Sample records for level sensing system

  1. Ground-Based Icing Condition Remote Sensing System Definition

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Koenig, George G.

    2001-01-01

    This report documents the NASA Glenn Research Center activities to assess and down select remote sensing technologies for the purpose of developing a system capable of measuring icing condition hazards aloft. The information generated by such a remote sensing system is intended for use by the entire aviation community, including flight crews. air traffic controllers. airline dispatchers, and aviation weather forecasters. The remote sensing system must be capable of remotely measuring temperature and liquid water content (LWC), and indicating the presence of super-cooled large droplets (SLD). Technologies examined include Profiling Microwave Radiometer, Dual-Band Radar, Multi-Band Radar, Ka-Band Radar. Polarized Ka-Band Radar, and Multiple Field of View (MFOV) Lidar. The assessment of these systems took place primarily during the Mt. Washington Icing Sensors Project (MWISP) in April 1999 and the Alliance Icing Research Study (AIRS) from November 1999 to February 2000. A discussion of the various sensing technologies is included. The result of the assessment is that no one sensing technology can satisfy all of the stated project goals. Therefore a proposed system includes radiometry and Ka-band radar. A multilevel approach is proposed to allow the future selection of the fielded system based upon required capability and available funding. The most basic level system would be the least capable and least expensive. The next level would increase capability and cost, and the highest level would be the most capable and most expensive to field. The Level 1 system would consist of a Profiling Microwave Radiometer. The Level 2 system would add a Ka-Band Radar. The Level 3 system would add polarization to the Ka-Band Radar. All levels of the system would utilize hardware that is already under development by the U.S. Government. However, to meet the needs of the aviation community, all levels of the system will require further development. In addition to the proposed system, it is also recommended that NASA continue to foster the development of Multi-Band Radar and airborne microwave radiometer technologies.

  2. Sense-and-Avoid Equivalent Level of Safety Definition for Unmanned Aircraft Systems. Revision 9

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Since unmanned aircraft do not have a pilot on-board the aircraft, they cannot literally comply with the "see and avoid" requirement beyond a short distance from the location of the unmanned pilot. No performance standards are presently defined for unmanned Sense and Avoid systems, and the FAA has no published approval criteria for a collision avoidance system. Before the FAA can develop the necessary guidance (rules / regulations / policy) regarding the see-and-avoid requirements for Unmanned Aircraft Systems (UAS), a concise understanding of the term "equivalent level of safety" must be attained. Since this term is open to interpretation, the UAS industry and FAA need to come to an agreement on how this term can be defined and applied for a safe and acceptable collision avoidance capability for unmanned aircraft. Defining an equivalent level of safety (ELOS) for sense and avoid is one of the first steps in understanding the requirement and developing a collision avoidance capability. This document provides a functional level definition of see-and-avoid as it applies to unmanned aircraft. The sense and avoid ELOS definition is intended as a bridge between the see and avoid requirement and the system level requirements for unmanned aircraft sense and avoid systems. Sense and avoid ELOS is defined in a rather abstract way, meaning that it is not technology or system specific, and the definition provides key parameters (and a context for those parameters) to focus the development of cooperative and non-cooperative sense and avoid system requirements.

  3. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads

    PubMed Central

    Wang, Lin; Acosta, Miguel A.; Leach, Jennie B.; Carrier, Rebecca L.

    2013-01-01

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems. PMID:23443975

  4. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads.

    PubMed

    Wang, Lin; Acosta, Miguel A; Leach, Jennie B; Carrier, Rebecca L

    2013-04-21

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems.

  5. Interference Information Based Power Control for Cognitive Radio with Multi-Hop Cooperative Sensing

    NASA Astrophysics Data System (ADS)

    Yu, Youngjin; Murata, Hidekazu; Yamamoto, Koji; Yoshida, Susumu

    Reliable detection of other radio systems is crucial for systems that share the same frequency band. In wireless communication channels, there is uncertainty in the received signal level due to multipath fading and shadowing. Cooperative sensing techniques in which radio stations share their sensing information can improve the detection probability of other systems. In this paper, a new cooperative sensing scheme that reduces the false detection probability while maintaining the outage probability of other systems is investigated. In the proposed system, sensing information is collected using multi-hop transmission from all sensing stations that detect other systems, and transmission decisions are based on the received sensing information. The proposed system also controls the transmit power based on the received CINRs from the sensing stations. Simulation results reveal that the proposed system can reduce the outage probability of other systems, or improve its link success probability.

  6. Enzymatic Filter for Improved Separation of Output Signals in Enzyme Logic Systems towards 'Sense and Treat' Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mailloux, Shay; Zavalov, Oleksandr; Guz, Nataliia

    2014-01-01

    The major challenge for application of autonomous medical sensing systems is the noise produced by non-zero physiological concentrations of the sensed target. If the level of noise is high, then a real signal indicating abnormal changes in the physiological levels of the analytes might be hindered. Inevitably, this could lead to wrong diagnostics and treatment, and would have a negative impact on human health. Here, we report the realization of a filter system implemented to improve both the fidelity of sensing and accuracy of consequent drug release. A new filtering method was tested in the sensing system for the diagnosismore » of liver injury. This sensing system used the enzymes alanine transaminase (ALT) and aspartate transaminase (AST) as the inputs. Furthermore, the output of the sensing system was designed to trigger drug release, and therefore, the role of the filter in drug release was also investigated. The drug release system consists of beads with an iron - cross-linked alginate core coated with different numbers of layers of poly-L-lysine. Dissolution of the beads by the output signals of the sensing system in the presence and absence of the filter was monitored by release of encapsulated in the beads rhodamine - 6G dye mimicking release of a real drug. The obtained results offer a new view on the problem of noise reduction for systems intended to be part of sense and treat medical devices.« less

  7. Biomimetic chemical sensors using bioengineered olfactory and taste cells.

    PubMed

    Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping; Wu, Chunsheng

    2014-01-01

    Biological olfactory and taste systems are natural chemical sensing systems with unique performances for the detection of environmental chemical signals. With the advances in olfactory and taste transduction mechanisms, biomimetic chemical sensors have achieved significant progress due to their promising prospects and potential applications. Biomimetic chemical sensors exploit the unique capability of biological functional components for chemical sensing, which are often sourced from sensing units of biological olfactory or taste systems at the tissue level, cellular level, or molecular level. Specifically, at the cellular level, there are mainly two categories of cells have been employed for the development of biomimetic chemical sensors, which are natural cells and bioengineered cells, respectively. Natural cells are directly isolated from biological olfactory and taste systems, which are convenient to achieve. However, natural cells often suffer from the undefined sensing properties and limited amount of identical cells. On the other hand, bioengineered cells have shown decisive advantages to be applied in the development of biomimetic chemical sensors due to the powerful biotechnology for the reconstruction of the cell sensing properties. Here, we briefly summarized the most recent advances of biomimetic chemical sensors using bioengineered olfactory and taste cells. The development challenges and future trends are discussed as well.

  8. Recommendations for Sense and Avoid Policy Compliance

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Since unmanned aircraft do not have a human on board, they need to have a sense and avoid capability that provides an "equivalent level of safety" (ELOS) to manned aircraft. The question then becomes - is sense and avoid ELOS for unmanned aircraft adequate to satisfy the requirements of 14 CFR 91.113? Access 5 has proposed a definition of sense and avoid, but the question remains as to whether any sense and avoid system can comply with 14 CFR 91.113 as currently written. The Access 5 definition of sense and avoid ELOS allows for the development of a sense and avoid system for unmanned aircraft that would comply with 14 CFR 91.113. Compliance is based on sensing and avoiding other traffic at an equivalent level of safety for collision avoidance, as manned aircraft. No changes to Part 91 are necessary, with the possible exception of changing "see" to "sense," or obtaining an interpretation from the FAA General Counsel that "sense" is equivalent to "see."

  9. Self-Organized Air Tasking: Examining a Non-Hierarchical Model for Joint Air Operations

    DTIC Science & Technology

    2004-06-01

    refers to systems with this dynamic incoherence as “strong sense of agency ” systems, and uses “weak sense of agency ” to refer to more predictable...agent-based systems, such as robotics or state-determined automata. Increasing the level of dynamic incoherency indicates a stronger sense of agency . This

  10. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: part II--Optimization of structural sensor placement.

    PubMed

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-04-01

    The work proposed an optimization approach for structural sensor placement to improve the performance of vibro-acoustic virtual sensor for active noise control applications. The vibro-acoustic virtual sensor was designed to estimate the interior sound pressure of an acoustic-structural coupled enclosure using structural sensors. A spectral-spatial performance metric was proposed, which was used to quantify the averaged structural sensor output energy of a vibro-acoustic system excited by a spatially varying point source. It was shown that (i) the overall virtual sensing error energy was contributed additively by the modal virtual sensing error and the measurement noise energy; (ii) each of the modal virtual sensing error system was contributed by both the modal observability levels for the structural sensing and the target acoustic virtual sensing; and further (iii) the strength of each modal observability level was influenced by the modal coupling and resonance frequencies of the associated uncoupled structural/cavity modes. An optimal design of structural sensor placement was proposed to achieve sufficiently high modal observability levels for certain important panel- and cavity-controlled modes. Numerical analysis on a panel-cavity system demonstrated the importance of structural sensor placement on virtual sensing and active noise control performance, particularly for cavity-controlled modes.

  11. Miniaturized neural sensing and optogenetic stimulation system for behavioral studies in the rat

    NASA Astrophysics Data System (ADS)

    Kim, Min Hyuck; Nam, Ilho; Ryu, Youngki; Wellman, Laurie W.; Sanford, Larry D.; Yoon, Hargsoon

    2015-04-01

    Real time sensing of localized electrophysiological and neurochemical signals associated with spontaneous and evoked neural activity is critically important for understanding neural networks in the brain. Our goal is to enhance the functionality and flexibility of a neural sensing and stimulation system for the observation of brain activity that will enable better understanding from the level of individual cells to that of global structures. We have thus developed a miniaturized electronic system for in-vivo neurotransmitter sensing and optogenetic stimulation amenable to behavioral studies in the rat. The system contains a potentiostat, a data acquisition unit, a control unit, and a wireless data transfer unit. For the potentiostat, we applied embedded op-amps to build single potential amperometry for electrochemical sensing of dopamine. A light emitting diode is controlled by a microcontroller and pulse width modulation utilized to control optogenetic stimulation within a sub-millisecond level. In addition, this proto-typed electronic system contains a Bluetooth module for wireless data communication. In the future, an application-specific integrated circuit (ASIC) will be designed for further miniaturization of the system.

  12. Liquid level sensor based on fiber ring laser with single-mode-offset coreless-single-mode fiber structure

    NASA Astrophysics Data System (ADS)

    Wang, Zixiao; Tan, Zhongwei; Xing, Rui; Liang, Linjun; Qi, Yanhui; Jian, Shuisheng

    2016-10-01

    A novel reflective liquid level sensor based on single-mode-offset coreless-single-mode (SOCS) fiber structure is proposed and experimentally demonstrated. Theory analyses and experimental results indicate that offset fusion can remarkably enhance the sensitivity of sensor. Ending-reflecting structure makes the sensor compact and easy to deploy. Meanwhile, we propose a laser sensing system, and the SOCS structure is used as sensing head and laser filter simultaneously. Experimental results show that laser spectra with high optical signal-to-noise ratio (-30 dB) and narrow 3-dB bandwidth (<0.15 nm) are achieved. Various liquids with different indices are used for liquid level sensing, besides, the refractive index sensitivity is also investigated. In measurement range, the sensing system presents steady laser output.

  13. Specification for procurement of water-level sensing instrumentation, specification number HIF-I-1

    USGS Publications Warehouse

    Rapp, D.H.

    1982-01-01

    This specification is to communicate to instrument manufacturers the U.S. Geological Survey 's requirements. It covers systems for sensing the elevation of the water surface on open channels, rivers, lakes, reservoirs, storm-sewer pipes, and observation wells at Survey data-collection sites. The signal output (mechanical or electrical) must meet the signal input requirements of analog to digital and digital input recorders in use by the Survey. A classification of stage-sensing systems by common characteristics is used to aid Survey people making system selections. These characteristics are (1) system type (contact or noncontact), (2) sensor type and sensing distance, (3) accuracy, (4) range, (5) power requirements, (6) system size and weight, and (7) data output signal. Acceptable system requirements cover system configurations, signal outputs, materials, operation manuals, detailed environmental conditions, calibration procedures, system accuracy, power requirements, installation limitations, maintainability, safety, and workmanship. An outline of the qualification test procedures and failure criteria are also given. The Hydrologic Instrumentation Facility at NSTL Station, Mississippi will test available systems to determine if they meet the specification in this report for inclusion in the Survey 's 'Qualified Products List'. This list will be used for future procurement of water-level sensing systems by the Survey. (USGS)

  14. Femtomolar level sensing of inorganic arsenic(III) in water and in living-systems using a non-toxic fluorescent probe.

    PubMed

    Dey, Biswajit; Mukherjee, Priyanka; Mondal, Ranjan Kumar; Chattopadhyay, Asoke Prasun; Hauli, Ipsit; Mukhopadhyay, Subhra Kanti; Fleck, Michel

    2014-12-14

    A highly selective femtomolar level sensing of inorganic arsenic(III) as arsenious acid has been accomplished in water medium and in living-systems (on pollen grains of Tecoma stans; Candida albicans cells (IMTECH No. 3018) and Peperomia pellucida stem section) using a non-toxic fluorescent probe of a Cu(II)-complex.

  15. Cybernetic Basis and System Practice of Remote Sensing and Spatial Information Science

    NASA Astrophysics Data System (ADS)

    Tan, X.; Jing, X.; Chen, R.; Ming, Z.; He, L.; Sun, Y.; Sun, X.; Yan, L.

    2017-09-01

    Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.

  16. Liquid Level Sensing System

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Wiley, John T. (Inventor); Duffell, Amanda G. (Inventor)

    2014-01-01

    A liquid level sensing system includes waveguides disposed in a liquid and distributed along a path with a gap between adjacent waveguides. A source introduces electromagnetic energy into the waveguides at a first end of the path. A portion of the electromagnetic energy exits the waveguides at a second end of the path. A detector measures the portion of the electromagnetic energy exiting the second end of the path.

  17. Vortex Sensing Tests at Logan and Kennedy Airports

    DOT National Transportation Integrated Search

    1972-12-01

    The report describes a series of tests of wake vortex sensing systems at Logan and Kennedy Airports. Two systems, a pulsed acoustic radar (acdar) and an array of ground level pressure sensors, were tested. Site restrictions limited the Logan work to ...

  18. Designing collective behavior in a termite-inspired robot construction team.

    PubMed

    Werfel, Justin; Petersen, Kirstin; Nagpal, Radhika

    2014-02-14

    Complex systems are characterized by many independent components whose low-level actions produce collective high-level results. Predicting high-level results given low-level rules is a key open challenge; the inverse problem, finding low-level rules that give specific outcomes, is in general still less understood. We present a multi-agent construction system inspired by mound-building termites, solving such an inverse problem. A user specifies a desired structure, and the system automatically generates low-level rules for independent climbing robots that guarantee production of that structure. Robots use only local sensing and coordinate their activity via the shared environment. We demonstrate the approach via a physical realization with three autonomous climbing robots limited to onboard sensing. This work advances the aim of engineering complex systems that achieve specific human-designed goals.

  19. An inexpensive open-source ultrasonic sensing system for monitoring fluid levels

    USDA-ARS?s Scientific Manuscript database

    Fluid levels are measured in a variety of agricultural applications, and are often measured manually, which can be time-consuming and labor-intensive. Rapid advances in electronic technologies have made a variety of inexpensive sensing, monitoring, and control capabilities available. A monitoring ...

  20. Intra-species bacterial quorum sensing studied at single cell level in a double droplet trapping system.

    PubMed

    Bai, Yunpeng; Patil, Santoshkumar N; Bowden, Steven D; Poulter, Simon; Pan, Jie; Salmond, George P C; Welch, Martin; Huck, Wilhelm T S; Abell, Chris

    2013-05-21

    In this paper, we investigated the intra-species bacterial quorum sensing at the single cell level using a double droplet trapping system. Escherichia coli transformed to express the quorum sensing receptor protein, LasR, were encapsulated in microdroplets that were positioned adjacent to microdroplets containing the autoinducer, N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL). Functional activation of the LasR protein by diffusion of the OdDHL across the droplet interface was measured by monitoring the expression of green fluorescent protein (GFP) from a LasR-dependent promoter. A threshold concentration of OdDHL was found to induce production of quorum-sensing associated GFP by E. coli. Additionally, we demonstrated that LasR-dependent activation of GFP expression was also initiated when the adjacent droplets contained single E. coli transformed with the OdDHL synthase gene, LasI, representing a simple quorum sensing circuit between two droplets.

  1. A preliminary study of the statistical analyses and sampling strategies associated with the integration of remote sensing capabilities into the current agricultural crop forecasting system

    NASA Technical Reports Server (NTRS)

    Sand, F.; Christie, R.

    1975-01-01

    Extending the crop survey application of remote sensing from small experimental regions to state and national levels requires that a sample of agricultural fields be chosen for remote sensing of crop acreage, and that a statistical estimate be formulated with measurable characteristics. The critical requirements for the success of the application are reviewed in this report. The problem of sampling in the presence of cloud cover is discussed. Integration of remotely sensed information about crops into current agricultural crop forecasting systems is treated on the basis of the USDA multiple frame survey concepts, with an assumed addition of a new frame derived from remote sensing. Evolution of a crop forecasting system which utilizes LANDSAT and future remote sensing systems is projected for the 1975-1990 time frame.

  2. Common-Path Wavefront Sensing for Advanced Coronagraphs

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Serabyn, Eugene; Mawet, Dimitri

    2012-01-01

    Imaging of faint companions around nearby stars is not limited by either intrinsic resolution of a coronagraph/telescope system, nor is it strictly photon limited. Typically, it is both the magnitude and temporal variation of small phase and amplitude errors imparted to the electric field by elements in the optical system which will limit ultimate performance. Adaptive optics systems, particularly those with multiple deformable mirrors, can remove these errors, but they need to be sensed in the final image plane. If the sensing system is before the final image plane, which is typical for most systems, then the non-common path optics between the wavefront sensor and science image plane will lead to un-sensed errors. However, a new generation of high-performance coronagraphs naturally lend themselves to wavefront sensing in the final image plane. These coronagraphs and the wavefront sensing will be discussed, as well as plans for demonstrating this with a high-contrast system on the ground. Such a system will be a key system-level proof for a future space-based coronagraph mission, which will also be discussed.

  3. System of experts for intelligent data management (SEIDAM)

    NASA Technical Reports Server (NTRS)

    Goodenough, David G.; Iisaka, Joji; Fung, KO

    1993-01-01

    A proposal to conduct research and development on a system of expert systems for intelligent data management (SEIDAM) is being developed. CCRS has much expertise in developing systems for integrating geographic information with space and aircraft remote sensing data and in managing large archives of remotely sensed data. SEIDAM will be composed of expert systems grouped in three levels. At the lowest level, the expert systems will manage and integrate data from diverse sources, taking account of symbolic representation differences and varying accuracies. Existing software can be controlled by these expert systems, without rewriting existing software into an Artificial Intelligence (AI) language. At the second level, SEIDAM will take the interpreted data (symbolic and numerical) and combine these with data models. at the top level, SEIDAM will respond to user goals for predictive outcomes given existing data. The SEIDAM Project will address the research areas of expert systems, data management, storage and retrieval, and user access and interfaces.

  4. System of Experts for Intelligent Data Management (SEIDAM)

    NASA Technical Reports Server (NTRS)

    Goodenough, David G.; Iisaka, Joji; Fung, KO

    1992-01-01

    It is proposed to conduct research and development on a system of expert systems for intelligent data management (SEIDAM). CCRS has much expertise in developing systems for integrating geographic information with space and aircraft remote sensing data and in managing large archives of remotely sensed data. SEIDAM will be composed of expert systems grouped in three levels. At the lowest level, the expert systems will manage and integrate data from diverse sources, taking account of symbolic representation differences and varying accuracies. Existing software can be controlled by these expert systems, without rewriting existing software into an Artificial Intelligence (AI) language. At the second level, SEIDAM will take the interpreted data (symbolic and numerical) and combine these with data models. At the top level, SEIDAM will respond to user goals for predictive outcomes given existing data. The SEIDAM Project will address the research areas of expert systems, data management, storage and retrieval, and user access and interfaces.

  5. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase one, volume 1 : summary report.

    DOT National Transportation Integrated Search

    2009-12-01

    The Integrated Remote Sensing and Visualization System (IRSV) is being designed to accommodate the needs of todays Bridge : Engineers at the state and local level from the following aspects: : Better understanding and enforcement of a complex ...

  6. Continuous-Reading Cryogen Level Sensor

    NASA Technical Reports Server (NTRS)

    Barone, F. E.; Fox, E.; Macumber, S.

    1984-01-01

    Two pressure transducers used in system for measuring amount of cryogenic liquid in tank. System provides continuous measurements accurate within 0.03 percent. Sensors determine pressure in liquid and vapor in tank. Microprocessor uses pressure difference to compute mass of cryogenic liquid in tank. New system allows continuous sensing; unaffected by localized variations in composition and density as are capacitance-sensing schemes.

  7. A Wireless Passive Sensing System for Displacement/Strain Measurement in Reinforced Concrete Members

    PubMed Central

    Ozbey, Burak; Erturk, Vakur B.; Demir, Hilmi Volkan; Altintas, Ayhan; Kurc, Ozgur

    2016-01-01

    In this study, we show a wireless passive sensing system embedded in a reinforced concrete member successfully being employed for the measurement of relative displacement and strain in a simply supported beam experiment. The system utilizes electromagnetic coupling between the transceiver antenna located outside the beam, and the sensing probes placed on the reinforcing bar (rebar) surface inside the beam. The probes were designed in the form of a nested split-ring resonator, a metamaterial-based structure chosen for its compact size and high sensitivity/resolution, which is at µm/microstrains level. Experiments were performed in both the elastic and plastic deformation cases of steel rebars, and the sensing system was demonstrated to acquire telemetric data in both cases. The wireless measurement results from multiple probes are compared with the data obtained from the strain gages, and an excellent agreement is observed. A discrete time measurement where the system records data at different force levels is also shown. Practical issues regarding the placement of the sensors and accurate recording of data are discussed. The proposed sensing technology is demonstrated to be a good candidate for wireless structural health monitoring (SHM) of reinforced concrete members by its high sensitivity and wide dynamic range. PMID:27070615

  8. Methods of training the graduate level and professional geologist in remote sensing technology

    NASA Technical Reports Server (NTRS)

    Kolm, K. E.

    1981-01-01

    Requirements for a basic course in remote sensing to accommodate the needs of the graduate level and professional geologist are described. The course should stress the general topics of basic remote sensing theory, the theory and data types relating to different remote sensing systems, an introduction to the basic concepts of computer image processing and analysis, the characteristics of different data types, the development of methods for geological interpretations, the integration of all scales and data types of remote sensing in a given study, the integration of other data bases (geophysical and geochemical) into a remote sensing study, and geological remote sensing applications. The laboratories should stress hands on experience to reinforce the concepts and procedures presented in the lecture. The geologist should then be encouraged to pursue a second course in computer image processing and analysis of remotely sensed data.

  9. Hybrid tilted fiber grating based refractive index and liquid level sensing system

    NASA Astrophysics Data System (ADS)

    Yan, Zhijun; Mou, Chengbo; Sun, Zhongyuan; Zhou, Kaimin; Wang, Hushan; Wang, Yishan; Zhao, Wei; Zhang, Lin

    2015-09-01

    We report a refractive index (RI) and liquid level sensing system based on a hybrid grating structure comprising of a 45° and an 81° tilted fiber gratings (TFGs) that have been inscribed into a single mode fiber in series. In this structure, the 45°-TFG is used as a polarizer to filter out the transverse electric (TE) component and enable the 81°-TFG operating at single polarization for RI and level sensing. The experiment results show a lower temperature cross-sensitivity, only about 7.33 pm/°C, and a higher RI sensitivity, being around 180 nm/RIU at RI=1.345 and 926 nm/RIU at RI=1.412 region, which are significantly improved in comparison with long period fiber gratings. The hybrid grating structure has also been applied as a liquid level sensor, showing 3.06 dB/mm linear peak ratio sensitivity.

  10. Design and Application of a Field Sensing System for Ground Anchors in Slopes

    PubMed Central

    Choi, Se Woon; Lee, Jihoon; Kim, Jong Moon; Park, Hyo Seon

    2013-01-01

    In a ground anchor system, cables or tendons connected to a bearing plate are used for stabilization of slopes. Then, the stability of a slope is dependent on maintaining the tension levels in the cables. So far, no research on a strain-based field sensing system for ground anchors has been reported. Therefore, in this study, a practical monitoring system for long-term sensing of tension levels in tendons for anchor-reinforced slopes is proposed. The system for anchor-reinforced slopes is composed of: (1) load cells based on vibrating wire strain gauges (VWSGs), (2) wireless sensor nodes which receive and process the signals from load cells and then transmit the result to a master node through local area communication, (3) master nodes which transmit the data sent from sensor nodes to the server through mobile communication, and (4) a server located at the base station. The system was applied to field sensing of ground anchors in the 62 m-long and 26 m-high slope at the side of the highway. Based on the long-term monitoring, the safety of the anchor-reinforced slope can be secured by the timely applications of re-tensioning processes in tendons. PMID:23507820

  11. Underwater Turbulence Detection Using Gated Wavefront Sensing Technique

    PubMed Central

    Bi, Ying; Xu, Xiping; Chow, Eddy Mun Tik

    2018-01-01

    Laser sensing has been applied in various underwater applications, ranging from underwater detection to laser underwater communications. However, there are several great challenges when profiling underwater turbulence effects. Underwater detection is greatly affected by the turbulence effect, where the acquired image suffers excessive noise, blurring, and deformation. In this paper, we propose a novel underwater turbulence detection method based on a gated wavefront sensing technique. First, we elaborate on the operating principle of gated wavefront sensing and wavefront reconstruction. We then setup an experimental system in order to validate the feasibility of our proposed method. The effect of underwater turbulence on detection is examined at different distances, and under different turbulence levels. The experimental results obtained from our gated wavefront sensing system indicate that underwater turbulence can be detected and analyzed. The proposed gated wavefront sensing system has the advantage of a simple structure and high detection efficiency for underwater environments. PMID:29518889

  12. Closed-loop controlled noninvasive ultrasonic glucose sensing and insulin delivery

    NASA Astrophysics Data System (ADS)

    Park, Eun-Joo; Werner, Jacob; Jaiswal, Devina; Smith, Nadine Barrie

    2010-03-01

    To prevent complications in diabetes, the proper management of blood glucose levels is essential. Previously, ultrasonic transdermal methods using a light-weight cymbal transducer array has been studied for noninvasive methods of insulin delivery for Type-1 diabetes and glucose level monitoring. In this study, the ultrasound systems of insulin delivery and glucose sensing have been combined by a feedback controller. This study was designed to show the feasibility of the feedback controlled ultrasound system for the noninvasive glucose control. For perspective human application, in vivo experiments were performed on large animals that have a similar size to humans. Four in vivo experiments were performed using about 200 lbs pigs. The cymbal array of 3×3 pattern has been used for insulin delivery at 30 kHz with the spatial-peak temporal-peak intensity (Isptp) of 100 mW/cm2. For glucose sensing, a 2×2 array was operated at 20 kHz with Isptp = 100 mW/cm2. Based on the glucose level determined by biosensors after the ultrasound exposure, the ultrasound system for the insulin delivery was automatically operated. The glucose level of 115 mg/dl was set as a reference value for operating the insulin delivery system. For comparison, the glucose levels of blood samples collected from the ear vein were measured by a commercial glucose meter. Using the ultrasound system operated by the close-loop, feed-back controller, the glucose levels of four pigs were determined every 20 minutes and continuously controlled for 120 minutes. In comparison to the commercial glucose meter, the glucose levels determined by the biosensor were slightly higher. The results of in vivo experiments indicate the feasibility of the feedback controlled ultrasound system using the cymbal array for noninvasive glucose sensing and insulin delivery. Further studies on the extension of the glucose control will be continued for the effective method of glucose control.

  13. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase two, volume 1 : outreach and commercialization of IRSV prototype.

    DOT National Transportation Integrated Search

    2012-03-01

    The Integrated Remote Sensing and Visualization System (IRSV) was developed in Phase One of this project in order to : accommodate the needs of todays Bridge Engineers at the state and local level. Overall goals of this project are: : Better u...

  14. Assimilating Leaf Area Index Estimates from Remote Sensing into the Simulations of a Cropping Systems Model

    USDA-ARS?s Scientific Manuscript database

    Spatial extrapolation of cropping systems models for regional crop growth and water use assessment and farm-level precision management has been limited by the vast model input requirements and the model sensitivity to parameter uncertainty. Remote sensing has been proposed as a viable source of spat...

  15. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase one, volume 2 : knowledge modeling and database development.

    DOT National Transportation Integrated Search

    2009-12-01

    The Integrated Remote Sensing and Visualization System (IRSV) is being designed to accommodate the needs of todays Bridge Engineers at the : state and local level from several aspects that were documented in Volume One, Summary Report. The followi...

  16. Sub-bandage sensing system for remote monitoring of chronic wounds in healthcare

    NASA Astrophysics Data System (ADS)

    Hariz, Alex; Mehmood, Nasir; Voelcker, Nico

    2015-12-01

    Chronic wounds, such as venous leg ulcers, can be monitored non-invasively by using modern sensing devices and wireless technologies. The development of such wireless diagnostic tools may improve chronic wound management by providing evidence on efficacy of treatments being provided. In this paper we present a low-power portable telemetric system for wound condition sensing and monitoring. The system aims at measuring and transmitting real-time information of wound-site temperature, sub-bandage pressure and moisture level from within the wound dressing. The system comprises commercially available non-invasive temperature, moisture, and pressure sensors, which are interfaced with a telemetry device on a flexible 0.15 mm thick printed circuit material, making up a lightweight biocompatible sensing device. The real-time data obtained is transmitted wirelessly to a portable receiver which displays the measured values. The performance of the whole telemetric sensing system is validated on a mannequin leg using commercial compression bandages and dressings. A number of trials on a healthy human volunteer are performed where treatment conditions were emulated using various compression bandage configurations. A reliable and repeatable performance of the system is achieved under compression bandage and with minimal discomfort to the volunteer. The system is capable of reporting instantaneous changes in bandage pressure, moisture level and local temperature at wound site with average measurement resolutions of 0.5 mmHg, 3.0 %RH, and 0.2 °C respectively. Effective range of data transmission is 4-5 m in an open environment.

  17. Active Remote Sensing of Natural Resources: Course Notes. Science Series No. 5. Final Technical Report.

    ERIC Educational Resources Information Center

    Maxwell, Eugene L.

    Presented is a portion of a research project which developed materials for teaching remote sensing of natural resources on an interdisciplinary basis at the graduate level. This volume contains notes developed for a course in active remote sensing. It is concerned with those methods or systems which generate the electromagnetic energy…

  18. Analysis and modeling of atmospheric turbulence on the high-resolution space optical systems

    NASA Astrophysics Data System (ADS)

    Lili, Jiang; Chen, Xiaomei; Ni, Guoqiang

    2016-09-01

    Modeling and simulation of optical remote sensing system plays an unslightable role in remote sensing mission predictions, imaging system design, image quality assessment. It has already become a hot research topic at home and abroad. Atmospheric turbulence influence on optical systems is attached more and more importance to as technologies of remote sensing are developed. In order to study the influence of atmospheric turbulence on earth observation system, the atmospheric structure parameter was calculated by using the weak atmospheric turbulence model; and the relationship of the atmospheric coherence length and high resolution remote sensing optical system was established; then the influence of atmospheric turbulence on the coefficient r0h of optical remote sensing system of ground resolution was derived; finally different orbit height of high resolution optical system imaging quality affected by atmospheric turbulence was analyzed. Results show that the influence of atmospheric turbulence on the high resolution remote sensing optical system, the resolution of which has reached sub meter level meter or even the 0.5m, 0.35m and even 0.15m ultra in recent years, image quality will be quite serious. In the above situation, the influence of the atmospheric turbulence must be corrected. Simulation algorithms of PSF are presented based on the above results. Experiment and analytical results are posted.

  19. Compact system with handheld microfabricated optoelectronic probe for needle-based tissue sensing applications

    NASA Astrophysics Data System (ADS)

    Lee, Seung Yup; Na, Kyounghwan; Pakela, Julia M.; Scheiman, James M.; Yoon, Euisik; Mycek, Mary-Ann

    2017-02-01

    We present the design, development, and bench-top verification of an innovative compact clinical system including a miniaturized handheld optoelectronic sensor. The integrated sensor was microfabricated with die-level light-emitting diodes and photodiodes and fits into a 19G hollow needle (internal diameter: 0.75 mm) for optical sensing applications in solid tissues. Bench-top studies on tissue-simulating phantoms have verified system performance relative to a fiberoptic based tissue spectroscopy system. With dramatically reduced system size and cost, the technology affords spatially configurable designs for optoelectronic light sources and detectors, thereby enabling customized sensing configurations that would be impossible to achieve with needle-based fiber-optic probes.

  20. An information system design for watershed-wide modeling of water loss to the atmosphere using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Khorram, S.

    1977-01-01

    Results are presented of a study intended to develop a general location-specific remote-sensing procedure for watershed-wide estimation of water loss to the atmosphere by evaporation and transpiration. The general approach involves a stepwise sequence of required information definition (input data), appropriate sample design, mathematical modeling, and evaluation of results. More specifically, the remote sensing-aided system developed to evaluate evapotranspiration employs a basic two-stage two-phase sample of three information resolution levels. Based on the discussed design, documentation, and feasibility analysis to yield timely, relatively accurate, and cost-effective evapotranspiration estimates on a watershed or subwatershed basis, work is now proceeding to implement this remote sensing-aided system.

  1. Touch sensors and control.

    NASA Technical Reports Server (NTRS)

    Hill, J. W.; Sword, A. J.

    1973-01-01

    Description of the equipment employed and results obtained in experiments with tactile feedback and different levels of automatic control. In the experiments described tactile feedback was investigated by incorporating a touch sensing and touch display system into a teleoperator, while the levels of automatic control were investigated by incorporating supervisory control features in the teleoperator control system. In particular, a hand contact system which senses and reproduces to the operator the contact between the end-effector and the object being touched or manipulated is described, as well as a jaw contact system which senses and reproduces to the operator the shape and location of the object held in the remote jaws, and an arm control system consisting of a control station where the operator controls the motion of the arm by transmitting commands, a remote station that accepts the commands and uses them, and a communications link that limits information flow. In addition, an algorithmic language for remote manipulation is described, and the desired features that an automatic arm controller should possess are reviewed.

  2. Quorum-Sensing Signal-Response Systems in Gram-Negative Bacteria

    PubMed Central

    Papenfort, Kai; Bassler, Bonnie

    2016-01-01

    Abstract / Preface Bacteria use quorum sensing to orchestrate gene expression programmes that underlie collective behaviours. Quorum sensing relies on the production, release, detection and group-level response to extracellular signalling molecules, which are called autoinducers. Recent work has discovered new autoinducers in Gram-negative bacteria, shown how these molecules are recognized by cognate receptors, revealed new regulatory components that are embedded in canonical signalling circuits and identified novel regulatory network designs. In this Review we examine how, together, these features of quorum sensing signal–response systems combine to control collective behaviours in Gram-negative bacteria and we discuss the implications for host–microbial associations and antibacterial therapy. PMID:27510864

  3. Distributed optical fiber vibration sensing using phase-generated carrier demodulation algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Zhihua; Zhang, Qi; Zhang, Mingyu; Dai, Haolong; Zhang, Jingjing; Liu, Li; Zhang, Lijun; Jin, Xing; Wang, Gaifang; Qi, Guang

    2018-05-01

    A novel optical fiber-distributed vibration-sensing system is proposed, which is based on self-interference of Rayleigh backscattering with phase-generated carrier (PGC) demodulation algorithm. Pulsed lights are sent into the sensing fiber and the Rayleigh backscattering light from a certain position along the sensing fiber would interfere through an unbalanced Michelson interferometry to generate the interference light. An improved PGC demodulation algorithm is carried out to recover the phase information of the interference signal, which carries the sensing information. Three vibration events were applied simultaneously to different positions over 2000 m sensing fiber and demodulated correctly. The spatial resolution is 10 m, and the noise level of the Φ-OTDR system we proposed is about 10-3 rad/\\surd {Hz}, and the signal-to-noise ratio is about 30.34 dB.

  4. Design and implementation of sensor systems for control of a closed-loop life support system

    NASA Technical Reports Server (NTRS)

    Alnwick, Leslie; Clark, Amy; Debs, Patricia; Franczek, Chris; Good, Tom; Rodrigues, Pedro

    1989-01-01

    The sensing and controlling needs for a Closed-Loop Life Support System (CLLSS) were investigated. The sensing needs were identified in five particular areas and the requirements were defined for workable sensors. The specific areas of interest were atmosphere and temperature, nutrient delivery, plant health, plant propagation and support, and solids processing. The investigation of atmosphere and temperature control focused on the temperature distribution within the growth chamber as well as the possibility for sensing other parameters such as gas concentration, pressure, and humidity. The sensing needs were studied for monitoring the solution level in a porous membrane material along with the requirements for measuring the mass flow rate in the delivery system. The causes and symptoms of plant disease were examined and the various techniques for sensing these health indicators were explored. The study of sensing needs for plant propagation and support focused on monitoring seed viability and measuring seed moisture content as well as defining the requirements for drying and storing the seeds. The areas of harvesting, food processing, and resource recycling, were covered with a main focus on the sensing possibilities for regulating the recycling process.

  5. M-OTDR sensing system based on 3D encoded microstructures

    PubMed Central

    Sun, Qizhen; Ai, Fan; Liu, Deming; Cheng, Jianwei; Luo, Hongbo; Peng, Kuan; Luo, Yiyang; Yan, Zhijun; Shum, Perry Ping

    2017-01-01

    In this work, a quasi-distributed sensing scheme named as microstructured OTDR (M-OTDR) by introducing ultra-weak microstructures along the fiber is proposed. Owing to its relative higher reflectivity compared with the backscattered coefficient in fiber and three dimensional (3D) i.e. wavelength/frequency/time encoded property, the M-OTDR system exhibits the superiorities of high signal to noise ratio (SNR), high spatial resolution of millimeter level and high multiplexing capacity up to several ten thousands theoretically. A proof-of-concept system consisting of 64 sensing units is constructed to demonstrate the feasibility and sensing performance. With the help of the demodulation method based on 3D analysis and spectrum reconstruction of the signal light, quasi-distributed temperature sensing with a spatial resolution of 20 cm as well as a measurement resolution of 0.1 °C is realized. PMID:28106132

  6. Private sector involvement in civil space remote sensing. Volume 1: Report

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A survey of private sector developers, users, and interpreters of Earth resources data was conducted in an effort to encourage private investment and participation in remote sensing systems. Results indicate positive interest in participation beyond the current hardware contracting level, however, there is a substantial gap between current market levels and system costs. Issues identified include the selection process for an operating entity, the public/private interface, data collection and access policies, price and profit regulation in a subsidized system, international participation, and the responsibility for research and development. It was agreed that the cost, complexity, and security implications of integrated systems need not be an absolute bar to their private operation.

  7. Microelectromechanical acceleration-sensing apparatus

    DOEpatents

    Lee, Robb M [Albuquerque, NM; Shul, Randy J [Albuquerque, NM; Polosky, Marc A [Albuquerque, NM; Hoke, Darren A [Albuquerque, NM; Vernon, George E [Rio Rancho, NM

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  8. Spatial and Temporal Resolutions Pixel Level Performance Analysis of the Onboard Remote Sensing Electro-Optical Systems

    NASA Astrophysics Data System (ADS)

    El-Sheikh, H. M.; Yakushenkov, Y. G.

    2014-08-01

    Formulas for determination of the interconnection between the spatial resolution from perspective distortions and the temporal resolution of the onboard electro-optical system for remote sensing application for a variety of scene viewing modes is offered. These dependences can be compared with the user's requirements, upon the permission values of the design parameters of the modern main units of the electro-optical system is discussed.

  9. Methodology for conceptual remote sensing spacecraft technology: insertion analysis balancing performance, cost, and risk

    NASA Astrophysics Data System (ADS)

    Bearden, David A.; Duclos, Donald P.; Barrera, Mark J.; Mosher, Todd J.; Lao, Norman Y.

    1997-12-01

    Emerging technologies and micro-instrumentation are changing the way remote sensing spacecraft missions are developed and implemented. Government agencies responsible for procuring space systems are increasingly requesting analyses to estimate cost, performance and design impacts of advanced technology insertion for both state-of-the-art systems as well as systems to be built 5 to 10 years in the future. Numerous spacecraft technology development programs are being sponsored by Department of Defense (DoD) and National Aeronautics and Space Administration (NASA) agencies with the goal of enhancing spacecraft performance, reducing mass, and reducing cost. However, it is often the case that technology studies, in the interest of maximizing subsystem-level performance and/or mass reduction, do not anticipate synergistic system-level effects. Furthermore, even though technical risks are often identified as one of the largest cost drivers for space systems, many cost/design processes and models ignore effects of cost risk in the interest of quick estimates. To address these issues, the Aerospace Corporation developed a concept analysis methodology and associated software tools. These tools, collectively referred to as the concept analysis and design evaluation toolkit (CADET), facilitate system architecture studies and space system conceptual designs focusing on design heritage, technology selection, and associated effects on cost, risk and performance at the system and subsystem level. CADET allows: (1) quick response to technical design and cost questions; (2) assessment of the cost and performance impacts of existing and new designs/technologies; and (3) estimation of cost uncertainties and risks. These capabilities aid mission designers in determining the configuration of remote sensing missions that meet essential requirements in a cost- effective manner. This paper discuses the development of CADET modules and their application to several remote sensing satellite mission concepts.

  10. Novel Wearable Device for Blood Leakage Detection during Hemodialysis Using an Array Sensing Patch.

    PubMed

    Du, Yi-Chun; Lim, Bee-Yen; Ciou, Wei-Siang; Wu, Ming-Jui

    2016-06-09

    Hemodialysis (HD) is a clinical treatment that requires the puncturing of the body surface. However, needle dislodgement can cause a high risk of blood leakage and can be fatal to patients. Previous studies proposed several devices for blood leakage detection using optical or electrical techniques. Nonetheless, these methods used single-point detection and the design was not suitable for multi-bed monitoring. This study proposed a novel wearable device for blood leakage monitoring during HD using an array sensing patch. The array sensing patch combined with a mapping circuit and a wireless module could measure and transmit risk levels. The different risk levels could improve the working process of healthcare workers, and enhance their work efficiency and reduce inconvenience due to false alarms. Experimental results showed that each point of the sensing array could detect up to 0.1 mL of blood leakage and the array sensing patch supports a risk level monitoring system up to 8 h to alert healthcare personnel of pertinent danger to the patients.

  11. A high throughput geocomputing system for remote sensing quantitative retrieval and a case study

    NASA Astrophysics Data System (ADS)

    Xue, Yong; Chen, Ziqiang; Xu, Hui; Ai, Jianwen; Jiang, Shuzheng; Li, Yingjie; Wang, Ying; Guang, Jie; Mei, Linlu; Jiao, Xijuan; He, Xingwei; Hou, Tingting

    2011-12-01

    The quality and accuracy of remote sensing instruments have been improved significantly, however, rapid processing of large-scale remote sensing data becomes the bottleneck for remote sensing quantitative retrieval applications. The remote sensing quantitative retrieval is a data-intensive computation application, which is one of the research issues of high throughput computation. The remote sensing quantitative retrieval Grid workflow is a high-level core component of remote sensing Grid, which is used to support the modeling, reconstruction and implementation of large-scale complex applications of remote sensing science. In this paper, we intend to study middleware components of the remote sensing Grid - the dynamic Grid workflow based on the remote sensing quantitative retrieval application on Grid platform. We designed a novel architecture for the remote sensing Grid workflow. According to this architecture, we constructed the Remote Sensing Information Service Grid Node (RSSN) with Condor. We developed a graphic user interface (GUI) tools to compose remote sensing processing Grid workflows, and took the aerosol optical depth (AOD) retrieval as an example. The case study showed that significant improvement in the system performance could be achieved with this implementation. The results also give a perspective on the potential of applying Grid workflow practices to remote sensing quantitative retrieval problems using commodity class PCs.

  12. Results of qualification tests on water-level sensing instruments, 1987

    USGS Publications Warehouse

    Olive, T.E.

    1989-01-01

    The U.S. Geological Survey 's Hydrologic Instrumentation Facility at the Stennis Space Center, Mississippi, conducts qualification tests on water level sensing instruments. Instrument systems, which meet or exceed the Survey 's minimum performance requirements, are placed on the Survey 's Qualified Products List. The qualification tests conducted in 1987 added two instrument systems to the Survey 's Qualified Products List. One system met requirements for use at a daily-discharge station , and the other system met requirements for a special-case station. The report is prepared for users of hydrologic instruments. The report provides a list of instrument features, describes the instrument systems, summarizes test procedures, and presents test results for the two instrument systems that met the Survey 's minimum performance standards for the 1987 round of qualification tests. (USGS)

  13. Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing.

    PubMed

    Guo, Nan; Wang, Liang; Wang, Jie; Jin, Chao; Tam, Hwa-Yaw; Zhang, A Ping; Lu, Chao

    2016-12-16

    We propose and experimentally demonstrate a novel scheme of bi-directional Brillouin time domain analyzer (BD-BOTDA) to extend the sensing range. By deploying two pump-probe pairs at two different wavelengths, the Brillouin frequency shift (BFS) distribution over each half of the whole fiber can be obtained with the simultaneous detection of Brillouin signals in both channels. Compared to the conventional unidirectional BOTDA system of the same sensing range, the proposed BD-BOTDA scheme enables distributed sensing with a performance level comparable to the conventional one with half of the sensing range and a spatial resolution of 2 m, while maintaining the Brillouin signal-to-noise ratio (SNR) and the BFS uncertainty. Based on this technique, we have achieved distributed temperature sensing with a measurement range of 81.9 km fiber at a spatial resolution of 2 m and BFS uncertainty of ~0.44 MHz without introducing any complicated components or schemes.

  14. Neuronal Calcium Signaling in Metabolic Regulation and Adaptation to Nutrient Stress.

    PubMed

    Jayakumar, Siddharth; Hasan, Gaiti

    2018-01-01

    All organisms can respond physiologically and behaviorally to environmental fluxes in nutrient levels. Different nutrient sensing pathways exist for specific metabolites, and their inputs ultimately define appropriate nutrient uptake and metabolic homeostasis. Nutrient sensing mechanisms at the cellular level require pathways such as insulin and target of rapamycin (TOR) signaling that integrates information from different organ systems like the fat body and the gut. Such integration is essential for coordinating growth with development. Here we review the role of a newly identified set of integrative interneurons and the role of intracellular calcium signaling within these neurons, in regulating nutrient sensing under conditions of nutrient stress. A comparison of the identified Drosophila circuit and cellular mechanisms employed in this circuit, with vertebrate systems, suggests that the identified cell signaling mechanisms may be conserved for neural circuit function related to nutrient sensing by central neurons. The ideas proposed are potentially relevant for understanding the molecular basis of metabolic disorders, because these are frequently linked to nutritional stress.

  15. Lactate overrides central nervous but not beta-cell glucose sensing in humans.

    PubMed

    Schmid, Sebastian M; Jauch-Chara, Kamila; Hallschmid, Manfred; Oltmanns, Kerstin M; Peters, Achim; Born, Jan; Schultes, Bernd

    2008-12-01

    Lactate has been shown to serve as an alternative energy substrate in the central nervous system and to interact with hypothalamic glucose sensors. On the background of marked similarities between central nervous and beta-cell glucose sensing, we examined whether lactate also interacts with pancreatic glucose-sensing mechanisms in vivo. The effects of intravenously infused lactate vs placebo (saline) on central nervous and pancreatic glucose sensing were assessed during euglycemic and hypoglycemic clamp experiments in 10 healthy men. The release of neuroendocrine counterregulatory hormones during hypoglycemia was considered to reflect central nervous glucose sensing, whereas endogenous insulin secretion as assessed by serum C-peptide levels served as an indicator of pancreatic beta-cell glucose sensing. Lactate infusion blunted the counterregulatory hormonal responses to hypoglycemia, in particular, the release of epinephrine (P = .007) and growth hormone (P = .004), so that higher glucose infusion rates (P = .012) were required to maintain the target blood glucose levels. In contrast, the decrease in C-peptide concentrations during the hypoglycemic clamp remained completely unaffected by lactate (P = .60). During euglycemic clamp conditions, lactate infusion did not affect the concentrations of C-peptide and of counterregulatory hormones, with the exception of norepinephrine levels that were lower during lactate than saline infusion (P = .049) independently of the glycemic condition. Data indicate that glucose sensing of beta-cells is specific to glucose, whereas glucose sensing at the central nervous level can be overridden by lactate, reflecting the brain's ability to rely on lactate as an alternative major energy source.

  16. The application of remote sensing to resource management and environmental quality programs in Kansas

    NASA Technical Reports Server (NTRS)

    Barr, B. G.; Martinko, E. A. (Principal Investigator)

    1983-01-01

    The activities of the Kansas Applied Remote Sensing (KARS) Program during the period April 1, 1982 through Marsh 31, 1983 are described. The most important work revolved around the Kansas Interagency Task Force on Applied Remote Sensing and its efforts to establish an operational service oriented remote sensing program in Kansas state government. Concomitant with this work was the upgrading of KARS capabilities to process data for state agencies through the vehicle of a low cost digital data processing system. The KARS Program continued to take an active role in irrigation mapping. KARS is now integrating data acquired through analysis of LANDSAT into geographic information systems designed for evaluating groundwater resources. KARS also continues to work at the national level on the national inventory of state natural resources information systems.

  17. Development of Decision Support System for Remote Monitoring of PIP Corn

    EPA Science Inventory

    The EPA is developing a multi-level approach that utilizes satellite and airborne remote sensing to locate and monitor genetically modified corn in the agricultural landscape and pest infestation. The current status of the EPA IRM monitoring program based on remote sensed imager...

  18. Nano-Enriched and Autonomous Sensing Framework for Dissolved Oxygen.

    PubMed

    Shehata, Nader; Azab, Mohammed; Kandas, Ishac; Meehan, Kathleen

    2015-08-14

    This paper investigates a nano-enhanced wireless sensing framework for dissolved oxygen (DO). The system integrates a nanosensor that employs cerium oxide (ceria) nanoparticles to monitor the concentration of DO in aqueous media via optical fluorescence quenching. We propose a comprehensive sensing framework with the nanosensor equipped with a digital interface where the sensor output is digitized and dispatched wirelessly to a trustworthy data collection and analysis framework for consolidation and information extraction. The proposed system collects and processes the sensor readings to provide clear indications about the current or the anticipated dissolved oxygen levels in the aqueous media.

  19. Negative Regulation of Violacein Biosynthesis in Chromobacterium violaceum.

    PubMed

    Devescovi, Giulia; Kojic, Milan; Covaceuszach, Sonia; Cámara, Miguel; Williams, Paul; Bertani, Iris; Subramoni, Sujatha; Venturi, Vittorio

    2017-01-01

    In Chromobacteium violaceum , the purple pigment violacein is under positive regulation by the N -acylhomoserine lactone CviI/R quorum sensing system and negative regulation by an uncharacterized putative repressor. In this study we report that the biosynthesis of violacein is negatively controlled by a novel repressor protein, VioS. The violacein operon is regulated negatively by VioS and positively by the CviI/R system in both C. violaceum and in a heterologous Escherichia coli genetic background. VioS does not regulate the CviI/R system and apart from violacein, VioS, and quorum sensing regulate other phenotypes antagonistically. Quorum sensing regulated phenotypes in C. violaceum are therefore further regulated providing an additional level of control.

  20. Applications of ultrasensitive magnetic measurement technologies (invited) (abstract)

    NASA Astrophysics Data System (ADS)

    Hirschkoff, Eugene C.

    1993-05-01

    The development of reliable, easy-to-use magnetic measurement systems with significantly enhanced levels of sensitivity has opened up a number of broad new areas of application for magnetic sensing. Magnetometers based on optical pumping offer sensitivities at the picotesla level, while those that utilize superconducting quantum interference devices can operate at the femtotesla level. These systems are finding applications in areas as diverse as geophysical exploration, communications, and medical diagnostics. This review briefly surveys the capabilities and application areas for a number of magnetic sensing technologies. The emphasis then focuses on the application of the most sensitive of these to the field of medical diagnostics and functional imaging. Protocols for specific applications to noninvasive presurgical planning and to the noninvasive assay of cortical dysfunction in diseases ranging from epilepsy to migraine and schizophrenia will be described in detail. Data will be presented reporting independent validation of these techniques in ten patients who subsequently underwent surgery. Routine and reliable utilization of this ultrasensitive magnetic sensing technology in the clinic is now feasible and practical.

  1. eFarm: A Tool for Better Observing Agricultural Land Systems

    PubMed Central

    Yu, Qiangyi; Shi, Yun; Tang, Huajun; Yang, Peng; Xie, Ankun; Liu, Bin; Wu, Wenbin

    2017-01-01

    Currently, observations of an agricultural land system (ALS) largely depend on remotely-sensed images, focusing on its biophysical features. While social surveys capture the socioeconomic features, the information was inadequately integrated with the biophysical features of an ALS and the applications are limited due to the issues of cost and efficiency to carry out such detailed and comparable social surveys at a large spatial coverage. In this paper, we introduce a smartphone-based app, called eFarm: a crowdsourcing and human sensing tool to collect the geotagged ALS information at the land parcel level, based on the high resolution remotely-sensed images. We illustrate its main functionalities, including map visualization, data management, and data sensing. Results of the trial test suggest the system works well. We believe the tool is able to acquire the human–land integrated information which is broadly-covered and timely-updated, thus presenting great potential for improving sensing, mapping, and modeling of ALS studies. PMID:28245554

  2. Use of land surface remotely sensed satellite and airborne data for environmental exposure assessment in cancer research

    USGS Publications Warehouse

    Maxwell, S.K.; Meliker, J.R.; Goovaerts, P.

    2010-01-01

    In recent years, geographic information systems (GIS) have increasingly been used for reconstructing individual-level exposures to environmental contaminants in epidemiological research. Remotely sensed data can be useful in creating space-time models of environmental measures. The primary advantage of using remotely sensed data is that it allows for study at the local scale (e.g., residential level) without requiring expensive, time-consuming monitoring campaigns. The purpose of our study was to identify how land surface remotely sensed data are currently being used to study the relationship between cancer and environmental contaminants, focusing primarily on agricultural chemical exposure assessment applications. We present the results of a comprehensive literature review of epidemiological research where remotely sensed imagery or land cover maps derived from remotely sensed imagery were applied. We also discuss the strengths and limitations of the most commonly used imagery data (aerial photographs and Landsat satellite imagery) and land cover maps.

  3. Results of qualification tests on water-level sensing instruments, 1986

    USGS Publications Warehouse

    Holland, Randolph R.; Rapp, Donald H.

    1988-01-01

    This report presents to users of hydrological instrumentation and U.S. Geological Survey procurement personnel a list of instruments that have met or exceeded the Survey 's minimum performance requirements for water level sensing instruments. The Hydrologic Instrumentation Facility at the National Space Technology Laboratories, Mississippi conducted qualification tests on four instrument systems. The data collected are summarized, brief system descriptions are given, qualification testing purposes and procedures are summarized, and results are given for each of the three systems that met performance requirements. The fourth system was returned to the manufacturer , because in preliminary testing the instrument system did not perform properly according to the manufacturer 's operating procedures. As a result of the qualification tests, the three systems that met performance requirements have been included on the Survey 's Qualified Products List. (USGS)

  4. An improved flexible telemetry system to autonomously monitor sub-bandage pressure and wound moisture.

    PubMed

    Mehmood, Nasir; Hariz, Alex; Templeton, Sue; Voelcker, Nicolas H

    2014-11-18

    This paper presents the development of an improved mobile-based telemetric dual mode sensing system to monitor pressure and moisture levels in compression bandages and dressings used for chronic wound management. The system is fabricated on a 0.2 mm thick flexible printed circuit material, and is capable of sensing pressure and moisture at two locations simultaneously within a compression bandage and wound dressing. The sensors are calibrated to sense both parameters accurately, and the data are then transmitted wirelessly to a receiver connected to a mobile device. An error-correction algorithm is developed to compensate the degradation in measurement quality due to battery power drop over time. An Android application is also implemented to automatically receive, process, and display the sensed wound parameters. The performance of the sensing system is first validated on a mannequin limb using a compression bandage and wound dressings, and then tested on a healthy volunteer to acquire real-time performance parameters. The results obtained here suggest that this dual mode sensor can perform reliably when placed on a human limb.

  5. An Improved Flexible Telemetry System to Autonomously Monitor Sub-Bandage Pressure and Wound Moisture

    PubMed Central

    Mehmood, Nasir; Hariz, Alex; Templeton, Sue; Voelcker, Nicolas H.

    2014-01-01

    This paper presents the development of an improved mobile-based telemetric dual mode sensing system to monitor pressure and moisture levels in compression bandages and dressings used for chronic wound management. The system is fabricated on a 0.2 mm thick flexible printed circuit material, and is capable of sensing pressure and moisture at two locations simultaneously within a compression bandage and wound dressing. The sensors are calibrated to sense both parameters accurately, and the data are then transmitted wirelessly to a receiver connected to a mobile device. An error-correction algorithm is developed to compensate the degradation in measurement quality due to battery power drop over time. An Android application is also implemented to automatically receive, process, and display the sensed wound parameters. The performance of the sensing system is first validated on a mannequin limb using a compression bandage and wound dressings, and then tested on a healthy volunteer to acquire real-time performance parameters. The results obtained here suggest that this dual mode sensor can perform reliably when placed on a human limb. PMID:25412216

  6. Coronagraphic Wavefront Control for the ATLAST-9.2m Telescope

    NASA Technical Reports Server (NTRS)

    Lyon, RIchard G.; Oegerle, William R.; Feinberg, Lee D.; Bolcar, Matthew R.; Dean, Bruce H.; Mosier, Gary E.; Postman, Marc

    2010-01-01

    The Advanced Technology for Large Aperture Space Telescope (ATLAST) concept was assessed as one of the NASA Astrophysics Strategic Mission Concepts (ASMC) studies. Herein we discuss the 9.2-meter diameter segmented aperture version and its wavefront sensing and control (WFSC) with regards to coronagraphic detection and spectroscopic characterization of exoplanets. The WFSC would consist of at least two levels of sensing and control: (i) an outer coarser level of sensing and control to phase and control the segments and secondary mirror in a manner similar to the James Webb Space Telescope but operating at higher temporal bandwidth, and (ii) an inner, coronagraphic instrument based, fine level of sensing and control for both amplitude and wavefront errors operating at higher temporal bandwidths. The outer loop would control rigid-body actuators on the primary and secondary mirrors while the inner loop would control one or more segmented deformable mirror to suppress the starlight within the coronagraphic field-of view. Herein we discuss the visible nulling coronagraph (VNC) and the requirements it levies on wavefront sensing and control and show the results of closed-loop simulations to assess performance and evaluate the trade space of system level stability versus control bandwidth.

  7. Quantification of impact damage in CMC thermal protection systems using thin-film piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Kuhr, Samuel J.; Blackshire, James L.

