Nonmathematical concepts of selection, evolutionary energy, and levels of evolution.
Darlington, P J
1972-05-01
The place of mathematics in hypotheticodeductive processes and in biological research is discussed. (Natural) Selection is defined and described as differential elimination of performed sets at any level. Sets and acting sets are groups of units (themselves sets of smaller units) at any level that may or do interact. A pseudomathematical equation describes directional change (evolution) in sets at any level. Selection is the ram of evolution; it cannot generate, but can only direct, evolutionary energy. The energy of evolution is derived from molecular or chemical levels, is transmitted upwards through the increasingly complex sets of sets that form living systems, and is turned in directions determined by the sum of selective processes, at different levels, which may either supplement or oppose each other. All evolutionary processes conform to the pseudomathematical equation referred to above, use energy as described above, and have a P/OE (ratio of programming to open-endedness) that cannot be measured, but can be related to other P/OE values. Phylogeny and ontogeny are compared as processes af directional change with set selection. Stages in the evolution of multi-cellular individuals are suggested, and are essentially the same as stages in the evolution of some multi-individual insect societies. Thinking is considered as a part of ontogeny involving an irreversible, nonrepetitive process of set selection in the brain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Li, Dongsheng; Xu, Wei
2015-04-01
In atom probe tomography (APT), accurate reconstruction of the spatial positions of field evaporated ions from measured detector patterns depends upon a correct understanding of the dynamic tip shape evolution and evaporation laws of component atoms. Artifacts in APT reconstructions of heterogeneous materials can be attributed to the assumption of homogeneous evaporation of all the elements in the material in addition to the assumption of a steady state hemispherical dynamic tip shape evolution. A level set method based specimen shape evolution model is developed in this study to simulate the evaporation of synthetic layered-structured APT tips. The simulation results ofmore » the shape evolution by the level set model qualitatively agree with the finite element method and the literature data using the finite difference method. The asymmetric evolving shape predicted by the level set model demonstrates the complex evaporation behavior of heterogeneous tip and the interface curvature can potentially lead to the artifacts in the APT reconstruction of such materials. Compared with other APT simulation methods, the new method provides smoother interface representation with the aid of the intrinsic sub-grid accuracy. Two evaporation models (linear and exponential evaporation laws) are implemented in the level set simulations and the effect of evaporation laws on the tip shape evolution is also presented.« less
A level set approach for shock-induced α-γ phase transition of RDX
NASA Astrophysics Data System (ADS)
Josyula, Kartik; Rahul; De, Suvranu
2018-02-01
We present a thermodynamically consistent level sets approach based on regularization energy functional which can be directly incorporated into a Galerkin finite element framework to model interface motion. The regularization energy leads to a diffusive form of flux that is embedded within the level sets evolution equation which maintains the signed distance property of the level set function. The scheme is shown to compare well with the velocity extension method in capturing the interface position. The proposed level sets approach is employed to study the α-γphase transformation in RDX single crystal shocked along the (100) plane. Example problems in one and three dimensions are presented. We observe smooth evolution of the phase interface along the shock direction in both models. There is no diffusion of the interface during the zero level set evolution in the three dimensional model. The level sets approach is shown to capture the characteristics of the shock-induced α-γ phase transformation such as stress relaxation behind the phase interface and the finite time required for the phase transformation to complete. The regularization energy based level sets approach is efficient, robust, and easy to implement.
A new region-edge based level set model with applications to image segmentation
NASA Astrophysics Data System (ADS)
Zhi, Xuhao; Shen, Hong-Bin
2018-04-01
Level set model has advantages in handling complex shapes and topological changes, and is widely used in image processing tasks. The image segmentation oriented level set models can be grouped into region-based models and edge-based models, both of which have merits and drawbacks. Region-based level set model relies on fitting to color intensity of separated regions, but is not sensitive to edge information. Edge-based level set model evolves by fitting to local gradient information, but can get easily affected by noise. We propose a region-edge based level set model, which considers saliency information into energy function and fuses color intensity with local gradient information. The evolution of the proposed model is implemented by a hierarchical two-stage protocol, and the experimental results show flexible initialization, robust evolution and precise segmentation.
An efficient, scalable, and adaptable framework for solving generic systems of level-set PDEs
Mosaliganti, Kishore R.; Gelas, Arnaud; Megason, Sean G.
2013-01-01
In the last decade, level-set methods have been actively developed for applications in image registration, segmentation, tracking, and reconstruction. However, the development of a wide variety of level-set PDEs and their numerical discretization schemes, coupled with hybrid combinations of PDE terms, stopping criteria, and reinitialization strategies, has created a software logistics problem. In the absence of an integrative design, current toolkits support only specific types of level-set implementations which restrict future algorithm development since extensions require significant code duplication and effort. In the new NIH/NLM Insight Toolkit (ITK) v4 architecture, we implemented a level-set software design that is flexible to different numerical (continuous, discrete, and sparse) and grid representations (point, mesh, and image-based). Given that a generic PDE is a summation of different terms, we used a set of linked containers to which level-set terms can be added or deleted at any point in the evolution process. This container-based approach allows the user to explore and customize terms in the level-set equation at compile-time in a flexible manner. The framework is optimized so that repeated computations of common intensity functions (e.g., gradient and Hessians) across multiple terms is eliminated. The framework further enables the evolution of multiple level-sets for multi-object segmentation and processing of large datasets. For doing so, we restrict level-set domains to subsets of the image domain and use multithreading strategies to process groups of subdomains or level-set functions. Users can also select from a variety of reinitialization policies and stopping criteria. Finally, we developed a visualization framework that shows the evolution of a level-set in real-time to help guide algorithm development and parameter optimization. We demonstrate the power of our new framework using confocal microscopy images of cells in a developing zebrafish embryo. PMID:24501592
An efficient, scalable, and adaptable framework for solving generic systems of level-set PDEs.
Mosaliganti, Kishore R; Gelas, Arnaud; Megason, Sean G
2013-01-01
In the last decade, level-set methods have been actively developed for applications in image registration, segmentation, tracking, and reconstruction. However, the development of a wide variety of level-set PDEs and their numerical discretization schemes, coupled with hybrid combinations of PDE terms, stopping criteria, and reinitialization strategies, has created a software logistics problem. In the absence of an integrative design, current toolkits support only specific types of level-set implementations which restrict future algorithm development since extensions require significant code duplication and effort. In the new NIH/NLM Insight Toolkit (ITK) v4 architecture, we implemented a level-set software design that is flexible to different numerical (continuous, discrete, and sparse) and grid representations (point, mesh, and image-based). Given that a generic PDE is a summation of different terms, we used a set of linked containers to which level-set terms can be added or deleted at any point in the evolution process. This container-based approach allows the user to explore and customize terms in the level-set equation at compile-time in a flexible manner. The framework is optimized so that repeated computations of common intensity functions (e.g., gradient and Hessians) across multiple terms is eliminated. The framework further enables the evolution of multiple level-sets for multi-object segmentation and processing of large datasets. For doing so, we restrict level-set domains to subsets of the image domain and use multithreading strategies to process groups of subdomains or level-set functions. Users can also select from a variety of reinitialization policies and stopping criteria. Finally, we developed a visualization framework that shows the evolution of a level-set in real-time to help guide algorithm development and parameter optimization. We demonstrate the power of our new framework using confocal microscopy images of cells in a developing zebrafish embryo.
Boosting Students' Attitudes & Knowledge about Evolution Sets Them up for College Success
ERIC Educational Resources Information Center
Carter, B. Elijah; Infanti, Lynn M.; Wiles, Jason R.
2015-01-01
Students who enter college with a solid grounding in, and positive attitudes toward, evolutionary science are better prepared for and achieve at higher levels in university-level biology courses. We found highly significant, positive relationships between student knowledge of evolution and attitudes toward evolution, as well as between…
High-resolution method for evolving complex interface networks
NASA Astrophysics Data System (ADS)
Pan, Shucheng; Hu, Xiangyu Y.; Adams, Nikolaus A.
2018-04-01
In this paper we describe a high-resolution transport formulation of the regional level-set approach for an improved prediction of the evolution of complex interface networks. The novelty of this method is twofold: (i) construction of local level sets and reconstruction of a global level set, (ii) local transport of the interface network by employing high-order spatial discretization schemes for improved representation of complex topologies. Various numerical test cases of multi-region flow problems, including triple-point advection, single vortex flow, mean curvature flow, normal driven flow, dry foam dynamics and shock-bubble interaction show that the method is accurate and suitable for a wide range of complex interface-network evolutions. Its overall computational cost is comparable to the Semi-Lagrangian regional level-set method while the prediction accuracy is significantly improved. The approach thus offers a viable alternative to previous interface-network level-set method.
A highly efficient 3D level-set grain growth algorithm tailored for ccNUMA architecture
NASA Astrophysics Data System (ADS)
Mießen, C.; Velinov, N.; Gottstein, G.; Barrales-Mora, L. A.
2017-12-01
A highly efficient simulation model for 2D and 3D grain growth was developed based on the level-set method. The model introduces modern computational concepts to achieve excellent performance on parallel computer architectures. Strong scalability was measured on cache-coherent non-uniform memory access (ccNUMA) architectures. To achieve this, the proposed approach considers the application of local level-set functions at the grain level. Ideal and non-ideal grain growth was simulated in 3D with the objective to study the evolution of statistical representative volume elements in polycrystals. In addition, microstructure evolution in an anisotropic magnetic material affected by an external magnetic field was simulated.
Cross-cultural dataset for the evolution of religion and morality project.
Purzycki, Benjamin Grant; Apicella, Coren; Atkinson, Quentin D; Cohen, Emma; McNamara, Rita Anne; Willard, Aiyana K; Xygalatas, Dimitris; Norenzayan, Ara; Henrich, Joseph
2016-11-08
A considerable body of research cross-culturally examines the evolution of religious traditions, beliefs and behaviors. The bulk of this research, however, draws from coded qualitative ethnographies rather than from standardized methods specifically designed to measure religious beliefs and behaviors. Psychological data sets that examine religious thought and behavior in controlled conditions tend to be disproportionately sampled from student populations. Some cross-national databases employ standardized methods at the individual level, but are primarily focused on fully market integrated, state-level societies. The Evolution of Religion and Morality Project sought to generate a data set that systematically probed individual level measures sampling across a wider range of human populations. The set includes data from behavioral economic experiments and detailed surveys of demographics, religious beliefs and practices, material security, and intergroup perceptions. This paper describes the methods and variables, briefly introduces the sites and sampling techniques, notes inconsistencies across sites, and provides some basic reporting for the data set.
Cross-cultural dataset for the evolution of religion and morality project
Purzycki, Benjamin Grant; Apicella, Coren; Atkinson, Quentin D.; Cohen, Emma; McNamara, Rita Anne; Willard, Aiyana K.; Xygalatas, Dimitris; Norenzayan, Ara; Henrich, Joseph
2016-01-01
A considerable body of research cross-culturally examines the evolution of religious traditions, beliefs and behaviors. The bulk of this research, however, draws from coded qualitative ethnographies rather than from standardized methods specifically designed to measure religious beliefs and behaviors. Psychological data sets that examine religious thought and behavior in controlled conditions tend to be disproportionately sampled from student populations. Some cross-national databases employ standardized methods at the individual level, but are primarily focused on fully market integrated, state-level societies. The Evolution of Religion and Morality Project sought to generate a data set that systematically probed individual level measures sampling across a wider range of human populations. The set includes data from behavioral economic experiments and detailed surveys of demographics, religious beliefs and practices, material security, and intergroup perceptions. This paper describes the methods and variables, briefly introduces the sites and sampling techniques, notes inconsistencies across sites, and provides some basic reporting for the data set. PMID:27824332
NASA Astrophysics Data System (ADS)
Yanites, Brian J.; Becker, Jens K.; Madritsch, Herfried; Schnellmann, Michael; Ehlers, Todd A.
2017-11-01
Landscape evolution is a product of the forces that drive geomorphic processes (e.g., tectonics and climate) and the resistance to those processes. The underlying lithology and structural setting in many landscapes set the resistance to erosion. This study uses a modified version of the Channel-Hillslope Integrated Landscape Development (CHILD) landscape evolution model to determine the effect of a spatially and temporally changing erodibility in a terrain with a complex base level history. Specifically, our focus is to quantify how the effects of variable lithology influence transient base level signals. We set up a series of numerical landscape evolution models with increasing levels of complexity based on the lithologic variability and base level history of the Jura Mountains of northern Switzerland. The models are consistent with lithology (and therewith erodibility) playing an important role in the transient evolution of the landscape. The results show that the erosion rate history at a location depends on the rock uplift and base level history, the range of erodibilities of the different lithologies, and the history of the surface geology downstream from the analyzed location. Near the model boundary, the history of erosion is dominated by the base level history. The transient wave of incision, however, is quite variable in the different model runs and depends on the geometric structure of lithology used. It is thus important to constrain the spatiotemporal erodibility patterns downstream of any given point of interest to understand the evolution of a landscape subject to variable base level in a quantitative framework.
Robust and fast-converging level set method for side-scan sonar image segmentation
NASA Astrophysics Data System (ADS)
Liu, Yan; Li, Qingwu; Huo, Guanying
2017-11-01
A robust and fast-converging level set method is proposed for side-scan sonar (SSS) image segmentation. First, the noise in each sonar image is removed using the adaptive nonlinear complex diffusion filter. Second, k-means clustering is used to obtain the initial presegmentation image from the denoised image, and then the distance maps of the initial contours are reinitialized to guarantee the accuracy of the numerical calculation used in the level set evolution. Finally, the satisfactory segmentation is achieved using a robust variational level set model, where the evolution control parameters are generated by the presegmentation. The proposed method is successfully applied to both synthetic image with speckle noise and real SSS images. Experimental results show that the proposed method needs much less iteration and therefore is much faster than the fuzzy local information c-means clustering method, the level set method using a gamma observation model, and the enhanced region-scalable fitting method. Moreover, the proposed method can usually obtain more accurate segmentation results compared with other methods.
Lukasczyk, Jonas; Weber, Gunther; Maciejewski, Ross; ...
2017-06-01
Tracking graphs are a well established tool in topological analysis to visualize the evolution of components and their properties over time, i.e., when components appear, disappear, merge, and split. However, tracking graphs are limited to a single level threshold and the graphs may vary substantially even under small changes to the threshold. To examine the evolution of features for varying levels, users have to compare multiple tracking graphs without a direct visual link between them. We propose a novel, interactive, nested graph visualization based on the fact that the tracked superlevel set components for different levels are related to eachmore » other through their nesting hierarchy. This approach allows us to set multiple tracking graphs in context to each other and enables users to effectively follow the evolution of components for different levels simultaneously. We show the effectiveness of our approach on datasets from finite pointset methods, computational fluid dynamics, and cosmology simulations.« less
Change detection of polarimetric SAR images based on the KummerU Distribution
NASA Astrophysics Data System (ADS)
Chen, Quan; Zou, Pengfei; Li, Zhen; Zhang, Ping
2014-11-01
In the society of PolSAR image segmentation, change detection and classification, the classical Wishart distribution has been used for a long time, but it especially suit to low-resolution SAR image, because in traditional sensors, only a small number of scatterers are present in each resolution cell. With the improving of SAR systems these years, the classical statistical models can therefore be reconsidered for high resolution and polarimetric information contained in the images acquired by these advanced systems. In this study, SAR image segmentation algorithm based on level-set method, added with distance regularized level-set evolution (DRLSE) is performed using Envisat/ASAR single-polarization data and Radarsat-2 polarimetric images, respectively. KummerU heterogeneous clutter model is used in the later to overcome the homogeneous hypothesis at high resolution cell. An enhanced distance regularized level-set evolution (DRLSE-E) is also applied in the later, to ensure accurate computation and stable level-set evolution. Finally, change detection based on four polarimetric Radarsat-2 time series images is carried out at Genhe area of Inner Mongolia Autonomous Region, NorthEastern of China, where a heavy flood disaster occurred during the summer of 2013, result shows the recommend segmentation method can detect the change of watershed effectively.
Identifying Attributes of CO2 Leakage Zones in Shallow Aquifers Using a Parametric Level Set Method
NASA Astrophysics Data System (ADS)
Sun, A. Y.; Islam, A.; Wheeler, M.
2016-12-01
Leakage through abandoned wells and geologic faults poses the greatest risk to CO2 storage permanence. For shallow aquifers, secondary CO2 plumes emanating from the leak zones may go undetected for a sustained period of time and has the greatest potential to cause large-scale and long-term environmental impacts. Identification of the attributes of leak zones, including their shape, location, and strength, is required for proper environmental risk assessment. This study applies a parametric level set (PaLS) method to characterize the leakage zone. Level set methods are appealing for tracking topological changes and recovering unknown shapes of objects. However, level set evolution using the conventional level set methods is challenging. In PaLS, the level set function is approximated using a weighted sum of basis functions and the level set evolution problem is replaced by an optimization problem. The efficacy of PaLS is demonstrated through recovering the source zone created by CO2 leakage into a carbonate aquifer. Our results show that PaLS is a robust source identification method that can recover the approximate source locations in the presence of measurement errors, model parameter uncertainty, and inaccurate initial guesses of source flux strengths. The PaLS inversion framework introduced in this work is generic and can be adapted for any reactive transport model by switching the pre- and post-processing routines.
Stability issues of nonlocal gravity during primordial inflation
NASA Astrophysics Data System (ADS)
Belgacem, Enis; Cusin, Giulia; Foffa, Stefano; Maggiore, Michele; Mancarella, Michele
2018-01-01
We study the cosmological evolution of some nonlocal gravity models, when the initial conditions are set during a phase of primordial inflation. We examine in particular three models, the so-called RT, RR and Δ4 models, previously introduced by our group. We find that, during inflation, the RT model has a viable background evolution, but at the level of cosmological perturbations develops instabilities that make it nonviable. In contrast, the RR and Δ4 models have a viable evolution even when their initial conditions are set during a phase of primordial inflation.
Etch Profile Simulation Using Level Set Methods
NASA Technical Reports Server (NTRS)
Hwang, Helen H.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)
1997-01-01
Etching and deposition of materials are critical steps in semiconductor processing for device manufacturing. Both etching and deposition may have isotropic and anisotropic components, due to directional sputtering and redeposition of materials, for example. Previous attempts at modeling profile evolution have used so-called "string theory" to simulate the moving solid-gas interface between the semiconductor and the plasma. One complication of this method is that extensive de-looping schemes are required at the profile corners. We will present a 2D profile evolution simulation using level set theory to model the surface. (1) By embedding the location of the interface in a field variable, the need for de-looping schemes is eliminated and profile corners are more accurately modeled. This level set profile evolution model will calculate both isotropic and anisotropic etch and deposition rates of a substrate in low pressure (10s mTorr) plasmas, considering the incident ion energy angular distribution functions and neutral fluxes. We will present etching profiles of Si substrates in Ar/Cl2 discharges for various incident ion energies and trench geometries.
Rastgarpour, Maryam; Shanbehzadeh, Jamshid
2014-01-01
Researchers recently apply an integrative approach to automate medical image segmentation for benefiting available methods and eliminating their disadvantages. Intensity inhomogeneity is a challenging and open problem in this area, which has received less attention by this approach. It has considerable effects on segmentation accuracy. This paper proposes a new kernel-based fuzzy level set algorithm by an integrative approach to deal with this problem. It can directly evolve from the initial level set obtained by Gaussian Kernel-Based Fuzzy C-Means (GKFCM). The controlling parameters of level set evolution are also estimated from the results of GKFCM. Moreover the proposed algorithm is enhanced with locally regularized evolution based on an image model that describes the composition of real-world images, in which intensity inhomogeneity is assumed as a component of an image. Such improvements make level set manipulation easier and lead to more robust segmentation in intensity inhomogeneity. The proposed algorithm has valuable benefits including automation, invariant of intensity inhomogeneity, and high accuracy. Performance evaluation of the proposed algorithm was carried on medical images from different modalities. The results confirm its effectiveness for medical image segmentation.
Changes in Acceptance of Evolution in a College-Level General Education Course
ERIC Educational Resources Information Center
Grossman, W. Eric; Fleet, Christine M.
2017-01-01
Evolutionary theory is central to the biological sciences, and to critical aspects of everyday life, and yet a significant proportion of Americans reject evolution. Our study sets out to examine the role of a second year college general education course in affecting students' acceptance of evolution. We report three years of data using the Measure…
Hippocampus segmentation using locally weighted prior based level set
NASA Astrophysics Data System (ADS)
Achuthan, Anusha; Rajeswari, Mandava
2015-12-01
Segmentation of hippocampus in the brain is one of a major challenge in medical image segmentation due to its' imaging characteristics, with almost similar intensity between another adjacent gray matter structure, such as amygdala. The intensity similarity has causes the hippocampus to have weak or fuzzy boundaries. With this main challenge being demonstrated by hippocampus, a segmentation method that relies on image information alone may not produce accurate segmentation results. Therefore, it is needed an assimilation of prior information such as shape and spatial information into existing segmentation method to produce the expected segmentation. Previous studies has widely integrated prior information into segmentation methods. However, the prior information has been utilized through a global manner integration, and this does not reflect the real scenario during clinical delineation. Therefore, in this paper, a locally integrated prior information into a level set model is presented. This work utilizes a mean shape model to provide automatic initialization for level set evolution, and has been integrated as prior information into the level set model. The local integration of edge based information and prior information has been implemented through an edge weighting map that decides at voxel level which information need to be observed during a level set evolution. The edge weighting map shows which corresponding voxels having sufficient edge information. Experiments shows that the proposed integration of prior information locally into a conventional edge-based level set model, known as geodesic active contour has shown improvement of 9% in averaged Dice coefficient.
van Witteloostuijn, Arjen
2018-01-01
In this paper, we develop an ecological, multi-level model that can be used to study the evolution of emerging technology. More specifically, by defining technology as a system composed of a set of interacting components, we can build upon the argument of multi-level density dependence from organizational ecology to develop a distribution-independent model of technological evolution. This allows us to distinguish between different stages of component development, which provides more insight into the emergence of stable component configurations, or dominant designs. We validate our hypotheses in the biotechnology industry by using patent data from the USPTO from 1976 to 2003. PMID:29795575
Kashyap, Kanchan L; Bajpai, Manish K; Khanna, Pritee; Giakos, George
2018-01-01
Automatic segmentation of abnormal region is a crucial task in computer-aided detection system using mammograms. In this work, an automatic abnormality detection algorithm using mammographic images is proposed. In the preprocessing step, partial differential equation-based variational level set method is used for breast region extraction. The evolution of the level set method is done by applying mesh-free-based radial basis function (RBF). The limitation of mesh-based approach is removed by using mesh-free-based RBF method. The evolution of variational level set function is also done by mesh-based finite difference method for comparison purpose. Unsharp masking and median filtering is used for mammogram enhancement. Suspicious abnormal regions are segmented by applying fuzzy c-means clustering. Texture features are extracted from the segmented suspicious regions by computing local binary pattern and dominated rotated local binary pattern (DRLBP). Finally, suspicious regions are classified as normal or abnormal regions by means of support vector machine with linear, multilayer perceptron, radial basis, and polynomial kernel function. The algorithm is validated on 322 sample mammograms of mammographic image analysis society (MIAS) and 500 mammograms from digital database for screening mammography (DDSM) datasets. Proficiency of the algorithm is quantified by using sensitivity, specificity, and accuracy. The highest sensitivity, specificity, and accuracy of 93.96%, 95.01%, and 94.48%, respectively, are obtained on MIAS dataset using DRLBP feature with RBF kernel function. Whereas, the highest 92.31% sensitivity, 98.45% specificity, and 96.21% accuracy are achieved on DDSM dataset using DRLBP feature with RBF kernel function. Copyright © 2017 John Wiley & Sons, Ltd.
Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations.
Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan; Marchal, Kathleen
2017-11-01
Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
NASA Astrophysics Data System (ADS)
Tian, J.; Krauß, T.; d'Angelo, P.
2017-05-01
Automatic rooftop extraction is one of the most challenging problems in remote sensing image analysis. Classical 2D image processing techniques are expensive due to the high amount of features required to locate buildings. This problem can be avoided when 3D information is available. In this paper, we show how to fuse the spectral and height information of stereo imagery to achieve an efficient and robust rooftop extraction. In the first step, the digital terrain model (DTM) and in turn the normalized digital surface model (nDSM) is generated by using a newly step-edge approach. In the second step, the initial building locations and rooftop boundaries are derived by removing the low-level pixels and high-level pixels with higher probability to be trees and shadows. This boundary is then served as the initial level set function, which is further refined to fit the best possible boundaries through distance regularized level-set curve evolution. During the fitting procedure, the edge-based active contour model is adopted and implemented by using the edges indicators extracted from panchromatic image. The performance of the proposed approach is tested by using the WorldView-2 satellite data captured over Munich.
Level set methods for detonation shock dynamics using high-order finite elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobrev, V. A.; Grogan, F. C.; Kolev, T. V.
Level set methods are a popular approach to modeling evolving interfaces. We present a level set ad- vection solver in two and three dimensions using the discontinuous Galerkin method with high-order nite elements. During evolution, the level set function is reinitialized to a signed distance function to maintain ac- curacy. Our approach leads to stable front propagation and convergence on high-order, curved, unstructured meshes. The ability of the solver to implicitly track moving fronts lends itself to a number of applications; in particular, we highlight applications to high-explosive (HE) burn and detonation shock dynamics (DSD). We provide results for two-more » and three-dimensional benchmark problems as well as applications to DSD.« less
NASA Astrophysics Data System (ADS)
Horváth, Zsolt; Keresztes, Zoltán; Kamenshchik, Alexander Yu.; Gergely, László Á.
2015-05-01
The evolution of a closed Friedmann universe filled by a tachyon scalar field with a trigonometric potential and cold dark matter (CDM) is investigated. A subset of the evolutions consistent to 1 σ confidence level with the Union 2.1 supernova data set is identified. The evolutions of the tachyon field are classified. Some of them evolve into a de Sitter attractor, while others proceed through a pseudotachyonic regime into a sudden future singularity. Critical evolutions leading to big brake singularities in the presence of CDM are found and a new type of cosmological evolution characterized by singularity avoidance in the pseudotachyon regime is presented.
On the thermodynamics of multilevel evolution.
Tessera, Marc; Hoelzer, Guy A
2013-09-01
Biodiversity is hierarchically structured both phylogenetically and functionally. Phylogenetic hierarchy is understood as a product of branching organic evolution as described by Darwin. Ecosystem biologists understand some aspects of functional hierarchy, such as food web architecture, as a product of evolutionary ecology; but functional hierarchy extends to much lower scales of organization than those studied by ecologists. We argue that the more general use of the term "evolution" employed by physicists and applied to non-living systems connects directly to the narrow biological meaning. Physical evolution is best understood as a thermodynamic phenomenon, and this perspective comfortably includes all of biological evolution. We suggest four dynamical factors that build on each other in a hierarchical fashion and set the stage for the Darwinian evolution of biological systems: (1) the entropic erosion of structure; (2) the construction of dissipative systems; (3) the reproduction of growing systems and (4) the historical memory accrued to populations of reproductive agents by the acquisition of hereditary mechanisms. A particular level of evolution can underpin the emergence of higher levels, but evolutionary processes persist at each level in the hierarchy. We also argue that particular evolutionary processes can occur at any level of the hierarchy where they are not obstructed by material constraints. This theoretical framework provides an extensive basis for understanding natural selection as a multilevel process. The extensive literature on thermodynamics in turn provides an important advantage to this perspective on the evolution of higher levels of organization, such as the evolution of altruism that can accompany the emergence of social organization. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Gaut, Brandon S
2015-07-01
In this commentary, I make inferences about the level of repeatability and constraint in the evolutionary process, based on two sets of replicated experiments. The first experiment is crop domestication, which has been replicated across many different species. I focus on results of whole-genome scans for genes selected during domestication and ask whether genes are, in fact, selected in parallel across different domestication events. If genes are selected in parallel, it implies that the number of genetic solutions to the challenge of domestication is constrained. However, I find no evidence for parallel selection events either between species (maize vs. rice) or within species (two domestication events within beans). These results suggest that there are few constraints on genetic adaptation, but conclusions must be tempered by several complicating factors, particularly the lack of explicit design standards for selection screens. The second experiment involves the evolution of Escherichia coli to thermal stress. Unlike domestication, this highly replicated experiment detected a limited set of genes that appear prone to modification during adaptation to thermal stress. However, the number of potentially beneficial mutations within these genes is large, such that adaptation is constrained at the genic level but much less so at the nucleotide level. Based on these two experiments, I make the general conclusion that evolution is remarkably flexible, despite the presence of epistatic interactions that constrain evolutionary trajectories. I also posit that evolution is so rapid that we should establish a Speciation Prize, to be awarded to the first researcher who demonstrates speciation with a sexual organism in the laboratory. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Robust boundary detection of left ventricles on ultrasound images using ASM-level set method.
Zhang, Yaonan; Gao, Yuan; Li, Hong; Teng, Yueyang; Kang, Yan
2015-01-01
Level set method has been widely used in medical image analysis, but it has difficulties when being used in the segmentation of left ventricular (LV) boundaries on echocardiography images because the boundaries are not very distinguish, and the signal-to-noise ratio of echocardiography images is not very high. In this paper, we introduce the Active Shape Model (ASM) into the traditional level set method to enforce shape constraints. It improves the accuracy of boundary detection and makes the evolution more efficient. The experiments conducted on the real cardiac ultrasound image sequences show a positive and promising result.
Segmentation of heterogeneous blob objects through voting and level set formulation
Chang, Hang; Yang, Qing; Parvin, Bahram
2009-01-01
Blob-like structures occur often in nature, where they aid in cueing and the pre-attentive process. These structures often overlap, form perceptual boundaries, and are heterogeneous in shape, size, and intensity. In this paper, voting, Voronoi tessellation, and level set methods are combined to delineate blob-like structures. Voting and subsequent Voronoi tessellation provide the initial condition and the boundary constraints for each blob, while curve evolution through level set formulation provides refined segmentation of each blob within the Voronoi region. The paper concludes with the application of the proposed method to a dataset produced from cell based fluorescence assays and stellar data. PMID:19774202
Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations
Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan
2017-01-01
Abstract Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. PMID:28961727
Evolution across the Curriculum: Microbiology
Burmeister, Alita R.; Smith, James J.
2016-01-01
An integrated understanding of microbiology and evolutionary biology is essential for students pursuing careers in microbiology and healthcare fields. In this Perspective, we discuss the usefulness of evolutionary concepts and an overall evolutionary framework for students enrolled in microbiology courses. Further, we propose a set of learning goals for students studying microbial evolution concepts. We then describe some barriers to microbial evolution teaching and learning and encourage the continued incorporation of evidence-based teaching practices into microbiology courses at all levels. Next, we review the current status of microbial evolution assessment tools and describe some education resources available for teaching microbial evolution. Successful microbial evolution education will require that evolution be taught across the undergraduate biology curriculum, with a continued focus on applications and applied careers, while aligning with national biology education reform initiatives. Journal of Microbiology & Biology Education PMID:27158306
Saturating effects of species diversity on life-history evolution in bacteria.
Fiegna, Francesca; Scheuerl, Thomas; Moreno-Letelier, Alejandra; Bell, Thomas; Barraclough, Timothy G
2015-09-22
Species interactions can play a major role in shaping evolution in new environments. In theory, species interactions can either stimulate evolution by promoting coevolution or inhibit evolution by constraining ecological opportunity. The relative strength of these effects should vary as species richness increases, and yet there has been little evidence for evolution of component species in communities. We evolved bacterial microcosms containing between 1 and 12 species in three different environments. Growth rates and yields of isolates that evolved in communities were lower than those that evolved in monocultures, consistent with recent theory that competition constrains species to specialize on narrower sets of resources. This effect saturated or reversed at higher levels of richness, consistent with theory that directional effects of species interactions should weaken in more diverse communities. Species varied considerably, however, in their responses to both environment and richness levels. Mechanistic models and experiments are now needed to understand and predict joint evolutionary dynamics of species in diverse communities. © 2015 The Authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, Patrick T.; Schofield, Samuel P.; Nourgaliev, Robert
2016-06-21
A new mesh smoothing method designed to cluster mesh cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function being computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered elds, such as amore » volume fraction or index function, is provided. Results show that the low-order level set works equally well for the weight function as the actual level set. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Dynamic cases for moving interfaces are presented to demonstrate the method's potential usefulness to arbitrary Lagrangian Eulerian (ALE) methods.« less
Convergent evolution of the genomes of marine mammals
Foote, Andrew D.; Liu, Yue; Thomas, Gregg W.C.; Vinař, Tomáš; Alföldi, Jessica; Deng, Jixin; Dugan, Shannon; van Elk, Cornelis E.; Hunter, Margaret; Joshi, Vandita; Khan, Ziad; Kovar, Christie; Lee, Sandra L.; Lindblad-Toh, Kerstin; Mancia, Annalaura; Nielsen, Rasmus; Qin, Xiang; Qu, Jiaxin; Raney, Brian J.; Vijay, Nagarjun; Wolf, Jochen B. W.; Hahn, Matthew W.; Muzny, Donna M.; Worley, Kim C.; Gilbert, M. Thomas P.; Gibbs, Richard A.
2015-01-01
Marine mammals from different mammalian orders share several phenotypic traits adapted to the aquatic environment and therefore represent a classic example of convergent evolution. To investigate convergent evolution at the genomic level, we sequenced and performed de novo assembly of the genomes of three species of marine mammals (the killer whale, walrus and manatee) from three mammalian orders that share independently evolved phenotypic adaptations to a marine existence. Our comparative genomic analyses found that convergent amino acid substitutions were widespread throughout the genome and that a subset of these substitutions were in genes evolving under positive selection and putatively associated with a marine phenotype. However, we found higher levels of convergent amino acid substitutions in a control set of terrestrial sister taxa to the marine mammals. Our results suggest that, whereas convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare.
Convergent evolution of the genomes of marine mammals
Foote, Andrew D.; Liu, Yue; Thomas, Gregg W.C.; Vinař, Tomáš; Alföldi, Jessica; Deng, Jixin; Dugan, Shannon; van Elk, Cornelis E.; Hunter, Margaret E.; Joshi, Vandita; Khan, Ziad; Kovar, Christie; Lee, Sandra L.; Lindblad-Toh, Kerstin; Mancia, Annalaura; Nielsen, Rasmus; Qin, Xiang; Qu, Jiaxin; Raney, Brian J.; Vijay, Nagarjun; Wolf, Jochen B. W.; Hahn, Matthew W.; Muzny, Donna M.; Worley, Kim C.; Gilbert, M. Thomas P.; Gibbs, Richard A.
2015-01-01
Marine mammals from different mammalian orders share several phenotypic traits adapted to the aquatic environment and are therefore a classic example of convergent evolution. To investigate convergent evolution at the genomic level, we sequenced and de novo assembled the genomes of three species of marine mammals (the killer whale, walrus and manatee) from three mammalian orders that share independently evolved phenotypic adaptations to a marine existence. Our comparative genomic analyses found that convergent amino acid substitutions were widespread throughout the genome, and that a subset were in genes evolving under positive selection and putatively associated with a marine phenotype. However, we found higher levels of convergent amino acid substitutions in a control set of terrestrial sister taxa to the marine mammals. Our results suggest that while convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare. PMID:25621460
Cui, Wenchao; Wang, Yi; Lei, Tao; Fan, Yangyu; Feng, Yan
2013-01-01
This paper presents a variational level set method for simultaneous segmentation and bias field estimation of medical images with intensity inhomogeneity. In our model, the statistics of image intensities belonging to each different tissue in local regions are characterized by Gaussian distributions with different means and variances. According to maximum a posteriori probability (MAP) and Bayes' rule, we first derive a local objective function for image intensities in a neighborhood around each pixel. Then this local objective function is integrated with respect to the neighborhood center over the entire image domain to give a global criterion. In level set framework, this global criterion defines an energy in terms of the level set functions that represent a partition of the image domain and a bias field that accounts for the intensity inhomogeneity of the image. Therefore, image segmentation and bias field estimation are simultaneously achieved via a level set evolution process. Experimental results for synthetic and real images show desirable performances of our method.
Robust space-time extraction of ventricular surface evolution using multiphase level sets
NASA Astrophysics Data System (ADS)
Drapaca, Corina S.; Cardenas, Valerie; Studholme, Colin
2004-05-01
This paper focuses on the problem of accurately extracting the CSF-tissue boundary, particularly around the ventricular surface, from serial structural MRI of the brain acquired in imaging studies of aging and dementia. This is a challenging problem because of the common occurrence of peri-ventricular lesions which locally alter the appearance of white matter. We examine a level set approach which evolves a four dimensional description of the ventricular surface over time. This has the advantage of allowing constraints on the contour in the temporal dimension, improving the consistency of the extracted object over time. We follow the approach proposed by Chan and Vese which is based on the Mumford and Shah model and implemented using the Osher and Sethian level set method. We have extended this to the 4 dimensional case to propagate a 4D contour toward the tissue boundaries through the evolution of a 5D implicit function. For convergence we use region-based information provided by the image rather than the gradient of the image. This is adapted to allow intensity contrast changes between time frames in the MRI sequence. Results on time sequences of 3D brain MR images are presented and discussed.
The Role of the Environment in the Evolution of Tolerance and Resistance to a Pathogen.
Zeller, Michael; Koella, Jacob C
2017-09-01
Defense against parasites can be divided into resistance, which limits parasite burden, and tolerance, which reduces pathogenesis at a given parasite burden. Distinguishing between the two and understanding which defense is favored by evolution in different ecological settings are important, as they lead to fundamentally different evolutionary trajectories of host-parasite interactions. We let the mosquito Aedes aegypti evolve under different food levels and with either no parasite, a constant parasite, or a coevolving parasite (the microsporidian Vavraia culicis). We then tested tolerance and resistance of the evolved lines on a population level at the two food levels. Exposure to parasites during evolution increased resistance and tolerance, but there were no differences between the lines evolved with coevolving or constant parasites. Mosquitoes that had evolved with food restriction had higher resistance than those evolved with high food but similar tolerance. The mosquitoes that had restricted food when being tested had lower tolerance than those with normal food, but there was no difference in resistance. Our results emphasize the complexity and dependence on environmental conditions of the evolution and expression of resistance and tolerance and help to evaluate some of the predictions about the evolution of host defense against parasites.
NASA Astrophysics Data System (ADS)
Gallen, S. F.
2016-12-01
Long-term landscape evolution in post-orogenic settings remains an outstanding question in the geosciences. Despite conventional wisdom that topography in dead orogens will slowly and steadily decay through time, observations from around the globe show that dynamic, unsteady (e.g. transient) landscape evolution is the norm. Unraveling the mechanisms that drive unsteadiness in dead orogens is paramount to understanding the stratigraphic record of offshore basins and the geologic factors that contribute to the high biodiversity common in these settings. Here we address the enigma of unsteady post-orogenic landscape evolution with a study of the geomorphology of southern Appalachians, U.S.A. We focus on the 58,000 km2 Upper Tennessee River Basin that covers portions of the fold-and-thrust belt (Valley and Ridge), foreland basin (Appalachian Plateau), and a deeply exhumed thrust sheet (Blue Ridge) of this dead orogen. Using published millennial-scale erosion rates and quantitative analysis of fluvial topography, we show that this region is in a transient state of adjustment to 400 m of base level fall. Ongoing adjustment to base level drop is observed as a zone of high erosion rates, steep river channels and numerous knickpoints located upstream of and surrounding the contact between the Valley and Ridge and adjacent lithotectonic units. We argue that the association of adjusting landscapes and the Valley and Ridge contact is due to the rapid response time of rivers incising soft Valley and Ridge rocks, relative to the harder metamorphic rocks in the Blue Ridge and resistant capstone in the Appalachian Plateau. We propose that base level fall was triggered by incision through the Appalachian Plateau capstone into underlying weaker rocks that set off a wave of transient adjustment, drainage reorganization and ultimately capture of the paleo-Upper Tennessee Basin. Our results indicate that transient landscape evolution is characteristic of post-orogenic settings, as rivers continually incise through rock-types of varying erosional resistance in ancient foreland basins and fold-and-thrust belts. Thus, unsteadiness in dead orogens reflects the legacy of past tectonic events and may have little to do with epeirogenic uplift or climate induced changes in erosional efficiency, as is often the interpretation.
Multi person detection and tracking based on hierarchical level-set method
NASA Astrophysics Data System (ADS)
Khraief, Chadia; Benzarti, Faouzi; Amiri, Hamid
2018-04-01
In this paper, we propose an efficient unsupervised method for mutli-person tracking based on hierarchical level-set approach. The proposed method uses both edge and region information in order to effectively detect objects. The persons are tracked on each frame of the sequence by minimizing an energy functional that combines color, texture and shape information. These features are enrolled in covariance matrix as region descriptor. The present method is fully automated without the need to manually specify the initial contour of Level-set. It is based on combined person detection and background subtraction methods. The edge-based is employed to maintain a stable evolution, guide the segmentation towards apparent boundaries and inhibit regions fusion. The computational cost of level-set is reduced by using narrow band technique. Many experimental results are performed on challenging video sequences and show the effectiveness of the proposed method.
Skull defect reconstruction based on a new hybrid level set.
Zhang, Ziqun; Zhang, Ran; Song, Zhijian
2014-01-01
Skull defect reconstruction is an important aspect of surgical repair. Historically, a skull defect prosthesis was created by the mirroring technique, surface fitting, or formed templates. These methods are not based on the anatomy of the individual patient's skull, and therefore, the prosthesis cannot precisely correct the defect. This study presented a new hybrid level set model, taking into account both the global optimization region information and the local accuracy edge information, while avoiding re-initialization during the evolution of the level set function. Based on the new method, a skull defect was reconstructed, and the skull prosthesis was produced by rapid prototyping technology. This resulted in a skull defect prosthesis that well matched the skull defect with excellent individual adaptation.
NASA Astrophysics Data System (ADS)
Dente, Elad; Lensky, Nadav G.; Morin, Efrat; Grodek, Tamir; Sheffer, Nathan A.; Enzel, Yehouda
2017-12-01
The geomorphic response of channels to base-level fall is an important factor in landscape evolution. To better understand the complex interactions between the factors controlling channel evolution in an emerging continental shelf setting, we use an extensive data set (high-resolution digital elevation models, aerial photographs, and Landsat imagery) of a newly incising, perennial segment of Nahal (Wadi) HaArava, Israel. This channel responds to the rapid and progressive lowering of its base-level, the Dead Sea (>30 m in 35 years; 0.5-1.3 m yr-1). Progressively evolving longitudinal profiles, channel width, sinuosity, and knickpoint retreat during the last few decades were documented or reconstructed. The results indicate that even under fast base-level fall, rapid delta progradation on top of the shelf and shelf edge can moderate channel mouth slopes and, therefore, largely inhibit channel incision and knickpoint propagation. This channel elongation stage ends when the delta reaches an extended accommodation within the receiving basin and fails to keep the channel mouth slopes as low as the channel bed slopes. Then, processes of incision, narrowing, and meandering begin to shape the channel and expand upstream. When the down-cutting channel encounters a more resistant stratum within the channel substrate, these processes are restricted to a downstream reach by formation of a retreating vertical knickpoint. When the knickpoint and the channel incise to a level below this stratum, a spatially continuous, diffusion-like evolution characterizes the channel's response and source-to-sink transport can be implemented. These results emphasize the mouth slope and channel substrate resistance as the governing factors over long-term channel evolution, whereas flash floods have only local and short-lived impacts in a confined, continuously incising channel. The documented channel response applies to eustatic base-level fall under steepening basin bathymetry, rapid delta progradation, and lithologic variations in the channel substrate.
A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owkes, Mark, E-mail: mfc86@cornell.edu; Desjardins, Olivier
2013-09-15
The accurate conservative level set (ACLS) method of Desjardins et al. [O. Desjardins, V. Moureau, H. Pitsch, An accurate conservative level set/ghost fluid method for simulating turbulent atomization, J. Comput. Phys. 227 (18) (2008) 8395–8416] is extended by using a discontinuous Galerkin (DG) discretization. DG allows for the scheme to have an arbitrarily high order of accuracy with the smallest possible computational stencil resulting in an accurate method with good parallel scaling. This work includes a DG implementation of the level set transport equation, which moves the level set with the flow field velocity, and a DG implementation of themore » reinitialization equation, which is used to maintain the shape of the level set profile to promote good mass conservation. A near second order converging interface curvature is obtained by following a height function methodology (common amongst volume of fluid schemes) in the context of the conservative level set. Various numerical experiments are conducted to test the properties of the method and show excellent results, even on coarse meshes. The tests include Zalesak’s disk, two-dimensional deformation of a circle, time evolution of a standing wave, and a study of the Kelvin–Helmholtz instability. Finally, this novel methodology is employed to simulate the break-up of a turbulent liquid jet.« less
Greene, Patrick T.; Schofield, Samuel P.; Nourgaliev, Robert
2017-01-27
A new mesh smoothing method designed to cluster cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered fields, such as a volume fractionmore » or index function, is provided. Results show that the low-order level set works equally well as the actual level set for mesh smoothing. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Lastly, dynamic cases with moving interfaces show the new method is capable of maintaining a desired resolution near the interface with an acceptable number of relaxation iterations per time step, which demonstrates the method's potential to be used as a mesh relaxer for arbitrary Lagrangian Eulerian (ALE) methods.« less
NASA Technical Reports Server (NTRS)
Loomis, B. D.; Luthcke, S. B.
2016-01-01
We present new measurements of mass evolution for the Mediterranean, Black, Red, and Caspian Seas as determined by the NASA Goddard Space Flight Center (GSFC) GRACE time-variable global gravity mascon solutions. These new solutions are compared to sea surface altimetry measurements of sea level anomalies with steric corrections applied. To assess their accuracy, the GRACE and altimetry-derived solutions are applied to the set of forward models used by GSFC for processing the GRACE Level-1B datasets, with the resulting inter-satellite range acceleration residuals providing a useful metric for analyzing solution quality.
Did warfare among ancestral hunter-gatherers affect the evolution of human social behaviors?
Bowles, Samuel
2009-06-05
Since Darwin, intergroup hostilities have figured prominently in explanations of the evolution of human social behavior. Yet whether ancestral humans were largely "peaceful" or "warlike" remains controversial. I ask a more precise question: If more cooperative groups were more likely to prevail in conflicts with other groups, was the level of intergroup violence sufficient to influence the evolution of human social behavior? Using a model of the evolutionary impact of between-group competition and a new data set that combines archaeological evidence on causes of death during the Late Pleistocene and early Holocene with ethnographic and historical reports on hunter-gatherer populations, I find that the estimated level of mortality in intergroup conflicts would have had substantial effects, allowing the proliferation of group-beneficial behaviors that were quite costly to the individual altruist.
2015-01-01
Background Multiscale approaches for integrating submodels of various levels of biological organization into a single model became the major tool of systems biology. In this paper, we have constructed and simulated a set of multiscale models of spatially distributed microbial communities and study an influence of unevenly distributed environmental factors on the genetic diversity and evolution of the community members. Results Haploid Evolutionary Constructor software http://evol-constructor.bionet.nsc.ru/ was expanded by adding the tool for the spatial modeling of a microbial community (1D, 2D and 3D versions). A set of the models of spatially distributed communities was built to demonstrate that the spatial distribution of cells affects both intensity of selection and evolution rate. Conclusion In spatially heterogeneous communities, the change in the direction of the environmental flow might be reflected in local irregular population dynamics, while the genetic structure of populations (frequencies of the alleles) remains stable. Furthermore, in spatially heterogeneous communities, the chemotaxis might dramatically affect the evolution of community members. PMID:25708911
Using meta-differential evolution to enhance a calculation of a continuous blood glucose level.
Koutny, Tomas
2016-09-01
We developed a new model of glucose dynamics. The model calculates blood glucose level as a function of transcapillary glucose transport. In previous studies, we validated the model with animal experiments. We used analytical method to determine model parameters. In this study, we validate the model with subjects with type 1 diabetes. In addition, we combine the analytic method with meta-differential evolution. To validate the model with human patients, we obtained a data set of type 1 diabetes study that was coordinated by Jaeb Center for Health Research. We calculated a continuous blood glucose level from continuously measured interstitial fluid glucose level. We used 6 different scenarios to ensure robust validation of the calculation. Over 96% of calculated blood glucose levels fit A+B zones of the Clarke Error Grid. No data set required any correction of model parameters during the time course of measuring. We successfully verified the possibility of calculating a continuous blood glucose level of subjects with type 1 diabetes. This study signals a successful transition of our research from an animal experiment to a human patient. Researchers can test our model with their data on-line at https://diabetes.zcu.cz. Copyright © 2016 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.
Current Status of Research in Teaching and Learning Evolution: II. Pedagogical Issues
NASA Astrophysics Data System (ADS)
Smith, Mike U.
2010-06-01
This is the second of two articles that address recent scholarship about teaching and learning about evolution. This second review seeks to summarize this state of affairs and address the implications of this work for the classroom by addressing four basic questions: (1) What is evolution?/What components of the theory are important at the introductory level? (2) Why do students and members of the public at large need to understand evolution? (3) What makes evolution difficult to teach and learn? and (4) What promising instructional approaches have been developed and tested? The paper will also focus on concerns about both the research designs and the measures used in this work. Based on this review, I will then propose a set of pedagogical implications and recommendations for the classroom instructor and call for studies to address specific gaps identified.
Brazeau, Randi H.; Edwards, Marc A.
2013-01-01
Abstract Residential water heating is linked to growth of pathogens in premise plumbing, which is the primary source of waterborne disease in the United States. Temperature and disinfectant residual are critical factors controlling increased concentration of pathogens, but understanding of how each factor varies in different water heater configurations is lacking. A direct comparative study of electric water heater systems was conducted to evaluate temporal variations in temperature and water quality parameters including dissolved oxygen levels, hydrogen evolution, total and soluble metal concentrations, and disinfectant decay. Recirculation tanks had much greater volumes of water at temperature ranges with potential for increased pathogen growth when set at 49°C compared with standard tank systems without recirculation. In contrast, when set at the higher end of acceptable ranges (i.e., 60°C), this relationship was reversed and recirculation systems had less volume of water at risk for pathogen growth compared with conventional systems. Recirculation tanks also tended to have much lower levels of disinfectant residual (standard systems had 40–600% higher residual), 4–6 times as much hydrogen, and 3–20 times more sediment compared with standard tanks without recirculation. On demand tankless systems had very small volumes of water at risk and relatively high levels of disinfectant residual. Recirculation systems may have distinct advantages in controlling pathogens via thermal disinfection if set at 60°C, but these systems have lower levels of disinfectant residual and greater volumes at risk if set at lower temperatures. PMID:24170969
The Master Equation for Two-Level Accelerated Systems at Finite Temperature
NASA Astrophysics Data System (ADS)
Tomazelli, J. L.; Cunha, R. O.
2016-10-01
In this work, we study the behaviour of two weakly coupled quantum systems, described by a separable density operator; one of them is a single oscillator, representing a microscopic system, while the other is a set of oscillators which perform the role of a reservoir in thermal equilibrium. From the Liouville-Von Neumann equation for the reduced density operator, we devise the master equation that governs the evolution of the microscopic system, incorporating the effects of temperature via Thermofield Dynamics formalism by suitably redefining the vacuum of the macroscopic system. As applications, we initially investigate the behaviour of a Fermi oscillator in the presence of a heat bath consisting of a set of Fermi oscillators and that of an atomic two-level system interacting with a scalar radiation field, considered as a reservoir, by constructing the corresponding master equation which governs the time evolution of both sub-systems at finite temperature. Finally, we calculate the energy variation rates for the atom and the field, as well as the atomic population levels, both in the inertial case and at constant proper acceleration, considering the two-level system as a prototype of an Unruh detector, for admissible couplings of the radiation field.
Image-guided regularization level set evolution for MR image segmentation and bias field correction.
Wang, Lingfeng; Pan, Chunhong
2014-01-01
Magnetic resonance (MR) image segmentation is a crucial step in surgical and treatment planning. In this paper, we propose a level-set-based segmentation method for MR images with intensity inhomogeneous problem. To tackle the initialization sensitivity problem, we propose a new image-guided regularization to restrict the level set function. The maximum a posteriori inference is adopted to unify segmentation and bias field correction within a single framework. Under this framework, both the contour prior and the bias field prior are fully used. As a result, the image intensity inhomogeneity can be well solved. Extensive experiments are provided to evaluate the proposed method, showing significant improvements in both segmentation and bias field correction accuracies as compared with other state-of-the-art approaches. Copyright © 2014 Elsevier Inc. All rights reserved.
Atlas-based segmentation of 3D cerebral structures with competitive level sets and fuzzy control.
Ciofolo, Cybèle; Barillot, Christian
2009-06-01
We propose a novel approach for the simultaneous segmentation of multiple structures with competitive level sets driven by fuzzy control. To this end, several contours evolve simultaneously toward previously defined anatomical targets. A fuzzy decision system combines the a priori knowledge provided by an anatomical atlas with the intensity distribution of the image and the relative position of the contours. This combination automatically determines the directional term of the evolution equation of each level set. This leads to a local expansion or contraction of the contours, in order to match the boundaries of their respective targets. Two applications are presented: the segmentation of the brain hemispheres and the cerebellum, and the segmentation of deep internal structures. Experimental results on real magnetic resonance (MR) images are presented, quantitatively assessed and discussed.
Evolution of polyketide synthesis in a Dothideomycete forest pathogen
USDA-ARS?s Scientific Manuscript database
Fungal secondary metabolites have many important biological roles and some, like the toxic polyketide aflatoxin, have been intensively studied at the genetic level. Complete sets of polyketide synthase (PKS) genes can now be identified in fungal pathogens by whole genome sequencing and studied in or...
Sink- or Source-driven Phanerozoic carbon cycle?
NASA Astrophysics Data System (ADS)
Godderis, Y.; Donnadieu, Y.; Maffre, P.; Carretier, S.
2017-12-01
The Phanerozoic evolution of the atmospheric CO2 level is controlled by the fluxes entering or leaving the exospheric system. Those fluxes (including continental weathering, magmatic degassing, organic carbon burial, oxidation of sedimentary organic carbon) are intertwined, and their relative importance in driving the global carbon cycle evolution may have fluctuated through time. Deciphering the causes of the Phanerozoic climate evolution thus requires a holistic and quantitative approach. Here we focus on the role played by the paleogeographic configuration on the efficiency of the CO2 sink by continental silicate weathering, and on the impact of the magmatic degassing of CO2. We use the spatially resolved numerical model GEOCLIM (geoclimmodel.worpress.com) to compute the response of the silicate weathering and atmospheric CO2 to continental drift for 22 time slices of the Phanerozoic. Regarding the CO2 released by the magmatic activity, we reconstruct several Phanerozoic histories of this flux, based on published indexes. We calculate the CO2 evolution for each degassing scenario, and accounting for the paleogeographic setting. We show that the paleogeographic setting is a main driver of the climate from 540 Ma to about the beginning of the Jurassic. Regarding the role of the magmatic degassing, the various reconstructions do not converge towards a single signal, and thus introduce large uncertainties in the calculated CO2 level over time. Nevertheless, the continental dispersion, which prevails since the Jurassic, promotes the CO2 consumption by weathering and forces atmospheric CO2 to stay low. Warm climates of the "middle" Cretaceous and early Cenozoic require enhanced CO2 degassing by magmatic activity. In summary, the Phanerozoic climate evolution can be hardly assigned to a single process, but is the result of complex and intertwined processes.
The evolution of PBMA: towards a macro-level priority setting framework for health regions.
Mitton, Craig R; Donaldson, Cam; Waldner, Howard; Eagle, Chris
2003-11-01
To date, relatively little work on priority setting has been carried out at a macro-level across major portfolios within integrated health care organizations. This paper describes a macro marginal analysis (MMA) process for setting priorities and allocating resources in health authorities, based on work carried out in a major urban health region in Alberta, Canada. MMA centers around an expert working group of managers and clinicians who are charged with identifying areas for resource re-allocation on an ongoing basis. Trade-offs between services are based on locally defined criteria and are informed by multiple inputs such as evidence from the literature and local expert opinion. The approach is put forth as a significant improvement on historical resource allocation patterns.
[Environmental health: the evolution of Colombia's current regulatory framework].
García-Ubaque, Cesar A; García-Ubaque, Juan C; Vaca-Bohórquez, Martha L
2013-01-01
This essay presents an analysis of the evolution of environmental health management in Colombia, covering the period from the introduction of the Colombian Healthcare Code (1979) to laws 99 and 100 in 1993 and the introduction of Environmental Health Policy in Bogotá DC (2011). It proposes a conceptual model for environmental health management at three levels: proximal (physical, chemical and biological setting), intermediate (natural and cultural environment) and distal (economic, political and social structures). Relevant aspects of environmental health policy in Bogotá are analysed based on the proposed model.
A Lab Exercise Explaining Hardy-Weinberg Equilibrium and Evolution Effectively.
ERIC Educational Resources Information Center
Winterer, Juliette
2001-01-01
Presents a set of six activities in population genetics for a college-level biology course that helps students understand the Hardy-Weinberg principle. Activities focus on characterizing a population, Hardy-Weinberg proportions, genetic drift, mutation and selection, population size and divergence, and secondary contact. The only materials…
Wang, Guo-Dong; Fan, Ruo-Xi; Zhai, Weiwei; Liu, Fei; Wang, Lu; Zhong, Li; Wu, Hong; Yang, He-Chuan; Wu, Shi-Fang; Zhu, Chun-Ling; Li, Yan; Gao, Yun; Ge, Ri-Li; Wu, Chung-I; Zhang, Ya-Ping
2014-08-01
The high-altitude hypoxic environment represents one of the most extreme challenges for mammals. Previous studies of humans on the Tibetan plateau and in the Andes Mountains have identified statistical signatures of selection in different sets of loci. Here, we first measured the hemoglobin levels in village dogs from Tibet and those from Chinese lowlands. We found that the hemoglobin levels are very similar between the two groups, suggesting that Tibetan dogs might share similar adaptive strategies as the Tibetan people. Through a whole-genome sequencing approach, we have identified EPAS1 and HBB as candidate genes for the hypoxic adaptation on the Tibetan plateau. The population genetic analysis shows a significant convergence between humans and dogs in Tibet. The similarities in the sets of loci that exhibit putative signatures of selection and the hemoglobin levels between humans and dogs of the same environment, but not between human populations in different regions, suggests an extraordinary landscape of convergent evolution between human beings and their best friend on the Tibetan plateau. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Understanding Stellar Evolution
NASA Astrophysics Data System (ADS)
Lamers, Henny J. G. L. M.; Levesque, Emily M.
2017-12-01
'Understanding Stellar Evolution' is based on a series of graduate-level courses taught at the University of Washington since 2004, and is written for physics and astronomy students and for anyone with a physics background who is interested in stars. It describes the structure and evolution of stars, with emphasis on the basic physical principles and the interplay between the different processes inside stars such as nuclear reactions, energy transport, chemical mixing, pulsation, mass loss, and rotation. Based on these principles, the evolution of low- and high-mass stars is explained from their formation to their death. In addition to homework exercises for each chapter, the text contains a large number of questions that are meant to stimulate the understanding of the physical principles. An extensive set of accompanying lecture slides is available for teachers in both Keynote® and PowerPoint® formats.
Averaging, passage through resonances, and capture into resonance in two-frequency systems
NASA Astrophysics Data System (ADS)
Neishtadt, A. I.
2014-10-01
Applying small perturbations to an integrable system leads to its slow evolution. For an approximate description of this evolution the classical averaging method prescribes averaging the rate of evolution over all the phases of the unperturbed motion. This simple recipe does not always produce correct results, because of resonances arising in the process of evolution. The phenomenon of capture into resonance consists in the system starting to evolve in such a way as to preserve the resonance property once it has arisen. This paper is concerned with application of the averaging method to a description of evolution in two-frequency systems. It is assumed that the trajectories of the averaged system intersect transversally the level surfaces of the frequency ratio and that certain other conditions of general position are satisfied. The rate of evolution is characterized by a small parameter \\varepsilon. The main content of the paper is a proof of the following result: outside a set of initial data with measure of order \\sqrt \\varepsilon the averaging method describes the evolution to within O(\\sqrt \\varepsilon \\vert\\ln\\varepsilon\\vert) for periods of time of order 1/\\varepsilon. This estimate is sharp. The exceptional set of measure \\sqrt \\varepsilon contains the initial data for phase points captured into resonance. A description of the motion of such phase points is given, along with a survey of related results on averaging. Examples of capture into resonance are presented for some problems in the dynamics of charged particles. Several open problems are stated. Bibliography: 65 titles.
A two level mutation-selection model of cultural evolution and diversity.
Salazar-Ciudad, Isaac
2010-11-21
Cultural evolution is a complex process that can happen at several levels. At the level of individuals in a population, each human bears a set of cultural traits that he or she can transmit to its offspring (vertical transmission) or to other members of his or her society (horizontal transmission). The relative frequency of a cultural trait in a population or society can thus increase or decrease with the relative reproductive success of its bearers (individual's level) or the relative success of transmission (called the idea's level). This article presents a mathematical model on the interplay between these two levels. The first aim of this article is to explore when cultural evolution is driven by the idea's level, when it is driven by the individual's level and when it is driven by both. These three possibilities are explored in relation to (a) the amount of interchange of cultural traits between individuals, (b) the selective pressure acting on individuals, (c) the rate of production of new cultural traits, (d) the individual's capacity to remember cultural traits and to the population size. The aim is to explore the conditions in which cultural evolution does not lead to a better adaptation of individuals to the environment. This is to contrast the spread of fitness-enhancing ideas, which make individual bearers better adapted to the environment, to the spread of "selfish" ideas, which spread well simply because they are easy to remember but do not help their individual bearers (and may even hurt them). At the same time this article explores in which conditions the adaptation of individuals is maximal. The second aim is to explore how these factors affect cultural diversity, or the amount of different cultural traits in a population. This study suggests that a larger interchange of cultural traits between populations could lead to cultural evolution not improving the adaptation of individuals to their environment and to a decrease of cultural diversity. Copyright © 2010 Elsevier Ltd. All rights reserved.
Group competition, reproductive leveling, and the evolution of human altruism.
Bowles, Samuel
2006-12-08
Humans behave altruistically in natural settings and experiments. A possible explanation-that groups with more altruists survive when groups compete-has long been judged untenable on empirical grounds for most species. But there have been no empirical tests of this explanation for humans. My empirical estimates show that genetic differences between early human groups are likely to have been great enough so that lethal intergroup competition could account for the evolution of altruism. Crucial to this process were distinctive human practices such as sharing food beyond the immediate family, monogamy, and other forms of reproductive leveling. These culturally transmitted practices presuppose advanced cognitive and linguistic capacities, possibly accounting for the distinctive forms of altruism found in our species.
Evolution of Cost-Free Resistance under Fluctuating Drug Selection in Pseudomonas aeruginosa
McCloskey, Nicholas; Hinz, Aaron J.; Dettman, Jeremy; Kassen, Rees
2017-01-01
ABSTRACT Antibiotic resistance evolves rapidly in response to drug selection, but it can also persist at appreciable levels even after the removal of the antibiotic. This suggests that many resistant strains can both be resistant and have high fitness in the absence of antibiotics. To explore the conditions under which high-fitness, resistant strains evolve and the genetic changes responsible, we used a combination of experimental evolution and whole-genome sequencing to track the acquisition of ciprofloxacin resistance in the opportunistic pathogen Pseudomonas aeruginosa under conditions of constant and fluctuating antibiotic delivery patterns. We found that high-fitness, resistant strains evolved readily under fluctuating but not constant antibiotic conditions and that their evolution was underlain by a trade-off between resistance and fitness. Whole-genome sequencing of evolved isolates revealed that resistance was gained through mutations in known resistance genes and that second-site mutations generally compensated for costs associated with resistance in the fluctuating treatment, leading to the evolution of cost-free resistance. Our results suggest that current therapies involving intermittent administration of antibiotics are contributing to the maintenance of antibiotic resistance at high levels in clinical settings. IMPORTANCE Antibiotic resistance is a global problem that greatly impacts human health. How resistance persists, even in the absence of antibiotic treatment, is thus a public health problem of utmost importance. In this study, we explored the antibiotic treatment conditions under which cost-free resistance arises, using experimental evolution of the bacterium Pseudomonas aeruginosa and the quinolone antibiotic ciprofloxacin. We found that intermittent antibiotic treatment led to the evolution of cost-free resistance and demonstrate that compensatory evolution is the mechanism responsible for cost-free resistance. Our results suggest that discontinuous administration of antibiotic may be contributing to the high levels of antibiotic resistance currently found worldwide. PMID:28744479
Stochastic evolutionary dynamics in minimum-effort coordination games
NASA Astrophysics Data System (ADS)
Li, Kun; Cong, Rui; Wang, Long
2016-08-01
The minimum-effort coordination game draws recently more attention for the fact that human behavior in this social dilemma is often inconsistent with the predictions of classical game theory. Here, we combine evolutionary game theory and coalescence theory to investigate this game in finite populations. Both analytic results and individual-based simulations show that effort costs play a key role in the evolution of contribution levels, which is in good agreement with those observed experimentally. Besides well-mixed populations, set structured populations have also been taken into consideration. Therein we find that large number of sets and moderate migration rate greatly promote effort levels, especially for high effort costs.
