonstration Project (WVDP), and Hanford Reservation. Each site is at varying stages of processing HLW into a more manageable form. This HLW Issues and Resolutions Document identifies five primary issues that must be resolved in order to reach the long-term objective of HLW repository disposal. As the current M&O contractor at DOE`s most difficult waste problem sites, Westinghouse recognizes that they have the responsibility to help solve some of the complexes` HLW problems in a cost effective manner by encouraging the M&Os to work together by sharing expertise, eliminating duplicate efforts, and sharing best practices. Pending an action plan, Westinghouse M&Os will take the initiative on those corrective actions identified as the responsibility of an M&O. This document captures issues important to the management of HLW. The proposed resolutions contained within this document set the framework for the M&Os and DOE work cooperatively to develop an action plan to solve some of the major complex-wide problems. Dialogue will continue between the M&Os, DOE, and other regulatory agencies to work jointly toward the goal of storing, treating, and immobilizing HLW for disposal in an environmentally sound, safe, and cost effective manner.

  4. High resolution measurement of water levels in optical components

    NASA Astrophysics Data System (ADS)

    Murrieta-Rico, Fabian N.; Petranovskii, Vitalii; Sergiyenko, Oleg; Hernandez-Balbuena, Daniel; Raymond-Herrera, Oscar

    2016-09-01

    Systems for optical analysis use vacuum chambers, where low pressures are reached. Remaining water molecules are the prevalent contaminant in high vacuum chambers. For this reason measurement of water levels is an important task that allows correct equipment operation. In this work, a different approach is presented for detecting and quantifying the water molecules inside a the vacuum chamber used in optical systems. A zeolite coated quartz crystal microbalance is used for detecting the water molecules, and the change in the resonance frequency is measured using a novel technique known as the principle of rational approximations. Theoretical results show how nanograms of adsorbed molecules are measured, and the number of molecules are quantified.

  5. Exploiting Aura OMI Level 2 Data with High Resolution Visualization

    NASA Astrophysics Data System (ADS)

    Wei, J. C.; Yang, W.; Johnson, J. E.; Zhao, P.; Gerasimov, I. V.; Pham, L.; Vicente, G. A.; Shen, S.

    2014-12-01

    Satellite data products are important for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if the satellite data are well utilized and interpreted, such as model inputs from satellite, or extreme event (such as volcano eruption, dust storm, …etc) interpretation from satellite. Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite data products provided by NASA and other organizations. One way to help users better understand the satellite data is to provide data along with 'Images', including accurate pixel-level (Level 2) information, pixel coverage area delineation, and science team recommended quality screening for individual geophysical parameters. Goddard Earth Sciences Data and Information Services Center (GES DISC) always strives to best support (i.e., Software-as-a-service, SaaS) the user-community for NASA Earth Science Data. In this case, we will present a new visualization tool that helps users exploiting Aura Ozone Monitoring Instrument (OMI) Level 2 data. This new visualization service utilizes Open Geospatial Consortium (OGC) standard-compliant Web Mapping Service (WMS) and Web Coverage Service (WCS) calls in the backend infrastructure. The functionality of the service allows users to select data sources (e.g., multiple parameters under the same measurement, like NO2 and SO2 from OMI Level 2 or same parameter with different methods of aggregation, like NO2 in OMNO2G and OMNO2D products), defining area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting and reformatting. The interface will also be able to connect to other OGC WMS and WCS servers, which will greatly enhance its expandability to integrate additional outside data/map sources (such as Global Imagery Browse Services (GIBS)).

  6. Pores and ridges: high-resolution fingerprint matching using level 3 features.

    PubMed

    Jain, Anil K; Chen, Yi; Demirkus, Meltem

    2007-01-01

    Fingerprint friction ridge details are generally described in a hierarchical order at three different levels, namely, Level 1 (pattern), Level 2 (minutia points), and Level 3 (pores and ridge contours). Although latent print examiners frequently take advantage of Level 3 features to assist in identification, Automated Fingerprint Identification Systems (AFIS) currently rely only on Level 1 and Level 2 features. In fact, the Federal Bureau of Investigation's (FBI) standard of fingerprint resolution for AFIS is 500 pixels per inch (ppi), which is inadequate for capturing Level 3 features, such as pores. With the advances in fingerprint sensing technology, many sensors are now equipped with dual resolution (500 ppi/1,000 ppi) scanning capability. However, increasing the scan resolution alone does not necessarily provide any performance improvement in fingerprint matching, unless an extended feature set is utilized. As a result, a systematic study to determine how much performance gain one can achieve by introducing Level 3 features in AFIS is highly desired. We propose a hierarchical matching system that utilizes features at all the three levels extracted from 1,000 ppi fingerprint scans. Level 3 features, including pores and ridge contours, are automatically extracted using Gabor filters and wavelet transform and are locally matched using the Iterative Closest Point (ICP) algorithm. Our experiments show that Level 3 features carry significant discriminatory information. There is a relative reduction of 20 percent in the equal error rate (EER) of the matching system when Level 3 features are employed in combination with Level 1 and 2 features. This significant performance gain is consistently observed across various quality fingerprint images.

  7. Coastal barrier stratigraphy for Holocene high-resolution sea-level reconstruction

    PubMed Central

    Costas, Susana; Ferreira, Óscar; Plomaritis, Theocharis A.; Leorri, Eduardo

    2016-01-01

    The uncertainties surrounding present and future sea-level rise have revived the debate around sea-level changes through the deglaciation and mid- to late Holocene, from which arises a need for high-quality reconstructions of regional sea level. Here, we explore the stratigraphy of a sandy barrier to identify the best sea-level indicators and provide a new sea-level reconstruction for the central Portuguese coast over the past 6.5 ka. The selected indicators represent morphological features extracted from coastal barrier stratigraphy, beach berm and dune-beach contact. These features were mapped from high-resolution ground penetrating radar images of the subsurface and transformed into sea-level indicators through comparison with modern analogs and a chronology based on optically stimulated luminescence ages. Our reconstructions document a continuous but slow sea-level rise after 6.5 ka with an accumulated change in elevation of about 2 m. In the context of SW Europe, our results show good agreement with previous studies, including the Tagus isostatic model, with minor discrepancies that demand further improvement of regional models. This work reinforces the potential of barrier indicators to accurately reconstruct high-resolution mid- to late Holocene sea-level changes through simple approaches. PMID:27929122

  8. Coastal barrier stratigraphy for Holocene high-resolution sea-level reconstruction

    NASA Astrophysics Data System (ADS)

    Costas, Susana; Ferreira, Óscar; Plomaritis, Theocharis A.; Leorri, Eduardo

    2016-12-01

    The uncertainties surrounding present and future sea-level rise have revived the debate around sea-level changes through the deglaciation and mid- to late Holocene, from which arises a need for high-quality reconstructions of regional sea level. Here, we explore the stratigraphy of a sandy barrier to identify the best sea-level indicators and provide a new sea-level reconstruction for the central Portuguese coast over the past 6.5 ka. The selected indicators represent morphological features extracted from coastal barrier stratigraphy, beach berm and dune-beach contact. These features were mapped from high-resolution ground penetrating radar images of the subsurface and transformed into sea-level indicators through comparison with modern analogs and a chronology based on optically stimulated luminescence ages. Our reconstructions document a continuous but slow sea-level rise after 6.5 ka with an accumulated change in elevation of about 2 m. In the context of SW Europe, our results show good agreement with previous studies, including the Tagus isostatic model, with minor discrepancies that demand further improvement of regional models. This work reinforces the potential of barrier indicators to accurately reconstruct high-resolution mid- to late Holocene sea-level changes through simple approaches.

  9. Coastal barrier stratigraphy for Holocene high-resolution sea-level reconstruction.

    PubMed

    Costas, Susana; Ferreira, Óscar; Plomaritis, Theocharis A; Leorri, Eduardo

    2016-12-08

    The uncertainties surrounding present and future sea-level rise have revived the debate around sea-level changes through the deglaciation and mid- to late Holocene, from which arises a need for high-quality reconstructions of regional sea level. Here, we explore the stratigraphy of a sandy barrier to identify the best sea-level indicators and provide a new sea-level reconstruction for the central Portuguese coast over the past 6.5 ka. The selected indicators represent morphological features extracted from coastal barrier stratigraphy, beach berm and dune-beach contact. These features were mapped from high-resolution ground penetrating radar images of the subsurface and transformed into sea-level indicators through comparison with modern analogs and a chronology based on optically stimulated luminescence ages. Our reconstructions document a continuous but slow sea-level rise after 6.5 ka with an accumulated change in elevation of about 2 m. In the context of SW Europe, our results show good agreement with previous studies, including the Tagus isostatic model, with minor discrepancies that demand further improvement of regional models. This work reinforces the potential of barrier indicators to accurately reconstruct high-resolution mid- to late Holocene sea-level changes through simple approaches.

  10. Are ground-level visual attributes useful for high resolution remote sensing image classification?

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Sun, Hao; Zhou, Shilin

    2016-03-01

    This paper extends the ground-level visual attributes to high resolution remote sensing imagery to demonstrate the useful-ness of visual attributes for remote sensing tasks such as image classification. Visual attributes have been introduced as the semantic properties that transcend the categories. We train predictors from the largest ground-level attributes datasets, SUN, for 102 visual attributes, which is well defined in SUN. We first form an attribute-based representation for the remote sensing imagery with the output of trained attribute predictors. We then evaluate the classification performances of the attribute-based representation against traditional features. Extensive experiments on the ground-level baseline dataset scene 15 and remote sensing dataset UCMLU shows that ground-level visual attributes outperform the traditional low-level features in the classification problem, and the combination of ground-level visual attribute and low-level features obtains best classification rate. Moreover, we demonstrate that attribute-based representation is much more semantically powerful than the low-level features.

  11. Achieving behavioral control with millisecond resolution in a high-level programming environment.

    PubMed

    Asaad, Wael F; Eskandar, Emad N

    2008-08-30

    The creation of psychophysical tasks for the behavioral neurosciences has generally relied upon low-level software running on a limited range of hardware. Despite the availability of software that allows the coding of behavioral tasks in high-level programming environments, many researchers are still reluctant to trust the temporal accuracy and resolution of programs running in such environments, especially when they run atop non-real-time operating systems. Thus, the creation of behavioral paradigms has been slowed by the intricacy of the coding required and their dissemination across labs has been hampered by the various types of hardware needed. However, we demonstrate here that, when proper measures are taken to handle the various sources of temporal error, accuracy can be achieved at the 1 ms time-scale that is relevant for the alignment of behavioral and neural events.

  12. High-resolution tide projections reveal extinction threshold in response to sea-level rise.

    PubMed

    Field, Christopher R; Bayard, Trina S; Gjerdrum, Carina; Hill, Jason M; Meiman, Susan; Elphick, Chris S

    2017-05-01

    Sea-level rise will affect coastal species worldwide, but models that aim to predict these effects are typically based on simple measures of sea level that do not capture its inherent complexity, especially variation over timescales shorter than 1 year. Coastal species might be most affected, however, by floods that exceed a critical threshold. The frequency and duration of such floods may be more important to population dynamics than mean measures of sea level. In particular, the potential for changes in the frequency and duration of flooding events to result in nonlinear population responses or biological thresholds merits further research, but may require that models incorporate greater resolution in sea level than is typically used. We created population simulations for a threatened songbird, the saltmarsh sparrow (Ammodramus caudacutus), in a region where sea level is predictable with high accuracy and precision. We show that incorporating the timing of semidiurnal high tide events throughout the breeding season, including how this timing is affected by mean sea-level rise, predicts a reproductive threshold that is likely to cause a rapid demographic shift. This shift is likely to threaten the persistence of saltmarsh sparrows beyond 2060 and could cause extinction as soon as 2035. Neither extinction date nor the population trajectory was sensitive to the emissions scenarios underlying sea-level projections, as most of the population decline occurred before scenarios diverge. Our results suggest that the variation and complexity of climate-driven variables could be important for understanding the potential responses of coastal species to sea-level rise, especially for species that rely on coastal areas for reproduction.

  13. Nocturnal low-level clouds over southern West Africa analysed using high-resolution simulations

    NASA Astrophysics Data System (ADS)

    Adler, Bianca; Kalthoff, Norbert; Gantner, Leonhard

    2017-01-01

    We performed a high-resolution numerical simulation to study the development of extensive low-level clouds that frequently form over southern West Africa during the monsoon season. This study was made in preparation for a field campaign in 2016 within the Dynamics-aerosol-chemistry-cloud interactions in West Africa (DACCIWA) project and focuses on an area around the city of Savè in southern Benin. Nocturnal low-level clouds evolve a few hundred metres above the ground around the same level as a distinct low-level jet. Several processes are found to determine the spatio-temporal evolution of these clouds including (i) significant cooling of the nocturnal atmosphere caused by horizontal advection with the south-westerly monsoon flow during the first half of the night, (ii) vertical cold air advection due to gravity waves leading to clouds in the wave crests and (iii) enhanced convergence and upward motion upstream of existing clouds that trigger new clouds. The latter is caused by an upward shift of the low-level jet in cloudy areas leading to horizontal convergence in the lower part and to horizontal divergence in the upper part of the cloud layer. Although this single case study hardly allows for a generalisation of the processes found, the results added to the optimisation of the measurements strategy for the field campaign and the observations will be used to test the hypotheses for cloud formation resulting from this study.

  14. Multi-Level Building Reconstruction for Automatic Enhancement of High Resolution Dsms

    NASA Astrophysics Data System (ADS)

    Arefi, H.; Reinartz, P.

    2012-07-01

    In this article a multi-level approach is proposed for reconstruction-based improvement of high resolution Digital Surface Models (DSMs). The concept of Levels of Detail (LOD) defined by CityGML standard has been considered as basis for abstraction levels of building roof structures. Here, the LOD1 and LOD2 which are related to prismatic and parametric roof shapes are reconstructed. Besides proposing a new approach for automatic LOD1 and LOD2 generation from high resolution DSMs, the algorithm contains two generalization levels namely horizontal and vertical. Both generalization levels are applied to prismatic model of buildings. The horizontal generalization allows controlling the approximation level of building footprints which is similar to cartographic generalization concept of the urban maps. In vertical generalization, the prismatic model is formed using an individual building height and continuous to included all flat structures locating in different height levels. The concept of LOD1 generation is based on approximation of the building footprints into rectangular or non-rectangular polygons. For a rectangular building containing one main orientation a method based on Minimum Bounding Rectangle (MBR) in employed. In contrast, a Combined Minimum Bounding Rectangle (CMBR) approach is proposed for regularization of non-rectilinear polygons, i.e. buildings without perpendicular edge directions. Both MBRand CMBR-based approaches are iteratively employed on building segments to reduce the original building footprints to a minimum number of nodes with maximum similarity to original shapes. A model driven approach based on the analysis of the 3D points of DSMs in a 2D projection plane is proposed for LOD2 generation. Accordingly, a building block is divided into smaller parts according to the direction and number of existing ridge lines. The 3D model is derived for each building part and finally, a complete parametric model is formed by merging all the 3D models of

  15. Impacts of high resolution data on traveler compliance levels in emergency evacuation simulations

    DOE PAGES

    Lu, Wei; Han, Lee D.; Liu, Cheng; ...

    2016-05-05

    In this article, we conducted a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) with detailed real world roads network. A platform for evacuation modeling built on high resolution population distribution data and activity-based microscopic traffic simulation was proposed. This platform can be extended to any cities in the world. The results indicated that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it did not significantly compromise the performance with high resolution LPC assignment. The TAZ assignment also underestimated the real travel time during evacuation. Thismore » suggests that high data resolution can improve the accuracy of traffic modeling and simulation. The evacuation manager should consider more diverse assignment during emergency evacuation to avoid congestions.« less

  16. Impacts of high resolution data on traveler compliance levels in emergency evacuation simulations

    SciTech Connect

    Lu, Wei; Han, Lee D.; Liu, Cheng; Bhaduri, Budhendra L.

    2016-05-05

    In this article, we conducted a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) with detailed real world roads network. A platform for evacuation modeling built on high resolution population distribution data and activity-based microscopic traffic simulation was proposed. This platform can be extended to any cities in the world. The results indicated that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it did not significantly compromise the performance with high resolution LPC assignment. The TAZ assignment also underestimated the real travel time during evacuation. This suggests that high data resolution can improve the accuracy of traffic modeling and simulation. The evacuation manager should consider more diverse assignment during emergency evacuation to avoid congestions.

  17. Background contamination by coplanar polychlorinated biphenyls (PCBs) in trace level high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) analytical procedures

    NASA Technical Reports Server (NTRS)

    Ferrario, J.; Byrne, C.; Dupuy, A. E. Jr

    1997-01-01

    The addition of the "dioxin-like" polychlorinated biphenyl (PCB) congeners to the assessment of risk associated with the 2,3,7,8-chlorine substituted dioxins and furans has dramatically increased the number of laboratories worldwide that are developing analytical procedures for their detection and quantitation. Most of these procedures are based on established sample preparation and analytical techniques employing high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS), which are used for the analyses of dioxin/furans at low parts-per-trillion (ppt) levels. A significant and widespread problem that arises when using these sample preparation procedures for the analysis of coplanar PCBs is the presence of background levels of these congeners. Industrial processes, urban incineration, leaking electrical transformers, hazardous waste accidents, and improper waste disposal practices have released appreciable quantities of PCBs into the environment. This contamination has resulted in the global distribution of these compounds via the atmosphere and their ubiquitous presence in ambient air. The background presence of these compounds in method blanks must be addressed when determining the exact concentrations of these and other congeners in environmental samples. In this study reliable procedures were developed to accurately define these background levels and assess their variability over the course of the study. The background subtraction procedures developed and employed increase the probability that the values reported accurately represent the concentrations found in the samples and were not biased due to this background contamination.

  18. High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels.

    PubMed

    Müller, Jan; Ballini, Marco; Livi, Paolo; Chen, Yihui; Radivojevic, Milos; Shadmani, Amir; Viswam, Vijay; Jones, Ian L; Fiscella, Michele; Diggelmann, Roland; Stettler, Alexander; Frey, Urs; Bakkum, Douglas J; Hierlemann, Andreas

    2015-07-07

    Studies on information processing and learning properties of neuronal networks would benefit from simultaneous and parallel access to the activity of a large fraction of all neurons in such networks. Here, we present a CMOS-based device, capable of simultaneously recording the electrical activity of over a thousand cells in in vitro neuronal networks. The device provides sufficiently high spatiotemporal resolution to enable, at the same time, access to neuronal preparations on subcellular, cellular, and network level. The key feature is a rapidly reconfigurable array of 26 400 microelectrodes arranged at low pitch (17.5 μm) within a large overall sensing area (3.85 × 2.10 mm(2)). An arbitrary subset of the electrodes can be simultaneously connected to 1024 low-noise readout channels as well as 32 stimulation units. Each electrode or electrode subset can be used to electrically stimulate or record the signals of virtually any neuron on the array. We demonstrate the applicability and potential of this device for various different experimental paradigms: large-scale recordings from whole networks of neurons as well as investigations of axonal properties of individual neurons.

  19. High resolution projections for the western Iberian coastal low level jet in a changing climate

    NASA Astrophysics Data System (ADS)

    Soares, Pedro M. M.; Lima, Daniela C. A.; Cardoso, Rita M.; Semedo, Alvaro

    2016-10-01

    The Iberian coastal low-level jet (CLLJ) is one of the less studied boundary layer wind jet features in the Eastern Boundary Currents Systems (EBCS). These regions are amongst the most productive ocean ecosystems, where the atmosphere-land-ocean feedbacks, which include marine boundary layer clouds, coastal jets, upwelling and inland soil temperature and moisture, play an important role in defining the regional climate along the sub-tropical mid-latitude western coastal areas. Recently, the present climate western Iberian CLLJ properties were extensively described using a high resolution regional climate hindcast simulation. A summer maximum frequency of occurrence above 30 % was found, with mean maximum wind speeds around 15 ms-1, between 300 and 400 m heights (at the jet core). Since the 1990s the climate change impact on the EBCS is being studied, nevertheless some lack of consensus still persists regarding the evolution of upwelling and other components of the climate system in these areas. However, recently some authors have shown that changes are to be expected concerning the timing, intensity and spatial homogeneity of coastal upwelling, in response to future warming, especially at higher latitudes, namely in Iberia and Canaries. In this study, the first climate change assessment study regarding the Western Iberian CLLJ, using a high resolution (9 km) regional climate simulation, is presented. The properties of this CLLJ are studied and compared using two 30 years simulations: one historical simulation for the 1971-2000 period, and another simulation for future climate, in agreement with the RCP8.5 scenario, for the 2071-2100 period. Robust and consistent changes are found: (1) the hourly frequency of occurrence of the CLLJ is expected to increase in summer along the western Iberian coast, from mean maximum values of around 35 % to approximately 50 %; (2) the relative increase of the CLLJ frequency of occurrence is higher in the north off western Iberia; (3

  20. Importance of High-Resolution LiDAR Data in Modeling Runoff Levels Over Impervious Surfaces

    NASA Astrophysics Data System (ADS)

    Melosh, C.; Rao, M.

    2013-12-01

    Directly connected impervious areas collect and deliver unfiltered runoff to modified and impacted waterways. Modeling water flow over the landscape is an effective method of observing drainage patterns and predicting pollutant and sediment loadings. Improved models applying high-resolution elevation data can identify key areas with high pollutant output. This is a crucial issue in the Lake Tahoe Basin where lakeshore urban development has increased and lake clarity has been declining for years. This study aims to evaluate an integrated LiDAR and GIS-based modeling approach that uses a fine-scaled ground surface and impervious surface connectivity to predict the pollutant load in the Lake Tahoe Basin This study produced a fine-scaled surface model of nine subset catchments in the South Tahoe basin, including areas of low (below 20%), medium (30% to 50%) and high (above 50%) impervious surface cover. Our method integrated LiDAR, multispectral imagery, and GIS data to develop accurate terrain models, hydrologic routing, and directly connected impervious area layers for the Lake Tahoe basin. The high-density ground and object elevation data collected using Light Detection and Ranging (LiDAR) creates an accurate picture of water flow over the land, and obstacles to the flow such as buildings. High-resolution LiDAR data was obtained from the Round 10 Lake Tahoe Southern Nevada Public Land Management capital program from the year 2010. This data was processed to create a digital elevation model of the ground surface. Land use classification used object height information from the LiDAR cloud, NAIP 4-band images with 1-meter resolution and a normalized difference vegetation index image derived from the NAIP imagery. The US Army Core of Engineers hydrologic modeling system (HEC-HMS) will be used to model runoff. Based on long-term simulations the effect of directly connected impervious area on rainfall-runoff characteristics for the South Lake Tahoe catchments will be

  1. The cyclopropene radical cation: Rovibrational level structure at low energies from high-resolution photoelectron spectra

    SciTech Connect

    Vasilatou, K.; Michaud, J. M.; Baykusheva, D.; Grassi, G.; Merkt, F.

    2014-08-14

    The cyclopropene radical cation (c-C{sub 3}H{sub 4}{sup +}) is an important but poorly characterized three-membered-ring hydrocarbon. We report on a measurement of the high-resolution photoelectron and photoionization spectra of cyclopropene and several deuterated isotopomers, from which we have determined the rovibrational energy level structure of the X{sup ~+} {sup 2}B{sub 2} ground electronic state of c-C{sub 3}H{sub 4}{sup +} at low energies for the first time. The synthesis of the partially deuterated isotopomers always resulted in mixtures of several isotopomers, differing in their number of D atoms and in the location of these atoms, so that the photoelectron spectra of deuterated samples are superpositions of the spectra of several isotopomers. The rotationally resolved spectra indicate a C{sub 2v}-symmetric R{sub 0} structure for the ground electronic state of c-C{sub 3}H{sub 4}{sup +}. Two vibrational modes of c-C{sub 3}H{sub 4}{sup +} are found to have vibrational wave numbers below 300 cm{sup −1}, which is surprising for such a small cyclic hydrocarbon. The analysis of the isotopic shifts of the vibrational levels enabled the assignment of the lowest-frequency mode (fundamental wave number of ≈110 cm{sup −1} in c-C{sub 3}H{sub 4}{sup +}) to the CH{sub 2} torsional mode (ν{sub 8}{sup +}, A{sub 2} symmetry) and of the second-lowest-frequency mode (≈210 cm{sup −1} in c-C{sub 3}H{sub 4}{sup +}) to a mode combining a CH out-of-plane with a CH{sub 2} rocking motion (ν{sub 15}{sup +}, B{sub 2} symmetry). The potential energy along the CH{sub 2} torsional coordinate is flat near the equilibrium structure and leads to a pronounced anharmonicity.

  2. Modelled air pollution levels versus EC air quality legislation - results from high resolution simulation.

    PubMed

    Chervenkov, Hristo

    2013-12-01

    An appropriate method for evaluating the air quality of a certain area is to contrast the actual air pollution levels to the critical ones, prescribed in the legislative standards. The application of numerical simulation models for assessing the real air quality status is allowed by the legislation of the European Community (EC). This approach is preferable, especially when the area of interest is relatively big and/or the network of measurement stations is sparse, and the available observational data are scarce, respectively. Such method is very efficient for similar assessment studies due to continuous spatio-temporal coverage of the obtained results. In the study the values of the concentration of the harmful substances sulphur dioxide, (SO2), nitrogen dioxide (NO2), particulate matter - coarse (PM10) and fine (PM2.5) fraction, ozone (O3), carbon monoxide (CO) and ammonia (NH3) in the surface layer obtained from modelling simulations with resolution 10 km on hourly bases are taken to calculate the necessary statistical quantities which are used for comparison with the corresponding critical levels, prescribed in the EC directives. For part of them (PM2.5, CO and NH3) this is done for first time with such resolution. The computational grid covers Bulgaria entirely and some surrounding territories and the calculations are made for every year in the period 1991-2000. The averaged over the whole time slice results can be treated as representative for the air quality situation of the last decade of the former century.

  3. CVTrees support the Bergey's systematics and provide high resolution at species levels and below

    NASA Astrophysics Data System (ADS)

    Hao, Bailin

    CV stands for Composition Vector. CVTree is an alignment-free method to infer phylogenetic trees from prokaryote whole genomes by using CVs after a subtraction procedure. CVTree is the name of a public domain Web Server that implements the method. The results obtained by this method or by the Web Server are also sometimes called CVTrees. The branchings in CVTrees are verified by direct comparison with the Bergey's Systematics and agree well with the latter at all taxonomic ranks from phylum down to species with a few exceptions which in most cases correspond to long-debated problems and may hint on possible taxonomic revisions. Moreover, CVTrees provide higher strain resolution at species level and below. In this mini-review we shall describe briefly the CVTree method and show some of its results.

  4. Evaluation of Rock Mass Responses Using High Resolution Water-level Tiltmeter Arrays

    NASA Astrophysics Data System (ADS)

    Roberts, J. S.; Wang, H. F.; Fratta, D.; Stetler, L. D.; Volk, J. T.; Geox^Tm

    2010-12-01

    External forces act on the surface of the earth and produce deformation across all spatial and temporal scales. This research study focuses on the deformation evaluation of the rock-mass subjected to tidal, earthquake and surface forces. The events are monitored over horizontal distances of over 100 meters with tilt measurement arrays with a resolution of 10-8 radians. These measurements are obtained from hydrostatic leveling system (HLS) arrays that have been installed in the LaFarge mine in North Aurora, IL by Fermilab. Each sensor in the array is equipped with a water-filled reservoir beneath a capacitor. The amount of water in the reservoir is calculated as a function of the measured capacitance. Individual sensors are connected in a closed system via a water and air line. As the host rock expands and contracts sensors are raised relative to another and water is displaced. The water level in each reservoir is sent to a computer in the mine and recorded. In order to measure the tilt of the rock between two points, the difference in water levels between adjacent sensors is computed. The difference between the end sensors is also calculated to determine the larger-scale tilt of the array. The tiltmeters in LaFarge mine are supported by concrete pedestals installed on the floor of the drift. In the Homestake mine the tiltmeters are placed on similar pedestals, as well as platforms made of artificial wood decking. These platforms are fixed to the wall of the drift with a rock bolt. Time and frequency domain analyses were performed on time series ranging from hours to six months to capture relevant time scales including the response to the 2010 Chile Earthquake (hour-long scale), the stages of the moon (month scale), Fox River floods (flooding week long scales and pressure dissipation month-long scales). By monitoring tiltmeter array responses to different forces, we aim at making predictions about the material properties of rock masses.

  5. Hydrological modeling using high resolution dem to level control on highways

    NASA Astrophysics Data System (ADS)

    Akbulut, Zeynep; Cömert, Çetin

    2016-04-01

    Floods are natural disasters that must be managed, controlled and taken precautions before it happens considering the damage they inflicted to environment and human lives. As to highways, the main vein of urban life flow, must be taken into consideration as a different entity that affected by excessive rainfalls and floods. Due to inadequate drainage that allow rainfall to form water ponds on highways cause vehicles to lose control and that lead vehicles to have traffic accidents. To reduce the traffic accidents caused by ponding waters on highways we need to know area of inundation and water depths. In this context we used FLO-2D Basic Model (2009) to hydrological modeling of Black Sea Coastal Highway with meteorological and hydrological data using a Digital Elevation Model (DEM). In this study, ponding areas on highways determined by simulating the rainfall with a high resolution DEM that can represent the actual road surface correctly. With this information, General Directorate of Highways (GDH) in Turkey can adjust the cross-sectional and longitudinal slope or build better and bigger drainage structures where water accumulated to prevent ponding. With the results obtained from Hydrological Model, GDH can rapidly control highways conformity to regulations before highways come into service. Also these ponding areas acquired by reveals where to prioritize in flood risk managements. Key Words: Area of Inundation, Digital Elevation Model, FLO-2D, Hydrological Modeling, Highway, Rainfall-Runoff Simulation, Water Depth.

  6. Very high spatial resolution optical and radar imagery in tracking water level fluctuations of a small inland reservoir

    NASA Astrophysics Data System (ADS)

    Simon, R. N.; Tormos, T.; Danis, P.-A.

    2015-06-01

    Tracking water level fluctuations in small lakes and reservoirs is important in order to better understand and manage these ecosystems. A geographic object-based image analysis (GEOBIA) method using very high spatial and temporal resolution optical (Pléiades) and radar (COSMO-SkyMed and TerraSAR-X) remote sensing imagery is presented here which (1) tracks water level fluctuations via variations in water surface area and (2) avoids common difficulties found in using single-band radar images for water-land image classification. Results are robust, with over 98% of image surface area correctly classified into land or water, R2 = 0.963 and RMSE = 0.42 m for a total water level fluctuation range of 5.94 m. Multispectral optical imagery is found to be more straightforward in producing results than single-band radar imagery, but the latter crucially increase temporal resolution to the point where fluctuations can be satisfactorily tracked in time. Moreover, an analysis suggests that high and medium spatial resolution imagery is sufficient, in at least some cases, in tracking the water level fluctuations of small inland reservoirs. Finally, limitations of the methodology presented here are briefly discussed along with potential solutions to overcome them.

  7. High-resolution genetic mapping of mammalian motor activity levels in mice.

    PubMed

    Kas, M J H; de Mooij-van Malsen, J G; de Krom, M; van Gassen, K L I; van Lith, H A; Olivier, B; Oppelaar, H; Hendriks, J; de Wit, M; Groot Koerkamp, M J A; Holstege, F C P; van Oost, B A; de Graan, P N E

    2009-02-01

    The generation of motor activity levels is under tight neural control to execute essential behaviors, such as movement toward food or for social interaction. To identify novel neurobiological mechanisms underlying motor activity levels, we studied a panel of chromosome substitution (CS) strains derived from mice with high (C57BL/6J strain) or low motor activity levels (A/J strain) using automated home cage behavioral registration. In this study, we genetically mapped the expression of baseline motor activity levels (horizontal distance moved) to mouse chromosome 1. Further genetic mapping of this trait revealed an 8.3-Mb quantitative trait locus (QTL) interval. This locus is distinct from the QTL interval for open-field anxiety-related motor behavior on this chromosome. By data mining, an existing phenotypic and genotypic data set of 2445 genetically heterogeneous mice (http://gscan.well.ox.ac.uk/), we confirmed linkage to the peak marker at 79 970 253 bp and refined the QTL to a 312-kb interval containing a single gene (A830043J08Rik). Sequence analysis showed a nucleotide deletion in the 3' untranslated region of the Riken gene. Genome-wide microarray gene expression profiling in brains of discordant F(2) individuals from CS strain 1 showed a significant upregulation of Epha4 in low-active F(2) individuals. Inclusion of a genetic marker for Epha4 confirmed that this gene is located outside of the QTL interval. Both Epha4 and A830043J08Rik are expressed in brain motor circuits, and similar to Epha4 mutants, we found linkage between reduced motor neurons number and A/J chromosome 1. Our findings provide a novel QTL and a potential downstream target underlying motor circuitry development and the expression of physical activity levels.

  8. High resolution ultrasonic densitometer

    SciTech Connect

    Dress, W.B.

    1983-01-01

    The velocity of torsional stress pulses in an ultrasonic waveguide of non-circular cross section is affected by the temperature and density of the surrounding medium. Measurement of the transit times of acoustic echoes from the ends of a sensor section are interpreted as level, density, and temperature of the fluid environment surrounding that section. This paper examines methods of making these measurements to obtain high resolution, temperature-corrected absolute and relative density and level determinations of the fluid. Possible applications include on-line process monitoring, a hand-held density probe for battery charge state indication, and precise inventory control for such diverse fluids as uranium salt solutions in accountability storage and gasoline in service station storage tanks.

  9. Processing of high spatial resolution information obtained from satellites of Resource-P series according to the level 1

    NASA Astrophysics Data System (ADS)

    Eremeev, V.; Kuznetcov, A.; Poshekhonov, V.; Presniakov, O.; Zenin, V.; Svetelkin, P.; Kochergin, A.

    2016-10-01

    The present paper has described main functioning principles of imagery instruments of high spatial resolution of Russian satellites "Resource-P". Processing of images obtained from these instruments according to the level 1 includes: relative radiometric correction, stitching of video data obtained from separate CCD-matrices, geometric matching of multitemporal multispectral images from optoelectronic converters (OEC), pansharpening, saving of results in distribution formats. Stages for acquisition of a high-precision model for the Earth surface imagery being a base of processing are considered. Descriptions of algorithms for realization of mentioned processing types, examples of their practical usage and also precise characteristics of outputs are described.

  10. DETECTING LOW-LEVEL SYNTHESIS IMPURITIES IN MODIFIED PHOSPHOROTHIOATE OLIGONUCLEOTIDES USING LIQUID CHROMATOGRAPHY – HIGH RESOLUTION MASS SPECTROMETRY

    PubMed Central

    Nikcevic, Irena; Wyrzykiewicz, Tadeusz K.; Limbach, Patrick A.

    2010-01-01

    Summary An LC-MS method based on the use of high resolution Fourier transform ion cyclotron resonance mass spectrometry (FTIRCMS) for profiling oligonucleotides synthesis impurities is described. Oligonucleotide phosphorothioatediesters (phosphorothioate oligonucleotides), in which one of the non-bridging oxygen atoms at each phosphorus center is replaced by a sulfur atom, are now one of the most popular oligonucleotide modifications due to their ease of chemical synthesis and advantageous pharmacokinetic properties. Despite significant progress in the solid-phase oligomerization chemistry used in the manufacturing of these oligonucleotides, multiple classes of low-level impurities always accompany synthetic oligonucleotides. Liquid chromatography-mass spectrometry has emerged as a powerful technique for the identification of these synthesis impurities. However, impurity profiling, where the entire complement of low-level synthetic impurities is identified in a single analysis, is more challenging. Here we present an LC-MS method based the use of high resolution-mass spectrometry, specifically Fourier transform ion cyclotron resonance mass spectrometry (FTIRCMS or FTMS). The optimal LC-FTMS conditions, including the stationary phase and mobile phases for the separation and identification of phosphorothioate oligonucleotides, were found. The characteristics of FTMS enable charge state determination from single m/z values of low-level impurities. Charge state information then enables more accurate modeling of the detected isotopic distribution for identification of the chemical composition of the detected impurity. Using this approach, a number of phosphorothioate impurities can be detected by LC-FTMS including failure sequences carrying 3′-terminal phosphate monoester and 3′-terminal phosphorothioate monoester, incomplete backbone sulfurization and desulfurization products, high molecular weight impurities, and chloral, isobutyryl, and N3 (2-cyanoethyl) adducts

  11. High Resolution Computed Tomography

    DTIC Science & Technology

    1992-07-31

    samples. 14. SUBJECTTERMS 15. NUMBER OF PAGES 38 High Resolution, Microfocus , Characterization, X - Ray , Micrography, Computed Tomography (CT), Failure...high resolutions (50 g.tm feature sensitivity) when a small field of view (50 mm) is used [11]. Specially designed detectors and a microfocus X - ray ...Wright Laboratories. Feldkamp [14] at Ford used a microfocus X - ray source and an X - ray image intensifier to develop a system capable of 20 g.m

  12. High-Resolution Autoradiography

    NASA Technical Reports Server (NTRS)

    Towe, George C; Gomberg, Henry J; Freemen, J W

    1955-01-01

    This investigation was made to adapt wet-process autoradiography to metallurgical samples to obtain high resolution of segregated radioactive elements in microstructures. Results are confined to development of the technique, which was perfected to a resolution of less than 10 microns. The radioactive samples included carbon-14 carburized iron and steel, nickel-63 electroplated samples, a powder product containing nickel-63, and tungsten-185 in N-155 alloy.

  13. Ultra high resolution tomography

    SciTech Connect

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  14. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  15. GPS inland water buoys for precise and high temporal resolution water level and movement monitoring

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Nghia Hung, Nguyen; Thoss, Heiko; Güntner, Andreas

    2010-05-01

    Monitoring of river and lake stages is one of the basic issues in understanding catchment hydrology and hydraulic systems. There are numerous techniques available for this, but in case of large water bodies technical as well as financial problems may restrict the use of traditional techniques. Therefore we explored the potential of GPS based altimetry for stage monitoring by developing small and easy to handle buoys with mounted high precision GPS devices. The advantages of the buoys are the freedom of positioning over the whole water body and their quick and easy deployment. The developed devices were tested in the Mekong Delta, Vietnam in two different locations: On the Mekong river where high currents over the flood season occur and in a small lake with hydraulic connections to a major channel with hardly any currents present. The collected GPS data were processed differentially and tested against standard pressure gauge data. The recorded stages proved to be of high quality and a valuable resource for flood monitoring and modeling. In addition to the stage data, the high-precision GPS positioning data could also be used for monitoring the movement of the buoys, from which alternating currents caused by ocean tides and flood waves could be detected, thus providing an additional information on the hydraulic system. We conclude that the developed buoys add well to the existing hydrological monitoring pool and are a goof option for the monitoring in large water bodies where a) traditional methods are technically difficult to deploy or are too costly, and b) where additional information about flow direction is needed.

  16. Deployment of High Resolution Real-Time Distribution Level Metering on Maui: Preprint

    SciTech Connect

    Bank, J.

    2013-01-01

    In order to support the ongoing Maui Smart Grid demonstration project advanced metering has been deployed at the distribution transformer level in Maui Electric Company's Kihei Circuit on the Island of Maui. This equipment has been custom designed to provide accurately time-stamped Phasor and Power Quality data in real time. Additionally, irradiance sensors have been deployed at a few selected locations in proximity to photovoltaic (PV) installations. The received data is being used for validation of existing system models and for impact studies of future system hardware. Descriptions of the hardware and its installation, and some preliminary metering results are presented. Real-time circuit visualization applications for the data are also under development.

  17. High Resolution Mapping of Modafinil Induced Changes in Glutamate Level in Rat Brain

    PubMed Central

    Haris, Mohammad; Singh, Anup; Cai, Kejia; Nath, Kavindra; Verma, Gaurav; Nanga, Ravi Prakash Reddy; Hariharan, Hari; Detre, John A.; Epperson, Neill; Reddy, Ravinder

    2014-01-01

    Modafinil is marketed in the United States for the treatment of narcolepsy and daytime somnolence due to shift-work or sleep apnea. Investigations of this drug in the treatment of cocaine and nicotine dependence in addition to disorders of executive function are also underway. Modafinil has been known to increase glutamate levels in rat brain models. Proton magnetic resonance spectroscopy (1HMRS) has been commonly used to detect the glutamate (Glu) changes in vivo. In this study, we used a recently described glutamate chemical exchange saturation transfer (GluCEST) imaging technique to measure Modafinil induced regional Glu changes in rat brain and compared the results with Glu concentration measured by single voxel 1HMRS. No increases in either GluCEST maps or 1HMRS were observed after Modafinil injection over a period of 5 hours. However, a significant increase in GluCEST (19±4.4%) was observed 24 hours post Modafinil administration, which is consistent with results from previous biochemical studies. This change was not consistently seen with 1HMRS. GluCEST mapping allows regional cerebral Glu changes to be measured and may provide a useful clinical biomarker of Modafinil effects for the management of patients with sleep disorders and addiction. PMID:25068408

  18. High resolution mapping of modafinil induced changes in glutamate level in rat brain.

    PubMed

    Haris, Mohammad; Singh, Anup; Cai, Kejia; Nath, Kavindra; Verma, Gaurav; Nanga, Ravi Prakash Reddy; Hariharan, Hari; Detre, John A; Epperson, Neill; Reddy, Ravinder

    2014-01-01

    Modafinil is marketed in the United States for the treatment of narcolepsy and daytime somnolence due to shift-work or sleep apnea. Investigations of this drug in the treatment of cocaine and nicotine dependence in addition to disorders of executive function are also underway. Modafinil has been known to increase glutamate levels in rat brain models. Proton magnetic resonance spectroscopy (1HMRS) has been commonly used to detect the glutamate (Glu) changes in vivo. In this study, we used a recently described glutamate chemical exchange saturation transfer (GluCEST) imaging technique to measure Modafinil induced regional Glu changes in rat brain and compared the results with Glu concentration measured by single voxel 1HMRS. No increases in either GluCEST maps or 1HMRS were observed after Modafinil injection over a period of 5 hours. However, a significant increase in GluCEST (19 ± 4.4%) was observed 24 hours post Modafinil administration, which is consistent with results from previous biochemical studies. This change was not consistently seen with 1HMRS. GluCEST mapping allows regional cerebral Glu changes to be measured and may provide a useful clinical biomarker of Modafinil effects for the management of patients with sleep disorders and addiction.

  19. Investigation of NA processes at reactive fringes: Sampling bias introduced by high resolution multi-level monitoring

    NASA Astrophysics Data System (ADS)

    Piepenbrink, M.; Ptak, T.; Grathwohl, P.

    2005-12-01

    Monitored natural attenuation is a potentially valuable risk-based remediation strategy for contaminated groundwater. The most important mass-removal process for natural attenuation is biodegradation. Certain zones or fringes of a contaminant plume offer supporting conditions for biodegradation: microbes, nutrients, contaminants and electron donors / acceptors are not only found together but also in the required reaction ratios. Due to this fact these areas show a relative rapid degradation and provide a significant contribution to the overall reduction of mass within the plume. As can be shown by high resolution numerical simulations of reactive transport in groundwater, the spatial distribution of these highly reactive zones, compared to the volume of the whole plume, is quite small and characterized by steep concentration gradients, which can not be detected using standard monitoring procedures. High resolution multi-level sampling (MLS) in the order of decimeters or less is an essential prerequisite for the investigation of NA processes at the reactive fringes at field scale. Furthermore, in contrast to technical remediation techniques which most often deal with high contaminant concentration levels close to the source zone, MNA relies heavily on the accuracy of the low concentration levels (down to the legal limits) measured in the plume. Quite often these data are strongly biased due to the monitoring equipment. This contribution presents results from ongoing controlled laboratory material tests and research on high resolution MLS at six field sites in different European countries. The focus was on a optimized site-specific hydraulic design and contaminant - MLS-material interaction. Most acceptable solutions (which means MLS resolution in the order of 0.1m) were found using sampling tubes with a small inner diameter (3-4mm). This results in a small stagnant water volume prior to sampling, but is still not problematic with respect to the flow induced

  20. High resolution drift chambers

    SciTech Connect

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 ..mu..m resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs.

  1. High-resolution headlamp

    NASA Astrophysics Data System (ADS)

    Gut, Carsten; Cristea, Iulia; Neumann, Cornelius

    2016-04-01

    The following article shall describe how human vision by night can be influenced. At first, front lighting systems that are already available on the market will be described, followed by their analysis with respect to the positive effects on traffic safety. Furthermore, how traffic safety by night can be increased since the introduction of high resolution headlamps shall be discussed.

  2. Enhanced High Resolution RBS System

    NASA Astrophysics Data System (ADS)

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 Å TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron® accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  3. Enhanced High Resolution RBS System

    SciTech Connect

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 A ring TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron registered accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  4. High resolution data acquisition

    DOEpatents

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  5. High resolution data acquisition

    DOEpatents

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  6. Trace level uranyl complexation with phenylphosphonic acid in aqueous solution: direct speciation by high resolution mass spectrometry.

    PubMed

    Galindo, Catherine; Del Nero, Mirella

    2013-04-15

    The complexation of U(VI) by organic P-containing ligands in humic substances (HS) is an important issue of uranyl mobility in soil. We have investigated the complexation of uranyl by a model ligand for aromatic phosphorus functionalities in HS, phenylphosphonic acid, by using ultrahigh resolution electrospray ionization-mass spectrometry (ESI-MS). The high sensitivity permitted to investigate the complexation of trace level uranyl and to explore directly in the native aqueous solutions the nature of the uranyl-phenylphosphonate complexes. Positive identification of the complexes coexisting in solutions with low pH and varying ligand-to-metal ratio was achieved thanks to the high resolving power, high mass accuracy, and reliability of ion abundance of the technique. The positively charged and neutral uranyl species were detected simultaneously on negative ion mass spectra, evidencing formation of three types of U(VI)-phenylphosphonate complexes. Two complexes with a metal-to-ligand stoichiometry of 1:1 (in the monoprotonated and nonprotonated forms) existed in solutions at pH 3-5, and a 1:2 complex was additionally formed at relatively high ligand-to-metal ratio. A strategy based on the use of uranyl-phosphate solution complexes as internal standards was developed to determine from the ESI(-)MS results the stability constants of the complexes, which were calculated to be log K111 = 3.4 ± 0.2 for UO2(HPhPO3)(+), log K101 = 7.1 ± 0.1 for UO2PhPO3, and log K112 = 7.2 ± 0.2 for UO2(HPhPO3)2. The speciation model presented here suggests that organic P existing at low concentration in HS is involved significantly in binding by humic and fulvic acids of trace level uranyl in soil.

  7. Features of nocturnal low level jet (NLLJ) observed over a tropical Indian station using high resolution Doppler wind lidar

    NASA Astrophysics Data System (ADS)

    Ruchith, R. D.; Ernest Raj, P.

    2015-02-01

    High resolution Doppler wind lidar measurements made during the period 01 April 2012 to 31 March 2014 over Pune (18°32‧N, 73°51‧E, 559 m Above Mean Sea Level), India have been used to study Nocturnal Low Level Jet (NLLJ) occurrence and its characteristics. Vertical profiles of horizontal wind in the altitude range from 100 m to 3000 m (at every 50 m interval) and averaged over 5 min have been used to study time-height variations during local nighttime. On several occasions during nighttime the wind profiles showed a narrow region of strong wind speed below 1000 m altitude from surface, suggesting the presence of the low level jet. Analysis of the data indicates that NLLJ occurs more frequently (~66%) during pre-monsoon season (March-May) and on only 14% of the nocturnal period during SW monsoon season (June-September). Mean jet core heights during pre-monsoon, monsoon, post-monsoon (October-November), and winter (December-February) seasons are found to be 687 m, 691 m, 593 m, and 586 m respectively. Seasonal mean jet core speeds during pre-monsoon and monsoon are higher than those during winter. There are some occasions during monsoon season when hourly mean jet speeds during nighttime are as high as 15-20 ms-1. Horizontal wind directions in the NLLJ during different seasons are consistent with the seasonal mean flow over the tropical Indian region. Most frequently occurring jet core height is in the height range 600-700 m with almost 65% of the cases having jet core heights<700 m and maximum frequency of occurrence of jet speed is in the range 9-11 ms-1. Large east-west temperature gradients, inertial oscillations, stability in the lower atmosphere seem to be some of the factors that play significant role in the formation and sustenance of NLLJ over the location during different seasons.

  8. Reconstruction of vegetation and lake level at Moon Lake, North Dakota, from high-resolution pollen and diatom data

    SciTech Connect

    Grimm, E.C.; Laird, K.R.; Mueller, P.G. |

    1995-06-01

    High-resolution fossil-pollen and diatom data from Moon Lake, North Dakota, reveal major climate and vegetation changes near the western margin of the tall-grass prairie. Fourteen AMS radiocarbon dates provide excellent time control for the past {approximately}11,800 {sup 14}C years B.P. Picea dominated during the late-glacial until it abruptly declined {approximately}10,300 B.P. During the early Holocene ({approximately}10,300-8000 B.P.), deciduous trees and shrubs (Populus, Betula, Corylus, Quercus, and especially Ulmus) were common, but prairie taxa (Poaceae, Artemisia, and Chenopodiaceae/Amaranthaceae) gradually increased. During this period the diatoms indicate the lake becoming gradually more saline as water-level fell. By {approximately}8000 B.P., salinity had increased to the point that the diatoms were no longer sensitive to further salinity increases. However, fluctuating pollen percentages of mud-flat weeds (Ambrosia and Iva) indicate frequently changing water levels during the mid-Holocene ({approximately}8000-5000 B.P.). The driest millennium was 7000-6000 B.P., when Iva annua was common. After {approximately}3000 B.P. the lake became less-saline, and the diatoms were again sensitive to changing salinity. The Medieval Warm Period and Little Ice Age are clearly evident in the diatom data.

  9. High-resolution instrumentation radar

    NASA Astrophysics Data System (ADS)

    Dydbal, Robert B.; Hurlbut, Keith H.; Mori, Tsutomu T.

    1987-03-01

    An instrumentation radar that uses a chirp waveform to achieve high-range resolution is described. High-range-resolution instrumentation radars evaluate the target response to operational waveforms used in high-performance radars and/or obtain a display of the individual target scattering mechanisms to better understand the scattering process. This particular radar was efficiently constructed from a combination of commercially available components and in-house fabricated circuitry. This instrumentation radar operates at X-band and achieves a 4.9-in-range resolution. A key feature of the radar is the combination of amplitude weighting with a high degree of waveform fidelity to achieve a very good range sidelobe performance. This range sidelobe performance is important to avoid masking lower level target returns in the range sidelobes of higher target returns.

  10. Strain-level characterization of nonstarter lactic acid bacteria in Norvegia cheese by high-resolution melt analysis.

    PubMed

    Porcellato, D; Østlie, H M; Liland, K H; Rudi, K; Isaksson, T; Skeie, S B

    2012-09-01

    The nonstarter lactic acid bacteria (NSLAB) constitute an important microbial group found during cheese ripening and they are thought to be fundamental to the quality of cheese. Rapid and accurate diagnostic tests for NSLAB are important for cheese quality control and in understanding the cheese ripening process. Here, we present a novel rapid approach for strain-level characterization through combined 16S rRNA gene and repetitive sequence-based high-resolution melt analysis (HRM). The approach was demonstrated through the characterization of 94 isolates from Norvegia, a Gouda-type cheese. The HRM profiles of the V1 and V3 variable regions of the 16S rRNA gene of the isolates were compared with the HRM profiles of 13 reference strains. The HRM profile comparison of the V1 and V3 regions of the 16S rRNA gene allowed discrimination of isolates and reference strains. Among the cheese isolates, Lactobacillus casei/paracasei (62 isolates) and Lactobacillus plantarum/Lactobacillus pentosus (27 isolates) were the dominant species, whereas Lactobacillus curvatus/Lactobacillus sakei were found occasionally (5 isolates). The HRM profiling of repetitive sequence-based PCR using the (GTG)(5) primer was developed for strain-level characterization. The clustering analysis of the HRM profiles showed high discriminatory power, similar to that of cluster analysis based on the gel method. In conclusion, the HRM approach in this study may be applied as a fast, accurate, and reproducible method for characterization of the NSLAB microflora in cheese and may be applicable to other microbial environments following selective plate culturing.

  11. Upsampling range camera depth maps using high-resolution vision camera and pixel-level confidence classification

    NASA Astrophysics Data System (ADS)

    Tian, Chao; Vaishampayan, Vinay; Zhang, Yifu

    2011-03-01

    We consider the problem of upsampling a low-resolution depth map generated by a range camera, by using information from one or more additional high-resolution vision cameras. The goal is to provide an accurate high resolution depth map from the viewpoint of one of the vision cameras. We propose an algorithm that first converts the low resolution depth map into a depth/disparity map through coordinate mappings into the coordinate frame of one vision camera, then classifies the pixels into regions according to whether the range camera depth map is trustworthy, and finally refine the depth values for the pixels in the untrustworthy regions. For the last refinement step, both a method based on graph cut optimization and that based on bilateral filtering are examined. Experimental results show that the proposed methods using classification are able to upsample the depth map by a factor of 10 x 10 with much improved depth details, with significantly better accuracy comparing to those without the classification. The improvements are visually perceptible on a 3D auto-stereoscopic display.

  12. High resolution hypernuclear spectroscopy

    SciTech Connect

    F. Garibaldi

    2005-02-01

    Hypernuclear spectroscopy provides fundamental information for understanding the effective ?-Nucleon interaction. Jefferson Laboratory experiment E94-107 was designed to perform high resolution hypernuclear spectroscopy by electroproduction of strangeness in four 1p-shell nuclei: 12C, 9Be, 16O, and 7Li. The first part of the experiment on 12C and 9Be has been performed in January and April-May 2004 in Hall A at Jefferson Lab. Significant modifications were made to the standard Hall A apparatus for this challenging experiment: two septum magnets and a RICH detector have been added to get reasonable counting rates and excellent particle identification, as required for the experiment. A description of the apparatus and the preliminary analysis results are presented here.

  13. High Resolution Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brünken, S.; Schlemmer, S.

    2016-05-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limitations of conventional absorption spectroscopy. Throughout this review examples demonstrating the strong interplay between laboratory and observational studies will be given.

  14. High resolution time interval meter

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  15. HLA-DRB1, -DRB3, -DRB4 and -DRB5 genotyping at a super-high resolution level by long range PCR and high-throughput sequencing.

    PubMed

    Ozaki, Y; Suzuki, S; Shigenari, A; Okudaira, Y; Kikkawa, E; Oka, A; Ota, M; Mitsunaga, S; Kulski, J K; Inoko, H; Shiina, T

    2014-01-01

    Super high-resolution single molecule sequence-based typing (SS-SBT) is a human leukocyte antigen (HLA) DNA typing method to the field 4 level of allelic resolution (formerly known as eight-digit typing) to efficiently detect new and null alleles without phase ambiguity by combination of long ranged polymerase chain reaction (PCR) amplification and next-generation sequencing (NGS) technologies. We previously reported the development and application of the SS-SBT method for the eight classical HLA loci, A, B, C, DRB1, DQA1, DQB1, DPA1 and DPB1. In this article, we describe the development of the SS-SBT method for three DRB1 linked loci, DRB3, DRB4 and DRB5 (DRB3/4/5) and characterization of DRB1-DRB3/4/5 haplotype structures to the field 4 level. Locus specific PCR primers for DRB3/4/5 were designed to amplify the gene regions from intron 1 to exon 6 [3' untranslated region (3'UTR)]. In total 20 DRB1 and 13 DRB3/4/5 allele sequences were determined by the SS-SBT to the field 4 level without phase ambiguity using 19 DR51, DR52 and DR53 positive genomic DNA samples obtained from Japanese. Moreover, 18 DRB1-DRB3/4/5 haplotypes were estimated to the field 4 level by the SS-SBT method in contrast to 10 haplotypes estimated by conventional methods to the field 1 level (formerly known as two digit typing). Therefore, DRB1-DRB3/4/5 haplotyping by SS-SBT is expected to provide informative data for improved HLA matching in medical research, transplantation procedures, HLA-related disease studies and human population diversity studies.

  16. High-resolution synchrotron infrared spectroscopy of acrolein: The vibrational levels between 700 and 820 cm-1

    NASA Astrophysics Data System (ADS)

    McKellar, A. R. W.; Billinghurst, B. E.

    2015-09-01

    The weak combination bands ν12 + ν18 and ν17 + ν18 of trans-acrolein in the 700-760 cm-1 region are observed at high resolution (<0.001 cm-1) using spectra obtained at the Canadian Light Source synchrotron radiation facility. A detailed rotational analysis of the 121181 and 171181 upper states is made which includes the nearby perturbing states 185, 132181, and 131183. Taking the results of this 5-state fit, together with earlier results on lower lying vibrations, we now have experimental characterization for all 15 excited vibrational states of acrolein lying below 820 cm-1.