    2007-04-01

    Thermal protection systems (TPS) are frequently subjected to impacts from micrometeoroids and ground handling during refurbishment. The damage resulting from such impacts can greatly reduce the vehicle's overall ability to resist extreme temperatures. Therefore, it is essential to have a reliable method to detect and quantify the damage resulting from impacts. In this effort, the effectiveness of lightweight thin film piezoelectric sensors was evaluated for impact detection and quantification in CMC wrapped TPS. The sensors, which were adhered to the bottom of the TPS tile, were used to sense impact events occurring on the top of the tile, with the ultimate goal of quantifying the level of impact level and damage state based on the sensed signals. A reasonable correlation between impact load levels and sensed response were observed for load levels between 0.07-1.00 Joules. An increase in signal frequency content was also observed as impact levels were increased, with specific frequency bands occurring in the 2-16 kHz range. A preliminary nondestructive evaluation of the impact damage sites was also accomplished, where a reasonable correlation between the gross damage features (i.e. impact crater dimensions) and signal response was observed.

  8. Novel Wearable Device for Blood Leakage Detection during Hemodialysis Using an Array Sensing Patch

    PubMed Central

    Du, Yi-Chun; Lim, Bee-Yen; Ciou, Wei-Siang; Wu, Ming-Jui

    2016-01-01

    Hemodialysis (HD) is a clinical treatment that requires the puncturing of the body surface. However, needle dislodgement can cause a high risk of blood leakage and can be fatal to patients. Previous studies proposed several devices for blood leakage detection using optical or electrical techniques. Nonetheless, these methods used single-point detection and the design was not suitable for multi-bed monitoring. This study proposed a novel wearable device for blood leakage monitoring during HD using an array sensing patch. The array sensing patch combined with a mapping circuit and a wireless module could measure and transmit risk levels. The different risk levels could improve the working process of healthcare workers, and enhance their work efficiency and reduce inconvenience due to false alarms. Experimental results showed that each point of the sensing array could detect up to 0.1 mL of blood leakage and the array sensing patch supports a risk level monitoring system up to 8 h to alert healthcare personnel of pertinent danger to the patients. PMID:27294927

  9. Nutrient Sensing Systems in Fish: Impact on Food Intake Regulation and Energy Homeostasis

    PubMed Central

    Conde-Sieira, Marta; Soengas, José L.

    2017-01-01

    Evidence obtained in recent years in a few species, especially rainbow trout, supports the presence in fish of nutrient sensing mechanisms. Glucosensing capacity is present in central (hypothalamus and hindbrain) and peripheral [liver, Brockmann bodies (BB, main accumulation of pancreatic endocrine cells in several fish species), and intestine] locations whereas fatty acid sensors seem to be present in hypothalamus, liver and BB. Glucose and fatty acid sensing capacities relate to food intake regulation and metabolism in fish. Hypothalamus is as a signaling integratory center in a way that detection of increased levels of nutrients result in food intake inhibition through changes in the expression of anorexigenic and orexigenic neuropeptides. Moreover, central nutrient sensing modulates functions in the periphery since they elicit changes in hepatic metabolism as well as in hormone secretion to counter-regulate changes in nutrient levels detected in the CNS. At peripheral level, the direct nutrient detection in liver has a crucial role in homeostatic control of glucose and fatty acid whereas in BB and intestine nutrient sensing is probably involved in regulation of hormone secretion from endocrine cells. PMID:28111540

  10. Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling

    NASA Astrophysics Data System (ADS)

    Thakur, Jay Krishna; Singh, Sudhir Kumar; Ekanthalu, Vicky Shettigondahalli

    2017-07-01

    Integration of remote sensing (RS), geographic information systems (GIS) and global positioning system (GPS) are emerging research areas in the field of groundwater hydrology, resource management, environmental monitoring and during emergency response. Recent advancements in the fields of RS, GIS, GPS and higher level of computation will help in providing and handling a range of data simultaneously in a time- and cost-efficient manner. This review paper deals with hydrological modeling, uses of remote sensing and GIS in hydrological modeling, models of integrations and their need and in last the conclusion. After dealing with these issues conceptually and technically, we can develop better methods and novel approaches to handle large data sets and in a better way to communicate information related with rapidly decreasing societal resources, i.e. groundwater.

  11. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  12. Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing

    PubMed Central

    Guo, Nan; Wang, Liang; Wang, Jie; Jin, Chao; Tam, Hwa-Yaw; Zhang, A. Ping; Lu, Chao

    2016-01-01

    We propose and experimentally demonstrate a novel scheme of bi-directional Brillouin time domain analyzer (BD-BOTDA) to extend the sensing range. By deploying two pump-probe pairs at two different wavelengths, the Brillouin frequency shift (BFS) distribution over each half of the whole fiber can be obtained with the simultaneous detection of Brillouin signals in both channels. Compared to the conventional unidirectional BOTDA system of the same sensing range, the proposed BD-BOTDA scheme enables distributed sensing with a performance level comparable to the conventional one with half of the sensing range and a spatial resolution of 2 m, while maintaining the Brillouin signal-to-noise ratio (SNR) and the BFS uncertainty. Based on this technique, we have achieved distributed temperature sensing with a measurement range of 81.9 km fiber at a spatial resolution of 2 m and BFS uncertainty of ~0.44 MHz without introducing any complicated components or schemes. PMID:27999250

  13. Negative Regulation of Violacein Biosynthesis in Chromobacterium violaceum

    PubMed Central

    Devescovi, Giulia; Kojic, Milan; Covaceuszach, Sonia; Cámara, Miguel; Williams, Paul; Bertani, Iris; Subramoni, Sujatha; Venturi, Vittorio

    2017-01-01

    In Chromobacteium violaceum, the purple pigment violacein is under positive regulation by the N-acylhomoserine lactone CviI/R quorum sensing system and negative regulation by an uncharacterized putative repressor. In this study we report that the biosynthesis of violacein is negatively controlled by a novel repressor protein, VioS. The violacein operon is regulated negatively by VioS and positively by the CviI/R system in both C. violaceum and in a heterologous Escherichia coli genetic background. VioS does not regulate the CviI/R system and apart from violacein, VioS, and quorum sensing regulate other phenotypes antagonistically. Quorum sensing regulated phenotypes in C. violaceum are therefore further regulated providing an additional level of control. PMID:28326068

  14. Sense of Cohesion among Community Activists Engaging in Volunteer Activity

    ERIC Educational Resources Information Center

    Levy, Drorit; Itzhaky, Haya; Zanbar, Lea; Schwartz, Chaya

    2012-01-01

    The present article attempts to shed light on the direct and indirect contribution of personal resources and community indices to Sense of Cohesion among activists engaging in community volunteer work. The sample comprised 481 activists. Based on social systems theory, three levels of variables were examined: (1) inputs, which included personal…

  15. Application of distributed optical fiber sensing technologies to the monitoring of leakage and abnormal disturbance of oil pipeline

    NASA Astrophysics Data System (ADS)

    Yang, Xiaojun; Zhu, Xiaofei; Deng, Chi; Li, Junyi; Liu, Cheng; Yu, Wenpeng; Luo, Hui

    2017-10-01

    To improve the level of management and monitoring of leakage and abnormal disturbance of long distance oil pipeline, the distributed optical fiber temperature and vibration sensing system is employed to test the feasibility for the healthy monitoring of a domestic oil pipeline. The simulating leakage and abnormal disturbance affairs of oil pipeline are performed in the experiment. It is demonstrated that the leakage and abnormal disturbance affairs of oil pipeline can be monitored and located accurately with the distributed optical fiber sensing system, which exhibits good performance in the sensitivity, reliability, operation and maintenance etc., and shows good market application prospect.

  16. PICASSO: an end-to-end image simulation tool for space and airborne imaging systems II. Extension to the thermal infrared: equations and methods

    NASA Astrophysics Data System (ADS)

    Cota, Stephen A.; Lomheim, Terrence S.; Florio, Christopher J.; Harbold, Jeffrey M.; Muto, B. Michael; Schoolar, Richard B.; Wintz, Daniel T.; Keller, Robert A.

    2011-10-01

    In a previous paper in this series, we described how The Aerospace Corporation's Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) tool may be used to model space and airborne imaging systems operating in the visible to near-infrared (VISNIR). PICASSO is a systems-level tool, representative of a class of such tools used throughout the remote sensing community. It is capable of modeling systems over a wide range of fidelity, anywhere from conceptual design level (where it can serve as an integral part of the systems engineering process) to as-built hardware (where it can serve as part of the verification process). In the present paper, we extend the discussion of PICASSO to the modeling of Thermal Infrared (TIR) remote sensing systems, presenting the equations and methods necessary to modeling in that regime.

  17. Introduction to fire danger rating and remote sensing - Will remote sensing enhance wildland fire danger prediction?

    USGS Publications Warehouse

    Allgöwer, Britta; Carlson, J.D.; Van Wagtendonk, Jan W.; Chuvieco, Emilio

    2003-01-01

    While ‘Fire Danger’ per se cannot be measured, the physical properties of the biotic and abiotic world that relate to fire occurrence and fire behavior can. Today, increasingly sophisticated Remote Sensing methods are being developed to more accurately detect fuel properties such as species composition (fuel types), vegetation structure or plant water content - to name a few. Based on meteorological input data and physical, semi-physical or empirical model calculations, Wildland Fire Danger Rating Systems provide ‘indirect values’ - numerical indices - at different temporal scales (e.g., daily, weekly, monthly) denoting the physical conditions that may lead to fire ignition and support fire propagation. The results can be expressed as fire danger levels, ranging from ‘low’ to ‘very high’, and are commonly used in operational wildland fire management (e.g., the Canadian Fire Weather Index [FWI] System, the Russian Nesterov Index, or the U.S. National Fire Danger Rating System [NFDRS]). Today, fire danger levels are often turned into broad scale maps with the help of Geographical Information Systems (GIS) showing the areas with the different fire danger levels, and are distributed via the World Wide Web.In this chapter we will outline some key issues dealing with Remote Sensing and GIS techniques that are covered in the following chapters, and elaborate how the Fire Danger Rating concepts could be integrated into a framework that enables comprehensive and sustainable wildland fire risk assessment. To do so, we will first raise some general thoughts about wildland fires and suggest how to approach this extremely complex phenomenon. Second, we will outline a possible fire risk analysis framework and third we will give a short overview on existing Fire Danger Rating Systems and the principles behind them.

  18. Neuronal regulation of homeostasis by nutrient sensing.

    PubMed

    Lam, Tony K T

    2010-04-01

    In type 2 diabetes and obesity, the homeostatic control of glucose and energy balance is impaired, leading to hyperglycemia and hyperphagia. Recent studies indicate that nutrient-sensing mechanisms in the body activate negative-feedback systems to regulate energy and glucose homeostasis through a neuronal network. Direct metabolic signaling within the intestine activates gut-brain and gut-brain-liver axes to regulate energy and glucose homeostasis, respectively. In parallel, direct metabolism of nutrients within the hypothalamus regulates food intake and blood glucose levels. These findings highlight the importance of the central nervous system in mediating the ability of nutrient sensing to maintain homeostasis. Futhermore, they provide a physiological and neuronal framework by which enhancing or restoring nutrient sensing in the intestine and the brain could normalize energy and glucose homeostasis in diabetes and obesity.

  19. Sweet taste receptor in the hypothalamus: a potential new player in glucose sensing in the hypothalamus.

    PubMed

    Kohno, Daisuke

    2017-07-01

    The hypothalamic feeding center plays an important role in energy homeostasis. The feeding center senses the systemic energy status by detecting hormone and nutrient levels for homeostatic regulation, resulting in the control of food intake, heat production, and glucose production and uptake. The concentration of glucose is sensed by two types of glucose-sensing neurons in the feeding center: glucose-excited neurons and glucose-inhibited neurons. Previous studies have mainly focused on glucose metabolism as the mechanism underlying glucose sensing. Recent studies have indicated that receptor-mediated pathways also play a role in glucose sensing. This review describes sweet taste receptors in the hypothalamus and explores the role of sweet taste receptors in energy homeostasis.

  20. Distributed gas sensing with optical fibre photothermal interferometry.

    PubMed

    Lin, Yuechuan; Liu, Fei; He, Xiangge; Jin, Wei; Zhang, Min; Yang, Fan; Ho, Hoi Lut; Tan, Yanzhen; Gu, Lijuan

    2017-12-11

    We report the first distributed optical fibre trace-gas detection system based on photothermal interferometry (PTI) in a hollow-core photonic bandgap fibre (HC-PBF). Absorption of a modulated pump propagating in the gas-filled HC-PBF generates distributed phase modulation along the fibre, which is detected by a dual-pulse heterodyne phase-sensitive optical time-domain reflectometry (OTDR) system. Quasi-distributed sensing experiment with two 28-meter-long HC-PBF sensing sections connected by single-mode transmission fibres demonstrated a limit of detection (LOD) of ∼10 ppb acetylene with a pump power level of 55 mW and an effective noise bandwidth (ENBW) of 0.01 Hz, corresponding to a normalized detection limit of 5.5ppb⋅W/Hz. Distributed sensing experiment over a 200-meter-long sensing cable made of serially connected HC-PBFs demonstrated a LOD of ∼ 5 ppm with 62.5 mW peak pump power and 11.8 Hz ENBW, or a normalized detection limit of 312ppb⋅W/Hz. The spatial resolution of the current distributed detection system is limited to ∼ 30 m, but it is possible to reduce down to 1 meter or smaller by optimizing the phase detection system.

  1. Unmanned aerial systems for photogrammetry and remote sensing: A review

    NASA Astrophysics Data System (ADS)

    Colomina, I.; Molina, P.

    2014-06-01

    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last five years, these two sister disciplines have developed technology and methods that challenge the current aeronautical regulatory framework and their own traditional acquisition and processing methods. Navety and ingenuity have combined off-the-shelf, low-cost equipment with sophisticated computer vision, robotics and geomatic engineering. The results are cm-level resolution and accuracy products that can be generated even with cameras costing a few-hundred euros. In this review article, following a brief historic background and regulatory status analysis, we review the recent unmanned aircraft, sensing, navigation, orientation and general data processing developments for UAS photogrammetry and remote sensing with emphasis on the nano-micro-mini UAS segment.

  2. A WebGIS system on the base of satellite data processing system for marine application

    NASA Astrophysics Data System (ADS)

    Gong, Fang; Wang, Difeng; Huang, Haiqing; Chen, Jianyu

    2007-10-01

    From 2002 to 2004, a satellite data processing system for marine application had been built up in State Key Laboratory of Satellite Ocean Environment Dynamics (Second Institute of Oceanography, State Oceanic Administration). The system received satellite data from TERRA, AQUA, NOAA-12/15/16/17/18, FY-1D and automatically generated Level3 products and Level4 products(products of single orbit and merged multi-orbits products) deriving from Level0 data, which is controlled by an operational control sub-system. Currently, the products created by this system play an important role in the marine environment monitoring, disaster monitoring and researches. Now a distribution platform has been developed on this foundation, namely WebGIS system for querying and browsing of oceanic remote sensing data. This system is based upon large database system-Oracle. We made use of the space database engine of ArcSDE and other middleware to perform database operation in addition. J2EE frame was adopted as development model, and Oracle 9.2 DBMS as database background and server. Simply using standard browsers(such as IE6.0), users can visit and browse the public service information that provided by system, including browsing for oceanic remote sensing data, and enlarge, contract, move, renew, traveling, further data inquiry, attribution search and data download etc. The system is still under test now. Founding of such a system will become an important distribution platform of Chinese satellite oceanic environment products of special topic and category (including Sea surface temperature, Concentration of chlorophyll, and so on), for the exaltation of satellite products' utilization and promoting the data share and the research of the oceanic remote sensing platform.

  3. Integration of Remotely Sensed Data Into Geospatial Reference Information Databases. Un-Ggim National Approach

    NASA Astrophysics Data System (ADS)

    Arozarena, A.; Villa, G.; Valcárcel, N.; Pérez, B.

    2016-06-01

    Remote sensing satellites, together with aerial and terrestrial platforms (mobile and fixed), produce nowadays huge amounts of data coming from a wide variety of sensors. These datasets serve as main data sources for the extraction of Geospatial Reference Information (GRI), constituting the "skeleton" of any Spatial Data Infrastructure (SDI). Since very different situations can be found around the world in terms of geographic information production and management, the generation of global GRI datasets seems extremely challenging. Remotely sensed data, due to its wide availability nowadays, is able to provide fundamental sources for any production or management system present in different countries. After several automatic and semiautomatic processes including ancillary data, the extracted geospatial information is ready to become part of the GRI databases. In order to optimize these data flows for the production of high quality geospatial information and to promote its use to address global challenges several initiatives at national, continental and global levels have been put in place, such as European INSPIRE initiative and Copernicus Programme, and global initiatives such as the Group on Earth Observation/Global Earth Observation System of Systems (GEO/GEOSS) and United Nations Global Geospatial Information Management (UN-GGIM). These workflows are established mainly by public organizations, with the adequate institutional arrangements at national, regional or global levels. Other initiatives, such as Volunteered Geographic Information (VGI), on the other hand may contribute to maintain the GRI databases updated. Remotely sensed data hence becomes one of the main pillars underpinning the establishment of a global SDI, as those datasets will be used by public agencies or institutions as well as by volunteers to extract the required spatial information that in turn will feed the GRI databases. This paper intends to provide an example of how institutional arrangements and cooperative production systems can be set up at any territorial level in order to exploit remotely sensed data in the most intensive manner, taking advantage of all its potential.

  4. An investigation of satellite sounding products for the remote sensing of the surface energy balance and soil moisture

    NASA Technical Reports Server (NTRS)

    Diak, George R.

    1989-01-01

    Improved techniques for the remote sensing of the land surface energy balance (SEB) and soil moisture would greatly improve prediction of climate and weather as well as be of benefit to agriculture, hydrology and many associated fields. Most of the satellite remote sensing methods which were researched to date rely upon satellite-measured infrared surface temperatures or their time changes as a remote sensing signal. Optimistically, only four or five levels of information (wet to dry) in surface heating/evaporation are discernable by surface temperature methods and a good understanding of atmospheric conditions is necessary to bring them to this accuracy level. Skin temperature methods were researched as well as begun work on several new methods for the remote sensing of the SEB, some elements of which are applicable to current and retrospective data sources and some which will rely on instrumentation from the Earth Observing System (EOS) program in the 1990s.

  5. Health management and controls for Earth-to-orbit propulsion systems

    NASA Astrophysics Data System (ADS)

    Bickford, R. L.

    1995-03-01

    Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.

  6. Developing an Acoustic Sensing Yarn for Health Surveillance in a Military Setting.

    PubMed

    Hughes-Riley, Theodore; Dias, Tilak

    2018-05-17

    Overexposure to high levels of noise can cause permanent hearing disorders, which have a significant adverse effect on the quality of life of those affected. Injury due to noise can affect people in a variety of careers including construction workers, factory workers, and members of the armed forces. By monitoring the noise exposure of workers, overexposure can be avoided and suitable protective equipment can be provided. This work focused on the creation of a noise dosimeter suitable for use by members of the armed forces, where a discrete dosimeter was integrated into a textile helmet cover. In this way the sensing elements could be incorporated very close to the ears, providing a highly representative indication of the sound level entering the body, and also creating a device that would not interfere with military activities. This was achieved by utilising commercial microelectromechanical system microphones integrated within the fibres of yarn to create an acoustic sensing yarn. The acoustic sensing yarns were fully characterised over a range of relevant sound levels and frequencies at each stage in the yarn production process. The yarns were ultimately integrated into a knitted helmet cover to create a functional acoustic sensing helmet cover prototype.

  7. Developing an Acoustic Sensing Yarn for Health Surveillance in a Military Setting

    PubMed Central

    Dias, Tilak

    2018-01-01

    Overexposure to high levels of noise can cause permanent hearing disorders, which have a significant adverse effect on the quality of life of those affected. Injury due to noise can affect people in a variety of careers including construction workers, factory workers, and members of the armed forces. By monitoring the noise exposure of workers, overexposure can be avoided and suitable protective equipment can be provided. This work focused on the creation of a noise dosimeter suitable for use by members of the armed forces, where a discrete dosimeter was integrated into a textile helmet cover. In this way the sensing elements could be incorporated very close to the ears, providing a highly representative indication of the sound level entering the body, and also creating a device that would not interfere with military activities. This was achieved by utilising commercial microelectromechanical system microphones integrated within the fibres of yarn to create an acoustic sensing yarn. The acoustic sensing yarns were fully characterised over a range of relevant sound levels and frequencies at each stage in the yarn production process. The yarns were ultimately integrated into a knitted helmet cover to create a functional acoustic sensing helmet cover prototype. PMID:29772756

  8. Real-Time Integrity Monitoring of Stored Geo-Spatial Data Using Forward-Looking Remote Sensing Technology

    NASA Technical Reports Server (NTRS)

    Young, Steven D.; Harrah, Steven D.; deHaag, Maarten Uijt

    2002-01-01

    Terrain Awareness and Warning Systems (TAWS) and Synthetic Vision Systems (SVS) provide pilots with displays of stored geo-spatial data (e.g. terrain, obstacles, and/or features). As comprehensive validation is impractical, these databases typically have no quantifiable level of integrity. This lack of a quantifiable integrity level is one of the constraints that has limited certification and operational approval of TAWS/SVS to "advisory-only" systems for civil aviation. Previous work demonstrated the feasibility of using a real-time monitor to bound database integrity by using downward-looking remote sensing technology (i.e. radar altimeters). This paper describes an extension of the integrity monitor concept to include a forward-looking sensor to cover additional classes of terrain database faults and to reduce the exposure time associated with integrity threats. An operational concept is presented that combines established feature extraction techniques with a statistical assessment of similarity measures between the sensed and stored features using principles from classical detection theory. Finally, an implementation is presented that uses existing commercial-off-the-shelf weather radar sensor technology.

  9. Hyperspectral remote sensing image retrieval system using spectral and texture features.

    PubMed

    Zhang, Jing; Geng, Wenhao; Liang, Xi; Li, Jiafeng; Zhuo, Li; Zhou, Qianlan

    2017-06-01

    Although many content-based image retrieval systems have been developed, few studies have focused on hyperspectral remote sensing images. In this paper, a hyperspectral remote sensing image retrieval system based on spectral and texture features is proposed. The main contributions are fourfold: (1) considering the "mixed pixel" in the hyperspectral image, endmembers as spectral features are extracted by an improved automatic pixel purity index algorithm, then the texture features are extracted with the gray level co-occurrence matrix; (2) similarity measurement is designed for the hyperspectral remote sensing image retrieval system, in which the similarity of spectral features is measured with the spectral information divergence and spectral angle match mixed measurement and in which the similarity of textural features is measured with Euclidean distance; (3) considering the limited ability of the human visual system, the retrieval results are returned after synthesizing true color images based on the hyperspectral image characteristics; (4) the retrieval results are optimized by adjusting the feature weights of similarity measurements according to the user's relevance feedback. The experimental results on NASA data sets can show that our system can achieve comparable superior retrieval performance to existing hyperspectral analysis schemes.

  10. Mechanistic and regulatory aspects of intestinal iron absorption

    PubMed Central

    Gulec, Sukru; Anderson, Gregory J.

    2014-01-01

    Iron is an essential trace mineral that plays a number of important physiological roles in humans, including oxygen transport, energy metabolism, and neurotransmitter synthesis. Iron absorption by the proximal small bowel is a critical checkpoint in the maintenance of whole-body iron levels since, unlike most other essential nutrients, no regulated excretory systems exist for iron in humans. Maintaining proper iron levels is critical to avoid the adverse physiological consequences of either low or high tissue iron concentrations, as commonly occurs in iron-deficiency anemia and hereditary hemochromatosis, respectively. Exquisite regulatory mechanisms have thus evolved to modulate how much iron is acquired from the diet. Systemic sensing of iron levels is accomplished by a network of molecules that regulate transcription of the HAMP gene in hepatocytes, thus modulating levels of the serum-borne, iron-regulatory hormone hepcidin. Hepcidin decreases intestinal iron absorption by binding to the iron exporter ferroportin 1 on the basolateral surface of duodenal enterocytes, causing its internalization and degradation. Mucosal regulation of iron transport also occurs during low-iron states, via transcriptional (by hypoxia-inducible factor 2α) and posttranscriptional (by the iron-sensing iron-regulatory protein/iron-responsive element system) mechanisms. Recent studies demonstrated that these regulatory loops function in tandem to control expression or activity of key modulators of iron homeostasis. In health, body iron levels are maintained at appropriate levels; however, in several inherited disorders and in other pathophysiological states, iron sensing is perturbed and intestinal iron absorption is dysregulated. The iron-related phenotypes of these diseases exemplify the necessity of precisely regulating iron absorption to meet body demands. PMID:24994858

  11. Automated Liquid-Level Control of a Nutrient Reservoir for a Hydroponic System

    NASA Technical Reports Server (NTRS)

    Smith, Boris; Asumadu, Johnson A.; Dogan, Numan S.

    1997-01-01

    A microprocessor-based system for control of the liquid level of a nutrient reservoir for a plant hydroponic growing system has been developed. The system uses an ultrasonic transducer to sense the liquid level or height. A National Instruments' Multifunction Analog and Digital Input/Output PC Kit includes NI-DAQ DOS/Windows driver software for an IBM 486 personal computer. A Labview Full Development system for Windows is the graphical programming system being used. The system allows liquid level control to within 0.1 cm for all levels tried between 8 and 36 cm in the hydroponic system application. The detailed algorithms have been developed and a fully automated microprocessor based nutrient replenishment system has been described for this hydroponic system.

  12. Meta Data Mining in Earth Remote Sensing Data Archives

    NASA Astrophysics Data System (ADS)

    Davis, B.; Steinwand, D.

    2014-12-01

    Modern search and discovery tools for satellite based remote sensing data are often catalog based and rely on query systems which use scene- (or granule-) based meta data for those queries. While these traditional catalog systems are often robust, very little has been done in the way of meta data mining to aid in the search and discovery process. The recently coined term "Big Data" can be applied in the remote sensing world's efforts to derive information from the vast data holdings of satellite based land remote sensing data. Large catalog-based search and discovery systems such as the United States Geological Survey's Earth Explorer system and the NASA Earth Observing System Data and Information System's Reverb-ECHO system provide comprehensive access to these data holdings, but do little to expose the underlying scene-based meta data. These catalog-based systems are extremely flexible, but are manually intensive and often require a high level of user expertise. Exposing scene-based meta data to external, web-based services can enable machine-driven queries to aid in the search and discovery process. Furthermore, services which expose additional scene-based content data (such as product quality information) are now available and can provide a "deeper look" into remote sensing data archives too large for efficient manual search methods. This presentation shows examples of the mining of Landsat and Aster scene-based meta data, and an experimental service using OPeNDAP to extract information from quality band from multiple granules in the MODIS archive.

  13. 2005 AG20/20 Annual Review

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; McKellip, Rodney D.

    2005-01-01

    Topics covered include: Implementation and Validation of Sensor-Based Site-Specific Crop Management; Enhanced Management of Agricultural Perennial Systems (EMAPS) Using GIS and Remote Sensing; Validation and Application of Geospatial Information for Early Identification of Stress in Wheat; Adapting and Validating Precision Technologies for Cotton Production in the Mid-Southern United States - 2004 Progress Report; Development of a System to Automatically Geo-Rectify Images; Economics of Precision Agriculture Technologies in Cotton Production-AG 2020 Prescription Farming Automation Algorithms; Field Testing a Sensor-Based Applicator for Nitrogen and Phosphorus Application; Early Detection of Citrus Diseases Using Machine Vision and DGPS; Remote Sensing of Citrus Tree Stress Levels and Factors; Spectral-based Nitrogen Sensing for Citrus; Characterization of Tree Canopies; In-field Sensing of Shallow Water Tables and Hydromorphic Soils with an Electromagnetic Induction Profiler; Maintaining the Competitiveness of Tree Fruit Production Through Precision Agriculture; Modeling and Visualizing Terrain and Remote Sensing Data for Research and Education in Precision Agriculture; Thematic Soil Mapping and Crop-Based Strategies for Site-Specific Management; and Crop-Based Strategies for Site-Specific Management.

  14. Potential Collaborative Research topics with Korea’s Agency for Defense Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Charles R.; Todd, Michael D.

    2012-08-23

    This presentation provides a high level summary of current research activities at the Los Alamos National Laboratory (LANL)-University of California Jacobs School of Engineering (UCSD) Engineering Institute that will be presented at Korea's Agency for Defense Development (ADD). These research activities are at the basic engineering science level with different level of maturity ranging from initial concepts to field proof-of-concept demonstrations. We believe that all of these activities are appropriate for collaborative research activities with ADD subject to approval by each institution. All the activities summarized herein have the common theme that they are multi-disciplinary in nature and typically involvedmore » the integration of high-fidelity predictive modeling, advanced sensing technologies and new development in information technology. These activities include: Wireless Sensor Systems, Swarming Robot sensor systems, Advanced signal processing (compressed sensing) and pattern recognition, Model Verification and Validation, Optimal/robust sensor system design, Haptic systems for large-scale data processing, Cyber-physical security for robots, Multi-source energy harvesting, Reliability-based approaches to damage prognosis, SHMTools software development, and Cyber-physical systems advanced study institute.« less

  15. Engineering of a green-light inducible gene expression system in Synechocystis sp. PCC6803.

    PubMed

    Abe, Koichi; Miyake, Kotone; Nakamura, Mayumi; Kojima, Katsuhiro; Ferri, Stefano; Ikebukuro, Kazunori; Sode, Koji

    2014-03-01

    In order to construct a green-light-regulated gene expression system for cyanobacteria, we characterized a green-light sensing system derived from Synechocystis sp. PCC6803, consisting of the green-light sensing histidine kinase CcaS, the cognate response regulator CcaR, and the promoter of cpcG2 (PcpcG 2 ). CcaS and CcaR act as a genetic controller and activate gene expression from PcpcG 2 with green-light illumination. The green-light induction level of the native PcpcG 2 was investigated using GFPuv as a reporter gene inserted in a broad-host-range vector. A clear induction of protein expression from native PcpcG 2 under green-light illumination was observed; however, the expression level was very low compared with Ptrc , which was reported to act as a constitutive promoter in cyanobacteria. Therefore, a Shine-Dalgarno-like sequence derived from the cpcB gene was inserted in the 5' untranslated region of the cpcG2 gene, and the expression level of CcaR was increased. Thus, constructed engineered green-light sensing system resulted in about 40-fold higher protein expression than with the wild-type promoter with a high ON/OFF ratio under green-light illumination. The engineered green-light gene expression system would be a useful genetic tool for controlling gene expression in the emergent cyanobacterial bioprocesses. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. Lessons from single-cell transcriptome analysis of oxygen-sensing cells.

    PubMed

    Zhou, Ting; Matsunami, Hiroaki

    2018-05-01

    The advent of single-cell RNA-sequencing (RNA-Seq) technology has enabled transcriptome profiling of individual cells. Comprehensive gene expression analysis at the single-cell level has proven to be effective in characterizing the most fundamental aspects of cellular function and identity. This unbiased approach is revolutionary for small and/or heterogeneous tissues like oxygen-sensing cells in identifying key molecules. Here, we review the major methods of current single-cell RNA-Seq technology. We discuss how this technology has advanced the understanding of oxygen-sensing glomus cells in the carotid body and helped uncover novel oxygen-sensing cells and mechanisms in the mice olfactory system. We conclude by providing our perspective on future single-cell RNA-Seq research directed at oxygen-sensing cells.

  17. Compressed sensing system considerations for ECG and EMG wireless biosensors.

    PubMed

    Dixon, Anna M R; Allstot, Emily G; Gangopadhyay, Daibashish; Allstot, David J

    2012-04-01

    Compressed sensing (CS) is an emerging signal processing paradigm that enables sub-Nyquist processing of sparse signals such as electrocardiogram (ECG) and electromyogram (EMG) biosignals. Consequently, it can be applied to biosignal acquisition systems to reduce the data rate to realize ultra-low-power performance. CS is compared to conventional and adaptive sampling techniques and several system-level design considerations are presented for CS acquisition systems including sparsity and compression limits, thresholding techniques, encoder bit-precision requirements, and signal recovery algorithms. Simulation studies show that compression factors greater than 16X are achievable for ECG and EMG signals with signal-to-quantization noise ratios greater than 60 dB.

  18. Response of Salmonella Typhi to bile-generated oxidative stress: implication of quorum sensing and persister cell populations.

    PubMed

    Walawalkar, Yogesh D; Vaidya, Yatindra; Nayak, Vijayashree

    2016-11-01

    Salmonella Typhi can chronically persist within the gallbladder of patients suffering from gallbladder diseases. This study, intended to improve our understanding of bacterial mechanisms underlying bile adaptation, revealed that bile, which is a bactericidal agent, led to the generation of reactive oxygen species in S Typhi. Salmonella Typhi in response showed a significant increase in the production of anti-oxidative enzymes, namely superoxide dismutase and catalase. The work reports that the quorum-sensing (QS) system of S Typhi regulates the level of these enzymes during oxidative stress. In support of these observations, the quorum-sensing mutant of S Typhi was found to be sensitive to bile with significantly lower levels of anti-oxidant enzymes compared to other clinical isolates. Furthermore the addition of exogenous cell-free extracts (CFEs) of S Typhi containing the quorum-sensing signalling molecule significantly increased the levels of these enzymes within the mutant. Interestingly the CFE addition did not significantly restore the biofilm-forming ability of the mutant strain when compared with the wild-type. In the presence of ciprofloxacin and ampicillin, S Typhi formed persister cells which increased >3-fold in the presence of bile. Thus the QS-system of S Typhi aids in oxidative stress management, and enhanced persister cell populations could assist chronic bacterial persistence within the gallbladder. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Doppler radar sensing of fish physiological motion

    NASA Astrophysics Data System (ADS)

    Hafner, Noah

    The monitoring vital of signs for fish is critical for advancing the study of trophic and energetic strategies, distributions and behavior, environmental impact, and aquaculture approaches. Presented here is a new approach for monitoring fish metabolic state without the trauma and stress associated with capture, surgical ECG, or other implanted sensing systems. Original research contributions include analysis for radar operation under water, development of radar systems for aquatic operation, and application of these systems to non invasively sense the heart and gill motion of fish. Tilapia and Sturgeon were studied to test the efficacy across varied fish body shapes and sizes, ranging from 0.1 to 1.3m in snout to tail length. Monitoring experiments were conducted with eleven tilapia and three sturgeons to assess activity level participated in these experiments, the results from which include activity level monitoring (tilapia: still or fidgeting 94% of time observed), ventilation rate (tilapia: 42 bpm, sturgeon: 145 bpm), and heart rate (tilapia: 41 bpm, sturgeon: 35 bpm). Bland-Altman analysis of radar and ECG measured heart rate indicate agreement between the two measurement techniques and the suitability of radar as an alternative to ECG. The initial steps for developing a system for practical application is also presented including designs for radar system miniaturization and discussion on further characterization steps with less constrained environments.

  20. Children's loneliness, sense of coherence, family climate, and hope: developmental risk and protective factors.

    PubMed

    Sharabi, Adi; Levi, Uzi; Margalit, Malka

    2012-01-01

    The study examined the contributions of individual and familial variables for the prediction of loneliness as a developmental risk and the sense of coherence as a protective factor. The sample consisted of 287 children from grades 5-6. Their loneliness, sense of coherence, hope, effort, and family climate were assessed. Separate hierarchical multiple regression analyses revealed that family cohesion and children's hope contributed to the explanation of the risk and protective outcomes. Yet, the contribution of the family adaptability was not significant. Cluster analysis of the family climate dimensions (i.e., cohesion and adaptability) was performed to clarify the interactive roles of family adaptability together with family cohesion. The authors identified 4 separate family profiles: Children in the 2 cohesive families' clusters (Cohesive Structured Families and Cohesive Adaptable Families) reported the lowest levels of loneliness and the highest levels of personal strengths. Children within rigid and noncohesive family cluster reported the highest levels of loneliness and the lowest levels of children's sense of coherence. The unique role of the family flexibility within nonsupportive family systems was demonstrated. The results further clarified the unique profiles' characteristics of the different family clusters and their adjustment indexes in terms of loneliness and personal strengths.

  1. Robots, systems, and methods for hazard evaluation and visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Curtis W.; Bruemmer, David J.; Walton, Miles C.

    A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximatemore » the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.« less

  2. Vasu Kilaru

    EPA Pesticide Factsheets

    Vasu Kilaru's expertise is in Geographic Information Systems, Spatial Analysis, and satellite remote sensing particularly with respect to trying to detect ground-level fine particles using space borne instruments.

  3. Online sensing and control of oil in process wastewater

    NASA Astrophysics Data System (ADS)

    Khomchenko, Irina B.; Soukhomlinoff, Alexander D.; Mitchell, T. F.; Selenow, Alexander E.

    2002-02-01

    Industrial processes, which eliminate high concentration of oil in their waste stream, find it extremely difficult to measure and control the water purification process. Most oil separation processes involve chemical separation using highly corrosive caustics, acids, surfactants, and emulsifiers. Included in the output of this chemical treatment process are highly adhesive tar-like globules, emulsified and surface oils, and other emulsified chemicals, in addition to suspended solids. The level of oil/hydrocarbons concentration in the wastewater process may fluctuate from 1 ppm to 10,000 ppm, depending upon the specifications of the industry and level of water quality control. The authors have developed a sensing technology, which provides the accuracy of scatter/absorption sensing in a contactless environment by combining these methodologies with reflective measurement. The sensitivity of the sensor may be modified by changing the fluid level control in the flow cell, allowing for a broad range of accurate measurement from 1 ppm to 10,000 ppm. Because this sensing system has been designed to work in a highly invasive environment, it can be placed close to the process source to allow for accurate real time measurement and control.

  4. Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensing.

    PubMed

    Soenksen, L R; Kassis, T; Noh, M; Griffith, L G; Trumper, D L

    2018-03-13

    Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (<1 mL) has proven to be an elusive goal, especially if direct fluid-sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications.

  5. Capturing Micro-topography of an Arctic Tundra Landscape through Digital Elevation Models (DEMs) Acquired from Various Remote Sensing Platforms

    NASA Astrophysics Data System (ADS)

    Vargas, S. A., Jr.; Tweedie, C. E.; Oberbauer, S. F.

    2013-12-01

    The need to improve the spatial and temporal scaling and extrapolation of plot level measurements of ecosystem structure and function to the landscape level has been identified as a persistent research challenge in the arctic terrestrial sciences. Although there has been a range of advances in remote sensing capabilities on satellite, fixed wing, helicopter and unmanned aerial vehicle platforms over the past decade, these present costly, logistically challenging (especially in the Arctic), technically demanding solutions for applications in an arctic environment. Here, we present a relatively low cost alternative to these platforms that uses kite aerial photography (KAP). Specifically, we demonstrate how digital elevation models (DEMs) were derived from this system for a coastal arctic landscape near Barrow, Alaska. DEMs of this area acquired from other remote sensing platforms such as Terrestrial Laser Scanning (TLS), Airborne Laser Scanning, and satellite imagery were also used in this study to determine accuracy and validity of results. DEMs interpolated using the KAP system were comparable to DEMs derived from the other platforms. For remotely sensing acre to kilometer square areas of interest, KAP has proven to be a low cost solution from which derived products that interface ground and satellite platforms can be developed by users with access to low-tech solutions and a limited knowledge of remote sensing.

  6. Hypothalamic fatty acid sensing in Senegalese sole (Solea senegalensis): response to long-chain saturated, monounsaturated, and polyunsaturated (n-3) fatty acids.

    PubMed

    Conde-Sieira, Marta; Bonacic, Kruno; Velasco, Cristina; Valente, Luisa M P; Morais, Sofia; Soengas, José L

    2015-12-15

    We assessed the presence of fatty acid (FA)-sensing mechanisms in hypothalamus of Senegalese sole (Solea senegalensis) and investigated their sensitivity to FA chain length and/or level of unsaturation. Stearate (SA, saturated FA), oleate (OA, monounsaturated FA of the same chain length), α-linolenate [ALA, a n-3 polyunsaturated fatty acid (PUFA) of the same chain length], and eicosapentanoate (EPA, a n-3 PUFA of a larger chain length) were injected intraperitoneally. Parameters related to FA sensing and neuropeptide expression in the hypothalamus were assessed after 3 h and changes in accumulated food intake after 4, 24, and 48 h. Three FA sensing systems characterized in rainbow trout were also found in Senegalese sole and were activated by OA in a way similar to that previously characterized in rainbow trout and mammals. These hypothalamic FA sensing systems were also activated by ALA, differing from mammals, where n-3 PUFAs do not seem to activate FA sensors. This might suggest additional roles and highlights the importance of n-3 PUFA in fish diets, especially in marine species. The activation of FA sensing seems to be partially dependent on acyl chain length and degree of saturation, as no major changes were observed after treating fish with SA or EPA. The activation of FA sensing systems by OA and ALA, but not SA or EPA, is further reflected in the expression of hypothalamic neuropeptides involved in the control of food intake. Both OA and ALA enhanced anorexigenic capacity compatible with the activation of FA sensing systems. Copyright © 2015 the American Physiological Society.

  7. Effects of 14-Alpha-Lipoyl Andrographolide on Quorum Sensing in Pseudomonas aeruginosa

    PubMed Central

    Ma, Li; Liu, Xiangyang; Liang, Haihua; Che, Yizhou; Chen, Caixia; Dai, Huanqin; Yu, Ke; Liu, Mei; Ma, Luyan; Yang, Ching-Hong; Song, Fuhang

    2012-01-01

    In Pseudomonas aeruginosa, the quorum-sensing (QS) system is closely related to biofilm formation. We previously demonstrated that 14-alpha-lipoyl andrographolide (AL-1) has synergistic effects on antibiofilm and antivirulence factors (pyocyanin and exopolysaccharide) of P. aeruginosa when combined with conventional antibiotics, while it has little inhibitory effect on its growth. However, its molecular mechanism remains elusive. Here we investigated the effect of AL-1 on QS systems, especially the Las and Rhl systems. This investigation showed that AL-1 can inhibit LasR–3-oxo-C12-homoserine lactone (HSL) interactions and repress the transcriptional level of QS-regulated genes. Reverse transcription (RT)-PCR data showed that AL-1 significantly reduced the expression levels of lasR, lasI, rhlR, and rhlI in a dose-dependent manner. AL-1 not only decreased the expression level of Psl, which is positively regulated by the Las system, but also increased the level of secretion of ExoS, which is negatively regulated by the Rhl system, indicating that AL-1 has multiple effects on both the Las and Rhl systems. It is no wonder that AL-1 showed synergistic effects with other antimicrobial agents in the treatment of P. aeruginosa infections. PMID:22802260

  8. Stochastic global identification of a bio-inspired self-sensing composite UAV wing via wind tunnel experiments

    NASA Astrophysics Data System (ADS)

    Kopsaftopoulos, Fotios; Nardari, Raphael; Li, Yu-Hung; Wang, Pengchuan; Chang, Fu-Kuo

    2016-04-01

    In this work, the system design, integration, and wind tunnel experimental evaluation are presented for a bioinspired self-sensing intelligent composite unmanned aerial vehicle (UAV) wing. A total of 148 micro-sensors, including piezoelectric, strain, and temperature sensors, in the form of stretchable sensor networks are embedded in the layup of a composite wing in order to enable its self-sensing capabilities. Novel stochastic system identification techniques based on time series models and statistical parameter estimation are employed in order to accurately interpret the sensing data and extract real-time information on the coupled air flow-structural dynamics. Special emphasis is given to the wind tunnel experimental assessment under various flight conditions defined by multiple airspeeds and angles of attack. A novel modeling approach based on the recently introduced Vector-dependent Functionally Pooled (VFP) model structure is employed for the stochastic identification of the "global" coupled airflow-structural dynamics of the wing and their correlation with dynamic utter and stall. The obtained results demonstrate the successful system-level integration and effectiveness of the stochastic identification approach, thus opening new perspectives for the state sensing and awareness capabilities of the next generation of "fly-by-fee" UAVs.

  9. Hybrid networking sensing system for structural health monitoring of a concrete cable-stayed bridge

    NASA Astrophysics Data System (ADS)

    Torbol, Marco; Kim, Sehwan; Chien, Ting-Chou; Shinozuka, Masanobu

    2013-04-01

    The purpose of this study is the remote structural health monitoring to identify the torsional natural frequencies and mode shapes of a concrete cable-stayed bridge using a hybrid networking sensing system. The system consists of one data aggregation unit, which is daisy-chained to one or more sensing nodes. A wireless interface is used between the data aggregation units, whereas a wired interface is used between a data aggregation unit and the sensing nodes. Each sensing node is equipped with high-precision MEMS accelerometers with adjustable sampling frequency from 0.2 Hz to 1.2 kHz. The entire system was installed inside the reinforced concrete box-girder deck of Hwamyung Bridge, which is a cable stayed bridge in Busan, South Korea, to protect the system from the harsh environmental conditions. This deployment makes wireless communication a challenge due to the signal losses and the high levels of attenuation. To address these issues, the concept of hybrid networking system is introduced with the efficient local power distribution technique. The theoretical communication range of Wi-Fi is 100m. However, inside the concrete girder, the peer to peer wireless communication cannot exceed about 20m. The distance is further reduced by the line of sight between the antennas. However, the wired daisy-chained connection between sensing nodes is useful because the data aggregation unit can be placed in the optimal location for transmission. To overcome the limitation of the wireless communication range, we adopt a high-gain antenna that extends the wireless communication distance to 50m. Additional help is given by the multi-hopping data communication protocol. The 4G modem, which allows remote access to the system, is the only component exposed to the external environment.

  10. Multiple Temperature-Sensing Behavior of Green and Red Upconversion Emissions from Stark Sublevels of Er³⁺.

    PubMed

    Cao, Baosheng; Wu, Jinlei; Wang, Xuehan; He, Yangyang; Feng, Zhiqing; Dong, Bin

    2015-12-10

    Upconversion luminescence properties from the emissions of Stark sublevels of Er(3+) were investigated in Er(3+)-Yb(3+)-Mo(6+)-codoped TiO₂ phosphors in this study. According to the energy levels split from Er(3+), green and red emissions from the transitions of four coupled energy levels, ²H11/2(I)/²H11/2(II), ⁴S3/2(I)/⁴S3/2(II), ⁴F9/2(I)/⁴F9/2(II), and ²H11/2(I) + ²H11/2(II)/⁴S3/2(I) + ⁴S3/2(II), were observed under 976 nm laser diode excitation. By utilizing the fluorescence intensity ratio (FIR) technique, temperature-dependent upconversion emissions from these four coupled energy levels were analyzed at length. The optical temperature-sensing behaviors of sensing sensitivity, measurement error, and operating temperature for the four coupled energy levels are discussed, all of which are closely related to the energy gap of the coupled energy levels, FIR value, and luminescence intensity. Experimental results suggest that Er(3+)-Yb(3+)-Mo(6+)-codoped TiO₂ phosphor with four pairs of energy levels coupled by Stark sublevels provides a new and effective route to realize multiple optical temperature-sensing through a wide range of temperatures in an independent system.

  11. Feasibility Study of TRISCAN Landing System.

    DTIC Science & Technology

    1977-10-01

    as inclinometers, tiltmeters , vertical sensors , level sensors , pendulums, and gravity sensing electrolytic transducers. Of course, the common...5.0 NAVTOLAND SENSOR REQUIREMENTS 5.1 TRISCAN PERFORMANCE _ --* L 5.2 SHIPS MOTION SENSING 5.3 DATA LINK Dit.S.ia 6.0 CONCLUSIONS AND RECOMMENDATIONS...involved in enabling the pilot to fly V/STOL Aircraft onto Navy Ships and Marine Corps tactical sites. Guidance sensors have been identified as being

  12. Remote sensing training for Corps of Engineering personnel: The university training module concept

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A concept to permit Corps of Engineers personnel to obtain and maintain an appropriate level of individual proficiency in the application of remote sensing to water resource management is described. Recommendations are made for specific training courses and include structure and staffing requirements, syllabi and methods of operation, supporting materials, and procedures for integrating information systems management into the University Training Modules.

  13. Trauma in Schools -- Understanding Staff Reactions through the Application of Psychoanalytic Concepts and Systemic Metaphors

    ERIC Educational Resources Information Center

    Greenway, Carol

    2005-01-01

    As an educational psychologist taking up a therapeutic role in schools following a traumatic event I have struggled to make sense of what happens. This paper is structured around three metaphors that are informed by psychoanalytic thinking, which work both at the individual level and the systemic level. These metaphors have helped me objectify the…

  14. Estimating costs and performance of systems for machine processing of remotely sensed data

    NASA Technical Reports Server (NTRS)

    Ballard, R. J.; Eastwood, L. F., Jr.

    1977-01-01

    This paper outlines a method for estimating computer processing times and costs incurred in producing information products from digital remotely sensed data. The method accounts for both computation and overhead, and may be applied to any serial computer. The method is applied to estimate the cost and computer time involved in producing Level II Land Use and Vegetative Cover Maps for a five-state midwestern region. The results show that the amount of data to be processed overloads some example computer systems, but that the processing is feasible on others.

  15. Complementary high performance sensing of gases and liquids using silver nanotube

    NASA Astrophysics Data System (ADS)

    Isro, Suhandoko D.; Iskandar, Alexander A.; Tjia, May-On

    2017-11-01

    A study on refractive index sensing using a silver nanotube is carried out to investigate the relative advantages of sensing gaseous and liquid samples outside the tube (outer sensing) and inside the core (inner sensing). The geometrical and material parameters of the nanotube are varied to explore the favorable sensing performances covering the range of refractive indices between 1.1 and 1.5. It is shown that the performances at the three sensing points considered are consistently improved with decreased shell thickness and core radius in both sensing modes. While the performance is also monotonously and drastically enhanced with decreased counter permittivity in inner sensing, the similarly large variations in the outer sensing mode are less than strictly consistent. The study further shows that the most favorable FOM values are attained by both sensing modes with 2.5 nm Ag shell thickness and 27.5 nm core radius of the nanotube, whereas the most favorable counter permittivities are different for the two modes. Remarkably, the trend of increasing FOM for samples of lower refractive indices in outer sensing is entirely reversed in inner sensing with roughly the same level of performances. Thus, the core/shell structure of the silver nanotube offers the complementary high performance sensing of gases and liquids using the two sensing modes with appropriately chosen system parameters.

  16. Evolution and physiology of neural oxygen sensing

    PubMed Central

    Costa, Kauê M.; Accorsi-Mendonça, Daniela; Moraes, Davi J. A.; Machado, Benedito H.

    2014-01-01

    Major evolutionary trends in animal physiology have been heavily influenced by atmospheric O2 levels. Amongst other important factors, the increase in atmospheric O2 which occurred in the Pre-Cambrian and the development of aerobic respiration beckoned the evolution of animal organ systems that were dedicated to the absorption and transportation of O2, e.g., the respiratory and cardiovascular systems of vertebrates. Global variations of O2 levels in post-Cambrian periods have also been correlated with evolutionary changes in animal physiology, especially cardiorespiratory function. Oxygen transportation systems are, in our view, ultimately controlled by the brain related mechanisms, which senses changes in O2 availability and regulates autonomic and respiratory responses that ensure the survival of the organism in the face of hypoxic challenges. In vertebrates, the major sensorial system for oxygen sensing and responding to hypoxia is the peripheral chemoreflex neuronal pathways, which includes the oxygen chemosensitive glomus cells and several brainstem regions involved in the autonomic regulation of the cardiovascular system and respiratory control. In this review we discuss the concept that regulating O2 homeostasis was one of the primordial roles of the nervous system. We also review the physiology of the peripheral chemoreflex, focusing on the integrative repercussions of chemoreflex activation and the evolutionary importance of this system, which is essential for the survival of complex organisms such as vertebrates. The contribution of hypoxia and peripheral chemoreflex for the development of diseases associated to the cardiovascular and respiratory systems is also discussed in an evolutionary context. PMID:25161625

  17. Fiber Optic Wing Shape Sensing on NASA's Ikhana UAV

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    Fiber Optic Wing Shape Sensing on Ikhana involves five major areas 1) Algorithm development: Local-strain-to-displacement algorithms have been developed for complex wing shapes for real-time implementation (NASA TP-2007-214612, patent application submitted) 2) FBG system development: Dryden advancements to fiber optic sensing technology have increased data sampling rates to levels suitable for monitoring structures in flight (patent application submitted) 3) Instrumentation: 2880 FBG strain sensors have been successfully installed on the Ikhana wings 4) Ground Testing: Fiber optic wing shape sensing methods for high aspect ratio UAVs have been validated through extensive ground testing in Dryden s Flight Loads Laboratory 5) Flight Testing: Real time fiber Bragg strain measurements successfully acquired and validated in flight (4/28/2008) Real-time fiber optic wing shape sensing successfully demonstrated in flight

  18. Towards Quality-Aware Big Data Integration for Crowdsourced Road Sensing System

    DOT National Transportation Integrated Search

    2017-11-27

    With nearly a billion automobiles on the road today, the current transportation systems have begun to show signs of serious strain, such as congestion, traffic accident, excessive energy consumption and increased emission level. To mitigate these pro...

  19. Population dynamics in vasopressin cells.

    PubMed

    Leng, Gareth; Brown, Colin; Sabatier, Nancy; Scott, Victoria

    2008-01-01

    Most neurons sense and code change, and when presented with a constant stimulus they adapt, so as to be able to detect a fresh change. However, for some things it is important to know their absolute level; to encode such information, neurons must sustain their response to an unchanging stimulus while remaining able to respond to a change in that stimulus. One system that encodes the absolute level of a stimulus is the vasopressin system, which generates a hormonal signal that is proportional to plasma osmolality. Vasopressin cells sense plasma osmolality and secrete appropriate levels of vasopressin from the neurohypophysis as needed to control water excretion; this requires sustained secretion under basal conditions and the ability to increase (or decrease) secretion should plasma osmolality change. Here we explore the mechanisms that enable vasopressin cells to fulfill this function, and consider how coordination between the cells might distribute the secretory load across the population of vasopressin cells. 2008 S. Karger AG, Basel.

  20. Innovative use of soft data for the validation of a rainfall-runoff model forced by remote sensing data

    NASA Astrophysics Data System (ADS)

    van Emmerik, Tim; Eilander, Dirk; Piet, Marijn; Mulder, Gert

    2013-04-01

    The Chamcar Bei catchment in southern Cambodia is a typical ungauged basin. Neither meteorological data or discharge measurements are available. In this catchment, local farmers are highly dependent on the irrigation system. However, due to the unreliability of the water supply, it was required to make a hydrological model, with which further improvements of the irrigation system could be planned. First, we used knowledge generated in the IAHS decade on Predictions in Ungauged Basins (PUB) to estimate the annual water balance of the Chamcar Bei catchment. Next, using remotely sensed precipitation, vegetation, elevation and transpiration data, a monthly rainfall-runoff model has been developed. The rainfall-runoff model was linked to the irrigation system reservoir, which allowed to validate the model based on soft data such as historical knowledge of the reservoir water level and groundwater levels visible in wells. This study shows that combining existing remote sensing data and soft ground data can lead to useful modeling results. The approach presented in this study can be applied in other ungauged basins, which can be extremely helpful in managing water resources in developing countries.

  1. Natural Resource Information System. Volume 1: Overall description

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A prototype computer-based Natural Resource Information System was designed which could store, process, and display data of maximum usefulness to land management decision making. The system includes graphic input and display, the use of remote sensing as a data source, and it is useful at multiple management levels. A survey established current decision making processes and functions, information requirements, and data collection and processing procedures. The applications of remote sensing data and processing requirements were established. Processing software was constructed and a data base established using high-altitude imagery and map coverage of selected areas of SE Arizona. Finally a demonstration of system processing functions was conducted utilizing material from the data base.

  2. Instructional image processing on a university mainframe: The Kansas system

    NASA Technical Reports Server (NTRS)

    Williams, T. H. L.; Siebert, J.; Gunn, C.

    1981-01-01

    An interactive digital image processing program package was developed that runs on the University of Kansas central computer, a Honeywell Level 66 multi-processor system. The module form of the package allows easy and rapid upgrades and extensions of the system and is used in remote sensing courses in the Department of Geography, in regional five-day short courses for academics and professionals, and also in remote sensing projects and research. The package comprises three self-contained modules of processing functions: Subimage extraction and rectification; image enhancement, preprocessing and data reduction; and classification. Its use in a typical course setting is described. Availability and costs are considered.

  3. A Sensing System for Simultaneous Detection of Urine and its Components Using Plastic Optical Fibers

    NASA Astrophysics Data System (ADS)

    Ejaz, Tahseen; Takemae, Tadashi; Egami, Chikara; Tsuboi, Naoyuki

    A sensing system using plastic optical fibers and reagent papers was developed for the detection of urine and abnormal level of its components simultaneously. Among several components of urine the detection of two main components namely, protein and glucose was confirmed experimentally. Three states of the papers namely dry and wet with and without change in color, were taken into consideration. These three states were divided by setting the lower and upper threshold voltages at 2.2 V and 5.5 V, respectively. This system is considered to be simple in construction, easy to operate and cost-efficient.

  4. The influence of underwater turbulence on optical phase measurements

    NASA Astrophysics Data System (ADS)

    Redding, Brandon; Davis, Allen; Kirkendall, Clay; Dandridge, Anthony

    2016-05-01

    Emerging underwater optical imaging and sensing applications rely on phase-sensitive detection to provide added functionality and improved sensitivity. However, underwater turbulence introduces spatio-temporal variations in the refractive index of water which can degrade the performance of these systems. Although the influence of turbulence on traditional, non-interferometric imaging has been investigated, its influence on the optical phase remains poorly understood. Nonetheless, a thorough understanding of the spatio-temporal dynamics of the optical phase of light passing through underwater turbulence are crucial to the design of phase-sensitive imaging and sensing systems. To address this concern, we combined underwater imaging with high speed holography to provide a calibrated characterization of the effects of turbulence on the optical phase. By measuring the modulation transfer function of an underwater imaging system, we were able to calibrate varying levels of optical turbulence intensity using the Simple Underwater Imaging Model (SUIM). We then used high speed holography to measure the temporal dynamics of the optical phase of light passing through varying levels of turbulence. Using this method, we measured the variance in the amplitude and phase of the beam, the temporal correlation of the optical phase, and recorded the turbulence induced phase noise as a function of frequency. By bench marking the effects of varying levels of turbulence on the optical phase, this work provides a basis to evaluate the real-world potential of emerging underwater interferometric sensing modalities.

  5. The layered sensing operations center: a modeling and simulation approach to developing complex ISR networks

    NASA Astrophysics Data System (ADS)

    Curtis, Christopher; Lenzo, Matthew; McClure, Matthew; Preiss, Bruce

    2010-04-01

    In order to anticipate the constantly changing landscape of global warfare, the United States Air Force must acquire new capabilities in the field of Intelligence, Surveillance, and Reconnaissance (ISR). To meet this challenge, the Air Force Research Laboratory (AFRL) is developing a unifying construct of "Layered Sensing" which will provide military decision-makers at all levels with the timely, actionable, and trusted information necessary for complete battlespace awareness. Layered Sensing is characterized by the appropriate combination of sensors and platforms (including those for persistent sensing), infrastructure, and exploitation capabilities to enable this synergistic awareness. To achieve the Layered Sensing vision, AFRL is pursuing a Modeling & Simulation (M&S) strategy through the Layered Sensing Operations Center (LSOC). An experimental ISR system-of-systems test-bed, the LSOC integrates DoD standard simulation tools with commercial, off-the-shelf video game technology for rapid scenario development and visualization. These tools will help facilitate sensor management performance characterization, system development, and operator behavioral analysis. Flexible and cost-effective, the LSOC will implement a non-proprietary, open-architecture framework with well-defined interfaces. This framework will incentivize the transition of current ISR performance models to service-oriented software design for maximum re-use and consistency. This paper will present the LSOC's development and implementation thus far as well as a summary of lessons learned and future plans for the LSOC.

  6. A simulation of water pollution model parameter estimation

    NASA Technical Reports Server (NTRS)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  7. Method and system for controlling a permanent magnet machine

    DOEpatents

    Walters, James E.