Feature Profile Evolution of SiO2 Trenches In Fluorocarbon Plasmas
NASA Technical Reports Server (NTRS)
Hwang, Helen; Govindan, T. R.; Meyyappan, M.; Arunachalam, Valli; Rauf, Shahid; Coronell, Dan; Carroll, Carol W. (Technical Monitor)
1999-01-01
Etching of silicon microstructures for semiconductor manufacturing in chlorine plasmas has been well characterized. The etching proceeds in a two-part process, where the chlorine neutrals passivate the Si surface and then the ions etch away SiClx. However, etching in more complicated gas mixtures and materials, such as etching of SiO2 in Ar/C4F8, requires knowledge of the ion and neutral distribution functions as a function of angle and velocity, in addition to modeling the gas surface reactions. In order to address these needs, we have developed and integrated a suite of models to simulate the etching process from the plasma reactor level to the feature profile evolution level. This arrangement allows for a better understanding, control, and prediction of the influence of equipment level process parameters on feature profile evolution. We are currently using the HPEM (Hybrid Plasma Equipment Model) and PCMCM (Plasma Chemistry Monte Carlo Model) to generate plasma properties and ion and neutral distribution functions for argon/fluorocarbon discharges in a GEC Reference Cell. These quantities are then input to the feature scale model, Simulation of Profile Evolution by Level Sets (SPELS). A surface chemistry model is used to determine the interaction of the incoming species with the substrate material and simulate the evolution of the trench profile. The impact of change of gas pressure and inductive power on the relative flux of CFx and F to the wafer, the etch and polymerization rates, and feature profiles will be examined. Comparisons to experimental profiles will also be presented.
A Preliminary Analysis of Correlated Evolution in Mammalian Chewing Motor Patterns
Williams, Susan H.; Vinyard, Christopher J.; Wall, Christine E.; Doherty, Alison H.; Crompton, Alfred W.; Hylander, William L.
2011-01-01
Descriptive and quantitative analyses of electromyograms (EMG) from the jaw adductors during feeding in mammals have demonstrated both similarities and differences among species in chewing motor patterns. These observations have led to a number of hypotheses of the evolution of motor patterns, the most comprehensive of which was proposed by Weijs in 1994. Since then, new data have been collected and additional hypotheses for the evolution of motor patterns have been proposed. Here, we take advantage of these new data and a well-resolved species-level phylogeny for mammals to test for the correlated evolution of specific components of mammalian chewing motor patterns. We focus on the evolution of the coordination of working-side (WS) and balancing-side (BS) jaw adductors (i.e., Weijs’ Triplets I and II), the evolution of WS and BS muscle recruitment levels, and the evolution of asynchrony between pairs of muscles. We converted existing chewing EMG data into binary traits to incorporate as much data as possible and facilitate robust phylogenetic analyses. We then tested hypotheses of correlated evolution of these traits across our phylogeny using a maximum likelihood method and the Bayesian Markov Chain Monte Carlo method. Both sets of analyses yielded similar results highlighting the evolutionary changes that have occurred across mammals in chewing motor patterns. We find support for the correlated evolution of (1) Triplets I and II, (2) BS deep masseter asynchrony and Triplets I and II, (3) a relative delay in the activity of the BS deep masseter and a decrease in the ratio of WS to BS muscle recruitment levels, and (4) a relative delay in the activity of the BS deep masseter and a delay in the activity of the BS posterior temporalis. In contrast, changes in relative WS and BS activity levels across mammals are not correlated with Triplets I and II. Results from this work can be integrated with dietary and morphological data to better understand how feeding and the masticatory apparatus have evolved across mammals in the context of new masticatory demands. PMID:21719433
A preliminary analysis of correlated evolution in Mammalian chewing motor patterns.
Williams, Susan H; Vinyard, Christopher J; Wall, Christine E; Doherty, Alison H; Crompton, Alfred W; Hylander, William L
2011-08-01
Descriptive and quantitative analyses of electromyograms (EMG) from the jaw adductors during feeding in mammals have demonstrated both similarities and differences among species in chewing motor patterns. These observations have led to a number of hypotheses of the evolution of motor patterns, the most comprehensive of which was proposed by Weijs in 1994. Since then, new data have been collected and additional hypotheses for the evolution of motor patterns have been proposed. Here, we take advantage of these new data and a well-resolved species-level phylogeny for mammals to test for the correlated evolution of specific components of mammalian chewing motor patterns. We focus on the evolution of the coordination of working-side (WS) and balancing-side (BS) jaw adductors (i.e., Weijs' Triplets I and II), the evolution of WS and BS muscle recruitment levels, and the evolution of asynchrony between pairs of muscles. We converted existing chewing EMG data into binary traits to incorporate as much data as possible and facilitate robust phylogenetic analyses. We then tested hypotheses of correlated evolution of these traits across our phylogeny using a maximum likelihood method and the Bayesian Markov Chain Monte Carlo method. Both sets of analyses yielded similar results highlighting the evolutionary changes that have occurred across mammals in chewing motor patterns. We find support for the correlated evolution of (1) Triplets I and II, (2) BS deep masseter asynchrony and Triplets I and II, (3) a relative delay in the activity of the BS deep masseter and a decrease in the ratio of WS to BS muscle recruitment levels, and (4) a relative delay in the activity of the BS deep masseter and a delay in the activity of the BS posterior temporalis. In contrast, changes in relative WS and BS activity levels across mammals are not correlated with Triplets I and II. Results from this work can be integrated with dietary and morphological data to better understand how feeding and the masticatory apparatus have evolved across mammals in the context of new masticatory demands.
Garcia-Seisdedos, Hector; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M
2012-01-01
Protein promiscuity is of considerable interest due its role in adaptive metabolic plasticity, its fundamental connection with molecular evolution and also because of its biotechnological applications. Current views on the relation between primary and promiscuous protein activities stem largely from laboratory evolution experiments aimed at increasing promiscuous activity levels. Here, on the other hand, we attempt to assess the main features of the simultaneous modulation of the primary and promiscuous functions during the course of natural evolution. The computational/experimental approach we propose for this task involves the following steps: a function-targeted, statistical coupling analysis of evolutionary data is used to determine a set of positions likely linked to the recruitment of a promiscuous activity for a new function; a combinatorial library of mutations on this set of positions is prepared and screened for both, the primary and the promiscuous activities; a partial-least-squares reconstruction of the full combinatorial space is carried out; finally, an approximation to the Pareto set of variants with optimal primary/promiscuous activities is derived. Application of the approach to the emergence of folding catalysis in thioredoxin scaffolds reveals an unanticipated scenario: diverse patterns of primary/promiscuous activity modulation are possible, including a moderate (but likely significant in a biological context) simultaneous enhancement of both activities. We show that this scenario can be most simply explained on the basis of the conformational diversity hypothesis, although alternative interpretations cannot be ruled out. Overall, the results reported may help clarify the mechanisms of the evolution of new functions. From a different viewpoint, the partial-least-squares-reconstruction/Pareto-set-prediction approach we have introduced provides the computational basis for an efficient directed-evolution protocol aimed at the simultaneous enhancement of several protein features and should therefore open new possibilities in the engineering of multi-functional enzymes.
Garcia-Seisdedos, Hector; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.
2012-01-01
Protein promiscuity is of considerable interest due its role in adaptive metabolic plasticity, its fundamental connection with molecular evolution and also because of its biotechnological applications. Current views on the relation between primary and promiscuous protein activities stem largely from laboratory evolution experiments aimed at increasing promiscuous activity levels. Here, on the other hand, we attempt to assess the main features of the simultaneous modulation of the primary and promiscuous functions during the course of natural evolution. The computational/experimental approach we propose for this task involves the following steps: a function-targeted, statistical coupling analysis of evolutionary data is used to determine a set of positions likely linked to the recruitment of a promiscuous activity for a new function; a combinatorial library of mutations on this set of positions is prepared and screened for both, the primary and the promiscuous activities; a partial-least-squares reconstruction of the full combinatorial space is carried out; finally, an approximation to the Pareto set of variants with optimal primary/promiscuous activities is derived. Application of the approach to the emergence of folding catalysis in thioredoxin scaffolds reveals an unanticipated scenario: diverse patterns of primary/promiscuous activity modulation are possible, including a moderate (but likely significant in a biological context) simultaneous enhancement of both activities. We show that this scenario can be most simply explained on the basis of the conformational diversity hypothesis, although alternative interpretations cannot be ruled out. Overall, the results reported may help clarify the mechanisms of the evolution of new functions. From a different viewpoint, the partial-least-squares-reconstruction/Pareto-set-prediction approach we have introduced provides the computational basis for an efficient directed-evolution protocol aimed at the simultaneous enhancement of several protein features and should therefore open new possibilities in the engineering of multi-functional enzymes. PMID:22719242
The tempo and mode of evolution: body sizes of island mammals.
Raia, Pasquale; Meiri, Shai
2011-07-01
The tempo and mode of body size evolution on islands are believed to be well known. It is thought that body size evolves relatively quickly on islands toward the mammalian modal value, thus generating extreme cases of size evolution and the island rule. Here, we tested both theories in a phylogenetically explicit context, by using two different species-level mammalian phylogenetic hypotheses limited to sister clades dichotomizing into an exclusively insular and an exclusively mainland daughter nodes. Taken as a whole, mammals were found to show a largely punctuational mode of size evolution. We found that, accounting for this, and regardless of the phylogeny used, size evolution on islands is no faster than on the continents. We compared different selection regimes using a set of Ornstein-Uhlenbeck models to examine the effects of insularity of the mode of evolution. The models strongly supported clade-specific selection regimes. Under this regime, however, an evolutionary model allowing insular species to evolve differently from their mainland relatives performs worse than a model that ignores insularity as a factor. Thus, insular taxa do not experience statistically different selection from their mainland relatives. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Ji, Yuanbo; van der Geest, Rob J.; Nazarian, Saman; Lelieveldt, Boudewijn P. F.; Tao, Qian
2018-03-01
Anatomical objects in medical images very often have dual contours or surfaces that are highly correlated. Manually segmenting both of them by following local image details is tedious and subjective. In this study, we proposed a two-layer region-based level set method with a soft distance constraint, which not only regularizes the level set evolution at two levels, but also imposes prior information on wall thickness in an effective manner. By updating the level set function and distance constraint functions alternatingly, the method simultaneously optimizes both contours while regularizing their distance. The method was applied to segment the inner and outer wall of both left atrium (LA) and left ventricle (LV) from MR images, using a rough initialization from inside the blood pool. Compared to manual annotation from experience observers, the proposed method achieved an average perpendicular distance (APD) of less than 1mm for the LA segmentation, and less than 1.5mm for the LV segmentation, at both inner and outer contours. The method can be used as a practical tool for fast and accurate dual wall annotations given proper initialization.
The Moon: Keystone to Understanding Planetary Geological Processes and History
NASA Technical Reports Server (NTRS)
2002-01-01
Extensive and intensive exploration of the Earth's Moon by astronauts and an international array of automated spacecraft has provided an unequaled data set that has provided deep insight into geology, geochemistry, mineralogy, petrology, chronology, geophysics and internal structure. This level of insight is unequaled except for Earth. Analysis of these data sets over the last 35 years has proven fundamental to understanding planetary surface processes and evolution, and is essential to linking surface processes with internal and thermal evolution. Much of the understanding that we presently have of other terrestrial planets and outer planet satellites derives from the foundation of these data. On the basis of these data, the Moon is a laboratory for understanding of planetary processes and a keystone for providing evolutionary perspective. Important comparative planetology issues being addressed by lunar studies include impact cratering, magmatic activity and tectonism. Future planetary exploration plans should keep in mind the importance of further lunar exploration in continuing to build solid underpinnings in this keystone to planetary evolution. Examples of these insights and applications to other planets are cited.
A conceptual framework for the evolutionary origins of multicellularity
NASA Astrophysics Data System (ADS)
Libby, Eric; Rainey, Paul B.
2013-06-01
The evolution of multicellular organisms from unicellular counterparts involved a transition in Darwinian individuality from single cells to groups. A particular challenge is to understand the nature of the earliest groups, the causes of their evolution, and the opportunities for emergence of Darwinian properties. Here we outline a conceptual framework based on a logical set of possible pathways for evolution of the simplest self-replicating groups. Central to these pathways is the recognition of a finite number of routes by which genetic information can be transmitted between individual cells and groups. We describe the form and organization of each primordial group state and consider factors affecting persistence and evolution of the nascent multicellular forms. Implications arising from our conceptual framework become apparent when attempting to partition fitness effects at individual and group levels. These are discussed with reference to the evolutionary emergence of individuality and its manifestation in extant multicellular life—including those of marginal Darwinian status.
Culture and biology in the origins of linguistic structure.
Kirby, Simon
2017-02-01
Language is systematically structured at all levels of description, arguably setting it apart from all other instances of communication in nature. In this article, I survey work over the last 20 years that emphasises the contributions of individual learning, cultural transmission, and biological evolution to explaining the structural design features of language. These 3 complex adaptive systems exist in a network of interactions: individual learning biases shape the dynamics of cultural evolution; universal features of linguistic structure arise from this cultural process and form the ultimate linguistic phenotype; the nature of this phenotype affects the fitness landscape for the biological evolution of the language faculty; and in turn this determines individuals' learning bias. Using a combination of computational simulation, laboratory experiments, and comparison with real-world cases of language emergence, I show that linguistic structure emerges as a natural outcome of cultural evolution once certain minimal biological requirements are in place.
Harpur, Brock A; Zayed, Amro
2013-07-01
The genomes of eusocial insects have a reduced complement of immune genes-an unusual finding considering that sociality provides ideal conditions for disease transmission. The following three hypotheses have been invoked to explain this finding: 1) social insects are attacked by fewer pathogens, 2) social insects have effective behavioral or 3) novel molecular mechanisms for combating pathogens. At the molecular level, these hypotheses predict that canonical innate immune pathways experience a relaxation of selective constraint. A recent study of several innate immune genes in ants and bees showed a pattern of accelerated amino acid evolution, which is consistent with either positive selection or a relaxation of constraint. We studied the population genetics of innate immune genes in the honey bee Apis mellifera by partially sequencing 13 genes from the bee's Toll pathway (∼10.5 kb) and 20 randomly chosen genes (∼16.5 kb) sequenced in 43 diploid workers. Relative to the random gene set, Toll pathway genes had significantly higher levels of amino acid replacement mutations segregating within A. mellifera and fixed between A. mellifera and A. cerana. However, levels of diversity and divergence at synonymous sites did not differ between the two gene sets. Although we detect strong signs of balancing selection on the pathogen recognition gene pgrp-sa, many of the genes in the Toll pathway show signatures of relaxed selective constraint. These results are consistent with the reduced complement of innate immune genes found in social insects and support the hypothesis that some aspect of eusociality renders canonical innate immunity superfluous.
Non-Genomic Origins of Proteins and Metabolism
NASA Technical Reports Server (NTRS)
Pohorille, Andrew
2003-01-01
It is proposed that evolution of inanimate matter to cells endowed with a nucleic acid- based coding of genetic information was preceded by an evolutionary phase, in which peptides not coded by nucleic acids were able to self-organize into networks capable of evolution towards increasing metabolic complexity. Recent findings that truly different, simple peptides (Keefe and Szostak, 2001) can perform the same function (such as ATP binding) provide experimental support for this mechanism of early protobiological evolution. The central concept underlying this mechanism is that the reproduction of cellular functions alone was sufficient for self-maintenance of protocells, and that self- replication of macromolecules was not required at this stage of evolution. The precise transfer of information between successive generations of the earliest protocells was unnecessary and, possibly, undesirable. The key requirement in the initial stage of protocellular evolution was an ability to rapidly explore a large number of protein sequences in order to discover a set of molecules capable of supporting self- maintenance and growth of protocells. Undoubtedly, the essential protocellular functions were carried out by molecules not nearly as efficient or as specific as contemporary proteins. Many, potentially unrelated sequences could have performed each of these functions at an evolutionarily acceptable level. As evolution progressed, however proteins must have performed their functions with increasing efficiency and specificity. This, in turn, put additional constraints on protein sequences and the fraction of proteins capable of performing their functions at the required level decreased. At some point, the likelihood of generating a sufficiently efficient set of proteins through a non-coded synthesis was so small that further evolution was not possible without storing information about the sequences of these proteins. Beyond this point, further evolution required coupling between proteins and informational polymers that is characteristic to all known forms of life. The emergence of such coupling must be postulated in any scenario of the origin of life, no matter whether it starts with RNA or proteins. To examine the evolutionary potential of non-genomic systems, a simple, computationally tractable model, which is still capable of capturing the essential features of the real system, has been studied computationally. Both constructive and destructive processes have been introduced into the model in a stochastic manner. Instead of assuming random reaction sets, only a suite of protobiologically plausible reactions has been considered. Peptides have been explicitly considered as protoenzymes and their catalytic efficiencies have been assigned on the basis of biochemical principles and experimental estimates. Simulations have been carried out using a novel approach (The Next Reaction Method) that is appropriate even for very low concentrations of reactants. Studies have focused on global autocatalytic processes and their diversity.
Ciezarek, Adam G; Dunning, Luke T; Jones, Catherine S; Noble, Leslie R; Humble, Emily; Stefanni, Sergio S; Savolainen, Vincent
2016-10-05
Despite 400-450 million years of independent evolution, a strong phenotypic convergence has occurred between two groups of fish: tunas and lamnid sharks. This convergence is characterized by centralization of red muscle, a distinctive swimming style (stiffened body powered through tail movements) and elevated body temperature (endothermy). Furthermore, both groups demonstrate elevated white muscle metabolic capacities. All these traits are unusual in fish and more likely evolved to support their fast-swimming, pelagic, predatory behavior. Here, we tested the hypothesis that their convergent evolution was driven by selection on a set of metabolic genes. We sequenced white muscle transcriptomes of six tuna, one mackerel, and three shark species, and supplemented this data set with previously published RNA-seq data. Using 26 species in total (including 7,032 tuna genes plus 1,719 shark genes), we constructed phylogenetic trees and carried out maximum-likelihood analyses of gene selection. We inferred several genes relating to metabolism to be under selection. We also found that the same one gene, glycogenin-1, evolved under positive selection independently in tunas and lamnid sharks, providing evidence of convergent selective pressures at gene level possibly underlying shared physiology. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Active contour-based visual tracking by integrating colors, shapes, and motions.
Hu, Weiming; Zhou, Xue; Li, Wei; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen
2013-05-01
In this paper, we present a framework for active contour-based visual tracking using level sets. The main components of our framework include contour-based tracking initialization, color-based contour evolution, adaptive shape-based contour evolution for non-periodic motions, dynamic shape-based contour evolution for periodic motions, and the handling of abrupt motions. For the initialization of contour-based tracking, we develop an optical flow-based algorithm for automatically initializing contours at the first frame. For the color-based contour evolution, Markov random field theory is used to measure correlations between values of neighboring pixels for posterior probability estimation. For adaptive shape-based contour evolution, the global shape information and the local color information are combined to hierarchically evolve the contour, and a flexible shape updating model is constructed. For the dynamic shape-based contour evolution, a shape mode transition matrix is learnt to characterize the temporal correlations of object shapes. For the handling of abrupt motions, particle swarm optimization is adopted to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame.
Estimating the long-term historic evolution of exposure to flooding of coastal populations
NASA Astrophysics Data System (ADS)
Stevens, A. J.; Clarke, D.; Nicholls, R. J.; Wadey, M. P.
2015-06-01
Coastal managers face the task of assessing and managing flood risk. This requires knowledge of the area of land, the number of people, properties and other infrastructure potentially affected by floods. Such analyses are usually static; i.e. they only consider a snapshot of the current situation. This misses the opportunity to learn about the role of key drivers of historical changes in flood risk, such as development and population rise in the coastal flood plain, as well as sea-level rise. In this paper, we develop and apply a method to analyse the temporal evolution of residential population exposure to coastal flooding. It uses readily available data in a GIS environment. We examine how population and sea-level change have modified exposure over two centuries in two neighbouring coastal sites: Portsea and Hayling Islands on the UK south coast. The analysis shows that flood exposure changes as a result of increases in population, changes in coastal population density and sea level rise. The results indicate that to date, population change is the dominant driver of the increase in exposure to flooding in the study sites, but climate change may outweigh this in the future. A full analysis of changing flood risk is not possible as data on historic defences and wider vulnerability are not available. Hence, the historic evolution of flood exposure is as close as we can get to a historic evolution of flood risk. The method is applicable anywhere that suitable floodplain geometry, sea level and population data sets are available and could be widely applied, and will help inform coastal managers of the time evolution in coastal flood drivers.
The set of triple-resonance sequences with a multiple quantum coherence evolution period
NASA Astrophysics Data System (ADS)
Koźmiński, Wiktor; Zhukov, Igor
2004-12-01
The new pulse sequence building block that relies on evolution of heteronuclear multiple quantum coherences is proposed. The particular chemical shifts are obtained in multiple quadrature, using linear combinations of frequencies taken from spectra measured at different quantum levels. The pulse sequences designed in this way consist of small number of RF-pulses, are as short as possible, and could be applied for determination of coupling constants. The examples presented involve 2D correlations H NCO, H NCA, H N(CO) CA, and H(N) COCA via heteronuclear zero and double coherences, as well as 2D H NCOCA technique with simultaneous evolution of triple and three distinct single quantum coherences. Applications of the new sequences are presented for 13C, 15N-labeled ubiquitin.
NASA Astrophysics Data System (ADS)
Zhang, Lin; Lu, Jian; Zhou, Jialin; Zhu, Jinqing; Li, Yunxuan; Wan, Qian
2018-03-01
Didi Dache is the most popular taxi order mobile app in China, which provides online taxi-hailing service. The obtained big database from this app could be used to analyze the complexities’ day-to-day dynamic evolution of Didi taxi trip network (DTTN) from the level of complex network dynamics. First, this paper proposes the data cleaning and modeling methods for expressing Nanjing’s DTTN as a complex network. Second, the three consecutive weeks’ data are cleaned to establish 21 DTTNs based on the proposed big data processing technology. Then, multiple topology measures that characterize the complexities’ day-to-day dynamic evolution of these networks are provided. Third, these measures of 21 DTTNs are calculated and subsequently explained with actual implications. They are used as a training set for modeling the BP neural network which is designed for predicting DTTN complexities evolution. Finally, the reliability of the designed BP neural network is verified by comparing with the actual data and the results obtained from ARIMA method simultaneously. Because network complexities are the basis for modeling cascading failures and conducting link prediction in complex system, this proposed research framework not only provides a novel perspective for analyzing DTTN from the level of system aggregated behavior, but can also be used to improve the DTTN management level.
Exploring optimal topology of thermal cloaks by CMA-ES
NASA Astrophysics Data System (ADS)
Fujii, Garuda; Akimoto, Youhei; Takahashi, Masayuki
2018-02-01
This paper presents topology optimization for thermal cloaks expressed by level-set functions and explored using the covariance matrix adaptation evolution strategy (CMA-ES). Designed optimal configurations provide superior performances in thermal cloaks for the steady-state thermal conduction and succeed in realizing thermal invisibility, despite the structures being simply composed of iron and aluminum and without inhomogeneities caused by employing metamaterials. To design thermal cloaks, a prescribed objective function is used to evaluate the difference between the temperature field controlled by a thermal cloak and when no thermal insulator is present. The CMA-ES involves searches for optimal sets of level-set functions as design variables that minimize a regularized fitness involving a perimeter constraint. Through topology optimization subject to structural symmetries about four axes, we obtain a concept design of a thermal cloak that functions in an isotropic heat flux.
Site-directed protein recombination as a shortest-path problem.
Endelman, Jeffrey B; Silberg, Jonathan J; Wang, Zhen-Gang; Arnold, Frances H
2004-07-01
Protein function can be tuned using laboratory evolution, in which one rapidly searches through a library of proteins for the properties of interest. In site-directed recombination, n crossovers are chosen in an alignment of p parents to define a set of p(n + 1) peptide fragments. These fragments are then assembled combinatorially to create a library of p(n+1) proteins. We have developed a computational algorithm to enrich these libraries in folded proteins while maintaining an appropriate level of diversity for evolution. For a given set of parents, our algorithm selects crossovers that minimize the average energy of the library, subject to constraints on the length of each fragment. This problem is equivalent to finding the shortest path between nodes in a network, for which the global minimum can be found efficiently. Our algorithm has a running time of O(N(3)p(2) + N(2)n) for a protein of length N. Adjusting the constraints on fragment length generates a set of optimized libraries with varying degrees of diversity. By comparing these optima for different sets of parents, we rapidly determine which parents yield the lowest energy libraries.
Strauß, Jakob Friedrich; Crain, Philip; Schulenburg, Hinrich; Telschow, Arndt
2016-08-01
Most mathematical models on the evolution of virulence are based on epidemiological models that assume parasite transmission follows the mass action principle. In experimental evolution, however, mass action is often violated due to controlled infection protocols. This "theory-experiment mismatch" raises the question whether there is a need for new mathematical models to accommodate the particular characteristics of experimental evolution. Here, we explore the experimental evolution model system of Bacillus thuringiensis as a parasite and Caenorhabditis elegans as a host. Recent experimental studies with strict control of parasite transmission revealed that one-sided adaptation of B. thuringiensis with non-evolving hosts selects for intermediate or no virulence, sometimes coupled with parasite extinction. In contrast, host-parasite coevolution selects for high virulence and for hosts with strong resistance against B. thuringiensis. In order to explain the empirical results, we propose a new mathematical model that mimics the basic experimental set-up. The key assumptions are: (i) controlled parasite transmission (no mass action), (ii) discrete host generations, and (iii) context-dependent cost of toxin production. Our model analysis revealed the same basic trends as found in the experiments. Especially, we could show that resistant hosts select for highly virulent bacterial strains. Moreover, we found (i) that the evolved level of virulence is independent of the initial level of virulence, and (ii) that the average amount of bacteria ingested significantly affects the evolution of virulence with fewer bacteria ingested selecting for highly virulent strains. These predictions can be tested in future experiments. This study highlights the usefulness of custom-designed mathematical models in the analysis and interpretation of empirical results from experimental evolution. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.
Probabilistic modeling of the evolution of gene synteny within reconciled phylogenies
2015-01-01
Background Most models of genome evolution concern either genetic sequences, gene content or gene order. They sometimes integrate two of the three levels, but rarely the three of them. Probabilistic models of gene order evolution usually have to assume constant gene content or adopt a presence/absence coding of gene neighborhoods which is blind to complex events modifying gene content. Results We propose a probabilistic evolutionary model for gene neighborhoods, allowing genes to be inserted, duplicated or lost. It uses reconciled phylogenies, which integrate sequence and gene content evolution. We are then able to optimize parameters such as phylogeny branch lengths, or probabilistic laws depicting the diversity of susceptibility of syntenic regions to rearrangements. We reconstruct a structure for ancestral genomes by optimizing a likelihood, keeping track of all evolutionary events at the level of gene content and gene synteny. Ancestral syntenies are associated with a probability of presence. We implemented the model with the restriction that at most one gene duplication separates two gene speciations in reconciled gene trees. We reconstruct ancestral syntenies on a set of 12 drosophila genomes, and compare the evolutionary rates along the branches and along the sites. We compare with a parsimony method and find a significant number of results not supported by the posterior probability. The model is implemented in the Bio++ library. It thus benefits from and enriches the classical models and methods for molecular evolution. PMID:26452018
Storkel, Holly L; Bontempo, Daniel E; Pak, Natalie S
2014-10-01
In this study, the authors investigated adult word learning to determine how neighborhood density and practice across phonologically related training sets influence online learning from input during training versus offline memory evolution during no-training gaps. Sixty-one adults were randomly assigned to learn low- or high-density nonwords. Within each density condition, participants were trained on one set of words and then were trained on a second set of words, consisting of phonological neighbors of the first set. Learning was measured in a picture-naming test. Data were analyzed using multilevel modeling and spline regression. Steep learning during input was observed, with new words from dense neighborhoods and new words that were neighbors of recently learned words (i.e., second-set words) being learned better than other words. In terms of memory evolution, large and significant forgetting was observed during 1-week gaps in training. Effects of density and practice during memory evolution were opposite of those during input. Specifically, forgetting was greater for high-density and second-set words than for low-density and first-set words. High phonological similarity, regardless of source (i.e., known words or recent training), appears to facilitate online learning from input but seems to impede offline memory evolution.
Modeling the influence of plate motions on subduction
NASA Astrophysics Data System (ADS)
Hillebrand, Bram; Thieulot, Cedric; van den Berg, Arie; Spakman, Wim
2014-05-01
Subduction zones are widely studied complex geodynamical systems. Their evolution is influenced by a broad range of parameters such as the age of the plates (both subducting and overriding) as well as their rheology, their nature (oceanic or continental), the presence of a crust and the involved plate motions to name a few. To investigate the importance of these different parameters on the evolution of subduction we have created a series of 2D numerical thermomechanical subduction models. These subduction models are multi-material flow models containing continental and oceanic crusts, a lithosphere and a mantle. We use the sticky air approach to allow for topography build up in the model. In order to model multi-material flow in our Eulerian finite element code of SEPRAN (Segal and Praagman, 2000) we use the well benchmarked level set method (Osher and Sethian, 1988) to track the different materials and their mode of deformation through the model domain. To our knowledge the presented results are the first subduction model results with the level set method. We will present preliminary results of our parametric study focusing mainly on the influence of plate motions on the evolution of subduction. S. Osher and J.A. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations. JCP 1988 A. Segal and N.P. Praagman. The SEPRAN package. Technical report, 2000 This research is funded by The Netherlands Research Centre for Integrated Solid Earth Science (ISES)
Higher-Order Corrections to Timelike Jets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giele, W.T.; /Fermilab; Kosower, D.A.
2011-02-01
We present a simple formalism for the evolution of timelike jets in which tree-level matrix element corrections can be systematically incorporated, up to arbitrary parton multiplicities and over all of phase space, in a way that exponentiates the matching corrections. The scheme is cast as a shower Markov chain which generates one single unweighted event sample, that can be passed to standard hadronization models. Remaining perturbative uncertainties are estimated by providing several alternative weight sets for the same events, at a relatively modest additional overhead. As an explicit example, we consider Z {yields} q{bar q} evolution with unpolarized, massless quarksmore » and include several formally subleading improvements as well as matching to tree-level matrix elements through {alpha}{sub s}{sup 4}. The resulting algorithm is implemented in the publicly available VINCIA plugin to the PYTHIA8 event generator.« less
Evolution of Query Optimization Methods
NASA Astrophysics Data System (ADS)
Hameurlain, Abdelkader; Morvan, Franck
Query optimization is the most critical phase in query processing. In this paper, we try to describe synthetically the evolution of query optimization methods from uniprocessor relational database systems to data Grid systems through parallel, distributed and data integration systems. We point out a set of parameters to characterize and compare query optimization methods, mainly: (i) size of the search space, (ii) type of method (static or dynamic), (iii) modification types of execution plans (re-optimization or re-scheduling), (iv) level of modification (intra-operator and/or inter-operator), (v) type of event (estimation errors, delay, user preferences), and (vi) nature of decision-making (centralized or decentralized control).
Chan, Yvonne L; Schanzenbach, David; Hickerson, Michael J
2014-09-01
Methods that integrate population-level sampling from multiple taxa into a single community-level analysis are an essential addition to the comparative phylogeographic toolkit. Detecting how species within communities have demographically tracked each other in space and time is important for understanding the effects of future climate and landscape changes and the resulting acceleration of extinctions, biological invasions, and potential surges in adaptive evolution. Here, we present a statistical framework for such an analysis based on hierarchical approximate Bayesian computation (hABC) with the goal of detecting concerted demographic histories across an ecological assemblage. Our method combines population genetic data sets from multiple taxa into a single analysis to estimate: 1) the proportion of a community sample that demographically expanded in a temporally clustered pulse and 2) when the pulse occurred. To validate the accuracy and utility of this new approach, we use simulation cross-validation experiments and subsequently analyze an empirical data set of 32 avian populations from Australia that are hypothesized to have expanded from smaller refugia populations in the late Pleistocene. The method can accommodate data set heterogeneity such as variability in effective population size, mutation rates, and sample sizes across species and exploits the statistical strength from the simultaneous analysis of multiple species. This hABC framework used in a multitaxa demographic context can increase our understanding of the impact of historical climate change by determining what proportion of the community responded in concert or independently and can be used with a wide variety of comparative phylogeographic data sets as biota-wide DNA barcoding data sets accumulate. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Zou, Zhengting; Zhang, Jianzhi
2017-07-01
Several authors reported lower frequencies of protein sequence convergence between more distantly related evolutionary lineages and attributed this trend to epistasis, which renders the acceptable amino acids at a site more different and convergence less likely in more divergent lineages. A recent primate study, however, suggested that this trend is at least partially and potentially entirely an artifact of gene tree discordance (GTD). Here, we demonstrate in a genome-wide data set from 17 mammals that the temporal trend remains (1) upon the control of the GTD level, (2) in genes whose genealogies are concordant with the species tree, and (3) for convergent changes, which are extremely unlikely to be caused by GTD. Similar results are observed in a comparable data set of 12 fruit flies in some but not all of these tests. We conclude that, at least in some cases, the temporal decline of convergence is genuine, reflecting an impact of epistasis on protein evolution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Online monitoring of oil film using electrical capacitance tomography and level set method.
Xue, Q; Sun, B Y; Cui, Z Q; Ma, M; Wang, H X
2015-08-01
In the application of oil-air lubrication system, electrical capacitance tomography (ECT) provides a promising way for monitoring oil film in the pipelines by reconstructing cross sectional oil distributions in real time. While in the case of small diameter pipe and thin oil film, the thickness of the oil film is hard to be observed visually since the interface of oil and air is not obvious in the reconstructed images. And the existence of artifacts in the reconstructions has seriously influenced the effectiveness of image segmentation techniques such as level set method. Besides, level set method is also unavailable for online monitoring due to its low computation speed. To address these problems, a modified level set method is developed: a distance regularized level set evolution formulation is extended to image two-phase flow online using an ECT system, a narrowband image filter is defined to eliminate the influence of artifacts, and considering the continuity of the oil distribution variation, the detected oil-air interface of a former image can be used as the initial contour for the detection of the subsequent frame; thus, the propagation from the initial contour to the boundary can be greatly accelerated, making it possible for real time tracking. To testify the feasibility of the proposed method, an oil-air lubrication facility with 4 mm inner diameter pipe is measured in normal operation using an 8-electrode ECT system. Both simulation and experiment results indicate that the modified level set method is capable of visualizing the oil-air interface accurately online.
Online monitoring of oil film using electrical capacitance tomography and level set method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Q., E-mail: xueqian@tju.edu.cn; Ma, M.; Sun, B. Y.
2015-08-15
In the application of oil-air lubrication system, electrical capacitance tomography (ECT) provides a promising way for monitoring oil film in the pipelines by reconstructing cross sectional oil distributions in real time. While in the case of small diameter pipe and thin oil film, the thickness of the oil film is hard to be observed visually since the interface of oil and air is not obvious in the reconstructed images. And the existence of artifacts in the reconstructions has seriously influenced the effectiveness of image segmentation techniques such as level set method. Besides, level set method is also unavailable for onlinemore » monitoring due to its low computation speed. To address these problems, a modified level set method is developed: a distance regularized level set evolution formulation is extended to image two-phase flow online using an ECT system, a narrowband image filter is defined to eliminate the influence of artifacts, and considering the continuity of the oil distribution variation, the detected oil-air interface of a former image can be used as the initial contour for the detection of the subsequent frame; thus, the propagation from the initial contour to the boundary can be greatly accelerated, making it possible for real time tracking. To testify the feasibility of the proposed method, an oil-air lubrication facility with 4 mm inner diameter pipe is measured in normal operation using an 8-electrode ECT system. Both simulation and experiment results indicate that the modified level set method is capable of visualizing the oil-air interface accurately online.« less
Intent, Future, Anticipation: A Semiotic, Transdisciplinary Approach
NASA Astrophysics Data System (ADS)
Loeckenhoff, Hellmut
2008-10-01
Encouraged e.g. by chaos theory and (bio-)semiotics science is trying to attempt a deeper understanding of life. The paradigms of physics alone prove not sufficient to explain f. ex. evolution or phylogenesis and ontogenesis. In complement, research on life systems reassesses paradigmatic models not only for living systems and not only on the strict biological level. The ontological as well as the epistemological base of science in toto is to be reconsidered. Science itself proves a historical and cultural phenomenon and can be seen as shaped by evolution and semiosis. -Living systems are signified by purpose, intent and, necessarily, by the faculty to anticipate e.g. the cyclic changes of their environment. To understand the concepts behind a proposal is developed towards a model set constituting a transdisciplinary approach. It rests e.g. on concepts of systems, evolution, complexity and semiodynamics.
Understanding protein evolution: from protein physics to Darwinian selection.
Zeldovich, Konstantin B; Shakhnovich, Eugene I
2008-01-01
Efforts in whole-genome sequencing and structural proteomics start to provide a global view of the protein universe, the set of existing protein structures and sequences. However, approaches based on the selection of individual sequences have not been entirely successful at the quantitative description of the distribution of structures and sequences in the protein universe because evolutionary pressure acts on the entire organism, rather than on a particular molecule. In parallel to this line of study, studies in population genetics and phenomenological molecular evolution established a mathematical framework to describe the changes in genome sequences in populations of organisms over time. Here, we review both microscopic (physics-based) and macroscopic (organism-level) models of protein-sequence evolution and demonstrate that bridging the two scales provides the most complete description of the protein universe starting from clearly defined, testable, and physiologically relevant assumptions.
Reduce, reuse, and recycle: developmental evolution of trait diversification.
Preston, Jill C; Hileman, Lena C; Cubas, Pilar
2011-03-01
A major focus of evolutionary developmental (evo-devo) studies is to determine the genetic basis of variation in organismal form and function, both of which are fundamental to biological diversification. Pioneering work on metazoan and flowering plant systems has revealed conserved sets of genes that underlie the bauplan of organisms derived from a common ancestor. However, the extent to which variation in the developmental genetic toolkit mirrors variation at the phenotypic level is an active area of research. Here we explore evidence from the angiosperm evo-devo literature supporting the frugal use of genes and genetic pathways in the evolution of developmental patterning. In particular, these examples highlight the importance of genetic pleiotropy in different developmental modules, thus reducing the number of genes required in growth and development, and the reuse of particular genes in the parallel evolution of ecologically important traits.
Zeng, Jia; Hannenhalli, Sridhar
2013-01-01
Gene duplication, followed by functional evolution of duplicate genes, is a primary engine of evolutionary innovation. In turn, gene expression evolution is a critical component of overall functional evolution of paralogs. Inferring evolutionary history of gene expression among paralogs is therefore a problem of considerable interest. It also represents significant challenges. The standard approaches of evolutionary reconstruction assume that at an internal node of the duplication tree, the two duplicates evolve independently. However, because of various selection pressures functional evolution of the two paralogs may be coupled. The coupling of paralog evolution corresponds to three major fates of gene duplicates: subfunctionalization (SF), conserved function (CF) or neofunctionalization (NF). Quantitative analysis of these fates is of great interest and clearly influences evolutionary inference of expression. These two interrelated problems of inferring gene expression and evolutionary fates of gene duplicates have not been studied together previously and motivate the present study. Here we propose a novel probabilistic framework and algorithm to simultaneously infer (i) ancestral gene expression and (ii) the likely fate (SF, NF, CF) at each duplication event during the evolution of gene family. Using tissue-specific gene expression data, we develop a nonparametric belief propagation (NBP) algorithm to predict the ancestral expression level as a proxy for function, and describe a novel probabilistic model that relates the predicted and known expression levels to the possible evolutionary fates. We validate our model using simulation and then apply it to a genome-wide set of gene duplicates in human. Our results suggest that SF tends to be more frequent at the earlier stage of gene family expansion, while NF occurs more frequently later on.
NASA Astrophysics Data System (ADS)
McGovern, S.; Kollet, S. J.; Buerger, C. M.; Schwede, R. L.; Podlaha, O. G.
2017-12-01
In the context of sedimentary basins, we present a model for the simulation of the movement of ageological formation (layers) during the evolution of the basin through sedimentation and compactionprocesses. Assuming a single phase saturated porous medium for the sedimentary layers, the modelfocuses on the tracking of the layer interfaces, through the use of the level set method, as sedimentationdrives fluid-flow and reduction of pore space by compaction. On the assumption of Terzaghi's effectivestress concept, the coupling of the pore fluid pressure to the motion of interfaces in 1-D is presented inMcGovern, et.al (2017) [1] .The current work extends the spatial domain to 3-D, though we maintain the assumption ofvertical effective stress to drive the compaction. The idealized geological evolution is conceptualized asthe motion of interfaces between rock layers, whose paths are determined by the magnitude of a speedfunction in the direction normal to the evolving layer interface. The speeds normal to the interface aredependent on the change in porosity, determined through an effective stress-based compaction law,such as the exponential Athy's law. Provided with the speeds normal to the interface, the level setmethod uses an advection equation to evolve a potential function, whose zero level set defines theinterface. Thus, the moving layer geometry influences the pore pressure distribution which couplesback to the interface speeds. The flexible construction of the speed function allows extension, in thefuture, to other terms to represent different physical processes, analogous to how the compaction rulerepresents material deformation.The 3-D model is implemented using the generic finite element method framework Deal II,which provides tools, building on p4est and interfacing to PETSc, for the massively parallel distributedsolution to the model equations [2]. Experiments are being run on the Juelich Supercomputing Center'sJureca cluster. [1] McGovern, et.al. (2017). Novel basin modelling concept for simulating deformation from mechanical compaction using level sets. Computational Geosciences, SI:ECMOR XV, 1-14.[2] Bangerth, et. al. (2011). Algorithms and data structures for massively parallel generic adaptive finite element codes. ACM Transactions on Mathematical Software (TOMS), 38(2):14.
Why should we investigate the morphological disparity of plant clades?
Oyston, Jack W.; Hughes, Martin; Gerber, Sylvain; Wills, Matthew A.
2016-01-01
Background Disparity refers to the morphological variation in a sample of taxa, and is distinct from diversity or taxonomic richness. Diversity and disparity are fundamentally decoupled; many groups attain high levels of disparity early in their evolution, while diversity is still comparatively low. Diversity may subsequently increase even in the face of static or declining disparity by increasingly fine sub-division of morphological ‘design’ space (morphospace). Many animal clades reached high levels of disparity early in their evolution, but there have been few comparable studies of plant clades, despite their profound ecological and evolutionary importance. This study offers a prospective and some preliminary macroevolutionary analyses. Methods Classical morphometric methods are most suitable when there is reasonable conservation of form, but lose traction where morphological differences become greater (e.g. in comparisons across higher taxa). Discrete character matrices offer one means to compare a greater diversity of forms. This study explores morphospaces derived from eight discrete data sets for major plant clades, and discusses their macroevolutionary implications. Key Results Most of the plant clades in this study show initial, high levels of disparity that approach or attain the maximum levels reached subsequently. These plant clades are characterized by an initial phase of evolution during which most regions of their empirical morphospaces are colonized. Angiosperms, palms, pines and ferns show remarkably little variation in disparity through time. Conifers furnish the most marked exception, appearing at relatively low disparity in the latest Carboniferous, before expanding incrementally with the radiation of successive, tightly clustered constituent sub-clades. Conclusions Many cladistic data sets can be repurposed for investigating the morphological disparity of plant clades through time, and offer insights that are complementary to more focused morphometric studies. The unique structural and ecological features of plants make them ideally suited to investigating intrinsic and extrinsic constraints on disparity. PMID:26658292
Why should we investigate the morphological disparity of plant clades?
Oyston, Jack W; Hughes, Martin; Gerber, Sylvain; Wills, Matthew A
2016-04-01
Disparity refers to the morphological variation in a sample of taxa, and is distinct from diversity or taxonomic richness. Diversity and disparity are fundamentally decoupled; many groups attain high levels of disparity early in their evolution, while diversity is still comparatively low. Diversity may subsequently increase even in the face of static or declining disparity by increasingly fine sub-division of morphological 'design' space (morphospace). Many animal clades reached high levels of disparity early in their evolution, but there have been few comparable studies of plant clades, despite their profound ecological and evolutionary importance. This study offers a prospective and some preliminary macroevolutionary analyses. Classical morphometric methods are most suitable when there is reasonable conservation of form, but lose traction where morphological differences become greater (e.g. in comparisons across higher taxa). Discrete character matrices offer one means to compare a greater diversity of forms. This study explores morphospaces derived from eight discrete data sets for major plant clades, and discusses their macroevolutionary implications. Most of the plant clades in this study show initial, high levels of disparity that approach or attain the maximum levels reached subsequently. These plant clades are characterized by an initial phase of evolution during which most regions of their empirical morphospaces are colonized. Angiosperms, palms, pines and ferns show remarkably little variation in disparity through time. Conifers furnish the most marked exception, appearing at relatively low disparity in the latest Carboniferous, before expanding incrementally with the radiation of successive, tightly clustered constituent sub-clades. Many cladistic data sets can be repurposed for investigating the morphological disparity of plant clades through time, and offer insights that are complementary to more focused morphometric studies. The unique structural and ecological features of plants make them ideally suited to investigating intrinsic and extrinsic constraints on disparity. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Evolution of Children's Friendship Cliques.
ERIC Educational Resources Information Center
Hallinan, Maureen T.
This paper investigates the formation and evolution of friendship cliques among preadolescent youth in elementary and junior high grades 4 through 8. Two sets of data were collected: the first set consisted of cross sectional data from 51 classes (grades 5 through 8); the second set contained sociometric data collected from 11 classes (grades 4…
NASA Astrophysics Data System (ADS)
Broglia, Riccardo; Durante, Danilo
2017-11-01
This paper focuses on the analysis of a challenging free surface flow problem involving a surface vessel moving at high speeds, or planing. The investigation is performed using a general purpose high Reynolds free surface solver developed at CNR-INSEAN. The methodology is based on a second order finite volume discretization of the unsteady Reynolds-averaged Navier-Stokes equations (Di Mascio et al. in A second order Godunov—type scheme for naval hydrodynamics, Kluwer Academic/Plenum Publishers, Dordrecht, pp 253-261, 2001; Proceedings of 16th international offshore and polar engineering conference, San Francisco, CA, USA, 2006; J Mar Sci Technol 14:19-29, 2009); air/water interface dynamics is accurately modeled by a non standard level set approach (Di Mascio et al. in Comput Fluids 36(5):868-886, 2007a), known as the single-phase level set method. In this algorithm the governing equations are solved only in the water phase, whereas the numerical domain in the air phase is used for a suitable extension of the fluid dynamic variables. The level set function is used to track the free surface evolution; dynamic boundary conditions are enforced directly on the interface. This approach allows to accurately predict the evolution of the free surface even in the presence of violent breaking waves phenomena, maintaining the interface sharp, without any need to smear out the fluid properties across the two phases. This paper is aimed at the prediction of the complex free-surface flow field generated by a deep-V planing boat at medium and high Froude numbers (from 0.6 up to 1.2). In the present work, the planing hull is treated as a two-degree-of-freedom rigid object. Flow field is characterized by the presence of thin water sheets, several energetic breaking waves and plungings. The computational results include convergence of the trim angle, sinkage and resistance under grid refinement; high-quality experimental data are used for the purposes of validation, allowing to compare the hydrodynamic forces and the attitudes assumed at different velocities. A very good agreement between numerical and experimental results demonstrates the reliability of the single-phase level set approach for the predictions of high Froude numbers flows.
Shen, Chen; Chu, Chen; Shi, Lei
2018-01-01
In this article, we propose an aspiration-based coevolution of link weight, and explore how this set-up affects the evolution of cooperation in the spatial prisoner's dilemma game. In particular, an individual will increase the weight of its link to its neighbours only if the payoff received via this interaction exceeds a pre-defined aspiration. Conversely, if the received payoff is below this aspiration, the link weight with the corresponding neighbour will decrease. Our results show that an appropriate aspiration level leads to a high-cooperation plateau, whereas too high or too low aspiration will impede the evolution of cooperation. We explain these findings with a comprehensive analysis of transition points and with a systematic analysis of typical configuration patterns. The presented results provide further theoretical insights with regards to the impact of different aspiration levels on cooperation in human societies. PMID:29892454
NASA Astrophysics Data System (ADS)
Shen, Chen; Chu, Chen; Shi, Lei; Perc, Matjaž; Wang, Zhen
2018-05-01
In this article, we propose an aspiration-based coevolution of link weight, and explore how this set-up affects the evolution of cooperation in the spatial prisoner's dilemma game. In particular, an individual will increase the weight of its link to its neighbours only if the payoff received via this interaction exceeds a pre-defined aspiration. Conversely, if the received payoff is below this aspiration, the link weight with the corresponding neighbour will decrease. Our results show that an appropriate aspiration level leads to a high-cooperation plateau, whereas too high or too low aspiration will impede the evolution of cooperation. We explain these findings with a comprehensive analysis of transition points and with a systematic analysis of typical configuration patterns. The presented results provide further theoretical insights with regards to the impact of different aspiration levels on cooperation in human societies.
Carbonate landscapes evolution: Insights from 36Cl
NASA Astrophysics Data System (ADS)
Godard, Vincent; Thomas, Franck; Ollivier, Vincent; Bellier, Olivier; Shabanian, Esmaeil; Miramont, Cécile; Fleury, Jules; Benedetti, Lucilla; Guillou, Valéry; Aster Team
2017-04-01
Carbonate landscapes cover a significant fraction of the Earth surface, but their long-term dynamics is still poorly understood. When comparing with the situation in areas underlain by quartz-rich lithologies, where the routine use of 10Be-derived denudation rates has delivered fundamental insights on landscape evolution processes, this knowledge gap is particularly notable. Recent advances in the measurement of 36Cl and better understanding of its production pathways has opened the way to the development of a similar physically-based and quantitative analysis of landscape evolution in carbonate settings. However, beyond these methodological considerations, we still face fundamental geomorphological open questions, as for example the assessment of the importance of congruent carbonate dissolution in long-wavelength topographic evolution. Such unresolved problems concerning the relative importance of physical and chemical weathering processes lead to question the applicability of standard slope-dependent Geomorphic Transport Laws in carbonate settings. These issues have been addressed studying the geomorphological evolution of selected limestone ranges in Provence, SE France, where 36Cl concentration measurements in bedrock and stream sediment samples allow constraining denudation over 10 ka time-scale. We first identify a significant denudation contrast between the summit surface and the flanks of the ranges, pointing to a substantial contribution of gravity-driven processes to the landscape evolution, in addition to dissolution. Furthermore, a detailed analysis of the relationships between hillslope morphology and hilltop denudation allow to identify a fundamental transition between two regimes: (1) a dynamics where hillslope evolution is controlled by linear diffusive downslope regolith transport; and, (2) a domain where denudation is limited by the rate at which physical and chemical weathering processes can produce clasts and lower the hilltop. Such an abrupt transition toward a weathering-limited dynamics may prevent hillslope denudation from balancing the rate of base level fall imposed by the river network and could potentially explain the development of high local relief observed in many Mediterranean carbonate landscapes.
GPU accelerated edge-region based level set evolution constrained by 2D gray-scale histogram.
Balla-Arabé, Souleymane; Gao, Xinbo; Wang, Bin
2013-07-01
Due to its intrinsic nature which allows to easily handle complex shapes and topological changes, the level set method (LSM) has been widely used in image segmentation. Nevertheless, LSM is computationally expensive, which limits its applications in real-time systems. For this purpose, we propose a new level set algorithm, which uses simultaneously edge, region, and 2D histogram information in order to efficiently segment objects of interest in a given scene. The computational complexity of the proposed LSM is greatly reduced by using the highly parallelizable lattice Boltzmann method (LBM) with a body force to solve the level set equation (LSE). The body force is the link with image data and is defined from the proposed LSE. The proposed LSM is then implemented using an NVIDIA graphics processing units to fully take advantage of the LBM local nature. The new algorithm is effective, robust against noise, independent to the initial contour, fast, and highly parallelizable. The edge and region information enable to detect objects with and without edges, and the 2D histogram information enable the effectiveness of the method in a noisy environment. Experimental results on synthetic and real images demonstrate subjectively and objectively the performance of the proposed method.
Ogbunugafor, C Brandon; Hartl, Daniel
2016-01-25
The study of reverse evolution from resistant to susceptible phenotypes can reveal constraints on biological evolution, a topic for which evolutionary theory has relatively few general principles. The public health catastrophe of antimicrobial resistance in malaria has brought these constraints on evolution into a practical realm, with one proposed solution: withdrawing anti-malarial medication use in high resistance settings, built on the assumption that reverse evolution occurs readily enough that populations of pathogens may revert to their susceptible states. While past studies have suggested limits to reverse evolution, there have been few attempts to properly dissect its mechanistic constraints. Growth rates were determined from empirical data on the growth and resistance from a set of combinatorially complete set of mutants of a resistance protein (dihydrofolate reductase) in Plasmodium vivax, to construct reverse evolution trajectories. The fitness effects of individual mutations were calculated as a function of drug environment, revealing the magnitude of epistatic interactions between mutations and genetic backgrounds. Evolution across the landscape was simulated in two settings: starting from the population fixed for the quadruple mutant, and from a polymorphic population evenly distributed between double mutants. A single mutation of large effect (S117N) serves as a pivot point for evolution to high resistance regions of the landscape. Through epistatic interactions with other mutations, this pivot creates an epistatic ratchet against reverse evolution towards the wild type ancestor, even in environments where the wild type is the most fit of all genotypes. This pivot mutation underlies the directional bias in evolution across the landscape, where evolution towards the ancestor is precluded across all examined drug concentrations from various starting points in the landscape. The presence of pivot mutations can dictate dynamics of evolution across adaptive landscape through epistatic interactions within a protein, leaving a population trapped on local fitness peaks in an adaptive landscape, unable to locate ancestral genotypes. This irreversibility suggests that the structure of an adaptive landscape for a resistance protein should be understood before considering resistance management strategies. This proposed mechanism for constraints on reverse evolution corroborates evidence from the field indicating that phenotypic reversal often occurs via compensatory mutation at sites independent of those associated with the forward evolution of resistance. Because of this, molecular methods that identify resistance patterns via single SNPs in resistance-associated markers might be missing signals for resistance and compensatory mutation throughout the genome. In these settings, whole genome sequencing efforts should be used to identify resistance patterns, and will likely reveal a more complicated genomic signature for resistance and susceptibility, especially in settings where anti-malarial medications have been used intermittently. Lastly, the findings suggest that, given their role in dictating the dynamics of evolution across the landscape, pivot mutations might serve as future targets for therapy.
NASA Technical Reports Server (NTRS)
Vanreenen, D. D.; Barton, J. M., Jr.; Roering, C.; Vanschalkwyk, J. C.; Smit, C. A.; Debeer, J. D.; Stettler, E. H.
1986-01-01
High-grade gneiss terranes and low-grade granite-greenstone terranes are well known in several Archaean domains. The geological relationship between these different crustal regions, however, is still controversial. One school of thought favors fundamental genetic differences between high-grade and low-grade terranes while others argue for a depth-controlled crustal evolution. The detailed examination of well-exposed Archaean terranes at different metamorphic grades, therefore, is not only an important source of information about the crustal levels exposed, but also is critical to the understanding of the possible tectonic and metamorphic evolution of greenstone belts with time. Three South African greenstone belts are compared.
Madaan, Nitesh; Bao, Jie; Nandasiri, Manjula I.; ...
2015-08-31
The experimental atom probe tomography results from two different specimen orientations (top-down and side-ways) of a high oxygen ion conducting Samaria-doped-ceria/Scandia-stabilized-zirconia multilayer thin film solid oxide fuel cell electrolyte was correlated with level-set method based field evaporation simulations for the same specimen orientations. This experiment-theory correlation explains the dynamic specimen shape evolution and ion trajectory aberrations that can induce density artifacts in final reconstruction leading to inaccurate estimation of interfacial intermixing. This study highlights the need and importance of correlating experimental results with field evaporation simulations when using atom probe tomography for studying oxide heterostructure interfaces.
López-Causapé, Carla; Rubio, Rosa; Cabot, Gabriel; Oliver, Antonio
2018-04-01
Inhaled administration of high doses of aminoglycosides is a key maintenance treatment of Pseudomonas aeruginosa chronic respiratory infections in cystic fibrosis (CF). We analyzed the dynamics and mechanisms of stepwise high-level tobramycin resistance development in vitro and compared the results with those of isogenic pairs of susceptible and resistant clinical isolates. Resistance development correlated with fusA1 mutations in vitro and in vivo. pmrB mutations, conferring polymyxin resistance, were also frequently selected in vitro In contrast, mutational overexpression of MexXY, a hallmark of aminoglycoside resistance in CF, was not observed in in vitro evolution experiments. Copyright © 2018 American Society for Microbiology.
60 micron luminosity evolution of rich clusters of galaxies
NASA Technical Reports Server (NTRS)
Kelly, Douglas M.; Rieke, George H.
1990-01-01
The average 60-micron flux has been determined for a collection of optically selected galaxy clusters at redshifts ranging from 0.30 to 0.92. The result, 26 mJy per cluster, represents the faintest flux determination known of using the IRAS data base. The flux from this set of clusters has been compared to the 60-micron flux from a sample of nearby galaxy clusters. It is found that the far-infrared luminosity evolution in cluster galaxies can be no more than a factor of 1.7 from z = 0.4 to the present epoch. This upper limit is close to the evolution predicted for simple aging of the stellar populations. Additional processes such as mergers, cannibalism, or enhanced rates of starbursts appear to occur at a low enough level that they have little influence on the far-infrared emission from clusters over this redshift range.
60 micron luminosity evolution of rich clusters of galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, D.M.; Rieke, G.H.
1990-10-01
The average 60-micron flux has been determined for a collection of optically selected galaxy clusters at redshifts ranging from 0.30 to 0.92. The result, 26 mJy per cluster, represents the faintest flux determination known of using the IRAS data base. The flux from this set of clusters has been compared to the 60-micron flux from a sample of nearby galaxy clusters. It is found that the far-infrared luminosity evolution in cluster galaxies can be no more than a factor of 1.7 from z = 0.4 to the present epoch. This upper limit is close to the evolution predicted for simplemore » aging of the stellar populations. Additional processes such as mergers, cannibalism, or enhanced rates of starbursts appear to occur at a low enough level that they have little influence on the far-infrared emission from clusters over this redshift range. 38 refs.« less
Mesoproterozoic Archaeoellipsoides: akinetes of heterocystous cyanobacteria
NASA Technical Reports Server (NTRS)
Golubic, S.; Sergeev, V. N.; Knoll, A. H.
1995-01-01
The genus Archaeoellipsoides Horodyski & Donaldson comprises large (up to 135 micrometers long) ellipsoidal and rod-shaped microfossils commonly found in silicified peritidal carbonates of Mesoproterozoic age. Based on morphometric and sedimentary comparisons with the akinetes of modern bloom-forming Anabaena species, Archaeoellipsoides is interpreted as the fossilized remains of akinetes produced by planktic heterocystous cyanobacteria. These fossils set a minimum date for the evolution of derived cyanobacteria capable of marked cell differentiation, and they corroborate geochemical evidence indicating that atmospheric oxygen levels were well above 1% of present day levels 1,500 million years ago.
Evolution properties of the community members for dynamic networks
NASA Astrophysics Data System (ADS)
Yang, Kai; Guo, Qiang; Li, Sheng-Nan; Han, Jing-Ti; Liu, Jian-Guo
2017-03-01
The collective behaviors of community members for dynamic social networks are significant for understanding evolution features of communities. In this Letter, we empirically investigate the evolution properties of the new community members for dynamic networks. Firstly, we separate data sets into different slices, and analyze the statistical properties of new members as well as communities they joined in for these data sets. Then we introduce a parameter φ to describe community evolution between different slices and investigate the dynamic community properties of the new community members. The empirical analyses for the Facebook, APS, Enron and Wiki data sets indicate that both the number of new members and joint communities increase, the ratio declines rapidly and then becomes stable over time, and most of the new members will join in the small size communities that is s ≤ 10. Furthermore, the proportion of new members in existed communities decreases firstly and then becomes stable and relatively small for these data sets. Our work may be helpful for deeply understanding the evolution properties of community members for social networks.
Modelling wildland fire propagation by tracking random fronts
NASA Astrophysics Data System (ADS)
Pagnini, G.; Mentrelli, A.
2013-11-01
Wildland fire propagation is studied in literature by two alternative approaches, namely the reaction-diffusion equation and the level-set method. These two approaches are considered alternative each other because the solution of the reaction-diffusion equation is generally a continuous smooth function that has an exponential decay and an infinite support, while the level-set method, which is a front tracking technique, generates a sharp function with a finite support. However, these two approaches can indeed be considered complementary and reconciled. Turbulent hot-air transport and fire spotting are phenomena with a random character that are extremely important in wildland fire propagation. As a consequence the fire front gets a random character, too. Hence a tracking method for random fronts is needed. In particular, the level-set contourn is here randomized accordingly to the probability density function of the interface particle displacement. Actually, when the level-set method is developed for tracking a front interface with a random motion, the resulting averaged process emerges to be governed by an evolution equation of the reaction-diffusion type. In this reconciled approach, the rate of spread of the fire keeps the same key and characterizing role proper to the level-set approach. The resulting model emerges to be suitable to simulate effects due to turbulent convection as fire flank and backing fire, the faster fire spread because of the actions by hot air pre-heating and by ember landing, and also the fire overcoming a firebreak zone that is a case not resolved by models based on the level-set method. Moreover, from the proposed formulation it follows a correction for the rate of spread formula due to the mean jump-length of firebrands in the downwind direction for the leeward sector of the fireline contour.
Can Landscape Evolution Models (LEMs) be used to reconstruct palaeo-climate and sea-level histories?
NASA Astrophysics Data System (ADS)
Leyland, J.; Darby, S. E.
2011-12-01
Reconstruction of palaeo-environmental conditions over long time periods is notoriously difficult, especially where there are limited or no proxy records from which to extract data. Application of landscape evolution models (LEMs) for palaeo-environmental reconstruction involves hindcast modeling, in which simulation scenarios are configured with specific model variables and parameters chosen to reflect a specific hypothesis of environmental change. In this form of modeling, the environmental time series utilized are considered credible when modeled and observed landscape metrics converge. Herein we account for the uncertainties involved in evaluating the degree to which the model simulations and observations converge using Monte Carlo analysis of reduced complexity `metamodels'. The technique is applied to a case study focused on a specific set of gullies found on the southwest coast of the Isle of Wight, UK. A key factor controlling the Holocene evolution of these coastal gullies is the balance between rates of sea-cliff retreat (driven by sea-level rise) and headwards incision caused by knickpoint migration (driven by the rate of runoff). We simulate these processes using a version of the GOLEM model that has been modified to represent sea-cliff retreat. A Central Composite Design (CCD) sampling technique was employed, enabling the trajectories of gully response to different combinations of driving conditions to be modeled explicitly. In some of these simulations, where the range of bedrock erodibility (0.03 to 0.04 m0.2 a-1) and rate of sea-level change (0.005 to 0.0059 m a-1) is tightly constrained, modeled gully forms conform closely to those observed in reality, enabling a suite of climate and sea-level change scenarios which plausibly explain the Holocene evolution of the Isle of Wight gullies to be identified.
NASA Astrophysics Data System (ADS)
Seddik, H.; Greve, R.; Zwinger, T.; Gillet-Chaulet, F.; Gagliardini, O.