  17. Molecular-level characterization of crude oil compounds combining reversed-phase high-performance liquid chromatography with off-line high-resolution mass spectrometry

    USGS Publications Warehouse

    Sim, Arum; Cho, Yunju; Kim, Daae; Witt, Matthias; Birdwell, Justin E.; Kim, Byung Ju; Kim, Sunghwan

    2014-01-01

    A reversed-phase separation technique was developed in a previous study (Loegel et al., 2012) and successfully applied to the de-asphalted fraction of crude oil. However, to the best of our knowledge, the molecular-level characterization of oil fractions obtained by reversed-phase high-performance liquid chromatography (HPLC) coupled with high-resolution mass spectrometry (MS) has not yet been reported. A detailed characterization of the oil fractions prepared by reversed-phase HPLC was performed in this study. HPLC fractionation was carried out on conventional crude oil and an oil shale pyrolysate. The analyses of the fractions showed that the carbon number of alkyl chains and the double bond equivalent (DBE) value were the major factors determining elution order. The compounds with larger DBE (presumably more condensed aromatic structures) and smaller carbon number (presumably compounds with short side chains) were eluted earlier but those compounds with lower DBE values (presumably less aromatic structures) and higher carbon number (presumably compounds with longer alkyl chains) eluted later in the chromatograms. This separation behavior is in good agreement with that expected from the principles of reversed-phase separation. The data presented in this study show that reversed-phase chromatography is effective in separating crude oil compounds and can be combined with ultrahigh-resolution MS data to better understand natural oils and oil shale pyrolysates.

  18. High Resolution Formaldehyde Photochemistry

    NASA Astrophysics Data System (ADS)

    Ernest, C. T.; Bauer, D.; Hynes, A. J.

    2010-12-01

    Formaldehyde (HCHO) is the most abundant and most important organic carbonyl compound in the atmosphere. The sources of formaldehyde are the oxidation of methane, isoprene, acetone, and other volatile organic compounds (VOCs); fossil fuel combustion; and biomass burning. The dominant loss mechanism for formaldehyde is photolysis which occurs via two pathways: (R1) HCHO + hv → HCO + H (R2) HCHO + hv → H2 + CO The first pathway (R1) is referred to as the radical channel, while the second pathway (R2) is referred to as the molecular channel. The products of both pathways play a significant role in atmospheric chemistry. The CO that is produced in the molecular channel undergoes further oxidation to produce CO2. Under atmospheric conditions, the H atom and formyl radical that are produced in the radical channel undergo rapid reactions with O2 to produce the hydroperoxyl radical (HO2) via (R3) and (R4). (R3) HCO + O2 → HO2 + CO (R4) H + O2 → HO2 Thus, for every photon absorbed, the photolysis of formaldehyde can contribute one CO2 molecule to the global greenhouse budget or two HO2 radicals to the tropospheric HOx (OH + HO2) cycle. The HO2 radicals produced during formaldehyde photolysis have also been implicated in the formation of photochemical smog. The HO2 radicals act as radical chain carriers and convert NO to NO2, which ultimately results in the catalytic production of O3. Constraining the yield of HO2 produced via HCHO photolysis is essential for improving tropospheric chemistry models. In this study, both the absorption cross section and the quantum yield of the radical channel (R1) were measured at high resolution over the tropospherically relevant wavelength range 304-330 nm. For the cross section measurements a narrow linewidth Nd:YAG pumped dye laser was used with a multi-pass cell. Partial pressures of HCHO were kept below 0.3 torr. Simultaneous measurement of OH LIF in a flame allowed absolute calibration of the wavelength scale. Pressure

  19. High resolution telescope

    DOEpatents

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  20. High Resolution Parameter-Space from a Two-Level Model on Semi-Insulating GaAs

    NASA Astrophysics Data System (ADS)

    da Silva, S. L.; Viana, E. R.; de Oliveira, A. G.; Ribeiro, G. M.; da Silva, R. L.

    Semi-insulating Gallium Arsenide (SI-GaAs) samples experimentally show, under high electric fields and even at room temperature, negative differential conductivity in N-shaped form (NNDC). Since the most consolidated model for n-GaAs, namely, "the model", proposed by E. Schöll was not capable to generate the NNDC curve for SI-GaAs, in this work we have proposed an alternative model. The model proposed, "the two-valley model" is based on the minimal set of generation-recombination equations for two valleys inside of the conduction band, and an equation for the drift velocity as a function of the applied electric field, that covers the physical properties of the nonlinear electrical conduction of the SI-GaAs system. The "two-valley model" was capable to generate theoretically the NNDC region for the first time, and with that, we were able to build a high resolution parameter-space of the periodicity (PSP) using a Periodicity-Detection (PD) routine. In the parameter-space were observed self-organized periodic structures immersed in chaotic regions. The complex regions are presented in a "shrimp" shape rotated around a focal point, which forms in large-scale a "snail shell" shape, with intricate connections between different "shrimps". The knowledge of detailed information on parameter spaces is crucial to localize wide regions of smooth and continuous chaos.

  1. Determination of 2,3,7,8-chlorine-substituted dibenzo-p-dioxins and -furans at the part per trillion level in United States beef fat using high-resolution gas chromatography/high-resolution mass spectrometry

    NASA Technical Reports Server (NTRS)

    Ferrario, J.; Byrne, C.; McDaniel, D.; Dupuy, A. Jr; Harless, R.

    1996-01-01

    As part of the U.S. EPA Dioxin Reassessment Program, the 2,3,7,8-chlorine-substituted dibenzo-p-dioxins and furans were measured at part per trillion (ppt) levels in beef fat collected from slaughter facilities in the United States. This is the first statistically designed national survey of these compounds in the U.S. beef supply. Analyte concentrations were determined by high-resolution gas chromatography/high-resolution mass spectrometry, using isotope dilution methodology. Method limits of detection on a whole weight basis were 0.05 ppt for TCDD and 0.10 ppt for TCDF, 0.50 ppt for the pentas (PeCDDs/PeCDFs)/hexas (HxCDDs/HxCDFs)/heptas (HpCDDs/HpCDFs), and 3.00 ppt for the octas (OCDD/OCDF). Method detection and quantitation limits were established on the basis of demonstrated performance criteria utilizing fortified samples rather than by conventional signal-to-noise or variability of response methods. The background subtraction procedures developed for this study minimized the likelihood of false positives and increased the confidence associated with reported values near the detection limits. Mean and median values for each of the 2,3,7,8-Cl-substituted dioxins and furans are reported, along with the supporting information required for their interpretation. The mean toxic equivalence values for the samples are 0.35 ppt (nondetects = 0) and 0.89 ppt (nondetects = 1/2 LOD).

  2. High-resolution phenotypic profiling of natural products-induced effects on the single-cell level

    PubMed Central

    Kremb, Stephan; Voolstra, Christian R.

    2017-01-01

    Natural products (NPs) are highly evolved molecules making them a valuable resource for new therapeutics. Here we demonstrate the usefulness of broad-spectrum phenotypic profiling of NP-induced perturbations on single cells with imaging-based High-Content Screening to inform on physiology, mechanisms-of-actions, and multi-level toxicity. Our technology platform aims at broad applicability using a comprehensive marker panel with standardized settings streamlined towards an easy implementation in laboratories dedicated to natural products research. PMID:28295057

  3. Development of a High Resolution, Real Time, Distribution-Level Metering System and Associated Visualization, Modeling, and Data Analysis Functions

    SciTech Connect

    Bank, J.; Hambrick, J.

    2013-05-01

    NREL is developing measurement devices and a supporting data collection network specifically targeted at electrical distribution systems to support research in this area. This paper describes the measurement network which is designed to apply real-time and high speed (sub-second) measurement principles to distribution systems that are already common for the transmission level in the form of phasor measurement units and related technologies.

  4. High Resolution Orientation Imaging Microscopy

    DTIC Science & Technology

    2012-05-02

    Functions, ICCES 2010, Las Vegas. 17. David Fullwood, Brent Adams, Mike Miles, Stuart Rogers, Ali Khosravani, Raj Mishra, Design for Ductility : Defect... Pseudo -Symmetries by High Resolution EBSD Methods, MS&T. 2009: Pittsburgh. 27. Oliver Johnson, Calvin Gardner, David Fullwood, Brent Adams, George...applied to strain measurements ................................... 6 2.3 Recovery of Lattice Tetragonality and Pseudo -Symmetry Resolution

  5. High Resolution Spectral Analysis

    DTIC Science & Technology

    2006-10-25

    filter - bank (one input many outputs) is then selected with a bandpass characteristic over the frequency range of interest. It consists of a dynamical...tailored to, disturbance isolation of a targeting system (e.g., laser) using input from a distributed array of 4 CHAPTER 1. ABSTRACT sensors. High...outstanding paper award from the IEEE Control Systems Society in 2003, and a U.S. patent [41] which was based on this and subsequent work. We mention that

  6. Ultra-high resolution AMOLED

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal

    2011-06-01

    AMOLED microdisplays continue to show improvement in resolution and optical performance, enhancing their appeal for a broad range of near-eye applications such as night vision, simulation and training, situational awareness, augmented reality, medical imaging, and mobile video entertainment and gaming. eMagin's latest development of an HDTV+ resolution technology integrates an OLED pixel of 3.2 × 9.6 microns in size on a 0.18 micron CMOS backplane to deliver significant new functionality as well as the capability to implement a 1920×1200 microdisplay in a 0.86" diagonal area. In addition to the conventional matrix addressing circuitry, the HDTV+ display includes a very lowpower, low-voltage-differential-signaling (LVDS) serialized interface to minimize cable and connector size as well as electromagnetic emissions (EMI), an on-chip set of look-up-tables for digital gamma correction, and a novel pulsewidth- modulation (PWM) scheme that together with the standard analog control provides a total dimming range of 0.05cd/m2 to 2000cd/m2 in the monochrome version. The PWM function also enables an impulse drive mode of operation that significantly reduces motion artifacts in high speed scene changes. An internal 10-bit DAC ensures that a full 256 gamma-corrected gray levels are available across the entire dimming range, resulting in a measured dynamic range exceeding 20-bits. This device has been successfully tested for operation at frame rates ranging from 30Hz up to 85Hz. This paper describes the operational features and detailed optical and electrical test results for the new AMOLED WUXGA resolution microdisplay.

  7. High-Resolution Autoradiography

    DTIC Science & Technology

    1955-01-01

    Laboratory, Cleveland, Ohio WALTER C. WILLIAMS, B. S., Chief, High-Speed Flight Station, Edwards, Calif. HIItIU-ItE•,OL.I’TION Al’TIlT.AI) iIO (ltAIIII 3 Of )4r...comparison was made betw,,ia wvet-prociss autoraffio- eraluate this autoradiographic technique, several types of radio - graphs and autoradiographs...apart. heterogeneous system. The radiation emitted by the radio - Wet-process autoradiography, as developed in 1949 by Dr. active elements acts on a

  8. Very high resolution Digital Terrain and Marine Model for Lipari island: flooding scenario induced by land subsidence and sea level rise

    NASA Astrophysics Data System (ADS)

    Anzidei, Marco; Bosman, Alessandro; Carluccio, Roberto; Carmisciano, Cosmo; Casalbore, Daniele; Chiappini, Massimo; Latino Chiocci, Francesco; D'Ajello Caracciolo, Francesca; Esposito, Alessandra; Fabris, Massimo; Muccini, Filippo; Nicolosi, Iacopo; Pietrantonio, Grazia; Sepe, Vincenzo

    2015-04-01

    Multibeam bathymetry combined with aerial digital photogrammetry, play a crucial role in the generation of ultra-high resolution digital terrain models (DTMs) of land and submarine areas. Integrating these survey techniques can be realized accurate and homogeneous DTMs along narrow coastal zones that often cannot be adequately surveyed owing to logistical limitations on collecting bathymetric data in very shallow water. Here we show results from the merging of high resolution multibeam bathymetry and aerial photogrammetric surveys, the latter also performed locally by drone surveys, integrated in the same reference system, to generate the first 3D high resolution Digital Terrain and Marine Model (DTMM) of the Lipari island (Aeolian islands, Italy). This active volcanic area is located between the Southern Tyrrhenian Sea back arc basin (Marsili basin) and the Calabrian Arc, an orogenic belt affected by a Late Quaternary extensional tectonics and uplift. In this tectonic and volcanic framework, at Lipari geodetic and archeological data show a continuous rapid land subsidence at velocities >10 mm/yr, which is the highest value among the Aeolian island. The obtained DTMM at the average resolution of 0.5 m and locally at about 0.1 m, will significantly improve geophysical and geomorphological studies of this volcanic island. Particularly, it will assist in reducing future hazards related to flooding scenario, due to the combined effect of continuous land subsidence and sea level rise. Relative sea level rise at Lipari is already causing a diffuse submersion of the coast and by the year 2100 is expected a significant flooding of the land with large impacts on the environment and the coastal installation, representing a significant hazard factor for the local population living near the shore.

  9. Sea Level History in 3D: Early results of an ultra-high resolution MCS survey across IODP Expedition 313 drillsites

    NASA Astrophysics Data System (ADS)

    Mountain, G. S.; Kucuk, H. M.; Nedimovic, M. R.; Austin, J. A., Jr.; Fulthorpe, C.; Newton, A.; Baldwin, K.; Johnson, C.; Stanley, J. N.; Bhatnagar, T.

    2015-12-01

    Although globally averaged sea level is rising at roughly 3 mm/yr (and is accelerating), rates of local sea-level change measured at coastlines may differ from this number by a factor of two or more; at some locations, sea level may even be falling. This is due to local processes that can match or even reverse the global trend, making it clear that reliable predictions of future impacts of sea-level rise require a firm understanding of processes at the local level. The history of local sea-level change and shoreline response is contained in the geologic record of shallow-water sediments. We report on a continuing study of sea-level history in sediments at the New Jersey continental margin, where compaction and glacial isostatic adjustment are currently adding 2 mm/yr to the globally averaged rise. We collected 570 sq km of ultra-high resolution 3D MCS data aboard the R/V Langseth in June-July 2015; innovative recording and preliminary results are described by Nedimovic et al. in this same session. The goal was to provide regional context to coring and logging at IODP Exp 313 sites 27-29 that were drilled 750 m into the New Jersey shelf in 2009. These sites recovered a nearly continuous record of post-Eocene sediments from non-marine soils, estuaries, shoreface, delta front, pro-delta and open marine settings. Existing seismic data are good but are 2D high-resolution profiles at line spacings too wide to enable mapping of key nearshore features. The Langseth 3D survey used shallow towing of a tuned air gun array to preserve high frequencies, and twenty-four 50-m PCables each 12.5 apart provided 6.25 x 3.125 m common-midpoint bins along seventy-seven 50-km sail lines. With this especially dense spatial resolution of a pre-stack time migrated volume we expect to map rivers, incised valleys, barrier islands, inlets and bays, pro-delta clinoforms, tidal deltas, sequence boundaries, debris flow aprons, and more. Seismic attributes linked to sedimentary facies and

  10. High Resolution Doppler Lidar

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Grant supported the development of an incoherent lidar system to measure winds and aerosols in the lower atmosphere. During this period the following activities occurred: (1) an active feedback system was developed to improve the laser frequency stability; (2) a detailed forward model of the instrument was developed to take into account many subtle effects, such as detector non-linearity; (3) a non-linear least squares inversion method was developed to recover the Doppler shift and aerosol backscatter without requiring assumptions about the molecular component of the signal; (4) a study was done of the effects of systematic errors due to multiple etalon misalignment. It was discovered that even for small offsets and high aerosol loadings, the wind determination can be biased by as much as 1 m/s. The forward model and inversion process were modified to account for this effect; and (5) the lidar measurements were validated using rawinsonde balloon measurements. The measurements were found to be in agreement within 1-2 m/s.

  11. High resolution digital delay timer

    DOEpatents

    Martin, Albert D.

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  12. High-resolution simulation of link-level vehicle emissions and concentrations for air pollutants in a traffic-populated eastern Asian city

    NASA Astrophysics Data System (ADS)

    Zhang, Shaojun; Wu, Ye; Huang, Ruikun; Wang, Jiandong; Yan, Han; Zheng, Yali; Hao, Jiming

    2016-08-01

    Vehicle emissions containing air pollutants created substantial environmental impacts on air quality for many traffic-populated cities in eastern Asia. A high-resolution emission inventory is a useful tool compared with traditional tools (e.g. registration data-based approach) to accurately evaluate real-world traffic dynamics and their environmental burden. In this study, Macau, one of the most populated cities in the world, is selected to demonstrate a high-resolution simulation of vehicular emissions and their contribution to air pollutant concentrations by coupling multimodels. First, traffic volumes by vehicle category on 47 typical roads were investigated during weekdays in 2010 and further applied in a networking demand simulation with the TransCAD model to establish hourly profiles of link-level vehicle counts. Local vehicle driving speed and vehicle age distribution data were also collected in Macau. Second, based on a localized vehicle emission model (e.g. the emission factor model for the Beijing vehicle fleet - Macau, EMBEV-Macau), this study established a link-based vehicle emission inventory in Macau with high resolution meshed in a temporal and spatial framework. Furthermore, we employed the AERMOD (AMS/EPA Regulatory Model) model to map concentrations of CO and primary PM2.5 contributed by local vehicle emissions during weekdays in November 2010. This study has discerned the strong impact of traffic flow dynamics on the temporal and spatial patterns of vehicle emissions, such as a geographic discrepancy of spatial allocation up to 26 % between THC and PM2.5 emissions owing to spatially heterogeneous vehicle-use intensity between motorcycles and diesel fleets. We also identified that the estimated CO2 emissions from gasoline vehicles agreed well with the statistical fuel consumption in Macau. Therefore, this paper provides a case study and a solid framework for developing high-resolution environment assessment tools for other vehicle-populated cities

  13. High-Resolution X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.

    2010-01-01

    Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.

  14. High-amplitude lake-level changes in tectonically active Lake Issyk-Kul (Kyrgyzstan) revealed by high-resolution seismic reflection data

    NASA Astrophysics Data System (ADS)

    Catalina Gebhardt, Andrea; Naudts, Lieven; De Mol, Lies; Klerkx, Jan; Abdrakhmatov, Kanatbek; Sobel, Edward R.; De Batist, Marc

    2017-01-01

    A total of 84 seismic profiles, mainly from the western and eastern deltas of Lake Issyk-Kul, were used to identify lake-level changes. Seven stratigraphic sequences were reconstructed, each containing a series of delta lobes that were formed during former lake-level stillstands or during slow lake-level increase or decrease. The lake level has experienced at least four cycles of stepwise rise and fall of 400 m or more. These fluctuations were mainly caused by past changes in the atmospheric circulation pattern. During periods of low lake levels, the Siberian High was likely to be strong, bringing dry air masses from the Mongolian steppe blocking the midlatitude Westerlies. During periods of high lake levels, the Siberian High must have been weaker or displaced, and the midlatitude Westerlies could bring moister air masses from the Mediterranean and North Atlantic regions.

  15. Night vision goggles resolution performance at low contrast levels

    NASA Astrophysics Data System (ADS)

    Tjernstrom, Lars

    1993-01-01

    NVG (Night Vision Goggle) resolution performance data is usually given as measured against high contrast, black and white, targets. When NVGs are used as night vision aids for visual night flight, the scene viewed by the pilot is in most cases dominated by low contrast. Therefore, NVG performance at low contrast levels is more relevant to the piloting task than NVG resolution at high contrast levels. A set of resolution targets with different contrast levels was designed and ground tests performed at various light levels outdoors at night. The results showed a marked loss of resolution at lower contrast levels. The presentation will describe the test method, give the results and discuss how the results may be explained. A method for using the test results as the basis for correlating piloting performance to light levels will be presented.

  16. Genetic interaction analysis of point mutations enables interrogation of gene function at a residue-level resolution: exploring the applications of high-resolution genetic interaction mapping of point mutations.

    PubMed

    Braberg, Hannes; Moehle, Erica A; Shales, Michael; Guthrie, Christine; Krogan, Nevan J

    2014-07-01

    We have achieved a residue-level resolution of genetic interaction mapping - a technique that measures how the function of one gene is affected by the alteration of a second gene - by analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, and outline key applications for the approach, including interrogation of protein interaction interfaces and active sites, and examination of post-translational modifications. Genetic interaction analysis has proven effective for characterizing cellular processes; however, to date, systematic high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which limits the resolution of gene function analysis and poses problems for multifunctional genes. Our point mutant approach addresses these issues, and further provides a tool for in vivo structure-function analysis that complements traditional biophysical methods. We also discuss the potential for genetic interaction mapping of point mutations in human cells and its application to personalized medicine.

  17. Approach to resolution of geologic uncertainty in the licensing of a high-level-waste repository in tuff

    SciTech Connect

    Neal, J.T.

    1983-12-31

    Resolution of uncertainty in geological information is an essential element in the licensing process for a geologic repository. Evaluation of these uncertainties within the licensing framework established by the Nuclear Regulatory Commission (NRC) is required. The Nevada Nuclear Waste Storage Investigations (NNWSI), in focusing its site characterization program on unsaturated tuff, has developed a logic hierarchy of technical issues, including key issues, issues, and information needs. Key issues are statements of major requirements whose lack could be disqualifying. An example of a key issue is the demonstration of radionuclide containment and isolation within the required release limits and transport time set by the EPA and NRC. Key issues are broken down into issues, such as the groundwater flow time to the accessible environment. Resolving uncertainty ultimately comes back to satisfying individual information needs that collectively form issues. Hydraulic conductivity is an example of an information need required to determine groundwater flow rate. Sources of uncertainty often arise in either amount, quality, or other limitations in geological data. The hierarchical structuring of geological information needs provides a perspective that allows proportionate attention to be placed on various site characterization activities, and to view them within the whole range of licensing issues that must be satisfied to ensure public health and safety. However, it may not prevent an issue from being contentious, as some geological questions are known to be emotion-laden. The mitigation of uncertainty in geological information ultimately will depend on the validity and credibility of the information presented during the licensing process.

  18. High-resolution instrumentation radar

    NASA Astrophysics Data System (ADS)

    Dybdal, Robert B.; Hurlbut, Keith H.; Mori, Tsutomu T.

    1986-09-01

    The development of an instrumentation radar that uses a chirp waveform to achieve high range resolution is described. Such range resolution capability is required for two reasons: (1) to evaluate the response of targets to the operational waveforms used in high-performance radars; and (2) to obtain a means of separating the individual mechanisms that comprise the target scattering response to better understand the scattering process. This particular radar was efficiently constructed from a combination of commercially available components and in-house-fabricated circuitry. This instrumentation radar operates at X-band and achieves a 4.9-in. range resolution. A key feature of the radar is its ability to combine amplitude weighting with a high degree of waveform fidelity, with the result being very good range sidelobe performance.

  19. Rippled-spectrum resolution dependence on level.

    PubMed

    Supin, Alexander Ya; Popov, Vladimir V; Milekhina, Olga N; Tarakanov, Mikhail B

    2003-11-01

    Rippled-density resolution of a rippled sound spectrum (probe band) in both the presence and absence of another band (masker) was studied as a function of sound level in normal listeners. The resolvable ripple density in the probe band was measured by finding the highest ripple density at which an interchange of ripple peak and valley positions was detectable (the phase-reversal test). Probe bands were 0.5 oct wide with center frequencies of 1, 2, and 4 kHz. In the control condition (no masker), the ripple-density resolution was almost independent of sound level within a range of 40-90 dB SPL. When an on-frequency masker coincided with the probe band (that resulted in reduced ripple depth), resolution decreased slightly relative to the control condition but remained little dependent on level. With an off-frequency low-side masker, the ripple-density resolution was a little less than in the control but almost independent of level within a range of 40-60 dB SPL and progressively decreased with level increase from 70 to 90 dB SPL. The dependence on level was qualitatively similar at all probe frequencies and at various widths and positions of the low-side off-frequency masker band.

  20. Advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The advanced very high resolution radiometer development program is considered. The program covered the design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical structural model, and a life test model. Special bench test and calibration equipment was also developed for use on the program.

  1. Determination of the natural radioactivity levels in north west of Dukhan, Qatar using high-resolution gamma-ray spectrometry.

    PubMed

    Al-Sulaiti, Huda; Nasir, Tabassum; Al Mugren, K S; Alkhomashi, N; Al-Dahan, N; Al-Dosari, M; Bradley, D A; Bukhari, S; Matthews, M; Regan, P H; Santawamaitre, T; Malain, D; Habib, A

    2012-07-01

    This study is aimed at the determination of the activity concentrations of naturally occuring and technologically enhanced levels of radiation in 34 representative soil samples that have been collected from an inshore oil field area which was found to have, in a previous study, the highest observed value of 226Ra concentration among 129 soil samples. The activity concentrations of 238U and 226Ra have been inferred from gamma-ray transitions associated with their decay progenies and measured using a hyper-pure germanium detector. Details of the sample preparation and the gamma-ray spectroscopic analysis techniques are presented, together with the values of the activity concentrations associated with the naturally occuring radionuclide chains for all the samples collected from NW Dukhan. Discrete-line, gamma-ray energy transitions from spectral lines ranging in energy from ∼100 keV up to 2.6 MeV have been associated with characteristic decays of the various decay products within the 235.8U and 232Th radioactive decay chains. These data have been analyzed, under the assumption of secular equilibrium for the U and Th decay chains. Details of the sample preparation and the gamma-ray spectroscopic analysis techniques are presented. The weighted mean value of the activity concentrations of 226Ra in one of the samples was found to be around a factor of 2 higher than the values obtained in the previous study and approximately a factor of 10 higher than the accepted worldwide average value of 35 Bq/kg. The weighted mean values of the activity concentrations of 232Th and 40K were also deduced and found to be within the worldwide average values of 30 and 400 Bq/kg, respectively. Our previous study reported a value of 201.9±1.5Stat.±13Syst.Bq/kg for 226Ra in one sample and further investigation in the current work determined a measured value for 226Ra of 342.00±1.9Stat.±25Syst.Bq/kg in a sample taken from the same locality. This is significantly higher than all the other

  2. Requirements on high resolution detectors

    SciTech Connect

    Koch, A.

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  3. High-resolution monitoring across the soil-groundwater interface - Revealing small-scale hydrochemical patterns with a novel multi-level well

    NASA Astrophysics Data System (ADS)

    Gassen, Niklas; Griebler, Christian; Stumpp, Christine

    2016-04-01

    Biogeochemical turnover processes in the subsurface are highly variable both in time and space. In order to capture this variability, high resolution monitoring systems are required. Particular in riparian zones the understanding of small-scale biogeochemical processes is of interest, as they are regarded as important buffer zones for nutrients and contaminants with high turnover rates. To date, riparian research has focused on influences of groundwater-surface water interactions on element cycling, but little is known about processes occurring at the interface between the saturated and the unsaturated zone during dynamic flow conditions. Therefore, we developed a new type of high resolution multi-level well (HR-MLW) that has been installed in the riparian zone of the Selke river. This HR-MLW for the first time enables to derive water samples both from the unsaturated and the saturated zone across one vertical profile with a spatial vertical resolution of 0.05 to 0.5 m to a depth of 4 m b.l.s. Water samples from the unsaturated zone are extracted via suction cup sampling. Samples from the saturated zone are withdrawn through glass filters and steel capillaries. Both, ceramic cups and glass filters, are installed along a 1" HDPE piezometer tube. First high resolution hydrochemical profiles revealed a distinct depth-zonation in the riparian alluvial aquifer. A shallow zone beneath the water table carried a signature isotopically and hydrochemically similar to the nearby river, while layers below 1.5 m were influenced by regional groundwater. This zonation showed temporal dynamics related to groundwater table fluctuations and microbial turnover processes. The HR-MLW delivered new insight into mixing and turnover processes between riverwater and groundwater in riparian zones, both in a temporal and spatial dimension. With these new insights, we are able to improve our understanding of dynamic turnover processes at the soil - groundwater interface and of surface

  4. High resolution optical DNA mapping

    NASA Astrophysics Data System (ADS)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  5. High angular resolution at LBT

    NASA Astrophysics Data System (ADS)

    Conrad, A.; Arcidiacono, C.; Bertero, M.; Boccacci, P.; Davies, A. G.; Defrere, D.; de Kleer, K.; De Pater, I.; Hinz, P.; Hofmann, K. H.; La Camera, A.; Leisenring, J.; Kürster, M.; Rathbun, J. A.; Schertl, D.; Skemer, A.; Skrutskie, M.; Spencer, J. R.; Veillet, C.; Weigelt, G.; Woodward, C. E.

    2015-12-01

    High angular resolution from ground-based observatories stands as a key technology for advancing planetary science. In the window between the angular resolution achievable with 8-10 meter class telescopes, and the 23-to-40 meter giants of the future, LBT provides a glimpse of what the next generation of instruments providing higher angular resolution will provide. We present first ever resolved images of an Io eruption site taken from the ground, images of Io's Loki Patera taken with Fizeau imaging at the 22.8 meter LBT [Conrad, et al., AJ, 2015]. We will also present preliminary analysis of two data sets acquired during the 2015 opposition: L-band fringes at Kurdalagon and an occultation of Loki and Pele by Europa (see figure). The light curves from this occultation will yield an order of magnitude improvement in spatial resolution along the path of ingress and egress. We will conclude by providing an overview of the overall benefit of recent and future advances in angular resolution for planetary science.

  6. Pushing the limits of ultra-high resolution human brain imaging with SMS-EPI demonstrated for columnar level fMRI.

    PubMed

    Feinberg, David A; Vu, An T; Beckett, Alexander

    2017-02-14

    Encoding higher spatial resolution in simultaneous multi-slice (SMS) EPI is highly dependent on gradient performance, high density receiver coil arrays and pulse sequence optimization. We simulate gradient amplitude and slew rate determination of EPI imaging performance in terms of minimum TE, echo spacing (ES) and spatial resolution. We discuss the effects of image zooming in pulse sequences that have been used for sub-millimeter resolutions and the trade-offs in using partial Fourier and parallel imaging to reduce TE, PSF and ES. Using optimizations for SMS EPI pulse sequences with available gradient and receiver hardware, experimental results in ultra-high resolution (UHR) (0.45-0.5mm isotropic) SMS-EPI fMRI and mapping ocular dominance columns (ODC) in human brain at 0.5 mm isotropic resolution are demonstrated. We discuss promising future directions of UHR fMRI.

  7. The Torsion-Inversion Energy Levels in the S1( n, π*) Electronic State of Acetaldehyde from High-Resolution Jet-Cooled Fluorescence Excitation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, H.; Lim, E. C.; Muñoz-Caro, C.; Niño, A.; Judge, R. H.; Moule, D. C.

    1996-01-01

    The laser-induced fluorescence excitation spectrum (LIF) of acetaldehyde that results from the emission from theS1(n, π*) electronic state has been observed under very high resolution with a CW pulse-amplified laser under jet-cooled conditions. The origins of seven bands were determined by rotational analyses with a rigid-rotor Hamiltonian. The origins were fitted to a set of levels that were obtained from a Hamiltonian that employed flexible torsion-wagging large amplitude coordinates. The potential surface derived from the fitting procedure yielded barriers to torsion and inversion of 721.43 and 585.13 cm-1, respectively. Minima in the potential hypersurface at θ = 58.6° and α = 35.7° defined the corresponding equilibrium positions for the torsion and wagging coordinates.

  8. HRSC: High resolution stereo camera

    USGS Publications Warehouse

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W.; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.

    2009-01-01

    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  9. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  10. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  11. High resolution tomographic instrument development

    NASA Astrophysics Data System (ADS)

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefitted greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  12. Combining COLD-PCR and high-resolution melt analysis for rapid detection of low-level, rifampin-resistant mutations in Mycobacterium tuberculosis.

    PubMed

    Pang, Yu; Liu, Guan; Wang, Yufeng; Zheng, Suhua; Zhao, Yan-Lin

    2013-04-01

    Multidrug-resistant Mycobacterium tuberculosis (M. tuberculosis) remains a serious threat to public health. Mutational analysis of the gene encoding the beta subunit of RNA polymerase (rpoB) is an established and widely used surrogate marker for multidrug-resistant tuberculosis (MDR-TB). The rpoB-based drug-resistant assay requires relatively less time to detect drug resistance in M. tuberculosis, yet it fails to detect low-level mutations in wild-type DNA. Here, we describe a low-level mutation detection method that combines co-amplification at lower denaturation temperature polymerase chain reaction (COLD-PCR) with high-resolution melting (HRM) analysis, aimed at detecting low-level, rifampin-resistant mutations in M. tuberculosis. Compared to conventional polymerase chain reaction (PCR), dilution experiments demonstrated a four- to eightfold improvement in selectivity using COLD-PCR/HRM to detect low-level, rifampin-resistant mutations. The mutation detection limit of conventional PCR/HRM was approximately 20%, whereas COLD-PCR/HRM had a mutation detection limit of 2.5%. Using traditional PCR/HRM and DNA sequencing, we found rpoB mutation in 110 rifampin-resistant isolates. The use of COLD-PCR/HRM allowed us to detect 10 low-level, rifampin-resistant mutations in 16 additional drug-resistant isolates. The sensitivity of COLD-PCR/HRM (95.2%) is significantly higher than that of PCR/HRM (87.3%). Our findings demonstrate that combined use of COLD-PCR with HRM can provide a sensitivity of at least 5% in detecting rpoB-mutated populations in a wild-type background, decreasing the delay in drug-resistant TB diagnosis and leading to faster, cheaper, more efficient, and more personalized antibiotic treatment, especially for low-level drug resistance mutations among the excess wild-type DNA.

  13. High Resolution Thermometry for EXACT

    NASA Technical Reports Server (NTRS)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  14. The high overtone and combination levels of SF6 revisited at Doppler-limited resolution: A global effective rovibrational model for highly excited vibrational states

    NASA Astrophysics Data System (ADS)

    Faye, M.; Boudon, V.; Loëte, M.; Roy, P.; Manceron, L.

    2017-03-01

    Sulfur hexafluoride is an important prototypal molecule for modeling highly excited vibrational energy flow and multi quanta absorption processes in hexafluoride molecules of technological importance. It is also a strong greenhouse gas of anthropogenic origin. This heavy species, however, features many hot bands at room temperature (at which only 30% of the molecules lie in the ground vibrational state), especially those originating from the lowest, v6=1 vibrational state. Using a cryogenic long path cell with variable optical path length and temperatures regulated between 120 and 163 K, coupled to Synchrotron Radiation and a high resolution interferometer, Doppler-limited spectra of the 2ν1 +ν3 , ν1 +ν2 +ν3 , ν1 +ν3 , ν2 +ν3 , 3ν3, ν2 + 3ν3 and ν1 + 3ν3 from 2000 to 4000 cm-1 near-infrared region has been recorded. Low temperature was used to limit the presence of hot bands. The spectrum has been analyzed thanks to the XTDS software package. Combining with previously observed weak difference bands in the far infrared region involving the v1, v2, v3=1 states, we are thus able to use the tensorial model to build a global fit of spectroscopic parameters for v1=1,2, v2=1, v3=1,2,3. The model constitutes a consistent set of molecular parameters and enable spectral rovibrational simulation for all multi-quanta transitions involving v1, v2 and v3 up to v1-3 = 3 . Tests simulation on rovibrational transitions not yet rovibrationally assigned are presented and compared to new experimental data.

  15. A report on high-level nuclear waste transportation: Prepared pursuant to assembly concurrent resolution No. 8 of the 1987 Nevada Legislature

    SciTech Connect

    1988-12-01

    This report has been prepared by the staff of the State of Nevada Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) in response to Assembly Concurrent Resolution No. 8 (ACR 8), passed by the Nevada State Legislature in 1987. ACR 8 directed the NWPO, in cooperation with affected local governments and the Legislative committee on High-Level Radioactive Waste, to prepare this report which scrutinizes the US Department of Energy`s (DOE) plans for transportation of high-level radioactive waste to the proposed yucca Mountain repository, which reviews the regulatory structure under which shipments to a repository would be made and which presents NWPO`s plans for addressing high-level radioactive waste transportation issues. The report is divided into three major sections. Section 1.0 provides a review of DOE`s statutory requirements, its repository transportation program and plans, the major policy, programmatic, technical and institutional issues and specific areas of concern for the State of Nevada. Section 2.0 contains a description of the current federal, state and tribal transportation regulatory environment within which nuclear waste is shipped and a discussion of regulatory issues which must be resolved in order for the State to minimize risks and adverse impacts to its citizens. Section 3.0 contains the NWPO plan for the study and management of repository-related transportation. The plan addresses four areas, including policy and program management, regulatory studies, technical reviews and studies and institutional relationships. A fourth section provides recommendations for consideration by State and local officials which would assist the State in meeting the objectives of the plan.

  16. High-resolution sequence stratigraphic framework of carbonate deposition controlled by sea level and geostrophic bottom currents, south Florida platform margin

    SciTech Connect

    Locker, S.D.; Hine, A.C. ); Shinn, E.A. )

    1992-01-01

    High-resolution seismic reflection profiles seaward of the Marquesas Keys reveal at least eight late Quaternary sequences which downlap onto the Miocene ( ) age Pourtales Terrace at 250 m water depth. Inferred correlations are presented between these sequences and the last 7--8 sea-level cycles during the past 150 ky. The setting is unusual in that the present reef-rimmed, shallow inner shelf supplies minimal sediment to the adjacent margin where over 30 m of Holocene sediment has accumulated on portions of the outer shelf and slope. Seaward of the inner-shelf reef'' barrier, an outer-shelf terrace in 50--60 m water depth forms the upper boundary of the prograding late Quaternary sequences. These sequences exhibit both current-controlled internal geometries (e.g., sediment drifts) and sea-level controlled features such as lowstand slope erosion, transgressive unconformities, and paleoshorelines or reefs formed during lower stands of sea level. Bottom currents also severely eroded the slope at times, creating prominent unconformities. These 5th-6th order depositional sequences exhibit many features outlined by the Exxon sequence stratigraphy models. Systems tracts inferred from seismic records include lowstand wedge, shelf margin, and highstand deposits. Transgressive systems tracts are more difficult to identify and correspond to the flat outer-shelf terrace that experienced rapid lateral transgressions and regressions of sea level, and was exposed to subaerial processes during low stands. This study provides new insight on the importance of both geostrophic boundary currents and sea-level change in controlling stratigraphic development of a carbonate platform margin. Locally-thick accumulations off the Marquesas Keys may demonstrate sedimentation in response to a persistent cold cyclonic gyre in this area which causes weak counter-currents in an otherwise strong geostrophic current area.

  17. Grazer Effects on Stream Primary Production and Nitrate Utilization: Estimating Feedbacks Under Reduced Nitrate Levels at High-Temporal Resolutions from the Patch to Reach-Scale

    NASA Astrophysics Data System (ADS)

    Reijo, C. J.; Cohen, M. J.

    2015-12-01

    While nutrient enrichment is often identified as the leading cause for changes in stream gross primary production (GPP) and shifts in vegetative communities, other factors such as grazers influence overall stream structure and function. Evidence shows that grazers are a top-down control on algae in streams; however, the specific feedbacks between overall stream metabolism, grazer effects, and nutrient cycling have been variable and little is known about these interactions at nutrient levels below ambient. To further our understanding of these linkages, a nutrient depletion chamber was created and paired with high-resolution in situ sensors to estimate stream metabolism and characterize nitrate uptake (UNO3) pathways (i.e. plant uptake and denitrification). The Plexiglas chamber blocks flow and nutrient supply, inserts into upper sediments, allows light in and sediment-water-air interactions to occur. At Gum Slough Springs, FL, nitrate was reduced from ambient levels (1.40 mg N/L) to below regulatory thresholds (ca. 0.20 mg N/L) within one week. Paired chambers with and without the presence of snails (Elimia floridensis) were deployed across submerged aquatic vegetation (SAV; Vallisneria americana) and algae (Lyngbya) substrates. Results show that GPP and UNO3 were higher under SAV (70 g O2/m2/d and 300 mg NO3/m2/d, respectively) and a general lack of nutrient limitation even at low [NO3]. Grazer effects differed by vegetation type as it alleviated the reduction of NO3 levels and GPP under SAV but enhanced the decrease of algal GPP and NO3 levels over time. Continued work includes estimating grazer effects on denitrification, quantifying snail nutrient excretion contributions, and scaling up all estimates from the patch to reach level. Overall, this study will further our understanding of grazer-production-nutrient interactions within stream systems, making it possible to predict changes in feedbacks when one part of the biotic or abiotic ecosystem is altered.

  18. High resolution time interval counter

    DOEpatents

    Condreva, K.J.

    1994-07-26

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured. 3 figs.

  19. High resolution time interval counter

    DOEpatents

    Condreva, Kenneth J.

    1994-01-01

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured.

  20. Continuous monitoring bed-level dynamics on an intertidal flat: introducing novel stand-alone high-resolution SED-sensors

    NASA Astrophysics Data System (ADS)

    Hu, Zhan; Lenting, Walther; van der Wal, Daphne; Bouma, Tjeerd

    2015-04-01

    Tidal flat morphology is continuously shaped by hydrodynamic force, resulting in highly dynamic bed elevations. The knowledge of short-term bed-level changes is important both for understanding sediment transport processes as well as for assessing critical ecological processes such as e.g. vegetation recruitment chances on tidal flats. Due to the labour involved, manual discontinuous measurements lack the ability to continuously monitor bed-elevation changes. Existing methods for automated continuous monitoring of bed-level changes lack vertical accuracy (e.g., Photo-Electronic Erosion Pin sensor and resistive rod) or limited in spatial application by using expensive technology (e.g., acoustic bed level sensors). A method provides sufficient accuracy with a reasonable cost is needed. In light of this, a high-accuracy sensor (2 mm) for continuously measuring short-term Surface-Elevation Dynamics (SED-sensor) was developed. This SED-sensor makes use of photovoltaic cells and operates stand-alone using internal power supply and data logging system. The unit cost and the labour in deployments is therefore reduced, which facilitates monitoring with a number of units. In this study, the performance of a group of SED-sensors is tested against data obtained with precise manual measurements using traditional Sediment Erosion Bars (SEB). An excellent agreement between the two methods was obtained, indicating the accuracy and precision of the SED-sensors. Furthermore, to demonstrate how the SED-sensors can be used for measuring short-term bed-level dynamics, two SED-sensors were deployed for 1 month at two sites with contrasting wave exposure conditions. Daily bed-level changes were obtained including a severe storm erosion event. The difference in observed bed-level dynamics at both sites was statistically explained by their different hydrodynamic conditions. Thus, the stand-alone SED-sensor can be applied to monitor sediment surface dynamics with high vertical and temporal

  1. High Resolution Scanning Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Miranda, Felix A. (Inventor)

    2000-01-01

    The present invention provides a High Resolution Scanning Reflectarray Antenna (HRSRA) for the purpose of tracking ground terminals and space craft communication applications. The present invention provides an alternative to using gimbaled parabolic dish antennas and direct radiating phased arrays. When compared to a gimbaled parabolic dish, the HRSRA offers the advantages of vibration free steering without incurring appreciable cost or prime power penalties. In addition, it offers full beam steering at a fraction of the cost of direct radiating arrays and is more efficient.

  2. High-resolution multiphoton cryomicroscopy.

    PubMed

    König, Karsten; Uchugonova, Aisada; Breunig, Hans Georg

    2014-03-15

    An ultracompact high-resolution multiphoton cryomicroscope with a femtosecond near infrared fiber laser has been utilized to study the cellular autofluorescence during freezing and thawing of cells. Cooling resulted in an increase of the intracellular fluorescence intensity followed by morphological modifications at temperatures below -10 °C, depending on the application of the cryoprotectant DMSO and the cooling rate. Furthermore, fluorescence lifetime imaging revealed an increase of the mean lifetime with a decrease in temperature. Non-destructive, label-free optical biopsies of biomaterial in ice can be obtained with sub-20 mW mean powers.

  3. High resolution time interval counter

    NASA Technical Reports Server (NTRS)

    Zhang, Victor S.; Davis, Dick D.; Lombardi, Michael A.

    1995-01-01

    In recent years, we have developed two types of high resolution, multi-channel time interval counters. In the NIST two-way time transfer MODEM application, the counter is designed for operating primarily in the interrupt-driven mode, with 3 start channels and 3 stop channels. The intended start and stop signals are 1 PPS, although other frequencies can also be applied to start and stop the count. The time interval counters used in the NIST Frequency Measurement and Analysis System are implemented with 7 start channels and 7 stop channels. Four of the 7 start channels are devoted to the frequencies of 1 MHz, 5 MHz or 10 MHz, while triggering signals to all other start and stop channels can range from 1 PPS to 100 kHz. Time interval interpolation plays a key role in achieving the high resolution time interval measurements for both counters. With a 10 MHz time base, both counters demonstrate a single-shot resolution of better than 40 ps, and a stability of better than 5 x 10(exp -12) (sigma(sub chi)(tau)) after self test of 1000 seconds). The maximum rate of time interval measurements (with no dead time) is 1.0 kHz for the counter used in the MODEM application and is 2.0 kHz for the counter used in the Frequency Measurement and Analysis System. The counters are implemented as plug-in units for an AT-compatible personal computer. This configuration provides an efficient way of using a computer not only to control and operate the counters, but also to store and process measured data.

  4. High-Resolution Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  5. A simple, high efficiency, high resolution spectropolarimeter

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.

    2012-09-01

    A simple concept is described that uses volume phase holographic gratings as polarizing dispersers for a high efficiency, high resolution spectropolarimeter. Although the idea has previously been mentioned in the literature as possible, such a concept has not been explored in detail. Performance analysis is presented for a VPHG spectropolarimeter concept that could be utilized for both solar and night-time astronomy. Instrumental peak efficiency can approach 100% with spectral dispersions permitting R~200,000 spectral resolution with diffraction limited telescopes. The instrument has 3-channels: two dispersed image planes with orthogonal polarization and an undispersed image plane. The concept has a range of versatility where it could be configured (with appropriate half-wave plates) for slit-fed spectroscopy or without slits for snapshot/hyperspectral/tomographic spectroscopic imaging. Multiplex gratings could also be used for the simultaneous recording of two separate spectral bands or multiple instruments could be daisy chained with beam splitters for further spectral coverage.

  6. High resolution imaging at Palomar

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.

    1992-01-01

    For the last two years we have embarked on a program of understanding the ultimate limits of ground-based optical imaging. We have designed and fabricated a camera specifically for high resolution imaging. This camera has now been pressed into service at the prime focus of the Hale 5 m telescope. We have concentrated on two techniques: the Non-Redundant Masking (NRM) and Weigelt's Fully Filled Aperture (FFA) method. The former is the optical analog of radio interferometry and the latter is a higher order extension of the Labeyrie autocorrelation method. As in radio Very Long Baseline Interferometry (VLBI), both these techniques essentially measure the closure phase and, hence, true image construction is possible. We have successfully imaged binary stars and asteroids with angular resolution approaching the diffraction limit of the telescope and image quality approaching that of a typical radio VLBI map. In addition, we have carried out analytical and simulation studies to determine the ultimate limits of ground-based optical imaging, the limits of space-based interferometric imaging, and investigated the details of imaging tradeoffs of beam combination in optical interferometers.

  7. High-resolution slug testing.

    PubMed

    Zemansky, G M; McElwee, C D

    2005-01-01

    The hydraulic conductivity (K) variation has important ramifications for ground water flow and the transport of contaminants in ground water. The delineation of the nature of that variation can be critical to complete characterization of a site and the planning of effective and efficient remedial measures. Site-specific features (such as high-conductivity zones) need to be quantified. Our alluvial field site in the Kansas River valley exhibits spatial variability, very high conductivities, and nonlinear behavior for slug tests in the sand and gravel aquifer. High-resolution, multilevel slug tests have been performed in a number of wells that are fully screened. A general nonlinear model based on the Navier-Stokes equation, nonlinear frictional loss, non-Darcian flow, acceleration effects, radius changes in the wellbore, and a Hvorslev model for the aquifer has been used to analyze the data, employing an automated processing system that runs within the Excel spreadsheet program. It is concluded that slug tests can provide the necessary data to identify the nature of both horizontal and vertical K variation in an aquifer and that improved delineation or higher resolution of K structure is possible with shorter test intervals. The gradation into zones of higher conductivity is sharper than seen previously, and the maximum conductivity observed is greater than previously measured. However, data from this project indicate that well development, the presence of fines, and the antecedent history of the well are important interrelated factors in regard to slug-test response and can prevent obtaining consistent results in some cases.

  8. The evolution of Ga and As core levels in the formation of Fe/GaAs (001):A high resolution soft x-ray photoelectron spectroscopic study

    SciTech Connect

    Thompson, Jamie; Neal, James; Shen, Tiehan; Morton, Simon; Tobin, James; Waddill, George Dan; Matthew, Jim; Greig, Denis; Hopkinson, Mark

    2008-07-14

    A high resolution soft x-ray photoelectron spectroscopic study of Ga and As 3d core levels has been conducted for Fe/GaAs (001) as a function of Fe thickness. This work has provided unambiguous evidence of substrate disrupting chemical reactions induced by the Fe overlayer--a quantitative analysis of the acquired spectra indicates significantly differing behavior of Ga and As during Fe growth, and our observations have been compared with existing theoretical models. Our results demonstrate that the outdiffusing Ga and As remain largely confined to the interface region, forming a thin intermixed layer. Whereas at low coverages Fe has little influence on the underlying GaAs substrate, the onset of substrate disruption when the Fe thickness reaches 3.5 Angstrom results in major changes in the energy distribution curves (EDCs) of both As and Ga 3d cores. Our quantitative analysis suggests the presence of two additional As environments of metallic character: one bound to the interfacial region and another which, as confirmed by in situ oxidation experiments, surface segregates and persists over a wide range of overlayer thickness. Analysis of the corresponding Ga 3d EDCs found not two, but three additional environments--also metallic in nature. Two of the three are interface resident whereas the third undergoes outdiffusion at low Fe coverages. Based on the variations of the integrated intensities of each component, we present a schematic of the proposed chemical makeup of the Fe/GaAs (001) system.

  9. The evolution of Ga and As core levels in the formation of Fe/GaAs (001): A high resolution soft x-ray photoelectron spectroscopic study

    SciTech Connect

    Thompson, Jamie D. W.; Neal, James R.; Shen, Tiehan H.; Morton, Simon A.; Tobin, James G.; Dan Waddill, G.; Matthew, Jim A. D.; Greig, Denis; Hopkinson, Mark

    2008-07-15

    A high resolution soft x-ray photoelectron spectroscopic study of Ga and As 3d core levels has been conducted for Fe/GaAs (001) as a function of Fe thickness. This work has provided unambiguous evidence of substrate disrupting chemical reactions induced by the Fe overlayer--a quantitative analysis of the acquired spectra indicates significantly differing behavior of Ga and As during Fe growth, and our observations have been compared with existing theoretical models. Our results demonstrate that the outdiffusing Ga and As remain largely confined to the interface region, forming a thin intermixed layer. Whereas at low coverages Fe has little influence on the underlying GaAs substrate, the onset of substrate disruption when the Fe thickness reaches 3.5 A results in major changes in the energy distribution curves (EDCs) of both As and Ga 3d cores. Our quantitative analysis suggests the presence of two additional As environments of metallic character: one bound to the interfacial region and another which, as confirmed by in situ oxidation experiments, surface segregates and persists over a wide range of overlayer thickness. Analysis of the corresponding Ga 3d EDCs found not two, but three additional environments--also metallic in nature. Two of the three are interface resident whereas the third undergoes outdiffusion at low Fe coverages. Based on the variations of the integrated intensities of each component, we present a schematic of the proposed chemical makeup of the Fe/GaAs (001) system.

  10. Determination of the activity concentration levels of the artificial radionuclide137Cs in soil samples collected from Qatar using high-resolution gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Al-Sulaiti, Huda; Nasir, Tabassum; Al Mugren, K. S.; Alkhomashi, N.; Al-Dahan, N.; Al-Dosari, M.; Bradley, D. A.; Bukhari, S.; Regan, P. H.; Santawamaitre, T.; Malain, D.; Habib, A.; Al-Dosari, Hanan; Daar, Eman

    2016-09-01

    The goal of this study was to establish the first baseline measurements for radioactivity concentration of the artificial radionuclide 137Cs in soil samples collected from the Qatarian peninsula. The work focused on the determination of the activity concentrations levels of man-made radiation in 129 soil samples collected across the landscape of the State of Qatar. All the samples were collected before the most recent accident in Japan, “the 2011 Fukushima Dai-ichi nuclear power plant accident”. The activity concentrations have been measured via high-resolution gamma-ray spectrometry using a hyper-pure germanium detector situated in a low-background environment with a copper inner-plated passive lead shield. A radiological map showing the activity concentrations of 137Cs is presented in this work. The concentration wasfound to range from 0.21 to 15.41 Bq/kg. The highest activity concentration of 137Cs was observed in sample no. 26 in North of Qatar. The mean value was found to be around 2.15 ± 0.27 Bq/kg. These values lie within the expected range relative to the countries in the region. It is expected that this contamination is mainly due to the Chernobyl accident on 26 April 1986, but this conclusion cannot be confirmed because of the lack of data before this accident.

  11. High-resolution interferometric spectrophotopolarimetry

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1981-01-01

    Spectrophotopolarimetric capability can be added to a laboratory interferometer-spectrometer by use of a specially designed module described herein. With the instrument so augmented, high-resolution spectra can be obtained of the Stokes parameters of the reference beam and the beams diffusely reflected or transmitted by a sample medium of interest. For any such beam, the exponential Fourier transforms of the two interferograms obtained with a polarizer-analyzer oriented along the 0 deg and the 90 deg directions provide the spectra of I and Q, separately. Within experimental (and numerical) noise, this I spectrum should be the same as the one obtained with the polarizer removed. The remaining Stokes parameters U and V are obtained with a third interferogram recorded with the polarizer along the 45 deg direction. The complete theory of this instrument is described including the detailed analysis of the polarization-interferograms it provides.

  12. High-resolution land topography

    NASA Astrophysics Data System (ADS)

    Massonnet, Didier; Elachi, Charles

    2006-11-01

    After a description of the background, methods of production and some scientific uses of high-resolution land topography, we present the current status and the prospect of radar interferometry, regarded as one of the best techniques for obtaining the most global and the most accurate topographic maps. After introducing briefly the theoretical aspects of radar interferometry - principles, limits of operation and various capabilities -, we will focus on the topographic applications that resulted in an almost global topographic map of the earth: the SRTM map. After introducing the Interferometric Cartwheel system, we will build on its expected performances to discuss the scientific prospects of refining a global topographic map to sub-metric accuracy. We also show how other fields of sciences such as hydrology may benefit from the products generated by interferometric radar systems. To cite this article: D. Massonnet, C. Elachi, C. R. Geoscience 338 (2006).

  13. Insights into atomic-level interaction between mefenamic acid and eudragit EPO in a supersaturated solution by high-resolution magic-angle spinning NMR spectroscopy.

    PubMed

    Higashi, Kenjirou; Yamamoto, Kazutoshi; Pandey, Manoj Kumar; Mroue, Kamal H; Moribe, Kunikazu; Yamamoto, Keiji; Ramamoorthy, Ayyalusamy

    2014-01-06

    The intermolecular interaction between mefenamic acid (MFA), a poorly water-soluble nonsteroidal anti-inflammatory drug, and Eudragit EPO (EPO), a water-soluble polymer, is investigated in their supersaturated solution using high-resolution magic-angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy. The stable supersaturated solution with a high MFA concentration of 3.0 mg/mL is prepared by dispersing the amorphous solid dispersion into a d-acetate buffer at pH 5.5 and 37 °C. By virtue of MAS at 2.7 kHz, the extremely broad and unresolved (1)H resonances of MFA in one-dimensional (1)H NMR spectrum of the supersaturated solution are well-resolved, thus enabling the complete assignment of MFA (1)H resonances in the aqueous solution. Two-dimensional (2D) (1)H/(1)H nuclear Overhauser effect spectroscopy (NOESY) and radio frequency-driven recoupling (RFDR) under MAS conditions reveal the interaction of MFA with EPO in the supersaturated solution at an atomic level. The strong cross-correlations observed in the 2D (1)H/(1)H NMR spectra indicate a hydrophobic interaction between the aromatic group of MFA and the backbone of EPO. Furthermore, the aminoalkyl group in the side chain of EPO forms a hydrophilic interaction, which can be either electrostatic or hydrogen bonding, with the carboxyl group of MFA. We believe these hydrophobic and hydrophilic interactions between MFA and EPO molecules play a key role in the formation of this extremely stable supersaturated solution. In addition, 2D (1)H/(1)H RFDR demonstrates that the molecular MFA-EPO interaction is quite flexible and dynamic.