    2003-05-20

    Method and system for controlling the start of a permanent magnet machine are provided. The method allows to assign a parameter value indicative of an estimated initial rotor position of the machine. The method further allows to energize the machine with a level of current being sufficiently high to start rotor motion in a desired direction in the event the initial rotor position estimate is sufficiently close to the actual rotor position of the machine. A sensing action allows to sense whether any incremental changes in rotor position occur in response to the energizing action. In the event no changes in rotor position are sensed, the method allows to incrementally adjust the estimated rotor position by a first set of angular values until changes in rotor position are sensed. In the event changes in rotor position are sensed, the method allows to provide a rotor alignment signal as rotor motion continues. The alignment signal allows to align the estimated rotor position relative to the actual rotor position. This alignment action allows for operating the machine over a wide speed range.

  8. Particular Features of Interrelation of Motivation, Values and Sense of Life's Meaning as Subjective Factors of Individualizing Trajectory in the System of Continuous Education

    ERIC Educational Resources Information Center

    Zavodchikov, Dmitry P.; Sharov, Anton A.; Tolstykh, Anastasia ?.; Kholopova, Ekaterina S.; Krivtsov, Artem I.

    2016-01-01

    The relevance of the problem under study is based on the fact that, as regards methodological and theoretical aspects, the problem of value and motivational sphere is poorly elaborated regarding the interrelation between professional education and professional activity and on the empirical level there is no clear understanding of how the sense of…

  9. Robots with a sense of touch

    NASA Astrophysics Data System (ADS)

    Bartolozzi, Chiara; Natale, Lorenzo; Nori, Francesco; Metta, Giorgio

    2016-09-01

    Tactile sensors provide robots with the ability to interact with humans and the environment with great accuracy, yet technical challenges remain for electronic-skin systems to reach human-level performance.

  10. Acid-sensing ion channels in pain and disease

    PubMed Central

    Wemmie, John A.; Taugher, Rebecca J.; Kreple, Collin J.

    2015-01-01

    Why do neurons sense extracellular acid? In large part, this question has driven increasing investigation on acid-sensing ion channels (ASICs) in the CNS and the peripheral nervous system for the past two decades. Significant progress has been made in understanding the structure and function of ASICs at the molecular level. Studies aimed at clarifying their physiological importance have suggested roles for ASICs in pain, neurological and psychiatric disease. This Review highlights recent findings linking these channels to physiology and disease. In addition, it discusses some of the implications for therapy and points out questions that remain unanswered. PMID:23783197

  11. Acid-sensing ion channels in pain and disease.

    PubMed

    Wemmie, John A; Taugher, Rebecca J; Kreple, Collin J

    2013-07-01

    Why do neurons sense extracellular acid? In large part, this question has driven increasing investigation on acid-sensing ion channels (ASICs) in the CNS and the peripheral nervous system for the past two decades. Significant progress has been made in understanding the structure and function of ASICs at the molecular level. Studies aimed at clarifying their physiological importance have suggested roles for ASICs in pain, neurological and psychiatric disease. This Review highlights recent findings linking these channels to physiology and disease. In addition, it discusses some of the implications for therapy and points out questions that remain unanswered.

  12. Old tree with new shoots: silver nanoparticles for label-free and colorimetric mercury ions detection

    NASA Astrophysics Data System (ADS)

    Gao, Shuyan; Jia, Xiaoxia; Chen, Yanli

    2013-01-01

    Mercury in the environment from global mercury emissions as well as various forms of contamination poses severe threats to both human health and the environment. Long-term exposure to high levels of Hg-based toxins results in serious and irreversible damage of the central nervous system and other organs. Therefore, the development of effective sensing systems for mercury detection becomes an increasing demand. In this article, a yogurt-mediated silver nanostructure is reported to be unprecedentedly used in the naked-eye and label-free detection of mercury. The method relies on the redox reaction resulting from the electrode potential difference between Ag+/Ag (0.7996 V) and Hg2+/Hg2 2+ (0.920 V) that makes colorless Hg2+ ions which oxidize colored silver nanoparticle (AgNP) to colorless Ag+. The labor-intensive modification of AgNPs and expensive labeling are avoided, and the traditional AuNPs are substituted by AgNPs in this Hg2+ ions sensing platform, which makes it facile, low-cost, and particularly useful for home, clinic, or field applications as well as resource-limited conditions. This sensing system achieves a detection limit as low as 10 nM, lower than the toxicity level of Hg2+ ions in drinking water (30 nM) defined by World Health Organization, and exhibits excellent selectivity, largely free from the matrix effect of the real water samples. This visual label-free Hg2+ ions sensing motif shows great promise for sensing Hg2+ ions in terms of sensitivity, selectivity, cost, and maneuverability. It is also a good example for the organic combination of green chemistry and functional materials, which may trigger interest in furthering biosystems for environmental science applications.

  13. Chemical sensing system for classification of minelike objects by explosives detection

    NASA Astrophysics Data System (ADS)

    Chambers, William B.; Rodacy, Philip J.; Jones, Edwin E.; Gomez, Bernard J.; Woodfin, Ronald L.

    1998-09-01

    Sandia National Laboratories has conducted research in chemical sensing and analysis of explosives for many years. Recently, that experience has been directed towards detecting mines and unexploded ordnance (UXO) by sensing the low-level explosive signatures associated with these objects. Our focus has been on the classification of UXO in shallow water and anti-personnel/anti tank mines on land. The objective of this work is to develop a field portable chemical sensing system which can be used to examine mine-like objects (MLO) to determine whether there are explosive molecules associated with the MLO. Two sampling subsystems have been designed, one for water collection and one for soil/vapor sampling. The water sampler utilizes a flow-through chemical adsorbent canister to extract and concentrate the explosive molecules. Explosive molecules are thermally desorbed from the concentrator and trapped in a focusing stage for rapid desorption into an ion-mobility spectrometer (IMS). We will describe a prototype system which consists of a sampler, concentrator-focuser, and detector. The soil sampler employs a light-weight probe for extracting and concentrating explosive vapor from the soil in the vicinity of an MLO. The chemical sensing system is capable of sub-part-per-billion detection of TNT and related explosive munition compounds. We will present the results of field and laboratory tests on buried landmines, which demonstrate our ability to detect the explosive signatures associated with these objects.

  14. Photogrammetry - Remote Sensing and Geoinformation

    NASA Astrophysics Data System (ADS)

    Lazaridou, M. A.; Patmio, E. N.

    2012-07-01

    Earth and its environment are studied by different scientific disciplines as geosciences, science of engineering, social sciences, geography, etc. The study of the above, beyond pure scientific interest, is useful for the practical needs of man. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS) is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. Therefore, according to this definition, photogrammetry and remote sensing can support studies of the above disciplines for acquisition of geoinformation. This paper concerns basic concepts of geosciences (geomorphology, geology, hydrology etc), and the fundamentals of photogrammetry-remote sensing, in order to aid the understanding of the relationship between photogrammetry-remote sensing and geoinformation and also structure curriculum in a brief, concise and coherent way. This curriculum can represent an appropriate research and educational outline and help to disseminate knowledge in various directions and levels. It resulted from our research and educational experience in graduate and post-graduate level (post-graduate studies relative to the protection of environment and protection of monuments and historical centers) in the Lab. of Photogrammetry - Remote Sensing in Civil Engineering Faculty of Aristotle University of Thessaloniki.

  15. Recent Advances in the Cellular and Molecular Mechanisms of Hypothalamic Neuronal Glucose Detection.

    PubMed

    Fioramonti, Xavier; Chrétien, Chloé; Leloup, Corinne; Pénicaud, Luc

    2017-01-01

    The hypothalamus have been recognized for decades as one of the major brain centers for the control of energy homeostasis. This area contains specialized neurons able to detect changes in nutrients level. Among them, glucose-sensing neurons use glucose as a signaling molecule in addition to its fueling role. In this review we will describe the different sub-populations of glucose-sensing neurons present in the hypothalamus and highlight their nature in terms of neurotransmitter/neuropeptide expression. This review will particularly discuss whether pro-opiomelanocortin (POMC) neurons from the arcuate nucleus are directly glucose-sensing. In addition, recent observations in glucose-sensing suggest a subtle system with different mechanisms involved in the detection of changes in glucose level and their involvement in specific physiological functions. Several data point out the critical role of reactive oxygen species (ROS) and mitochondria dynamics in the detection of increased glucose. This review will also highlight that ATP-dependent potassium (K ATP ) channels are not the only channels mediating glucose-sensing and discuss the new role of transient receptor potential canonical channels (TRPC). We will discuss the recent advances in the determination of glucose-sensing machinery and propose potential line of research needed to further understand the regulation of brain glucose detection.

  16. Detection of impact damage on thermal protection systems using thin-film piezoelectric sensors for integrated structural health monitoring

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Kuhr, Samuel J.; Jata, Kumar V.

    2008-03-01

    Thermal Protection Systems (TPS) can be subjected to impact damage during flight and/or during ground maintenance and/or repair. AFRL/RXLP is developing a reliable and robust on-board sensing/monitoring capability for next generation thermal protection systems to detect and assess impact damage. This study was focused on two classes of metallic thermal protection tiles to determine threshold for impact damage and develop sensing capability of the impacts. Sensors made of PVDF piezoelectric film were employed and tested to evaluate the detectability of impact signals and assess the onset or threshold of impact damage. Testing was performed over a range of impact energy levels, where the sensors were adhered to the back of the specimens. The PVDF signal levels were analyzed and compared to assess damage, where digital microscopy, visual inspection, and white light interferometry were used for damage verification. Based on the impact test results, an assessment of the impact damage thresholds for each type of metallic TPS system was made.

  17. Remote real-time monitoring of subsurface landfill gas migration.

    PubMed

    Fay, Cormac; Doherty, Aiden R; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O'Connor, Noel E; Smeaton, Alan F; Diamond, Dermot

    2011-01-01

    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months.

  18. Remote Real-Time Monitoring of Subsurface Landfill Gas Migration

    PubMed Central

    Fay, Cormac; Doherty, Aiden R.; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M.; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O’Connor, Noel E.; Smeaton, Alan F.; Diamond, Dermot

    2011-01-01

    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months. PMID:22163975

  19. A Force-Visualized Silicone Retractor Attachable to Surgical Suction Pipes.

    PubMed

    Watanabe, Tetsuyou; Koyama, Toshio; Yoneyama, Takeshi; Nakada, Mitsutoshi

    2017-04-05

    This paper presents a force-visually-observable silicone retractor, which is an extension of a previously developed system that had the same functions of retracting, suction, and force sensing. These features provide not only high usability by reducing the number of tool changes, but also a safe choice of retracting by visualized force information. Suction is achieved by attaching the retractor to a suction pipe. The retractor has a deformable sensing component including a hole filled with a liquid. The hole is connected to an outer tube, and the liquid level displaced in proportion to the extent of deformation resulting from the retracting load. The liquid level is capable to be observed around the surgeon's fingertips, which enhances the usability. The new hybrid structure of soft sensing and hard retracting allows the miniaturization of the retractor as well as a resolution of less than 0.05 N and a range of 0.1-0.7 N. The overall structure is made of silicone, which has the advantages of disposability, low cost, and easy sterilization/disinfection. This system was validated by conducting experiments.

  20. Exploring Adaptability through Learning Layers and Learning Loops

    ERIC Educational Resources Information Center

    Lof, Annette

    2010-01-01

    Adaptability in social-ecological systems results from individual and collective action, and multi-level interactions. It can be understood in a dual sense as a system's ability to adapt to disturbance and change, and to navigate system transformation. Inherent in this conception, as found in resilience thinking, are the concepts of learning and…

  1. Task directed sensing

    NASA Technical Reports Server (NTRS)

    Firby, R. James

    1990-01-01

    High-level robot control research must confront the limitations imposed by real sensors if robots are to be controlled effectively in the real world. In particular, sensor limitations make it impossible to maintain a complete, detailed world model of the situation surrounding the robot. To address the problems involved in planning with the resulting incomplete and uncertain world models, traditional robot control architectures must be altered significantly. Task-directed sensing and control is suggested as a way of coping with world model limitations by focusing sensing and analysis resources on only those parts of the world relevant to the robot's active goals. The RAP adaptive execution system is used as an example of a control architecture designed to deploy sensing resources in this way to accomplish both action and knowledge goals.

  2. TEMPEST in a gallimaufry: applying multilevel systems theory to person-in-context research.

    PubMed

    Peck, Stephen C

    2007-12-01

    Terminological ambiguity and inattention to personal and contextual multilevel systems undermine personality, self, and identity theories. Hierarchical and heterarchical systems theories are used to describe contents and processes existing within and across three interrelated multilevel systems: levels of organization, representation, and integration. Materially nested levels of organization are used to distinguish persons from contexts and personal from social identity. Functionally nested levels of representation are used to distinguish personal identity from the sense of identity and symbolic (belief) from iconic (schema) systems. Levels of integration are hypothesized to unfold separately but interdependently across levels of representation. Multilevel system configurations clarify alternative conceptualizations of traits and contextualized identity. Methodological implications for measurement and analysis (e.g., integrating variable- and pattern-centered methods) are briefly described.

  3. Air pollution linked to Remote Sensing tools - Science training using a Master's Level e-Learning Tool

    NASA Astrophysics Data System (ADS)

    Ladstaetter-Weissenmayer, A.; Kanakidou, M.; Richter, A.; Wagner, T.; Borrell, P.; Law, R. J.; Burrows, J. P.

    2009-09-01

    As we know it today air pollution is a release into the atmosphere of any substances, chemicals or particles, which are harmful both to the human and animal health as well as the health of the wider environment. The use of satellite based instruments is a young and developing research field and excellent for studying air pollution events over large areas at high spatial-temporal resolutions, especially when ground measurements, which are limited in spatial-temporal coverage, are not available. Students on postgraduate level should be trained in using, and analysing remote sensing data from both ground and satellite based or in interpreting the high variety in remote sensing e.g satellite images or maps. As follows an e-learning online module has been devised and constructed to facilitate the teaching of Remote Sensing of Troposphere from Space to research students at a Master's level. The module, which is essentially an interactive on-line text book, is stand alone, although it could be encompassed within a standard course management system. The scientific content is presented as study pages under three headings: remote sensing from space, the basics of radiation transfer, and retrieval procedures for tropospheric satellite data.The student is encouraged to test his or her comprehension of the material through exercises on the scientific topics.

  4. Air pollution linked to Remote Sensing tools - Science training using a Master's Level e-Learning Tool

    NASA Astrophysics Data System (ADS)

    Ladstätter-Weißenmayer, A.; Kanakidou, M.; Richter, A.; Wagner, T.; Borrell, P.; Law, R. J.; Burrows, J. P.

    2009-04-01

    As we know it today air pollution is a release into the atmosphere of any substances, chemicals or particles, which are harmful both to the human and animal health as well as the health of the wider environment. The use of satellite based instruments is a young and developing research field and excellent for studying air pollution events over large areas at high spatial-temporal resolutions, especially when ground measurements, which are limited in spatial-temporal coverage, are not available. Students on postgraduate level should be trained in using, and analysing remote sensing data from both ground and satellite based or in interpreting the high variety in remote sensing e.g satellite images or maps. As follows an e-learning online module has been devised and constructed to facilitate the teaching of Remote Sensing of Troposphere from Space to research students at a Master's level. The module, which is essentially an interactive on-line text book, is stand alone, although it could be encompassed within a standard course management system. The scientific content is presented as study pages under three headings: remote sensing from space, the basics of radiation transfer, and retrieval procedures for tropospheric satellite data.The student is encouraged to test his or her comprehension of the material through exercises on the scientific topics.

  5. A Fabry-Pérot electro-optic sensing system using a drive-current-tuned wavelength laser diode.

    PubMed

    Kuo, Wen-Kai; Wu, Pei-Yu; Lee, Chang-Ching

    2010-05-01

    A Fabry-Pérot enhanced electro-optic sensing system that utilizes a drive-current-tuned wavelength laser diode is presented. An electro-optic prober made of LiNbO(3) crystal with an asymmetric Fabry-Pérot cavity is used in this system. To lock the wavelength of the laser diode at resonant condition, a closed-loop power control scheme is proposed. Experiment results show that the system can keep the electro-optic prober at high sensitivity for a long working time when the closed-loop control function is on. If this function is off, the sensitivity may be fluctuated and only one-third of the best level in the worst case.

  6. Introduction: an overview of gravity sensing, perception, and signal transduction in animals and plants

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.

    1994-01-01

    The antiquity of biological sensitivity and response to gravity can be traced through the ubiquity of morphology, mechanisms, and cellular events in gravity sensing biological systems in the most diverse species of both plants and animals. Further, when we examine organisms at the cellular level to elucidate the molecular mechanism by which a gravitational signal is transduced into a biochemical response, the distinction between plants and animals becomes blurred.

  7. Bioinspired Infrared Sensing Materials and Systems.

    PubMed

    Shen, Qingchen; Luo, Zhen; Ma, Shuai; Tao, Peng; Song, Chengyi; Wu, Jianbo; Shang, Wen; Deng, Tao

    2018-05-11

    Bioinspired engineering offers a promising alternative approach in accelerating the development of many man-made systems. Next-generation infrared (IR) sensing systems can also benefit from such nature-inspired approach. The inherent compact and uncooled operation of biological IR sensing systems provides ample inspiration for the engineering of portable and high-performance artificial IR sensing systems. This review overviews the current understanding of the biological IR sensing systems, most of which are thermal-based IR sensors that rely on either bolometer-like or photomechanic sensing mechanism. The existing efforts inspired by the biological IR sensing systems and possible future bioinspired approaches in the development of new IR sensing systems are also discussed in the review. Besides these biological IR sensing systems, other biological systems that do not have IR sensing capabilities but can help advance the development of engineered IR sensing systems are also discussed, and the related engineering efforts are overviewed as well. Further efforts in understanding the biological IR sensing systems, the learning from the integration of multifunction in biological systems, and the reduction of barriers to maximize the multidiscipline collaborations are needed to move this research field forward. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. DEVELOPMENT AND MODELING OF REACTIVE BUILDING SYSTEMS: CLIMATE AND ILLUMINATION

    EPA Science Inventory

    Desirability barriers regarding the human comfort level still remain in the public acceptance of passive solar energy homes. The goal of this project is to model sensing climate control and illumination building systems as they apply to a zero-energy Midwest home. In develop...

  9. Steam generator on-line efficiency monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R.K.; Kaya, A.; Keyes, M.A. IV

    1987-08-04

    This patent describes a system for automatically and continuously determining the efficiency of a combustion process in a fossil-fuel fired vapor generator for utilization by an automatic load control system that controls the distribution of a system load among a plurality of vapor generators, comprising: a first function generator, connected to an oxygen transducer for sensing the level of excess air in the flue gas, for generating a first signal indicative of the total air supplied for combustion in percent by weight; a second function generator, connected to a combustibles transducer for sensing the level of combustibles in the fluemore » gas, for generating a second signal indicative of the percent combustibles present in the flue gas; means for correcting the first signal, connected to the first and second function generators, when the oxygen transducer is of a type that operates at a temperature level sufficient to cause the unburned combustibles to react with the oxygen present in the flue gas; an ambient air temperature transducer for generating a third signal indicative of the temperature of the ambient air supplied to the vapor generator for combustion.« less

  10. Huggy Pajama: A Remote Interactive Touch and Hugging System

    NASA Astrophysics Data System (ADS)

    Cheok, Adrian David

    Huggy Pajama is a novel wearable system aimed at promoting physical interaction in remote communication between parent and child. This system enables parents and children to hug one another through a hugging interface device and a wearable, hug reproducing pajama connected through the Internet. The hug input device is a small, mobile doll with an embedded pressure sensing circuit that is able to accurately sense varying levels of pressure along the range of human touch produced from natural touch. This device sends hug signals to a haptic jacket that simulates the feeling of being hugged to the wearer. It features air pocket actuators that reproduce hug sensations, heating elements to produce warmth that accompanies hugs, and a color changing pattern and accessory to indicate distance of separation and communicate expressions. In this chapter, we present the system design of Huggy Pajama. We also show results from quantitative and qualitative user studies which show the effectiveness of the system simulating an actual human touch. Results also indicate an increased sense of presence between parents and children when used as an added component to instant messaging and video chat communication.

  11. Unitary scintillation detector and system

    DOEpatents

    McElhaney, Stephanie A.; Chiles, Marion M.

    1994-01-01

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations.

  12. Unitary scintillation detector and system

    DOEpatents

    McElhaney, S.A.; Chiles, M.M.

    1994-05-31

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations. 10 figs.

  13. Monitoring of Concrete Structures Using Ofdr Technique

    NASA Astrophysics Data System (ADS)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-06-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as bridges, dikes, nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μstrain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades in a concrete aggressive environment and to ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Tests were carried out by embedding various sensing cables into plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument; meanwhile, mechanical solicitations were imposed to the concrete element. Preliminary experiments are very promising since measurements performed with distributed sensing system are comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  14. Development of Light Powered Sensor Networks for Thermal Comfort Measurement

    PubMed Central

    Lee, Dasheng

    2008-01-01

    Recent technological advances in wireless communications have enabled easy installation of sensor networks with air conditioning equipment control applications. However, the sensor node power supply, through either power lines or battery power, still presents obstacles to the distribution of the sensing systems. In this study, a novel sensor network, powered by the artificial light, was constructed to achieve wireless power transfer and wireless data communications for thermal comfort measurements. The sensing node integrates an IC-based temperature sensor, a radiation thermometer, a relative humidity sensor, a micro machined flow sensor and a microprocessor for predicting mean vote (PMV) calculation. The 935 MHz band RF module was employed for the wireless data communication with a specific protocol based on a special energy beacon enabled mode capable of achieving zero power consumption during the inactive periods of the nodes. A 5W spotlight, with a dual axis tilt platform, can power the distributed nodes over a distance of up to 5 meters. A special algorithm, the maximum entropy method, was developed to estimate the sensing quantity of climate parameters if the communication module did not receive any response from the distributed nodes within a certain time limit. The light-powered sensor networks were able to gather indoor comfort-sensing index levels in good agreement with the comfort-sensing vote (CSV) preferred by a human being and the experimental results within the environment suggested that the sensing system could be used in air conditioning systems to implement a comfort-optimal control strategy. PMID:27873877

  15. Automated extraction of metadata from remotely sensed satellite imagery

    NASA Technical Reports Server (NTRS)

    Cromp, Robert F.

    1991-01-01

    The paper discusses research in the Intelligent Data Management project at the NASA/Goddard Space Flight Center, with emphasis on recent improvements in low-level feature detection algorithms for performing real-time characterization of images. Images, including MSS and TM data, are characterized using neural networks and the interpretation of the neural network output by an expert system for subsequent archiving in an object-oriented data base. The data show the applicability of this approach to different arrangements of low-level remote sensing channels. The technique works well when the neural network is trained on data similar to the data used for testing.

  16. Height modernization program and subsidence study in northern Ohio.

    DOT National Transportation Integrated Search

    2013-11-01

    This study is an initiative focused on establishing accurate, reliable heights using Global Navigation Satellite System (GNSS) technology in conjunction with traditional leveling, gravity, and modern remote sensing information. The traditional method...

  17. Wireless sensing system for non-invasive monitoring of attributes of contents in a container

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor)

    2010-01-01

    A wireless sensing system monitors the level, temperature, magnetic permeability and electrical dielectric constant of a non-gaseous material in a container. An open-circuit electrical conductor is shaped to form a two-dimensional geometric pattern that can store and transfer electrical and magnetic energy. The conductor resonates in the presence of a time-varying magnetic field to generate a harmonic response. The conductor is mounted in an environmentally-sealed housing. A magnetic field response recorder wirelessly transmits the time-varying magnetic field to power the conductor, and wirelessly detects the harmonic response that is an indication of at least one of level of the material in the container, temperature of the material in the container, magnetic permeability of the material in the container, and dielectric constant of the material in the container.

  18. Uprated fine guidance sensor study

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Future orbital observatories will require star trackers of extremely high precision. These sensors must maintain high pointing accuracy and pointing stability simultaneously with a low light level signal from a guide star. To establish the fine guidance sensing requirements and to evaluate candidate fine guidance sensing concepts, the Space Telescope Optical Telescope Assembly was used as the reference optical system. The requirements review was separated into three areas: Optical Telescope Assembly (OTA), Fine Guidance Sensing and astrometry. The results show that the detectors should be installed directly onto the focal surface presented by the optics. This would maximize throughput and minimize point stability error by not incoporating any additional optical elements.

  19. How culture shapes community: bible belief, theological unity, and a sense of belonging in religious congregations.

    PubMed

    Stroope, Samuel

    2011-01-01

    Feeling that you belong in a group is an important and powerful need. The ability to foster a sense of belonging can also determine whether groups survive. Organizational features of groups cultivate feelings of belonging, yet prior research fails to investigate the idea that belief systems also play a major role. Using multilevel data, this study finds that church members' traditional beliefs, group-level belief unity, and their interaction associate positively with members' sense of belonging. In fact, belief unity can be thought of as a “sacred canopy” under which the relationship between traditional beliefs and feelings of belonging thrives.

  20. No Evidence of Narrowly Defined Cognitive Penetrability in Unambiguous Vision

    PubMed Central

    Lammers, Nikki A.; de Haan, Edward H.; Pinto, Yair

    2017-01-01

    The classical notion of cognitive impenetrability suggests that perceptual processing is an automatic modular system and not under conscious control. Near consensus is now emerging that this classical notion is untenable. However, as recently pointed out by Firestone and Scholl, this consensus is built on quicksand. In most studies claiming perception is cognitively penetrable, it remains unclear which actual process has been affected (perception, memory, imagery, input selection or judgment). In fact, the only available “proofs” for cognitive penetrability are proxies for perception, such as behavioral responses and neural correlates. We suggest that one can interpret cognitive penetrability in two different ways, a broad sense and a narrow sense. In the broad sense, attention and memory are not considered as “just” pre- and post-perceptual systems but as part of the mechanisms by which top-down processes influence the actual percept. Although many studies have proven top-down influences in this broader sense, it is still debatable whether cognitive penetrability remains tenable in a narrow sense. The narrow sense states that cognitive penetrability only occurs when top-down factors are flexible and cause a clear illusion from a first person perspective. So far, there is no strong evidence from a first person perspective that visual illusions can indeed be driven by high-level flexible factors. One cannot be cognitively trained to see and unsee visual illusions. We argue that this lack of convincing proof for cognitive penetrability in the narrow sense can be explained by the fact that most research focuses on foveal vision only. This type of perception may be too unambiguous for transient high-level factors to control perception. Therefore, illusions in more ambiguous perception, such as peripheral vision, can offer a unique insight into the matter. They produce a clear subjective percept based on unclear, degraded visual input: the optimal basis to study narrowly defined cognitive penetrability. PMID:28740471

  1. The Short Wave Aerostat-Mounted Imager (SWAMI): A novel platform for acquiring remotely sensed data from a tethered balloon

    USGS Publications Warehouse

    Vierling, L.A.; Fersdahl, M.; Chen, X.; Li, Z.; Zimmerman, P.

    2006-01-01

    We describe a new remote sensing system called the Short Wave Aerostat-Mounted Imager (SWAMI). The SWAMI is designed to acquire co-located video imagery and hyperspectral data to study basic remote sensing questions and to link landscape level trace gas fluxes with spatially and temporally appropriate spectral observations. The SWAMI can fly at altitudes up to 2 km above ground level to bridge the spatial gap between radiometric measurements collected near the surface and those acquired by other aircraft or satellites. The SWAMI platform consists of a dual channel hyperspectral spectroradiometer, video camera, GPS, thermal infrared sensor, and several meteorological and control sensors. All SWAMI functions (e.g. data acquisition and sensor pointing) can be controlled from the ground via wireless transmission. Sample data from the sampling platform are presented, along with several potential scientific applications of SWAMI data.

  2. A distributed monitoring system for photovoltaic arrays based on a two-level wireless sensor network

    NASA Astrophysics Data System (ADS)

    Su, F. P.; Chen, Z. C.; Zhou, H. F.; Wu, L. J.; Lin, P. J.; Cheng, S. Y.; Li, Y. F.

    2017-11-01

    In this paper, a distributed on-line monitoring system based on a two-level wireless sensor network (WSN) is proposed for real time status monitoring of photovoltaic (PV) arrays to support the fine management and maintenance of PV power plants. The system includes the sensing nodes installed on PV modules (PVM), sensing and routing nodes installed on combiner boxes of PV sub-arrays (PVA), a sink node and a data management centre (DMC) running on a host computer. The first level WSN is implemented by the low-cost wireless transceiver nRF24L01, and it is used to achieve single hop communication between the PVM nodes and their corresponding PVA nodes. The second level WSN is realized by the CC2530 based ZigBee network for multi-hop communication among PVA nodes and the sink node. The PVM nodes are used to monitor the PVM working voltage and backplane temperature, and they send the acquired data to their PVA node via the nRF24L01 based first level WSN. The PVA nodes are used to monitor the array voltage, PV string current and environment irradiance, and they send the acquired and received data to the DMC via the ZigBee based second level WSN. The DMC is designed using the MATLAB GUIDE and MySQL database. Laboratory experiment results show that the system can effectively acquire, display, store and manage the operating and environment parameters of PVA in real time.

  3. The natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing-regulated gene expression in Vibrio harveyi by decreasing the DNA-binding activity of the transcriptional regulator protein luxR.

    PubMed

    Defoirdt, Tom; Miyamoto, Carol M; Wood, Thomas K; Meighen, Edward A; Sorgeloos, Patrick; Verstraete, Willy; Bossier, Peter

    2007-10-01

    This study aimed at getting a deeper insight in the molecular mechanism by which the natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing in Vibrio harveyi. Bioluminescence experiments with signal molecule receptor double mutants revealed that the furanone blocks all three channels of the V. harveyi quorum sensing system. In further experiments using mutants with mutations in the quorum sensing signal transduction pathway, the compound was found to block quorum sensing-regulated bioluminescence by interacting with a component located downstream of the Hfq protein. Furthermore, reverse transcriptase real-time polymerase chain reaction with specific primers showed that there was no effect of the furanone on luxR(Vh) mRNA levels in wild-type V. harveyi cells. In contrast, mobility shift assays showed that in the presence of the furanone, significantly lower levels of the LuxR(Vh) response regulator protein were able to bind to its target promoter sequences in wild-type V. harveyi. Finally, tests with purified LuxR(Vh) protein also showed less shifts with furanone-treated LuxR(Vh), whereas the LuxR(Vh) concentration was found not to be altered by the furanone (as determined by SDS-PAGE). Therefore, our data indicate that the furanone blocks quorum sensing in V. harveyi by rendering the quorum sensing master regulator protein LuxR(Vh) unable to bind to the promoter sequences of quorum sensing-regulated genes.

  4. Role of remote sensing, geographical information system (GIS) and bioinformatics in kala-azar epidemiology

    PubMed Central

    Bhunia, Gouri Sankar; Dikhit, Manas Ranjan; Kesari, Shreekant; Sahoo, Ganesh Chandra; Das, Pradeep

    2011-01-01

    Visceral leishmaniasis or kala-azar is a potent parasitic infection causing death of thousands of people each year. Medicinal compounds currently available for the treatment of kala-azar have serious side effects and decreased efficacy owing to the emergence of resistant strains. The type of immune reaction is also to be considered in patients infected with Leishmania donovani (L. donovani). For complete eradication of this disease, a high level modern research is currently being applied both at the molecular level as well as at the field level. The computational approaches like remote sensing, geographical information system (GIS) and bioinformatics are the key resources for the detection and distribution of vectors, patterns, ecological and environmental factors and genomic and proteomic analysis. Novel approaches like GIS and bioinformatics have been more appropriately utilized in determining the cause of visearal leishmaniasis and in designing strategies for preventing the disease from spreading from one region to another. PMID:23554714

  5. Operational considerations for the application of remotely sensed forest data from LANDSAT or other airborne platforms

    NASA Technical Reports Server (NTRS)

    Baker, G. R.; Fethe, T. P.

    1975-01-01

    Research in the application of remotely sensed data from LANDSAT or other airborne platforms to the efficient management of a large timber based forest industry was divided into three phases: (1) establishment of a photo/ground sample correlation, (2) investigation of techniques for multi-spectral digital analysis, and (3) development of a semi-automated multi-level sampling system. To properly verify results, three distinct test areas were selected: (1) Jacksonville Mill Region, Lower Coastal Plain, Flatwoods, (2) Pensacola Mill Region, Middle Coastal Plain, and (3) Mississippi Mill Region, Middle Coastal Plain. The following conclusions were reached: (1) the probability of establishing an information base suitable for management requirements through a photo/ground double sampling procedure, alleviating the ground sampling effort, is encouraging, (2) known classification techniques must be investigated to ascertain the level of precision possible in separating the many densities involved, and (3) the multi-level approach must be related to an information system that is executable and feasible.

  6. Optical sample-position sensing for electrostatic levitation

    NASA Technical Reports Server (NTRS)

    Sridharan, G.; Chung, S.; Elleman, D.; Whim, W. K.

    1989-01-01

    A comparative study is conducted for optical position-sensing techniques applicable to micro-G conditions sample-levitation systems. CCD sensors are compared with one- and two-dimensional position detectors used in electrostatic particle levitation. In principle, the CCD camera method can be improved from current resolution levels of 200 microns through the incorporation of a higher-pixel device and more complex digital signal processor interface. Nevertheless, the one-dimensional position detectors exhibited superior, better-than-one-micron resolution.

  7. Securing Collaborative Spectrum Sensing against Untrustworthy Secondary Users in Cognitive Radio Networks

    NASA Astrophysics Data System (ADS)

    Wang, Wenkai; Li, Husheng; Sun, Yan(Lindsay); Han, Zhu

    2009-12-01

    Cognitive radio is a revolutionary paradigm to migrate the spectrum scarcity problem in wireless networks. In cognitive radio networks, collaborative spectrum sensing is considered as an effective method to improve the performance of primary user detection. For current collaborative spectrum sensing schemes, secondary users are usually assumed to report their sensing information honestly. However, compromised nodes can send false sensing information to mislead the system. In this paper, we study the detection of untrustworthy secondary users in cognitive radio networks. We first analyze the case when there is only one compromised node in collaborative spectrum sensing schemes. Then we investigate the scenario that there are multiple compromised nodes. Defense schemes are proposed to detect malicious nodes according to their reporting histories. We calculate the suspicious level of all nodes based on their reports. The reports from nodes with high suspicious levels will be excluded in decision-making. Compared with existing defense methods, the proposed scheme can effectively differentiate malicious nodes and honest nodes. As a result, it can significantly improve the performance of collaborative sensing. For example, when there are 10 secondary users, with the primary user detection rate being equal to 0.99, one malicious user can make the false alarm rate [InlineEquation not available: see fulltext.] increase to 72%. The proposed scheme can reduce it to 5%. Two malicious users can make [InlineEquation not available: see fulltext.] increase to 85% and the proposed scheme reduces it to 8%.

  8. Entropy studies on beam distortion by atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher C.

    2015-09-01

    When a beam propagates through atmospheric turbulence over a known distance, the target beam profile deviates from the projected profile of the beam on the receiver. Intuitively, the unwanted distortion provides information about the atmospheric turbulence. This information is crucial for guiding adaptive optic systems and improving beam propagation results. In this paper, we propose an entropy study based on the image from a plenoptic sensor to provide a measure of information content of atmospheric turbulence. In general, lower levels of atmospheric turbulence will have a smaller information size while higher levels of atmospheric turbulence will cause significant expansion of the information size, which may exceed the maximum capacity of a sensing system and jeopardize the reliability of an AO system. Therefore, the entropy function can be used to analyze the turbulence distortion and evaluate performance of AO systems. In fact, it serves as a metric that can tell the improvement of beam correction in each iteration step. In addition, it points out the limitation of an AO system at optimized correction as well as the minimum information needed for wavefront sensing to achieve certain levels of correction. In this paper, we will demonstrate the definition of the entropy function and how it is related to evaluating information (randomness) carried by atmospheric turbulence.

  9. Farm Management Support on Cloud Computing Platform: A System for Cropland Monitoring Using Multi-Source Remotely Sensed Data

    NASA Astrophysics Data System (ADS)

    Coburn, C. A.; Qin, Y.; Zhang, J.; Staenz, K.

    2015-12-01

    Food security is one of the most pressing issues facing humankind. Recent estimates predict that over one billion people don't have enough food to meet their basic nutritional needs. The ability of remote sensing tools to monitor and model crop production and predict crop yield is essential for providing governments and farmers with vital information to ensure food security. Google Earth Engine (GEE) is a cloud computing platform, which integrates storage and processing algorithms for massive remotely sensed imagery and vector data sets. By providing the capabilities of storing and analyzing the data sets, it provides an ideal platform for the development of advanced analytic tools for extracting key variables used in regional and national food security systems. With the high performance computing and storing capabilities of GEE, a cloud-computing based system for near real-time crop land monitoring was developed using multi-source remotely sensed data over large areas. The system is able to process and visualize the MODIS time series NDVI profile in conjunction with Landsat 8 image segmentation for crop monitoring. With multi-temporal Landsat 8 imagery, the crop fields are extracted using the image segmentation algorithm developed by Baatz et al.[1]. The MODIS time series NDVI data are modeled by TIMESAT [2], a software package developed for analyzing time series of satellite data. The seasonality of MODIS time series data, for example, the start date of the growing season, length of growing season, and NDVI peak at a field-level are obtained for evaluating the crop-growth conditions. The system fuses MODIS time series NDVI data and Landsat 8 imagery to provide information of near real-time crop-growth conditions through the visualization of MODIS NDVI time series and comparison of multi-year NDVI profiles. Stakeholders, i.e., farmers and government officers, are able to obtain crop-growth information at crop-field level online. This unique utilization of GEE in combination with advanced analytic and extraction techniques provides a vital remote sensing tool for decision makers and scientists with a high-degree of flexibility to adapt to different uses.

  10. Making Sense of Plant Health

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Ciencia, Inc. created a new device, known as a Portable Photosynthesis Analyzer, or Phase Fluorometer, that provides real-time data about the photochemical efficiency of phytoplankton and other plant forms. The commercial version of this technology is used for photosynthesis research and offers major benefits to the field of life science. This new instrument is the first portable instrument of its kind. Through a license agreement with Ciencia, Oriel Instruments, of Stratford, Connecticut, manufactures and markets the commercial version of the instrument under the name LifeSense.TMLifeSense is a 70 MHz single-frequency fluorometer that offers unrivaled capabilities for fluorescence lifetime sensing and analysis. LifeSense provides information about all varieties of photosynthetic systems. Photosynthesis research contributes important health assessments about the plant, be it phytoplankton or a higher form of plant life. With its unique sensing capabilities, LifeSense furnishes data regarding the yield of a plant's photochemistry, as well as its levels of photosynthetic activity. The user can then gain an extremely accurate estimate of the plant's chlorophyll biomass, primary production rates, and a general overview of the plant's physiological condition.

  11. Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features.

    PubMed

    Li, Linyi; Xu, Tingbao; Chen, Yun

    2017-01-01

    In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images.

  12. Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features

    PubMed Central

    Xu, Tingbao; Chen, Yun

    2017-01-01

    In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images. PMID:28761440

  13. Sense and avoid technology for Global Hawk and Predator UAVs

    NASA Astrophysics Data System (ADS)

    McCalmont, John F.; Utt, James; Deschenes, Michael; Taylor, Michael J.

    2005-05-01

    The Sensors Directorate at the Air Force Research Laboratory (AFRL) along with Defense Research Associates, Inc. (DRA) conducted a flight demonstration of technology that could potentially satisfy the Federal Aviation Administration's (FAA) requirement for Unmanned Aerial Vehicles (UAVs) to sense and avoid local air traffic sufficient to provide an "...equivalent level of safety, comparable to see-and-avoid requirements for manned aircraft". This FAA requirement must be satisfied for autonomous UAV operation within the national airspace. The real-time on-board system passively detects approaching aircraft, both cooperative and non-cooperative, using imaging sensors operating in the visible/near infrared band and a passive moving target indicator algorithm. Detection range requirements for RQ-4 and MQ-9 UAVs were determined based on analysis of flight geometries, avoidance maneuver timelines, system latencies and human pilot performance. Flight data and UAV operating parameters were provided by the system program offices, prime contractors, and flight-test personnel. Flight demonstrations were conducted using a surrogate UAV (Aero Commander) and an intruder aircraft (Beech Bonanza). The system demonstrated target detection ranges out to 3 nautical miles in nose-to-nose scenarios and marginal visual meteorological conditions. (VMC) This paper will describe the sense and avoid requirements definition process and the system concept (sensors, algorithms, processor, and flight rest results) that has demonstrated the potential to satisfy the FAA sense and avoid requirements.

  14. Association between components of family caregivers' sense of burden and types of paid care services provided in Japan.

    PubMed

    Nakagawa, Yoshinori; Nasu, Seigo

    2011-08-01

    The aim was to identify significant relationships between the 21 components of caregivers' sense of burden in the Zarit Burden Interview and specific paid care services provided in Japan's long-term care insurance system. We defined a service utilization level (SUL) that represents the amount of care services that caregivers were consuming. We calculated the ratios of people, among those with the same SUL value, whose sense of burden was weaker than a specific level. Finally, we conducted regression analysis and checked how this ratio varied compared to the change in SUL values. For 12 among 22 components, the use of paid care services in general were significantly and linearly related with a smaller number of people having the strongest sense of burden. Several pairs of burden components and care service types were identified indicating that the type of care services effectively alleviated that burden component. (1) Paid care services do relieve caregivers' sense of burden. (2) Measures to increase the ratio of people with the weakest sense of burden by encouraging the use of care services do not necessarily match those that decrease the ratio of people feeling the heaviest burden. (3) Policies that encourage caregivers to use more care services can be more effective if policy makers know which type of care service is related with a burden component.

  15. Coding Strategies and Implementations of Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han

    This dissertation studies the coding strategies of computational imaging to overcome the limitation of conventional sensing techniques. The information capacity of conventional sensing is limited by the physical properties of optics, such as aperture size, detector pixels, quantum efficiency, and sampling rate. These parameters determine the spatial, depth, spectral, temporal, and polarization sensitivity of each imager. To increase sensitivity in any dimension can significantly compromise the others. This research implements various coding strategies subject to optical multidimensional imaging and acoustic sensing in order to extend their sensing abilities. The proposed coding strategies combine hardware modification and signal processing to exploiting bandwidth and sensitivity from conventional sensors. We discuss the hardware architecture, compression strategies, sensing process modeling, and reconstruction algorithm of each sensing system. Optical multidimensional imaging measures three or more dimensional information of the optical signal. Traditional multidimensional imagers acquire extra dimensional information at the cost of degrading temporal or spatial resolution. Compressive multidimensional imaging multiplexes the transverse spatial, spectral, temporal, and polarization information on a two-dimensional (2D) detector. The corresponding spectral, temporal and polarization coding strategies adapt optics, electronic devices, and designed modulation techniques for multiplex measurement. This computational imaging technique provides multispectral, temporal super-resolution, and polarization imaging abilities with minimal loss in spatial resolution and noise level while maintaining or gaining higher temporal resolution. The experimental results prove that the appropriate coding strategies may improve hundreds times more sensing capacity. Human auditory system has the astonishing ability in localizing, tracking, and filtering the selected sound sources or information from a noisy environment. Using engineering efforts to accomplish the same task usually requires multiple detectors, advanced computational algorithms, or artificial intelligence systems. Compressive acoustic sensing incorporates acoustic metamaterials in compressive sensing theory to emulate the abilities of sound localization and selective attention. This research investigates and optimizes the sensing capacity and the spatial sensitivity of the acoustic sensor. The well-modeled acoustic sensor allows localizing multiple speakers in both stationary and dynamic auditory scene; and distinguishing mixed conversations from independent sources with high audio recognition rate.

  16. Surveillance system for air pollutants by combination of the decision support system COMPAS and optical remote sensing systems

    NASA Astrophysics Data System (ADS)

    Flassak, Thomas; de Witt, Helmut; Hahnfeld, Peter; Knaup, Andreas; Kramer, Lothar

    1995-09-01

    COMPAS is a decision support system designed to assist in the assessment of the consequences of accidental releases of toxic and flammable substances. One of the key elements of COMPAS is a feedback algorithm which allows us to calculate the source term with the aid of concentration measurements. Up to now the feedback technique is applied to concentration measurements done with test tubes or conventional point sensors. In this paper the extension of the actual method is presented which is the combination of COMPAS and an optical remote sensing system like the KAYSER-THREDE K300 FTIR system. Active remote sensing methods based on FTIR are, among other applications, ideal for the so-called fence line monitoring of the diffuse emissions and accidental releases from industrial facilities, since from the FTIR spectra averaged concentration levels along the measurement path can be achieved. The line-averaged concentrations are ideally suited as on-line input for COMPAS' feedback technique. Uncertainties in the assessment of the source term related with both shortcomings of the dispersion model itself and also problems of a feedback strategy based on point measurements are reduced.

  17. Trends in Planetary Data Analysis. Executive summary of the Planetary Data Workshop

    NASA Technical Reports Server (NTRS)

    Evans, N.

    1984-01-01

    Planetary data include non-imaging remote sensing data, which includes spectrometric, radiometric, and polarimetric remote sensing observations. Also included are in-situ, radio/radar data, and Earth based observation. Also discussed is development of a planetary data system. A catalog to identify observations will be the initial entry point for all levels of users into the data system. There are seven distinct data support services: encyclopedia, data index, data inventory, browse, search, sample, and acquire. Data systems for planetary science users must provide access to data, process, store, and display data. Two standards will be incorporated into the planetary data system: Standard communications protocol and Standard format data unit. The data system configuration must combine a distributed system with those of a centralized system. Fiscal constraints have made prioritization important. Activities include saving previous mission data, planning/cost analysis, and publishing of proceedings.

  18. Sensor selection and chemo-sensory optimization: toward an adaptable chemo-sensory system.

    PubMed

    Vergara, Alexander; Llobet, Eduard

    2011-01-01

    Over the past two decades, despite the tremendous research on chemical sensors and machine olfaction to develop micro-sensory systems that will accomplish the growing existent needs in personal health (implantable sensors), environment monitoring (widely distributed sensor networks), and security/threat detection (chemo/bio warfare agents), simple, low-cost molecular sensing platforms capable of long-term autonomous operation remain beyond the current state-of-the-art of chemical sensing. A fundamental issue within this context is that most of the chemical sensors depend on interactions between the targeted species and the surfaces functionalized with receptors that bind the target species selectively, and that these binding events are coupled with transduction processes that begin to change when they are exposed to the messy world of real samples. With the advent of fundamental breakthroughs at the intersection of materials science, micro- and nano-technology, and signal processing, hybrid chemo-sensory systems have incorporated tunable, optimizable operating parameters, through which changes in the response characteristics can be modeled and compensated as the environmental conditions or application needs change. The objective of this article, in this context, is to bring together the key advances at the device, data processing, and system levels that enable chemo-sensory systems to "adapt" in response to their environments. Accordingly, in this review we will feature the research effort made by selected experts on chemical sensing and information theory, whose work has been devoted to develop strategies that provide tunability and adaptability to single sensor devices or sensory array systems. Particularly, we consider sensor-array selection, modulation of internal sensing parameters, and active sensing. The article ends with some conclusions drawn from the results presented and a visionary look toward the future in terms of how the field may evolve.

  19. Sensor Selection and Chemo-Sensory Optimization: Toward an Adaptable Chemo-Sensory System

    PubMed Central

    Vergara, Alexander; Llobet, Eduard

    2011-01-01

    Over the past two decades, despite the tremendous research on chemical sensors and machine olfaction to develop micro-sensory systems that will accomplish the growing existent needs in personal health (implantable sensors), environment monitoring (widely distributed sensor networks), and security/threat detection (chemo/bio warfare agents), simple, low-cost molecular sensing platforms capable of long-term autonomous operation remain beyond the current state-of-the-art of chemical sensing. A fundamental issue within this context is that most of the chemical sensors depend on interactions between the targeted species and the surfaces functionalized with receptors that bind the target species selectively, and that these binding events are coupled with transduction processes that begin to change when they are exposed to the messy world of real samples. With the advent of fundamental breakthroughs at the intersection of materials science, micro- and nano-technology, and signal processing, hybrid chemo-sensory systems have incorporated tunable, optimizable operating parameters, through which changes in the response characteristics can be modeled and compensated as the environmental conditions or application needs change. The objective of this article, in this context, is to bring together the key advances at the device, data processing, and system levels that enable chemo-sensory systems to “adapt” in response to their environments. Accordingly, in this review we will feature the research effort made by selected experts on chemical sensing and information theory, whose work has been devoted to develop strategies that provide tunability and adaptability to single sensor devices or sensory array systems. Particularly, we consider sensor-array selection, modulation of internal sensing parameters, and active sensing. The article ends with some conclusions drawn from the results presented and a visionary look toward the future in terms of how the field may evolve. PMID:22319492

  20. Ultra-short FBG based distributed sensing using shifted optical Gaussian filters and microwave-network analysis.

    PubMed

    Cheng, Rui; Xia, Li; Sima, Chaotan; Ran, Yanli; Rohollahnejad, Jalal; Zhou, Jiaao; Wen, Yongqiang; Yu, Can

    2016-02-08

    Ultrashort fiber Bragg gratings (US-FBGs) have significant potential as weak grating sensors for distributed sensing, but the exploitation have been limited by their inherent broad spectra that are undesirable for most traditional wavelength measurements. To address this, we have recently introduced a new interrogation concept using shifted optical Gaussian filters (SOGF) which is well suitable for US-FBG measurements. Here, we apply it to demonstrate, for the first time, an US-FBG-based self-referencing distributed optical sensing technique, with the advantages of adjustable sensitivity and range, high-speed and wide-range (potentially >14000 με) intensity-based detection, and resistance to disturbance by nonuniform parameter distribution. The entire system is essentially based on a microwave network, which incorporates the SOGF with a fiber delay-line between the two arms. Differential detections of the cascaded US-FBGs are performed individually in the network time-domain response which can be obtained by analyzing its complex frequency response. Experimental results are presented and discussed using eight cascaded US-FBGs. A comprehensive numerical analysis is also conducted to assess the system performance, which shows that the use of US-FBGs instead of conventional weak FBGs could significantly improve the power budget and capacity of the distributed sensing system while maintaining the crosstalk level and intensity decay rate, providing a promising route for future sensing applications.

  1. Selective vibration sensing: a new concept for activity-sensing rate-responsive pacing.

    PubMed

    Lau, C P; Stott, J R; Toff, W D; Zetlein, M B; Ward, D E; Camm, A J

    1988-09-01

    A clinically available model of an activity-sensing, rate-responsive pacemaker (Activitrax, Medtronic) utilizes body vibration during exercise as an indicator of the need for a rate increase. Although having the advantage of rapid onset of rate response, this system lacks specificity and the rate response does not closely correlate with the level of exertion. In addition, this pacemaker is susceptible to the effects of extraneous vibration. In this study involving 20 normal subjects fitted with an external Activitrax pacemaker, the rate responses to a variety of exercises were studied and were compared with the corresponding sinus rates. The vibration generated at the level of the pacemaker was also measured by accelerometers in three axes. Only a fair correlation (r = 0.51) was achieved between the pacemaker rate and the sinus rate. The total root mean square value of acceleration in either the anteroposterior or the vertical axes was found to have a better correlation (r = 0.8). As the main accelerations during physical activities were in the lower frequency range (0.1-4 Hz), a low-pass filter was used to reduce the influence of extraneous vibration. Selective sensing of the acceleration level may be usefully implemented in an algorithm for activity pacing.

  2. Precision Sensing by Two Opposing Gradient Sensors: How Does Escherichia coli Find its Preferred pH Level?

    PubMed Central

    Hu, Bo; Tu, Yuhai

    2013-01-01

    It is essential for bacteria to find optimal conditions for their growth and survival. The optimal levels of certain environmental factors (such as pH and temperature) often correspond to some intermediate points of the respective gradients. This requires the ability of bacteria to navigate from both directions toward the optimum location and is distinct from the conventional unidirectional chemotactic strategy. Remarkably, Escherichia coli cells can perform such a precision sensing task in pH taxis by using the same chemotaxis machinery, but with opposite pH responses from two different chemoreceptors (Tar and Tsr). To understand bacterial pH sensing, we developed an Ising-type model for a mixed cluster of opposing receptors based on the push-pull mechanism. Our model can quantitatively explain experimental observations in pH taxis for various mutants and wild-type cells. We show how the preferred pH level depends on the relative abundance of the competing sensors and how the sensory activity regulates the behavioral response. Our model allows us to make quantitative predictions on signal integration of pH and chemoattractant stimuli. Our study reveals two general conditions and a robust push-pull scheme for precision sensing, which should be applicable in other adaptive sensory systems with opposing gradient sensors. PMID:23823247

  3. The South Dakota cooperative land use effort: A state level remote sensing demonstration project

    NASA Technical Reports Server (NTRS)

    Tessar, P. A.; Hood, D. R.; Todd, W. J.

    1975-01-01

    Remote sensing technology can satisfy or make significant contributions toward satisfying many of the information needs of governmental natural resource planners and policy makers. Recognizing this potential, the South Dakota State Planning Bureau and the EROS Data Center together formulated the framework for an ongoing Land Use and Natural Resource Inventory and Information System Program. Statewide land use/land cover information is generated from LANDSAT digital data and high altitude photography. Many applications of the system are anticipated as it evolves and data are added from more conventional sources. The conceptualization, design, and implementation of the program are discussed.

  4. On the division of contribution of the atmosphere and ocean in the radiation of the earth for the tasks of remote sensing and climate

    NASA Astrophysics Data System (ADS)

    Sushkevich, T. A.; Strelkov, S. A.; Maksakova, S. V.

    2017-11-01

    We are talking about the national achievements of the world level in theory of radiation transfer in the system atmosphere-oceans and about the modern scientific potential developing in Russia, which adequately provides a methodological basis for theoretical and computational studies of radiation processes and radiation fields in the natural environments with the use of supercomputers and massively parallel processing for problems of remote sensing and the climate of Earth. A model of the radiation field in system "clouds cover the atmosphere-ocean" to the separation of the contributions of clouds, atmosphere and ocean.

  5. Book Review

    NASA Astrophysics Data System (ADS)

    Clevers, J. G. P. W.

    2015-02-01

    About thirty years after the previous advanced textbook on Microwave Remote Sensing by Ulaby, Moore and Fung has been published as three separate volumes, now an up-to-date new textbook has been published. The 1000-page book covers theoretical models, system design and operation, and geoscientific applications of active and passive microwave remote sensing systems. It is designed as a textbook at the postgraduate level, as well as a reference for the practicing professional. The book is caught by a thorough introduction into the physics and mathematics of electrical engineering applied to microwave radiation. Here on overview of its chapters with a short description of its focus will be given.

  6. Bright luminescence of Vibrio fischeri aconitase mutants reveals a connection between citrate and the Gac/Csr regulatory system.

    PubMed

    Septer, Alecia N; Bose, Jeffrey L; Lipzen, Anna; Martin, Joel; Whistler, Cheryl; Stabb, Eric V

    2015-01-01

    The Gac/Csr regulatory system is conserved throughout the γ-proteobacteria and controls key pathways in central carbon metabolism, quorum sensing, biofilm formation and virulence in important plant and animal pathogens. Here we show that elevated intracellular citrate levels in a Vibrio fischeri aconitase mutant correlate with activation of the Gac/Csr cascade and induction of bright luminescence. Spontaneous or directed mutations in the gene that encodes citrate synthase reversed the bright luminescence of aconitase mutants, eliminated their citrate accumulation and reversed their elevated expression of CsrB. Our data elucidate a correlative link between central metabolic and regulatory pathways, and they suggest that the Gac system senses a blockage at the aconitase step of the tricarboxylic acid cycle, either through elevated citrate levels or a secondary metabolic effect of citrate accumulation, and responds by modulating carbon flow and various functions associated with host colonization, including bioluminescence. © 2014 John Wiley & Sons Ltd.

  7. A self-mixing based ring-type fiber-optic acoustic sensor

    NASA Astrophysics Data System (ADS)

    Wang, Lutang; Wu, Chunxu; Fang, Nian

    2014-07-01

    A novel, simple fiber-optic acoustic sensor consisting of a self-mixing effect based laser source and a ring-type interferometer is presented. With weak external optical feedbacks, the acoustic wave signals can be detected by measuring the changes of oscillating frequency of the laser diode, induced by the disturbances of sensing fiber, with the ring-type interferometer. The operation principles of the sensor system are explored in-depth and the experimental researches are carried out. The acoustic wave signals produced by various actions, such as by pencil broken, mental pin free falling and PZT are detected for evaluating the sensing performances of the experimental system. The investigation items include the sensitivity as well as frequency responses of the sensor system. An experiment for the detection of corona discharges is carried out, which occur in a high-voltage environment between two parallel copper electrodes, under different humidity levels. The satisfied experimental results are obtained. These experimental results well prove that our proposed sensing system has very high sensitivity and excellent high frequency responses characteristics in the detections of weak, high-frequency acoustic wave signals.

  8. The Early Childhood and Elementary Education Continuum: Constructing an Understanding of P-3 as State-Level Policy Reform

    ERIC Educational Resources Information Center

    Kauerz, Kristie Anne

    2009-01-01

    State-level policy attention to young children's early learning opportunities burgeons; a sense of urgency exists to identify reform agendas that are both effective and sustainable. "P-3" often is used as the term for the first level of a seamless P-20 system that stretches from early childhood through post-secondary education. While it…

  9. Propagation Limitations in Remote Sensing.

    DTIC Science & Technology

    Contents: Multi-sensors and systems in remote sensing ; Radar sensing systems over land; Remote sensing techniques in oceanography; Influence of...propagation media and background; Infrared techniques in remote sensing ; Photography in remote sensing ; Analytical studies in remote sensing .

  10. Iron-Dependent Regulation of Hepcidin in Hjv−/− Mice: Evidence That Hemojuvelin Is Dispensable for Sensing Body Iron Levels

    PubMed Central

    Daba, Alina; Wagner, John; Sebastiani, Giada; Pantopoulos, Kostas

    2014-01-01

    Hemojuvelin (Hjv) is a bone morphogenetic protein (BMP) co-receptor involved in the control of systemic iron homeostasis. Functional inactivation of Hjv leads to severe iron overload in humans and mice due to marked suppression of the iron-regulatory hormone hepcidin. To investigate the role of Hjv in body iron sensing, Hjv−/− mice and isogenic wild type controls were placed on a moderately low, a standard or a high iron diet for four weeks. Hjv−/− mice developed systemic iron overload under all regimens. Transferrin (Tf) was highly saturated regardless of the dietary iron content, while liver iron deposition was proportional to it. Hepcidin mRNA expression responded to fluctuations in dietary iron intake, despite the absence of Hjv. Nevertheless, iron-dependent upregulation of hepcidin was more than an order of magnitude lower compared to that seen in wild type controls. Likewise, iron signaling via the BMP/Smad pathway was preserved but substantially attenuated. These findings suggest that Hjv is not required for sensing of body iron levels and merely functions as an enhancer for iron signaling to hepcidin. PMID:24409331

  11. Fabrication and performance of pressure-sensing device consisting of electret film and organic semiconductor

    NASA Astrophysics Data System (ADS)

    Kodzasa, Takehito; Nobeshima, Daiki; Kuribara, Kazunori; Uemura, Sei; Yoshida, Manabu

    2017-04-01

    We propose a new concept of a pressure-sensitive device that consists of an organic electret film and an organic semiconductor. This device exhibits high sensitivity and selectivity against various types of pressure. The sensing mechanism of this device originates from a modulation of the electric conductivity of the organic semiconductor film induced by the interaction between the semiconductor film and the charged electret film placed face to face. It is expected that a complicated sensor array will be fabricated by using a roll-to-roll manufacturing system, because this device can be prepared by an all-printing and simple lamination process without high-level positional adjustment for printing processes. This also shows that this device with a simple structure is suitable for application to a highly flexible device array sheet for an Internet of Things (IoT) or wearable sensing system.