2011-12-01
The full Stokes thermo-mechanically coupled model Elmer/Ice is applied to the Greenland ice sheet. Elmer/Ice employs the finite element method to solve the full Stokes equations, the temperature evolution equation and the evolution equation of the free surface. The general framework of this modeling effort is a contribution to the Sea-level Response to Ice Sheet Evolution (SeaRISE) assessment project, a community-organized effort to estimate the likely range of ice sheet contributions to sea level rise over the next few hundred years (http://tinyurl.com/srise-lanl, http://tinyurl.com/srise-umt). The present geometry (surface and basal topographies) is derived from data where the basal topography was created with the preservation of the troughs at the Jakobshavn Ice Stream, Helheim, Kangerdlussuaq and Petermann glaciers. A mesh of the computational domain is created using an initial footprint which contains elements of 5 km horizontal resolution and to limit the number elements on the footprint while maximizing the spatial resolution, an anisotropic mesh adaptation scheme is employed based on the Hessian matrix of the observed surface velocities. The adaptation is carried out with the tool YAMS and the final footprint is vertically extruded to form a 3D mesh of 320880 elements with 17 equidistant, terrain-following layers. The numerical solution of the Stokes and the heat transfer equations employs direct solvers with stabilization procedures. The boundary conditions are such that the temperature at the surface uses the present-day mean annual air temperature given by a parameterization or directly from the available data, the geothermal heat flux at the bedrock is given by data and the lateral sides are open boundaries. A non-linear Weertman law is used for the basal sliding. Results for the SeaRISE 2011 sensitivity experiments are presented so that six different experiments have been conducted, grouped in two sets. The Set C (three experiments) applies a change to the surface precipitation and temperature and the set S (three experiments) applies an amplification factor to change the basal sliding velocity. The experiments are compared to a constant climate control run beginning at present (epoch 2004-1-1 0:0:0) and running up to 100 years holding the climate constant to its present state. The experiments with the amplification factor (Set S) show high sensitivities. Relative to the control run, the scenario with an amplification factor of 3x applied to the sliding velocity produces a Greenland contribution to sea level rise of ~25 cm. An amplification factor of 2.5x produces a contribution of ~16 cm and an amplification factor 2x produces a contribution of ~9 cm. The experiments with the changes to the surface precipitation and temperature (set C) show a contribution to sea level rise of ~4 cm when a factor 1x is applied to the temperature and precipitation anomalies. A factor 1.5x produces a sea level rise of ~8 cm and a factor 2x produces a sea level rise of ~12 cm.
Girma, Gezahegn; Hyma, Katie E; Asiedu, Robert; Mitchell, Sharon E; Gedil, Melaku; Spillane, Charles
2014-08-01
Genotyping by sequencing (GBS) is used to understand the origin and domestication of guinea yams, including the contribution of wild relatives and polyploidy events to the cultivated guinea yams. Patterns of genetic diversity within and between two cultivated guinea yams (Dioscorea rotundata and D. cayenensis) and five wild relatives (D. praehensilis, D. mangenotiana, D. abyssinica, D. togoensis and D. burkilliana) were investigated using next-generation sequencing (genotyping by sequencing, GBS). Additionally, the two cultivated species were assessed for intra-specific morphological and ploidy variation. In guinea yams, ploidy level is correlated with species identity. Using flow cytometry a single ploidy level was inferred across D. cayenensis (3x, N = 21), D. praehensilis (2x, N = 7), and D. mangenotiana (3x, N = 5) accessions, whereas both diploid and triploid (or aneuploid) accessions were present in D. rotundata (N = 11 and N = 32, respectively). Multi-dimensional scaling and maximum parsimony analyses of 2,215 SNPs revealed that wild guinea yam populations form discrete genetic groupings according to species. D. togoensis and D. burkilliana were most distant from the two cultivated yam species, whereas D. abyssinica, D. mangenotiana, and D. praehensilis were closest to cultivated yams. In contrast, cultivated species were genetically less clearly defined at the intra-specific level. While D. cayenensis formed a single genetic group, D. rotundata comprised three separate groups consisting of; (1) a set of diploid individuals genetically similar to D. praehensilis, (2) a set of diploid individuals genetically similar to D. cayenensis, and (3) a set of triploid individuals. The current study demonstrates the utility of GBS for assessing yam genomic diversity. Combined with morphological and biological data, GBS provides a powerful tool for testing hypotheses regarding the evolution, domestication and breeding of guinea yams.
Myocardium tracking via matching distributions.
Ben Ayed, Ismail; Li, Shuo; Ross, Ian; Islam, Ali
2009-01-01
The goal of this study is to investigate automatic myocardium tracking in cardiac Magnetic Resonance (MR) sequences using global distribution matching via level-set curve evolution. Rather than relying on the pixelwise information as in existing approaches, distribution matching compares intensity distributions, and consequently, is well-suited to the myocardium tracking problem. Starting from a manual segmentation of the first frame, two curves are evolved in order to recover the endocardium (inner myocardium boundary) and the epicardium (outer myocardium boundary) in all the frames. For each curve, the evolution equation is sought following the maximization of a functional containing two terms: (1) a distribution matching term measuring the similarity between the non-parametric intensity distributions sampled from inside and outside the curve to the model distributions of the corresponding regions estimated from the previous frame; (2) a gradient term for smoothing the curve and biasing it toward high gradient of intensity. The Bhattacharyya coefficient is used as a similarity measure between distributions. The functional maximization is obtained by the Euler-Lagrange ascent equation of curve evolution, and efficiently implemented via level-set. The performance of the proposed distribution matching was quantitatively evaluated by comparisons with independent manual segmentations approved by an experienced cardiologist. The method was applied to ten 2D mid-cavity MR sequences corresponding to ten different subjects. Although neither shape prior knowledge nor curve coupling were used, quantitative evaluation demonstrated that the results were consistent with manual segmentations. The proposed method compares well with existing methods. The algorithm also yields a satisfying reproducibility. Distribution matching leads to a myocardium tracking which is more flexible and applicable than existing methods because the algorithm uses only the current data, i.e., does not require a training, and consequently, the solution is not bounded to some shape/intensity prior information learned from of a finite training set.
Between “design” and “bricolage”: Genetic networks, levels of selection, and adaptive evolution
Wilkins, Adam S.
2007-01-01
The extent to which “developmental constraints” in complex organisms restrict evolutionary directions remains contentious. Yet, other forms of internal constraint, which have received less attention, may also exist. It will be argued here that a set of partial constraints below the level of phenotypes, those involving genes and molecules, influences and channels the set of possible evolutionary trajectories. At the top-most organizational level there are the genetic network modules, whose operations directly underlie complex morphological traits. The properties of these network modules, however, have themselves been set by the evolutionary history of the component genes and their interactions. Characterization of the components, structures, and operational dynamics of specific genetic networks should lead to a better understanding not only of the morphological traits they underlie but of the biases that influence the directions of evolutionary change. Furthermore, such knowledge may permit assessment of the relative degrees of probability of short evolutionary trajectories, those on the microevolutionary scale. In effect, a “network perspective” may help transform evolutionary biology into a scientific enterprise with greater predictive capability than it has hitherto possessed. PMID:17494754
Between "design" and "bricolage": genetic networks, levels of selection, and adaptive evolution.
Wilkins, Adam S
2007-05-15
The extent to which "developmental constraints" in complex organisms restrict evolutionary directions remains contentious. Yet, other forms of internal constraint, which have received less attention, may also exist. It will be argued here that a set of partial constraints below the level of phenotypes, those involving genes and molecules, influences and channels the set of possible evolutionary trajectories. At the top-most organizational level there are the genetic network modules, whose operations directly underlie complex morphological traits. The properties of these network modules, however, have themselves been set by the evolutionary history of the component genes and their interactions. Characterization of the components, structures, and operational dynamics of specific genetic networks should lead to a better understanding not only of the morphological traits they underlie but of the biases that influence the directions of evolutionary change. Furthermore, such knowledge may permit assessment of the relative degrees of probability of short evolutionary trajectories, those on the microevolutionary scale. In effect, a "network perspective" may help transform evolutionary biology into a scientific enterprise with greater predictive capability than it has hitherto possessed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, L.H., E-mail: Luhui.Han@tum.de; Hu, X.Y., E-mail: Xiangyu.Hu@tum.de; Adams, N.A., E-mail: Nikolaus.Adams@tum.de
In this paper we present a scale separation approach for multi-scale modeling of free-surface and two-phase flows with complex interface evolution. By performing a stimulus-response operation on the level-set function representing the interface, separation of resolvable and non-resolvable interface scales is achieved efficiently. Uniform positive and negative shifts of the level-set function are used to determine non-resolvable interface structures. Non-resolved interface structures are separated from the resolved ones and can be treated by a mixing model or a Lagrangian-particle model in order to preserve mass. Resolved interface structures are treated by the conservative sharp-interface model. Since the proposed scale separationmore » approach does not rely on topological information, unlike in previous work, it can be implemented in a straightforward fashion into a given level set based interface model. A number of two- and three-dimensional numerical tests demonstrate that the proposed method is able to cope with complex interface variations accurately and significantly increases robustness against underresolved interface structures.« less
Evolution of solid rocket booster component testing
NASA Technical Reports Server (NTRS)
Lessey, Joseph A.
1989-01-01
The evolution of one of the new generation of test sets developed for the Solid Rocket Booster of the U.S. Space Transportation System. Requirements leading to factory checkout of the test set are explained, including the evolution from manual to semiautomated toward fully automated status. Individual improvements in the built-in test equipment, self-calibration, and software flexibility are addressed, and the insertion of fault detection to improve reliability is discussed.
Sharing Gravity's Microscope: Star Formation and Galaxy Evolution for Underserved Arizonans
NASA Astrophysics Data System (ADS)
Knierman, Karen A.; Monkiewicz, Jacqueline A.; Bowman, Catherine DD; Taylor, Wendy
2016-01-01
Learning science in a community is important for children of all levels and especially for many underserved populations. This project combines HST research of galaxy evolution using gravitationally lensed galaxies with hands-on activities and the Starlab portable planetarium to link astronomy with families, teachers, and students. To explore galaxy evolution, new activities were developed and evaluated using novel evaluation techniques. A new set of galaxy classification cards enable inquiry-based learning about galaxy ages, evolution, and gravitational lensing. Activities using new cylinder overlays for the Starlab transparent cylinder will enable the detailed examination of star formation and galaxy evolution as seen from the viewpoint inside of different types of galaxies. These activities were presented in several Arizona venues that enable family and student participation including ASU Earth and Space Open House, Arizona Museum of Natural History Homeschooling Events, on the Salt River Pima-Maricopa Indian Community, and inner city Phoenix schools serving mainly Hispanic populations. Additional events targeted underserved families at the Phoenix Zoo, in Navajo County, and for the Pascua Yaqui Tribe. After evaluation, the activities and materials will also be shared with local teachers and nationally.
Hatton, Leslie; Warr, Gregory
2015-01-01
That the physicochemical properties of amino acids constrain the structure, function and evolution of proteins is not in doubt. However, principles derived from information theory may also set bounds on the structure (and thus also the evolution) of proteins. Here we analyze the global properties of the full set of proteins in release 13-11 of the SwissProt database, showing by experimental test of predictions from information theory that their collective structure exhibits properties that are consistent with their being guided by a conservation principle. This principle (Conservation of Information) defines the global properties of systems composed of discrete components each of which is in turn assembled from discrete smaller pieces. In the system of proteins, each protein is a component, and each protein is assembled from amino acids. Central to this principle is the inter-relationship of the unique amino acid count and total length of a protein and its implications for both average protein length and occurrence of proteins with specific unique amino acid counts. The unique amino acid count is simply the number of distinct amino acids (including those that are post-translationally modified) that occur in a protein, and is independent of the number of times that the particular amino acid occurs in the sequence. Conservation of Information does not operate at the local level (it is independent of the physicochemical properties of the amino acids) where the influences of natural selection are manifest in the variety of protein structure and function that is well understood. Rather, this analysis implies that Conservation of Information would define the global bounds within which the whole system of proteins is constrained; thus it appears to be acting to constrain evolution at a level different from natural selection, a conclusion that appears counter-intuitive but is supported by the studies described herein.
NASA Astrophysics Data System (ADS)
Sampath, D. M. R.; Boski, T.
2018-05-01
Large-scale geomorphological evolution of an estuarine system was simulated by means of a hybrid estuarine sedimentation model (HESM) applied to the Guadiana Estuary, in Southwest Iberia. The model simulates the decadal-scale morphodynamics of the system under environmental forcing, using a set of analytical solutions to simplified equations of tidal wave propagation in shallow waters, constrained by empirical knowledge of estuarine sedimentary dynamics and topography. The key controlling parameters of the model are bed friction (f), current velocity power of the erosion rate function (N), and sea-level rise rate. An assessment of sensitivity of the simulated sediment surface elevation (SSE) change to these controlling parameters was performed. The model predicted the spatial differentiation of accretion and erosion, the latter especially marked in the mudflats within mean sea level and low tide level and accretion was mainly in a subtidal channel. The average SSE change mutually depended on both the friction coefficient and power of the current velocity. Analysis of the average annual SSE change suggests that the state of intertidal and subtidal compartments of the estuarine system vary differently according to the dominant processes (erosion and accretion). As the Guadiana estuarine system shows dominant erosional behaviour in the context of sea-level rise and sediment supply reduction after the closure of the Alqueva Dam, the most plausible sets of parameter values for the Guadiana Estuary are N = 1.8 and f = 0.8f0, or N = 2 and f = f0, where f0 is the empirically estimated value. For these sets of parameter values, the relative errors in SSE change did not exceed ±20% in 73% of simulation cells in the studied area. Such a limit of accuracy can be acceptable for an idealized modelling of coastal evolution in response to uncertain sea-level rise scenarios in the context of reduced sediment supply due to flow regulation. Therefore, the idealized but cost-effective HESM model will be suitable for estimating the morphological impacts of sea-level rise on estuarine systems on a decadal timescale.
Acetabular rim and surface segmentation for hip surgery planning and dysplasia evaluation
NASA Astrophysics Data System (ADS)
Tan, Sovira; Yao, Jianhua; Yao, Lawrence; Summers, Ronald M.; Ward, Michael M.
2008-03-01
Knowledge of the acetabular rim and surface can be invaluable for hip surgery planning and dysplasia evaluation. The acetabular rim can also be used as a landmark for registration purposes. At the present time acetabular features are mostly extracted manually at great cost of time and human labor. Using a recent level set algorithm that can evolve on the surface of a 3D object represented by a triangular mesh we automatically extracted rims and surfaces of acetabulae. The level set is guided by curvature features on the mesh. It can segment portions of a surface that are bounded by a line of extremal curvature (ridgeline or crestline). The rim of the acetabulum is such an extremal curvature line. Our material consists of eight hemi-pelvis surfaces. The algorithm is initiated by putting a small circle (level set seed) at the center of the acetabular surface. Because this surface distinctively has the form of a cup we were able to use the Shape Index feature to automatically extract an approximate center. The circle then expands and deforms so as to take the shape of the acetabular rim. The results were visually inspected. Only minor errors were detected. The algorithm also proved to be robust. Seed placement was satisfactory for the eight hemi-pelvis surfaces without changing any parameters. For the level set evolution we were able to use a single set of parameters for seven out of eight surfaces.
The Evolution of Consciousness in the Novel in English
NASA Astrophysics Data System (ADS)
Gojkovic, Zorica
This dissertation examines how the novel in English reflects the evolution of human consciousness. Characters in novels express a level of consciousness through their world view, which reflects the level of consciousness of the author and his/her period. Over time the world view evolves from a perception of physical reality as ultimate reality, to physical reality as illusion, in contrast to primary reality, which is spirit, or energy, or God, or the holistic frequency realm. Great mystics and sages all over the world, and throughout history, have had this understanding about the nature of reality. What is new is that different investigative currents are coming together and sharing this new vision of reality. The underlying unity, or enfolded order, is a broader realm where fragmentation is united by a deeper truth. This oneness is analogized to a hologram, where each part is in the whole and the whole in each part. The process of the evolution of consciousness in the novel is examined in three parts. In part one, Chapter One, connections are established between some of the pertinent developments in quantum physics, mysticism and Erich Neumann's theory of the evolution of consciousness. This information sets the stage for the exploration of the evolutionary process in the novel. Part two, chapters two to seven, explore various themes that demonstrate the evolutionary process in the novel. Novels that most effectively demonstrate the evolution are used. Part three, Chapter Eight, summarizes the evolutionary process and demonstrates the way in which wholeness is achieved from the initial separateness. Part three also explores some implications for the novel in light of this analysis.
The Influence of Polyploidy on the Evolution of Yeast Grown in a Sub-Optimal Carbon Source
Scott, Amber L.; Richmond, Phillip A.; Dowell, Robin D.; Selmecki, Anna M.
2017-01-01
Abstract Polyploidization events have occurred during the evolution of many fungi, plant, and animal species and are thought to contribute to speciation and tumorigenesis, however little is known about how ploidy level contributes to adaptation at the molecular level. Here we integrate whole genome sequencing, RNA expression analysis, and relative fitness of ∼100 evolved clones at three ploidy levels. Independent haploid, diploid, and tetraploid populations were grown in a low carbon environment for 250 generations. We demonstrate that the key adaptive mutation in the evolved clones is predicted by a gene expression signature of just five genes. All of the adaptive mutations identified encompass a narrow set of genes, however the tetraploid clones gain a broader spectrum of adaptive mutations than haploid or diploid clones. While many of the adaptive mutations occur in genes that encode proteins with known roles in glucose sensing and transport, we discover mutations in genes with no canonical role in carbon utilization (IPT1 and MOT3), as well as identify novel dominant mutations in glucose signal transducers thought to only accumulate recessive mutations in carbon limited environments (MTH1 and RGT1). We conclude that polyploid cells explore more genotypic and phenotypic space than lower ploidy cells. Our study provides strong evidence for the beneficial role of polyploidization events that occur during the evolution of many species and during tumorigenesis. PMID:28957510
A methodology for modeling barrier island storm-impact scenarios
Mickey, Rangley C.; Long, Joseph W.; Plant, Nathaniel G.; Thompson, David M.; Dalyander, P. Soupy
2017-02-16
A methodology for developing a representative set of storm scenarios based on historical wave buoy and tide gauge data for a region at the Chandeleur Islands, Louisiana, was developed by the U.S. Geological Survey. The total water level was calculated for a 10-year period and analyzed against existing topographic data to identify when storm-induced wave action would affect island morphology. These events were categorized on the basis of the threshold of total water level and duration to create a set of storm scenarios that were simulated, using a high-fidelity, process-based, morphologic evolution model, on an idealized digital elevation model of the Chandeleur Islands. The simulated morphological changes resulting from these scenarios provide a range of impacts that can help coastal managers determine resiliency of proposed or existing coastal structures and identify vulnerable areas within those structures.
Preferential attachment in multiple trade networks
NASA Astrophysics Data System (ADS)
Foschi, Rachele; Riccaboni, Massimo; Schiavo, Stefano
2014-08-01
In this paper we develop a model for the evolution of multiple networks which is able to replicate the concentrated and sparse nature of world trade data. Our model is an extension of the preferential attachment growth model to the case of multiple networks. Countries trade a variety of goods of different complexity. Every country progressively evolves from trading less sophisticated to high-tech goods. The probabilities of capturing more trade opportunities at a given level of complexity and of starting to trade more complex goods are both proportional to the number of existing trade links. We provide a set of theoretical predictions and simulative results. A calibration exercise shows that our model replicates the same concentration level of world trade as well as the sparsity pattern of the trade matrix. We also discuss a set of numerical solutions to deal with large multiple networks.
Accuracy in strategy imitations promotes the evolution of fairness in the spatial ultimatum game
NASA Astrophysics Data System (ADS)
Szolnoki, Attila; Perc, Matjaž; Szabó, György
2012-10-01
Spatial structure has a profound effect on the outcome of evolutionary games. In the ultimatum game, it leads to the dominance of much fairer players than those predicted to evolve in well-mixed settings. Here we show that spatiality leads to fair ultimatums only if the intervals from which the players are able to choose how much to offer and how little to accept are sufficiently fine-grained. Small sets of discrete strategies lead to the stable coexistence of the two most rational strategies in the set, while larger sets lead to the dominance of a single yet not necessarily the fairest strategy. The fairest outcome is obtained for the most accurate strategy imitation, that is in the limit of a continuous strategy set. Having a multitude of choices is thus crucial for the evolution of fairness, but not necessary for the evolution of empathy.
Alvarez-Ponce, David; Feyertag, Felix; Chakraborty, Sandip
2017-06-01
The proteins of any organism evolve at disparate rates. A long list of factors affecting rates of protein evolution have been identified. However, the relative importance of each factor in determining rates of protein evolution remains unresolved. The prevailing view is that evolutionary rates are dominantly determined by gene expression, and that other factors such as network centrality have only a marginal effect, if any. However, this view is largely based on analyses in yeasts, and accurately measuring the importance of the determinants of rates of protein evolution is complicated by the fact that the different factors are often correlated with each other, and by the relatively poor quality of available functional genomics data sets. Here, we use correlation, partial correlation and principal component regression analyses to measure the contributions of several factors to the variability of the rates of evolution of human proteins. For this purpose, we analyzed the entire human protein-protein interaction data set and the human signal transduction network-a network data set of exceptionally high quality, obtained by manual curation, which is expected to be virtually free from false positives. In contrast with the prevailing view, we observe that network centrality (measured as the number of physical and nonphysical interactions, betweenness, and closeness) has a considerable impact on rates of protein evolution. Surprisingly, the impact of centrality on rates of protein evolution seems to be comparable, or even superior according to some analyses, to that of gene expression. Our observations seem to be independent of potentially confounding factors and from the limitations (biases and errors) of interactomic data sets. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Genes involved in convergent evolution of eusociality in bees
Woodard, S. Hollis; Fischman, Brielle J.; Venkat, Aarti; Hudson, Matt E.; Varala, Kranthi; Cameron, Sydney A.; Clark, Andrew G.; Robinson, Gene E.
2011-01-01
Eusociality has arisen independently at least 11 times in insects. Despite this convergence, there are striking differences among eusocial lifestyles, ranging from species living in small colonies with overt conflict over reproduction to species in which colonies contain hundreds of thousands of highly specialized sterile workers produced by one or a few queens. Although the evolution of eusociality has been intensively studied, the genetic changes involved in the evolution of eusociality are relatively unknown. We examined patterns of molecular evolution across three independent origins of eusociality by sequencing transcriptomes of nine socially diverse bee species and combining these data with genome sequence from the honey bee Apis mellifera to generate orthologous sequence alignments for 3,647 genes. We found a shared set of 212 genes with a molecular signature of accelerated evolution across all eusocial lineages studied, as well as unique sets of 173 and 218 genes with a signature of accelerated evolution specific to either highly or primitively eusocial lineages, respectively. These results demonstrate that convergent evolution can involve a mosaic pattern of molecular changes in both shared and lineage-specific sets of genes. Genes involved in signal transduction, gland development, and carbohydrate metabolism are among the most prominent rapidly evolving genes in eusocial lineages. These findings provide a starting point for linking specific genetic changes to the evolution of eusociality. PMID:21482769
Cis-regulatory Elements and Human Evolution
Siepel, Adam
2014-01-01
Modification of gene regulation has long been considered an important force in human evolution, particularly through changes to cis-regulatory elements (CREs) that function in transcriptional regulation. For decades, however, the study of cis-regulatory evolution was severely limited by the available data. New data sets describing the locations of CREs and genetic variation within and between species have now made it possible to study CRE evolution much more directly on a genome-wide scale. Here, we review recent research on the evolution of CREs in humans based on large-scale genomic data sets. We consider inferences based on primate divergence, human polymorphism, and combinations of divergence and polymorphism. We then consider “new frontiers” in this field stemming from recent research on transcriptional regulation. PMID:25218861
Optimization of CW Fiber Lasers With Strong Nonlinear Cavity Dynamics
NASA Astrophysics Data System (ADS)
Shtyrina, O. V.; Efremov, S. A.; Yarutkina, I. A.; Skidin, A. S.; Fedoruk, M. P.
2018-04-01
In present work the equation for the saturated gain is derived from one-level gain equations describing the energy evolution inside the laser cavity. It is shown how to derive the parameters of the mathematical model from the experimental results. The numerically-estimated energy and spectrum of the signal are in good agreement with the experiment. Also, the optimization of the output energy is performed for a given set of model parameters.
Level set method for image segmentation based on moment competition
NASA Astrophysics Data System (ADS)
Min, Hai; Wang, Xiao-Feng; Huang, De-Shuang; Jin, Jing; Wang, Hong-Zhi; Li, Hai
2015-05-01
We propose a level set method for image segmentation which introduces the moment competition and weakly supervised information into the energy functional construction. Different from the region-based level set methods which use force competition, the moment competition is adopted to drive the contour evolution. Here, a so-called three-point labeling scheme is proposed to manually label three independent points (weakly supervised information) on the image. Then the intensity differences between the three points and the unlabeled pixels are used to construct the force arms for each image pixel. The corresponding force is generated from the global statistical information of a region-based method and weighted by the force arm. As a result, the moment can be constructed and incorporated into the energy functional to drive the evolving contour to approach the object boundary. In our method, the force arm can take full advantage of the three-point labeling scheme to constrain the moment competition. Additionally, the global statistical information and weakly supervised information are successfully integrated, which makes the proposed method more robust than traditional methods for initial contour placement and parameter setting. Experimental results with performance analysis also show the superiority of the proposed method on segmenting different types of complicated images, such as noisy images, three-phase images, images with intensity inhomogeneity, and texture images.
Fast and robust brain tumor segmentation using level set method with multiple image information.
Lok, Ka Hei; Shi, Lin; Zhu, Xianlun; Wang, Defeng
2017-01-01
Brain tumor segmentation is a challenging task for its variation in intensity. The phenomenon is caused by the inhomogeneous content of tumor tissue and the choice of imaging modality. In 2010 Zhang developed the Selective Binary Gaussian Filtering Regularizing Level Set (SBGFRLS) model that combined the merits of edge-based and region-based segmentation. To improve the SBGFRLS method by modifying the singed pressure force (SPF) term with multiple image information and demonstrate effectiveness of proposed method on clinical images. In original SBGFRLS model, the contour evolution direction mainly depends on the SPF. By introducing a directional term in SPF, the metric could control the evolution direction. The SPF is altered by statistic values enclosed by the contour. This concept can be extended to jointly incorporate multiple image information. The new SPF term is expected to bring a solution for blur edge problem in brain tumor segmentation. The proposed method is validated with clinical images including pre- and post-contrast magnetic resonance images. The accuracy and robustness is compared with sensitivity, specificity, DICE similarity coefficient and Jaccard similarity index. Experimental results show improvement, in particular the increase of sensitivity at the same specificity, in segmenting all types of tumors except for the diffused tumor. The novel brain tumor segmentation method is clinical-oriented with fast, robust and accurate implementation and a minimal user interaction. The method effectively segmented homogeneously enhanced, non-enhanced, heterogeneously-enhanced, and ring-enhanced tumor under MR imaging. Though the method is limited by identifying edema and diffuse tumor, several possible solutions are suggested to turn the curve evolution into a fully functional clinical diagnosis tool.
Vertical profile of fog microphysics : a case study
NASA Astrophysics Data System (ADS)
Burnet, Frédéric; Brilouet, Pierre-Etienne; Mazoyer, Marie; Bourrianne, Thierry; Etcheberry, Jean-Michel; Gaillard, Brigitte; Legain, Dominique; Tzanos, Diane; Barrié, Joel; Barrau, Sébastien; Defoy, Stephan
2016-04-01
The occurrence and development of fogs result from the non-linear interaction of competing radiative, thermodynamic, microphysical and dynamical processes and the forecasting of their life cycle still remains a challenging issue. Several field campaigns have been carried out at the SIRTA observatory in the Paris suburb area (France). These experiments have shown that fog events exhibit large differences of the microphysical properties and various evolutions during their life cycle. To better understand relationships between the different processes and to validate numerical simulations it is necessary however to document the vertical profile of the fog microphysics. A CDP (Cloud Droplet Spectrometer) from DMT (Droplet Measurement Technology, Boulder, CO) has been modified to allow measurements of the droplet size distribution in fog layers with a tethered balloon. This instrumental set-up has been used during a field campaign during the winter 2013-214 in the Landes area in the South West of France. To validate the vertical profiles provided by the modified CDP, a mast was equipped with microphysical instruments at 2 altitude levels with an another CDP at 24 m and a Fog Monitor FM100 at 42 m. The instrumental set-up deployed during this campaign is presented. Data collected during a fog event that occurred during the night of 5-6 March 2014 are analysed. We show that microphysical properties such as droplet number concentration, LWC and mean droplet size, exhibit different time evolution during the fog life cycle depending on the altitude level. Droplet size distribution measurements are also investigated. They reveal sharp variations along the vertical close to the top of the fog layer. In addition it is shown that the shape of the size distributions at the top follows a time evolution typical of a quasi-adiabatic droplet growth.
Rubin, Elad B; Shemesh, Yair; Cohen, Mira; Elgavish, Sharona; Robertson, Hugh M; Bloch, Guy
2006-11-01
The circadian clock of the honey bee is implicated in ecologically relevant complex behaviors. These include time sensing, time-compensated sun-compass navigation, and social behaviors such as coordination of activity, dance language communication, and division of labor. The molecular underpinnings of the bee circadian clock are largely unknown. We show that clock gene structure and expression pattern in the honey bee are more similar to the mouse than to Drosophila. The honey bee genome does not encode an ortholog of Drosophila Timeless (Tim1), has only the mammalian type Cryptochrome (Cry-m), and has a single ortholog for each of the other canonical "clock genes." In foragers that typically have strong circadian rhythms, brain mRNA levels of amCry, but not amTim as in Drosophila, consistently oscillate with strong amplitude and a phase similar to amPeriod (amPer) under both light-dark and constant darkness illumination regimes. In contrast to Drosophila, the honey bee amCYC protein contains a transactivation domain and its brain transcript levels oscillate at virtually an anti-phase to amPer, as it does in the mouse. Phylogenetic analyses indicate that the basal insect lineage had both the mammalian and Drosophila types of Cry and Tim. Our results suggest that during evolution, Drosophila diverged from the ancestral insect clock and specialized in using a set of clock gene orthologs that was lost by both mammals and bees, which in turn converged and specialized in the other set. These findings illustrate a previously unappreciated diversity of insect clockwork and raise critical questions concerning the evolution and functional significance of species-specific variation in molecular clockwork.
Dos Reis, Julio Cesar; Dinh, Duy; Da Silveira, Marcos; Pruski, Cédric; Reynaud-Delaître, Chantal
2015-03-01
Mappings established between life science ontologies require significant efforts to maintain them up to date due to the size and frequent evolution of these ontologies. In consequence, automatic methods for applying modifications on mappings are highly demanded. The accuracy of such methods relies on the available description about the evolution of ontologies, especially regarding concepts involved in mappings. However, from one ontology version to another, a further understanding of ontology changes relevant for supporting mapping adaptation is typically lacking. This research work defines a set of change patterns at the level of concept attributes, and proposes original methods to automatically recognize instances of these patterns based on the similarity between attributes denoting the evolving concepts. This investigation evaluates the benefits of the proposed methods and the influence of the recognized change patterns to select the strategies for mapping adaptation. The summary of the findings is as follows: (1) the Precision (>60%) and Recall (>35%) achieved by comparing manually identified change patterns with the automatic ones; (2) a set of potential impact of recognized change patterns on the way mappings is adapted. We found that the detected correlations cover ∼66% of the mapping adaptation actions with a positive impact; and (3) the influence of the similarity coefficient calculated between concept attributes on the performance of the recognition algorithms. The experimental evaluations conducted with real life science ontologies showed the effectiveness of our approach to accurately characterize ontology evolution at the level of concept attributes. This investigation confirmed the relevance of the proposed change patterns to support decisions on mapping adaptation. Copyright © 2014 Elsevier B.V. All rights reserved.
King, Benedict; Qiao, Tuo; Lee, Michael S Y; Zhu, Min; Long, John A
2017-07-01
The phylogeny of early gnathostomes provides an important framework for understanding one of the most significant evolutionary events, the origin and diversification of jawed vertebrates. A series of recent cladistic analyses have suggested that the placoderms, an extinct group of armoured fish, form a paraphyletic group basal to all other jawed vertebrates. We revised and expanded this morphological data set, most notably by sampling autapomorphies in a similar way to parsimony-informative traits, thus ensuring this data (unlike most existing morphological data sets) satisfied an important assumption of Bayesian tip-dated morphological clock approaches. We also found problems with characters supporting placoderm paraphyly, including character correlation and incorrect codings. Analysis of this data set reveals that paraphyly and monophyly of core placoderms (excluding maxillate forms) are essentially equally parsimonious. The two alternative topologies have different root positions for the jawed vertebrates but are otherwise similar. However, analysis using tip-dated clock methods reveals strong support for placoderm monophyly, due to this analysis favoring trees with more balanced rates of evolution. Furthermore, enforcing placoderm paraphyly results in higher levels and unusual patterns of rate heterogeneity among branches, similar to that generated from simulated trees reconstructed with incorrect root positions. These simulations also show that Bayesian tip-dated clock methods outperform parsimony when the outgroup is largely uninformative (e.g., due to inapplicable characters), as might be the case here. The analysis also reveals that gnathostomes underwent a rapid burst of evolution during the Silurian period which declined during the Early Devonian. This rapid evolution during a period with few articulated fossils might partly explain the difficulty in ascertaining the root position of jawed vertebrates. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Stolper, D.; List, J.H.; Thieler, E.R.
2005-01-01
A new morphological-behaviour model is used to simulate evolution of coastal morphology associated with cross-shore translations of the shoreface, barrier, and estuary. The model encapsulates qualitative principles drawn from established geological concepts that are parameterized to provide quantitative predictions of morphological change on geological time scales (order 10 3 years), as well as shorter time scales applicable for long-term coastal management (order 101 to 102 years). Changes in sea level, and sediment volume within the shoreface, barrier, and estuary, drive the model behaviour. Further parameters, defining substrate erodibility, sediment composition, and time-dependent shoreface response, constrain the evolution of the shoreface towards an equilibrium profile. Results from numerical experiments are presented for the low-gradient autochthonous setting of North Carolina and the steep allochthonous setting of the Washington shelf. Simulations in the Currituck region of North Carolina examined the influence of sediment supply, substrate composition, and substrate erodibility on barrier transgression. Results demonstrate that the presence of a lithified substrate reduces the rate of barrier transgression compared to scenarios where an erodible, sand-rich substrate exists. Simulations of the Washington coast, 20 km north of the Columbia River, confirmed that the model can reproduce complex stratigraphy involving regressive and transgressive phases of coastal evolution. Results suggest that the first major addition of sediment to the shelf occurred around 12 900 years ago and resulted from the rapid addition of sediment volume from the Columbia River attributed to the Missoula floods. This was followed by a period where little or no sediment was added (12 400-9100 BP) and a third period when most sediment was added to the shelf (9100 BP to present) from the Columbia River. Comparing results from each setting demonstrates an indirect control that substrate slope has on shoreface transgression rates. Shoreface transgression is shown to be sensitive to the rate of estuarine sedimentation, with the sensitivity increasing as substrate slope decreases.
Koura, Kobto G; Ouédraogo, Smaïla; Cottrell, Gilles; Le Port, Agnès; Massougbodji, Achille; Garcia, André
2012-01-01
Anaemia during pregnancy and at delivery is an important public health problem in low- and middle-income countries. Its association with the children's haemoglobin level over time remains unclear. Our goals were to identify distinct haemoglobin level trajectories using latent class analysis and to assess the association between these trajectories and maternal anaemia and other risk factors. A prospective study of children from birth to 18 months of life was conducted in a rural setting in Tori-Bossito, Benin. The main outcome measure was the haemoglobin levels repeatedly measured at 3, 6, 9, 12, 15 and 18 months. Variables were collected from the mothers at delivery and from their children at birth and during the follow-up. The analyses were performed by means of Latent Class Analysis which has never been used for this kind of data. All the analyses were performed with Stata software, version 11.0, using the generalized linear latent and mixed model (GLLAMM) framework. We showed that 33.7% of children followed a low haemoglobin trajectory and 66.3% a high trajectory during the first 18 months of life. Newborn anaemia, placental malaria, malaria attack, sickle cell trait and male gender were significantly associated with a lower children's haemoglobin level over time, whereas maternal age, children living in a polygamous family and with good feeding practices had a higher Hb level in the first18 months. We also showed that maternal anaemia was a predictor for 'low haemoglobin level trajectory' group membership but have no significant effect on children haemoglobin level over time. Latent Class Analyses framework seems well suited to analyse longitudinal data under the hypothesis that different subpopulations of subjects are present in the data, each with its own set of parameters, with distinctive evolutions that themselves may reflect distinctive aetiologies.
Koura, Kobto G.; Ouédraogo, Smaïla; Cottrell, Gilles; Le Port, Agnès; Massougbodji, Achille; Garcia, André
2012-01-01
Background Anaemia during pregnancy and at delivery is an important public health problem in low- and middle-income countries. Its association with the children’s haemoglobin level over time remains unclear. Our goals were to identify distinct haemoglobin level trajectories using latent class analysis and to assess the association between these trajectories and maternal anaemia and other risk factors. Method A prospective study of children from birth to 18 months of life was conducted in a rural setting in Tori-Bossito, Benin. The main outcome measure was the haemoglobin levels repeatedly measured at 3, 6, 9, 12, 15 and 18 months. Variables were collected from the mothers at delivery and from their children at birth and during the follow-up. The analyses were performed by means of Latent Class Analysis which has never been used for this kind of data. All the analyses were performed with Stata software, version 11.0, using the generalized linear latent and mixed model (GLLAMM) framework. Results We showed that 33.7% of children followed a low haemoglobin trajectory and 66.3% a high trajectory during the first 18 months of life. Newborn anaemia, placental malaria, malaria attack, sickle cell trait and male gender were significantly associated with a lower children’s haemoglobin level over time, whereas maternal age, children living in a polygamous family and with good feeding practices had a higher Hb level in the first18 months. We also showed that maternal anaemia was a predictor for ‘low haemoglobin level trajectory’ group membership but have no significant effect on children haemoglobin level over time. Conclusion Latent Class Analyses framework seems well suited to analyse longitudinal data under the hypothesis that different subpopulations of subjects are present in the data, each with its own set of parameters, with distinctive evolutions that themselves may reflect distinctive aetiologies. PMID:23185556
Cooperation and the evolution of hunter-gatherer storytelling.
Smith, Daniel; Schlaepfer, Philip; Major, Katie; Dyble, Mark; Page, Abigail E; Thompson, James; Chaudhary, Nikhil; Salali, Gul Deniz; Mace, Ruth; Astete, Leonora; Ngales, Marilyn; Vinicius, Lucio; Migliano, Andrea Bamberg
2017-12-05
Storytelling is a human universal. From gathering around the camp-fire telling tales of ancestors to watching the latest television box-set, humans are inveterate producers and consumers of stories. Despite its ubiquity, little attention has been given to understanding the function and evolution of storytelling. Here we explore the impact of storytelling on hunter-gatherer cooperative behaviour and the individual-level fitness benefits to being a skilled storyteller. Stories told by the Agta, a Filipino hunter-gatherer population, convey messages relevant to coordinating behaviour in a foraging ecology, such as cooperation, sex equality and egalitarianism. These themes are present in narratives from other foraging societies. We also show that the presence of good storytellers is associated with increased cooperation. In return, skilled storytellers are preferred social partners and have greater reproductive success, providing a pathway by which group-beneficial behaviours, such as storytelling, can evolve via individual-level selection. We conclude that one of the adaptive functions of storytelling among hunter gatherers may be to organise cooperation.
McCloskey, Douglas; Xu, Sibei; Sandberg, Troy E; Brunk, Elizabeth; Hefner, Ying; Szubin, Richard; Feist, Adam M; Palsson, Bernhard O
2018-06-15
Aromatic metabolites provide the backbone for numerous industrial and pharmaceutical compounds of high value. The Phosphotransferase System (PTS) is common to many bacteria, and is the primary mechanism for glucose uptake by Escherichia coli. The PTS was removed to conserve phosphoenolpyruvate (pep), which is a precursor for aromatic metabolites and consumed by the PTS, for aromatic metabolite production. Replicate adaptive laboratory evolution (ALE) of PTS and detailed omics data sets collected revealed that the PTS bridged the gap between respiration and fermentation, leading to distinct high fermentative and high respiratory rate phenotypes. It was also found that while all strains retained high levels of aromatic amino acid (AAA) biosynthetic precursors, only one replicate from the high glycolytic clade retained high levels of intracellular AAAs. The fast growth and high AAA precursor phenotypes could provide a starting host for cell factories targeting the overproduction aromatic metabolites. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
The importance of mechanisms for the evolution of cooperation
van den Berg, Pieter; Weissing, Franz J.
2015-01-01
Studies aimed at explaining the evolution of phenotypic traits have often solely focused on fitness considerations, ignoring underlying mechanisms. In recent years, there has been an increasing call for integrating mechanistic perspectives in evolutionary considerations, but it is not clear whether and how mechanisms affect the course and outcome of evolution. To study this, we compare four mechanistic implementations of two well-studied models for the evolution of cooperation, the Iterated Prisoner's Dilemma (IPD) game and the Iterated Snowdrift (ISD) game. Behavioural strategies are either implemented by a 1 : 1 genotype–phenotype mapping or by a simple neural network. Moreover, we consider two different scenarios for the effect of mutations. The same set of strategies is feasible in all four implementations, but the probability that a given strategy arises owing to mutation is largely dependent on the behavioural and genetic architecture. Our individual-based simulations show that this has major implications for the evolutionary outcome. In the ISD, different evolutionarily stable strategies are predominant in the four implementations, while in the IPD each implementation creates a characteristic dynamical pattern. As a consequence, the evolved average level of cooperation is also strongly dependent on the underlying mechanism. We argue that our findings are of general relevance for the evolution of social behaviour, pleading for the integration of a mechanistic perspective in models of social evolution. PMID:26246554
Li, Yang I.; Kong, Lesheng; Ponting, Chris P.; Haerty, Wilfried
2013-01-01
Sequencing of vertebrate genomes permits changes in distinct protein families, including gene gains and losses, to be ascribed to lineage-specific phenotypes. A prominent example of this is the large-scale duplication of beta-keratin genes in the ancestors of birds, which was crucial to the subsequent evolution of their beaks, claws, and feathers. Evidence suggests that the shell of Pseudomys nelsoni contains at least 16 beta-keratins proteins, but it is unknown whether this is a complete set and whether their corresponding genes are orthologous to avian beak, claw, or feather beta-keratin genes. To address these issues and to better understand the evolution of the turtle shell at a molecular level, we surveyed the diversity of beta-keratin genes from the genome assemblies of three turtles, Chrysemys picta, Pelodiscus sinensis, and Chelonia mydas, which together represent over 160 Myr of chelonian evolution. For these three turtles, we found 200 beta-keratins, which indicate that, as for birds, a large expansion of beta-keratin genes in turtles occurred concomitantly with the evolution of a unique phenotype, namely, their plastron and carapace. Phylogenetic reconstruction of beta-keratin gene evolution suggests that separate waves of gene duplication within a single genomic location gave rise to scales, claws, and feathers in birds, and independently the scutes of the shell in turtles. PMID:23576313
Strong Stellar-driven Outflows Shape the Evolution of Galaxies at Cosmic Dawn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fontanot, Fabio; De Lucia, Gabriella; Hirschmann, Michaela
We study galaxy mass assembly and cosmic star formation rate (SFR) at high redshift (z ≳ 4), by comparing data from multiwavelength surveys with predictions from the GAlaxy Evolution and Assembly (gaea) model. gaea implements a stellar feedback scheme partially based on cosmological hydrodynamical simulations, which features strong stellar-driven outflows and mass-dependent timescales for the re-accretion of ejected gas. In previous work, we have shown that this scheme is able to correctly reproduce the evolution of the galaxy stellar mass function (GSMF) up to z ∼ 3. We contrast model predictions with both rest-frame ultraviolet (UV) and optical luminosity functionsmore » (LFs), which are mostly sensitive to the SFR and stellar mass, respectively. We show that gaea is able to reproduce the shape and redshift evolution of both sets of LFs. We study the impact of dust on the predicted LFs, and we find that the required level of dust attenuation is in qualitative agreement with recent estimates based on the UV continuum slope. The consistency between data and model predictions holds for the redshift evolution of the physical quantities well beyond the redshift range considered for the calibration of the original model. In particular, we show that gaea is able to recover the evolution of the GSMF up to z ∼ 7 and the cosmic SFR density up to z ∼ 10.« less
MEvoLib v1.0: the first molecular evolution library for Python.
Álvarez-Jarreta, Jorge; Ruiz-Pesini, Eduardo
2016-10-28
Molecular evolution studies involve many different hard computational problems solved, in most cases, with heuristic algorithms that provide a nearly optimal solution. Hence, diverse software tools exist for the different stages involved in a molecular evolution workflow. We present MEvoLib, the first molecular evolution library for Python, providing a framework to work with different tools and methods involved in the common tasks of molecular evolution workflows. In contrast with already existing bioinformatics libraries, MEvoLib is focused on the stages involved in molecular evolution studies, enclosing the set of tools with a common purpose in a single high-level interface with fast access to their frequent parameterizations. The gene clustering from partial or complete sequences has been improved with a new method that integrates accessible external information (e.g. GenBank's features data). Moreover, MEvoLib adjusts the fetching process from NCBI databases to optimize the download bandwidth usage. In addition, it has been implemented using parallelization techniques to cope with even large-case scenarios. MEvoLib is the first library for Python designed to facilitate molecular evolution researches both for expert and novel users. Its unique interface for each common task comprises several tools with their most used parameterizations. It has also included a method to take advantage of biological knowledge to improve the gene partition of sequence datasets. Additionally, its implementation incorporates parallelization techniques to enhance computational costs when handling very large input datasets.
VDT microplane model with anisotropic effectiveness and plasticity
NASA Astrophysics Data System (ADS)
Benelfellah, Abdelkibir; Gratton, Michel; Caliez, Michael; Frachon, Arnaud; Picart, Didier
2018-03-01
The opening-closing state of the microcracks is a kinematic phenomenon usually modeled using a set of damage effectiveness variables, which results in different elastic responses for the same damage level. In this work, the microplane model with volumetric, deviatoric and tangential decomposition denoted V-D-T is modified. The influence of the confining pressure is taken into account in the damage variables evolution laws. For a better understanding of the mechanisms introduced into the model, the damage rosettes are presented for a strain given level. The model is confirmed through comparisons of the simulations with the experimental results of monotonic, and cyclic tensile and compressive testing with different levels of confining pressure.
The genomic basis of adaptive evolution in threespine sticklebacks
Jones, Felicity C; Grabherr, Manfred G; Chan, Yingguang Frank; Russell, Pamela; Mauceli, Evan; Johnson, Jeremy; Swofford, Ross; Pirun, Mono; Zody, Michael C; White, Simon; Birney, Ewan; Searle, Stephen; Schmutz, Jeremy; Grimwood, Jane; Dickson, Mark C; Myers, Richard M; Miller, Craig T; Summers, Brian R; Knecht, Anne K; Brady, Shannon D; Zhang, Haili; Pollen, Alex A; Howes, Timothy; Amemiya, Chris; Lander, Eric S; Di Palma, Federica
2012-01-01
Summary Marine stickleback fish have colonized and adapted to innumerable streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of 20 additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine-freshwater divergence. Our results suggest that reuse of globally-shared standing genetic variation, including chromosomal inversions, plays an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine-freshwater evolution, with regulatory changes likely predominating in this classic example of repeated adaptive evolution in nature. PMID:22481358
The genomic basis of adaptive evolution in threespine sticklebacks.
Jones, Felicity C; Grabherr, Manfred G; Chan, Yingguang Frank; Russell, Pamela; Mauceli, Evan; Johnson, Jeremy; Swofford, Ross; Pirun, Mono; Zody, Michael C; White, Simon; Birney, Ewan; Searle, Stephen; Schmutz, Jeremy; Grimwood, Jane; Dickson, Mark C; Myers, Richard M; Miller, Craig T; Summers, Brian R; Knecht, Anne K; Brady, Shannon D; Zhang, Haili; Pollen, Alex A; Howes, Timothy; Amemiya, Chris; Baldwin, Jen; Bloom, Toby; Jaffe, David B; Nicol, Robert; Wilkinson, Jane; Lander, Eric S; Di Palma, Federica; Lindblad-Toh, Kerstin; Kingsley, David M
2012-04-04
Marine stickleback fish have colonized and adapted to thousands of streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high-quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of twenty additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine-freshwater divergence. Our results indicate that reuse of globally shared standing genetic variation, including chromosomal inversions, has an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine-freshwater evolution, but regulatory changes appear to predominate in this well known example of repeated adaptive evolution in nature.
The evolution of anti-social punishment in optional public goods games
Rand, David G.; Nowak, Martin A.
2011-01-01
Cooperation, where one individual incurs a cost to help another, is a fundamental building block of the natural world and of human society. It has been suggested that costly punishment can promote the evolution of cooperation, with the threat of punishment deterring free-riders. Recent experiments, however, have revealed the existence of ‘anti-social’ punishment, where non-cooperators punish cooperators. While various theoretical models find that punishment can promote the evolution of cooperation, these models a priori exclude the possibility of anti-social punishment. Here we extend the standard theory of optional public goods games to include the full set of punishment strategies. We find that punishment no longer increases cooperation, and that selection favors substantial levels of anti-social punishment for a wide range of parameters. Furthermore, we conduct behavioral experiments, which lead to results that are consistent with our model predictions. As opposed to an altruistic act that promotes cooperation, punishment is mostly a self-interested tool for protecting oneself against potential competitors. PMID:21847108
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Waas, Anthony M.; Bednarcyk, Brett A.; Collier, Craig S.
2012-01-01
A continuum-level, dual internal state variable, thermodynamically based, work potential model, Schapery Theory, is used capture the effects of two matrix damage mechanisms in a fiber-reinforced laminated composite: microdamage and transverse cracking. Matrix microdamage accrues primarily in the form of shear microcracks between the fibers of the composite. Whereas, larger transverse matrix cracks typically span the thickness of a lamina and run parallel to the fibers. Schapery Theory uses the energy potential required to advance structural changes, associated with the damage mechanisms, to govern damage growth through a set of internal state variables. These state variables are used to quantify the stiffness degradation resulting from damage growth. The transverse and shear stiffness of the lamina are related to the internal state variables through a set of measurable damage functions. Additionally, the damage variables for a given strain state can be calculated from a set of evolution equations. These evolution equations and damage functions are implemented into the finite element method and used to govern the constitutive response of the material points in the model. Additionally, an axial failure criterion is included in the model. The response of a center-notched, buffer strip-stiffened panel subjected to uniaxial tension is investigated and results are compared to experiment.
Scaling Relations for Intercalation Induced Damage in Electrodes
Chen, Chien-Fan; Barai, Pallab; Smith, Kandler; ...
2016-04-02
Mechanical degradation, owing to intercalation induced stress and microcrack formation, is a key contributor to the electrode performance decay in lithium-ion batteries (LIBs). The stress generation and formation of microcracks are caused by the solid state diffusion of lithium in the active particles. Here in this work, scaling relations are constructed for diffusion induced damage in intercalation electrodes based on an extensive set of numerical experiments with a particle-level description of microcrack formation under disparate operating and cycling conditions, such as temperature, particle size, C-rate, and drive cycle. The microcrack formation and evolution in active particles is simulated based onmore » a stochastic methodology. A reduced order scaling law is constructed based on an extensive set of data from the numerical experiments. The scaling relations include combinatorial constructs of concentration gradient, cumulative strain energy, and microcrack formation. Lastly, the reduced order relations are further employed to study the influence of mechanical degradation on cell performance and validated against the high order model for the case of damage evolution during variable current vehicle drive cycle profiles.« less
Evolution in students' understanding of thermal physics with increasing complexity
NASA Astrophysics Data System (ADS)
Langbeheim, Elon; Safran, Samuel A.; Livne, Shelly; Yerushalmi, Edit
2013-12-01
We analyze the development in students’ understanding of fundamental principles in the context of learning a current interdisciplinary research topic—soft matter—that was adapted to the level of high school students. The topic was introduced in a program for interested 11th grade high school students majoring in chemistry and/or physics, in an off-school setting. Soft matter was presented in a gradual increase in the degree of complexity of the phenomena as well as in the level of the quantitative analysis. We describe the evolution in students’ use of fundamental thermodynamics principles to reason about phase separation—a phenomenon that is ubiquitous in soft matter. In particular, we examine the impact of the use of free energy analysis, a common approach in soft matter, on the understanding of the fundamental principles of thermodynamics. The study used diagnostic questions and classroom observations to gauge the student’s learning. In order to gain insight on the aspects that shape the understanding of the basic principles, we focus on the responses and explanations of two case-study students who represent two trends of evolution in conceptual understanding in the group. We analyze changes in the two case studies’ management of conceptual resources used in their analysis of phase separation, and suggest how their prior knowledge and epistemological framing (a combination of their personal tendencies and their prior exposure to different learning styles) affect their conceptual evolution. Finally, we propose strategies to improve the instruction of these concepts.
Output-Sensitive Construction of Reeb Graphs.
Doraiswamy, H; Natarajan, V
2012-01-01
The Reeb graph of a scalar function represents the evolution of the topology of its level sets. This paper describes a near-optimal output-sensitive algorithm for computing the Reeb graph of scalar functions defined over manifolds or non-manifolds in any dimension. Key to the simplicity and efficiency of the algorithm is an alternate definition of the Reeb graph that considers equivalence classes of level sets instead of individual level sets. The algorithm works in two steps. The first step locates all critical points of the function in the domain. Critical points correspond to nodes in the Reeb graph. Arcs connecting the nodes are computed in the second step by a simple search procedure that works on a small subset of the domain that corresponds to a pair of critical points. The paper also describes a scheme for controlled simplification of the Reeb graph and two different graph layout schemes that help in the effective presentation of Reeb graphs for visual analysis of scalar fields. Finally, the Reeb graph is employed in four different applications-surface segmentation, spatially-aware transfer function design, visualization of interval volumes, and interactive exploration of time-varying data.
Coupled Harmonic Bases for Longitudinal Characterization of Brain Networks
Hwang, Seong Jae; Adluru, Nagesh; Collins, Maxwell D.; Ravi, Sathya N.; Bendlin, Barbara B.; Johnson, Sterling C.; Singh, Vikas
2016-01-01
There is a great deal of interest in using large scale brain imaging studies to understand how brain connectivity evolves over time for an individual and how it varies over different levels/quantiles of cognitive function. To do so, one typically performs so-called tractography procedures on diffusion MR brain images and derives measures of brain connectivity expressed as graphs. The nodes correspond to distinct brain regions and the edges encode the strength of the connection. The scientific interest is in characterizing the evolution of these graphs over time or from healthy individuals to diseased. We pose this important question in terms of the Laplacian of the connectivity graphs derived from various longitudinal or disease time points — quantifying its progression is then expressed in terms of coupling the harmonic bases of a full set of Laplacians. We derive a coupled system of generalized eigenvalue problems (and corresponding numerical optimization schemes) whose solution helps characterize the full life cycle of brain connectivity evolution in a given dataset. Finally, we show a set of results on a diffusion MR imaging dataset of middle aged people at risk for Alzheimer’s disease (AD), who are cognitively healthy. In such asymptomatic adults, we find that a framework for characterizing brain connectivity evolution provides the ability to predict cognitive scores for individual subjects, and for estimating the progression of participant’s brain connectivity into the future. PMID:27812274
Food web structure and the evolution of ecological communities
NASA Astrophysics Data System (ADS)
Quince, Christopher; Higgs, Paul G.; McKane, Alan J.
Simulations of the coevolution of many interacting species are performed using the Webworld model. The model has a realistic set of predator-prey equations that describe the population dynamics of the species for any structure of the food web. The equations account for competition between species for the same resources, and for the diet choice of predators between alternative prey according to an evolutionarily stable strategy. The set of species present undergoes long-term evolution d ue to speciation and extinction events. We summarize results obtained on the macro-evolutionary dynamics of speciations and extinctions, and on the statistical properties of the food webs that are generated by the model. Simulations begin from small numbers of species and build up to larger webs with relatively constant species number on average. The rate of origination and extinction of species are relatively high, but remain roughly balanced throughout the simulations. When a 'parent' species undergoes sp eciation, the 'child' species usually adds to the same trophic level as the parent. The chance of the child species surviving is significantly higher if the parent is on the second or third trophic level than if it is on the first level, most likely due to a wider choice of possible prey for species on higher levels. Addition of a new species sometimes causes extinction of existing species. The parent species has a high probability of extinction because it has strong competition with the new species. Non-pa rental competitors of the new species also have a significantly higher extinction probability than average, as do prey of the new species. Predators of the new species are less likely than average to become extinct.
Patterns and drivers of daily bed-level dynamics on two tidal flats with contrasting wave exposure.
Hu, Zhan; Yao, Peng; van der Wal, Daphne; Bouma, Tjeerd J
2017-08-02
Short-term bed-level dynamics has been identified as one of the main factors affecting biota establishment or retreat on tidal flats. However, due to a lack of proper instruments and intensive labour involved, the pattern and drivers of daily bed-level dynamics are largely unexplored in a spatiotemporal context. In this study, 12 newly-developed automatic bed-level sensors were deployed for nearly 15 months on two tidal flats with contrasting wave exposure, proving an unique dataset of daily bed-level changes and hydrodynamic forcing. By analysing the data, we show that (1) a general steepening trend exists on both tidal flats, even with contrasting wave exposure and different bed sediment grain size; (2) daily morphodynamics level increases towards the sea; (3) tidal forcing sets the general morphological evolution pattern at both sites; (4) wave forcing induces short-term bed-level fluctuations at the wave-exposed site, but similar effect is not seen at the sheltered site with smaller waves; (5) storms provoke aggravated erosion, but the impact is conditioned by tidal levels. This study provides insights in the pattern and drivers of daily intertidal bed-level dynamics, thereby setting a template for future high-resolution field monitoring programmes and inviting in-depth morphodynamic modelling for improved understanding and predictive capability.
Coping with cyclic oxygen availability: evolutionary aspects.
Flück, Martin; Webster, Keith A; Graham, Jeffrey; Giomi, Folco; Gerlach, Frank; Schmitz, Anke
2007-10-01
Both the gradual rise in atmospheric oxygen over the Proterozoic Eon as well as episodic fluctuations in oxygen over several million-year time spans during the Phanerozoic Era, have arguably exerted strong selective forces on cellular and organismic respiratory specialization and evolution. The rise in atmospheric oxygen, some 2 billion years after the origin of life, dramatically altered cell biology and set the stage for the appearance of multicelluar life forms in the Vendian (Ediacaran) Period of the Neoproterozoic Era. Over much of the Paleozoic, the level of oxygen in the atmosphere was near the present atmospheric level (21%). In the Late Paleozoic, however, there were extended times during which the level of atmospheric oxygen was either markedly lower or markedly higher than 21%. That these Paleozoic shifts in atmospheric oxygen affected the biota is suggested by the correlations between: (1) Reduced oxygen and the occurrences of extinctions, a lowered biodiversity and shifts in phyletic succession, and (2) During hyperoxia, the corresponding occurrence of phenomena such as arthropod gigantism, the origin of insect flight, and the evolution of vertebrate terrestriality. Basic similarities in features of adaptation to hyopoxia, manifest in living organisms at levels ranging from genetic and cellular to physiological and behavioral, suggest the common and early origin of a suite of adaptive mechanisms responsive to fluctuations in ambient oxygen. Comparative integrative approaches addressing the molecular bases of phenotypic adjustments to cyclic oxygen fluctuation provide broad insight into the incremental steps leading to the early evolution of homeostatic respiratory mechanisms and to the specialization of organismic respiratory function.
NASA Astrophysics Data System (ADS)
Calvet, Marc; Gunnell, Yanni; Farines, Bernard
2015-07-01
Extensive tracts of low-gradient topography in steep mountain ranges, either forming rangetop plateaus or terraced pediments on range flanks, are widely distributed in mountain belts around the world. Before the advent of plate tectonics, such populations of planar landforms were interpreted as vestiges of a post-orogenic raised peneplain, i.e., a low-gradient land surface resulting from the decay, during long intervals of base-level stability, of a previous mountain range that was subsequently raised once again to great elevations-thus forming a new mountain range. This two-stage model has been challenged by theories that advocate continuity in tectonic processes and more gradual changes in base level, and thus expect a more immediate and proportionate response of geomorphic systems. Here we present a global survey of erosion surfaces in mountain ranges and put existing theories and empirical evidence into a broad perspective calling for further research into the rates and regimes of long-term mountain evolution. The resulting library of case studies provides opportunities for comparative analysis and helps to classify the landform mosaics that are likely to arise from the interplay between (i) crustal regimes, which at convergent plate margins need be neither uniform nor steady at all times; (ii) radiation-driven and gravity-driven geomorphic regimes, which are mainly determined by crustal boundary conditions and climate; and (iii) paleogeography, through which clues about base-level changes can be obtained. We examine intracratonic and plate-margin settings, with examples from thin-skinned fold belts, thick-skinned fold belts, island-arc and other subduction-related settings, and bivergent collisional orogens. Results reveal that the existence of erosion surfaces is not a simple function of geodynamic setting. Although some erosion surfaces are pre-orogenic, evidence about their predominantly post-orogenic age is supported by apatite fission-track and helium rock-cooling signatures, stratigraphic age-bracketing, stream channel gradient patterns, and other direct or indirect dating criteria. It follows that many portions of mountain belts undergo unsteady, nonuniform post-orogenic landscape evolution trajectories, with intermittent opportunities for relief reduction. The resulting erosion surfaces remain preserved as signatures of transient landscape evolution regimes. We find that (i) occurrences of planar topography form populations of discrete, insular landscape units, only some of which could be interpreted as fragments of a fluvially dissected, and/or tectonically fragmented, regional peneplain. (ii) The post-orogenic time required for achieving advanced stages of relief reduction is variable, ranging from 3 to 70 Ma. (iii) Partly depending on whether the adjacent sedimentary basins were over- or underfilled, some erosion surfaces may have been controlled by raised base levels and may thus have formed at high elevations; however, in many cases they were disconnected from marine base levels by rapid surface uplift, thus acquiring their elevated positions in recent time. In some cases, subcrustal processes such as asthenospheric anomalies, and/or lithospheric slab tear or breakoff, explain extremely rapid, regional post-orogenic uplift. (iv) Overall, the conditions for achieving surface preservation in steep and tectonically active terrain are predictable but also quite varied and contingent on context.
Li, Ke; Deb, Kalyanmoy; Zhang, Qingfu; Zhang, Qiang
2017-09-01
Nondominated sorting (NDS), which divides a population into several nondomination levels (NDLs), is a basic step in many evolutionary multiobjective optimization (EMO) algorithms. It has been widely studied in a generational evolution model, where the environmental selection is performed after generating a whole population of offspring. However, in a steady-state evolution model, where a population is updated right after the generation of a new candidate, the NDS can be extremely time consuming. This is especially severe when the number of objectives and population size become large. In this paper, we propose an efficient NDL update method to reduce the cost for maintaining the NDL structure in steady-state EMO. Instead of performing the NDS from scratch, our method only updates the NDLs of a limited number of solutions by extracting the knowledge from the current NDL structure. Notice that our NDL update method is performed twice at each iteration. One is after the reproduction, the other is after the environmental selection. Extensive experiments fully demonstrate that, comparing to the other five state-of-the-art NDS methods, our proposed method avoids a significant amount of unnecessary comparisons, not only in the synthetic data sets, but also in some real optimization scenarios. Last but not least, we find that our proposed method is also useful for the generational evolution model.
The Embedding Problem for Markov Models of Nucleotide Substitution
Verbyla, Klara L.; Yap, Von Bing; Pahwa, Anuj; Shao, Yunli; Huttley, Gavin A.