  14. High Resolution Science with High Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Windhorst, R.

    I will first review high resolution science that has been done with the Hubble Space Telescope on high redshift galaxies Next I will review the capabilities of the 6 5 meter James Webb Space Telescope JWST which is an optimized infrared telescope that can deploy automatically in space slated for launch to a halo L2 orbit in 2013 I will outline how the JWST can go about measuring First Light Reionization and Galaxy Assembly building on lessons learned from the Hubble Space Telescope I will show what more nearby galaxies observed in their restframe UV--optical light may look like to JWST at high redshifts Last I will summarize the Generation-X mission concept for an X-ray telescope designed to study the very early universe with 1000-times greater sensitivity than current facilities Gen-X will study the first generations of stars and black holes in the epoch z 10-20 the evolution of black holes and galaxies from high z to the present the chemical evolution of the universe and the properties of matter under extreme conditions This requires an effective area of 100 m 2 at 1 keV an angular resolution of 0 1 HPD over 0 1-10 keV

  15. High Resolution Frequency Swept Imaging.

    DTIC Science & Technology

    1983-09-30

    recording configuration similar to that of a lensless Fourier transform hologram, the resolution and spacial sampling requirement from the recording...a lensless Fourier Transform hologram, the resolution requirements from the recording device are greatly !.4 + ’+:::,,,. :,;,,,,o...n X-Ray Crytallography and Electron Microscopy By Reduction to Two-Dimensional Holographic Implementation", Trans. Amr. Crytallographic Assoc., Vol

  16. Evaluation of Advanced Bionics high resolution mode.

    PubMed

    Buechner, Andreas; Frohne-Buechner, Carolin; Gaertner, Lutz; Lesinski-Schiedat, Anke; Battmer, Rolf-Dieter; Lenarz, Thomas

    2006-07-01

    The objective of this paper is to evaluate the advantages of the Advanced Bionic high resolution mode for speech perception, through a retrospective analysis. Forty-five adult subjects were selected who had a minimum experience of three months' standard mode (mean of 10 months) before switching to high resolution mode. Speech perception was tested in standard mode immediately before fitting with high resolution mode, and again after a maximum of six months high resolution mode usage (mean of two months). A significant improvement was found, between 11 and 17%, depending on the test material. The standard mode preference does not give any indication about the improvement when switching to high resolution. Users who are converted within any study achieve a higher performance improvement than those converted in the clinical routine. This analysis proves the significant benefits of high resolution mode for users, and also indicates the need for guidelines for individual optimization of parameter settings in a high resolution mode program.

  17. High resolution beamforming for small aperture arrays

    NASA Astrophysics Data System (ADS)

    Clark, Chris; Null, Tom; Wagstaff, Ronald A.

    2003-04-01

    Achieving fine resolution bearing estimates for multiple sources using acoustic arrays with small apertures, in number of wavelengths, is a difficult challenge. It requires both large signal-to-noise ratio (SNR) gains and very narrow beam responses. High resolution beamforming for small aperture arrays is accomplished by exploiting acoustical fluctuations. Acoustical fluctuations in the atmosphere are caused by wind turbulence along the propagation path, air turbulence at the sensor, source/receiver motion, unsteady source level, and fine scale temperature variations. Similar environmental and source dependent phenomena cause fluctuations in other propagation media, e.g., undersea, optics, infrared. Amplitude fluctuations are exploited to deconvolve the beam response functions from the beamformed data of small arrays to achieve high spatial resolution, i.e., fine bearing resolution, and substantial SNR gain. Results are presented for a six microphone low-frequency array with an aperture of less than three wavelengths. [Work supported by U.S. Army Armament Research Development and Engineering Center.

  18. High resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, Jim; Dinyari, Rostam; Huie, Phil; Butterwick, Alex; Peumans, Peter; Palanker, Daniel

    2009-02-01

    Electronic retinal prostheses seek to restore sight in patients with retinal degeneration by delivering pulsed electric currents to retinal neurons via an array of microelectrodes. Most implants use inductive or optical transmission of information and power to an intraocular receiver, with decoded signals subsequently distributed to retinal electrodes through an intraocular cable. Surgical complexity could be minimized by an "integrated" prosthesis, in which both power and data are delivered directly to the stimulating array without any discrete components or cables. We present here an integrated retinal prosthesis system based on a photodiode array implant. Video frames are processed and imaged onto the retinal implant by a video goggle projection system operating at near-infrared wavelengths (~ 900 nm). Photodiodes convert light into pulsed electric current, with charge injection maximized by specially optimized series photodiode circuits. Prostheses of three different pixel densities (16 pix/mm2, 64 pix/mm2, and 256 pix/mm2) have been designed, simulated, and prototyped. Retinal tissue response to subretinal implants made of various materials has been investigated in RCS rats. The resulting prosthesis can provide sufficient charge injection for high resolution retinal stimulation without the need for implantation of any bulky discrete elements such as coils or tethers. In addition, since every pixel functions independently, pixel arrays may be placed separately in the subretinal space, providing visual stimulation to a larger field of view.

  19. High-resolution infrared imaging

    NASA Astrophysics Data System (ADS)

    Falco, Charles M.

    2010-08-01

    The hands and mind of an artist are intimately involved in the creative process of image formation, intrinsically making paintings significantly more complex than photographs to analyze. In spite of this difficulty, several years ago the artist David Hockney and I identified optical evidence within a number of paintings that demonstrated artists began using optical projections as early as c1425 - nearly 175 years before Galileo - as aids for producing portions of their images. In the course of our work, Hockney and I developed insights that I have been applying to a new approach to computerized image analysis. Recently I developed and characterized a portable high resolution infrared for capturing additional information from paintings. Because many pigments are semi-transparent in the IR, in a number of cases IR photographs ("reflectograms") have revealed marks made by the artists that had been hidden under paint ever since they were made. I have used this IR camera to capture photographs ("reflectograms") of hundreds of paintings in over a dozen museums on three continents and, in some cases, these reflectograms have provided new insights into decisions the artists made in creating the final images that we see in the visible.

  20. High resolution auditory perception system

    NASA Astrophysics Data System (ADS)

    Alam, Iftekhar; Ghatol, Ashok

    2005-04-01

    Blindness is a sensory disability which is difficult to treat but can to some extent be helped by artificial aids. The paper describes the design aspects of a high resolution auditory perception system, which is designed on the principle of air sonar with binaural perception. This system is a vision substitution aid for enabling blind persons. The blind person wears ultrasonic eyeglasses which has ultrasonic sensor array embedded on it. The system has been designed to operate in multiresolution modes. The ultrasonic sound from the transmitter array is reflected back by the objects, falling in the beam of the array and is received. The received signal is converted to a sound signal, which is presented stereophonically for auditory perception. A detailed study has been done as the background work required for the system implementation; the appropriate range analysis procedure, analysis of space-time signals, the acoustic sensors study, amplification methods and study of the removal of noise using filters. Finally the system implementation including both the hardware and the software part of it has been described. Experimental results on actual blind subjects and inferences obtained during the study have also been included.

  1. High Resolution, High Frame Rate Video Technology

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers and working group summaries presented at the High Resolution, High Frame Rate Video (HHV) Workshop are compiled. HHV system is intended for future use on the Space Shuttle and Space Station Freedom. The Workshop was held for the dual purpose of: (1) allowing potential scientific users to assess the utility of the proposed system for monitoring microgravity science experiments; and (2) letting technical experts from industry recommend improvements to the proposed near-term HHV system. The following topics are covered: (1) State of the art in the video system performance; (2) Development plan for the HHV system; (3) Advanced technology for image gathering, coding, and processing; (4) Data compression applied to HHV; (5) Data transmission networks; and (6) Results of the users' requirements survey conducted by NASA.

  2. Planetary Atmospheres at High Resolution

    NASA Astrophysics Data System (ADS)

    Gurwell, M.; Butler, B.; Moullet, A.

    2013-10-01

    The long millimeter through submillimeter bands are particularly well suited for studying the wide variety of planetary atmospheres in our solar system. Temperatures ranging from a few 10s to hundreds of degrees, coupled with typically high densities (relative to the ISM) mean that thermal ‘continuum’ emission can be strong and molecular rotational transitions can be well-populated. Large bodies (Jovian and terrestrial planets) can be reasonably well studied by current interferometers such as the Submillimeter Array, IRAM Plateau de Bure Interferometer, and Combined Array for Research in Millimeter-wave Astronomy, yet many smaller bodies with atmospheres can only be crudely studied, primarily due to lack of sensitivity on baselines long enough to well resolve the object. Newly powerful interferometers such as the Atacama Large Millimeter/Submillimeter Array will usher in a new era of planetary atmospheric exploration. The vast sensitivity and spatial resolution of these arrays will increase our ability to image all bodies with extremely fine fidelity (due to the large number of antennas), and for study of smaller objects by resolving their disks into many pixels while providing the sensitivity necessary to detect narrow and/or weak line emission. New science topics will range from detailed mapping of HDO, ClO, and sulfur species in the mesosphere of Venus and PH3 and H2S in the upper tropospheres of the gas and ice giants, high SNR mapping of winds on Mars, Neptune and Titan, down to spectroscopic imaging of volcanic eruptions within the tenuous atmosphere on Io, resolved imaging of CO and other species in the atmosphere of Pluto, and even potentially detection of gases within the plumes of Enceladus.

  3. High-resolution phylogenetic microbial community profiling

    PubMed Central

    Singer, Esther; Bushnell, Brian; Coleman-Derr, Devin; Bowman, Brett; Bowers, Robert M; Levy, Asaf; Gies, Esther A; Cheng, Jan-Fang; Copeland, Alex; Klenk, Hans-Peter; Hallam, Steven J; Hugenholtz, Philip; Tringe, Susannah G; Woyke, Tanja

    2016-01-01

    Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to new technologies has provided more quantitative information at the expense of taxonomic resolution with implications for inferring metabolic traits in various ecosystems. We applied single-molecule real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated this approach using a defined microbial community. When further applied to samples from the water column of meromictic Sakinaw Lake, we show that while community structures at the phylum level are comparable between PhyloTags and Illumina V4 16S rRNA gene sequences (iTags), variance increases with community complexity at greater water depths. PhyloTags moreover allowed less ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico generated partial 16S rRNA gene sequences demonstrated significant differences in community structure and phylogenetic resolution across multiple taxonomic levels, including a severe underestimation in the abundance of specific microbial genera involved in nitrogen and methane cycling across the Lake's water column. Thus, PhyloTags provide a reliable adjunct or alternative to cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential. PMID:26859772

  4. High Resolution Measurement of the Glycolytic Rate

    PubMed Central

    Bittner, Carla X.; Loaiza, Anitsi; Ruminot, Iván; Larenas, Valeria; Sotelo-Hitschfeld, Tamara; Gutiérrez, Robin; Córdova, Alex; Valdebenito, Rocío; Frommer, Wolf B.; Barros, L. Felipe

    2010-01-01

    The glycolytic rate is sensitive to physiological activity, hormones, stress, aging, and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts, and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis. PMID:20890447

  5. The Role of Deep Convection and Low-Level Jets Forcing Dust Emissions in West Africa: A High-Resolution Regional Dust Modelling Study

    NASA Astrophysics Data System (ADS)

    Heinold, B.; Knippertz, P.; Fiedler, S.; Marsham, J. H.; Tegen, I.

    2012-04-01

    West Africa is the world's most important source of atmospheric mineral dust, which impacts weather and climate through its contribution to the direct and indirect aerosol effects. Mineral dust also has an impact on the biogeochemical and hydrological cycle, and affects human health and air quality. Quantitative estimates of the various effects require an adequate representation of modelled peak-wind generating mechanisms that cause dust emissions. Daytime downward mixing of momentum from nocturnal low-level jets (LLJs) and convective cold pools (haboobs) have been identified as important meteorological drivers of dust emissions in the Sahel and Sahara. Previous work using 10-day continental-scale convection-permitting simulations of summertime West Africa, performed using the UK Met Office Unified model as part of the Cascade project, has shown that these processes dominate the modelled dust-generating winds, with haboobs being very poorly represented in models with parameterised deep convection. This previous work did not, however, model dust emission explicitly. As part of the "Desert Storms" project (funded by the European Research Council), we expand on this work here using newly available 40-day Cascade runs with dust emissions calculated in an offline model driven with the modelled surface winds at 40, 12, 4 and 1.5-km horizontal grid-spacings (6 days only at 1.5 km). These calculations include different versions of dust emission parameterisations and soil surface properties, allowing separation of meteorological and land-surface effects. A major focus is on the statistical analysis of the diurnal cycle of wind speed and dust emission, for which the long simulation period provides a robust basis. The diurnal cycle gives insight into the role of different meteorological processes and is expected to affect the subsequent dust transport in the boundary layer. The high-resolution results show dust emission patterns in fascinating detail. For the first time it

  6. Passive High Resolution RF Imaging

    DTIC Science & Technology

    2006-05-02

    sensing applications: 1. Imaging with potential resolution of meters sq. 1.1 Forests areas controlling 1.2 Foliage mass evaluation 1.3...from TOPCON. Currently, work is in progress to study and customise the software and satellite position extraction from the receiver. 6. BRIEF

  7. High blood cholesterol levels

    MedlinePlus

    ... Outlook (Prognosis) High cholesterol levels can lead to hardening of the arteries , also called atherosclerosis. This occurs ... and safe drinking Coronary heart disease Cushing syndrome Hardening of the arteries Hypothyroidism Overweight Stroke Triglyceride level ...

  8. High energy resolution plastic scintillator

    NASA Astrophysics Data System (ADS)

    van Loef, Edgar V.; Feng, Patrick; Markosyan, Gary; Shirwadkar, Urmila; Doty, Patrick; Shah, Kanai S.

    2016-09-01

    In this paper we present results on a novel tin-loaded plastic scintillator. We will show that this particular plastic scintillator has a light output similar to that of BGO, a fast scintillation decay (< 10 ns), exhibits good neutron/gamma PSD with a Figure-of-Merit of 1.3 at 2.5 MeVee cut-off energy, and excellent energy resolution of about 12% (FWHM) at 662 keV. Under X-ray excitation, the radioluminescence spectrum exhibits a broad band between 350 and 500 nm peaking at 420 nm which is well-matched to bialkali photomultiplier tubes and UV-enhanced photodiodes.

  9. High Spectral Resolution Lidar Data

    DOE Data Explorer

    Eloranta, Ed

    2004-12-01

    The HSRL provided calibrated vertical profiles of optical depth, backscatter cross section and depoloarization at a wavelength of 532 nm. Profiles were acquired at 2.5 second intervals with 7.5 meter resolution. Profiles extended from an altitude of 100 m to 30 km in clear air. The lidar penetrated to a maximum optical depth of ~ 4 under cloudy conditions. Our data contributed directly to the aims of the M-PACE experiment, providing calibrated optical depth and optical backscatter measurements which were not available from any other instrument.

  10. High resolution scintillation detector with semiconductor readout

    DOEpatents

    Levin, Craig S.; Hoffman, Edward J.

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  11. High Resolution PDF Measurements on Ag Nanoparticles

    SciTech Connect

    Rocha, Tulio C. R.; Martin, Chris; Kycia, Stefan; Zanchet, Daniela

    2009-01-29

    The quantitative analysis of structural defects in Ag nanoparticles was addressed in this work. We performed atomic scale structural characterization by a combination of x-ray diffraction (XRD) using the Pair Distribution Function analysis (PDF) and High Resolution Transmission Electron Microscopy (HRTEM). The XRD measurements were performed using an innovative instrumentation setup to provide high resolution PDF patterns.

  12. A CARS solution with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Lurquin, Vanessa; Hay, William C.; Landwehr, Stefanie; Krishnamachari, Vishnu

    2010-02-01

    Confocal and multiphoton microscopy are powerful fluorescence techniques for morphological and dynamics studies of labeled elements. For non-fluorescent components, CARS (Coherent Anti-Stokes Raman Scattering) microscopy can be used for imaging various elements of cells such as lipids, proteins, DNA, etc. This technique is based on the intrinsic vibrational properties of the molecules. Leica Microsystems has combined CARS technology with its TCS SP5 II confocal microscope to provide several advantages for CARS imaging. The Leica TCS SP5 II combines two technologies in one system: a conventional scanner for maximum resolution and a resonant scanner for high time resolution. For CARS microscopy, two picosecond near-infrared lasers are tightly overlapped spatially and temporally and sent directly into the confocal system. The conventional scanner can be used for morphological studies and the resonant scanner for following dynamic processes of unstained living cells. The fast scanner has several advantages over other solutions. First, the sectioning is truly confocal and does not suffer from spatial leakage. Second, the high speed (29 images/sec @ 512×512 pixels) provides fast data acquisition at video rates, allowing studies at the sub-cellular level. In summary, CARS microscopy combined with the tandem scanner makes the Leica TCS SP5 II a powerful tool for multi-modal and three-dimensional imaging of chemical and biological samples. We will present our solution and show results from recent studies with the Leica instrument to illustrate the high flexibility of our system.

  13. High Resolution Globe of Jupiter

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This true-color simulated view of Jupiter is composed of 4 images taken by NASA's Cassini spacecraft on December 7, 2000. To illustrate what Jupiter would have looked like if the cameras had a field-of-view large enough to capture the entire planet, the cylindrical map was projected onto a globe. The resolution is about 144 kilometers (89 miles) per pixel. Jupiter's moon Europa is casting the shadow on the planet.

    Cassini is a cooperative mission of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of the California Institute of Technology in Pasadena, manages Cassini for NASA's Office of Space Science, Washington, D.C.

  14. High-resolution phylogenetic microbial community profiling

    SciTech Connect

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  15. Flare Data in High Temporal Resolution

    NASA Astrophysics Data System (ADS)

    Kaparová, J.

    Analysis of the September 23, 1998 flare H? spectra and filtergrams is presented. Spectra were obtained using multichannel flare spectrograph (MFS) at the Astronomical Institute in Ond?ejov, Czech Republic, having a temporal resolution of 25 frames/s and a spatial resolution of ?1? decreased by seeing to 3? - 5?. High temporal resolution was firstly used for detecting of the chromosphere response to the pulse beam heating.

  16. Sea level history in 3D: Data acquisition and processing for an ultra-high resolution MCS survey across IODP Expedition 313 drillsite

    NASA Astrophysics Data System (ADS)

    Nedimovic, M. R.; Mountain, G. S.; Austin, J. A., Jr.; Fulthorpe, C.; Aali, M.; Baldwin, K.; Bhatnagar, T.; Johnson, C.; Küçük, H. M.; Newton, A.; Stanley, J.

    2015-12-01

    In June-July 2015, we acquired the first 3D/2D hybrid (short/long streamer) multichannel seismic (MCS) reflection dataset. These data were collected simultaneously across IODP Exp. 313 drillsites, off New Jersey, using R/V Langsethand cover ~95% of the planned 12x50 km box. Despite the large survey area, the lateral and vertical resolution for the 3D dataset is almost a magnitude of order higher than for data gathered for standard petroleum exploration. Such high-resolution was made possible by collection of common midpoint (CMP) lines whose combined length is ~3 times the Earth's circumference (~120,000 profile km) and a source rich in high-frequencies. We present details on the data acquisition, ongoing data analysis, and preliminary results. The science driving this project is presented by Mountain et al. The 3D component of this innovative survey used an athwartship cross cable, extended laterally by 2 barovanes roughly 357.5 m apart and trailed by 24 50-m P-Cables spaced ~12.5 m with near-trace offset of 53 m. Each P-Cable had 8 single hydrophone groups spaced at 6.25 m for a total of 192 channels. Record length was 4 s and sample rate 0.5 ms, with no low cut and an 824 Hz high cut filter. We ran 77 sail lines spaced ~150 m. Receiver locations were determined using 2 GPS receivers mounted on floats and 2 compasses and depth sensors per streamer. Streamer depths varied from 2.1 to 3.7 m. The 2D component used a single 3 km streamer, with 240 9-hydrophone groups spaced at 12.5 m, towed astern with near-trace offset of 229 m. The record length was 4 s and sample rate 0.5 ms, with low cut filter at 2 Hz and high cut at 412 Hz. Receiver locations were recorded using GPS at the head float and tail buoy, combined with 12 bird compasses spaced ~300 m. Nominal streamer depth was 4.5 m. The source for both systems was a 700 in3 linear array of 4 Bolt air guns suspended at 4.5 m towing depth, 271.5 m behind the ship's stern. Shot spacing was 12.5 m. Data analysis to

  17. A high-resolution vehicle emission inventory for China

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Zhang, Q.; He, K.; Huo, H.; Yao, Z.; Wang, X.

    2012-12-01

    Developing high resolution emission inventory is an essential task for air quality modeling and management. However, current vehicle emission inventories in China are usually developed at provincial level and then allocated to grids based on various spatial surrogates, which is difficult to get high spatial resolution. In this work, we developed a new approach to construct a high-resolution vehicle emission inventory for China. First, vehicle population at county level were estimated by using the relationship between per-capita GDP and vehicle ownership. Then the Weather Research and Forecasting (WRF) model were used to drive the International Vehicle Emission (IVE) model to get monthly emission factors for each county. Finally, vehicle emissions by county were allocated to grids with 5-km horizon resolution by using high-resolution road network data. This work provides a better understanding of spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

  18. High-Resolution Data for a Low-Resolution World

    SciTech Connect

    Brady, Brendan Williams

    2016-05-10

    In the past 15 years, the upper section of Cañon de Valle has been severely altered by wildfires and subsequent runoff events. Loss of root structures on high-angle slopes results in debris flow and sediment accumulation in the narrow canyon bottom. The original intent of the study described here was to better understand the changes occurring in watershed soil elevations over the course of several post-fire years. An elevation dataset from 5 years post-Cerro Grande fire was compared to high-resolution LiDAR data from 14 years post-Cerro Grande fire (also 3 years post-Las Conchas fire). The following analysis was motivated by a problematic comparison of these datasets of unlike resolution, and therefore focuses on what the data reveals of itself. The objective of this study is to highlight the effects vegetation can have on remote sensing data that intends to read ground surface elevation.

  19. High resolution guided wave pipe inspection

    NASA Astrophysics Data System (ADS)

    Velichko, Alexander; Wilcox, Paul D.

    2009-03-01

    Commercial guided wave inspection systems provide rapid screening of pipes, but limited sizing capability for small defects. However, accurate detection and sizing of small defects is essential for assessing the integrity of inaccessible pipe regions where guided waves provide the only possible inspection mechanism. In this paper an array-based approach is presented that allows guided waves to be focused on both transmission and reception to produce a high resolution image of a length of pipe. In the image, it is shown that a signal to coherent noise ratio of over 40 dB with respect to the reflected signal from a free end of pipe can be obtained, even taking into account typical levels of experimental uncertainty in terms of transducer positioning, wave velocity etc. The combination of an image with high resolution and a 40 dB dynamic range enables the detection of very small defects. It also allows the in-plane shape of defects over a certain size to be observed directly. Simulations are used to estimate the detection and sizing capability of the system for crack-like defects. Results are presented from a prototype system that uses EMATs to fully focus pipe guided wave modes on both transmission and reception in a 12 inch diameter stainless steel pipe. The 40 dB signal to coherent noise ratio is obtained experimentally and a 2 mm diameter (0.08 wavelengths) half-thickness hole is shown to be detectable.

  20. A dried urine spot test to simultaneously monitor Mo and Ti levels using solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Rello, L.; Lapeña, A. C.; Aramendía, M.; Belarra, M. A.; Resano, M.

    2013-03-01

    Home-based collection protocols for clinical specimens are actively pursued as a means of improving life quality of patients that require frequent controls, such as patients with metallic prosthesis, for whom monitoring the evolution of Mo and Ti in biological fluids may play a decisive role to detect prosthesis mal-functioning. The collection of biological fluids on clinical filter papers provides a simple way to implement these protocols. This work explores the potential of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for the simultaneous and direct determination of Mo and Ti in urine, after its deposition onto clinical filter paper, giving rise to a dried urine spot. The approach used for depositing the sample was found crucial to develop a quantitative method, since the filter paper acts as a chromatographic support and produces a differential distribution of the target analytes. Furthermore, the high spreading of urine onto a filter paper results in a small amount of urine per surface unit, and thus, ultimately, in lack of sensitivity. In order to circumvent these problems, the use of an alternative approach based on the use of pre-cut 17 × 19 mm filter paper pieces onto which larger amounts of sample (500 μL) can be retained by single deposition was proposed and evaluated. In this way, an approximately 12-fold increase in sensitivity and a more homogeneous distribution of the target analytes were obtained, permitting the development of a quantification strategy based on the use of matrix-matched urine samples of known analyte concentrations, which were subjected to the same procedure as the samples. Accuracy of this method, which provides LODs of 1.5 μg L- 1 for Mo and 6.5 μg L- 1 for Ti, was demonstrated after analysis of urine reference materials. Overall, the performance of the method developed is promising, being likely suitable for determination of other analytes in dried urine spots.

  1. NOAA's Use of High-Resolution Imagery

    NASA Technical Reports Server (NTRS)

    Hund, Erik

    2007-01-01

    NOAA's use of high-resolution imagery consists of: a) Shoreline mapping and nautical chart revision; b) Coastal land cover mapping; c) Benthic habitat mapping; d) Disaster response; and e) Imagery collection and support for coastal programs.

  2. High resolution in-line analyses of precipitation at two UK ground locations, and possible relevance to convective cooling at cloud level.

    NASA Astrophysics Data System (ADS)

    Durham, Brian

    2015-04-01

    Wet deposition of many molecular pollutants can be simulated `sufficiently well' by a simple meteorological model, including the poorly soluble ozone (Tost et al, 2007, 2754). Carbon dioxide (CO2) has a Henry constant similar to that of ozone, but perhaps because its boundary layer presence is three orders of magnitude greater than ozone it has been widely assumed to be immune to significant cleansing by scavenging and deposition. In 2009 this `elephant' was approached (cautiously!) at the first of two UK locations using high time-resolution analyses of delivered rainwater, and some initial observations seem relevant to the `organised convection' theme of the present session. Six variables are measured every second, averaged every 60 seconds, including: conductivity; acidity ([H3O+] = 10 ^-pH ) and; stripped CO2 (by NDIRS). Convective precipitation typically delivers significantly more CO2 than predicted from Henry's Law, is supersaturated on arrival and shows a characteristic `spiky' profile against time. In assessing the above, this paper revisits eighty years of measurements of the Henry's Law equilibrium for the CO2/water system at partial pressures less than 1 atmosphere, and (more recently) low-pressure solubility at temperatures down to 4°C (Carroll, Slupski and Mather, 1991, 1203; Faraday Discuss. 2013, 167, 462-3). The observed solute load and supersaturation would become plausible if the reported upturn in solubility between 20°C and 4°C continued into the super-cooled zone. In a cloud, super-cooling will arise under convection when condensing droplets are chilled by adiabatic expansion of the carrier air. Droplets will increase in molar volume by up to 2.5% at -34°C (the temperature of spontaneous ice nucleation, Hare and Sorensen, 1987), offering a physical framework for the observed characteristics, and the possibility that `spikiness' reflects the degree of organisation of convection.

  3. High spectral resolution reflectance spectroscopy of minerals

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; King, Trude V. V.; Klejwa, Matthew; Swayze, Gregg A.; Vergo, Norma

    1990-01-01

    The reflectance spectra of minerals are studied as a function of spectral resolution in the range from 0.2 to 3.0 microns. Selected absorption bands were studied at resolving powers as high as 2240. At resolving powers of approximately 1000, many OH-bearing minerals show diagnostic sharp absorptions at the resolution limit. At low resolution, some minerals may not be distinguishable, but as the resolution is increased, most can be easily identified. As the resolution is increased, many minerals show fine structure, particularly in the OH-stretching overtone region near 1.4 micron. The fine structure can enhance the ability to discriminate between minerals, and in some cases the fine structure can be used to determine elemental composition.

  4. High resolution SAR applications and instrument design

    NASA Technical Reports Server (NTRS)

    Dionisio, C.; Torre, A.

    1993-01-01

    The Synthetic Aperture Radar (SAR) has viewed, in the last two years, a huge increment of interest from many preset and potential users. The good spatial resolution associated to the all weather capability lead to considering SAR not only a scientific instrument but a tool for verifying and controlling the daily human relationships with the Earth Environment. New missions were identified for SAR as spatial resolution became lower than three meters: disasters, pollution, ships traffic, volcanic eruptions, earthquake effect are only a few of the possible objects which can be effectively detected, controlled and monitored by SAR mounted on satellites. High resolution radar design constraints and dimensioning are discussed.

  5. Invariant high resolution optical skin imaging

    NASA Astrophysics Data System (ADS)

    Murali, Supraja; Rolland, Jannick

    2007-02-01

    Optical Coherence Microscopy (OCM) is a bio-medical low coherence interferometric imaging technique that has become a topic of active research because of its ability to provide accurate, non-invasive cross-sectional images of biological tissue with much greater resolution than the current common technique ultrasound. OCM is a derivative of Optical Coherence Tomography (OCT) that enables greater resolution imposed by the implementation of an optical confocal design involving high numerical aperture (NA) focusing in the sample. The primary setback of OCM, however is the depth dependence of the lateral resolution obtained that arises from the smaller depth of focus of the high NA beam. We propose to overcome this limitation using a dynamic focusing lens design that can achieve quasi-invariant lateral resolution up to 1.5mm depth of skin tissue.

  6. High resolution X-ray scattering measurements

    NASA Technical Reports Server (NTRS)

    Zombeck, M. V.; Braeuninger, H.; Ondrusch, A.; Predehl, P.

    1982-01-01

    The results of high angular resolution grazing incidence scattering measurements of highly polished, coated optical flats in the X-ray spectral range of 1.5 to 6.4 keV are reported. The interpretation of these results in terms of surface microtopography is presented and the implications for grazing incidence X-ray imaging are discussed.

  7. High spectral resolution reflectance spectroscopy of minerals

    USGS Publications Warehouse

    Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A.; Vergo, N.

    1990-01-01

    The reflectance spectra of minerals are studied as a function of spectral resolution in the range from 0.2 to 3.0 ??m. Selected absorption bands were studied at resolving powers (??/????) as high as 2240. At resolving powers of approximately 1000, many OH-bearing minerals show diagnostic sharp absorptions at the resolution limit. At low resolution, some minerals may not be distinguishable, but as the resolution is increased, most can be easily identified. As the resolution is increased, many minerals show fine structure, particularly in the OH-stretching overtone region near 1.4 ??m. The fine structure can enhance the ability to discriminate between minerals, and in some cases the fine structure can be used to determine elemental composition. The study shows that high-resolution reflectance spectroscopy of minerals may prove to be a very important tool in the laboratory, in the field using field-portable spectrometers, from aircraft, and from satellites looking at Earth or other planetary surfaces. -from Authors

  8. Solar system events at high spatial resolution

    SciTech Connect

    Baines, K H; Gavel, D T; Getz, A M; Gibbartd, S G; MacIntosh, B; Max, C E; McKay, C P; Young, E F; de Pater, I

    1999-02-19

    Until relatively recent advances in technology, astronomical observations from the ground were limited in image resolution by the blurring effects of earth's atmosphere. The blur extent, ranging typically from 0.5 to 2 seconds of arc at the best astronomical sights, precluded ground-based observations of the details of the solar system's moons, asteroids, and outermost planets. With the maturing of a high resolution image processing technique called speckle imaging the resolution limitation of the atmosphere can now be largely overcome. Over the past three years they have used speckle imaging to observe Titan, a moon of Saturn with an atmospheric density comparable to Earth's, Io, the volcanically active innermost moon of Jupiter, and Neptune, a gas giant outer planet which has continually changing planet-encircling storms. These observations were made at the world's largest telescope, the Keck telescope in Hawaii and represent the highest resolution infrared images of these objects ever taken.

  9. High-Resolution PET Detector. Final report

    SciTech Connect

    Karp, Joel

    2014-03-26

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  10. Spatially adaptive regularized iterative high-resolution image reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Lim, Won Bae; Park, Min K.; Kang, Moon Gi

    2000-12-01

    High resolution images are often required in applications such as remote sensing, frame freeze in video, military and medical imaging. Digital image sensor arrays, which are used for image acquisition in many imaging systems, are not dense enough to prevent aliasing, so the acquired images will be degraded by aliasing effects. To prevent aliasing without loss of resolution, a dense detector array is required. But it may be very costly or unavailable, thus, many imaging systems are designed to allow some level of aliasing during image acquisition. The purpose of our work is to reconstruct an unaliased high resolution image from the acquired aliased image sequence. In this paper, we propose a spatially adaptive regularized iterative high resolution image reconstruction algorithm for blurred, noisy and down-sampled image sequences. The proposed approach is based on a Constrained Least Squares (CLS) high resolution reconstruction algorithm, with spatially adaptive regularization operators and parameters. These regularization terms are shown to improve the reconstructed image quality by forcing smoothness, while preserving edges in the reconstructed high resolution image. Accurate sub-pixel motion registration is the key of the success of the high resolution image reconstruction algorithm. However, sub-pixel motion registration may have some level of registration error. Therefore, a reconstruction algorithm which is robust against the registration error is required. The registration algorithm uses a gradient based sub-pixel motion estimator which provides shift information for each of the recorded frames. The proposed algorithm is based on a technique of high resolution image reconstruction, and it solves spatially adaptive regularized constrained least square minimization functionals. In this paper, we show that the reconstruction algorithm gives dramatic improvements in the resolution of the reconstructed image and is effective in handling the aliased information. The

  11. High Spatial Resolution Thermal Satellite Technologies

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2003-01-01

    This document in the form of viewslides, reviews various low-cost alternatives to high spatial resolution thermal satellite technologies. There exists no follow-on to Landsat 7 or ASTER high spatial resolution thermal systems. This document reviews the results of the investigation in to the use of new technologies to create a low-cost useful alternative. Three suggested technologies are examined. 1. Conventional microbolometer pushbroom modes offers potential for low cost Landsat Data Continuity Mission (LDCM) thermal or ASTER capability with at least 60-120 ground sampling distance (GSD). 2. Backscanning could produce MultiSpectral Thermal Imager performance without cooled detectors. 3. Cooled detector could produce hyperspectral thermal class system or extremely high spatial resolution class instrument.

  12. Relative utility of foraminifera, diatoms and macrophytes as high resolution indicators of paleo-sea level in coastal British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Patterson, R. Timothy; Dalby, Andrew P.; Roe, Helen M.; Guilbault, Jean-Pierre; Hutchinson, Ian; Clague, John J.

    2005-10-01

    A multiproxy analysis was carried out on diatom, foraminiferal and macrophyte assemblages across the saltmarsh at Zeballos, Vancouver Island, British Columbia. To determine which group, or combination of groups provided the most accurate elevational zonations, 36 stepwise multiple linear regressions (SMLR) were carried out using a variety of data transformations on an elevational training set. Adjusted R2 values yielded statistically significant results in all analyses as follows: foraminifera (0.658-0.870); diatoms (0.888-0.974); macrophytes (0.671-0.844); foraminifera/diatoms (0.941-0.981); foraminifera/diatoms/macrophytes (0.958-0.993). The most realistic SMLR results were obtained when data transformations comprised of (ln) normalized fractional abundance data was carried out on species present in statistically significant numbers (NrfaEQ). Of the individual proxies assessed, diatoms yielded the most significant adjusted R2 results, with the low marsh diatom Achnanthes hauckiana being one of the most important predictor variables (pv's). Amongst the foraminifera, the low marsh species Miliammina fusca and high marsh Balticammina pseudomacrescens were determined to be the most significant pv's. For macrophytes, the low marsh species Carex lyngbyei, the high marsh species Juncus balticus, Shannon-Wiener Diversity Index (SDI) and absence of plant cover on the tidal flat were the most important pv's. As SMLR analysis of all individual groups and combinations of groups yielded statistically significant results, the choice of proxies, or combinations of proxies that are suitable for paleo-sea level research is at the discretion of the researcher.

  13. A high-resolution tungstate membrane label

    SciTech Connect

    Hainfeld, J.F.; Quaite, F.E. ); Lipka, J.J. )

    1990-01-01

    A new class of membrane labels was synthesized which contain a tungstate cluster (having 11 tungsten atoms) and an aliphatic organo-tin moiety with various chain lengths (C{sub 4}, C{sub 8}, C{sub 12}, C{sub 18}, C{sub 22}). These molecules were found to insert into synthetic phospholipid vesicles and biological membranes (human red blood cell membranes). The tungstate clusters can be individually visualized in the high resolution STEM or seen en mass in thin-sectioned labeled membranes in the CTEM. These new labels should provide a means for direct high-resolution imaging of lipid-phase systems.

  14. A High Resolution Scale-of-four

    DOE R&D Accomplishments Database

    Fitch, V.

    1949-08-25

    A high resolution scale-of-four has been developed to be used in conjunction with the nuclear particle detection devices in applications where the counting rate is unusually high. Specifically, it is intended to precede the commercially available medium resolution scaling circuits and so decrease the resolving time of the counting system. The circuit will function reliably on continuously recurring pulses separated by less than 0.1 microseconds. It will resolve two pulses (occurring at a moderate repetition rate) which are spaced at 0.04 microseconds. A five-volt input signal is sufficient to actuate the device.

  15. A procedure for high resolution satellite imagery quality assessment.

    PubMed

    Crespi, Mattia; De Vendictis, Laura

    2009-01-01

    Data products generated from High Resolution Satellite Imagery (HRSI) are routinely evaluated during the so-called in-orbit test period, in order to verify if their quality fits the desired features and, if necessary, to obtain the image correction parameters to be used at the ground processing center. Nevertheless, it is often useful to have tools to evaluate image quality also at the final user level. Image quality is defined by some parameters, such as the radiometric resolution and its accuracy, represented by the noise level, and the geometric resolution and sharpness, described by the Modulation Transfer Function (MTF). This paper proposes a procedure to evaluate these image quality parameters; the procedure was implemented in a suitable software and tested on high resolution imagery acquired by the QuickBird, WorldView-1 and Cartosat-1 satellites.

  16. A Procedure for High Resolution Satellite Imagery Quality Assessment

    PubMed Central

    Crespi, Mattia; De Vendictis, Laura

    2009-01-01

    Data products generated from High Resolution Satellite Imagery (HRSI) are routinely evaluated during the so-called in-orbit test period, in order to verify if their quality fits the desired features and, if necessary, to obtain the image correction parameters to be used at the ground processing center. Nevertheless, it is often useful to have tools to evaluate image quality also at the final user level. Image quality is defined by some parameters, such as the radiometric resolution and its accuracy, represented by the noise level, and the geometric resolution and sharpness, described by the Modulation Transfer Function (MTF). This paper proposes a procedure to evaluate these image quality parameters; the procedure was implemented in a suitable software and tested on high resolution imagery acquired by the QuickBird, WorldView-1 and Cartosat-1 satellites. PMID:22412312

  17. Customized MFM probes with high lateral resolution

    PubMed Central

    Jaafar, Miriam; Berganza, Eider; Asenjo, Agustina

    2016-01-01

    Summary Magnetic force microscopy (MFM) is a widely used technique for magnetic imaging. Besides its advantages such as the high spatial resolution and the easy use in the characterization of relevant applied materials, the main handicaps of the technique are the lack of control over the tip stray field and poor lateral resolution when working under standard conditions. In this work, we present a convenient route to prepare high-performance MFM probes with sub-10 nm (sub-25 nm) topographic (magnetic) lateral resolution by following an easy and quick low-cost approach. This allows one to not only customize the tip stray field, avoiding tip-induced changes in the sample magnetization, but also to optimize MFM imaging in vacuum (or liquid media) by choosing tips mounted on hard (or soft) cantilevers, a technology that is currently not available on the market. PMID:27547625

  18. High-resolution electrohydrodynamic jet printing.

    PubMed

    Park, Jang-Ung; Hardy, Matt; Kang, Seong Jun; Barton, Kira; Adair, Kurt; Mukhopadhyay, Deep Kishore; Lee, Chang Young; Strano, Michael S; Alleyne, Andrew G; Georgiadis, John G; Ferreira, Placid M; Rogers, John A

    2007-10-01

    Efforts to adapt and extend graphic arts printing techniques for demanding device applications in electronics, biotechnology and microelectromechanical systems have grown rapidly in recent years. Here, we describe the use of electrohydrodynamically induced fluid flows through fine microcapillary nozzles for jet printing of patterns and functional devices with submicrometre resolution. Key aspects of the physics of this approach, which has some features in common with related but comparatively low-resolution techniques for graphic arts, are revealed through direct high-speed imaging of the droplet formation processes. Printing of complex patterns of inks, ranging from insulating and conducting polymers, to solution suspensions of silicon nanoparticles and rods, to single-walled carbon nanotubes, using integrated computer-controlled printer systems illustrates some of the capabilities. High-resolution printed metal interconnects, electrodes and probing pads for representative circuit patterns and functional transistors with critical dimensions as small as 1 mum demonstrate potential applications in printed electronics.

  19. Customized MFM probes with high lateral resolution.

    PubMed

    Iglesias-Freire, Óscar; Jaafar, Miriam; Berganza, Eider; Asenjo, Agustina

    2016-01-01

    Magnetic force microscopy (MFM) is a widely used technique for magnetic imaging. Besides its advantages such as the high spatial resolution and the easy use in the characterization of relevant applied materials, the main handicaps of the technique are the lack of control over the tip stray field and poor lateral resolution when working under standard conditions. In this work, we present a convenient route to prepare high-performance MFM probes with sub-10 nm (sub-25 nm) topographic (magnetic) lateral resolution by following an easy and quick low-cost approach. This allows one to not only customize the tip stray field, avoiding tip-induced changes in the sample magnetization, but also to optimize MFM imaging in vacuum (or liquid media) by choosing tips mounted on hard (or soft) cantilevers, a technology that is currently not available on the market.

  20. High-resolution electrohydrodynamic jet printing

    NASA Astrophysics Data System (ADS)

    Park, Jang-Ung; Hardy, Matt; Kang, Seong Jun; Barton, Kira; Adair, Kurt; Mukhopadhyay, Deep Kishore; Lee, Chang Young; Strano, Michael S.; Alleyne, Andrew G.; Georgiadis, John G.; Ferreira, Placid M.; Rogers, John A.

    2007-10-01

    Efforts to adapt and extend graphic arts printing techniques for demanding device applications in electronics, biotechnology and microelectromechanical systems have grown rapidly in recent years. Here, we describe the use of electrohydrodynamically induced fluid flows through fine microcapillary nozzles for jet printing of patterns and functional devices with submicrometre resolution. Key aspects of the physics of this approach, which has some features in common with related but comparatively low-resolution techniques for graphic arts, are revealed through direct high-speed imaging of the droplet formation processes. Printing of complex patterns of inks, ranging from insulating and conducting polymers, to solution suspensions of silicon nanoparticles and rods, to single-walled carbon nanotubes, using integrated computer-controlled printer systems illustrates some of the capabilities. High-resolution printed metal interconnects, electrodes and probing pads for representative circuit patterns and functional transistors with critical dimensions as small as 1μm demonstrate potential applications in printed electronics.

  1. High Resolution Transferred Substrate HBT Microwave/RF ADCs

    DTIC Science & Technology

    2007-11-02

    of wideband delta sigma ADCs using high speed Indium Phosphide bipolar transistors . 15. SUBJECTTERMS DISTRIBUTION STATEMENTA Approved for Public...kept below several hundred transistors , at high level only a single-bit internal quantizer is feasible. Secondly, although the transferred-substrate... transistor counts. Instead, in this program, higher resolutions were sought through the highest possible clock frequencies. Transferred-substrate HBTs

  2. High-resolution imaging using endoscopic holography

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.

    1990-08-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help to their control. 1.

  3. Holographic high-resolution endoscopic image recording

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.

    1991-03-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help

  4. High-resolution two dimensional advective transport

    USGS Publications Warehouse

    Smith, P.E.; Larock, B.E.

    1989-01-01

    The paper describes a two-dimensional high-resolution scheme for advective transport that is based on a Eulerian-Lagrangian method with a flux limiter. The scheme is applied to the problem of pure-advection of a rotated Gaussian hill and shown to preserve the monotonicity property of the governing conservation law.

  5. A High-Resolution Stopwatch for Cents

    ERIC Educational Resources Information Center

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  6. Sparse and accurate high resolution SAR imaging

    NASA Astrophysics Data System (ADS)

    Vu, Duc; Zhao, Kexin; Rowe, William; Li, Jian

    2012-05-01

    We investigate the usage of an adaptive method, the Iterative Adaptive Approach (IAA), in combination with a maximum a posteriori (MAP) estimate to reconstruct high resolution SAR images that are both sparse and accurate. IAA is a nonparametric weighted least squares algorithm that is robust and user parameter-free. IAA has been shown to reconstruct SAR images with excellent side lobes suppression and high resolution enhancement. We first reconstruct the SAR images using IAA, and then we enforce sparsity by using MAP with a sparsity inducing prior. By coupling these two methods, we can produce a sparse and accurate high resolution image that are conducive for feature extractions and target classification applications. In addition, we show how IAA can be made computationally efficient without sacrificing accuracies, a desirable property for SAR applications where the size of the problems is quite large. We demonstrate the success of our approach using the Air Force Research Lab's "Gotcha Volumetric SAR Data Set Version 1.0" challenge dataset. Via the widely used FFT, individual vehicles contained in the scene are barely recognizable due to the poor resolution and high side lobe nature of FFT. However with our approach clear edges, boundaries, and textures of the vehicles are obtained.

  7. A Portable, High Resolution, Surface Measurement Device

    NASA Technical Reports Server (NTRS)

    Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.

    2012-01-01

    A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.

  8. Detectors for high resolution dynamic pet

    SciTech Connect

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.

    1983-05-01

    This report reviews the motivation for high spatial resolution in dynamic positron emission tomography of the head and the technical problems in realizing this objective. We present recent progress in using small silicon photodiodes to measure the energy deposited by 511 keV photons in small BGO crystals with an energy resolution of 9.4% full-width at half-maximum. In conjunction with a suitable phototube coupled to a group of crystals, the photodiode signal to noise ratio is sufficient for the identification of individual crystals both for conventional and time-of-flight positron tomography.

  9. Constructing a WISE High Resolution Galaxy Atlas

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Stanford, S.; Wright, E.

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  10. Constructing a WISE High Resolution Galaxy Atlas

    NASA Astrophysics Data System (ADS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Sheth, K.; Stanford, S.; Wright, E.

    2012-08-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 μm, 4.6 μm, 12 μm, and 22 μm. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  11. High-Resolution Traction Force Microscopy

    PubMed Central

    Plotnikov, Sergey V.; Sabass, Benedikt; Schwarz, Ulrich S.; Waterman, Clare M.

    2015-01-01

    Cellular forces generated by the actomyosin cytoskeleton and transmitted to the extracellular matrix (ECM) through discrete, integrin-based protein assemblies, that is, focal adhesions, are critical to developmental morphogenesis and tissue homeostasis, as well as disease progression in cancer. However, quantitative mapping of these forces has been difficult since there has been no experimental technique to visualize nanonewton forces at submicrometer spatial resolution. Here, we provide detailed protocols for measuring cellular forces exerted on two-dimensional elastic substrates with a high-resolution traction force microscopy (TFM) method. We describe fabrication of polyacrylamide substrates labeled with multiple colors of fiducial markers, functionalization of the substrates with ECM proteins, setting up the experiment, and imaging procedures. In addition, we provide the theoretical background of traction reconstruction and experimental considerations important to design a high-resolution TFM experiment. We describe the implementation of a new algorithm for processing of images of fiducial markers that are taken below the surface of the substrate, which significantly improves data quality. We demonstrate the application of the algorithm and explain how to choose a regularization parameter for suppression of the measurement error. A brief discussion of different ways to visualize and analyze the results serves to illustrate possible uses of high-resolution TFM in biomedical research. PMID:24974038

  12. High resolution schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Harten, A.

    1983-01-01

    A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurate scheme to an appropriately modified flux function. The so-derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme. Numerical experiments are presented to demonstrate the performance of these new schemes.

  13. A case study of the Great Plains low-level jet using wind profiler network data and a high resolution mesoscale model

    SciTech Connect

    Zhong, S.; Fast, J.D.; Bian, X.; Stage, S.

    1996-04-01

    The Great Plains low-level jet (LLJ) has important effects on the life cycle of clouds and on radiative and surface heat and moisture fluxes at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site. This diurnal phenomenon governs the transport and convergence of low-level moisture into the region and often leads to the development of clouds and precipitation. A full understanding of the life cycle of clouds at the SGP CART site and their proper representation in single column and global climate models cannot be obtained without an improved understanding of this important phenomenon.

  14. Tunneling splittings in vibronic energy levels of CD3F+ (X∼2 E) studied by high resolution photoelectron spectroscopy and ab initio calculation

    NASA Astrophysics Data System (ADS)

    Dai, Zuyang; Sun, Wei; Wang, Jia; Mo, Yuxiang

    2015-05-01

    The energy levels of CD3F+ (X∼2 E) have been measured up to 1400 cm-1 above the ground vibrational state using the one-photon zero-kinetic energy photoelectron (ZEKE) spectroscopic method. The spin-vibronic energy levels have also been calculated using an ab initio diabatic model. The potential energy surfaces of CD3F+ were calculated from those of CH3F+ using a transformation of the normal coordinates. The calculations show that tunneling splittings of vibrational energy levels exist due to the three equivalent wells caused by the linear-plus-strong quadratic Jahn-Teller coupling. The splittings are smaller than those in CH3F+. The experimental spectrum was assigned based on the fundamental vibrational modes calculated at the energy minimum. The calculated spin-vibronic energy levels are in good agreement with the experimental data. The tunneling splitting pairs for the fundamental vibrations related to the CD3 rock were observed. The first adiabatic ionization energy was determined as 101 534 ± 3 cm-1 or 12.5886 ± 0.0004 eV.

  15. Superconducting High Resolution Fast-Neutron Spectrometers

    SciTech Connect

    Hau, Ionel Dragos

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  16. Using high-resolution displays for high-resolution cardiac data.

    PubMed

    Goodyer, Christopher; Hodrien, John; Wood, Jason; Kohl, Peter; Brodlie, Ken

    2009-07-13

    The ability to perform fast, accurate, high-resolution visualization is fundamental to improving our understanding of anatomical data. As the volumes of data increase from improvements in scanning technology, the methods applied to visualization must evolve. In this paper, we address the interactive display of data from high-resolution magnetic resonance imaging scanning of a rabbit heart and subsequent histological imaging. We describe a visualization environment involving a tiled liquid crystal display panel display wall and associated software, which provides an interactive and intuitive user interface. The oView software is an OpenGL application that is written for the VR Juggler environment. This environment abstracts displays and devices away from the application itself, aiding portability between different systems, from desktop PCs to multi-tiled display walls. Portability between display walls has been demonstrated through its use on walls at the universities of both Leeds and Oxford. We discuss important factors to be considered for interactive two-dimensional display of large three-dimensional datasets, including the use of intuitive input devices and level of detail aspects.

  17. High-Resolution US of Rheumatologic Diseases.

    PubMed

    Taljanovic, Mihra S; Melville, David M; Gimber, Lana H; Scalcione, Luke R; Miller, Margaret D; Kwoh, C Kent; Klauser, Andrea S

    2015-01-01

    For the past 15 years, high-resolution ultrasonography (US) is being routinely and increasingly used for initial evaluation and treatment follow-up of rheumatologic diseases. This imaging technique is performed by using high-frequency linear transducers and has proved to be a powerful diagnostic tool in evaluation of articular erosions, simple and complex joint and bursal effusions, tendon sheath effusions, and synovitis, with results comparable to those of magnetic resonance imaging, excluding detection of bone marrow edema. Crystal deposition diseases including gouty arthropathy and calcium pyrophosphate deposition disease (CPPD) have characteristic appearances at US, enabling differentiation between these two diseases and from inflammatory arthropathies. Enthesopathy, which frequently accompanies psoriatic and reactive arthritis, also has a characteristic appearance at high-resolution US, distinguishing these two entities from other inflammatory and metabolic arthropathies. The presence of Doppler signal in examined joints, bursae, and tendon sheaths indicates active synovitis. Microbubble echo contrast agents augment detection of tissue vascularity and may act in the future as a drug delivery vehicle. Frequently, joint, tendon sheath, and bursal fluid aspirations and therapeutic injections are performed under US guidance. The authors describe the high-resolution US technique including gray-scale, color or power Doppler, and contrast agent-enhanced US that is used in evaluation of rheumatologic diseases of the wrist and hand and the ankle and foot in their routine clinical practice. This article demonstrates imaging findings of normal joints, rheumatoid arthritis, gouty arthritis, CPPD, psoriatic and reactive arthritis, and osteoarthritis.

  18. High Resolution Laser Spectroscopy for Absorption to Levels Lying Near the Dissociation Limit of the a ^3Π_1 State of {IBr}

    NASA Astrophysics Data System (ADS)

    Yukiya, Tokio; Nishimiya, Nobuo; Suzuki, Masao; Le Roy, Robert J.

    2015-06-01

    Spectroscopic data involving levels lying near the dissociation limit are very important for determining accurate molecular well depths and full potential energy curves. In previous work, we have reported the potential functions and values of parameters D_e and r_e for the A ^3Π_1 and X ^1σ^+ states of IBr. That study used data extending to v'(A)=29 and determined anomalous fluctuations in the v--dependence of the first differences of Δ Bv=Bv+1-Bv for levels v'=27-29 of the A ^3Π_1 state which, surprisingly, seems to have been smoothly accounted by a fitted potential energy function that shows no visually perceptible irregularities. In the present work, a Ti:Sapphire ring laser(M SQUARED LASERS Ltd. SolsTiS CW with Tera--scan) has been introduced to probe the 0.7μm region closer to the dissociation limit and examine whether the anomalous Δ Bv behaviour expends further up the well. The results of this study will be presented. T.Yukiya, N. Nishimiya, M. Suzuki and R.J. Le Roy, paper MG03 at the 69th International Symposium on Molecular Spectroscopy, University of Illinois (2014)

  19. High-resolution flurescence spectroscopy in immunoanalysis

    SciTech Connect

    Grubor, Nenad M.

    2005-01-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  20. High-Resolution Broadband Spectral Interferometry

    SciTech Connect

    Erskine, D J; Edelstein, J

    2002-08-09

    We demonstrate solar spectra from a novel interferometric method for compact broadband high-resolution spectroscopy. The spectral interferometer (SI) is a hybrid instrument that uses a spectrometer to externally disperse the output of a fixed-delay interferometer. It also has been called an externally dispersed interferometer (EDI). The interferometer can be used with linear spectrometers for imaging spectroscopy or with echelle spectrometers for very broad-band coverage. EDI's heterodyning technique enhances the spectrometer's response to high spectral-density features, increasing the effective resolution by factors of several while retaining its bandwidth. The method is extremely robust to instrumental insults such as focal spot size or displacement. The EDI uses no moving parts, such as purely interferometric FTS spectrometers, and can cover a much wider simultaneous bandpass than other internally dispersed interferometers (e.g. HHS or SHS).

  1. High resolution, large area, high energy x-ray tomography

    SciTech Connect

    Trebes, J.E.; Dolan, K.W.; Haddad, W.S.; Haskins, J.J.; Lerche, R.A.; Logan, C.M.; Perkins, D.E.; Schneberk, D.J.; Rikard, R.D.

    1997-08-01

    An x-ray tomography system is being developed for high resolution inspection of large objects. The goal is to achieve 25 micron resolution over object sizes that are tens of centimeters in extent. Typical objects will be metal in composition and therefore high energy, few MeV x-rays will be required. A proof-of-principle system with a limited field of view has been developed. Preliminary results are presented.

  2. A high-resolution anatomical rat atlas

    PubMed Central

    Bai, Xueling; Yu, Li; Liu, Qian; Zhang, Jie; Li, Anan; Han, Dao; Luo, Qingming; Gong, Hui

    2006-01-01

    This paper reports the availability of a high-resolution atlas of the adult rat. The atlas is composed of 9475 cryosectional images captured in 4600 × 2580 × 24-bit TIFF format, constructed using serial cryosection-milling techniques. Cryosection images were segmented, labelled and reconstructed into three-dimensional (3D) computerized models. These images, 3D models, technical details, relevant software and further information are available at our website, http://vchibp.vicp.net/vch/mice/. PMID:17062027

  3. High spatial resolution passive microwave sounding systems

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.; Bonanni, P. G.; Gasiewski, A. W.

    1986-01-01

    Two extensive series of flights aboard the ER-2 aircraft were conducted with the MIT 118 GHz imaging spectrometer together with a 53.6 GHz nadir channel and a TV camera record of the mission. Other microwave sensors, including a 183 GHz imaging spectrometer were flown simultaneously by other research groups. Work also continued on evaluating the impact of high-resolution passive microwave soundings upon numerical weather prediction models.

  4. Stellar Tools for High Resolution Population Synthesis

    NASA Astrophysics Data System (ADS)

    Chávez, M.; Bertone, E.; Rodríguez-Merino, L.; Buzzoni, A.

    2005-12-01

    We present preliminary results of the application of a new stellar library of high-resolution synthetic spectra (based upon ATLAS9 and SYNTHE codes developed by R. L. Kurucz) in the calculation of the ultraviolet-optical spectral energy distribution of simple stellar populations (SSPs). For this purpose, the library has been coupled with Buzzoni's population synthesis code. Part of this paper is also devoted to illustrate quantitatively the extent to which synthetic stellar libraries represent real stars.