  12. Sensory deprivation in Staphylococcus aureus.

    PubMed

    Villanueva, Maite; García, Begoña; Valle, Jaione; Rapún, Beatriz; Ruiz de Los Mozos, Igor; Solano, Cristina; Martí, Miguel; Penadés, José R; Toledo-Arana, Alejandro; Lasa, Iñigo

    2018-02-06

    Bacteria use two-component systems (TCSs) to sense and respond to environmental changes. The core genome of the major human pathogen Staphylococcus aureus encodes 16 TCSs, one of which (WalRK) is essential. Here we show that S. aureus can be deprived of its complete sensorial TCS network and still survive under growth arrest conditions similarly to wild-type bacteria. Under replicating conditions, however, the WalRK system is necessary and sufficient to maintain bacterial growth, indicating that sensing through TCSs is mostly dispensable for living under constant environmental conditions. Characterization of S. aureus derivatives containing individual TCSs reveals that each TCS appears to be autonomous and self-sufficient to sense and respond to specific environmental cues, although some level of cross-regulation between non-cognate sensor-response regulator pairs occurs in vivo. This organization, if confirmed in other bacterial species, may provide a general evolutionarily mechanism for flexible bacterial adaptation to life in new niches.

  13. Electrostatic thin film chemical and biological sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includesmore » providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.« less

  14. The systems biology of uric acid transporters: the role of remote sensing and signaling.

    PubMed

    Nigam, Sanjay K; Bhatnagar, Vibha

    2018-07-01

    Uric acid homeostasis in the body is mediated by a number of SLC and ABC transporters in the kidney and intestine, including several multispecific 'drug' transporters (e.g., OAT1, OAT3, and ABCG2). Optimization of uric acid levels can be viewed as a 'systems biology' problem. Here, we consider uric acid transporters from a systems physiology perspective using the framework of the 'Remote Sensing and Signaling Hypothesis.' This hypothesis explains how SLC and ABC 'drug' and other transporters mediate interorgan and interorganismal communication (e.g., gut microbiome and host) via small molecules (e.g., metabolites, antioxidants signaling molecules) through transporters expressed in tissues lining body fluid compartments (e.g., blood, urine, cerebrospinal fluid). The list of uric acid transporters includes: SLC2A9, ABCG2, URAT1 (SLC22A12), OAT1 (SLC22A6), OAT3 (SLC22A8), OAT4 (SLC22A11), OAT10 (SLC22A13), NPT1 (SLC17A1), NPT4 (SLC17A3), MRP2 (ABCC2), MRP4 (ABCC4). Normally, SLC2A9, - along with URAT1, OAT1 and OAT3, - appear to be the main transporters regulating renal urate handling, while ABCG2 appears to regulate intestinal transport. In chronic kidney disease (CKD), intestinal ABCG2 becomes much more important, suggesting remote organ communication between the injured kidney and the intestine. The remote sensing and signaling hypothesis provides a useful systems-level framework for understanding the complex interplay of uric acid transporters expressed in different tissues involved in optimizing uric acid levels under normal and diseased (e.g., CKD, gut microflora dysbiosis) conditions.

  15. Fog-Based Two-Phase Event Monitoring and Data Gathering in Vehicular Sensor Networks

    PubMed Central

    Yang, Fan; Su, Jinsong; Zhou, Qifeng; Wang, Tian; Zhang, Lu; Xu, Yifan

    2017-01-01

    Vehicular nodes are equipped with more and more sensing units, and a large amount of sensing data is generated. Recently, more and more research considers cooperative urban sensing as the heart of intelligent and green city traffic management. The key components of the platform will be a combination of a pervasive vehicular sensing system, as well as a central control and analysis system, where data-gathering is a fundamental component. However, the data-gathering and monitoring are also challenging issues in vehicular sensor networks because of the large amount of data and the dynamic nature of the network. In this paper, we propose an efficient continuous event-monitoring and data-gathering framework based on fog nodes in vehicular sensor networks. A fog-based two-level threshold strategy is adopted to suppress unnecessary data upload and transmissions. In the monitoring phase, nodes sense the environment in low cost sensing mode and generate sensed data. When the probability of the event is high and exceeds some threshold, nodes transfer to the event-checking phase, and some nodes would be selected to transfer to the deep sensing mode to generate more accurate data of the environment. Furthermore, it adaptively adjusts the threshold to upload a suitable amount of data for decision making, while at the same time suppressing unnecessary message transmissions. Simulation results showed that the proposed scheme could reduce more than 84 percent of the data transmissions compared with other existing algorithms, while it detects the events and gathers the event data. PMID:29286320

  16. Coherent Two-Mode Dynamics of a Nanowire Force Sensor

    NASA Astrophysics Data System (ADS)

    Braakman, Floris R.; Rossi, Nicola; Tütüncüoglu, Gözde; Morral, Anna Fontcuberta i.; Poggio, Martino

    2018-05-01

    Classically coherent dynamics analogous to those of quantum two-level systems are studied in the setting of force sensing. We demonstrate quantitative control over the coupling between two orthogonal mechanical modes of a nanowire cantilever through measurement of avoided crossings as we deterministically position the nanowire inside an electric field. Furthermore, we demonstrate Rabi oscillations between the two mechanical modes in the strong-coupling regime. These results give prospects of implementing coherent two-mode control techniques for force-sensing signal enhancement.

  17. Regulation of axonal and dendritic growth by the extracellular calcium-sensing receptor (CaSR)

    PubMed Central

    Vizard, Thomas N.; O'Keeffe, Gerard W.; Gutierrez, Humberto; Kos, Claudine H.; Riccardi, Daniela; Davies, Alun M.

    2009-01-01

    The extracellular calcium-sensing receptor (CaSR) monitors the systemic extracellular free ionized calcium level ([Ca2+]o) in organs involved in systemic [Ca2+]o homeostasis. However, the CaSR is also expressed in the nervous system where its role is unknown. Here we find high levels of the CaSR in perinatal mouse sympathetic neurons when their axons are innervating and branching extensively in their targets. Manipulating CaSR function in these neurons by varying [Ca2+]o, using CaSR agonists and antagonists or expressing a dominant-negative CaSR markedly affects neurite growth in vitro Sympathetic neurons lacking the CaSR have smaller neurite arbors in vitro, and sympathetic innervation density is reduced in CaSR-deficient mice in vivo. Hippocampal pyramidal neurons, which also express the CaSR, have smaller dendrites when transfected with dominant-negative CaSR in postnatal organotypic cultures. Our findings reveal a crucial role for the CaSR in regulating the growth of neural processes in the peripheral and central nervous systems. PMID:18223649

  18. Application of remote sensing techniques to hydrography with emphasis on bathymetry. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Meireles, D. S.

    1980-01-01

    Remote sensing techniques are utilized for the determination of hydrographic characteristics, with emphasis in bathymetry. Two sensor systems were utilized: the Metric Camera Wild RC-10 and the Multispectral Scanner of LANDSAT Satellite (MSS-LANDSAT). From photographs of the metric camera, data of photographic density of points with known depth are obtained. A correlation between the variables density x depth is calculated through a regression straight line. From this line, the depth of points with known photographic density is determined. The LANDSAT MSS images are interpreted automatically in the Iterative Multispectral Analysis System (I-100) with the obtention of point subareas with the same gray level. With some simplifications done, it is assumed that the depth of a point is directly related with its gray level. Subareas with points of the same depth are then determined and isobathymetric curves are drawn. The coast line is obtained through the sensor systems already mentioned. Advantages and limitations of the techniques and of the sensor systems utilized are discussed and the results are compared with ground truth.

  19. Recent Progress of Self-Powered Sensing Systems for Wearable Electronics.

    PubMed

    Lou, Zheng; Li, La; Wang, Lili; Shen, Guozhen

    2017-12-01

    Wearable/flexible electronic sensing systems are considered to be one of the key technologies in the next generation of smart personal electronics. To realize personal portable devices with mobile electronics application, i.e., wearable electronic sensors that can work sustainably and continuously without an external power supply are highly desired. The recent progress and advantages of wearable self-powered electronic sensing systems for mobile or personal attachable health monitoring applications are presented. An overview of various types of wearable electronic sensors, including flexible tactile sensors, wearable image sensor array, biological and chemical sensor, temperature sensors, and multifunctional integrated sensing systems is provided. Self-powered sensing systems with integrated energy units are then discussed, separated as energy harvesting self-powered sensing systems, energy storage integrated sensing systems, and all-in-on integrated sensing systems. Finally, the future perspectives of self-powered sensing systems for wearable electronics are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ground-Based Network and Supersite Observations to Complement and Enrich EOS Research

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.

    2011-01-01

    Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System (EOS) - to intensively study, and gain a better understanding of, the Earth as an integrated system. Space-borne remote sensing observations, however, are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. Through numerous participations, particularly but not limited to the EOS remote-sensing/retrieval and validation projects over the years, NASA/GSFC has developed and continuously refined ground-based networks and mobile observatories that proved to be vital in providing high temporal measurements, which complement and enrich the satellite observations. These are: the AERO NET (AErosol RObotic NETwork) a federation of ground-based globally distributed network of spectral sun-sky photometers; the MPLNET (Micro-Pulse Lidar NETwork, a similarly organized network of micro-pulse lidar systems measuring aerosol and cloud vertical structure continuously; and the SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere, mobile observatories, a suite of spectral radiometers and in-situ probes acquiring supersite measurements. Most MPLNET sites are collocated with those of AERONET, and both networks always support the deployment of SMART-COMMIT worldwide. These data products follow the data structure of EOS conventions: Level-0, instrument archived raw data; Level-1 (or 1.5), real-time data with no (or limited) quality assurance; Level-2, not real high temporal and spectral resolutions. In this talk, we will present NASA/GSFC groundbased facilities, serving as network or supersite observations, which have been playing key roles in major international research projects over diverse aerosol regimes to complement and enrich the EOS scientific research.

  1. Mobile Sensing Systems

    PubMed Central

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-01-01

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high. PMID:24351637

  2. Mobile sensing systems.

    PubMed

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-12-16

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  3. Making sense of quantum operators, eigenstates and quantum measurements

    NASA Astrophysics Data System (ADS)

    Gire, Elizabeth; Manogue, Corinne

    2012-02-01

    Operators play a central role in the formalism of quantum mechanics. In particular, operators corresponding to observables encode important information about the results of quantum measurements. We interviewed upper-level undergraduate physics majors about their understanding of the role of operators in quantum measurements. Previous studies have shown that many students think of measurements on quantum systems as being deterministic and that measurements mathematically correspond to operators acting on the initial quantum state. This study is consistent with and expands on those results. We report on how two students make sense of a quantum measurement problem involving sequential measurements and the role that the eigenvalue equation plays in this sense-making.

  4. Tracking forest canopy dynamics from an automated proximal hyperspectral monitoring system: linking remote sensing observations to leaf level photosynthetic processes

    NASA Astrophysics Data System (ADS)

    Woodgate, W.; van Gorsel, E.; Hughes, D.; Suarez, L.; Cabello-Leblic, A.; Held, A. A.; Norton, A.; Dempsey, R.

    2017-12-01

    To better understand the vegetation response to climate extremes we have developed a fully automated hyperspectral and thermal monitoring system installed on a flux tower at a mature Eucalypt forest site - Tumbarumba, Australia. The automated system bridges spatial, spectral and temporal scales between satellite and in situ observations. Here, we have been acquiring high resolution panoramic hyperspectral and thermal images of the forest canopy three times per day since mid-2014.A specific focus of the work to date has been linking light use efficiency (LUE) as measured by the flux tower to remote sensing observations from the leaf, to crown, to canopy scale. Specifically, targeted field campaigns were conducted in 2016 to establish the interrelationship between structure, function, and spectra. At the leaf level destructive sampling to quantify photosynthetic pigments was conducted to pick apart the mechanisms contributing to photosynthetic processes of non-photochemical quenching and the resultant changes in observed leaf spectra. At the crown level, Terrestrial Laser Scanning data was used to derive canopy structural information, enabling distance to crown and crown foliage density to be calculated to a fine degree of detail. This information is critical for correcting attenuation of the thermal signal from atmospheric transmission, and to distinguish the relative foliage-to-soil contribution to the thermal and hyperspectral imagery. Ancillary data streams from sap flow and dendrometer devices serve to link leaf, crown and canopy observations.Preliminary results of the leaf and crown level relationships between function and spectra will be discussed. We will demonstrate that operating in a tall canopy (40m) forest can lead to additional complexities. We have found the relationship strength between traditional remote sensing LUE proxies and photosynthetic proxies derived from pigments varies strongly with canopy height and pigment pool size. Additionally, the significance of the relationship between some leaf pigments and spectra hinged upon the inclusion of juvenile or unhealthy leaf samples, which were not representative of the canopy. This has implications for temporal scaling of remote sensing proxies from diurnal to seasonal time frames.

  5. Lidar system for air-pollution monitoring over urban areas

    NASA Astrophysics Data System (ADS)

    Moskalenko, Irina V.; Shcheglov, Djolinard A.; Molodtsov, Nikolai A.

    1997-05-01

    The atmospheric environmental situation over the urban area of a large city is determined by a complex combination of anthropogenic pollution and meteorological factors. The efficient way to provide three-dimensional mapping of gaseous pollutants over wide areas is utilization of lidar systems employing tunable narrowband transmitters. The paper presented describes activity of RRC 'Kurchatov Institute' in the field of lidar atmospheric monitoring. The project 'mobile remote sensing system based on tunable laser transmitter for environmental monitoring' is developed under financial support of International Scientific and Technology Center (Moscow). The objective of the project is design, construction and field testing of a DIAL-technique system. The lidar transmitter consists of an excimer laser pumping dye laser, BBO crystal frequency doubler, and scanning flat mirror. Sulfur dioxide and atomic mercury have been selected as pollutants for field tests of the lidar system under development. A recent large increase in Moscow traffic stimulated taking into consideration also the remote sensing of lower troposphere ozone because of the photochemical smog problem. The status of the project is briefly discussed. The current activity includes also collecting of environmental data relevant to lidar remote sensing. Main attention is paid to pollutant concentration levels over Moscow city and Moscow district areas.

  6. New optical sensor systems for high-resolution satellite, airborne and terrestrial imaging systems

    NASA Astrophysics Data System (ADS)

    Eckardt, Andreas; Börner, Anko; Lehmann, Frank

    2007-10-01

    The department of Optical Information Systems (OS) at the Institute of Robotics and Mechatronics of the German Aerospace Center (DLR) has more than 25 years experience with high-resolution imaging technology. The technology changes in the development of detectors, as well as the significant change of the manufacturing accuracy in combination with the engineering research define the next generation of spaceborne sensor systems focusing on Earth observation and remote sensing. The combination of large TDI lines, intelligent synchronization control, fast-readable sensors and new focal-plane concepts open the door to new remote-sensing instruments. This class of instruments is feasible for high-resolution sensor systems regarding geometry and radiometry and their data products like 3D virtual reality. Systemic approaches are essential for such designs of complex sensor systems for dedicated tasks. The system theory of the instrument inside a simulated environment is the beginning of the optimization process for the optical, mechanical and electrical designs. Single modules and the entire system have to be calibrated and verified. Suitable procedures must be defined on component, module and system level for the assembly test and verification process. This kind of development strategy allows the hardware-in-the-loop design. The paper gives an overview about the current activities at DLR in the field of innovative sensor systems for photogrammetric and remote sensing purposes.

  7. Calibration and Deployment of a Fiber-Optic Sensing System for Monitoring Debris Flows

    PubMed Central

    Huang, Ching-Jer; Chu, Chung-Ray; Tien, Tsung-Mo; Yin, Hsiao-Yuen; Chen, Ping-Sen

    2012-01-01

    This work presents a novel fiber-optic sensing system, capable of monitoring debris flows or other natural hazards that produce ground vibrations. The proposed sensing system comprises a demodulator (BraggSCOPE, FS5500), which includes a broadband light source and a data logger, a four-port coupler and four Fiber Bragg Grating (FBG) accelerometers. Based on field tests, the performance of the proposed fiber-optic sensing system is compared with that of a conventional sensing system that includes a geophone or a microphone. Following confirmation of the reliability of the proposed sensing system, the fiber-optic sensing systems are deployed along the Ai-Yu-Zi and Chu-Shui Creeks in Nautou County of central Taiwan for monitoring debris flows. Sensitivity test of the deployed fiber-optic sensing system along the creek banks is also performed. Analysis results of the seismic data recorded by the systems reveal in detail the frequency characteristics of the artificially generated ground vibrations. Results of this study demonstrate that the proposed fiber-optic sensing system is highly promising for use in monitoring natural disasters that generate ground vibrations. PMID:22778616

  8. Tethered float liquid level sensor

    DOEpatents

    Daily, III, William Dean

    2016-09-06

    An apparatus for sensing the level of a liquid includes a float, a tether attached to the float, a pulley attached to the tether, a rotation sensor connected to the pulley that senses vertical movement of said float and senses the level of the liquid.

  9. Effect of Pseudomonas sp. HF-1 inoculum on construction of a bioaugmented system for tobacco wastewater treatment: analysis from quorum sensing.

    PubMed

    Wang, Mei-Zhen; He, Hong-Zhen; Zheng, Xin; Feng, Hua-Jun; Lv, Zhen-Mei; Shen, Dong-Sheng

    2014-01-01

    To better construct a bioaugmented system for tobacco wastewater treatment, activated sludge was inoculated with different concentrations of the nicotine-degrading bacterium Pseudomonas sp. HF-1. The results showed that inoculum concentrations of 0.55 ± 0.01 and 1.10 ± 0.03 mg/g (dry weight of strain HF-1/dry weight of activated sludge) were best to ensure strain HF-1 survival and successful bioaugmentation. The release pattern of autoinducer (AI) for quorum sensing in the bioaugmented system was also investigated. During the period of HF-1 inoculation, compared with failed bioaugmented systems, AI-2 was significantly increased in the successful systems, suggesting that AI-2-mediated bacterial communication played an important role in the colonization of HF-1. When inoculation of strain HF-1 was stopped, the amount of AI-2 decreased and leveled out in all systems. Notably, there was a greater than threefold increase of short-chain AHLs in failed bioaugmented systems, but no increase in successful ones, implying that the fluctuation of short-chain AHLs could be an indicator of the failure of bioaugmentation. Thus, AI-2-mediated quorum sensing could be implemented to facilitate HF-1 colonization.

  10. Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism

    PubMed Central

    Stanley, Sarah A.; Kelly, Leah; Latcha, Kaamashri N.; Schmidt, Sarah F.; Yu, Xiaofei; Nectow, Alexander R.; Sauer, Jeremy; Dyke, Jonathan P.; Dordick, Jonathan S.; Friedman, Jeffrey M.

    2016-01-01

    Targeted, temporally regulated neural modulation is invaluable in determining the physiological roles of specific neural populations or circuits. Here we describe a system for non-invasive, temporal activation or inhibition of neuronal activity in vivo and its use to study central nervous system control of glucose homeostasis and feeding in mice. We are able to induce neuronal activation remotely using radio waves or magnetic fields via Cre-dependent expression of a GFP-tagged ferritin fusion protein tethered to the cation-conducting transient receptor potential vanilloid 1 (TRPV1) by a camelid anti-GFP antibody (anti-GFP–TRPV1)1. Neuronal inhibition via the same stimuli is achieved by mutating the TRPV1 pore, rendering the channel chloride-permeable. These constructs were targeted to glucose-sensing neurons in the ventromedial hypothalamus in glucokinase–Cre mice, which express Cre in glucose-sensing neurons2. Acute activation of glucose-sensing neurons in this region increases plasma glucose and glucagon, lowers insulin levels and stimulates feeding, while inhibition reduces blood glucose, raises insulin levels and suppresses feeding. These results suggest that pancreatic hormones function as an effector mechanism of central nervous system circuits controlling blood glucose and behaviour. The method we employ obviates the need for permanent implants and could potentially be applied to study other neural processes or used to regulate other, even dispersed, cell types. PMID:27007848

  11. International Commercial Remote Sensing Practices and Policies: A Comparative Analysis

    NASA Astrophysics Data System (ADS)

    Stryker, Timothy

    In recent years, there has been much discussion about U.S. commercial remoteUnder the Act, the Secretary of Commerce sensing policies and how effectively theylicenses the operations of private U.S. address U.S. national security, foreignremote sensing satellite systems, in policy, commercial, and public interests.consultation with the Secretaries of Defense, This paper will provide an overview of U.S.State, and Interior. PDD-23 provided further commercial remote sensing laws,details concerning the operation of advanced regulations, and policies, and describe recentsystems, as well as criteria for the export of NOAA initiatives. It will also addressturnkey systems and/or components. In July related foreign practices, and the overall2000, pursuant to the authority delegated to legal context for trade and investment in thisit by the Secretary of Commerce, NOAA critical industry.iss ued new regulations for the industry. Licensing and Regulationsatellite systems. NOAA's program is The 1992 Land Remote Sensing Policy Act ("the Act"), and the 1994 policy on Foreign Access to Remote Sensing Space Capabilities (known as Presidential Decision Directive-23, or PDD-23) put into place an ambitious legal and policy framework for the U.S. Government's licensing of privately-owned, high-resolution satellite systems. Previously, capabilities afforded national security and observes the international obligations of the United States; maintain positive control of spacecraft operations; maintain a tasking record in conjunction with other record-keeping requirements; provide U.S. Government access to and use of data when required for national security or foreign policy purposes; provide for U.S. Government review of all significant foreign agreements; obtain U.S. Government approval for any encryption devices used; make available unenhanced data to a "sensed state" as soon as such data are available and on reasonable cost terms and conditions; make available unenhanced data as requested by the U.S. Government Archive; and, obtain a priori U.S. Government approval of all plans and procedures to deal with safe disposition of the satellite. Further information on NOAA's regulations and NOAA's licensing program is available at www.licensing.noaa.gov. Monitoring and Enforcement NOAA's enforcement mission is focused on the legislative mandate which states that the Secretary of Commerce has a continuing obligation to ensure that licensed imaging systems are operated lawfully to preserve the national security and foreign policies of the United States. NOAA has constructed an end-to-end monitoring and compliance program to review the activities of licensed companies. This program includes a pre- launch review, an operational baseline audit, and an annual comprehensive national security audit. If at any time there is suspicion or concern that a system is being operated unlawfully, a no-notice inspection may be initiated. setbacks, three U.S. companies are now operational, with more firms expected to become so in the future. While NOAA does not disclose specific systems capabilities for proprietary reasons, its current licensing resolution thresholds for general commercial availability are as follows: 0.5 meter Ground Sample Distance (GSD) for panchromatic systems, 2 meter GSD for multi-spectral systems, 3 meter Impulse Response (IPR) for Synthetic Aperture Radar systems, and 20 meter GSD for hyperspectral systems (with certain 8-meter hyperspectral derived products also licensed for commercial distribution). These thresholds are subject to change based upon foreign availability and other considerations. It should also be noted that license applications are reviewed and granted on a case-by-case basis, pursuant to each system's technology and concept of operations. In 2001, NOAA, along with the Department of Commerce's International Trade Administration, commissioned a study by the RAND Corporation to assess the risks faced by the U.S. commercial remote sensing satellite industry. In commissioning this study, NOAA's goal was to better understand the role that U.S. Government policies and regulations have in shaping the prospects for emerging commercial remote sensing satellite firms. The study assessed the risks against broader trends in the larger U.S. remote sensing industry and geospatial technology and effective policy implementation. The Department of Commerce is working with NOAA licensees to identify foreign actions which could restrict market access by U.S. firms, and seeking to provide a "level playing field" for U.S. service providers. The Department of Commerce has dedicated new resources to its licensing activities. In Fiscal Year 2002, the Department obtained 1.2 million in funding to support the NOAA program, through staff, equipment, technical support, constituent outreach, and market and policy studies. To better understand the market and make more well-informed licensing decisions, NOAA is participating in a broad-based market study effort under the direction of the American Society for Photogrammetry and Remote Sensing (ASPRS) and NASA's Commercial Remote Sensing Program. This study is providing long-term analysis of the commercial remote sensing industry. It is being supported by interviews with industry and government experts, a web-based survey, and a thorough review and analysis of related literature. The project should more clearly determine future remote sensing needs and requirements, and maximize the industry's baselines, standards, and socio-economic potential. NOAA, through its participation in this study, has gained important new insights into the status and future trends of this industry. The study's initial findings estimate 2001 industry revenue at 2 billion, growing at 13% per year, to an approximate level of 6 billion in 2010 (in constant, calendar year 2000 dollars). Currently, across all sectors, the most active market segments are in nati onal /glo bal security, mapping/geography, civil government, and have provided for appropriate measures for monitoring and compliance. This approach provides a valuable framework for companies, investors, customers, and foreign partners. The clearly-defined ground rules are designed to facilitate full private sector competition, innovation, and domestic and international market development. International market development remains a key issue for the U.S. Government and for U.S. industry in general. NOAA has learned of some interest by foreign governments in promulgating new laws and regulations to address this growing industry. However, to date, most governments have yet to publicize new commercial remote sensing laws or regulations. In some instances, data policies for commercial remote sensing have been developed, but only in the context of government-owned and operated systems, or private systems in which a government is the controlling shareholder. Other than some initial consultations and limited agreements between supplier nations, there has to date been little overall international coordination of commercial remote sensing policies and practices. The result has been an uncertain and non- uniform international business environment, which can cause difficulties for all commercial remote sensing operators. Related international market distortions inhibit the maturation of the industry and the normalization of business practices. This situation may make it more difficult for key stakeholders to make decisions on investments, purchases, regulatory affairs, and international partnerships. To put this growing industry on a more level footing, there should be further coordination

  12. First clinical evaluation of a new percutaneous optical fiber glucose sensor for continuous glucose monitoring in diabetes.

    PubMed

    Müller, Achim Josef; Knuth, Monika; Nikolaus, Katharina Sibylle; Krivánek, Roland; Küster, Frank; Hasslacher, Christoph

    2013-01-01

    This article describes a new fiber-coupled, percutaneous fluorescent continuous glucose monitoring (CGM) system that has shown 14 days of functionality in a human clinical trial. The new optical CGM system (FiberSense) consists of a transdermal polymer optical fiber containing a biochemical glucose sensor and a small fluorescence photometer optically coupled to the fiber. The glucose-sensitive optical fiber was implanted in abdominal and upper-arm subcutaneous tissue of six diabetes patients and remained there for up to 14 days. The performance of the system was monitored during six visits to the study center during the trial. Blood glucose changes were induced by oral carbohydrate intake and insulin injections, and capillary blood glucose samples were obtained from the finger tip. The data were analyzed using linear regression and the consensus error grid analysis. The FiberSense worn at the upper arm exhibited excellent results during 14 wearing days, with an overall mean absolute relative difference (MARD) of 8.3% and 94.6% of the data in zone A of the consensus error grid. At the abdominal application site, FiberSense resulted in a MARD of 11.4 %, with 93.8% of the data in zone A. The FiberSense CGM system provided consistent, reliable measurements of subcutaneous glucose levels in human clinical trial patients with diabetes for up to 14 days. © 2013 Diabetes Technology Society.

  13. Use of remote sensing and a geographical information system in a national helminth control programme in Chad.

    PubMed Central

    Brooker, Simon; Beasley, Michael; Ndinaromtan, Montanan; Madjiouroum, Ester Mobele; Baboguel, Marie; Djenguinabe, Elie; Hay, Simon I.; Bundy, Don A. P.

    2002-01-01

    OBJECTIVE: To design and implement a rapid and valid epidemiological assessment of helminths among schoolchildren in Chad using ecological zones defined by remote sensing satellite sensor data and to investigate the environmental limits of helminth distribution. METHODS: Remote sensing proxy environmental data were used to define seven ecological zones in Chad. These were combined with population data in a geographical information system (GIS) in order to define a sampling protocol. On this basis, 20 schools were surveyed. Multilevel analysis, by means of generalized estimating equations to account for clustering at the school level, was used to investigate the relationship between infection patterns and key environmental variables. FINDINGS: In a sample of 1023 schoolchildren, 22.5% were infected with Schistosoma haematobium and 32.7% with hookworm. None were infected with Ascaris lumbricoides or Trichuris trichiura. The prevalence of S. haematobium and hookworm showed marked geographical heterogeneity and the observed patterns showed a close association with the defined ecological zones and significant relationships with environmental variables. These results contribute towards defining the thermal limits of geohelminth species. Predictions of infection prevalence were made for each school surveyed with the aid of models previously developed for Cameroon. These models correctly predicted that A. lumbricoides and T. trichiura would not occur in Chad but the predictions for S. haematobium were less reliable at the school level. CONCLUSION: GIS and remote sensing can play an important part in the rapid planning of helminth control programmes where little information on disease burden is available. Remote sensing prediction models can indicate patterns of geohelminth infection but can only identify potential areas of high risk for S. haematobium. PMID:12471398

  14. Effects of natural and chemically synthesized furanones on quorum sensing in Chromobacterium violaceum

    PubMed Central

    Martinelli, Daniel; Grossmann, Gilles; Séquin, Urs; Brandl, Helmut; Bachofen, Reinhard

    2004-01-01

    Background Cell to cell signaling systems in Gram-negative bacteria rely on small diffusible molecules such as the N-acylhomoserine lactones (AHL). These compounds are involved in the production of antibiotics, exoenzymes, virulence factors and biofilm formation. They belong to the class of furanone derivatives which are frequently found in nature as pheromones, flavor compounds or secondary metabolites. To obtain more information on the relation between molecular structure and quorum sensing, we tested a variety of natural and chemically synthesized furanones for their ability to interfere with the quorum sensing mechanism using a quantitative bioassay with Chromobacterium violaceum CV026 for antagonistic and agonistic action. We were looking at the following questions: 1. Do these compounds affect growth? 2) Do these compounds activate the quorum sensing system of C. violaceum CV026? 3) Do these compounds inhibit violacein formation induced by the addition of the natural inducer N-hexanoylhomoserine lactone (HHL)? 4) Do these compounds enhance violacein formation in presence of HHL? Results The naturally produced N-acylhomoserine lactones showed a strong non-linear concentration dependent influence on violacein production in C. violaceum with a maximum at 3.7*10-8 M with HHL. Apart from the N-acylhomoserine lactones only one furanone (emoxyfurane) was found to simulate N-acylhomoserine lactone activity and induce violacein formation. The most effective substances acting negatively both on growth and quorum sensing were analogs and intermediates in synthesis of the butenolides from Streptomyces antibioticus. Conclusion As the regulation of many bacterial processes is governed by quorum sensing systems, the finding of natural and synthetic furanones acting as agonists or antagonists suggests an interesting tool to control and handle detrimental AHL induced effects. Some effects are due to general toxicity; others are explained by a competitive interaction for LuxR proteins. For further experiments it is important to be aware of the fact that quorum sensing active compounds have non-linear effects. Inducers can act as inhibitors and inhibitors might be able to activate or enhance the quorum sensing system depending on chemical structure and concentration levels. PMID:15233843

  15. An integrated dexterous robotic testbed for space applications

    NASA Technical Reports Server (NTRS)

    Li, Larry C.; Nguyen, Hai; Sauer, Edward

    1992-01-01

    An integrated dexterous robotic system was developed as a testbed to evaluate various robotics technologies for advanced space applications. The system configuration consisted of a Utah/MIT Dexterous Hand, a PUMA 562 arm, a stereo vision system, and a multiprocessing computer control system. In addition to these major subsystems, a proximity sensing system was integrated with the Utah/MIT Hand to provide capability for non-contact sensing of a nearby object. A high-speed fiber-optic link was used to transmit digitized proximity sensor signals back to the multiprocessing control system. The hardware system was designed to satisfy the requirements for both teleoperated and autonomous operations. The software system was designed to exploit parallel processing capability, pursue functional modularity, incorporate artificial intelligence for robot control, allow high-level symbolic robot commands, maximize reusable code, minimize compilation requirements, and provide an interactive application development and debugging environment for the end users. An overview is presented of the system hardware and software configurations, and implementation is discussed of subsystem functions.

  16. Flying under the radar: The non-canonical biochemistry and molecular biology of petrobactin from Bacillus anthracis.

    PubMed

    Hagan, A K; Carlson, P E; Hanna, P C

    2016-10-01

    The dramatic, rapid growth of Bacillus anthracis that occurs during systemic anthrax implies a crucial requirement for the efficient acquisition of iron. While recent advances in our understanding of B. anthracis iron acquisition systems indicate the use of strategies similar to other pathogens, this review focuses on unique features of the major siderophore system, petrobactin. Ways that petrobactin differs from other siderophores include: A. unique ferric iron binding moieties that allow petrobactin to evade host immune proteins; B. a biosynthetic operon that encodes enzymes from both major siderophore biosynthesis classes; C. redundancy in membrane transport systems for acquisition of Fe-petrobactin holo-complexes; and, D. regulation that appears to be controlled predominately by sensing the host-like environmental signals of temperature, CO 2 levels and oxidative stress, as opposed to canonical sensing of intracellular iron levels. We argue that these differences contribute in meaningful ways to B. anthracis pathogenesis. This review will also outline current major gaps in our understanding of the petrobactin iron acquisition system, some projected means for exploiting current knowledge, and potential future research directions. © 2016 John Wiley & Sons Ltd.

  17. The g-LIMIT Microgravity Vibration Isolation System for the Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.; Ryan, Stephen G. (Technical Monitor)

    2001-01-01

    For many microgravity science experiments in the International Space Station, the ambient acceleration environment will be exceed desirable levels. To provide a more quiescent acceleration environment to the microgravity payloads, a vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being designed. g-LIMIT is a sub-rack level isolation system for the Microgravity Science Glovebox that can be tailored to a variety of applications. Scheduled for launch on the UF-1 mission, the initial implementation of g-LIMIT will be a Characterization Test in the Microgravity Science Glovebox. g-LIMIT will be available to glovebox investigators immediately after characterization testing. Standard MSG structural and umbilical interfaces will be used so that the interface requirements are minimized. g-LIMIT consists of three integrated isolator modules, each of which is comprised of a dual axis actuator, two axes of acceleration sensing, two axes of position sensing, control electronics, and data transmission capabilities in a small-volume package. In addition, this system provides the unique capability for measuring quasi-steady acceleration of the experiment independent of accelerometers as a by-product of the control system and will have the capability of generating user-specified pristine accelerations to enhance experiment operations.

  18. The Gemini Planet Imager Calibration Wavefront Sensor Instrument

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Burruss, Rick S.; Bartos, Randall D.; Trinh, Thang Q.; Pueyo, Laurent A.; Fregoso, Santos F.; Angione, John R.; Shelton, J. Chris

    2010-01-01

    The Gemini Planet Imager is an extreme adaptive optics system that will employ an apodized-pupil coronagraph to make direct detections of faint companions of nearby stars to a contrast level of the 10(exp -7) within a few lambda/D of the parent star. Such high contrasts from the ground require exquisite wavefront sensing and control both for the AO system as well as for the coronagraph. Un-sensed non-common path phase and amplitude errors after the wavefront sensor dichroic but before the coronagraph would lead to speckles which would ultimately limit the contrast. The calibration wavefront system for GPI will measure the complex wavefront at the system pupil before the apodizer and provide slow phase corrections to the AO system to mitigate errors that would cause a loss in contrast. The calibration wavefront sensor instrument for GPI has been built. We will describe the instrument and its performance.

  19. Humidity compensation of bad-smell sensing system using a detector tube and a built-in camera

    NASA Astrophysics Data System (ADS)

    Hirano, Hiroyuki; Nakamoto, Takamichi

    2011-09-01

    We developed a low-cost sensing system robust against humidity change for detecting and estimating concentration of bad smell, such as hydrogen sulfide and ammonia. In the previous study, we developed automated measurement system for a gas detector tube using a built-in camera instead of the conventional manual inspection of the gas detector tube. Concentration detectable by the developed system ranges from a few tens of ppb to a few tens of ppm. However, we previously found that the estimated concentration depends not only on actual concentration, but on humidity. Here, we established the method to correct the influence of humidity by creating regression function with its inputs of discoloration rate and humidity. We studied 2 methods (Backpropagation, Radial basis function network) to get regression function and evaluated them. Consequently, the system successfully estimated the concentration on a practical level even when humidity changes.

  20. Ultrasonic sensing of GMAW: Laser/EMAT defect detection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, N.M.; Johnson, J.A.; Larsen, E.D.

    1992-08-01

    In-process ultrasonic sensing of welding allows detection of weld defects in real time. A noncontacting ultrasonic system is being developed to operate in a production environment. The principal components are a pulsed laser for ultrasound generation and an electromagnetic acoustic transducer (EMAT) for ultrasound reception. A PC-based data acquisition system determines the quality of the weld on a pass-by-pass basis. The laser/EMAT system interrogates the area in the weld volume where defects are most likely to occur. This area of interest is identified by computer calculations on a pass-by-pass basis using weld planning information provided by the off-line programmer. Themore » absence of a signal above the threshold level in the computer-calculated time interval indicates a disruption of the sound path by a defect. The ultrasonic sensor system then provides an input signal to the weld controller about the defect condition. 8 refs.« less

  1. Leading in Times of Change: Principals' Perspectives of Their Role in a New Pay-for-Performance System

    ERIC Educational Resources Information Center

    Ortiz-Torres, Amanda

    2012-01-01

    The purpose of this qualitative study was to explore principals' perspectives on how they make sense of their leadership roles in a new pay-for-performance system. The study describes the perceptions of six principals, two each from elementary, middle, and high school levels, regarding leadership in a recently changed system. Principals were…

  2. Earth view: A business guide to orbital remote sensing

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1990-01-01

    The following subject areas are covered: Earth view - a guide to orbital remote sensing; current orbital remote sensing systems (LANDSAT, SPOT image, MOS-1, Soviet remote sensing systems); remote sensing satellite; and remote sensing organizations.

  3. Llamas: Large-area microphone arrays and sensing systems

    NASA Astrophysics Data System (ADS)

    Sanz-Robinson, Josue

    Large-area electronics (LAE) provides a platform to build sensing systems, based on distributing large numbers of densely spaced sensors over a physically-expansive space. Due to their flexible, "wallpaper-like" form factor, these systems can be seamlessly deployed in everyday spaces. They go beyond just supplying sensor readings, but rather they aim to transform the wealth of data from these sensors into actionable inferences about our physical environment. This requires vertically integrated systems that span the entirety of the signal processing chain, including transducers and devices, circuits, and signal processing algorithms. To this end we develop hybrid LAE / CMOS systems, which exploit the complementary strengths of LAE, enabling spatially distributed sensors, and CMOS ICs, providing computational capacity for signal processing. To explore the development of hybrid sensing systems, based on vertical integration across the signal processing chain, we focus on two main drivers: (1) thin-film diodes, and (2) microphone arrays for blind source separation: 1) Thin-film diodes are a key building block for many applications, such as RFID tags or power transfer over non-contact inductive links, which require rectifiers for AC-to-DC conversion. We developed hybrid amorphous / nanocrystalline silicon diodes, which are fabricated at low temperatures (<200 °C) to be compatible with processing on plastic, and have high current densities (5 A/cm2 at 1 V) and high frequency operation (cutoff frequency of 110 MHz). 2) We designed a system for separating the voices of multiple simultaneous speakers, which can ultimately be fed to a voice-command recognition engine for controlling electronic systems. On a device level, we developed flexible PVDF microphones, which were used to create a large-area microphone array. On a circuit level we developed localized a-Si TFT amplifiers, and a custom CMOS IC, for system control, sensor readout and digitization. On a signal processing level we developed an algorithm for blind source separation in a real, reverberant room, based on beamforming and binary masking. It requires no knowledge about the location of the speakers or microphones. Instead, it uses cluster analysis techniques to determine the time delays for beamforming; thus, adapting to the unique acoustic environment of the room.

  4. Chemical and Physical Sensing in the Petroleum Industry

    NASA Astrophysics Data System (ADS)

    Disko, Mark

    2008-03-01

    World-scale oil, gas and petrochemical production relies on a myriad of advanced technologies for discovering, producing, transporting, processing and distributing hydrocarbons. Sensing systems provide rapid and targeted information that can be used for expanding resources, improving product quality, and assuring environmentally sound operations. For example, equipment such as reactors and pipelines can be operated with high efficiency and safety with improved chemical and physical sensors for corrosion and hydrocarbon detection. At the interface between chemical engineering and multiphase flow physics, ``multi-scale'' phenomena such as catalysis and heat flow benefit from new approaches to sensing and data modeling. We are combining chemically selective micro-cantilevers, fiber optic sensing, and acoustic monitoring with statistical data fusion approaches to maximize control information. Miniaturized analyzers represent a special opportunity, including the nanotech-based quantum cascade laser systems for mid-infrared spectroscopy. Specific examples for use of these new micro-systems include rapid monocyclic aromatic molecule identification and measurement under ambient conditions at weight ppb levels. We see promise from emerging materials and devices based on nanotechnology, which can one day be available at modest cost for impact in existing operations. Controlled surface energies and emerging chemical probes hold the promise for reduction in greenhouse gas emissions for current fuels and future transportation and energy technologies.

  5. Shape and Stress Sensing of Multilayered Composite and Sandwich Structures Using an Inverse Finite Element Method

    NASA Technical Reports Server (NTRS)

    Cerracchio, Priscilla; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander

    2013-01-01

    The marked increase in the use of composite and sandwich material systems in aerospace, civil, and marine structures leads to the need for integrated Structural Health Management systems. A key capability to enable such systems is the real-time reconstruction of structural deformations, stresses, and failure criteria that are inferred from in-situ, discrete-location strain measurements. This technology is commonly referred to as shape- and stress-sensing. Presented herein is a computationally efficient shape- and stress-sensing methodology that is ideally suited for applications to laminated composite and sandwich structures. The new approach employs the inverse Finite Element Method (iFEM) as a general framework and the Refined Zigzag Theory (RZT) as the underlying plate theory. A three-node inverse plate finite element is formulated. The element formulation enables robust and efficient modeling of plate structures instrumented with strain sensors that have arbitrary positions. The methodology leads to a set of linear algebraic equations that are solved efficiently for the unknown nodal displacements. These displacements are then used at the finite element level to compute full-field strains, stresses, and failure criteria that are in turn used to assess structural integrity. Numerical results for multilayered, highly heterogeneous laminates demonstrate the unique capability of this new formulation for shape- and stress-sensing.

  6. Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2008-09

    USGS Publications Warehouse

    ,

    2009-01-01

    Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is useful for analyzing a wide variety of spatial data. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This fact sheet presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup during 2008 and 2009. After a summary of GIS Workgroup capabilities, brief descriptions of activities by project at the local and national levels are presented. Projects are grouped by the fiscal year (October-September 2008 or 2009) the project ends and include overviews, project images, and Internet links to additional project information and related publications or articles.

  7. Applications of Remote Sensing to Alien Invasive Plant Studies

    PubMed Central

    Huang, Cho-ying; Asner, Gregory P.

    2009-01-01

    Biological invasions can affect ecosystems across a wide spectrum of bioclimatic conditions. Therefore, it is often important to systematically monitor the spread of species over a broad region. Remote sensing has been an important tool for large-scale ecological studies in the past three decades, but it was not commonly used to study alien invasive plants until the mid 1990s. We synthesize previous research efforts on remote sensing of invasive plants from spatial, temporal and spectral perspectives. We also highlight a recently developed state-of-the-art image fusion technique that integrates passive and active energies concurrently collected by an imaging spectrometer and a scanning-waveform light detection and ranging (LiDAR) system, respectively. This approach provides a means to detect the structure and functional properties of invasive plants of different canopy levels. Finally, we summarize regional studies of biological invasions using remote sensing, discuss the limitations of remote sensing approaches, and highlight current research needs and future directions. PMID:22408558

  8. Investigation of a Photoelectrochemical Passivated ZnO-Based Glucose Biosensor

    PubMed Central

    Lee, Ching-Ting; Chiu, Ying-Shuo; Ho, Shu-Ching; Lee, Yao-Jung

    2011-01-01

    A vapor cooling condensation system was used to deposit high quality intrinsic ZnO thin films and intrinsic ZnO nanorods as the sensing membrane of extended-gate field-effect-transistor (EGFET) glucose biosensors. The sensing sensitivity of the resulting glucose biosensors operated in the linear range was 13.4 μA mM−1 cm−2. To improve the sensing sensitivity of the ZnO-based glucose biosensors, the photoelectrochemical method was utilized to passivate the sidewall surfaces of the ZnO nanorods. The sensing sensitivity of the ZnO-based glucose biosensors with passivated ZnO nanorods was significantly improved to 20.33 μA mM−1 cm−2 under the same measurement conditions. The experimental results verified that the sensing sensitivity improvement was the result of the mitigation of the Fermi level pinning effect caused by the dangling bonds and the surface states induced on the sidewall surface of the ZnO nanorods. PMID:22163867

  9. Hydrological Relevant Parameters from Remote Sensing - Spatial Modelling Input and Validation Basis

    NASA Astrophysics Data System (ADS)

    Hochschild, V.

    2012-12-01

    This keynote paper will demonstrate how multisensoral remote sensing data is used as spatial input for mesoscale hydrological modeling as well as for sophisticated validation purposes. The tasks of Water Resources Management are subject as well as the role of remote sensing in regional catchment modeling. Parameters derived from remote sensing discussed in this presentation will be land cover, topographical information from digital elevation models, biophysical vegetation parameters, surface soil moisture, evapotranspiration estimations, lake level measurements, determination of snow covered area, lake ice cycles, soil erosion type, mass wasting monitoring, sealed area, flash flood estimation. The actual possibilities of recent satellite and airborne systems are discussed, as well as the data integration into GIS and hydrological modeling, scaling issues and quality assessment will be mentioned. The presentation will provide an overview of own research examples from Germany, Tibet and Africa (Ethiopia, South Africa) as well as other international research activities. Finally the paper gives an outlook on upcoming sensors and concludes the possibilities of remote sensing in hydrology.

  10. Microwave power transmission system wherein level of transmitted power is controlled by reflections from receiver

    NASA Technical Reports Server (NTRS)

    Robinson, W. J., Jr. (Inventor)

    1974-01-01

    A microwave, wireless, power transmission system is described in which the transmitted power level is adjusted to correspond with power required at a remote receiving station. Deviations in power load produce an antenna impedance mismatch causing variations in energy reflected by the power receiving antenna employed by the receiving station. The variations in reflected energy are sensed by a receiving antenna at the transmitting station and used to control the output power of a power transmitter.

  11. Bridging the Scales from Field to Region with Practical Tools to Couple Time- and Space-Synchronized Data from Flux Towers and Networks with Proximal and Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Avenson, T.; Burkart, A.; Gamon, J. A.; Guan, K.; Julitta, T.; Pastorello, G.; Sakowska, K.

    2017-12-01

    Many hundreds of flux towers are presently operational as standalone projects and as parts of regional networks. However, the vast majority of these towers do not allow straightforward coupling with remote sensing (drone, aircraft, satellite, etc.) data, and even fewer have optical sensors for validation of remote sensing products, and upscaling from field to regional levels. In 2016-2017, new tools to collect, process, and share time-synchronized flux data from multiple towers were developed and deployed globally. Originally designed to automate site and data management, and to streamline flux data analysis, these tools allow relatively easy matching of tower data with remote sensing data: GPS-driven PTP time protocol synchronizes instrumentation within the station, different stations with each other, and all of these to remote sensing data to precisely align remote sensing and flux data in time Footprint size and coordinates computed and stored with flux data help correctly align tower flux footprints and drone, aircraft or satellite motion to precisely align optical and flux data in space Full snapshot of the remote sensing pixel can then be constructed, including leaf-level, ground optical sensor, and flux tower measurements from the same footprint area, closely coupled with the remote sensing measurements to help interpret remote sensing data, validate models, and improve upscaling Additionally, current flux towers can be augmented with advanced ground optical sensors and can use standard routines to deliver continuous products (e.g. SIF, PRI, NDVI, etc.) based on automated field spectrometers (e.g., FloX and RoX, etc.) and other optical systems. Several dozens of new towers already operational globally can be readily used for the proposed workflow. Over 500 active traditional flux towers can be updated to synchronize their data with remote sensing measurements. This presentation will show how the new tools are used by major networks, and describe how this approach can be utilized for matching remote sensing and tower data to aid in ground truthing, improve scientific interactions, and promote joint grant writing and other forms of collaboration between the flux and remote sensing communities.

  12. Zebra Mussel Chemical Control Guide, Version 2.0

    DTIC Science & Technology

    2015-07-01

    delivery systems, including potable water treatment, agriculture, industry, power generation, and fire protection. Since this invasive organism’s...delivery systems, including potable water treatment, agriculture, industry, power generation, and fire protection (Mackie and Claudi 2010). Zebra mussels...generators, pipes, valves, sensing equipment (level, flow, and pressure) and fire protection (Mackie and Claudi 2010; Prescott et al. 2014). Other USACE

  13. Lighting Control Systems

    DTIC Science & Technology

    2004-02-26

    Shorter payback periods After 19 Cost Benefit of Powerlink Rule of Thumb for Powerlink: Powerlink becomes more cost effective beyond 16 controlled...web enabled control (and management software) Increase in level of integration between building systems Increase in new features, functions, benefits ...focus on reducing run-time via Scheduling, Sensing, Switching Growing focus on payback Direct energy cost (with demand) Additional maintenance benefits

  14. Rise to the Challenge: A Business Guide to Creating a Workforce Investment System That Makes Sense.

    ERIC Educational Resources Information Center

    2000

    This document explains how employers can participate in creating a new workforce investment system that is market driven, comprehensive, portable, accountable, customer focused, responsive, flexible, and customized. The guide details immediate and future steps employers can take at the state and local levels to influence the process of creating a…

  15. Word Sense Disambiguation in Bangla Language Using Supervised Methodology with Necessary Modifications

    NASA Astrophysics Data System (ADS)

    Pal, Alok Ranjan; Saha, Diganta; Dash, Niladri Sekhar; Pal, Antara

    2018-05-01

    An attempt is made in this paper to report how a supervised methodology has been adopted for the task of word sense disambiguation in Bangla with necessary modifications. At the initial stage, the Naïve Bayes probabilistic model that has been adopted as a baseline method for sense classification, yields moderate result with 81% accuracy when applied on a database of 19 (nineteen) most frequently used Bangla ambiguous words. On experimental basis, the baseline method is modified with two extensions: (a) inclusion of lemmatization process into of the system, and (b) bootstrapping of the operational process. As a result, the level of accuracy of the method is slightly improved up to 84% accuracy, which is a positive signal for the whole process of disambiguation as it opens scope for further modification of the existing method for better result. The data sets that have been used for this experiment include the Bangla POS tagged corpus obtained from the Indian Languages Corpora Initiative, and the Bangla WordNet, an online sense inventory developed at the Indian Statistical Institute, Kolkata. The paper also reports about the challenges and pitfalls of the work that have been closely observed and addressed to achieve expected level of accuracy.

  16. Single-Event Effect Response of a Commercial ReRAM

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Label, Kenneth A.; Kim, Hak; Phan, Anthony; Wilcox, Edward; Buchner, Stephen; Khachatrian, Ani; Roche, Nicolas

    2014-01-01

    We show heavy ion test results of a commercial production-level ReRAM. The memory array is robust to bit upsets. However the ReRAM system is vulnerable to SEFIs due to upsets in peripheral circuits, including the sense amplifier.

  17. Float level switch for a nuclear power plant containment vessel

    DOEpatents

    Powell, J.G.

    1993-11-16

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures.

  18. Float level switch for a nuclear power plant containment vessel

    DOEpatents

    Powell, James G.

    1993-01-01

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

  19. Precision sensing by two opposing gradient sensors: how does Escherichia coli find its preferred pH level?

    PubMed

    Hu, Bo; Tu, Yuhai

    2013-07-02

    It is essential for bacteria to find optimal conditions for their growth and survival. The optimal levels of certain environmental factors (such as pH and temperature) often correspond to some intermediate points of the respective gradients. This requires the ability of bacteria to navigate from both directions toward the optimum location and is distinct from the conventional unidirectional chemotactic strategy. Remarkably, Escherichia coli cells can perform such a precision sensing task in pH taxis by using the same chemotaxis machinery, but with opposite pH responses from two different chemoreceptors (Tar and Tsr). To understand bacterial pH sensing, we developed an Ising-type model for a mixed cluster of opposing receptors based on the push-pull mechanism. Our model can quantitatively explain experimental observations in pH taxis for various mutants and wild-type cells. We show how the preferred pH level depends on the relative abundance of the competing sensors and how the sensory activity regulates the behavioral response. Our model allows us to make quantitative predictions on signal integration of pH and chemoattractant stimuli. Our study reveals two general conditions and a robust push-pull scheme for precision sensing, which should be applicable in other adaptive sensory systems with opposing gradient sensors. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. A Novel Method for the In-Depth Multimodal Analysis of Student Learning Trajectories in Intelligent Tutoring Systems

    ERIC Educational Resources Information Center

    Liu, Ran; Stamper, John; Davenport, Jodi

    2018-01-01

    Temporal analyses are critical to understanding learning processes, yet understudied in education research. Data from different sources are often collected at different grain sizes, which are difficult to integrate. Making sense of data at many levels of analysis, including the most detailed levels, is highly time-consuming. In this paper, we…

  1. Fault Detection and Isolation for Hydraulic Control

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Pressure sensors and isolation valves act to shut down defective servochannel. Redundant hydraulic system indirectly senses failure in any of its electrical control channels and mechanically isolates hydraulic channel controlled by faulty electrical channel so flat it cannot participate in operating system. With failure-detection and isolation technique, system can sustains two failed channels and still functions at full performance levels. Scheme useful on aircraft or other systems with hydraulic servovalves where failure cannot be tolerated.

  2. Use of remote-sensing techniques to survey the physical habitat of large rivers

    USGS Publications Warehouse

    Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffery W.; Kennedy, Gregory W.; Smith, Stephen B.; Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffrey W.; Kennedy, Gregory W.; Smith, Stephen B.

    1997-01-01

    Remote-sensing techniques that can be used to quantitatively characterize the physical habitat in large rivers in the United States where traditional survey approaches typically used in small- and medium-sized streams and rivers would be ineffective or impossible to apply. The state-of-the-art remote-sensing technologies that we discuss here include side-scan sonar, RoxAnn, acoustic Doppler current profiler, remotely operated vehicles and camera systems, global positioning systems, and laser level survey systems. The use of these technologies will permit the collection of information needed to create computer visualizations and hard copy maps and generate quantitative databases that can be used in real-time mode in the field to characterize the physical habitat at a study location of interest and to guide the distribution of sampling effort needed to address other habitat-related study objectives. This report augments habitat sampling and characterization guidance provided by Meador et al. (1993) and is intended for use primarily by U.S. Geological Survey National Water Quality Assessment program managers and scientists who are documenting water quality in streams and rivers of the United States.

  3. Disaster Emergency Rapid Assessment Based on Remote Sensing and Background Data

    NASA Astrophysics Data System (ADS)

    Han, X.; Wu, J.

    2018-04-01

    The period from starting to the stable conditions is an important stage of disaster development. In addition to collecting and reporting information on disaster situations, remote sensing images by satellites and drones and monitoring results from disaster-stricken areas should be obtained. Fusion of multi-source background data such as population, geography and topography, and remote sensing monitoring information can be used in geographic information system analysis to quickly and objectively assess the disaster information. According to the characteristics of different hazards, the models and methods driven by the rapid assessment of mission requirements are tested and screened. Based on remote sensing images, the features of exposures quickly determine disaster-affected areas and intensity levels, and extract key disaster information about affected hospitals and schools as well as cultivated land and crops, and make decisions after emergency response with visual assessment results.

  4. Hypothalamic glucose-sensing: role of Glia-to-neuron signaling.

    PubMed

    Tonon, M C; Lanfray, D; Castel, H; Vaudry, H; Morin, F

    2013-12-01

    The hypothalamus senses hormones and nutrients in order to regulate energy balance. In particular, detection of hypothalamic glucose levels has been shown to regulate both feeding behavior and peripheral glucose homeostasis, and impairment of this regulatory system is believed to be involved in the development of obesity and diabetes. Several data clearly demonstrate that glial cells are key elements in the perception of glucose, constituting with neurons a "glucose-sensing unit". Characterization of this interplay between glia and neurons represents an exciting challenge, and will undoubtedly contribute to identify new candidates for therapeutic intervention. The purpose of this review is to summarize the current data that stress the importance of glia in central glucose-sensing. The nature of the glia-to-neuron signaling is discussed, with a special focus on the endozepine ODN, a potent anorexigenic peptide that is highly expressed in hypothalamic glia. © Georg Thieme Verlag KG Stuttgart · New York.

  5. American Society for Photogrammetry and Remote Sensing and ACSM, Fall Convention, Reno, NV, Oct. 4-9, 1987, ASPRS Technical Papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    Recent advances in remote-sensing technology and applications are examined in reviews and reports. Topics addressed include the use of Landsat TM data to assess suspended-sediment dispersion in a coastal lagoon, the use of sun incidence angle and IR reflectance levels in mapping old-growth coniferous forests, information-management systems, Large-Format-Camera soil mapping, and the economic potential of Landsat TM winter-wheat crop-condition assessment. Consideration is given to measurement of ephemeral gully erosion by airborne laser ranging, the creation of a multipurpose cadaster, high-resolution remote sensing and the news media, the role of vegetation in the global carbon cycle, PC applications in analytical photogrammetry,more » multispectral geological remote sensing of a suspected impact crater, fractional calculus in digital terrain modeling, and automated mapping using GP-based survey data.« less

  6. Mobile lidar system for monitoring of gaseous pollutants in atmosphere over industrial and urban area

    NASA Astrophysics Data System (ADS)

    Moskalenko, Irina V.; Shecheglov, Djolinard A.; Rogachev, Aleksei P.; Avdonin, Aleksandr A.; Molodtsov, Nikolai A.

    1999-01-01

    The lidar remote sensing techniques are powerful for monitoring of gaseous toxic species in atmosphere over wide areas. The paper presented describes design, development and field testing of Mobile Lidar System (MLS) based on utilization of Differential Absorption Lidar (DIAL) technique. The activity is performed by Russian Research Center 'Kurchatov Institute' and Research Institute of Pulse Technique within the project 'Mobile Remote SEnsing System Based on Tunable Laser Transmitter for Environmental Monitoring' under funding of International Scientific and Technology Center Moscow. A brief description of MLS is presented including narrowband transmitter, receiver, system steering, data acquisition subsystem and software. MLS is housed in a mobile truck and is able to provide 3D mapping of gaseous species. Sulfur dioxide and elemental mercury were chosen as basic atmospheric pollutants for field test of MLS. The problem of anthropogenic ozone detection attracts attention due to increase traffic in Moscow. The experimental sites for field testing are located in Moscow Region. Examples of field DIAL measurements will be presented. Application of remote sensing to toxic species near-real time measurements is now under consideration. The objective is comparison of pollution level in working zone with maximum permissible concentration of hazardous pollutant.

  7. Dual-Mode Gas Sensor Composed of a Silicon Nanoribbon Field Effect Transistor and a Bulk Acoustic Wave Resonator: A Case Study in Freons

    PubMed Central

    Chang, Ye; Hui, Zhipeng; Wang, Xiayu; Qu, Hemi; Pang, Wei

    2018-01-01

    In this paper, we develop a novel dual-mode gas sensor system which comprises a silicon nanoribbon field effect transistor (Si-NR FET) and a film bulk acoustic resonator (FBAR). We investigate their sensing characteristics using polar and nonpolar organic compounds, and demonstrate that polarity has a significant effect on the response of the Si-NR FET sensor, and only a minor effect on the FBAR sensor. In this dual-mode system, qualitative discrimination can be achieved by analyzing polarity with the Si-NR FET and quantitative concentration information can be obtained using a polymer-coated FBAR with a detection limit at the ppm level. The complementary performance of the sensing elements provides higher analytical efficiency. Additionally, a dual mixture of two types of freons (CFC-113 and HCFC-141b) is further analyzed with the dual-mode gas sensor. Owing to the small size and complementary metal-oxide semiconductor (CMOS)-compatibility of the system, the dual-mode gas sensor shows potential as a portable integrated sensing system for the analysis of gas mixtures in the future. PMID:29370109

  8. Dual-Mode Gas Sensor Composed of a Silicon Nanoribbon Field Effect Transistor and a Bulk Acoustic Wave Resonator: A Case Study in Freons.