2013-01-01
Continuous-time Markov processes are often used to model the complex natural phenomenon of sequence evolution. To make the process of sequence evolution tractable, simplifying assumptions are often made about the sequence properties and the underlying process. The validity of one such assumption, time-homogeneity, has never been explored. Violations of this assumption can be found by identifying non-embeddability. A process is non-embeddable if it can not be embedded in a continuous time-homogeneous Markov process. In this study, non-embeddability was demonstrated to exist when modelling sequence evolution with Markov models. Evidence of non-embeddability was found primarily at the third codon position, possibly resulting from changes in mutation rate over time. Outgroup edges and those with a deeper time depth were found to have an increased probability of the underlying process being non-embeddable. Overall, low levels of non-embeddability were detected when examining individual edges of triads across a diverse set of alignments. Subsequent phylogenetic reconstruction analyses demonstrated that non-embeddability could impact on the correct prediction of phylogenies, but at extremely low levels. Despite the existence of non-embeddability, there is minimal evidence of violations of the local time homogeneity assumption and consequently the impact is likely to be minor. PMID:23935949
Modelling wildland fire propagation by tracking random fronts
NASA Astrophysics Data System (ADS)
Pagnini, G.; Mentrelli, A.
2014-08-01
Wildland fire propagation is studied in the literature by two alternative approaches, namely the reaction-diffusion equation and the level-set method. These two approaches are considered alternatives to each other because the solution of the reaction-diffusion equation is generally a continuous smooth function that has an exponential decay, and it is not zero in an infinite domain, while the level-set method, which is a front tracking technique, generates a sharp function that is not zero inside a compact domain. However, these two approaches can indeed be considered complementary and reconciled. Turbulent hot-air transport and fire spotting are phenomena with a random nature and they are extremely important in wildland fire propagation. Consequently, the fire front gets a random character, too; hence, a tracking method for random fronts is needed. In particular, the level-set contour is randomised here according to the probability density function of the interface particle displacement. Actually, when the level-set method is developed for tracking a front interface with a random motion, the resulting averaged process emerges to be governed by an evolution equation of the reaction-diffusion type. In this reconciled approach, the rate of spread of the fire keeps the same key and characterising role that is typical of the level-set approach. The resulting model emerges to be suitable for simulating effects due to turbulent convection, such as fire flank and backing fire, the faster fire spread being because of the actions by hot-air pre-heating and by ember landing, and also due to the fire overcoming a fire-break zone, which is a case not resolved by models based on the level-set method. Moreover, from the proposed formulation, a correction follows for the formula of the rate of spread which is due to the mean jump length of firebrands in the downwind direction for the leeward sector of the fireline contour. The presented study constitutes a proof of concept, and it needs to be subjected to a future validation.
Numerical simulation of overflow at vertical weirs using a hybrid level set/VOF method
NASA Astrophysics Data System (ADS)
Lv, Xin; Zou, Qingping; Reeve, Dominic
2011-10-01
This paper presents the applications of a newly developed free surface flow model to the practical, while challenging overflow problems for weirs. Since the model takes advantage of the strengths of both the level set and volume of fluid methods and solves the Navier-Stokes equations on an unstructured mesh, it is capable of resolving the time evolution of very complex vortical motions, air entrainment and pressure variations due to violent deformations following overflow of the weir crest. In the present study, two different types of vertical weir, namely broad-crested and sharp-crested, are considered for validation purposes. The calculated overflow parameters such as pressure head distributions, velocity distributions, and water surface profiles are compared against experimental data as well as numerical results available in literature. A very good quantitative agreement has been obtained. The numerical model, thus, offers a good alternative to traditional experimental methods in the study of weir problems.
Student understanding of time dependence in quantum mechanics
NASA Astrophysics Data System (ADS)
Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.
2015-12-01
[This paper is part of the Focused Collection on Upper Division Physics Courses.] The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing the key role of the energy eigenbasis in determining the time dependence of wave functions. Through analysis of student responses to a set of four interrelated tasks, we categorize some of the difficulties that underlie common errors. The conceptual and reasoning difficulties that have been identified are illustrated through student responses to four sets of questions administered at different points in a junior-level course on quantum mechanics. Evidence is also given that the problems persist throughout undergraduate instruction and into the graduate level.
Sea-level and solid-Earth deformation feedbacks in ice sheet modelling
NASA Astrophysics Data System (ADS)
Konrad, Hannes; Sasgen, Ingo; Klemann, Volker; Thoma, Malte; Grosfeld, Klaus; Martinec, Zdeněk
2014-05-01
The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.
Feyertag, Felix; Chakraborty, Sandip
2017-01-01
Abstract The proteins of any organism evolve at disparate rates. A long list of factors affecting rates of protein evolution have been identified. However, the relative importance of each factor in determining rates of protein evolution remains unresolved. The prevailing view is that evolutionary rates are dominantly determined by gene expression, and that other factors such as network centrality have only a marginal effect, if any. However, this view is largely based on analyses in yeasts, and accurately measuring the importance of the determinants of rates of protein evolution is complicated by the fact that the different factors are often correlated with each other, and by the relatively poor quality of available functional genomics data sets. Here, we use correlation, partial correlation and principal component regression analyses to measure the contributions of several factors to the variability of the rates of evolution of human proteins. For this purpose, we analyzed the entire human protein–protein interaction data set and the human signal transduction network—a network data set of exceptionally high quality, obtained by manual curation, which is expected to be virtually free from false positives. In contrast with the prevailing view, we observe that network centrality (measured as the number of physical and nonphysical interactions, betweenness, and closeness) has a considerable impact on rates of protein evolution. Surprisingly, the impact of centrality on rates of protein evolution seems to be comparable, or even superior according to some analyses, to that of gene expression. Our observations seem to be independent of potentially confounding factors and from the limitations (biases and errors) of interactomic data sets. PMID:28854629
Factors Potentially Influencing Student Acceptance of Biological Evolution
NASA Astrophysics Data System (ADS)
Wiles, Jason R.
This investigation explored scientific, religious, and otherwise nonscientific factors that may influence student acceptance of biological evolution and related concepts, how students perceived these factors to have influenced their levels of acceptance of evolution and changes therein, and what patterns arose among students' articulations of how their levels of acceptance of evolution may have changed. This exploration also measured the extent to which students' levels of acceptance changed following a treatment designed to address factors identified as potentially affecting student acceptance of evolution. Acceptance of evolution was measured using the MATE instrument (Rutledge and Warden, 1999; Rutledge and Sadler, 2007) among participants enrolled in a secondary-level academic program during the summer prior to their final year of high school and as they transitioned to the post-secondary level. Student acceptance of evolution was measured to be significantly higher than pre-treatment levels both immediately following and slightly over one year after treatment. Qualitative data from informal questionnaires, from formal course evaluations, and from semi-structured interviews of students engaged in secondary level education and former students at various stages of post-secondary education confirmed that the suspected factors were perceived by participants to have influenced their levels of acceptance of evolution. Furthermore, participant reports provided insight regarding the relative effects they perceived these factors to have had on their evolution acceptance levels. Additionally, many participants reported that their science teachers in public schools had avoided, omitted, or denigrated evolution during instruction, and several of these students expressed frustration regarding what they perceived to have been a lack of education of an important scientific principle. Finally, no students expressed feelings of being offended by having been taught about evolutionary science, and the overwhelming majority of the participants expressed enjoyment of the course and appreciation for having been taught about evolution.
NASA Astrophysics Data System (ADS)
Howard, A. D.; Matsubara, Y.; Lloyd, H.
2006-12-01
The DELIM landform evolution model has been adapted to investigate erosional and depositional landforms in two setting with fluctuating base levels. The first is erosion and wave planation of terraced landscapes in Coastal Plain sediments along the estuarine Potomac River. The last 3.5 million years of erosion is simulated with base level fluctuations based upon the long-term oceanic delta 18O record, eustatic sea level changes during the last 120 ka, estimates of the history of tectonic uplift in the region, and maximum depths of incision of the Potomac River during sea-level lowstands. Inhibition of runoff erosion by vegetation has been a crucial factor allowing persistence of uplands in the soft coastal plain bedrock. The role of vegetation is simulated as a contributing area- dependent critical shear stress. Development of wave-cut terraces is simulated by episodic planation of the landscape during base-level highstands. Although low base level excursions are infrequent and of short duration, the total amount of erosion is largely controlled by the depth and frequency of lowstands. The model has also been adapted to account for flow routing and accompanying erosion and sedimentation in landscapes with multiple enclosed depressions. The hydrological portion of the model has been calibrated and tested in the Great Basin and Mojave regions of the southwestern U.S. In such a setting, runoff, largely from mountains, may flow through several lacustrine basins, each with evaporative losses. An iterative approach determines the size and depth of lakes, including overflow (or not) that balances runoff and evaporation. The model utilizes information on temperatures, rainfall, runoff, and evaporation within the region to parameterize evaporation and runoff as functions of latitude, mean annual temperature, precipitation, and elevation. The model is successful in predicting the location of modern perennial lakes in the region as well as that of lakes during the last glacial maximum based upon published estimates of changes in mean annual temperature and precipitation within the region. The hydrological model has been coupled with the DELIM landform evolution model to investigate expected patterns of basin sedimentation in cratered landscapes on Mars and the role that fluctuating lake levels has on the form and preservation of deltaic and shoreline sedimentary platforms. As would be expected, base levels that fluctuate widely complicate the pattern of depositional landforms, but recognizable coastal benches develop even with high-amplitude variations.
Analyzing endocrine system conservation and evolution.
Bonett, Ronald M
2016-08-01
Analyzing variation in rates of evolution can provide important insights into the factors that constrain trait evolution, as well as those that promote diversification. Metazoan endocrine systems exhibit apparent variation in evolutionary rates of their constituent components at multiple levels, yet relatively few studies have quantified these patterns and analyzed them in a phylogenetic context. This may be in part due to historical and current data limitations for many endocrine components and taxonomic groups. However, recent technological advancements such as high-throughput sequencing provide the opportunity to collect large-scale comparative data sets for even non-model species. Such ventures will produce a fertile data landscape for evolutionary analyses of nucleic acid and amino acid based endocrine components. Here I summarize evolutionary rate analyses that can be applied to categorical and continuous endocrine traits, and also those for nucleic acid and protein-based components. I emphasize analyses that could be used to test whether other variables (e.g., ecology, ontogenetic timing of expression, etc.) are related to patterns of rate variation and endocrine component diversification. The application of phylogenetic-based rate analyses to comparative endocrine data will greatly enhance our understanding of the factors that have shaped endocrine system evolution. Copyright © 2016 Elsevier Inc. All rights reserved.
Vitousek, Sean; Barnard, Patrick; Limber, Patrick W.; Erikson, Li; Cole, Blake
2017-01-01
We present a shoreline change model for coastal hazard assessment and management planning. The model, CoSMoS-COAST (Coastal One-line Assimilated Simulation Tool), is a transect-based, one-line model that predicts short-term and long-term shoreline response to climate change in the 21st century. The proposed model represents a novel, modular synthesis of process-based models of coastline evolution due to longshore and cross-shore transport by waves and sea-level rise. Additionally, the model uses an extended Kalman filter for data assimilation of historical shoreline positions to improve estimates of model parameters and thereby improve confidence in long-term predictions. We apply CoSMoS-COAST to simulate sandy shoreline evolution along 500 km of coastline in Southern California, which hosts complex mixtures of beach settings variably backed by dunes, bluffs, cliffs, estuaries, river mouths, and urban infrastructure, providing applicability of the model to virtually any coastal setting. Aided by data assimilation, the model is able to reproduce the observed signal of seasonal shoreline change for the hindcast period of 1995-2010, showing excellent agreement between modeled and observed beach states. The skill of the model during the hindcast period improves confidence in the model's predictive capability when applied to the forecast period (2010-2100) driven by GCM-projected wave and sea-level conditions. Predictions of shoreline change with limited human intervention indicate that 31% to 67% of Southern California beaches may become completely eroded by 2100 under sea-level rise scenarios of 0.93 to 2.0 m.
NASA Astrophysics Data System (ADS)
Vitousek, Sean; Barnard, Patrick L.; Limber, Patrick; Erikson, Li; Cole, Blake
2017-04-01
We present a shoreline change model for coastal hazard assessment and management planning. The model, CoSMoS-COAST (Coastal One-line Assimilated Simulation Tool), is a transect-based, one-line model that predicts short-term and long-term shoreline response to climate change in the 21st century. The proposed model represents a novel, modular synthesis of process-based models of coastline evolution due to longshore and cross-shore transport by waves and sea level rise. Additionally, the model uses an extended Kalman filter for data assimilation of historical shoreline positions to improve estimates of model parameters and thereby improve confidence in long-term predictions. We apply CoSMoS-COAST to simulate sandy shoreline evolution along 500 km of coastline in Southern California, which hosts complex mixtures of beach settings variably backed by dunes, bluffs, cliffs, estuaries, river mouths, and urban infrastructure, providing applicability of the model to virtually any coastal setting. Aided by data assimilation, the model is able to reproduce the observed signal of seasonal shoreline change for the hindcast period of 1995-2010, showing excellent agreement between modeled and observed beach states. The skill of the model during the hindcast period improves confidence in the model's predictive capability when applied to the forecast period (2010-2100) driven by GCM-projected wave and sea level conditions. Predictions of shoreline change with limited human intervention indicate that 31% to 67% of Southern California beaches may become completely eroded by 2100 under sea level rise scenarios of 0.93 to 2.0 m.
Heating and dynamics of two flare loop systems observed by AIA and EIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Ding, M. D.; Qiu, J., E-mail: yingli@nju.edu.cn
2014-02-01
We investigate heating and evolution of flare loops in a C4.7 two-ribbon flare on 2011 February 13. From Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) imaging observations, we can identify two sets of loops. Hinode/EUV Imaging Spectrometer (EIS) spectroscopic observations reveal blueshifts at the feet of both sets of loops. The evolution and dynamics of the two sets are quite different. The first set of loops exhibits blueshifts for about 25 minutes followed by redshifts, while the second set shows stronger blueshifts, which are maintained for about one hour. The UV 1600 observation by AIA also shows that the feet ofmore » the second set of loops brighten twice. These suggest that continuous heating may be present in the second set of loops. We use spatially resolved UV light curves to infer heating rates in the few tens of individual loops comprising the two loop systems. With these heating rates, we then compute plasma evolution in these loops with the 'enthalpy-based thermal evolution of loops' model. The results show that, for the first set of loops, the synthetic EUV light curves from the model compare favorably with the observed light curves in six AIA channels and eight EIS spectral lines, and the computed mean enthalpy flow velocities also agree with the Doppler shift measurements by EIS. For the second set of loops modeled with twice-heating, there are some discrepancies between modeled and observed EUV light curves in low-temperature bands, and the model does not fully produce the prolonged blueshift signatures as observed. We discuss possible causes for the discrepancies.« less
Conserved Quantities in General Relativity: From the Quasi-Local Level to Spatial Infinity
NASA Astrophysics Data System (ADS)
Chen, Po-Ning; Wang, Mu-Tao; Yau, Shing-Tung
2015-08-01
We define quasi-local conserved quantities in general relativity by using the optimal isometric embedding in Wang and Yau (Commun Math Phys 288(3):919-942, 2009) to transplant Killing fields in the Minkowski spacetime back to the 2-surface of interest in a physical spacetime. To each optimal isometric embedding, a dual element of the Lie algebra of the Lorentz group is assigned. Quasi-local angular momentum and quasi-local center of mass correspond to pairing this element with rotation Killing fields and boost Killing fields, respectively. They obey classical transformation laws under the action of the Poincaré group. We further justify these definitions by considering their limits as the total angular momentum and the total center of mass of an isolated system. These expressions were derived from the Hamilton-Jacobi analysis of the gravitational action and thus satisfy conservation laws. As a result, we obtained an invariant total angular momentum theorem in the Kerr spacetime. For a vacuum asymptotically flat initial data set of order 1, it is shown that the limits are always finite without any extra assumptions. We also study these total conserved quantities on a family of asymptotically flat initial data sets evolving by the vacuum Einstein evolution equation. It is shown that the total angular momentum is conserved under the evolution. For the total center of mass, the classical dynamical formula relating the center of mass, energy, and linear momentum is recovered, in the nonlinear context of initial data sets evolving by the vacuum Einstein evolution equation. The definition of quasi-local angular momentum provides an answer to the second problem in classical general relativity on Penrose's list (Proc R Soc Lond Ser A 381(1780):53-63, 1982).
Identifying arbitrary parameter zonation using multiple level set functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Zhiming; Vesselinov, Velimir Valentinov; Lei, Hongzhuan
In this paper, we extended the analytical level set method [1, 2] for identifying a piece-wisely heterogeneous (zonation) binary system to the case with an arbitrary number of materials with unknown material properties. In the developed level set approach, starting from an initial guess, the material interfaces are propagated through iterations such that the residuals between the simulated and observed state variables (hydraulic head) is minimized. We derived an expression for the propagation velocity of the interface between any two materials, which is related to the permeability contrast between the materials on two sides of the interface, the sensitivity ofmore » the head to permeability, and the head residual. We also formulated an expression for updating the permeability of all materials, which is consistent with the steepest descent of the objective function. The developed approach has been demonstrated through many examples, ranging from totally synthetic cases to a case where the flow conditions are representative of a groundwater contaminant site at the Los Alamos National Laboratory. These examples indicate that the level set method can successfully identify zonation structures, even if the number of materials in the model domain is not exactly known in advance. Although the evolution of the material zonation depends on the initial guess field, inverse modeling runs starting with different initial guesses fields may converge to the similar final zonation structure. These examples also suggest that identifying interfaces of spatially distributed heterogeneities is more important than estimating their permeability values.« less
Identifying arbitrary parameter zonation using multiple level set functions
Lu, Zhiming; Vesselinov, Velimir Valentinov; Lei, Hongzhuan
2018-03-14
In this paper, we extended the analytical level set method [1, 2] for identifying a piece-wisely heterogeneous (zonation) binary system to the case with an arbitrary number of materials with unknown material properties. In the developed level set approach, starting from an initial guess, the material interfaces are propagated through iterations such that the residuals between the simulated and observed state variables (hydraulic head) is minimized. We derived an expression for the propagation velocity of the interface between any two materials, which is related to the permeability contrast between the materials on two sides of the interface, the sensitivity ofmore » the head to permeability, and the head residual. We also formulated an expression for updating the permeability of all materials, which is consistent with the steepest descent of the objective function. The developed approach has been demonstrated through many examples, ranging from totally synthetic cases to a case where the flow conditions are representative of a groundwater contaminant site at the Los Alamos National Laboratory. These examples indicate that the level set method can successfully identify zonation structures, even if the number of materials in the model domain is not exactly known in advance. Although the evolution of the material zonation depends on the initial guess field, inverse modeling runs starting with different initial guesses fields may converge to the similar final zonation structure. These examples also suggest that identifying interfaces of spatially distributed heterogeneities is more important than estimating their permeability values.« less
Identifying arbitrary parameter zonation using multiple level set functions
NASA Astrophysics Data System (ADS)
Lu, Zhiming; Vesselinov, Velimir V.; Lei, Hongzhuan
2018-07-01
In this paper, we extended the analytical level set method [1,2] for identifying a piece-wisely heterogeneous (zonation) binary system to the case with an arbitrary number of materials with unknown material properties. In the developed level set approach, starting from an initial guess, the material interfaces are propagated through iterations such that the residuals between the simulated and observed state variables (hydraulic head) is minimized. We derived an expression for the propagation velocity of the interface between any two materials, which is related to the permeability contrast between the materials on two sides of the interface, the sensitivity of the head to permeability, and the head residual. We also formulated an expression for updating the permeability of all materials, which is consistent with the steepest descent of the objective function. The developed approach has been demonstrated through many examples, ranging from totally synthetic cases to a case where the flow conditions are representative of a groundwater contaminant site at the Los Alamos National Laboratory. These examples indicate that the level set method can successfully identify zonation structures, even if the number of materials in the model domain is not exactly known in advance. Although the evolution of the material zonation depends on the initial guess field, inverse modeling runs starting with different initial guesses fields may converge to the similar final zonation structure. These examples also suggest that identifying interfaces of spatially distributed heterogeneities is more important than estimating their permeability values.
A UML-based metamodel for software evolution process
NASA Astrophysics Data System (ADS)
Jiang, Zuo; Zhou, Wei-Hong; Fu, Zhi-Tao; Xiong, Shun-Qing
2014-04-01
A software evolution process is a set of interrelated software processes under which the corresponding software is evolving. An object-oriented software evolution process meta-model (OO-EPMM), abstract syntax and formal OCL constraint of meta-model are presented in this paper. OO-EPMM can not only represent software development process, but also represent software evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiaojun; Hasegawa, Yosuke; CREST, JST
2014-10-15
A level set method is applied to characterize the three dimensional structures of nickel, yttria stabilized zirconia and pore phases in solid oxide fuel cell anode reconstructed by focused ion beam-scanning electron microscope. A numerical algorithm is developed to evaluate the contact angles at the triple phase boundary based on interfacial normal vectors which can be calculated from the signed distance functions defined for each of the three phases. Furthermore, surface tension force is estimated from the contact angles by assuming the interfacial force balance at the triple phase boundary. The average contact angle values of nickel, yttria stabilized zirconiamore » and pore are found to be 143°–156°, 83°–138° and 82°–123°, respectively. The mean contact angles remained nearly unchanged after 100 hour operation. However, the contact angles just after reduction are different for the cells with different sintering temperatures. In addition, standard deviations of the contact angles are very large especially for yttria stabilized zirconia and pore phases. The calculated surface tension forces from mean contact angles were close to the experimental values found in the literature. Slight increase of surface tensions of nickel/pore and nickel/yttria stabilized zirconia were observed after operation. Present data are expected to be used not only for the understanding of the degradation mechanism, but also for the quantitative prediction of the microstructural temporal evolution of solid oxide fuel cell anode. - Highlights: • A level set method is applied to characterize the 3D structures of SOFC anode. • A numerical algorithm is developed to evaluate the contact angles at the TPB. • Surface tension force is estimated from the contact angles. • The average contact angle values are found to be 143o-156o, 83o-138o and 82o-123o. • Present data are expected to understand degradation and predict evolution of SOFC.« less
Cooperation and age structure in spatial games
NASA Astrophysics Data System (ADS)
Wang, Zhen; Wang, Zhen; Zhu, Xiaodan; Arenzon, Jeferson J.
2012-01-01
We study the evolution of cooperation in evolutionary spatial games when the payoff correlates with the increasing age of players (the level of correlation is set through a single parameter, α). The demographic heterogeneous age distribution, directly affecting the outcome of the game, is thus shown to be responsible for enhancing the cooperative behavior in the population. In particular, moderate values of α allow cooperators not only to survive but to outcompete defectors, even when the temptation to defect is large and the ageless, standard α=0 model does not sustain cooperation. The interplay between age structure and noise is also considered, and we obtain the conditions for optimal levels of cooperation.
Do We Really Understand What a Meter of Sea-level Rise by 2100 Means for the Coast?
NASA Astrophysics Data System (ADS)
Thieler, E. R.; Plant, N. G.; Gutierrez, B.
2014-12-01
Many projections of sea-level rise (SLR) by 2100 require rise rates of >7 mm/yr after about 2050. Thus, in the latter half of this century, the global average SLR rate may be higher than it has been since about 7000 years ago. That includes a prolonged period of relatively slow sea-level rise over the past 2000-4000 years, during which many coastal landforms and their associated ecosystems (e.g., barrier islands, estuaries, wetlands) matured and extended across the landscape, building rich sedimentary archives. The understanding of coastal evolution in these settings is typically based on both recent geologic history and modern process observations. The recent geologic history can be sampled from relatively accessible sedimentary records, as opposed to earlier records deposited more than ~5000 years ago, which are scarce on the transgressed continental margin. In addition, few to no modern analogs exist for many coastal settings that will experience high SLR rates and where there is significant human infrastructure and development. These settings provide valuable resources and ecosystem services on which society depends (e.g., sandy recreational beaches and fisheries), where useful projections are most needed. Thus, traditional sources of insight - the stratigraphic record and modern analogs - are lacking and limit our ability, and confidence, to predict the form, magnitude, and spatial extent of future changes to the coastal landscape. If sea-level is indeed heading towards ~1 m SLR by 2100, we have a limited timeframe to understand coastal change at higher SLR rates, communicate information to decision makers, and allow sufficient time for action. This is a moderate probability, but extraordinarily high risk, high impact scenario. It is a region of the coastal evolution parameter space that warrants focused exploration to identify critical knowledge gaps, conduct research to fill these gaps, and build our understanding. We also need to apply current knowledge to this problem; we know how to make skillful, yet imperfect models. Are we ready to set them against reality and evaluate their utility for a rapidly-changing world? We present some examples of current landscape-change predictive capability and discuss their application with and without updated understanding of higher-end SLR scenarios.
Distinctive signatures of recursion.
Martins, Maurício Dias
2012-07-19
Although recursion has been hypothesized to be a necessary capacity for the evolution of language, the multiplicity of definitions being used has undermined the broader interpretation of empirical results. I propose that only a definition focused on representational abilities allows the prediction of specific behavioural traits that enable us to distinguish recursion from non-recursive iteration and from hierarchical embedding: only subjects able to represent recursion, i.e. to represent different hierarchical dependencies (related by parenthood) with the same set of rules, are able to generalize and produce new levels of embedding beyond those specified a priori (in the algorithm or in the input). The ability to use such representations may be advantageous in several domains: action sequencing, problem-solving, spatial navigation, social navigation and for the emergence of conventionalized communication systems. The ability to represent contiguous hierarchical levels with the same rules may lead subjects to expect unknown levels and constituents to behave similarly, and this prior knowledge may bias learning positively. Finally, a new paradigm to test for recursion is presented. Preliminary results suggest that the ability to represent recursion in the spatial domain recruits both visual and verbal resources. Implications regarding language evolution are discussed.
Meso-beta scale perturbations of the wind field by thunderstorm cells
NASA Technical Reports Server (NTRS)
Ulanski, S. L.; Heymsfield, G. M.
1986-01-01
Data from the high density storm-scale rawinsonde network of the Severe Environmental Storms and Mesoscale Experiment revealed temporal and spatial changes in the divergence fields of the troposphere in response to severe storm evolution on May 2, 1979; these changes were detectable on the meso-beta scale. This unique set of data was subsequently used to study the evolution of the wind, divergence and vertical motion fields in the presence of intense convection. Mid- and upper-tropospheric divergence was superimposed over low-level convergence. The divergence, which has a maximum value of .0004/s, occurred 75 to 100 km upwind as well as over the tornadic cells. To the south of the storm cells, the kinematic pattern was in reverse, upper level convergence was superimposed over low-level divergence. A vertical motion doublet was found to ascend over the squall line and descend about 70 km south of the squall line. It is suggested that the following effects are accountable for the nature of the kinematic fields: (1) blocking of tropospheric environmental flow by the storm cells, (2) anvil outflows, particularly from the tornadic cells, and (3) divergence from the exit region of the jet stream.
Out-of-time-order correlators in finite open systems
NASA Astrophysics Data System (ADS)
Syzranov, S. V.; Gorshkov, A. V.; Galitski, V.
2018-04-01
The evolution of environmental and genetic sex determination in fluctuating environments.
Van Dooren, Tom J M; Leimar, Olof
2003-12-01
Twenty years ago, Bulmer and Bull suggested that disruptive selection, produced by environmental fluctuations, can result in an evolutionary transition from environmental sex determination (ESD) to genetic sex determination (GSD). We investigated the feasibility of such a process, using mutation-limited adaptive dynamics and individual-based computer simulations. Our model describes the evolution of a reaction norm for sex determination in a metapopulation setting with partial migration and variation in an environmental variable both within and between local patches. The reaction norm represents the probability of becoming a female as a function of environmental state and was modeled as a sigmoid function with two parameters, one giving the location (i.e., the value of the environmental variable for which an individual has equal chance of becoming either sex) and the other giving the slope of the reaction norm for that environment. The slope can be interpreted as being set by the level of developmental noise in morph determination, with less noise giving a steeper slope and a more switchlike reaction norm. We found convergence stable reaction norms with intermediate to large amounts of developmental noise for conditions characterized by low migration rates, small differential competitive advantages between the sexes over environments, and little variation between individual environments within patches compared to variation between patches. We also considered reaction norms with the slope parameter constrained to a high value, corresponding to little developmental noise. For these we found evolutionary branching in the location parameter and a transition from ESD toward GSD, analogous to the original analysis by Bulmer and Bull. Further evolutionary change, including dominance evolution, produced a polymorphism acting as a GSD system with heterogamety. Our results point to the role of developmental noise in the evolution of sex determination.
From Data to Images:. a Shape Based Approach for Fluorescence Tomography
NASA Astrophysics Data System (ADS)
Dorn, O.; Prieto, K. E.
2012-12-01
Fluorescence tomography is treated as a shape reconstruction problem for a coupled system of two linear transport equations in 2D. The shape evolution is designed in order to minimize the least squares data misfit cost functional either in the excitation frequency or in the emission frequency. Furthermore, a level set technique is employed for numerically modelling the evolving shapes. Numerical results are presented which demonstrate the performance of this novel technique in the situation of noisy simulated data in 2D.
Aris-Brosou, Stéphane; Bielawski, Joseph P
2006-08-15
A popular approach to examine the roles of mutation and selection in the evolution of genomes has been to consider the relationship between codon bias and synonymous rates of molecular evolution. A significant relationship between these two quantities is taken to indicate the action of weak selection on substitutions among synonymous codons. The neutral theory predicts that the rate of evolution is inversely related to the level of functional constraint. Therefore, selection against the use of non-preferred codons among those coding for the same amino acid should result in lower rates of synonymous substitution as compared with sites not subject to such selection pressures. However, reliably measuring the extent of such a relationship is problematic, as estimates of synonymous rates are sensitive to our assumptions about the process of molecular evolution. Previous studies showed the importance of accounting for unequal codon frequencies, in particular when synonymous codon usage is highly biased. Yet, unequal codon frequencies can be modeled in different ways, making different assumptions about the mutation process. Here we conduct a simulation study to evaluate two different ways of modeling uneven codon frequencies and show that both model parameterizations can have a dramatic impact on rate estimates and affect biological conclusions about genome evolution. We reanalyze three large data sets to demonstrate the relevance of our results to empirical data analysis.
Is there an optimal level of open-endedness in prebiotic evolution?
Markovitch, Omer; Sorek, Daniel; Lui, Leong Ting; Lancet, Doron; Krasnogor, Natalio
2012-10-01
In this paper we explore the question of whether there is an optimal set up for a putative prebiotic system leading to open-ended evolution (OEE) of the events unfolding within this system. We do so by proposing two key innovations. First, we introduce a new index that measures OEE as a function of the likelihood of events unfolding within a universe given its initial conditions. Next, we apply this index to a variant of the graded autocatalysis replication domain (GARD) model, Segre et al. (P Natl Acad Sci USA 97(8):4112-4117, 2000; Markovitch and Lancet Artif Life 18(3), 2012), and use it to study--under a unified and concise prebiotic evolutionary framework--both a variety of initial conditions of the universe and the OEE of species that evolve from them.
Is There an Optimal Level of Open-Endedness in Prebiotic Evolution?
NASA Astrophysics Data System (ADS)
Markovitch, Omer; Sorek, Daniel; Lui, Leong Ting; Lancet, Doron; Krasnogor, Natalio
2012-10-01
In this paper we explore the question of whether there is an optimal set up for a putative prebiotic system leading to open-ended evolution (OEE) of the events unfolding within this system. We do so by proposing two key innovations. First, we introduce a new index that measures OEE as a function of the likelihood of events unfolding within a universe given its initial conditions. Next, we apply this index to a variant of the graded autocatalysis replication domain (GARD) model, Segre et al. (P Natl Acad Sci USA 97(8):4112-4117, 2000; Markovitch and Lancet Artif Life 18(3), 2012), and use it to study - under a unified and concise prebiotic evolutionary framework - both a variety of initial conditions of the universe and the OEE of species that evolve from them.
Understanding intratumor heterogeneity by combining genome analysis and mathematical modeling.
Niida, Atsushi; Nagayama, Satoshi; Miyano, Satoru; Mimori, Koshi
2018-04-01
Cancer is composed of multiple cell populations with different genomes. This phenomenon called intratumor heterogeneity (ITH) is supposed to be a fundamental cause of therapeutic failure. Therefore, its principle-level understanding is a clinically important issue. To achieve this goal, an interdisciplinary approach combining genome analysis and mathematical modeling is essential. For example, we have recently performed multiregion sequencing to unveil extensive ITH in colorectal cancer. Moreover, by employing mathematical modeling of cancer evolution, we demonstrated that it is possible that this ITH is generated by neutral evolution. In this review, we introduce recent advances in a research field related to ITH and also discuss strategies for exploiting novel findings on ITH in a clinical setting. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
NASA Astrophysics Data System (ADS)
Wang, Min; Zhang, Huijie; Zhang, Jingbao; Zhang, Xiao; Yang, Lei
2014-05-01
Friction stir lap welding of 7B04 aluminum alloy was conducted in the present paper, and the effect of pin length on hook size and joint properties was investigated in detail. It is found that for each given set of process parameters, the size of hook defect on the advancing side shows an "M" type evolution trend as the pin length is increased. The affecting characteristics of pin length on joint properties are dependent on the heat input levels. When the heat input is low, the fracture strength is firstly increased to a peak value and then shows a decrease. When the heat input is relatively high, the evolution trend of fracture strength tends to exhibit a "W" type with increasing the pin length.
Kim, Youngwoo; Hong, Byung Woo; Kim, Seung Ja; Kim, Jong Hyo
2014-07-01
A major challenge when distinguishing glandular tissues on mammograms, especially for area-based estimations, lies in determining a boundary on a hazy transition zone from adipose to glandular tissues. This stems from the nature of mammography, which is a projection of superimposed tissues consisting of different structures. In this paper, the authors present a novel segmentation scheme which incorporates the learned prior knowledge of experts into a level set framework for fully automated mammographic density estimations. The authors modeled the learned knowledge as a population-based tissue probability map (PTPM) that was designed to capture the classification of experts' visual systems. The PTPM was constructed using an image database of a selected population consisting of 297 cases. Three mammogram experts extracted regions for dense and fatty tissues on digital mammograms, which was an independent subset used to create a tissue probability map for each ROI based on its local statistics. This tissue class probability was taken as a prior in the Bayesian formulation and was incorporated into a level set framework as an additional term to control the evolution and followed the energy surface designed to reflect experts' knowledge as well as the regional statistics inside and outside of the evolving contour. A subset of 100 digital mammograms, which was not used in constructing the PTPM, was used to validate the performance. The energy was minimized when the initial contour reached the boundary of the dense and fatty tissues, as defined by experts. The correlation coefficient between mammographic density measurements made by experts and measurements by the proposed method was 0.93, while that with the conventional level set was 0.47. The proposed method showed a marked improvement over the conventional level set method in terms of accuracy and reliability. This result suggests that the proposed method successfully incorporated the learned knowledge of the experts' visual systems and has potential to be used as an automated and quantitative tool for estimations of mammographic breast density levels.
Evolution of climatic niche specialization: a phylogenetic analysis in amphibians
Bonetti, Maria Fernanda; Wiens, John J.
2014-01-01
The evolution of climatic niche specialization has important implications for many topics in ecology, evolution and conservation. The climatic niche reflects the set of temperature and precipitation conditions where a species can occur. Thus, specialization to a limited set of climatic conditions can be important for understanding patterns of biogeography, species richness, community structure, allopatric speciation, spread of invasive species and responses to climate change. Nevertheless, the factors that determine climatic niche width (level of specialization) remain poorly explored. Here, we test whether species that occur in more extreme climates are more highly specialized for those conditions, and whether there are trade-offs between niche widths on different climatic niche axes (e.g. do species that tolerate a broad range of temperatures tolerate only a limited range of precipitation regimes?). We test these hypotheses in amphibians, using phylogenetic comparative methods and global-scale datasets, including 2712 species with both climatic and phylogenetic data. Our results do not support either hypothesis. Rather than finding narrower niches in more extreme environments, niches tend to be narrower on one end of a climatic gradient but wider on the other. We also find that temperature and precipitation niche breadths are positively related, rather than showing trade-offs. Finally, our results suggest that most amphibian species occur in relatively warm and dry environments and have relatively narrow climatic niche widths on both of these axes. Thus, they may be especially imperilled by anthropogenic climate change. PMID:25274369
Evolution of climatic niche specialization: a phylogenetic analysis in amphibians.
Bonetti, Maria Fernanda; Wiens, John J
2014-11-22
The evolution of climatic niche specialization has important implications for many topics in ecology, evolution and conservation. The climatic niche reflects the set of temperature and precipitation conditions where a species can occur. Thus, specialization to a limited set of climatic conditions can be important for understanding patterns of biogeography, species richness, community structure, allopatric speciation, spread of invasive species and responses to climate change. Nevertheless, the factors that determine climatic niche width (level of specialization) remain poorly explored. Here, we test whether species that occur in more extreme climates are more highly specialized for those conditions, and whether there are trade-offs between niche widths on different climatic niche axes (e.g. do species that tolerate a broad range of temperatures tolerate only a limited range of precipitation regimes?). We test these hypotheses in amphibians, using phylogenetic comparative methods and global-scale datasets, including 2712 species with both climatic and phylogenetic data. Our results do not support either hypothesis. Rather than finding narrower niches in more extreme environments, niches tend to be narrower on one end of a climatic gradient but wider on the other. We also find that temperature and precipitation niche breadths are positively related, rather than showing trade-offs. Finally, our results suggest that most amphibian species occur in relatively warm and dry environments and have relatively narrow climatic niche widths on both of these axes. Thus, they may be especially imperilled by anthropogenic climate change. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Wonaschuetz, Anna
Atmospheric aerosols are a highly relevant component of the climate system affecting atmospheric radiative transfer and the hydrological cycle. As opposed to other key atmospheric constituents with climatic relevance, atmospheric aerosol particles are highly heterogeneous in time and space with respect to their size, concentration, chemical composition and physical properties. Many aspects of their life cycle are not understood, making them difficult to represent in climate models and hard to control as a pollutant. Aerosol-cloud interactions in particular are infamous as a major source of uncertainty in future climate predictions. Field measurements are an important source of information for the modeling community and can lead to a better understanding of chemical and microphysical processes. In this study, field data from urban, marine, and arid settings are analyzed and the impact of meteorological conditions on the evolution of aerosol particles while in the atmosphere is investigated. Particular attention is given to organic aerosols, which are a poorly understood component of atmospheric aerosols. Local wind characteristics, solar radiation, relative humidity and the presence or absence of clouds and fog are found to be crucial factors in the transport and chemical evolution of aerosol particles. Organic aerosols in particular are found to be heavily impacted by processes in the liquid phase (cloud droplets and aerosol water). The reported measurements serve to improve the process-level understanding of aerosol evolution in different environments and to inform the modeling community by providing realistic values for input parameters and validation of model calculations.
ERIC Educational Resources Information Center
Joiner, Lottie L.
2003-01-01
Ohio's new set of science standards, adopted in December 2002, require that the state's public-school students learn Charles Darwin's theory of evolution as well as be allowed to criticize evolution in the classrooms. Includes a sidebar about some school boards' attempts to accommodate both sides in the evolution debate, and an article,…
Implications of sediment redistribution on modeled sea-level changes over millennial timescales
NASA Astrophysics Data System (ADS)
Ferrier, Ken
2016-04-01
Sea level is a critical link in feedbacks among topography, tectonics, and climate. Over millennial timescales, changes in sea level reshape river networks, regulate organic carbon burial, influence sediment deposition, and set moving boundary conditions for landscape evolution. Sea-level changes influence tectonics by regulating rates and patterns of erosion and deposition, which perturb the surface loads that drive geodynamic processes at depth. These interactions are complex because sea-level changes are influenced by the geomorphic processes that they themselves modify, since sediment redistribution deforms the gravitational and crustal elevation fields that define sea level. A recent advance in understanding the coupling between sea level, tectonics, and topography was the incorporation of sediment redistribution into a gravitationally self-consistent sea-level model, which permits the computation of sea-level responses to erosion and deposition (Dalca et al., 2013, Geophysical Journal International). Here I use this model to quantify changes in sea level resulting from the erosion of some of the most rapidly eroding sites on Earth and the deposition of sediment offshore. These model results show that the sea-level fingerprints of sediment redistribution are strongly variable in space, and that they can represent a significant component of the total sea level change since the last interglacial. This work provides a basis for understanding a fundamental driver of landscape evolution at some of Earth's most geomorphically dynamic sites, and thus aids investigation of the couplings among tectonics, climate, and topography. References Dalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III. Incorporating sediment redistribution. Geophysical Journal International, doi: 10.1093/gji/ggt089.
On the Relationship between Variational Level Set-Based and SOM-Based Active Contours
Abdelsamea, Mohammed M.; Gnecco, Giorgio; Gaber, Mohamed Medhat; Elyan, Eyad
2015-01-01
Most Active Contour Models (ACMs) deal with the image segmentation problem as a functional optimization problem, as they work on dividing an image into several regions by optimizing a suitable functional. Among ACMs, variational level set methods have been used to build an active contour with the aim of modeling arbitrarily complex shapes. Moreover, they can handle also topological changes of the contours. Self-Organizing Maps (SOMs) have attracted the attention of many computer vision scientists, particularly in modeling an active contour based on the idea of utilizing the prototypes (weights) of a SOM to control the evolution of the contour. SOM-based models have been proposed in general with the aim of exploiting the specific ability of SOMs to learn the edge-map information via their topology preservation property and overcoming some drawbacks of other ACMs, such as trapping into local minima of the image energy functional to be minimized in such models. In this survey, we illustrate the main concepts of variational level set-based ACMs, SOM-based ACMs, and their relationship and review in a comprehensive fashion the development of their state-of-the-art models from a machine learning perspective, with a focus on their strengths and weaknesses. PMID:25960736
If Suicide Is a Public Health Problem, What Are We Doing to Prevent It?
Knox, Kerry L.; Conwell, Yeates; Caine, Eric D.
2004-01-01
Although not a disease, suicide is a tragic endpoint of complex etiology and a leading cause of death worldwide. Just as preventing heart disease once meant that specialists treated myocardial infarctions in emergency care settings, in the past decade, suicide prevention has been viewed as the responsibility of mental health professionals within clinical settings. By contrast, over the past 50 years, population-based risk reduction approaches have been used with varying levels of effectiveness to prevent morbidity and mortality associated with heart disease. We examined whether the current urgency to develop effective interventions for suicide prevention can benefit from an understanding of the evolution of population-based strategies to prevent heart disease. PMID:14713694
Wang, Guo-Dong; Fan, Ruo-Xi; Zhai, Weiwei; Liu, Fei; Wang, Lu; Zhong, Li; Wu, Hong; Yang, He-Chuan; Wu, Shi-Fang; Zhu, Chun-Ling; Li, Yan; Gao, Yun; Ge, Ri-Li; Wu, Chung-I; Zhang, Ya-Ping
2014-01-01
The high-altitude hypoxic environment represents one of the most extreme challenges for mammals. Previous studies of humans on the Tibetan plateau and in the Andes Mountains have identified statistical signatures of selection in different sets of loci. Here, we first measured the hemoglobin levels in village dogs from Tibet and those from Chinese lowlands. We found that the hemoglobin levels are very similar between the two groups, suggesting that Tibetan dogs might share similar adaptive strategies as the Tibetan people. Through a whole-genome sequencing approach, we have identified EPAS1 and HBB as candidate genes for the hypoxic adaptation on the Tibetan plateau. The population genetic analysis shows a significant convergence between humans and dogs in Tibet. The similarities in the sets of loci that exhibit putative signatures of selection and the hemoglobin levels between humans and dogs of the same environment, but not between human populations in different regions, suggests an extraordinary landscape of convergent evolution between human beings and their best friend on the Tibetan plateau. PMID:25091388
From the Origins of Life to Intelligence: The Emergence of Symbolic Constructs
NASA Technical Reports Server (NTRS)
Colombano, Silvano P.; Clancy, Daniel (Technical Monitor)
2001-01-01
Intelligence cannot be understood - and cannot be 'artificially recreated' - without also understanding how it fits as a phenomenon in the evolution of matter. I say 'matter' instead of 'life' because my thesis is that the distinction between matter, with its associated interactions, and life, is simply in the complexity of these interactions and in the number of 'symbolic levels' that are defined by these interactions. Most of us think of symbols only in the context of language. This is understandable, since it is at this level where it is easiest to draw a distinction between natural objects and their 'names', i.e., the different sets of 'abstract' objects that can be manipulated to produce models of the 'real' world. Of course sets of abstract objects can also acquire names and be manipulated at higher and higher conceptual levels. When we use the words 'philosophy' or 'the Declaration of Independence' we use abstract constructs that will only make sense in other specific abstract contexts. Additional information is contained in the original extended abstract.
Lagrangian large eddy simulations of boundary layer clouds on ERA-Interim and ERA5 trajectories
NASA Astrophysics Data System (ADS)
Kazil, J.; Feingold, G.; Yamaguchi, T.
2017-12-01
This exploratory study examines Lagrangian large eddy simulations of boundary layer clouds along wind trajectories from the ERA-Interim and ERA5 reanalyses. The study is motivated by the need for statistically representative sets of high resolution simulations of cloud field evolution in realistic meteorological conditions. The study will serve as a foundation for the investigation of biomass burning effects on the transition from stratocumulus to shallow cumulus clouds in the South-East Atlantic. Trajectories that pass through a location with radiosonde data (St. Helena) and which exhibit a well-defined cloud structure and evolution were identified in satellite imagery, and sea surface temperature and atmospheric vertical profiles along the trajectories were extracted from the reanalysis data sets. The System for Atmospheric Modeling (SAM) simulated boundary layer turbulence and cloud properties along the trajectories. Mean temperature and moisture (in the free troposphere) and mean wind speed (at all levels) were nudged towards the reanalysis data. Atmospheric and cloud properties in the large eddy simulations were compared with those from the reanalysis products, and evaluated with satellite imagery and radiosonde data. Simulations using ERA-Interim data and the higher resolution ERA5 data are contrasted.
The Evolution of GX 339-4 in the Low-hard State as Seen by NuSTAR and Swift
NASA Astrophysics Data System (ADS)
Wang-Ji, Jingyi; García, Javier A.; Steiner, James F.; Tomsick, John A.; Harrison, Fiona A.; Bambi, Cosimo; Petrucci, Pierre-Olivier; Ferreira, Jonathan; Chakravorty, Susmita; Clavel, Maïca
2018-03-01
We analyze 11 Nuclear Spectroscopic Telescope Array and Swift observations of the black hole X-ray binary GX 339–4 in the hard state, 6 of which were taken during the end of the 2015 outburst and 5 during a failed outburst in 2013. These observations cover luminosities from 0.5% to 5% of the Eddington luminosity. Implementing the most recent version of the reflection model relxillCp, we perform simultaneous spectral fits on both data sets to track the evolution of the properties in the accretion disk, including the inner edge radius, the ionization, and the temperature of the thermal emission. We also constrain the photon index and electron temperature of the primary source (the “corona”). We observe a maximum truncation radius of 37 R g in the preferred fit for the 2013 data set, and a marginal correlation between the level of truncation and luminosity. We also explore a self-consistent model under the framework of coronal Comptonization, and find consistent results regarding the disk truncation in the 2015 data, providing a more physical preferred fit for the 2013 observations.
A novel procedure for the identification of chaos in complex biological systems
NASA Astrophysics Data System (ADS)
Bazeia, D.; Pereira, M. B. P. N.; Brito, A. V.; Oliveira, B. F. De; Ramos, J. G. G. S.
2017-03-01
We demonstrate the presence of chaos in stochastic simulations that are widely used to study biodiversity in nature. The investigation deals with a set of three distinct species that evolve according to the standard rules of mobility, reproduction and predation, with predation following the cyclic rules of the popular rock, paper and scissors game. The study uncovers the possibility to distinguish between time evolutions that start from slightly different initial states, guided by the Hamming distance which heuristically unveils the chaotic behavior. The finding opens up a quantitative approach that relates the correlation length to the average density of maxima of a typical species, and an ensemble of stochastic simulations is implemented to support the procedure. The main result of the work shows how a single and simple experimental realization that counts the density of maxima associated with the chaotic evolution of the species serves to infer its correlation length. We use the result to investigate others distinct complex systems, one dealing with a set of differential equations that can be used to model a diversity of natural and artificial chaotic systems, and another one, focusing on the ocean water level.
Culture shapes the evolution of cognition.
Thompson, Bill; Kirby, Simon; Smith, Kenny
2016-04-19
A central debate in cognitive science concerns the nativist hypothesis, the proposal that universal features of behavior reflect a biologically determined cognitive substrate: For example, linguistic nativism proposes a domain-specific faculty of language that strongly constrains which languages can be learned. An evolutionary stance appears to provide support for linguistic nativism, because coordinated constraints on variation may facilitate communication and therefore be adaptive. However, language, like many other human behaviors, is underpinned by social learning and cultural transmission alongside biological evolution. We set out two models of these interactions, which show how culture can facilitate rapid biological adaptation yet rule out strong nativization. The amplifying effects of culture can allow weak cognitive biases to have significant population-level consequences, radically increasing the evolvability of weak, defeasible inductive biases; however, the emergence of a strong cultural universal does not imply, nor lead to, nor require, strong innate constraints. From this we must conclude, on evolutionary grounds, that the strong nativist hypothesis for language is false. More generally, because such reciprocal interactions between cultural and biological evolution are not limited to language, nativist explanations for many behaviors should be reconsidered: Evolutionary reasoning shows how we can have cognitively driven behavioral universals and yet extreme plasticity at the level of the individual-if, and only if, we account for the human capacity to transmit knowledge culturally. Wherever culture is involved, weak cognitive biases rather than strong innate constraints should be the default assumption.
NASA Astrophysics Data System (ADS)
Pinotti, Lucio P.; D'Eramo, Fernando J.; Weinberg, Roberto F.; Demartis, Manuel; Tubía, José María; Coniglio, Jorge E.; Radice, Stefania; Maffini, M. Natalia; Aragón, Eugenio
2016-11-01
Processes like injection, magma flow and differentiation and influence of the regional strain field are here described and contrasted to shed light on their role in the formation of small plutons and large batholiths their magmatic structures. The final geometric and compositional arrangement of magma bodies are a complex record of their construction and internal flow history. Magma injection, flow and differentiation, as well as regional stresses, all control the internal nature of magma bodies. Large magma bodies emplaced at shallow crustal levels result from the intrusion of multiple magma batches that interact in a variety of ways, depending on internal and external dynamics, and where the early magmatic, growth-related structures are commonly overprinted by subsequent history. In contrast, small plutons emplaced in the brittle-ductile transition more likely preserve growth-related structures, having a relatively simple cooling history and limited internal magma flow. Outcrop-scale magmatic structures in both cases record a rich set of complementary information that can help elucidate their evolution. Large and small granitic bodies of the Sierra Pampeanas preserve excellent exposures of magmatic structures that formed as magmas stepped through different rheological states during pluton growth and solidification. These structures reveal not only the flow pattern inside magma chambers, but also the rheological evolution of magmas in response to temperature evolution.
NASA Astrophysics Data System (ADS)
Lin, Changsong; Zhang, Zhongtao; liu, Jingyan; Jiang, Jing
2016-04-01
The Pear River Mouth Basin is located in the northern continent margin of the South China Sea. Since the Late Oligocene, the long-term active fluvial systems (Paleo-Zhujiang) from the western basin margin bebouched into the northern continental margin of the South China Sea and formed widespread deltaic deposits in various depositional geomorphologies and tectonic settings. Based of integral analysys of abundant seismic, well logging and drilling core data, Depositional architecture and evolution of these delta systems and their respone to the tectonic and sea level change are documented in the study. There are two basic types of the delta systems which have been recognized: inner shelf delta deposited in shallow water enviroments and the outer shelf or shelf-edge delta systems occurred in deep water settings. The paleowater depths of these delta systems are around 30 to 80m (inner shelf delta) and 400-1000m (shelf-edge delta) estimated from the thickness (decompaction) of the delta front sequences. The study shows that the inner shelf delta systems are characterized by relatively thin delta forests (20-40m), numereous stacked distributary channel fills, relative coarse river mouth bar deposits and thin distal delta front or distal bar and prodelta deposits. In contrast, the outer shelf or shelf edge delta systems are characteristic of thick (300-800m) and steep (4-60) of deltaic clinoforms, which commonly display in 3D seismic profiles as "S" shape reflection. Large scale soft-sediment deformation structures, slump or debris flow deposits consisting mainly of soft-sediment deformed beds, blocks of sandstones and siltstones or mudstones widely developed in the delta front deposits. The shelf edge delta systems are typically associated with sandy turbidite fan deposits along the prodelta slopes, which may shift basinwards as the progradation of the delta systems. The delta systems underwent several regional cycles of evolution from inner shelf deltas to shelf edge deltas since the Late Oligocene in the study area, and this is consistent with relative sea level changes constrained by interplay of tectonic subsidence or global sea level change and sediment supply. The shelf-edge delta sandy deposits and the associated prodelta turbidite fan systems are the most important oil/gas bearing reservoirs in the continental slope area.
NASA Astrophysics Data System (ADS)
Pechlivanidou, Sofia; Cowie, Patience; Gawthorpe, Rob
2015-04-01
This study presents an integrated source to sink approach to understand the controls on the distribution of sediments source areas, sediment routing and downstream fining in the Sperchios rift system, central Greece. The Sperchios Rift forms an active half-graben basin, which is controlled by major NW-SE trending faults. Detailed sedimentological analysis (grain size, macro/micro faunal, geochemical and mineral magnetic analysis) in conjunction with 14C age constraints reveal the stratigraphic evolution of the Sperchios delta, located at the eastern part of the rift, including the presence of a Holocene transgressive - regressive wedge overlying Late Pleistocene alluvial deposits. The process-based stratigraphic model SedFlux2D is used to simulate the delta evolution and model scenarios are compared with the measured data. A series of sensitivity tests are used to explore uncertainties associated with variations in sediment supply, tectonic subsidence rate, and Holocene relative sea level. We discuss the effects of the major controls, in particular the rate of relative sea-level rise and tectonic subsidence rate, on accommodation creation and thus delta architecture in this active rift setting during the Holocene. The transition from transgression to regression is found to be mainly controlled by the slowing rate of relative sea level rise that occurred approximately 5500 kyrs ago. Finally, we compare the sediment volumes and grain size variations preserved in the Sperchios delta to onshore erosion rates inferred from data collected on bedrock erodibility, measurements of downstream fining, as well as stream-power/transport capacity for both transverse and axial drainage networks. This comparison, when combined with information on relative uplift/subsidence patterns due to active extensional tectonics, allows us to develop a semi-quantitative, process-based source-to-sink model for this area.
Impact of PID on industrial rooftop PV-installations
NASA Astrophysics Data System (ADS)
Buerhop, Claudia; Fecher, Frank W.; Pickel, Tobias; Patel, Tirth; Zetzmann, Cornelia; Camus, Christian; Hauch, Jens; Brabec, Christoph J.
2017-08-01
Potential induced degradation (PID) causes severe damage and financial losses even in modern PV-installations. In Germany, approximately 19% of PV-installations suffer from PID and resulting power loss. This paper focuses on the impact of PID in real installations and how different evaluated time intervals influence the performance ratio (PR) and the determined degradation rate. The analysis focuses exemplarily on a 314 kWp PV-system in the Atlantic coastal climate. IR-imaging is used for identifying PID without operation interruption. Historic electric performance data are available from a monitoring system for several years on system level, string level as well as punctually measured module string IV- curves. The data sets are combined for understanding the PID behavior of this PV plant. The number of PID affected cells within a string varies strongly between 1 to 22% with the string position on the building complex. With increasing number of PID-affected cells the performance ratio decreases down to 60% for daily and monthly periods. Local differences in PID evolution rates are identified. An average PR-reduction of -3.65% per year is found for the PV-plant. On the string level the degradation rate varied up to 8.8% per year depending on the string position and the time period. The analysis reveals that PID generation and evolution in roof-top installations on industrial buildings with locally varying operation conditions can be fairly complex. The results yield that local operating conditions, e.g. ambient weather conditions as well as surrounding conditions on an industrial building, seem to have a dominating impact on the PID evolution rate.
Dynamic Landscapes and Sea Level Change in Human Evolution and Dispersal
NASA Astrophysics Data System (ADS)
King, G. C.; Devès, M. H.; Bailey, G.; Inglis, R.; Williams, M.
2012-12-01
Archaeological studies of human settlement in its wider landscape setting usually focus on climate change as the principal environmental driver of change in the physical features of the landscape, even on the long time scales of early human evolution. We emphasize that landscapes evolve dynamically due to an interplay of processes occurring over different timescales. Tectonic deformation, volcanism, sea level changes, by acting on the topography, the lithology and on the patterns of erosion-deposition in a given area, can moderate or amplify the influence of climate at the regional and local scale. These processes impose or alleviate physical barriers to movement, and modify the distribution and accessibility of plant and animal resources in ways critical to human ecological and evolutionary success (King and Bailey, JHE 2006; Bailey and King, Antiquity 2011). The DISPERSE project, an ERC-funded collaboration between the University of York and the Institut de Physique du Globe de Paris,are developing systematic methods for reconstructing landscapes associated with active tectonics, volcanism and sea level change at a variety of scales in order to study their potential impact on patterns of human evolution and dispersal. These approaches use remote sensing techniques combined with archaeological and tectonic field surveys on land and underwater. Examples are shown from Europe, the Middle East and Africa to illustrate the ways in which changes of significance to human settlement can occur at a range of geographical scales and on time scales that range from lifetimes to tens of millennia, creating and sustaining attractive conditions for human settlement and exercising powerful selective pressures on human development.
Hawkins, Angela K; Garza, Elyssa R; Dietz, Valerie A; Hernandez, Oscar J; Hawkins, W Daryl; Burrell, A Millie
2017-01-01
Abstract Plants on serpentine soils provide extreme examples of adaptation to environment, and thus offer excellent models for the study of evolution at the molecular and genomic level. Serpentine outcrops are derived from ultramafic rock and have extremely low levels of essential plant nutrients (e.g., N, P, K, and Ca), as well as toxic levels of heavy metals (e.g., Ni, Cr, and Co) and low moisture availability. These outcrops provide habitat to a number of endemic plant species, including the annual mustard Caulanthus amplexicaulis var. barbarae (Cab) (Brassicaceae). Its sister taxon, C. amplexicaulis var. amplexicaulis (Caa), is intolerant to serpentine soils. Here, we assembled and annotated comprehensive reference transcriptomes of both Caa and Cab for use in protein coding sequence comparisons. A set of 29,443 reciprocal best Blast hit (RBH) orthologs between Caa and Cab was compared with identify coding sequence variants, revealing a high genome-wide dN/dS ratio between the two taxa (mean = 0.346). We show that elevated dN/dS likely results from the composite effects of genetic drift, positive selection, and the relaxation of negative selection. Further, analysis of paralogs within each taxon revealed the signature of a period of elevated gene duplication (∼10 Ma) that is shared with other species of the tribe Thelypodieae, and may have played a role in the striking morphological and ecological diversity of this tribe. In addition, distribution of the synonymous substitution rate, dS, is strongly bimodal, indicating a history of reticulate evolution that may have contributed to serpentine adaptation. PMID:29220486
Campos, Marcelino; Llorens, Carlos; Sempere, José M; Futami, Ricardo; Rodriguez, Irene; Carrasco, Purificación; Capilla, Rafael; Latorre, Amparo; Coque, Teresa M; Moya, Andres; Baquero, Fernando
2015-08-05
Antibiotic resistance is a major biomedical problem upon which public health systems demand solutions to construe the dynamics and epidemiological risk of resistant bacteria in anthropogenically-altered environments. The implementation of computable models with reciprocity within and between levels of biological organization (i.e. essential nesting) is central for studying antibiotic resistances. Antibiotic resistance is not just the result of antibiotic-driven selection but more properly the consequence of a complex hierarchy of processes shaping the ecology and evolution of the distinct subcellular, cellular and supra-cellular vehicles involved in the dissemination of resistance genes. Such a complex background motivated us to explore the P-system standards of membrane computing an innovative natural computing formalism that abstracts the notion of movement across membranes to simulate antibiotic resistance evolution processes across nested levels of micro- and macro-environmental organization in a given ecosystem. In this article, we introduce ARES (Antibiotic Resistance Evolution Simulator) a software device that simulates P-system model scenarios with five types of nested computing membranes oriented to emulate a hierarchy of eco-biological compartments, i.e. a) peripheral ecosystem; b) local environment; c) reservoir of supplies; d) animal host; and e) host's associated bacterial organisms (microbiome). Computational objects emulating molecular entities such as plasmids, antibiotic resistance genes, antimicrobials, and/or other substances can be introduced into this framework and may interact and evolve together with the membranes, according to a set of pre-established rules and specifications. ARES has been implemented as an online server and offers additional tools for storage and model editing and downstream analysis. The stochastic nature of the P-system model implemented in ARES explicitly links within and between host dynamics into a simulation, with feedback reciprocity among the different units of selection influenced by antibiotic exposure at various ecological levels. ARES offers the possibility of modeling predictive multilevel scenarios of antibiotic resistance evolution that can be interrogated, edited and re-simulated if necessary, with different parameters, until a correct model description of the process in the real world is convincingly approached. ARES can be accessed at http://gydb.org/ares.
Mallinson, D.J.; Culver, S.J.; Riggs, S.R.; Thieler, E.R.; Foster, D.; Wehmiller, J.; Farrell, K.M.; Pierson, J.
2010-01-01
Seismic and core data, combined with amino acid racemization and strontium-isotope age data, enable the definition of the Quaternary stratigraphic framework and recognition of geologic controls on the development of the modern coastal system of North Carolina, U.S.A. Seven regionally continuous high amplitude reflections are defined which bound six seismic stratigraphic units consisting of multiple regionally discontinuous depositional sequences and parasequence sets, and enable an understanding of the evolution of this margin. Data reveal the progressive eastward progradation and aggradation of the Quaternary shelf. The early Pleistocene inner shelf occurs at a depth of ca. 20-40 m beneath the western part of the modern estuarine system (Pamlico Sound). A mid- to outer shelf lowstand terrace (also early Pleistocene) with shelf sand ridge deposits comprising parasequence sets within a transgressive systems tract, occurs at a deeper level (ca. 45-70 m) beneath the modern barrier island system (the Outer Banks) and northern Pamlico Sound. Seismic and foraminiferal paleoenvironmental data from cores indicate the occurrence of lowstand strandplain shoreline deposits on the early to middle Pleistocene shelf. Middle to late Pleistocene deposits occur above a prominent unconformity and marine flooding surface that truncates underlying units, and contain numerous filled fluvial valleys that are incised into the early and middle Pleistocene deposits. The stratigraphic framework suggests margin progradation and aggradation modified by an increase in the magnitude of sea-level fluctuations during the middle to late Pleistocene, expressed as falling stage, lowstand, transgressive and highstand systems tracts. Thick stratigraphic sequences occur within the middle Pleistocene section, suggesting the occurrence of high capacity fluvial point sources debouching into the area from the west and north. Furthermore, the antecedent topography plays a significant role in the evolution of the geomorphology and stratigraphy of this marginal system. ?? 2009 Elsevier B.V.
Oxygen no longer plays a major role in Body Size Evolution
NASA Astrophysics Data System (ADS)
Datta, H.; Sachson, W.; Heim, N. A.; Payne, J.
2015-12-01
When observing the long-term relationship between atmospheric oxygen and the maximum size in organisms across the Geozoic (~3.8 Ga - present), it appears that as oxygen increases, organism size grows. However, during the Phanerozoic (541 Ma - Present) oxygen levels varied, so we set out to test the hypothesis that oxygen levels drive patterns marine animal body size evolution. Expected decreases in maximum size due to a lack of oxygen do not occur, and instead, body size continues to increase regardless. In the oxygen data, a relatively low atmospheric oxygen percentage can support increasing body size, so our research tries to determine whether lifestyle affects body size in marine organisms. The genera in the data set were organized based on their tiering, motility, and feeding, such as a pelagic, fully-motile, predator. When organisms fill a certain ecological niche to take advantage of resources, they will have certain life modes, rather than randomly selected traits. For example, even in terrestrial environments, large animals have to constantly feed themselves to support their expensive terrestrial lifestyle which involves fairly consistent movement, and the structural support necessary for that movement. Only organisms with access to high energy food sources or large amounts of food can support themselves, and that is before they expend energy elsewhere. Organisms that expend energy frugally when active or have slower metabolisms in comparison to body size have a more efficient lifestyle and are generally able to grow larger, while those who have higher energy demands like predators are limited to comparatively smaller sizes. Therefore, in respect to the fossil record and modern measurements of animals, the metabolism and lifestyle of an organism dictate its body size in general. With this further clarification on the patterns of evolution, it will be easier to observe and understand the reasons for the ecological traits of organisms today.