  5. A High Resolution Ammunition Resupply Model.

    DTIC Science & Technology

    1982-03-01

    Transportation Assets .. . . . . . . . 111 b. Maximization of Shipping Space . . . . . 112 c. Adjustments Due to Priority Requisitions. 112 3. RESUPPLY...planned logistics module was expanded to a full stand-alone, high resolution model. Supplementary objectives were established in order to achieve the...each variable, and replication of the process described by these variables in order to achieve an expected value outcome. Using this technique, the

  6. High resolution image measurements of nuclear tracks

    NASA Technical Reports Server (NTRS)

    Shirk, E. K.; Price, P. B.

    1980-01-01

    The striking clarity and high contrast of the mouths of tracks etched in CR-39 plastic detectors allow automatic measurement of track parameters to be made with simple image-recognition equipment. Using a commercially available Vidicon camera system with a microprocessor-controlled digitizer, resolution for normally incident C-12 and N-14 ions at 32 MeV/amu equivalent to a 14sigma separation of adjacent charges was demonstrated.

  7. High-resolution, high-pressure NMR studies of proteins.

    PubMed Central

    Jonas, J; Ballard, L; Nash, D

    1998-01-01

    Advanced high-resolution NMR spectroscopy, including two-dimensional NMR techniques, combined with high pressure capability, represents a powerful new tool in the study of proteins. This contribution is organized in the following way. First, the specialized instrumentation needed for high-pressure NMR experiments is discussed, with specific emphasis on the design features and performance characteristics of a high-sensitivity, high-resolution, variable-temperature NMR probe operating at 500 MHz and at pressures of up to 500 MPa. An overview of several recent studies using 1D and 2D high-resolution, high-pressure NMR spectroscopy to investigate the pressure-induced reversible unfolding and pressure-assisted cold denaturation of lysozyme, ribonuclease A, and ubiquitin is presented. Specifically, the relationship between the residual secondary structure of pressure-assisted, cold-denatured states and the structure of early folding intermediates is discussed. PMID:9649405

  8. CrIS High Resolution Hyperspectral Radiances

    NASA Astrophysics Data System (ADS)

    Hepplewhite, C. L.; Strow, L. L.; Motteler, H.; Desouza-Machado, S. G.; Tobin, D. C.; Martin, G.; Gumley, L.

    2014-12-01

    The CrIS hyperspectral sounder flying on Suomi-NPPpresently has reduced spectral resolution in the mid-wave andshort-wave spectral bands due to truncation of the interferograms inorbit. CrIS has occasionally downlinked full interferograms for thesebands (0.8 cm max path, or 0.625 cm-1 point spacing) for a feworbits up to a full day. Starting Oct.1, 2014 CrIS will be commandedto download full interferograms continuously for the remainder of themission, although NOAA will not immediately produce high-spectralresolution Sensor Data Records (SDRs). Although the originalmotivation for operating in high-resolution mode was improved spectralcalibration, these new data will also improve (1) vertical sensitivityto water vapor, and (2) greatly increase the CrIS sensitivity tocarbon monoxide. This should improve (1) NWP data assimilation ofwater vapor and (2) provide long-term continuity of carbon monoxideretrievals begun with MOPITT on EOS-TERRA and AIRS on EOS-AQUA. Wehave developed a SDR algorithm to produce calibrated high-spectralresolution radiances which includes several improvements to theexisting CrIS SDR algorithm, and will present validation of thesehigh-spectral resolution radiances using a variety of techniques,including bias evaluation versus NWP model data and inter-comparisonsto AIRS and IASI using simultaneous nadir overpasses (SNOs). Theauthors are presently working to implement this algorithm for NASASuomi NPP Program production of Earth System Data Records.

  9. High-resolution studies of tropolone in the S0 and S1 electronic states: isotope driven dynamics in the zero-point energy levels.

    PubMed

    Keske, John C; Lin, Wei; Pringle, Wallace C; Novick, Stewart E; Blake, Thomas A; Plusquellic, David F

    2006-02-21

    Rotationally resolved microwave (MW) and ultraviolet (UV) spectra of jet-cooled tropolone have been obtained in S(0) and S(1) electronic states using Fourier-transform microwave and UV-laser/molecular-beam spectrometers. In the ground electronic state, the MW spectra of all heavy-atom isotopomers including one (18)O and four (13)C isotopomers were observed in natural abundance. The OD isotopomer was obtained from isotopically enriched samples. The two lowest tunneling states of each isotopomer except (18)O have been assigned. The observed inversion splitting for the OD isotopomer is 1523.227(5) MHz. For the asymmetric (13)C structures, the magnitudes of tunneling-rotation interactions are found to diminish with decreasing distance between the heavy atom and the tunneling proton. In the limit of closest approach, the 0(+) state of (18)O was well fitted to an asymmetric rotor Hamiltonian, reflecting significant changes in the tautomerization dynamics. Comparisons of the substituted atom coordinates with theoretical predictions at the MP2/aug-cc-pVTZ level of theory suggest the localized 0(+) and 0(-) wave functions of the heavier isotopes favor the C-OH and C=O forms of tropolone, respectively. The only exception occurs for the (13)C-OH and (13)C[Double Bond]O structures which correlate to the 0(-) and 0(+) states, respectively. These preferences reflect kinetic isotope effects as quantitatively verified by the calculated zero-point energy differences between members of the asymmetric atom pairs. From rotationally resolved data of the 0(+) <--0(+) and 0(-) <--0(-) bands in S(1), line-shape fits have yielded Lorentzian linewidths that differ by 12.2(16) MHz over the 19.88(4) cm(-1) interval in S(1). The fluorescence decay rates together with previously reported quantum yield data give nonradiative decay rates of 7.7(5) x 10(8) and 8.5(5) x 10(8) s(-1) for the 0(+) and 0(-) levels of the S(1) state of tropolone.

  10. High-Resolution Mapping in Manus Basin

    NASA Astrophysics Data System (ADS)

    Roman, C. N.; Ferrini, V. L.

    2006-12-01

    Near-bottom seafloor mapping with precisely navigated deep submergence vehicles has become increasingly common in a range of oceanographic settings. Recent mapping efforts at deep-water hydrothermal vent sites have resulted in high-resolution (sub-meter) bathymetry datasets that can be used to identify morphological features associated with volcanic, tectonic, and hydrothermal processes. The resolution of these maps, and our ability to accurately quantify the complex morphologic details of hydrothermal structures has been limited by a number of variables including navigational accuracy, sonar settings (e.g. acoustic wavelength, sonar orientation, ping rate), survey parameters (e.g. altitude, speed), data density, and data processing techniques (e.g. gridding algorithms). We present the results of two near-bottom surveys conducted in August 2006 at the PACMANUS (Papua New Guinea-Australia-Canada Manus) hydrothermal field in the eastern Manus Basin of the Bismarck Sea, south of New Ireland, Papua New Guinea. Data were simultaneously acquired with two high-resolution multibeam sonar systems mounted on the Remote Operated Vehicle (ROV) Jason 2. A Simrad SM2000 (200 kHz) multibeam system was mounted in down-looking mode, and an Imagenex DeltaT (675 kHz) multibeam system was mounted on the brow of the vehicle in a forward-looking orientation. Surveys were conducted in parallel survey lines at 15 m altitude (15 m line spacing), and the can be used to generate sub-meter resolution maps of the seafloor. The maps were assembled using a terrain registration algorithm designed to minimize the affects of navigation error. Together, these sonars provide a complementary dataset that allows us to better quantify the 3-dimensional morphological characteristics of complex hydrothermal vent structures. This information can be used to more accurately estimate the volume of hydrothermal deposits, and render a more complete environmental picture that is less hindered by occlusions and

  11. Ultra-high resolution DNA structures.

    PubMed

    Wang, A H; Robinson, H; Gao, Y G

    1999-01-01

    This paper describes the progress in our efforts at producing ultra-high resolution (< 0.8 A) DNA structures using advanced cryo-crystallography and synchrotron. Our work is aimed at providing reliable geometric (bond length and bond angle), electronic and motional information of DNA molecules in different conformational contexts. These highly-reliable, new structures will be the basis for constructing better DNA force-field parameters, which will benefit the structural refinement of DNA, protein-DNA complexes, and ligand-DNA complexes.

  12. Moderate resolution spectrophotometry of high redshift quasars

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1991-01-01

    A uniform set of photometry and high signal-to-noise moderate resolution spectroscopy of 33 quasars with redshifts larger than 3.1 is presented. The sample consists of 17 newly discovered quasars (two with redshifts in excess of 4.4) and 16 sources drawn from the literature. The objects in this sample have r magnitudes between 17.4 and 21.4; their luminosities range from -28.8 to -24.9. Three of the 33 objects are broad absorption line quasars. A number of possible high redshift damped Ly-alpha systems were found.

  13. Binary Cepheids From High-Angular Resolution

    NASA Astrophysics Data System (ADS)

    Gallenne, A.; Mérand, A.; Kervella, P.

    2015-12-01

    Optical interferometry is the only technique giving access to milli-arcsecond (mas) spatial resolution. This is a powerful and unique tool to detect the close orbiting companions of Cepheids, and offers an unique opportunity to make progress in resolving the Cepheid mass discrepancy. Our goal in studying binary Cepheids is to measure the astrometric position of the high-contrast companion, and then combine them with spectroscopic measurements to derive the orbital elements, distances, and dynamical masses. In the course of this program, we developed a new tool, CANDID, to search for high-contrast companions and set detection limits from interferometric observations

  14. High Time Resolution Studies with the GBT

    NASA Astrophysics Data System (ADS)

    Lewandowska, Natalia; Lynch, Ryan S.

    2017-01-01

    The detection of neutron stars 49 years ago has created many new and independent branches of research. In 1967, fast rotating neutron stars, or pulsars, became the first objects of this kind to be discovered at radio wavelengths -- more than 30years after their theoretical prediction.In spite of numerous studies throughout the years, the mechanism of the observed radio emission of pulsars is still not understood. Recent technological developments allow observations of pulsars with time resolutions extending into the nanoseconds range, providing a unique insight into the momentary state of a pulsar.Radio giant pulses are known to occur non-periodically in certain phase ranges, exhibit much higher peak flux densities than regular pulses, and to have pulse widths ranging from the micro- to nanoseconds. Their characteristics make them suitable for high time resolution studies. We present the first high time resolution observations of the original millisecond pulsar PSR B1937+21 carried out with the Robert C. Byrd Green Bank Radio Telescope.

  15. High Resolution Laser Spectroscopy of Rhenium Carbide

    NASA Astrophysics Data System (ADS)

    Adam, Allan G.; Hall, Ryan M.; Linton, Colan; Tokaryk, Dennis

    2014-06-01

    The first spectroscopic study of rhenium carbide, ReC, has been performed using both low and high resolution techniques to collect rotationally resolved electronic spectra from 420 to 500nm. Laser-induced fluorescence (LIF), and dispersed fluorescence (DF) techniques were employed. ReC was formed in our laser ablation molecular jet apparatus by ablating a rhenium target rod in the presence of 1% methane in helium. The low resolution spectrum identified four bands of an electronic system belonging to ReC, three of which have been studied so far. Extensive hyperfine structure composed of six hyperfine components was observed in the high resolution spectrum, as well as a clear distinction between the 187ReC and 185ReC isotopologues. The data seems consistent with a ^4Π - ^4Σ- transition, as was predicted before experimentation. Dispersed fluorescence spectra allowed us to determine the ground state vibrational frequency (ωe"=994.4 ± 0.3 wn), and to identify a low-lying electronically excited state at Te"=1118.4 ± 0.4 wn with a vibrational frequency of ωe"=984 ± 2 wn. Personal communication, F. Grein, University of New Brunswick

  16. A high resolution ultraviolet Shuttle glow spectrograph

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1993-01-01

    The High Resolution Shuttle Glow Spectrograph-B (HRSGS-B) is a small payload being developed by the Naval Research Laboratory. It is intended for study of shuttle surface glow in the 180-400 nm near- and middle-ultraviolet wavelength range, with a spectral resolution of 0.2 nm. It will search for, among other possible features, the band systems of excited NO which result from surface-catalyzed combination of N and O. It may also detect O2 Hertzberg bands and N2 Vegard-Kaplan bands resulting from surface recombination. This wavelength range also includes possible N2+ and OH emissions. The HRSGS-B will be housed in a Get Away Special canister, mounted in the shuttle orbiter payload bay, and will observe the glow on the tail of the orbiter.

  17. High resolution patterning of silica aerogels

    SciTech Connect

    Bertino, M.F.; Hund, J.F.; Sosa, J.; Zhang, G.; Sotiriou-Leventis, C.; Leventis, N.; Tokuhiro, A.T.; Terry, J.

    2008-10-30

    Three-dimensional metallic structures are fabricated with high spatial resolution in silica aerogels. In our method, silica hydrogels are prepared with a standard base-catalyzed route, and exchanged with an aqueous solution typically containing Ag{sup +} ions (1 M) and 2-propanol (0.2 M). The metal ions are reduced photolytically with a table-top ultraviolet lamp, or radiolytically, with a focused X-ray beam. We fabricated dots and lines as small as 30 x 70 {micro}m, protruding for several mm into the bulk of the materials. The hydrogels are eventually supercritically dried to yield aerogels, without any measurable change in the shape and spatial resolution of the lithographed structures. Transmission electron microscopy shows that illuminated regions are composed by Ag clusters with a size of several {micro}m, separated by thin layers of silica.

  18. Computer synthesis of high resolution electron micrographs

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1976-01-01

    Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.

  19. High resolution mapping of martian neutron albedo

    NASA Astrophysics Data System (ADS)

    Sanin, A.

    It is known from data of High Energy Neutron Detector (HEND) on Mars Odyssey that there is very large regional variation of leakage flux of epithermal neutrons on the surface of Mars. The factor of regional variations is about 10 for mapping with linear resolution of about 200-300 km. Two circumpolar depressions of epithermal neutrons emission were found above latitudes of 50 - 60, which correspond to Northern and Southern permafrost regions with very high (up to 50 wt%) content of water ice. Also, according to the HEND mapping data, there are two opposite equatorial regions Arabia Terra and Memnonia, which contain about 10 wt% of water under the top layer of dry soil with a column density of about 30 g/cm2. The surface resolution of orbital data about 300 km is determined by natural collimation of neutrons in the subsurface and in the atmosphere. For a territory larger than this size, the average content of water could be estimated by the large area approximation. In this case the comparison is performed between the average counts of neutrons over the territory and predicted counts for the planet with the same model of the entire surface. The content of water is found, as the best fitting parameter of this model. For local spots of depression with much smaller sizes this procedure underestimates the content of water. Thus, according this approximation, the spot with largest depression in the Arabia Terra at 10-12 N and 30-32 E contains at least 16 wt% of water, but in reality this value could be much larger. The content of water at this spot will be obtained with better spatial resolution by so-called inverse projection procedure. This model-dependent procedure allows to test water content for areas much smaller than the size of HEND surface resolution. The results of water content according to this procedure will be presented for the Arabia spot with the greatest depression of epithermal neutrons.

  20. High potassium level

    MedlinePlus

    ... symptoms. Tests that may be ordered include: Electrocardiogram (ECG) Potassium level Your provider will likely check your ... have danger signs, such as changes in an ECG . Emergency treatment may include: Calcium given into your ...

  1. Evacuee Compliance Behavior Analysis using High Resolution Demographic Information

    SciTech Connect

    Lu, Wei; Han, Lee; Liu, Cheng; Tuttle, Mark A; Bhaduri, Budhendra L

    2014-01-01

    The purpose of this study is to examine whether evacuee compliance behavior with route assignments from different resolutions of demographic data would impact the evacuation performance. Most existing evacuation strategies assume that travelers will follow evacuation instructions, while in reality a certain percent of evacuees do not comply with prescribed instructions. In this paper, a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) were conducted for the detailed road network representing Alexandria, Virginia. A revised platform for evacuation modeling built on high resolution demographic data and activity-based microscopic traffic simulation is proposed. The results indicate that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it does not significantly compromise the efficiency with high resolution LPC assignment. The TAZ assignment also underestimates the real travel time during evacuation, especially for high compliance simulations. This suggests that conventional evacuation studies based on TAZ assignment might not be effective at providing efficient guidance to evacuees. From the high resolution data perspective, traveler compliance behavior is an important factor but it does not impact the system performance significantly. The highlight of evacuee compliance behavior analysis should be emphasized on individual evacuee level route/shelter assignments, rather than the whole system performance.

  2. High resolution hyperspectral imaging with a high throughput virtual slit

    NASA Astrophysics Data System (ADS)

    Gooding, Edward A.; Gunn, Thomas; Cenko, Andrew T.; Hajian, Arsen R.

    2016-05-01

    Hyperspectral imaging (HSI) device users often require both high spectral resolution, on the order of 1 nm, and high light-gathering power. A wide entrance slit assures reasonable étendue but degrades spectral resolution. Spectrometers built using High Throughput Virtual Slit™ (HTVS) technology optimize both parameters simultaneously. Two remote sensing use cases that require high spectral resolution are discussed. First, detection of atmospheric gases with intrinsically narrow absorption lines, such as hydrocarbon vapors or combustion exhaust gases such as NOx and CO2. Detecting exhaust gas species with high precision has become increasingly important in the light of recent events in the automobile industry. Second, distinguishing reflected daylight from emission spectra in the visible and NIR (VNIR) regions is most easily accomplished using the Fraunhofer absorption lines in solar spectra. While ground reflectance spectral features in the VNIR are generally quite broad, the Fraunhofer lines are narrow and provide a signature of intrinsic vs. extrinsic illumination. The High Throughput Virtual Slit enables higher spectral resolution than is achievable with conventional spectrometers by manipulating the beam profile in pupil space. By reshaping the instrument pupil with reflective optics, HTVS-equipped instruments create a tall, narrow image profile at the exit focal plane, typically delivering 5X or better the spectral resolution achievable with a conventional design.

  3. The EUV dayglow at high spectral resolution

    SciTech Connect

    Morrison, M.D.; Bowers, C.W.; Feldman, P.D. ); Meier, R.R. )

    1990-04-01

    Rocket observations of the dayglow spectrum of the terrestrial atmosphere between 840 {angstrom} and 1860 {angstrom} at 2 {angstrom} resolution were obtained with a sounding rocket payload flown on January 17, 1985. Additionally, spectra were also obtained using a 0.125-m focal length scanning Ebert-Fastie monochromator covering the wavelength interval of 1150-1550 {angstrom} at 7 {angstrom} resolution on this flight and on a sounding rocket flight on August 29, 1983, under similar viewing geometries and solar zenith angles. Three bands of the N{sub 2} c{prime}{sub 4} system are seen clearly resolved in the dayglow. Analysis of high-resolution N{sub 2} Lyman-Birge-Hopfield data shows no anomalous vibrational distribution as has been reported from other observations. The altitude profiles of the observed O and N{sub 2} emissions demonstrate that the MSIS-83 model O and N{sub 2} densities are appropriate for the conditions of both the 1983 and 1985 rocket flights. A reduction of a factor of 2 in the model O{sub 2} density is required for both flights to reproduce the low-altitude atomic oxygen emission profiles. The volume excitation rates calculated using the Hinteregger et al. (1981) SC{number sign}21REFW solar reference spectrum and the photoelectron flux model of Strickland and Meier (1982) need to be scaled upward by a factor of 1.4 for both fights to match the observations.

  4. High Spectral Resolution Lidar: System Calibration

    NASA Astrophysics Data System (ADS)

    Vivek Vivekanandan, J.; Morley, Bruce; Spuler, Scott; Eloranta, Edwin

    2015-04-01

    One of the unique features of the high spectral resolution lidar (HSRL) is simultaneous measurements of backscatter and extinction of atmosphere. It separates molecular scattering from aerosol and cloud particle backscatter based on their Doppler spectrum width. Scattering from aerosol and cloud particle are referred as Mie scattering. Molecular or Rayleigh scattering is used as a reference for estimating aerosol extinction and backscatter cross-section. Absolute accuracy of the backscattered signals and their separation into Rayleigh and Mie scattering depends on spectral purity of the transmitted signals, accurate measurement of transmit power, and precise performance of filters. Internal calibration is used to characterize optical subsystems Descriptions of high spectral resolution lidar system and its measurement technique can be found in Eloronta (2005) and Hair et al.(2001). Four photon counting detectors are used to measure the backscatter from the combined Rayleigh and molecular scattering (high and low gain), molecular scattering and cross-polarized signal. All of the detectors are sensitive to crosstalk or leakage through the optical filters used to separate the received signals and special data files are used to remove these effects as much as possible. Received signals are normalized with respect to the combined channel response to Mie and Rayleigh scattering. The laser transmit frequency is continually monitored and tuned to the 1109 Iodine absorption line. Aerosol backscatter cross-section is measured by referencing the aerosol return signal to the molecular return signal. Extinction measurements are calculated based on the differences between the expected (theoretical) and actual change in the molecular return. In this paper an overview of calibration of the HSRL is presented. References: Eloranta, E. W., High Spectral Resolution Lidar in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Klaus Weitkamp editor, Springer Series in Optical

  5. High resolution thermal denaturation of mammalian DNAs.

    PubMed Central

    Guttmann, T; Vítek, A; Pivec, L

    1977-01-01

    High resolution melting profiles of different mammalian DNAs are presented. Melting curves of various mammalian DNAs were compared with respect to the degree of asymmetry, first moment, transition breath and Tmi of individual subtransitions. Quantitative comparison of the shape of all melting curves was made. Correlation between phylogenetical relations among mammals and shape of the melting profiles of their DNAs was demonstrated. The difference between multi-component heterogeneity of mammalian DNAs found by optical melting analysis and sedimentation in CsCl-netropsin density gradient is also discussed. PMID:840642

  6. High resolution extremity CT for biomechanics modeling

    SciTech Connect

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  7. High resolution millimeter-wave imaging sensor

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Howard, R. J.; Parks, G. S.

    1985-01-01

    A scanning 3-mm radiometer is described that has been built for use on a small aircraft to produce real time high resolution images of the ground when atmospheric conditions such as smoke, dust, and clouds make IR and visual sensors unusable. The sensor can be used for a variety of remote sensing applications such as measurements of snow cover and snow water equivalent, precipitation mapping, vegetation type and extent, surface moisture and temperature, and surface thermal inertia. The advantages of millimeter waves for cloud penetration and the ability to observe different physical phenomena make this system an attractive supplement to visible and IR remote sensing systems.

  8. High resolution detection system of capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Li Qiang; Shi, Yan; Zheng, Hua; Lu, Zu Kang

    2007-12-01

    The capillary electrophoresis (CE) with laser induced fluorescence detection (LIFD) system was founded according to confocal theory. The 3-D adjustment of the exciting and collecting optical paths was realized. The photomultiplier tube (PMT) is used and the signals are processed by a software designed by ourselves. Under computer control, high voltage is applied to appropriate reservoirs and to inject and separate DNA samples respectively. Two fluorescent dyes Thiazole Orange (TO) and SYBR Green I were contrasted. With both of the dyes, high signals-to-noise images were obtained with the CE-LIFD system. The single-bases can be distinguished from the electrophoretogram and high resolution of DNA sample separation was obtained.

  9. A medium resolution minefield model suitable for entity-level resolution combat simulations

    SciTech Connect

    Powell, E.T.

    1994-06-09

    A new, flexible, and realistic representation of conventional minefields in entity-level resolution combat simulations is presented. The model includes important aspects of minefield effects on battlefield entities and of breaching devices on minefields. The model is designed at ``medium resolution,`` that is, it is general enough to depict a wide variety of tactical situations accurately; however, it only represents tactically significant aspects of mine warfare, discarding or aggregating details, thus minimizing computer memory and speed requirements. This paper describes the model in detail, its implementation in the Janus simulation code, and its use in a preliminary analysis effort related to the effect of delay on the tactical battlefield.

  10. Efficient Compression of High Resolution Climate Data

    NASA Astrophysics Data System (ADS)

    Yin, J.; Schuchardt, K. L.

    2011-12-01

    resolution climate data can be massive. Those data can consume a huge amount of disk space for storage, incur significant overhead for outputting data during simulation, introduce high latency for visualization and analysis, and may even make interactive visualization and analysis impossible given the limit of the data that a conventional cluster can handle. These problems can be alleviated by with effective and efficient data compression techniques. Even though HDF5 format supports compression, previous work has mainly focused on employ traditional general purpose compression schemes such as dictionary coder and block sorting based compression scheme. Those compression schemes mainly focus on encoding repeated byte sequences efficiently and are not well suitable for compressing climate data consist mainly of distinguished float point numbers. We plan to select and customize our compression schemes according to the characteristics of high-resolution climate data. One observation on high resolution climate data is that as the resolution become higher, values of various climate variables such as temperature and pressure, become closer in nearby cells. This provides excellent opportunities for predication-based compression schemes. We have performed a preliminary estimation of compression ratios of a very simple minded predication-based compression ratio in which we compute the difference between current float point number with previous float point number and then encoding the exponent and significance part of the float point number with entropy-based compression scheme. Our results show that we can achieve higher compression ratios between 2 and 3 in lossless compression, which is significantly higher than traditional compression algorithms. We have also developed lossy compression with our techniques. We can achive orders of magnitude data reduction while ensure error bounds. Moreover, our compression scheme is much more efficient and introduces much less overhead

  11. Human enamel structure studied by high resolution electron microscopy

    SciTech Connect

    Wen, S.L. )

    1989-01-01

    Human enamel structural features are characterized by high resolution electron microscopy. The human enamel consists of polycrystals with a structure similar to Ca10(PO4)6(OH)2. This article describes the structural features of human enamel crystal at atomic and nanometer level. Besides the structural description, a great number of high resolution images are included. Research into the carious process in human enamel is very important for human beings. This article firstly describes the initiation of caries in enamel crystal at atomic and unit-cell level and secondly describes the further steps of caries with structural and chemical demineralization. The demineralization in fact, is the origin of caries in human enamel. The remineralization of carious areas in human enamel has drawn more and more attention as its potential application is realized. This process has been revealed by high resolution electron microscopy in detail in this article. On the other hand, the radiation effects on the structure of human enamel are also characterized by high resolution electron microscopy. In order to reveal this phenomenon clearly, a great number of electron micrographs have been shown, and a physical mechanism is proposed. 26 references.

  12. High Resolution Powder Diffraction and Structure Determination

    SciTech Connect

    Cox, D. E.

    1999-04-23

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 {micro}m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  13. High-resolution noncontact atomic force microscopy.

    PubMed

    Pérez, Rubén; García, Ricardo; Schwarz, Udo

    2009-07-01

    original papers authored by many of the leading groups in the field with the goal of providing a well-balanced overview on the state-of-the-art in this rapidly evolving field. These papers, many of which are based on notable presentations given during the Madrid conference, feature highlights such as (1) the development of sophisticated force spectroscopy procedures that are able to map the complete 3D tip-sample force field on different surfaces; (2) the considerable resolution improvement of Kelvin probe force microscopy (reaching, in some cases, the atomic scale), which is accompanied by a thorough, quantitative understanding of the contrast observed; (3) the perfecting of atomic resolution imaging on insulating substrates, which helps reshape our microscopic understanding of surface properties and chemical activity of these surfaces; (4) the description of instrumental and methodological developments that pave the way to the atomic-scale characterization of magnetic and electronic properties of nanostructures, and last but not least (5) the extension of dynamic imaging modes to high-resolution operation in liquids, ultimately achieving atomic resolution. The latter developments are already having a significant impact in the highly competitive field of biological imaging under physiological conditions. This special issue of Nanotechnology would not have been possible without the highly professional support from Nina Couzin, Amy Harvey, Alex Wotherspoon and the entire Nanotechnology team at IOP Publishing. We are thankful for their help in pushing this project forward. We also thank the authors who have contributed their excellent original articles to this issue, the referees whose comments have helped make the issue an accurate portrait of this rapidly moving field, and the entire NC-AFM community that continues to drive NC-AFM to new horizons.

  14. Limiting liability via high resolution image processing

    SciTech Connect

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  15. High Resolution BPM for Linear Colliders

    SciTech Connect

    Simon, C.; Chel, S.; Luong, M.; Napoly, O.; Novo, J.; Roudier, D.; Rouviere, N.

    2006-11-20

    A high resolution Beam Position Monitor (BPM) is necessary for the beam-based alignment systems of high energy and low emittance electron linacs. Such a monitor is developed in the framework of the European CARE/SRF programme, in a close collaboration between DESY and CEA/DSM/DAPNIA. This monitor is a radiofrequency re-entrant cavity, which can be used either at room or cryogenic temperature, in an environment where dust particle contamination has to be avoided, such as superconducting cavities in a cryomodule. A first prototype of a re-entrant BPM has already delivered measurements at 2K. inside the first cryomodule (ACC1) on the TESLA Test Facility 2 (TTF2). The performances of this BPM are analyzed both experimentally and theoretically, and the limitations of this existing system clearly identified. A new cavity and new electronics have been designed in order to improve the position resolution down to 1 {mu}m and the damping time down to 10 ns.

  16. High-resolution light microscopy of nanoforms

    NASA Astrophysics Data System (ADS)

    Vodyanoy, Vitaly; Pustovyy, Oleg; Vainrub, Arnold

    2007-09-01

    We developed a high resolution light imaging system. Diffraction gratings with 100 nm width lines as well as less than 100 nm size features of different-shaped objects are clearly visible on a calibrated microscope test slide (Vainrub et al., Optics Letters, 2006, 31, 2855). The two-point resolution increase results from a known narrowing of the central diffraction peak for the annular aperture. Better visibility and advanced contrast of the smallest features in the image are due to enhancement of high spatial frequencies in the optical transfer function. The imaging system is portable, low energy, and battery operated. It has been adapted to use in both transmitting and reflecting light. It is particularly applicable for motile nanoform systems where structure and functions can be depicted in real time. We have isolated micrometer and submicrometer particles, termed proteons, from human and animal blood. Proteons form by reversible seeded aggregation of proteins around proteon nucleating centers (PNCs). PNCs are comprised of 1-2nm metallic nanoclusters containing 40-300 atoms. Proteons are capable of spontaneous assembling into higher nanoform systems assuming structure of complicated topology. The arrangement of complex proteon system mimics the structure of a small biological cell. It has structures that imitate membrane and nucleolus or nuclei. Some of these nanoforms are motile. They interact and divide. Complex nanoform systems can spontaneously reduce to simple proteons. The physical properties of these nanoforms could shed some light on the properties of early life forms or forms at extreme conditions.

  17. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon-and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  18. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  19. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2003-01-01

    Spectroscopic parameters (such as line position, intensity, broadening and shifting coefficients and their temperature dependences, line mixing coefficients etc.) for various molecular species of atmospheric interest are determined. In order to achieve these results, infrared spectra of several molecular bands are obtained using high-resolution recording instruments such as tunable diode laser spectrometer and Fourier transform spectrometers. Using sophisticated analysis routines (Multispectrum nonlinear least squares technique) these high-resolution infrared spectra are processed to determine the various spectral line parameters that are cited above. Spectra were taken using the McMath-Pierce Fourier transform spectrometer (FTS) at the National Solar Observatory on Kitt Peak, Arizona as well as the Bruker FTS at the Pacific Northwest National Laboratory (PNNL) at Richland, Washington. Most of the spectra are acquired not only at room temperature, but also at several different cold temperatures. This procedure is necessary to study the variation of the spectral line parameters as a function of temperature in order to simulate the Earth's and other planetary atmospheric environments. Depending upon the strength or weakness of the various bands recorded and analyzed, the length(s) of the absorption cells in which the gas samples under study are kept varied from a few centimeters up to several meters and the sample temperatures varied from approximately +30 C to -63 C. Research on several infrared bands of various molecular species and their isotopomers are undertaken. Those studies are briefly described.

  20. High-Resolution Scintimammography: A Pilot Study

    SciTech Connect

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper; Stan Majewski; Steven Goodman; Cahid Civelek

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.

  1. High Resolution Camera for Mapping Titan Surface

    NASA Technical Reports Server (NTRS)

    Reinhardt, Bianca

    2011-01-01

    Titan, Saturn's largest moon, has a dense atmosphere and is the only object besides Earth to have stable liquids at its surface. The Cassini/Huygens mission has revealed the extraordinary breadth of geological processes shaping its surface. Further study requires high resolution imaging of the surface, which is restrained by light absorption by methane and scattering from aerosols. The Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft has demonstrated that Titan's surface can be observed within several windows in the near infrared, allowing us to process several regions in order to create a geological map and to determine the morphology. Specular reflections monitored on the lakes of the North Pole show little scattering at 5 microns, which, combined with the present study of Titan's northern pole area, refutes the paradigm that only radar can achieve high resolution mapping of the surface. The present data allowed us to monitor the evolution of lakes, to identify additional lakes at the Northern Pole, to examine Titan's hypothesis of non-synchronous rotation and to analyze the albedo of the North Pole surface. Future missions to Titan could carry a camera with 5 micron detectors and a carbon fiber radiator for weight reduction.

  2. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  3. High resolution wavefront measurement of aspheric optics

    NASA Astrophysics Data System (ADS)

    Erichsen, I.; Krey, S.; Heinisch, J.; Ruprecht, A.; Dumitrescu, E.

    2008-08-01

    With the recently emerged large volume production of miniature aspheric lenses for a wide range of applications, a new fast fully automatic high resolution wavefront measurement instrument has been developed. The Shack-Hartmann based system with reproducibility better than 0.05 waves is able to measure highly aspheric optics and allows for real time comparison with design data. Integrated advanced analysis tools such as calculation of Zernike coefficients, 2D-Modulation Transfer Function (MTF), Point Spread Function (PSF), Strehl-Ratio and the measurement of effective focal length (EFL) as well as flange focal length (FFL) allow for the direct verification of lens properties and can be used in a development as well as in a production environment.

  4. Venus gravity - A high-resolution map

    NASA Technical Reports Server (NTRS)

    Reasenberg, R. D.; Goldberg, Z. M.; Macneil, P. E.; Shapiro, I. I.

    1981-01-01

    The Doppler data from the radio tracking of the Pioneer Venus Orbiter (PVO) have been used in a two-stage analysis to develop a high-resolution map of the gravitational potential of Venus, represented by a central mass and a surface mass density. The two-stage procedure invokes a Kalman filter-smoother to determine the orbit of the spacecraft, and a stabilized linear inverter to estimate the surface mass density. The resultant gravity map is highly correlated with the topographic map derived from the PVO radar altimeter data. However, the magnitudes of the gravity variations are smaller than would be expected if the topography were uncompensated, indicating that at least partial compensation has taken place.

  5. The High Resolution Infrared Spectrum of HCl().

    PubMed

    Doménech, J L; Drouin, B J; Cernicharo, J; Herrero, V J; Tanarro, I

    2016-12-20

    The chloroniumyl cation, HCl(+), has been recently identified in space from Herschel's spectra. A joint analysis of extensive vis-UV spectroscopy emission data together with a few high-resolution and high-accuracy millimiter-wave data provided the necessary rest frequencies to support the astronomical identification. Nevertheless, the analysis did not include any infrared (IR) vibration-rotation data. Furthermore, with the end of the Herschel mission, infrared observations from the ground may be one of the few available means to further study this ion in space. In this work, we provide a set of accurate rovibrational transition wavenumbers as well as a new and improved global fit of vis-UV, IR and millimiter-wave spectroscopy laboratory data, that will aid in future studies of this molecule.

  6. High resolution imaging of live mitochondria.

    PubMed

    Jakobs, Stefan

    2006-01-01

    Classically, mitochondria have been studied by biochemical, genetic and electron microscopic approaches. In the last two decades, it became evident that mitochondria are highly dynamic organelles that are frequently dividing and fusing, changing size and shape and traveling long distances throughout the life of a cell. The study of the complex structural changes of mitochondria in vivo became possible with the advent of fluorescent labeling techniques in combination with live cell imaging microscopy. This review aims to provide an overview on novel fluorescent markers that are used in combination with mitochondrial fusion assays and various live cell microscopy techniques to study mitochondrial dynamics. In particular, approaches to study the movement of mitochondrial proteins and novel imaging techniques (FRET imaging-, 4Pi- and STED-microscopy) that provide high spatial resolution are considered.

  7. The High Resolution Infrared Spectrum of HCl+

    PubMed Central

    Drouin, B. J.; Cernicharo, J.; Herrero, V. J.; Tanarro, I.

    2017-01-01

    The chloroniumyl cation, HCl+, has been recently identified in space from Herschel’s spectra. A joint analysis of extensive vis-UV spectroscopy emission data together with a few high-resolution and high-accuracy millimiter-wave data provided the necessary rest frequencies to support the astronomical identification. Nevertheless, the analysis did not include any infrared (IR) vibration-rotation data. Furthermore, with the end of the Herschel mission, infrared observations from the ground may be one of the few available means to further study this ion in space. In this work, we provide a set of accurate rovibrational transition wavenumbers as well as a new and improved global fit of vis-UV, IR and millimiter-wave spectroscopy laboratory data, that will aid in future studies of this molecule. PMID:28261442

  8. Unsupervised Feature Learning for High-Resolution Satellite Image Classification

    SciTech Connect

    Cheriyadat, Anil M

    2013-01-01

    The rich data provided by high-resolution satellite imagery allow us to directly model geospatial neighborhoods by understanding their spatial and structural patterns. In this paper we explore an unsupervised feature learning approach to model geospatial neighborhoods for classification purposes. While pixel and object based classification approaches are widely used for satellite image analysis, often these approaches exploit the high-fidelity image data in a limited way. In this paper we extract low-level features to characterize the local neighborhood patterns. We exploit the unlabeled feature measurements in a novel way to learn a set of basis functions to derive new features. The derived sparse feature representation obtained by encoding the measured features in terms of the learned basis function set yields superior classification performance. We applied our technique on two challenging image datasets: ORNL dataset representing one-meter spatial resolution satellite imagery representing five land-use categories and, UCMERCED dataset consisting of 21 different categories representing sub-meter resolution overhead imagery. Our results are highly promising and, in the case of UCMERCED dataset we outperform the best results obtained for this dataset. We show that our feature extraction and learning methods are highly effective in developing a detection system that can be used to automatically scan large-scale high-resolution satellite imagery for detecting large-facility.

  9. High-resolution colorimetric imaging of paintings

    NASA Astrophysics Data System (ADS)

    Martinez, Kirk; Cupitt, John; Saunders, David R.

    1993-05-01

    With the aim of providing a digital electronic replacement for conventional photography of paintings, a scanner has been constructed based on a 3000 X 2300 pel resolution camera which is moved precisely over a 1 meter square area. Successive patches are assembled to form a mosaic which covers the whole area at c. 20 pels/mm resolution, which is sufficient to resolve the surface textures, particularly craquelure. To provide high color accuracy, a set of seven broad-band interference filters are used to cover the visible spectrum. A calibration procedure based upon a least-mean-squares fit to the color of patches from a Macbeth Colorchecker chart yields an average color accuracy of better than 3 units in the CMC uniform color space. This work was mainly carried out as part of the VASARI project funded by the European Commission's ESPRIT program, involving companies and galleries from around Europe. The system is being used to record images for conservation research, for archival purposes and to assist in computer-aided learning in the field of art history. The paper will describe the overall system design, including the selection of the various hardware components and the design of controlling software. The theoretical basis for the color calibration methodology is described as well as the software for its practical implementation. The mosaic assembly procedure and some of the associated image processing routines developed are described. Preliminary results from the research will be presented.

  10. High Resolution Radar Measurements of Snow Avalanches

    NASA Astrophysics Data System (ADS)

    McElwaine, Jim; Sovilla, Betty; Vriend, Nathalie; Brennan, Paul; Ash, Matt; Keylock, Chris

    2013-04-01

    Geophysical mass flows, such as snow avalanches, are a major hazard in mountainous areas and have a significant impact on the infrastructure, economy and tourism of such regions. Obtaining a thorough understanding of the dynamics of snow avalanches is crucial for risk assessment and the design of defensive structures. However, because the underlying physics is poorly understood there are significant uncertainties concerning current models, which are poorly validated due to a lack of high resolution data. Direct observations of the denser core of a large avalanche are particularly difficult, since it is frequently obscured by the dilute powder cloud. We have developed and installed a phased array FMCW radar system that penetrates the powder cloud and directly images the dense core with a resolution of around 1 m at 50 Hz over the entire slope. We present data from recent avalanches at Vallee de la Sionne that show a wealth of internal structure and allow the tracking of individual fronts, roll waves and surges down the slope for the first time. We also show good agreement between the radar results and existing measurement systems that record data at particular points on the avalanche track.

  11. High Resolution Radar Measurements of Snow Avalanches

    NASA Astrophysics Data System (ADS)

    McElwaine, J. N.; Vriend, N. M.; Sovilla, B.; Keylock, C. J.; Brennan, P.; Ash, M.

    2012-12-01

    Geophysical mass flows, such as snow avalanches, are a major hazard in mountainous areas and have a significant impact on the infrastructure, economy and tourism of such regions. Obtaining a thorough understanding of the dynamics of snow avalanches is crucial for risk assessment and the design of defensive structures. However, because the underlying physics is poorly understood there are significant uncertainties concerning current models, which are poorly validated due to a lack of high resolution data. Direct observations of the denser core of a large avalanche are particularly difficult, since it is frequently obscured by the dilute powder cloud. We have developed and installed a phased array FMCW radar system that penetrates the powder cloud and directly images the dense core with a resolution of around 1 m at 50 Hz over the entire slope. We present data from recent avalanches at Vallée de la Sionne that show a wealth of internal structure and allow the tracking of individual fronts, roll waves and surges down the slope for the first time. We also show good agreement between the radar results and existing measurement systems that record data at particular points on the avalanche track.

  12. Pyramidal fractal dimension for high resolution images.

    PubMed

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.

  13. ALMA Debuts High-Resolution Results

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    through space as it orbits the Sun. The resolution of these images — enough to study the shape and even some surface features of the asteroid! — are unprecedented for this wavelength. HL Tau is a young star surrounded by a protoplanetary disk. ALMA's detailed observations of this region revealed remarkable structure within the disk: a series of light and dark concentric rings indicative of planets caught in the act of forming. Studying this system will help us understand how multi-planet solar systems like our own form and evolve. The star-forming galaxy SDP.81 — located so far away that the light we see was emitted when the Universe was only 15% of its current age — is gravitationally-lensed into a cosmic arc, due to the convenient placement of a nearby foreground galaxy. The combination of the lucky alignment and ALMA's high resolution grant us a spectacularly detailed view of this distant galaxy, allowing us to study its actual shape and the motion within it. The observations from ALMA's first test of its long baseline demonstrate that ALMA is capable of doing the transformational science it promised. As we gear up for the next cycle of observations, it's clear that exciting times are ahead! Citation: ALMA ship et al. 2015 ApJ 808 L1, L2, L3 and L4. Focus on the ALMA Long Baseline Campaign

  14. Clementine High Resolution Camera Mosaicking Project

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report constitutes the final report for NASA Contract NASW-5054. This project processed Clementine I high resolution images of the Moon, mosaicked these images together, and created a 22-disk set of compact disk read-only memory (CD-ROM) volumes. The mosaics were produced through semi-automated registration and calibration of the high resolution (HiRes) camera's data against the geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic produced by the US Geological Survey (USGS). The HiRes mosaics were compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution nadir-looking observations. The images were spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel for sub-polar mosaics (below 80 deg. latitude) and using the stereographic projection at a scale of 30 m/pixel for polar mosaics. Only images with emission angles less than approximately 50 were used. Images from non-mapping cross-track slews, which tended to have large SPICE errors, were generally omitted. The locations of the resulting image population were found to be offset from the UV/Vis basemap by up to 13 km (0.4 deg.). Geometric control was taken from the 100 m/pixel global and 150 m/pixel polar USGS Clementine Basemap Mosaics compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Radiometric calibration was achieved by removing the image nonuniformity dominated by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap, that approximately transform the 8-bit HiRes data to photometric units. The sub-polar mosaics are divided into tiles that cover approximately 1.75 deg. of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. Polar mosaics are tiled into squares 2250 pixels on a

  15. ON THE IMPACT OF SUPER RESOLUTION WSR-88D DOPPLER RADAR DATA ASSIMILATION ON HIGH RESOLUTION NUMERICAL MODEL FORECASTS

    SciTech Connect

    Chiswell, S

    2009-01-11

    Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-time level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.

  16. Pulmonary sarcoidosis is associated with high-level inducible co-stimulator (ICOS) expression on lung regulatory T cells--possible implications for the ICOS/ICOS-ligand axis in disease course and resolution.

    PubMed

    Sakthivel, P; Grunewald, J; Eklund, A; Bruder, D; Wahlström, J

    2016-02-01

    Sarcoidosis is a granulomatous inflammatory disorder of unknown aetiology. The increased frequency of activated lung CD4(+) T cells with a T helper type 1 (Th1) cytokine profile in sarcoidosis patients is accompanied by a reduced proportion and/or impaired function of regulatory T cells (Tregs ). Here we evaluated the expression of the inducible co-stimulator (ICOS) on lung and blood CD4(+) T cell subsets in sarcoidosis patients with different prognosis, by flow cytometry. Samples from the deep airways were obtained by bronchoalveolar lavage (BAL). We show that Tregs from the inflamed lung of sarcoidosis patients were characterized by a unique ICOS(high) phenotype. High-level ICOS expression was restricted to Tregs from the inflamed lung and was absent in blood Tregs of sarcoidosis patients as well as in lung and blood Tregs of healthy volunteers. In addition, lung Tregs exhibited increased ICOS expression compared to sarcoid-specific lung effector T cells. Strikingly, ICOS expression on Tregs was in particularly high in the lungs of Löfgren's syndrome (LS) patients who present with acute disease which often resolves spontaneously. Moreover, blood monocytes from LS patients revealed increased ICOS-L levels compared to healthy donors. Sarcoidosis was associated with a shift towards a non-classical monocyte phenotype and the ICOS-L(high) phenotype was restricted to this particular monocyte subset. We propose a potential implication of the ICOS/ICOS-L immune-regulatory axis in disease activity and resolution and suggest to evaluate further the suitability of ICOS as biomarker for the prognosis of sarcoidosis.

  17. Ultra-high resolution and high-brightness AMOLED

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Ghosh, Amal; Prache, Olivier; Draper, Russ; Fellowes, Dave

    2012-06-01

    As part of its continuing effort to improve both the resolution and optical performance of AMOLED microdisplays, eMagin has recently developed an SXGA (1280×3×1024) microdisplay under a US Army RDECOM CERDEC NVESD contract that combines the world's smallest OLED pixel pitch with an ultra-high brightness green OLED emitter. This development is aimed at next-generation HMD systems with "see-through" and daylight imaging requirements. The OLED pixel array is built on a 0.18-micron CMOS backplane and contains over 4 million individually addressable pixels with a pixel pitch of 2.7 × 8.1 microns, resulting in an active area of 0.52 inches diagonal. Using both spatial and temporal enhancement, the display can provide over 10-bits of gray-level control for high dynamic range applications. The new pixel design also enables the future implementation of a full-color QSXGA (2560 × RGB × 2048) microdisplay in an active area of only 1.05 inch diagonal. A low-power serialized low-voltage-differential-signaling (LVDS) interface is integrated into the display for use as a remote video link for tethered systems. The new SXGA backplane has been combined with the high-brightness green OLED device developed by eMagin under an NVESD contract. This OLED device has produced an output brightness of more than 8000fL with all pixels on; lifetime measurements are currently underway and will presented at the meeting. This paper will describe the operational features and first optical and electrical test results of the new SXGA demonstrator microdisplay.

  18. Potential High Resolution Dosimeters For MRT

    NASA Astrophysics Data System (ADS)

    Bräuer-Krisch, E.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Brochard, T.; Kamlowski, A.; Cellere, G.; Paccagnella, A.; Siegbahn, E. A.; Prezado, Y.; Martinez-Rovira, I.; Bravin, A.; Dusseau, L.; Berkvens, P.

    2010-07-01

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow (˜25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 μm microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy/s, micron

  19. Improved methods for high resolution electron microscopy

    SciTech Connect

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  20. High resolution derivative spectra in remote sensing

    NASA Technical Reports Server (NTRS)

    Demetriades-Shah, Tanvir H.; Steven, Michael D.; Clark, Jeremy A.

    1990-01-01

    The use of derivative spectra is an established technique in analytical chemistry for the elimination of background signals and for resolving overlapping spectral features. Application of this technique for tackling analogous problems such as interference from soil background reflectance in the remote sensing of vegetation or for resolving complex spectra of several target species within individual pixels in remote sensing is proposed. Methods for generating derivatives of high spectral resolution data are reviewed. Results of experiments to test the use of derivatives for monitoring chlorosis in vegetation show that derivative spectral indices are superior to conventional broad-band spectral indices such as the near-infrared/red reflectance ratio. Conventional broad-band indices are sensitive to both leaf cover as well as leaf color. New derivative spectral indices which were able to monitor chlorosis unambiguously were identified. Potential areas for the application of this technique in remote sensing are considered.

  1. Potential High Resolution Dosimeters For MRT

    SciTech Connect

    Braeuer-Krisch, E.; Brochard, T.; Prezado, Y.; Bravin, A.; Berkvens, P.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Kamlowski, A.; Cellere, G.

    2010-07-23

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow ({approx}25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 {mu}m microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy

  2. Improved methods for high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C44H90 paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol.

  3. Classification of High Spatial Resolution, Hyperspectral ...

    EPA Pesticide Factsheets

    EPA announced the availability of the final report,High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result of a collaborative effort among an interdisciplinary team of scientists with the U.S. Environmental Protection Agency's (U.S. EPA's) Office of Research and Development in Cincinnati, Ohio. A primary goal of this project is to enhance the use of geography and spatial analytic tools in risk assessment, and to improve the scientific basis for risk management decisions affecting drinking water and water quality. The land use/land cover classification is derived from 82 flight lines of Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery acquired from July 24 through August 9, 2002 via fixed-wing aircraft.

  4. High-Resolution Anamorphic SPECT Imaging

    PubMed Central

    Durko, Heather L.; Barrett, Harrison H.; Furenlid, Lars R.

    2015-01-01

    We have developed a gamma-ray imaging system that combines a high-resolution silicon detector with two sets of movable, half-keel-edged copper-tungsten blades configured as crossed slits. These apertures can be positioned independently between the object and detector, producing an anamorphic image in which the axial and transaxial magnifications are not constrained to be equal. The detector is a 60 mm × 60 mm, one-millimeter-thick, one-megapixel silicon double-sided strip detector with a strip pitch of 59 μm. The flexible nature of this system allows the application of adaptive imaging techniques. We present system details; calibration, acquisition, and reconstruction methods; and imaging results. PMID:26160983

  5. High-resolution Martian atmosphere modeling

    NASA Technical Reports Server (NTRS)

    Egan, W. G.; Fischbein, W. L.; Smith, L. L.; Hilgeman, T.

    1980-01-01

    A multilayer radiative transfer, high-spectral-resolution infrared model of the lower atmosphere of Mars has been constructed to assess the effect of scattering on line profiles. The model takes into accout aerosol scattering and absorption and includes a line-by-line treatment of scattering and absorption by CO2 and H2O. The aerosol complex indices of refraction used were those measured on montmorillonite and basalt chosen on the basis of Mars ir data from the NASA Lear Airborne Observatory. The particle sizes and distribution were estimated using Viking data. The molecular line treatment employs the AFGL line parameters and Voigt profiles. The modeling results indicate that the line profiles are only slightly affected by normal aerosol scattering and absorption, but the effect could be appreciable for heavy loading. The technique described permits a quantitative approach to assessing and correcting for the effect of aerosols on lineshapes in planetary atmospheres.

  6. High resolution CT of Meckel's cave.

    PubMed

    Chui, M; Tucker, W; Hudson, A; Bayer, N

    1985-01-01

    High resolution CT of the parasellar region was carried out in 50 patients studied for suspected pituitary microadenoma, but who showed normal pituitary gland or microadenoma on CT. This control group of patients all showed an ellipsoid low-density area in the posterior parasellar region. Knowledge of the gross anatomy and correlation with metrizamide cisternography suggest that the low density region represents Meckel's cave, rather than just the trigeminal ganglion alone. Though there is considerable variation in the size of Meckel's cave in different patients as well as the two sides of the same patient, the rather constant ellipsoid configuration of the cave in normal subjects will aid in diagnosing small pathological lesions, thereby obviating more invasive cisternography via the transovale or lumbar route. Patients with "idiopathic" tic douloureux do not show a Meckel's cave significantly different from the control group.

  7. High Spatial Resolution Spectroscopy of Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Harris, Timothy D.; Gershoni, David; Pfeiffer, Loren N.

    1996-03-01

    Several recent reports employing high spatial resolution have revealed the dominance of exciton localization in the low temperature luminescence of semiconductor quantum structures.^[1-3] Understanding this localization is of critical importance for the reliable studies of low dimensional structures such as quantum wells, quantum wires and quantum dots. We report on low temperature and high spatial resolution photoluminescence and photoluminescence excitation studies of cleaved edge overgrown (CEO) single quantum wires. These samples permit the direct and unambiguous comparison between the optical properties of a (100) oriented quantum well, a (110) oriented quantum well, and the quantum wire which is formed at their intersection. Using low temperature near field optical spectroscopy, and a novel diffraction limited far field apparatus, we determine the carrier diffusion length dependence on pump wavelength and sample temperature in both the 2d systems and the genuinely 1D wire system. We also measure the absorption strength of the 1D system and find it to be a factor of 3 stronger than the absorption of the associated 2D systems.^[2] Using low temperature near field optical spectroscopy, and a novel diffraction limited far field apparatus, we also determine the carrier diffusion length dependence on pump wavelength and sample temperature. ^[1] H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, Science 264, 1740 (1994). ^[2] T. D. Harris, D. Gershoni, R. D. Grober, L. Pfeiffer, K. West, and N. Chand, Appl. Phys. Lett, in press (1996) ^[3] D. Gammon, E. S. Snow, and D. S. Katzer, Appl. Phys. Lett. 67, 2391 (1995)

  8. High resolution films for bone regeneration evaluation.

    PubMed

    Jammal, María V; Territoriale, Erika B; Abate, Carlos M; Missana, Liliana R

    2010-01-01

    Diagnostic imaging techniques (DIxT) seem to be a useful tool for evaluating bone formation in both human and animal models. There is little evidence on the use of Soft X-Rays (sXR) with high-resolution films for studying the healing process in critical bone size defects (CSD). The aim of this study was to evaluate the ability of soft X-Ray - High Resolution Films (sXR) to distinguish bone regeneration in CSDs. A CSD was created in each of 16 Wistar rat calvariae. The animals were euthanized at 1, 3 and 6 weeks after surgery. The samples were submitted to cXR (conventional X-rays), sXR techniques and histological procedures (HP). Bone formation was observed at CSD edges at all periods of time. At 6 week there was also new bone in the central area. The CSD was not fully regenerated after any period of time. Histometric results were 0.16%; 0.75% and 0.89% new bone formed at weeks 1, 3 and 6 respectively; radiometric results at cXR were 0% in all samples. Evaluation of sXR shows 0.4%; 0.50% and 3.64% bone at weeks 1, 3 and 6. Mean and Standard Deviation were calculated. The data were submitted to statistical analysis using the Pearson product-moment correlation coefficient test. The r value was 0.581. Under these experimental conditions, sXR was found to be a suitable method for detecting new bone formation, based on the positive correlation between sXR and HP during the bone healing process of CSDs in rat calvaria. Furthermore, the sXR technique allowed us to obtain samples with appropriate spatial orientation.

  9. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2006-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as H2O (water vapor), O3 (ozone), HCN (hydrogen cyanide), CH4 (methane), NO2 (nitrogen dioxide) and CO (carbon monoxide). The data required for the analyses were obtained from two different Fourier Transform Spectrometers (FTS); one of which is located at the National Solar Observatory (NSO) on Kitt Peak, Arizona and the other instrument is located at the Pacific Northwest National Laboratories (PNNL) at Richland, Washington. The data were analyzed using a modified multispectrum nonlinear least squares fitting algorithm developed by Dr. D. Chris Benner of the College of William and Mary. The results from these studies made significant improvements in the line positons and intensities for these molecules. The measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced shift coefficients for hundreds of infrared transitions of HCN, CO3 CH4 and H2O were also performed during this period. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research Satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields. The research conducted during the period 2003-2006 has resulted in publications given in this paper. In addition to Journal publications, several oral and poster presentations were given at various Scientific conferences within the United States

  10. LandScan 2013 High Resolution Global Population Data Set

    SciTech Connect

    2014-07-01

    The LandScan data set is a worldwide population database compiled on a 30"x30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on land cover, slope, road proximity, high-resolution imagery, and other data sets. The LandScan data set was developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient populations at risk.

  11. High spectral resolution remote sensing of canopy chemistry

    NASA Technical Reports Server (NTRS)

    Aber, John D.; Martin, Mary E.

    1995-01-01

    Near infrared laboratory spectra have been used for many years to determine nitrogen and lignin concentrations in plant materials. In recent years, similar high spectral resolution visible and infrared data have been available via airborne remote sensing instruments. Using data from NASA's Airborne visible/Infrared Imaging Spectrometer (AVIRIS) we attempt to identify spectral regions correlated with foliar chemistry at the canopy level in temperate forests.