    PubMed

    Chang, Ye; Hui, Zhipeng; Wang, Xiayu; Qu, Hemi; Pang, Wei; Duan, Xuexin

    2018-01-25

    In this paper, we develop a novel dual-mode gas sensor system which comprises a silicon nanoribbon field effect transistor (Si-NR FET) and a film bulk acoustic resonator (FBAR). We investigate their sensing characteristics using polar and nonpolar organic compounds, and demonstrate that polarity has a significant effect on the response of the Si-NR FET sensor, and only a minor effect on the FBAR sensor. In this dual-mode system, qualitative discrimination can be achieved by analyzing polarity with the Si-NR FET and quantitative concentration information can be obtained using a polymer-coated FBAR with a detection limit at the ppm level. The complementary performance of the sensing elements provides higher analytical efficiency. Additionally, a dual mixture of two types of freons (CFC-113 and HCFC-141b) is further analyzed with the dual-mode gas sensor. Owing to the small size and complementary metal-oxide semiconductor (CMOS)-compatibility of the system, the dual-mode gas sensor shows potential as a portable integrated sensing system for the analysis of gas mixtures in the future.

  9. Earth Remote Sensing: What is it Really? What to do with it?

    NASA Technical Reports Server (NTRS)

    Meeson, Blanche W.

    1998-01-01

    NASA!s Earth Sciences Program supports a wide range of endeavors in basic Earth system scientific research, technology development to support that research, development of materials and training for educators and students based on that research and information, and increasingly practical applications. A brief overview of the scope of this scientific research and the key features of the necessary remote sensing instrumentation will be given. I will also describe available educational materials and training courses for a wide range of grade levels. Information will be provided on how to obtain educational materials or to participate in a training course. Finally, a few examples will be given to illustrate how Earth remote sensing effects our daily life.

  10. Remote Sensing and the Kyoto Protocol: A Workshop Summary

    NASA Technical Reports Server (NTRS)

    Rosenqvist, Ake; Imhoff, Marc; Milne, Anthony; Dobson, Craig

    2000-01-01

    The Kyoto Protocol to the United Nations Framework Convention on Climate Change contains quantified, legally binding commitments to limit or reduce greenhouse gas emissions to 1990 levels and allows carbon emissions to be balanced by carbon sinks represented by vegetation. The issue of using vegetation cover as an emission offset raises a debate about the adequacy of current remote sensing systems and data archives to both assess carbon stocks/sinks at 1990 levels, and monitor the current and future global status of those stocks. These concerns and the potential ratification of the Protocol among participating countries is stimulating policy debates and underscoring a need for the exchange of information between the international legal community and the remote sensing community. On October 20-22 1999, two working groups of the International Society for Photogrammetry and Remote Sensing (ISPRS) joined with the University of Michigan (Michigan, USA) to convene discussions on how remote sensing technology could contribute to the information requirements raised by implementation of, and compliance with, the Kyoto Protocol. The meeting originated as a joint effort between the Global Monitoring Working Group and the Radar Applications Working Group in Commission VII of the ISPRS, co-sponsored by the University of Michigan. Tile meeting was attended by representatives from national government agencies and international organizations and academic institutions. Some of the key themes addressed were: (1) legal aspects of transnational remote sensing in the context of the Kyoto Protocol; (2) a review of the current and future and remote sensing technologies that could be applied to the Kyoto Protocol; (3) identification of areas where additional research is needed in order to advance and align remote sensing technology with the requirements and expectations of the Protocol; and 94) the bureaucratic and research management approaches needed to align the remote sensing community with both the science and policy communities.

  11. A wirelessly programmable actuation and sensing system for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Long, James; Büyüköztürk, Oral

    2016-04-01

    Wireless sensor networks promise to deliver low cost, low power and massively distributed systems for structural health monitoring. A key component of these systems, particularly when sampling rates are high, is the capability to process data within the network. Although progress has been made towards this vision, it remains a difficult task to develop and program 'smart' wireless sensing applications. In this paper we present a system which allows data acquisition and computational tasks to be specified in Python, a high level programming language, and executed within the sensor network. Key features of this system include the ability to execute custom application code without firmware updates, to run multiple users' requests concurrently and to conserve power through adjustable sleep settings. Specific examples of sensor node tasks are given to demonstrate the features of this system in the context of structural health monitoring. The system comprises of individual firmware for nodes in the wireless sensor network, and a gateway server and web application through which users can remotely submit their requests.

  12. Sustainable Cooperative Robotic Technologies for Human and Robotic Outpost Infrastructure Construction and Maintenance

    NASA Technical Reports Server (NTRS)

    Stroupe, Ashley W.; Okon, Avi; Robinson, Matthew; Huntsberger, Terry; Aghazarian, Hrand; Baumgartner, Eric

    2004-01-01

    Robotic Construction Crew (RCC) is a heterogeneous multi-robot system for autonomous acquisition, transport, and precision mating of components in construction tasks. RCC minimizes resources constrained in a space environment such as computation, power, communication and, sensing. A behavior-based architecture provides adaptability and robustness despite low computational requirements. RCC successfully performs several construction related tasks in an emulated outdoor environment despite high levels of uncertainty in motions and sensing. Quantitative results are provided for formation keeping in component transport, precision instrument placement, and construction tasks.

  13. Archeological/Environmental Research

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Landsat/Seasat remote sensing was used by Ames Research Center to evaluate environmental influence on ancient Mayan civilization. Over 35 archeological sites were imaged and valuable information concerning Maya settlement patterns, environment, and resource usage resulted. The imagery was also used by Mexican authorities to develop coastal management plans, establish Biosphere Reserves and assess damage from the 1988 Hurricane Gilbert. Imagery showed evidence of ancient coastlines, changes in sea level, an ancient river plain and Mayan canal systems. Previously unknown Mayan reservoirs were discovered. The project is considered a pioneering effort combining remote sensing, environmental studies and archeology.

  14. Mathematical model of a DIC position sensing system within an optical trap

    NASA Astrophysics Data System (ADS)

    Wulff, Kurt D.; Cole, Daniel G.; Clark, Robert L.

    2005-08-01

    The quantitative study of displacements and forces of motor proteins and processes that occur at the microscopic level and below require a high level of sensitivity. For optical traps, two techniques for position sensing have been accepted and used quite extensively: quadrant photodiodes and an interferometric position sensing technique based on DIC imaging. While quadrant photodiodes have been studied in depth and mathematically characterized, a mathematical characterization of the interferometric position sensor has not been presented to the authors' knowledge. The interferometric position sensing method works off of the DIC imaging capabilities of a microscope. Circularly polarized light is sent into the microscope and the Wollaston prism used for DIC imaging splits the beam into its orthogonal components, displacing them by a set distance determined by the user. The distance between the axes of the beams is set so the beams overlap at the specimen plane and effectively share the trapped microsphere. A second prism then recombines the light beams and the exiting laser light's polarization is measured and related to position. In this paper we outline the mathematical characterization of a microsphere suspended in an optical trap using a DIC position sensing method. The sensitivity of this mathematical model is then compared to the QPD model. The mathematical model of a microsphere in an optical trap can serve as a calibration curve for an experimental setup.

  15. System and method for cancelling the effects of stray magnetic fields from the output of a variable reluctance sensor

    DOEpatents

    Chen, Chingchi; Degner, Michael W.

    2002-11-19

    A sensor system for sensing a rotation of a sensing wheel is disclosed. The sensor system has a sensing coil in juxtaposition with the sensing wheel. Moreover, the sensing coil has a sensing coil output signal indicative of the rotational speed of the sensing wheel. Further, a cancellation coil is located remotely from the sensing coil and connected in series therewith. Additionally, the cancellation coil has a cancellation coil output signal indicative of an environmental disturbance which is effecting the sensing coil output signal. The cancellation coil output signal operates to cancel the effects of the environmental disturbance on the sensing coil output signal.

  16. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 2: Sensing and data acquisitions panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Advanced technology requirements associated with sensing and data acquisition systems were assessed for future space missions. Sensing and data acquisition system payloads which would benefit from the use of the space shuttle in demonstrating technology readiness are identified. Topics covered include: atmospheric sensing payloads, earth resources sensing payloads, microwave systems sensing payloads, technology development/evaluation payloads, and astronomy/planetary payloads.

  17. Proposal and Implementation of a Robust Sensing Method for DVB-T Signal

    NASA Astrophysics Data System (ADS)

    Song, Chunyi; Rahman, Mohammad Azizur; Harada, Hiroshi

    This paper proposes a sensing method for TV signals of DVB-T standard to realize effective TV White Space (TVWS) Communication. In the TVWS technology trial organized by the Infocomm Development Authority (iDA) of Singapore, with regard to the sensing level and sensing time, detecting DVB-T signal at the level of -120dBm over an 8MHz channel with a sensing time below 1 second is required. To fulfill such a strict sensing requirement, we propose a smart sensing method which combines feature detection and energy detection (CFED), and is also characterized by using dynamic threshold selection (DTS) based on a threshold table to improve sensing robustness to noise uncertainty. The DTS based CFED (DTS-CFED) is evaluated by computer simulations and is also implemented into a hardware sensing prototype. The results show that the DTS-CFED achieves a detection probability above 0.9 for a target false alarm probability of 0.1 for DVB-T signals at the level of -120dBm over an 8MHz channel with the sensing time equals to 0.1 second.

  18. Optical Design of the Developmental Cryogenic Active Telescope Testbed (DCATT)

    NASA Technical Reports Server (NTRS)

    Davila, Pam; Wilson, Mark; Young, Eric W.; Lowman, Andrew E.; Redding, David C.

    1997-01-01

    In the summer of 1996, three Study teams developed conceptual designs and mission architectures for the Next Generation Space Telescope (NGST). Each group highlighted areas of technology development that need to be further advanced to meet the goals of the NGST mission. The most important areas for future study included: deployable structures, lightweight optics, cryogenic optics and mechanisms, passive cooling, and on-orbit closed loop wavefront sensing and control. NASA and industry are currently planning to develop a series of ground testbeds and validation flights to demonstrate many of these technologies. The Deployed Cryogenic Active Telescope Testbed (DCATT) is a system level testbed to be developed at Goddard Space Flight Center in three phases over an extended period of time. This testbed will combine an actively controlled telescope with the hardware and software elements of a closed loop wavefront sensing and control system to achieve diffraction limited imaging at 2 microns. We will present an overview of the system level requirements, a discussion of the optical design, and results of performance analyses for the Phase 1 ambient concept for DCATT,

  19. Optically powered and interrogated rotary position sensor for aircraft engine control applications

    NASA Astrophysics Data System (ADS)

    Spillman, W. B.; Crowne, D. H.; Woodward, D. W.

    A throttle level angle (TLA) sensing system is described that utilizes a capacitance based rotary position transducer that is powered and interrogated via light from a single multimode optical fiber. The system incorporates a unique GaAs device that serves as both a power converter and optical data transmitter. Design considerations are discussed, and the fabrication and performance of the sensor system are detailed.

  20. Sensing and actuation system for the University of Florida Torsion Pendulum for LISA

    NASA Astrophysics Data System (ADS)

    Chilton, Andrew; Shelley, Ryan; Olatunde, Taiwo; Ciani, Giacomo; Conklin, John; Mueller, Guido

    2014-03-01

    Space-based gravitational wave detectors like LISA are a necessity for understanding the low-frequency portion of the gravitational universe. They use test masses (TMs) which are separated by Gm and are in free fall inside their respective spacecraft. Their relative distance is monitored with laser interferometry at the pm/rtHz level in the LISA band, ranging from 0.1 to 100 mHz. Each TM is enclosed in a housing that provides isolation, capacitive sensing, and electrostatic actuation capabilities. The electronics must both be sensitive at the 1 nm/rtHz level and not induce residual acceleration noise above the requirement for LISA Pathfinder (3*10-15 m/sec2Hz1/2at 3 mHz). Testing and developing this technology is one of the roles of the University of Florida Torsion Pendulum, the only US testbed for LISA-like gravitational reference sensor technology. Our implementation of the sensing system functions by biasing our hollow LISA-like TMs with a 100 kHz sine wave and coupling a pair surrounding electrodes as capacitors to a pair of preamps and a differential amplifier; all other processing is done digitally. Here we report on the design of, implementation of, and preliminary results from the UF Torsion Pendulum.

  1. FRIEND: a brain-monitoring agent for adaptive and assistive systems.

    PubMed

    Morris, Alexis; Ulieru, Mihaela

    2012-01-01

    This paper presents an architectural design for adaptive-systems agents (FRIEND) that use brain state information to make more effective decisions on behalf of a user; measuring brain context versus situational demands. These systems could be useful for alerting users to cognitive workload levels or fatigue, and could attempt to compensate for higher cognitive activity by filtering noise information. In some cases such systems could also share control of devices, such as pulling over in an automated vehicle. These aim to assist people in everyday systems to perform tasks better and be more aware of internal states. Achieving a functioning system of this sort is a challenge, involving a unification of brain- computer-interfaces, human-computer-interaction, soft-computin deliberative multi-agent systems disciplines. Until recently, these were not able to be combined into a usable platform due largely to technological limitations (e.g., size, cost, and processing speed), insufficient research on extracting behavioral states from EEG signals, and lack of low-cost wireless sensing headsets. We aim to surpass these limitations and develop control architectures for making sense of brain state in applications by realizing an agent architecture for adaptive (human-aware) technology. In this paper we present an early, high-level design towards implementing a multi-purpose brain-monitoring agent system to improve user quality of life through the assistive applications of psycho-physiological monitoring, noise-filtering, and shared system control.

  2. Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review

    PubMed Central

    Ge, Chang; Wang, Z. Jane; Cretu, Edmond; Li, Xiaoou

    2017-01-01

    During the last decades, smart tactile sensing systems based on different sensing techniques have been developed due to their high potential in industry and biomedical engineering. However, smart tactile sensing technologies and systems are still in their infancy, as many technological and system issues remain unresolved and require strong interdisciplinary efforts to address them. This paper provides an overview of smart tactile sensing systems, with a focus on signal processing technologies used to interpret the measured information from tactile sensors and/or sensors for other sensory modalities. The tactile sensing transduction and principles, fabrication and structures are also discussed with their merits and demerits. Finally, the challenges that tactile sensing technology needs to overcome are highlighted. PMID:29149080

  3. NASA Tech Briefs, April 2012

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Topics include: Computational Ghost Imaging for Remote Sensing; Digital Architecture for a Trace Gas Sensor Platform; Dispersed Fringe Sensing Analysis - DFSA; Indium Tin Oxide Resistor-Based Nitric Oxide Microsensors; Gas Composition Sensing Using Carbon Nanotube Arrays; Sensor for Boundary Shear Stress in Fluid Flow; Model-Based Method for Sensor Validation; Qualification of Engineering Camera for Long-Duration Deep Space Missions; Remotely Powered Reconfigurable Receiver for Extreme Environment Sensing Platforms; Bump Bonding Using Metal-Coated Carbon Nanotubes; In Situ Mosaic Brightness Correction; Simplex GPS and InSAR Inversion Software; Virtual Machine Language 2.1; Multi-Scale Three-Dimensional Variational Data Assimilation System for Coastal Ocean Prediction; Pandora Operation and Analysis Software; Fabrication of a Cryogenic Bias Filter for Ultrasensitive Focal Plane; Processing of Nanosensors Using a Sacrificial Template Approach; High-Temperature Shape Memory Polymers; Modular Flooring System; Non-Toxic, Low-Freezing, Drop-In Replacement Heat Transfer Fluids; Materials That Enhance Efficiency and Radiation Resistance of Solar Cells; Low-Cost, Rugged High-Vacuum System; Static Gas-Charging Plug; Floating Oil-Spill Containment Device; Stemless Ball Valve; Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs; Oxygen-Methane Thruster; Lunar Navigation Determination System - LaNDS; Launch Method for Kites in Low-Wind or No-Wind Conditions; Supercritical CO2 Cleaning System for Planetary Protection and Contamination Control Applications; Design and Performance of a Wideband Radio Telescope; Finite Element Models for Electron Beam Freeform Fabrication Process Autonomous Information Unit for Fine-Grain Data Access Control and Information Protection in a Net-Centric System; Vehicle Detection for RCTA/ANS (Autonomous Navigation System); Image Mapping and Visual Attention on the Sensory Ego-Sphere; HyDE Framework for Stochastic and Hybrid Model-Based Diagnosis; and IMAGESEER - IMAGEs for Education and Research.

  4. g-LIMIT Status Briefing

    NASA Technical Reports Server (NTRS)

    Whorton, Mark; Perkins, Brad T.

    2000-01-01

    For many microgravity science experiments in the International Space Station, the ambient acceleration environment will be exceed desirable levels. To provide a more quiescent acceleration environment to the microgravity payloads, a vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being designed. g-LIMIT is a sub-rack level isolation system that can be tailored to a variety of applications. Scheduled for launch on the UF-1 mission, the initial implementation of g-LIMIT will be a Characterization Test in the Microgravity Science Glovebox (MSG). g-LIMIT will be available to glovebox investigators immediately after characterization testing. Standard MSG structural and umbilical interfaces will be used so that the isolation mount is transparent to the user with no additional accommodation requirements. g-LIMIT consists of three integrated isolator modules, each of which is comprised of a dual axis actuator, two axes of acceleration sensing, two axes of position sensing, control electronics, and data transmission capabilities in a minimum-volume package. In addition, this system provides the unique capability for measuring absolute acceleration of the experiment independent of accelerometers as a by-product of the control system and will have the capability of generating pristine accelerations to enhance experiment operations.

  5. Sensemaking of patient safety risks and hazards.

    PubMed

    Battles, James B; Dixon, Nancy M; Borotkanics, Robert J; Rabin-Fastmen, Barbara; Kaplan, Harold S

    2006-08-01

    In order for organizations to become learning organizations, they must make sense of their environment and learn from safety events. Sensemaking, as described by Weick (1995), literally means making sense of events. The ultimate goal of sensemaking is to build the understanding that can inform and direct actions to eliminate risk and hazards that are a threat to patient safety. True sensemaking in patient safety must use both retrospective and prospective approach to learning. Sensemaking is as an essential part of the design process leading to risk informed design. Sensemaking serves as a conceptual framework to bring together well established approaches to assessment of risk and hazards: (1) at the single event level using root cause analysis (RCA), (2) at the processes level using failure modes effects analysis (FMEA) and (3) at the system level using probabilistic risk assessment (PRA). The results of these separate or combined approaches are most effective when end users in conversation-based meetings add their expertise and knowledge to the data produced by the RCA, FMEA, and/or PRA in order to make sense of the risks and hazards. Without ownership engendered by such conversations, the possibility of effective action to eliminate or minimize them is greatly reduced.

  6. Sensemaking of Patient Safety Risks and Hazards

    PubMed Central

    Battles, James B; Dixon, Nancy M; Borotkanics, Robert J; Rabin-Fastmen, Barbara; Kaplan, Harold S

    2006-01-01

    In order for organizations to become learning organizations, they must make sense of their environment and learn from safety events. Sensemaking, as described by Weick (1995), literally means making sense of events. The ultimate goal of sensemaking is to build the understanding that can inform and direct actions to eliminate risk and hazards that are a threat to patient safety. True sensemaking in patient safety must use both retrospective and prospective approach to learning. Sensemaking is as an essential part of the design process leading to risk informed design. Sensemaking serves as a conceptual framework to bring together well established approaches to assessment of risk and hazards: (1) at the single event level using root cause analysis (RCA), (2) at the processes level using failure modes effects analysis (FMEA) and (3) at the system level using probabilistic risk assessment (PRA). The results of these separate or combined approaches are most effective when end users in conversation-based meetings add their expertise and knowledge to the data produced by the RCA, FMEA, and/or PRA in order to make sense of the risks and hazards. Without ownership engendered by such conversations, the possibility of effective action to eliminate or minimize them is greatly reduced. PMID:16898979

  7. Sparse aperture 3D passive image sensing and recognition

    NASA Astrophysics Data System (ADS)

    Daneshpanah, Mehdi

    The way we perceive, capture, store, communicate and visualize the world has greatly changed in the past century Novel three dimensional (3D) imaging and display systems are being pursued both in academic and industrial settings. In many cases, these systems have revolutionized traditional approaches and/or enabled new technologies in other disciplines including medical imaging and diagnostics, industrial metrology, entertainment, robotics as well as defense and security. In this dissertation, we focus on novel aspects of sparse aperture multi-view imaging systems and their application in quantum-limited object recognition in two separate parts. In the first part, two concepts are proposed. First a solution is presented that involves a generalized framework for 3D imaging using randomly distributed sparse apertures. Second, a method is suggested to extract the profile of objects in the scene through statistical properties of the reconstructed light field. In both cases, experimental results are presented that demonstrate the feasibility of the techniques. In the second part, the application of 3D imaging systems in sensing and recognition of objects is addressed. In particular, we focus on the scenario in which only 10s of photons reach the sensor from the object of interest, as opposed to hundreds of billions of photons in normal imaging conditions. At this level, the quantum limited behavior of light will dominate and traditional object recognition practices may fail. We suggest a likelihood based object recognition framework that incorporates the physics of sensing at quantum-limited conditions. Sensor dark noise has been modeled and taken into account. This framework is applied to 3D sensing of thermal objects using visible spectrum detectors. Thermal objects as cold as 250K are shown to provide enough signature photons to be sensed and recognized within background and dark noise with mature, visible band, image forming optics and detector arrays. The results suggest that one might not need to venture into exotic and expensive detector arrays and associated optics for sensing room-temperature thermal objects in complete darkness.

  8. MARS, a multi-agent system for assessing rowers' coordination via motion-based stigmergy.

    PubMed

    Avvenuti, Marco; Cesarini, Daniel; Cimino, Mario G C A

    2013-09-12

    A crucial aspect in rowing is having a synchronized, highly-efficient stroke. This is very difficult to obtain, due to the many interacting factors that each rower of the crew must perceive. Having a system that monitors and represents the crew coordination would be of great help to the coach during training sessions. In the literature, some methods already employ wireless sensors for capturing motion patterns that affect rowing performance. A challenging problem is to support the coach's decisions at his same level of knowledge, using a limited number of sensors and avoiding the complexity of the biomechanical analysis of human movements. In this paper, we present a multi-agent information-processing system for on-water measuring of both the overall crew asynchrony and the individual rower asynchrony towards the crew. More specifically, in the system, the first level of processing is managed by marking agents, which release marks in a sensing space, according to the rowers' motion. The accumulation of marks enables a stigmergic cooperation mechanism, generating collective marks, i.e., short-term memory structures in the sensing space. At the second level of processing, information provided by marks is observed by similarity agents, which associate a similarity degree with respect to optimal marks. Finally, the third level is managed by granulation agents, which extract asynchrony indicators for different purposes. The effectiveness of the system has been experimented on real-world scenarios. The study includes the problem statement and its characterization in the literature, as well as the proposed solving approach and initial experimental setting.

  9. MARS, a Multi-Agent System for Assessing Rowers' Coordination via Motion-Based Stigmergy

    PubMed Central

    Avvenuti, Marco; Cesarini, Daniel; Cimino, Mario G. C. A.

    2013-01-01

    A crucial aspect in rowing is having a synchronized, highly-efficient stroke. This is very difficult to obtain, due to the many interacting factors that each rower of the crew must perceive. Having a system that monitors and represents the crew coordination would be of great help to the coach during training sessions. In the literature, some methods already employ wireless sensors for capturing motion patterns that affect rowing performance. A challenging problem is to support the coach's decisions at his same level of knowledge, using a limited number of sensors and avoiding the complexity of the biomechanical analysis of human movements. In this paper, we present a multi-agent information-processing system for on-water measuring of both the overall crew asynchrony and the individual rower asynchrony towards the crew. More specifically, in the system, the first level of processing is managed by marking agents, which release marks in a sensing space, according to the rowers' motion. The accumulation of marks enables a stigmergic cooperation mechanism, generating collective marks, i.e., short-term memory structures in the sensing space. At the second level of processing, information provided by marks is observed by similarity agents, which associate a similarity degree with respect to optimal marks. Finally, the third level is managed by granulation agents, which extract asynchrony indicators for different purposes. The effectiveness of the system has been experimented on real-world scenarios. The study includes the problem statement and its characterization in the literature, as well as the proposed solving approach and initial experimental setting. PMID:24036582

  10. Sense and avoid technology for unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    McCalmont, John; Utt, James; Deschenes, Michael; Taylor, Michael; Sanderson, Richard; Montgomery, Joel; Johnson, Randal S.; McDermott, David

    2007-04-01

    The Sensors Directorate of the Air Force Research Laboratory (AFRL), in conjunction with the Global Hawk Systems Group, the J-UCAS System Program Office and contractor Defense Research Associates, Inc. (DRA) is conducting an Advanced Technology Demonstration (ATD) of a sense-and-avoid capability with the potential to satisfy the Federal Aviation Administration's (FAA) requirement for Unmanned Aircraft Systems (UAS) to provide "an equivalent level of safety, comparable to see-and-avoid requirements for manned aircraft". This FAA requirement must be satisfied for UAS operations within the national airspace. The Sense-and-Avoid, Phase I (Man-in-the-Loop) and Phase II (Autonomous Maneuver) ATD demonstrated an on-board, wide field of regard, multi-sensor visible imaging system operating in real time and capable of passively detecting approaching aircraft, declaring potential collision threats in a timely manner and alerting the human pilot located in the remote ground control station or autonomously maneuvered the aircraft. Intruder declaration data was collected during the SAA I & II Advanced Technology Demonstration flights conducted during December 2006. A total of 27 collision scenario flights were conducted and analyzed. The average detection range was 6.3 NM and the mean declaration range was 4.3 NM. The number of false alarms per engagement has been reduced to approximately 3 per engagement.

  11. Seismic damage identification for steel structures using distributed fiber optics.

    PubMed

    Hou, Shuang; Cai, C S; Ou, Jinping

    2009-08-01

    A distributed fiber optic monitoring methodology based on optic time domain reflectometry technology is developed for seismic damage identification of steel structures. Epoxy with a strength closely associated to a specified structure damage state is used for bonding zigzagged configured optic fibers on the surfaces of the structure. Sensing the local deformation of the structure, the epoxy modulates the signal change within the optic fiber in response to the damage state of the structure. A monotonic loading test is conducted on a steel specimen installed with the proposed sensing system using selected epoxy that will crack at the designated strain level, which indicates the damage of the steel structure. Then, using the selected epoxy, a varying degree of cyclic loading amplitudes, which is associated with different damage states, is applied on a second specimen. The test results show that the specimen's damage can be identified by the optic sensors, and its maximum local deformation can be recorded by the sensing system; moreover, the damage evolution can also be identified.

  12. Sensing coherent phonons with two-photon interference

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Yin, Xiaobo; Li, Baowen

    2018-02-01

    Detecting coherent phonons pose different challenges compared to coherent photons due to the much stronger interaction between phonons and matter. This is especially true for high frequency heat carrying phonons, which are intrinsic lattice vibrations experiencing many decoherence events with the environment, and are thus generally assumed to be incoherent. Two photon interference techniques, especially coherent population trapping (CPT) and electromagnetically induced transparency (EIT), have led to extremely sensitive detection, spectroscopy and metrology. Here, we propose the use of two photon interference in a three-level system to sense coherent phonons. Unlike prior works which have treated phonon coupling as damping, we account for coherent phonon coupling using a full quantum-mechanical treatment. We observe strong asymmetry in absorption spectrum in CPT and negative dispersion in EIT susceptibility in the presence of coherent phonon coupling which cannot be accounted for if only pure phonon damping is considered. Our proposal has application in sensing heat carrying coherent phonons effects and understanding coherent bosonic multi-pathway interference effects in three coupled oscillator systems.

  13. Closed-field capacitive liquid level sensor

    DOEpatents

    Kronberg, James W.

    1998-01-01

    A liquid level sensor based on a closed field circuit comprises a ring oscillator using a symmetrical array of plate units that creates a displacement current. The displacement current varies as a function of the proximity of a liquid to the plate units. The ring oscillator circuit produces an output signal with a frequency inversely proportional to the presence of a liquid. A continuous liquid level sensing device and a two point sensing device are both proposed sensing arrangements. A second set of plates may be located inside of the probe housing relative to the sensing plate units. The second set of plates prevent any interference between the sensing plate units.

  14. Closed-field capacitive liquid level sensor

    DOEpatents

    Kronberg, J.W.

    1998-03-03

    A liquid level sensor based on a closed field circuit comprises a ring oscillator using a symmetrical array of plate units that creates a displacement current. The displacement current varies as a function of the proximity of a liquid to the plate units. The ring oscillator circuit produces an output signal with a frequency inversely proportional to the presence of a liquid. A continuous liquid level sensing device and a two point sensing device are both proposed sensing arrangements. A second set of plates may be located inside of the probe housing relative to the sensing plate units. The second set of plates prevent any interference between the sensing plate units. 12 figs.

  15. Closed-field capacitive liquid level sensor

    DOEpatents

    Kronberg, J.W.

    1995-01-01

    A liquid level sensor based on a closed field circuit comprises a ring oscillator using a symmetrical array of plate units that creates a displacement current. The displacement current varies as a function of the proximity of a liquid to the plate units. The ring oscillator circuit produces an output signal with a frequency inversely proportional to the presence of a liquid. A continuous liquid level sensing device and a two point sensing device are both proposed sensing arrangements. A second set of plates may be located inside of the probe housing relative to the sensing plate units. The second set of plates prevent any interference between the sensing plate units.

  16. Naturalizing Sense of Agency with a Hierarchical Event-Control Approach

    PubMed Central

    Kumar, Devpriya; Srinivasan, Narayanan

    2014-01-01

    Unraveling the mechanisms underlying self and agency has been a difficult scientific problem. We argue for an event-control approach for naturalizing the sense of agency by focusing on the role of perception-action regularities present at different hierarchical levels and contributing to the sense of self as an agent. The amount of control at different levels of the control hierarchy determines the sense of agency. The current study investigates this approach in a set of two experiments using a scenario containing multiple agents sharing a common goal where one of the agents is partially controlled by the participant. The participant competed with other agents for achieving the goal and subsequently answered questions on identification (which agent was controlled by the participant), the degree to which they are confident about their identification (sense of identification) and the degree to which the participant believed he/she had control over his/her actions (sense of authorship). Results indicate a hierarchical relationship between goal-level control (higher level) and perceptual-motor control (lower level) for sense of agency. Sense of identification ratings increased with perceptual-motor control when the goal was not completed but did not vary with perceptual-motor control when the goal was completed. Sense of authorship showed a similar interaction effect only in experiment 2 that had only one competing agent unlike the larger number of competing agents in experiment 1. The effect of hierarchical control can also be seen in the misidentification pattern and misidentification was greater with the agent affording greater control. Results from the two studies support the event-control approach in understanding sense of agency as grounded in control. The study also offers a novel paradigm for empirically studying sense of agency and self. PMID:24642834

  17. Primary School Teachers' Realization Levels of Self-Regulated Learning Practices and Sense of Efficacy

    ERIC Educational Resources Information Center

    Tanriseven, Isil

    2013-01-01

    The purpose of this study is to investigate primary school teachers' realization levels of self-regulated learning practices and sense of efficacy and the relationship between their realization levels of self-regulated learning practices and sense of efficacy. Survey research was conducted on 400 primary school teachers from 20 elementary schools…

  18. Monitoring landscape level processes using remote sensing of large plots

    Treesearch

    Raymond L. Czaplewski

    1991-01-01

    Global and regional assessaents require timely information on landscape level status (e.g., areal extent of different ecosystems) and processes (e.g., changes in land use and land cover). To measure and understand these processes at the regional level, and model their impacts, remote sensing is often necessary. However, processing massive volumes of remotely sensing...

  19. Anatomical Pathways Involved in Generating and Sensing Rhythmic Whisker Movements

    PubMed Central

    Bosman, Laurens W. J.; Houweling, Arthur R.; Owens, Cullen B.; Tanke, Nouk; Shevchouk, Olesya T.; Rahmati, Negah; Teunissen, Wouter H. T.; Ju, Chiheng; Gong, Wei; Koekkoek, Sebastiaan K. E.; De Zeeuw, Chris I.

    2011-01-01

    The rodent whisker system is widely used as a model system for investigating sensorimotor integration, neural mechanisms of complex cognitive tasks, neural development, and robotics. The whisker pathways to the barrel cortex have received considerable attention. However, many subcortical structures are paramount to the whisker system. They contribute to important processes, like filtering out salient features, integration with other senses, and adaptation of the whisker system to the general behavioral state of the animal. We present here an overview of the brain regions and their connections involved in the whisker system. We do not only describe the anatomy and functional roles of the cerebral cortex, but also those of subcortical structures like the striatum, superior colliculus, cerebellum, pontomedullary reticular formation, zona incerta, and anterior pretectal nucleus as well as those of level setting systems like the cholinergic, histaminergic, serotonergic, and noradrenergic pathways. We conclude by discussing how these brain regions may affect each other and how they together may control the precise timing of whisker movements and coordinate whisker perception. PMID:22065951

  20. Design and performance evaluation of the imaging payload for a remote sensing satellite

    NASA Astrophysics Data System (ADS)

    Abolghasemi, Mojtaba; Abbasi-Moghadam, Dariush

    2012-11-01

    In this paper an analysis method and corresponding analytical tools for design of the experimental imaging payload (IMPL) of a remote sensing satellite (SINA-1) are presented. We begin with top-level customer system performance requirements and constraints and derive the critical system and component parameters, then analyze imaging payload performance until a preliminary design that meets customer requirements. We consider system parameters and components composing the image chain for imaging payload system which includes aperture, focal length, field of view, image plane dimensions, pixel dimensions, detection quantum efficiency, and optical filter requirements. The performance analysis is accomplished by calculating the imaging payload's SNR (signal-to-noise ratio), and imaging resolution. The noise components include photon noise due to signal scene and atmospheric background, cold shield, out-of-band optical filter leakage and electronic noise. System resolution is simulated through cascaded modulation transfer functions (MTFs) and includes effects due to optics, image sampling, and system motion. Calculations results for the SINA-1 satellite are also presented.

  1. AFTI/F16 Automated Maneuvering Attack System Test Reports/Special Technologies and Outlook.

    DTIC Science & Technology

    1986-07-11

    Multiplex Data Bus A-A Air-To-Air A-S Air-to-Surface AFTI Advanced Fighter Technology Integration SYSTEM DESIGN AGL Above-Ground-Level AMAS Automated...Maneuvering Attack System Design requirements for the AFTI/F-16 are driven AMUX Avionics Multiplex Data Bus by realistic air combat scenarios and are...the avionics subsystem IFIM and avionics systems are single-thread, much of the sensed various flight control sensors. Additionally, along with data

  2. Active Sensing System with In Situ Adjustable Sensor Morphology

    PubMed Central

    Nurzaman, Surya G.; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Background Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. Methodology This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. Conclusions/Significance The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed. PMID:24416094

  3. [THE ROLE OF SYSTEM QUORUM SENSING UNDER CHRONIC UROGENITAL CHLAMYDIA INFECTION].

    PubMed

    2015-10-01

    It is established that system quorum sensing (QS) assure social behavior of bacteria in regulation of genes of virulence and generalization of inflectional inflammatory process under chronic urogenital chlamydia infection. The techniques of gas chromatography and mass-spectrometry were applied to detect molecular markers of generalization of infectious process under urogenital chlamydiasis--activators of QS microbes (lactones, quinolones, furan ethers). The developed diagnostic gas chromatography and mass-spectrometry criteria of indexation of molecular markers under chronic urogenital chlamydia infection have high level of diagnostic sensitivity, specificity and prognostic value of positive and negative result. The application of techniques of gas chromatography and mass-spectrometry permits enhancing effectiveness of diagnostic of chronic inflectional inflammatory diseases of urogenital system of chlamydia etiology with identification of prognostic criteria of generalization of infectious process and subsequent prescription of timely and appropriate therapy

  4. Millimeter-Wave Sensing of Diabetes-Relevant Glucose Concentration Changes in Pigs

    NASA Astrophysics Data System (ADS)

    Cano-Garcia, Helena; Saha, Shimul; Sotiriou, Ioannis; Kosmas, Panagiotis; Gouzouasis, Ioannis; Kallos, Efthymios

    2018-06-01

    The paper presents the first in vivo glucose monitoring animal study in a pig, which correlates radio frequency signal transmission changes with changes in blood glucose concentration in the 58-62 GHz frequency range. The presented non-invasive glucose sensing system consists of two opposite facing patch antennas sandwiching glucose-loaded samples. Prior to the animal study, the system was tested using saline solution samples, for which a linear relationship between changes in transmitted signal and glucose concentration was observed. In the animal study, glucose concentration changes were induced by injecting a known glucose solution in the blood stream. The non-invasive transmission measurements were compared to the glucose levels obtained invasively from the animal. Our results suggest that the system can detect spikes in glucose concentration in the blood, which is an important milestone towards non-invasive glucose monitoring.

  5. NASA Tech Briefs, April 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Topics covered include: Direct-Solve Image-Based Wavefront Sensing; Use of UV Sources for Detection and Identification of Explosives; Using Fluorescent Viruses for Detecting Bacteria in Water; Gradiometer Using Middle Loops as Sensing Elements in a Low-Field SQUID MRI System; Volcano Monitor: Autonomous Triggering of In-Situ Sensors; Wireless Fluid-Level Sensors for Harsh Environments; Interference-Detection Module in a Digital Radar Receiver; Modal Vibration Analysis of Large Castings; Structural/Radiation-Shielding Epoxies; Integrated Multilayer Insulation; Apparatus for Screening Multiple Oxygen-Reduction Catalysts; Determining Aliasing in Isolated Signal Conditioning Modules; Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems; Spectrum Analyzers Incorporating Tunable WGM Resonators; Quantum-Well Thermophotovoltaic Cells; Bounded-Angle Iterative Decoding of LDPC Codes; Conversion from Tree to Graph Representation of Requirements; Parallel Hybrid Vehicle Optimal Storage System; and Anaerobic Digestion in a Flooded Densified Leachbed.

  6. CardioGuard: A Brassiere-Based Reliable ECG Monitoring Sensor System for Supporting Daily Smartphone Healthcare Applications

    PubMed Central

    Kwon, Sungjun; Kim, Jeehoon; Kang, Seungwoo; Lee, Youngki; Baek, Hyunjae

    2014-01-01

    Abstract We propose CardioGuard, a brassiere-based reliable electrocardiogram (ECG) monitoring sensor system, for supporting daily smartphone healthcare applications. It is designed to satisfy two key requirements for user-unobtrusive daily ECG monitoring: reliability of ECG sensing and usability of the sensor. The system is validated through extensive evaluations. The evaluation results showed that the CardioGuard sensor reliably measure the ECG during 12 representative daily activities including diverse movement levels; 89.53% of QRS peaks were detected on average. The questionnaire-based user study with 15 participants showed that the CardioGuard sensor was comfortable and unobtrusive. Additionally, the signal-to-noise ratio test and the washing durability test were conducted to show the high-quality sensing of the proposed sensor and its physical durability in practical use, respectively. PMID:25405527

  7. The Student-as-Bricoleur: Making Sense of Research Paradigms

    ERIC Educational Resources Information Center

    Schnelker, Diane L.

    2006-01-01

    Although there is consensus that qualitative approaches to social research are distinguished from quantitative approaches by their fundamental philosophical systems, there is resistance to incorporating philosophical distinctions into graduate level research courses. Resistance may be due to the recognition that students have limited experience…

  8. Amylin Detection with a Miniature Optical-Fiber Based Sensor

    NASA Astrophysics Data System (ADS)

    Liu, Zhaowen; Ann, Matsko; Hughes, Adam; Reeves, Mark

    We present results of a biosensor based on shifts in the localized surface plasmon resonance of gold nanoparticles self-assembled on the end of an optical fiber. This system allows for detection of protein expression in low sensing volumes and for scanning in cell cultures and tissue samples. Positive and negative controls were done using biotin/avidin and the BSA/Anti-BSA system. These demonstrate that detection is specific and sensitive to nanomolar levels. Sensing of amylin, an important protein for pancreatic function, was performed with polyclonal and monoclonal antibodies. The measured data demonstrates the difference in sensitivity to the two types of antibodies, and titration experiments establish the sensitivity of the sensor. Further experiments demonstrate that the sensor can be regenerated and then reused.

  9. NASA remote sensing programs: Overview

    NASA Technical Reports Server (NTRS)

    Raney, W. P.

    1981-01-01

    In the Earth remote sensing area, NASA's three functions are to understand the basic mechanics and behavior of the Earth, evaluate what resources are available (in the way of minerals, and hydrocarbons on a general scale), and to arrange a scheme for managing our national assets. The capabilities offered by LANDSAT D and technology improvements needed are discussed. The French SPOT system, its orbits, possibilities for stereo imagery, and levels of preprocessing and processing with several degrees of radiometric and geometric corrections are examined. Progress in the AgRISTARS project is mentioned as well as future R & D programs in the use of fluorescence, microwave measurements, and synthetic aperture radar. Other areas of endeaver include studying man environment interactions and Earth radiation budgets, and the establishment of data systems programs.

  10. Prefocal station mechanical design concept study for the E-ELT

    NASA Astrophysics Data System (ADS)

    Jolley, Paul; Brunetto, Enzo; Frank, Christoph; Lewis, Steffan; Marchetti, Enrico

    2016-07-01

    The Nasmyth platforms of the E-ELT will contain one Prefocal Station (PFS) each. The main PFS functional requirements are to provide a focal plane to the three Nasmyth focal stations and the Coudé focus, optical sensing supporting telescope low order optimisation and seeing limited image quality, and optical sensing supporting characterising and phasing of M1 and other telescope subsystems. The PFS user requirements are used to derive the PFS technical requirements specification that will form the basis for design, development and production of the system. This specification process includes high-level architectural decisions and technical performance budget allocations. The mechanical design concepts reported here have been developed in order to validate key system specifications and associated technical budgets.

  11. CMMAD Usability Case Study in Support of Countermine and Hazard Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor G. Walker; David I. Gertman

    2010-04-01

    During field trials, operator usability data were collected in support of lane clearing missions and hazard sensing for two robot platforms with Robot Intelligence Kernel (RIK) software and sensor scanning payloads onboard. The tests featured autonomous and shared robot autonomy levels where tasking of the robot used a graphical interface featuring mine location and sensor readings. The goal of this work was to provide insights that could be used to further technology development. The efficacy of countermine systems in terms of mobility, search, path planning, detection, and localization were assessed. Findings from objective and subjective operator interaction measures are reviewedmore » along with commentary from soldiers having taken part in the study who strongly endorse the system.« less

  12. Ground observations and remote sensing data for integrated modelisation of water budget in the Merguellil catchment, Tunisia

    NASA Astrophysics Data System (ADS)

    Mougenot, Bernard

    2016-04-01

    The Mediterranean region is affected by water scarcity. Some countries as Tunisia reached the limit of 550 m3/year/capita due overexploitation of low water resources for irrigation, domestic uses and industry. A lot of programs aim to evaluate strategies to improve water consumption at regional level. In central Tunisia, on the Merguellil catchment, we develop integrated water resources modelisations based on social investigations, ground observations and remote sensing data. The main objective is to close the water budget at regional level and to estimate irrigation and water pumping to test scenarios with endusers. Our works benefit from French, bilateral and European projects (ANR, MISTRALS/SICMed, FP6, FP7…), GMES/GEOLAND-ESA) and also network projects as JECAM and AERONET, where the Merguellil site is a reference. This site has specific characteristics associating irrigated and rainfed crops mixing cereals, market gardening and orchards and will be proposed as a new environmental observing system connected to the OMERE, TENSIFT and OSR systems respectively in Tunisia, Morocco and France. We show here an original and large set of ground and remote sensing data mainly acquired from 2008 to present to be used for calibration/validation of water budget processes and integrated models for present and scenarios: - Ground data: meteorological stations, water budget at local scale: fluxes tower, soil fluxes, soil and surface temperature, soil moisture, drainage, flow, water level in lakes, aquifer, vegetation parameters on selected fieds/month (LAI, height, biomass, yield), land cover: 3 times/year, bare soil roughness, irrigation and pumping estimations, soil texture. - Remote sensing data: remote sensing products from multi-platform (MODIS, SPOT, LANDSAT, ASTER, PLEIADES, ASAR, COSMO-SkyMed, TerraSAR X…), multi-wavelength (solar, micro-wave and thermal) and multi-resolution (0.5 meters to 1 km). Ground observations are used (1) to calibrate soil-vegetation-atmosphere models at field scale on different compartment and irrigated and rainfed land during a limited time (seasons or set of dry and wet years), (2) to calibrate and validate particularly evapotranspiration derived from multi-wavelength satellite data at watershed level in relationships with the aquifer conditions: pumping and recharge rate. We will point out some examples.

  13. A bio-molecular inspired electronic architecture: bio-based device concepts for enhanced sensing (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Woolard, Dwight L.; Luo, Ying; Gelmont, Boris L.; Globus, Tatiana; Jensen, James O.

    2005-05-01

    A biological(bio)-molecular inspired electronic architecture is presented that offers the potential for defining nanoscale sensor platforms with enhanced capabilities for sensing terahertz (THz) frequency bio-signatures. This architecture makes strategic use of integrated biological elements to enable communication and high-level function within densely-packed nanoelectronic systems. In particular, this architecture introduces a new paradigm for establishing hybrid Electro-THz-Optical (ETO) communication channels where the THz-frequency spectral characteristics that are uniquely associated with the embedded bio-molecules are utilized directly. Since the functionality of this architecture is built upon the spectral characteristics of bio-molecules, this immediately allows for defining new methods for enhanced sensing of THz bio-signatures. First, this integrated sensor concept greatly facilitates the collection of THz bio-signatures associated with embedded bio-molecules via interactions with the time-dependent signals propagating through the nanoelectronic circuit. Second, it leads to a new Multi-State Spectral Sensing (MS3) approach where bio-signature information can be collected from multiple metastable state conformations. This paper will also introduce a new class of prototype devices that utilize THz-sensitive bio-molecules to achieve molecular-level sensing and functionality. Here, new simulation results are presented for a class of bio-molecular components that exhibit the prescribed type of ETO characteristics required for realizing integrated sensor platforms. Most noteworthy, this research derives THz spectral bio-signatures for organic molecules that are amenable to photo-induced metastable-state conformations and establishes an initial scientific foundation and design blueprint for an enhanced THz bio-signature sensing capability.

  14. Applications of Remote Sensing to Emergency Management.

    DTIC Science & Technology

    1980-02-15

    Contents: Foundations of Remote Sensing : Data Acquisition and Interpretation; Availability of Remote Sensing Technology for Disaster Response...Imaging Systems, Current and Near Future Satellite and Aircraft Remote Sensing Systems; Utilization of Remote Sensing in Disaster Response: Categories of...Disasters, Phases of Monitoring Activities; Recommendations for Utilization of Remote Sensing Technology in Disaster Response; Selected Reading List.

  15. Airborne Collision Detection and Avoidance for Small UAS Sense and Avoid Systems

    NASA Astrophysics Data System (ADS)

    Sahawneh, Laith Rasmi

    The increasing demand to integrate unmanned aircraft systems (UAS) into the national airspace is motivated by the rapid growth of the UAS industry, especially small UAS weighing less than 55 pounds. Their use however has been limited by the Federal Aviation Administration regulations due to collision risk they pose, safety and regulatory concerns. Therefore, before civil aviation authorities can approve routine UAS flight operations, UAS must be equipped with sense-and-avoid technology comparable to the see-and-avoid requirements for manned aircraft. The sense-and-avoid problem includes several important aspects including regulatory and system-level requirements, design specifications and performance standards, intruder detecting and tracking, collision risk assessment, and finally path planning and collision avoidance. In this dissertation, our primary focus is on developing an collision detection, risk assessment and avoidance framework that is computationally affordable and suitable to run on-board small UAS. To begin with, we address the minimum sensing range for the sense-and-avoid (SAA) system. We present an approximate close form analytical solution to compute the minimum sensing range to safely avoid an imminent collision. The approach is then demonstrated using a radar sensor prototype that achieves the required minimum sensing range. In the area of collision risk assessment and collision prediction, we present two approaches to estimate the collision risk of an encounter scenario. The first is a deterministic approach similar to those been developed for Traffic Alert and Collision Avoidance (TCAS) in manned aviation. We extend the approach to account for uncertainties of state estimates by deriving an analytic expression to propagate the error variance using Taylor series approximation. To address unanticipated intruders maneuvers, we propose an innovative probabilistic approach to quantify likely intruder trajectories and estimate the probability of collision risk using the uncorrelated encounter model (UEM) developed by MIT Lincoln Laboratory. We evaluate the proposed approach using Monte Carlo simulations and compare the performance with linearly extrapolated collision detection logic. For the path planning and collision avoidance part, we present multiple reactive path planning algorithms. We first propose a collision avoidance algorithm based on a simulated chain that responds to a virtual force field produced by encountering intruders. The key feature of the proposed approach is to model the future motion of both the intruder and the ownship using a chain of waypoints that are equally spaced in time. This timing information is used to continuously re-plan paths that minimize the probability of collision. Second, we present an innovative collision avoidance logic using an ownship centered coordinate system. The technique builds a graph in the local-level frame and uses the Dijkstra's algorithm to find the least cost path. An advantage of this approach is that collision avoidance is inherently a local phenomenon and can be more naturally represented in the local coordinates than the global coordinates. Finally, we propose a two step path planner for ground-based SAA systems. In the first step, an initial suboptimal path is generated using A* search. In the second step, using the A* solution as an initial condition, a chain of unit masses connected by springs and dampers evolves in a simulated force field. The chain is described by a set of ordinary differential equations that is driven by virtual forces to find the steady-state equilibrium. The simulation results show that the proposed approach produces collision-free plans while minimizing the path length. To move towards a deployable system, we apply collision detection and avoidance techniques to a variety of simulation and sensor modalities including camera, radar and ADS-B along with suitable tracking schemes. Keywords: unmanned aircraft system, small UAS, sense and avoid, minimum sensing range, airborne collision detection and avoidance, collision detection, collision risk assessment, collision avoidance, conflict detection, conflict avoidance, path planning.

  16. Pericellular oxygen monitoring with integrated sensor chips for reproducible cell culture experiments.

    PubMed

    Kieninger, J; Aravindalochanan, K; Sandvik, J A; Pettersen, E O; Urban, G A

    2014-04-01

    Here we present an application, in two tumour cell lines, based on the Sensing Cell Culture Flask system as a cell culture monitoring tool for pericellular oxygen sensing. T-47D (human breast cancer) and T98G (human brain cancer) cells were cultured either in atmospheric air or in a glove-box set at 4% oxygen, in both cases with 5% CO2 in the gas phase. Pericellular oxygen tension was measured with the help of an integrated sensor chip comprising oxygen sensor arrays. Obtained results illustrate variation of pericellular oxygen tension in attached cells covered by stagnant medium. Independent of incubation conditions, low pericellular oxygen concentration levels, usually associated with hypoxia, were found in dense cell cultures. Respiration alone brought pericellular oxygen concentration down to levels which could activate hypoxia-sensing regulatory processes in cultures believed to be aerobic. Cells in culture believed to experience conditions of mild hypoxia may, in reality, experience severe hypoxia. This would lead to incorrect assumptions and suggests that pericellular oxygen concentration readings are of great importance to obtain reproducible results when dealing with hypoxic and normoxic (aerobic) incubation conditions. The Sensing Cell Culture Flask system allows continuous monitoring of pericellular oxygen concentration with outstanding long-term stability and no need for recalibration during cell culture experiments. The sensor is integrated into the flask bottom, thus in direct contact with attached cells. No additional equipment needs to be inserted into the flask during culturing. Transparency of the electrochemical sensor chip allows optical inspection of cells attached on top of the sensor. © 2014 John Wiley & Sons Ltd.

  17. Ground based remote sensing and physiological measurements provide novel insights into canopy photosynthetic optimization in arctic shrubs

    NASA Astrophysics Data System (ADS)

    Magney, T. S.; Griffin, K. L.; Boelman, N.; Eitel, J.; Greaves, H.; Prager, C.; Logan, B.; Oliver, R.; Fortin, L.; Vierling, L. A.

    2014-12-01

    Because changes in vegetation structure and function in the Arctic are rapid and highly dynamic phenomena, efforts to understand the C balance of the tundra require repeatable, objective, and accurate remote sensing methods for estimating aboveground C pools and fluxes over large areas. A key challenge addressing the modelling of aboveground C is to utilize process-level information from fine-scale studies. Utilizing information obtained from high resolution remote sensing systems could help to better understand the C source/sink strength of the tundra, which will in part depend on changes in photosynthesis resulting from the partitioning of photosynthetic machinery within and among deciduous shrub canopies. Terrestrial LiDAR and passive hyperspectral remote sensing measurements offer an effective, repeatable, and scalable method to understand photosynthetic performance and partitioning at the canopy scale previously unexplored in arctic systems. Using a 3-D shrub canopy model derived from LiDAR, we quantified the light regime of leaves within shrub canopies to gain a better understanding of how light interception varies in response to the Arctic's complex radiation regime. This information was then coupled with pigment sampling (i.e., xanthophylls, and Chl a/b) to evaluate the optimization of foliage photosynthetic capacity within shrub canopies due to light availability. In addition, a lab experiment was performed to validate evidence of canopy level optimization via gradients of light intensity and leaf light environment. For this, hyperspectral reflectance (photochemical reflectance index (PRI)), and solar induced fluorescence (SIF)) was collected in conjunction with destructive pigment samples (xanthophylls) and chlorophyll fluorescence measurements in both sunlit and shaded canopy positions.

  18. Solid-State and Biological Nanopore for Real-Time Sensing of Single Chemical and Sequencing of DNA.

    PubMed

    Haque, Farzin; Li, Jinghong; Wu, Hai-Chen; Liang, Xing-Jie; Guo, Peixuan

    2013-02-01

    Sensitivity and specificity are two most important factors to take into account for molecule sensing, chemical detection and disease diagnosis. A perfect sensitivity is to reach the level where a single molecule can be detected. An ideal specificity is to reach the level where the substance can be detected in the presence of many contaminants. The rapidly progressing nanopore technology is approaching this threshold. A wide assortment of biomotors and cellular pores in living organisms perform diverse biological functions. The elegant design of these transportation machineries has inspired the development of single molecule detection based on modulations of the individual current blockage events. The dynamic growth of nanotechnology and nanobiotechnology has stimulated rapid advances in the study of nanopore based instrumentation over the last decade, and inspired great interest in sensing of single molecules including ions, nucleotides, enantiomers, drugs, and polymers such as PEG, RNA, DNA, and polypeptides. This sensing technology has been extended to medical diagnostics and third generation high throughput DNA sequencing. This review covers current nanopore detection platforms including both biological pores and solid state counterparts. Several biological nanopores have been studied over the years, but this review will focus on the three best characterized systems including α-hemolysin and MspA, both containing a smaller channel for the detection of single-strand DNA, as well as bacteriophage phi29 DNA packaging motor connector that contains a larger channel for the passing of double stranded DNA. The advantage and disadvantage of each system are compared; their current and potential applications in nanomedicine, biotechnology, and nanotechnology are discussed.

  19. Solid-State and Biological Nanopore for Real-Time Sensing of Single Chemical and Sequencing of DNA

    PubMed Central

    Haque, Farzin; Li, Jinghong; Wu, Hai-Chen; Liang, Xing-Jie; Guo, Peixuan

    2013-01-01

    Sensitivity and specificity are two most important factors to take into account for molecule sensing, chemical detection and disease diagnosis. A perfect sensitivity is to reach the level where a single molecule can be detected. An ideal specificity is to reach the level where the substance can be detected in the presence of many contaminants. The rapidly progressing nanopore technology is approaching this threshold. A wide assortment of biomotors and cellular pores in living organisms perform diverse biological functions. The elegant design of these transportation machineries has inspired the development of single molecule detection based on modulations of the individual current blockage events. The dynamic growth of nanotechnology and nanobiotechnology has stimulated rapid advances in the study of nanopore based instrumentation over the last decade, and inspired great interest in sensing of single molecules including ions, nucleotides, enantiomers, drugs, and polymers such as PEG, RNA, DNA, and polypeptides. This sensing technology has been extended to medical diagnostics and third generation high throughput DNA sequencing. This review covers current nanopore detection platforms including both biological pores and solid state counterparts. Several biological nanopores have been studied over the years, but this review will focus on the three best characterized systems including α-hemolysin and MspA, both containing a smaller channel for the detection of single-strand DNA, as well as bacteriophage phi29 DNA packaging motor connector that contains a larger channel for the passing of double stranded DNA. The advantage and disadvantage of each system are compared; their current and potential applications in nanomedicine, biotechnology, and nanotechnology are discussed. PMID:23504223

  20. Innate immunity and the sensing of infection, damage and danger in the female genital tract.

    PubMed

    Sheldon, Iain Martin; Owens, Siân-Eleri; Turner, Matthew Lloyd

    2017-02-01

    Tissue homeostasis in the female genital tract is challenged by infection, damage, and even physiological events during reproductive cycles. We propose that the evolutionarily ancient system of innate immunity is sufficient to sense and respond to danger in the non-pregnant female genital tract. Innate immunity produces a rapidly inducible, non-specific response when cells sense danger. Here we provide a primer on innate immunity and discuss what is known about how danger signals are sensed in the endometrium and ovary, the impact of inflammatory responses on reproduction, and how endocrinology and innate immunity are integrated. Endometrial epithelial and stromal cells, and ovarian granulosa cells express pattern recognition receptors, similar to cells of the innate immune system. These pattern recognition receptors, such as the Toll-like receptors, bind pathogen-associated or damage-associated molecular patterns. Activation of pattern recognition receptors leads to inflammation, recruitment of immune cells from the peripheral circulation, and phagocytosis. Although the inflammatory response helps maintain or restore endometrial health, there may also be negative consequences for fertility, including perturbation of oocyte competence. The intensity of the inflammatory response reflects the balance between the level of danger and the systems that regulate innate immunity, including the endocrine environment. Understanding innate immunity is important because disease and inappropriate inflammatory responses in the endometrium or ovary cause infertility. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Sensing and communication trade-offs in picosatellite formation flying missions.

    PubMed

    Arnon, Shlomi; Kedar, Debbie

    2009-10-01

    One of the primary challenges in all small satellite design is the attainment of adequate sensing and communication capabilities within the stringent spatial limitations. These can be defined in terms of surface area expenditure for the different payloads. There is an inevitable trade-off between enhancing the sensing capacity at the expense of reducing communication capabilities on the one hand and, on the other hand, increasing the communication capacity to the detriment of the sensing ability. Careful balancing of the conflicting demands is necessary to achieve acceptable performance levels. In this paper we study two intersatellite optical wireless communication scenarios: (i) a direct link between two satellites and (ii) a folded path link between a master satellite and a picosatellite equipped with a modulatable retroreflector. In the latter case the picosatellite does not have a laser transmitter and the data carrier is the retroreflected beam from the master satellite. The data rate, which is bounded by the sensing payload resolution, is derived using diffraction theory and Shannon capacity considerations. We develop a mathematical model to describe the interrelations between sensing and communication facilities in a picosatellite flight formation using optical technologies and demonstrate system performance trade-offs with a numerical example.