NASA Astrophysics Data System (ADS)
Mouchene, M.; van der Beek, P.; Carretier, S.; Mouthereau, F.
2017-12-01
Alluvial megafans are sensitive recorders of landscape evolution, controlled by both autogenic processes and allogenic forcing, and they are influenced by the coupled dynamics of the fan with its mountainous catchment. The Mio-Pliocene Lannemezan megafan in the northern Pyrenean foreland (SW France) was abandoned by its mountainous feeder stream during the Quaternary and subsequently incised. The flight of alluvial terraces abandoned along the stream network may suggest a climatic control on the incision. We use a landscape evolution numerical model (CIDRE) to explore the relative roles of autogenic processes and external forcing in the building, abandonment and incision of a foreland megafan, and we compare the results with the inferred evolution of the Lannemezan megafan. Autogenic processes are sufficient to explain the building of a megafan and the long-term entrenchment of its feeding river on time and space scales that match the Lannemezan setting. Climate, through temporal variations in precipitation rate, may have played a role in the episodic pattern of incision on a shorter timescale. In contrast, base-level changes, tectonic activity in the mountain range or tilting of the foreland through flexural isostatic rebound do not appear to have played a role in the abandonment of the megafan.
Tsuboi, M; Lim, A C O; Ooi, B L; Yip, M Y; Chong, V C; Ahnesjö, I; Kolm, N
2017-01-01
Brain size varies greatly at all taxonomic levels. Feeding ecology, life history and sexual selection have been proposed as key components in generating contemporary diversity in brain size across vertebrates. Analyses of brain size evolution have, however, been limited to lineages where males predominantly compete for mating and females choose mates. Here, we present the first original data set of brain sizes in pipefishes and seahorses (Syngnathidae) a group in which intense female mating competition occurs in many species. After controlling for the effect of shared ancestry and overall body size, brain size was positively correlated with relative snout length. Moreover, we found that females, on average, had 4.3% heavier brains than males and that polyandrous species demonstrated more pronounced (11.7%) female-biased brain size dimorphism. Our results suggest that adaptations for feeding on mobile prey items and sexual selection in females are important factors in brain size evolution of pipefishes and seahorses. Most importantly, our study supports the idea that sexual selection plays a major role in brain size evolution, regardless of on which sex sexual selection acts stronger. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Origin and evolution of planetary atmospheres
NASA Technical Reports Server (NTRS)
Pollack, J. B.; Yung, Y. L.
1980-01-01
The current understanding of the origin and evolution of the atmospheres of solar system objects is reviewed. Physical processes that control this evolution are described in an attempt to develop a set of general principles that can help guide studies of specific objects. Particular emphasis is placed on the planetary and satellite atmospheres of the inner solar system objects; current hypotheses on the origin and evolution of these objects are critically considered.
Cyberhubs: Virtual Research Environments for Astronomy
NASA Astrophysics Data System (ADS)
Herwig, Falk; Andrassy, Robert; Annau, Nic; Clarkson, Ondrea; Côté, Benoit; D’Sa, Aaron; Jones, Sam; Moa, Belaid; O’Connell, Jericho; Porter, David; Ritter, Christian; Woodward, Paul
2018-05-01
Collaborations in astronomy and astrophysics are faced with numerous cyber-infrastructure challenges, such as large data sets, the need to combine heterogeneous data sets, and the challenge to effectively collaborate on those large, heterogeneous data sets with significant processing requirements and complex science software tools. The cyberhubs system is an easy-to-deploy package for small- to medium-sized collaborations based on the Jupyter and Docker technology, which allows web-browser-enabled, remote, interactive analytic access to shared data. It offers an initial step to address these challenges. The features and deployment steps of the system are described, as well as the requirements collection through an account of the different approaches to data structuring, handling, and available analytic tools for the NuGrid and PPMstar collaborations. NuGrid is an international collaboration that creates stellar evolution and explosion physics and nucleosynthesis simulation data. The PPMstar collaboration performs large-scale 3D stellar hydrodynamics simulations of interior convection in the late phases of stellar evolution. Examples of science that is currently performed on cyberhubs, in the areas of 3D stellar hydrodynamic simulations, stellar evolution and nucleosynthesis, and Galactic chemical evolution, are presented.
Yedid, G; Ofria, C A; Lenski, R E
2008-09-01
Re-evolution of complex biological features following the extinction of taxa bearing them remains one of evolution's most interesting phenomena, but is not amenable to study in fossil taxa. We used communities of digital organisms (computer programs that self-replicate, mutate and evolve), subjected to periods of low resource availability, to study the evolution, loss and re-evolution of a complex computational trait, the function EQU (bit-wise logical equals). We focused our analysis on cases where the pre-extinction EQU clade had surviving descendents at the end of the extinction episode. To see if these clades retained the capacity to re-evolve EQU, we seeded one set of multiple subreplicate 'replay' populations using the most abundant survivor of the pre-extinction EQU clade, and another set with the actual end-extinction ancestor of the organism in which EQU re-evolved following the extinction episode. Our results demonstrate that stochastic, historical, genomic and ecological factors can lead to constraints on further adaptation, and facilitate or hinder re-evolution of a complex feature.
NASA Astrophysics Data System (ADS)
Neyskens, P.; van Eck, S.; Plez, B.; Goriely, S.; Siess, L.; Jorissen, A.
2011-09-01
During evolution on the AGB, stars of type S are the first to experience s-process nucleosynthesis and the third dredge-up, and therefore to exhibit s-process signatures in their atmospheres. Their high mass-loss rates (10-7 to 10-6 M⊙/year) make them major contributors to the AGB nucleosynthesis yields at solar metallicity. Precise abundance determinations in S stars are of the utmost importance for constraining e.g. the third dredge-up luminosity and efficiency (which has been only crudely parameterized in current nucleosynthetic models so far). Here, dedicated S-star model atmospheres are used to determine precise abundances of key s-process elements, and to set constraints on nucleosynthesis and stellar evolution models. Special interest is paid to technetium, an element with no stable isotopes. Its detection is considered the best signature that the star effectively populates the thermally-pulsing AGB phase of evolution. The derived Tc/Zr abundances are compared, as a function of the derived [Zr/Fe] overabundances, with AGB stellar model predictions. The [Zr/Fe] overabundances are in good agreement with model predictions, while the Tc/Zr abundances are slightly overpredicted. This discrepancy can help to set better constraints on nucleosynthesis and stellar evolution models of AGB stars.
Adaptive Evolution Is Substantially Impeded by Hill-Robertson Interference in Drosophila.
Castellano, David; Coronado-Zamora, Marta; Campos, Jose L; Barbadilla, Antonio; Eyre-Walker, Adam
2016-02-01
Hill-Robertson interference (HRi) is expected to reduce the efficiency of natural selection when two or more linked selected sites do not segregate freely, but no attempt has been done so far to quantify the overall impact of HRi on the rate of adaptive evolution for any given genome. In this work, we estimate how much HRi impedes the rate of adaptive evolution in the coding genome of Drosophila melanogaster. We compiled a data set of 6,141 autosomal protein-coding genes from Drosophila, from which polymorphism levels in D. melanogaster and divergence out to D. yakuba were estimated. The rate of adaptive evolution was calculated using a derivative of the McDonald-Kreitman test that controls for slightly deleterious mutations. We find that the rate of adaptive amino acid substitution at a given position of the genome is positively correlated to both the rate of recombination and the mutation rate, and negatively correlated to the gene density of the region. These correlations are robust to controlling for each other, for synonymous codon bias and for gene functions related to immune response and testes. We show that HRi diminishes the rate of adaptive evolution by approximately 27%. Interestingly, genes with low mutation rates embedded in gene poor regions lose approximately 17% of their adaptive substitutions whereas genes with high mutation rates embedded in gene rich regions lose approximately 60%. We conclude that HRi hampers the rate of adaptive evolution in Drosophila and that the variation in recombination, mutation, and gene density along the genome affects the HRi effect. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Enterprise Framework for the Disciplined Evolution of Legacy Systems
1997-10-01
out important global issues early in the planning cycle and provides insight for developing a synergistic set of management and technical practices to achieve a disciplined approach to system evolution.
Adaptive Evolution Is Substantially Impeded by Hill–Robertson Interference in Drosophila
Castellano, David; Coronado-Zamora, Marta; Campos, Jose L.; Barbadilla, Antonio; Eyre-Walker, Adam
2016-01-01
Hill–Robertson interference (HRi) is expected to reduce the efficiency of natural selection when two or more linked selected sites do not segregate freely, but no attempt has been done so far to quantify the overall impact of HRi on the rate of adaptive evolution for any given genome. In this work, we estimate how much HRi impedes the rate of adaptive evolution in the coding genome of Drosophila melanogaster. We compiled a data set of 6,141 autosomal protein-coding genes from Drosophila, from which polymorphism levels in D. melanogaster and divergence out to D. yakuba were estimated. The rate of adaptive evolution was calculated using a derivative of the McDonald–Kreitman test that controls for slightly deleterious mutations. We find that the rate of adaptive amino acid substitution at a given position of the genome is positively correlated to both the rate of recombination and the mutation rate, and negatively correlated to the gene density of the region. These correlations are robust to controlling for each other, for synonymous codon bias and for gene functions related to immune response and testes. We show that HRi diminishes the rate of adaptive evolution by approximately 27%. Interestingly, genes with low mutation rates embedded in gene poor regions lose approximately 17% of their adaptive substitutions whereas genes with high mutation rates embedded in gene rich regions lose approximately 60%. We conclude that HRi hampers the rate of adaptive evolution in Drosophila and that the variation in recombination, mutation, and gene density along the genome affects the HRi effect. PMID:26494843
Evolution of meiotic recombination genes in maize and teosinte.
Sidhu, Gaganpreet K; Warzecha, Tomasz; Pawlowski, Wojciech P
2017-01-25
Meiotic recombination is a major source of genetic variation in eukaryotes. The role of recombination in evolution is recognized but little is known about how evolutionary forces affect the recombination pathway itself. Although the recombination pathway is fundamentally conserved across different species, genetic variation in recombination components and outcomes has been observed. Theoretical predictions and empirical studies suggest that changes in the recombination pathway are likely to provide adaptive abilities to populations experiencing directional or strong selection pressures, such as those occurring during species domestication. We hypothesized that adaptive changes in recombination may be associated with adaptive evolution patterns of genes involved in meiotic recombination. To examine how maize evolution and domestication affected meiotic recombination genes, we studied patterns of sequence polymorphism and divergence in eleven genes controlling key steps in the meiotic recombination pathway in a diverse set of maize inbred lines and several accessions of teosinte, the wild ancestor of maize. We discovered that, even though the recombination genes generally exhibited high sequence conservation expected in a pathway controlling a key cellular process, they showed substantial levels and diverse patterns of sequence polymorphism. Among others, we found differences in sequence polymorphism patterns between tropical and temperate maize germplasms. Several recombination genes displayed patterns of polymorphism indicative of adaptive evolution. Despite their ancient origin and overall sequence conservation, meiotic recombination genes can exhibit extensive and complex patterns of molecular evolution. Changes in these genes could affect the functioning of the recombination pathway, and may have contributed to the successful domestication of maize and its expansion to new cultivation areas.
NASA Astrophysics Data System (ADS)
Freedhoff, Helen
2004-01-01
We study an aggregate of N identical two-level atoms (TLA’s) coupled by the retarded interatomic interaction, using the Lehmberg-Agarwal master equation. First, we calculate the entangled eigenstates of the system; then, we use these eigenstates as a basis set for the projection of the master equation. We demonstrate that in this basis the equations of motion for the level populations, as well as the expressions for the emission and absorption spectra, assume a simple mathematical structure and allow for a transparent physical interpretation. To illustrate the use of the general theory in emission processes, we study an isosceles triangle of atoms, and present in the long wavelength limit the (cascade) emission spectrum for a hexagon of atoms fully excited at t=0. To illustrate its use for absorption processes, we tabulate (in the same limit) the biexciton absorption frequencies, linewidths, and relative intensities for polygons consisting of N=2,…,9 TLA’s.
Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning
Kok, Kai Yit; Rajendran, Parvathy
2016-01-01
The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost. PMID:26943630
Frasca, Mattia; Sharkey, Kieran J
2016-06-21
Understanding the dynamics of spread of infectious diseases between individuals is essential for forecasting the evolution of an epidemic outbreak or for defining intervention policies. The problem is addressed by many approaches including stochastic and deterministic models formulated at diverse scales (individuals, populations) and different levels of detail. Here we consider discrete-time SIR (susceptible-infectious-removed) dynamics propagated on contact networks. We derive a novel set of 'discrete-time moment equations' for the probability of the system states at the level of individual nodes and pairs of nodes. These equations form a set which we close by introducing appropriate approximations of the joint probabilities appearing in them. For the example case of SIR processes, we formulate two types of model, one assuming statistical independence at the level of individuals and one at the level of pairs. From the pair-based model we then derive a model at the level of the population which captures the behavior of epidemics on homogeneous random networks. With respect to their continuous-time counterparts, the models include a larger number of possible transitions from one state to another and joint probabilities with a larger number of individuals. The approach is validated through numerical simulation over different network topologies. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
GRAIL TCM-5 Go/No-Go: Developing Lunar Orbit Insertion (LOI) Criteria
NASA Technical Reports Server (NTRS)
Chung, Min-Kun J.
2013-01-01
The Gravity Recovery and Interior Laboratory (GRAIL) mission successfully completed mapping the Moon's gravity field to an unprecedented level for a better understanding of the internal structure and thermal evolution of the Moon. The mission success was critically dependent on the success of the Lunar Orbit Insertion (LOI). In this paper we establish a set of LOI criteria to meet all the requirements and we use these criteria to establish Go/No-Go boundaries of the last, statistical Trajectory Correction Maneuvers (TCM-5s) for operations.
Head capsule characters in the Hymenoptera and their phylogenetic implications
Vilhelmsen, Lars
2011-01-01
Abstract The head capsule of a taxon sample of three outgroup and 86 ingroup taxa is examined for characters of possible phylogenetic significance within Hymenoptera. 21 morphological characters are illustrated and scored, and their character evolution explored by mapping them onto a phylogeny recently produced from a large morphological data set. Many of the characters are informative and display unambiguous changes. Most of the character support demonstrated is supportive at the superfamily or family level. In contrast, only few characters corroborate deeper nodes in the phylogeny of Hymenoptera. PMID:22259288
Atlas of the global distribution of atmospheric heating during the global weather experiment
NASA Technical Reports Server (NTRS)
Schaack, Todd K.; Johnson, Donald R.
1991-01-01
Global distributions of atmospheric heating for the annual cycle of the Global Weather Experiment are estimated from the European Centre for Medium-Range Weather Forecasts (ECMWF) Level 3b data set. Distributions of monthly, seasonally, and annually averaged heating are presented for isentropic and isobaric layers within the troposphere and for the troposphere as a whole. The distributions depict a large-scale structure of atmospheric heating that appears spatially and temporally consistent with known features of the global circulation and the seasonal evolution.
A visual model for object detection based on active contours and level-set method.
Satoh, Shunji
2006-09-01
A visual model for object detection is proposed. In order to make the detection ability comparable with existing technical methods for object detection, an evolution equation of neurons in the model is derived from the computational principle of active contours. The hierarchical structure of the model emerges naturally from the evolution equation. One drawback involved with initial values of active contours is alleviated by introducing and formulating convexity, which is a visual property. Numerical experiments show that the proposed model detects objects with complex topologies and that it is tolerant of noise. A visual attention model is introduced into the proposed model. Other simulations show that the visual properties of the model are consistent with the results of psychological experiments that disclose the relation between figure-ground reversal and visual attention. We also demonstrate that the model tends to perceive smaller regions as figures, which is a characteristic observed in human visual perception.
Serine proteinase inhibitors from nematodes and the arms race between host and pathogen.
Zang, X; Maizels, R M
2001-03-01
Serine proteinase inhibitors are encoded by a large gene family of long evolutionary standing. Recent discoveries of parasite proteins that inhibit human serine proteinases, together with the complete genomic sequence from Caenorhabditis elegans, have provided a set of new serine proteinase inhibitors from more primitive metazoan animals such as nematodes. The structural features (e.g. reactive centre residues), gene organization (including intron arrangements) and inhibitory function and targets (e.g. inflammatory and coagulation pathway proteinase) all contribute important new insights into proteinase inhibitor evolution. Some parasite products have evolved that block enzymes in the mammalian host, but the human host responds with a significant immune response to the parasite inhibitors. Thus, infection produces a finely balanced conflict between host and pathogen at the molecular level, and this might have accelerated the evolution of these proteins in parasitic species as well as their hosts.
Sexual behavior, reproductive physiology and sperm competition in male mammals.
Dixson, Alan F; Anderson, Matthew J
2004-11-15
Sperm competition involves competition between the gametes of two or more males of a species for fertilization of a given set of ova. Sperm competition is widespread among mammals, as in many other groups of vertebrates. Effects of sexual selection, via sperm competition, upon the evolution of reproductive physiology and behavior are much better understood in invertebrates (and especially in insects) than is the case for mammals. However, if the reproductive organs of male mammals are viewed as an integrated system for production and delivery of spermatozoa (and accessory glandular secretions) to females, then it is logical to assume that sperm competition might influence the evolution of all parts of the system, as well as associated physiological mechanisms (e.g., testicular endocrinology) and behavior (e.g., copulatory patterns). Here we analyze and review relationships between mating systems, relative testes sizes and sperm morphology, phallic morphology, circulating testosterone levels and sexual behavior in male mammals.
Evolution of Nanowire Transmon Qubits and Their Coherence in a Magnetic Field
NASA Astrophysics Data System (ADS)
Luthi, F.; Stavenga, T.; Enzing, O. W.; Bruno, A.; Dickel, C.; Langford, N. K.; Rol, M. A.; Jespersen, T. S.; Nygârd, J.; Krogstrup, P.; DiCarlo, L.
2018-03-01
We present an experimental study of flux- and gate-tunable nanowire transmons with state-of-the-art relaxation time allowing quantitative extraction of flux and charge noise coupling to the Josephson energy. We evidence coherence sweet spots for charge, tuned by voltage on a proximal side gate, where first order sensitivity to switching two-level systems and background 1 /f noise is minimized. Next, we investigate the evolution of a nanowire transmon in a parallel magnetic field up to 70 mT, the upper bound set by the closing of the induced gap. Several features observed in the field dependence of qubit energy relaxation and dephasing times are not fully understood. Using nanowires with a thinner, partially covering Al shell will enable operation of these circuits up to 0.5 T, a regime relevant for topological quantum computation and other applications.
Friendship and natural selection
Christakis, Nicholas A.; Fowler, James H.
2014-01-01
More than any other species, humans form social ties to individuals who are neither kin nor mates, and these ties tend to be with similar people. Here, we show that this similarity extends to genotypes. Across the whole genome, friends’ genotypes at the single nucleotide polymorphism level tend to be positively correlated (homophilic). In fact, the increase in similarity relative to strangers is at the level of fourth cousins. However, certain genotypes are also negatively correlated (heterophilic) in friends. And the degree of correlation in genotypes can be used to create a “friendship score” that predicts the existence of friendship ties in a hold-out sample. A focused gene-set analysis indicates that some of the overall correlation in genotypes can be explained by specific systems; for example, an olfactory gene set is homophilic and an immune system gene set is heterophilic, suggesting that these systems may play a role in the formation or maintenance of friendship ties. Friends may be a kind of “functional kin.” Finally, homophilic genotypes exhibit significantly higher measures of positive selection, suggesting that, on average, they may yield a synergistic fitness advantage that has been helping to drive recent human evolution. PMID:25024208
Automated Segmentation of High-Resolution Photospheric Images of Active Regions
NASA Astrophysics Data System (ADS)
Yang, Meng; Tian, Yu; Rao, Changhui
2018-02-01
Due to the development of ground-based, large-aperture solar telescopes with adaptive optics (AO) resulting in increasing resolving ability, more accurate sunspot identifications and characterizations are required. In this article, we have developed a set of automated segmentation methods for high-resolution solar photospheric images. Firstly, a local-intensity-clustering level-set method is applied to roughly separate solar granulation and sunspots. Then reinitialization-free level-set evolution is adopted to adjust the boundaries of the photospheric patch; an adaptive intensity threshold is used to discriminate between umbra and penumbra; light bridges are selected according to their regional properties from candidates produced by morphological operations. The proposed method is applied to the solar high-resolution TiO 705.7-nm images taken by the 151-element AO system and Ground-Layer Adaptive Optics prototype system at the 1-m New Vacuum Solar Telescope of the Yunnan Observatory. Experimental results show that the method achieves satisfactory robustness and efficiency with low computational cost on high-resolution images. The method could also be applied to full-disk images, and the calculated sunspot areas correlate well with the data given by the National Oceanic and Atmospheric Administration (NOAA).
ERIC Educational Resources Information Center
Smith, Mike U.; Snyder, Scott W.; Devereaux, Randolph S.
2016-01-01
The present study reports the development of a brief, quantitative, web-based, psychometrically sound measure--the Generalized Acceptance of EvolutioN Evaluation (GAENE, pronounced "gene") in a format that is useful in large and small groups, in research, and in classroom settings. The measure was designed to measure only evolution…
NASA Astrophysics Data System (ADS)
Kerr, Yann; Wigneron, Jean-Pierre; Ferrazzoli, Paolo; Mahmoodi, Ali; Al-Yaari, Amen; Parrens, Marie; Bitar, Ahmad Al; Rodriguez-Fernandez, Nemesio; Bircher, Simone; Molero-rodenas, Beatriz; Drusch, Matthias; Mecklenburg, Susanne
2017-04-01
The SMOS (Soil Moisture and Ocean Salinity) satellite was successfully launched in November 2009. This ESA led mission for Earth Observation is dedicated to provide soil moisture over continental surface (with an accuracy goal of 0.04 m3/m3), vegetation water content over land, and ocean salinity. These geophysical features are important as they control the energy balance between the surface and the atmosphere. Their knowledge at a global scale is of interest for climatic and weather researches, and in particular in improving model forecasts. The Soil Moisture and Ocean Salinity mission has now been collecting data for over 7 years. The whole data set has been reprocessed (Version 620 for levels 1 and 2 and version 3 for level 3 CATDS) while operational near real time soil moisture data is now available and assimilation of SMOS data in NWP has proved successful. After 7 years it seems important to start using data for having a look at anomalies and see how they can relate to large scale events. We have also produced a 15 year soil moisture data set by merging SMOS and AMSR using a neural network approach. The purpose of this communication is to present the mission results after more than seven years in orbit in a climatic trend perspective, as through such a period anomalies can be detected. Thereby we benefit from consistent datasets provided through the latest reprocessing using most recent algorithm enhancements. Using the above mentioned products it is possible to follow large events such as the evolution of the droughts in North America, or water fraction evolution over the Amazonian basin. In this occasion we will focus on the analysis of SMOS and ancillary products anomalies to reveal two climatic trends, the temporal evolution of water storage over the Indian continent in relation to rainfall anomalies, and the global impact of El Nino types of events on the general water storage distribution. This presentation shows in detail the use of long term data sets of L-band microwave radiometry in two specific cases, namely droughts and water budget over a large basin. Several other analyses are under way currently. Obviously, vegetation water content, but also dielectric constant, are carrying a wealth of information and some interesting perspectives will be presented.
Broyles, Steven B; Wyatt, Robert
1995-02-01
The evolution of large floral displays in hermaphroditic flowering plants has been attributed to natural selection acting to enhance male, rather than female, reproductive success. Proponents of the "pollen-donation hypothesis" have assumed that maternal resources, rather than levels of effective pollination, limit fruit set. We investigated the pollen-donation hypothesis in an experimental population of poke milkweed, Asclepias exaltata, where effective pollination did not limit fruit set. Specifically, we examined the effects of flower number per plant, and flower number per umbel on male reproductive success (number of fruits sired) and female reproductive success (number of fruits matured). In 1990, a paternity analysis was performed on fruits collected from 53 plants whose inflorescences were not manipulated. Flower number per plant was significantly correlated with male success, but not with plant gender. Flower number per plant was also significantly correlated with female success, but umbel number and stem number per plant together explained more than half (58%) the variation in female success. The percentage of fruit set was not significantly correlated with flower number per plant. Plants with large floral displays did not disproportionately increase in male reproductive success, relative to female success, as predicted by the pollen-donation hypothesis. In 1991, the effect of flower number per umbel on male and female reproductive success was investigated. Flower number per umbel was manipulated on four umbels per plant by removing flowers to leave 6, 12, or 18 flowers in each umbel. Plants with the largest umbels effectively pollinated twice as many flowers on other plants, but produced only 1.35 times as many fruits as plants with 6 and 12 flowers per umbel. Relative maleness of plants with large umbels was nearly twice that of small and medium umbels. Although these observations are consistent with the pollen-donation hypothesis at the level of umbels, they are problematic, because much of the variation in flower number per umbel exists within, rather than among, plants in natural populations. Thus, plants consist of both reproductively male (large) and female (small) inflorescences, which act to increase total reproductive success. It is therefore inappropriate to explain the evolution of large floral displays in milkweeds solely in terms of potential male reproductive success. © 1995 The Society for the Study of Evolution.
SMOS and SMAP: from Lessons Learned to Future Mission Requirements
NASA Astrophysics Data System (ADS)
Kerr, Y. H.; Wigneron, J. P.; Cabot, F.; Escorihuela, M. J.; Anterrieu, E.; Rouge, B.; Rodriguez Fernandez, N.; Bindlish, R.; Khazaal, A.; Al-Bitar, A.; Mialon, A.; Lesthievent, G.
2017-12-01
The SMOS (Soil Moisture and Ocean Salinity) satellite was successfully launched in November 2009. This ESA led mission for Earth Observation is dedicated to provide soil moisture over continental surface, vegetation water content over land, and ocean salinity. The Soil Moisture and Ocean Salinity mission has now been collecting data for over 7 years. TheSoil Moisture Active and Passive for over 2 years.The two data set have been reprocessed (Version 620 for levels 1 and 2 and version 3 for level 3 CATDS) to be merged into one product, while operational near real time soil moisture data is now available and assimilation of SMOS data in NWP has proved successful. After 7 years of L-Band data acquisition, it seems important to start using data for having a look at anomalies and see how they can relate to large scale events. We have also produced a 15 year soil moisture data set by merging SMOS and AMSR using a neural network approach. The purpose of this communication is to present the two mission results after more than seven years in orbit in a climatic trend perspective, as through such a period anomalies can be detected. Thereby we benefit from consistent datasets provided through the latest reprocessing using most recent algorithm enhancements. Using the above mentioned products it is possible to follow large events such as the evolution of the droughts in North America, or water fraction evolution over the Amazonian basin. In this occasion we will focus on the analysis of SMOS and ancillary products anomalies to reveal two climatic trends, the temporal evolution of water storage over the Indian continent in relation to rainfall anomalies, and the global impact of El Nino types of events on the general water storage distribution. This presentation shows in detail the use of long term data sets of L-band microwave radiometry in two specific cases, namely droughts and water budget over a large basin. Several other analyses are under way currently. Obviously, vegetation water content, but also dielectric constant, are carrying a wealth of information and some interesting perspectives will be presented. More important it is now possible to draw conclusions from the lessons learnt and, with the help of the user's community, define the requirements for future missions. And, finally, from these requirement to propose mission scenarii.
Chaotic evolution of arms races
NASA Astrophysics Data System (ADS)
Tomochi, Masaki; Kono, Mitsuo
1998-12-01
A new set of model equations is proposed to describe the evolution of the arms race, by extending Richardson's model with special emphases that (1) power dependent defensive reaction or historical enmity could be a motive force to promote armaments, (2) a deterrent would suppress the growth of armaments, and (3) the defense reaction of one nation against the other nation depends nonlinearly on the difference in armaments between two. The set of equations is numerically solved to exhibit stationary, periodic, and chaotic behavior depending on the combinations of parameters involved. The chaotic evolution is realized when the economic situation of each country involved in the arms race is quite different, which is often observed in the real world.
NASA Astrophysics Data System (ADS)
Rybizki, Jan; Just, Andreas; Rix, Hans-Walter
2017-09-01
Elemental abundances of stars are the result of the complex enrichment history of their galaxy. Interpretation of observed abundances requires flexible modeling tools to explore and quantify the information about Galactic chemical evolution (GCE) stored in such data. Here we present Chempy, a newly developed code for GCE modeling, representing a parametrized open one-zone model within a Bayesian framework. A Chempy model is specified by a set of five to ten parameters that describe the effective galaxy evolution along with the stellar and star-formation physics: for example, the star-formation history (SFH), the feedback efficiency, the stellar initial mass function (IMF), and the incidence of supernova of type Ia (SN Ia). Unlike established approaches, Chempy can sample the posterior probability distribution in the full model parameter space and test data-model matches for different nucleosynthetic yield sets. It is essentially a chemical evolution fitting tool. We straightforwardly extend Chempy to a multi-zone scheme. As an illustrative application, we show that interesting parameter constraints result from only the ages and elemental abundances of the Sun, Arcturus, and the present-day interstellar medium (ISM). For the first time, we use such information to infer the IMF parameter via GCE modeling, where we properly marginalize over nuisance parameters and account for different yield sets. We find that 11.6+ 2.1-1.6% of the IMF explodes as core-collapse supernova (CC-SN), compatible with Salpeter (1955, ApJ, 121, 161). We also constrain the incidence of SN Ia per 103M⊙ to 0.5-1.4. At the same time, this Chempy application shows persistent discrepancies between predicted and observed abundances for some elements, irrespective of the chosen yield set. These cannot be remedied by any variations of Chempy's parameters and could be an indication of missing nucleosynthetic channels. Chempy could be a powerful tool to confront predictions from stellar nucleosynthesis with far more complex abundance data sets and to refine the physical processes governing the chemical evolution of stellar systems.
Bull, James J; Barrick, Jeffrey E
2017-12-01
Evolution in the form of selective breeding has long been harnessed as a useful tool by humans. However, rapid evolution can also be a danger to our health and a stumbling block for biotechnology. Unwanted evolution can underlie the emergence of drug and pesticide resistance, cancer, and weeds. It makes live vaccines and engineered cells inherently unreliable and unpredictable, and therefore potentially unsafe. Yet, there are strategies that have been and can possibly be used to stop or slow many types of evolution. We review and classify existing population genetics-inspired methods for arresting evolution. Then, we discuss how genome editing techniques enable a radically new set of approaches to limit evolution. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Konrad, H.; Sasgen, I.; Thoma, M.; Klemann, V.; Grosfeld, K.; Martinec, Z.
2013-12-01
The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation, and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.
The Role of Metaphor in Darwin and the Implications for Teaching Evolution
ERIC Educational Resources Information Center
Pramling, Niklas
2009-01-01
This article is about the role of metaphor in scientific knowledge formation and reasoning. These issues are studied by means of an example of the theory of evolution through natural selection. The premise is that the theory of evolution contains a set of problems regarding metaphor. A second premise is that these problems have to be handled in…
NASA Astrophysics Data System (ADS)
Hurst, A. A.; Anderson, R. S.; Tucker, G. E.
2017-12-01
Erosion of bedrock river channels exerts significant control on landscape evolution because it communicates climatic and tectonic signals across a landscape by setting the lower erosional boundaries for hillslopes. Hillslope erosion delivers sediment to the channels, which then either store or transport the sediment. At times of high storage, access to the bedrock floor of the channel is limited, inhibiting bedrock erosion. This affects the timescale of channel response to imposed base-level lowering, which in turn affects hillslope erosion. Because occasional exposure of the bedrock bed is a minimum prerequisite for bedrock erosion, we seek to understand the evolution of sediment cover, or scour history, with sufficient resolution to answer when and where the bed is exposed. The scour history at a site is governed by grain size, bed and channel morphology, sediment concentration in the water, and seasonal flow conditions (hydrograph). The transient nature of bedrock exposure during high-flow events implies that short-term sediment cover dynamics are important for predicting long-term bedrock incision rates. Models of channel profile evolution, or of landscape evolution, generally ignore evolution of sediment cover on the hydrograph timescale. To develop insight into the necessary and sufficient conditions for bedrock exposure followed by reburial, we have developed a 1-D model of the evolution of alluvial cover thickness in a long channel profile in response to a seasonal hydrograph. This model tracks erosion, deposition, and the concentration of sediment in the water column separately, and generates histories of scour and fill over the course of the hydrograph. We compare the model's predictions with net-scour measurements in tributaries of the Grand Canyon and with scour-chain and accelerometer measurements in the Cedar River, Washington. By addressing alluvial scour on short timescales, we acknowledge the processes required to allow bedrock incision and landscape evolution over longer timescales.
Thybert, David; Roller, Maša; Navarro, Fábio C.P.; Fiddes, Ian; Streeter, Ian; Feig, Christine; Martin-Galvez, David; Kolmogorov, Mikhail; Janoušek, Václav; Akanni, Wasiu; Aken, Bronwen; Aldridge, Sarah; Chakrapani, Varshith; Chow, William; Clarke, Laura; Cummins, Carla; Doran, Anthony; Dunn, Matthew; Goodstadt, Leo; Howe, Kerstin; Howell, Matthew; Josselin, Ambre-Aurore; Karn, Robert C.; Laukaitis, Christina M.; Jingtao, Lilue; Martin, Fergal; Muffato, Matthieu; Nachtweide, Stefanie; Quail, Michael A.; Sisu, Cristina; Stanke, Mario; Stefflova, Klara; Van Oosterhout, Cock; Veyrunes, Frederic; Ward, Ben; Yang, Fengtang; Yazdanifar, Golbahar; Zadissa, Amonida; Adams, David J.; Brazma, Alvis; Gerstein, Mark; Paten, Benedict; Pham, Son; Keane, Thomas M.; Odom, Duncan T.; Flicek, Paul
2018-01-01
Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology. PMID:29563166
Soltanipour, Asieh; Sadri, Saeed; Rabbani, Hossein; Akhlaghi, Mohammad Reza
2015-01-01
This paper presents a new procedure for automatic extraction of the blood vessels and optic disk (OD) in fundus fluorescein angiogram (FFA). In order to extract blood vessel centerlines, the algorithm of vessel extraction starts with the analysis of directional images resulting from sub-bands of fast discrete curvelet transform (FDCT) in the similar directions and different scales. For this purpose, each directional image is processed by using information of the first order derivative and eigenvalues obtained from the Hessian matrix. The final vessel segmentation is obtained using a simple region growing algorithm iteratively, which merges centerline images with the contents of images resulting from modified top-hat transform followed by bit plane slicing. After extracting blood vessels from FFA image, candidates regions for OD are enhanced by removing blood vessels from the FFA image, using multi-structure elements morphology, and modification of FDCT coefficients. Then, canny edge detector and Hough transform are applied to the reconstructed image to extract the boundary of candidate regions. At the next step, the information of the main arc of the retinal vessels surrounding the OD region is used to extract the actual location of the OD. Finally, the OD boundary is detected by applying distance regularized level set evolution. The proposed method was tested on the FFA images from angiography unit of Isfahan Feiz Hospital, containing 70 FFA images from different diabetic retinopathy stages. The experimental results show the accuracy more than 93% for vessel segmentation and more than 87% for OD boundary extraction.
Soltanipour, Asieh; Sadri, Saeed; Rabbani, Hossein; Akhlaghi, Mohammad Reza
2015-01-01
This paper presents a new procedure for automatic extraction of the blood vessels and optic disk (OD) in fundus fluorescein angiogram (FFA). In order to extract blood vessel centerlines, the algorithm of vessel extraction starts with the analysis of directional images resulting from sub-bands of fast discrete curvelet transform (FDCT) in the similar directions and different scales. For this purpose, each directional image is processed by using information of the first order derivative and eigenvalues obtained from the Hessian matrix. The final vessel segmentation is obtained using a simple region growing algorithm iteratively, which merges centerline images with the contents of images resulting from modified top-hat transform followed by bit plane slicing. After extracting blood vessels from FFA image, candidates regions for OD are enhanced by removing blood vessels from the FFA image, using multi-structure elements morphology, and modification of FDCT coefficients. Then, canny edge detector and Hough transform are applied to the reconstructed image to extract the boundary of candidate regions. At the next step, the information of the main arc of the retinal vessels surrounding the OD region is used to extract the actual location of the OD. Finally, the OD boundary is detected by applying distance regularized level set evolution. The proposed method was tested on the FFA images from angiography unit of Isfahan Feiz Hospital, containing 70 FFA images from different diabetic retinopathy stages. The experimental results show the accuracy more than 93% for vessel segmentation and more than 87% for OD boundary extraction. PMID:26284170
Late-Pleistocene evolution of the continental shelf of central Israel, a case study from Hadera
NASA Astrophysics Data System (ADS)
Shtienberg, Gilad; Dix, Justin; Waldmann, Nicolas; Makovsky, Yizhaq; Golan, Arik; Sivan, Dorit
2016-05-01
Sea-level fluctuations are a dominant mechanism that control coastal environmental changes through time. This is especially the case for the successive regressions and transgressions over the last interglacial cycle, which have shaped the deposition, preservation and erosion patterns of unconsolidated sediments currently submerged on continental shelves. The current study focuses on creating an integrated marine and terrestrial geophysical and litho-stratigraphic framework of the coastal zone of Hadera, north-central Israel. This research presents a case study, investigating the changing sedimentological units in the study area. Analysis suggest these represent various coastal environments and were deposited during times of lower than present sea level and during the later stages of the Holocene transgression. A multi-disciplinary approach was applied by compiling existing elevation raster grids, bathymetric charts, one hundred lithological borehole data-sets, and a 110 km-long sub-bottom geophysical survey. Based on seismic stratigraphic analysis, observed geometries, and reflective appearances, six bounding surfaces and seven seismic units were identified and characterized. These seismic units have been correlated with the available borehole data to produce a chronologically constrained lithostratigraphy for the area. This approach allowed us to propose a relationship between the lithological units and sea-level change and thus enable the reconstruction of Hadera coastal evolution over the last 100 ka. This reconstruction suggests that the stratigraphy is dominated by lowstand aeolian and fluvial terrestrial environments, subsequently transgressed during the Holocene. The results of this study provide a valuable framework for future national strategic shallow-water infrastructure construction and also for the possible locations of past human settlements in relation to coastal evolution through time.
Local adaptation of plant viruses: lessons from experimental evolution.
Elena, Santiago F
2017-04-01
For multihost pathogens, adaptation to multiple hosts has important implications for both applied and basic research. At the applied level, it is one of the main factors determining the probability and severity of emerging disease outbreaks. At the basic level, it is thought to be a key mechanism for the maintenance of genetic diversity both in host and pathogen species. In recent years, a number of evolution experiments have assessed the fate of plant virus populations replicating within and adapting to one single or to multiple hosts species. A first group of these experiments tackled the existence of trade-offs in fitness and virulence for viruses evolving either within a single hosts species or alternating between two different host species. A second set of experiments explored the role of genetic variability in susceptibility and resistance to infection among individuals from the same host species in the extent of virus local adaptation and of virulence. In general, when a single host species or genotype is available, these experiments show that local adaptation takes place, often but not always associated with a fitness trade-off. However, alternating between different host species or infecting resistant host genotypes may select for generalist viruses that experience no fitness cost. Therefore, the expected cost of generalism, arising from antagonistic pleiotropy and other genetic mechanisms generating fitness trade-offs between hosts, could not be generalized and strongly depend on the characteristics of each particular pathosystem. At the genomic level, these studies show pervasive convergent molecular evolution, suggesting that the number of accessible molecular pathways leading to adaptation to novel hosts is limited. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wiles, Jason R.; Alters, Brian
2011-12-01
This investigation provides an extensive review of scientific, religious, and otherwise non-scientific factors that may influence student acceptance of biological evolution. We also measure the extent to which students' levels of acceptance changed following an educational experience designed to address an inclusive inventory of factors identified as potentially affecting student acceptance of evolution (n = 81, pre-test/post-test) n = 37, one-year longitudinal). Acceptance of evolution was measured using the Measure of Acceptance of the Theory of Evolution (MATE) instrument among participants enrolled in a secondary-level academic programme during the summer prior to their final year of high school and as they transitioned to the post-secondary level. Student acceptance of evolution was measured to be significantly higher than initial levels both immediately following and over one year after the educational experience. Results reported herein carry implications for future quantitative and qualitative research as well as for cross-disciplinary instruction plans related to evolutionary science and non-scientific factors which may influence student understanding of evolution.
The evolutionary history of Mimosa (Leguminosae): toward a phylogeny of the sensitive plants.
Simon, Marcelo F; Grether, Rosaura; de Queiroz, Luciano P; Särkinen, Tiina E; Dutra, Valquíria F; Hughes, Colin E
2011-07-01
Large genera provide remarkable opportunities to investigate patterns of morphological evolution and historical biogeography in plants. A molecular phylogeny of the species-rich and morphologically and ecologically diverse genus Mimosa was generated to evaluate its infrageneric classification, reconstruct the evolution of a set of morphological characters, and establish the relationships of Old World species to the rest of the genus. We used trnD-trnT plastid sequences for 259 species of Mimosa (ca. 50% of the total) to reconstruct the phylogeny of the genus. Six morphological characters (petiolar nectary, inflorescence type, number of stamens, number of petals, pollen type, and seismonasty) were optimized onto the molecular tree. Mimosa was recovered as a monophyletic clade nested within the Piptadenia group and includes the former members of Schrankia, corroborating transfer of that genus to Mimosa. Although we found good support for several infrageneric groups, only one section (Mimadenia) was recovered as monophyletic. All but one of the morphological characters analyzed showed high levels of homoplasy. High levels of geographic structure were found, with species from the same area tending to group together in the phylogeny. Old World species of Mimosa form a monophyletic clade deeply nested within New World groups, indicating recent (6-10 Ma) long-distance dispersal. Although based on a single plastid region, our results establish a preliminary phylogenetic framework for Mimosa that can be used to infer patterns of morphological evolution and relationships and which provides pointers toward a revised infrageneric classification.
NASA Astrophysics Data System (ADS)
Xie, Dongfeng; Gao, Shu; Wang, Zheng Bing; Pan, Cunhong; Wu, Xiuguang; Wang, Qiushun
2017-08-01
We investigate the evolution of a large-scale sand body, a unique type of sandbars in a convergent estuary. Specifically, we analyze and simulate the sand deposition system (defined as an inside bar) in the Qiantang Estuary (QE) in China. The deposit is 130 km long and up to 10 m thick and is characterized by a dextral morphology in the lower QE. Numerical simulation is carried out using an idealized horizontal 2-D morphodynamic model mimicking the present QE settings. Our results indicate that the morphological evolution is controlled by the combination of river discharge and tides. The seasonal and interannual cycles of river discharges play a major role on the inside bar evolution. The bar is eroding during high river discharge periods, but accretion prevails during low river discharge periods. Meanwhile, the highest part of the sand body can move downstream or upstream by several kilometers, modifying the seasonal sediment exchange patterns. We also show that the Coriolis force plays an important role on the dextral morphology patterns in wide, convergent estuaries. It induces a significant lateral water level difference and a large-scale gyre of residual sediment transport. Subsequently, the seaward tail of the inside bar shifts southward to help create a condition for the development of tidal flats in the lower reach of the estuary. The lateral bed level differences induced by Coriolis force are up to several meters. Coriolis effects also modify the behavior of flood and ebb tidal channels.
Nonlinearities in the Evolutional Distinctions Between El Niño and La Niña Types
NASA Astrophysics Data System (ADS)
Ashok, K.; Shamal, M.; Sahai, A. K.; Swapna, P.
2017-12-01
Using the HadISST, SODA reanalysis, and various other observed and reanalyzed data sets for the period 1950-2010, we explore nonlinearities in the subsurface evolutional distinctions between El Niño types and La Niña types from a few seasons before the onset. Cluster analysis carried out over both summer and winter suggests that while the warm-phased events of both types are distinguishable, several cold phased events are clustered together. Further, we apply a joint Self-Organizing Map (SOM) analysis using the monthly sea surface temperature anomaly (SSTA) and thermocline-depth anomalies in tropical Pacific (TP). Results reveal that the evolutionary paths of El Niño Modoki (EM) and El Niño (EL) are, broadly, different. Subsurface temperature composites of EL and EM show different onset characteristics. During an EL, warm anomaly in the west spreads eastward along the thermocline and reaches the surface in the east in March-May of year(0). During an EM, warm anomaly already exists in the central tropical Pacific and then reaches the surface in the east in September-November of year(0). Composited SSTAs during La Niña (LN) and La Niña Modoki (LM) are distinguishable only at 80% confidence level, but the composited subsurface temperature anomalies show differences in the location of the coldest anomaly as well as evolution at 90% confidence level. Thus, the El Niño flavor distinction is potentially predictable at longer leads.
Culture shapes the evolution of cognition
Thompson, Bill; Kirby, Simon; Smith, Kenny
2016-01-01
A central debate in cognitive science concerns the nativist hypothesis, the proposal that universal features of behavior reflect a biologically determined cognitive substrate: For example, linguistic nativism proposes a domain-specific faculty of language that strongly constrains which languages can be learned. An evolutionary stance appears to provide support for linguistic nativism, because coordinated constraints on variation may facilitate communication and therefore be adaptive. However, language, like many other human behaviors, is underpinned by social learning and cultural transmission alongside biological evolution. We set out two models of these interactions, which show how culture can facilitate rapid biological adaptation yet rule out strong nativization. The amplifying effects of culture can allow weak cognitive biases to have significant population-level consequences, radically increasing the evolvability of weak, defeasible inductive biases; however, the emergence of a strong cultural universal does not imply, nor lead to, nor require, strong innate constraints. From this we must conclude, on evolutionary grounds, that the strong nativist hypothesis for language is false. More generally, because such reciprocal interactions between cultural and biological evolution are not limited to language, nativist explanations for many behaviors should be reconsidered: Evolutionary reasoning shows how we can have cognitively driven behavioral universals and yet extreme plasticity at the level of the individual—if, and only if, we account for the human capacity to transmit knowledge culturally. Wherever culture is involved, weak cognitive biases rather than strong innate constraints should be the default assumption. PMID:27044094
Dynamic landscapes in human evolution and dispersal
NASA Astrophysics Data System (ADS)
Devès, Maud; King, Geoffrey; Bailey, Geoffrey; Inglis, Robyn; Williams, Matthew; Winder, Isabelle
2013-04-01
Archaeological studies of human settlement in its wider landscape setting usually focus on climate change as the principal environmental driver of change in the physical features of the landscape, even on the long time scales of early human evolution. We emphasize that landscapes evolve dynamically due to an interplay of processes occurring over different timescales. Tectonic deformation, volcanism, sea level changes, by acting on the topography, the lithology and on the patterns of erosion-deposition in a given area, can moderate or amplify the influence of climate at the regional and local scale. These processes impose or alleviate physical barriers to movement, and modify the distribution and accessibility of plant and animal resources in ways critical to human ecological and evolutionary success (King and Bailey, JHE 2006; Bailey and King, Antiquity 2011, Winder et al. Antiquity in press). The DISPERSE project, an ERC-funded collaboration between the University of York and the Institut de Physique du Globe de Paris, aims to develop systematic methods for reconstructing landscapes associated with active tectonics, volcanism and sea level change at a variety of scales in order to study their potential impact on patterns of human evolution and dispersal. Examples are shown to illustrate the ways in which changes of significance to human settlement can occur at a range of geographical scales and on time scales that range from lifetimes to tens of millennia, creating and sustaining attractive conditions for human settlement and exercising powerful selective pressures on human development.
Different functional classes of genes are characterized by different compositional properties.
D'Onofrio, Giuseppe; Ghosh, Tapash Chandra; Saccone, Salvatore
2007-12-22
A compositional analysis on a set of human genes classified in several functional classes was performed. We found out that the GC3, i.e. the GC level at the third codon positions, of the genes involved in cellular metabolism was significantly higher than those involved in information storage and processing. Analyses of human/Xenopus ortologous genes showed that: (i) the GC3 increment of the genes involved in cellular metabolism was significantly higher than those involved in information storage and processing; and (ii) a strong correlation between the GC3 and the corresponding GCi, i.e. the GC level of introns, was found in each functional class. The non-randomness of the GC increments favours the selective hypothesis of gene/genome evolution.
Fishman, Lila; Wyatt, Robert
1999-12-01
Ecological factors that reduce the effectiveness of cross-pollination are likely to play a role in the frequent evolution of routine self-fertilization in flowering plants. However, we lack empirical evidence linking the reproductive assurance value of selfing in poor pollination environments to evolutionary shifts in mating system. Here, we investigated the adaptive significance of prior selfing in the polymorphic annual plant Arenaria uniflora (Caryophyllaceae), in which selfer populations occur only in areas of range overlap with congener A. glabra. To examine the hypothesis that secondary contact between the two species contributed to the evolution and maintenance of selfing, we used field competition experiments and controlled hand-pollinations to measure the female fitness consequences of pollinator-mediated interspecific interactions. Uniformly high fruit set by selfers in the naturally pollinated field arrays confirmed the reproductive assurance value of selfing, whereas substantial reductions in outcrosser fruit set (15%) and total seed production (20-35%) in the presence of A. glabra demonstrated that pollinator-mediated interactions can provide strong selection for self-pollination. Heterospecific pollen transfer, rather than competition for pollinator service, appears to be the primary mechanism of pollinator-mediated competition in Arenaria. Premating barriers to hybridization between outcrossers and A. glabra are extremely weak. The production of a few inviable hybrid seeds after heterospecific pollination and intermediate seed set after mixed pollinations indicates that A. glabra pollen can usurp A. uniflora ovules. Thus, any visit to A. uniflora by shared pollinators carries a potential female fitness cost. Moreover, patterns of fruit set and seed set in the competition arrays relative to controls were consistent with the receipt of mixed pollen loads, rather than a lack of pollinator visits. Competition through pollen transfer favors preemptive self-pollination and may be responsible for the evolution of a highly reduced floral morphology in A. uniflora selfers as well as their current geographical distribution. © 1999 The Society for the Study of Evolution.
Prokaryotic evolution and the tree of life are two different things
Bapteste, Eric; O'Malley, Maureen A; Beiko, Robert G; Ereshefsky, Marc; Gogarten, J Peter; Franklin-Hall, Laura; Lapointe, François-Joseph; Dupré, John; Dagan, Tal; Boucher, Yan; Martin, William
2009-01-01
Background The concept of a tree of life is prevalent in the evolutionary literature. It stems from attempting to obtain a grand unified natural system that reflects a recurrent process of species and lineage splittings for all forms of life. Traditionally, the discipline of systematics operates in a similar hierarchy of bifurcating (sometimes multifurcating) categories. The assumption of a universal tree of life hinges upon the process of evolution being tree-like throughout all forms of life and all of biological time. In multicellular eukaryotes, the molecular mechanisms and species-level population genetics of variation do indeed mainly cause a tree-like structure over time. In prokaryotes, they do not. Prokaryotic evolution and the tree of life are two different things, and we need to treat them as such, rather than extrapolating from macroscopic life to prokaryotes. In the following we will consider this circumstance from philosophical, scientific, and epistemological perspectives, surmising that phylogeny opted for a single model as a holdover from the Modern Synthesis of evolution. Results It was far easier to envision and defend the concept of a universal tree of life before we had data from genomes. But the belief that prokaryotes are related by such a tree has now become stronger than the data to support it. The monistic concept of a single universal tree of life appears, in the face of genome data, increasingly obsolete. This traditional model to describe evolution is no longer the most scientifically productive position to hold, because of the plurality of evolutionary patterns and mechanisms involved. Forcing a single bifurcating scheme onto prokaryotic evolution disregards the non-tree-like nature of natural variation among prokaryotes and accounts for only a minority of observations from genomes. Conclusion Prokaryotic evolution and the tree of life are two different things. Hence we will briefly set out alternative models to the tree of life to study their evolution. Ultimately, the plurality of evolutionary patterns and mechanisms involved, such as the discontinuity of the process of evolution across the prokaryote-eukaryote divide, summons forth a pluralistic approach to studying evolution. Reviewers This article was reviewed by Ford Doolittle, John Logsdon and Nicolas Galtier. PMID:19788731
Prokaryotic evolution and the tree of life are two different things.
Bapteste, Eric; O'Malley, Maureen A; Beiko, Robert G; Ereshefsky, Marc; Gogarten, J Peter; Franklin-Hall, Laura; Lapointe, François-Joseph; Dupré, John; Dagan, Tal; Boucher, Yan; Martin, William
2009-09-29
The concept of a tree of life is prevalent in the evolutionary literature. It stems from attempting to obtain a grand unified natural system that reflects a recurrent process of species and lineage splittings for all forms of life. Traditionally, the discipline of systematics operates in a similar hierarchy of bifurcating (sometimes multifurcating) categories. The assumption of a universal tree of life hinges upon the process of evolution being tree-like throughout all forms of life and all of biological time. In multicellular eukaryotes, the molecular mechanisms and species-level population genetics of variation do indeed mainly cause a tree-like structure over time. In prokaryotes, they do not. Prokaryotic evolution and the tree of life are two different things, and we need to treat them as such, rather than extrapolating from macroscopic life to prokaryotes. In the following we will consider this circumstance from philosophical, scientific, and epistemological perspectives, surmising that phylogeny opted for a single model as a holdover from the Modern Synthesis of evolution. It was far easier to envision and defend the concept of a universal tree of life before we had data from genomes. But the belief that prokaryotes are related by such a tree has now become stronger than the data to support it. The monistic concept of a single universal tree of life appears, in the face of genome data, increasingly obsolete. This traditional model to describe evolution is no longer the most scientifically productive position to hold, because of the plurality of evolutionary patterns and mechanisms involved. Forcing a single bifurcating scheme onto prokaryotic evolution disregards the non-tree-like nature of natural variation among prokaryotes and accounts for only a minority of observations from genomes. Prokaryotic evolution and the tree of life are two different things. Hence we will briefly set out alternative models to the tree of life to study their evolution. Ultimately, the plurality of evolutionary patterns and mechanisms involved, such as the discontinuity of the process of evolution across the prokaryote-eukaryote divide, summons forth a pluralistic approach to studying evolution. This article was reviewed by Ford Doolittle, John Logsdon and Nicolas Galtier.
Estimating precise metallicity and stellar mass evolution of galaxies
NASA Astrophysics Data System (ADS)
Mosby, Gregory
2018-01-01
The evolution of galaxies can be conveniently broken down into the evolution of their contents. The changing dust, gas, and stellar content in addition to the changing dark matter potential and periodic feedback from a super-massive blackhole are some of the key ingredients. We focus on the stellar content that can be observed, as the stars reflect information about the galaxy when they were formed. We approximate the stellar content and star formation histories of unresolved galaxies using stellar population modeling. Though simplistic, this approach allows us to reconstruct the star formation histories of galaxies that can be used to test models of galaxy formation and evolution. These models, however, suffer from degeneracies at large lookback times (t > 1 Gyr) as red, low luminosity stars begin to dominate a galaxy’s spectrum. Additionally, degeneracies between stellar populations at different ages and metallicities often make stellar population modeling less precise. The machine learning technique diffusion k-means has been shown to increase the precision in stellar population modeling using a mono-metallicity basis set. However, as galaxies evolve, we expect the metallicity of stellar populations to vary. We use diffusion k-means to generate a multi-metallicity basis set to estimate the stellar mass and chemical evolution of unresolved galaxies. Two basis sets are formed from the Bruzual & Charlot 2003 and MILES stellar population models. We then compare the accuracy and precision of these models in recovering complete (stellar mass and metallicity) histories of mock data. Similarities in the groupings of stellar population spectra in the diffusion maps for each metallicity hint at fundamental age transitions common to both basis sets that can be used to identify stellar populations in a given age range.
Parallel Evolution of Genes and Languages in the Caucasus Region
Balanovsky, Oleg; Dibirova, Khadizhat; Dybo, Anna; Mudrak, Oleg; Frolova, Svetlana; Pocheshkhova, Elvira; Haber, Marc; Platt, Daniel; Schurr, Theodore; Haak, Wolfgang; Kuznetsova, Marina; Radzhabov, Magomed; Balaganskaya, Olga; Romanov, Alexey; Zakharova, Tatiana; Soria Hernanz, David F.; Zalloua, Pierre; Koshel, Sergey; Ruhlen, Merritt; Renfrew, Colin; Wells, R. Spencer; Tyler-Smith, Chris; Balanovska, Elena
2012-01-01
We analyzed 40 SNP and 19 STR Y-chromosomal markers in a large sample of 1,525 indigenous individuals from 14 populations in the Caucasus and 254 additional individuals representing potential source populations. We also employed a lexicostatistical approach to reconstruct the history of the languages of the North Caucasian family spoken by the Caucasus populations. We found a different major haplogroup to be prevalent in each of four sets of populations that occupy distinct geographic regions and belong to different linguistic branches. The haplogroup frequencies correlated with geography and, even more strongly, with language. Within haplogroups, a number of haplotype clusters were shown to be specific to individual populations and languages. The data suggested a direct origin of Caucasus male lineages from the Near East, followed by high levels of isolation, differentiation and genetic drift in situ. Comparison of genetic and linguistic reconstructions covering the last few millennia showed striking correspondences between the topology and dates of the respective gene and language trees, and with documented historical events. Overall, in the Caucasus region, unmatched levels of gene-language co-evolution occurred within geographically isolated populations, probably due to its mountainous terrain. PMID:21571925
Managing changes in the enterprise architecture modelling context
NASA Astrophysics Data System (ADS)
Khanh Dam, Hoa; Lê, Lam-Son; Ghose, Aditya
2016-07-01
Enterprise architecture (EA) models the whole enterprise in various aspects regarding both business processes and information technology resources. As the organisation grows, the architecture of its systems and processes must also evolve to meet the demands of the business environment. Evolving an EA model may involve making changes to various components across different levels of the EA. As a result, an important issue before making a change to an EA model is assessing the ripple effect of the change, i.e. change impact analysis. Another critical issue is change propagation: given a set of primary changes that have been made to the EA model, what additional secondary changes are needed to maintain consistency across multiple levels of the EA. There has been however limited work on supporting the maintenance and evolution of EA models. This article proposes an EA description language, namely ChangeAwareHierarchicalEA, integrated with an evolution framework to support both change impact analysis and change propagation within an EA model. The core part of our framework is a technique for computing the impact of a change and a new method for generating interactive repair plans from Alloy consistency rules that constrain the EA model.
Community-associated MRSA: what makes them special?
Otto, Michael
2013-01-01
Summary While infections with methicillin-resistant Staphylococcus aureus (MRSA) were traditionally restricted to the hospital setting, novel MRSA strains emerged over the last two decades that have the capacity to infect otherwise healthy people outside of the hospital setting. These communityassociated (CA-) MRSA strains combine methicillin resistance with enhanced virulence and fitness. Interestingly, CA-MRSA strains emerged globally and from different backgrounds, indicating that the “trade-off” between maintaining sufficient levels of methicillin resistance and obtaining enhanced virulence at a low fitness cost was achieved on several occasions in convergent evolution. However, frequently this process comprised similar changes. First and foremost, all CA-MRSA strains typically carry a novel type of methicillin resistance locus that appears to cause less of a fitness burden. Additionally, acquisition of specific toxin genes, most notably that encoding Panton-Valentine leukocidin (PVL), and adaptation of gene expression of genome-encoded toxins, such as alpha-toxin and phenol-soluble modulins (PSMs), further contributed to the evolution of CA-MRSA. Finally, the exceptional epidemiological success of the USA300 CA-MRSA clone in particular may have been due to yet another gene acquisition, namely that of the speG gene, which is located on the arginine catabolic mobile element (ACME) and involved in detoxifying harmful host-derived polyamines. PMID:23517691
NASA Astrophysics Data System (ADS)
Gözükırmızı, Coşar; Kırkın, Melike Ebru
2017-01-01
Probabilistic evolution theory (PREVTH) provides a powerful framework for the solution of initial value problems of explicit ordinary differential equation sets with second degree multinomial right hand side functions. The use of the recursion between squarified telescope matrices provides the opportunity to obtain accurate results without much effort. Convergence may be considered as one of the drawbacks of PREVTH. It is related to many factors: the initial values and the coefficients in the right hand side functions are the most apparent ones. If a space extension is utilized before PREVTH, the convergence of PREVTH may also be affected by how the space extension is performed. There are works about implementations related to probabilistic evolution and how to improve the convergence by methods like analytic continuation. These works were written before squarification was introduced. Since recursion between squarified telescope matrices has given us the opportunity to obtain results corresponding to relatively higher truncation levels, it is important to obtain and analyze results related to certain problems in different areas of engineering. This manuscript may be considered to be in a series of papers and conference proceedings which serves for this purpose.
Phylogenetic Invariants for Metazoan Mitochondrial Genome Evolution.
Sankoff; Blanchette
1998-01-01
The method of phylogenetic invariants was developed to apply to aligned sequence data generated, according to a stochastic substitution model, for N species related through an unknown phylogenetic tree. The invariants are functions of the probabilities of the observable N-tuples, which are identically zero, over all choices of branch length, for some trees. Evaluating the invariants associated with all possible trees, using observed N-tuple frequencies over all sequence positions, enables us to rapidly infer the generating tree. An aspect of evolution at the genomic level much studied recently is the rearrangements of gene order along the chromosome from one species to another. Instead of the substitutions responsible for sequence evolution, we examine the non-local processes responsible for genome rearrangements such as inversion of arbitrarily long segments of chromosomes. By treating the potential adjacency of each possible pair of genes as a position", an appropriate substitution" model can be recognized as governing the rearrangement process, and a probabilistically principled phylogenetic inference can be set up. We calculate the invariants for this process for N=5, and apply them to mitochondrial genome data from coelomate metazoans, showing how they resolve key aspects of branching order.
Carbon and Nitrogen Enrichment Patterns in Planetary Nebulae
NASA Astrophysics Data System (ADS)
Dufour, Reginald
2011-10-01
The goal of this project is to assess the role played in carbon production by low and intermediate mass stars {LIMS}, i.e. the progenitors of planetary nebulae {PNe}. One of the most pressing problems in galactic chemical evolution today is understanding the relative roles of LIMS {1-8 M_sun} versus massive stars {8-120 M_sun} in affecting the cosmic level of the element C. We are launching a fresh, ambitious project whose purpose is to employ STIS to obtain UV spectra of unprecedented-quality of 10 carefully chosen, bright solar metallicity PNe spanning a broad range in progenitor mass. Line strength measurements of important emission lines of C, N, and O such as OIII] 1660-6, NIII] 1747-54, CIII] 1907-9, and {when He++ is strong} CIV] 1550 and OIV] 1400 in each object will be used along with our own in-house abundance software to determine ion and element abundances for these three species. In turn, these results will be used to assess stellar yields {productivity rates} available in the literature. Favored yield sets will be used to calculate our own chemical evolution models in order to assess directly the importance of intermediate-mass stars in the cosmic evolution of C.
Constraints in cancer evolution.
Venkatesan, Subramanian; Birkbak, Nicolai J; Swanton, Charles
2017-02-08
Next-generation deep genome sequencing has only recently allowed us to quantitatively dissect the extent of heterogeneity within a tumour, resolving patterns of cancer evolution. Intratumour heterogeneity and natural selection contribute to resistance to anticancer therapies in the advanced setting. Recent evidence has also revealed that cancer evolution might be constrained. In this review, we discuss the origins of intratumour heterogeneity and subsequently focus on constraints imposed upon cancer evolution. The presence of (1) parallel evolution, (2) convergent evolution and (3) the biological impact of acquiring mutations in specific orders suggest that cancer evolution may be exploitable. These constraints on cancer evolution may help us identify cancer evolutionary rule books, which could eventually inform both diagnostic and therapeutic approaches to improve survival outcomes. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Interface modeling in incompressible media using level sets in Escript
NASA Astrophysics Data System (ADS)
Gross, L.; Bourgouin, L.; Hale, A. J.; Mühlhaus, H.-B.
2007-08-01
We use a finite element (FEM) formulation of the level set method to model geological fluid flow problems involving interface propagation. Interface problems are ubiquitous in geophysics. Here we focus on a Rayleigh-Taylor instability, namely mantel plumes evolution, and the growth of lava domes. Both problems require the accurate description of the propagation of an interface between heavy and light materials (plume) or between high viscous lava and low viscous air (lava dome), respectively. The implementation of the models is based on Escript which is a Python module for the solution of partial differential equations (PDEs) using spatial discretization techniques such as FEM. It is designed to describe numerical models in the language of PDEs while using computational components implemented in C and C++ to achieve high performance for time-intensive, numerical calculations. A critical step in the solution geological flow problems is the solution of the velocity-pressure problem. We describe how the Escript module can be used for a high-level implementation of an efficient variant of the well-known Uzawa scheme. We begin with a brief outline of the Escript modules and then present illustrations of its usage for the numerical solutions of the problems mentioned above.