  12. Identification of overlapping communities and their hierarchy by locally calculating community-changing resolution levels

    NASA Astrophysics Data System (ADS)

    Havemann, Frank; Heinz, Michael; Struck, Alexander; Gläser, Jochen

    2011-01-01

    We propose a new local, deterministic and parameter-free algorithm that detects fuzzy and crisp overlapping communities in a weighted network and simultaneously reveals their hierarchy. Using a local fitness function, the algorithm greedily expands natural communities of seeds until the whole graph is covered. The hierarchy of communities is obtained analytically by calculating resolution levels at which communities grow rather than numerically by testing different resolution levels. This analytic procedure is not only more exact than its numerical alternatives such as LFM and GCE but also much faster. Critical resolution levels can be identified by searching for intervals in which large changes of the resolution do not lead to growth of communities. We tested our algorithm on benchmark graphs and on a network of 492 papers in information science. Combined with a specific post-processing, the algorithm gives much more precise results on LFR benchmarks with high overlap compared to other algorithms and performs very similarly to GCE.

  13. Wavefront metrology for high resolution optical systems

    NASA Astrophysics Data System (ADS)

    Miyakawa, Ryan H.

    Next generation extreme ultraviolet (EUV) optical systems are moving to higher resolution optics to accommodate smaller length scales targeted by the semiconductor industry. As the numerical apertures (NA) of the optics become larger, it becomes increasingly difficult to characterize aberrations due to experimental challenges associated with high-resolution spatial filters and geometrical effects caused by large incident angles of the test wavefront. This dissertation focuses on two methods of wavefront metrology for high resolution optical systems. The first method, lateral shearing interferometry (LSI), is a self-referencing interferometry where the test wavefront is incident on a low spatial frequency grating, and the resulting interference between the diffracted orders is used to reconstruct the wavefront aberrations. LSI has many advantages over other interferometric tests such as phase-shifting point diffraction interferometry (PS/PDI) due to its experimental simplicity, stability, relaxed coherence requirements, and its ability to scale to high numerical apertures. While LSI has historically been a qualitative test, this dissertation presents a novel quantitative investigation of the LSI interferogram. The analysis reveals the existence of systematic aberrations due to the nonlinear angular response from the diffraction grating that compromises the accuracy of LSI at medium to high NAs. In the medium NA regime (0.15 < NA < 0.35), a holographic model is presented that derives the systematic aberrations in closed form, which demonstrates an astigmatism term that scales as the square of the grating defocus. In the high NA regime (0.35 < NA), a geometrical model is introduced that describes the aberrations as a system of transcendental equations that can be solved numerically. The characterization and removal of these systematic errors is a necessary step that unlocks LSI as a viable candidate for high NA EUV optical testing. The second method is a novel image

  14. High-Resolution Measurements of Coastal Bioluminescence

    DTIC Science & Technology

    2006-09-30

    seen at the canyon edge. The bioluminescence signal confirms that this is biological, and likely a swarm of krill , which it also detects high levels...lifesci.ucsb.edu/~biolum/ Invited talks, Outreach articles: Sep. 2006. Science Year 2007. Photos and research discussion in Worldbook supplement

  15. Characterisation of ship diesel primary particulate matter at the molecular level by means of ultra-high-resolution mass spectrometry coupled to laser desorption ionisation--comparison of feed fuel, filter extracts and direct particle measurements.

    PubMed

    Rüger, Christopher P; Sklorz, Martin; Schwemer, Theo; Zimmermann, Ralf

    2015-08-01

    In this study, positive-mode laser desorption-ionisation ultra-high-resolution mass spectrometry (LDI-FT-ICR-MS) was applied to study combustion aerosol samples obtained from a ship diesel engine as well as the feed fuel, used to operate the engine. Furthermore, particulate matter was sampled from the exhaust tube using an impactor and analysed directly from the impaction foil without sample treatment. From the high percentage of shared sum formula as well as similarities in the chemical spread of aerosol and heavy fuel oil, results indicate that the primary aerosol mainly consists of survived, unburned species from the feed fuel. The effect of pyrosynthesis could be observed and was slightly more pronounced for the CH-class compared to other compound classes, but in summary not dominant. Alkylation pattern as well as the aromaticity distribution, using the double bond equivalent, revealed a shift towards lower alkylation state for the aerosol. The alkylation pattern of the most dominant series revealed a higher correlation between different aerosol samples than between aerosol and feed samples. This was confirmed by cluster analysis. Overall, this study shows that LDI-FT-ICR-MS can be successfully applied for the analysis of combustion aerosol at the molecular level and that sum formula information can be used to identify chemical differences between aerosol and fuel as well as between different size fractions of the particulate matter.

  16. Toward high-resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel; Huie, Philip; Vankov, Alexander; Asher, Alon; Baccus, Steven

    2005-04-01

    It has been already demonstrated that electrical stimulation of retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. Current retinal implants provide very low resolution (just a few electrodes), while several thousand pixels are required for functional restoration of sight. We present a design of the optoelectronic retinal prosthetic system that can activate a retinal stimulating array with pixel density up to 2,500 pix/mm2 (geometrically corresponding to a visual acuity of 20/80), and allows for natural eye scanning rather than scanning with a head-mounted camera. The system operates similarly to "virtual reality" imaging devices used in military and medical applications. An image from a video camera is projected by a goggle-mounted infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. Such a system provides a broad field of vision by allowing for natural eye scanning. The goggles are transparent to visible light, thus allowing for simultaneous utilization of remaining natural vision along with prosthetic stimulation. Optical control of the implant allows for simple adjustment of image processing algorithms and for learning. A major prerequisite for high resolution stimulation is the proximity of neural cells to the stimulation sites. This can be achieved with sub-retinal implants constructed in a manner that directs migration of retinal cells to target areas. Two basic implant geometries are described: perforated membranes and protruding electrode arrays. Possibility of the tactile neural stimulation is also examined.

  17. High-Resolution Infrared Spectroscopy of Ge_2C_3

    NASA Astrophysics Data System (ADS)

    Thorwirth, S.; Lutter, V.; Schlemmer, S.; Giesen, T. F.; Gauss, J.

    2013-06-01

    Carbon-rich systems are of great importance in diverse areas of research like material science as well as astro- and structural chemistry. Despite this relevance, our knowledge of smaller cluster units is still fragmentary, particularly with respect to investigations at high-spectral resolution in the gas phase. Unequivocal assignment of spectral features to their molecular carriers is critically dependent on predictions from high-level quantum-chemical calculations. In turn, high-resolution studies provide useful information to assess the predictive power of quantum-chemical methods. This is particularly interesting for cluster systems harboring heavy elements for which so far relatively little is known from experiment. With this contribution, we would like to present a recent gas-phase study of a polyatomic germanium-carbon cluster, linear Ge_2C_3 (Ge=C=C=C=Ge), which was previously studied in an Ar matrix. The cluster was produced through laser ablation of germanium-graphite sample rods and observed in a free jet at wavelengths around 5μm. Additionally, quantum-chemical calculations of Ge_2C_3 were performed at the CCSD(T) level of theory. The production and observation of Ge_2C_3 suggests that many more binary clusters should be amenable to high-resolution spectroscopic techniques not only in the infrared but also in the microwave region. D. L. Robbins, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. 114, 3570 (2001).

  18. High Resolution Image Reconstruction from Projection of Low Resolution Images DIffering in Subpixel Shifts

    NASA Technical Reports Server (NTRS)

    Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome

    2016-01-01

    In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.

  19. High resolution-angle resolved photoemission studies of high temperature superconductors

    SciTech Connect

    Olson, C.G.; Liu, R.; Lynch, D.W.; Veal, B.W.; Chang, Y.C.; Jiang, P.Z.; Liu, J.Z.; Paulikas, A.P.; Arko, A.J.; List, R.S.; Argonne National Lab., IL; Los Alamos National Lab., NM )

    1989-08-01

    Recent photoemission studies of Y 123 and Bi 2212 performed with high energy and angular resolution have provided detailed information on the nature of the states near the Fermi level. Measurements of the superconducting gap, band dispersion, and the density of states near the Fermi level in the normal state all support a Fermi liquid description of these materials. 5 refs., 4 figs.

  20. High Resolution Airborne Shallow Water Mapping

    NASA Astrophysics Data System (ADS)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  1. Cortical Surface Reconstruction from High-Resolution MR Brain Images

    PubMed Central

    Osechinskiy, Sergey; Kruggel, Frithjof

    2012-01-01

    Reconstruction of the cerebral cortex from magnetic resonance (MR) images is an important step in quantitative analysis of the human brain structure, for example, in sulcal morphometry and in studies of cortical thickness. Existing cortical reconstruction approaches are typically optimized for standard resolution (~1 mm) data and are not directly applicable to higher resolution images. A new PDE-based method is presented for the automated cortical reconstruction that is computationally efficient and scales well with grid resolution, and thus is particularly suitable for high-resolution MR images with submillimeter voxel size. The method uses a mathematical model of a field in an inhomogeneous dielectric. This field mapping, similarly to a Laplacian mapping, has nice laminar properties in the cortical layer, and helps to identify the unresolved boundaries between cortical banks in narrow sulci. The pial cortical surface is reconstructed by advection along the field gradient as a geometric deformable model constrained by topology-preserving level set approach. The method's performance is illustrated on exvivo images with 0.25–0.35 mm isotropic voxels. The method is further evaluated by cross-comparison with results of the FreeSurfer software on standard resolution data sets from the OASIS database featuring pairs of repeated scans for 20 healthy young subjects. PMID:22481909

  2. High resolution low frequency ultrasonic tomography.

    PubMed

    Lasaygues, P; Lefebvre, J P; Mensah, S

    1997-10-01

    Ultrasonic reflection tomography results from a linearization of the inverse acoustic scattering problem, named the inverse Born approximation. The goal of ultrasonic reflection tomography is to obtain reflectivity images from backscattered measurements. This is a Fourier synthesis problem and the first step is to correctly cover the frequency space of the object. For this inverse problem, we use the classical algorithm of tomographic reconstruction by summation of filtered backprojections. In practice, only a limited number of views are available with our mechanical rig, typically 180, and the frequency bandwidth of the pulses is very limited, typically one octave. The resolving power of the system is them limited by the bandwidth of the pulse. Low and high frequencies can be restored by use of a deconvolution algorithm that enhances resolution. We used a deconvolution technique based on the Papoulis method. The advantage of this technique is conservation of the overall frequency information content of the signals. The enhancement procedure was tested by imaging a square aluminium rod with a cross-section less than the wavelength. In this application, the central frequency of the transducer was 250 kHz so that the central wavelength was 6 mm whereas the cross-section of the rod was 4 mm. Although the Born approximation was not theoretically valid in this case (high contrast), a good reconstruction was obtained.

  3. Five Micron High Resolution MALDI Mass Spectrometry Imaging with Simple, Interchangeable, Multi-Resolution Optical System

    DOE PAGES

    Feenstra, Adam D.; Dueñas, Maria Emilia; Lee, Young Jin

    2017-01-03

    High-spatial resolution mass spectrometry imaging (MSI) is crucial for the mapping of chemical distributions at the cellular and subcellular level. Here in this work, we improved our previous laser optical system for matrix-assisted laser desorption ionization (MALDI)-MSI, from ~9 μm practical laser spot size to a practical laser spot size of ~4 μm, thereby allowing for 5 μm resolution imaging without oversampling. This is accomplished through a combination of spatial filtering, beam expansion, and reduction of the final focal length. Most importantly, the new laser optics system allows for simple modification of the spot size solely through the interchanging ofmore » the beam expander component. Using 10×, 5×, and no beam expander, we could routinely change between ~4, ~7, and ~45 μm laser spot size, in less than 5 min. We applied this multi-resolution MALDI-MSI system to a single maize root tissue section with three different spatial resolutions of 5, 10, and 50 μm and compared the differences in imaging quality and signal sensitivity. Lastly, we also demonstrated the difference in depth of focus between the optical systems with 10× and 5× beam expanders.« less

  4. Five Micron High Resolution MALDI Mass Spectrometry Imaging with Simple, Interchangeable, Multi-Resolution Optical System

    NASA Astrophysics Data System (ADS)

    Feenstra, Adam D.; Dueñas, Maria Emilia; Lee, Young Jin

    2017-01-01

    High-spatial resolution mass spectrometry imaging (MSI) is crucial for the mapping of chemical distributions at the cellular and subcellular level. In this work, we improved our previous laser optical system for matrix-assisted laser desorption ionization (MALDI)-MSI, from 9 μm practical laser spot size to a practical laser spot size of 4 μm, thereby allowing for 5 μm resolution imaging without oversampling. This is accomplished through a combination of spatial filtering, beam expansion, and reduction of the final focal length. Most importantly, the new laser optics system allows for simple modification of the spot size solely through the interchanging of the beam expander component. Using 10×, 5×, and no beam expander, we could routinely change between 4, 7, and 45 μm laser spot size, in less than 5 min. We applied this multi-resolution MALDI-MSI system to a single maize root tissue section with three different spatial resolutions of 5, 10, and 50 μm and compared the differences in imaging quality and signal sensitivity. We also demonstrated the difference in depth of focus between the optical systems with 10× and 5× beam expanders.

  5. Updating Maps Using High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Alrajhi, Muhamad; Shahzad Janjua, Khurram; Afroz Khan, Mohammad; Alobeid, Abdalla

    2016-06-01

    Kingdom of Saudi Arabia is one of the most dynamic countries of the world. We have witnessed a very rapid urban development's which are altering Kingdom's landscape on daily basis. In recent years a substantial increase in urban populations is observed which results in the formation of large cities. Considering this fast paced growth, it has become necessary to monitor these changes, in consideration with challenges faced by aerial photography projects. It has been observed that data obtained through aerial photography has a lifecycle of 5-years because of delay caused by extreme weather conditions and dust storms which acts as hindrances or barriers during aerial imagery acquisition, which has increased the costs of aerial survey projects. All of these circumstances require that we must consider some alternatives that can provide us easy and better ways of image acquisition in short span of time for achieving reliable accuracy and cost effectiveness. The approach of this study is to conduct an extensive comparison between different resolutions of data sets which include: Orthophoto of (10 cm) GSD, Stereo images of (50 cm) GSD and Stereo images of (1 m) GSD, for map updating. Different approaches have been applied for digitizing buildings, roads, tracks, airport, roof level changes, filling stations, buildings under construction, property boundaries, mosques buildings and parking places.

  6. Enhanced Beetle Luciferase for High-Resolution Bioluminescence Imaging

    PubMed Central

    Nakajima, Yoshihiro; Yamazaki, Tomomi; Nishii, Shigeaki; Noguchi, Takako; Hoshino, Hideto; Niwa, Kazuki; Viviani, Vadim R.; Ohmiya, Yoshihiro

    2010-01-01

    We developed an enhanced green-emitting luciferase (ELuc) to be used as a bioluminescence imaging (BLI) probe. ELuc exhibits a light signal in mammalian cells that is over 10-fold stronger than that of the firefly luciferase (FLuc), which is the most widely used luciferase reporter gene. We showed that ELuc produces a strong light signal in primary cells and tissues and that it enables the visualization of gene expression with high temporal resolution at the single-cell level. Moreover, we successfully imaged the nucleocytoplasmic shuttling of importin α by fusing ELuc at the intracellular level. These results demonstrate that the use of ELuc allows a BLI spatiotemporal resolution far greater than that provided by FLuc. PMID:20368807

  7. A high resolution global scale groundwater model

    NASA Astrophysics Data System (ADS)

    de Graaf, I. E. M.; Sutanudjaja, E. H.; van Beek, L. P. H.; Bierkens, M. F. P.

    2014-05-01

    Groundwater is the world's largest accessible source of fresh water. It plays a vital role in satisfying needs for drinking water, agriculture and industrial activities. During times of drought groundwater sustains baseflow to rivers and wetlands, thereby supporting ecosystems. Most global scale hydrological models (GHMs) do not include a groundwater flow component, mainly due to lack of geohydrological data at the global scale. For the simulation of lateral flow and groundwater head dynamics a realistic physical representation of the groundwater system is needed, especially for GHMs that run at finer resolution. In this study we present a global scale groundwater model (run at 6' as dynamic steady state) using MODFLOW to construct an equilibrium water table at its natural state as the result of long-term climatic forcing. The aquifer schematization and properties were based on available global datasets of lithology and transmissivities combined with estimated aquifer thickness of an upper unconfined aquifer. The model is forced with outputs from the land-surface model PCR-GLOBWB, specifically with net recharge and surface water levels. A sensitivity analysis, in which the model was run with various parameter settings, showed variation in saturated conductivity causes most of the groundwater level variations. Simulated groundwater heads were validated against reported piezometer observations. The validation showed that groundwater depths are reasonably well simulated for many regions of the world, especially for sediment basins (R2 = 0.95). The simulated regional scale groundwater patterns and flowpaths confirm the relevance of taking lateral groundwater flow into account in GHMs. Flowpaths show inter-basin groundwater flow that can be a significant part of a basins water budget and helps to sustain river baseflow, explicitly during times of droughts. Also important aquifer systems are recharged by inter-basin groundwater flows that positively affect water

  8. Group for High Resolution Sea Surface Temperature (GHRSST) analysis fields inter-comparisons—Part 2: Near real time web-based level 4 SST Quality Monitor (L4-SQUAM)

    NASA Astrophysics Data System (ADS)

    Dash, Prasanjit; Ignatov, Alexander; Martin, Matthew; Donlon, Craig; Brasnett, Bruce; Reynolds, Richard W.; Banzon, Viva; Beggs, Helen; Cayula, Jean-Francois; Chao, Yi; Grumbine, Robert; Maturi, Eileen; Harris, Andy; Mittaz, Jonathan; Sapper, John; Chin, Toshio M.; Vazquez-Cuervo, Jorge; Armstrong, Edward M.; Gentemann, Chelle; Cummings, James; Piollé, Jean-François; Autret, Emmanuelle; Roberts-Jones, Jonah; Ishizaki, Shiro; Høyer, Jacob L.; Poulter, Dave

    2012-11-01

    There are a growing number of level 4 (L4; gap-free gridded) sea surface temperature (SST) products generated by blending SST data from various sources which are available for use in a wide variety of operational and scientific applications. In most cases, each product has been developed for a specific user community with specific requirements guiding the design of the product. Consequently differences between products are implicit. In addition, anomalous atmospheric conditions, satellite operations and production anomalies may occur which can introduce additional differences. This paper describes a new web-based system called the L4 SST Quality Monitor (L4-SQUAM) developed to monitor the quality of L4 SST products. L4-SQUAM intercompares thirteen L4 products with 1-day latency in an operational environment serving the needs of both L4 SST product users and producers. Relative differences between products are computed and visualized using maps, histograms, time series plots and Hovmöller diagrams, for all combinations of products. In addition, products are compared to quality controlled in situ SST data (available from the in situ SST Quality Monitor, iQUAM, companion system) in a consistent manner. A full history of products statistics is retained in L4-SQUAM for time series analysis. L4-SQUAM complements the two other Group for High Resolution SST (GHRSST) tools, the GHRSST Multi Product Ensemble (GMPE) and the High Resolution Diagnostic Data Set (HRDDS) systems, documented in part 1 of this paper and elsewhere, respectively. Our results reveal significant differences between SST products in coastal and open ocean areas. Differences of >2 °C are often observed at high latitudes partly due to different treatment of the sea-ice transition zone. Thus when an ice flag is available, the intercomparisons are performed in two ways: including and excluding ice-flagged grid points. Such differences are significant and call for a community effort to understand their root

  9. High Time Resolution Photon Counting 3D Imaging Sensors

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Ertley, C.; Vallerga, J.

    2016-09-01

    Novel sealed tube microchannel plate (MCP) detectors using next generation cross strip (XS) anode readouts and high performance electronics have been developed to provide photon counting imaging sensors for Astronomy and high time resolution 3D remote sensing. 18 mm aperture sealed tubes with MCPs and high efficiency Super-GenII or GaAs photocathodes have been implemented to access the visible/NIR regimes for ground based research, astronomical and space sensing applications. The cross strip anode readouts in combination with PXS-II high speed event processing electronics can process high single photon counting event rates at >5 MHz ( 80 ns dead-time per event), and time stamp events to better than 25 ps. Furthermore, we are developing a high speed ASIC version of the electronics for low power/low mass spaceflight applications. For a GaAs tube the peak quantum efficiency has degraded from 30% (at 560 - 850 nm) to 25% over 4 years, but for Super-GenII tubes the peak quantum efficiency of 17% (peak at 550 nm) has remained unchanged for over 7 years. The Super-GenII tubes have a uniform spatial resolution of <30 μm FWHM ( 1 x106 gain) and single event timing resolution of 100 ps (FWHM). The relatively low MCP gain photon counting operation also permits longer overall sensor lifetimes and high local counting rates. Using the high timing resolution, we have demonstrated 3D object imaging with laser pulse (630 nm 45 ps jitter Pilas laser) reflections in single photon counting mode with spatial and depth sensitivity of the order of a few millimeters. A 50 mm Planacon sealed tube was also constructed, using atomic layer deposited microchannel plates which potentially offer better overall sealed tube lifetime, quantum efficiency and gain stability. This tube achieves standard bialkali quantum efficiency levels, is stable, and has been coupled to the PXS-II electronics and used to detect and image fast laser pulse signals.

  10. Feasibility study of an avalanche photodiode readout for a high resolution PET with nsec time resolution

    SciTech Connect

    Schmelz, C.; Ziegler, S.; Bradbury, S.M.; Holl, I.; Lorenz, E.; Renker, D.

    1995-08-01

    A feasibility study for a high resolution positron emission tomograph, based on 9.5 x 4 x 4 mm{sup 3} LSO crystals viewed by 3 mm diameter avalanche photodiodes, has been carried out. Using a Na{sup 22} source the authors determined a spatial resolution of 2.3 {+-} 0.1 mm, an energy resolution around 15 % and a time resolution of 2.6 nsec. Possible configurations for larger scale tests and a tomograph are given.

  11. The High Time Resolution Radio Sky

    NASA Astrophysics Data System (ADS)

    Thornton, D.

    2013-11-01

    Pulsars are laboratories for extreme physics unachievable on Earth. As individual sources and possible orbital companions can be used to study magnetospheric, emission, and superfluid physics, general relativistic effects, and stellar and binary evolution. As populations they exhibit a wide range of sub-types, with parameters varying by many orders of magnitude signifying fundamental differences in their evolutionary history and potential uses. There are currently around 2200 known pulsars in the Milky Way, the Magellanic clouds, and globular clusters, most of which have been discovered with radio survey observations. These observations, as well as being suitable for detecting the repeating signals from pulsars, are well suited for identifying other transient astronomical radio bursts that last just a few milliseconds that either singular in nature, or rarely repeating. Prior to the work of this thesis non-repeating radio transients at extragalactic distances had possibly been discovered, however with just one example status a real astronomical sources was in doubt. Finding more of these sources was a vital to proving they were real and to open up the universe for millisecond-duration radio astronomy. The High Time Resolution Universe survey uses the multibeam receiver on the 64-m Parkes radio telescope to search the whole visible sky for pulsars and transients. The temporal and spectral resolution of the receiver and the digital back-end enable the detection of relatively faint, and distant radio sources. From the Parkes telescope a large portion of the Galactic plane can be seen, a rich hunting ground for radio pulsars of all types, while previously poorly surveyed regions away from the Galactic plane are also covered. I have made a number of pulsar discoveries in the survey, including some rare systems. These include PSR J1226-6208, a possible double neutron star system in a remarkably circular orbit, PSR J1431-471 which is being eclipsed by its companion with

  12. Cenomanian to Campanian sea-level history of the Tarfaya basin (SW Morocco): Evidence from high-resolution XRF scanner-derived elemental records and bulk carbonate stable isotopes

    NASA Astrophysics Data System (ADS)

    Aquit, Mohamed; Kuhnt, Wolfgang; Holbourn, Ann; Hassane Chellai, El; Lees, Jacqueline A.; Kluth, Oliver; Jabour, Haddou; Delaporte, Jean-Pierre

    2014-05-01

    The Cenomanian to Campanian organic-rich successions deposited in the continuously subsiding Tarfaya Atlantic coastal basin (SW Morocco) allow detailed reconstruction of depositional environments at the upper edge of an oceanic oxygen minimum zone impinging on a broad continental shelf. We present high-resolution X-ray fluorescence (XRF) scanning, bulk carbon and oxygen isotopes and natural gamma-ray (NGR) records from three newly drilled sedimentary cores in the Tarfaya Basin, which recovered a continuous sedimentary succession of more than 600 m thickness. A negative carbon isotope excursion in the late Cenomanian, at the onset of Oceanic Anoxic Event (OAE) 2, can be related to intense emissions of mantle CO2 into the atmosphere. The following positive excursion, associated with increased marine productivity and carbon burial, occurred stepwise and was accompanied by transient climate cooling. Five upper Turonian to lower Campanian sequences are recognizable in the Tarfaya wells and can be correlated to global eustatic sequences established along the New Jersey Margin and in European shelf basins. The base of the last of these sequences is located within the positive carbon isotope excursion of the Santonian-Campanian Boundary Event. In the Tarfaya succession, this lower Campanian sequence is associated with a long-term cooling trend, expressed in the δ18O record, and with major changes in the amount and composition of terrigenous input, indicating cooler and wetter climate conditions in the source area. Key words: Late Cretaceous, Tarfaya Basin, bulk carbon and oxygen isotopes, oceanic anoxic event, sea-level.

  13. Morphometric and high resolution scanning electron microscopy analysis of low-level laser therapy and latex protein (Hevea brasiliensis) administration following a crush injury of the sciatic nerve in rats.

    PubMed

    Dias, Fernando J; Issa, João Paulo M; Coutinho-Netto, Joaquim; Fazan, Valéria P S; Sousa, Luiz Gustavo; Iyomasa, Mamie M; Papa, Paula C; Watanabe, Ii-Sei

    2015-02-15

    This study evaluated the effect of low-level laser therapy (LLLT; 15 J/cm(2)) and a latex protein (F1) on a crush injury of the sciatic (ischiadicus) nerve. Seventy-two rats (male, 250 g) were divided into 6 groups: CG, control; EG, exposed nerve; IG, injured nerve without treatment; LG, injured nerve with LLLT; HG, injured nerve with F1; and LHG, injured nerve with LLLT and F1. After 4 or 8 weeks, the animals were euthanized and samples of the sciatic nerve were collected for morphometric and high-resolution scanning electron microscopy (HRSEM) analysis. After 4 weeks, the morphometry revealed improvements in the treated animals, and the HG appeared to be the most similar to the CG; after 8 weeks, the injured groups showed improvements compared to the previous period, and the results of the treatment groups were more similar to one another. At HRSEM after 4 weeks, the treated groups were similar and showed improvement compared to the IG; after 8 weeks, the LHG and HG had the best results. In conclusion, the treatments resulted in improvement after the nerve injury, and this recovery was time-dependent. In addition, the use of the F1 resulted in the best morphometric and ultrastructural findings.

  14. The Torsion-Inversion-Bending Energy Levels in the S1( n, π*) Electronic State of Acetaldehyde . A High-Resolution Study of the Bands #7 to #20 in the Jet-Cooled Fluorescence Excitation Spectrum

    NASA Astrophysics Data System (ADS)

    Liu, Haisheng; Lim, Edward C.; Niño, Alfonso; Muñoz-Caro, Camelia; Judge, Richard H.; Moule, David C.

    1998-07-01

    The band assignments and analyses of the jet-cooled high-resolution laser-induced fluorescence excitation spectrum of acetaldehyde that results from theS1(n, π*) electronic state have been extended to +600 cm-1from the 000system origin. The new assignments start at Band #7 and finish at Band #21. Bands #8 and #9, originally assigned to 1420, have now been assigned to 1530. The assignments of the lower energy bands remain unaltered. The origins of the bands that involve the torsional modes ν15(v= 1 to 4) in combination with the wagging mode ν14(v= 1 and 2) and the ν10(v= 1) were determined by analyses with a rigid rotational Hamiltonian. These origins were fitted to a set of levels that were derived from a torsion-wagging-bending Hamiltonian that employed flexible large amplitude coordinates. The resulting potential surface was found to have barriers to torsion and inversion of 712.5 and 638.6 cm-1, respectively, with minima in the potential hypersurface at θ = 59.9° and α = 33.5° for the torsion and wagging coordinates.

  15. High resolution reservoir geological modelling using outcrop information

    SciTech Connect

    Zhang Changmin; Lin Kexiang; Liu Huaibo

    1997-08-01

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  16. High vertical resolution crosswell seismic imaging

    DOEpatents

    Lazaratos, Spyridon K.

    1999-12-07

    A method for producing high vertical resolution seismic images from crosswell data is disclosed. In accordance with one aspect of the disclosure, a set of vertically spaced, generally horizontally extending continuous layers and associated nodes are defined within a region between two boreholes. The specific number of nodes is selected such that the value of a particular characteristic of the subterranean region at each of the nodes is one which can be determined from the seismic data. Once values are established at the nodes, values of the particular characteristic are assigned to positions between the node points of each layer based on the values at node within that layer and without regard to the values at node points within any other layer. A seismic map is produced using the node values and the assigned values therebetween. In accordance with another aspect of the disclosure, an approximate model of the region is established using direct arrival traveltime data. Thereafter, the approximate model is adjusted using reflected arrival data. In accordance with still another aspect of the disclosure, correction is provided for well deviation. An associated technique which provides improvements in ray tracing is also disclosed.

  17. High spatial resolution probes for neurobiology applications

    NASA Astrophysics Data System (ADS)

    Gunning, D. E.; Kenney, C. J.; Litke, A. M.; Mathieson, K.

    2009-06-01

    Position-sensitive biological neural networks, such as the brain and the retina, require position-sensitive detection methods to identify, map and study their behavior. Traditionally, planar microelectrodes have been employed to record the cell's electrical activity with device limitations arising from the electrode's 2-D nature. Described here is the development and characterization of an array of electrically conductive micro-needles aimed at addressing the limitations of planar electrodes. The capability of this array to penetrate neural tissue improves the electrode-cell electrical interface and allows more complicated 3-D networks of neurons, such as those found in brain slices, to be studied. State-of-the-art semiconductor fabrication techniques were used to etch and passivate conformally the metal coat and fill high aspect ratio holes in silicon. These are subsequently transformed into needles with conductive tips. This process has enabled the fabrication of arrays of unprecedented dimensions: 61 hexagonally close-packed electrodes, ˜200 μm tall with 60 μm spacing. Electroplating the tungsten tips with platinum ensure suitable impedance values (˜600 kΩ at 1 kHz) for the recording of neuronal signals. Without compromising spatial resolution of the neuronal recordings, this array adds a new and exciting dimension to the study of biological neural networks.

  18. High resolution EUV monochromator/spectrometer

    DOEpatents

    Koike, Masako

    1996-01-01

    This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution.

  19. Titania High-Resolution Color Composite

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This high-resolution color composite of Titania was made from Voyager 2 images taken Jan. 24, 1986, as the spacecraft neared its closest approach to Uranus. Voyager's narrow-angle camera acquired this image of Titania, one of the large moons of Uranus, through the violet and clear filters. The spacecraft was about 500,000 kilometers (300,000 miles) away; the picture shows details about 9 km (6 mi) in size. Titania has a diameter of about 1,600 km (1,000 mi). In addition to many scars due to impacts, Titania displays evidence of other geologic activity at some point in its history. The large, trenchlike feature near the terminator (day-night boundary) at middle right suggests at least one episode of tectonic activity. Another, basinlike structure near the upper right is evidence of an ancient period of heavy impact activity. The neutral gray color of Titania is characteristic of the Uranian satellites as a whole. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.

  20. The High Resolution Tropospheric Ozone Residual

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2006-01-01

    The co-flight of the MLS stratospheric limb sounder and the Ozone Monitoring Instrument (OMI) provides the capability of computing the Tropospheric Ozone Residual (TOR) in much greater detail [Ziemke et al., 2006]. Using forward trajectory calculations of MLS ozone measurements combined with OMI column ozone we have developed a high horizontal resolution tropospheric ozone residual (HTOR) which can provide even more detail than the standard TOR product. HTOR is especially useful for extra-tropical studies of tropospheric ozone transport. We find that both the Pacific pollution corridor (East Asia to Alaska) and the Atlantic pollution corridor (North America east coast to Europe) are also preferred locations for strat-trop folds leading to systematic overestimates of pollution amounts. In fact, fold events appear to dominate extra-tropical Northern Hemisphere day-to-day maps of HTOR. Model estimates of the tropospheric column are in reasonable agreement with the HTOR amounts when offsets due to different tropopause height calculations are taken into consideration.

  1. Europa Ice Cliffs-High Resolution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This view of the Conamara Chaos region on Jupiter's moon Europa shows cliffs along the edges of high-standing ice plates. The washboard texture of the older terrain has been broken into plates which are separated by material with a jumbled texture. The cliffs themselves are rough and broadly scalloped, and smooth debris shed from the cliff faces is piled along the base. For scale, the height of the cliffs and size of the scalloped indentations are comparable to the famous cliff face of Mount Rushmore in South Dakota.

    This image was taken on December 16, 1997 at a range of 900 kilometers (540 miles) by the solid state imaging system (camera) on NASA's Galileo spacecraft. North is to the top right of the picture, and the sun illuminates the surface from the east. This image, centered at approximately 8 degrees north latitude and 273 degrees west longitude, covers an area approximately 1.5 kilometers by 4 kilometers (0.9 miles by 2.4 miles). The resolution is 9 meters (30 feet) per picture element.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  2. The High Resolution Tropospheric Ozone Residual

    NASA Astrophysics Data System (ADS)

    Schoeberl, M. R.; Ziemke, J.; Bhartia, P.; Froidevaux, L.; Levelt, P.

    2006-12-01

    The co-flight of the MLS stratospheric limb sounder and the Ozone Monitoring Instrument (OMI) provides the capability of computing the Tropospheric Ozone Residual (TOR) in much greater detail [Ziemke et al., 2006]. Using forward trajectory calculations of MLS ozone measurements combined with OMI column ozone we have developed a high horizontal resolution tropospheric ozone residual (HTOR) which can provide even more detail than the standard TOR product. HTOR is especially useful for extra-tropical studies of tropospheric ozone transport. We find that both the Pacific pollution corridor (East Asia to Alaska) and the Atlantic pollution corridor (North America east coast to Europe) are also preferred locations for strat-trop folds leading to systematic over-estimates of pollution amounts. In fact, fold events appear to dominate extra-tropical Northern Hemisphere day-to-day maps of HTOR. Model estimates of the tropospheric column are in reasonable agreement with the HTOR amounts when offsets due to different tropopause height calculations are taken into consideration.

  3. High resolution EUV monochromator/spectrometer

    DOEpatents

    Koike, Masako

    1996-06-18

    This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution. 10 figs.

  4. High-resolution ophthalmic imaging system

    DOEpatents

    Olivier, Scot S.; Carrano, Carmen J.

    2007-12-04

    A system for providing an improved resolution retina image comprising an imaging camera for capturing a retina image and a computer system operatively connected to the imaging camera, the computer producing short exposures of the retina image and providing speckle processing of the short exposures to provide the improved resolution retina image. The system comprises the steps of capturing a retina image, producing short exposures of the retina image, and speckle processing the short exposures of the retina image to provide the improved resolution retina image.

  5. High-Resolution and Animal Imaging Instrumentation and Techniques

    NASA Astrophysics Data System (ADS)

    Belcari, Nicola; Guerra, AlbertoDel

    During the last decade we have observed a growing interest in "in vivo" imaging techniques for small animals. This is due to the necessity of studying biochemical processes at a molecular level for pharmacology, genetic, and pathology investigations. This field of research is usually called "molecular imaging."Advances in biological understanding have been accompanied by technological advances in instrumentation and techniques and image-reconstruction software, resulting in improved image quality, visibility, and interpretation. The main technological challenge is then the design of systems with high spatial resolution and high sensitivity.

  6. Evaluation of purge-and-trap-high-resolution gas chromatography-mass spectrometry for the determination of 27 volatile organic compounds in marine water at the ng l(-1) concentration level.

    PubMed

    Huybrechts, T; Dewulf, J; Moerman, O; Van Langenhove, H

    2000-10-06

    Purge-and-trap combined with high-resolution gas chromatography and detection by mass spectrometry was evaluated for the analysis of 27 volatile organic compounds (VOCs) in marine water samples down to ng l(-1) concentration levels. The target compounds included chlorinated alkanes and alkenes, monocyclic aromatic hydrocarbons and chlorinated monocyclic aromatic hydrocarbons and covered a wide range of VOCs of environmental interest. Limits of detection ranged from 0.15 ng l(-1) to 6.57 ng l(-1) for all VOCs, except for dichloromethane (41.07 ng l(-1)), chloroform (19.74 ng l(-1)), benzene (22.05 ng l(-1)) and 1,4-dichlorobenzene (20.43 ng l(-1)). Precision and accuracy were determined at a concentration level of 25.97 to 66.68 ng l(-1). Besides method validation, emphasis was put on quality control and assessment during routine determination of VOCs in marine water samples. Analytical quality control charts were plotted for all VOCs and a standard addition test was performed, as proposed by the QUASIMEME (Quality Assurance of Information in Marine Environmental Monitoring Programmes in Europe) working group. The analytical charts were incorporated in a working scheme containing guidelines to be applied during routine determinations, ensuring the long time reliability of the analytical method. Results yielded by the QUASIMEME interlaboratory exercise on organohalogen measurements in seawater are presented. The exercise was attended by seven out of eight laboratories who agreed to participate. Samples taken along the Scheldt estuary, from Breskens (The Netherlands) to Temse (Antwerp, Belgium) were analysed according to the developed technique. Concentrations as low as 0.33 ng l(-1) (1,2-dichloropropane) were detected near the mouth of the river Scheldt, while concentrations up to 326 ng l(-1) for tetrachloroethene and 461 ng l(-1) for cyclohexane were found in the vicinity of Antwerp.

  7. High resolution in galaxy photometry and imaging

    NASA Astrophysics Data System (ADS)

    Nieto, J.-L.; Lelievre, G.

    Techniques for increasing the resolution of ground-based photometric observations of galaxies are discussed. The theoretical limitations on resolution and their implications for choosing telescope size at a given site considered, with an emphasis on the importance of the Fried (1966) parameter r0. The techniques recommended are shortening exposure time, selection of the highest-resolution images, and a posteriori digital image processing (as opposed to active-mirror image stabilization or the cine-CCD system of Fort et al., 1984). The value of the increased resolution (by a factor of 2) achieved at Pic du Midi observatory for studies of detailed structure in extragalactic objects, for determining the distance to galaxies, and for probing the central cores of galaxies is indicated.

  8. Climate Simulations with a Variable-Resolution GCM: Stretched Cubed-Sphere High Resolution Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Tu, C. Y.; Harris, L.; Lin, S. J.

    2014-12-01

    Variable-resolution GCM with enhanced resolution over the region of interest is an adaptive approach to self-consistent interactions between global and regional phenomena. A stretched cubed-sphere High Resolution Atmosphere Model (HiRAM) is constructed using the Geophysical Fluid Dynamics Laboratory (GFDL) finite-volume dynamical core. The horizontal grid spacing in the stretched cubed-sphere is smoothly transformed from the center of highest-resolution region to the center of coarsest-resolution region. Three 30-yr AMIP type simulations were performed in this study; one C384 uniformed cubed-sphere grid, and two stretched cubed-sphere grid with stretching factor 2.5. Two stretched-grid experiments further set the center of highest-resolution region in Taiwan (C384R2.5TW) and Oklahoma City (C384R2.5OKC), respectively. The horizontal resolution in this C384R2.5 stretched grid ranges from 10km to 65km. Three climate simulations were compared against re-analysis data to understand the effect of horizontal resolution on both the simulated global climate and regional features. The global mean climatology in stretched-grid AMIP simulations shows no unrealistic drift comparing to the uniform-grid simulation and observation. Regional orographic precipitation is better simulated in the high-resolution region. High resolution also shows improvement in typhoon/hurricane simulation. In western Pacific basin, high resolution improves simulated typhoon intensity. For weak and moderate typhoons, there is no strong trend with enhancing resolution. But for strong typhoon, there is high correlation between enhancing resolution with typhoon intensity. By comparing simulations with IBTrACS (International Best Track Archieve for Climate Stewardship) in different basins, HiRAM demonstrates the reduction of simulated typhoon/hurricane numbers with enhancement of horizontal resolution.

  9. Modelling coastal low-level wind-jets: does horizontal resolution matter?

    NASA Astrophysics Data System (ADS)

    Ranjha, Raza; Tjernström, Michael; Svensson, Gunilla; Semedo, Alvaro

    2016-04-01

    Atmospheric flows in coastal regions are impacted by land-sea temperature contrasts, complex terrain, shape of the coastline, among many things. Along the west coast of central North America, winds in the boundary layer are mainly from north or northwest, roughly parallel to the coastline. Frequently, the coastal low-level wind field is characterized by a sharp wind maximum along the coast in the lowest kilometre. This feature, commonly referred to as a coastal low-level jet (CLLJ), has significant impact on the climatology of the coastal region and affects many human activities in the littoral zone. Hence, a good understanding and forecasting of CLLJs are vital. This study evaluates the issue of proper mesoscale numerical model resolution to describe the physics of a CLLJ, and its impact on the upper ocean. The COAMPS® model is used for a summer event to determine the realism of the model results compared to observations, from an area of supercritical flow adjustment between Pt. Sur and Pt. Conception, California. Simulations at different model horizontal resolutions, from 54 to 2 km are performed. While the model produces realistic results with increasing details at higher resolution, the results do not fully converge even at a resolution of only few kilometres and an objective analysis of model errors do not show an increased skill with increasing resolution. Based on all available information, a compromise resolution appears to be at least 6 km. New methods may have to be developed to evaluate models at very high resolution.

  10. Single sensor processing to obtain high resolution color component signals

    NASA Technical Reports Server (NTRS)

    Glenn, William E. (Inventor)

    2010-01-01

    A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.

  11. Large Scale, High Resolution, Mantle Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Geenen, T.; Berg, A. V.; Spakman, W.

    2007-12-01

    To model the geodynamic evolution of plate convergence, subduction and collision and to allow for a connection to various types of observational data, geophysical, geodetical and geological, we developed a 4D (space-time) numerical mantle convection code. The model is based on a spherical 3D Eulerian fem model, with quadratic elements, on top of which we constructed a 3D Lagrangian particle in cell(PIC) method. We use the PIC method to transport material properties and to incorporate a viscoelastic rheology. Since capturing small scale processes associated with localization phenomena require a high resolution, we spend a considerable effort on implementing solvers suitable to solve for models with over 100 million degrees of freedom. We implemented Additive Schwartz type ILU based methods in combination with a Krylov solver, GMRES. However we found that for problems with over 500 thousend degrees of freedom the convergence of the solver degraded severely. This observation is known from the literature [Saad, 2003] and results from the local character of the ILU preconditioner resulting in a poor approximation of the inverse of A for large A. The size of A for which ILU is no longer usable depends on the condition of A and on the amount of fill in allowed for the ILU preconditioner. We found that for our problems with over 5×105 degrees of freedom convergence became to slow to solve the system within an acceptable amount of walltime, one minute, even when allowing for considerable amount of fill in. We also implemented MUMPS and found good scaling results for problems up to 107 degrees of freedom for up to 32 CPU¡¯s. For problems with over 100 million degrees of freedom we implemented Algebraic Multigrid type methods (AMG) from the ML library [Sala, 2006]. Since multigrid methods are most effective for single parameter problems, we rebuild our model to use the SIMPLE method in the Stokes solver [Patankar, 1980]. We present scaling results from these solvers for 3D

  12. MULTIPULSE - high resolution and high power in one TDEM system

    NASA Astrophysics Data System (ADS)

    Chen, Tianyou; Hodges, Greg; Miles, Philip

    2015-09-01

    An airborne time domain electromagnetic (TEM) system with high resolution and great depth of exploration is desired for geological mapping as well as for mineral exploration. The MULTIPULSE technology enables an airborne TEM system to transmit a high power pulse (a half-sine, for instance) and one or multiple low power pulse(s) (trapezoid or square) within a half-cycle. The high power pulse ensures good depth of exploration and the low power pulse allows a fast transmitter current turn off and earlier off-time measurement thus providing higher frequency signals, which allows higher near-surface resolution and better sensitivity to weak conductors. The power spectrum of the MULTIPULSE waveform comprising a half-sine and a trapezoid pulse clearly shows increased power in the higher frequency range (> ~2.3 kHz) compared to that of a single half-sine waveform. The addition of the low power trapezoid pulse extends the range of the sensitivity 10-fold towards the weak conductors, expanding the geological conductivity range of a system and increasing the scope of its applications. The MULTIPULSE technology can be applied to standard single-pulse airborne TEM systems on both helicopter and fixed-wing. We field tested the HELITEM MULTIPULSE system over a wire-loop in Iroquois Falls, demonstrating the different sensitivity of the high and low power pulses to the overburden and the wire-loop. We also tested both HELITEM and GEOTEM MULTIPULSE systems over a layered oil sand geologic setting in Fort McMurray, Alberta, Canada. The results show comparable shallow geologic resolution of the MULTIPULSE to that of the RESOLVE system while maintaining superior depth of exploration, confirming the increased geological conductivity range of a system employing MULTIPULSE compared to the standard single-pulse systems.

  13. High Resolution Sensor for Nuclear Waste Characterization

    SciTech Connect

    Shah, Kanai; Higgins, William; Van Loef, Edgar V

    2006-01-23

    Gamma ray spectrometers are an important tool in the characterization of radioactive waste. Important requirements for gamma ray spectrometers used in this application include good energy resolution, high detection efficiency, compact size, light weight, portability, and low power requirements. None of the available spectrometers satisfy all of these requirements. The goal of the Phase I research was to investigate lanthanum halide and related scintillators for nuclear waste clean-up. LaBr3:Ce remains a very promising scintillator with high light yield and fast response. CeBr3 is attractive because it is very similar to LaBr3:Ce in terms of scintillation properties and also has the advantage of much lower self-radioactivity, which may be important in some applications. CeBr3 also shows slightly higher light yield at higher temperatures than LaBr3 and may be easier to produce with high uniformity in large volume since it does not require any dopants. Among the mixed lanthanum halides, the light yield of LaBrxI3-x:Ce is lower and the difference in crystal structure of the binaries (LaBr3 and LaI3) makes it difficult to grow high quality crystals of the ternary as the iodine concentration is increased. On the other hand, LaBrxCl3-x:Ce provides excellent performance. Its light output is high and it provides fast response. The crystal structures of the two binaries (LaBr3 and LaCl3) are very similar. Overall, its scintillation properties are very similar to those for LaBr3:Ce. While the gamma-ray stopping efficiency of LaBrxCl3-x:Ce is lower than that for LaBr3:Ce (primarily because the density of LaCl3 is lower than that of LaBr3), it may be easier to grow large crystals of LaBrxCl3-x:Ce than LaBr3:Ce since in some instances (for example, CdxZn1-xTe), the ternary compounds provide increased flexibility in the crystal lattice. Among the new dopants, Eu2+ and Pr3+, tried in LaBr3 host crystals, the Eu2+ doped samples exhibited low light output. This was mostly because a

  14. High Resolution Imaging of Kepler Objects of Interest (KOI)

    NASA Astrophysics Data System (ADS)

    Dupree, Andrea K.; Adams, E.; Ciardi, D. R.; Gautier, T. N., III; Howell, S.; Kulesa, C.; McCarthy, D.; Kepler Science Team

    2011-05-01

    The spatial resolution of the Kepler telescope is designed to be 4 arcsec ( 1 pixel) which could allow background stars to contribute to the light of a Kepler target. Thus an observed transit might be a false positive due to a background eclipsing binary. In addition, dilution of the transit signal by a background star can severely compromise the parameters derived for a planet candidate. The Kepler Follow on Program (KFOP) includes high resolution images of the KOI targets, obtained principally at the following facilities: speckle imaging in V and R with the two-color speckle camera on the 3.5m WIYN telescope; Adaptive Optics imaging in J band and Ks with the PHARO near-infrared camera on the 200-in Hale Telescope; Adaptive Optics imaging in J and Ks band with the ARIES camera on the 6.5m MMT Telescope; AO imaging in J band and Ks with IRCAL on the 3-m telescope at Lick Observatory. Results from the follow up observations will be shown as well as the implications for the derivation of planetary characteristics. High spatial resolution images are a key part of the follow-up program for high-confidence level acceptance for Earth and super Earth-size planets.

  15. Multimodal microscopy with high resolution spectral focusing CARS

    NASA Astrophysics Data System (ADS)

    Baldacchini, Tommaso; Zadoyan, Ruben

    2014-02-01

    In this work we describe a device that extends capabilities of multiphoton microscopes based on dual wavelength output femtosecond laser sources. CARS with 17cm-1 spectral resolution is experimentally demonstrated. Our approach is based on spectral focusing CARS. For pulse shaping of the pump and Stokes beams we utilize transmission gratings based stretcher. It allows the dispersion of the stretcher to be continuously adjusted in wide range. The best spectral resolution is achieved when the chirp rates in both pump and Stokes beam are matched. The device is automated. Any change in the beam path lengths due to the stretcher adjustment or wavelength tuning is compensated by the delay line. We incorporated into the device a computer controlled beam pointing stabilization system that compensates the beam pointing deviation due to dispersion in the system. High level of automation and computer control makes the operation of the device easy. We present CARS images of several samples that demonstrate high spectral resolution, high contrast and chemical selectivity.

  16. High Spatial Resolution Commercial Satellite Imaging Product Characterization

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Pagnutti, Mary; Blonski, Slawomir; Ross, Kenton W.; Stnaley, Thomas

    2005-01-01

    NASA Stennis Space Center's Remote Sensing group has been characterizing privately owned high spatial resolution multispectral imaging systems, such as IKONOS, QuickBird, and OrbView-3. Natural and man made targets were used for spatial resolution, radiometric, and geopositional characterizations. Higher spatial resolution also presents significant adjacency effects for accurate reliable radiometry.

  17. High resolution ultrasound and photoacoustic imaging of single cells.

    PubMed

    Strohm, Eric M; Moore, Michael J; Kolios, Michael C

    2016-03-01

    High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  18. High resolution heterodyne interferometer without detectable periodic nonlinearity.

    PubMed

    Joo, Ki-Nam; Ellis, Jonathan D; Buice, Eric S; Spronck, Jo W; Schmidt, Robert H Munnig

    2010-01-18

    A high resolution heterodyne laser interferometer without periodic nonlinearity for linear displacement measurements is described. It uses two spatially separated beams with an offset frequency and an interferometer configuration which has no mixed states to prevent polarization mixing. In this research, a simple interferometer configuration for both retroreflector and plane mirror targets which are both applicable to industrial applications was developed. Experimental results show there is no detectable periodic nonlinearity for both of the retro-reflector interferometer and plane mirror interferometer to the noise level of 20 pm. Additionally, the optical configuration has the benefit of doubling the measurement resolution when compared to its respective traditional counterparts. Because of non-symmetry in the plane mirror interferometer, a differential plane mirror interferometer to reduce the thermal error is also discussed.

  19. Pioneering high angular resolution at GTC: FRIDA

    NASA Astrophysics Data System (ADS)

    Prieto, M. A.

    2017-03-01

    FRIDA imager and integral-field spectrograph will provide the GTC community with the first diffraction-limited angular resolutions of a 10 m telescope: 25 - 40 mas in the 1 - 2.5 um range. These angular resolutions are a factor 15 improvement with respect to those of current and/or planned instruments for GTC, factor 1.5 superior to that of JWST. In this talk I will develop on science paths for FRIDA, with natural and laser guide star that illustrate the potential and unique capabilities of GTCAO+FRIDA till the arrival of the ELTs.

  20. Fast access to reduced-resolution subsamples of high-resolution images

    NASA Astrophysics Data System (ADS)

    Isaacson, Joel S.

    1991-08-01

    Frequently, displaying a digital image requires reducing the volume of data contained in a high-resolution image. This reduction can be performed by sub- sampling pixels from the high resolution image. Some examples of systems that need fast access to reduced resolution images are: modern digital prepress production; flight simulators; terrestrial planetary and astronomical imaging systems. On standard workstations, a lower resolution image cannot be read without essentially reading the whole high-resolution image. This paper demonstrates a method that allows fast access to lower scale resolution images. The method has the following characteristics. The proposed storage format greatly lessens the time needed to read a low-resolution image typically by an order of magnitude. The storage format supports efficient reading of multiple scale reduced resolutions. The image file size remains the same as in current formats. No penalty is imposed by using this new format for any operation that uses the image at full resolution. Additionally, an efficient method for rotating images in this format is demonstrated that is many times faster than methods currently employed. The last section gives benchmarks that demonstrate the utility of this format for reading an image at low resolution.

  1. High resolution, high rate x-ray spectrometer

    DOEpatents

    Goulding, F.S.; Landis, D.A.

    1983-07-14

    It is an object of the invention to provide a pulse processing system for use with detected signals of a wide dynamic range which is capable of very high counting rates, with high throughput, with excellent energy resolution and a high signal-to-noise ratio. It is a further object to provide a pulse processing system wherein the fast channel resolving time is quite short and substantially independent of the energy of the detected signals. Another object is to provide a pulse processing system having a pile-up rejector circuit which will allow the maximum number of non-interfering pulses to be passed to the output. It is also an object of the invention to provide new methods for generating substantially symmetrically triangular pulses for use in both the main and fast channels of a pulse processing system.

  2. Estimation of reactogenicity of preparations produced on the basis of photoinactivated live vaccines against brucellosis and tularaemia on the organismic level.2. Using the method of speckle-microscopy with high spatial resolution

    NASA Astrophysics Data System (ADS)

    Ulianova, O. V.; Uianov, S. S.; Li, Pengcheng; Luo, Qingming

    2011-04-01

    The method of speckle microscopy was adapted to estimate the reactogenicity of the prototypes of vaccine preparations against extremely dangerous infections. The theory is proposed to describe the mechanism of formation of the output signal from the super-high spatial resolution speckle microscope. The experimental studies show that bacterial suspensions, irradiated in different regimes of inactivation, do not exert negative influence on the blood microcirculations in laboratory animals.

  3. Estimation of reactogenicity of preparations produced on the basis of photoinactivated live vaccines against brucellosis and tularaemia on the organismic level. 2. Using the method of speckle-microscopy with high spatial resolution

    SciTech Connect

    Ulianova, O V; Uianov, S S; Li Pengcheng; Luo Qingming

    2011-04-30

    The method of speckle microscopy was adapted to estimate the reactogenicity of the prototypes of vaccine preparations against extremely dangerous infections. The theory is proposed to describe the mechanism of formation of the output signal from the super-high spatial resolution speckle microscope. The experimental studies show that bacterial suspensions, irradiated in different regimes of inactivation, do not exert negative influence on the blood microcirculations in laboratory animals. (optical technologies in biophysics and medicine)

  4. Group for High Resolution Sea Surface Temperature (GHRSST) Analysis Fields Inter-Comparisons. Part 2. Near Real Time Web-based Level 4 SST Quality Monitor (L4-SQUAM)

    DTIC Science & Technology

    2012-01-01

    applications requiring global L4 fields. These applications include seasonal and short-term weather forecasting, fisheries and coral - reef monitor...for diurnal warming . Int J. Remote Sens. 10. 209-234. ThiebauxJ, Rogers, E_ Wang, W.Katz, &. 2003. A new high-resolution blended real- time global ...geometry, cloud coverage, etc. Therefore, efforts at various data centers have been directed towards generating global , gridded. blended, gap-free

  5. High Resolution Velocity Structure in Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Pasyanos, M. E.; Gok, R.; Zor, E.; Walter, W. R.