  2. Tungsten Oxide Photonic Crystals as Optical Transducer for Gas Sensing.

    PubMed

    Amrehn, Sabrina; Wu, Xia; Wagner, Thorsten

    2018-01-26

    Some metal oxide semiconductors, such as tungsten trioxide or tin dioxide, are well-known as resistive transducers for gas sensing and offer high sensitivities down to the part per billion level. Electrical signal read-out, however, limits the information obtained on the electronic properties of metal oxides to a certain frequency range and its application because of the required electrical contacts. Therefore, a novel approach for building an optical transducer for gas reactions utilizing metal oxide photonic crystals is presented here. By the rational design of the structure and composition it is possible to synthesize a functional material which allows one to obtain insight into its electronic properties in the optical frequency range with simple experimental measures. The concept is demonstrated by tungsten trioxide inverse opal structure as optical transducer material for hydrogen sensing. The sensing behavior is analyzed in a temperature range from room temperature to 500 °C and in a wide hydrogen concentration range (3000 ppm to 10%). The sensing mechanism is mainly the refractive index change resulting from hydrogen intercalation in tungsten trioxide, but the back reaction has also impact on the optical properties of this system. Detailed chemical reaction studies provide suggestions for specific sensing conditions.

  3. BOREAS Level-3s SPOT Imagery: Scaled At-sensor Radiance in LGSOWG Format

    NASA Technical Reports Server (NTRS)

    Strub, Richard; Nickeson, Jaime; Newcomer, Jeffrey A.; Hall, Forrest G. (Editor); Cihlar, Josef

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the level-3s Satellite Pour l'Observation de la Terre (SPOT) data, along with the other remotely sensed images, were collected in order to provide spatially extensive information over the primary study areas. This information includes radiant energy, detailed land cover, and biophysical parameter maps such as Fraction of Photosynthetically Active Radiation (FPAR) and Leaf Area Index (LAI). The SPOT images acquired for the BOREAS project were selected primarily to fill temporal gaps in the Landsat Thematic Mapper (TM) image data collection. CCRS collected and supplied the level-3s images to BOREAS Information System (BORIS) for use in the remote sensing research activities. Spatially, the level-3s images cover 60- by 60-km portions of the BOREAS Northern Study Area (NSA) and Southern Study Area (SSA). Temporally, the images cover the period of 17-Apr-1994 to 30-Aug-1996. The images are available in binary image format files. Due to copyright issues, the SPOT images may not be publicly available.

  4. Performance of a wearable acoustic system for fetal movement discrimination

    PubMed Central

    Lai, Jonathan; Woodward, Richard; Alexandrov, Yuriy; ain Munnee, Qurratul; Lees, Christoph C.

    2018-01-01

    Fetal movements (FM) are a key factor in clinical management of high-risk pregnancies such as fetal growth restriction. While maternal perception of reduced FM can trigger self-referral to obstetric services, maternal sensation is highly subjective. Objective, reliable monitoring of fetal movement patterns outside clinical environs is not currently possible. A wearable and non-transmitting system capable of sensing fetal movements over extended periods of time would be extremely valuable, not only for monitoring individual fetal health, but also for establishing normal levels of movement in the population at large. Wearable monitors based on accelerometers have previously been proposed as a means of tracking FM, but such systems have difficulty separating maternal and fetal activity and have not matured to the level of clinical use. We introduce a new wearable system based on a novel combination of accelerometers and bespoke acoustic sensors as well as an advanced signal processing architecture to identify and discriminate between types of fetal movements. We validate the system with concurrent ultrasound tests on a cohort of 44 pregnant women and demonstrate that the garment is capable of both detecting and discriminating the vigorous, whole-body ‘startle’ movements of a fetus. These results demonstrate the promise of multimodal sensing for the development of a low-cost, non-transmitting wearable monitor for fetal movements. PMID:29734344

  5. Performance of a wearable acoustic system for fetal movement discrimination.

    PubMed

    Lai, Jonathan; Woodward, Richard; Alexandrov, Yuriy; Ain Munnee, Qurratul; Lees, Christoph C; Vaidyanathan, Ravi; Nowlan, Niamh C

    2018-01-01

    Fetal movements (FM) are a key factor in clinical management of high-risk pregnancies such as fetal growth restriction. While maternal perception of reduced FM can trigger self-referral to obstetric services, maternal sensation is highly subjective. Objective, reliable monitoring of fetal movement patterns outside clinical environs is not currently possible. A wearable and non-transmitting system capable of sensing fetal movements over extended periods of time would be extremely valuable, not only for monitoring individual fetal health, but also for establishing normal levels of movement in the population at large. Wearable monitors based on accelerometers have previously been proposed as a means of tracking FM, but such systems have difficulty separating maternal and fetal activity and have not matured to the level of clinical use. We introduce a new wearable system based on a novel combination of accelerometers and bespoke acoustic sensors as well as an advanced signal processing architecture to identify and discriminate between types of fetal movements. We validate the system with concurrent ultrasound tests on a cohort of 44 pregnant women and demonstrate that the garment is capable of both detecting and discriminating the vigorous, whole-body 'startle' movements of a fetus. These results demonstrate the promise of multimodal sensing for the development of a low-cost, non-transmitting wearable monitor for fetal movements.

  6. g-LIMIT: A Vibration Isolation System for the Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.

    1998-01-01

    For many microgravity science experiments using the Microgravity Science Glovebox (MSG), the ambient acceleration environment will exceed desirable levels. To provide a more quiescent acceleration environment, a vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being designed. g-LIMIT is the next generation of technology developed for and demonstrated by STABLE on the USML-2 mission in October 1995. Although g-LIMIT is a sub-rack level isolation system that can be used in a variety of applications, g-LIMIT is uniquely optimized for MSG implementation. Standard MSG structural and umbilical interfaces will be used so that the isolation mount is transparent to the user with no additional accommodation requirements. g-LIMIT consists of three integrated isolator modules, each of which is comprised of a dual axis actuator, two axes of acceleration sensing, two axes of position sensing, control electronics, and data transmission capabilities in a minimum-volume package. In addition, this system provides the unique capability for measuring absolute acceleration of the experiment independent of accelerometers as a by-product of the control system and will have the capability of generating pristine accelerations to enhance experiment operations. g-LIMIT is scheduled for flight during the UF-2 mission and will be available to glovebox investigators immediately after characterization testing.

  7. A new multi-angle remote sensing framework for scaling vegetation properties from tower-based spectro-radiometers to next generation "CubeSat"-satellites.

    NASA Astrophysics Data System (ADS)

    Hilker, T.; Hall, F. G.; Dyrud, L. P.; Slagowski, S.

    2014-12-01

    Frequent earth observations are essential for assessing the risks involved with global climate change, its feedbacks on carbon, energy and water cycling and consequences for live on earth. Often, satellite-remote sensing is the only practical way to provide such observations at comprehensive spatial scales, but relationships between land surface parameters and remotely sensed observations are mostly empirical and cannot easily be scaled across larger areas or over longer time intervals. For instance, optically based methods frequently depend on extraneous effects that are unrelated to the surface property of interest, including the sun-server geometry or background reflectance. As an alternative to traditional, mono-angle techniques, multi-angle remote sensing can help overcome some of these limitations by allowing vegetation properties to be derived from comprehensive reflectance models that describe changes in surface parameters based on physical principles and radiative transfer theory. Recent results have shown in theoretical and experimental research that multi-angle techniques can be used to infer and scale the photosynthetic rate of vegetation, its biochemical and structural composition robustly from remote sensing. Multi-angle remote sensing could therefore revolutionize estimates of the terrestrial carbon uptake as scaling of primary productivity may provide a quantum leap in understanding the spatial and temporal complexity of terrestrial earth science. Here, we introduce a framework of next generation tower-based instruments to a novel and unique constellation of nano-satellites (Figure 1) that will allow us to systematically scale vegetation parameters from stand to global levels. We provide technical insights, scientific rationale and present results. We conclude that future earth observation from multi-angle satellite constellations, supported by tower based remote sensing will open new opportunities for earth system science and earth system modeling.

  8. Remote sensing of atmosphere and oceans; Proceedings of Symposium 1 and of the Topical Meeting of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Technical Reports Server (NTRS)

    Raschke, E. (Editor); Ghazi, A. (Editor); Gower, J. F. R. (Editor); Mccormick, P. (Editor); Gruber, A. (Editor); Hasler, A. F. (Editor)

    1989-01-01

    Papers are presented on the contribution of space remote sensing observations to the World Climate Research Program and the Global Change Program, covering topics such as space observations for global environmental monitoring, experiments related to land surface fluxes, studies of atmospheric composition, structure, motions, and precipitation, and remote sensing for oceanography, observational studies of the atmosphere, clouds, and the earth radiation budget. Also, papers are given on results from space observations for meteorology, oceanography, and mesoscale atmospheric and ocean processes. The topics include vertical atmospheric soundings, surface water temperature determination, sea level variability, data on the prehurricane atmosphere, linear and circular mesoscale convective systems, Karman vortex clouds, and temporal patterns of phytoplankton abundance.

  9. Assessment of muscle fatigue using electromygraphm sensing

    NASA Astrophysics Data System (ADS)

    Helmi, Muhammad Hazimin Bin; Ping, Chew Sue; Ishak, Nur Elliza Binti; Saad, Mohd Alimi Bin Mohd; Mokhtar, Anis Shahida Niza Binti

    2017-08-01

    Muscle fatigue is condition of muscle decline in ability after undergoing any physical activity. Observation of the muscle condition of an athlete during training is crucial to prevent or minimize injury and able to achieve optimum performance in actual competition. The aim of this project is to develop a muscle monitoring system to detect muscle fatigue in swimming athlete. This device is capable to measure muscle stress level of the swimmer and at the same time provide indication of muscle fatigue level to trainer. Electromyography signal was recorded from the muscle movement while practicing the front crawl stroke repetitively. The time domain data was processed to frequency spectra in order to study the effect of muscle fatigue. The results show that the recorded EMG signal is able to sense muscle fatigue.

  10. Improvements in agricultural water decision support using remote sensing

    NASA Astrophysics Data System (ADS)

    Marshall, M. T.

    2012-12-01

    Population driven water scarcity, aggravated by climate-driven evaporative demand in dry regions of the world, has the potential of transforming ecological and social systems to the point of armed conflict. Water shortages will be most severe in agricultural areas, as the priority shifts to urban and industrial use. In order to design, evaluate, and monitor appropriate mitigation strategies, predictive models must be developed that quantify exposure to water shortage. Remote sensing data has been used for more than three decades now to parametrize these models, because field measurements are costly and difficult in remote regions of the world. In the past decade, decision-makers for the first time can make accurate and near real-time evaluations of field conditions with the advent of hyper- spatial and spectral and coarse resolution continuous remote sensing data. Here, we summarize two projects representing diverse applications of remote sensing to improve agricultural water decision support. The first project employs MODIS (coarse resolution continuous data) to drive an evapotranspiration index, which is combined with the Standardized Precipitation Index driven by meteorological satellite data to improve famine early warning in Africa. The combined index is evaluated using district-level crop yield data from Kenya and Malawi and national-level crop yield data from the United Nations Food and Agriculture Organization. The second project utilizes hyper- spatial (GeoEye 1, Quickbird, IKONOS, and RapidEye) and spectral (Hyperion/ALI), as well as multi-spectral (Landsat ETM+, SPOT, and MODIS) data to develop biomass estimates for key crops (alfalfa, corn, cotton, and rice) in the Central Valley of California. Crop biomass is an important indicator of crop water productivity. The remote sensing data is combined using various data fusion techniques and evaluated with field data collected in the summer of 2012. We conclude with a brief discussion on implementation of these tools into two new decision support systems: FEWSNET Early Warning Explorer (http://earlywarning.usgs.gov/fews/ewxindex.php) and the NASA Terrestrial Observation and Prediction System (http://ecocast.arc.nasa.gov/) for the first and second project respectively.

  11. Micro-electro-mechanical systems (MEMS) and agile lensing-based modules for communications, sensing and signal processing

    NASA Astrophysics Data System (ADS)

    Reza, Syed Azer

    This dissertation proposes the use of the emerging Micro-Electro-Mechanical Systems (MEMS) and agile lensing optical device technologies to design novel and powerful signal conditioning and sensing modules for advanced applications in optical communications, physical parameter sensing and RF/optical signal processing. For example, these new module designs have experimentally demonstrated exceptional features such as stable loss broadband operations and high > 60 dB optical dynamic range signal filtering capabilities. The first part of the dissertation describes the design and demonstration of digital MEMS-based signal processing modules for communication systems and sensor networks using the TI DLP (Digital Light Processing) technology. Examples of such modules include optical power splitters, narrowband and broadband variable fiber optical attenuators, spectral shapers and filters. Compared to prior works, these all-digital designs have advantages of repeatability, accuracy, and reliability that are essential for advanced communications and sensor applications. The next part of the dissertation proposes, analyzes and demonstrates the use of analog opto-fluidic agile lensing technology for sensor networks and test and measurement systems. Novel optical module designs for distance sensing, liquid level sensing, three-dimensional object shape sensing and variable photonic delay lines are presented and experimentally demonstrated. Compared to prior art module designs, the proposed analog-mode modules have exceptional performances, particularly for extreme environments (e.g., caustic liquids) where the free-space agile beam-based sensor provide remote non-contact access for physical sensing operations. The dissertation also presents novel modules involving hybrid analog-digital photonic designs that make use of the different optical device technologies to deliver the best features of both analog and digital optical device operations and controls. Digital controls are achieved through the use of the digital MEMS technology and analog controls are realized by employing opto-fluidic agile lensing technology and acousto-optic technology. For example, variable fiber-optic attenuators and spectral filters are proposed using the hybrid design. Compared to prior art module designs, these hybrid designs provide a higher module dynamic range and increased resolution that are critical in various advanced system applications. In summary, the dissertation shows the added power of hybrid optical designs using both the digital and analog photonic signal processing versus just all-digital or all-analog module designs.

  12. Design of a temperature control system using incremental PID algorithm for a special homemade shortwave infrared spatial remote sensor based on FPGA

    NASA Astrophysics Data System (ADS)

    Xu, Zhipeng; Wei, Jun; Li, Jianwei; Zhou, Qianting

    2010-11-01

    An image spectrometer of a spatial remote sensing satellite requires shortwave band range from 2.1μm to 3μm which is one of the most important bands in remote sensing. We designed an infrared sub-system of the image spectrometer using a homemade 640x1 InGaAs shortwave infrared sensor working on FPA system which requires high uniformity and low level of dark current. The working temperature should be -15+/-0.2 Degree Celsius. This paper studies the model of noise for focal plane array (FPA) system, investigated the relationship with temperature and dark current noise, and adopts Incremental PID algorithm to generate PWM wave in order to control the temperature of the sensor. There are four modules compose of the FPGA module design. All of the modules are coded by VHDL and implemented in FPGA device APA300. Experiment shows the intelligent temperature control system succeeds in controlling the temperature of the sensor.

  13. Ultrasonic sensing of GMAW: Laser/EMAT defect detection system. [Gas Metal Arc Welding (GMAW), Electromagnetic acoustic transducer (EMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, N.M.; Johnson, J.A.; Larsen, E.D.

    1992-01-01

    In-process ultrasonic sensing of welding allows detection of weld defects in real time. A noncontacting ultrasonic system is being developed to operate in a production environment. The principal components are a pulsed laser for ultrasound generation and an electromagnetic acoustic transducer (EMAT) for ultrasound reception. A PC-based data acquisition system determines the quality of the weld on a pass-by-pass basis. The laser/EMAT system interrogates the area in the weld volume where defects are most likely to occur. This area of interest is identified by computer calculations on a pass-by-pass basis using weld planning information provided by the off-line programmer. Themore » absence of a signal above the threshold level in the computer-calculated time interval indicates a disruption of the sound path by a defect. The ultrasonic sensor system then provides an input signal to the weld controller about the defect condition. 8 refs.« less

  14. Cushion System for Multi-Use Child Safety Seat

    NASA Technical Reports Server (NTRS)

    Dabney, Richard W. (Inventor); Elrod, Susan V. (Inventor)

    2007-01-01

    A cushion system for use with a child safety seat has a plurality of bladders assembled to form a seat cushion that cooperates with the seat's safety harness. One or more sensors coupled to the safety harness sense tension therein and generate a signal indicative of the tension. Each of the bladders is individually pressurized by a pressurization system to define a support configuration of the seat cushion. The pressurization system is disabled when tension in the safety harness has attained a threshold level.

  15. Cushion system for multi-use child safety seat

    NASA Technical Reports Server (NTRS)

    Elrod, Susan V. (Inventor); Dabney, Richard W. (Inventor)

    2007-01-01

    A cushion system for use with a child safety seat has a plurality of bladders assembled to form a seat cushion that cooperates with the seat's safety harness. One or more sensors coupled to the safety harness sense tension therein and generate a signal indicative of the tension. Each of the bladders is individually pressurized by a pressurization system to define a support configuration of the seat cushion. The pressurization system is disabled when tension in the safety harness has attained a threshold level.

  16. Self-sensing in Bacillus subtilis quorum-sensing systems

    PubMed Central

    Bareia, Tasneem; Pollak, Shaul; Eldar, Avigdor

    2017-01-01

    Bacterial cell-cell signaling, or quorum sensing, is characterized by the secretion and group-wide detection of small diffusible signal molecules called autoinducers. This mechanism allows cells to coordinate their behavior in a density-dependent manner. A quorum-sensing cell may directly respond to the autoinducers it produces in a cell-autonomous and quorum-independent manner, but the strength of such self-sensing effect and its impact on bacterial physiology are unclear. Here, we explored the existence and impact of self-sensing in the Bacillus subtilis ComQXP and Rap-Phr quorum-sensing systems. By comparing the quorum-sensing response of autoinducer-secreting and non-secreting cells in co-culture, we found that secreting cells consistently showed a stronger response than non-secreting cells. Combining genetic and quantitative analyses, we demonstrated this effect to be a direct result of self-sensing and ruled out an indirect regulatory effect of the autoinducer production genes on response sensitivity. In addition, self-sensing in the ComQXP system affected persistence to antibiotic treatment. Together, these findings indicate the existence of self-sensing in the two most common designs of quorum-sensing systems of Gram-positive bacteria. PMID:29038467

  17. Effects of radiation upon the light-sensing elements of the retina as characterized by scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Malachowski, M. J.; Tobias, C. A.; Leith, J. T.

    1977-01-01

    A model system using Necturus maculosus, the common mudpuppy, was established for evaluating effects of radiation upon the light-sensing elements of the retina. Accelerated heavy ions of helium and neon from the Berkeley Bevalac were used. A number of criteria were chosen to characterize radiation damage by observing morphological changes with the scanning electron microscope. The studies indicated retina sensitivity to high-LET (neon) particles at radiation levels below 10 rads (7 particles per visual element) whereas no significant effects were seen from fast helium ions below 50 rads.

  18. Qualification of a truly distributed fiber optic technique for strain and temperature measurements in concrete structures

    NASA Astrophysics Data System (ADS)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-04-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μ strain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades, either embedded in the concrete or attached to the surface of the structure. They must ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Based on the European guide FD CEN/TR 14748 "Non-destructive testing - Methodology for qualification of non-destructive tests", a qualification method was developed. Tests were carried out using various sensing cables embedded in the volume or fixed to the surface of plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument, while mechanical solicitations were imposed to the concrete element. Preliminary experiments seem very promising since measurements performed with distributed sensing systems are found comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  19. Investigation related to multispectral imaging systems

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F.; Erickson, J. D.

    1974-01-01

    A summary of technical progress made during a five year research program directed toward the development of operational information systems based on multispectral sensing and the use of these systems in earth-resource survey applications is presented. Efforts were undertaken during this program to: (1) improve the basic understanding of the many facets of multispectral remote sensing, (2) develop methods for improving the accuracy of information generated by remote sensing systems, (3) improve the efficiency of data processing and information extraction techniques to enhance the cost-effectiveness of remote sensing systems, (4) investigate additional problems having potential remote sensing solutions, and (5) apply the existing and developing technology for specific users and document and transfer that technology to the remote sensing community.

  20. Accommodating Student Diversity in Remote Sensing Instruction.

    ERIC Educational Resources Information Center

    Hammen, John L., III.

    1992-01-01

    Discusses the difficulty of teaching computer-based remote sensing to students of varying levels of computer literacy. Suggests an instructional method that accommodates all levels of technical expertise through the use of microcomputers. Presents a curriculum that includes an introduction to remote sensing, digital image processing, and…

  1. Code Description for Generation of Meteorological Height and Pressure Level and Layer Profiles

    DTIC Science & Technology

    2016-06-01

    defined by user input height or pressure levels. It can process input profiles from sensing systems such as radiosonde, lidar, or wind profiling radar...nearly the same way, but the split between wind and temperature/humidity (TH) special levels leads to some changes to one other routine. If changes are...top of the sounding, sometimes the moisture, the thermal, both thermal and moisture, and/or the wind data are missing. Missing data items in the

  2. Androgynous, Reconfigurable Closed Loop Feedback Controlled Low Impact Docking System With Load Sensing Electromagnetic Capture Ring

    NASA Technical Reports Server (NTRS)

    Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Morales, Ray H. (Inventor); Le, Thang D. (Inventor)

    2002-01-01

    The present invention relates to a fully androgynous, reconfigurable closed loop feedback controlled low impact docking system with load sensing electromagnetic capture ring. The docking system of the present invention preferably comprises two Docking- assemblies, each docking assembly comprising a load sensing ring having an outer face, one of more electromagnets, one or more load cells coupled to said load sensing ring. The docking assembly further comprises a plurality of actuator arms coupled to said load sensing ring and capable of dynamically adjusting the orientation of said load sensing ring and a reconfigurable closed loop control system capable of analyzing signals originating from said plurality of load cells and of outputting real time control for each of the actuators. The docking assembly of the present invention incorporates an active load sensing system to automatically dynamically adjust the load sensing ring during capture instead of requiring significant force to push and realign the ring.

  3. 78 FR 44536 - Proposed Information Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems AGENCY: National Oceanic and... for the licensing of private operators of remote-sensing space systems. The information in applications and subsequent reports is needed to ensure compliance with the Land Remote- Sensing Policy Act of...

  4. Method, system and apparatus for monitoring and adjusting the quality of indoor air

    DOEpatents

    Hartenstein, Steven D.; Tremblay, Paul L.; Fryer, Michael O.; Hohorst, Frederick A.

    2004-03-23

    A system, method and apparatus is provided for monitoring and adjusting the quality of indoor air. A sensor array senses an air sample from the indoor air and analyzes the air sample to obtain signatures representative of contaminants in the air sample. When the level or type of contaminant poses a threat or hazard to the occupants, the present invention takes corrective actions which may include introducing additional fresh air. The corrective actions taken are intended to promote overall health of personnel, prevent personnel from being overexposed to hazardous contaminants and minimize the cost of operating the HVAC system. The identification of the contaminants is performed by comparing the signatures provided by the sensor array with a database of known signatures. Upon identification, the system takes corrective actions based on the level of contaminant present. The present invention is capable of learning the identity of previously unknown contaminants, which increases its ability to identify contaminants in the future. Indoor air quality is assured by monitoring the contaminants not only in the indoor air, but also in the outdoor air and the air which is to be recirculated. The present invention is easily adaptable to new and existing HVAC systems. In sum, the present invention is able to monitor and adjust the quality of indoor air in real time by sensing the level and type of contaminants present in indoor air, outdoor and recirculated air, providing an intelligent decision about the quality of the air, and minimizing the cost of operating an HVAC system.

  5. Systemic Glucoregulation by Glucose-Sensing Neurons in the Ventromedial Hypothalamic Nucleus (VMH).

    PubMed

    Shimazu, Takashi; Minokoshi, Yasuhiko

    2017-05-01

    The ventromedial hypothalamic nucleus (VMH) regulates glucose production in the liver as well as glucose uptake and utilization in peripheral tissues, including skeletal muscle and brown adipose tissue, via efferent sympathetic innervation and neuroendocrine mechanisms. The action of leptin on VMH neurons also increases glucose uptake in specific peripheral tissues through the sympathetic nervous system, with improved insulin sensitivity. On the other hand, subsets of VMH neurons, such as those that express steroidogenic factor 1 (SF1), sense changes in the ambient glucose concentration and are characterized as glucose-excited (GE) and glucose-inhibited (GI) neurons whose action potential frequency increases and decreases, respectively, as glucose levels rise. However, how these glucose-sensing (GE and GI) neurons in the VMH contribute to systemic glucoregulation remains poorly understood. In this review, we provide historical background and discuss recent advances related to glucoregulation by VMH neurons. In particular, the article describes the role of GE neurons in the control of peripheral glucose utilization and insulin sensitivity, which depend on mitochondrial uncoupling protein 2 of the neurons, as well as that of GI neurons in the control of hepatic glucose production through hypoglycemia-induced counterregulatory mechanisms.

  6. Development of an LSI for Tactile Sensor Systems on the Whole-Body of Robots

    NASA Astrophysics Data System (ADS)

    Muroyama, Masanori; Makihata, Mitsutoshi; Nakano, Yoshihiro; Matsuzaki, Sakae; Yamada, Hitoshi; Yamaguchi, Ui; Nakayama, Takahiro; Nonomura, Yutaka; Fujiyoshi, Motohiro; Tanaka, Shuji; Esashi, Masayoshi

    We have developed a network type tactile sensor system, which realizes high-density tactile sensors on the whole-body of nursing and communication robots. The system consists of three kinds of nodes: host, relay and sensor nodes. Roles of the sensor node are to sense forces and, to encode the sensing data and to transmit the encoded data on serial channels by interruption handling. Relay nodes and host deal with a number of the encoded sensing data from the sensor nodes. A sensor node consists of a capacitive MEMS force sensor and a signal processing/transmission LSI. In this paper, details of an LSI for the sensor node are described. We designed experimental sensor node LSI chips by a commercial 0.18µm standard CMOS process. The 0.18µm LSIs were supplied in wafer level for MEMS post-process. The LSI chip area is 2.4mm × 2.4mm, which includes logic, CF converter and memory circuits. The maximum clock frequency of the chip with a large capacitive load is 10MHz. Measured power consumption at 10MHz clock is 2.23mW. Experimental results indicate that size, response time, sensor sensitivity and power consumption are all enough for practical tactile sensor systems.

  7. A vitamin-B2-sensing mechanism that regulates gut protease activity to impact animal’s food behavior and growth

    PubMed Central

    Qi, Bin; Kniazeva, Marina; Han, Min

    2017-01-01

    To survive challenging environments, animals acquired the ability to evaluate food quality in the intestine and respond to nutrient deficiencies with changes in food-response behavior, metabolism and development. However, the regulatory mechanisms underlying intestinal sensing of specific nutrients, especially micronutrients such as vitamins, and the connections to downstream physiological responses in animals remain underexplored. We have established a system to analyze the intestinal response to vitamin B2 (VB2) deficiency in Caenorhabditis elegans, and demonstrated that VB2 level critically impacts food uptake and foraging behavior by regulating specific protease gene expression and intestinal protease activity. We show that this impact is mediated by TORC1 signaling through reading the FAD-dependent ATP level. Thus, our study in live animals uncovers a VB2-sensing/response pathway that regulates food-uptake, a mechanism by which a common signaling pathway translates a specific nutrient signal into physiological activities, and the importance of gut microbiota in supplying micronutrients to animals. DOI: http://dx.doi.org/10.7554/eLife.26243.001 PMID:28569665

  8. An Adaptive 6-DOF Tracking Method by Hybrid Sensing for Ultrasonic Endoscopes

    PubMed Central

    Du, Chengyang; Chen, Xiaodong; Wang, Yi; Li, Junwei; Yu, Daoyin

    2014-01-01

    In this paper, a novel hybrid sensing method for tracking an ultrasonic endoscope within the gastrointestinal (GI) track is presented, and the prototype of the tracking system is also developed. We implement 6-DOF localization by sensing integration and information fusion. On the hardware level, a tri-axis gyroscope and accelerometer, and a magnetic angular rate and gravity (MARG) sensor array are attached at the end of endoscopes, and three symmetric cylindrical coils are placed around patients' abdomens. On the algorithm level, an adaptive fast quaternion convergence (AFQC) algorithm is introduced to determine the orientation by fusing inertial/magnetic measurements, in which the effects of magnetic disturbance and acceleration are estimated to gain an adaptive convergence output. A simplified electro-magnetic tracking (SEMT) algorithm for dimensional position is also implemented, which can easily integrate the AFQC's results and magnetic measurements. Subsequently, the average position error is under 0.3 cm by reasonable setting, and the average orientation error is 1° without noise. If magnetic disturbance or acceleration exists, the average orientation error can be controlled to less than 3.5°. PMID:24915179

  9. Synthetic analogs of bacterial quorum sensors

    DOEpatents

    Iyer, Rashi [Los Alamos, NM; Ganguly, Kumkum [Los Alamos, NM; Silks, Louis A [Los Alamos, NM

    2011-12-06

    Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.

  10. Synthetic analogs of bacterial quorum sensors

    DOEpatents

    Iyer, Rashi S.; Ganguly, Kumkum; Silks, Louis A.

    2013-01-08

    Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.

  11. Detection of Colorado potato beetle damage using remote sensing from small unmanned aircraft systems

    USDA-ARS?s Scientific Manuscript database

    Colorado potato beetle (CPB) adults and larvae devour leaves of potato and other vegetables, and have developed resistance to most pesticides. Integrated pest management is a collection of control methods, including pesticides, with the aim of limiting insect damage to an acceptable level. With earl...

  12. Spectroradiometric calibration of the thematic mapper and multispectral scanner system

    NASA Technical Reports Server (NTRS)

    Palmer, J. M.; Slater, P. N.

    1983-01-01

    The results of an analysis that relates thematic mapper (TM) saturation level to ground reflectance, calendar date, latitude, and atmospheric condition is provided. A revised version of the preprint included with the last quarterly report is also provided for publication in the IEEE Transactions on Geoscience and Remote Sensing.

  13. Long-term ecosystem monitoring and change detection: the Sonoran initiative

    Treesearch

    Robert Lozar; Charles Ehlschlaeger

    2005-01-01

    Ecoregional Systems Heritage and Encroachment Monitoring (ESHEM) examines issues of land management at an ecosystem level using remote sensing. Engineer Research and Development Center (ERDC), in partnership with Western Illinois University, has developed an ecoregional database and monitoring capability covering the Sonoran region. The monitoring time horizon will...

  14. 33 CFR 154.2150 - General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... system contains pressure-sensing, relieving, or alarming components in addition to those required by 33... precautions must be taken to prevent and detect polymerization of the cargo vapors. (p) Mixing of incompatible... vapor to a level at which reaction with the subsequent vapor cannot occur; and (3) The required duration...

  15. Electronic gating circuit and ultraviolet laser excitation permit improved dosimeter sensitivity

    NASA Technical Reports Server (NTRS)

    Eggenberger, D.; King, D.; Longnecker, A.; Schutt, D.

    1968-01-01

    Standard dosimeter reader, modified by adding an electronic gating circuit to trigger the intensity level photomultiplier, increases readout sensitivity of photoluminescent dosimeter systems. The gating circuit is controlled by a second photomultiplier which senses a short ultraviolet pulse from a laser used to excite the dosimeter.

  16. Validity of PALMS GPS scoring of active and passive travel compared with SenseCam.

    PubMed

    Carlson, Jordan A; Jankowska, Marta M; Meseck, Kristin; Godbole, Suneeta; Natarajan, Loki; Raab, Fredric; Demchak, Barry; Patrick, Kevin; Kerr, Jacqueline

    2015-03-01

    The objective of this study is to assess validity of the personal activity location measurement system (PALMS) for deriving time spent walking/running, bicycling, and in vehicle, using SenseCam (Microsoft, Redmond, WA) as the comparison. Forty adult cyclists wore a Qstarz BT-Q1000XT GPS data logger (Qstarz International Co., Taipei, Taiwan) and SenseCam (camera worn around the neck capturing multiple images every minute) for a mean time of 4 d. PALMS used distance and speed between global positioning system (GPS) points to classify whether each minute was part of a trip (yes/no), and if so, the trip mode (walking/running, bicycling, or in vehicle). SenseCam images were annotated to create the same classifications (i.e., trip yes/no and mode). Contingency tables (2 × 2) and confusion matrices were calculated at the minute level for PALMS versus SenseCam classifications. Mixed-effects linear regression models estimated agreement (mean differences and intraclass correlation coefficients) between PALMS and SenseCam with regard to minutes/day in each mode. Minute-level sensitivity, specificity, and negative predictive value were ≥88%, and positive predictive value was ≥75% for non-mode-specific trip detection. Seventy-two percent to 80% of outdoor walking/running minutes, 73% of bicycling minutes, and 74%-76% of in-vehicle minutes were correctly classified by PALMS. For minutes per day, PALMS had a mean bias (i.e., amount of over or under estimation) of 2.4-3.1 min (11%-15%) for walking/running, 2.3-2.9 min (7%-9%) for bicycling, and 4.3-5 min (15%-17%) for vehicle time. Intraclass correlation coefficients were ≥0.80 for all modes. PALMS has validity for processing GPS data to objectively measure time spent walking/running, bicycling, and in vehicle in population studies. Assessing travel patterns is one of many valuable applications of GPS in physical activity research that can improve our understanding of the determinants and health outcomes of active transportation as well as its effect on physical activity.

  17. Contribution of blood oxygen and carbon dioxide sensing to the energetic optimization of human walking.

    PubMed

    Wong, Jeremy D; O'Connor, Shawn M; Selinger, Jessica C; Donelan, J Maxwell

    2017-08-01

    People can adapt their gait to minimize energetic cost, indicating that walking's neural control has access to ongoing measurements of the body's energy use. In this study we tested the hypothesis that an important source of energetic cost measurements arises from blood gas receptors that are sensitive to O 2 and CO 2 concentrations. These receptors are known to play a role in regulating other physiological processes related to energy consumption, such as ventilation rate. Given the role of O 2 and CO 2 in oxidative metabolism, sensing their levels can provide an accurate estimate of the body's total energy use. To test our hypothesis, we simulated an added energetic cost for blood gas receptors that depended on a subject's step frequency and determined if subjects changed their behavior in response to this simulated cost. These energetic costs were simulated by controlling inspired gas concentrations to decrease the circulating levels of O 2 and increase CO 2 We found this blood gas control to be effective at shifting the step frequency that minimized the ventilation rate and perceived exertion away from the normally preferred frequency, indicating that these receptors provide the nervous system with strong physiological and psychological signals. However, rather than adapt their preferred step frequency toward these lower simulated costs, subjects persevered at their normally preferred frequency even after extensive experience with the new simulated costs. These results suggest that blood gas receptors play a negligible role in sensing energetic cost for the purpose of optimizing gait. NEW & NOTEWORTHY Human gait adaptation implies that the nervous system senses energetic cost, yet this signal is unknown. We tested the hypothesis that the blood gas receptors sense cost for gait optimization by controlling blood O 2 and CO 2 with step frequency as people walked. At the simulated energetic minimum, ventilation and perceived exertion were lowest, yet subjects preferred walking at their original frequency. This suggests that blood gas receptors are not critical for sensing cost during gait. Copyright © 2017 the American Physiological Society.

  18. Vestibular system: the many facets of a multimodal sense.

    PubMed

    Angelaki, Dora E; Cullen, Kathleen E

    2008-01-01

    Elegant sensory structures in the inner ear have evolved to measure head motion. These vestibular receptors consist of highly conserved semicircular canals and otolith organs. Unlike other senses, vestibular information in the central nervous system becomes immediately multisensory and multimodal. There is no overt, readily recognizable conscious sensation from these organs, yet vestibular signals contribute to a surprising range of brain functions, from the most automatic reflexes to spatial perception and motor coordination. Critical to these diverse, multimodal functions are multiple computationally intriguing levels of processing. For example, the need for multisensory integration necessitates vestibular representations in multiple reference frames. Proprioceptive-vestibular interactions, coupled with corollary discharge of a motor plan, allow the brain to distinguish actively generated from passive head movements. Finally, nonlinear interactions between otolith and canal signals allow the vestibular system to function as an inertial sensor and contribute critically to both navigation and spatial orientation.

  19. University/industry collaboration in remote sensing education

    NASA Technical Reports Server (NTRS)

    Ragan, R. M.; Royal, J. A.

    1981-01-01

    A graduate level course covering the development and structure of geographical information systems and the acquisition and processing of LANDSAT data for input to these systems is described. A portion of the course was devoted to hands-on classification of LANDSAT digital tapes utilizing both university and private industry processing systems. This industry/university collaboration was extremely successful and resulted in a high quality course. It gave the students an excellent experience in working in a real-world client/consultant relationship undertaken to accomplish a specific task. There were two key factors in the success of the collaboration. First, there was a very careful product definition and advance meetings between the University faculty and the company personnel to be involved. Second, the students were not taken into the industrial facility until late in the course, after they had a reasonable knowledge of the physical bases of remote sensing, the concept of spectral signatures, and the fundamentals of pattern analysis.

  20. Tracking, sensing and predicting flood wave propagation using nomadic satellite communication systems and hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Hostache, R.; Matgen, P.; Giustarini, L.; Tailliez, C.; Iffly, J.-F.

    2011-11-01

    The main objective of this study is to contribute to the development and the improvement of flood forecasting systems. Since hydrometric stations are often poorly distributed for monitoring the propagation of extreme flood waves, the study aims at evaluating the hydrometric value of the Global Navigation Satellite System (GNSS). Integrated with satellite telecommunication systems, drifting or anchored floaters equipped with navigation systems such as GPS and Galileo, enable the quasi-continuous measurement and near real-time transmission of water level and flow velocity data, from virtually any point in the world. The presented study investigates the effect of assimilating GNSS-derived water level and flow velocity measurements into hydraulic models in order to reduce the associated predictive uncertainty.

  1. A cloud-based home health care information sharing system to connect patients with home healthcare staff -A case report of a study in a mountainous region.

    PubMed

    Nomoto, Shinichi; Utsumi, Momoe; Sasayama, Satoshi; Dekigai, Hiroshi

    2017-01-01

    We have developed a cloud system, the e-Renraku Notebook (e-RN) for sharing of home care information based on the concept of "patient-centricity". In order to assess the likelihood that our system will enhance the communication and sharing of information between home healthcare staff members and home-care patients, we selected patients who were residing in mountainous regions for inclusion in our study. We herein report the findings.Eighteen staff members from 7 medical facilities and 9 patients participated in the present study.The e-RN was developed for two reasons: to allow patients to independently report their health status and to have staff members view and respond to the information received. The patients and staff members were given iPads with the pre-installed applications and the information being exchanged was reviewed over a 54-day period.Information was mainly input by the patients (61.6%), followed by the nurses who performed home visits (19.9%). The amount of information input by patients requiring high-level nursing care and their corresponding staff member was significantly greater than that input by patients who required low-level of nursing care.This patient-centric system in which patients can independently report and share information with a member of the healthcare staff provides a sense of security. It also allows staff members to understand the patient's health status before making a home visit, thereby giving them a sense of security and confidence. It was also noteworthy that elderly patients requiring high-level nursing care and their staff counterpart input information in the system significantly more frequently than patients who required low-level care.

  2. JPRS Report, Science & Technology, China, Remote Sensing Systems, Applications.

    DTIC Science & Technology

    1991-01-17

    Partial Contents: Short Introduction to Nation’s Remote Sensing Units, Domestic Airborne Remote - Sensing System, Applications in Monitoring Natural...Disasters, Applications of Imagery From Experimental Satellites Launched in 1985, 1986, Current Status, Future Prospects for Domestic Remote - Sensing -Satellite...Ground Station, and Radar Remote - Sensing Technology Used to Monitor Yellow River Delta,

  3. Mutual influences between the main olfactory and vomeronasal systems in development and evolution

    PubMed Central

    Suárez, Rodrigo; García-González, Diego; de Castro, Fernando

    2012-01-01

    The sense of smell plays a crucial role in the sensory world of animals. Two chemosensory systems have been traditionally thought to play-independent roles in mammalian olfaction. According to this, the main olfactory system (MOS) specializes in the detection of environmental odorants, while the vomeronasal system (VNS) senses pheromones and semiochemicals produced by individuals of the same or different species. Although both systems differ in their anatomy and function, recent evidence suggests they act synergistically in the perception of scents. These interactions include similar responses to some ligands, overlap of telencephalic connections and mutual influences in the regulation of olfactory-guided behavior. In the present work, we propose the idea that the relationships between systems observed at the organismic level result from a constant interaction during development and reflects a common history of ecological adaptations in evolution. We review the literature to illustrate examples of developmental and evolutionary processes that evidence these interactions and propose that future research integrating both systems may shed new light on the mechanisms of olfaction. PMID:23269914

  4. 15 CFR 960.12 - Data policy for remote sensing space systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...

  5. 15 CFR 960.12 - Data policy for remote sensing space systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...

  6. 15 CFR 960.12 - Data policy for remote sensing space systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...

  7. 15 CFR 960.12 - Data policy for remote sensing space systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...

  8. 15 CFR 960.12 - Data policy for remote sensing space systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...

  9. Implementation of Multiple Host Nodes in Wireless Sensing Node Network System for Landslide Monitoring

    NASA Astrophysics Data System (ADS)

    Abas, Faizulsalihin bin; Takayama, Shigeru

    2015-02-01

    This paper proposes multiple host nodes in Wireless Sensing Node Network System (WSNNS) for landslide monitoring. As landslide disasters damage monitoring system easily, one major demand in landslide monitoring is the flexibility and robustness of the system to evaluate the current situation in the monitored area. For various reasons WSNNS can provide an important contribution to reach that aim. In this system, acceleration sensors and GPS are deployed in sensing nodes. Location information by GPS, enable the system to estimate network topology and enable the system to perceive the location in emergency by monitoring the node mode. Acceleration sensors deployment, capacitate this system to detect slow mass movement that can lead to landslide occurrence. Once deployed, sensing nodes self-organize into an autonomous wireless ad hoc network. The measurement parameter data from sensing nodes is transmitted to Host System via host node and "Cloud" System. The implementation of multiple host nodes in Local Sensing Node Network System (LSNNS), improve risk- management of the WSNNS for real-time monitoring of landslide disaster.

  10. A highly stable electrochemiluminescence sensing system of cadmium sulfide nanowires/graphene hybrid for supersensitive detection of pentachlorophenol

    NASA Astrophysics Data System (ADS)

    Deng, Yanan; Chang, Quanying; Yin, Kai; Liu, Chengbin; Wang, Ying

    2017-10-01

    A highly stable and effective electrochemiluminescence (ECL) sensing system of cadmium sulfide nanowires/reduced graphene oxide (CdS NWS/rGO) hybrid is presented for supersensitive detection of pentachlorophenol (PCP). CdS nanowire is for the first time exploited in ECL sensing. The rGO served as both ECL signal amplifier and immobilization platform, can perfectly enhance the ECL intensity and stability of the sensing system. With S2O82- as coreactant, the ECL signal can be significantly quenched by the addition of PCP. The established ECL sensing system presents a wider linear range from 1.0 × 10-14 to 1.0 × 10-8 M and a much low detection limit of 2 × 10-15 M under the optimum test conditions (e.g., pH 7.0 and 100 mM S2O82-). Furthermore, the ECL sensing system displays a good selectivity for PCP detection. The practicability of the ECL sensing system in real water sample shows that this system could be promisingly applied in the analytical detection of PCP in real water environments.

  11. 3-D capacitance density imaging system

    DOEpatents

    Fasching, G.E.

    1988-03-18

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.

  12. AgRISTARS: Renewable resources inventory. Land information support system implementation plan and schedule. [San Juan National Forest pilot test

    NASA Technical Reports Server (NTRS)

    Yao, S. S. (Principal Investigator)

    1981-01-01

    The planning and scheduling of the use of remote sensing and computer technology to support the land management planning effort at the national forests level are outlined. The task planning and system capability development were reviewed. A user evaluation is presented along with technological transfer methodology. A land management planning pilot test of the San Juan National Forest is discussed.

  13. Monitoring Ecosystem Dynamics Ecosystem Using Hyperspectral Reflectance and a Robotic Tram System in Barrow Alaska

    NASA Astrophysics Data System (ADS)

    Goswami, S.; Gamon, J. A.; Tweedie, C. E.

    2012-12-01

    Understanding the future state of the earth system requires improved knowledge of ecosystem dynamics and long term observations of how ecosystem structures and functions are being impacted by global change. Improving remote sensing methods is essential for such advancement because satellite remote sensing is the only means by which landscape to continental-scale change can be observed. The Arctic appears to be impacted by climate change more than any other region on Earth. Arctic terrestrial ecosystems comprise only 6% of the land surface area on Earth yet contain an estimated 25% of global soil organic carbon, most of which is stored in permafrost. If projected increases in plant productivity do not offset forecast losses of soil carbon to the atmosphere as greenhouse gases, regional to global greenhouse warming could be enhanced. Soil moisture is an important control of land-atmosphere carbon exchange in arctic terrestrial ecosystems. However, few studies to date have examined using remote sensing, or developed remote sensing methods for observing the complex interplay between soil moisture and plant phenology and productivity in arctic landscapes. This study was motivated by this knowledge gap and addressed the following questions as a contribution to a large scale, multi investigator flooding and draining experiment funded by the National Science Foundation near Barrow, Alaska from 2005 - 2009. 1. How can optical remote sensing be used to monitor the surface hydrology of arctic landscapes? 2. What are the spatio-temporal dynamics of land-surface phenology (NDVI) in the study area and do hydrological treatment has any effect on inter-annual patterns? A new spectral index, the normalized difference surface water index (NDSWI) was developed and tested at multiple spatial and temporal scales. NDSWI uses the 460nm (blue) and 1000nm (IR) bands and was developed to capture surface hydrological dynamics in the study area using the robotic tram system. When applied to high spatial resolution satellite imagery, NDSWI was also able to capture changes in surface hydrology at the landscape scale. Interannual patterns of landsurface phenology (measured with the normalized difference vegetation index - NDVI) unexpectedly lacked marked differences under experimental conditions. Measurement of NDVI was, however, compromised when WTD was above ground level. NDVI and NDSWI were negatively correlated when WTD was above ground level, which held when scaled to MODIS imagery collected from satellite, suggesting that published findings showing a 'greening of the Arctic' may be related to a 'drying of the Arctic' in landscapes dominated by vegetated landscapes where WTD is close to ground level.

  14. Head-mounted active noise control system with virtual sensing technique

    NASA Astrophysics Data System (ADS)

    Miyazaki, Nobuhiro; Kajikawa, Yoshinobu

    2015-03-01

    In this paper, we apply a virtual sensing technique to a head-mounted active noise control (ANC) system we have already proposed. The proposed ANC system can reduce narrowband noise while improving the noise reduction ability at the desired locations. A head-mounted ANC system based on an adaptive feedback structure can reduce noise with periodicity or narrowband components. However, since quiet zones are formed only at the locations of error microphones, an adequate noise reduction cannot be achieved at the locations where error microphones cannot be placed such as near the eardrums. A solution to this problem is to apply a virtual sensing technique. A virtual sensing ANC system can achieve higher noise reduction at the desired locations by measuring the system models from physical sensors to virtual sensors, which will be used in the online operation of the virtual sensing ANC algorithm. Hence, we attempt to achieve the maximum noise reduction near the eardrums by applying the virtual sensing technique to the head-mounted ANC system. However, it is impossible to place the microphone near the eardrums. Therefore, the system models from physical sensors to virtual sensors are estimated using the Head And Torso Simulator (HATS) instead of human ears. Some simulation, experimental, and subjective assessment results demonstrate that the head-mounted ANC system with virtual sensing is superior to that without virtual sensing in terms of the noise reduction ability at the desired locations.

  15. Education, sense of mastery and mental health: results from a nation wide health monitoring study in Norway

    PubMed Central

    Dalgard, Odd Steffen; Mykletun, Arnstein; Rognerud, Marit; Johansen, Rune; Zahl, Per Henrik

    2007-01-01

    Background Earlier studies have shown that people with low level of education have increased rates of mental health problems. The aim of the present study is to investigate the association between level of education and psychological distress, and to explore to which extent the association is mediated by sense of mastery, and social variables like social support, negative life events, household income, employment and marital status. Methods The data for the study were obtained from the Level of Living Survey conducted by Statistics Norway in 2002. Data on psychological distress and psychosocial variables were gathered by a self-administered questionnaire, whereas socio-demographic data were based on register statistics. Psychological distress was measured by Hopkins Symptom Checklist 25 items. Results There was a significant association between low level of education and psychological distress in both genders, the association being strongest in women aged 55–67 years. Low level of education was also significantly associated with low sense of mastery, low social support, many negative life events (only in men), low household income and unemployment,. Sense of mastery emerged as a strong mediating variable between level of education and psychological distress, whereas the other variables played a minor role when adjusting for sense of mastery. Conclusion Low sense of mastery seems to account for much of the association between low educational level and psychological distress, and should be an important target in mental health promotion for groups with low level of education. PMID:17519014

  16. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane.

    PubMed

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-07-09

    In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.

  17. Application of remote sensing for planning purposes

    NASA Technical Reports Server (NTRS)

    Hughes, T. H. (Editor)

    1977-01-01

    Types of remotely sensed data are many and varied but, all are primarily dependent on the sensor platform and the kind of sensing system used. A sensor platform is the type of aircraft or satellite to which a sensing system is attached; each platform has its own inherent advantages and disadvantages. Selected attributes of several current or recently used platforms are outlined. Though sensing systems are highly varied, they may be divided into various operational categories such as cameras, electromechanical scanners, and radars.

  18. Archiving and access systems for remote sensing: Chapter 6

    USGS Publications Warehouse

    Faundeen, John L.; Percivall, George; Baros, Shirley; Baumann, Peter; Becker, Peter H.; Behnke, J.; Benedict, Karl; Colaiacomo, Lucio; Di, Liping; Doescher, Chris; Dominguez, J.; Edberg, Roger; Ferguson, Mark; Foreman, Stephen; Giaretta, David; Hutchison, Vivian; Ip, Alex; James, N.L.; Khalsa, Siri Jodha S.; Lazorchak, B.; Lewis, Adam; Li, Fuqin; Lymburner, Leo; Lynnes, C.S.; Martens, Matt; Melrose, Rachel; Morris, Steve; Mueller, Norman; Navale, Vivek; Navulur, Kumar; Newman, D.J.; Oliver, Simon; Purss, Matthew; Ramapriyan, H.K.; Rew, Russ; Rosen, Michael; Savickas, John; Sixsmith, Joshua; Sohre, Tom; Thau, David; Uhlir, Paul; Wang, Lan-Wei; Young, Jeff

    2016-01-01

    Focuses on major developments inaugurated by the Committee on Earth Observation Satellites, the Group on Earth Observations System of Systems, and the International Council for Science World Data System at the global level; initiatives at national levels to create data centers (e.g. the National Aeronautics and Space Administration (NASA) Distributed Active Archive Centers and other international space agency counterparts), and non-government systems (e.g. Center for International Earth Science Information Network). Other major elements focus on emerging tool sets, requirements for metadata, data storage and refresh methods, the rise of cloud computing, and questions about what and how much data should be saved. The sub-sections of the chapter address topics relevant to the science, engineering and standards used for state-of-the-art operational and experimental systems.

  19. Visual Sensing for Urban Flood Monitoring

    PubMed Central

    Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han

    2015-01-01

    With the increasing climatic extremes, the frequency and severity of urban flood events have intensified worldwide. In this study, image-based automated monitoring of flood formation and analyses of water level fluctuation were proposed as value-added intelligent sensing applications to turn a passive monitoring camera into a visual sensor. Combined with the proposed visual sensing method, traditional hydrological monitoring cameras have the ability to sense and analyze the local situation of flood events. This can solve the current problem that image-based flood monitoring heavily relies on continuous manned monitoring. Conventional sensing networks can only offer one-dimensional physical parameters measured by gauge sensors, whereas visual sensors can acquire dynamic image information of monitored sites and provide disaster prevention agencies with actual field information for decision-making to relieve flood hazards. The visual sensing method established in this study provides spatiotemporal information that can be used for automated remote analysis for monitoring urban floods. This paper focuses on the determination of flood formation based on image-processing techniques. The experimental results suggest that the visual sensing approach may be a reliable way for determining the water fluctuation and measuring its elevation and flood intrusion with respect to real-world coordinates. The performance of the proposed method has been confirmed; it has the capability to monitor and analyze the flood status, and therefore, it can serve as an active flood warning system. PMID:26287201

  20. Wearable Environmental and Physiological Sensing Unit

    NASA Technical Reports Server (NTRS)

    Spremo, Stevan; Ahlman, Jim; Stricker, Ed; Santos, Elmer

    2007-01-01

    The wearable environmental and physiological sensing unit (WEPS) is a prototype of systems to be worn by emergency workers (e.g., firefighters and members of hazardous-material response teams) to increase their level of safety. The WEPS includes sensors that measure a few key physiological and environmental parameters, a microcontroller unit that processes the digitized outputs of the sensors, and a radio transmitter that sends the processed sensor signals to a computer in a mobile command center for monitoring by a supervisor. The monitored parameters serve as real-time indications of the wearer s physical condition and level of activity, and of the degree and type of danger posed by the wearer s environment. The supervisor could use these indications to determine, for example, whether the wearer should withdraw in the face of an increasing hazard or whether the wearer should be rescued.

  1. Isolated thermocouple amplifier system for stirred fixed-bed gasifier

    DOEpatents

    Fasching, George E.

    1992-01-01

    A sensing system is provided for determining the bed temperature profile of the bed of a stirred, fixed-bed gasifier including a plurality of temperature sensors for sensing the bed temperature at different levels, a transmitter for transmitting data based on the outputs of the sensors to a remote operator's station, and a battery-based power supply. The system includes an isolation amplifier system comprising a plurality of isolation amplifier circuits for amplifying the outputs of the individual sensors. The isolation amplifier circuits each comprise an isolation operational amplifier connected to a sensor; a first "flying capacitor" circuit for, in operation, controlling the application of power from the power supply to the isolation amplifier; an output sample and hold circuit connected to the transmitter; a second "flying capacitor" circuit for, in operation, controlling the transfer of the output of the isolation amplifier to the sample and hold circuit; and a timing and control circuit for activating the first and second capacitor circuits in a predetermined timed sequence.

  2. Challenges in paper-based fluorogenic optical sensing with smartphones

    NASA Astrophysics Data System (ADS)

    Ulep, Tiffany-Heather; Yoon, Jeong-Yeol

    2018-05-01

    Application of optically superior, tunable fluorescent nanotechnologies have long been demonstrated throughout many chemical and biological sensing applications. Combined with microfluidics technologies, i.e. on lab-on-a-chip platforms, such fluorescent nanotechnologies have often enabled extreme sensitivity, sometimes down to single molecule level. Within recent years there has been a peak interest in translating fluorescent nanotechnology onto paper-based platforms for chemical and biological sensing, as a simple, low-cost, disposable alternative to conventional silicone-based microfluidic substrates. On the other hand, smartphone integration as an optical detection system as well as user interface and data processing component has been widely attempted, serving as a gateway to on-board quantitative processing, enhanced mobility, and interconnectivity with informational networks. Smartphone sensing can be integrated to these paper-based fluorogenic assays towards demonstrating extreme sensitivity as well as ease-of-use and low-cost. However, with these emerging technologies there are always technical limitations that must be addressed; for example, paper's autofluorescence that perturbs fluorogenic sensing; smartphone flash's limitations in fluorescent excitation; smartphone camera's limitations in detecting narrow-band fluorescent emission, etc. In this review, physical optical setups, digital enhancement algorithms, and various fluorescent measurement techniques are discussed and pinpointed as areas of opportunities to further improve paper-based fluorogenic optical sensing with smartphones.

  3. Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation.

    PubMed

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-03-01

    This Letter reports a sweep velocity-locked laser pulse generator controlled using a digital phase-locked loop (DPLL) circuit. This design is used for the interrogation of sub-terahertz-range fiber structures for sensing applications that require real-time data collection with millimeter-level spatial resolution. A distributed feedback laser was employed to generate chirped laser pulses via injection current modulation. A DPLL circuit was developed to lock the optical frequency sweep velocity. A high-quality linearly chirped laser pulse with a frequency excursion of 117.69 GHz at an optical communication band was demonstrated. The system was further adopted to interrogate a continuously distributed sub-terahertz-range fiber structure (sub-THz-fs) for sensing applications. A strain test was conducted in which the sub-THz-fs showed a linear response to longitudinal strain change with predicted sensitivity. Additionally, temperature testing was conducted in which a heat source was used to generate a temperature distribution along the fiber structure to demonstrate its distributed sensing capability. A Gaussian temperature profile was measured using the described system and tracked in real time, as the heat source was moved.

  4. Organic electrochemical transistors for cell-based impedance sensing

    NASA Astrophysics Data System (ADS)

    Rivnay, Jonathan; Ramuz, Marc; Leleux, Pierre; Hama, Adel; Huerta, Miriam; Owens, Roisin M.

    2015-01-01

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.

  5. Dual signal amplification for highly sensitive electrochemical detection of uropathogens via enzyme-based catalytic target recycling.

    PubMed

    Su, Jiao; Zhang, Haijie; Jiang, Bingying; Zheng, Huzhi; Chai, Yaqin; Yuan, Ruo; Xiang, Yun

    2011-11-15

    We report an ultrasensitive electrochemical approach for the detection of uropathogen sequence-specific DNA target. The sensing strategy involves a dual signal amplification process, which combines the signal enhancement by the enzymatic target recycling technique with the sensitivity improvement by the quantum dot (QD) layer-by-layer (LBL) assembled labels. The enzyme-based catalytic target DNA recycling process results in the use of each target DNA sequence for multiple times and leads to direct amplification of the analytical signal. Moreover, the LBL assembled QD labels can further enhance the sensitivity of the sensing system. The coupling of these two effective signal amplification strategies thus leads to low femtomolar (5fM) detection of the target DNA sequences. The proposed strategy also shows excellent discrimination between the target DNA and the single-base mismatch sequences. The advantageous intrinsic sequence-independent property of exonuclease III over other sequence-dependent enzymes makes our new dual signal amplification system a general sensing platform for monitoring ultralow level of various types of target DNA sequences. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. A fault-tolerant intelligent robotic control system

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Tso, Kam Sing

    1993-01-01

    This paper describes the concept, design, and features of a fault-tolerant intelligent robotic control system being developed for space and commercial applications that require high dependability. The comprehensive strategy integrates system level hardware/software fault tolerance with task level handling of uncertainties and unexpected events for robotic control. The underlying architecture for system level fault tolerance is the distributed recovery block which protects against application software, system software, hardware, and network failures. Task level fault tolerance provisions are implemented in a knowledge-based system which utilizes advanced automation techniques such as rule-based and model-based reasoning to monitor, diagnose, and recover from unexpected events. The two level design provides tolerance of two or more faults occurring serially at any level of command, control, sensing, or actuation. The potential benefits of such a fault tolerant robotic control system include: (1) a minimized potential for damage to humans, the work site, and the robot itself; (2) continuous operation with a minimum of uncommanded motion in the presence of failures; and (3) more reliable autonomous operation providing increased efficiency in the execution of robotic tasks and decreased demand on human operators for controlling and monitoring the robotic servicing routines.

  7. Focal calcium monitoring with targeted nanosensors at the cytosolic side of endoplasmic reticulum

    NASA Astrophysics Data System (ADS)

    Hou, Yanyan; Arai, Satoshi; Takei, Yoshiaki; Murata, Atsushi; Takeoka, Shinji; Suzuki, Madoka

    2016-01-01

    Ca2+ distribution is spatially and temporally non-uniform inside cells due to cellular compartmentalization. However, Ca2+ sensing with small organic dyes, such as fura-2 and fluo-4, has been practically applied at a single cell level where the averaged signal from freely diffusing dye molecules is acquired. In this study, we aimed to target azide-functionalized fura-2 (N3-fura-2) to a specific site of subcellular compartments to realize focal Ca2+ sensing. Using scAVD (single-chain avidin)-biotin interaction and a copper-free click reaction system, we linked N3-fura-2 to specifically-targeted scAVD protein fused with a red fluorescent protein mCherry, so that Ca2+ sensors conjugated with four N3-fura-2 dyes with dibenzocyclooctyne (DBCO)-PEG4-biotin as a linker were generated at subcellular compartments in living cells. In cytoplasm, N3-fura-2 showed a prolonged retention period after binding to scAVD. Furthermore, the reacted N3-fura-2 was retained inside cells even after free dyes were washed out by methanol fixation. When scAVD was overexpressed on endoplasmic reticulum (ER) membranes, N3-fura-2 was accumulated on ER membranes. Upon histamine stimulation, which increases cytosolic Ca2+ concentration, ER-localized N3-fura-2 successfully sensed the Ca2+ level changes at the cytosolic side of ER membrane. Our study demonstrated specific targeting of N3-fura-2 to subcellular compartments and the ability of sensing focal Ca2+ level changes with the specifically targeted Ca2+ sensors.