Ferguson, Eamonn
2013-01-01
This paper sets out the case that personality traits are central to health psychology. To achieve this, three aims need to be addressed. First, it is necessary to show that personality influences a broad range of health outcomes and mechanisms. Second, the simple descriptive account of Aim 1 is not sufficient, and a theoretical specification needs to be developed to explain the personality-health link and allow for future hypothesis generation. Third, once Aims 1 and 2 are met, it is necessary to demonstrate the clinical utility of personality. In this review I make the case that all three Aims are met. I develop a theoretical framework to understand the links between personality and health drawing on current theorising in the biology, evolution, and neuroscience of personality. I identify traits (i.e., alexithymia, Type D, hypochondriasis, and empathy) that are of particular concern to health psychology and set these within evolutionary cost-benefit analysis. The literature is reviewed within a three-level hierarchical model (individual, group, and organisational) and it is argued that health psychology needs to move from its traditional focus on the individual level to engage group and organisational levels. PMID:23772230
Biowaste home composting: experimental process monitoring and quality control.
Tatàno, Fabio; Pagliaro, Giacomo; Di Giovanni, Paolo; Floriani, Enrico; Mangani, Filippo
2015-04-01
Because home composting is a prevention option in managing biowaste at local levels, the objective of the present study was to contribute to the knowledge of the process evolution and compost quality that can be expected and obtained, respectively, in this decentralized option. In this study, organized as the research portion of a provincial project on home composting in the territory of Pesaro-Urbino (Central Italy), four experimental composters were first initiated and temporally monitored. Second, two small sub-sets of selected provincial composters (directly operated by households involved in the project) underwent quality control on their compost products at two different temporal steps. The monitored experimental composters showed overall decreasing profiles versus composting time for moisture, organic carbon, and C/N, as well as overall increasing profiles for electrical conductivity and total nitrogen, which represented qualitative indications of progress in the process. Comparative evaluations of the monitored experimental composters also suggested some interactions in home composting, i.e., high C/N ratios limiting organic matter decomposition rates and final humification levels; high moisture contents restricting the internal temperature regime; nearly horizontal phosphorus and potassium evolutions contributing to limit the rates of increase in electrical conductivity; and prolonged biowaste additions contributing to limit the rate of decrease in moisture. The measures of parametric data variability in the two sub-sets of controlled provincial composters showed decreased variability in moisture, organic carbon, and C/N from the seventh to fifteenth month of home composting, as well as increased variability in electrical conductivity, total nitrogen, and humification rate, which could be considered compatible with the respective nature of decreasing and increasing parameters during composting. The modeled parametric kinetics in the monitored experimental composters, along with the evaluation of the parametric central tendencies in the sub-sets of controlled provincial composters, all indicate that 12-15 months is a suitable duration for the appropriate development of home composting in final and simultaneous compliance with typical reference limits. Copyright © 2014 Elsevier Ltd. All rights reserved.
Anero, Jesús G; Español, Pep; Tarazona, Pedro
2013-07-21
We present a generalization of Density Functional Theory (DFT) to non-equilibrium non-isothermal situations. By using the original approach set forth by Gibbs in his consideration of Macroscopic Thermodynamics (MT), we consider a Functional Thermo-Dynamics (FTD) description based on the density field and the energy density field. A crucial ingredient of the theory is an entropy functional, which is a concave functional. Therefore, there is a one to one connection between the density and energy fields with the conjugate thermodynamic fields. The connection between the three levels of description (MT, DFT, FTD) is clarified through a bridge theorem that relates the entropy of different levels of description and that constitutes a generalization of Mermin's theorem to arbitrary levels of description whose relevant variables are connected linearly. Although the FTD level of description does not provide any new information about averages and correlations at equilibrium, it is a crucial ingredient for the dynamics in non-equilibrium states. We obtain with the technique of projection operators the set of dynamic equations that describe the evolution of the density and energy density fields from an initial non-equilibrium state towards equilibrium. These equations generalize time dependent density functional theory to non-isothermal situations. We also present an explicit model for the entropy functional for hard spheres.
Let them fall where they may: congruence analysis in massive phylogenetically messy data sets.
Leigh, Jessica W; Schliep, Klaus; Lopez, Philippe; Bapteste, Eric
2011-10-01
Interest in congruence in phylogenetic data has largely focused on issues affecting multicellular organisms, and animals in particular, in which the level of incongruence is expected to be relatively low. In addition, assessment methods developed in the past have been designed for reasonably small numbers of loci and scale poorly for larger data sets. However, there are currently over a thousand complete genome sequences available and of interest to evolutionary biologists, and these sequences are predominantly from microbial organisms, whose molecular evolution is much less frequently tree-like than that of multicellular life forms. As such, the level of incongruence in these data is expected to be high. We present a congruence method that accommodates both very large numbers of genes and high degrees of incongruence. Our method uses clustering algorithms to identify subsets of genes based on similarity of phylogenetic signal. It involves only a single phylogenetic analysis per gene, and therefore, computation time scales nearly linearly with the number of genes in the data set. We show that our method performs very well with sets of sequence alignments simulated under a wide variety of conditions. In addition, we present an analysis of core genes of prokaryotes, often assumed to have been largely vertically inherited, in which we identify two highly incongruent classes of genes. This result is consistent with the complexity hypothesis.
NASA Technical Reports Server (NTRS)
Jones, M. G.; Dewit, M. J.
1986-01-01
The polyphase history of gold mineralization seen in the Pietersburg greenstone belt is integrated with the geochemical and tectonic evolution of greenstone belts as a whole. The four distinct regional geological settings of gold mineralization are described.
Deuterium Abundance in Consciousness and Current Cosmology
NASA Astrophysics Data System (ADS)
Rauscher, Elizabeth A.
We utilize the deuterium-hydrogen abundances and their role in setting limits on the mass and other conditions of cosmogenesis and cosmological evolution. We calculate the dependence of a set of physical variables such as density, temperature, energy mass, entropy and other physical variable parameters through the evolution of the universe under the Schwarzschild conditions as a function from early to present time. Reconciliation with the 3°K and missing mass is made. We first examine the Schwarzschild condition; second, the geometrical constraints of a multidimensional Cartesian space on closed cosmologies, and third we will consider the cosmogenesis and evolution of the universe in a multidimensional Cartesian space, obeying the Schwarzschild condition. Implications of this model for matter creation are made. We also examine experimental evidence for closed versus open cosmologies; x-ray detection of the "missing mass" density. Also the interstellar deuterium abundance, along with the value of the Hubble constant set a general criterion on the value of the curvature constant, k. Once the value of the Hubble constant, H is determined, the deuterium abundance sets stringent restrictions on the value of the curvature constant k by an detailed discussion is presented. The experimental evidences for the determination of H and the primary set of coupled equations to determine D abundance is given. 'The value of k for an open, closed, or flat universe will be discussed in terms of the D abundance which will affect the interpretation of the Schwarzschild, black hole universe. We determine cosmology solutions to Einstein's field obeying the Schwarzschild solutions condition. With this model, we can form a reconciliation of the black hole, from galactic to cosmological scale. Continuous creation occurs at the dynamic blackhole plasma field. We term this new model the multiple big bang or "little whimper model". We utilize the deuteriumhydrogen abundances and their role in setting limits on the mass and other conditions of cosmogenesis and cosmological evolution. We calculate the dependence of a set of physical variables such as density, temperature, energy mass, entropy and other physical variable parameters through the evolution of the universe under the Schwarzschild conditions as a function from early to present time. Reconciliation with the 3°K background and missing mass is made.
NASA Astrophysics Data System (ADS)
Park, I. W.; Lee, S. H.; Lee, W. S.; Lee, C. K.; Lee, K. K.
2017-12-01
As global mean temperature increases, it affects increase in polar glacier melt and thermal expansion of sea, which contributed to global sea level rise. Unlike large sea level rise contributors in Western Antarctica (e. g. Pine island glacier, Thwaites glacier), glaciers in East Antarctica shows relatively stable and slow ice velocity. However, recent calving events related to increase of supraglacier lake in Nansen ice shelf arouse the questions in regards to future evolution of ice dynamics at Victoria Land, East Antarctica. Here, using Ice Sheet System Model (ISSM), a series of numerical simulations were carried out to investigate ice dynamics evolution (grounding line migration, ice velocity) and sea level rise contribution in response to external forcing conditions (surface mass balance, floating ice melting rate, and ice front retreat). In this study, we used control method to set ice dynamic properties (ice rigidity and friction coefficient) with shallow shelf approximation model and check each external forcing conditions contributing to sea level change. Before 50-year transient simulations were conducted based on changing surface mass balance, floating ice melting rate, and ice front retreat of Drygalski ice tongue and Nansen ice shelf, relaxation was performed for 10 years to reduce non-physical undulation and it was used as initial condition. The simulation results showed that sea level rise contribution were expected to be much less compared to other fast glaciers. Floating ice melting rate was most sensitive parameter to sea level rise, while ice front retreat of Drygalski tongue was negligible. The regional model will be further updated utilizing ice radar topography and measured floating ice melting rate.
Li, Xu; Li, Chunming; Fedorov, Andriy; Kapur, Tina; Yang, Xiaoping
2016-06-01
In this paper, the authors propose a novel efficient method to segment ultrasound images of the prostate with weak boundaries. Segmentation of the prostate from ultrasound images with weak boundaries widely exists in clinical applications. One of the most typical examples is the diagnosis and treatment of prostate cancer. Accurate segmentation of the prostate boundaries from ultrasound images plays an important role in many prostate-related applications such as the accurate placement of the biopsy needles, the assignment of the appropriate therapy in cancer treatment, and the measurement of the prostate volume. Ultrasound images of the prostate are usually corrupted with intensity inhomogeneities, weak boundaries, and unwanted edges, which make the segmentation of the prostate an inherently difficult task. Regarding to these difficulties, the authors introduce an active band term and an edge descriptor term in the modified level set energy functional. The active band term is to deal with intensity inhomogeneities and the edge descriptor term is to capture the weak boundaries or to rule out unwanted boundaries. The level set function of the proposed model is updated in a band region around the zero level set which the authors call it an active band. The active band restricts the authors' method to utilize the local image information in a banded region around the prostate contour. Compared to traditional level set methods, the average intensities inside∖outside the zero level set are only computed in this banded region. Thus, only pixels in the active band have influence on the evolution of the level set. For weak boundaries, they are hard to be distinguished by human eyes, but in local patches in the band region around prostate boundaries, they are easier to be detected. The authors incorporate an edge descriptor to calculate the total intensity variation in a local patch paralleled to the normal direction of the zero level set, which can detect weak boundaries and avoid unwanted edges in the ultrasound images. The efficiency of the proposed model is demonstrated by experiments on real 3D volume images and 2D ultrasound images and comparisons with other approaches. Validation results on real 3D TRUS prostate images show that the authors' model can obtain a Dice similarity coefficient (DSC) of 94.03% ± 1.50% and a sensitivity of 93.16% ± 2.30%. Experiments on 100 typical 2D ultrasound images show that the authors' method can obtain a sensitivity of 94.87% ± 1.85% and a DSC of 95.82% ± 2.23%. A reproducibility experiment is done to evaluate the robustness of the proposed model. As far as the authors know, prostate segmentation from ultrasound images with weak boundaries and unwanted edges is a difficult task. A novel method using level sets with active band and the intensity variation across edges is proposed in this paper. Extensive experimental results demonstrate that the proposed method is more efficient and accurate.
Biogeochemical Modeling of the Second Rise of Oxygen
NASA Astrophysics Data System (ADS)
Smith, M. L.; Catling, D.; Claire, M.; Zahnle, K.
2014-03-01
The rise of atmospheric oxygen set the tempo for the evolution of complex life on Earth. Oxygen levels are thought to have increased in two broad steps: one step occurred in the Archean ~ 2.45 Ga (the Great Oxidation Event or GOE), and another step occured in the Neoproterozoic ~750-580 Ma (the Neoprotoerozoic Oxygenation Event or NOE). During the NOE, oxygen levels increased from ~1-10% of the present atmospheric level (PAL) (Holland, 2006), to ~15% PAL in the late Neoproterozoic, to ~100% PAL later in the Phanerozoic. Complex life requires O2, so this transition allowed complex life to evolve. We seek to understand what caused the NOE. To explore causes for the NOE, we build upon the biogeochemical model of Claire et al. (2006), which calculates the redox evolution of the atmosphere, ocean, biosphere, and crust in the Archean through to the early Proterozoic. In this model, the balance between oxygenconsuming and oyxgen-producing fluxes evolves over time such that at ~2.4 Ga, the rapidly acting sources of oxygen outweigh the rapidly-acting sinks. Or, in other words, at ~2.4 Ga, the flux of oxygen from organic carbon burial exceeds the sinks of oxygen from reaction with reduced volcanic and metamoprphic gases. The model is able to drive oxygen levels to 1-10% PAL in the Proterozoic; however, the evolving redox fluxes in the model cannot explain how oxygen levels pushed above 1-10% in the late Proterozoic. The authors suggest that perhaps another buffer, such as sulfur, is needed to describe Proterozoic and Phanerozoic redox evolution. Geologic proxies show that in the Proterozoic, up to 10% of the deep ocean may have been sulfidic. With this ocean chemistry, the global sulfur cycle would have worked differently than it does today. Because the sulfur and oxygen cycles interact, the oxygen concentration could have permanently changed due to an evolving sulfur cycle (in combination with evolving redox fluxes associated with other parts of the oxygen cycle and carbon cycles). To determine how fluxes of sulfur, carbon, and oxygen define oxygen levels before, during, and after the NOE, we add a sulfur cycle to the biogeochemical model of Claire et al. (2006). Understanding processes that impact the evolution of atmospheric oxygen on Earth is key to diagnosing the habitability of other planets because it is possible that other planets undergo a similar evolution. If a sulfidic deep ocean was instrumental in driving oxygen levels to modern values, then it would be valuable to remotely detect a sulfide-rich ocean on another planet. One such remotely-detectable signature could be the color of a sulfide-rich ocean. For example, Gallardo and Espinoza (2008) have hypothesized that a sulfidic ocean may be have been blacker in color. Even if a sulfidic ocean is not key to oxygenation, detecting a planet in transition--that is, a planet with intermediate levels of oxygen co-existing with higher levels of reduced gases - would be important for diagnosing habitability.
Practical Approaches for Detecting Selection in Microbial Genomes.
Hedge, Jessica; Wilson, Daniel J
2016-02-01
Microbial genome evolution is shaped by a variety of selective pressures. Understanding how these processes occur can help to address important problems in microbiology by explaining observed differences in phenotypes, including virulence and resistance to antibiotics. Greater access to whole-genome sequencing provides microbiologists with the opportunity to perform large-scale analyses of selection in novel settings, such as within individual hosts. This tutorial aims to guide researchers through the fundamentals underpinning popular methods for measuring selection in pathogens. These methods are transferable to a wide variety of organisms, and the exercises provided are designed for researchers with any level of programming experience.
2009-09-03
coefficients are set to a value of 0.3. The stick/slip critical shear stress level is defined using a modified Coulomb friction law. Within this law, there...Modified Johnson Cook Model Equivalent Plastic Strain a P M,htgnert S d lei Y 1 2 3 4 5 6 7 420 440 460 480 500 520 540 560 Original Johnson Cook Model...Lett., 2005, 59, 3315–3318. 7 Thomas, W. M. and Nicholas, E. D. Friction stir welding for the transportation industries. Mater. Des ., 1997, 18, 269
Overview: Exobiology in solar system exploration
NASA Technical Reports Server (NTRS)
Carle, Glenn C.; Schwartz, Deborah E.
1992-01-01
In Aug. 1988, the NASA Ames Research Center held a three-day symposium in Sunnyvale, California, to discuss the subject of exobiology in the context of exploration of the solar system. Leading authorities in exobiology presented invited papers and assisted in setting future goals. The goals they set were as follows: (1) review relevant knowledge learned from planetary exploration programs; (2) detail some of the information that is yet to be obtained; (3) describe future missions and how exobiologists, as well as other scientists, can participate; and (4) recommend specific ways exobiology questions can be addressed on future exploration missions. These goals are in agreement with those of the Solar System Exploration Committee (SSEC) of the NASA Advisory Council. Formed in 1980 to respond to the planetary exploration strategies set forth by the Space Science Board of the National Academy of Sciences' Committee on Planetary and Lunar Exploration (COMPLEX), the SSEC's main function is to review the entire planetary program. The committee formulated a long-term plan (within a constrained budget) that would ensure a vital, exciting, and scientifically valuable effort through the turn of the century. The SSEC's goals include the following: determining the origin, evolution, and present state of the solar system; understanding Earth through comparative planetology studies; and revealing the relationship between the chemical and physical evolution of the solar system and the appearance of life. The SSEC's goals are consistent with the over-arching goal of NASA's Exobiology Program, which provides the critical framework and support for basic research. The research is divided into the following four elements: (1) cosmic evolution of the biogenic compounds; (2) prebiotic evolution; (3) origin and early evolution of life; and (4) evolution of advanced life.
Hummel, Jürgen; Findeisen, Eva; Südekum, Karl-Heinz; Ruf, Irina; Kaiser, Thomas M.; Bucher, Martin; Clauss, Marcus; Codron, Daryl
2011-01-01
The circumstances of the evolution of hypsodonty (= high-crowned teeth) are a bone of contention. Hypsodonty is usually linked to diet abrasiveness, either from siliceous phytoliths (monocotyledons) or from grit (dusty environments). However, any empirical quantitative approach testing the relation of ingested silica and hypsodonty is lacking. In this study, faecal silica content was quantified as acid detergent insoluble ash and used as proxy for silica ingested by large African herbivores of different digestive types, feeding strategies and hypsodonty levels. Separate sample sets were used for the dry (n = 15 species) and wet (n = 13 species) season. Average faecal silica contents were 17–46 g kg−1 dry matter (DM) for browsing and 52–163 g kg−1 DM for grazing herbivores. No difference was detected between the wet (97.5 ± 14.4 g kg−1 DM) and dry season (93.5 ± 13.7 g kg−1 DM) faecal silica. In a phylogenetically controlled analysis, a strong positive correlation (dry season r = 0.80, p < 0.0005; wet season r = 0.74, p < 0.005) was found between hypsodonty index and faecal silica levels. While surprisingly our results do not indicate major seasonal changes in silica ingested, the correlation of faecal silica and hypsodonty supports a scenario of a dominant role of abrasive silica in the evolution of high-crowned teeth. PMID:21068036
Testing a Hypothesis for the Evolution of Sex
NASA Astrophysics Data System (ADS)
Örçal, Bora; Tüzel, Erkan; Sevim, Volkan; Jan, Naeem; Erzan, Ayşe.
An asexual set of primitive bacteria is simulated with a bit-string Penna model with a Fermi function for survival. A recent hypothesis by Jan, Stauffer, and Moseley on the evolution of sex from asexual cells as a strategy for trying to escape the effects of deleterious mutations is checked. This strategy is found to provide a successful scenario for the evolution of a stable macroscopic sexual population.
Function-selective domain architecture plasticity potentials in eukaryotic genome evolution
Linkeviciute, Viktorija; Rackham, Owen J.L.; Gough, Julian; Oates, Matt E.; Fang, Hai
2015-01-01
To help evaluate how protein function impacts on genome evolution, we introduce a new concept of ‘architecture plasticity potential’ – the capacity to form distinct domain architectures – both for an individual domain, or more generally for a set of domains grouped by shared function. We devise a scoring metric to measure the plasticity potential for these domain sets, and evaluate how function has changed over time for different species. Applying this metric to a phylogenetic tree of eukaryotic genomes, we find that the involvement of each function is not random but highly selective. For certain lineages there is strong bias for evolution to involve domains related to certain functions. In general eukaryotic genomes, particularly animals, expand complex functional activities such as signalling and regulation, but at the cost of reducing metabolic processes. We also observe differential evolution of transcriptional regulation and a unique evolutionary role of channel regulators; crucially this is only observable in terms of the architecture plasticity potential. Our findings provide a new layer of information to understand the significance of function in eukaryotic genome evolution. A web search tool, available at http://supfam.org/Pevo, offers a wide spectrum of options for exploring functional importance in eukaryotic genome evolution. PMID:25980317
Hydrogeological modelling as a tool for understanding rockslides evolution
NASA Astrophysics Data System (ADS)
Crosta, Giovanni B.; De Caro, Mattia; Frattini, Paolo; Volpi, Giorgio
2015-04-01
Several case studies of large rockslides have been presented in the literature showing dependence of displacement rate on seasonal and annual changes of external factors (e.g. rainfall, snowmelt, temperature oscillations) or on human actions (e.g. impounding of landslide toe by artificial lakes, toe excavation). The study of rockslide triggering can focus on either the initial failure or the successive reactivations driven by either meteo-climatic events or other perturbations (e.g. seismic, anthropic). A correlation between groundwater level oscillations and slope movements has been observed at many different sites and in very different materials and slope settings. This seasonal dynamic behavior generally shows a delay between perturbation (e.g., groundwater recharge and increase in water table level) and system reaction (e.g., increase in displacement rate). For this reason, groundwater modeling offers the means for assessing the oscillation of groundwater level which is a major input in rockslide and deep-seated gravitational slope deformation modelling, and that could explain both the initial failure event as well the successive reactivation or the continuous slow motion. Using a finite element software (FEFLOW, WASY GmbH) we developed 2D saturated/unsaturated and steady-state/transient groundwater flow models for two case studies for which a suitable dataset is available: the Vajont rockslide (from 1960 to October 9th 1963) and the Mt. de La Saxe rockslide (2009-2012, Aosta valley; Italian Western Alps). The transient models were implemented starting from hydraulic head distributions simulated in the previous steady-state models to investigate the groundwater fluctuation within the two chosen times interval (Vajont: 1960-1963 ; La Saxe: 2009-2012). Time series of infiltration resulting from precipitation, temperature, snowmelt data (La Saxe rockslide) and reservoir level (Vajont rockslide) were applied to the models. The assumptions made during the construction of the models, in particular the partition of the slope in different sectors with different hydraulic conductivities, are coherent with the geological, structural, hydrological and hydrogeological field and laboratory data. The sensitivity analysis shows that the hydraulic conductivity of some slope sectors (e.g. morphostructures, compressed or relaxed slope-toe, basal shear band) strongly influence the water table position and evolution. In transient models, the values of specific storage coefficient play a major control on the amplitude of groundwater level fluctuations, deriving from snowmelt or induced reservoir level rise. The calibrated groundwater flow-models are consistent with groundwater levels measured in the proximity of the piezometers aligned along the sections. The two examples can be considered important for a more advanced understanding of the evolution of rockslides and suggest the required set of data and modelling approaches both for seasonal and long term slope stability analyses. The use of the results of such analyses is reported, for both the case studies, in a companion abstract in session 3.7 where elasto-visco-plastic rheologies have been adopted for the shear band materials to replicate the available displacement time-series.
Weinreich, D M; Rand, D M
2000-01-01
We report that patterns of nonneutral DNA sequence evolution among published nuclear and mitochondrially encoded protein-coding loci differ significantly in animals. Whereas an apparent excess of amino acid polymorphism is seen in most (25/31) mitochondrial genes, this pattern is seen in fewer than half (15/36) of the nuclear data sets. This differentiation is even greater among data sets with significant departures from neutrality (14/15 vs. 1/6). Using forward simulations, we examined patterns of nonneutral evolution using parameters chosen to mimic the differences between mitochondrial and nuclear genetics (we varied recombination rate, population size, mutation rate, selective dominance, and intensity of germ line bottleneck). Patterns of evolution were correlated only with effective population size and strength of selection, and no single genetic factor explains the empirical contrast in patterns. We further report that in Arabidopsis thaliana, a highly self-fertilizing plant with effectively low recombination, five of six published nuclear data sets also exhibit an excess of amino acid polymorphism. We suggest that the contrast between nuclear and mitochondrial nonneutrality in animals stems from differences in rates of recombination in conjunction with a distribution of selective effects. If the majority of mutations segregating in populations are deleterious, high linkage may hinder the spread of the occasional beneficial mutation. PMID:10978302
The evolution of cell types in animals: emerging principles from molecular studies.
Arendt, Detlev
2008-11-01
Cell types are fundamental units of multicellular life but their evolution is obscure. How did the first cell types emerge and become distinct in animal evolution? What were the sets of cell types that existed at important evolutionary nodes that represent eumetazoan or bilaterian ancestors? How did these ancient cell types diversify further during the evolution of organ systems in the descending evolutionary lines? The recent advent of cell type molecular fingerprinting has yielded initial insights into the evolutionary interrelationships of cell types between remote animal phyla and has allowed us to define some first principles of cell type diversification in animal evolution.
Detection of Pathways Affected by Positive Selection in Primate Lineages Ancestral to Humans
Moretti, S.; Davydov, I.I.; Excoffier, L.
2017-01-01
Abstract Gene set enrichment approaches have been increasingly successful in finding signals of recent polygenic selection in the human genome. In this study, we aim at detecting biological pathways affected by positive selection in more ancient human evolutionary history. Focusing on four branches of the primate tree that lead to modern humans, we tested all available protein coding gene trees of the Primates clade for signals of adaptation in these branches, using the likelihood-based branch site test of positive selection. The results of these locus-specific tests were then used as input for a gene set enrichment test, where whole pathways are globally scored for a signal of positive selection, instead of focusing only on outlier “significant” genes. We identified signals of positive selection in several pathways that are mainly involved in immune response, sensory perception, metabolism, and energy production. These pathway-level results are highly significant, even though there is no functional enrichment when only focusing on top scoring genes. Interestingly, several gene sets are found significant at multiple levels in the phylogeny, but different genes are responsible for the selection signal in the different branches. This suggests that the same function has been optimized in different ways at different times in primate evolution. PMID:28333345
Measurement of pelvic osteolytic lesions in follow-up studies after total hip arthroplasty
NASA Astrophysics Data System (ADS)
Castaneda, Benjamin; Tamez-Pena, Jose G.; Totterman, Saara; O'Keefe, Regis; Looney, R. John
2006-03-01
Previous studies have demonstrated the plausibility of using volumetric computerized tomography to provide an accurate representation and measurement of volume for pelvic osteolytic lesions following total hip joint replacement. These studies have been performed manually (or computed-assisted) by expert radiologists with the disadvantage of poor reproducibility of the experiment. The purpose of this work is to minimize the effect of user interaction in these experiments by introducing Laplacian level set methods in the volume segmentation process and using temporal articulated registration in order to follow the evolution of a lesion over time. Laplacian level set methods reduce the inter and intra-observer variability by attaching the segmented contour to edges defined in the image while keeping smoothness. The registration process allows the information of the lesion from the first visit to be used in the segmentation process of the current visit. This work compares the automated results on 7 volunteers versus the volume measured manually. Results have shown that the proposed technique is able to track osteolytic lesions and detect changes in volume over time. Intra-reader and inter-observer variabilities were reduced.
Floquet topological phases with symmetry in all dimensions
NASA Astrophysics Data System (ADS)
Roy, Rahul; Harper, Fenner
2017-05-01
Dynamical systems may host a number of remarkable symmetry-protected phases that are qualitatively different from their static analogs. In this work, we consider the phase space of symmetry-respecting unitary evolutions in detail and identify several distinct classes of evolution that host dynamical order. Using ideas from group cohomology, we construct a set of interacting Floquet drives that generate dynamical symmetry-protected topological order for each nontrivial cohomology class in every dimension, illustrating our construction with explicit two-dimensional examples. We also identify a set of symmetry-protected Floquet drives that lie outside of the group cohomology construction, and a further class of symmetry-respecting topological drives which host chiral edge modes. We use these special drives to define a notion of phase (stable to a class of local perturbations in the bulk) and the concepts of relative and absolute topological order, which can be applied to many different classes of unitary evolutions. These include fully many-body localized unitary evolutions and time crystals.
Mutualism and evolutionary multiplayer games: revisiting the Red King.
Gokhale, Chaitanya S; Traulsen, Arne
2012-11-22
Coevolution of two species is typically thought to favour the evolution of faster evolutionary rates helping a species keep ahead in the Red Queen race, where 'it takes all the running you can do to stay where you are'. In contrast, if species are in a mutualistic relationship, it was proposed that the Red King effect may act, where it can be beneficial to evolve slower than the mutualistic species. The Red King hypothesis proposes that the species which evolves slower can gain a larger share of the benefits. However, the interactions between the two species may involve multiple individuals. To analyse such a situation, we resort to evolutionary multiplayer games. Even in situations where evolving slower is beneficial in a two-player setting, faster evolution may be favoured in a multiplayer setting. The underlying features of multiplayer games can be crucial for the distribution of benefits. They also suggest a link between the evolution of the rate of evolution and group size.
NASA Astrophysics Data System (ADS)
Rama, S. Kalyana
2017-08-01
The bouncing evolution of an universe in Loop Quantum Cosmology can be described very well by a set of effective equations, involving a function sin x. Recently, we have generalised these effective equations to (d + 1) dimensions and to any function f( x). Depending on f( x) in these models inspired by Loop Quantum Cosmology, a variety of cosmological evolutions are possible, singular as well as non singular. In this paper, we study them in detail. Among other things, we find that the scale factor a(t) ∝ t^{ 2 q/(2 q - 1) (1 + w) d} for f(x) = x^q, and find explicit Kasner-type solutions if w = 2 q - 1 also. A result which we find particularly fascinating is that, for f(x) = √{x}, the evolution is non singular and the scale factor a( t) grows exponentially at a rate set, not by a constant density, but by a quantum parameter related to the area quantum.
Sousa, Filipa L.; Thiergart, Thorsten; Landan, Giddy; Nelson-Sathi, Shijulal; Pereira, Inês A. C.; Allen, John F.; Lane, Nick; Martin, William F.
2013-01-01
Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. This paper outlines an energetically feasible path from a particular inorganic setting for the origin of life to the first free-living cells. The sources of energy available to early organic synthesis, early evolving systems and early cells stand in the foreground, as do the possible mechanisms of their conversion into harnessable chemical energy for synthetic reactions. With regard to the possible temporal sequence of events, we focus on: (i) alkaline hydrothermal vents as the far-from-equilibrium setting, (ii) the Wood–Ljungdahl (acetyl-CoA) pathway as the route that could have underpinned carbon assimilation for these processes, (iii) biochemical divergence, within the naturally formed inorganic compartments at a hydrothermal mound, of geochemically confined replicating entities with a complexity below that of free-living prokaryotes, and (iv) acetogenesis and methanogenesis as the ancestral forms of carbon and energy metabolism in the first free-living ancestors of the eubacteria and archaebacteria, respectively. In terms of the main evolutionary transitions in early bioenergetic evolution, we focus on: (i) thioester-dependent substrate-level phosphorylations, (ii) harnessing of naturally existing proton gradients at the vent–ocean interface via the ATP synthase, (iii) harnessing of Na+ gradients generated by H+/Na+ antiporters, (iv) flavin-based bifurcation-dependent gradient generation, and finally (v) quinone-based (and Q-cycle-dependent) proton gradient generation. Of those five transitions, the first four are posited to have taken place at the vent. Ultimately, all of these bioenergetic processes depend, even today, upon CO2 reduction with low-potential ferredoxin (Fd), generated either chemosynthetically or photosynthetically, suggesting a reaction of the type ‘reduced iron → reduced carbon’ at the beginning of bioenergetic evolution. PMID:23754820
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cullen, A.B.; Pigott, J.D.
1990-06-01
The present-day North New Guinea basin is a Plio-Pleistocene successor basin that formed subsequent to accretion of the Finisterre volcanic arc to the Australian Plate. The Ramu, Sepik, and Piore infrabasins formed in a forearc setting relative to the continental Maramuni magmatic arc. The evolution of these infrabasins was strongly influenced by accretion of the composite Torricelli-Prince Alexander terrane to the Australian Plate. Regional reflection seismic data and tectonic subsidence-subsidence rate calculations for seven wells drilled in the North New Guinea basin reveal a complex history. The timing and magnitude of subsidence and changes in subsidence rates differ between eachmore » of the Miocene infrabasins. A diachronous middle to late Miocene unconformity generally truncates infrabasin sequences. The Nopan No. 1 in the Sepik basin, however, has a complete middle Miocene to Pleistocene sedimentary record. This well records late Miocene negative subsidence rates documenting that the Nopan anticline grew as erosion occurred elsewhere in the region. This circumstance suggests that the major, sequence-bounding unconformity results from regional uplift and deformation, rather than changes in global sea level. The Plio-Pleistocene evolution of the North New Guinea basin has two profound implications regarding hydrocarbon exploration. First, the late Pliocene structural inversion of parts of the basin hinders stratigraphic and facies correlation inferred from the present setting. The recognition of basin inversion is particularly important in the Piore basin for predicting the distribution of potential reservoir facies in the Miocene carbonates. Second, the subsidence data suggest that although potential source rocks may be thermally within the oil window, these rocks may not have had sufficient time to mature owing to their recent burial.« less
Evolution, epigenetics and cooperation.
Bateson, Patrick
2014-04-01
Explanations for biological evolution in terms of changes in gene frequencies refer to outcomes rather than process. Integrating epigenetic studies with older evolutionary theories has drawn attention to the ways in which evolution occurs. Adaptation at the level of the gene is givingway to adaptation at the level of the organism and higher-order assemblages of organisms. These ideas impact on the theories of how cooperation might have evolved. Two of the theories, i.e. that cooperating individuals are genetically related or that they cooperate for self-interested reasons, have been accepted for a long time. The idea that adaptation takes place at the level of groups is much more controversial. However, bringing together studies of development with those of evolution is taking away much of the heat in the debate about the evolution of group behaviour.
Sharma, Abhay
2015-11-01
New discoveries are increasingly demanding integration of epigenetics, molecular biology, genomic networks and physiology with evolution. This article provides a proof of concept for evolutionary transgenerational systems biology, proposed recently in the context of epigenetic inheritance in mammals. Gene set enrichment analysis of available genome-level mammalian data presented here seem consistent with the concept that: (1) heritable information about environmental effects in somatic cells is communicated to the germline by circulating microRNAs (miRNAs) or other RNAs released in physiological fluids; (2) epigenetic factors including miRNA-like small RNAs, DNA methylation and histone modifications are propagated across generations via gene networks; and (3) inherited epigenetic variations in the form of methylated cytosines are fixed in the population as thymines over the evolutionary time course. The analysis supports integration of physiology and epigenetics with inheritance and evolution. This may catalyze efforts to develop a unified theory of biology. © 2015. Published by The Company of Biologists Ltd.
Co-composting of vegetable wastes and carton: Effect of carton composition and parameter variations.
Rawoteea, Soonita Anjeena; Mudhoo, Ackmez; Kumar, Sunil
2017-03-01
The aim of the study was to investigate the effects of carton in the composting process of mixed vegetable wastes using an experimental composter of capacity 80L. Three different mixes were set-up (Mixes 1, 2 and 3) which consisted of vegetable wastes, 2.0kg paper and bulking agents, vegetable wastes, 1.5kg carton and bulking agents, vegetable wastes, 4.5kg carton and bulking agents, respectively. Temperature evolution, pH trends, moisture levels, respiration rates, percentage volatile solids and electrical conductivity were monitored for a period of 50days. The system remained under thermophilic conditions for a very short period due to the small size of the reactor. The three mixes did not exceed a temperature of 55°C, where sanitization takes place by the destruction of pathogens. The highest peak of CO 2 evolution was observed in Mix 2 indicating that maximum microbial degradation took place in that mix. Copyright © 2016. Published by Elsevier Ltd.
Wetting and free surface flow modeling for potting and encapsulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, Carlton, F.; Brooks, Michael J.; Graham, Alan Lyman
As part of an effort to reduce costs and improve quality control in encapsulation and potting processes the Technology Initiative Project ''Defect Free Manufacturing and Assembly'' has completed a computational modeling study of flows representative of those seen in these processes. Flow solutions are obtained using a coupled, finite-element-based, numerical method based on the GOMA/ARIA suite of Sandia flow solvers. The evolution of the free surface is solved with an advanced level set algorithm. This approach incorporates novel methods for representing surface tension and wetting forces that affect the evolution of the free surface. In addition, two commercially available codes,more » ProCAST and MOLDFLOW, are also used on geometries representing encapsulation processes at the Kansas City Plant. Visual observations of the flow in several geometries are recorded in the laboratory and compared to the models. Wetting properties for the materials in these experiments are measured using a unique flowthrough goniometer.« less
NASA Astrophysics Data System (ADS)
Strand, Kari
2005-04-01
The 2300-2600 m thick Palaeoproterozoic East Puolanka Group within the central Fennoscandian Shield records four major transgressions on the cratonic margin within the approximate time period 2.25-2.10 Ga. Stacking of siliciclastic facies in parasequences and parasequence sets provides data to evaluate oscillation of relative sea-level and subsidence on different temporal scales. The lowermost part of the passive margin prism is characterized by alluvial plain to shallow marine sediments deposited in incised valleys. The succeeding highstand period is recorded by ca. 250 m of progradational parasequence sets of predominantly rippled and horizontally laminated sandstones, representing stacked wave-dominated shoreline units in sequence 1, capped by a hiatus or, in some places, by a subaerial lava. As relative sea-level rose again, sand-rich barrier-beach complexes developed with microtidal lagoons and inlets, corresponding to a retrogradational parasequence set. This was followed by a highstand period, with aggradation and progradation of alluvial plain and coastal sediments grading up into wave-tide influenced shoreline deposits in sequence 2. In sequence 3, the succeeding mudstones represent tidal flat deposits in a back-barrier region. With continued transgression, the parasequences stacked retrogradationally, each flooding episode being recorded by increasingly deeper water deposits above low-angle cross-bedded sandstones of the swash zones. The succeeding highstand progradation is represented by alluvial plain deposits. The next transgressive systems tract, overlying an inferred erosional ravinement surface, is recorded by a retrogradational parasequence set dominated by low-angle cross-stratified swash zone deposits in sequence 4. The large-scale trough cross-bed sets in these parasequences represent sand shoals and sheets of the inner shelf system. The overall major transgression recorded in the lowermost part of the Palaeoproterozoic cratonic margin succession was related to first- to second-order sea-level changes, probably due to increasing regional thermal subsidence of the lithosphere following partial continental breakup. The stratigraphic evolution can be related to changes of relative sea-level with a frequency of ca. 25 million years, probably propagated by episodic thermal subsidence. The parasequences identified here are related to high-frequency cycles of relative sea-level change due to low-magnitude eustatic oscillations.
The evolution of hillslope strength following large earthquakes
NASA Astrophysics Data System (ADS)
Brain, Matthew; Rosser, Nick; Tunstall, Neil
2017-04-01
Earthquake-induced landslides play an important role in the evolution of mountain landscapes. Earthquake ground shaking triggers near-instantaneous landsliding, but has also been shown to weaken hillslopes, preconditioning them for failure during subsequent seismicity and/or precipitation events. The temporal evolution of hillslope strength during and following primary seismicity, and if and how this ultimately results in failure, is poorly constrained due to the rarity of high-magnitude earthquakes and limited availability of suitable field datasets. We present results obtained from novel geotechnical laboratory tests to better constrain the mechanisms that control strength evolution in Earth materials of differing rheology. We consider how the strength of hillslope materials responds to ground-shaking events of different magnitude and if and how this persists to influence landslide activity during interseismic periods. We demonstrate the role of stress path and stress history, strain rate and foreshock and aftershock sequences in controlling the evolution of hillslope strength and stability. Critically, we show how hillslopes can be strengthened rather than weakened in some settings, challenging conventional assumptions. On the basis of our laboratory data, we consider the implications for earthquake-induced geomorphic perturbations in mountain landscapes over multiple timescales and in different seismogenic settings.
Thybert, David; Roller, Maša; Navarro, Fábio C P; Fiddes, Ian; Streeter, Ian; Feig, Christine; Martin-Galvez, David; Kolmogorov, Mikhail; Janoušek, Václav; Akanni, Wasiu; Aken, Bronwen; Aldridge, Sarah; Chakrapani, Varshith; Chow, William; Clarke, Laura; Cummins, Carla; Doran, Anthony; Dunn, Matthew; Goodstadt, Leo; Howe, Kerstin; Howell, Matthew; Josselin, Ambre-Aurore; Karn, Robert C; Laukaitis, Christina M; Jingtao, Lilue; Martin, Fergal; Muffato, Matthieu; Nachtweide, Stefanie; Quail, Michael A; Sisu, Cristina; Stanke, Mario; Stefflova, Klara; Van Oosterhout, Cock; Veyrunes, Frederic; Ward, Ben; Yang, Fengtang; Yazdanifar, Golbahar; Zadissa, Amonida; Adams, David J; Brazma, Alvis; Gerstein, Mark; Paten, Benedict; Pham, Son; Keane, Thomas M; Odom, Duncan T; Flicek, Paul
2018-04-01
Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli , which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology. © 2018 Thybert et al.; Published by Cold Spring Harbor Laboratory Press.
Genome-Based Characterization of Biological Processes That Differentiate Closely Related Bacteria
Palmer, Marike; Steenkamp, Emma T.; Coetzee, Martin P. A.; Blom, Jochen; Venter, Stephanus N.
2018-01-01
Bacteriologists have strived toward attaining a natural classification system based on evolutionary relationships for nearly 100 years. In the early twentieth century it was accepted that a phylogeny-based system would be the most appropriate, but in the absence of molecular data, this approach proved exceedingly difficult. Subsequent technical advances and the increasing availability of genome sequencing have allowed for the generation of robust phylogenies at all taxonomic levels. In this study, we explored the possibility of linking biological characters to higher-level taxonomic groups in bacteria by making use of whole genome sequence information. For this purpose, we specifically targeted the genus Pantoea and its four main lineages. The shared gene sets were determined for Pantoea, the four lineages within the genus, as well as its sister-genus Tatumella. This was followed by functional characterization of the gene sets using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In comparison to Tatumella, various traits involved in nutrient cycling were identified within Pantoea, providing evidence for increased efficacy in recycling of metabolites within the genus. Additionally, a number of traits associated with pathogenicity were identified within species often associated with opportunistic infections, with some support for adaptation toward overcoming host defenses. Some traits were also only conserved within specific lineages, potentially acquired in an ancestor to the lineage and subsequently maintained. It was also observed that the species isolated from the most diverse sources were generally the most versatile in their carbon metabolism. By investigating evolution, based on the more variable genomic regions, it may be possible to detect biologically relevant differences associated with the course of evolution and speciation. PMID:29467735
Lenz, Tobias; Burilkov, Alexandr
2017-09-01
What drives processes of institution building within regional international organizations? We challenge those established theories of regionalism, and of institutionalized cooperation more broadly, that treat different organizations as independent phenomena whose evolution is conditioned primarily by internal causal factors. Developing the basic premise of 'diffusion theory' - meaning that decision-making is interdependent across organizations - we argue that institutional pioneers, and specifically the European Union, shape regional institution-building processes in a number of discernible ways. We then hypothesize two pathways - active and passive - of European Union influence, and stipulate an endogenous capacity for institutional change as a key scope condition for their operation. Drawing on a new and original data set on the institutional design of 34 regional international organizations in the period from 1950 to 2010, the article finds that: (1) both the intensity of a regional international organization's structured interaction with the European Union (active influence) and the European Union's own level of delegation (passive influence) are associated with higher levels of delegation within other regional international organizations; (2) passive European Union influence exerts a larger overall substantive effect than active European Union influence does; and (3) these effects are strongest among those regional international organizations that are based on founding contracts containing open-ended commitments. These findings indicate that the creation and subsequent institutional evolution of the European Union has made a difference to the evolution of institutions in regional international organizations elsewhere, thereby suggesting that existing theories of regionalism are insufficiently able to account for processes of institution building in such contexts.
E-learning process maturity level: a conceptual framework
NASA Astrophysics Data System (ADS)
Rahmah, A.; Santoso, H. B.; Hasibuan, Z. A.
2018-03-01
ICT advancement is a sure thing with the impact influencing many domains, including learning in both formal and informal situations. It leads to a new mindset that we should not only utilize the given ICT to support the learning process, but also improve it gradually involving a lot of factors. These phenomenon is called e-learning process evolution. Accordingly, this study attempts to explore maturity level concept to provide the improvement direction gradually and progression monitoring for the individual e-learning process. Extensive literature review, observation, and forming constructs are conducted to develop a conceptual framework for e-learning process maturity level. The conceptual framework consists of learner, e-learning process, continuous improvement, evolution of e-learning process, technology, and learning objectives. Whilst, evolution of e-learning process depicted as current versus expected conditions of e-learning process maturity level. The study concludes that from the e-learning process maturity level conceptual framework, it may guide the evolution roadmap for e-learning process, accelerate the evolution, and decrease the negative impact of ICT. The conceptual framework will be verified and tested in the future study.
A Study of Pulse Shape Evolution and X-Ray Reprocessing in Her X-1
NASA Technical Reports Server (NTRS)
Cushman, Paula P.
1998-01-01
This study focused on the pulse shape evolution and spectral properties of the X-ray binary Her X-1 with regard to the well known 35-day cycle of Her X-1. A follow-up set of RXTE observations has been conducted in RXTE AO-2 phase and the two observation sets are being analyzed together. We presented results of early analysis of pulse shape evolution in "Proceedings of the Fourth Compton Symposium". More advanced analysis was presented at the HEAD meeting in November, 1997 in Estes Park, Colorado. A related study of the 35-day cycle using RXTE/ASM data, which laid out the overall picture within which the more detailed PCA observations could be placed has also been conducted. The results of this study have been published. A pair of papers on the detailed pulse evolution and the spectral/color evolution are currently being prepared for publication. Some of the significant results of this study have been a confirmation of the detailed pulse profile changes at the end of the Main High state in HerX-1 first observed by GINGA, observations of the pulse evolution in several Short High states which agree with the pulse evolution pattern predicted using a disk occultation model, observation of a systematic lengthening of the eclipse egress during the Main High state of the 35-day phase and observation of a new type of extended eclipse ingress during which pulsations cease to observed during the Short High state.
Wiley, R H
2013-02-01
Recognition of conspecifics occurs when individuals classify sets of conspecifics based on sensory input from them and associate these sets with different responses. Classification of conspecifics can vary in specificity (the number of individuals included in a set) and multiplicity (the number of sets differentiated). In other words, the information transmitted varies in complexity. Although recognition of conspecifics has been reported in a wide variety of organisms, few reports have addressed the specificity or multiplicity of this capability. This review discusses examples of these patterns, the mechanisms that can produce them, and the evolution of these mechanisms. Individual recognition is one end of a spectrum of specificity, and binary classification of conspecifics is one end of a spectrum of multiplicity. In some cases, recognition requires no more than simple forms of learning, such as habituation, yet results in individually specific recognition. In other cases, recognition of individuals involves complex associations of multiple cues with multiple previous experiences in particular contexts. Complex mechanisms for recognition are expected to evolve only when simpler mechanisms do not provide sufficient specificity and multiplicity to obtain the available advantages. In particular, the evolution of cooperation and deception is always promoted by specificity and multiplicity in recognition. Nevertheless, there is only one demonstration that recognition of specific individuals contributes to cooperation in animals other than primates. Human capacities for individual recognition probably have a central role in the evolution of complex forms of human cooperation and deception. Although relatively little studied, this capability probably rivals cognitive abilities for language. © 2012 The Author. Biological Reviews © 2012 Cambridge Philosophical Society.
Maximizing the Adjacent Possible in Automata Chemistries.
Hickinbotham, Simon; Clark, Edward; Nellis, Adam; Stepney, Susan; Clarke, Tim; Young, Peter
2016-01-01
Automata chemistries are good vehicles for experimentation in open-ended evolution, but they are by necessity complex systems whose low-level properties require careful design. To aid the process of designing automata chemistries, we develop an abstract model that classifies the features of a chemistry from a physical (bottom up) perspective and from a biological (top down) perspective. There are two levels: things that can evolve, and things that cannot. We equate the evolving level with biology and the non-evolving level with physics. We design our initial organisms in the biology, so they can evolve. We design the physics to facilitate evolvable biologies. This architecture leads to a set of design principles that should be observed when creating an instantiation of the architecture. These principles are Everything Evolves, Everything's Soft, and Everything Dies. To evaluate these ideas, we present experiments in the recently developed Stringmol automata chemistry. We examine the properties of Stringmol with respect to the principles, and so demonstrate the usefulness of the principles in designing automata chemistries.
Teaching of Evolution in Public Schools: A Cross-Cultural Examination
ERIC Educational Resources Information Center
Stewart, Joshua M.
2013-01-01
The current study sought to examine how the cultural settings of Colorado, United States, and Baden-Wurttemberg, Germany, influenced perspectives, understandings, and acceptance of college students who want to become teachers (i.e., prospective teachers) in regard to the theory of evolution, creationism, and intelligent design with both…
Evolution and Persistence of 5-um Hot Spots at the Galileo Probe entry Latitude
NASA Technical Reports Server (NTRS)
Fisher, B. M.
1997-01-01
We present a study on the longtudinal locations, morphology and evolution of the 5-um hot spots at 6.5 deg. N latitude (planetocentric), from an extensive IRTF-NSFCAM data set spanning more that 3 years, which includes the date of the Galileo Probe entry.
The Goldilocks Principle and Rapid Evolution of Antibiotic Resistance in Bacteria
NASA Astrophysics Data System (ADS)
Zhang, Qiucen; Austin, Robert
2011-03-01
Goldilocks sampled the three bear's wares for the ``just right'' combination of taste, fit and comfort. Like Goldilocks's need for the just right parameters, evolution proceeds most rapidly when there is the just right combination of a large number of mutants and rapid fixation of the mutants. We show here using a two-dimensional micro-ecology that it is possible to fix resistance to the powerful antibiotic ciprofloxacin (Cipro) in wild-type E. coli in 10 hours through a combination of extremely high population gradients, which generate rapid fixation, convolved with the just right level of antibiotic which generates a large number of mutants and the motility of the organism. Although evolution occurs in well-stirred chemostats without such Goldilocks conditions, natural environments are rarely well stirred in nature.For complex environments such as the Galapagos Islands, spatial population gradients and movement of mutants along these population gradients can be as important as genomic heterogeneity in setting the speed of evolution. The design of our micro-ecology is unique in that it provides two overlapping gradients, one an emergent and self generated bacterial population gradient due to food restriction and the other a mutagenic antibiotic gradient. Further, it exploits the motility of the bacteria moving across these gradients to drive the rate of resistance to Cipro to extraordinarily high rates. The research described was supported by Award Number U54CA143803 from the National Cancer Institute.
Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world
Wang, Minglei; Yafremava, Liudmila S.; Caetano-Anollés, Derek; Mittenthal, Jay E.; Caetano-Anollés, Gustavo
2007-01-01
The repertoire of protein architectures in proteomes is evolutionarily conserved and capable of preserving an accurate record of genomic history. Here we use a census of protein architecture in 185 genomes that have been fully sequenced to generate genome-based phylogenies that describe the evolution of the protein world at fold (F) and fold superfamily (FSF) levels. The patterns of representation of F and FSF architectures over evolutionary history suggest three epochs in the evolution of the protein world: (1) architectural diversification, where members of an architecturally rich ancestral community diversified their protein repertoire; (2) superkingdom specification, where superkingdoms Archaea, Bacteria, and Eukarya were specified; and (3) organismal diversification, where F and FSF specific to relatively small sets of organisms appeared as the result of diversification of organismal lineages. Functional annotation of FSF along these architectural chronologies revealed patterns of discovery of biological function. Most importantly, the analysis identified an early and extensive differential loss of architectures occurring primarily in Archaea that segregates the archaeal lineage from the ancient community of organisms and establishes the first organismal divide. Reconstruction of phylogenomic trees of proteomes reflects the timeline of architectural diversification in the emerging lineages. Thus, Archaea undertook a minimalist strategy using only a small subset of the full architectural repertoire and then crystallized into a diversified superkingdom late in evolution. Our analysis also suggests a communal ancestor to all life that was molecularly complex and adopted genomic strategies currently present in Eukarya. PMID:17908824
NASA Astrophysics Data System (ADS)
Vidal Vázquez, E.; Miranda, J. G. V.; Mirás-Avalos, J. M.; Díaz, M. C.; Paz-Ferreiro, J.
2009-04-01
Mathematical description of the spatial characteristics of soil surface microrelief still remains a challenge. Soil surface roughness parameters are required for modelling overland flow and erosion. The objective of this work was to evaluate the potential of multifractal for analyzing the decay of initial surface roughness induced by natural rainfall under different soil tillage systems. Field experiments were performed on an Oxisol at Campinas, São Paulo State (Brazil). Six tillage treatments, namely, disc harrow, disc plow, chisel plow, disc harrow + disc level, disc plow + disc level and chisel plow + disc level were tested. In each plot soil surface microrelief was measured for times, with increasing amounts of natural rainfall using a pinmeter. The sampling scheme was a square grid with 25 x 25 mm point spacing and the plot size was 1350 x 1350 mm, so that each data set consisted of 3025 individual elevation points. Duplicated measurements were taken per treatment and date, yielding a total of 48 experimental data sets. All the investigated microrelief data sets exhibited, in general, scale properties, and the degree of multifractality showed wide differences between them. Multifractal analysis distinguishes two different patterns of soil surface microrelief, the first one has features close to monofractal spectra and the second clearly indicates multifractal behavior. Both, singularity spectra and generalized dimension spectra allow differentiating between soil tillage systems. In general, changes in values of multifractal parameters under simulated rainfall showed no or little correspondence with the evolution of the vertical microrelief component described by indices such as the standard deviation of the point height measurements. Multifractal parameters provided valuable information for chararacterizing the spatial features of soil surface microrelief as they were able to discriminate data sets with similar values for the vertical component of roughness.
Zhou, Jian; Yu, Wei-Can; Gao, Yu-Mei; Xue, Zheng-Yuan
2015-06-01
A cavity QED implementation of the non-adiabatic holonomic quantum computation in decoherence-free subspaces is proposed with nitrogen-vacancy centers coupled commonly to the whispering-gallery mode of a microsphere cavity, where a universal set of quantum gates can be realized on the qubits. In our implementation, with the assistant of the appropriate driving fields, the quantum evolution is insensitive to the cavity field state, which is only virtually excited. The implemented non-adiabatic holonomies, utilizing optical transitions in the Λ type of three-level configuration of the nitrogen-vacancy centers, can be used to construct a universal set of quantum gates on the encoded logical qubits. Therefore, our scheme opens up the possibility of realizing universal holonomic quantum computation with cavity assisted interaction on solid-state spins characterized by long coherence times.
Kierepko, Renata; Mietelski, Jerzy W; Ustrnul, Zbigniew; Anczkiewicz, Robert; Wershofen, Herbert; Holgye, Zoltan; Kapała, Jacek; Isajenko, Krzysztof
2016-11-01
This paper reports evidence of Pu isotopes in the lower part of the troposphere of Central Europe. The data were obtained based on atmospheric aerosol fraction samples collected from four places in three countries (participating in the informal European network known as the Ring of Five (Ro5)) forming a cell with a surface area of about 200,000km(2). We compared our original data sets from Krakow (Poland, 1990-2007) and Bialystok (Poland, 1991-2007) with the results from two other locations, Prague (Czech Republic; 1997-2004) and Braunschweig (Germany; 1990-2003) to find time evolution of the Pu isotopes. The levels of the activity concentration for (238)Pu and for ((239+240))Pu were estimated to be a few and some tens of nBqm(-3), respectively. However, we also noted some results were much higher (even about 70 times higher) than the average concentration of (238)Pu in the atmosphere. The achieved complex data sets were used to test a new approach to the problem of solving mixing isotopic traces from various sources (here up to three) in one sample. Results of our model, supported by mesoscale atmospheric circulation parameters, suggest that Pu from nuclear weapon accidents or tests and nuclear burnt-up fuel are present in the air. Copyright © 2016 Elsevier B.V. All rights reserved.
Solving multistage stochastic programming models of portfolio selection with outstanding liabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edirisinghe, C.
1994-12-31
Models for portfolio selection in the presence of an outstanding liability have received significant attention, for example, models for pricing options. The problem may be described briefly as follows: given a set of risky securities (and a riskless security such as a bond), and given a set of cash flows, i.e., outstanding liability, to be met at some future date, determine an initial portfolio and a dynamic trading strategy for the underlying securities such that the initial cost of the portfolio is within a prescribed wealth level and the expected cash surpluses arising from trading is maximized. While the tradingmore » strategy should be self-financing, there may also be other restrictions such as leverage and short-sale constraints. Usually the treatment is limited to binomial evolution of uncertainty (of stock price), with possible extensions for developing computational bounds for multinomial generalizations. Posing as stochastic programming models of decision making, we investigate alternative efficient solution procedures under continuous evolution of uncertainty, for discrete time economies. We point out an important moment problem arising in the portfolio selection problem, the solution (or bounds) on which provides the basis for developing efficient computational algorithms. While the underlying stochastic program may be computationally tedious even for a modest number of trading opportunities (i.e., time periods), the derived algorithms may used to solve problems whose sizes are beyond those considered within stochastic optimization.« less
NASA Technical Reports Server (NTRS)
Solomon, Sean C. (Editor); Sharpton, Virgil L. (Editor); Zimbelman, James R. (Editor)
1990-01-01
The objectives of the Mars: Evolution of Volcanism, Tectonics, and Volatiles (MEVTV) project are to outline the volcanic and tectonic history of Mars; to determine the influence of volatiles on Martian volcanic and tectonic processes; and to attempt to determine the compositional, thermal, and volatile history of Mars from its volcanic and tectonic evolution. Available data sets were used to test general models of the volcanic and tectonic history of Mars.
LEAMram (Trademark): Land Use Evolution and Impact Assessment Model Residential Attractiveness Model
2006-09-01
MEPLAN are popular in both the United States and overseas, and focus on identifying growth by income and housing costs. These and other models focus...CUF-2), SLEUTH, Landuse Evolution Assessment Model (LEAM™), Smart Places, and What If?: • CUF-2 uses a set of econometric models to project...ER D C/ CE R L TR -0 6 -2 8 LEAMram™: Land use Evolution and impact Assessment Model Residential Attractiveness Model James D
Li, Xu; Li, Chunming; Fedorov, Andriy; Kapur, Tina; Yang, Xiaoping
2016-01-01
Purpose: In this paper, the authors propose a novel efficient method to segment ultrasound images of the prostate with weak boundaries. Segmentation of the prostate from ultrasound images with weak boundaries widely exists in clinical applications. One of the most typical examples is the diagnosis and treatment of prostate cancer. Accurate segmentation of the prostate boundaries from ultrasound images plays an important role in many prostate-related applications such as the accurate placement of the biopsy needles, the assignment of the appropriate therapy in cancer treatment, and the measurement of the prostate volume. Methods: Ultrasound images of the prostate are usually corrupted with intensity inhomogeneities, weak boundaries, and unwanted edges, which make the segmentation of the prostate an inherently difficult task. Regarding to these difficulties, the authors introduce an active band term and an edge descriptor term in the modified level set energy functional. The active band term is to deal with intensity inhomogeneities and the edge descriptor term is to capture the weak boundaries or to rule out unwanted boundaries. The level set function of the proposed model is updated in a band region around the zero level set which the authors call it an active band. The active band restricts the authors’ method to utilize the local image information in a banded region around the prostate contour. Compared to traditional level set methods, the average intensities inside∖outside the zero level set are only computed in this banded region. Thus, only pixels in the active band have influence on the evolution of the level set. For weak boundaries, they are hard to be distinguished by human eyes, but in local patches in the band region around prostate boundaries, they are easier to be detected. The authors incorporate an edge descriptor to calculate the total intensity variation in a local patch paralleled to the normal direction of the zero level set, which can detect weak boundaries and avoid unwanted edges in the ultrasound images. Results: The efficiency of the proposed model is demonstrated by experiments on real 3D volume images and 2D ultrasound images and comparisons with other approaches. Validation results on real 3D TRUS prostate images show that the authors’ model can obtain a Dice similarity coefficient (DSC) of 94.03% ± 1.50% and a sensitivity of 93.16% ± 2.30%. Experiments on 100 typical 2D ultrasound images show that the authors’ method can obtain a sensitivity of 94.87% ± 1.85% and a DSC of 95.82% ± 2.23%. A reproducibility experiment is done to evaluate the robustness of the proposed model. Conclusions: As far as the authors know, prostate segmentation from ultrasound images with weak boundaries and unwanted edges is a difficult task. A novel method using level sets with active band and the intensity variation across edges is proposed in this paper. Extensive experimental results demonstrate that the proposed method is more efficient and accurate. PMID:27277056
van Maanen, B.; Coco, G.; Bryan, K. R.
2015-01-01
An ecomorphodynamic model was developed to study how Avicennia marina mangroves influence channel network evolution in sandy tidal embayments. The model accounts for the effects of mangrove trees on tidal flow patterns and sediment dynamics. Mangrove growth is in turn controlled by hydrodynamic conditions. The presence of mangroves was found to enhance the initiation and branching of tidal channels, partly because the extra flow resistance in mangrove forests favours flow concentration, and thus sediment erosion in between vegetated areas. The enhanced branching of channels is also the result of a vegetation-induced increase in erosion threshold. On the other hand, this reduction in bed erodibility, together with the soil expansion driven by organic matter production, reduces the landward expansion of channels. The ongoing accretion in mangrove forests ultimately drives a reduction in tidal prism and an overall retreat of the channel network. During sea-level rise, mangroves can potentially enhance the ability of the soil surface to maintain an elevation within the upper portion of the intertidal zone, while hindering both the branching and headward erosion of the landward expanding channels. The modelling results presented here indicate the critical control exerted by ecogeomorphological interactions in driving landscape evolution. PMID:26339195
Rates and Patterns of Chromosomal Evolution in Drosophila pseudoobscura and D. miranda
Bartolomé, Carolina; Charlesworth, Brian
2006-01-01
Comparisons of gene orders between species permit estimation of the rate of chromosomal evolution since their divergence from a common ancestor. We have compared gene orders on three chromosomes of Drosophila pseudoobscura with its close relative, D. miranda, and the distant outgroup species, D. melanogaster, by using the public genome sequences of D. pseudoobscura and D. melanogaster and ∼50 in situ hybridizations of gene probes in D. miranda. We find no evidence for extensive transfer of genes among chromosomes in D. miranda. The rates of chromosomal rearrangements between D. miranda and D. pseudoobscura are far higher than those found before in Drosophila and approach those for nematodes, the fastest rates among higher eukaryotes. In addition, we find that the D. pseudoobscura chromosome with the highest level of inversion polymorphism (Muller's element C) does not show an unusually fast rate of evolution with respect to chromosome structure, suggesting that this classic case of inversion polymorphism reflects selection rather than mutational processes. On the basis of our results, we propose possible ancestral arrangements for the D. pseudoobscura C chromosome, which are different from those in the current literature. We also describe a new method for correcting for rearrangements that are not detected with a limited set of markers. PMID:16547107
Trexler, Joel C.; DeAngelis, Donald L.
2003-01-01
We used analytic and simulation models to determine the ecological conditions favoring evolution of a matrotrophic fish from a lecithotrophic ancestor given a complex set of trade‐offs. Matrotrophy is the nourishment of viviparous embryos by resources provided between fertilization and parturition, while lecithotrophy describes embryo nourishment provided before fertilization. In fishes and reptiles, embryo nourishment encompasses a continuum from solely lecithotrophic to primarily matrotrophic. Matrotrophy has evolved independently from lecithotrophic ancestors many times in many groups. We assumed matrotrophy increased the number of offspring a viviparous female could gestate and evaluated conditions of food availability favoring lecithotrophy or matrotrophy. The matrotrophic strategy was superior when food resources exceeded demand during gestation but at a risk of overproduction and reproductive failure if food intake was limited. Matrotrophic females were leaner during gestation than lecithotrophic females, yielding shorter life spans. Our models suggest that matrotrophic embryo nourishment evolved in environments with high food availability, consistently exceeding energy requirements for maintaining relatively large broods. Embryo abortion with some resorption of invested energy is a necessary preadaptation to the evolution of matrotrophy. Future work should explore trade‐offs of age‐specific mortality and reproductive output for females maintaining different levels of fat storage during gestation.