    2004-12-01

    We investigate the crust and upper mantle structure of eastern Turkey where the Anatolian, Arabian and Eurasian Plates meet, forming a complex tectonic regime. The Bitlis suture is a continental collision zone between the Anatolian plateau and the Arabian plate. Broadband data available through the Eastern Turkey Seismic Experiment (ETSE) provide a unique opportunity for studying the high resolution velocity structure of the region. Zor et al. (2003) found an average 46 km thick crust in the Anatolian plateau using a six-layered grid search inversion of the ETSE receiver functions. Receiver functions are sensitive to the velocity contrast of interfaces and the relative travel time of converted and reverberated waves between those interfaces. The interpretation of receiver functions alone, however, may result in an apparent depth-velocity trade-off [Ammon et al., 1990]. In order to improve upon this velocity model, we have combined the receiver functions with surface wave data using the joint inversion method of Julia et al. (2000). In this technique, the two sets of observations are combined into a single algebraic equation and each data set is weighted by an estimate of the uncertainty in the observations. The receiver functions are calculated using an iterative time-domain deconvolution technique. We also consider azimuthal changes in the receiver functions and have stacked them into different groups accordingly. We are improving our surface wave model by making Love and Rayleigh dispersion measurements at the ETSE stations and incorporating them into a regional group velocity model for periods between 10 and 100 seconds. Preliminary results indicate a strong trend in the long period group velocities toward the northeast, indicating slow upper mantle velocities in the area consistent with Pn, Sn and receiver function results. Starting models used for the joint inversions include both a 1-D model from a 12-ton dam shot recorded by ETSE [Gurbuz et al., 2004] and

  6. High Resolution Velocity Structure in Eastern Turkey

    SciTech Connect

    Pasyanos, M; Gok, R; Zor, E; Walter, W

    2004-09-03

    We investigate the crustal and upper mantle structure of eastern Turkey where the Anatolian, Arabian and Eurasian Plates meet and form a complex tectonic structure. The Bitlis suture is a continental collision zone between the Anatolian plateau and the Arabian plate. Broadband data available through the Eastern Turkey Seismic Experiment (ETSE) provided a unique opportunity for studying the high resolution velocity structure. Zor et al. found an average 46 km thick crust in Anatolian plateau using six-layered grid search inversion of the ETSE receiver functions. Receiver functions are sensitive to the velocity contrast of interfaces and the relative travel time of converted and reverberated waves between those interfaces. The interpretation of receiver function alone with many-layered parameterization may result in an apparent depth-velocity tradeoff. In order to improve previous velocity model, we employed the joint inversion method with many layered parameterization of Julia et al. (2000) to the ETSE receiver functions. In this technique, the receiver function and surface-wave observations are combined into a single algebraic equation and each data set is weighted by an estimate of the uncertainty in the observations. We consider azimuthal changes of receiver functions and have stacked them into different groups. We calculated the receiver functions using iterative time-domain deconvolution technique and surface wave group velocity dispersion curves between 10-100 sec. We are making surface wave dispersion measurements at the ETSE stations and have incorporated them into a regional group velocity model. Preliminary results indicate a strong trend in the long period group velocity in the northeast. This indicates slow upper mantle velocities in the region consistent with Pn, Sn and receiver function results. We started with both the 1-D model that is obtained with the 12 tones dam explosion shot data recorded by ETSE network and the existing receiver function

  7. High Resolution Surface Science at Mars

    NASA Technical Reports Server (NTRS)

    Bailey, Zachary J.; Tamppari, Leslie K.; Lock, Robert E.; Sturm, Erick J.

    2013-01-01

    The proposed mission would place a 2.4 m telescope in orbit around Mars with two focal plane instruments to obtain the highest resolution images and spectral maps of the surface to date (3-10x better than current). This investigation would make major contributions to all of the Mars Program Goals: life, climate, geology and preparation for human presence.

  8. Feature tracking in high-resolution regional climate data

    NASA Astrophysics Data System (ADS)

    Massey, Neil R.

    2016-08-01

    In this paper, a suite of algorithms are presented which facilitate the identification and tracking of storm-indicative features, such as mean sea-level pressure minima, in high resolution regional climate data. The methods employ a hierarchical triangular mesh, which is tailored to the regional climate data by only subdividing triangles, from an initial icosahedron, within the domain of the data. The regional data is then regridded to this triangular mesh at each level of the grid, producing a compact representation of the data at numerous resolutions. Storm indicative features are detected by first subtracting the background field, represented by a low resolution version of the data, which occurs at a lower level in the mesh. Anomalies from this background field are detected, as feature objects, at a mesh level which corresponds to the spatial scale of the feature being detected and then refined to the highest mesh level. These feature objects are expanded to an outer contour and overlapping objects are merged. The centre points of these objects are tracked across timesteps by applying an optimisation scheme which uses five hierarchical rules. Objects are added to tracks based on the highest rule in the scheme they pass and, if two objects pass the same rule, the cost of adding the object to the track. An object exchange scheme ensures that adding an object to a track is locally optimal. An additional track optimisation phase is performed which exchanges segments between tracks and merges tracks to obtain a globally optimal track set. To validate the suite of algorithms they are applied to the ERA-Interim reanalysis dataset and compared to other storm-indicative feature tracking algorithms.

  9. Radiation length imaging with high-resolution telescopes

    NASA Astrophysics Data System (ADS)

    Stolzenberg, U.; Frey, A.; Schwenker, B.; Wieduwilt, P.; Marinas, C.; Lütticke, F.

    2017-02-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length X/X0 profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D images of the radiation length of thin planar objects. At the heart of the X/X0 imaging is a spatially resolved measurement of the scattering angles of particles traversing the object under study. The main challenges are the alignment of the reference telescope and the calibration of its angular resolution. In order to demonstrate the capabilities of X/X0 imaging, a test beam experiment has been conducted. The devices under test were two mechanical prototype modules of the Belle II vertex detector. A data sample of 100 million tracks at 4 GeV has been collected, which is sufficient to resolve complex material profiles on the 30 μm scale.

  10. A CARS solution with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Landwehr, Stefanie; Lurquin, Vanessa; Hay, William C.; Krishnamachari, Vishnu; Schwarz, Ulf

    2011-03-01

    Confocal and multiphoton microscopy are powerful fluorescence techniques for morphological and dynamics studies of labeled elements. For non-fluorescent components, CARS (Coherent Anti-Stokes Raman Scattering) microscopy can be used for imaging various elements of cells such as lipids, proteins, DNA, etc. This technique is based on the intrinsic vibrational properties of the molecules. Leica Microsystems has combined CARS technology with its TCS SP5 II confocal microscope to provide several advantages for CARS imaging. The Leica TCS CARS combines two technologies in one system: a conventional scanner for maximum accuracy and a resonant scanner for highly time resolved imaging. For CARS microscopy, two picosecond near-infrared lasers are overlapped tightly, spatially and temporally, and sent directly into the confocal system. The conventional scanner can be used for morphological studies and the resonant scanner for following dynamic processes of unstained living cells. The fast scanner has several advantages over other solutions. First, the sectioning is truly confocal and does not suffer from spatial leakage. Second, the high speed (29 images/sec @ 512x512 pixels) provides fast data acquisition at video rates, allowing studies at the sub-cellular level. In summary, CARS microscopy combined with the tandem scanner makes the Leica TCS CARS a powerful tool for multimodal and three-dimensional imaging of chemical and biological sample.

  11. High Resolution non-Markovianity in NMR

    PubMed Central

    Bernardes, Nadja K.; Peterson, John P. S.; Sarthour, Roberto S.; Souza, Alexandre M.; Monken, C. H.; Roditi, Itzhak; Oliveira, Ivan S.; Santos, Marcelo F.

    2016-01-01

    Memoryless time evolutions are ubiquitous in nature but often correspond to a resolution-induced approximation, i.e. there are correlations in time whose effects are undetectable. Recent advances in the dynamical control of small quantum systems provide the ideal scenario to probe some of these effects. Here we experimentally demonstrate the precise induction of memory effects on the evolution of a quantum coin (qubit) by correlations engineered in its environment. In particular, we design a collisional model in Nuclear Magnetic Resonance (NMR) and precisely control the strength of the effects by changing the degree of correlation in the environment and its time of interaction with the qubit. We also show how these effects can be hidden by the limited resolution of the measurements performed on the qubit. The experiment reinforces NMR as a test bed for the study of open quantum systems and the simulation of their classical counterparts. PMID:27669652

  12. Quantum interpolation for high-resolution sensing.

    PubMed

    Ajoy, Ashok; Liu, Yi-Xiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Bissbort, Ulf; Cappellaro, Paola

    2017-02-28

    Recent advances in engineering and control of nanoscale quantum sensors have opened new paradigms in precision metrology. Unfortunately, hardware restrictions often limit the sensor performance. In nanoscale magnetic resonance probes, for instance, finite sampling times greatly limit the achievable sensitivity and spectral resolution. Here we introduce a technique for coherent quantum interpolation that can overcome these problems. Using a quantum sensor associated with the nitrogen vacancy center in diamond, we experimentally demonstrate that quantum interpolation can achieve spectroscopy of classical magnetic fields and individual quantum spins with orders of magnitude finer frequency resolution than conventionally possible. Not only is quantum interpolation an enabling technique to extract structural and chemical information from single biomolecules, but it can be directly applied to other quantum systems for superresolution quantum spectroscopy.

  13. High Resolution non-Markovianity in NMR

    NASA Astrophysics Data System (ADS)

    Bernardes, Nadja K.; Peterson, John P. S.; Sarthour, Roberto S.; Souza, Alexandre M.; Monken, C. H.; Roditi, Itzhak; Oliveira, Ivan S.; Santos, Marcelo F.

    2016-09-01

    Memoryless time evolutions are ubiquitous in nature but often correspond to a resolution-induced approximation, i.e. there are correlations in time whose effects are undetectable. Recent advances in the dynamical control of small quantum systems provide the ideal scenario to probe some of these effects. Here we experimentally demonstrate the precise induction of memory effects on the evolution of a quantum coin (qubit) by correlations engineered in its environment. In particular, we design a collisional model in Nuclear Magnetic Resonance (NMR) and precisely control the strength of the effects by changing the degree of correlation in the environment and its time of interaction with the qubit. We also show how these effects can be hidden by the limited resolution of the measurements performed on the qubit. The experiment reinforces NMR as a test bed for the study of open quantum systems and the simulation of their classical counterparts.

  14. Ultra-high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Oxley, Mark P.; Lupini, Andrew R.; Pennycook, Stephen J.

    2017-02-01

    The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. We briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed to describe a more exact imaging theory starting from Yoshioka’s formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.

  15. Ultra-high resolution electron microscopy

    DOE PAGES

    Oxley, Mark P.; Lupini, Andrew R.; Pennycook, Stephen J.

    2016-12-23

    The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. Here we briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed tomore » describe a more exact imaging theory starting from Yoshioka’s formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.« less

  16. Ultra-high resolution electron microscopy

    SciTech Connect

    Oxley, Mark P.; Lupini, Andrew R.; Pennycook, Stephen J.

    2016-12-23

    The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. Here we briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed to describe a more exact imaging theory starting from Yoshioka’s formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.

  17. Recent Progress in High-Resolution Observations

    NASA Astrophysics Data System (ADS)

    Berger, T. E.; Title, A. M.

    2004-12-01

    We review recent optical observations of the solar photosphere and chromosphere with an emphasis on those observations that attain spatial resolution values below 0.25 arcsec. Results from the Dutch Open Telescope (DOT) on La Palma, the Dunn Solar Telescope (DST) on Sacramento Peak, and the Vacuum Tower Telescope (VTT) on Tenerife are reviewed. Particular emphasis is placed on results from the newly commissioned Swedish 1-meter Solar Telescope (SST) on La Palma following our successful campaigns at this instrument in 2002 and 2003. The SST with adaptive optics can now achieve 0.0 arcsec resolution imaging of the Sun in multiple simultaneous wavelengths. Scientific findings on the structure of sunspot penumbrae and lightbridges, small-scale magnetic elements, and faculae at the limb are reviewed. The Lockheed Solar Optical Universal Polarimeter (SOUP) birefringent tunable filter at the SST produced 0.16 arcsec resolution magnetograms in the summer of 2003 that have shed new light on the structure and dynamics of small-scale magnetic fields in the solar photosphere.

  18. High resolution, high bandwidth global shutter CMOS area scan sensors

    NASA Astrophysics Data System (ADS)

    Faramarzpour, Naser; Sonder, Matthias; Li, Binqiao

    2013-10-01

    Global shuttering, sometimes also known as electronic shuttering, enables the use of CMOS sensors in a vast range of applications. Teledyne DALSA Global shutter sensors are able to integrate light synchronously across millions of pixels with microsecond accuracy. Teledyne DALSA offers 5 transistor global shutter pixels in variety of resolutions, pitches and noise and full-well combinations. One of the recent generations of these pixels is implemented in 12 mega pixel area scan device at 6 um pitch and that images up to 70 frames per second with 58 dB dynamic range. These square pixels include microlens and optional color filters. These sensors also offer exposure control, anti-blooming and high dynamic range operation by introduction of a drain and a PPD reset gate to the pixel. The state of the art sense node design of Teledyne DALSA's 5T pixel offers exceptional shutter rejection ratio. The architecture is consistent with the requirements to use stitching to achieve very large area scan devices. Parallel or serial digital output is provided on these sensors using on-chip, column-wise analog to digital converters. Flexible ADC bit depth combined with windowing (adjustable region of interest, ROI) allows these sensors to run with variety of resolution/bandwidth combinations. The low power, state of the art LVDS I/O technology allows for overall power consumptions of less than 2W at full performance conditions.

  19. Multifractal analysis of high resolution solar wind proton density measurements

    NASA Astrophysics Data System (ADS)

    Sorriso-Valvo, Luca; Carbone, Francesco; Leonardis, Ersilia; Chen, Christopher H. K.; Šafránková, Jana; Němeček, Zdenek

    2017-03-01

    The solar wind is a highly turbulent medium, with a high level of field fluctuations throughout a broad range of scales. These include an inertial range where a turbulent cascade is assumed to be active. The solar wind cascade shows intermittency, which however may depend on the wind conditions. Recent observations have shown that ion-scale magnetic turbulence is almost self-similar, rather than intermittent. A similar result was observed for the high resolution measurements of proton density provided by the spacecraft Spektr-R. Intermittency may be interpreted as the result of the multifractal properties of the turbulent cascade. In this perspective, this paper is devoted to the description of the multifractal properties of the high resolution density measurements. In particular, we have used the standard coarse-graining technique to evaluate the generalized dimensions Dq , and from these the multifractal spectrum f (α) , in two ranges of scale. A fit with the p-model for intermittency provided a quantitative measure of multifractality. Such indicator was then compared with alternative measures: the width of the multifractal spectrum, the peak of the kurtosis, and its scaling exponent. The results indicate that the small-scale fluctuations are multifractal, and suggest that different measures of intermittency are required to fully understand the small scale cascade.

  20. Medusae Fossae Formation - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    An exotic terrain of wind-eroded ridges and residual smooth surfaces are seen in one of the highest resolution images ever taken of Mars from orbit. The Medusae Fossae formation is believed to be formed of the fragmental ejecta of huge explosive volcanic eruptions. When subjected to intense wind-blasting over hundreds of millions of years, this material erodes easily once the uppermost tougher crust is breached. The crust, or cap rock, can be seen in the upper right part of the picture. The finely-spaced ridges are similar to features on Earth called yardangs, which are formed by intense winds plucking individual grains from, and by wind-driven sand blasting particles off, sedimentary deposits.

    The image was taken on October 30, 1997 at 11:05 AM PST, shortly after the Mars Global Surveyor spacecraft's 31st closest approach to Mars. The image covers an area 3.6 X 21.5 km (2.2 X 13.4 miles) at 3.6 m (12 feet) per picture element--craters only 11 m (36 feet, about the size of a swimming pool) across can be seen. The best Viking view of the area (VO 1 387S34) has a resolution of 240 m/pixel, or 67 times lower resolution than the MOC frame.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  1. High Resolution Imaging of Space Objects.

    DTIC Science & Technology

    1981-03-01

    one second of arc, com - pared with 0.02 seconds of arc, the theoretical diffraction-limited resolution of a five-meter diameter telescope. That is...follows: First, fn = f *f(0) D (3, i,, so that factor can be divided out from the last three terms ot Lq. Vk (A). Second, let the coefficients of...tnor " porno one of them yields a function G(w) sucn that, Uy C-orol ay G) U, U> JC daf q are not equivalent. I i#: By Lemma , if F a, n n nlY one non

  2. DSCOVR High Time Resolution Solar Wind Measurements

    NASA Technical Reports Server (NTRS)

    Szabo, Adam

    2012-01-01

    The Deep Space Climate Observatory (DSCOVR), previously known as Triana, spacecraft is expected to be launched in late 2014. It will carry a fluxgate magnetometer, Faraday Cup solar wind detector and a top-hat electron electrostatic analyzer. The Faraday Cup will provide an unprecedented 10 vectors/sec time resolution measurement of the solar wind proton and alpha reduced distribution functions. Coupled with the 40 vector/sec vector magnetometer measurements, the identification of specific wave modes in the solar wind will be possible for the first time. The science objectives and data products of the mission will be discussed.

  3. High resolution IVEM tomography of biological specimens

    SciTech Connect

    Sedat, J.W.; Agard, D.A.

    1997-02-01

    Electron tomography is a powerful tool for elucidating the three-dimensional architecture of large biological complexes and subcellular organelles. The introduction of intermediate voltage electron microscopes further extended the technique by providing the means to examine very large and non-symmetrical subcellular organelles, at resolutions beyond what would be possible using light microscopy. Recent studies using electron tomography on a variety of cellular organelles and assemblies such as centrosomes, kinetochores, and chromatin have clearly demonstrated the power of this technique for obtaining 3D structural information on non-symmetric cell components. When combined with biochemical and molecular observations, these 3D reconstructions have provided significant new insights into biological function.

  4. High resolution obtained by photoelectric scanning techniques.

    NASA Technical Reports Server (NTRS)

    Hall, J. S.

    1972-01-01

    Several applications of linear scanning of different types of objects are described; examples include double stars, satellites, the Red Spot of Jupiter and a landing site on the moon. This technique allows one to achieve a gain of about an order of magnitude in resolution over conventional photoelectric techniques; it is also effective in providing sufficient data for removing background effects and for the application of deconvolution procedures. Brief consideration is given to two-dimensional scanning, either at the telescope or of electronographic images in the laboratory. It is suggested that some of the techniques described should be given serious consideration for space applications.

  5. Honey bee protein atlas at organ-level resolution

    PubMed Central

    Chan, Queenie W.T.; Chan, Man Yi; Logan, Michelle; Fang, Yuan; Higo, Heather; Foster, Leonard J.

    2013-01-01

    Genome sequencing has provided us with gene lists but cannot tell us where and how their encoded products work together to support life. Complex organisms rely on differential expression of subsets of genes/proteins in organs and tissues, and, in concert, evolved to their present state as they function together to improve an organism's overall reproductive fitness. Proteomics studies of individual organs help us understand their basic functions, but this reductionist approach misses the larger context of the whole organism. This problem could be circumvented if all the organs in an organism were comprehensively studied by the same methodology and analyzed together. Using honey bees (Apis mellifera L.) as a model system, we report here an initial whole proteome of a complex organism, measuring 29 different organ/tissue types among the three honey bee castes: queen, drone, and worker. The data reveal that, e.g., workers have a heightened capacity to deal with environmental toxins and queens have a far more robust pheromone detection system than their nestmates. The data also suggest that workers altruistically sacrifice not only their own reproductive capacity but also their immune potential in favor of their queen. Finally, organ-level resolution of protein expression offers a systematic insight into how organs may have developed. PMID:23878156

  6. High-resolution ground-based spectroscopy: where and how ?

    NASA Astrophysics Data System (ADS)

    Pallavicini, R.

    2002-07-01

    An overview is presented of high-resolution optical spectrographs in operation or under development at large telescopes, with emphasis on those facilities best suited for the study of late-type stars and stellar surface inhomogeneities. Plans for the development of new high-resolution spectroscopic instruments are discussed with emphasis on the ICE spectrograph for the PEPSI spectropolarimeter at the LBT.

  7. High Resolution Mapping of Pluto's Albedo Distribution

    NASA Astrophysics Data System (ADS)

    Stern, S.

    1994-01-01

    This proposal requests time to map Pluto's albedo distribution, using the highest possible resolution of the CYCLE 4 HST. Maps will be made in several key UV and visible bandpasses. Our scientific objectives are to (a) study the distribution of light and dark areas, (b) make the first disk-resolved estimates of Pluto's limb darkening, and (c) compositional discriminate pure from contaminated frost regions. These objectives have not been previously achievable, but are essential to understanding the surface morphology, volatile transport, and the root cause of Pluto's secular lightcurve variations. It may also be possible to detect evidence of the reported limb haze layer(s) in Pluto's atmosphere. These maps will also provide the first direct check on Pluto maps made through indirect techniques. Owing to Pluto's elliptic orbit, we expect the distribution of albedo to change (on a years-to-decade timescale) as Pluto draws away from perihelion and volatile transport proceeds. The proposed observations will document the albedo state at three rotational epochs near the time of perihelion. These maps will be obtained in two colors, by the FOC. No other astronomical instrument has sufficient resolution to accomplish these important scientific objectives.

  8. High Resolution Chemical Study of ALH84001

    NASA Technical Reports Server (NTRS)

    Conrad, Pamela G.; Douglas, Susanne; Kuhlman, Kimberly R.

    2001-01-01

    We have studied the chemistry of a sample of the SNC meteorite ALH84001 using an environmental scanning electron microscope (ESEM) with an energy dispersive chemical analytical detector and a focused ion beam secondary ion mass spectrometer (FIB-SIMS). Here we present the chemical data, both spectra and images, from two techniques that do not require sample preparation with a conductive coating, thus eliminating the possibility of preparation-induced textural artifacts. The FIB-SIMS instrument includes a column optimized for SEM with a quadrupole type mass spectrometer. Its spatial and spectral resolution are 20 nm and 0.4 AMU, respectively. The spatial resolution of the ESEM for chemical analysis is about 100 nm. Limits of detection for both instruments are mass dependent. Both the ESEM and the FIB-SIMS instrument revealed contrasting surficial features; crumbled, weathered appearance of the matrix in some regions as well as a rather ubiquitous presence of euhedral halite crystals, often associated with cracks or holes in the surface of the rock. Other halogen elements present in the vicinity of the NaCl crystals include K and Br. In this report, elemental inventories are shown as mass spectra and as X-ray maps.

  9. High-resolution imaging with AEOS

    NASA Astrophysics Data System (ADS)

    Patience, Jennifer; Macintosh, Bruce A.; Max, Claire E.

    2001-12-01

    The U.S. Air Force Advanced Electro-Optical System (AEOS) which includes a 941 actuator adaptive optics system on a 3.7 m telescope has recently been made available for astronomical programs. Operating at a wavelength of 750 nm, the diffraction-limited angular resolution of the system is 0'.04; currently, the magnitude limit is V approximately 7 mag. At the distances of nearby open clusters, diffraction- limited images should resolve companions with separations as small as 4 - 6 AU - comparable to the Sun-Jupiter distance. The ability to study such close separations is critical, since most companions are expected to have separations in the few AU to tens of AU range. With the exceptional angular resolution of the current AEOS setup, but restricted target magnitude range, we are conducting a companion search of a large, well-defined sample of bright early-type stars in nearby open clusters and in the field. Our data set will both characterize this relatively new adaptive optics system and answer questions in binary star formation and stellar X- ray activity. We will discuss our experience using AEOS, the data analysis involved, and our initial results.

  10. High Resolution X-ray Imaging

    NASA Technical Reports Server (NTRS)

    Cash, Webster

    2002-01-01

    NAG5-5020 covered a period of 7.5 years during which a great deal of progress was made in x-ray optical techniques under this grant. We survived peer review numerous times during the effort to keep the grant going. In 1994, when the grant started we were actively pursuing the application of spherical mirrors to improving x-ray telescopes. We had found that x-ray detectors were becoming rapidly more sophisticated and affordable, but that x-ray telescopes were only being improved through the intense application of money within the AXAF program. Clearly new techniques for the future were needed. We were successful in developing and testing at the HELSTF facility in New Mexico a four reflection coma-corrected telescope made from spheres. We were able to demonstrate 0.3 arcsecond resolution, almost to the diffraction limit of the system. The community as a whole was, at that time, not particularly interested in looking past AXAF (Chandra) and the effort needed to evolve. Since we had reached the diffraction limit using non-Wolter optics we then decided to see if we could build an x-ray interferometer in the laboratory. In the lab the potential for improved resolution was substantial. If synthetic aperture telescopes could be built in space, then orders of magnitude improvement would become feasible. In 1998 NASA, under the direction of Dr Nick White of Goddard, started a study to assess the potential and feasibility of x-ray interferometry in space. My work became of central interest to the committee because it indicated that such was possible. In early 1999 we had the breakthrough that allowed us build a practical interferometer. By using flats and hooking up with the Marshall Space Flight Center facilities we were able to demonstrate fringes at 1.25keV on a one millimeter baseline. This actual laboratory demonstration provided the solid proof of concept that NASA needed. As the year progressed the future of x-ray astronomy jelled around the Maxim program. Maxim is a

  11. Fine resolution topographic mapping of the Jovian moons: a Ka-band high resolution topographic mapping interferometric synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Madsen, Soren N.; Carsey, Frank D.; Turtle, Elizabeth P.

    2003-01-01

    The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through us of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100 km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.

  12. Fine Resolution Topographic Mapping of the Jovian Moons: A Ka-Band High Resolution Topographic Mapping Interferometric Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Madsen, S. N.; Carsey, F. D.; Turtle, E. P.

    2003-01-01

    The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through use of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.

  13. Modified Noise Power Ratio testing of high resolution digitizers

    SciTech Connect

    McDonald, T.S.

    1994-05-01

    A broadband, full signal range, side-by-side (tandem) test method for estimating the internal noise performance of high resolution digitizers is described and illustrated. The technique involves a re-definition of the traditional Noise Power Ratio (NPR) test, a change that not only makes this test applicable to higher resolution systems than was previously practical, but also enhances its value and flexibility. Since coherence analysis is the basis of this new definition, and since the application of coherence procedures to high resolution data poses several problems, this report discusses these problems and their resolution.

  14. Practical Applications Using A High Resolution Infrared Imaging System

    NASA Astrophysics Data System (ADS)

    Baraniak, David W.

    1981-01-01

    Infrared imaging systems can be classified into three general categories, low resolution, medium resolution and high resolution. It is the purpose of this paper to highlight specific applications best suited to high resolution, television capatable, infrared data acquisition techniques. The data was collected from both ground loped andoaerial based mobile positions where the temperature differentials varied from 15 C to 25 C. Specific applications include scanning building complexes from the exterior using a ground based moving vehicle, scanning buildings, concrete bridge decks and terrain from the air using a helicopter and scanning building interiors using a mobile hand truck.

  15. High-Level Radioactive Waste.

    ERIC Educational Resources Information Center

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  16. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS

    SciTech Connect

    Krishnan, Venkat; Cole, Wesley

    2016-11-14

    Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERC region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.

  17. Precision Viticulture from Multitemporal, Multispectral Very High Resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Kandylakis, Z.; Karantzalos, K.

    2016-06-01

    In order to exploit efficiently very high resolution satellite multispectral data for precision agriculture applications, validated methodologies should be established which link the observed reflectance spectra with certain crop/plant/fruit biophysical and biochemical quality parameters. To this end, based on concurrent satellite and field campaigns during the veraison period, satellite and in-situ data were collected, along with several grape samples, at specific locations during the harvesting period. These data were collected for a period of three years in two viticultural areas in Northern Greece. After the required data pre-processing, canopy reflectance observations, through the combination of several vegetation indices were correlated with the quantitative results from the grape/must analysis of grape sampling. Results appear quite promising, indicating that certain key quality parameters (like brix levels, total phenolic content, brix to total acidity, anthocyanin levels) which describe the oenological potential, phenolic composition and chromatic characteristics can be efficiently estimated from the satellite data.

  18. The CMS High Level Trigger

    NASA Astrophysics Data System (ADS)

    Trocino, Daniele

    2014-06-01

    The CMS experiment has been designed with a two-level trigger system: the Level-1 Trigger, implemented in custom-designed electronics, and the High-Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. A software trigger system requires a tradeoff between the complexity of the algorithms running with the available computing power, the sustainable output rate, and the selection efficiency. We present the performance of the main triggers used during the 2012 data taking, ranging from simple single-object selections to more complex algorithms combining different objects, and applying analysis-level reconstruction and selection. We discuss the optimisation of the trigger and the specific techniques to cope with the increasing LHC pile-up, reducing its impact on the physics performance.

  19. The high spectral resolution (scanning) lidar (HSRL)

    SciTech Connect

    Eloranta, E.

    1995-09-01

    Lidars enable the spatial resolution of optical depth variation in clouds. The optical depth must be inverted from the backscatter signal, a process which is complicated by the fact that both molecular and aerosol backscatter signals are present. The HSRL has the advantage of allowing these two signals to be separated. It has a huge dynamic range, allowing optical depth retrieval for t = 0.01 to 3. Depolarization is used to determine the nature of hydrometeors present. Experiments show that water clouds must almost always be taken into account during cirrus observations. An exciting new development is the possibility of measuring effective radius via diffraction peak width and variable field-of-view measurements. 2 figs.

  20. High Resolution X-ray Imaging

    NASA Technical Reports Server (NTRS)

    Cash, Webster

    2002-01-01

    NAG5-5020 covered a period of 7.5 years during which a great deal of progress was made in x-ray optical techniques under this grant. We survived peer review numerous times during the effort to keep the grant going. In 1994, when the grant started we were actively pursuing the application of spherical mirrors to improving x-ray telescopes. We had found that x-ray detectors were becoming rapidly more sophisticated and affordable, but that x-ray telescopes were only being improved through the intense application of money within the AXAF program. Clearly new techniques for the future were needed. We were successful in developing and testing at the HELSTF facility in New Mexico a four reflection coma-corrected telescope made from spheres. We were able to demonstrate 0.3 arcsecond resolution, almost to the diffraction limit of the system. The community as a whole was, at that time, not particularly interested in looking past AXAF (Chandra) and the effort needed to evolve. Since we had reached the diffraction limit using non-Wolter optics we then decided to see if we could build an x-ray interferometer in the laboratory. In the lab the potential for improved resolution was substantial. If synthetic aperture telescopes could be built in space, then orders of magnitude improvement would become feasible. In 1998 NASA, under the direction of Dr. Nick White of Goddard, started a study to assess the potential and feasibility of x-ray interferometry in space. My work became of central interest to the committee because it indicated that such was possible. In early 1999 we had the breakthrough that allowed us build a practical interferometer. By using flats and hooking up with the Marshall Space Flight Center facilities we were able to demonstrate fringes at 1.25keV on a one millimeter baseline. This actual laboratory demonstration provided the solid proof of concept that NASA needed.

  1. Research Relative to High Spatial Resolution Passive Microwave Sounding Systems

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.

    1984-01-01

    Methods to obtain high resolution passive microwave weather observations, and understanding of their probable impact on numerical weather prediction accuracy were investigated. The development of synthetic aperture concepts for geosynchronous passive microwave sounders were studied. The effects of clouds, precipitation, surface phenomena, and atmospheric thermal fine structure on a scale of several kilometers were examined. High resolution passive microwave sounders (e.g., AMSU) with an increased number of channels will produce initialization data for numerical weather prediction (NWP) models with both increased spatial resolution and coverage. The development of statistical models for error growth in high resolution primitive equation NWP models which permit the consequences of various observing system alternatives, including sensors and assimilation times and procedures is discussed. A high resolution three dimensional primitive equation NWP model to determine parameters in an error growth model similar to that formulated by Lorenz, but with more degrees of freedom is utilized.

  2. High-resolution iris image reconstruction from low-resolution imagery

    NASA Astrophysics Data System (ADS)

    Barnard, R.; Pauca, V. P.; Torgersen, T. C.; Plemmons, R. J.; Prasad, S.; van der Gracht, J.; Nagy, J.; Chung, J.; Behrmann, G.; Mathews, S.; Mirotznik, M.

    2006-08-01

    We investigate the use of a novel multi-lens imaging system in the context of biometric identification, and more specifically, for iris recognition. Multi-lenslet cameras offer a number of significant advantages over standard single-lens camera systems, including thin form-factor and wide angle of view. By using appropriate lenslet spacing relative to the detector pixel pitch, the resulting ensemble of images implicitly contains subject information at higher spatial frequencies than those present in a single image. Additionally, a multi-lenslet approach enables the use of observational diversity, including phase, polarization, neutral density, and wavelength diversities. For example, post-processing multiple observations taken with differing neutral density filters yields an image having an extended dynamic range. Our research group has developed several multi-lens camera prototypes for the investigation of such diversities. In this paper, we present techniques for computing a high-resolution reconstructed image from an ensemble of low-resolution images containing sub-pixel level displacements. The quality of a reconstructed image is measured by computing the Hamming distance between the Daugman 4 iris code of a conventional reference iris image, and the iris code of a corresponding reconstructed image. We present numerical results concerning the effect of noise and defocus blur in the reconstruction process using simulated data and report preliminary work on the reconstruction of actual iris data obtained with our camera prototypes.

  3. Theoretical performance analysis for CMOS based high resolution detectors.

    PubMed

    Jain, Amit; Bednarek, Daniel R; Rudin, Stephen

    2013-03-06

    High resolution imaging capabilities are essential for accurately guiding successful endovascular interventional procedures. Present x-ray imaging detectors are not always adequate due to their inherent limitations. The newly-developed high-resolution micro-angiographic fluoroscope (MAF-CCD) detector has demonstrated excellent clinical image quality; however, further improvement in performance and physical design may be possible using CMOS sensors. We have thus calculated the theoretical performance of two proposed CMOS detectors which may be used as a successor to the MAF. The proposed detectors have a 300 μm thick HL-type CsI phosphor, a 50 μm-pixel CMOS sensor with and without a variable gain light image intensifier (LII), and are designated MAF-CMOS-LII and MAF-CMOS, respectively. For the performance evaluation, linear cascade modeling was used. The detector imaging chains were divided into individual stages characterized by one of the basic processes (quantum gain, binomial selection, stochastic and deterministic blurring, additive noise). Ranges of readout noise and exposure were used to calculate the detectors' MTF and DQE. The MAF-CMOS showed slightly better MTF than the MAF-CMOS-LII, but the MAF-CMOS-LII showed far better DQE, especially for lower exposures. The proposed detectors can have improved MTF and DQE compared with the present high resolution MAF detector. The performance of the MAF-CMOS is excellent for the angiography exposure range; however it is limited at fluoroscopic levels due to additive instrumentation noise. The MAF-CMOS-LII, having the advantage of the variable LII gain, can overcome the noise limitation and hence may perform exceptionally for the full range of required exposures; however, it is more complex and hence more expensive.

  4. Whole-animal imaging with high spatio-temporal resolution

    NASA Astrophysics Data System (ADS)

    Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.

    2016-03-01

    We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.

  5. RPython high-level synthesis

    NASA Astrophysics Data System (ADS)

    Cieszewski, Radoslaw; Linczuk, Maciej

    2016-09-01

    The development of FPGA technology and the increasing complexity of applications in recent decades have forced compilers to move to higher abstraction levels. Compilers interprets an algorithmic description of a desired behavior written in High-Level Languages (HLLs) and translate it to Hardware Description Languages (HDLs). This paper presents a RPython based High-Level synthesis (HLS) compiler. The compiler get the configuration parameters and map RPython program to VHDL. Then, VHDL code can be used to program FPGA chips. In comparison of other technologies usage, FPGAs have the potential to achieve far greater performance than software as a result of omitting the fetch-decode-execute operations of General Purpose Processors (GPUs), and introduce more parallel computation. This can be exploited by utilizing many resources at the same time. Creating parallel algorithms computed with FPGAs in pure HDL is difficult and time consuming. Implementation time can be greatly reduced with High-Level Synthesis compiler. This article describes design methodologies and tools, implementation and first results of created VHDL backend for RPython compiler.

  6. Spontaneous Raman scattering as a high resolution XUV radiation source

    NASA Technical Reports Server (NTRS)

    Rothenberg, J. E.; Young, J. F.; Harris, S. E.

    1983-01-01

    A type of high resolution XUV radiation source is described which is based upon spontaneous anti-Stokes scattering of tunable incident laser radiation from atoms excited to metastable levels. The theory of the source is summarized and two sets of experiments using He (1s2s)(1)S atoms, produced in a cw hollow cathode and in a pulsed high power microwave discharge, are discussed. The radiation source is used to examine transitions originating from the 3p(6) shell of potassium. The observed features include four previously unreported absorption lines and several sharp interferences of closely spaced autoionizing lines. A source linewidth of about 1.9 cm(-1) at 185,000 cm(-1) is demonstrated.

  7. High Resolution Cloud Microphysics and Radiation Studies

    DTIC Science & Technology

    2011-06-16

    characteristics of mid level altocumulus clouds and upper level visible and subvisual cirrus clouds The MPL lidar provided information about the temporal...balloon, lidar, and radar study of cirrus and altocumulus clouds to further investigate the presence of multi- cloud and nearly cloud -free layers...data set of the clouds and thermodynanuc structure to build a mesoscale and LF.S test-bed for cirrus and altocumulus cloud layers. The project was

  8. Cheetah: A high frame rate, high resolution SWIR image camera

    NASA Astrophysics Data System (ADS)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  9. High-resolution tomographic imaging of microvessels

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Lang, Sabrina; Dominietto, Marco; Rudin, Markus; Schulz, Georg; Deyhle, Hans; Germann, Marco; Pfeiffer, Franz; David, Christian; Weitkamp, Timm

    2008-08-01

    Cancer belongs to the primary diseases these days. Although different successful treatments including surgery, chemical, pharmacological, and radiation therapies are established, the aggressive proliferation of cancerous cells and the related formation of blood vessels has to be better understood to develop more powerful strategies against the different kinds of cancer. Angiogenesis is one of the crucial steps for the survival and metastasis formation of malignant tumors. Although therapeutic strategies attempting to inhibit these processes are being developed, the biological regulation is still unclear. This study concentrates on the three-dimensional morphology of vessels formed in a mouse tumor xenograft model post mortem. Synchrotron radiation-based micro computed tomography (SRμCT) could provide the necessary information that is essential for validating the simulations. Using mouse and human brain tissue, the different approaches to extract the vessel tree from SRμCT data are discussed. These approaches include corrosion casting, the application of contrast agents such as barium sulfate, tissue embedding, all of them regarded as materials science based. Alternatively, phase contrast tomography was used, which gave rise to promising results but still not reaches the spatial resolution to uncover the smallest capillaries.

  10. High-Resolution MOC Image of Phobos

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image of Phobos, the inner and larger of the two moons of Mars, was taken by the Mars Global Surveyor on August 19, 1998. This image shows a close-up of the largest crater on Phobos, Stickney, 10 kilometers (6 miles) in diameter. Individual boulders are visible on the near rim of the crater, and are presumed to be ejecta blocks from the impact that formed Stickney. Some of these boulders are enormous - more than 50 meters (160 feet) across. Also crossing at and near the rim of Stickney are shallow, elongated depressions called grooves. This crater is nearly half the size of Phobos and these grooves may be fractures caused by its formation. Phobos was observed by both the Mars Orbiter Camera (MOC) and Thermal Emission Spectrometer (TES). This image is one of the highest resolution images (4 meters or 13 feet per picture element or pixel) ever obtained of the Martian satellite.

    Malin Space Science Systems, Inc. and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Thermal Emission Spectrometer is operated by Arizona State University and was built by Raytheon Santa Barbara Remote Sensing. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  11. Eigenvector pruning method for high resolution beamforming.

    PubMed

    Quijano, Jorge E; Zurk, Lisa M

    2015-10-01

    This paper introduces an eigenvector pruning algorithm for the estimation of the signal-plus-interference eigenspace, required as a preliminary step to subspace beamforming. The proposed method considers large-aperture passive array configurations operating in environments with multiple maneuvering targets in background noise, in which the available data for estimation of sample covariances and eigenvectors are limited. Based on statistical properties of scalar products between deterministic and complex random vectors, this work defines a statistically justified threshold to identify target-related features embedded in the sample eigenvectors, leading to an estimator for the signal-bearing eigenspace. It is shown that data projection into this signal subspace results in sharpening of beamforming outputs corresponding to closely spaced targets and provides better target separation compared to current subspace beamformers. In addition, the proposed threshold gives the user control over the worst-case scenario for the number of false detections by the beamformer. Simulated data are used to quantify the performance of the subspace estimator according to the distance between estimated and true signal subspaces. Beamforming resolution using the proposed method is analyzed with simulated data corresponding to a horizontal line array, as well as experimental data from the Shallow Water Array Performance experiment.

  12. A New, Adaptable, Optical High-Resolution 3-Axis Sensor

    PubMed Central

    Buchhold, Niels; Baumgartner, Christian

    2017-01-01

    This article presents a new optical, multi-functional, high-resolution 3-axis sensor which serves to navigate and can, for example, replace standard joysticks in medical devices such as electric wheelchairs, surgical robots or medical diagnosis devices. A light source, e.g., a laser diode, is affixed to a movable axis and projects a random geometric shape on an image sensor (CMOS or CCD). The downstream microcontroller’s software identifies the geometric shape’s center, distortion and size, and then calculates x, y, and z coordinates, which can be processed in attached devices. Depending on the image sensor in use (e.g., 6.41 megapixels), the 3-axis sensor features a resolution of 1544 digits from right to left and 1038 digits up and down. Through interpolation, these values rise by a factor of 100. A unique feature is the exact reproducibility (deflection to coordinates) and its precise ability to return to its neutral position. Moreover, optical signal processing provides a high level of protection against electromagnetic and radio frequency interference. The sensor is adaptive and adjustable to fit a user’s range of motion (stroke and force). This recommendation aims to optimize sensor systems such as joysticks in medical devices in terms of safety, ease of use, and adaptability. PMID:28134824

  13. Edge technique Doppler lidar wind measurements with high vertical resolution.

    PubMed

    Korb, C L; Gentry, B M; Li, S X

    1997-08-20

    We have developed a Doppler lidar system using the edge technique and have made atmospheric lidar wind measurements. Line-of-sight wind profiles with a vertical resolution of 22 m have a standard deviation of 0.40 m /s for a ten-shot average. Day and night lidar measurements of the vector wind have been made for altitudes from 200 to 2000 m. We validated the lidar measurements by comparing them with independent rawinsonde and pilot balloon measurements of wind speed and direction. Good agreement was obtained. The instrumental noise for these data is 0.11 m /s for a 500-shot average, which is in good agreement with the observed minimum value of the standard deviation for the atmospheric measurements. The average standard deviation over 30 mins varied from 1.16 to 0.25 m /s for day and night, respectively. High spatial and temporal resolution lidar profiles of line-of-sight winds clearly show wind shear and turbulent features at the 1 -2-m /s level with a high signal-to-noise ratio and demonstrate the potential of the edge-technique lidar for studying turbulent processes and atmospheric dynamics.

  14. Low-dose high-resolution CT of lung parenchyma

    SciTech Connect

    Zwirewich, C.V.; Mayo, J.R.; Mueller, N.L. )

    1991-08-01

    To evaluate the efficacy of low-dose high-resolution computed tomography (HRCT) in the assessment of lung parenchyma, three observers reviewed the scans of 31 patients. The 1.5-mm-collimation, 2-second, 120-kVp scans were obtained at 20 and 200 mA at selected identical levels in the chest. The observers evaluated the visualization of normal pulmonary anatomy, various parenchymal abnormalities and their distribution, and artifacts. The low-dose and conventional scans were equivalent in the evaluation of vessels, lobar and segmental bronchi, and anatomy of secondary pulmonary lobules, and in characterizing the extent and distribution of reticulation, honeycomb cysts, and thickened interlobular septa. The low-dose technique failed to demonstrate ground-glass opacity in two of 10 cases (20%) and emphysema in one of nine cases (11%), in which they were evident but subtle on the high-dose scans. These differences were not statistically significant. Linear streak artifact was more prominent on images acquired with the low-dose technique, but the two techniques were judged equally diagnostic in 97% of cases. The authors conclude that HRCT images acquired at 20 mA yield anatomic information equivalent to that obtained with 200-mA scans in the majority of patients, without significant loss of spatial resolution or image degradation due to linear streak artifact.

  15. A New, Adaptable, Optical High-Resolution 3-Axis Sensor.

    PubMed

    Buchhold, Niels; Baumgartner, Christian

    2017-01-27

    This article presents a new optical, multi-functional, high-resolution 3-axis sensor which serves to navigate and can, for example, replace standard joysticks in medical devices such as electric wheelchairs, surgical robots or medical diagnosis devices. A light source, e.g., a laser diode, is affixed to a movable axis and projects a random geometric shape on an image sensor (CMOS or CCD). The downstream microcontroller's software identifies the geometric shape's center, distortion and size, and then calculates x, y, and z coordinates, which can be processed in attached devices. Depending on the image sensor in use (e.g., 6.41 megapixels), the 3-axis sensor features a resolution of 1544 digits from right to left and 1038 digits up and down. Through interpolation, these values rise by a factor of 100. A unique feature is the exact reproducibility (deflection to coordinates) and its precise ability to return to its neutral position. Moreover, optical signal processing provides a high level of protection against electromagnetic and radio frequency interference. The sensor is adaptive and adjustable to fit a user's range of motion (stroke and force). This recommendation aims to optimize sensor systems such as joysticks in medical devices in terms of safety, ease of use, and adaptability.

  16. High resolution coherence analysis between planetary and climate oscillations

    NASA Astrophysics Data System (ADS)

    Scafetta, Nicola

    2016-05-01

    This study investigates the existence of a multi-frequency spectral coherence between planetary and global surface temperature oscillations by using advanced techniques of coherence analysis and statistical significance tests. The performance of the standard Matlab mscohere algorithms is compared versus high resolution coherence analysis methodologies such as the canonical correlation analysis. The Matlab mscohere function highlights large coherence peaks at 20 and 60-year periods although, due to the shortness of the global surface temperature record (1850-2014), the statistical significance of the result depends on the specific window function adopted for pre-processing the data. In fact, window functions disrupt the low frequency component of the spectrum. On the contrary, using the canonical correlation analysis at least five coherent frequencies at the 95% significance level are found at the following periods: 6.6, 7.4, 14, 20 and 60 years. Thus, high resolution coherence analysis confirms that the climate system can be partially modulated by astronomical forces of gravitational, electromagnetic and solar origin. A possible chain of the physical causes explaining this coherence is briefly discussed.

  17. Modeling Spatial Dependencies in High-Resolution Overhead Imagery

    SciTech Connect

    Cheriyadat, Anil M; Bright, Eddie A; Vatsavai, Raju

    2011-01-01

    Human settlement regions with different physical and socio-economic attributes exhibit unique spatial characteristics that are often illustrated in high-resolution overhead imageries. For example- size, shape and spatial arrangements of man-made structures are key attributes that vary with respect to the socioeconomic profile of the neighborhood. Successfully modeling these attributes is crucial in developing advanced image understanding systems for interpreting complex aerial scenes. In this paper we present three different approaches to model the spatial context in the overhead imagery. First, we show that the frequency domain of the image can be used to model the spatial context [1]. The shape of the spectral energy contours characterize the scene context and can be exploited as global features. Secondly, we explore a discriminative framework based on the Conditional Random Fields (CRF) [2] to model the spatial context in the overhead imagery. The features derived from the edge orientation distribution calculated for a neighborhood and the associated class labels are used as input features to model the spatial context. Our third approach is based on grouping spatially connected pixels based on the low-level edge primitives to form support-regions [3]. The statistical parameters generated from the support-region feature distributions characterize different geospatial neighborhoods. We apply our approaches on high-resolution overhead imageries. We show that proposed approaches characterize the spatial context in overhead imageries.

  18. Reproducible high-resolution multispectral image acquisition in dermatology

    NASA Astrophysics Data System (ADS)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  19. High Resolution Aerosol Modeling: Decadal Changes in Radiative Forcing

    SciTech Connect

    Bergmann, D J; Chuang, C C; Govindasamy, B; Cameron-Smith, P J; Rotman, D A

    2005-02-01

    The Atmospheric Science Division of LLNL has performed high-resolution calculations of direct sulfate forcing using a DOE-provided computer resource at NERSC. We integrated our global chemistry-aerosol model (IMPACT) with the LLNL high-resolution global climate model (horizontal resolution as high as 100 km) to examine the temporal evolution of sulfate forcing since 1950. We note that all previous assessments of sulfate forcing reported in IPCC (2001) were based on global models with coarse spatial resolutions ({approx} 300 km or even coarser). However, the short lifetime of aerosols ({approx} days) results in large spatial and temporal variations of radiative forcing by sulfate. As a result, global climate models with coarse resolutions do not accurately simulate sulfate forcing on regional scales. It requires much finer spatial resolutions in order to address the effects of regional anthropogenic SO{sub 2} emissions on the global atmosphere as well as the effects of long-range transport of sulfate aerosols on the regional climate forcing. By taking advantage of the tera-scale computer resources at NERSC, we simulated the historic direct sulfate forcing at much finer spatial resolutions than ever attempted before. Furthermore, we performed high-resolution chemistry simulations and saved monthly averaged oxidant fields, which will be used in subsequent simulations of sulfate aerosol formation and their radiative impact.

  20. Ultrastable reference pulser for high-resolution spectrometers

    NASA Technical Reports Server (NTRS)

    Brenner, R.; Lenkszus, F. R.; Sifter, L. L.; Strauss, M. G.

    1970-01-01

    Solid-state double-pulse generator for a high resolution semiconductor detector meets specific requirements for resolution /0.05 percent/, amplitude range /0.1-13 MeV/, and repetition rate /0.1-1000 pulses per second/. A tag pulse is generated in coincidence with each reference pulse.

  1. High resolution data base for use with MAP

    SciTech Connect

    Tapley, W.C.; Harris, D.B.

    1987-05-05

    A high resolution cartographic data base of thw World is available from the CIA. We obtained this data, extracted portions of the data, and produced cartographic files of varying resolutions. The resulting data files are of the proper format for use with MAP (2), our in-house cartographic plotting program.

  2. SPARTAN: An Instructional High Resolution Land Combat Model

    DTIC Science & Technology

    1992-03-01

    AD-A248 1681111 1 1 1 11 1 I’Ii’ I! ! DTICELECTIED m APR,0 11992.S Oct-D SPARTAN: An Instructional High Rezolution Land Combat Model THESIS David...SPARTAN: An Instructional Accesion For - High Resolution Land Combat Model NTIS CRA&IDTIC TAB ., THESIS U. a,1:!ot%,ced U 1stilcatonl...developed an instructional high resolution land combat simulation model . The purpose of this model is to demonstrate common techniques of modeling used

  3. Determining Small Scale Albedos Using High Resolution Multiangle Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Markowski, G. R.; Davies, R.

    2005-05-01

    Current satellite short-wave (SW) albedo measurements, such as CERES's, have only a broad spatial resolution and cannot by themselves accurately measure reflectance (roughly solar "forcing") on small space and time scales. The major difficulty is that earth's surface reflectivity, including the atmosphere and clouds, is substantially anisotropic. However, accurate regional and time-dependent albedos are needed for studying causes of climate variability and change, and improving models from global to at least cloud resolving scales. A first step to obtain these albedos, for which we show results, is to accurately relate (and verify) the high resolution spatial and angular surface narrow-band MISR (Multi-Angle Imaging Spectroradiometer) radiance measurements aboard the Terra satellite to coincident total shortwave broadband (SWB) low resolution measurements from the onboard CERES instrument. Because MISR measures radiance of the same points along an orbital swath, it becomes possible to check and improve Angular (reflection) Distribution Models (ADMs) at small scales (< 1 km). The ADMs can later be used to invert a measured angular radiance to a local albedo. The difficulty lies in obtaining accurate ADMs for earth's highly varied surface and lighting conditions. We show prediction accuracy examples of CERES SWB vs. single and multiple band MISR data regressions. We include view angle dependence (9 angles: nadir plus 26, 46, 60, and 70 degrees fore and aft) and show improved accuracy when surface data, e.g., solar zenith and scattering angle, and surface type are included. In many cases, we predict angular (bidirectional) reflectance to ~ 0.01, or about 10 watts/sq m in irradiance. We also show examples of "difficult" scene types, such as varying levels of broken clouds, where accuracy degrades by a factor of ~2.

  4. High Resolution UV Observations of 47TUC

    NASA Astrophysics Data System (ADS)

    Paresce, Francesco

    1994-01-01

    M15 is the archetype of the post collapse globular cluster with a very dense core unresolvable from the ground and power law surface brightness radial profile. It also exhibits a central cusp in the velocity dispersion radial profile. All this indicates that the cluster has most likely experienced core collapse. It is not clear yet what state it finds itself in now but it seems likely that it may be rebounding from its approach to the singularity either because of the production of energy producing hard binaries or of a black hole. Early HST observations of the core of M15 have been inconclusive in this regard in that the specific character of core collapse is impressed on the stellar density radial profile within 1" or so from the gravity center, well within the aberrated wings of the PSF. WF/PC observations in the U band indicate a core of radius 2.2"=0.13pc due to an unresolved stellar component fainter than U=18. Multicolor FOC observations show that there is a significant population of UV-bright stars in this area. The only way to measure this crucial radius and thus determine unambiguosly the evolutionary status of this object is to resolve the faint stars in the core with the highest possible resolution and sensitivity. Only the FOC F/96 relay with COSTAR can do this job properly, with tremendous scientific impact brought by the first measurement of a collapsed core, possible indications of a black hole, a new population of blue objects and the first observations of white dwarfs.

  5. High-Resolution Array with Prony, MUSIC, and ESPRIT Algorithms

    DTIC Science & Technology

    1992-08-25

    N avalI Research La bora tory AD-A255 514 Washington, DC 20375-5320 NRL/FR/5324-92-9397 High-resolution Array with Prony, music , and ESPRIT...unlimited t"orm n pprovoiREPORT DOCUMENTATION PAGE OMB. o 0 104 0188 4. TITLE AND SUBTITLE S. FUNDING NUMBERS High-resolution Array with Prony. MUSIC . and...the array high-resolution properties of three algorithms: the Prony algo- rithm, the MUSIC algorithm, and the ESPRIT algorithm. MUSIC has been much

  6. Distributed MIMO Radar for Imaging and High Resolution Target Localization

    DTIC Science & Technology

    2012-02-02

    28-2012 Final Report 04/15/2009 - 11/30/2011 Distributed MIMO Radar for Imaging and High Resolution Target Localization FA9550-09-1-0303 Alexander M...randomly placed sensors. MIMO radar, High-Resolution radar 19 Distributed MIMO Radar for Imaging and High Resolution Target Localization Air Force Office...configured with its antennas collocated [6] or distributed over an area [7, 8]. We refer to radio elements of a MIMO radar as nodes. Nodes may be equipped

  7. High Resolution Multimode OTDR Measurement System

    NASA Astrophysics Data System (ADS)

    Rickenbach, Robert

    1987-01-01

    The recent shift in Fiber Optics from long haul telecommunications down to short links (LAN), such as smart buildings, interoffice networks and even mobile applications requires an adaptation to existing test instruments. The OTDR is probably most affected by these requirements. Natural physical constraints such as the speed of light and the inherently low backscatter levels are challenging factors in the design of such an instrument.

  8. a High-Resolution Study of the SILICON-29

    NASA Astrophysics Data System (ADS)

    Wallace, Paul Matthew

    The gamma-decays of 25 resonances in the ^{29}Si(p, gamma) reaction have been measured in the energy range E_{p} = 1.74 -2.50 MeV. This work was performed at the High Resolution Laboratory at Triangle Universities Nuclear Laboratory and represents a major step toward the goal of the determination of the complete level scheme of ^{30 }P from the ground state to 8820 keV. Previous and concurrent experiments have measured the ^ {29}Si(p.p) cross section as well as gamma-ray yields from the ^{29}Si(p,gamma), ^{29}Si(p,p_1 gamma) and ^{29} Si(p,p_2gamma) reactions in the range E_{p} = 1.04 -3.33 MeV. Future angular distribution experiments are planned. Spectral fluctuation properties are believed to give insight into the dynamics of quantum systems. This work was motivated by results from the study of the fluctuation properties of the nuclide ^{26} Al which indicates dynamics that fall between regular and chaotic. A high-resolution (~220 eV) proton beam is produced by the 4 MeV KN Van de Graaff accelerator housed in the High Resolution Laboratory. This beam is directed onto thin films of ^{29 }Si of thickness 1.5-3.0mug/cm ^2. Two high-purity germanium detectors are used to collect detailed gamma -ray spectra; one detector is surrounded by a bismuth germanate anti-Compton shield. These spectra have been analyzed and branching ratios for the resonances have been deduced. Once the branching ratios were determined, Jpi selection rules and recommended upper limits for reduced transition rates were used to reduce the range of possible quantum number (Jpi ; T ) assignments. Of the 25 resonances, sixteen had previous assignments which were confirmed by this work. The allowed ranges were reduced for seven resonances and two resonances had assignments which were changed outright. In addition, a level at E_{x} = 6006.1 keV was discovered; its branching ratios were determined and Jpi ;T assignment restricted.

  9. High resolution digital holography based on the point source scanning

    NASA Astrophysics Data System (ADS)

    Wang, Minchao; Wang, Dayong; Rong, Lu; Wang, Yunxin; Wang, Fengpeng; Lin, Qiaowen

    2016-10-01

    Digital holographic microscopy has been widely used for the imaging of micro-objects and biological samples. Lensless in-line digital holographic microscopy is capable of wide field-of-view imaging. However the spatial resolution of the reconstructed images is limited by the pixel size of the detector. The relative position shift between the sample and the detector can effectively improve the resolution in the traditional sub-pixel shifting method, but it requires a high precision of translation stage. To overcome this problem, we propose a method based on the point source scanning to realize sub-pixel shifting. High precision sub-pixel shifting is achieved easily by using the geometric between point source and detector. Through moving the point source, multiple holograms with sub-pixel shifts are captured. These holograms are merged together to obtained a high resolution hologram by a synthesizing algorithm. Then, the high resolution reconstructed image of the object can be obtained by the angular spectrum algorithm. The feasibility of the proposed method is demonstrated by simulation and experiments. A USAF resolution test target was used as the object. Compared with the traditional digital holography, a higher resolution reconstructed image is obtained by our method. The proposed method has the advantages of simple recording setup and lower precision requirement of the translation stage. It can achieve the wide field-of-view and high resolution imaging.