  8. Global hierarchical classification of deepwater and wetland environments from remote sensing products

    NASA Astrophysics Data System (ADS)

    Fluet-Chouinard, E.; Lehner, B.; Aires, F.; Prigent, C.; McIntyre, P. B.

    2017-12-01

    Global surface water maps have improved in spatial and temporal resolutions through various remote sensing methods: open water extents with compiled Landsat archives and inundation with topographically downscaled multi-sensor retrievals. These time-series capture variations through time of open water and inundation without discriminating between hydrographic features (e.g. lakes, reservoirs, river channels and wetland types) as other databases have done as static representation. Available data sources present the opportunity to generate a comprehensive map and typology of aquatic environments (deepwater and wetlands) that improves on earlier digitized inventories and maps. The challenge of classifying surface waters globally is to distinguishing wetland types with meaningful characteristics or proxies (hydrology, water chemistry, soils, vegetation) while accommodating limitations of remote sensing data. We present a new wetland classification scheme designed for global application and produce a map of aquatic ecosystem types globally using state-of-the-art remote sensing products. Our classification scheme combines open water extent and expands it with downscaled multi-sensor inundation data to capture the maximal vegetated wetland extent. The hierarchical structure of the classification is modified from the Cowardin Systems (1979) developed for the USA. The first level classification is based on a combination of landscape positions and water source (e.g. lacustrine, riverine, palustrine, coastal and artificial) while the second level represents the hydrologic regime (e.g. perennial, seasonal, intermittent and waterlogged). Class-specific descriptors can further detail the wetland types with soils and vegetation cover. Our globally consistent nomenclature and top-down mapping allows for direct comparison across biogeographic regions, to upscale biogeochemical fluxes as well as other landscape level functions.

  9. Remote sensing for detecting and mapping whitefly (Bemisia tabaci) infestations

    USDA-ARS?s Scientific Manuscript database

    Remote sensing technology has long been used for detecting insect infestations on agricultural crops. With recent advances in remote sensing sensors and other spatial information technologies such as Global Position Systems (GPS) and Geographic Information Systems (GIS), remote sensing is finding mo...

  10. Decision Support Systems To Manage Water Resources At Irrigation District Level In Southern Italy Using Remote Sensing Information. An Integrated Project (AQUATER)

    NASA Astrophysics Data System (ADS)

    Rinaldi, M.; Castrignanò, A.; Mastrorilli, M.; Rana, G.; Ventrella, D.; Acutis, M.; D'Urso, G.; Mattia, F.

    2006-08-01

    An efficient management of water resources is crucial point for Italy and in particular for southern areas characterized by Mediterranean climate in order to improve the economical and environmental sustainability of the agricultural activity. A three-year Project (2005-2008) has been funded by the Italian Ministry of Agriculture and Forestry Policies; it involves four Italian research institutions: the Agricultural Research Council (ISA, Bari), the National Research Council (ISSIA, Bari) and two Universities (Federico II-Naples and Milan). It is focused on the remote sensing, the plant and the climate and, for interdisciplinary relationships, the project working group consists of agronomists, engineers and physicists. The aims of the Project are: a) to produce a Decision Support System (DSS) combining remote sensing information, spatial data and simulation models to manage water resources in irrigation districts; b) to simulate irrigation scenarios to evaluate the effects of water stress on crop yield using agro-ecological indicators; c) to identify the most sensitive areas to drought risk in Southern Italy. The tools used in this Project will be: 1. Remote sensing images, topographic maps, soil and land use maps; 2. Geographic Information Systems; 3. Geostatistic methodologies; 4. Ground truth measurements (land use, canopy and soil temperatures, soil and plant water status, Normalized Difference Vegetation Index, Crop Water Stress Index, Leaf Area Index, actual evapotranspiration, crop coefficients, crop yield, agro-ecological indicators); 5. Crop simulation models. The Project is structured in four work packages with specific objectives, high degree of interaction and information exchange: 1) Remote Sensing and Image Analysis; 2) Cropping Systems; 3) Modelling and Softwares Development; 4) Stakeholders. The final product will be a DSS with the purpose of integrating remote sensing images, to estimate crop and soil variables related to drought, to assimilate these variables into a simulation model at district scale and, finally, to estimate evapotranspiration, plant water status and drought indicators. A project Web home page, a technical course about DSS for the employers of irrigation authorities and dissemination of results (meetings, publications, reports), are also planned.

  11. Sense of Place and Health in Hamilton, Ontario: A Case Study.

    PubMed

    Williams, Allison; Kitchen, Peter

    2012-09-01

    The concept of sense of place has received considerable attention by social scientists in recent years. Research has indicated that a person's sense of place is influenced by a number of factors including the built environment, socio-economic status (SES), well-being and health. Relatively few studies have examined sense of place at the neighbourhood level, particularly among communities exhibiting different levels of SES. This article investigates sense of place among three neighbourhood groups in Hamilton, Ontario representing areas of low, mixed and high SES. It analyses data from a 16-point sense of place scale derived from the Hamilton Household Quality of Life Survey carried out in 2010-2011 among 1,002 respondents. The paper found that sense of place was highest among residents of the high SES neighbourhood group as well as among home owners, people residing in single-detached homes, retired residents and those living in their neighbourhood for more than 10 years. From a health perspective, the paper found that a strong association existed between sense of place and self-perceived mental health across the three neighbourhood groups. Furthermore, by way of regression modeling, the paper examined the factors influencing health-related sense of place. Among the sample of respondents, a strong connection was found between housing, particularly home ownership, and high levels of health-related sense of place.

  12. Flood Monitoring and Early Warning System Using Ultrasonic Sensor

    NASA Astrophysics Data System (ADS)

    Natividad, J. G.; Mendez, J. M.

    2018-03-01

    The purpose of this study is to develop a real-time flood monitoring and early warning system in the northern portion of the province of Isabela, particularly the municipalities near Cagayan River. Ultrasonic sensing techniques have become mature and are widely used in the various fields of engineering and basic science. One of advantage of ultrasonic sensing is its outstanding capability to probe inside objective non-destructively because ultrasound can propagate through any kinds of media including solids, liquids and gases. This study focuses only on the water level detection and early warning system (via website and/or SMS) that alerts concern agencies and individuals for a potential flood event. Furthermore, inquiry system is also included in this study to become more interactive wherein individuals in the community could inquire the actual water level and status of the desired area or location affected by flood thru SMS keyword. The study aims in helping citizens to be prepared and knowledgeable whenever there is a flood. The novelty of this work falls under the utilization of the Arduino, ultrasonic sensors, GSM module, web-monitoring and SMS early warning system in helping stakeholders to mitigate casualties related to flood. The paper envisions helping flood-prone areas which are common in the Philippines particularly to the local communities in the province. Indeed, it is relevant and important as per needs for safety and welfare of the community.

  13. Automatic on-line detection system design research on internal defects of metal materials based on optical fiber F-P sensing technology

    NASA Astrophysics Data System (ADS)

    Xia, Liu; Shan, Ning; Chao, Ban; Caoshan, Wang

    2016-10-01

    Metal materials have been used in aerospace and other industrial fields widely because of its excellent characteristics, so its internal defects detection is very important. Ultrasound technology is used widely in the fields of nondestructive detection because of its excellent characteristic. But the conventional detection instrument for ultrasound, which has shortcomings such as low intelligent level and long development cycles, limits its development. In this paper, the theory of ultrasound detection is analyzed. A computational method of the defects distributional position is given. The non-contact type optical fiber F-P interference cavity structure is designed and the length of origin cavity is given. The real-time on-line ultrasound detecting experiment devices for internal defects of metal materials is established based on the optical fiber F-P sensing system. The virtual instrument of automation ultrasound detection internal defects is developed based on LabVIEW software and the experimental study is carried out. The results show that this system can be used in internal defect real-time on-line locating of engineering structures effectively. This system has higher measurement precision. Relative error is 6.7%. It can be met the requirement of engineering practice. The system is characterized by simple operation, easy realization. The software has a friendly interface, good expansibility, and high intelligent level.

  14. Validation of a wireless modular monitoring system for structures

    NASA Astrophysics Data System (ADS)

    Lynch, Jerome P.; Law, Kincho H.; Kiremidjian, Anne S.; Carryer, John E.; Kenny, Thomas W.; Partridge, Aaron; Sundararajan, Arvind

    2002-06-01

    A wireless sensing unit for use in a Wireless Modular Monitoring System (WiMMS) has been designed and constructed. Drawing upon advanced technological developments in the areas of wireless communications, low-power microprocessors and micro-electro mechanical system (MEMS) sensing transducers, the wireless sensing unit represents a high-performance yet low-cost solution to monitoring the short-term and long-term performance of structures. A sophisticated reduced instruction set computer (RISC) microcontroller is placed at the core of the unit to accommodate on-board computations, measurement filtering and data interrogation algorithms. The functionality of the wireless sensing unit is validated through various experiments involving multiple sensing transducers interfaced to the sensing unit. In particular, MEMS-based accelerometers are used as the primary sensing transducer in this study's validation experiments. A five degree of freedom scaled test structure mounted upon a shaking table is employed for system validation.

  15. System implications of large radiometric array antennas

    NASA Technical Reports Server (NTRS)

    Levis, C. A.; Lin, H. C.

    1976-01-01

    Current radiometric earth and atmospheric sensing systems in the centimeter wavelength range generally employ a directive antenna connected through a single terminal pair to a Dicke receiver. It is shown that this approach does not lend itself to systems with greatly increased spatial resolution. Signal to noise considerations relating to antenna efficiency force the introduction of active elements at the subarray level; thus, if Dicke switching is to be used, it must be distributed throughout the system. Some possible approaches are suggested. The introduction of active elements at the subarray level is found to ease the design constraints on time delay elements, necessary for bandwidth, and on multiple beam generation, required in order to achieve sufficient integration time with high resolution.

  16. If IDA Known: The Speaker versus the Speech in Judging Black Dialect

    ERIC Educational Resources Information Center

    Dundes, Lauren; Spence, Bill

    2007-01-01

    While students generally recognize that racism exists on an individual level, the instructor's challenge is to both elucidate patterns of discrimination and to expose their corollary: unearned and unrecognized systemic privilege of the dominant group. Unaware that their sense of entitlement advantages them at the expense of people of color, some…

  17. Thoughts on Scale

    ERIC Educational Resources Information Center

    Schoenfeld, Alan H.

    2015-01-01

    This essay reflects on the challenges of thinking about scale--of making sense of phenomena such as continuous professional development (CPD) at the system level, while holding on to detail at the finer grain size(s) of implementation. The stimuli for my reflections are three diverse studies of attempts at scale--an attempt to use ideas related to…

  18. Preparing School Leaders to Interrupt Racism at Various Levels in Educational Systems

    ERIC Educational Resources Information Center

    Boske, Christa

    2015-01-01

    This narrative inquiry seeks to advance the field of educational leadership preparation by exploring ways to interrupt personal, interpersonal, and institutional racism through the senses--ways in which people perceive their experiences and relation to others. Findings suggest that participants engage in actions aligned with revelations from their…

  19. Leading Public Schools in an Oligarchial Age

    ERIC Educational Resources Information Center

    Lugg, Catherine A.

    2010-01-01

    Contemporary educational leaders should realize that America's political system of governance is not particularly democratic in the sense that the people rule. While popular elections occur in the U.S., participation rates by citizens are notoriously low, particularly at the local level. In very practical terms, the U.S. is less of a democratic…

  20. Teaching Methodology of Flexible Pavement Materials and Pavement Systems

    ERIC Educational Resources Information Center

    Mehta, Yusuf; Najafi, Fazil

    2004-01-01

    Flexible pavement materials exhibit complex mechanical behavior, in the sense, that they not only show stress and temperature dependency but also are sensitive to moisture conditions. This complex behavior presents a great challenge to the faculty in bringing across the level of complexity and providing the concepts needed to understand them. The…

  1. Hyperspectral remote sensing and long term monitoring reveal watershed-estuary ecosystem interactions

    NASA Astrophysics Data System (ADS)

    Hestir, E. L.; Schoellhamer, D. H.; Santos, M. J.; Greenberg, J. A.; Morgan-King, T.; Khanna, S.; Ustin, S.

    2016-02-01

    Estuarine ecosystems and their biogeochemical processes are extremely vulnerable to climate and environmental changes, and are threatened by sea level rise and upstream activities such as land use/land cover and hydrological changes. Despite the recognized threat to estuaries, most aspects of how change will affect estuaries are not well understood due to the poorly resolved understanding of the complex physical, chemical and biological processes and their interactions in estuarine systems. Remote sensing technologies such as high spectral resolution optical systems enable measurements of key environmental parameters needed to establish baseline conditions and improve modeling efforts. The San Francisco Bay-Delta is a highly modified estuary system in a state of ecological crisis due to the numerous threats to its sustainability. In this study, we used a combination of hyperspectral remote sensing and long-term in situ monitoring records to investigate how water clarity has been responding to extreme climatic events, anthropogenic watershed disturbances, and submerged aquatic vegetation (SAV) invasions. From the long-term turbidity monitoring record, we found that water clarity underwent significant increasing step changes associated with sediment depletion and El Nino-extreme run-off events. Hyperspectral remote sensing data revealed that invasive submerged aquatic pant species have facultative C3 and C4-like photosynthetic pathways that give them a competitive advantage under the changing water clarity conditions of the Bay-Delta system. We postulate that this adaptation facilitated the rapid expansion of SAV following the significant step changes in increasing water clarity caused by watershed disturbances and the 1982-1983 El Nino events. Using SAV maps from hyperspectral remote sensing, we estimate that SAV-water clarity feedbacks were responsible for 20-70% of the increasing water clarity trend in the Bay-Delta. Ongoing and future developments in airborne and global mapping hyperspectral satellite missions will enable full canopy-to-benthos characterization of estuarine ecosystems. When coupled with synoptic watershed measurements, these will improve understanding of watershed-estuary interactions for improved sustainable management.

  2. The Application of Remote Sensing Data to GIS Studies of Land Use, Land Cover, and Vegetation Mapping in the State of Hawaii

    NASA Technical Reports Server (NTRS)

    Hogan, Christine A.

    1996-01-01

    A land cover-vegetation map with a base classification system for remote sensing use in a tropical island environment was produced of the island of Hawaii for the State of Hawaii to evaluate whether or not useful land cover information can be derived from Landsat TM data. In addition, an island-wide change detection mosaic combining a previously created 1977 MSS land classification with the TM-based classification was produced. In order to reach the goal of transferring remote sensing technology to State of Hawaii personnel, a pilot project was conducted while training State of Hawaii personnel in remote sensing technology and classification systems. Spectral characteristics of young island land cover types were compared to determine if there are differences in vegetation types on lava, vegetation types on soils, and barren lava from soils, and if they can be detected remotely, based on differences in pigments detecting plant physiognomic type, health, stress at senescence, heat, moisture level, and biomass. Geographic information systems (GIS) and global positioning systems (GPS) were used to assist in image rectification and classification. GIS was also used to produce large-format color output maps. An interactive GIS program was written to provide on-line access to scanned photos taken at field sites. The pilot project found Landsat TM to be a credible source of land cover information for geologically young islands, and TM data bands are effective in detecting spectral characteristics of different land cover types through remote sensing. Large agriculture field patterns were resolved and mapped successfully from wildland vegetation, but small agriculture field patterns were not. Additional processing was required to work with the four TM scenes from two separate orbits which span three years, including El Nino and drought dates. Results of the project emphasized the need for further land cover and land use processing and research. Change in vegetation composition was noted in the change detection image.

  3. Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool

    NASA Technical Reports Server (NTRS)

    McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall

    2008-01-01

    The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify a variety of plant phenomena and improve monitoring capabilities.

  4. Impact of High Mathematics Education on the Number Sense

    PubMed Central

    Castronovo, Julie; Göbel, Silke M.

    2012-01-01

    In adult number processing two mechanisms are commonly used: approximate estimation of quantity and exact calculation. While the former relies on the approximate number sense (ANS) which we share with animals and preverbal infants, the latter has been proposed to rely on an exact number system (ENS) which develops later in life following the acquisition of symbolic number knowledge. The current study investigated the influence of high level math education on the ANS and the ENS. Our results showed that the precision of non-symbolic quantity representation was not significantly altered by high level math education. However, performance in a symbolic number comparison task as well as the ability to map accurately between symbolic and non-symbolic quantities was significantly better the higher mathematics achievement. Our findings suggest that high level math education in adults shows little influence on their ANS, but it seems to be associated with a better anchored ENS and better mapping abilities between ENS and ANS. PMID:22558077

  5. Impact of high mathematics education on the number sense.

    PubMed

    Castronovo, Julie; Göbel, Silke M

    2012-01-01

    In adult number processing two mechanisms are commonly used: approximate estimation of quantity and exact calculation. While the former relies on the approximate number sense (ANS) which we share with animals and preverbal infants, the latter has been proposed to rely on an exact number system (ENS) which develops later in life following the acquisition of symbolic number knowledge. The current study investigated the influence of high level math education on the ANS and the ENS. Our results showed that the precision of non-symbolic quantity representation was not significantly altered by high level math education. However, performance in a symbolic number comparison task as well as the ability to map accurately between symbolic and non-symbolic quantities was significantly better the higher mathematics achievement. Our findings suggest that high level math education in adults shows little influence on their ANS, but it seems to be associated with a better anchored ENS and better mapping abilities between ENS and ANS.

  6. User requirements and user acceptance of current and next-generation satellite mission and sensor complement, oriented toward the monitoring of water resources

    NASA Technical Reports Server (NTRS)

    Castruccio, P. A.; Loats, H. L., Jr.; Fowler, T. R.; Robinson, P.

    1975-01-01

    Principal water resources users were surveyed to determine the applicability of remotely sensed data to their present and future requirements. Analysis of responses was used to assess the levels of adequacy of LANDSAT 1 and 2 in fulfilling hydrological functions, and to derive systems specifications for future water resources-oriented remote sensing satellite systems. The analysis indicates that water resources applications for all but the very large users require: (1) resolutions on the order of 15 meters, (2) a number of radiometric levels of the same order as currently used in LANDSAT 1 (64), (3) a number of spectral bands not in excess of those used in LANDSAT 1, and (4) a repetition frequency on the order of 2 weeks. The users had little feel for the value of new sensors (thermal IR, passive and active microwaves). What is needed in this area is to achieve specific demonstrations of the utility of these sensors and submit the results to the users to evince their judgement.

  7. An introduction to quantitative remote sensing. [data processing

    NASA Technical Reports Server (NTRS)

    Lindenlaub, J. C.; Russell, J.

    1974-01-01

    The quantitative approach to remote sensing is discussed along with the analysis of remote sensing data. Emphasis is placed on the application of pattern recognition in numerically oriented remote sensing systems. A common background and orientation for users of the LARS computer software system is provided.

  8. Evaluation of the Intel RealSense SR300 camera for image-guided interventions and application in vertebral level localization

    NASA Astrophysics Data System (ADS)

    House, Rachael; Lasso, Andras; Harish, Vinyas; Baum, Zachary; Fichtinger, Gabor

    2017-03-01

    PURPOSE: Optical pose tracking of medical instruments is often used in image-guided interventions. Unfortunately, compared to commonly used computing devices, optical trackers tend to be large, heavy, and expensive devices. Compact 3D vision systems, such as Intel RealSense cameras can capture 3D pose information at several magnitudes lower cost, size, and weight. We propose to use Intel SR300 device for applications where it is not practical or feasible to use conventional trackers and limited range and tracking accuracy is acceptable. We also put forward a vertebral level localization application utilizing the SR300 to reduce risk of wrong-level surgery. METHODS: The SR300 was utilized as an object tracker by extending the PLUS toolkit to support data collection from RealSense cameras. Accuracy of the camera was tested by comparing to a high-accuracy optical tracker. CT images of a lumbar spine phantom were obtained and used to create a 3D model in 3D Slicer. The SR300 was used to obtain a surface model of the phantom. Markers were attached to the phantom and a pointer and tracked using Intel RealSense SDK's built-in object tracking feature. 3D Slicer was used to align CT image with phantom using landmark registration and display the CT image overlaid on the optical image. RESULTS: Accuracy of the camera yielded a median position error of 3.3mm (95th percentile 6.7mm) and orientation error of 1.6° (95th percentile 4.3°) in a 20x16x10cm workspace, constantly maintaining proper marker orientation. The model and surface correctly aligned demonstrating the vertebral level localization application. CONCLUSION: The SR300 may be usable for pose tracking in medical procedures where limited accuracy is acceptable. Initial results suggest the SR300 is suitable for vertebral level localization.

  9. Wireless sensors and sensor networks for homeland security applications.

    PubMed

    Potyrailo, Radislav A; Nagraj, Nandini; Surman, Cheryl; Boudries, Hacene; Lai, Hanh; Slocik, Joseph M; Kelley-Loughnane, Nancy; Naik, Rajesh R

    2012-11-01

    New sensor technologies for homeland security applications must meet the key requirements of sensitivity to detect agents below risk levels, selectivity to provide minimal false-alarm rates, and response speed to operate in high throughput environments, such as airports, sea ports, and other public places. Chemical detection using existing sensor systems is facing a major challenge of selectivity. In this review, we provide a brief summary of chemical threats of homeland security importance; focus in detail on modern concepts in chemical sensing; examine the origins of the most significant unmet needs in existing chemical sensors; and, analyze opportunities, specific requirements, and challenges for wireless chemical sensors and wireless sensor networks (WSNs). We further review a new approach for selective chemical sensing that involves the combination of a sensing material that has different response mechanisms to different species of interest, with a transducer that has a multi-variable signal-transduction ability. This new selective chemical-sensing approach was realized using an attractive ubiquitous platform of battery-free passive radio-frequency identification (RFID) tags adapted for chemical sensing. We illustrate the performance of RFID sensors developed in measurements of toxic industrial materials, humidity-independent detection of toxic vapors, and detection of chemical-agent simulants, explosives, and strong oxidizers.

  10. MEMS sensor technologies for human centred applications in healthcare, physical activities, safety and environmental sensing: a review on research activities in Italy.

    PubMed

    Ciuti, Gastone; Ricotti, Leonardo; Menciassi, Arianna; Dario, Paolo

    2015-03-17

    Over the past few decades the increased level of public awareness concerning healthcare, physical activities, safety and environmental sensing has created an emerging need for smart sensor technologies and monitoring devices able to sense, classify, and provide feedbacks to users' health status and physical activities, as well as to evaluate environmental and safety conditions in a pervasive, accurate and reliable fashion. Monitoring and precisely quantifying users' physical activity with inertial measurement unit-based devices, for instance, has also proven to be important in health management of patients affected by chronic diseases, e.g., Parkinson's disease, many of which are becoming highly prevalent in Italy and in the Western world. This review paper will focus on MEMS sensor technologies developed in Italy in the last three years describing research achievements for healthcare and physical activity, safety and environmental sensing, in addition to smart systems integration. Innovative and smart integrated solutions for sensing devices, pursued and implemented in Italian research centres, will be highlighted, together with specific applications of such technologies. Finally, the paper will depict the future perspective of sensor technologies and corresponding exploitation opportunities, again with a specific focus on Italy.

  11. Capacitance Based Moisture Sensing for Microgravity Plant Modules: Sensor Design and Considerations

    NASA Technical Reports Server (NTRS)

    Schaber, Chad L.; Nurge, Mark; Monje, Oscar

    2011-01-01

    Life support systems for growing plants in microgravity should strive for providing optimal growing conditions and increased automation. Accurately tracking soil moisture content can forward both of these aims, so an attempt was made to instrument a microgravity growth module currently in development, the VEGGIE rooting pillow, in order to monitor moisture levels. Two electrode systems for a capacitance-based moisture sensor were tested. Trials with both types of electrodes showed a linear correlation between observed capacitance and water content over certain ranges of moisture within the pillows. Overall, both types of the electrodes and the capacitance-based moisture sensor are promising candidates for tracking water levels for microgravity plant growth systems.

  12. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module

    PubMed Central

    Lee, Hyunjae; Song, Changyeong; Hong, Yong Seok; Kim, Min Sung; Cho, Hye Rim; Kang, Taegyu; Shin, Kwangsoo; Choi, Seung Hong; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2017-01-01

    Electrochemical analysis of sweat using soft bioelectronics on human skin provides a new route for noninvasive glucose monitoring without painful blood collection. However, sweat-based glucose sensing still faces many challenges, such as difficulty in sweat collection, activity variation of glucose oxidase due to lactic acid secretion and ambient temperature changes, and delamination of the enzyme when exposed to mechanical friction and skin deformation. Precise point-of-care therapy in response to the measured glucose levels is still very challenging. We present a wearable/disposable sweat-based glucose monitoring device integrated with a feedback transdermal drug delivery module. Careful multilayer patch design and miniaturization of sensors increase the efficiency of the sweat collection and sensing process. Multimodal glucose sensing, as well as its real-time correction based on pH, temperature, and humidity measurements, maximizes the accuracy of the sensing. The minimal layout design of the same sensors also enables a strip-type disposable device. Drugs for the feedback transdermal therapy are loaded on two different temperature-responsive phase change nanoparticles. These nanoparticles are embedded in hyaluronic acid hydrogel microneedles, which are additionally coated with phase change materials. This enables multistage, spatially patterned, and precisely controlled drug release in response to the patient’s glucose level. The system provides a novel closed-loop solution for the noninvasive sweat-based management of diabetes mellitus. PMID:28345030

  13. Flexible electronics-compatible non-enzymatic glucose sensing via transparent CuO nanowire networks on PET films

    NASA Astrophysics Data System (ADS)

    Bell, Caroline; Nammari, Abdullah; Uttamchandani, Pranay; Rai, Amit; Shah, Pujan; Moore, Arden L.

    2017-06-01

    Diabetic individuals need simple, accurate, and cost effective means by which to independently assess their glucose levels in a non-invasive way. In this work, a sensor based on randomly oriented CuO nanowire networks supported by a polyethylene terephthalate thin film is evaluated as a flexible, transparent, non-enzymatic glucose sensing system analogous to those envisioned for future wearable diagnostic devices. The amperometric sensing characteristics of this type of device architecture are evaluated both before and after bending, with the system’s glucose response, sensitivity, lower limit of detection, and effect of applied bias being experimentally determined. The obtained data shows that the sensor is capable of measuring changes in glucose levels within a physiologically relevant range (0-12 mM glucose) and at lower limits of detection (0.05 mM glucose at +0.6 V bias) consistent with patient tears and saliva. Unlike existing studies utilizing a conductive backing layer or macroscopic electrode setup, this sensor demonstrates a percolation network-like trend of current versus glucose concentration. In this implementation, controlling the architectural details of the CuO nanowire network could conceivably allow the sensor’s sensitivity and optimal sensing range to be tuned. Overall, this work shows that integrating CuO nanowires into a sensor architecture compatible with transparent, flexible electronics is a promising avenue to realizing next generation wearable non-enzymatic glucose diagnostic devices.

  14. Major system acquisitions process (A-109)

    NASA Technical Reports Server (NTRS)

    Saric, C.

    1991-01-01

    The Major System examined is a combination of elements (hardware, software, facilities, and services) that function together to produce capabilities required to fulfill a mission need. The system acquisition process is a sequence of activities beginning with documentation of mission need and ending with introduction of major system into operational use or otherwise successful achievement of program objectives. It is concluded that the A-109 process makes sense and provides a systematic, integrated management approach along with appropriate management level involvement and innovative and 'best ideas' from private sector in satisfying mission needs.

  15. Bio-inspired sensing and control for disturbance rejection and stabilization

    NASA Astrophysics Data System (ADS)

    Gremillion, Gregory; Humbert, James S.

    2015-05-01

    The successful operation of small unmanned aircraft systems (sUAS) in dynamic environments demands robust stability in the presence of exogenous disturbances. Flying insects are sensor-rich platforms, with highly redundant arrays of sensors distributed across the insect body that are integrated to extract rich information with diminished noise. This work presents a novel sensing framework in which measurements from an array of accelerometers distributed across a simulated flight vehicle are linearly combined to directly estimate the applied forces and torques with improvements in SNR. In simulation, the estimation performance is quantified as a function of sensor noise level, position estimate error, and sensor quantity.

  16. In-database processing of a large collection of remote sensing data: applications and implementation

    NASA Astrophysics Data System (ADS)

    Kikhtenko, Vladimir; Mamash, Elena; Chubarov, Dmitri; Voronina, Polina

    2016-04-01

    Large archives of remote sensing data are now available to scientists, yet the need to work with individual satellite scenes or product files constrains studies that span a wide temporal range or spatial extent. The resources (storage capacity, computing power and network bandwidth) required for such studies are often beyond the capabilities of individual geoscientists. This problem has been tackled before in remote sensing research and inspired several information systems. Some of them such as NASA Giovanni [1] and Google Earth Engine have already proved their utility for science. Analysis tasks involving large volumes of numerical data are not unique to Earth Sciences. Recent advances in data science are enabled by the development of in-database processing engines that bring processing closer to storage, use declarative query languages to facilitate parallel scalability and provide high-level abstraction of the whole dataset. We build on the idea of bridging the gap between file archives containing remote sensing data and databases by integrating files into relational database as foreign data sources and performing analytical processing inside the database engine. Thereby higher level query language can efficiently address problems of arbitrary size: from accessing the data associated with a specific pixel or a grid cell to complex aggregation over spatial or temporal extents over a large number of individual data files. This approach was implemented using PostgreSQL for a Siberian regional archive of satellite data products holding hundreds of terabytes of measurements from multiple sensors and missions taken over a decade-long span. While preserving the original storage layout and therefore compatibility with existing applications the in-database processing engine provides a toolkit for provisioning remote sensing data in scientific workflows and applications. The use of SQL - a widely used higher level declarative query language - simplifies interoperability between desktop GIS, web applications and geographic web services and interactive scientific applications (MATLAB, IPython). The system is also automatically ingesting direct readout data from meteorological and research satellites in near-real time with distributed acquisition workflows managed by Taverna workflow engine [2]. The system has demonstrated its utility in performing non-trivial analytic processing such as the computation of the Robust Satellite Technique (RST) indices [3]. It had been useful in different tasks such as studying urban heat islands, analyzing patterns in the distribution of wildfire occurrences, detecting phenomena related to seismic and earthquake activity. Initial experience has highlighted several limitations of the proposed approach yet it has demonstrated ability to facilitate the use of large archives of remote sensing data by geoscientists. 1. J.G. Acker, G. Leptoukh, Online analysis enhances use of NASA Earth science data. EOS Trans. AGU, 2007, 88(2), P. 14-17. 2. D. Hull, K. Wolsfencroft, R. Stevens, C. Goble, M.R. Pocock, P. Li and T. Oinn, Taverna: a tool for building and running workflows of services. Nucleic Acids Research. 2006. V. 34. P. W729-W732. 3. V. Tramutoli, G. Di Bello, N. Pergola, S. Piscitelli, Robust satellite techniques for remote sensing of seismically active areas // Annals of Geophysics. 2001. no. 44(2). P. 295-312.

  17. Two-level image authentication by two-step phase-shifting interferometry and compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Meng, Xiangfeng; Yin, Yongkai; Yang, Xiulun; Wang, Yurong; Li, Xianye; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-01-01

    A two-level image authentication method is proposed; the method is based on two-step phase-shifting interferometry, double random phase encoding, and compressive sensing (CS) theory, by which the certification image can be encoded into two interferograms. Through discrete wavelet transform (DWT), sparseness processing, Arnold transform, and data compression, two compressed signals can be generated and delivered to two different participants of the authentication system. Only the participant who possesses the first compressed signal attempts to pass the low-level authentication. The application of Orthogonal Match Pursuit CS algorithm reconstruction, inverse Arnold transform, inverse DWT, two-step phase-shifting wavefront reconstruction, and inverse Fresnel transform can result in the output of a remarkable peak in the central location of the nonlinear correlation coefficient distributions of the recovered image and the standard certification image. Then, the other participant, who possesses the second compressed signal, is authorized to carry out the high-level authentication. Therefore, both compressed signals are collected to reconstruct the original meaningful certification image with a high correlation coefficient. Theoretical analysis and numerical simulations verify the feasibility of the proposed method.

  18. Matched Behavioral and Neural Adaptations for Low Sound Level Echolocation in a Gleaning Bat, Antrozous pallidus.

    PubMed

    Measor, Kevin R; Leavell, Brian C; Brewton, Dustin H; Rumschlag, Jeffrey; Barber, Jesse R; Razak, Khaleel A

    2017-01-01

    In active sensing, animals make motor adjustments to match sensory inputs to specialized neural circuitry. Here, we describe an active sensing system for sound level processing. The pallid bat uses downward frequency-modulated (FM) sweeps as echolocation calls for general orientation and obstacle avoidance. The bat's auditory cortex contains a region selective for these FM sweeps (FM sweep-selective region, FMSR). We show that the vast majority of FMSR neurons are sensitive and strongly selective for relatively low levels (30-60 dB SPL). Behavioral testing shows that when a flying bat approaches a target, it reduces output call levels to keep echo levels between ∼30 and 55 dB SPL. Thus, the pallid bat behaviorally matches echo levels to an optimized neural representation of sound levels. FMSR neurons are more selective for sound levels of FM sweeps than tones, suggesting that across-frequency integration enhances level tuning. Level-dependent timing of high-frequency sideband inhibition in the receptive field shapes increased level selectivity for FM sweeps. Together with previous studies, these data indicate that the same receptive field properties shape multiple filters (sweep direction, rate, and level) for FM sweeps, a sound common in multiple vocalizations, including human speech. The matched behavioral and neural adaptations for low-intensity echolocation in the pallid bat will facilitate foraging with reduced probability of acoustic detection by prey.

  19. Matched Behavioral and Neural Adaptations for Low Sound Level Echolocation in a Gleaning Bat, Antrozous pallidus

    PubMed Central

    Measor, Kevin R.; Leavell, Brian C.; Brewton, Dustin H.; Rumschlag, Jeffrey; Barber, Jesse R.

    2017-01-01

    Abstract In active sensing, animals make motor adjustments to match sensory inputs to specialized neural circuitry. Here, we describe an active sensing system for sound level processing. The pallid bat uses downward frequency-modulated (FM) sweeps as echolocation calls for general orientation and obstacle avoidance. The bat’s auditory cortex contains a region selective for these FM sweeps (FM sweep-selective region, FMSR). We show that the vast majority of FMSR neurons are sensitive and strongly selective for relatively low levels (30-60 dB SPL). Behavioral testing shows that when a flying bat approaches a target, it reduces output call levels to keep echo levels between ∼30 and 55 dB SPL. Thus, the pallid bat behaviorally matches echo levels to an optimized neural representation of sound levels. FMSR neurons are more selective for sound levels of FM sweeps than tones, suggesting that across-frequency integration enhances level tuning. Level-dependent timing of high-frequency sideband inhibition in the receptive field shapes increased level selectivity for FM sweeps. Together with previous studies, these data indicate that the same receptive field properties shape multiple filters (sweep direction, rate, and level) for FM sweeps, a sound common in multiple vocalizations, including human speech. The matched behavioral and neural adaptations for low-intensity echolocation in the pallid bat will facilitate foraging with reduced probability of acoustic detection by prey. PMID:28275715

  20. 15 CFR 960.1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...

  1. 15 CFR 960.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...

  2. 15 CFR 960.1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...

  3. 15 CFR 960.1 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...

  4. 15 CFR 960.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and...

  5. Sensing Super-position: Visual Instrument Sensor Replacement

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Schipper, John F.

    2006-01-01

    The coming decade of fast, cheap and miniaturized electronics and sensory devices opens new pathways for the development of sophisticated equipment to overcome limitations of the human senses. This project addresses the technical feasibility of augmenting human vision through Sensing Super-position using a Visual Instrument Sensory Organ Replacement (VISOR). The current implementation of the VISOR device translates visual and other passive or active sensory instruments into sounds, which become relevant when the visual resolution is insufficient for very difficult and particular sensing tasks. A successful Sensing Super-position meets many human and pilot vehicle system requirements. The system can be further developed into cheap, portable, and low power taking into account the limited capabilities of the human user as well as the typical characteristics of his dynamic environment. The system operates in real time, giving the desired information for the particular augmented sensing tasks. The Sensing Super-position device increases the image resolution perception and is obtained via an auditory representation as well as the visual representation. Auditory mapping is performed to distribute an image in time. The three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. This paper details the approach of developing Sensing Super-position systems as a way to augment the human vision system by exploiting the capabilities of the human hearing system as an additional neural input. The human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns. The known capabilities of the human hearing system to learn and understand complicated auditory patterns provided the basic motivation for developing an image-to-sound mapping system.

  6. Large Deployable Reflector Science and Technology Workshop. Volume 3: Systems and Technology Assessment

    NASA Technical Reports Server (NTRS)

    Leidich, C. A. (Editor); Pittman, R. B. (Editor)

    1984-01-01

    The results of five technology panels which convened to discuss the Large Deployable Reflector (LDR) are presented. The proposed LDR is a large, ambient-temperature, far infrared/submillimeter telescope designed for space. Panel topics included optics, materials and structures, sensing and control, science instruments, and systems and missions. The telescope requirements, the estimated technology levels, and the areas in which the generic technology work has to be augmented are enumerated.

  7. Design and Performance of a Multiwavelength Airborne Polarimetric Lidar for Vegetation Remote Sensing

    NASA Astrophysics Data System (ADS)

    Tan, Songxin; Narayanan, Ram M.

    2004-04-01

    The University of Nebraska has developed a multiwavelength airborne polarimetric lidar (MAPL) system to support its Airborne Remote Sensing Program for vegetation remote sensing. The MAPL design and instrumentation are described in detail. Characteristics of the MAPL system include lidar waveform capture and polarimetric measurement capabilities, which provide enhanced opportunities for vegetation remote sensing compared with current sensors. Field tests were conducted to calibrate the range measurement. Polarimetric calibration of the system is also discussed. Backscattered polarimetric returns, as well as the cross-polarization ratios, were obtained from a small forested area to validate the system's ability for vegetation canopy detection. The system has been packaged to fly abroad a Piper Saratoga aircraft for airborne vegetation remote sensing applications.

  8. Detection of Septic System Performance via Remote Sensing Technologies

    NASA Astrophysics Data System (ADS)

    Patterson, A. H.; Kuszmaul, J. S.; Harvey, C.

    2005-05-01

    Failing and improperly managed septic systems can affect water quality in their environs and cause health problems for individuals or community residents. When unchecked, failing systems can allow disease-causing pathogens to enter groundwater aquifers and pollute surface waters, contaminating drinking water, recreational waterways, and fishing grounds. Early detection of septic system leakage and failure can limit the extent of these problems. External symptoms which occur over an improperly functioning septic system can include lush or greener growth of vegetation, distress of vegetation, excessive soil moisture levels, or pooling of surface effluent. The use of remote sensing technologies coupled with attainable permit records to successfully identify these features could enable the appropriate agencies to target problem areas without extensive field inspection. High-resolution, airborne imagery was identified as having the potential to detect relative changes in soil moisture, to delineate individual leach fields, and to locate effluent discharges into water bodies. In addition, vegetation patterns responding to nutrient-rich effluent and increased soil moisture could be examined using a vegetation index. Both thermal- and color-infrared imagery were acquired for a study area in Jackson County, Mississippi, adjacent to the Gulf of Mexico. Within this coastal neighborhood known to have significant septic system failures, over 50 volunteer residents supplied information regarding the function of their systems and access to their property. Following data collection, regression methods were used to nominate the major indicators of malfunctioning systems. A ranking system for the "level of function" was derived from these analyses. A model was created which inputs data from attainable records and imagery analysis and outputs a predicted level of septic system function. The end product of this research will permit evaluation of septic system performance to be estimated using only easily obtainable data, allowing for minimal effort in the prioritization of problem areas by regulatory agencies.

  9. Towards Remotely Sensed Composite Global Drought Risk Modelling

    NASA Astrophysics Data System (ADS)

    Dercas, Nicholas; Dalezios, Nicolas

    2015-04-01

    Drought is a multi-faceted issue and requires a multi-faceted assessment. Droughts may have the origin on precipitation deficits, which sequentially and by considering different time and space scales may impact soil moisture, plant wilting, stream flow, wildfire, ground water levels, famine and social impacts. There is a need to monitor drought even at a global scale. Key variables for monitoring drought include climate data, soil moisture, stream flow, ground water, reservoir and lake levels, snow pack, short-medium-long range forecasts, vegetation health and fire danger. However, there is no single definition of drought and there are different drought indicators and indices even for each drought type. There are already four operational global drought risk monitoring systems, namely the U.S. Drought Monitor, the European Drought Observatory (EDO), the African and the Australian systems, respectively. These systems require further research to improve the level of accuracy, the time and space scales, to consider all types of drought and to achieve operational efficiency, eventually. This paper attempts to contribute to the above mentioned objectives. Based on a similar general methodology, the multi-indicator approach is considered. This has resulted from previous research in the Mediterranean region, an agriculturally vulnerable region, using several drought indices separately, namely RDI and VHI. The proposed scheme attempts to consider different space scaling based on agroclimatic zoning through remotely sensed techniques and several indices. Needless to say, the agroclimatic potential of agricultural areas has to be assessed in order to achieve sustainable and efficient use of natural resources in combination with production maximization. Similarly, the time scale is also considered by addressing drought-related impacts affected by precipitation deficits on time scales ranging from a few days to a few months, such as non-irrigated agriculture, topsoil moisture, wildfire danger, range and pasture conditions and unregulated stream flows. Keywords Remote sensing; Composite Drought Indicators; Global Drought Risk Monitoring.

  10. Hydrologic and hydraulic flood forecasting constrained by remote sensing data

    NASA Astrophysics Data System (ADS)

    Li, Y.; Grimaldi, S.; Pauwels, V. R. N.; Walker, J. P.; Wright, A. J.

    2017-12-01

    Flooding is one of the most destructive natural disasters, resulting in many deaths and billions of dollars of damages each year. An indispensable tool to mitigate the effect of floods is to provide accurate and timely forecasts. An operational flood forecasting system typically consists of a hydrologic model, converting rainfall data into flood volumes entering the river system, and a hydraulic model, converting these flood volumes into water levels and flood extents. Such a system is prone to various sources of uncertainties from the initial conditions, meteorological forcing, topographic data, model parameters and model structure. To reduce those uncertainties, current forecasting systems are typically calibrated and/or updated using ground-based streamflow measurements, and such applications are limited to well-gauged areas. The recent increasing availability of spatially distributed remote sensing (RS) data offers new opportunities to improve flood forecasting skill. Based on an Australian case study, this presentation will discuss the use of 1) RS soil moisture to constrain a hydrologic model, and 2) RS flood extent and level to constrain a hydraulic model.The GRKAL hydrological model is calibrated through a joint calibration scheme using both ground-based streamflow and RS soil moisture observations. A lag-aware data assimilation approach is tested through a set of synthetic experiments to integrate RS soil moisture to constrain the streamflow forecasting in real-time.The hydraulic model is LISFLOOD-FP which solves the 2-dimensional inertial approximation of the Shallow Water Equations. Gauged water level time series and RS-derived flood extent and levels are used to apply a multi-objective calibration protocol. The effectiveness with which each data source or combination of data sources constrained the parameter space will be discussed.

  11. The CpAL Quorum Sensing System Regulates Production of Hemolysins CPA and PFO To Build Clostridium perfringens Biofilms

    PubMed Central

    Shak, Joshua R.; Canizalez-Roman, Adrian

    2015-01-01

    Clostridium perfringens strains produce severe diseases, including myonecrosis and enteritis necroticans, in humans and animals. Diseases are mediated by the production of potent toxins that often damage the site of infection, e.g., skin epithelium during myonecrosis. In planktonic cultures, the regulation of important toxins, such as CPA, CPB, and PFO, is controlled by the C. perfringens Agr-like (CpAL) quorum sensing (QS) system. Strains also encode a functional LuxS/AI-2 system. Although C. perfringens strains form biofilm-like structures, the regulation of biofilm formation is poorly understood. Therefore, our studies investigated the role of CpAL and LuxS/AI-2 QS systems and of QS-regulated factors in controlling the formation of biofilms. We first demonstrate that biofilm production by reference strains differs depending on the culture medium. Increased biomass correlated with the presence of extracellular DNA in the supernatant, which was released by lysis of a fraction of the biofilm population and planktonic cells. Whereas ΔagrB mutant strains were not able to produce biofilms, a ΔluxS mutant produced wild-type levels. The transcript levels of CpAL-regulated cpa and pfoA genes, but not cpb, were upregulated in biofilms compared to planktonic cultures. Accordingly, Δcpa and ΔpfoA mutants, in type A (S13) or type C (CN3685) backgrounds, were unable to produce biofilms, whereas CN3685Δcpb made wild-type levels. Biofilm formation was restored in complemented Δcpa/cpa and ΔpfoA/pfoA strains. Confocal microscopy studies further detected CPA partially colocalizing with eDNA on the biofilm structure. Thus, CpAL regulates biofilm formation in C. perfringens by increasing levels of certain toxins required to build biofilms. PMID:25824838

  12. Demodulation algorithm for optical fiber F-P sensor.

    PubMed

    Yang, Huadong; Tong, Xinglin; Cui, Zhang; Deng, Chengwei; Guo, Qian; Hu, Pan

    2017-09-10

    The demodulation algorithm is very important to improving the measurement accuracy of a sensing system. In this paper, the variable step size hill climbing search method will be initially used for the optical fiber Fabry-Perot (F-P) sensing demodulation algorithm. Compared with the traditional discrete gap transformation demodulation algorithm, the computation is greatly reduced by changing step size of each climb, which could achieve nano-scale resolution, high measurement accuracy, high demodulation rates, and large dynamic demodulation range. An optical fiber F-P pressure sensor based on micro-electro-mechanical system (MEMS) has been fabricated to carry out the experiment, and the results show that the resolution of the algorithm can reach nano-scale level, the sensor's sensitivity is about 2.5  nm/KPa, which is similar to the theoretical value, and this sensor has great reproducibility.

  13. NE Ohio Urban Growth Monitoring and Modeling Prototype. Revised

    NASA Technical Reports Server (NTRS)

    Siebert, Loren; Klosterman, Richard E.

    2001-01-01

    At the University of Akron, Dr. Loren Siebert, Dr. Richard Klosterman, and their graduate research assistants (Jung-Wook Kim, Mohammed Hoque, Aziza Parveen, and Ben Stabler) worked on the integration of remote sensing and GIs-based planning support systems. The primary goal of the project was to develop methods that use remote sensing land cover mapping and GIs-based modeling to monitor and project urban growth and farmland loss in northeast Ohio. Another research goal has been to use only GIS data that are accessible via the World Wide Web, to determine whether Ohio's small counties and townships that do not currently have parcel-level GIS systems can apply these techniques. The project was jointly funded by NASA and USGS OhioView grants during the 2000-2001 academic year; the work is now being continued under a USGS grant.

  14. From planets to crops and back: Remote sensing makes sense

    NASA Astrophysics Data System (ADS)

    Mustard, John F.

    2017-04-01

    Remotely sensed data and the instruments that acquire them are core parts of Earth and planetary observation systems. They are used to quantify the Earth's interconnected systems, and remote sensing is the only way to get a daily, or more frequent, snapshot of the status of the Earth. It really is the Earth's stethoscope. In a similar manner remote sensing is the rock hammer of the planetary scientist and the only way comprehensive data sets can be acquired. To risk offending many remotely sensed data acquired across the electromagnetic spectrum, it is the tricorder to explore known and unknown planets. Arriving where we are today in the use of remotely sensed data in the solar system has been a continually evolving synergy between Earth observation, planetary exploration, and fundamental laboratory work.

  15. Tropospheric Passive Remote Sensing

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr. (Editor)

    1982-01-01

    The long term role of airborne/spaceborne passive remote sensing systems for tropospheric air quality research and the identification of technology advances required to improve the performance of passive remote sensing systems were discussed.

  16. Vision based flight procedure stereo display system

    NASA Astrophysics Data System (ADS)

    Shen, Xiaoyun; Wan, Di; Ma, Lan; He, Yuncheng

    2008-03-01

    A virtual reality flight procedure vision system is introduced in this paper. The digital flight map database is established based on the Geographic Information System (GIS) and high definitions satellite remote sensing photos. The flight approaching area database is established through computer 3D modeling system and GIS. The area texture is generated from the remote sensing photos and aerial photographs in various level of detail. According to the flight approaching procedure, the flight navigation information is linked to the database. The flight approaching area vision can be dynamic displayed according to the designed flight procedure. The flight approaching area images are rendered in 2 channels, one for left eye images and the others for right eye images. Through the polarized stereoscopic projection system, the pilots and aircrew can get the vivid 3D vision of the flight destination approaching area. Take the use of this system in pilots preflight preparation procedure, the aircrew can get more vivid information along the flight destination approaching area. This system can improve the aviator's self-confidence before he carries out the flight mission, accordingly, the flight safety is improved. This system is also useful in validate the visual flight procedure design, and it helps to the flight procedure design.

  17. Diagnostic emulation: Implementation and user's guide

    NASA Technical Reports Server (NTRS)

    Becher, Bernice

    1987-01-01

    The Diagnostic Emulation Technique was developed within the System Validation Methods Branch as a part of the development of methods for the analysis of the reliability of highly reliable, fault tolerant digital avionics systems. This is a general technique which allows for the emulation of a digital hardware system. The technique is general in the sense that it is completely independent of the particular target hardware which is being emulated. Parts of the system are described and emulated at the logic or gate level, while other parts of the system are described and emulated at the functional level. This algorithm allows for the insertion of faults into the system, and for the observation of the response of the system to these faults. This allows for controlled and accelerated testing of system reaction to hardware failures in the target machine. This document describes in detail how the algorithm was implemented at NASA Langley Research Center and gives instructions for using the system.

  18. An Investigation of Students' Perceptions about Democratic School Climate and Sense of Community in School

    ERIC Educational Resources Information Center

    Karakus, Memet

    2017-01-01

    This study aims to investigate students' perceptions about democratic school climate and sense of community in school. In line with this purpose, it aims to find answers to the following questions: How democratic do students find the school climate? What is students' sense of belonging level at school? What is the academic success level of…

  19. The relationship between sense of community in the school and students' aggressive behavior: A multilevel analysis.

    PubMed

    Prati, Gabriele; Albanesi, Cinzia; Cicognani, Elvira

    2018-06-18

    School sense of community has been associated with lower levels of students' aggressive behaviors. The main aim of the study was to examine whether the magnitude of the influence of school sense of community on students' aggressive behavior is similar or different across schools with different levels of aggressive behaviors. Participants were 1,800 Italian students attending 44 middle and high schools. Using multilevel modeling (a random intercepts and slopes model), we found that the magnitude of the negative relationship between sense of community in the school and students' aggressive behaviors was stronger in schools with high levels of aggressive behavior. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Current Research in Lidar Technology Used for the Remote Sensing of Atmospheric Aerosols

    PubMed Central

    Comerón, Adolfo; Muñoz-Porcar, Constantino; Rocadenbosch, Francesc; Rodríguez-Gómez, Alejandro; Sicard, Michaël

    2017-01-01

    Lidars are active optical remote sensing instruments with unique capabilities for atmospheric sounding. A manifold of atmospheric variables can be profiled using different types of lidar: concentration of species, wind speed, temperature, etc. Among them, measurement of the properties of aerosol particles, whose influence in many atmospheric processes is important but is still poorly stated, stands as one of the main fields of application of current lidar systems. This paper presents a review on fundamentals, technology, methodologies and state-of-the art of the lidar systems used to obtain aerosol information. Retrieval of structural (aerosol layers profiling), optical (backscatter and extinction coefficients) and microphysical (size, shape and type) properties requires however different levels of instrumental complexity; this general outlook is structured following a classification that attends these criteria. Thus, elastic systems (detection only of emitted frequencies), Raman systems (detection also of Raman frequency-shifted spectral lines), high spectral resolution lidars, systems with depolarization measurement capabilities and multi-wavelength instruments are described, and the fundamentals in which the retrieval of aerosol parameters is based is in each case detailed. PMID:28632170

  1. Practical robotic self-awareness and self-knowledge

    NASA Astrophysics Data System (ADS)

    Gage, Douglas W.

    2011-05-01

    The functional software components of an autonomous robotic system express behavior via commands to its actuators, based on processed inputs from its sensors; we propose an additional set of "cognitive" capabilities for robotic systems of all types, based on the comprehensive logging of all available data, including sensor inputs, behavioral states, and outputs sent to actuators. A robot should maintain a "sense" of its own (piecewise) continuous existence through time and space; it should in some sense "get a life," providing a level of self-awareness and self-knowledge. Self-awareness includes the ability to survive and work through unexpected power glitches while executing a task or mission. Selfknowledge includes an extensive world model including a model of self and the purpose context in which it is operating (deontics). Our system must support proactive self-test, monitoring, and calibration, and maintain a "personal" health/repair history, supporting system test and evaluation by continuously measuring performance throughout the entire product lifecycle. It will include episodic memory, and a system "lifelog," and will also participate in multiple modes of Human Robotic interaction (HRI).

  2. The Evolution of Quorum Sensing as a Mechanism to Infer Kinship

    PubMed Central

    Schluter, Jonas; Schoech, Armin P.; Foster, Kevin R.; Mitri, Sara

    2016-01-01

    Bacteria regulate many phenotypes via quorum sensing systems. Quorum sensing is typically thought to evolve because the regulated cooperative phenotypes are only beneficial at certain cell densities. However, quorum sensing systems are also threatened by non-cooperative “cheaters” that may exploit quorum-sensing regulated cooperation, which begs the question of how quorum sensing systems are maintained in nature. Here we study the evolution of quorum sensing using an individual-based model that captures the natural ecology and population structuring of microbial communities. We first recapitulate the two existing observations on quorum sensing evolution: density-dependent benefits favor quorum sensing but competition and cheating will destabilize it. We then model quorum sensing in a dense community like a biofilm, which reveals a novel benefit to quorum sensing that is intrinsically evolutionarily stable. In these communities, competing microbial genotypes gradually segregate over time leading to positive correlation between density and genetic similarity between neighboring cells (relatedness). This enables quorum sensing to track genetic relatedness and ensures that costly cooperative traits are only activated once a cell is safely surrounded by clonemates. We hypothesize that under similar natural conditions, the benefits of quorum sensing will not result from an assessment of density but from the ability to infer kinship. PMID:27120081

  3. Archaeological remote sensing application pre-post war situation of Babylon archaeological site—Iraq

    NASA Astrophysics Data System (ADS)

    Jahjah, Munzer; Ulivieri, Carlo; Invernizzi, Antonio; Parapetti, Roberto

    2007-06-01

    The first basic step in obtaining a correct geographical knowledge and initiative for archaeological cartography analysis is an adequately geo-localized representation of natural and semi-natural resources and human activities, present and past. In this context, the correct and contextual evaluation of the resources through the use of integrated techniques of aerial photos, remote sensing and geographic information system (GIS) supply the synoptic instrument to the real knowledge of the land geography and for the operational management of any research and project. We will describe, at a synthetic level, the maturity of the land systematic study of Babylon archaeological site using different change detection analysis. Topographic maps of 1920 and 1980 were used, 18 aerial photos (1986) were mosaicked and georeferenced, vector information was digitized and inserted in a GIS system, DTM was build. Object oriented image analysis activity is being carried on and initial results are available through a WebGIS. The use of remote sensing (Quickbird and Ikonos) data allows us to capture the integral mutations due to human interventions. Earth observation data and GIS system were an optimal starting point for generating and updating the cartography. This results will be indispensable for the Iraqi authority and scientific community who care about the future of the territory.

  4. An Updating System for the Gridded Population Database of China Based on Remote Sensing, GIS and Spatial Database Technologies.

    PubMed

    Yang, Xiaohuan; Huang, Yaohuan; Dong, Pinliang; Jiang, Dong; Liu, Honghui

    2009-01-01

    The spatial distribution of population is closely related to land use and land cover (LULC) patterns on both regional and global scales. Population can be redistributed onto geo-referenced square grids according to this relation. In the past decades, various approaches to monitoring LULC using remote sensing and Geographic Information Systems (GIS) have been developed, which makes it possible for efficient updating of geo-referenced population data. A Spatial Population Updating System (SPUS) is developed for updating the gridded population database of China based on remote sensing, GIS and spatial database technologies, with a spatial resolution of 1 km by 1 km. The SPUS can process standard Moderate Resolution Imaging Spectroradiometer (MODIS L1B) data integrated with a Pattern Decomposition Method (PDM) and an LULC-Conversion Model to obtain patterns of land use and land cover, and provide input parameters for a Population Spatialization Model (PSM). The PSM embedded in SPUS is used for generating 1 km by 1 km gridded population data in each population distribution region based on natural and socio-economic variables. Validation results from finer township-level census data of Yishui County suggest that the gridded population database produced by the SPUS is reliable.

  5. Remote sensing of atmospheric NO2 by employing the continuous-wave differential absorption lidar technique.

    PubMed

    Mei, Liang; Guan, Peng; Kong, Zheng

    2017-10-02

    Differential absorption lidar (DIAL) technique employed for remote sensing has been so far based on the sophisticated narrow-band pulsed laser sources, which require intensive maintenance during operation. In this work, a continuous-wave (CW) NO 2 DIAL system based on the Scheimpflug principle has been developed by employing a compact high-power CW multimode 450 nm laser diode as the light source. Laser emissions at the on-line and off-line wavelengths of the NO 2 absorption spectrum are implemented by tuning the injection current of the laser diode. Lidar signals are detected by a 45° tilted area CCD image sensor satisfying the Scheimpflug principle. Range-resolved NO 2 concentrations on a near-horizontal path are obtained by the NO 2 DIAL system in the range of 0.3-3 km and show good agreement with those measured by a conventional air pollution monitoring station. A detection sensitivity of ± 0.9 ppbv at 95% confidence level in the region of 0.3-1 km is achieved with 15-minute averaging and 700 m range resolution during hours of darkness, which allows accurate concentration measurement of ambient NO 2 . The low-cost and robust DIAL system demonstrated in this work opens up many possibilities for field NO 2 remote sensing applications.

  6. A closed-loop neurobotic system for fine touch sensing

    NASA Astrophysics Data System (ADS)

    Bologna, L. L.; Pinoteau, J.; Passot, J.-B.; Garrido, J. A.; Vogel, J.; Ros Vidal, E.; Arleo, A.

    2013-08-01

    Objective. Fine touch sensing relies on peripheral-to-central neurotransmission of somesthetic percepts, as well as on active motion policies shaping tactile exploration. This paper presents a novel neuroengineering framework for robotic applications based on the multistage processing of fine tactile information in the closed action-perception loop. Approach. The integrated system modules focus on (i) neural coding principles of spatiotemporal spiking patterns at the periphery of the somatosensory pathway, (ii) probabilistic decoding mechanisms mediating cortical-like tactile recognition and (iii) decision-making and low-level motor adaptation underlying active touch sensing. We probed the resulting neural architecture through a Braille reading task. Main results. Our results on the peripheral encoding of primary contact features are consistent with experimental data on human slow-adapting type I mechanoreceptors. They also suggest second-order processing by cuneate neurons may resolve perceptual ambiguities, contributing to a fast and highly performing online discrimination of Braille inputs by a downstream probabilistic decoder. The implemented multilevel adaptive control provides robustness to motion inaccuracy, while making the number of finger accelerations covariate with Braille character complexity. The resulting modulation of fingertip kinematics is coherent with that observed in human Braille readers. Significance. This work provides a basis for the design and implementation of modular neuromimetic systems for fine touch discrimination in robotics.