Studies of the pedestal structure and inter-ELM pedestal evolution in JET with the ITER-like wall
NASA Astrophysics Data System (ADS)
Maggi, C. F.; Frassinetti, L.; Horvath, L.; Lunniss, A.; Saarelma, S.; Wilson, H.; Flanagan, J.; Leyland, M.; Lupelli, I.; Pamela, S.; Urano, H.; Garzotti, L.; Lerche, E.; Nunes, I.; Rimini, F.; Contributors, JET
2017-11-01
The pedestal structure of type I ELMy H-modes has been analysed for JET with the ITER-like Wall (JET-ILW). The electron pressure pedestal width is independent of ρ * and increases proportionally to √β pol,PED. Additional broadening of the width is observed, at constant β pol, PED, with increasing ν * and/or neutral gas injection and the contribution of atomic physics effects in setting the pedestal width cannot as yet be ruled out. Neutral penetration alone does not determine the shape of the edge density profile in JET-ILW. The ratio of electron density to electron temperature scale lengths in the edge transport barrier region, η e, is of order 2-3 within experimental uncertainties. Existing understanding, represented in the stationary linear peeling-ballooning mode stability and the EPED pedestal structure models, is extended to the dynamic evolution between ELM crashes in JET-ILW, in order to test the assumptions underlying these two models. The inter-ELM temporal evolution of the pedestal structure in JET-ILW is not unique, but depends on discharge conditions, such as heating power and gas injection levels. The strong reduction in p e,PED with increasing D 2 gas injection at high power is primarily due to clamping of \
Constraints on genes shape long-term conservation of macro-synteny in metazoan genomes.
Lv, Jie; Havlak, Paul; Putnam, Nicholas H
2011-10-05
Many metazoan genomes conserve chromosome-scale gene linkage relationships ("macro-synteny") from the common ancestor of multicellular animal life 1234, but the biological explanation for this conservation is still unknown. Double cut and join (DCJ) is a simple, well-studied model of neutral genome evolution amenable to both simulation and mathematical analysis 5, but as we show here, it is not sufficent to explain long-term macro-synteny conservation. We examine a family of simple (one-parameter) extensions of DCJ to identify models and choices of parameters consistent with the levels of macro- and micro-synteny conservation observed among animal genomes. Our software implements a flexible strategy for incorporating genomic context into the DCJ model to incorporate various types of genomic context ("DCJ-[C]"), and is available as open source software from http://github.com/putnamlab/dcj-c. A simple model of genome evolution, in which DCJ moves are allowed only if they maintain chromosomal linkage among a set of constrained genes, can simultaneously account for the level of macro-synteny conservation and for correlated conservation among multiple pairs of species. Simulations under this model indicate that a constraint on approximately 7% of metazoan genes is sufficient to constrain genome rearrangement to an average rate of 25 inversions and 1.7 translocations per million years.
Insights from advanced analytics at the Veterans Health Administration.
Fihn, Stephan D; Francis, Joseph; Clancy, Carolyn; Nielson, Christopher; Nelson, Karin; Rumsfeld, John; Cullen, Theresa; Bates, Jack; Graham, Gail L
2014-07-01
Health care has lagged behind other industries in its use of advanced analytics. The Veterans Health Administration (VHA) has three decades of experience collecting data about the veterans it serves nationwide through locally developed information systems that use a common electronic health record. In 2006 the VHA began to build its Corporate Data Warehouse, a repository for patient-level data aggregated from across the VHA's national health system. This article provides a high-level overview of the VHA's evolution toward "big data," defined as the rapid evolution of applying advanced tools and approaches to large, complex, and rapidly changing data sets. It illustrates how advanced analysis is already supporting the VHA's activities, which range from routine clinical care of individual patients--for example, monitoring medication administration and predicting risk of adverse outcomes--to evaluating a systemwide initiative to bring the principles of the patient-centered medical home to all veterans. The article also shares some of the challenges, concerns, insights, and responses that have emerged along the way, such as the need to smoothly integrate new functions into clinical workflow. While the VHA is unique in many ways, its experience may offer important insights for other health care systems nationwide as they venture into the realm of big data. Project HOPE—The People-to-People Health Foundation, Inc.
Atmospheric oxygen level and the evolution of insect body size.
Harrison, Jon F; Kaiser, Alexander; VandenBrooks, John M
2010-07-07
Insects are small relative to vertebrates, possibly owing to limitations or costs associated with their blind-ended tracheal respiratory system. The giant insects of the late Palaeozoic occurred when atmospheric PO(2) (aPO(2)) was hyperoxic, supporting a role for oxygen in the evolution of insect body size. The paucity of the insect fossil record and the complex interactions between atmospheric oxygen level, organisms and their communities makes it impossible to definitively accept or reject the historical oxygen-size link, and multiple alternative hypotheses exist. However, a variety of recent empirical findings support a link between oxygen and insect size, including: (i) most insects develop smaller body sizes in hypoxia, and some develop and evolve larger sizes in hyperoxia; (ii) insects developmentally and evolutionarily reduce their proportional investment in the tracheal system when living in higher aPO(2), suggesting that there are significant costs associated with tracheal system structure and function; and (iii) larger insects invest more of their body in the tracheal system, potentially leading to greater effects of aPO(2) on larger insects. Together, these provide a wealth of plausible mechanisms by which tracheal oxygen delivery may be centrally involved in setting the relatively small size of insects and for hyperoxia-enabled Palaeozoic gigantism.
Poxviruses and the Evolution of Host Range and Virulence
Haller, Sherry L.; Peng, Chen; McFadden, Grant; Rothenburg, Stefan
2013-01-01
Poxviruses as a group can infect a large number of animals. However, at the level of individual viruses, even closely related poxviruses display highly diverse host ranges and virulence. For example, variola virus, the causative agent of smallpox, is human-specific and highly virulent only to humans, whereas related cowpox viruses naturally infect a broad spectrum of animals and only cause relatively mild disease in humans. The successful replication of poxviruses depends on their effective manipulation of the host antiviral responses, at the cellular-, tissue- and species-specific levels, which constitutes a molecular basis for differences in poxvirus host range and virulence. A number of poxvirus genes have been identified that possess host range function in experimental settings, and many of these host range genes target specific antiviral host pathways. Herein, we review the biology of poxviruses with a focus on host range, zoonotic infections, virulence, genomics and host range genes as well as the current knowledge about the function of poxvirus host range factors and how their interaction with the host innate immune system contributes to poxvirus host range and virulence. We further discuss the evolution of host range and virulence in poxviruses as well as host switches and potential poxvirus threats for human and animal health. PMID:24161410
The shape of the human language-ready brain
Boeckx, Cedric; Benítez-Burraco, Antonio
2014-01-01
Our core hypothesis is that the emergence of our species-specific language-ready brain ought to be understood in light of the developmental changes expressed at the levels of brain morphology and neural connectivity that occurred in our species after the split from Neanderthals–Denisovans and that gave us a more globular braincase configuration. In addition to changes at the cortical level, we hypothesize that the anatomical shift that led to globularity also entailed significant changes at the subcortical level. We claim that the functional consequences of such changes must also be taken into account to gain a fuller understanding of our linguistic capacity. Here we focus on the thalamus, which we argue is central to language and human cognition, as it modulates fronto-parietal activity. With this new neurobiological perspective in place, we examine its possible molecular basis. We construct a candidate gene set whose members are involved in the development and connectivity of the thalamus, in the evolution of the human head, and are known to give rise to language-associated cognitive disorders. We submit that the new gene candidate set opens up new windows into our understanding of the genetic basis of our linguistic capacity. Thus, our hypothesis aims at generating new testing grounds concerning core aspects of language ontogeny and phylogeny. PMID:24772099
Long-Term Evolution of the Electrical Stimulation Levels for Cochlear Implant Patients
Vargas, Jose Luis; Sainz, Manuel; Roldan, Cristina; de la Torre, Angel
2012-01-01
Objectives The stimulation levels programmed in cochlear implant systems are affected by an evolution since the first switch-on of the processor. This study was designed to evaluate the changes in stimulation levels over time and the relationship between post-implantation physiological changes and with the hearing experience provided by the continuous use of the cochlear implant. Methods Sixty-two patients, ranging in age from 4 to 68 years at the moment of implantation participated in this study. All subjects were implanted with the 12 channels COMBI 40+ cochlear implant at San Cecilio University Hospital, Granada, Spain. Hearing loss etiology and progression characteristics varied across subjects. Results The analyzed programming maps show that the stimulation levels suffer a fast evolution during the first weeks after the first switch-on of the processor. Then, the evolution becomes slower and the programming parameters tend to be stable at about 6 months after the first switch-on. The evolution of the stimulation levels implies an increment of the electrical dynamic range, which is increased from 15.4 to 20.7 dB and improves the intensity resolution. A significant increment of the sensitivity to acoustic stimuli is also observed. For some patients, we have also observed transitory changes in the electrode impedances associated to secretory otitis media, which cause important changes in the programming maps. Conclusion We have studied the long-term evolution of the stimulation levels in cochlear implant patients. Our results show the importance of systematic measurements of the electrode impedances before the revision of the programming map. This report also highlights that the evolution of the programming maps is an important factor to be considered in order to determine an adequate calendar fitting of the cochlear implant processor. PMID:23205223
2004-01-01
transport gap has been observed in K-intercalated Alq3 films, where the HOMO - Proc. of SPIE Vol. 5214 371 LUMO on-set separation is 3.05 ± 0.1 eV...while in a neat Alq3 film, the transport gap is 3.9 ± 0.4 eV. 22,25 Narrowing of the transport gap of alkali-fulleride films (K3C60, K6C60) has also...Rajagopal and A. Kahn, “Photoemission spectroscopy investigation of magnesium– Alq3 interfaces“, J. Appl. Phys. 84, pp. 355-358, 1998. 9 M. G. Mason
Comovements in government bond markets: A minimum spanning tree analysis
NASA Astrophysics Data System (ADS)
Gilmore, Claire G.; Lucey, Brian M.; Boscia, Marian W.
2010-11-01
The concept of a minimum spanning tree (MST) is used to study patterns of comovements for a set of twenty government bond market indices for developed North American, European, and Asian countries. We show how the MST and its related hierarchical tree evolve over time and describe the dynamic development of market linkages. Over the sample period, 1993-2008, linkages between markets have decreased somewhat. However, a subset of European Union (EU) bond markets does show increasing levels of comovements. The evolution of distinct groups within the Eurozone is also examined. The implications of our findings for portfolio diversification benefits are outlined.
The evolution of cerebellum structure correlates with nest complexity.
Hall, Zachary J; Street, Sally E; Healy, Susan D
2013-01-01
Across the brains of different bird species, the cerebellum varies greatly in the amount of surface folding (foliation). The degree of cerebellar foliation is thought to correlate positively with the processing capacity of the cerebellum, supporting complex motor abilities, particularly manipulative skills. Here, we tested this hypothesis by investigating the relationship between cerebellar foliation and species-typical nest structure in birds. Increasing complexity of nest structure is a measure of a bird's ability to manipulate nesting material into the required shape. Consistent with our hypothesis, avian cerebellar foliation increases as the complexity of the nest built increases, setting the scene for the exploration of nest building at the neural level.
Network evolution model for supply chain with manufactures as the core.
Fang, Haiyang; Jiang, Dali; Yang, Tinghong; Fang, Ling; Yang, Jian; Li, Wu; Zhao, Jing
2018-01-01
Building evolution model of supply chain networks could be helpful to understand its development law. However, specific characteristics and attributes of real supply chains are often neglected in existing evolution models. This work proposes a new evolution model of supply chain with manufactures as the core, based on external market demand and internal competition-cooperation. The evolution model assumes the external market environment is relatively stable, considers several factors, including specific topology of supply chain, external market demand, ecological growth and flow conservation. The simulation results suggest that the networks evolved by our model have similar structures as real supply chains. Meanwhile, the influences of external market demand and internal competition-cooperation to network evolution are analyzed. Additionally, 38 benchmark data sets are applied to validate the rationality of our evolution model, in which, nine manufacturing supply chains match the features of the networks constructed by our model.
Network evolution model for supply chain with manufactures as the core
Jiang, Dali; Fang, Ling; Yang, Jian; Li, Wu; Zhao, Jing
2018-01-01
Building evolution model of supply chain networks could be helpful to understand its development law. However, specific characteristics and attributes of real supply chains are often neglected in existing evolution models. This work proposes a new evolution model of supply chain with manufactures as the core, based on external market demand and internal competition-cooperation. The evolution model assumes the external market environment is relatively stable, considers several factors, including specific topology of supply chain, external market demand, ecological growth and flow conservation. The simulation results suggest that the networks evolved by our model have similar structures as real supply chains. Meanwhile, the influences of external market demand and internal competition-cooperation to network evolution are analyzed. Additionally, 38 benchmark data sets are applied to validate the rationality of our evolution model, in which, nine manufacturing supply chains match the features of the networks constructed by our model. PMID:29370201
Predictable transcriptome evolution in the convergent and complex bioluminescent organs of squid
Pankey, M. Sabrina; Minin, Vladimir N.; Imholte, Greg C.; Suchard, Marc A.; Oakley, Todd H.
2014-01-01
Despite contingency in life’s history, the similarity of evolutionarily convergent traits may represent predictable solutions to common conditions. However, the extent to which overall gene expression levels (transcriptomes) underlying convergent traits are themselves convergent remains largely unexplored. Here, we show strong statistical support for convergent evolutionary origins and massively parallel evolution of the entire transcriptomes in symbiotic bioluminescent organs (bacterial photophores) from two divergent squid species. The gene expression similarities are so strong that regression models of one species’ photophore can predict organ identity of a distantly related photophore from gene expression levels alone. Our results point to widespread parallel changes in gene expression evolution associated with convergent origins of complex organs. Therefore, predictable solutions may drive not only the evolution of novel, complex organs but also the evolution of overall gene expression levels that underlie them. PMID:25336755
Guerrero, Antonio; Marchesi, Luís F; Boix, Pablo P; Ruiz-Raga, Sonia; Ripolles-Sanchis, Teresa; Garcia-Belmonte, Germà; Bisquert, Juan
2012-04-24
Electronic equilibration at the metal-organic interface, leading to equalization of the Fermi levels, is a key process in organic optoelectronic devices. How the energy levels are set across the interface determines carrier extraction at the contact and also limits the achievable open-circuit voltage under illumination. Here, we report an extensive investigation of the cathode energy equilibration of organic bulk-heterojunction solar cells. We show that the potential to balance the mismatch between the cathode metal and the organic layer Fermi levels is divided into two contributions: spatially extended band bending in the organic bulk and voltage drop at the interface dipole layer caused by a net charge transfer. We scan the operation of the cathode under a varied set of conditions, using metals of different work functions in the range of ∼2 eV, different fullerene acceptors, and several cathode interlayers. The measurements allow us to locate the charge-neutrality level within the interface density of sates and calculate the corresponding dipole layer strength. The dipole layer withstands a large part of the total Fermi level mismatch when the polymer:fullerene blend ratio approaches ∼1:1, producing the practical alignment between the metal Fermi level and the charge-neutrality level. Origin of the interface states is linked with fullerene reduced molecules covering the metal contact. The dipole contribution, and consequently the band bending, is highly sensitive to the nature and amount of fullerene molecules forming the interface density of states. Our analysis provides a detailed picture of the evolution of the potentials in the bulk and the interface of the solar cell when forward voltage is applied or when photogeneration takes place.
The cultural evolution of emergent group-level traits.
Smaldino, Paul E
2014-06-01
Many of the most important properties of human groups - including properties that may give one group an evolutionary advantage over another - are properly defined only at the level of group organization. Yet at present, most work on the evolution of culture has focused solely on the transmission of individual-level traits. I propose a conceptual extension of the theory of cultural evolution, particularly related to the evolutionary competition between cultural groups. The key concept in this extension is the emergent group-level trait. This type of trait is characterized by the structured organization of differentiated individuals and constitutes a unit of selection that is qualitatively different from selection on groups as defined by traditional multilevel selection (MLS) theory. As a corollary, I argue that the traditional focus on cooperation as the defining feature of human societies has missed an essential feature of cooperative groups. Traditional models of cooperation assume that interacting with one cooperator is equivalent to interacting with any other. However, human groups involve differential roles, meaning that receiving aid from one individual is often preferred to receiving aid from another. In this target article, I discuss the emergence and evolution of group-level traits and the implications for the theory of cultural evolution, including ramifications for the evolution of human cooperation, technology, and cultural institutions, and for the equivalency of multilevel selection and inclusive fitness approaches.
Integrable Seven-Point Discrete Equations and Second-Order Evolution Chains
NASA Astrophysics Data System (ADS)
Adler, V. E.
2018-04-01
We consider differential-difference equations defining continuous symmetries for discrete equations on a triangular lattice. We show that a certain combination of continuous flows can be represented as a secondorder scalar evolution chain. We illustrate the general construction with a set of examples including an analogue of the elliptic Yamilov chain.
Open Listening: Creative Evolution in Early Childhood Settings
ERIC Educational Resources Information Center
Davies, Bronwyn
2011-01-01
This article sketches out a philosophy and practice of open listening, linking open listening to Bergson's (1998) concept of creative evolution. I draw on examples of small children at play from a variety of sources, including Reggio-Emilia-inspired preschools in Sweden. The article offers a challenge to early childhood educators to listen and to…
Farrell, K.M.
2001-01-01
This paper demonstrates field relationships between landforms, facies, and high-resolution sequences in avulsion deposits. It defines the building blocks of a prograding avulsion sequence from a high-resolution sequence stratigraphy perspective, proposes concepts in non-marine sequence stratigraphy and flood basin evolution, and defines the continental equivalent to a parasequence. The geomorphic features investigated include a distributary channel and its levee, the Stage I crevasse splay of Smith et al. (Sedimentology, vol. 36 (1989) 1), and the local backswamp. Levees and splays have been poorly studied in the past, and three-dimensional (3D) studies are rare. In this study, stratigraphy is defined from the finest scale upward and facies are mapped in 3D. Genetically related successions are identified by defining a hierarchy of bounding surfaces. The genesis, architecture, geometry, and connectivity of facies are explored in 3D. The approach used here reveals that avulsion deposits are comparable in process, landform, facies, bounding surfaces, and scale to interdistributary bayfill, i.e. delta lobe deposits. Even a simple Stage I splay is a complex landform, composed of several geomorphic components, several facies and many depositional events. As in bayfill, an alluvial ridge forms as the feeder crevasse and its levees advance basinward through their own distributary mouth bar deposits to form a Stage I splay. This produces a shoestring-shaped concentration of disconnected sandbodies that is flanked by wings of heterolithic strata, that join beneath the terminal mouth bar. The proposed results challenge current paradigms. Defining a crevasse splay as a discrete sandbody potentially ignores 70% of the landform's volume. An individual sandbody is likely only a small part of a crevasse splay complex. The thickest sandbody is a terminal, channel associated feature, not a sheet that thins in the direction of propagation. The three stage model of splay evolution proposed by Smith et al. (Sedimentology, vol. 36 (1989) 1) is revised to include facies and geometries consistent with a bayfill model. By analogy with delta lobes, the avulsion sequence is a parasequence, provided that its definition is modified to be independent from sea level. In non-marine settings, facies contacts at the tops of regional peats, coals, and paleosols are analogous to marine flooding surfaces. A parasequence is redefined here as a relatively conformable succession of genetically related strata or landforms that is bounded by regional flooding surfaces or their correlative surfaces. This broader definition incorporates the concept of landscape evolution between regional flooding surfaces in a variety of depositional settings. With respect to landscape evolution, accommodation space has three spatial dimensions - vertical (x), lateral (y), and down-the-basin (z). A flood basin fills in as landforms vertically (x) and laterally accrete (y), and prograde down-the-basin (z). Vertical aggradation is limited by the elevation of maximum flood stage (local base level). Differential tectonism and geomorphology control the slope of the flood basin floor and the direction of landscape evolution. These processes produce parasequences that include inclined stratal surfaces and oriented, stacked macroforms (clinoforms) that show the magnitude and direction of landscape evolution. ?? 2001 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Farrell, K. M.
2001-02-01
This paper demonstrates field relationships between landforms, facies, and high-resolution sequences in avulsion deposits. It defines the building blocks of a prograding avulsion sequence from a high-resolution sequence stratigraphy perspective, proposes concepts in non-marine sequence stratigraphy and flood basin evolution, and defines the continental equivalent to a parasequence. The geomorphic features investigated include a distributary channel and its levee, the Stage I crevasse splay of Smith et al. (Sedimentology, vol. 36 (1989) 1), and the local backswamp. Levees and splays have been poorly studied in the past, and three-dimensional (3D) studies are rare. In this study, stratigraphy is defined from the finest scale upward and facies are mapped in 3D. Genetically related successions are identified by defining a hierarchy of bounding surfaces. The genesis, architecture, geometry, and connectivity of facies are explored in 3D. The approach used here reveals that avulsion deposits are comparable in process, landform, facies, bounding surfaces, and scale to interdistributary bayfill, i.e. delta lobe deposits. Even a simple Stage I splay is a complex landform, composed of several geomorphic components, several facies and many depositional events. As in bayfill, an alluvial ridge forms as the feeder crevasse and its levees advance basinward through their own distributary mouth bar deposits to form a Stage I splay. This produces a shoestring-shaped concentration of disconnected sandbodies that is flanked by wings of heterolithic strata, that join beneath the terminal mouth bar. The proposed results challenge current paradigms. Defining a crevasse splay as a discrete sandbody potentially ignores 70% of the landform's volume. An individual sandbody is likely only a small part of a crevasse splay complex. The thickest sandbody is a terminal, channel associated feature, not a sheet that thins in the direction of propagation. The three stage model of splay evolution proposed by Smith et al. (Sedimentology, vol. 36 (1989) 1) is revised to include facies and geometries consistent with a bayfill model. By analogy with delta lobes, the avulsion sequence is a parasequence, provided that its definition is modified to be independent from sea level. In non-marine settings, facies contacts at the tops of regional peats, coals, and paleosols are analogous to marine flooding surfaces. A parasequence is redefined here as a relatively conformable succession of genetically related strata or landforms that is bounded by regional flooding surfaces or their correlative surfaces. This broader definition incorporates the concept of landscape evolution between regional flooding surfaces in a variety of depositional settings. With respect to landscape evolution, accommodation space has three spatial dimensions — vertical ( x), lateral ( y), and down-the-basin ( z). A flood basin fills in as landforms vertically ( x) and laterally accrete ( y), and prograde down-the-basin ( z). Vertical aggradation is limited by the elevation of maximum flood stage (local base level). Differential tectonism and geomorphology control the slope of the flood basin floor and the direction of landscape evolution. These processes produce parasequences that include inclined stratal surfaces and oriented, stacked macroforms (clinoforms) that show the magnitude and direction of landscape evolution.
The co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels
NASA Astrophysics Data System (ADS)
Getto, E.; Vancoevering, G.; Was, G. S.
2017-02-01
Understanding the void swelling and phase evolution of reactor structural materials at very high damage levels is essential to maintaining safety and longevity of components in Gen IV fast reactors. A combination of ion irradiation and modeling was utilized to understand the microstructure evolution of ferritic-martensitic alloy HT9 at high dpa. Self-ion irradiation experiments were performed on alloy HT9 to determine the co-evolution of voids, dislocations and precipitates up to 650 dpa at 460 °C. Modeling of microstructure evolution was conducted using the modified Radiation Induced Microstructure Evolution (RIME) model, which utilizes a mean field rate theory approach with grouped cluster dynamics. Irradiations were performed with 5 MeV raster-scanned Fe2+ ions on samples pre-implanted with 10 atom parts per million He. The swelling, dislocation and precipitate evolution at very high dpa was determined using Analytical Electron Microscopy in Scanning Transmission Electron Microscopy (STEM) mode. Experimental results were then interpreted using the RIME model. A microstructure consisting only of dislocations and voids is insufficient to account for the swelling evolution observed experimentally at high damage levels in a complicated microstructure such as irradiated alloy HT9. G phase was found to have a minimal effect on either void or dislocation evolution. M2X played two roles; a variable biased sink for defects, and as a vehicle for removal of carbon from solution, thus promoting void growth. When accounting for all microstructure interactions, swelling at high damage levels is a dynamic process that continues to respond to other changes in the microstructure as long as they occur.
Population genetics and demography unite ecology and evolution
Lowe, Winsor H.; Kovach, Ryan; Allendorf, Fred W.
2017-01-01
The interplay of ecology and evolution has been a rich area of research for decades. A surge of interest in this area was catalyzed by the observation that evolution by natural selection can operate at the same contemporary timescales as ecological dynamics. Specifically, recent eco-evolutionary research focuses on how rapid adaptation influences ecology, and vice versa. Evolution by non-adaptive forces also occurs quickly, with ecological consequences, but understanding the full scope of ecology–evolution (eco–evo) interactions requires explicitly addressing population-level processes – genetic and demographic. We show the strong ecological effects of non-adaptive evolutionary forces and, more broadly, the value of population-level research for gaining a mechanistic understanding of eco–evo interactions. The breadth of eco-evolutionary research should expand to incorporate the breadth of evolution itself.
A note on the evolution equations from the area fraction and the thickness of a floating ice cover
NASA Astrophysics Data System (ADS)
Schulkes, R. M. S. M.
1995-03-01
In this paper, two sets of evolution equations for the area fraction and the ice thickness are investigated. First of all, a simplified alternative derivation of the evolution equations as presented by Gray and Morland (1994) is given. In addition, it is shown that with proper identification of ridging functions, there is a close connection between the derived equations and the thickness distribution model introduced by Thorndike et al. (1975).
NASA Astrophysics Data System (ADS)
Drăghici, S.; Proştean, O.; Răduca, E.; Haţiegan, C.; Hălălae, I.; Pădureanu, I.; Nedeloni, M.; (Barboni Haţiegan, L.
2017-01-01
In this paper a method with which a set of characteristic functions are associated to a LDPC code is shown and also functions that represent the evolution density of messages that go along the edges of a Tanner graph. Graphic representations of the density evolution are shown respectively the study and simulation of likelihood threshold that render asymptotic boundaries between which there are decodable codes were made using MathCad V14 software.
The Stochastic Evolution of a Protocell: The Gillespie Algorithm in a Dynamically Varying Volume
Carletti, T.; Filisetti, A.
2012-01-01
We propose an improvement of the Gillespie algorithm allowing us to study the time evolution of an ensemble of chemical reactions occurring in a varying volume, whose growth is directly related to the amount of some specific molecules, belonging to the reactions set. This allows us to study the stochastic evolution of a protocell, whose volume increases because of the production of container molecules. Several protocell models are considered and compared with the deterministic models. PMID:22536297
Equilibria Configurations for Epitaxial Crystal Growth with Adatoms
NASA Astrophysics Data System (ADS)
Caroccia, Marco; Cristoferi, Riccardo; Dietrich, Laurent
2018-05-01
The behavior of a surface energy F}(E,u)} , where E is a set of finite perimeter and u\\in L^1(partial^{*} E, R_+) , is studied. These energies have been recently considered in the context of materials science to derive a new model in crystal growth that takes into account the effect of atoms, the freely diffusing on the surface (called adatoms), which are responsible for morphological evolution through an attachment and detachment process. Regular critical points, the existence and uniqueness of minimizers are discussed and the relaxation of F in a general setting under the L 1 convergence of sets and the vague convergence of measures is characterized. This is part of an ongoing project aimed at an analytical study of diffuse interface approximations of the associated evolution equations.
Transmission as a basic process in microbial biology. Lwoff Award Prize Lecture.
Baquero, Fernando
2017-11-01
Transmission is a basic process in biology and evolution, as it communicates different biological entities within and across hierarchical levels (from genes to holobionts) both in time and space. Vertical descent, replication, is transmission of information across generations (in the time dimension), and horizontal descent is transmission of information across compartments (in the space dimension). Transmission is essentially a communication process that can be studied by analogy of the classic information theory, based on 'emitters', 'messages' and 'receivers'. The analogy can be easily extended to the triad 'emigration', 'migration' and 'immigration'. A number of causes (forces) determine the emission, and another set of causes (energies) assures the reception. The message in fact is essentially constituted by 'meaningful' biological entities. A DNA sequence, a cell and a population have a semiotic dimension, are 'signs' that are eventually recognized (decoded) and integrated by receiver biological entities. In cis-acting or unenclosed transmission, the emitters and receivers correspond to separated entities of the same hierarchical level; in trans-acting or embedded transmission, the information flows between different, but frequently nested, hierarchical levels. The result (as in introgressive events) is constantly producing innovation and feeding natural selection, influencing also the evolution of transmission processes. This review is based on the concepts presented at the André Lwoff Award Lecture in the FEMS Microbiology Congress in Maastricht in 2015. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Florida Teachers' Attitudes about Teaching Evolution
ERIC Educational Resources Information Center
Fowler, Samantha R.; Meisels, Gerry G.
2010-01-01
A survey of Florida teachers reveals many differences in comfort level with teaching evolution according to the state's science teaching standards, general attitudes and beliefs about evolution, and the extent to which teachers are criticized, censured, disparaged, or reprehended for their beliefs about the teaching of evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, J.I.; Tsai, J.J.; Wu, K.H.
2005-07-01
The impacts of the aeration and the agitation on the composting process of synthetic food wastes made of dog food were studied in a laboratory-scale reactor. Two major peaks of CO{sub 2} evolution rate were observed. Each peak represented an independent stage of composting associated with the activities of thermophilic bacteria. CO{sub 2} evolutions known to correlate well with microbial activities and reactor temperatures were fitted successfully to a modified Gompertz equation, which incorporated three biokinetic parameters, namely, CO{sub 2} evolution potential, specific CO{sub 2} evolution rate, and lag phase time. No parameters that describe the impact of operating variablesmore » are involved. The model is only valid for the specified experimental conditions and may look different with others. The effects of operating parameters such as aeration and agitation were studied statistically with multivariate regression technique. Contour plots were constructed using regression equations for the examination of the dependence of CO{sub 2} evolution potentials on aeration and agitation. In the first stage, a maximum CO{sub 2} evolution potential was found when the aeration rate and the agitation parameter were set at 1.75 l/kg solids-min and 0.35, respectively. In the second stage, a maximum existed when the aeration rate and the agitation parameter were set at 1.8 l/kg solids-min and 0.5, respectively. The methods presented here can also be applied for the optimization of large-scale composting facilities that are operated differently and take longer time.« less
Pulse Shape Evolution, HER X-1
NASA Technical Reports Server (NTRS)
VanParadijs, Johannes A.
1998-01-01
This study focuses on the pulse shape evolution and spectral properties of the X-ray binary Her X-1 with regard to the well known 35-day cycle of Her X-1. A follow-up set of RXTE observations has been conducted in RXTE AO-2 phase and the two observation sets are being analyzed together. We presented results of early analysis of pulse shape evolution in "Proceedings of the Fourth Compton Symposium." More advanced analysis was presented at the HEAD meeting in November, 1997 in Estes Park, Colorado. A related study of the 35-day cycle using RXTE/ASM data, which laid out the overall picture within which the more detailed PCA observations could be placed has also been conducted. The results of this study have been published in The Astrophysical Journal, vol. 510, 974. A pair of papers on the detailed pulse evolution and the spectral/color evolution are currently being prepared for publication. Some of the significant results of this study have been a confirmation of the detailed pulse profile changes at the end of the Main High state in Her X-1 first observed by GINGA, observations of the pulse evolution in several Short High states which agree with the pulse evolution pattern predicted using a disk occultation model in the PhD Thesis of Scott 1993, observation of a systematic lengthening of the eclipse egress during the Main High state of the 35-day phase and observation of a new type of extended eclipse ingress during which pulsations cease to observed during the Short High state.
Pinheiro, Fabio; Cafasso, Donata; Cozzolino, Salvatore; Scopece, Giovanni
2015-01-01
Background and Aims The evolution of interspecific reproductive barriers is crucial to understanding species evolution. This study examines the contribution of transitions between self-compatibility (SC) and self-incompatibility (SI) and genetic divergence in the evolution of reproductive barriers in Dendrobium, one of the largest orchid genera. Specifically, it investigates the evolution of pre- and postzygotic isolation and the effects of transitions between compatibility states on interspecific reproductive isolation within the genus. Methods The role of SC and SI changes in reproductive compatibility among species was examined using fruit set and seed viability data available in the literature from 86 species and ∼2500 hand pollinations. The evolution of SC and SI in Dendrobium species was investigated within a phylogenetic framework using internal transcribed spacer sequences available in GenBank. Key Results Based on data from crossing experiments, estimations of genetic distance and the results of a literature survey, it was found that changes in SC and SI significantly influenced the compatibility between species in interspecific crosses. The number of fruits produced was significantly higher in crosses in which self-incompatible species acted as pollen donor for self-compatible species, following the SI × SC rule. Maximum likelihood and Bayesian tests did not reject transitions from SI to SC and from SC to SI across the Dendrobium phylogeny. In addition, postzygotic isolation (embryo mortality) was found to evolve gradually with genetic divergence, in agreement with previous results observed for other plant species, including orchids. Conclusions Transitions between SC and SI and the gradual accumulation of genetic incompatibilities affecting postzygotic isolation are important mechanisms preventing gene flow among Dendrobium species, and may constitute important evolutionary processes contributing to the high levels of species diversity in this tropical orchid group. PMID:25953040
Pinheiro, Fabio; Cafasso, Donata; Cozzolino, Salvatore; Scopece, Giovanni
2015-09-01
The evolution of interspecific reproductive barriers is crucial to understanding species evolution. This study examines the contribution of transitions between self-compatibility (SC) and self-incompatibility (SI) and genetic divergence in the evolution of reproductive barriers in Dendrobium, one of the largest orchid genera. Specifically, it investigates the evolution of pre- and postzygotic isolation and the effects of transitions between compatibility states on interspecific reproductive isolation within the genus. The role of SC and SI changes in reproductive compatibility among species was examined using fruit set and seed viability data available in the literature from 86 species and ∼2500 hand pollinations. The evolution of SC and SI in Dendrobium species was investigated within a phylogenetic framework using internal transcribed spacer sequences available in GenBank. Based on data from crossing experiments, estimations of genetic distance and the results of a literature survey, it was found that changes in SC and SI significantly influenced the compatibility between species in interspecific crosses. The number of fruits produced was significantly higher in crosses in which self-incompatible species acted as pollen donor for self-compatible species, following the SI × SC rule. Maximum likelihood and Bayesian tests did not reject transitions from SI to SC and from SC to SI across the Dendrobium phylogeny. In addition, postzygotic isolation (embryo mortality) was found to evolve gradually with genetic divergence, in agreement with previous results observed for other plant species, including orchids. Transitions between SC and SI and the gradual accumulation of genetic incompatibilities affecting postzygotic isolation are important mechanisms preventing gene flow among Dendrobium species, and may constitute important evolutionary processes contributing to the high levels of species diversity in this tropical orchid group. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Graph Structured Program Evolution: Evolution of Loop Structures
NASA Astrophysics Data System (ADS)
Shirakawa, Shinichi; Nagao, Tomoharu
Recently, numerous automatic programming techniques have been developed and applied in various fields. A typical example is genetic programming (GP), and various extensions and representations of GP have been proposed thus far. Complex programs and hand-written programs, however, may contain several loops and handle multiple data types. In this chapter, we propose a new method called Graph Structured Program Evolution (GRAPE). The representation of GRAPE is a graph structure; therefore, it can represent branches and loops using this structure. Each programis constructed as an arbitrary directed graph of nodes and a data set. The GRAPE program handles multiple data types using the data set for each type, and the genotype of GRAPE takes the form of a linear string of integers. We apply GRAPE to three test problems, factorial, exponentiation, and list sorting, and demonstrate that the optimum solution in each problem is obtained by the GRAPE system.
Viral genetic variation accounts for a third of variability in HIV-1 set-point viral load in Europe.
Blanquart, François; Wymant, Chris; Cornelissen, Marion; Gall, Astrid; Bakker, Margreet; Bezemer, Daniela; Hall, Matthew; Hillebregt, Mariska; Ong, Swee Hoe; Albert, Jan; Bannert, Norbert; Fellay, Jacques; Fransen, Katrien; Gourlay, Annabelle J; Grabowski, M Kate; Gunsenheimer-Bartmeyer, Barbara; Günthard, Huldrych F; Kivelä, Pia; Kouyos, Roger; Laeyendecker, Oliver; Liitsola, Kirsi; Meyer, Laurence; Porter, Kholoud; Ristola, Matti; van Sighem, Ard; Vanham, Guido; Berkhout, Ben; Kellam, Paul; Reiss, Peter; Fraser, Christophe
2017-06-01
HIV-1 set-point viral load-the approximately stable value of viraemia in the first years of chronic infection-is a strong predictor of clinical outcome and is highly variable across infected individuals. To better understand HIV-1 pathogenesis and the evolution of the viral population, we must quantify the heritability of set-point viral load, which is the fraction of variation in this phenotype attributable to viral genetic variation. However, current estimates of heritability vary widely, from 6% to 59%. Here we used a dataset of 2,028 seroconverters infected between 1985 and 2013 from 5 European countries (Belgium, Switzerland, France, the Netherlands and the United Kingdom) and estimated the heritability of set-point viral load at 31% (CI 15%-43%). Specifically, heritability was measured using models of character evolution describing how viral load evolves on the phylogeny of whole-genome viral sequences. In contrast to previous studies, (i) we measured viral loads using standardized assays on a sample collected in a strict time window of 6 to 24 months after infection, from which the viral genome was also sequenced; (ii) we compared 2 models of character evolution, the classical "Brownian motion" model and another model ("Ornstein-Uhlenbeck") that includes stabilising selection on viral load; (iii) we controlled for covariates, including age and sex, which may inflate estimates of heritability; and (iv) we developed a goodness of fit test based on the correlation of viral loads in cherries of the phylogenetic tree, showing that both models of character evolution fit the data well. An overall heritability of 31% (CI 15%-43%) is consistent with other studies based on regression of viral load in donor-recipient pairs. Thus, about a third of variation in HIV-1 virulence is attributable to viral genetic variation.
Clownfishes evolution below and above the species level
Litsios, Glenn; Faye, Laurélène; Salamin, Nicolas
2018-01-01
The difference between rapid morphological evolutionary changes observed in populations and the long periods of stasis detected in the fossil record has raised a decade-long debate about the exact role played by intraspecific mechanisms at the interspecific level. Although they represent different scales of the same evolutionary process, micro- and macroevolution are rarely studied together and few empirical studies have compared the rates of evolution and the selective pressures between both scales. Here, we analyse morphological, genetic and ecological traits in clownfishes at different evolutionary scales and demonstrate that the tempo of molecular and morphological evolution at the species level can be, to some extent, predicted from parameters estimated below the species level, such as the effective population size or the rate of evolution within populations. We also show that similar codons in the gene of the rhodopsin RH1, a light-sensitive receptor protein, are under positive selection at the intra and interspecific scales, suggesting that similar selective pressures are acting at both levels. PMID:29467260
2010-01-01
Background The genus Neisseria contains two important yet very different pathogens, N. meningitidis and N. gonorrhoeae, in addition to non-pathogenic species, of which N. lactamica is the best characterized. Genomic comparisons of these three bacteria will provide insights into the mechanisms and evolution of pathogenesis in this group of organisms, which are applicable to understanding these processes more generally. Results Non-pathogenic N. lactamica exhibits very similar population structure and levels of diversity to the meningococcus, whilst gonococci are essentially recent descendents of a single clone. All three species share a common core gene set estimated to comprise around 1190 CDSs, corresponding to about 60% of the genome. However, some of the nucleotide sequence diversity within this core genome is particular to each group, indicating that cross-species recombination is rare in this shared core gene set. Other than the meningococcal cps region, which encodes the polysaccharide capsule, relatively few members of the large accessory gene pool are exclusive to one species group, and cross-species recombination within this accessory genome is frequent. Conclusion The three Neisseria species groups represent coherent biological and genetic groupings which appear to be maintained by low rates of inter-species horizontal genetic exchange within the core genome. There is extensive evidence for exchange among positively selected genes and the accessory genome and some evidence of hitch-hiking of housekeeping genes with other loci. It is not possible to define a 'pathogenome' for this group of organisms and the disease causing phenotypes are therefore likely to be complex, polygenic, and different among the various disease-associated phenotypes observed. PMID:21092259
Moore, Abigail J; Vos, Jurriaan M De; Hancock, Lillian P; Goolsby, Eric; Edwards, Erika J
2018-05-01
Hybrid enrichment is an increasingly popular approach for obtaining hundreds of loci for phylogenetic analysis across many taxa quickly and cheaply. The genes targeted for sequencing are typically single-copy loci, which facilitate a more straightforward sequence assembly and homology assignment process. However, this approach limits the inclusion of most genes of functional interest, which often belong to multi-gene families. Here, we demonstrate the feasibility of including large gene families in hybrid enrichment protocols for phylogeny reconstruction and subsequent analyses of molecular evolution, using a new set of bait sequences designed for the "portullugo" (Caryophyllales), a moderately sized lineage of flowering plants (~ 2200 species) that includes the cacti and harbors many evolutionary transitions to C$_{\\mathrm{4}}$ and CAM photosynthesis. Including multi-gene families allowed us to simultaneously infer a robust phylogeny and construct a dense sampling of sequences for a major enzyme of C$_{\\mathrm{4}}$ and CAM photosynthesis, which revealed the accumulation of adaptive amino acid substitutions associated with C$_{\\mathrm{4}}$ and CAM origins in particular paralogs. Our final set of matrices for phylogenetic analyses included 75-218 loci across 74 taxa, with ~ 50% matrix completeness across data sets. Phylogenetic resolution was greatly improved across the tree, at both shallow and deep levels. Concatenation and coalescent-based approaches both resolve the sister lineage of the cacti with strong support: Anacampserotaceae $+$ Portulacaceae, two lineages of mostly diminutive succulent herbs of warm, arid regions. In spite of this congruence, BUCKy concordance analyses demonstrated strong and conflicting signals across gene trees. Our results add to the growing number of examples illustrating the complexity of phylogenetic signals in genomic-scale data.
Chang, Dan; Duda, Thomas F
2014-06-05
Predatory marine gastropods of the genus Conus exhibit substantial variation in venom composition both within and among species. Apart from mechanisms associated with extensive turnover of gene families and rapid evolution of genes that encode venom components ('conotoxins'), the evolution of distinct conotoxin expression patterns is an additional source of variation that may drive interspecific differences in the utilization of species' 'venom gene space'. To determine the evolution of expression patterns of venom genes of Conus species, we evaluated the expression of A-superfamily conotoxin genes of a set of closely related Conus species by comparing recovered transcripts of A-superfamily genes that were previously identified from the genomes of these species. We modified community phylogenetics approaches to incorporate phylogenetic history and disparity of genes and their expression profiles to determine patterns of venom gene space utilization. Less than half of the A-superfamily gene repertoire of these species is expressed, and only a few orthologous genes are coexpressed among species. Species exhibit substantially distinct expression strategies, with some expressing sets of closely related loci ('under-dispersed' expression of available genes) while others express sets of more disparate genes ('over-dispersed' expression). In addition, expressed genes show higher dN/dS values than either unexpressed or ancestral genes; this implies that expression exposes genes to selection and facilitates rapid evolution of these genes. Few recent lineage-specific gene duplicates are expressed simultaneously, suggesting that expression divergence among redundant gene copies may be established shortly after gene duplication. Our study demonstrates that venom gene space is explored differentially by Conus species, a process that effectively permits the independent and rapid evolution of venoms in these species.
NASA Technical Reports Server (NTRS)
Black, David C.
1987-01-01
The Space Station that will be launched and made operational in the early 1990s should be viewed as a beginning, a facility that will evolve with the passing of time to better meet the needs and requirements of a diverse set of users. Evolution takes several forms, ranging from simple growth through addition of infrastructure elements to upgrading of system capability through inclusion of advanced technologies. Much of the early considerations of Space Station evolution focused on physical growth. However, a series of recent workshops have revealed that the more likely mode of Space Station evolution will not be through growth but rather through a process known as 'branching'.
Empirical fitness landscapes and the predictability of evolution.
de Visser, J Arjan G M; Krug, Joachim
2014-07-01
The genotype-fitness map (that is, the fitness landscape) is a key determinant of evolution, yet it has mostly been used as a superficial metaphor because we know little about its structure. This is now changing, as real fitness landscapes are being analysed by constructing genotypes with all possible combinations of small sets of mutations observed in phylogenies or in evolution experiments. In turn, these first glimpses of empirical fitness landscapes inspire theoretical analyses of the predictability of evolution. Here, we review these recent empirical and theoretical developments, identify methodological issues and organizing principles, and discuss possibilities to develop more realistic fitness landscape models.
NASA Astrophysics Data System (ADS)
Lamb, M. A.; Cashman, S. M.; Dorsey, R. J.; Bennett, S. E. K.; Loveless, J. P.; Goodliffe, A. M.
2014-12-01
The NSF-MARGINS Program funded a decade of research on continental margin processes. The NSF-GeoPRISMS Mini-lesson Project, funded by NSF-TUES, is designed to integrate the significant findings from the MARGINS program into open-source college-level curriculum. The Gulf of California (GOC) served as the focus site for the Rupturing Continental Lithosphere initiative, which addressed several scientific questions: What forces drive rift initiation, localization, propagation and evolution? How does deformation vary in time and space, and why? How does crust evolve, physically and chemically, as rifting proceeds to sea-floor spreading? What is the role of sedimentation and magmatism in continental extension? We developed two weeks of curriculum designed for an upper-division structural geology, tectonics or geophysics course. The curriculum includes lectures, labs, and in-class activities that can be used as a whole or individually. The first set of materials introduces the RCL initiative to students and has them analyze the bathymetry and oblique-rifting geometry of the GOC in an exercise using GeoMapApp. The second set of materials has two goals: (1) introduce students to fundamental concepts of interpreting seismic reflection data via lectures and in-class interpretation of strata, basement, and faults from recent GOC seismic data, and (2) encourage students to discover the structural geometry and rift evolution, including the east-to-west progression of faulting and transition from detachment to high-angle faulting in the northern GOC, and changes in deformation style from north to south. In the third set of materials, students investigate isostatic affects of sediment fill in GOC oblique rift basins. This activity consists of a problem set, introduced in a lecture, where students integrate their findings from the previous bathymetry- and seismic-interpretation exercises.
A Pipeline for Constructing a Catalog of Multi-method Models of Interacting Galaxies
NASA Astrophysics Data System (ADS)
Holincheck, Anthony
Galaxies represent a fundamental unit of matter for describing the large-scale structure of the universe. One of the major processes affecting the formation and evolution of galaxies are mutual interactions. These interactions can including gravitational tidal distortion, mass transfer, and even mergers. In any hierarchical model, mergers are the key mechanism in galaxy formation and evolution. Computer simulations of interacting galaxies have evolved in the last four decades from simple restricted three-body algorithms to full n-body gravity models. These codes often included sophisticated physical mechanisms such as gas dynamics, supernova feedback, and central blackholes. As the level of complexity, and perhaps realism, increases so does the amount of computational resources needed. These advanced simulations are often used in parameter studies of interactions. They are usually only employed in an ad hoc fashion to recreate the dynamical history of specific sets of interacting galaxies. These specific models are often created with only a few dozen or at most few hundred sets of simulation parameters being attempted. This dissertation presents a prototype pipeline for modeling specific pairs of interacting galaxies in bulk. The process begins with a simple image of the current disturbed morphology and an estimate of distance to the system and mass of the galaxies. With the use of an updated restricted three-body simulation code and the help of Citizen Scientists, the pipeline is able to sample hundreds of thousands of points in parameter space for each system. Through the use of a convenient interface and innovative scoring algorithm, the pipeline aids researchers in identifying the best set of simulation parameters. This dissertation demonstrates a successful recreation of the disturbed morphologies of 62 pairs of interacting galaxies. The pipeline also provides for examining the level of convergence and uniqueness of the dynamical properties of each system. By creating a population of models for actual systems, the current research is able to compare simulation-based and observational values on a larger scale than previous efforts. Several potential relationships between star formation rate and dynamical time since closest approach are presented.
Mitogenomics does not resolve deep molluscan relationships (yet?).
Stöger, I; Schrödl, M
2013-11-01
The origin of molluscs among lophotrochozoan metazoans is unresolved and interclass relationships are contradictory between morphology-based, multi-locus, and recent phylogenomic analyses. Within the "Deep Metazoan Phylogeny" framework, all available molluscan mitochondrial genomes were compiled, covering 6 of 8 classes. Genomes were reannotated, and 13 protein coding genes (PCGs) were analyzed in various taxon settings, under multiple masking and coding regimes. Maximum Likelihood based methods were used for phylogenetic reconstructions. In all cases, molluscs result mixed up with lophotrochozoan outgroups, and most molluscan classes with more than single representatives available are non-monophyletic. We discuss systematic errors such as long branch attraction to cause aberrant, basal positions of fast evolving ingroups such as scaphopods, patellogastropods and, in particular, the gastropod subgroup Heterobranchia. Mitochondrial sequences analyzed either as amino acids or nucleotides may perform well in some (Cephalopoda) but not in other palaeozoic molluscan groups; they are not suitable to reconstruct deep (Cambrian) molluscan evolution. Supposedly "rare" mitochondrial genome level features have long been promoted as phylogenetically informative. In our newly annotated data set, features such as genome size, transcription on one or both strands, and certain coupled pairs of PCGs show a homoplastic, but obviously non-random distribution. Apparently congruent (but not unambiguous) signal for non-trivial subclades, e.g. for a clade composed of pteriomorph and heterodont bivalves, needs confirmation from a more comprehensive bivalve sampling. We found that larger clusters not only of PCGs but also of rRNAs and even tRNAs can bear local phylogenetic signal; adding trnG-trnE to the end of the ancestral cluster trnM-trnC-trnY-trnW-trnQ might be synapomorphic for Mollusca. Mitochondrial gene arrangement and other genome level features explored and reviewed herein thus failed as golden bullets, but are promising as additional characters or evidence supporting deep molluscan clades revealed by other data sets. A representative and dense sampling of molluscan subgroups may contribute to resolve contentious interclass relationships in the future, and is vital for exploring the evolution of especially diverse mitochondrial genomes in molluscs. Copyright © 2012 Elsevier Inc. All rights reserved.
Chaki, Prosper P; Kannady, Khadija; Mtasiwa, Deo; Tanner, Marcel; Mshinda, Hassan; Kelly, Ann H; Killeen, Gerry F
2014-06-25
Community-based service delivery is vital to the effectiveness, affordability and sustainability of vector control generally, and to labour-intensive larval source management (LSM) programmes in particular. The institutional evolution of a city-level, community-based LSM programme over 14 years in urban Dar es Salaam, Tanzania, illustrates how operational research projects can contribute to public health governance and to the establishment of sustainable service delivery programmes. Implementation, management and governance of this LSM programme is framed within a nested set of spatially-defined relationships between mosquitoes, residents, government and research institutions that build upward from neighbourhood to city and national scales. The clear hierarchical structure associated with vertical, centralized management of decentralized, community-based service delivery, as well as increasingly clear differentiation of partner roles and responsibilities across several spatial scales, contributed to the evolution and subsequent growth of the programme. The UMCP was based on the principle of an integrated operational research project that evolved over time as the City Council gradually took more responsibility for management. The central role of Dar es Salaam's City Council in coordinating LSM implementation enabled that flexibility; the institutionalization of management and planning in local administrative structures enhanced community-mobilization and funding possibilities at national and international levels. Ultimately, the high degree of program ownership by the City Council and three municipalities, coupled with catalytic donor funding and technical support from expert overseas partners have enabled establishment of a sustainable, internally-funded programme implemented by the National Ministry of Health and Social Welfare and supported by national research and training institutes.
Adaptation of A-to-I RNA editing in Drosophila
Zhang, Hong
2017-01-01
Adenosine-to-inosine (A-to-I) editing is hypothesized to facilitate adaptive evolution by expanding proteomic diversity through an epigenetic approach. However, it is challenging to provide evidences to support this hypothesis at the whole editome level. In this study, we systematically characterized 2,114 A-to-I RNA editing sites in female and male brains of D. melanogaster, and nearly half of these sites had events evolutionarily conserved across Drosophila species. We detected strong signatures of positive selection on the nonsynonymous editing sites in Drosophila brains, and the beneficial editing sites were significantly enriched in genes related to chemical and electrical neurotransmission. The signal of adaptation was even more pronounced for the editing sites located in X chromosome or for those commonly observed across Drosophila species. We identified a set of gene candidates (termed “PSEB” genes) that had nonsynonymous editing events favored by natural selection. We presented evidence that editing preferentially increased mutation sequence space of evolutionarily conserved genes, which supported the adaptive evolution hypothesis of editing. We found prevalent nonsynonymous editing sites that were favored by natural selection in female and male adults from five strains of D. melanogaster. We showed that temperature played a more important role than gender effect in shaping the editing levels, although the effect of temperature is relatively weaker compared to that of species effect. We also explored the relevant factors that shape the selective patterns of the global editomes. Altogether we demonstrated that abundant nonsynonymous editing sites in Drosophila brains were adaptive and maintained by natural selection during evolution. Our results shed new light on the evolutionary principles and functional consequences of RNA editing. PMID:28282384
Evolution of Self-Organized Task Specialization in Robot Swarms
Ferrante, Eliseo; Turgut, Ali Emre; Duéñez-Guzmán, Edgar; Dorigo, Marco; Wenseleers, Tom
2015-01-01
Division of labor is ubiquitous in biological systems, as evidenced by various forms of complex task specialization observed in both animal societies and multicellular organisms. Although clearly adaptive, the way in which division of labor first evolved remains enigmatic, as it requires the simultaneous co-occurrence of several complex traits to achieve the required degree of coordination. Recently, evolutionary swarm robotics has emerged as an excellent test bed to study the evolution of coordinated group-level behavior. Here we use this framework for the first time to study the evolutionary origin of behavioral task specialization among groups of identical robots. The scenario we study involves an advanced form of division of labor, common in insect societies and known as “task partitioning”, whereby two sets of tasks have to be carried out in sequence by different individuals. Our results show that task partitioning is favored whenever the environment has features that, when exploited, reduce switching costs and increase the net efficiency of the group, and that an optimal mix of task specialists is achieved most readily when the behavioral repertoires aimed at carrying out the different subtasks are available as pre-adapted building blocks. Nevertheless, we also show for the first time that self-organized task specialization could be evolved entirely from scratch, starting only from basic, low-level behavioral primitives, using a nature-inspired evolutionary method known as Grammatical Evolution. Remarkably, division of labor was achieved merely by selecting on overall group performance, and without providing any prior information on how the global object retrieval task was best divided into smaller subtasks. We discuss the potential of our method for engineering adaptively behaving robot swarms and interpret our results in relation to the likely path that nature took to evolve complex sociality and task specialization. PMID:26247819
Evolution of Self-Organized Task Specialization in Robot Swarms.
Ferrante, Eliseo; Turgut, Ali Emre; Duéñez-Guzmán, Edgar; Dorigo, Marco; Wenseleers, Tom
2015-08-01
Division of labor is ubiquitous in biological systems, as evidenced by various forms of complex task specialization observed in both animal societies and multicellular organisms. Although clearly adaptive, the way in which division of labor first evolved remains enigmatic, as it requires the simultaneous co-occurrence of several complex traits to achieve the required degree of coordination. Recently, evolutionary swarm robotics has emerged as an excellent test bed to study the evolution of coordinated group-level behavior. Here we use this framework for the first time to study the evolutionary origin of behavioral task specialization among groups of identical robots. The scenario we study involves an advanced form of division of labor, common in insect societies and known as "task partitioning", whereby two sets of tasks have to be carried out in sequence by different individuals. Our results show that task partitioning is favored whenever the environment has features that, when exploited, reduce switching costs and increase the net efficiency of the group, and that an optimal mix of task specialists is achieved most readily when the behavioral repertoires aimed at carrying out the different subtasks are available as pre-adapted building blocks. Nevertheless, we also show for the first time that self-organized task specialization could be evolved entirely from scratch, starting only from basic, low-level behavioral primitives, using a nature-inspired evolutionary method known as Grammatical Evolution. Remarkably, division of labor was achieved merely by selecting on overall group performance, and without providing any prior information on how the global object retrieval task was best divided into smaller subtasks. We discuss the potential of our method for engineering adaptively behaving robot swarms and interpret our results in relation to the likely path that nature took to evolve complex sociality and task specialization.
2014-01-01
Background Community-based service delivery is vital to the effectiveness, affordability and sustainability of vector control generally, and to labour-intensive larval source management (LSM) programmes in particular. Case description The institutional evolution of a city-level, community-based LSM programme over 14 years in urban Dar es Salaam, Tanzania, illustrates how operational research projects can contribute to public health governance and to the establishment of sustainable service delivery programmes. Implementation, management and governance of this LSM programme is framed within a nested set of spatially-defined relationships between mosquitoes, residents, government and research institutions that build upward from neighbourhood to city and national scales. Discussion and evaluation The clear hierarchical structure associated with vertical, centralized management of decentralized, community-based service delivery, as well as increasingly clear differentiation of partner roles and responsibilities across several spatial scales, contributed to the evolution and subsequent growth of the programme. Conclusions The UMCP was based on the principle of an integrated operational research project that evolved over time as the City Council gradually took more responsibility for management. The central role of Dar es Salaam’s City Council in coordinating LSM implementation enabled that flexibility; the institutionalization of management and planning in local administrative structures enhanced community-mobilization and funding possibilities at national and international levels. Ultimately, the high degree of program ownership by the City Council and three municipalities, coupled with catalytic donor funding and technical support from expert overseas partners have enabled establishment of a sustainable, internally-funded programme implemented by the National Ministry of Health and Social Welfare and supported by national research and training institutes. PMID:24964790
Evolutionary relationships between miRNA genes and their activity.
Zhu, Yan; Skogerbø, Geir; Ning, Qianqian; Wang, Zhen; Li, Biqing; Yang, Shuang; Sun, Hong; Li, Yixue
2012-12-22
The emergence of vertebrates is characterized by a strong increase in miRNA families. MicroRNAs interact broadly with many transcripts, and the evolution of such a system is intriguing. However, evolutionary questions concerning the origin of miRNA genes and their subsequent evolution remain unexplained. In order to systematically understand the evolutionary relationship between miRNAs gene and their function, we classified human known miRNAs into eight groups based on their evolutionary ages estimated by maximum parsimony method. New miRNA genes with new functional sequences accumulated more dynamically in vertebrates than that observed in Drosophila. Different levels of evolutionary selection were observed over miRNA gene sequences with different time of origin. Most genic miRNAs differ from their host genes in time of origin, there is no particular relationship between the age of a miRNA and the age of its host genes, genic miRNAs are mostly younger than the corresponding host genes. MicroRNAs originated over different time-scales are often predicted/verified to target the same or overlapping sets of genes, opening the possibility of substantial functional redundancy among miRNAs of different ages. Higher degree of tissue specificity and lower expression level was found in young miRNAs. Our data showed that compared with protein coding genes, miRNA genes are more dynamic in terms of emergence and decay. Evolution patterns are quite different between miRNAs of different ages. MicroRNAs activity is under tight control with well-regulated expression increased and targeting decreased over time. Our work calls attention to the study of miRNA activity with a consideration of their origin time.
Lenz, Tobias; Burilkov, Alexandr
2016-01-01
What drives processes of institution building within regional international organizations? We challenge those established theories of regionalism, and of institutionalized cooperation more broadly, that treat different organizations as independent phenomena whose evolution is conditioned primarily by internal causal factors. Developing the basic premise of ‘diffusion theory’ — meaning that decision-making is interdependent across organizations — we argue that institutional pioneers, and specifically the European Union, shape regional institution-building processes in a number of discernible ways. We then hypothesize two pathways — active and passive — of European Union influence, and stipulate an endogenous capacity for institutional change as a key scope condition for their operation. Drawing on a new and original data set on the institutional design of 34 regional international organizations in the period from 1950 to 2010, the article finds that: (1) both the intensity of a regional international organization’s structured interaction with the European Union (active influence) and the European Union’s own level of delegation (passive influence) are associated with higher levels of delegation within other regional international organizations; (2) passive European Union influence exerts a larger overall substantive effect than active European Union influence does; and (3) these effects are strongest among those regional international organizations that are based on founding contracts containing open-ended commitments. These findings indicate that the creation and subsequent institutional evolution of the European Union has made a difference to the evolution of institutions in regional international organizations elsewhere, thereby suggesting that existing theories of regionalism are insufficiently able to account for processes of institution building in such contexts. PMID:29400350
Population Genetics and Demography Unite Ecology and Evolution.
Lowe, Winsor H; Kovach, Ryan P; Allendorf, Fred W
2017-02-01
The interplay of ecology and evolution has been a rich area of research for decades. A surge of interest in this area was catalyzed by the observation that evolution by natural selection can operate at the same contemporary timescales as ecological dynamics. Specifically, recent eco-evolutionary research focuses on how rapid adaptation influences ecology, and vice versa. Evolution by non-adaptive forces also occurs quickly, with ecological consequences, but understanding the full scope of ecology-evolution (eco-evo) interactions requires explicitly addressing population-level processes - genetic and demographic. We show the strong ecological effects of non-adaptive evolutionary forces and, more broadly, the value of population-level research for gaining a mechanistic understanding of eco-evo interactions. The breadth of eco-evolutionary research should expand to incorporate the breadth of evolution itself. Copyright © 2016 Elsevier Ltd. All rights reserved.
Understanding Evolution: An Evolution Website for Teachers
ERIC Educational Resources Information Center
Scotchmoor, Judy; Janulaw, Al
2005-01-01
While many states are facing challenges to the teaching of evolution in their science classrooms, the University of California Museum of Paleontology, working with the National Center for Science Education, has developed a useful web-based resource for science teachers of all grade- and experience-levels. Understanding Evolution (UE) was developed…
Service, Comfort, or Emotional Support? The Evolution of Disability Law and Campus Housing
ERIC Educational Resources Information Center
Bauman, Mark; Davidson, Denise L.; Sachs, Michael C.; Kotarski, Tegan
2013-01-01
Comprehension and application of law in campus housing settings can be a daunting task. Though challenging, a basic understanding of law and how it applies to residence life and housing environments within institutions of higher education is crucial. This article provides an historical evolution of three laws that have direct bearing on campus…
The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution
USDA-ARS?s Scientific Manuscript database
As a major step toward understanding the biology and evolution of ruminants, the cattle genome was sequenced to ~7x coverage using a combined whole genome shotgun and BAC skim approach. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs found in seven mammalian...
ERIC Educational Resources Information Center
Hoodman, Kyle Nathan
2010-01-01
This study investigates how evolution versus intelligent design is handled in the public, private Christian, private Jewish, and Christian Home-school K-12 settings through a review of the current literature and by interviewing teachers in these educational venues. Fourteen public, private, and homeschool educators responded to an interview…
ERIC Educational Resources Information Center
Eder, Erich; Turic, Katharina; Milasowszky, Norbert; Van Adzin, Katherine; Hergovich, Andreas
2011-01-01
The present study is the first to investigate the relationships between a multiple set of paranormal beliefs and the acceptance of evolution, creationism, and intelligent design, respectively, in Europe. Using a questionnaire, 2,129 students at secondary schools in Vienna (Austria) answered the 26 statements of the Revised Paranormal Belief Scale…
Reedy Creek Cleanup: The Evolution of a University Geography Service-Learning Project
ERIC Educational Resources Information Center
Parece, Tammy E.; Aspaas, Helen Ruth
2007-01-01
Service-learning courses within a university setting help students to better understand their roles as members of civil society. This article examines the evolution of an urban stream cleanup project that has been part of a world regions geography course for six years. After connecting course goals with the current best practice literature on…
3D robust Chan-Vese model for industrial computed tomography volume data segmentation
NASA Astrophysics Data System (ADS)
Liu, Linghui; Zeng, Li; Luan, Xiao
2013-11-01
Industrial computed tomography (CT) has been widely applied in many areas of non-destructive testing (NDT) and non-destructive evaluation (NDE). In practice, CT volume data to be dealt with may be corrupted by noise. This paper addresses the segmentation of noisy industrial CT volume data. Motivated by the research on the Chan-Vese (CV) model, we present a region-based active contour model that draws upon intensity information in local regions with a controllable scale. In the presence of noise, a local energy is firstly defined according to the intensity difference within a local neighborhood. Then a global energy is defined to integrate local energy with respect to all image points. In a level set formulation, this energy is represented by a variational level set function, where a surface evolution equation is derived for energy minimization. Comparative analysis with the CV model indicates the comparable performance of the 3D robust Chan-Vese (RCV) model. The quantitative evaluation also shows the segmentation accuracy of 3D RCV. In addition, the efficiency of our approach is validated under several types of noise, such as Poisson noise, Gaussian noise, salt-and-pepper noise and speckle noise.