  10. Sensitivity study of reliable, high-throughput resolution metricsfor photoresists

    SciTech Connect

    Anderson, Christopher N.; Naulleau, Patrick P.

    2007-07-30

    The resolution of chemically amplified resists is becoming an increasing concern, especially for lithography in the extreme ultraviolet (EUV) regime. Large-scale screening and performance-based down-selection is currently underway to identify resist platforms that can support shrinking feature sizes. Resist screening efforts, however, are hampered by the absence of reliable resolution metrics that can objectively quantify resist resolution in a high-throughput fashion. Here we examine two high-throughput metrics for resist resolution determination. After summarizing their details and justifying their utility, we characterize the sensitivity of both metrics to two of the main experimental uncertainties associated with lithographic exposure tools, namely: limited focus control and limited knowledge of optical aberrations. For an implementation at EUV wavelengths, we report aberration and focus limited error bars in extracted resolution of {approx} 1.25 nm RMS for both metrics making them attractive candidates for future screening and down-selection efforts.

  11. High resolution pollutant measurements in complex urban ...

    EPA Pesticide Factsheets

    Measuring air pollution in real-time using an instrumented vehicle platform has been an emerging strategy to resolve air pollution trends at a very fine spatial scale (10s of meters). Achieving second-by-second data representative of urban air quality trends requires advanced instrumentation, such as a quantum cascade laser utilized to resolve carbon monoxide and real-time optical detection of black carbon. An equally challenging area of development is processing and visualization of complex geospatial air monitoring data to decipher key trends of interest. EPA’s Office of Research and Development staff have applied air monitoring to evaluate community air quality in a variety of environments, including assessing air quality surrounding rail yards, evaluating noise wall or tree stand effects on roadside and on-road air quality, and surveying of traffic-related exposure zones for comparison with land-use regression estimates. ORD has ongoing efforts to improve mobile monitoring data collection and interpretation, including instrumentation testing, evaluating the effect of post-processing algorithms on derived trends, and developing a web-based tool called Real-Time Geospatial Data Viewer (RETIGO) allowing for a simple plug-and-play of mobile monitoring data. Example findings from mobile data sets include an estimated 50% in roadside ultrafine particle levels when immediately downwind of a noise barrier, increases in neighborhood-wide black carbon levels (3

  12. III-Nitride full-scale high-resolution microdisplays

    NASA Astrophysics Data System (ADS)

    Day, Jacob; Li, J.; Lie, D. Y. C.; Bradford, Charles; Lin, J. Y.; Jiang, H. X.

    2011-07-01

    We report the realization and properties of a high-resolution solid-state self-emissive microdisplay based on III-nitride semiconductor micro-size light emitting diodes (µLEDs) capable of delivering video graphics images. The luminance level of III-nitride microdisplays is several orders of magnitude higher than those of liquid crystal and organic-LED displays. The pixel emission intensity was almost constant over an operational temperature range from 100 to -100 °C. The outstanding performance is a direct attribute of III-nitride semiconductors. An energy efficient active drive scheme is accomplished by hybrid integration between µLED arrays and Si CMOS (complementary metal-oxide-semiconductor) active matrix integrated circuits. These integrated devices could play important roles in emerging fields such as biophotonics and optogenetics, as well as ultra-portable products such as next generation pico-projectors.

  13. Strategies for Interpreting High Resolution Coherent Multidimensional Spectra

    NASA Astrophysics Data System (ADS)

    Wells, Thresa A.; House, Zuri R.; Chen, Peter C.; Strangfeld, Benjamin R.

    2013-06-01

    The electronic spectra of certain molecules can be very complex and consist of a high density of peaks. The high density of peaks results in severe spectral congestion, making conventional data analysis techniques extremely difficult to use. One solution to this problem is to use high resolution coherent 2D spectroscopy (HRC2DS), which can improve resolution and sort peaks into recognizable clusters. This technique requires new data analysis techniques to accurately assign peaks. Even though HRC2DS can improve spectral resolution, some regions of the spectra may still remain congested. The ability to solve this problem using even higher dimensional techniques (e.g., high resolution coherent 3D spectroscopy) with 3D pattern recognition and data analysis techniques will be discussed.

  14. High Resolution CryoFESEM of Microbial Surfaces

    NASA Astrophysics Data System (ADS)

    Erlandsen, Stanley; Lei, Ming; Martin-Lacave, Ines; Dunny, Gary; Wells, Carol

    2003-08-01

    The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at [minus sign]125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.

  15. Methodology of high-resolution photography for mural condition database

    NASA Astrophysics Data System (ADS)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  16. High resolution x-ray scattering and diffraction

    SciTech Connect

    Moncton, D.

    1983-01-01

    In the general class of high resolution x-ray scattering studies experiments one analyzes the distribution of photon energies and wave vectors resulting from illumination of a sample with collimated monochromatic radiation. Applications abound in the field of structural physics, which may be described as the study of structures for their intrinsic physical interest. This includes studies of novel states of matter, phase transitions, and dynamics. As both the wave vector and the energy of scattered photons are of interest, one may conceptually divide high resolution experimental setups for this work into two classes: those with high Q-resolution (momemtum transfer analysis) and those with high E-resolution (energy transfer analysis). The former class is exemplified by the existing experimental station on SSRL wiggler experimental station VII-2 and the proposed high Q-resolution wiggler station for NSLS Phase II. The latter class is dependent on extremely high flux, as discussed more fully below, and the possibility of constructing a high E-resolution scattering station fed by an x-ray undulator is one of the exciting opportunities presented by the proposed construction of a 6 GeV storage ring.

  17. High resolution survey for topographic surveying

    NASA Astrophysics Data System (ADS)

    Luh, L. C.; Setan, H.; Majid, Z.; Chong, A. K.; Tan, Z.

    2014-02-01

    In this decade, terrestrial laser scanner (TLS) is getting popular in many fields such as reconstruction, monitoring, surveying, as-built of facilities, archaeology, and topographic surveying. This is due the high speed in data collection which is about 50,000 to 1,000,000 three-dimensional (3D) points per second at high accuracy. The main advantage of 3D representation for the data is that it is more approximate to the real world. Therefore, the aim of this paper is to show the use of High-Definition Surveying (HDS), also known as 3D laser scanning for topographic survey. This research investigates the effectiveness of using terrestrial laser scanning system for topographic survey by carrying out field test in Universiti Teknologi Malaysia (UTM), Skudai, Johor. The 3D laser scanner used in this study is a Leica ScanStation C10. Data acquisition was carried out by applying the traversing method. In this study, the result for the topographic survey is under 1st class survey. At the completion of this study, a standard of procedure was proposed for topographic data acquisition using laser scanning systems. This proposed procedure serves as a guideline for users who wish to utilize laser scanning system in topographic survey fully.

  18. High-resolution electrohydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance.

    PubMed

    Kim, S-Y; Kim, K; Hwang, Y H; Park, J; Jang, J; Nam, Y; Kang, Y; Kim, M; Park, H J; Lee, Z; Choi, J; Kim, Y; Jeong, S; Bae, B-S; Park, J-U

    2016-10-06

    As demands for high pixel densities and wearable forms of displays increase, high-resolution printing technologies to achieve high performance transistors beyond current amorphous silicon levels and to allow low-temperature solution processability for plastic substrates have been explored as key processes in emerging flexible electronics. This study describes electrohydrodynamic inkjet (e-jet) technology for direct printing of oxide semiconductor thin film transistors (TFTs) with high resolution (minimum line width: 2 μm) and superb performance, including high mobility (∼230 cm(2) V(-1) s(-1)). Logic operations of the amplifier circuits composed of these e-jet-printed metal oxide semiconductor (MOS) TFTs demonstrate their high performance. Printed In2O TFTs with e-jet printing-assisted high-resolution S/D electrodes were prepared, and the direct printing of passivation layers on these channels enhanced their gate-bias stabilities significantly. Moreover, low process temperatures (<250 °C) enable the use of thin plastic substrates; highly flexible and stretchable TFT arrays have been demonstrated, suggesting promise for next-generation printed electronics.

  19. High resolution urban morphology data for urban wind flow modeling

    NASA Astrophysics Data System (ADS)

    Cionco, Ronald M.; Ellefsen, Richard

    The application of urban forestry methods and technologies to a number of practical problems can be further enhanced by the use and incorporation of localized, high resolution wind and temperature fields into their analysis methods. The numerical simulation of these micrometeorological fields will represent the interactions and influences of urban structures, vegetation elements, and variable terrain as an integral part of the dynamics of an urban domain. Detailed information of the natural and man-made components that make up the urban area is needed to more realistically model meteorological fields in urban domains. Simulating high resolution wind and temperatures over and through an urban domain utilizing detailed morphology data can also define and quantify local areas where urban forestry applications can contribute to better solutions. Applications such as the benefits of planting trees for shade purposes can be considered, planned, and evaluated for their impact on conserving energy and cooling costs as well as the possible reconfiguration or removal of trees and other barriers for improved airflow ventilation and similar processes. To generate these fields, a wind model must be provided, as a minimum, the location, type, height, structural silhouette, and surface roughness of these components, in order to account for the presence and effects of these land morphology features upon the ambient airflow. The morphology of Sacramento, CA has been characterized and quantified in considerable detail primarily for wind flow modeling, simulation, and analyses, but can also be used for improved meteorological analyses, urban forestry, urban planning, and other urban related activities. Morphology methods previously developed by Ellefsen are applied to the Sacramento scenario with a high resolution grid of 100 m × 100 m. The Urban Morphology Scheme defines Urban Terrain Zones (UTZ) according to how buildings and other urban elements are structured and placed with

  20. Impact of High Resolution SST Data on Regional Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Case, Jonathon; LaFontaine, Frank; Vazquez, Jorge; Mattocks, Craig

    2010-01-01

    Past studies have shown that the use of coarse resolution SST products such as from the real-time global (RTG) SST analysis[1] or other coarse resolution once-a-day products do not properly portray the diurnal variability of fluxes of heat and moisture from the ocean that drive the formation of low level clouds and precipitation over the ocean. For example, the use of high resolution MODIS SST composite [2] to initialize the Advanced Research Weather Research and Forecast (WRF) (ARW) [3] has been shown to improve the prediction of sensible weather parameters in coastal regions [4][5}. In an extend study, [6] compared the MODIS SST composite product to the RTG SST analysis and evaluated forecast differences for a 6 month period from March through August 2007 over the Florida coastal regions. In a comparison to buoy data, they found that that the MODIS SST composites reduced the bias and standard deviation over that of the RTG data. These improvements led to significant changes in the initial and forecasted heat fluxes and the resulting surface temperature fields, wind patterns, and cloud distributions. They also showed that the MODIS composite SST product, produced for the Terra and Aqua satellite overpass times, captured a component of the diurnal cycle in SSTs not represented in the RTG or other one-a-day SST analyses. Failure to properly incorporate these effects in the WRF initialization cycle led to temperature biases in the resulting short term forecasts. The forecast impact was limited in some situations however, due to composite product inaccuracies brought about by data latency during periods of long-term cloud cover. This paper focuses on the forecast impact of an enhanced MODIS/AMSR-E composite SST product designed to reduce inaccuracies due data latency in the MODIS only composite product.

  1. AVHRR/1-FM Advanced Very High Resolution Radiometer

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The advanced very high resolution radiometer is discussed. The program covers design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical/structural model, and a life test model. Special bench test and calibration equipment was developed for use on the program. The flight model program objectives were to fabricate, assemble and test four of the advanced very high resolution radiometers along with a bench cooler and collimator.

  2. High resolution spectroscopic study of BeΛ10

    DOE PAGES

    Gogami, T.; Chen, C.; Kawama, D.; ...

    2016-03-10

    Spectroscopy of amore » $$^{10}_{\\Lambda}$$Be hypernucleus was carried out at JLab Hall C using the $$(e,e^{\\prime}K^{+})$$ reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of 0.78 MeV (FWHM). The well-calibrated spectrometer system of the present experiment using the $$p(e,e^{\\prime}K^{+})\\Lambda,\\Sigma^{0}$$ reactions allowed us to determine the energy levels, and the binding energy of the ground state peak (mixture of 1$$^{-}$$ and 2$$^{-}$$ states) was obtained to be B$$_{\\Lambda}$$=8.55$$\\pm$$0.07(stat.)$$\\pm$$0.11(sys.) MeV. Furthermore, the result indicates that the ground state energy is shallower than that of an emulsion study by about 0.5 MeV which provides valuable experimental information on charge symmetry breaking effect in the $$\\Lambda N$$ interaction.« less

  3. Optical autofocus for high resolution laser photoplotting

    NASA Astrophysics Data System (ADS)

    Alonso, Jose; Crespo, Daniel; Jimenez, Isidoro; Bernabeu, Eusebio

    2005-07-01

    An all optical autofocus has been designed and tested for tight line width control in a high NA laser photoplotter system. The laser system is based in a GaN semiconductor laser with power 30 mW and wavelength 405 nm. The advantage of using this laser, despite the relatively long wavenlength, is compactness and easy for high frequency modulation. The autofocus system is based in a secondary 635 nm GaAlAs laser without need for wavelength, neither power stabilization. The two beams are delivered coaxially through the focusing lens by means of a dichroic beamsplitter. Focusing lens need no correction for chromatic aberration, as this is compensed by appropriate autofocus beam divergence. After reflection in the sample, the autofocus beam is separated from the returning writing beam and then guided to a collimation sensor, in which defocus of about 1/20 of the Rayleigh range of the writing beam can be detected and compensated by an analogue PID electronic control. Stable linewidth within 5% is achieved with different numerical aperture focusing lenses.

  4. A NEW HIGH RESOLUTION MASS SPECTROMEY ...

    EPA Pesticide Factsheets

    There is no abstract available for this product. If further information is requested, please refer to the bibliographic citation and contact the person listed under Contact field. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than parts per billion, ppb). IAG with USGS ends in FY05. APM 20 due in FY05.Subtask 2: Coordination of interagency research and public outreach activities for PPCPs. Participate on NSTC Health and Environment subcommittee working group on PPCPs. Web site maintenance and expansion, invited technical presentations, invited articles for peer-reviewed journals, interviews for media, responding to public inquiries. S

  5. High-resolution subgrid models: background, grid generation, and implementation

    NASA Astrophysics Data System (ADS)

    Sehili, Aissa; Lang, Günther; Lippert, Christoph

    2014-04-01

    The basic idea of subgrid models is the use of available high-resolution bathymetric data at subgrid level in computations that are performed on relatively coarse grids allowing large time steps. For that purpose, an algorithm that correctly represents the precise mass balance in regions where wetting and drying occur was derived by Casulli (Int J Numer Method Fluids 60:391-408, 2009) and Casulli and Stelling (Int J Numer Method Fluids 67:441-449, 2010). Computational grid cells are permitted to be wet, partially wet, or dry, and no drying threshold is needed. Based on the subgrid technique, practical applications involving various scenarios were implemented including an operational forecast model for water level, salinity, and temperature of the Elbe Estuary in Germany. The grid generation procedure allows a detailed boundary fitting at subgrid level. The computational grid is made of flow-aligned quadrilaterals including few triangles where necessary. User-defined grid subdivision at subgrid level allows a correct representation of the volume up to measurement accuracy. Bottom friction requires a particular treatment. Based on the conveyance approach, an appropriate empirical correction was worked out. The aforementioned features make the subgrid technique very efficient, robust, and accurate. Comparison of predicted water levels with the comparatively highly resolved classical unstructured grid model shows very good agreement. The speedup in computational performance due to the use of the subgrid technique is about a factor of 20. A typical daily forecast can be carried out in less than 10 min on a standard PC-like hardware. The subgrid technique is therefore a promising framework to perform accurate temporal and spatial large-scale simulations of coastal and estuarine flow and transport processes at low computational cost.

  6. High resolution studies of deep earth structure

    NASA Astrophysics Data System (ADS)

    Ding, Xiaoming

    1998-11-01

    Recent advances in seismic tomography has imaged major deep structure in the lower mantle. The ring of fast velocities originally derived from global long-period inversions has been resolved into interspersed sheet-like structure which appears to be old slabs. Beneath some of the structure, there are high velocity zones (HVZ) with variable thickness approaching the core mantle boundary (CMB). Seismic data recorded on TERRAscope and Berkeley Digital Seismic Network are used to study the HVZ beneath Central America. Modeling these waveforms (P, SV and SH) constitutes a major portion of this thesis. Two modeling strategies were employed in the thesis: (1) Assume a "Lay type" D ″ with a sharp velocity discontinuity; (2) Assume an upper transition zone approaching D″, and a lower transition zone approaching the CMB (old slabs). Our preferred model following strategy (1) (Chapter 2) has an S discontinuity 200 km above the CMB with 3% jump and a negative gradient in the D″ layer. In Chapter 4 the ULVZ beneath Iceland and Africa are addressed. The major phases used to study the ULVZ are SKS and SPdiffKS which travels along the CMB as P at both the core entry (SPdiffKS) and exit (SKPdiffS) locations. A major structure beneath Iceland (SKPdiffS) as identified from data recorded on stations in Northern Europe appears to be shaped like a dome, 80 km high, 200 km wide with a 10% drop in P and S velocities. The data for Africa is less complete but highly anomalous. Shear wave record sections across Africa and Europe containing the cross-over from S to SKS and extended core-phases (75° to 120°) are presented from deep South American events. By studying the various branches of the core phases PKP, it has become quite clear that North-South paths in the inner-core appear faster than East-West paths Moreover, the broadband seismograms associated with these paths are distinct. The reason for this difference is not known but suggests a lower (anisotropic) inner-core with an

  7. Phase contrast in high resolution electron microscopy

    DOEpatents

    Rose, H.H.

    1975-09-23

    This patent relates to a device for developing a phase contrast signal for a scanning transmission electron microscope. The lens system of the microscope is operated in a condition of defocus so that predictable alternate concentric regions of high and low electron density exist in the cone of illumination. Two phase detectors are placed beneath the object inside the cone of illumination, with the first detector having the form of a zone plate, each of its rings covering alternate regions of either higher or lower electron density. The second detector is so configured that it covers the regions of electron density not covered by the first detector. Each detector measures the number of electrons incident thereon and the signal developed by the first detector is subtracted from the signal developed by the record detector to provide a phase contrast signal. (auth)

  8. High-resolution gravity model of Venus

    NASA Technical Reports Server (NTRS)

    Reasenberg, R. D.; Goldberg, Z. M.

    1992-01-01

    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  9. High energy resolution, high angular acceptance crystal monochromator

    DOEpatents

    Alp, E.E.; Mooney, T.M.; Toellner, T.

    1996-06-04

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut ({alpha}=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5--30 keV) of synchrotron radiation down to the {micro}eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator. 7 figs.

  10. High energy resolution, high angular acceptance crystal monochromator

    DOEpatents

    Alp, Ercan E.; Mooney, Timothy M.; Toellner, Thomas

    1996-06-04

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut (.alpha.=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5-30 keV) of synchrotron radiation down to the .mu.eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator.

  11. A Very High Spatial Resolution Detector for Small Animal PET

    SciTech Connect

    Kanai Shah, M.S.

    2007-03-06

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated.

  12. Compact and high-resolution optical orbital angular momentum sorter

    NASA Astrophysics Data System (ADS)

    Wan, Chenhao; Chen, Jian; Zhan, Qiwen

    2017-03-01

    A compact and high-resolution optical orbital angular momentum (OAM) sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM) to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  13. High-resolution Urban Image Classification Using Extended Features

    SciTech Connect

    Vatsavai, Raju

    2011-01-01

    High-resolution image classification poses several challenges because the typical object size is much larger than the pixel resolution. Any given pixel (spectral features at that location) by itself is not a good indicator of the object it belongs to without looking at the broader spatial footprint. Therefore most modern machine learning approaches that are based on per-pixel spectral features are not very effective in high- resolution urban image classification. One way to overcome this problem is to extract features that exploit spatial contextual information. In this study, we evaluated several features in- cluding edge density, texture, and morphology. Several machine learning schemes were tested on the features extracted from a very high-resolution remote sensing image and results were presented.

  14. Optical Histology: High-Resolution Visualization of Tissue Microvasculature

    NASA Astrophysics Data System (ADS)

    Moy, Austin Jing-Ming

    Mammalian tissue requires the delivery of nutrients, growth factors, and the exchange of oxygen and carbon dioxide gases to maintain normal function. These elements are delivered by the blood, which travels through the connected network of blood vessels, known as the vascular system. The vascular system consists of large feeder blood vessels (arteries and veins) that are connected to the small blood vessels (arterioles and venules), which in turn are connected to the capillaries that are directly connected to the tissue and facilitate gas exchange and nutrient delivery. These small blood vessels and capillaries make up an intricate but organized network of blood vessels that exist in all mammalian tissues known as the microvasculature and are very important in maintaining the health and proper function of mammalian tissue. Due to the importance of the microvasculature in tissue survival, disruption of the microvasculature typically leads to tissue dysfunction and tissue death. The most prevalent method to study the microvasculature is visualization. Immunohistochemistry (IHC) is the gold-standard method to visualize tissue microvasculature. IHC is very well-suited for highly detailed interrogation of the tissue microvasculature at the cellular level but is unwieldy and impractical for wide-field visualization of the tissue microvasculature. The objective my dissertation research was to develop a method to enable wide-field visualization of the microvasculature, while still retaining the high-resolution afforded by optical microscopy. My efforts led to the development of a technique dubbed "optical histology" that combines chemical and optical methods to enable high-resolution visualization of the microvasculature. The development of the technique first involved preliminary studies to quantify optical property changes in optically cleared tissues, followed by development and demonstration of the methodology. Using optical histology, I successfully obtained high

  15. High spectral resolution image of Barnacle Bill

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The rover Sojourner's first target for measurement by the Alpha-Proton-Xray Spectrometer (APXS) was the rock named Barnacle Bill, located close to the ramp down which the rover made its egress from the lander. The full spectral capability of the Imager for Mars Pathfinder (IMP), consisting of 13 wavelength filters, was used to characterize the rock's surface. The measured area is relatively dark, and is shown in blue. Nearby on the rock surface, soil material is trapped in pits (shown in red).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  16. APPLYING MULTIMETRIC INDICES AT HIGH RESOLUTION ...

    EPA Pesticide Factsheets

    Like many inland waters worldwide, streams and rivers of the Western U.S. are faced with a multitude of challenges stemming from past land use practices and changing future conditions. To address these issues, the USEPA has developed empirical tools for evaluating instream conditions and monitoring the status of our freshwater resources over time. These efforts have made substantial progress in integrating quantitative methods into multimetric indices (MMIs) used for national and regional assessments and have provided an enhanced understanding of condition patterns across the broader landscape. To examine the extent of spatial and temporal variability not captured by the sparse distribution of sample sites used in these large-scale assessments, we applied two existing MMIs to inter-seasonal fish and macroinvertebrate data from the Calapooia Basin in Oregon’s Willamette Valley. Our chosen indices revealed a high degree of variation in biotic condition within our study area. With notable exceptions, indices were seasonally robust, indicating potential flexibility for scheduling sampling. An increased understanding of condition patterns occurring at fine spatial scales and the natural and anthropogenic effects influencing them can help guide and prioritize restoration and management. Multimetric indices (MMIs) that incorporate data on the biological and physical characteristics of freshwater systems and provide meaningful indicators of instream conditions

  17. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  18. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  19. High Resolution Infrared Spectra of Triacetylene

    NASA Astrophysics Data System (ADS)

    Doney, Kirstin D.; Zhao, Dongfeng; Linnartz, Harold

    2015-06-01

    Triacetylene, HC6H, is the longest poly-acetylene chain found in space, and is believed to be involved in the formation of longer chain molecules and polycyclic aromatic hydrocarbons (PAHs). However, abundances are expected to be low, and observational confirmation requires knowledge of the gas-phase spectra, which up to now has been incomplete with only the weak, low lying bending modes being known. We present new infrared (IR) spectra in the C-H stretch region obtained using ultra-sensitive and highly precise IR continuous wave cavity ring-down spectroscopy (cw-CRDS), combined with supersonic plasma expansions The talk reviews the accurate determination of the rotational constants of the asymmetric fundamental mode, νb{5}, including discussion on the perturber state, and associated hot bands. The determined molecular parameters are accurate enough to aid astronomical searches with such facilities as ALMA (Atacama Large Millimeter Array) or the upcoming JWST (James Webb Space Telecscope), which can now probe even trace molecules (abundances of ˜ 10-6 - 10-10 with respect to H2). D. Zhao, J. Guss, A. Walsh, H. Linnartz, Chem. Phys. Lett., 565, 132 (2013) K.D. Doney, D. Zhao, H. Linnartz, in preparation

  20. High-resolution studies of protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Schütz, Oliver

    2005-02-01

    This work presents a multiwavelength search (near-IR, mid-IR, mm) for previously unknown circumstellar disks and a study of those disk candidate objects which are not jet well characterised in the literature. 22 candidate stars, most of these constituting known exoplanet systems, were examined for circumstellar material using the Adaptive Optics instrument ADONIS at La Silla Observatory (Chile). With the new Adaptive Optics system NAOS-CONICA at Paranal (Chile) we tested the technique of Polarimetric Differential Imaging. Advances in mid-IR data reduction were achieved, e.g., a method was developed to correct the chromatic and airmass dependent extinction. We show new N-band photometry and spectra for eight pre-main sequence stars, six main sequence stars and one post-MS object using the TIMMI2 camera at La Silla, and model the emission spectra with a mixture of silicates consisting of different grain sizes and composition. The most important result thereof is the discovery of two previously unknown circumstellar disks around HD 72106 and HD 113766. Both objects are host to highly processed silicates, resembling those found in solar-system comets. We further present the first observational confirmation for an extended circumstellar dust disk around ɛ Eri obtained with the bolometer array SIMBA at the 15 m radio telescope SEST in La Silla and demonstrate that the previously claimed disk substructure may alternatively be explained by remnant noise effects.

  1. Axial response of high-resolution microendoscopy in scattering media

    PubMed Central

    Koucky, Michael H.; Pierce, Mark C.

    2013-01-01

    High-resolution microendoscopy (HRME) uses epi-fluorescence imaging with a coherent fiber-optic bundle to enable in vivo examination of cellular morphology. While the HRME platform has recently gained popularity as a simple alternative to confocal endomicroscopy, the axial response of HRME in thick, scattering tissue has yet to be described quantitatively. These details are important because when analyzing images collected by HRME, out-of-focus light may affect the accuracy of quantitative parameters such as nuclear-to-cytoplasm ratio, which has been proposed as a diagnostic indicator of dysplasia or cancer. In this study we investigated the imaging properties of the HRME system by using phantoms simulating scattering tissue with fluorescently labeled nuclei. We directly compared HRME imaging with confocal endomicroscopy in phantoms and in vivo human tissue. HRME images defocused (deep) objects with apparent diameters and intensity levels that are in agreement with a simple geometric model. Out-of-focus nuclei contribute a relatively low, uniform background level to images which neither leads to the erroneous appearance of large nuclei from deep layers, nor prevents accurate imaging of superficial nuclei with high contrast. PMID:24156080

  2. Global anthropogenic heat flux database with high spatial resolution

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Varquez, A. C. G.; Kanda, M.

    2017-02-01

    This study developed a top-down method for estimating global anthropogenic heat emission (AHE), with a high spatial resolution of 30 arc-seconds and temporal resolution of 1 h. Annual average AHE was derived from human metabolic heating and primary energy consumption, which was further divided into three components based on consumer sector. The first and second components were heat loss and heat emissions from industrial sectors equally distributed throughout the country and populated areas, respectively. The third component comprised the sum of emissions from commercial, residential, and transportation sectors (CRT). Bulk AHE from the CRT was proportionally distributed using a global population dataset, with a radiance-calibrated nighttime lights adjustment. An empirical function to estimate monthly fluctuations of AHE based on gridded monthly temperatures was derived from various Japanese and American city measurements. Finally, an AHE database with a global coverage was constructed for the year 2013. Comparisons between our proposed AHE and other existing datasets revealed that the problem of overestimation of AHE intensity in previous top-down models was mitigated by the separation of energy consumption sectors; furthermore, the problem of AHE underestimation at central urban areas was solved by the nighttime lights adjustment. A strong agreement in the monthly profiles of AHE between our database and other bottom-up datasets further proved the validity of the current methodology. Investigations of AHE for the 29 largest urban agglomerations globally highlighted that the share of heat emissions from CRT sectors to the total AHE at the city level was 40-95%; whereas that of metabolic heating varied with the city's level of development by a range of 2-60%. A negative correlation between gross domestic product (GDP) and the share of metabolic heating to a city's total AHE was found. Globally, peak AHE values were found to occur between December and February, while

  3. High Resolution Hurricane Storm Surge and Inundation Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Luettich, R.; Westerink, J. J.

    2010-12-01

    Coastal counties are home to nearly 60% of the U.S. population and industry that accounts for over 16 million jobs and 10% of the U.S. annual gross domestic product. However, these areas are susceptible to some of the most destructive forces in nature, including tsunamis, floods, and severe storm-related hazards. Since 1900, tropical cyclones making landfall on the US Gulf of Mexico Coast have caused more than 9,000 deaths; nearly 2,000 deaths have occurred during the past half century. Tropical cyclone-related adjusted, annualized losses in the US have risen from 1.3 billion from 1949-1989, to 10.1 billion from 1990-1995, and $35.8 billion per year for the period 2001-2005. The risk associated with living and doing business in the coastal areas that are most susceptible to tropical cyclones is exacerbated by rising sea level and changes in the characteristics of severe storms associated with global climate change. In the five years since hurricane Katrina devastated the northern Gulf of Mexico Coast, considerable progress has been made in the development and utilization of high resolution coupled storm surge and wave models. Recent progress will be presented with the ADCIRC + SWAN storm surge and wave models. These tightly coupled models use a common unstructured grid in the horizontal that is capable of covering large areas while also providing high resolution (i.e., base resolution down to 20m plus smaller subgrid scale features such as sea walls and levees) in areas that are subject to surge and inundation. Hydrodynamic friction and overland winds are adjusted to account for local land cover. The models scale extremely well on modern high performance computers allowing rapid turnaround on large numbers of compute cores. The models have been adopted for FEMA National Flood Insurance Program studies, hurricane protection system design and risk analysis, and quasi-operational forecast systems for several regions of the country. They are also being evaluated as

  4. THz holography in reflection using a high resolution microbolometer array.

    PubMed

    Zolliker, Peter; Hack, Erwin

    2015-05-04

    We demonstrate a digital holographic setup for Terahertz imaging of surfaces in reflection. The set-up is based on a high-power continuous wave (CW) THz laser and a high-resolution (640 × 480 pixel) bolometer detector array. Wave propagation to non-parallel planes is used to reconstruct the object surface that is rotated relative to the detector plane. In addition we implement synthetic aperture methods for resolution enhancement and compare Fourier transform phase retrieval to phase stepping methods. A lateral resolution of 200 μm and a relative phase sensitivity of about 0.4 rad corresponding to a depth resolution of 6 μm are estimated from reconstructed images of two specially prepared test targets, respectively. We highlight the use of digital THz holography for surface profilometry as well as its potential for video-rate imaging.

  5. Performance of a High Resolution Cavity Beam Position Monitor System

    SciTech Connect

    Walston, S; Boogert, S; Chung, C; Fitsos, P; Frisch, J; Gronberg, J; Hayano, H; Honda, Y; Kolomensky, Y; Lyapin, A; Malton, S; May, J; McCormick, D; Meller, R; Miller, D; Orimoto, T; Ross, M; Slater, M; Smith, S; Smith, T; Terunuma, N; Thomson, M; Urakawa, J; Vogel, V; Ward, D; White, G

    2006-12-18

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {micro}rad over a dynamic range of approximately {+-} 20 {micro}m.

  6. Performance of a High Resolution Cavity Beam Position Monitor System

    SciTech Connect

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Joe; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David John; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; /Fermilab /UC, Berkeley /LBL, Berkeley /Cambridge U. /Royal Holloway, U. of London /Cornell U., LNS /LLNL, Livermore /University Coll. London /SLAC /Caltech /KEK, Tsukuba

    2007-06-08

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {mu}rad over a dynamic range of approximately {+-} 20 {mu}m.

  7. Exploring for subtle traps with high-resolution paleogeographic maps

    SciTech Connect

    Bulling, T.B.; Breyer, J.A.

    1988-01-01

    High-resolution paleogeographic maps depicting the depositional history of the Reklaw 1 interval provide a basis for prospecting for subtle traps in the updip Reklaw trend in south Texas. The Reklaw 1 interval began with sand being carried southwest by longshore currents to form the barrier bar that forms the reservoir in Atkinson field. The hydrocarbons are trapped by the updip pinch-out of barrier-bar sand into lagoonal mud. Stratigraphic traps similar to Atkinson field could be present along depositional strike if the sand in the field were part of a more extensive-bar system. After the barrier bar formed, distributary-mouth bars prograded seaward depositing the bar-finger sands that are the reservoirs in Hysaw and Flax fields. Subtle structural traps could be present where small down-to-the-north faults associated with the Sample fault system cut the bar-finger sands downdip from the established production. Farther down paleoslope, the distributary channels began to bifurcate and the distributary-mouth bar coalesced to form a broad delt-front sheet sand. Burnell, Hondo Creek, and Runge West fields produce from this sheet sand near the unstable shelf margin. A rapid rise in relative sea level terminated deposition of the Reklaw 1 interval. Many of the oil and gas fields remaining to be discovered in the United States are in mature petroleum provinces where much of the remaining oil and gas probably resides in subtle traps. High-resolution paleogeographic maps may be a key to finding these subtle traps.

  8. The Goddard High Resolution Spectrograph: Instrument, goals, and science results

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Heap, S. R.; Beaver, E. A.; Boggess, A.; Carpenter, K. G.; Ebbets, D. C.; Hutchings, J. B.; Jura, M.; Leckrone, D. S.; Linsky, J. L.

    1994-01-01

    The Goddard High Resolution Spectrograph (GHRS), currently in Earth orbit on the Hubble Space Telescope (HST), operates in the wavelength range 1150-3200 A with spectral resolutions (lambda/delta lambda) of approximately 2 x 10(exp 3), 2 x 10(exp 4), and 1 x 10(exp 3). The instrument and its development from inception, its current status, the approach to operations, representative results in the major areas of the scientific goals, and prospects for the future are described.

  9. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    SciTech Connect

    Kotasidis, Fotis A.; Angelis, Georgios I.; Anton-Rodriguez, Jose; Matthews, Julian C.; Reader, Andrew J.; Zaidi, Habib

    2014-05-15

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  10. The dynamic solar chromosphere: recent advances from high resolution telescopes

    NASA Astrophysics Data System (ADS)

    Tziotziou, Konstantinos; Tsiropoula, Georgia

    This review focuses on the solar chromosphere, a very inhomogeneous and dynamic layer that exhibits phenomena on a large range of spatial and temporal scales. High-resolution observa-tions from existing telescopes (DST, SST, DOT), as well as long-duration observations with Hinode's SOT employing lines such as the Ca II infrared lines, the Ca II HK and above all the Hα line reveal an incredibly rich, dynamic and highly structured environment, both in quiet and active regions. The fine-structure chromosphere, is mainly constituted by fibrilar features that connect various parts of active regions or span across network cell interiors. We discuss this highly dynamical solar chromosphere, especially below the magnetic canopy, which is gov-erned by flows reflecting both the complex geometry and dynamics of the magnetic field and the propagation and dissipation of waves in the different atmospheric layers. A comprehensive view of the fine-structure chromosphere requires deep understanding of the physical processes involved, investigation of the intricate link with structures/processes at lower photospheric lev-els and analysis of its impact on the mass and energy transport to higher atmospheric layers through flows resulting from different physical processes such as magnetic reconnection and waves. Furthermore, we assess the challenges facing theory and numerical modelling which require the inclusion of several physical ingredients, such as non-LTE and three-dimensional numerical simulations.

  11. High resolution seismic stratigraphy of Tampa Bay, Florida

    SciTech Connect

    Tihansky, A.B.; Hine, A.C.; Locker, S.D.; Doyle, L.D. . Dept. of Marine Science)

    1993-03-01

    Tampa Bay is one of two large embayments that interrupt the broad, regional nature of the carbonate ramp of the west coast of the Florida carbonate platform. It is believed to have formed as a result of preferential dissolution of the Cenozoic limestones beneath it. Highly reactive freshwater systems became hydrologically focused in the bay region as the surface and groundwater systems established themselves during sea-level lowstands. This weakening of the underlying limestone resulted in extensive karstification, including warping, subsidence, sinkhole and spring formation. Over 120 miles of high resolution seismic reflection data were collected within Tampa Bay. This record has been tied into 170 core borings taken from within the bay. This investigation has found three major seismic stratigraphic sequences beneath the bay. The lowermost sequence is probably of Miocene age. Its surface is highly irregular due to erosion and dissolution and exhibits a great deal of vertical relief as well as gentler undulations or warping. Much of the middle sequence consists of low angle clinoforms that gently downlap and fill in the underlying karst features. The uppermost sequence is a discontinuous unit comprised of horizontal to low angle clinoforms that are local in their extent. The recent drainage and sedimentation patterns within the bay area are related to the underlying structure controlled by the Miocene karst activity.

  12. High-resolution land cover classification using low resolution global data

    NASA Astrophysics Data System (ADS)

    Carlotto, Mark J.

    2013-05-01

    A fusion approach is described that combines texture features from high-resolution panchromatic imagery with land cover statistics derived from co-registered low-resolution global databases to obtain high-resolution land cover maps. The method does not require training data or any human intervention. We use an MxN Gabor filter bank consisting of M=16 oriented bandpass filters (0-180°) at N resolutions (3-24 meters/pixel). The size range of these spatial filters is consistent with the typical scale of manmade objects and patterns of cultural activity in imagery. Clustering reduces the complexity of the data by combining pixels that have similar texture into clusters (regions). Texture classification assigns a vector of class likelihoods to each cluster based on its textural properties. Classification is unsupervised and accomplished using a bank of texture anomaly detectors. Class likelihoods are modulated by land cover statistics derived from lower resolution global data over the scene. Preliminary results from a number of Quickbird scenes show our approach is able to classify general land cover features such as roads, built up area, forests, open areas, and bodies of water over a wide range of scenes.

  13. Towards a High-Resolution Global Inundation Delineation Dataset

    NASA Astrophysics Data System (ADS)

    Fluet-Chouinard, E.; Lehner, B.

    2011-12-01

    Although their importance for biodiversity, flow regulation and ecosystem service provision is widely recognized, wetlands and temporarily inundated landscapes remain poorly mapped globally because of their inherent elusive nature. Inventorying of wetland resources has been identified in international agreements as an essential component of appropriate conservation efforts and management initiatives of these threatened ecosystems. However, despite recent advances in remote sensing surface water monitoring, current inventories of surface water variations remain incomplete at the regional-to-global scale due to methodological limitations restricting truly global application. Remote sensing wetland applications such as SAR L-band are particularly constrained by image availability and heterogeneity of acquisition dates, while coarse resolution passive microwave and multi-sensor methods cannot discriminate distinct surface water bodies. As a result, the most popular global wetland dataset remains to this day the Global Lake & Wetland Database (Lehner and Doll, 2004) a spatially inconsistent database assembled from various existing data sources. The approach taken in this project circumvents the limitations of current global wetland monitoring methods by combining globally available topographic and hydrographic data to downscale coarse resolution global inundation data (Prigent et al., 2007) and thus create a superior inundation delineation map product. The developed procedure downscales inundation data from the coarse resolution (~27km) of current passive microwave sensors to the finer spatial resolution (~500m) of the topographic and hydrographic layers of HydroSHEDS' data suite (Lehner et al., 2006), while retaining the high temporal resolution of the multi-sensor inundation dataset. From the downscaling process emerges new information on the specific location of inundation, but also on its frequency and duration. The downscaling algorithm employs a decision tree

  14. Placement of Accelerometers for High Sensing Resolution in Micromanipulation

    PubMed Central

    Latt, W. T.; Tan, U-X.; Riviere, C. N.; Ang, W. T.

    2012-01-01

    High sensing resolution is required in sensing of surgical instrument motion in micromanipulation tasks. Accelerometers can be employed to sense physiological motion of the instrument during micromanipulation. Various configurations of accelerometer placement had been introduced in the past to sense motion of a rigid-body such as a surgical instrument. Placement (location and orientation) of accelerometers fixed in the instrument plays a significant role in achieving high sensing resolution. However, there is no literature or work on the effect of placement of accelerometers on sensing resolution. In this paper, an approach of placement of accelerometers within an available space to obtain highest possible sensing resolution in sensing of rigid-body motion in micromanipulation tasks is proposed. Superiority of the proposed placement approach is shown in sensing of a microsurgical instrument angular motion by comparing sensing resolutions achieved as a result of employing the configuration following the proposed approach and the existing configurations. Apart from achieving high sensing resolution, and design simplicity, the proposed placement approach also provides flexibility in placing accelerometers; hence it is especially useful in applications with limited available space to mount accelerometers. PMID:22423176

  15. High-resolution absorption measurements of NH3 at high temperatures: 2100-5500 cm-1

    NASA Astrophysics Data System (ADS)

    Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan; Clausen, Sønnik; Fateev, Alexander

    2017-03-01

    High-resolution absorption spectra of NH3 in the region 2100-5500 cm-1 at 1027 °C and approximately atmospheric pressure (1045±3 mbar) are measured. An NH3 concentration of 10% in volume fraction is used in the measurements. Spectra are recorded in a high-temperature gas-flow cell using a Fourier Transform Infrared (FTIR) spectrometer at a nominal resolution of 0.09 cm-1. The spectra are analysed by comparison to a variational line list, BYTe, and experimental energy levels determined using the MARVEL procedure. 2308 lines have been assigned to 45 different bands, of which 1755 and 15 have been assigned or observed for the first time in this work.

  16. High Resolution Narrow-Field Versus Low Resolution Widefield Observations of Galaxies

    NASA Astrophysics Data System (ADS)

    Capaccioli, M.; Davoust, E.; Lelievre, G.; Nieto, J. L.

    There is an increasing evidence that small-scale phenomena occurring in the inner regions of galaxies are related to large-scale phenomena such as, merging or violent interactions between galaxies. The aim of this communication is to illustrate the complementarity between high-resolution, small-field telescopes and Schmidt-type telescopes for the study of this phenomenology.

  17. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data.

    PubMed

    Zeng, Ying-Xu; Mjøs, Svein Are; David, Fabrice P A; Schmid, Adrien W

    2016-03-31

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis.

  18. Wide swath and high resolution optical imaging satellite of Japan

    NASA Astrophysics Data System (ADS)

    Katayama, Haruyoshi; Kato, Eri; Imai, Hiroko; Sagisaka, Masakazu

    2016-05-01

    The "Advanced optical satellite" (tentative name) is a follow-on mission from ALOS. Mission objectives of the advanced optical satellite is to build upon the existing advanced techniques for global land observation using optical sensors, as well as to promote data utilization for social needs. Wide swath and high resolution optical imager onboard the advanced optical satellite will extend the capabilities of earlier ALOS missions. The optical imager will be able to collect high-resolution (< 1 m) and wide-swath (70 km) images with high geo-location accuracy. This paper introduces a conceptual design of the advanced optical satellite.

  19. Study of Saturn electrostatic discharges with high time resolution

    NASA Astrophysics Data System (ADS)

    Zakharenko, V.; Mylostna, K.; Konovalenko, A.; Kolyadin, V.; Zarka, P.; Griessmeier, J.-M.; Litvinenko, G.; Sidorchuk, M.; Rucker, H.; Fischer, G.; Cecconi, B.; Coffre, A.; Denis, L.; Shevchenko, V.; Nikolaenko, V.

    2013-09-01

    Ground-based observations of SED (Saturn Electrostatic Discharges) with high time resolution are the next stage of extraterrestrial atmospheric processes study. Due to extremely high intensity of Saturn's storm J (2010) [1] we have obtained the records with high signal-to-noise (S/N) ratio with the time resolution of 15 ns. It permitted us to investigate the microsecond structure of lightning and clearly distinguish SED in the presence of local interference in virtue of a dispersive delay of extraterrestrial planetary signals.

  20. Design and implementation of spaceborne high resolution infrared touch screen

    NASA Astrophysics Data System (ADS)

    Li, Tai-guo; Li, Wen-xin; Dong, Yi-peng; Ma, Wen; Xia, Jia-gao

    2015-10-01

    For the consideration of the special application environment of the electronic products used in aerospace and to further more improve the human-computer interaction of the manned aerospace area. The research is based on the design and implementation way of the high resolution spaceborne infrared touch screen on the basis of FPGA and DSP frame structure. Beside the introduction of the whole structure for the high resolution spaceborne infrared touch screen system, this essay also gives the detail information about design of hardware for the high resolution spaceborne infrared touch screen system, FPGA design, GUI design and DSP algorithm design based on Lagrange interpolation. What is more, the easy makes a comprehensive research of the reliability design for the high resolution spaceborne infrared touch screen for the special purpose of it. Besides, the system test is done after installation of spaceborne infrared touch screen. The test result shows that the system is simple and reliable enough, which has a stable running environment and high resolution, which certainly can meet the special requirement of the manned aerospace instrument products.

  1. Lynx: A High-Resolution Synthetic Aperture Radar

    SciTech Connect

    Doerry, A.W.; Hensley, W.H.; Pace, F.; Stence, J.; Tsunoda, S.I.; Walker, B.C.; Woodring, M.

    1999-03-08

    Lynx is a high resolution, synthetic aperture radar (SAR) that has been designed and built by Sandia National Laboratories in collaboration with General Atomics (GA). Although Lynx may be operated on a wide variety of manned and unmanned platforms, it is primarily intended to be fielded on unmanned aerial vehicles. In particular, it may be operated on the Predator, I-GNAT, or Prowler II platforms manufactured by GA Aeronautical Systems, Inc. The Lynx production weight is less than 120 lb. and has a slant range of 30 km (in 4 mm/hr rain). It has operator selectable resolution and is capable of 0.1 m resolution in spotlight mode and 0.3 m resolution in stripmap mode. In ground moving target indicator mode, the minimum detectable velocity is 6 knots with a minimum target cross-section of 10 dBsm. In coherent change detection mode, Lynx makes registered, complex image comparisons either of 0.1 m resolution (minimum) spotlight images or of 0.3 m resolution (minimum) strip images. The Lynx user interface features a view manager that allows it to pan and zoom like a video camera. Lynx was developed under corporate finding from GA and will be manufactured by GA for both military and commercial applications. The Lynx system architecture will be presented and some of its unique features will be described. Imagery at the finest resolutions in both spotlight and strip modes have been obtained and will also be presented.

  2. High-performance VGA-resolution digital color CMOS imager

    NASA Astrophysics Data System (ADS)

    Agwani, Suhail; Domer, Steve; Rubacha, Ray; Stanley, Scott

    1999-04-01

    This paper discusses the performance of a new VGA resolution color CMOS imager developed by Motorola on a 0.5micrometers /3.3V CMOS process. This fully integrated, high performance imager has on chip timing, control, and analog signal processing chain for digital imaging applications. The picture elements are based on 7.8micrometers active CMOS pixels that use pinned photodiodes for higher quantum efficiency and low noise performance. The image processing engine includes a bank of programmable gain amplifiers, line rate clamping for dark offset removal, real time auto white balancing, per column gain and offset calibration, and a 10 bit pipelined RSD analog to digital converter with a programmable input range. Post ADC signal processing includes features such as bad pixel replacement based on user defined thresholds levels, 10 to 8 bit companding and 5 tap FIR filtering. The sensor can be programmed via a standard I2C interface that runs on 3.3V clocks. Programmable features include variable frame rates using a constant frequency master clock, electronic exposure control, continuous or single frame capture, progressive or interlace scanning modes. Each pixel is individually addressable allowing region of interest imaging and image subsampling. The sensor operates with master clock frequencies of up to 13.5MHz resulting in 30FPS. A total programmable gain of 27dB is available. The sensor power dissipation is 400mW at full speed of operation. The low noise design yields a measured 'system on a chip' dynamic range of 50dB thus giving over 8 true bits of resolution. Extremely high conversion gain result in an excellent peak sensitivity of 22V/(mu) J/cm2 or 3.3V/lux-sec. This monolithic image capture and processing engine represent a compete imaging solution making it a true 'camera on a chip'. Yet in its operation it remains extremely easy to use requiring only one clock and a 3.3V power supply. Given the available features and performance levels, this sensor will be

  3. Secure distribution for high resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Sun, Jing; Xu, Zheng Q.

    2010-09-01

    The use of remote sensing images collected by space platforms is becoming more and more widespread. The increasing value of space data and its use in critical scenarios call for adoption of proper security measures to protect these data against unauthorized access and fraudulent use. In this paper, based on the characteristics of remote sensing image data and application requirements on secure distribution, a secure distribution method is proposed, including users and regions classification, hierarchical control and keys generation, and multi-level encryption based on regions. The combination of the three parts can make that the same remote sensing images after multi-level encryption processing are distributed to different permission users through multicast, but different permission users can obtain different degree information after decryption through their own decryption keys. It well meets user access control and security needs in the process of high resolution remote sensing image distribution. The experimental results prove the effectiveness of the proposed method which is suitable for practical use in the secure transmission of remote sensing images including confidential information over internet.

  4. High spectral resolution measurements for the ARM Program

    SciTech Connect

    Revercomb, H.E.

    1992-05-22

    This report focuses on the design and fabrication of high spectral resolution FTIR (Fourier Transform Infrared) instrumentation for the CART sites of the Atmospheric Radiation Measurement (ARM) Program. The ultimate objective of this grant is to develop three different types of instruments, named the AERI, AERI-X, and SORT. The Atmospheric Emitted Radiance Interferometer (AERI) is the simplest. It will be available for early deployment at the first ARM site and will be deployable at several locations in the extended network to give horizontal coverage. The AERI will be an 0.5 cm{sup {minus}1} resolution instrument, which measures accurately calibrated radiance spectra for radiation studies and for remote sensing of atmospheric state variables. The AERI-X and the SORTI are higher spectral resolution instruments for obtaining the highest practical resolution for spectroscopy at the ARM central sites. The AERI-X, like the AERI will measure atmospheric emitted radiance, but with resolutions as high as 0.1 cm{sup {minus}1}. The Solar Radiance Transmission Interferometer will measure the total transmission of the atmosphere by tracking the sun through changes in atmospheric air mass. The large solar signal makes it practical for this instrument to offer the ultimate in spectral resolution, about 0.002 cm{sup {minus}1}.

  5. High level white noise generator

    DOEpatents

    Borkowski, Casimer J.; Blalock, Theron V.

    1979-01-01

    A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application.

  6. Classical broadcasting is possible with arbitrarily high fidelity and resolution.

    PubMed

    Walker, Thomas A; Braunstein, Samuel L

    2007-02-23

    We quantify the resolution with which any probability distribution may be distinguished from a displaced copy of itself in terms of a characteristic width. This width, which we call the resolution, is well defined for any normalizable probability distribution. We use this concept to study the broadcasting of classical probability distributions. Ideal classical broadcasting creates two (or more) output random variables each of which has the same distribution as the input random variable. We show that the universal broadcasting of probability distributions may be achieved with arbitrarily high fidelities for any finite resolution. By restricting probability distributions to any finite resolution we have therefore shown that the classical limit of quantum broadcasting is consistent with the actual classical case.

  7. Achieving High Resolution Timer Events in Virtualized Environment

    PubMed Central

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs—Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events. PMID:26177366

  8. Vehicle Detection and Classification from High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Abraham, L.; Sasikumar, M.

    2014-11-01

    In the past decades satellite imagery has been used successfully for weather forecasting, geographical and geological applications. Low resolution satellite images are sufficient for these sorts of applications. But the technological developments in the field of satellite imaging provide high resolution sensors which expands its field of application. Thus the High Resolution Satellite Imagery (HRSI) proved to be a suitable alternative to aerial photogrammetric data to provide a new data source for object detection. Since the traffic rates in developing countries are enormously increasing, vehicle detection from satellite data will be a better choice for automating such systems. In this work, a novel technique for vehicle detection from the images obtained from high resolution sensors is proposed. Though we are using high resolution images, vehicles are seen only as tiny spots, difficult to distinguish from the background. But we are able to obtain a detection rate not less than 0.9. Thereafter we classify the detected vehicles into cars and trucks and find the count of them.

  9. Adaptive optics high resolution spectroscopy: present status and future direction

    SciTech Connect

    Alcock, C; Angel, R; Ciarlo, D; Fugate, R O; Ge, J; Kuzmenko, P; Lloyd-Hart, M; Macintosh, B; Najita, J; Woolf, N

    1999-07-27

    High resolution spectroscopy experiments with visible adaptive optics (AO) telescopes at Starfire Optical Range and Mt. Wilson have demonstrated that spectral resolution can be routinely improved by a factor of - 10 over the seeing-limited case with no extra light losses at visible wavelengths. With large CCDs now available, a very wide wavelength range can be covered in a single exposure. In the near future, most large ground-based telescopes will be equipped with powerful A0 systems. Most of these systems are aimed primarily at diffraction-limited operation in the near IR. An exciting new opportunity will thus open up for high resolution IR spectroscopy. Immersion echelle gratings with much coarser grooves being developed by us at LLNL will play a critical role in achieving high spectral resolution with a compact and low cost IR cryogenically cooled spectrograph and simultaneous large wavelength coverage on relatively small IR detectors. We have constructed a new A0 optimized spectrograph at Steward Observatory to provide R = 200,000 in the optical, which is being commissioned at the Starfire Optical Range 3.5m telescope. We have completed the optical design of the LLNL IR Immersion Spectrograph (LISPEC) to take advantage of improved silicon etching technology. Key words: adaptive optics, spectroscopy, high resolution, immersion gratings

  10. High spatial resolution measurements of ram accelerator gas dynamic phenomena

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Data obtained by using a special highly instrumented section of tube has allowed the recording of gas dynamic phenomena with a spatial resolution on the order of one tenth the projectile length. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) are presented and reveal the 3D character of the flowfield induced by projectile fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, 3D CFD code.

  11. In-Phase Ultra High-Resolution In Vivo NMR.

    PubMed

    Fugariu, Ioana; Bermel, Wolfgang; Lane, Daniel; Soong, Ronald; Simpson, Andre J

    2017-04-05

    Although current NMR techniques allow organisms to be studied in vivo, magnetic susceptibility distortions, which arise from inhomogeneous distributions of chemical moieties, prevent the acquisition of high-resolution NMR spectra. Intermolecular single quantum coherence (iSQC) is a technique that breaks the sample's spatial isotropy to form long range dipolar couplings, which can be exploited to extract chemical shift information free of perturbations. While this approach holds vast potential, present practical limitations include radiation damping, relaxation losses, and non-phase sensitive data. Herein, these drawbacks are addressed, and a new technique termed in-phase iSQC (IP-iSQC) is introduced. When applied to a living system, high-resolution NMR spectra, nearly identical to a buffer extract, are obtained. The ability to look inside an organism and extract a high-resolution metabolic profile is profound and should find applications in fields in which metabolism or in vivo processes are of interest.

  12. Decadal prediction skill using a high-resolution climate model

    NASA Astrophysics Data System (ADS)

    Monerie, Paul-Arthur; Coquart, Laure; Maisonnave, Éric; Moine, Marie-Pierre; Terray, Laurent; Valcke, Sophie

    2017-02-01

    The ability of a high-resolution coupled atmosphere-ocean general circulation model (with a horizontal resolution of a quarter of a degree in the ocean and of about 0.5° in the atmosphere) to predict the annual means of temperature, precipitation, sea-ice volume and extent is assessed based on initialized hindcasts over the 1993-2009 period. Significant skill in predicting sea surface temperatures is obtained, especially over the North Atlantic, the tropical Atlantic and the Indian Ocean. The Sea Ice Extent and volume are also reasonably predicted in winter (March) and summer (September). The model skill is mainly due to the external forcing associated with well-mixed greenhouse gases. A decrease in the global warming rate associated with a negative phase of the Pacific Decadal Oscillation is simulated by the model over a suite of 10-year periods when initialized from starting dates between 1999 and 2003. The model ability to predict regional change is investigated by focusing on the mid-90's Atlantic Ocean subpolar gyre warming. The model simulates the North Atlantic warming associated with a meridional heat transport increase, a strengthening of the North Atlantic current and a deepening of the mixed layer over the Labrador Sea. The atmosphere plays a role in the warming through a modulation of the North Atlantic Oscillation: a negative sea level pressure anomaly, located south of the subpolar gyre is associated with a wind speed decrease over the subpolar gyre. This leads to a reduced oceanic heat-loss and favors a northward displacement of anomalously warm and salty subtropical water that both concur to the subpolar gyre warming. We finally conclude that the subpolar gyre warming is mainly triggered by ocean dynamics with a possible contribution of atmospheric circulation favoring its persistence.