  7. High Resolution Sensing and Control of Urban Water Networks

    NASA Astrophysics Data System (ADS)

    Bartos, M. D.; Wong, B. P.; Kerkez, B.

    2016-12-01

    We present a framework to enable high-resolution sensing, modeling, and control of urban watersheds using (i) a distributed sensor network based on low-cost cellular-enabled motes, (ii) hydraulic models powered by a cloud computing infrastructure, and (iii) automated actuation valves that allow infrastructure to be controlled in real time. This platform initiates two major advances. First, we achieve a high density of measurements in urban environments, with an anticipated 40+ sensors over each urban area of interest. In addition to new measurements, we also illustrate the design and evaluation of a "smart" control system for real-world hydraulic networks. This control system improves water quality and mitigates flooding by using real-time hydraulic models to adaptively control releases from retention basins. We evaluate the potential of this platform through two ongoing deployments: (i) a flood monitoring network in the Dallas-Fort Worth metropolitan area that detects and anticipates floods at the level of individual roadways, and (ii) a real-time hydraulic control system in the city of Ann Arbor, MI—soon to be one of the most densely instrumented urban watersheds in the United States. Through these applications, we demonstrate that distributed sensing and control of water infrastructure can improve flash flood predictions, emergency response, and stormwater contaminant mitigation.

  8. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants.

    PubMed

    Zhang, Zhaoliang; Liao, Hong; Lucas, William J

    2014-03-01

    As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobilization and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed locally by the root system where hormones serve as important signaling components in terms of developmental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to globally regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehensive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies. © 2014 Institute of Botany, Chinese Academy of Sciences.

  9. Integrated Gas Sensing System of SWCNT and Cellulose Polymer Concentrator for Benzene, Toluene, and Xylenes

    PubMed Central

    Im, Jisun; Sterner, Elizabeth S.; Swager, Timothy M.

    2016-01-01

    An integrated cellulose polymer concentrator/single-walled carbon nanotube (SWCNT) sensing system is demonstrated to detect benzene, toluene, and xylenes (BTX) vapors. The sensing system consists of functionalized cellulose as a selective concentrator disposed directly on top of a conductive SWCNT sensing layer. Functionalized cellulose concentrator (top layer) selectively adsorbs the target analyte and delivers the concentrated analyte as near as possible to the SWCNT sensing layer (bottom layer), which enables the simultaneous concentrating and sensing within a few seconds. The selectivity can be achieved by functionalizing cellulose acetate with a pentafluorophenylacetyl selector that interacts strongly with the target BTX analytes. A new design of the integrated cellulose concentrator/SWCNT sensing system allows high sensitivity with limits of detection for benzene, toluene, and m-xylene vapors of 55 ppm, 19 ppm, and 14 ppm, respectively, selectivity, and fast responses (<10 s to reach equilibrium), exhibiting the potential ability for on-site, real-time sensing applications. The sensing mechanism involves the selective adsorption of analytes in the concentrator film, which in turn mediates changes in the electronic potentials at the polymer-SWCNT interface and potentially changes in the tunneling barriers between nanotubes. PMID:26848660

  10. Development of a Near Ground Remote Sensing System

    PubMed Central

    Zhang, Yanchao; Xiao, Yuzhao; Zhuang, Zaichun; Zhou, Liping; Liu, Fei; He, Yong

    2016-01-01

    Unmanned Aerial Vehicles (UAVs) have shown great potential in agriculture and are increasingly being developed for agricultural use. There are still a lot of experiments that need to be done to improve their performance and explore new uses, but experiments using UAVs are limited by many conditions like weather and location and the time it takes to prepare for a flight. To promote UAV remote sensing, a near ground remote sensing platform was developed. This platform consists of three major parts: (1) mechanical structures like a horizontal rail, vertical cylinder, and three axes gimbal; (2) power supply and control parts; (3) onboard application components. This platform covers five degrees of freedom (DOFs): horizontal, vertical, pitch, roll, yaw. A stm32 ARM single chip was used as the controller of the whole platform and another stm32 MCU was used to stabilize the gimbal. The gimbal stabilizer communicates with the main controller via a CAN bus. A multispectral camera was mounted on the gimbal. Software written in C++ language was developed as the graphical user interface. Operating parameters were set via this software and the working status was displayed in this software. To test how well the system works, a laser distance meter was used to measure the slide rail’s repeat accuracy. A 3-axis vibration analyzer was used to test the system stability. Test results show that the horizontal repeat accuracy was less than 2 mm; vertical repeat accuracy was less than 1 mm; vibration was less than 2 g and remained at an acceptable level. This system has high accuracy and stability and can therefore be used for various near ground remote sensing studies. PMID:27164111

  11. Sensory Transduction in Microorganisms 2008 Gordon Research Conference (January 2008)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann M. Stock

    2009-04-08

    Research into the mechanisms involved in the sensing and responses of microorganisms to changes in their environments is currently very active in a large number of laboratories worldwide. An increasingly wide range of prokaryotic and eukaryotic species are being studied with regard to their sensing of diverse chemical and physical stimuli, including nutrients, toxins, intercellular signaling molecules, redox indicators, light, pressure, magnetic fields, and surface contact, leading to adaptive responses affecting motile behavior, gene expression and/or development. The ease of manipulation of microorganisms has facilitated application of a broad range of techniques that have provided comprehensive descriptions of cellular behaviormore » and its underlying molecular mechanisms. Systems and their molecular components have been probed at levels ranging from the whole organism down to atomic resolution using behavioral analyses; electrophysiology; genetics; molecular biology; biochemical and biophysical characterization; structural biology; single molecule, fluorescence and cryo-electron microscopy; computational modeling; bioinformatics and genomic analyses. Several model systems such as bacterial chemotaxis and motility, fruiting body formation in Myxococcus xanthus, and motility and development in Dictyostelium discoideum have traditionally been a focus of this meeting. By providing a basis for assessment of similarities and differences in mechanisms, understanding of these pathways has advanced the study of many other microbial sensing systems. This conference aims to bring together researchers investigating different prokaryotic and eukaryotic microbial systems using diverse approaches to compare data, share methodologies and ideas, and seek to understand the fundamental principles underlying sensory responses. Topic areas include: (1) Receptor Sensing and Signaling; (2) Intracellular Signaling (two-component, c-di-GMP, c-AMP, etc.); (3) Intracellular Localization and the Cytoskeleton; (4) Motors and Motility; (5) Differentiation and Development; (6) Host/Pathogen and Host/Symbiont Interactions; (7) Intercellular Communication; (8) Microbes and the Environment; and (9) Modeling Signaling Pathways.« less

  12. 15 CFR 960.2 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...

  13. 15 CFR 960.2 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...

  14. 15 CFR 960.2 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...

  15. 15 CFR 960.2 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...

  16. 15 CFR 960.2 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...

  17. Inclination not force is sensed by plants during shoot gravitropism.

    PubMed

    Chauvet, Hugo; Pouliquen, Olivier; Forterre, Yoël; Legué, Valérie; Moulia, Bruno

    2016-10-14

    Gravity perception plays a key role in how plants develop and adapt to environmental changes. However, more than a century after the pioneering work of Darwin, little is known on the sensing mechanism. Using a centrifugal device combined with growth kinematics imaging, we show that shoot gravitropic responses to steady levels of gravity in four representative angiosperm species is independent of gravity intensity. All gravitropic responses tested are dependent only on the angle of inclination from the direction of gravity. We thus demonstrate that shoot gravitropism is stimulated by sensing inclination not gravitational force or acceleration as previously believed. This contrasts with the otolith system in the internal ear of vertebrates and explains the robustness of the control of growth direction by plants despite perturbations like wind shaking. Our results will help retarget the search for the molecular mechanism linking shifting statoliths to signal transduction.

  18. Inclination not force is sensed by plants during shoot gravitropism

    NASA Astrophysics Data System (ADS)

    Chauvet, Hugo; Pouliquen, Olivier; Forterre, Yoël; Legué, Valérie; Moulia, Bruno

    2016-10-01

    Gravity perception plays a key role in how plants develop and adapt to environmental changes. However, more than a century after the pioneering work of Darwin, little is known on the sensing mechanism. Using a centrifugal device combined with growth kinematics imaging, we show that shoot gravitropic responses to steady levels of gravity in four representative angiosperm species is independent of gravity intensity. All gravitropic responses tested are dependent only on the angle of inclination from the direction of gravity. We thus demonstrate that shoot gravitropism is stimulated by sensing inclination not gravitational force or acceleration as previously believed. This contrasts with the otolith system in the internal ear of vertebrates and explains the robustness of the control of growth direction by plants despite perturbations like wind shaking. Our results will help retarget the search for the molecular mechanism linking shifting statoliths to signal transduction.

  19. Chemicapacitors as a versatile platform for miniature gas and vapor sensors

    NASA Astrophysics Data System (ADS)

    Blue, Robert; Uttamchandani, Deepak

    2017-02-01

    Recent years have seen the rapid growth in the need for sensors throughout all areas of society including environmental sensing, health-care, public safety and manufacturing quality control. To meet this diverse need, sensors have to evolve from specialized and bespoke systems to miniaturized, low-power, low-cost (almost disposable) ubiquitous platforms. A technology that has been developed which gives a route to meet these challenges is the chemicapacitor sensor. To date the commercialization of these sensors has largely been restricted to humidity sensing, but in this review we examine the progress over recent years to expand this sensing technology to a wide range of gases and vapors. From sensors interrogated with laboratory instrumentation, chemicapacitor sensors have evolved into miniaturized units integrated with low power readout electronics that can selectively detect target molecules to ppm and sub-ppm levels within vapor mixtures.

  20. Current limiter circuit system

    DOEpatents

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  1. NDSI products system based on Hadoop platform

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Jiang, He; Yang, Xiaoxia; Geng, Erhui

    2015-12-01

    Snow is solid state of water resources on earth, and plays an important role in human life. Satellite remote sensing is significant in snow extraction with the advantages of cyclical, macro, comprehensiveness, objectivity, timeliness. With the continuous development of remote sensing technology, remote sensing data access to the trend of multiple platforms, multiple sensors and multiple perspectives. At the same time, in view of the remote sensing data of compute-intensive applications demand increase gradually. However, current the producing system of remote sensing products is in a serial mode, and this kind of production system is used for professional remote sensing researchers mostly, and production systems achieving automatic or semi-automatic production are relatively less. Facing massive remote sensing data, the traditional serial mode producing system with its low efficiency has been difficult to meet the requirements of mass data timely and efficient processing. In order to effectively improve the production efficiency of NDSI products, meet the demand of large-scale remote sensing data processed timely and efficiently, this paper build NDSI products production system based on Hadoop platform, and the system mainly includes the remote sensing image management module, NDSI production module, and system service module. Main research contents and results including: (1)The remote sensing image management module: includes image import and image metadata management two parts. Import mass basis IRS images and NDSI product images (the system performing the production task output) into HDFS file system; At the same time, read the corresponding orbit ranks number, maximum/minimum longitude and latitude, product date, HDFS storage path, Hadoop task ID (NDSI products), and other metadata information, and then create thumbnails, and unique ID number for each record distribution, import it into base/product image metadata database. (2)NDSI production module: includes the index calculation, production tasks submission and monitoring two parts. Read HDF images related to production task in the form of a byte stream, and use Beam library to parse image byte stream to the form of Product; Use MapReduce distributed framework to perform production tasks, at the same time monitoring task status; When the production task complete, calls remote sensing image management module to store NDSI products. (3)System service module: includes both image search and DNSI products download. To image metadata attributes described in JSON format, return to the image sequence ID existing in the HDFS file system; For the given MapReduce task ID, package several task output NDSI products into ZIP format file, and return to the download link (4)System evaluation: download massive remote sensing data and use the system to process it to get the NDSI products testing the performance, and the result shows that the system has high extendibility, strong fault tolerance, fast production speed, and the image processing results with high accuracy.

  2. 75 FR 32360 - Proposed Information Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems AGENCY: National Oceanic and.... Abstract NOAA has established requirements for the licensing of private operators of remote-sensing space... Land Remote- Sensing Policy Act of 1992 and with the national security and international obligations of...

  3. Advancement of China’s Visible Light Remote Sensing Technology In Aerospace,

    DTIC Science & Technology

    1996-03-19

    Aerospace visible light film systems were among the earliest space remote sensing systems to be developed in China. They have been applied very well...makes China the third nation in the world to master space remote sensing technology, it also puts recoverable remote sensing satellites among the first

  4. Using interactive visual reasoning to support sense-making: implications for design.

    PubMed

    Kodagoda, Neesha; Attfield, Simon; Wong, B L William; Rooney, Chris; Choudhury, Sharmin Tinni

    2013-12-01

    This research aims to develop design guidelines for systems that support investigators and analysts in the exploration and assembly of evidence and inferences. We focus here on the problem of identifying candidate 'influencers' within a community of practice. To better understand this problem and its related cognitive and interaction needs, we conducted a user study using a system called INVISQUE (INteractive Visual Search and QUery Environment) loaded with content from the ACM Digital Library. INVISQUE supports search and manipulation of results over a freeform infinite 'canvas'. The study focuses on the representations user create and their reasoning process. It also draws on some pre-established theories and frameworks related to sense-making and cognitive work in general, which we apply as a 'theoretical lenses' to consider findings and articulate solutions. Analysing the user-study data in the light of these provides some understanding of how the high-level problem of identifying key players within a domain can translate into lower-level questions and interactions. This, in turn, has informed our understanding of representation and functionality needs at a level of description which abstracts away from the specifics of the problem at hand to the class of problems of interest. We consider the study outcomes from the perspective of implications for design.

  5. Control electronics for a multi-laser/multi-detector scanning system

    NASA Technical Reports Server (NTRS)

    Kennedy, W.

    1980-01-01

    The Mars Rover Laser Scanning system uses a precision laser pointing mechanism, a photodetector array, and the concept of triangulation to perform three dimensional scene analysis. The system is used for real time terrain sensing and vision. The Multi-Laser/Multi-Detector laser scanning system is controlled by a digital device called the ML/MD controller. A next generation laser scanning system, based on the Level 2 controller, is microprocessor based. The new controller capabilities far exceed those of the ML/MD device. The first draft circuit details and general software structure are presented.

  6. A Brief Overview of NASA Glenn Research Center Sensor and Electronics Activities

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2012-01-01

    Aerospace applications require a range of sensing technologies. There is a range of sensor and sensor system technologies being developed using microfabrication and micromachining technology to form smart sensor systems and intelligent microsystems. Drive system intelligence to the local (sensor) level -- distributed smart sensor systems. Sensor and sensor system development examples: (1) Thin-film physical sensors (2) High temperature electronics and wireless (3) "lick and stick" technology. NASA GRC is a world leader in aerospace sensor technology with a broad range of development and application experience. Core microsystems technology applicable to a range of application environmentS.

  7. Incorporating a constrained optimization algorithm into remote sensing/precision agriculture methodology

    NASA Astrophysics Data System (ADS)

    Moreenthaler, George W.; Khatib, Nader; Kim, Byoungsoo

    2003-08-01

    For two decades now, the use of Remote Sensing/Precision Agriculture to improve farm yields while reducing the use of polluting chemicals and the limited water supply has been a major goal. With world population growing exponentially, arable land being consumed by urbanization, and an unfavorable farm economy, farm efficiency must increase to meet future food requirements and to make farming a sustainable, profitable occupation. "Precision Agriculture" refers to a farming methodology that applies nutrients and moisture only where and when they are needed in the field. The real goal is to increase farm profitability by identifying the additional treatments of chemicals and water that increase revenues more than they increase costs and do no exceed pollution standards (constrained optimization). Even though the economic and environmental benefits appear to be great, Remote Sensing/Precision Agriculture has not grown as rapidly as early advocates envisioned. Technology for a successful Remote Sensing/Precision Agriculture system is now in place, but other needed factors have been missing. Commercial satellite systems can now image the Earth (multi-spectrally) with a resolution as fine as 2.5 m. Precision variable dispensing systems using GPS are now available and affordable. Crop models that predict yield as a function of soil, chemical, and irrigation parameter levels have been developed. Personal computers and internet access are now in place in most farm homes and can provide a mechanism for periodically disseminating advice on what quantities of water and chemicals are needed in specific regions of each field. Several processes have been selected that fuse the disparate sources of information on the current and historic states of the crop and soil, and the remaining resource levels available, with the critical decisions that farmers are required to make. These are done in a way that is easy for the farmer to understand and profitable to implement. A "Constrained Optimization Algorithm" to further improve these processes will be presented. The objective function of the model will used to maximize the farmer's profit via increasing yields while decreasing environmental damage and decreasing applications of costly treatments. This model will incorporate information from Remote Sensing, from in-situ weather sources, from soil history, and from tacit farmer knowledge of the relative productivity of selected "Management Zones" of the farm, to provide incremental advice throughout the growing season on the optimum usage of water and chemical treatments.

  8. Natural and environmental vulnerability analysis through remote sensing and GIS techniques: a case study of Indigirka River basin, Eastern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Boori, Mukesh S.; Choudhary, Komal; Kupriyanov, Alexander; Sugimoto, Atsuko; Evers, Mariele

    2016-10-01

    The aim of this research work is to understand natural and environmental vulnerability situation and its cause such as intensity, distribution and socio-economic effect in the Indigirka River basin, Eastern Siberia, Russia. This paper identifies, assess and classify natural and environmental vulnerability using landscape pattern from multidisciplinary approach, based on remote sensing and Geographical Information System (GIS) techniques. A model was developed by following thematic layers: land use/cover, vegetation, wetland, geology, geomorphology and soil in ArcGIS 10.2 software. According to numerical results vulnerability classified into five levels: low, sensible, moderate, high and extreme vulnerability by mean of cluster principal. Results are shows that in natural vulnerability maximum area covered by moderate (29.84%) and sensible (38.61%) vulnerability and environmental vulnerability concentrated by moderate (49.30%) vulnerability. So study area has at medial level vulnerability. The results found that the methodology applied was effective enough in the understanding of the current conservation circumstances of the river basin in relation to their environment with the help of remote sensing and GIS. This study is helpful for decision making for eco-environmental recovering and rebuilding as well as predicting the future development.

  9. BOREAS Level-4c AVHRR-LAC Ten-Day Composite Images: Surface Parameters

    NASA Technical Reports Server (NTRS)

    Cihlar, Josef; Chen, Jing; Huang, Fengting; Nickeson, Jaime; Newcomer, Jeffrey A.; Hall, Forrest G. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study (BOREAS) Staff Science Satellite Data Acquisition Program focused on providing the research teams with the remotely sensed satellite data products they needed to compare and spatially extend point results. Manitoba Remote Sensing Center (MRSC) and BOREAS Information System (BORIS) personnel acquired, processed, and archived data from the Advanced Very High Resolution Radiometer (AVHRR) instruments on the NOAA-11 and -14 satellites. The AVHRR data were acquired by CCRS and were provided to BORIS for use by BOREAS researchers. These AVHRR level-4c data are gridded, 10-day composites of surface parameters produced from sets of single-day images. Temporally, the 10-day compositing periods begin 11-Apr-1994 and end 10-Sep-1994. Spatially, the data cover the entire BOREAS region. The data are stored in binary image format files. Note: Some of the data files on the BOREAS CD-ROMs have been compressed using the Gzip program.

  10. BOREAS Level-4b AVHRR-LAC Ten-Day Composite Images: At-sensor Radiance

    NASA Technical Reports Server (NTRS)

    Cihlar, Josef; Chen, Jing; Nickerson, Jaime; Newcomer, Jeffrey A.; Huang, Feng-Ting; Hall, Forrest G. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study (BOREAS) Staff Science Satellite Data Acquisition Program focused on providing the research teams with the remotely sensed satellite data products they needed to compare and spatially extend point results. Manitoba Remote Sensing Center (MRSC) and BOREAS Information System (BORIS) personnel acquired, processed, and archived data from the Advanced Very High Resolution Radiometer (AVHRR) instruments on the National Oceanic and Atmospheric Administration (NOAA-11) and -14 satellites. The AVHRR data were acquired by CCRS and were provided to BORIS for use by BOREAS researchers. These AVHRR level-4b data are gridded, 10-day composites of at-sensor radiance values produced from sets of single-day images. Temporally, the 10- day compositing periods begin 11-Apr-1994 and end 10-Sep-1994. Spatially, the data cover the entire BOREAS region. The data are stored in binary image format files.

  11. Change detection using vegetation indices and multiplatform satellite imagery at multiple temporal and spatial scales

    USGS Publications Warehouse

    Glenn, Edward P.; Nagler, Pamela L.; Huete, Alfredo R.; Weng, Qihao

    2014-01-01

    This chapter describes emerging methods for using satellite imagery across temporal and spatial scales using a case study approach to illustrate some of the opportunities now available for combining observations across scales. It explores the use of multiplatform sensor systems to characterize ecological change, as exemplified by efforts to scale the effects of a biocontrol insect (the leaf beetle Diorhabda carinulata) on the phenology and water use of Tamarix shrubs (Tamarix ramosissima and related species and hybrids) targeted for removal on western U.S. rivers, from the level of individual leaves to the regional level of measurement. Finally, the chapter summarizes the lessons learned and emphasize the need for ground data to calibrate and validate remote sensing data and the types of errors inherent in scaling point data over wide areas, illustrated with research on evapotranspiration (ET) of Tamarix using a wide range of ground measurement and remote sensing methods.

  12. 15 CFR 960.13 - Prohibitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...

  13. 15 CFR 960.13 - Prohibitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...

  14. 15 CFR 960.13 - Prohibitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...

  15. 15 CFR 960.13 - Prohibitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...

  16. 15 CFR 960.13 - Prohibitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...

  17. Spatial information technologies for remote sensing today and tomorrow; Proceedings of the Ninth Pecora Symposium, Sioux Falls, SD, October 2-4, 1984

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Topics discussed at the symposium include hardware, geographic information system (GIS) implementation, processing remotely sensed data, spatial data structures, and NASA programs in remote sensing information systems. Attention is also given GIS applications, advanced techniques, artificial intelligence, graphics, spatial navigation, and classification. Papers are included on the design of computer software for geographic image processing, concepts for a global resource information system, algorithm development for spatial operators, and an application of expert systems technology to remotely sensed image analysis.

  18. Force sensing of multiple-DOF cable-driven instruments for minimally invasive robotic surgery.

    PubMed

    He, Chao; Wang, Shuxin; Sang, Hongqiang; Li, Jinhua; Zhang, Linan

    2014-09-01

    Force sensing for robotic surgery is limited by the size of the instrument, friction and sterilization requirements. This paper presents a force-sensing instrument to avoid these restrictions. Operating forces were calculated according to cable tension. Mathematical models of the force-sensing system were established. A force-sensing instrument was designed and fabricated. A signal collection and processing system was constructed. The presented approach can avoid the constraints of space limits, sterilization requirements and friction introduced by the transmission parts behind the instrument wrist. Test results showed that the developed instrument has a 0.03 N signal noise, a 0.05 N drift, a 0.04 N resolution and a maximum error of 0.4 N. The validation experiment indicated that the operating and grasping forces can be effectively sensed. The developed force-sensing system can be used in minimally invasive robotic surgery to construct a force-feedback system. Copyright © 2013 John Wiley & Sons, Ltd.

  19. System and method for evaluating wind flow fields using remote sensing devices

    DOEpatents

    Schroeder, John; Hirth, Brian; Guynes, Jerry

    2016-12-13

    The present invention provides a system and method for obtaining data to determine one or more characteristics of a wind field using a first remote sensing device and a second remote sensing device. Coordinated data is collected from the first and second remote sensing devices and analyzed to determine the one or more characteristics of the wind field. The first remote sensing device is positioned to have a portion of the wind field within a first scanning sector of the first remote sensing device. The second remote sensing device is positioned to have the portion of the wind field disposed within a second scanning sector of the second remote sensing device.

  20. Modular design of electrical power subsystem for a remote sensing satellite

    NASA Astrophysics Data System (ADS)

    Kosari, Ehsan; Ghazanfarinia, Sajjad; Hosseingholi, Mahboobeh; Haghshenas, Javad

    2017-09-01

    Power Supply is one of the most important subjects in Remote Sensing satellite. Having an appropriate and adequate power resources, A Remote Sensing satellite may utilize more complex Payloads and also make them more operable in orbit and mission timeline. This paper is deals with a design of electrical power supply subsystem (EPS) of a hypothetical satellite with remote sensing mission in Low Earth Orbits, without any restriction on the type and number of Payloads and only assuming a constraint on the total power consumption of them. EPS design is in a way that can supply the platform consumption to support Mission and Payload(s) requirements beside the power consumption of the payload(s). The design is also modular, as it can be used not only for the hypothetical system, but also for the other systems with similar architecture and even more needs on power and differences in some specifications. Therefore, a modularity scope is assumed in design of this subsystem, in order to support the satellite in the circular orbits with altitude of 500 to 700 km and inclination of 98 degrees, a sun-synchronous orbit, where one can say the design is applicable to a large range of remote sensing satellites. Design process will be started by high level and system requirements analysis, continued by choosing the best approach for design and implementation based on system specification and mission. After EPS sizing, the specifications of elements are defined to get the performance needed during operation phases; the blocks and sub-blocks are introduced and details of their design and performance analysis are presented; and the modularity is verified using calculations for the confined area based on design parameters and evaluated by STK software analysis results. All of the process is coded in MATLAB software and comprehensive graphs are generated to demonstrate the capabilities and performance. The code and graphs are developed in such a way to completely review the design procedure and system efficiency in worst case of power consumption scenario at the beginning and end of satellite life

  1. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog

    PubMed Central

    Mamani, Sigde; Moinier, Danielle; Denis, Yann; Soulère, Laurent; Queneau, Yves; Talla, Emmanuel; Bonnefoy, Violaine; Guiliani, Nicolas

    2016-01-01

    While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270T and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidansT, the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidansT cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270T genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis. PMID:27683573

  2. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog.

    PubMed

    Mamani, Sigde; Moinier, Danielle; Denis, Yann; Soulère, Laurent; Queneau, Yves; Talla, Emmanuel; Bonnefoy, Violaine; Guiliani, Nicolas

    2016-01-01

    While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270(T) and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidans (T), the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidans (T) cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270(T) genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis.

  3. Investigating the relationship between tree heights derived from SIBBORK forest model and remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Osmanoglu, B.; Feliciano, E. A.; Armstrong, A. H.; Sun, G.; Montesano, P.; Ranson, K.

    2017-12-01

    Tree heights are one of the most commonly used remote sensing parameters to measure biomass of a forest. In this project, we investigate the relationship between remotely sensed tree heights (e.g. G-LiHT lidar and commercially available high resolution satellite imagery, HRSI) and the SIBBORK modeled tree heights. G-LiHT is a portable, airborne imaging system that simultaneously maps the composition, structure, and function of terrestrial ecosystems using lidar, imaging spectroscopy and thermal mapping. Ground elevation and canopy height models were generated using the lidar data acquired in 2012. A digital surface model was also generated using the HRSI technique from the commercially available WorldView data in 2016. The HRSI derived height and biomass products are available at the plot (10x10m) level. For this study, we parameterized the SIBBORK individual-based gap model for Howland forest, Maine. The parameterization was calibrated using field data for the study site and results show that the simulated forest reproduces the structural complexity of Howland old growth forest, based on comparisons of key variables including, aboveground biomass, forest height and basal area. Furthermore carbon cycle and ecosystem observational capabilities will be enhanced over the next 6 years via the launch of two LiDAR (NASA's GEDI and ICESAT 2) and two SAR (NASA's ISRO NiSAR and ESA's Biomass) systems. Our aim is to present the comparison of canopy height models obtained with SIBBORK forest model and remote sensing techniques, highlighting the synergy between individual-based forest modeling and high-resolution remote sensing.

  4. Examining the Effectiveness of Hacked, Commercial, Self-Tuning RFID Tags to Passively Sense the Volumetric Water Content of Soil

    NASA Astrophysics Data System (ADS)

    Stoddard, B. S.; Udell, C.; Selker, J. S.

    2017-12-01

    Currently available soil volumetric water content (VWC) sensors have several drawbacks that pose certain challenges for implementation on large scale for farms. Such issues include cost, scalability, maintenance, wires running through fields, and single-spot resolution. The development of a passive soil moisture sensing system utilizing Radio Frequency Identification (RFID) would allay many of these issues. The type of passive RFID tags discussed in this paper currently cost between 8 to 15 cents retail per tag when purchased in bulk. An incredibly cheap, scalable, low-maintenance, wireless, high-resolution system for sensing soil moisture would be possible if such tags were introduced into the agricultural world. This paper discusses both the use cases as well as examines one implementation of the tags. In 2015, RFID tag manufacturer SmarTrac started selling RFID moisture sensing tags for use in the automotive industry to detect leaks during quality assurance. We place those tags in soil at a depth of 4 inches and compared the moisture levels sensed by the RFID tags with the relative permittivity (ɛr) of the soil as measured by an industry-standard probe. Using an equation derived by Topp et al, we converted to VWC. We tested this over a wide range of moisture conditions and found a statistically significant, correlational relationship between the sensor values from the RFID tags and the probe's measurement of ɛr. We also identified a possible function for mapping vales from the RFID tag to the probe bounded by a reasonable margin of error.

  5. Hair-based sensors for micro-autonomous systems

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mahdi M.; Peterson, Rebecca L.; Najafi, Khalil

    2012-06-01

    We seek to harness microelectromechanical systems (MEMS) technologies to build biomimetic devices for low-power, high-performance, robust sensors and actuators on micro-autonomous robot platforms. Hair is used abundantly in nature for a variety of functions including balance and inertial sensing, flow sensing and aerodynamic (air foil) control, tactile and touch sensing, insulation and temperature control, particle filtering, and gas/chemical sensing. Biological hairs, which are typically characterized by large surface/volume ratios and mechanical amplification of movement, can be distributed in large numbers over large areas providing unprecedented sensitivity, redundancy, and stability (robustness). Local neural transduction allows for space- and power-efficient signal processing. Moreover by varying the hair structure and transduction mechanism, the basic hair form can be used for a wide diversity of functions. In this paper, by exploiting a novel wafer-level, bubble-free liquid encapsulation technology, we make arrays of micro-hydraulic cells capable of electrostatic actuation and hydraulic amplification, which enables high force/high deflection actuation and extremely sensitive detection (sensing) at low power. By attachment of cilia (hair) to the micro-hydraulic cell, air flow sensors with excellent sensitivity (< few cm/s) and dynamic range (> 10 m/s) have been built. A second-generation design has significantly reduced the sensor response time while maintaining sensitivity of about 2 cm/s and dynamic range of more than 15 m/s. These sensors can be used for dynamic flight control of flying robots or for situational awareness in surveillance applications. The core biomimetic technologies developed are applicable to a broad range of sensors and actuators.

  6. Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range

    PubMed Central

    Ventura, Alejandra C.; Bush, Alan; Vasen, Gustavo; Goldín, Matías A.; Burkinshaw, Brianne; Bhattacharjee, Nirveek; Folch, Albert; Brent, Roger; Chernomoretz, Ariel; Colman-Lerner, Alejandro

    2014-01-01

    Cell signaling systems sense and respond to ligands that bind cell surface receptors. These systems often respond to changes in the concentration of extracellular ligand more rapidly than the ligand equilibrates with its receptor. We demonstrate, by modeling and experiment, a general “systems level” mechanism cells use to take advantage of the information present in the early signal, before receptor binding reaches a new steady state. This mechanism, pre-equilibrium sensing and signaling (PRESS), operates in signaling systems in which the kinetics of ligand-receptor binding are slower than the downstream signaling steps, and it typically involves transient activation of a downstream step. In the systems where it operates, PRESS expands and shifts the input dynamic range, allowing cells to make different responses to ligand concentrations so high as to be otherwise indistinguishable. Specifically, we show that PRESS applies to the yeast directional polarization in response to pheromone gradients. Consideration of preexisting kinetic data for ligand-receptor interactions suggests that PRESS operates in many cell signaling systems throughout biology. The same mechanism may also operate at other levels in signaling systems in which a slow activation step couples to a faster downstream step. PMID:25172920

  7. Remote sensing of a coupled carbon-water-energy-radiation balances from the Globe to plot scales

    NASA Astrophysics Data System (ADS)

    Ryu, Y.; Jiang, C.; Huang, Y.; Kim, J.; Hwang, Y.; Kimm, H.; Kim, S.

    2016-12-01

    Advancements in near-surface and satellite remote sensing technologies have enabled us to monitor the global terrestrial ecosystems at multiple spatial and temporal scales. An emergent challenge is how to formulate a coupled water, carbon, energy, radiation, and nitrogen cycles from remote sensing. Here, we report Breathing Earth System Simulator (BESS), which coupled radiation (shortwave, longwave, PAR, diffuse PAR), carbon (gross primary productivity, ecosystem respiration, net ecosystem exchange), water (evaporation), and energy (latent and sensible heat) balances across the global land at 1 km resolution, 8 daily between 2000 and 2015 using multiple satellite remote sensing. The performance of BESS was tested against field observations (FLUXNET, BSRN) and other independent products (MPI-BGC, MODIS, GLASS). We found that the coupled model, BESS showed on par with, or better performance than the other products which computed land surface fluxes individually. Lastly, we show one plot-level study conducted in a paddy rice to demonstrate how to couple radiation, carbon, water, nitrogen balances with a series of near-surface spectral sensors.

  8. Potential Roles of GLUT12 for Glucose Sensing and Cellular Migration in MCF-7 Human Breast Cancer Cells Under High Glucose Conditions.

    PubMed

    Matsui, Chihiro; Takatani-Nakase, Tomoka; Maeda, Sachie; Nakase, Ikuhiko; Takahashi, Koichi

    2017-12-01

    Recent reports have indicated that hyperglycaemia is associated with breast cancer progression. High glucose conditions corresponding to hyperglycaemia significantly promote migration of MCF-7 human breast cancer cells, however, little is known about the mechanisms of glucose sensing for the acquisition of migratory properties by MCF-7 cells. This study investigated glucose sensing and mediation, which are responsible for the high motility of MCF-7 cells. We evaluated the migration of MCF-7 cells cultured in high glucose-containing medium and essential regulatory factors from the perspective of the glucose transport system. We demonstrated that glucose transporter 12 (GLUT12) protein level increased in MCF-7 cells and co-localized with actin organization under high glucose conditions. Moreover, GLUT12-knockdown completely abrogated high glucose-induced migration, indicating that GLUT12 functionally participates in sensing high glucose concentrations. GLUT12 plays a critical role in the model of breast cancer progression through high glucose concentrations. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles: REMOTE SENSING OF THERMODYNAMIC PROFILES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wulfmeyer, Volker; Hardesty, R. Michael; Turner, David D.

    A review of remote sensing technology for lower tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer—usually characterized by an inversion—and the lowermore » troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global navigation satellite system, as well as water vapor and temperature Raman lidar and water vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less

  10. 78 FR 23910 - Taking of Marine Mammals Incidental to Specified Activities; Construction at Orcas Island and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ... Remote Sensing Network, a system of interconnected hydrophones installed in the marine environment of... unmitigable adverse impact on the availability of the species or stock(s) for subsistence uses (where relevant... use vibratory pile hammer for pile driving. Marine mammals are not expected to be injured (Level A...

  11. Commercial remote sensing & spatial information (CRS & SI) technologies program for reliable transportation systems planning : volume 1 - comparative evaluation of link-level travel time from different technologies and sources.

    DOT National Transportation Integrated Search

    2015-03-01

    Accurate travel time information is required to efficiently plan and effectively manage transportation network. Technologies and : private data sources such as INRIX, TomTom and HERE offer the potential to continuously collect travel time data and us...

  12. "Just Because" Interventions: Engaging Hard-to-Reach Students

    ERIC Educational Resources Information Center

    Winter, Travis; Haines-Burnham, James

    2005-01-01

    This article is a description of a relationship-intensive intervention strategy for students with emotional and behavioral problems. This strategy has been used as a supplement to the point and level system to insure that all kids have positive experiences with staff and gain a sense of belonging. Students are selected by staff based on the belief…

  13. MASTERS: A Virtual Lab on Multimedia Systems for Telecommunications, Medical, and Remote Sensing Applications

    ERIC Educational Resources Information Center

    Alexiadis, D. S.; Mitianoudis, N.

    2013-01-01

    Digital signal processing (DSP) has been an integral part of most electrical, electronic, and computer engineering curricula. The applications of DSP in multimedia (audio, image, video) storage, transmission, and analysis are also widely taught at both the undergraduate and post-graduate levels, as digital multimedia can be encountered in most…

  14. The use of remote sensing for updating extensive forest inventories

    Treesearch

    John F. Kelly

    1990-01-01

    The Forest Inventory and Analysis unit of the USDA Forest Service Southern Forest Experiment Station (SO-FIA) has the research task of devising an inventory updating system that can be used to provide reliable estimates of forest area, volume, growth, and removals at the State level. These updated inventories must be accomplished within current budgetary restraints....

  15. Benefits from remote sensing data utilization in urban planning processes and system recommendations

    NASA Technical Reports Server (NTRS)

    Mallon, H. J.; Howard, J. Y.

    1972-01-01

    The benefits of utilizing remote sensor data in the urban planning process of the Metropolitan Washington Council of Governments are investigated. An evaluation of sensor requirements, a description/ comparison of costs, benefits, levels of accuracy, ease of attainment, and frequency of update possible using sensor versus traditional data acquisition techniques are discussed.

  16. A Dispersion-Dominated Chromogenic Strategy for Colorimetric Sensing of Glutathione at the Nanomolar Level Using Gold Nanoparticles.

    PubMed

    Xianyu, Yunlei; Xie, Yangzhouyun; Wang, Nuoxin; Wang, Zhuo; Jiang, Xingyu

    2015-11-04

    A dispersion-dominated chromogenic strategy for glutathione sensing is developed. Glutathione prevents the aggregation of arginine-modified gold nanoparticles via mercury-thiol interaction, which allows for glutathione sensing at the nanomolar level (10.9 × 10(-9) m) with facile operation and naked-eye readout. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Detecting submerged features in water: modeling, sensors, and measurements

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.; Bassetti, Luce

    2004-11-01

    It is becoming more important to understand the remote sensing systems and associated autonomous or semi-autonomous methodologies (robotic & mechatronics) that may be utilized in freshwater and marine aquatic environments. This need comes from several issues related not only to advances in our scientific understanding and technological capabilities, but also from the desire to insure that the risk associated with UXO (unexploded ordnance), related submerged mines, as well as submerged targets (such as submerged aquatic vegetation) and debris left from previous human activities are remotely sensed and identified followed by reduced risks through detection and removal. This paper will describe (a) remote sensing systems, (b) platforms (fixed and mobile, as well as to demonstrate (c) the value of thinking in terms of scalability as well as modularity in the design and application of new systems now being constructed within our laboratory and other laboratories, as well as future systems. New remote sensing systems - moving or fixed sensing systems, as well as autonomous or semi-autonomous robotic and mechatronic systems will be essential to secure domestic preparedness for humanitarian reasons. These remote sensing systems hold tremendous value, if thoughtfully designed for other applications which include environmental monitoring in ambient environments.

  18. Investigation of the optical and sensing characteristics of nanoparticle arrays for high temperature applications

    NASA Astrophysics Data System (ADS)

    Dharmalingam, Gnanaprakash; Carpenter, Michael A.

    2015-05-01

    Monitoring polluting gases such as CO and NOx emitted from gas turbines in power plants and aircraft is important, in order to both reduce the effects of such gases on the environment as well as to optimize the performance of the respective power system. Fuel cost savings as well as a reduced environmental impact can be realized if air traffic utilized next generation jet turbines with an emission/performance control sensing system. These monitoring systems must be sensitive and selective to gases as well as be reliable and stable under harsh environmental conditions where the operation temperatures are in excess of 500 °C within a highly reactive environment. In this work, plasmonics based chemical sensors with nanocomposites of a combination of gold nano particles and Yttria Stabilized Zirconia (YSZ) has enabled the sensitive (PPM) and stable detection (100s of hrs.) of H2, NO2 and CO at temperatures of 500 °C. Selectivity remains a challenging parameter to optimize and a layer by layer sputter deposition approach has been recently demonstrated to modify the resulting sensing properties through a change in the morphology of the deposited films. It is expected that further enhancements would be realized through control of the shape and geometry of the catalytically active Au nanoparticles. This level of control has been realized through the use of electron beam lithography to fabricate nanocomposite arrays. Sensing results towards the detection of H2 will be highlighted with specific concerns related to optimization of these nanorod arrays detailed.

  19. Signal Integration in Quorum Sensing Enables Cross-Species Induction of Virulence in Pectobacterium wasabiae

    PubMed Central

    Valente, Rita S.; Nadal-Jimenez, Pol; Carvalho, André F. P.; Vieira, Filipe J. D.

    2017-01-01

    ABSTRACT Bacterial communities can sense their neighbors, regulating group behaviors in response to cell density and environmental changes. The diversity of signaling networks in a single species has been postulated to allow custom responses to different stimuli; however, little is known about how multiple signals are integrated and the implications of this integration in different ecological contexts. In the plant pathogen Pectobacterium wasabiae (formerly Erwinia carotovora), two signaling networks—the N-acyl homoserine lactone (AHL) quorum-sensing system and the Gac/Rsm signal transduction pathway—control the expression of secreted plant cell wall-degrading enzymes, its major virulence determinants. We show that the AHL system controls the Gac/Rsm system by affecting the expression of the regulatory RNA RsmB. This regulation is mediated by ExpR2, the quorum-sensing receptor that responds to the P. wasabiae cognate AHL but also to AHLs produced by other bacterial species. As a consequence, this level of regulation allows P. wasabiae to bypass the Gac-dependent regulation of RsmB in the presence of exogenous AHLs or AHL-producing bacteria. We provide in vivo evidence that this pivotal role of RsmB in signal transduction is important for the ability of P. wasabiae to induce virulence in response to other AHL-producing bacteria in multispecies plant lesions. Our results suggest that the signaling architecture in P. wasabiae was coopted to prime the bacteria to eavesdrop on other bacteria and quickly join the efforts of other species, which are already exploiting host resources. PMID:28536283

  20. System-Level Biochip for Impedance Sensing and Programmable Manipulation of Bladder Cancer Cells

    PubMed Central

    Chuang, Cheng-Hsin; Huang, Yao-Wei; Wu, Yao-Tung

    2011-01-01

    This paper develops a dielectrophoretic (DEP) chip with multi-layer electrodes and a micro-cavity array for programmable manipulations of cells and impedance measurement. The DEP chip consists of an ITO top electrode, flow chamber, middle electrode on an SU-8 surface, micro-cavity arrays of SU-8 and distributed electrodes at the bottom of the micro-cavity. Impedance sensing of single cells could be performed as follows: firstly, cells were trapped in a micro-cavity array by negative DEP force provided by top and middle electrodes; then, the impedance measurement for discrimination of different stage of bladder cancer cells was accomplished by the middle and bottom electrodes. After impedance sensing, the individual releasing of trapped cells was achieved by negative DEP force using the top and bottom electrodes in order to collect the identified cells once more. Both cell manipulations and impedance measurement had been integrated within a system controlled by a PC-based LabVIEW program. In the experiments, two different stages of bladder cancer cell lines (grade III: T24 and grade II: TSGH8301) were utilized for the demonstration of programmable manipulation and impedance sensing; as the results show, the lower-grade bladder cancer cells (TSGH8301) possess higher impedance than the higher-grade ones (T24). In general, the multi-step manipulations of cells can be easily programmed by controlling the electrical signal in our design, which provides an excellent platform technology for lab-on-a-chip (LOC) or a micro-total-analysis-system (Micro TAS). PMID:22346685

  1. [The information principle in physiology: an analysis from the position of the general theory of functional systems].

    PubMed

    Sudakov, K V

    1995-01-01

    Information principle of the organism functional systems creation is formulated in the article. Transformation of organism biological needs on various levels into dominant motivation, behaviour and processes of basis needs satisfaction without loss in information sense is shown. Information role of emotions is analysed. On the base of experimental data is formulated concept of information environment of organism. Specially analysed the information basis of human psychological activity.

  2. Removing non-stationary noise in spectrum sensing using matrix factorization

    NASA Astrophysics Data System (ADS)

    van Bloem, Jan-Willem; Schiphorst, Roel; Slump, Cornelis H.

    2013-12-01

    Spectrum sensing is key to many applications like dynamic spectrum access (DSA) systems or telecom regulators who need to measure utilization of frequency bands. The International Telecommunication Union (ITU) recommends a 10 dB threshold above the noise to decide whether a channel is occupied or not. However, radio frequency (RF) receiver front-ends are non-ideal. This means that the obtained data is distorted with noise and imperfections from the analog front-end. As part of the front-end the automatic gain control (AGC) circuitry mainly affects the sensing performance as strong adjacent signals lift the noise level. To enhance the performance of spectrum sensing significantly we focus in this article on techniques to remove the noise caused by the AGC from the sensing data. In order to do this we have applied matrix factorization techniques, i.e., SVD (singular value decomposition) and NMF (non-negative matrix factorization), which enables signal space analysis. In addition, we use live measurement results to verify the performance and to remove the effects of the AGC from the sensing data using above mentioned techniques, i.e., applied on block-wise available spectrum data. In this article it is shown that the occupancy in the industrial, scientific and medical (ISM) band, obtained by using energy detection (ITU recommended threshold), can be an overestimation of spectrum usage by 60%.

  3. 4D light-field sensing system for people counting

    NASA Astrophysics Data System (ADS)

    Hou, Guangqi; Zhang, Chi; Wang, Yunlong; Sun, Zhenan

    2016-03-01

    Counting the number of people is still an important task in social security applications, and a few methods based on video surveillance have been proposed in recent years. In this paper, we design a novel optical sensing system to directly acquire the depth map of the scene from one light-field camera. The light-field sensing system can count the number of people crossing the passageway, and record the direction and intensity of rays at a snapshot without any assistant light devices. Depth maps are extracted from the raw light-ray sensing data. Our smart sensing system is equipped with a passive imaging sensor, which is able to naturally discern the depth difference between the head and shoulders for each person. Then a human model is built. Through detecting the human model from light-field images, the number of people passing the scene can be counted rapidly. We verify the feasibility of the sensing system as well as the accuracy by capturing real-world scenes passing single and multiple people under natural illumination.

  4. A Sensitivity Study of the Aircraft Vortex Spacing System (AVOSS) Wake Predictor Algorithm to the Resolution of Input Meteorological Profiles

    NASA Technical Reports Server (NTRS)

    Rutishauser, David K.; Butler, Patrick; Riggins, Jamie

    2004-01-01

    The AVOSS project demonstrated the feasibility of applying aircraft wake vortex sensing and prediction technologies to safe aircraft spacing for single runway arrivals. On average, AVOSS provided spacing recommendations that were less than the current FAA prescribed spacing rules, resulting in a potential airport efficiency gain. Subsequent efforts have included quantifying the operational specifications for future Wake Vortex Advisory Systems (WakeVAS). In support of these efforts, each of the candidate subsystems for a WakeVAS must be specified. The specifications represent a consensus between the high-level requirements and the capabilities of the candidate technologies. This report documents the beginnings of an effort to quantify the capabilities of the AVOSS Prediction Algorithm (APA). Specifically, the APA horizontal position and circulation strength output sensitivity to the resolution of its wind and turbulence inputs is examined. The results of this analysis have implications for the requirements of the meteorological sensing and prediction systems comprising a WakeVAS implementation.

  5. Real-Time Hazard Detection and Avoidance Demonstration for a Planetary Lander

    NASA Technical Reports Server (NTRS)

    Epp, Chirold D.; Robertson, Edward A.; Carson, John M., III

    2014-01-01

    The Autonomous Landing Hazard Avoidance Technology (ALHAT) Project is chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. In addition to precision landing close to a pre-mission defined landing location, the ALHAT System must be capable of autonomously identifying and avoiding surface hazards in real-time to enable a safe landing under any lighting conditions. This paper provides an overview of the recent results of the ALHAT closed loop hazard detection and avoidance flight demonstrations on the Morpheus Vertical Testbed (VTB) at the Kennedy Space Center, including results and lessons learned. This effort is also described in the context of a technology path in support of future crewed and robotic planetary exploration missions based upon the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN).

  6. Process Algebra Approach for Action Recognition in the Maritime Domain

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry

    2011-01-01

    The maritime environment poses a number of challenges for autonomous operation of surface boats. Among these challenges are the highly dynamic nature of the environment, the onboard sensing and reasoning requirements for obeying the navigational rules of the road, and the need for robust day/night hazard detection and avoidance. Development of full mission level autonomy entails addressing these challenges, coupled with inference of the tactical and strategic intent of possibly adversarial vehicles in the surrounding environment. This paper introduces PACIFIC (Process Algebra Capture of Intent From Information Content), an onboard system based on formal process algebras that is capable of extracting actions/activities from sensory inputs and reasoning within a mission context to ensure proper responses. PACIFIC is part of the Behavior Engine in CARACaS (Cognitive Architecture for Robotic Agent Command and Sensing), a system that is currently running on a number of U.S. Navy unmanned surface and underwater vehicles. Results from a series of experimental studies that demonstrate the effectiveness of the system are also presented.

  7. Teaching Geologic/Earth Science Remote Sensing at the Collegiate and the Secondary School Level

    ERIC Educational Resources Information Center

    Fisher, John J.

    1977-01-01

    Describes util satellite photography, satellite remote sensing, and high altitude aircraft photography for teaching environmental and ecological aspects of earth science at the secondary or college levels. (SL)

  8. Natural Resource Information System. Remote Sensing Studies.

    ERIC Educational Resources Information Center

    Leachtenauer, J.; And Others

    A major design objective of the Natural Resource Information System entailed the use of remote sensing data as an input to the system. Potential applications of remote sensing data were therefore reviewed and available imagery interpreted to provide input to a demonstration data base. A literature review was conducted to determine the types and…

  9. Feasibility study ASCS remote sensing/compliance determination system

    NASA Technical Reports Server (NTRS)

    Duggan, I. E.; Minter, T. C., Jr.; Moore, B. H.; Nosworthy, C. T.

    1973-01-01

    A short-term technical study was performed by the MSC Earth Observations Division to determine the feasibility of the proposed Agricultural Stabilization and Conservation Service Automatic Remote Sensing/Compliance Determination System. For the study, the term automatic was interpreted as applying to an automated remote-sensing system that includes data acquisition, processing, and management.

  10. The Integration of Remote-Sensing Detection Techniques into the Operational Decision-Making of Marine Oil Spills

    NASA Astrophysics Data System (ADS)

    Garron, J.; Trainor, S.

    2017-12-01

    Remotely-sensed data collected from satellites, airplanes and unmanned aerial systems can be used in marine oil spills to identify the overall footprint, estimate fate and transport, and to identify resources at risk. Mandates for the use of best available technology exists for addressing marine oil spills under the jurisdiction of the USCG (33 CFR 155.1050), though clear pathways to familiarization of these technologies during a marine oil spill, or more importantly, between marine oil spills, does not. Similarly, remote-sensing scientists continue to experiment with highly tuned oil detection, fate and transport techniques that can benefit decision-making during a marine oil spill response, but the process of translating these prototypical tools to operational information remains undefined, leading most researchers to describe the "potential" of these new tools in an operational setting rather than their actual use, and decision-makers relying on traditional field observational methods. Arctic marine oil spills are no different in their mandates and the remote-sensing research undertaken, but are unique via the dark, cold, remote, infrastructure-free environment in which they can occur. These conditions increase the reliance of decision-makers in an Arctic oil spill on remotely-sensed data and tools for their manipulation. In the absence of another large-scale oil spill in the US, and limited literature on the subject, this study was undertaken to understand how remotely-sensed data and tools are being used in the Incident Command System of a marine oil spill now, with an emphasis on Arctic implementation. Interviews, oil spill scenario/drill observations and marine oil spill after action reports were collected and analyzed to determine the current state of remote-sensing data use for decision-making during a marine oil spill, and to define a set of recommendations for the process of integrating new remote-sensing tools and information in future oil spill responses. Using automated synthetic aperture radar analyses of oil spills in a common operational picture as a scientific case study, this presentation is a demonstration of how landscape-level scientific data can be integrated into Arctic planning and operational decision-making.

  11. Universal computer control system (UCCS) for space telerobots

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Szakaly, Zoltan

    1987-01-01

    A universal computer control system (UCCS) is under development for all motor elements of a space telerobot. The basic hardware architecture and software design of UCCS are described, together with the rich motor sensing, control, and self-test capabilities of this all-computerized motor control system. UCCS is integrated into a multibus computer environment with direct interface to higher level control processors, uses pulsewidth multiplier power amplifiers, and one unit can control up to sixteen different motors simultaneously at a high I/O rate. UCCS performance capabilities are illustrated by a few data.

  12. System For Research On Multiple-Arm Robots

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Hayati, Samad; Tso, Kam S.; Hayward, Vincent

    1991-01-01

    Kali system of computer programs and equipment provides environment for research on distributed programming and distributed control of coordinated-multiple-arm robots. Suitable for telerobotics research involving sensing and execution of low level tasks. Software and configuration of hardware designed flexible so system modified easily to test various concepts in control and programming of robots, including multiple-arm control, redundant-arm control, shared control, traded control, force control, force/position hybrid control, design and integration of sensors, teleoperation, task-space description and control, methods of adaptive control, control of flexible arms, and human factors.

  13. BOREAS Level-1B TIMS Imagery: At-sensor Radiance in BSQ Format

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Strub, Richard; Newcomer, Jeffrey A.; Chernobieff, Sonia

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) Staff Science Aircraft Data Acquisition Program focused on providing the research teams with the remotely sensed satellite data products they needed to compare and spatially extend point results. For BOREAS, the Thermal Infrared Multispectral Scanner (TIMS) imagery, along with other aircraft images, was collected to provide spatially extensive information over the primary study areas. The Level-1b TIMS images cover the time periods of 16 to 20 Apr 1994 and 06 to 17 Sep 1994. The system calibrated images are stored in binary image format files. The TIMS images are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  14. The organophosphate malathion disturbs gut microbiome development and the quorum-Sensing system.

    PubMed

    Gao, Bei; Chi, Liang; Tu, Pengcheng; Bian, Xiaoming; Thomas, Jesse; Ru, Hongyu; Lu, Kun

    2018-02-01

    The gut microbiome has tremendous potential to impact health and disease. Various environmental toxicants, including insecticides, have been shown to alter gut microbiome community structures. However, the mechanism that compositionally and functionally regulates gut microbiota remains unclear. Quorum sensing is known to modulate intra- and interspecies gene expression and coordinate population responses. It is unknown whether quorum sensing is disrupted when environmental toxicants cause perturbations in the gut microbiome community structure. To reveal the response of the quorum-sensing system to environmental exposure, we use a combination of Illumina-based 16S rRNA gene amplicon and shotgun metagenome sequencing to examine the impacts of a widely used organophosphate insecticide, malathion, on the gut microbiome trajectory, quorum sensing system and behaviors related to quorum sensing, such as motility and pathogenicity. Our results demonstrated that malathion perturbed the gut microbiome development, quorum sensing and quorum sensing related behaviors. These findings may provide a novel mechanistic understanding of the role of quorum-sensing in the gut microbiome toxicity of malathion. Copyright © 2017. Published by Elsevier B.V.

  15. The emerging role of mTORC1 signaling in placental nutrient-sensing.

    PubMed

    Jansson, T; Aye, I L M H; Goberdhan, D C I

    2012-11-01

    Nutrient-sensing signaling pathways regulate cell metabolism and growth in response to altered nutrient levels and growth factor signaling. Because trophoblast cell metabolism and associated signaling influence fetal nutrient availability, trophoblast nutrient sensors may have a unique role in regulating fetal growth. We review data in support of a role for mammalian target of rapamycin complex 1 (mTORC1) in placental nutrient-sensing. Placental insulin/IGF-I signaling and fetal levels of oxygen, glucose and amino acids (AAs) are altered in pregnancy complications such as intrauterine growth restriction, and all these factors are well-established upstream regulators of mTORC1. Furthermore, mTORC1 is a positive regulator of placental AA transporters, suggesting that trophoblast mTORC1 modulates AA transfer across the placenta. In addition, placental mTORC1 signaling is also known to be modulated in pregnancy complications associated with altered fetal growth and in animal models in which maternal nutrient availability has been altered experimentally. Recently, significant progress has been made in identifying the molecular mechanisms by which mTORC1 senses AAs, a process requiring shuttling of mTOR to late endosomal and lysosomal compartments (LELs). We recently identified members of the proton-assisted amino acid transporter (PAT/SLC36) family as critical components of the AA-sensing system or 'nutrisome' that regulates mTORC1 on LEL membranes, placing AA transporters and their subcellular regulation both upstream and downstream of mTORC1-driven processes. We propose a model in which placental mTORC1 signaling constitutes a critical link between maternal nutrient availability and fetal growth, thereby influencing the long-term health of the fetus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Automation technology and sense of control: a window on human agency.

    PubMed

    Berberian, Bruno; Sarrazin, Jean-Christophe; Le Blaye, Patrick; Haggard, Patrick

    2012-01-01

    Previous studies have shown that the perceived times of voluntary actions and their effects are perceived as shifted towards each other, so that the interval between action and outcome seems shortened. This has been referred to as 'intentional binding' (IB). However, the generality of this effect remains unclear. Here we demonstrate that Intentional Binding also occurs in complex control situations. Using an aircraft supervision task with different autopilot settings, our results first indicated a strong relation between measures of IB and different levels of system automation. Second, measures of IB were related to explicit agency judgement in this applied setting. We discuss the implications for the underlying mechanisms, and for sense of agency in automated environments.

  17. BEST: Bilingual environmental science training: Kindergarten level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This booklet is one of a series of bilingual guides to environmental-science learning activities for students to do at home. Lesson objectives, materials required, procedure, vocabulary, and subjects integrated into the lesson are described in English for each lesson. A bilingual glossary, alphabetized by English entries, with Spanish equivalents in both English and Spanish, follows the lesson descriptions, and is itself followed by a bibliography of English-language references. This booklet includes descriptions of six lessons covering the senses of touch and sight, the sense of smell, how to distinguish living and non-living things, cell structures, the skeletal system, and themore » significance of food groups. 8 figs.« less

  18. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F [Laramie, WY; Rovani, Jr., Joseph F.; Bomstad, Theresa M [Laramie, WY; Sorini-Wong, Susan S [Laramie, WY

    2009-02-10

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  19. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.; Wong, Gregory K.

    2011-03-01

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  20. A self-sensing magnetorheological damper with power generation

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Liao, Wei-Hsin

    2012-02-01

    Magnetorheological (MR) dampers are promising for semi-active vibration control of various dynamic systems. In the current MR damper systems, a separate power supply and dynamic sensor are required. To enable the MR damper to be self-powered and self-sensing in the future, in this paper we propose and investigate a self-sensing MR damper with power generation, which integrates energy harvesting, dynamic sensing and MR damping technologies into one device. This MR damper has self-contained power generation and velocity sensing capabilities, and is applicable to various dynamic systems. It combines the advantages of energy harvesting—reusing wasted energy, MR damping—controllable damping force, and sensing—providing dynamic information for controlling system dynamics. This multifunctional integration would bring great benefits such as energy saving, size and weight reduction, lower cost, high reliability, and less maintenance for the MR damper systems. In this paper, a prototype of the self-sensing MR damper with power generation was designed, fabricated, and tested. Theoretical analyses and experimental studies on power generation were performed. A velocity-sensing method was proposed and experimentally validated. The magnetic-field interference among three functions was prevented by a combined magnetic-field isolation method. Modeling, analysis, and experimental results on damping forces are also presented.

Top