  13. Ultra-thin wafer-level camera with 720p resolution using micro-optics

    NASA Astrophysics Data System (ADS)

    Brückner, Andreas; Oberdörster, Alexander; Dunkel, Jens; Reimann, Andreas; Müller, Martin; Wippermann, Frank

    2014-09-01

    We propose a microoptical approach to ultra-compact optics for real-time vision systems that are inspired by the compound eyes of insects. The demonstrated module achieves 720p resolution with a total track length of 2.0 mm which is about 1.5 times shorter than comparable conventional miniaturized optics. The partial images that are separately recorded in multiple optical channels are stitched together to form a final image of the whole FOV by means of image processing. The microlens arrays are realized by microoptical fabrication techniques on wafer-level which are suitable for a potential application in high volume e.g. for consumer electronic products.

  14. Theoretical Problems in High Resolution Solar Physics, 2

    NASA Technical Reports Server (NTRS)

    Athay, G. (Editor); Spicer, D. S. (Editor)

    1987-01-01

    The Science Working Group for the High Resolution Solar Observatory (HRSO) laid plans beginning in 1984 for a series of workshops designed to stimulate a broadbased input from the scientific community to the HRSO mission. These workshops have the dual objectives of encouraging an early start on the difficult theoretical problems in radiative transfer, magnetohydrodynamics, and plasma physics that will be posed by the HRSO data, and maintaining current discussions of results in high resolution solar studies. This workshop was the second in the series. The workshop format presented invited review papers during the formal sessions and contributed poster papers for discussions during open periods. Both are presented.

  15. High Angular Resolution Microwave Sensing with Large, Sparse, Random Arrays.

    DTIC Science & Technology

    1982-12-01

    b.cnuainas saldaatv an quired at microwaves to achieve the rec0n(pwro cam’ forming or seti -colternng or phas. synchronzing. After the moo optical...AD A126 866 HIGH ANGULAR RESOLUTICN MICROWAVE SENSING WITH LARGE 1/ SPARSE RANDOM ARRAYS..U) MOORE SCHOOL OF ELECTRICAL ENGINEERING PHILADELPHIAPA...RESOLUTION TEST CHART N4ATIONAL BUREAU Of SrANDARDS 1963 A iOSR-TR- 83-0225 HIGH ANGULAR RESOLUTION MICROWAVE SENSING WITH LARGE, SPARSE, RANDOM ARRAYS Annual

  16. High-resolution seismic studies applied to injected geothermal fluids

    SciTech Connect

    Smith, A.T.; Kasameyer, P.

    1985-01-01

    The application of high-resolution microseismicity studies to the problem of monitoring injected fluids is one component of the Geothermal Injection Monitoring Project at LLNL. The evaluation of microseismicity includes the development of field techniques, and the acquisition and processing of events during the initial development of a geothermal field. To achieve a specific detection threshold and location precision, design criteria are presented for seismic networks. An analysis of a small swarm near Mammoth Lakes, California, demonstrates these relationships and the usefulness of high-resolution seismic studies. A small network is currently monitoring the Mammoth-Pacific geothermal power plant at Casa Diablo as it begins production.

  17. High Resolution 3d Modeling of the Behaim Globe

    NASA Astrophysics Data System (ADS)

    Menna, F.; Rizzi, A.; Nocerino, E.; Remondino, F.; Gruen, A.

    2012-07-01

    The article describes the 3D surveying and modeling of the Behaim globe, the oldest still existing and intact globe of the earth, preserved at the German National Museum of Nuremberg, Germany. The work is primarily performed using high-resolution digital images and automatic photogrammetric techniques. Triangulation-based laser scanning is also employed to fill some gaps in the derived image-based 3D geometry and perform geometric comparisons. Major problems are encountered in texture mapping. The 3D modeling project and the creation of high-resolution map-projections is performed for scientific, conservation, visualization and education purposes.

  18. On the application and extension of Harten's high resolution scheme

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Warming, R. F.; Harten, A.

    1982-01-01

    Extensions of a second order high resolution explicit method for the numerical computation of weak solutions of one dimensonal hyperbolic conservation laws are discussed. The main objectives were (1) to examine the shock resoluton of Harten's method for a two dimensional shock reflection problem, (2) to study the use of a high resolution scheme as a post-processor to an approximate steady state solution, and (3) to construct an implicit in the delta-form using Harten's scheme for the explicit operator and a simplified iteration matrix for the implicit operator.

  19. High-resolution second harmonic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jiang, Yi; Tomov, Ivan V.; Wang, Yimin; Chen, Zhongping

    2005-04-01

    A high-resolution Second Harmonic Optical Coherence Tomography (SH-OCT) system is demonstrated using a spectrum broadened femtosecond Ti:sapphire laser. An axial resolution of 4.2 μm at the second harmonic wave center wavelength of 400 nm has been achieved. Because the SH-OCT system uses the second harmonic generation signals that strongly depend on the orientation, polarization and local symmetry properties of chiral molecules, this technique provides unique contrast enhancement to conventional optical coherence tomography. The system is applied to image biological tissues like the rat-tail tendon. Images of highly organized collagen fibrils in the rat-tail tendon have been demonstrated.

  20. High resolution collimator system for X-ray detector

    DOEpatents

    Eberhard, Jeffrey W.; Cain, Dallas E.

    1987-01-01

    High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.

  1. High-resolution low-dose scanning transmission electron microscopy.

    PubMed

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  2. Optimizing High Level Waste Disposal

    SciTech Connect

    Dirk Gombert

    2005-09-01

    If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being

  3. Wide-field, high-resolution Fourier ptychographic microscopy

    PubMed Central

    Zheng, Guoan; Horstmeyer, Roarke; Yang, Changhuei

    2014-01-01

    In this article, we report an imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image. By adopting a wavefront correction strategy, the FPM method can also correct for aberrations and digitally extend a microscope’s depth-of-focus beyond the physical limitations of its optics. As a demonstration, we built a microscope prototype with a resolution of 0.78 μm, a field-of-view of ~120 mm2, and a resolution-invariant depth-of-focus of 0.3 mm (characterized at 632 nm). Gigapixel colour images of histology slides verify FPM’s successful operation. The reported imaging procedure transforms the general challenge of high-throughput, high-resolution microscopy from one that is coupled to the physical limitations of the system’s optics to one that is solvable through computation. PMID:25243016

  4. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry

    NASA Astrophysics Data System (ADS)

    Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek

    2014-09-01

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  5. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry.

    PubMed

    Caracappa, Peter F; Rhodes, Ashley; Fiedler, Derek

    2014-09-21

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  6. A high-resolution ambient seismic noise model for Europe

    NASA Astrophysics Data System (ADS)

    Kraft, Toni

    2014-05-01

    measurement precision (i.e. earthquake location), while considering this extremely complex boundary condition. To solve this problem I have developed a high-resolution ambient seismic noise model for Europe. The model is based on land-use data derived from satellite imagery by the EU-project CORINE in a resolution of 100x100m. The the CORINE data consists of several land-use classes, which, besides others, contain: industrial areas, mines, urban fabric, agricultural areas, permanent corps, forests and open spaces. Additionally, open GIS data for highways, and major and minor roads and railway lines were included from the OpenStreetMap project (www.openstreetmap.org). This data was divided into three classes that represent good, intermediate and bad ambient conditions of the corresponding land-use class based on expert judgment. To account for noise propagation away from its source a smoothing operator was applied to individual land-use noise-fields. Finally, the noise-fields were stacked to obtain an European map of ambient noise conditions. A calibration of this map with data of existing seismic stations Europe allowed me to estimate the expected noise level in actual ground motion units for the three ambient noise condition classes of the map. The result is a high-resolution ambient seismic noise map, that allows the network designer to make educated predictions on the expected noise level for arbitrary location in Europe. The ambient noise model was successfully tested in several network optimization projects in Switzerland and surrounding countries and will hopefully be a valuable contribution to improving the data quality of microseismic monitoring networks in Europe.

  7. New Challenges in High-Resolution Modeling of Hurricanes

    NASA Astrophysics Data System (ADS)

    Chen, S. S.

    2006-12-01

    The extreme active Atlantic hurricane seasons in recent years have highlighted the urgent need for a better understanding of the factors that contribute to hurricane intensity and for development of the corresponding advanced hurricane prediction models to improve intensity forecasts. The lack of skill in present forecasts of hurricane structure and intensity may be attributed in part to deficiencies in the current prediction models: insufficient grid resolution, inadequate surface and boundary layer formulations, and the lack of full coupling to a dynamic ocean. The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in hurricanes push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. The recent modeling effort is to develop and test a fully coupled atmosphere-wave-ocean modeling system that is capable of resolving the eye and eyewall in a hurricane at ~1 km grid resolution. The new challenges for these very high resolution models are the corresponding physical representations at 1-km scale, including microphysics, sub-grid turbulence parameterization, atmospheric boundary layer, physical processes at the air-sea interface with surface waves among others. The lack of accurate initial conditions for high-resolution hurricane modeling presents another major challenge. Improvements in initial conditions rest on the use of more airborne and remotely sensed observations in high-resolution assimilation systems and on the application of advanced assimilation schemes to hurricanes. This study aimed to provide an overview of these new challenges using high-resolution model simulations of Hurricanes Isabel (2003), Frances (2004), Katrina and Rita (2005) that were observed extensively by two recent field programs, namely, the Coupled Boundary Layer Air-Sea Transfer (CBLAST)-Hurricane in 2003-2004 and the Hurricane Rainbands and Intensity Change Experiment (RAINEX) in 2005.

  8. High-resolution subsurface water-ice distributions on Mars.

    PubMed

    Bandfield, Joshua L

    2007-05-03

    Theoretical models indicate that water ice is stable in the shallow subsurface (depths of <1-2 m) of Mars at high latitudes. These models have been mainly supported by the observed presence of large concentrations of hydrogen detected by the Gamma Ray Spectrometer suite of instruments on the Mars Odyssey spacecraft. The models and measurements are consistent with a water-ice table that steadily increases in depth with decreasing latitude. More detailed modelling has predicted that the depth at which water ice is stable can be highly variable, owing to local surface heterogeneities such as rocks and slopes, and the thermal inertia of the ground cover. Measurements have, however, been limited to the footprint (several hundred kilometres) of the Gamma Ray Spectrometer suite, preventing the observations from documenting more detailed water-ice distributions. Here I show that by observing the seasonal temperature response of the martian surface with the Thermal Emission Imaging System on the Mars Odyssey spacecraft, it is possible to observe such heterogeneities at subkilometre scale. These observations show significant regional and local water-ice depth variability, and, in some cases, support distributions in the subsurface predicted by atmospheric exchange and vapour diffusion models. The presence of water ice where it follows the depth of stability under current climatic conditions implies an active martian water cycle that responds to orbit-driven climate cycles. Several regions also have apparent deviations from the theoretical stability level, indicating that additional factors influence the ice-table depth. The high-resolution measurements show that the depth to the water-ice table is highly variable within the potential Phoenix spacecraft landing ellipses, and is likely to be variable at scales that may be sampled by the spacecraft.

  9. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization

    PubMed Central

    Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K. Kirk

    2015-01-01

    Background Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. Methods The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 
147 µm with an effective FOV of 2 mm in depth. Results The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system’s improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. Conclusions All together high resolution HMI

  10. Exploring NASA Satellite Data with High Resolution Visualization

    NASA Astrophysics Data System (ADS)

    Wei, J. C.; Yang, W.; Johnson, J. E.; Shen, S.; Zhao, P.; Gerasimov, I. V.; Vollmer, B.; Vicente, G. A.; Pham, L.

    2013-12-01

    Satellite data products are important for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if the satellite data are well utilized and interpreted, such as model inputs from satellite, or extreme event (such as volcano eruption, dust storm, ...etc) interpretation from satellite. Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite data products provided by NASA and other organizations. Such obstacles may be avoided by providing satellite data as ';Images' with accurate pixel-level (Level 2) information, including pixel coverage area delineation and science team recommended quality screening for individual geophysical parameters. We will present a prototype service from the Goddard Earth Sciences Data and Information Services Center (GES DISC) supporting various visualization and data accessing capabilities from satellite Level 2 data (non-aggregated and un-gridded) at high spatial resolution. Functionality will include selecting data sources (e.g., multiple parameters under the same measurement, like NO2 and SO2 from Ozone Monitoring Instrument (OMI), or same parameter with different methods of aggregation, like NO2 in OMNO2G and OMNO2D products), defining area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting and reformatting. The portal interface will connect to the backend services with OGC standard-compliant Web Mapping Service (WMS) and Web Coverage Service (WCS) calls. The interface will also be able to connect to other OGC WMS and WCS servers, which will greatly enhance its expandability to integrate additional outside data/map sources.

  11. High time resolutions observations of Cygnus X-3 with EXOSAT

    NASA Astrophysics Data System (ADS)

    Berger, M.; van der Klis, M.

    1994-12-01

    We have studied the fast timing behavior of Cygnus X-3 using the entire EXOSAT ME dataset on this source, consisting of 22 observations that cover a total of 320 000 seconds. This large amount of data allowed us to measure the rapid (greater than 1 Hz) X-ray variability of the source to an unprecedented accuracy of 0.2% fractional rms amplitude. Above 256 Hz, the power of the X-ray count rate fluctuations is significantly below the level predicted from Poisson statistics modified by the known dead time processes in the instrument. We developed an improved empirical method for predicting the Poisson level in EXOSAT ME High Time Resolution 3 (HTR3) and HTR5 data, and use it in our present analysis. None of the four other X-ray sources studied had a weaker noise-component in the region 1-256 Hz as the power spectra of Cygnus X-3. An instrumental effect could therefore not be excluded. If the effect is instrumental, the 99% confidence upper limit on the 1-256 Hz rapid variability of Cygnus X-3 is 0.6% rms. The consequences of these results for previously reported EXOSAT HTR observations are briefly discussed. We compare our results to the predictions of the stellar wind model for Cygnus X-3. Monte Carlo simulations were carried out to investigate the signal-attenuating effect of the wind. For the most likely wind parameters, the intrinsic source variability is found to be either very strong (approximately 60% rms), unlike seen in any other X-ray source at similar luminosity, or to be less than or approximately 12%, which would be consistent with a black hole candidate in the high state, or a low magnetic field neutron star.

  12. High Resolution Simulations of Future Climate in West Africa Using a Variable-Resolution Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Adegoke, J. O.; Engelbrecht, F.; Vezhapparambu, S.

    2013-12-01

    In previous work demonstrated the application of a var¬iable-resolution global atmospheric model, the conformal-cubic atmospheric model (CCAM), across a wide range of spatial and time scales to investigate the ability of the model to provide realistic simulations of present-day climate and plausible projections of future climate change over sub-Saharan Africa. By applying the model in stretched-grid mode the versatility of the model dynamics, numerical formulation and physical parameterizations to function across a range of length scales over the region of interest, was also explored. We primarily used CCAM to illustrate the capability of the model to function as a flexible downscaling tool at the climate-change time scale. Here we report on additional long term climate projection studies performed by downscaling at much higher resolutions (8 Km) over an area that stretches from just south of Sahara desert to the southern coast of the Niger Delta and into the Gulf of Guinea. To perform these simulations, CCAM was provided with synoptic-scale forcing of atmospheric circulation from 2.5 deg resolution NCEP reanalysis at 6-hourly interval and SSTs from NCEP reanalysis data uses as lower boundary forcing. CCAM 60 Km resolution downscaled to 8 Km (Schmidt factor 24.75) then 8 Km resolution simulation downscaled to 1 Km (Schmidt factor 200) over an area approximately 50 Km x 50 Km in the southern Lake Chad Basin (LCB). Our intent in conducting these high resolution model runs was to obtain a deeper understanding of linkages between the projected future climate and the hydrological processes that control the surface water regime in this part of sub-Saharan Africa.

  13. Remote sensing cloud properties from high spectral resolution infrared observations

    NASA Technical Reports Server (NTRS)

    Smith, William L.; Ma, Xia L.; Ackerman, Steven A.; Revercomb, H. E.; Knuteson, R. O.

    1993-01-01

    A technique for estimating cloud radiative properties (spectral emissivity and reflectivity) in the IR is developed based on observations at a spectral resolution of approximately 0.5/cm. The algorithm uses spectral radiance observations and theoretical calculations of the IR spectra for clear and cloudy conditions along with lidar-determined cloud-base and cloud-top pressure. An advantage of the high spectral resolution observations is that the absorption effects of atmospheric gases are minimized by analyzing between gaseous absorption lines. The technique is applicable to both ground-based and aircraft-based platforms and derives the effective particle size and associated cloud water content required to satisfy, theoretically, the observed cloud IR spectra. The algorithm is tested using theoretical simulations and applied to observations made with the University of Wisconsin's ground-based and NASA ER-2 aircraft High-Resolution Infrared Spectrometer instruments.

  14. High-resolution real-time ultrasonic scanner.

    PubMed

    Berson, M; Vaillant, L; Patat, F; Pourcelot, L

    1992-01-01

    High spatial resolution is required for echographic exploration of the skin, microvessels or small laboratory animals. With the scanner described here, high resolution is obtained by means of a strongly focused, wide-band 17 MHz center frequency transducer (-6 dB bandwidth: 22 MHz). The movement of this transducer above the skin provides a 6 mm wide and 5 mm deep echographic cross-section with an image rate of 15 images/s. The resolution is about 0.08 mm in axial and 0.2 to 0.3 mm in lateral directions. The device was tested on phantoms in water and in vivo on normal and pathological skin in the Department of Dermatology. With the easy-to-handle probe, explorations were made on psoriasis, basocellular carcinoma, malignant melanoma and sarcoidosis.

  15. High Resolution Coherent Three-Dimensional Spectroscopy of Iodine

    NASA Astrophysics Data System (ADS)

    House, Zuri R.; Wells, Thresa A.; Chen, Peter C.; Strangfeld, Benjamin R.

    2013-06-01

    The heavy congestion found in many one-dimensional spectra can make it difficult to study many transitions. A new coherent three-dimensional spectroscopic technique has been developed to eliminate the kind of congestion commonly seen in high resolution electronic spectra. The molecule used for this test was Iodine. A well-characterized transition (X to B) was used to determine which four wave mixing process or processes were responsible for the peaks in the resulting multidimensional spectrum. The resolution of several peaks that overlap in a coherent 2D spectrum can be accomplished by using a higher dimensional (3D) spectroscopic method. This talk will discuss strategies for finding spectroscopic constants using this high resolution coherent 3D spectroscopic method.

  16. An Introduction to High Resolution Coherent Multidimensional Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Wells, Thresa A.; House, Zuri R.; Strangfeld, Benjamin R.

    2013-06-01

    High resolution coherent multidimensional spectroscopy is a technique that can be used to analyze and assign peaks for molecules that have resisted spectral analysis. Molecules that yield heavily congested and seemingly patternless spectra using conventional methods can yield 2D spectra that have recognizable patterns. The off-diagonal region of the coherent 2D plot shows only cross-peaks that are related by rotational selection rules. The resulting patterns facilitate peak assignment if they are sufficiently resolved. For systems that are not well-resolved, coherent 3D spectra may be generated to further improve resolution and provide selectivity. This presentation will provide an introduction to high resolution coherent 2D and 3D spectroscopies.

  17. High resolution map of light pollution over Poland

    NASA Astrophysics Data System (ADS)

    Netzel, Henryka; Netzel, Paweł

    2016-09-01

    In 1976 Berry introduced a simple mathematical equation to calculate artificial night sky brightness at zenith. In the original model cities, considered as points with given population, are only sources of light emission. In contrary to Berry's model, we assumed that all terrain surface can be a source of light. Emission of light depends on percent of built up area in a given cell. We based on Berry's model. Using field measurements and high-resolution data we obtained the map of night sky brightness over Poland in 100-m resolution. High resolution input data, combined with a very simple model, makes it possible to obtain detailed structures of the night sky brightness without complicating the calculations.

  18. Science with High Spatial Resolution Far-Infrared Data

    NASA Technical Reports Server (NTRS)

    Terebey, Susan (Editor); Mazzarella, Joseph M. (Editor)

    1994-01-01

    The goal of this workshop was to discuss new science and techniques relevant to high spatial resolution processing of far-infrared data, with particular focus on high resolution processing of IRAS data. Users of the maximum correlation method, maximum entropy, and other resolution enhancement algorithms applicable to far-infrared data gathered at the Infrared Processing and Analysis Center (IPAC) for two days in June 1993 to compare techniques and discuss new results. During a special session on the third day, interested astronomers were introduced to IRAS HIRES processing, which is IPAC's implementation of the maximum correlation method to the IRAS data. Topics discussed during the workshop included: (1) image reconstruction; (2) random noise; (3) imagery; (4) interacting galaxies; (5) spiral galaxies; (6) galactic dust and elliptical galaxies; (7) star formation in Seyfert galaxies; (8) wavelet analysis; and (9) supernova remnants.

  19. Portable electro-mechanically cooled high-resolution germanium detector

    SciTech Connect

    Neufeld, K.W.; Ruhter, W.D.

    1995-05-01

    We have integrated a small, highly-reliable, electro-mechanical cryo-cooler with a high-resolution germanium detector for portable/field applications. The system weighs 6.8 kg and requires 40 watts of power to operate once the detector is cooled to its operating temperature. the detector is a 500 mm{sup 2} by 20-mm thick low-energy configuration that gives a full-width at half maximum (FWHM) energy resolution of 523 eV at 122 keV, when cooled with liquid nitrogen. The energy resolution of the detector, when cooled with the electro-mechanical cooler, is 570 eV at 122 keV. We have field tested this system in measurements of plutonium and uranium for isotopic and enrichment information using the MGA and MGAU analysis programs without any noticeable effects on the results.

  20. Special issue on high-resolution optical imaging

    NASA Astrophysics Data System (ADS)

    Smith, Peter J. S.; Davis, Ilan; Galbraith, Catherine G.; Stemmer, Andreas

    2013-09-01

    The pace of development in the field of advanced microscopy is truly breath-taking, and is leading to major breakthroughs in our understanding of molecular machines and cell function. This special issue of Journal of Optics draws attention to a number of interesting approaches, ranging from fluorescence and imaging of unlabelled cells, to computational methods, all of which are describing the ever increasing detail of the dynamic behaviour of molecules in the living cell. This is a field which traditionally, and currently, demonstrates a marvellous interplay between the disciplines of physics, chemistry and biology, where apparent boundaries to resolution dissolve and living cells are viewed in ever more clarity. It is fertile ground for those interested in optics and non-conventional imaging to contribute high-impact outputs in the fields of cell biology and biomedicine. The series of articles presented here has been selected to demonstrate this interdisciplinarity and to encourage all those with a background in the physical sciences to 'dip their toes' into the exciting and dynamic discoveries surrounding cell function. Although single molecule super-resolution microscopy is commercially available, specimen preparation and interpretation of single molecule data remain a major challenge for scientists wanting to adopt the techniques. The paper by Allen and Davidson [1] provides a much needed detailed introduction to the practical aspects of stochastic optical reconstruction microscopy, including sample preparation, image acquisition and image analysis, as well as a brief description of the different variants of single molecule localization microscopy. Since super-resolution microscopy is no longer restricted to three-dimensional imaging of fixed samples, the review by Fiolka [2] is a timely introduction to techniques that have been successfully applied to four-dimensional live cell super-resolution microscopy. The combination of multiple high-resolution techniques

  1. High Resolution Urban Feature Extraction for Global Population Mapping using High Performance Computing

    SciTech Connect

    Vijayaraj, Veeraraghavan; Bright, Eddie A; Bhaduri, Budhendra L

    2007-01-01

    The advent of high spatial resolution satellite imagery like Quick Bird (0.6 meter) and IKONOS (1 meter) has provided a new data source for high resolution urban land cover mapping. Extracting accurate urban regions from high resolution images has many applications and is essential to the population mapping efforts of Oak Ridge National Laboratory's (ORNL) LandScan population distribution program. This paper discusses an automated parallel algorithm that has been implemented on a high performance computing environment to extract urban regions from high resolution images using texture and spectral features

  2. Visualization tools for extremely high resolution DEM from the LRO and other orbiter satellites

    NASA Astrophysics Data System (ADS)

    Montgomery, J.; McDonald, John

    2012-10-01

    Recent space missions have included laser altimetry instrumentation that provides precise high-resolution global topographic data products. These products are critical in analyzing geomorphological surface processes of planets and moons. Although highly valued, the high-resolution data is often overlooked by researchers due to the high level of IT sophistication necessary to use the high-resolution data products, which can be as large as several hundred gigabytes. Researchers have developed software tools to assist in viewing and manipulating data products derived from altimetry data, however current software tools require substantial off-line processing, provide rudimentary visualization or are not suited for viewing the new high-resolution data. We have adapted mVTK, a novel software visualization tool, to work with NASA's recently acquired Lunar Reconnaissance Orbiter data. mVTK is a software visualization package that dynamically creates cylindrical cartographic map projections from gridded high-resolution altimetry data in real-time. The projections are interactive 2D shade relief, false color maps that allow the user to make simple slope and distance measurements on the actual underlying high-resolution data. We have tested mVTK on several laser altimetry data sets including binned gridded record data from NASA's Mars Global Surveyor and Lunar Reconnaissance Orbiter space missions.

  3. Instrument for high resolution magnetization measurements at high pressures, high magnetic fields and low temperatures

    NASA Astrophysics Data System (ADS)

    Koyama, K.; Hane, S.; Kamishima, K.; Goto, T.

    1998-08-01

    An instrument has been developed for the first time that makes high resolution magnetization measurements at high pressures, high magnetic fields and low temperatures. The instrument consists of an extraction-type magnetometer, a nonmagnetic high pressure clamp cell and a 20 T superconducting magnet with a 3He refrigerator and is able to precisely measure the magnetization of weakly magnetic materials. TiCu alloy with 3 wt % Ti is employed as a nonmagnetic material with high mechanical strength for the high pressure clamp cell. This apparatus can be used in the pressure range 0⩽P⩽13 kbar, the field range 0⩽H⩽200 kOe and the temperature range 0.5⩽T⩽4.2 K. The resolution of the instrument is estimated to be ±0.002 emu. For demonstrating the ability of the instrument, the experimental results on a heavy fermion antiferromagnet Ce7Ni3 is presented.

  4. Immersion Gratings for Infrared High-resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  5. High-Resolution Electronics: Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet (Adv. Mater. 31/2016).

    PubMed

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    On page 6568, T. Minari and co-workers describe spontaneous patterning based on the parallel vacuum ultraviolet (PVUV) technique, enabling the homogeneous integration of complex, high-resolution electronic circuits, even on large-scale, flexible, transparent substrates. Irradiation of PVUV to the hydrophobic polymer surface precisely renders the selected surface into highly wettable regions with sharply defined boundaries, which spontaneously guides a metal nanoparticle ink into a series of circuit lines and gaps with the widths down to a resolution of 1 μm.

  6. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    SciTech Connect

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  7. High resolution imaging of objects located within a wall

    NASA Astrophysics Data System (ADS)

    Greneker, Eugene F.; Showman, Gregory A.; Trostel, John M.; Sylvester, Vincent

    2006-05-01

    Researchers at Georgia Tech Research Institute have developed a high resolution imaging radar technique that allows large sections of a test wall to be scanned in X and Y dimensions. The resulting images that can be obtained provide information on what is inside the wall, if anything. The scanning homodyne radar operates at a frequency of 24.1 GHz at with an output power level of approximately 10 milliwatts. An imaging technique that has been developed is currently being used to study the detection of toxic mold on the back surface of wallboard using radar as a sensor. The moisture that is associated with the mold can easily be detected. In addition to mold, the technique will image objects as small as a 4 millimeter sphere on the front or rear of the wallboard and will penetrate both sides of a wall made of studs and wallboard. Signal processing is performed on the resulting data to further sharpen the image. Photos of the scanner and images produced by the scanner are presented. A discussion of the signal processing and technical challenges are also discussed.

  8. High Resolution Inelastic Electron Scattering from LEAD-208.

    NASA Astrophysics Data System (ADS)

    Connelly, James Patrick

    Inclusive electron scattering differential cross sections from ^{208}Pb have been measured with energy resolutions better than 20 keV for over 120 discrete states with excitation energies less than 7.3 MeV. The momentum-transfer dependence of these cross sections has been mapped over a range of 0.5 to 2.8 fm^{-1} in the forward direction and 1.0 to 2.9 fm^{ -1} in the backward scattering direction. Over fifty excitations have been analyzed in the Distorted Wave Born Approximation to yield transition charge, current and magnetization densities. The nuclear structure of discrete excitations are interpreted in the framework of 1p-1h transition. The nuclear structure of levels in the excitation region below 4.8 MeV is studied in detail. Above 4.8 MeV, multiplets from single particle-hole configurations coupling to high spin states (J >=q 7) are investigated. Experimental transition densities are compared to Tamm-Dancoff calculations from a correlated ground state.

  9. Tree Species Classification By Multiseasonal High Resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Elatawneh, Alata; Wallner, Adelheid; Straub, Christoph; Schneider, Thomas; Knoke, Thomas

    2013-12-01

    Accurate forest tree species mapping is a fundamental issue for sustainable forest management and planning. Forest tree species mapping with the means of remote sensing data is still a topic to be investigated. The Bavaria state institute of forestry is investigating the potential of using digital aerial images for forest management purposes. However, using aerial images is still cost- and time-consuming, in addition to their acquisition restrictions. The new space-born sensor generations such as, RapidEye, with a very high temporal resolution, offering multiseasonal data have the potential to improve the forest tree species mapping. In this study, we investigated the potential of multiseasonal RapidEye data for mapping tree species in a Mid European forest in Southern Germany. The RapidEye data of level A3 were collected on ten different dates in the years 2009, 2010 and 2011. For data analysis, a model was developed, which combines the Spectral Angle Mapper technique with a 10-fold- cross-validation. The analysis succeeded to differentiate four tree species; Norway spruce (Picea abies L.), Silver Fir (Abies alba Mill.), European beech (Fagus sylvatica) and Maple (Acer pseudoplatanus). The model success was evaluated using digital aerial images acquired in the year 2009 and inventory point records from 2008/09 inventory. Model results of the multiseasonal RapidEye data analysis achieved an overall accuracy of 76%. However, the success of the model was evaluated only for all the identified species and not for the individual.

  10. High resolution UV absorption studies of N2, SO2

    NASA Astrophysics Data System (ADS)

    Smith, Peter L.; Stark, G.; Rufus, J.; Yoshino, K.; Huber, K. P.; Ito, K.; Thorne, A. P.

    The most prominent EUV emission features in the airglows of Titan and Triton, where N2 is the major atmospheric constituent, originate from the N2c'4 1Σu+(v=0) level. We report new photoabsorption measurements of 43 rotational line oscillator strengths in the c'4(0)-X(0) band of N2. These are the first measurements of individual line f-values for this band. Such values, which are important for models of atmospheres at various temperatures, cannot be reliably calculated from band f-values and Hönl-London factors because of perturbations. A summation over the integrated cross sections of the measured lines yields a room temperature band f-value of 0.132±0.020. SO2 is an important constituent of the atmospheres of Io and Venus. Accurate photoabsorption cross section data at the temperatures of these planetary atmospheres are required for the interpretation of SO2 observations and for reliable photochemical models. Our high-resolution (λ/Δλ ≈ 450,000), room-temperature measurements of SO2 absorption cross sections in the wavelength region 198 to 220 nm [Stark et al., JGR Planets, 104, 16,585 (1999)] are being extended to lower temperatures. This work was supported in part by NASA Grant NAG5-6222 to Wellesley College.

  11. High resolution cloud feature tracking on Venus by Galileo

    NASA Technical Reports Server (NTRS)

    Toigo, Anthony; Gierasch, Peter J.; Smith, Michael D.

    1994-01-01

    The Venus cloud deck was monitored in February 1990 for 16 hours at 400 nanometers wavelength by the Galileo imaging system, with a spatial resolution of about 15 km and with image time separations as small as 10 minutes. Velocities are deduced by following the motion of small cloud features. In spite of the high temporal frequence is capable of being detected, no dynamical phenomena are apparent in the velocity data except the already well-known solar tides, possibly altered by the slow 4-day wave and the Hadley circulation. There is no evidence, to a level of approximately 4 m/s, of eddy or wavelike activity. The dominant size of sub-global scale albedo features is 200-500 km, and their contrast is approximately 5%. At low altitudes there are patches of blotchy, cell-like structures but at most locations the markings are streaky. The patterns are similar to those discovered by Mariner 10 and Pioneer Venus (M. J. S. Belton et al., 1976, W. B. Rossow et al., 1980). Scaling arguments are presented to argue that the mesoscale blotchy cell-like cloud patterns are caused by local dynamics driven in a shallow layer by differential absorption of sunlight. It is also argued that mesoscale albedo features are either streaky or cell-like simply depending on whether the horizontal shear of the large scale flow exceeds a certain critical value.

  12. High Resolution FIR and IR Spectroscopy of Methanol Isotopologues

    SciTech Connect

    Lees, R. M.; Xu, Li-Hong; Appadoo, D. R. T.; Billinghurst, B.

    2010-02-03

    New astronomical facilities such as HIFI on the Herschel Space Observatory, the SOFIA airborne IR telescope and the ALMA sub-mm telescope array will yield spectra from interstellar and protostellar sources with vastly increased sensitivity and frequency coverage. This creates the need for major enhancements to laboratory databases for the more prominent interstellar 'weed' species in order to model and account for their lines in observed spectra in the search for new and more exotic interstellar molecular 'flowers'. With its large-amplitude internal torsional motion, methanol has particularly rich spectra throughout the FIR and IR regions and, being very widely distributed throughout the galaxy, is perhaps the most notorious interstellar weed. Thus, we have recorded new spectra for a variety of methanol isotopic species on the high-resolution FTIR spectrometer on the CLS FIR beamline. The aim is to extend quantum number coverage of the data, improve our understanding of the energy level structure, and provide the astronomical community with better databases and models of the spectral patterns with greater predictive power for a range of astrophysical conditions.

  13. Workshop on high-resolution, large-acceptance spectrometers

    SciTech Connect

    Zeidman, B.

    1981-01-01

    The purpose of the Workshop on High-Resolution, Large-Acceptance Spectrometers was to provide a means for exchange of information among those actively engaged in the design and construction of these new spectrometers. Thirty-seven papers were prepared for the data base.

  14. High-Resolution Simulations of Coal Injection in A Gasifier

    SciTech Connect

    Li, Tingwen; Gel, Aytekin; Syamlal, M; Guenther, Chris; Pannala, Sreekanth

    2010-01-01

    This study demonstrates an approach to effectively combine high- and low-resolution simulations for design studies of industrial coal gasifier. The flow-field data from a 10 million cell full-scale simulation of a commercial-scale gasifier were used to construct a reduced configuration to economically study the coal injection in detail. High-resolution numerical simulations of the coal injection were performed using the open-source code MFIX running on a high performance computing system. Effects of grid resolution and numerical discretization scheme on the predicted behavior of coal injection and gasification kinetics were analyzed. Pronounced differences were predicted in the devolatilization and steam gasification rates because of different discretization schemes, implying that a high-order numerical scheme is required to predict well the unsteady gasification process on an adequately resolved grid. Computational costs for simulations of varying resolutions are presented to illustrate the trade-off between the accuracy of solution and the time-to-solution, an important consideration when engineering simulations are used for the design of commercial-scale units.

  15. A DVD Spectroscope: A Simple, High-Resolution Classroom Spectroscope

    ERIC Educational Resources Information Center

    Wakabayashi, Fumitaka; Hamada, Kiyohito

    2006-01-01

    Digital versatile disks (DVDs) have successfully made up an inexpensive but high-resolution spectroscope suitable for classroom experiments that can easily be made with common material and gives clear and fine spectra of various light sources and colored material. The observed spectra can be photographed with a digital camera, and such images can…

  16. Persistence Diagrams of High-Resolution Temporal Rainfall

    NASA Astrophysics Data System (ADS)

    Fernández Méndez, F.; Carsteanu, A. A.

    2015-12-01

    This study applies Topological Data Analysis (TDA), by generating persistence diagrams to uncover patterns in the data of high-resolution temporal rainfall intensities from Iowa City (IIHR, U of Iowa). Persistence diagrams are a way to identify essential cycles in state-space representations of the data.

  17. Application of Classification Models to Pharyngeal High-Resolution Manometry

    ERIC Educational Resources Information Center

    Mielens, Jason D.; Hoffman, Matthew R.; Ciucci, Michelle R.; McCulloch, Timothy M.; Jiang, Jack J.

    2012-01-01

    Purpose: The authors present 3 methods of performing pattern recognition on spatiotemporal plots produced by pharyngeal high-resolution manometry (HRM). Method: Classification models, including the artificial neural networks (ANNs) multilayer perceptron (MLP) and learning vector quantization (LVQ), as well as support vector machines (SVM), were…

  18. Laser direct writing of rotationally symmetric high-resolution structures.

    PubMed

    Haefner, Matthias; Pruss, Christof; Osten, Wolfgang

    2011-11-01

    We present a laser direct writing system for the efficient fabrication of high-resolution axicon structures. The setup makes use of scanning beam interference lithography incorporated with a fringe locking scheme for tight fringe phase control and allows us to fabricate large area structures with a period down to 450 nm.

  19. High-resolution airway morphometry from polyurethane casts

    NASA Astrophysics Data System (ADS)

    Neufeld, Gordon R.; Vargas, John; Hoford, John D.; Craft, Jeanne; Shroff, Sunil; McRae, Karen M.

    1995-05-01

    An airway cast was made and imbedded in a solid polyurethane block of a contrasting color. The block was sequentially milled and photographed. The sequential photographs were scanned to create an image database which was analyzed on VIDA; a multidimensional image analysis software package. The technique shows promise as a semi-automated process for generating a high resolution morphometric database from airway casts.

  20. Plant respirometer enables high resolution of oxygen consumption rates

    NASA Technical Reports Server (NTRS)

    Foster, D. L.

    1966-01-01

    Plant respirometer permits high resolution of relatively small changes in the rate of oxygen consumed by plant organisms undergoing oxidative metabolism in a nonphotosynthetic state. The two stage supply and monitoring system operates by a differential pressure transducer and provides a calibrated output by digital or analog signals.

  1. High resolution bone mineral densitometry with a gamma camera

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Jhingran, S.; Johnson, P.

    1983-01-01

    A technique by which the regional distribution of bone mineral can be determined in bone samples from small animals is described. The technique employs an Anger camera interfaced to a medical computer. High resolution imaging is possible by producing magnified images of the bone samples. Regional densitometry of femurs from oophorectomised and bone mineral loss.

  2. High-Resolution Nuclear Magnetic Resonance of Solids.

    ERIC Educational Resources Information Center

    Maciel, Gary E.

    1984-01-01

    Examines recent developments in techniques for obtaining high-resolution nuclear magnetic resonance (NMR) spectra on solid samples, discussing the kinds of applications for which these techniques are well suited. Also discusses the characteristics of NMR of solids and generating magnetization for NMR in solids. (JN)

  3. Development of high accuracy and resolution geoid and gravity maps

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.

    1986-01-01

    Precision satellite to satellite tracking can be used to obtain high precision and resolution maps of the geoid. A method is demonstrated to use data in a limited region to map the geopotential at the satellite altitude. An inverse method is used to downward continue the potential to the Earth surface. The method is designed for both satellites in the same low orbit.

  4. Texture analysis of high-resolution FLAIR images for TLE

    NASA Astrophysics Data System (ADS)

    Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Elisevich, Kost

    2005-04-01

    This paper presents a study of the texture information of high-resolution FLAIR images of the brain with the aim of determining the abnormality and consequently the candidacy of the hippocampus for temporal lobe epilepsy (TLE) surgery. Intensity and volume features of the hippocampus from FLAIR images of the brain have been previously shown to be useful in detecting the abnormal hippocampus in TLE. However, the small size of the hippocampus may limit the texture information. High-resolution FLAIR images show more details of the abnormal intensity variations of the hippocampi and therefore are more suitable for texture analysis. We study and compare the low and high-resolution FLAIR images of six epileptic patients. The hippocampi are segmented manually by an expert from T1-weighted MR images. Then the segmented regions are mapped on the corresponding FLAIR images for texture analysis. The 2-D wavelet transforms of the hippocampi are employed for feature extraction. We compare the ability of the texture features from regular and high-resolution FLAIR images to distinguish normal and abnormal hippocampi. Intracranial EEG results as well as surgery outcome are used as gold standard. The results show that the intensity variations of the hippocampus are related to the abnormalities in the TLE.

  5. Gemini high-resolution optical spectrograph conceptual design

    NASA Astrophysics Data System (ADS)

    Szeto, Kei; McConnachie, Alan; Anthony, André; Bohlender, David; Crampton, David; Desaulniers, Pierre; Dunn, Jennifer; Hardy, Tim; Hill, Alexis; Monin, Dmitry; Pazder, John; Schwab, Christian; Spano, Paola; Starkenburg, Else; Thibault, Simon; Walker, Gordon; Venn, Kim; Zhang, Hu

    2012-09-01

    A multiplexed moderate resolution (R = 34,000) and a single object high resolution (R = 90,000) spectroscopic facility for the entire 340 - 950nm wavelength region has been designed for Gemini. The result is a high throughput, versatile instrument that will enable precision spectroscopy for decades to come. The extended wavelength coverage for these relatively high spectral resolutions is achieved by use of an Echelle grating with VPH cross-dispersers and for the R = 90,000 mode utilization of an image slicer. The design incorporates a fast, efficient, reliable system for acquiring targets over the7 arcmin field of Gemini. This paper outlines the science case development and requirements flow-down process that leads to the configuration of the HIA instrument and describes the overall GHOS conceptual design. In addition, this paper discusses design trades examined during the conceptual design study instrument group of the Herzberg Institute of Astrophysics has been commissioned by the Gemini Observatory as one of the three competing organizations to conduct a conceptual design study for a new Gemini High-Resolution Optical Spectrograph (GHOS). This paper outlines the science case development and requirements flow-down process that leads to the configuration of the HIA instrument and describes the overall GHOS conceptual design. In addition, this paper discusses design trades examined during the conceptual design study.

  6. High-Resolution Land Use and Land Cover Mapping

    USGS Publications Warehouse

    ,

    1999-01-01

    As the Nation?s population grows, quantifying, monitoring, and managing land use becomes increasingly important. The U.S. Geological Survey (USGS) has a long heritage of leadership and innovation in land use and land cover (LULC) mapping that has been the model both nationally and internationally for over 20 years. At present, the USGS is producing high-resolution LULC data for several watershed and urban areas within the United States. This high-resolution LULC mapping is part of an ongoing USGS Land Cover Characterization Program (LCCP). The four components of the LCCP are global (1:2,000,000-scale), national (1:100,000-scale), urban (1:24,000-scale), and special projects (various scales and time periods). Within the urban and special project components, the USGS Rocky Mountain Mapping Center (RMMC) is collecting historical as well as contemporary high-resolution LULC data. RMMC?s high-resolution LULC mapping builds on the heritage and success of previous USGS LULC programs and provides LULC information to meet user requirements.

  7. HIGH RESOLUTION RESISTIVITY LEAK DETECTION DATA PROCESSING & EVALUATION MEHTODS & REQUIREMENTS

    SciTech Connect

    SCHOFIELD JS

    2007-10-04

    This document has two purposes: {sm_bullet} Describe how data generated by High Resolution REsistivity (HRR) leak detection (LD) systems deployed during single-shell tank (SST) waste retrieval operations are processed and evaluated. {sm_bullet} Provide the basic review requirements for HRR data when Hrr is deployed as a leak detection method during SST waste retrievals.

  8. High Resolution Mass Spectra Analysis with a Programmable Calculator.

    ERIC Educational Resources Information Center

    Holdsworth, David K.

    1980-01-01

    Highlighted are characteristics of programs written for a pocket-sized programmable calculator to analyze mass spectra data (such as displaying high resolution masses for formulas, predicting whether formulas are stable molecules or molecular ions, determining formulas by isotopic abundance measurement) in a laboratory or classroom. (CS)

  9. Robust high-resolution cloth using parallelism, history-based collisions, and accurate friction.

    PubMed

    Selle, Andrew; Su, Jonathan; Irving, Geoffrey; Fedkiw, Ronald

    2009-01-01

    In this paper we simulate high resolution cloth consisting of up to 2 million triangles which allows us to achieve highly detailed folds and wrinkles. Since the level of detail is also influenced by object collision and self collision, we propose a more accurate model for cloth-object friction. We also propose a robust history-based repulsion/collision framework where repulsions are treated accurately and efficiently on a per time step basis. Distributed memory parallelism is used for both time evolution and collisions and we specifically address Gauss-Seidel ordering of repulsion/collision response. This algorithm is demonstrated by several high resolution and high-fidelity simulations.

  10. 3D high resolution pure optical photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Xie, Zhixing; Chen, Sung-Liang; Ling, Tao; Guo, L. Jay; Carson, Paul L.; Wang, Xueding

    2012-02-01

    The concept of pure optical photoacoustic microscopy(POPAM) was proposed based on optical rastering of a focused excitation beam and optically sensing the photoacoustic signal using a microring resonator fabricated by a nanoimprinting technique. After some refinedment of in the resonator structure and mold fabrication, an ultrahigh Q factor of 3.0×105 was achieved which provided high sensitivity with a noise equivalent detectable pressure(NEDP) value of 29Pa. This NEDP is much lower than the hundreds of Pascals achieved with existing optical resonant structures such as etalons, fiber gratings and dielectric multilayer interference filters available for acoustic measurement. The featured high sensitivity allowed the microring resonator to detect the weak photoacoustic signals from micro- or submicroscale objects. The inherent superbroad bandwidth of the optical microring resonator combined with an optically focused scanning beam provided POPAM of high resolution in the axial as well as both lateral directions while the axial resolution of conventional photoacoustic microscopy (PAM) suffers from the limited bandwidth of PZT detectors. Furthermore, the broadband microring resonator showed similar sensitivity to that of our most sensitive PZT detector. The current POPAM system provides a lateral resolution of 5μm and an axial resolution of 8μm, comparable to that achieved by optical microscopy while presenting the unique contrast of optical absorption and functional information complementing other optical modalities. The 3D structure of microvasculature, including capillary networks, and even individual red blood cells have been discerned successfully in the proof-of-concept experiments on mouse bladders ex vivo and mouse ears in vivo. The potential of approximately GHz bandwidth of the microring resonator also might allow much higher resolution than shown here in microscopy of optical absorption and acoustic propagation properties at depths in unfrozen tissue

  11. High resolution atomic force microscopy of double-stranded RNA

    NASA Astrophysics Data System (ADS)

    Ares, Pablo; Fuentes-Perez, Maria Eugenia; Herrero-Galán, Elías; Valpuesta, José M.; Gil, Adriana; Gomez-Herrero, Julio; Moreno-Herrero, Fernando

    2016-06-01

    Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to resolve the A-form sub-helical pitch periodicity. We have employed different high-sensitive force-detection methods and obtained images with similar spatial resolution. Therefore, we show here that the limiting factors for high-resolution AFM imaging of soft materials in liquid medium are, rather than the imaging mode, the force between the tip and the sample and the sharpness of the tip apex.Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to

  12. High-resolution threshold photoelectron spectroscopy by electron attachment

    NASA Technical Reports Server (NTRS)

    Ajello, J. M.; Chutjian, A.

    1976-01-01

    A new technique for measuring high-resolution threshold photoelectron spectra of atoms, molecules, and radicals is described. It involves photoionization of a gaseous species, attachment of the threshold, or nearly zero electron to some trapping molecule (here SF6 or CFCl3), and mass detection of the attachment product (SF6/-/ or Cl/-/ respectively). This technique of threshold photoelectron spectroscopy by electron attachment was used to measure the spectra of argon and xenon at 11 meV (FWHM) resolution, and was also applied to CFCl3.

  13. High-resolution imaging of globular cluster cores

    NASA Technical Reports Server (NTRS)

    Weir, N.; Piotto, G.; Djorgovski, S.

    1990-01-01

    An approach based on the maximum entropy method aimed at increasing angular resolution to study globular cluster cores is presented. To perform the image restoration the Gull-Skilling (1989) MEMSYS-3 code for maximum entropy reconstruction of arbitrary data sets was used. This software was recently applied to restoration of ESO images of the R136 object in the core of the 30 Doradus nebula. It was demonstrated that the software made it possible to restore an image at subpixel spatial scales which facilitates the detection of very high-resolution structure in the restored image.

  14. High resolution cross strip anodes for photon counting detectors

    NASA Astrophysics Data System (ADS)

    Siegmund, O. H. W.; Tremsin, A. S.; Vallerga, J. V.; Abiad, R.; Hull, J.

    2003-05-01

    A new photon counting, imaging readout for microchannel plate sensors, the cross strip (XS) anode, has been investigated. Charge centroiding of signals detected on two orthogonal layers of sense strip sets are used to derive photon locations. The XS anode spatial resolution (<3 μm FWHM) exceeds the spatial resolution of most direct charge sensing anodes, and does so at low gain (<2×10 6). The image linearity and fidelity are high enough to resolve and map 7 μm MCP pores, offering new possibilities for astronomical and other applications.

  15. High resolution polar Kerr magnetometer for nanomagnetism and nanospintronics.

    PubMed

    Cormier, M; Ferré, J; Mougin, A; Cromières, J-P; Klein, V

    2008-03-01

    A new high resolution polar magneto-optical (MO) Kerr magnetometer, devoted to the study of nanometer sized elements with perpendicular magnetic anisotropy, is described. The unique performances of this setup in terms of sensitivity (1.2x10(-15) emu), stability (lateral drift +/-35 nm over 3 h), and resolution (laser spot full width at half maximum down to 470 nm) are demonstrated, and illustrated by Kerr hysteresis loop measurements on a unique ultrathin magnetic nanodot, and over small segments of ultranarrow magnetic tracks. Large scanning MO Kerr microscopy images were also obtained with the same performances.

  16. Microcoil high-resolution magic angle spinning NMR spectroscopy.

    PubMed

    Janssen, Hans; Brinkmann, Andreas; van Eck, Ernst R H; van Bentum, P Jan M; Kentgens, Arno P M

    2006-07-12

    We report the construction of a dual-channel microcoil nuclear magnetic resonance probehead allowing magic-angle spinning for mass-limited samples. With coils down to 235 mum inner diameter, this allows high-resolution solid-state NMR spectra to be obtained for amounts of materials of a few nanoliters. This is demonstrated by the carbon-13 spectrum of a tripeptide and a single silk rod, prepared from the silk gland of the Bombyx mori silkworm. Furthermore, the microcoil allows for radio frequency field strengths well beyond current probe technology, aiding in getting the highest possible resolution by efficiently decoupling the observed nuclei from the abundantly present proton nuclei.

  17. High Resolution Rapid Revisits Insar Monitoring of Surface Deformation

    NASA Astrophysics Data System (ADS)

    Singhroy, V.; Li, J.; Charbonneau, F.

    2014-12-01

    Monitoring surface deformation on strategic energy and transportation corridors requires high resolution spatial and temporal InSAR images for mitigation and safety purposes. High resolution air photos, lidar and other satellite images are very useful in areas where the landslides can be fatal. Recently, radar interferometry (InSAR) techniques using more rapid revisit images from several radar satellites are increasingly being used in active deformation monitoring. The Canadian RADARSAT Constellation (RCM) is a three-satellite mission that will provide rapid revisits of four days interferometric (InSAR) capabilities that will be very useful for complex deformation monitoring. For instance, the monitoring of surface deformation due to permafrost activity, complex rock slide motion and steam assisted oil extraction will benefit from this new rapid revisit capability. This paper provide examples of how the high resolution (1-3 m) rapid revisit InSAR capabilities will improve our monitoring of surface deformation and provide insights in understanding triggering mechanisms. We analysed over a hundred high resolution InSAR images over a two year period on three geologically different sites with various configurations of topography, geomorphology, and geology conditions. We show from our analysis that the more frequent InSAR acquisitions are providing more information in understanding the rates of movement and failure process of permafrost triggered retrogressive thaw flows; the complex motion of an asymmetrical wedge failure of an active rock slide and the identification of over pressure zones related to oil extraction using steam injection. Keywords: High resolution, InSAR, rapid revisits, triggering mechanisms, oil extraction.

  18. A high resolution WRF model for wind energy forecasting

    NASA Astrophysics Data System (ADS)

    Vincent, Claire Louise; Liu, Yubao

    2010-05-01

    The increasing penetration of wind energy into national electricity markets has increased the demand for accurate surface layer wind forecasts. There has recently been a focus on forecasting the wind at wind farm sites using both statistical models and numerical weather prediction (NWP) models. Recent advances in computing capacity and non-hydrostatic NWP models means that it is possible to nest mesoscale models down to Large Eddy Simulation (LES) scales over the spatial area of a typical wind farm. For example, the WRF model (Skamarock 2008) has been run at a resolution of 123 m over a wind farm site in complex terrain in Colorado (Liu et al. 2009). Although these modelling attempts indicate a great hope for applying such models for detailed wind forecasts over wind farms, one of the obvious challenges of running the model at this resolution is that while some boundary layer structures are expected to be modelled explicitly, boundary layer eddies into the inertial sub-range can only be partly captured. Therefore, the amount and nature of sub-grid-scale mixing that is required is uncertain. Analysis of Liu et al. (2009) modelling results in comparison to wind farm observations indicates that unrealistic wind speed fluctuations with a period of around 1 hour occasionally occurred during the two day modelling period. The problem was addressed by re-running the same modelling system with a) a modified diffusion constant and b) two-way nesting between the high resolution model and its parent domain. The model, which was run with horizontal grid spacing of 370 m, had dimensions of 505 grid points in the east-west direction and 490 points in the north-south direction. It received boundary conditions from a mesoscale model of resolution 1111 m. Both models had 37 levels in the vertical. The mesoscale model was run with a non-local-mixing planetary boundary layer scheme, while the 370 m model was run with no planetary boundary layer scheme. It was found that increasing the

  19. High-resolution structure of the native histone octamer

    SciTech Connect

    Wood, Christopher M.; Nicholson, James M.; Lambert, Stanley J.; Chantalat, Laurent; Reynolds, Colin D.; Baldwin, John P.

    2005-06-01

    The high-resolution (1.90 Å) model of the native histone octamer allows structural comparisons to be made with the nucleosome-core particle, along with an identification of a likely core-histone binding site. Crystals of native histone octamers (H2A–H2B)–(H4–H3)–(H3′–H4′)–(H2B′–H2A′) from chick erythrocytes in 2 M KCl, 1.35 M potassium phosphate pH 6.9 diffract X-rays to 1.90 Å resolution, yielding a structure with an R{sub work} value of 18.7% and an R{sub free} of 22.2%. The crystal space group is P6{sub 5}, the asymmetric unit of which contains one complete octamer. This high-resolution model of the histone-core octamer allows further insight into intermolecular interactions, including water molecules, that dock the histone dimers to the tetramer in the nucleosome-core particle and have relevance to nucleosome remodelling. The three key areas analysed are the H2A′–H3–H4 molecular cluster (also H2A–H3′–H4′), the H4–H2B′ interaction (also H4′–H2B) and the H2A′–H4 β-sheet interaction (also H2A–H4′). The latter of these three regions is important to nucleosome remodelling by RNA polymerase II, as it is shown to be a likely core-histone binding site, and its disruption creates an instability in the nucleosome-core particle. A majority of the water molecules in the high-resolution octamer have positions that correlate to similar positions in the high-resolution nucleosome-core particle structure, suggesting that the high-resolution octamer model can be used for comparative studies with the high-resolution nucleosome-core particle.

  20. High Resolution Nature Runs and the Big Data Challenge

    NASA Technical Reports Server (NTRS)

    Webster, W. Phillip; Duffy, Daniel Q.

    2015-01-01

    NASA's Global Modeling and Assimilation Office at Goddard Space Flight Center is undertaking a series of very computationally intensive Nature Runs and a downscaled reanalysis. The nature runs use the GEOS-5 as an Atmospheric General Circulation Model (AGCM) while the reanalysis uses the GEOS-5 in Data Assimilation mode. This paper will present computational challenges from three runs, two of which are AGCM and one is downscaled reanalysis using the full DAS. The nature runs will be completed at two surface grid resolutions, 7 and 3 kilometers and 72 vertical levels. The 7 km run spanned 2 years (2005-2006) and produced 4 PB of data while the 3 km run will span one year and generate 4 BP of data. The downscaled reanalysis (MERRA-II Modern-Era Reanalysis for Research and Applications) will cover 15 years and generate 1 PB of data. Our efforts to address the big data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS), a specialization of the concept of business process-as-a-service that is an evolving extension of IaaS, PaaS, and SaaS enabled by cloud computing. In this presentation, we will describe two projects that demonstrate this shift. MERRA Analytic Services (MERRA/AS) is an example of cloud-enabled CAaaS. MERRA/AS enables MapReduce analytics over MERRA reanalysis data collection by bringing together the high-performance computing, scalable data management, and a domain-specific climate data services API. NASA's High-Performance Science Cloud (HPSC) is an example of the type of compute-storage fabric required to support CAaaS. The HPSC comprises a high speed Infinib and network, high performance file systems and object storage, and a virtual system environments specific for data intensive, science applications. These technologies are providing a new tier in the data and analytic services stack that helps connect earthbound, enterprise-level data and computational resources to new customers and new mobility