Negotiation and appeasement can be more effective drivers of sociality than kin selection.
Quiñones, Andrés E; van Doorn, G Sander; Pen, Ido; Weissing, Franz J; Taborsky, Michael
2016-02-05
Two alternative frameworks explain the evolution of cooperation in the face of conflicting interests. Conflicts can be alleviated by kinship, the alignment of interests by virtue of shared genes, or by negotiation strategies, allowing mutually beneficial trading of services or commodities. Although negotiation often occurs in kin-structured populations, the interplay of kin- and negotiation-based mechanisms in the evolution of cooperation remains an unresolved issue. Inspired by the biology of a cooperatively breeding fish, we developed an individual-based simulation model to study the evolution of negotiation-based cooperation in relation to different levels of genetic relatedness. We show that the evolution of negotiation strategies leads to an equilibrium where subordinates appease dominants by conditional cooperation, resulting in high levels of help and low levels of aggression. This negotiation-based equilibrium can be reached both in the absence of relatedness and in a kin-structured population. However, when relatedness is high, evolution often ends up in an alternative equilibrium where subordinates help their kin unconditionally. The level of help at this kin-selected equilibrium is considerably lower than at the negotiation-based equilibrium, and it corresponds to a level reached when responsiveness is prevented from evolving in the simulations. A mathematical invasion analysis reveals that, quite generally, the alignment of payoffs due to the relatedness of interaction partners tends to impede selection for harsh but effective punishment of defectors. Hence kin structure will often hamper rather than facilitate the evolution of productive cooperation. © 2016 The Author(s).
Negotiation and appeasement can be more effective drivers of sociality than kin selection
van Doorn, G. Sander; Pen, Ido; Weissing, Franz J.
2016-01-01
Two alternative frameworks explain the evolution of cooperation in the face of conflicting interests. Conflicts can be alleviated by kinship, the alignment of interests by virtue of shared genes, or by negotiation strategies, allowing mutually beneficial trading of services or commodities. Although negotiation often occurs in kin-structured populations, the interplay of kin- and negotiation-based mechanisms in the evolution of cooperation remains an unresolved issue. Inspired by the biology of a cooperatively breeding fish, we developed an individual-based simulation model to study the evolution of negotiation-based cooperation in relation to different levels of genetic relatedness. We show that the evolution of negotiation strategies leads to an equilibrium where subordinates appease dominants by conditional cooperation, resulting in high levels of help and low levels of aggression. This negotiation-based equilibrium can be reached both in the absence of relatedness and in a kin-structured population. However, when relatedness is high, evolution often ends up in an alternative equilibrium where subordinates help their kin unconditionally. The level of help at this kin-selected equilibrium is considerably lower than at the negotiation-based equilibrium, and it corresponds to a level reached when responsiveness is prevented from evolving in the simulations. A mathematical invasion analysis reveals that, quite generally, the alignment of payoffs due to the relatedness of interaction partners tends to impede selection for harsh but effective punishment of defectors. Hence kin structure will often hamper rather than facilitate the evolution of productive cooperation. PMID:26729929
Using machine learning to explore the long-term evolution of GRS 1915+105
NASA Astrophysics Data System (ADS)
Huppenkothen, Daniela; Heil, Lucy M.; Hogg, David W.; Mueller, Andreas
2017-04-01
Among the population of known Galactic black hole X-ray binaries, GRS 1915+105 stands out in multiple ways. It has been in continuous outburst since 1992, and has shown a wide range of different states that can be distinguished by their timing and spectral properties. These states, also observed in IGR J17091-3624, have in the past been linked to accretion dynamics. Here, we present the first comprehensive study into the long-term evolution of GRS 1915+105, using the entire data set observed with Rossi X-ray Timing Explorer over its 16-yr lifetime. We develop a set of descriptive features allowing for automatic separation of states, and show that supervised machine learning in the form of logistic regression and random forests can be used to efficiently classify the entire data set. For the first time, we explore the duty cycle and time evolution of states over the entire 16-yr time span, and find that the temporal distribution of states has likely changed over the span of the observations. We connect the machine classification with physical interpretations of the phenomenology in terms of chaotic and stochastic processes.
Rapid evolution of analog circuits configured on a field programmable transistor array
NASA Technical Reports Server (NTRS)
Stoica, A.; Ferguson, M. I.; Zebulum, R. S.; Keymeulen, D.; Duong, V.; Daud, T.
2002-01-01
The purpose of this paper is to illustrate evolution of analog circuits on a stand-alone board-level evolvable system (SABLES). SABLES is part of an effort to achieve integrated evolvable systems. SABLES provides autonomous, fast (tens to hundreds of seconds), on-chip circuit evolution involving about 100,000 circuit evaluations. Its main components are a JPL Field Programmable Transistor Array (FPTA) chip used as transistor-level reconfigurable hardware, and a TI DSP that implements the evolutionary algorithm controlling the FPTA reconfiguration. The paper details an example of evolution on SABLES and points out to certain transient and memory effects that affect the stability of solutions obtained reusing the same piece of hardware for rapid testing of individuals during evolution.
A global analysis of adaptive evolution of operons in cyanobacteria.
Memon, Danish; Singh, Abhay K; Pakrasi, Himadri B; Wangikar, Pramod P
2013-02-01
Operons are an important feature of prokaryotic genomes. Evolution of operons is hypothesized to be adaptive and has contributed significantly towards coordinated optimization of functions. Two conflicting theories, based on (i) in situ formation to achieve co-regulation and (ii) horizontal gene transfer of functionally linked gene clusters, are generally considered to explain why and how operons have evolved. Furthermore, effects of operon evolution on genomic traits such as intergenic spacing, operon size and co-regulation are relatively less explored. Based on the conservation level in a set of diverse prokaryotes, we categorize the operonic gene pair associations and in turn the operons as ancient and recently formed. This allowed us to perform a detailed analysis of operonic structure in cyanobacteria, a morphologically and physiologically diverse group of photoautotrophs. Clustering based on operon conservation showed significant similarity with the 16S rRNA-based phylogeny, which groups the cyanobacterial strains into three clades. Clade C, dominated by strains that are believed to have undergone genome reduction, shows a larger fraction of operonic genes that are tightly packed in larger sized operons. Ancient operons are in general larger, more tightly packed, better optimized for co-regulation and part of key cellular processes. A sub-clade within Clade B, which includes Synechocystis sp. PCC 6803, shows a reverse trend in intergenic spacing. Our results suggest that while in situ formation and vertical descent may be a dominant mechanism of operon evolution in cyanobacteria, optimization of intergenic spacing and co-regulation are part of an ongoing process in the life-cycle of operons.
NASA Astrophysics Data System (ADS)
Karczmarek, P.; Wiktorowicz, G.; Iłkiewicz, K.; Smolec, R.; Stępień, K.; Pietrzyński, G.; Gieren, W.; Belczynski, K.
2017-04-01
Single star evolution does not allow extremely low-mass stars to cross the classical instability strip (IS) during the Hubble time. However, within binary evolution framework low-mass stars can appear inside the IS once the mass transfer (MT) is taken into account. Triggered by a discovery of low-mass (0.26 M⊙) RR Lyrae-like variable in a binary system, OGLE-BLG-RRLYR-02792, we investigate the occurrence of similar binary components in the IS, which set up a new class of low-mass pulsators. They are referred to as binary evolution pulsators (BEPs) to underline the interaction between components, which is crucial for substantial mass-loss prior to the IS entrance. We simulate a population of 500 000 metal-rich binaries and report that 28 143 components of binary systems experience severe MT (losing up to 90 per cent of mass), followed by at least one IS crossing in luminosity range of RR Lyrae (RRL) or Cepheid variables. A half of these systems enter the IS before the age of 4 Gyr. BEPs display a variety of physical and orbital parameters, with the most important being the BEP mass in range 0.2-0.8 M⊙, and the orbital period in range 10-2 500 d. Based on the light curve only, BEPs can be misclassified as genuine classical pulsators, and as such they would contaminate genuine RRL and classical Cepheid variables at levels of 0.8 and 5 per cent, respectively. We state that the majority of BEPs will remain undetected and we discuss relevant detection limitations.
Birnbaum, Stephanie S L; Rinker, David C; Gerardo, Nicole M; Abbot, Patrick
2017-12-01
Interactions between plants and herbivorous insects have been models for theories of specialization and co-evolution for over a century. Phytochemicals govern many aspects of these interactions and have fostered the evolution of adaptations by insects to tolerate or even specialize on plant defensive chemistry. While genomic approaches are providing new insights into the genes and mechanisms insect specialists employ to tolerate plant secondary metabolites, open questions remain about the evolution and conservation of insect counterdefences, how insects respond to the diversity defences mounted by their host plants, and the costs and benefits of resistance and tolerance to plant defences in natural ecological communities. Using a milkweed-specialist aphid (Aphis nerii) model, we test the effects of host plant species with increased toxicity, likely driven primarily by increased secondary metabolites, on aphid life history traits and whole-body gene expression. We show that more toxic plant species have a negative effect on aphid development and lifetime fecundity. When feeding on more toxic host plants with higher levels of secondary metabolites, aphids regulate a narrow, targeted set of genes, including those involved in canonical detoxification processes (e.g., cytochrome P450s, hydrolases, UDP-glucuronosyltransferases and ABC transporters). These results indicate that A. nerii marshal a variety of metabolic detoxification mechanisms to circumvent milkweed toxicity and facilitate host plant specialization, yet, despite these detoxification mechanisms, aphids experience reduced fitness when feeding on more toxic host plants. Disentangling how specialist insects respond to challenging host plants is a pivotal step in understanding the evolution of specialized diet breadths. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Morris, Chloe; Coulthard, Tom; Parsons, Daniel R.; Manson, Susan; Barkwith, Andrew
2017-04-01
Landscape Evolution Models (LEMs) are proven to be useful tools in understanding the morphodynamics of coast and estuarine systems. However, perhaps owing to the lack of research in this area, current models are not capable of simulating the dynamic interactions between these systems and their co-evolution at the meso-scale. Through a novel coupling of numerical models, this research is designed to explore coupled coastal-estuarine interactions, controls on system behaviour and the influence that environmental change could have. This will contribute to the understanding of the morphodynamics of these systems and how they may behave and evolve over the next century in response to climate changes, with the aim of informing management practices. This goal is being achieved through the modification and coupling of the one-line Coastline Evolution Model (CEM) with the hydrodynamic LEM CAESAR-Lisflood (C-L). The major issues faced with coupling these programs are their differing complexities and the limited graphical visualisations produced by the CEM that hinder the dissemination of results. The work towards overcoming these issues and reported here, include a new version of the CEM that incorporates a range of more complex geomorphological processes and boasts a graphical user interface that guides users through model set-up and projects a live output during model runs. The improved version is a stand-alone tool that can be used for further research projects and for teaching purposes. A sensitivity analysis using the Morris method has been completed to identify which key variables, including wave climate, erosion and weathering values, dominate the control of model behaviour. The model is being applied and tested using the evolution of the Holderness Coast, Humber Estuary and Spurn Point on the east coast of England (UK), which possess diverse geomorphologies and complex, co-evolving sediment pathways. Simulations using the modified CEM are currently being completed to ascertain the processes influential to the morphodynamics and evolution of these systems; presently this includes increasing sea levels and changing wave climate patterns. Outputs and findings from these runs will be presented and discussed, with the aid of the improved graphical visualisations and animations that illustrate the evolution of simulated environments.
Pollen limitation of reproductive effort in willows.
Fox, John F
1992-05-01
Pollen limitation of seed set differs from resource limitation in its implications for the evolution of floral traits. Willow flowers attract insects, but also abundantly produce wind-dispersed pollen. I demonstrated pollen limitation in single branches bearing 2-4 inflorescences (catkins) in a field experiment with five species by artificially increasing or decreasing the pollen load. Because the responses by single branches might be explained by diversion of resources to better-pollinated branches within a plant, a second experiment with one species tested both pollen limitation of whole plants and the autonomy of catkins. Seed set of single willow catkins is unaffected by experimental alterations of seed set in other catkins on the same plant. Hand-pollination of single catkins and of whole plants increased seed set to the same degree, suggesting there is little or no competition for resources between catkins only 5-10 cm apart. Thus, seed set in willows appears to be pollen limited, favoring insect pollination and the evolution of entomophilous traits. The data support previous views that willows have a dual pollination system utilizing wind and insects.
ERIC Educational Resources Information Center
Nehm, Ross H.; Schonfeld, Irvin Sam
2007-01-01
This study investigated whether or not an increase in secondary science teacher knowledge about evolution and the nature of science gained from completing a graduate-level evolution course was associated with greater preference for the teaching of evolution in schools. Forty-four precertified secondary biology teachers participated in a 14-week…
Multi Groups Cooperation based Symbiotic Evolution for TSK-type Neuro-Fuzzy Systems Design
Cheng, Yi-Chang; Hsu, Yung-Chi
2010-01-01
In this paper, a TSK-type neuro-fuzzy system with multi groups cooperation based symbiotic evolution method (TNFS-MGCSE) is proposed. The TNFS-MGCSE is developed from symbiotic evolution. The symbiotic evolution is different from traditional GAs (genetic algorithms) that each chromosome in symbiotic evolution represents a rule of fuzzy model. The MGCSE is different from the traditional symbiotic evolution; with a population in MGCSE is divided to several groups. Each group formed by a set of chromosomes represents a fuzzy rule and cooperate with other groups to generate the better chromosomes by using the proposed cooperation based crossover strategy (CCS). In this paper, the proposed TNFS-MGCSE is used to evaluate by numerical examples (Mackey-Glass chaotic time series and sunspot number forecasting). The performance of the TNFS-MGCSE achieves excellently with other existing models in the simulations. PMID:21709856
A two-scale model of radio-frequency electrosurgical tissue ablation
NASA Astrophysics Data System (ADS)
Karaki, Wafaa; Rahul; Lopez, Carlos A.; Borca-Tasciuc, Diana-Andra; De, Suvranu
2017-12-01
Radio-frequency electrosurgical procedures are widely used to simultaneously dissect and coagulate tissue. Experiments suggest that evaporation of cellular and intra-cellular water plays a significant role in the evolution of the temperature field at the tissue level, which is not adequately captured in a single scale energy balance equation. Here, we propose a two-scale model to study the effects of microscale phase change and heat dissipation in response to radiofrequency heating on the tissue level in electrosurgical ablation procedures. At the microscale, the conservation of mass along with thermodynamic and mechanical equilibrium is applied to obtain an equation-of-state relating vapor mass fraction to temperature and pressure. The evaporation losses are incorporated in the macro-level energy conservation and results are validated with mean experimental temperature distributions measured from electrosurgical ablation testing on ex vivo porcine liver at different power settings of the electrosurgical instrument. Model prediction of water loss and its effect on the temperature along with the effect of the mechanical properties on results are evaluated and discussed.
Phylogenetics and evolution of Trx SET genes in fully sequenced land plants.
Zhu, Xinyu; Chen, Caoyi; Wang, Baohua
2012-04-01
Plant Trx SET proteins are involved in H3K4 methylation and play a key role in plant floral development. Genes encoding Trx SET proteins constitute a multigene family in which the copy number varies among plant species and functional divergence appears to have occurred repeatedly. To investigate the evolutionary history of the Trx SET gene family, we made a comprehensive evolutionary analysis on this gene family from 13 major representatives of green plants. A novel clustering (here named as cpTrx clade), which included the III-1, III-2, and III-4 orthologous groups, previously resolved was identified. Our analysis showed that plant Trx proteins possessed a variety of domain organizations and gene structures among paralogs. Additional domains such as PHD, PWWP, and FYR were early integrated into primordial SET-PostSET domain organization of cpTrx clade. We suggested that the PostSET domain was lost in some members of III-4 orthologous group during the evolution of land plants. At least four classes of gene structures had been formed at the early evolutionary stage of land plants. Three intronless orphan Trx SET genes from the Physcomitrella patens (moss) were identified, and supposedly, their parental genes have been eliminated from the genome. The structural differences among evolutionary groups of plant Trx SET genes with different functions were described, contributing to the design of further experimental studies.
Investigating Human Evolution Using Digital Imaging & Craniometry
ERIC Educational Resources Information Center
Robertson, John C.
2007-01-01
Human evolution is an important and intriguing area of biology. The significance of evolution as a component of biology curricula, at all levels, can not be overstated; the need to make the most of opportunities to effectively educate students in evolution as a central and unifying realm of biology is paramount. Developing engaging laboratory or…
Uniparental Inheritance Promotes Adaptive Evolution in Cytoplasmic Genomes
Christie, Joshua R.; Beekman, Madeleine
2017-01-01
Eukaryotes carry numerous asexual cytoplasmic genomes (mitochondria and plastids). Lacking recombination, asexual genomes should theoretically suffer from impaired adaptive evolution. Yet, empirical evidence indicates that cytoplasmic genomes experience higher levels of adaptive evolution than predicted by theory. In this study, we use a computational model to show that the unique biology of cytoplasmic genomes—specifically their organization into host cells and their uniparental (maternal) inheritance—enable them to undergo effective adaptive evolution. Uniparental inheritance of cytoplasmic genomes decreases competition between different beneficial substitutions (clonal interference), promoting the accumulation of beneficial substitutions. Uniparental inheritance also facilitates selection against deleterious cytoplasmic substitutions, slowing Muller’s ratchet. In addition, uniparental inheritance generally reduces genetic hitchhiking of deleterious substitutions during selective sweeps. Overall, uniparental inheritance promotes adaptive evolution by increasing the level of beneficial substitutions relative to deleterious substitutions. When we assume that cytoplasmic genome inheritance is biparental, decreasing the number of genomes transmitted during gametogenesis (bottleneck) aids adaptive evolution. Nevertheless, adaptive evolution is always more efficient when inheritance is uniparental. Our findings explain empirical observations that cytoplasmic genomes—despite their asexual mode of reproduction—can readily undergo adaptive evolution. PMID:28025277
Evidence of a Conserved Molecular Response to Selection for Increased Brain Size in Primates
Harrison, Peter W.; Caravas, Jason A.; Raghanti, Mary Ann; Phillips, Kimberley A.; Mundy, Nicholas I.
2017-01-01
The adaptive significance of human brain evolution has been frequently studied through comparisons with other primates. However, the evolution of increased brain size is not restricted to the human lineage but is a general characteristic of primate evolution. Whether or not these independent episodes of increased brain size share a common genetic basis is unclear. We sequenced and de novo assembled the transcriptome from the neocortical tissue of the most highly encephalized nonhuman primate, the tufted capuchin monkey (Cebus apella). Using this novel data set, we conducted a genome-wide analysis of orthologous brain-expressed protein coding genes to identify evidence of conserved gene–phenotype associations and species-specific adaptations during three independent episodes of brain size increase. We identify a greater number of genes associated with either total brain mass or relative brain size across these six species than show species-specific accelerated rates of evolution in individual large-brained lineages. We test the robustness of these associations in an expanded data set of 13 species, through permutation tests and by analyzing how genome-wide patterns of substitution co-vary with brain size. Many of the genes targeted by selection during brain expansion have glutamatergic functions or roles in cell cycle dynamics. We also identify accelerated evolution in a number of individual capuchin genes whose human orthologs are associated with human neuropsychiatric disorders. These findings demonstrate the value of phenotypically informed genome analyses, and suggest at least some aspects of human brain evolution have occurred through conserved gene–phenotype associations. Understanding these commonalities is essential for distinguishing human-specific selection events from general trends in brain evolution. PMID:28391320
The evolution of altruistic social preferences in human groups
Silk, Joan B.; House, Bailey R.
2016-01-01
In this paper, we consider three hypotheses to account for the evolution of the extraordinary capacity for large-scale cooperation and altruistic social preferences within human societies. One hypothesis is that human cooperation is built on the same evolutionary foundations as cooperation in other animal societies, and that fundamental elements of the social preferences that shape our species' cooperative behaviour are also shared with other closely related primates. Another hypothesis is that selective pressures favouring cooperative breeding have shaped the capacity for cooperation and the development of social preferences, and produced a common set of behavioural dispositions and social preferences in cooperatively breeding primates and humans. The third hypothesis is that humans have evolved derived capacities for collaboration, group-level cooperation and altruistic social preferences that are linked to our capacity for culture. We draw on naturalistic data to assess differences in the form, scope and scale of cooperation between humans and other primates, experimental data to evaluate the nature of social preferences across primate species, and comparative analyses to evaluate the evolutionary origins of cooperative breeding and related forms of behaviour. PMID:26729936
Opinion evolution influenced by informed agents
NASA Astrophysics Data System (ADS)
Fan, Kangqi; Pedrycz, Witold
2016-11-01
Guiding public opinions toward a pre-set target by informed agents can be a strategy adopted in some practical applications. The informed agents are common agents who are employed or chosen to spread the pre-set opinion. In this work, we propose a social judgment based opinion (SJBO) dynamics model to explore the opinion evolution under the influence of informed agents. The SJBO model distinguishes between inner opinions and observable choices, and incorporates both the compromise between similar opinions and the repulsion between dissimilar opinions. Three choices (support, opposition, and remaining undecided) are considered in the SJBO model. Using the SJBO model, both the inner opinions and the observable choices can be tracked during the opinion evolution process. The simulation results indicate that if the exchanges of inner opinions among agents are not available, the effect of informed agents is mainly dependent on the characteristics of regular agents, including the assimilation threshold, decay threshold, and initial opinions. Increasing the assimilation threshold and decay threshold can improve the guiding effectiveness of informed agents. Moreover, if the initial opinions of regular agents are close to null, the full and unanimous consensus at the pre-set opinion can be realized, indicating that, to maximize the influence of informed agents, the guidance should be started when regular agents have little knowledge about a subject under consideration. If the regular agents have had clear opinions, the full and unanimous consensus at the pre-set opinion cannot be achieved. However, the introduction of informed agents can make the majority of agents choose the pre-set opinion.
Uniparental Inheritance Promotes Adaptive Evolution in Cytoplasmic Genomes.
Christie, Joshua R; Beekman, Madeleine
2017-03-01
Eukaryotes carry numerous asexual cytoplasmic genomes (mitochondria and plastids). Lacking recombination, asexual genomes should theoretically suffer from impaired adaptive evolution. Yet, empirical evidence indicates that cytoplasmic genomes experience higher levels of adaptive evolution than predicted by theory. In this study, we use a computational model to show that the unique biology of cytoplasmic genomes-specifically their organization into host cells and their uniparental (maternal) inheritance-enable them to undergo effective adaptive evolution. Uniparental inheritance of cytoplasmic genomes decreases competition between different beneficial substitutions (clonal interference), promoting the accumulation of beneficial substitutions. Uniparental inheritance also facilitates selection against deleterious cytoplasmic substitutions, slowing Muller's ratchet. In addition, uniparental inheritance generally reduces genetic hitchhiking of deleterious substitutions during selective sweeps. Overall, uniparental inheritance promotes adaptive evolution by increasing the level of beneficial substitutions relative to deleterious substitutions. When we assume that cytoplasmic genome inheritance is biparental, decreasing the number of genomes transmitted during gametogenesis (bottleneck) aids adaptive evolution. Nevertheless, adaptive evolution is always more efficient when inheritance is uniparental. Our findings explain empirical observations that cytoplasmic genomes-despite their asexual mode of reproduction-can readily undergo adaptive evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
In search of a unifying theory of complex brain evolution.
Krubitzer, Leah
2009-03-01
The neocortex is the part of the brain that is involved in perception, cognition, and volitional motor control. In mammals it is a highly dynamic structure that has been dramatically altered in different lineages, and these alterations account for the remarkable variations in behavior that species exhibit. When we consider how this structure changes and becomes more complex in some mammals such as humans, we must also consider how the alterations that occur at macro levels of organization, such as the level of the individual and social system, as well as micro levels of organization, such as the level of neurons, synapses and molecules, impact the neocortex. It is also important to consider the constraints imposed on the evolution of the neocortex. Observations of highly conserved features of cortical organization that all mammals share, as well as the convergent evolution of similar features of organization, indicate that the constraints imposed on the neocortex are pervasive and restrict the avenues along which evolution can proceed. Although both genes and the laws of physics place formidable constraints on the evolution of all animals, humans have evolved a number of mechanisms that allow them to loosen these constraints and often alter the course of their own evolution. While this cortical plasticity is a defining feature of mammalian neocortex, it appears to be exaggerated in humans and could be considered a unique derivation of our species.
Artificial neural networks as a useful tool to predict the risk level of Betula pollen in the air
NASA Astrophysics Data System (ADS)
Castellano-Méndez, M.; Aira, M. J.; Iglesias, I.; Jato, V.; González-Manteiga, W.
2005-05-01
An increasing percentage of the European population suffers from allergies to pollen. The study of the evolution of air pollen concentration supplies prior knowledge of the levels of pollen in the air, which can be useful for the prevention and treatment of allergic symptoms, and the management of medical resources. The symptoms of Betula pollinosis can be associated with certain levels of pollen in the air. The aim of this study was to predict the risk of the concentration of pollen exceeding a given level, using previous pollen and meteorological information, by applying neural network techniques. Neural networks are a widespread statistical tool useful for the study of problems associated with complex or poorly understood phenomena. The binary response variable associated with each level requires a careful selection of the neural network and the error function associated with the learning algorithm used during the training phase. The performance of the neural network with the validation set showed that the risk of the pollen level exceeding a certain threshold can be successfully forecasted using artificial neural networks. This prediction tool may be implemented to create an automatic system that forecasts the risk of suffering allergic symptoms.
Simulation-Optimization Model for Seawater Intrusion Management at Pingtung Coastal Area, Taiwan
NASA Astrophysics Data System (ADS)
Huang, P. S.; Chiu, Y.
2015-12-01
In 1970's, the agriculture and aquaculture were rapidly developed at Pingtung coastal area in southern Taiwan. The groundwater aquifers were over-pumped and caused the seawater intrusion. In order to remedy the contaminated groundwater and find the best strategies of groundwater usage, a management model to search the optimal groundwater operational strategies is developed in this study. The objective function is to minimize the total amount of injection water and a set of constraints are applied to ensure the groundwater levels and concentrations are satisfied. A three-dimension density-dependent flow and transport simulation model, called SEAWAT developed by U.S. Geological Survey, is selected to simulate the phenomenon of seawater intrusion. The simulation model is well calibrated by the field measurements and replaced by the surrogate model of trained artificial neural networks (ANNs) to reduce the computational time. The ANNs are embedded in the management model to link the simulation and optimization models, and the global optimizer of differential evolution (DE) is applied for solving the management model. The optimal results show that the fully trained ANNs could substitute the original simulation model and reduce much computational time. Under appropriate setting of objective function and constraints, DE can find the optimal injection rates at predefined barriers. The concentrations at the target locations could decrease more than 50 percent within the planning horizon of 20 years. Keywords : Seawater intrusion, groundwater management, numerical model, artificial neural networks, differential evolution
Darwin and Evolution: A Set of Activities Based on the Evolution of Mammals
ERIC Educational Resources Information Center
Haresnape, Janet M.
2010-01-01
These activities, prepared for key stage 5 students (ages 16-18) and also suitable for key stage 4 (ages 14-16), show that physical appearance is not necessarily the best way to classify mammals. DNA structure is examined to show how similarities and differences between DNA sequences of mammals can be used to establish evolutionary relationships.…
Effective equations for the quantum pendulum from momentous quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, Hector H.; Chacon-Acosta, Guillermo; Departamento de Matematicas Aplicadas y Sistemas, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40, Mexico D. F. 01120
In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.
ERIC Educational Resources Information Center
Storkel, Holly L.; Bontempo, Daniel E.; Pak, Natalie S.
2014-01-01
Purpose: In this study, the authors investigated adult word learning to determine how neighborhood density and practice across phonologically related training sets influence online learning from input during training versus offline memory evolution during no-training gaps. Method: Sixty-one adults were randomly assigned to learn low- or…
ERIC Educational Resources Information Center
Trujillo, Karen; Chamberlin, Barbara; Wiburg, Karin; Armstrong, Amanda
2016-01-01
This article captures the evolution of research goals and methodologies used to assess the effectiveness and impact of a set of mathematical educational games and animations for middle-school aged students. The researchers initially proposed using a mixed model research design of formative and summative measures, such as user-testing,…
A robust and fast active contour model for image segmentation with intensity inhomogeneity
NASA Astrophysics Data System (ADS)
Ding, Keyan; Weng, Guirong
2018-04-01
In this paper, a robust and fast active contour model is proposed for image segmentation in the presence of intensity inhomogeneity. By introducing the local image intensities fitting functions before the evolution of curve, the proposed model can effectively segment images with intensity inhomogeneity. And the computation cost is low because the fitting functions do not need to be updated in each iteration. Experiments have shown that the proposed model has a higher segmentation efficiency compared to some well-known active contour models based on local region fitting energy. In addition, the proposed model is robust to initialization, which allows the initial level set function to be a small constant function.
Andrighetto, Giulia; Zhang, Nan; Ottone, Stefania; Ponzano, Ferruccio; D'Attoma, John; Steinmo, Sven
2016-01-01
This study examines cultural differences in ordinary dishonesty between Italy and Sweden, two countries with different reputations for trustworthiness and probity. Exploiting a set of cross-cultural tax compliance experiments, we find that the average level of tax evasion (as a measure of ordinary dishonesty) does not differ significantly between Swedes and Italians. However, we also uncover differences in national "styles" of dishonesty. Specifically, while Swedes are more likely to be either completely honest or completely dishonest in their fiscal declarations, Italians are more prone to fudging (i.e., cheating by a small amount). We discuss the implications of these findings for the evolution and enforcement of honesty norms.
Visualizando el desarrollo de la nanomedicina en México.
Robles-Belmont, Eduardo; Gortari-Rabiela, Rebeca de; Galarza-Barrios, Pilar; Siqueiros-García, Jesús Mario; Ruiz-León, Alejandro Arnulfo
2017-01-01
In this article we present a set of different visualizations of Mexico's nanomedicine scientific production data. Visualizations were developed using different methodologies for data analysis and visualization such as social network analysis, geography of science maps, and complex network communities analysis. Results are a multi-dimensional overview of the evolution of nanomedicine in Mexico. Moreover, visualizations allowed to identify trends and patterns of collaboration at the national and international level. Trends are also found in the knowledge structure of themes and disciplines. Finally, we identified the scientific communities in Mexico that are responsible for the new knowledge production in this emergent field of science. Copyright: © 2017 SecretarÍa de Salud
Sequencing and comparing whole mitochondrial genomes ofanimals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boore, Jeffrey L.; Macey, J. Robert; Medina, Monica
2005-04-22
Comparing complete animal mitochondrial genome sequences is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. Not only are they much more informative than shorter sequences of individual genes for inferring evolutionary relatedness, but these data also provide sets of genome-level characters, such as the relative arrangements of genes, that can be especially powerful. We describe here the protocols commonly used for physically isolating mtDNA, for amplifying these by PCR or RCA, for cloning,sequencing, assembly, validation, and gene annotation, and for comparing both sequences and gene arrangements. On several topics, we offer general observations based onmore » our experiences to date with determining and comparing complete mtDNA sequences.« less
Simulating Energy Relaxation in Pump-Probe Vibrational Spectroscopy of Hydrogen-Bonded Liquids.
Dettori, Riccardo; Ceriotti, Michele; Hunger, Johannes; Melis, Claudio; Colombo, Luciano; Donadio, Davide
2017-03-14
We introduce a nonequilibrium molecular dynamics simulation approach, based on the generalized Langevin equation, to study vibrational energy relaxation in pump-probe spectroscopy. A colored noise thermostat is used to selectively excite a set of vibrational modes, leaving the other modes nearly unperturbed, to mimic the effect of a monochromatic laser pump. Energy relaxation is probed by analyzing the evolution of the system after excitation in the microcanonical ensemble, thus providing direct information about the energy redistribution paths at the molecular level and their time scale. The method is applied to hydrogen-bonded molecular liquids, specifically deuterated methanol and water, providing a robust picture of energy relaxation at the molecular scale.
Social molecular pathways and the evolution of bee societies
Bloch, Guy; Grozinger, Christina M.
2011-01-01
Bees provide an excellent model with which to study the neuronal and molecular modifications associated with the evolution of sociality because relatively closely related species differ profoundly in social behaviour, from solitary to highly social. The recent development of powerful genomic tools and resources has set the stage for studying the social behaviour of bees in molecular terms. We review ‘ground plan’ and ‘genetic toolkit’ models which hypothesize that discrete pathways or sets of genes that regulate fundamental behavioural and physiological processes in solitary species have been co-opted to regulate complex social behaviours in social species. We further develop these models and propose that these conserved pathways and genes may be incorporated into ‘social pathways’, which consist of relatively independent modules involved in social signal detection, integration and processing within the nervous and endocrine systems, and subsequent behavioural outputs. Modifications within modules or in their connections result in the evolution of novel behavioural patterns. We describe how the evolution of pheromonal regulation of social pathways may lead to the expression of behaviour under new social contexts, and review plasticity in circadian rhythms as an example for a social pathway with a modular structure. PMID:21690132
The T-REX valley wind intercomparison project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidli, J; Billings, B J; Burton, R
2008-08-07
An accurate simulation of the evolution of the atmospheric boundary layer is very important, as the evolution of the boundary layer sets the stage for many weather phenomena, such as deep convection. Over mountain areas the evolution of the boundary layer is particularly complex, due to the nonlinear interaction between boundary layer turbulence and thermally-induced mesoscale wind systems, such as the slope and valley winds. As the horizontal resolution of operational forecasts progresses to finer and finer resolution, more and more of the thermally-induced mesoscale wind systems can be explicitly resolved, and it is very timely to document the currentmore » state-of-the-art of mesoscale models at simulating the coupled evolution of the mountain boundary layer and the valley wind system. In this paper we present an intercomparison of valley wind simulations for an idealized valley-plain configuration using eight state-of-the-art mesoscale models with a grid spacing of 1 km. Different sets of three-dimensional simulations are used to explore the effects of varying model dynamical cores and physical parameterizations. This intercomparison project was conducted as part of the Terrain-induced Rotor Experiment (T-REX; Grubisic et al., 2008).« less
Numerical Modeling of Large-Scale Rocky Coastline Evolution
NASA Astrophysics Data System (ADS)
Limber, P.; Murray, A. B.; Littlewood, R.; Valvo, L.
2008-12-01
Seventy-five percent of the world's ocean coastline is rocky. On large scales (i.e. greater than a kilometer), many intertwined processes drive rocky coastline evolution, including coastal erosion and sediment transport, tectonics, antecedent topography, and variations in sea cliff lithology. In areas such as California, an additional aspect of rocky coastline evolution involves submarine canyons that cut across the continental shelf and extend into the nearshore zone. These types of canyons intercept alongshore sediment transport and flush sand to abyssal depths during periodic turbidity currents, thereby delineating coastal sediment transport pathways and affecting shoreline evolution over large spatial and time scales. How tectonic, sediment transport, and canyon processes interact with inherited topographic and lithologic settings to shape rocky coastlines remains an unanswered, and largely unexplored, question. We will present numerical model results of rocky coastline evolution that starts with an immature fractal coastline. The initial shape is modified by headland erosion, wave-driven alongshore sediment transport, and submarine canyon placement. Our previous model results have shown that, as expected, an initial sediment-free irregularly shaped rocky coastline with homogeneous lithology will undergo smoothing in response to wave attack; headlands erode and mobile sediment is swept into bays, forming isolated pocket beaches. As this diffusive process continues, pocket beaches coalesce, and a continuous sediment transport pathway results. However, when a randomly placed submarine canyon is introduced to the system as a sediment sink, the end results are wholly different: sediment cover is reduced, which in turn increases weathering and erosion rates and causes the entire shoreline to move landward more rapidly. The canyon's alongshore position also affects coastline morphology. When placed offshore of a headland, the submarine canyon captures local sediment, increases weathering and erosion around the headland, and eventually changes the headland into an embayment! Improvements to our modeling approach include refining the initial conditions. To create a fractal, immature rocky coastline, self-similar river networks with random side branches were drawn on the shoreline domain. River networks and side branches were scaled according to Horton's law and Tokunaga statistics, respectively, and each river pathway was assigned a simple exponential longitudinal profile. Topography was generated around the river networks to create drainage basins and, on a larger scale, represent a mountainous, fluvially-sculpted landscape. The resultant morphology was then flooded to a given elevation, leaving a fractal rocky coastline. In addition to the simulated terrain, actual digital elevation models will also be used to derive the initial conditions. Elevation data from different mountainous geomorphic settings such as the decaying Appalachian Mountains or actively uplifting Sierra Nevada can be effectively flooded to a given sea level, resulting in a fractal and immature coastline that can be input to the numerical model. This approach will offer insight into how rocky coastlines in different geomorphic settings evolve, and provide a useful complement to results using the simulated terrain.
Evolution of nectarivory in phyllostomid bats (Phyllostomidae Gray, 1825, Chiroptera: Mammalia).
Datzmann, Thomas; von Helversen, Otto; Mayer, Frieder
2010-06-04
Bats of the family Phyllostomidae show a unique diversity in feeding specializations. This taxon includes species that are highly specialized on insects, blood, small vertebrates, fruits or nectar, and pollen. Feeding specialization is accompanied by morphological, physiological and behavioural adaptations. Several attempts were made to resolve the phylogenetic relationships within this family in order to reconstruct the evolutionary transitions accompanied by nutritional specialization. Nevertheless, the evolution of nectarivory remained equivocal. Phylogenetic reconstructions, based on a concatenated nuclear-and mitochondrial data set, revealed a paraphyletic relationship of nectarivorous phyllostomid bats. Our phylogenetic reconstructions indicate that the nectarivorous genera Lonchophylla and Lionycteris are closer related to mainly frugivorous phyllostomids of the subfamilies Rhinophyllinae, Stenodermatinae, Carolliinae, and the insectivorous Glyphonycterinae rather than to nectarivorous bats of the Glossophaginae. This suggests an independent origin of morphological adaptations to a nectarivorous lifestyle within Lonchophyllinae and Glossophaginae. Molecular clock analysis revealed a relatively short time frame of about ten million years for the divergence of subfamilies. Our study provides strong support for diphyly of nectarivorous phyllostomids. This is remarkable, since their morphological adaptations to nutrition, like elongated rostrums and tongues, reduced teeth and the ability to use hovering flight while ingestion, closely resemble each other. However, more precise examinations of their tongues (e.g. type and structure of papillae and muscular innervation) revealed levels of difference in line with an independent evolution of nectarivory in these bats.
Zeldovich, Konstantin B; Chen, Peiqiu; Shakhnovich, Boris E; Shakhnovich, Eugene I
2007-01-01
In this work we develop a microscopic physical model of early evolution where phenotype—organism life expectancy—is directly related to genotype—the stability of its proteins in their native conformations—which can be determined exactly in the model. Simulating the model on a computer, we consistently observe the “Big Bang” scenario whereby exponential population growth ensues as soon as favorable sequence–structure combinations (precursors of stable proteins) are discovered. Upon that, random diversity of the structural space abruptly collapses into a small set of preferred proteins. We observe that protein folds remain stable and abundant in the population at timescales much greater than mutation or organism lifetime, and the distribution of the lifetimes of dominant folds in a population approximately follows a power law. The separation of evolutionary timescales between discovery of new folds and generation of new sequences gives rise to emergence of protein families and superfamilies whose sizes are power-law distributed, closely matching the same distributions for real proteins. On the population level we observe emergence of species—subpopulations that carry similar genomes. Further, we present a simple theory that relates stability of evolving proteins to the sizes of emerging genomes. Together, these results provide a microscopic first-principles picture of how first-gene families developed in the course of early evolution. PMID:17630830
Zeldovich, Konstantin B; Chen, Peiqiu; Shakhnovich, Boris E; Shakhnovich, Eugene I
2007-07-01
In this work we develop a microscopic physical model of early evolution where phenotype--organism life expectancy--is directly related to genotype--the stability of its proteins in their native conformations-which can be determined exactly in the model. Simulating the model on a computer, we consistently observe the "Big Bang" scenario whereby exponential population growth ensues as soon as favorable sequence-structure combinations (precursors of stable proteins) are discovered. Upon that, random diversity of the structural space abruptly collapses into a small set of preferred proteins. We observe that protein folds remain stable and abundant in the population at timescales much greater than mutation or organism lifetime, and the distribution of the lifetimes of dominant folds in a population approximately follows a power law. The separation of evolutionary timescales between discovery of new folds and generation of new sequences gives rise to emergence of protein families and superfamilies whose sizes are power-law distributed, closely matching the same distributions for real proteins. On the population level we observe emergence of species--subpopulations that carry similar genomes. Further, we present a simple theory that relates stability of evolving proteins to the sizes of emerging genomes. Together, these results provide a microscopic first-principles picture of how first-gene families developed in the course of early evolution.
Page, Robert E; Scheiner, Ricarda; Erber, Joachim; Amdam, Gro V
2006-01-01
How does complex social behavior evolve? What are the developmental building blocks of division of labor and specialization, the hallmarks of insect societies? Studies have revealed the developmental origins in the evolution of division of labor and specialization in foraging worker honeybees, the hallmarks of complex insect societies. Selective breeding for a single social trait, the amount of surplus pollen stored in the nest (pollen hoarding) revealed a phenotypic architecture of correlated traits at multiple levels of biological organization in facultatively sterile female worker honeybees. Verification of this phenotypic architecture in "wild-type" bees provided strong support for a "pollen foraging syndrome" that involves increased senso-motor responses, motor activity, associative learning, reproductive status, and rates of behavioral development, as well as foraging behavior. This set of traits guided further research into reproductive regulatory systems that were co-opted by natural selection during the evolution of social behavior. Division of labor, characterized by changes in the tasks performed by bees, as they age, is controlled by hormones linked to ovary development. Foraging specialization on nectar and pollen results also from different reproductive states of bees where nectar foragers engage in pre-reproductive behavior, foraging for nectar for self-maintenance, while pollen foragers perform foraging tasks associated with reproduction and maternal care, collecting protein.
Evolution of Synonymous Codon Usage in Neurospora tetrasperma and Neurospora discreta
Whittle, C. A.; Sun, Y.; Johannesson, H.
2011-01-01
Neurospora comprises a primary model system for the study of fungal genetics and biology. In spite of this, little is known about genome evolution in Neurospora. For example, the evolution of synonymous codon usage is largely unknown in this genus. In the present investigation, we conducted a comprehensive analysis of synonymous codon usage and its relationship to gene expression and gene length (GL) in Neurospora tetrasperma and Neurospora discreta. For our analysis, we examined codon usage among 2,079 genes per organism and assessed gene expression using large-scale expressed sequenced tag (EST) data sets (279,323 and 453,559 ESTs for N. tetrasperma and N. discreta, respectively). Data on relative synonymous codon usage revealed 24 codons (and two putative codons) that are more frequently used in genes with high than with low expression and thus were defined as optimal codons. Although codon-usage bias was highly correlated with gene expression, it was independent of selectively neutral base composition (introns); thus demonstrating that translational selection drives synonymous codon usage in these genomes. We also report that GL (coding sequences [CDS]) was inversely associated with optimal codon usage at each gene expression level, with highly expressed short genes having the greatest frequency of optimal codons. Optimal codon frequency was moderately higher in N. tetrasperma than in N. discreta, which might be due to variation in selective pressures and/or mating systems. PMID:21402862
Functional Constructivism: In Search of Formal Descriptors.
Trofimova, Irina
2017-10-01
The Functional Constructivism (FC) paradigm is an alternative to behaviorism and considers behavior as being generated every time anew, based on an individual's capacities, environmental resources and demands. Walter Freeman's work provided us with evidence supporting the FC principles. In this paper we make parallels between gradual construction processes leading to the formation of individual behavior and habits, and evolutionary processes leading to the establishment of biological systems. Referencing evolutionary theory, several formal descriptors of such processes are proposed. These FC descriptors refer to the most universal aspects for constructing consistent structures: expansion of degrees of freedom, integration processes based on internal and external compatibility between systems and maintenance processes, all given in four different classes of systems: (a) Zone of Proximate Development (poorly defined) systems; (b) peer systems with emerging reproduction of multiple siblings; (c) systems with internalized integration of behavioral elements ('cruise controls'); and (d) systems capable of handling low-probability, not yet present events. The recursive dynamics within this set of descriptors acting on (traditional) downward, upward and horizontal directions of evolution, is conceptualized as diagonal evolution, or di-evolution. Two examples applying these FC descriptors to taxonomy are given: classification of the functionality of neuro-transmitters and temperament traits; classification of mental disorders. The paper is an early step towards finding a formal language describing universal tendencies in highly diverse, complex and multi-level transient systems known in ecology and biology as 'contingency cycles.'
Cooperative Adaptive Responses in Gene Regulatory Networks with Many Degrees of Freedom
Inoue, Masayo; Kaneko, Kunihiko
2013-01-01
Cells generally adapt to environmental changes by first exhibiting an immediate response and then gradually returning to their original state to achieve homeostasis. Although simple network motifs consisting of a few genes have been shown to exhibit such adaptive dynamics, they do not reflect the complexity of real cells, where the expression of a large number of genes activates or represses other genes, permitting adaptive behaviors. Here, we investigated the responses of gene regulatory networks containing many genes that have undergone numerical evolution to achieve high fitness due to the adaptive response of only a single target gene; this single target gene responds to changes in external inputs and later returns to basal levels. Despite setting a single target, most genes showed adaptive responses after evolution. Such adaptive dynamics were not due to common motifs within a few genes; even without such motifs, almost all genes showed adaptation, albeit sometimes partial adaptation, in the sense that expression levels did not always return to original levels. The genes split into two groups: genes in the first group exhibited an initial increase in expression and then returned to basal levels, while genes in the second group exhibited the opposite changes in expression. From this model, genes in the first group received positive input from other genes within the first group, but negative input from genes in the second group, and vice versa. Thus, the adaptation dynamics of genes from both groups were consolidated. This cooperative adaptive behavior was commonly observed if the number of genes involved was larger than the order of ten. These results have implications in the collective responses of gene expression networks in microarray measurements of yeast Saccharomyces cerevisiae and the significance to the biological homeostasis of systems with many components. PMID:23592959
Herbicide cycling has diverse effects on evolution of resistance in Chlamydomonas reinhardtii
Lagator, Mato; Vogwill, Tom; Colegrave, Nick; Neve, Paul
2013-01-01
Cycling pesticides has been proposed as a means of retarding the evolution of resistance, but its efficacy has rarely been empirically tested. We evolved populations of Chlamydomonas reinhardtii in the presence of three herbicides: atrazine, glyphosate and carbetamide. Populations were exposed to a weekly, biweekly and triweekly cycling between all three pairwise combinations of herbicides and continuously to each of the three herbicides. We explored the impacts of herbicide cycling on the rate of resistance evolution, the level of resistance selected, the cost of resistance and the degree of generality (cross-resistance) observed. Herbicide cycling resulted in a diversity of outcomes: preventing evolution of resistance for some combinations of herbicides, having no impacts for others and increasing rates of resistance evolution in some instances. Weekly cycling of atrazine and carbetamide resulted in selection of a generalist population. This population had a higher level of resistance, and this generalist resistance was associated with a cost. The level of resistance selected did not vary amongst other regimes. Costs of resistance were generally highest when cycling was more frequent. Our data suggest that the effects of herbicide cycling on the evolution of resistance may be more complex and less favourable than generally assumed. PMID:23467494
Paz-Y-Miño-C, Guillermo; Espinosa, Avelina
2015-06-01
The incompatibility between science and the belief in supernatural causation helps us understand why people do not accept evolution. Belief disrupts, distorts, delays, or stops (3Ds + S) the acceptance of scientific evidence. Here we examine the evolution controversy under three predictions of the incompatibility hypothesis. First, chronological-conflict-and-accommodation, which explains the historical re-emergence of antagonism between evolution and religion when advances in science continue to threaten the belief in supernatural causation; in such situations, creationists' rejection of and subsequent partial acceptance of the new scientific discoveries are expected. Second, change in evolution's acceptance as function of educational attainment, which explains the positive association between acceptance of evolution and level of education. And third, change in evolution's acceptance as function of religiosity, which explains the negative association between acceptance of evolution and level of religious beliefs. We rely on an ample assessment of the attitudes toward evolution by highly-educated audiences (i.e. research faculty, educators of prospective teachers, and college students in the United States) to characterize the associations among the understanding of science and evolution, personal religious convictions, and conservative ideology. We emphasize that harmonious coexistence between science and religion is illusory. If co-persisting in society, their relationship will fluctuate from moderate to intense antagonism.
Paz-y-Miño-C, Guillermo; Espinosa, Avelina
2016-01-01
The incompatibility between science and the belief in supernatural causation helps us understand why people do not accept evolution. Belief disrupts, distorts, delays, or stops (3Ds + S) the acceptance of scientific evidence. Here we examine the evolution controversy under three predictions of the incompatibility hypothesis. First, chronological-conflict-and-accommodation, which explains the historical re-emergence of antagonism between evolution and religion when advances in science continue to threaten the belief in supernatural causation; in such situations, creationists’ rejection of and subsequent partial acceptance of the new scientific discoveries are expected. Second, change in evolution's acceptance as function of educational attainment, which explains the positive association between acceptance of evolution and level of education. And third, change in evolution's acceptance as function of religiosity, which explains the negative association between acceptance of evolution and level of religious beliefs. We rely on an ample assessment of the attitudes toward evolution by highly-educated audiences (i.e. research faculty, educators of prospective teachers, and college students in the United States) to characterize the associations among the understanding of science and evolution, personal religious convictions, and conservative ideology. We emphasize that harmonious coexistence between science and religion is illusory. If co-persisting in society, their relationship will fluctuate from moderate to intense antagonism. PMID:26877774
Towards an orientation-distribution-based multi-scale approach for remodelling biological tissues.
Menzel, A; Harrysson, M; Ristinmaa, M
2008-10-01
The mechanical behaviour of soft biological tissues is governed by phenomena occurring on different scales of observation. From the computational modelling point of view, a vital aspect consists of the appropriate incorporation of micromechanical effects into macroscopic constitutive equations. In this work, particular emphasis is placed on the simulation of soft fibrous tissues with the orientation of the underlying fibres being determined by distribution functions. A straightforward but convenient Taylor-type homogenisation approach links the micro- or rather meso-level of fibres to the overall macro-level and allows to reflect macroscopically orthotropic response. As a key aspect of this work, evolution equations for the fibre orientations are accounted for so that physiological effects like turnover or rather remodelling are captured. Concerning numerical applications, the derived set of equations can be embedded into a nonlinear finite element context so that first elementary simulations are finally addressed.
The science of computing - The evolution of parallel processing
NASA Technical Reports Server (NTRS)
Denning, P. J.
1985-01-01
The present paper is concerned with the approaches to be employed to overcome the set of limitations in software technology which impedes currently an effective use of parallel hardware technology. The process required to solve the arising problems is found to involve four different stages. At the present time, Stage One is nearly finished, while Stage Two is under way. Tentative explorations are beginning on Stage Three, and Stage Four is more distant. In Stage One, parallelism is introduced into the hardware of a single computer, which consists of one or more processors, a main storage system, a secondary storage system, and various peripheral devices. In Stage Two, parallel execution of cooperating programs on different machines becomes explicit, while in Stage Three, new languages will make parallelism implicit. In Stage Four, there will be very high level user interfaces capable of interacting with scientists at the same level of abstraction as scientists do with each other.
Dynamics of organizational culture: Individual beliefs vs. social conformity.
Ellinas, Christos; Allan, Neil; Johansson, Anders
2017-01-01
The complex nature of organizational culture challenges our ability to infer its underlying dynamics from observational studies. Recent computational studies have adopted a distinctly different view, where plausible mechanisms are proposed to describe a wide range of social phenomena, including the onset and evolution of organizational culture. In this spirit, this work introduces an empirically-grounded, agent-based model which relaxes a set of assumptions that describes past work-(a) omittance of an individual's strive for achieving cognitive coherence; (b) limited integration of important contextual factors-by utilizing networks of beliefs and incorporating social rank into the dynamics. As a result, we illustrate that: (i) an organization may appear to be increasingly coherent in terms of its organizational culture, yet be composed of individuals with reduced levels of coherence; (ii) the components of social conformity-peer-pressure and social rank-are influential at different aggregation levels.
Dynamics of organizational culture: Individual beliefs vs. social conformity
Allan, Neil; Johansson, Anders
2017-01-01
The complex nature of organizational culture challenges our ability to infer its underlying dynamics from observational studies. Recent computational studies have adopted a distinctly different view, where plausible mechanisms are proposed to describe a wide range of social phenomena, including the onset and evolution of organizational culture. In this spirit, this work introduces an empirically-grounded, agent-based model which relaxes a set of assumptions that describes past work–(a) omittance of an individual’s strive for achieving cognitive coherence; (b) limited integration of important contextual factors—by utilizing networks of beliefs and incorporating social rank into the dynamics. As a result, we illustrate that: (i) an organization may appear to be increasingly coherent in terms of its organizational culture, yet be composed of individuals with reduced levels of coherence; (ii) the components of social conformity—peer-pressure and social rank—are influential at different aggregation levels. PMID:28665960
Performance characterization of structured light-based fingerprint scanner
NASA Astrophysics Data System (ADS)
Hassebrook, Laurence G.; Wang, Minghao; Daley, Raymond C.
2013-05-01
Our group believes that the evolution of fingerprint capture technology is in transition to include 3-D non-contact fingerprint capture. More specifically we believe that systems based on structured light illumination provide the highest level of depth measurement accuracy. However, for these new technologies to be fully accepted by the biometric community, they must be compliant with federal standards of performance. At present these standards do not exist for this new biometric technology. We propose and define a set of test procedures to be used to verify compliance with the Federal Bureau of Investigation's image quality specification for Personal Identity Verification single fingerprint capture devices. The proposed test procedures include: geometric accuracy, lateral resolution based on intensity or depth, gray level uniformity and flattened fingerprint image quality. Several 2-D contact analogies, performance tradeoffs and optimization dilemmas are evaluated and proposed solutions are presented.
Potential inundated coastal area estimation in Shanghai with multi-platform SAR and altimetry data
NASA Astrophysics Data System (ADS)
Ma, Guanyu; Yang, Tianliang; Zhao, Qing; Kubanek, Julia; Pepe, Antonio; Dong, Hongbin; Sun, Zhibin
2017-09-01
As global warming problem is becoming serious in recent decades, the global sea level is continuously rising. This will cause damages to the coastal deltas with the characteristics of low-lying land, dense population, and developed economy. Continuously reclamation costal intertidal and wetland areas are making Shanghai, the mega city of Yangtze River Delta, more vulnerable to sea level rise. In this paper, we investigate the land subsidence temporal evolution of patterns and processes on a stretch of muddy coast located between the Yangtze River Estuary and Hangzou Bay with differential synthetic aperture radar interferometry (DInSAR) analyses. By exploiting a set of 31 SAR images acquired by the ENVISAT/ASAR from February 2007 to May 2010 and a set of 48 SAR images acquired by the COSMO-SkyMed (CSK) sensors from December 2013 to March 2016, coherent point targets as long as land subsidence velocity maps and time series are identified by using the Small Baseline Subset (SBAS) algorithm. With the DInSAR constrained land subsidence model, we predict the land subsidence trend and the expected cumulative subsidence in 2020, 2025 and 2030. Meanwhile, we used altimetrydata and densely distributed in the coastal region are identified (EEMD) algorithm to obtain the average sea level rise rate in the East China Sea. With the land subsidence predictions, sea level rise predictions, and high-precision digital elevation model (DEM), we analyze the combined risk of land subsidence and sea level rise on the coastal areas of Shanghai. The potential inundated areas are mapped under different scenarios.
Exponential evolution: implications for intelligent extraterrestrial life.
Russell, D A
1983-01-01
Some measures of biologic complexity, including maximal levels of brain development, are exponential functions of time through intervals of 10(6) to 10(9) yrs. Biological interactions apparently stimulate evolution but physical conditions determine the time required to achieve a given level of complexity. Trends in brain evolution suggest that other organisms could attain human levels within approximately 10(7) yrs. The number (N) and longevity (L) terms in appropriate modifications of the Drake Equation, together with trends in the evolution of biological complexity on Earth, could provide rough estimates of the prevalence of life forms at specified levels of complexity within the Galaxy. If life occurs throughout the cosmos, exponential evolutionary processes imply that higher intelligence will soon (10(9) yrs) become more prevalent than it now is. Changes in the physical universe become less rapid as time increases from the Big Bang. Changes in biological complexity may be most rapid at such later times. This lends a unique and symmetrical importance to early and late universal times.
Coevolution of cooperation and network structure under natural selection
NASA Astrophysics Data System (ADS)
Yang, D.-P.; Lin, H.; Shuai, J. W.
2011-02-01
A coevolution model by coupling mortality and fertility selection is introduced to investigate the evolution of cooperation and network structure in the prisoner's dilemma game. The cooperation level goes through a continuous phase transition vs. defection temptation b for low mortality selection intensity β and through a discontinuous one for infinite β. The cooperation level is enhanced most at β≈1 for any b. The local and global properties of the network structure, such as cluster and cooperating k-core, are investigated for the understanding of cooperation evolution. Cooperation is promoted by forming a tight cooperating k-core at moderate β, but too large β will destroy the cooperating k-core rapidly resulting in a rapid drop of the cooperation level. Importantly, the infinite β changes the normalized sucker's payoff S from 0 to 1-b and its dynamics of the cooperation level undergoes a very slow power-law decay, which leads the evolution into the regime of neutral evolution.
Functional genomics of the evolution of increased resistance to parasitism in Drosophila.
Wertheim, Bregje; Kraaijeveld, Alex R; Hopkins, Meirion G; Walther Boer, Mark; Godfray, H Charles J
2011-03-01
Individual hosts normally respond to parasite attack by launching an acute immune response (a phenotypic plastic response), while host populations can respond in the longer term by evolving higher level of defence against parasites. Little is known about the genetics of the evolved response: the identity and number of genes involved and whether it involves a pre-activation of the regulatory systems governing the plastic response. We explored these questions by surveying transcriptional changes in a Drosophila melanogaster strain artificially selected for resistance against the hymenopteran endoparasitoid Asobara tabida. Using micro-arrays, we profiled gene expression at seven time points during development (from the egg to the second instar larva) and found a large number of genes (almost 900) with altered expression levels. Bioinformatic analysis showed that some were involved in immunity or defence-associated functions but many were not. Previously, we had defined a set of genes whose level of expression changed after parasitoid attack and a comparison with the present set showed a significant though comparatively small overlap. This suggests that the evolutionary response to parasitism is not a simple pre-activation of the plastic, acute response. We also found overlap in the genes involved in the evolutionary response to parasitism and to other biotic and abiotic stressors, perhaps suggesting a 'module' of genes involved in a generalized stress response as has been found in other organisms. © 2010 Blackwell Publishing Ltd.
Task-switching costs promote the evolution of division of labor and shifts in individuality
Goldsby, Heather J.; Dornhaus, Anna; Kerr, Benjamin; Ofria, Charles
2012-01-01
From microbes to humans, the success of many organisms is achieved by dividing tasks among specialized group members. The evolution of such division of labor strategies is an important aspect of the major transitions in evolution. As such, identifying specific evolutionary pressures that give rise to group-level division of labor has become a topic of major interest among biologists. To overcome the challenges associated with studying this topic in natural systems, we use actively evolving populations of digital organisms, which provide a unique perspective on the de novo evolution of division of labor in an open-ended system. We provide experimental results that address a fundamental question regarding these selective pressures: Does the ability to improve group efficiency through the reduction of task-switching costs promote the evolution of division of labor? Our results demonstrate that as task-switching costs rise, groups increasingly evolve division of labor strategies. We analyze the mechanisms by which organisms coordinate their roles and discover strategies with striking biological parallels, including communication, spatial patterning, and task-partitioning behaviors. In many cases, under high task-switching costs, individuals cease to be able to perform tasks in isolation, instead requiring the context of other group members. The simultaneous loss of functionality at a lower level and emergence of new functionality at a higher level indicates that task-switching costs may drive both the evolution of division of labor and also the loss of lower-level autonomy, which are both key components of major transitions in evolution. PMID:22872867
Serdyukova, Natalya A.; Perelman, Polina L.; Pavlova, Svetlana V.; Bulatova, Nina S.; Golenishchev, Feodor N.; Stanyon, Roscoe
2017-01-01
It has long been hypothesized that chromosomal rearrangements play a central role in different evolutionary processes, particularly in speciation and adaptation. Interchromosomal rearrangements have been extensively mapped using chromosome painting. However, intrachromosomal rearrangements have only been described using molecular cytogenetics in a limited number of mammals, including a few rodent species. This situation is unfortunate because intrachromosomal rearrangements are more abundant than interchromosomal rearrangements and probably contain essential phylogenomic information. Significant progress in the detection of intrachromosomal rearrangement is now possible, due to recent advances in molecular biology and bioinformatics. We investigated the level of intrachromosomal rearrangement in the Arvicolinae subfamily, a species-rich taxon characterized by very high rate of karyotype evolution. We made a set of region specific probes by microdissection for a single syntenic region represented by the p-arm of chromosome 1 of Alexandromys oeconomus, and hybridized the probes onto the chromosomes of four arvicolines (Microtus agrestis, Microtus arvalis, Myodes rutilus, and Dicrostonyx torquatus). These experiments allowed us to show the intrachromosomal rearrangements in the subfamily at a significantly higher level of resolution than previously described. We found a number of paracentric inversions in the karyotypes of M. agrestis and M. rutilus, as well as multiple inversions and a centromere shift in the karyotype of M. arvalis. We propose that during karyotype evolution, arvicolines underwent a significant number of complex intrachromosomal rearrangements that were not previously detected. PMID:28867774
Albre, Jérôme; Liénard, Marjorie A.; Sirey, Tamara M.; Schmidt, Silvia; Tooman, Leah K.; Carraher, Colm; Greenwood, David R.; Löfstedt, Christer; Newcomb, Richard D.
2012-01-01
Chemical signals are prevalent in sexual communication systems. Mate recognition has been extensively studied within the Lepidoptera, where the production and recognition of species-specific sex pheromone signals are typically the defining character. While the specific blend of compounds that makes up the sex pheromones of many species has been characterized, the molecular mechanisms underpinning the evolution of pheromone-based mate recognition systems remain largely unknown. We have focused on two sets of sibling species within the leafroller moth genera Ctenopseustis and Planotortrix that have rapidly evolved the use of distinct sex pheromone blends. The compounds within these blends differ almost exclusively in the relative position of double bonds that are introduced by desaturase enzymes. Of the six desaturase orthologs isolated from all four species, functional analyses in yeast and gene expression in pheromone glands implicate three in pheromone biosynthesis, two Δ9-desaturases, and a Δ10-desaturase, while the remaining three desaturases include a Δ6-desaturase, a terminal desaturase, and a non-functional desaturase. Comparative quantitative real-time PCR reveals that the Δ10-desaturase is differentially expressed in the pheromone glands of the two sets of sibling species, consistent with differences in the pheromone blend in both species pairs. In the pheromone glands of species that utilize (Z)-8-tetradecenyl acetate as sex pheromone component (Ctenopseustis obliquana and Planotortrix octo), the expression levels of the Δ10-desaturase are significantly higher than in the pheromone glands of their respective sibling species (C. herana and P. excessana). Our results demonstrate that interspecific sex pheromone differences are associated with differential regulation of the same desaturase gene in two genera of moths. We suggest that differential gene regulation among members of a multigene family may be an important mechanism of molecular innovation in sex pheromone evolution and speciation. PMID:22291612
A Review of Research Instruments Assessing Levels of Student Acceptance of Evolution
ERIC Educational Resources Information Center
Yasri, Pratchayapong
2014-01-01
Darwin's theory of evolution by means of natural selection, called evolution for short, is perceived as a unifying theme in biology, forming a major part of all biology syllabuses. It is reported that student acceptance of evolution associates with conceptual understandings of biological contents, nature of science, as well as motivations to…
NASA Astrophysics Data System (ADS)
Sendrowski, A.; Passalacqua, P.; Wagner, W.; Mohrig, D. C.; Meselhe, E. A.; Sadid, K. M.; Castañeda-Moya, E.; Twilley, R.
2017-12-01
Studying distributary channel networks in river deltaic systems provides important insight into deltaic functioning and evolution. This view of networks highlights the physical connection along channels and can also encompass the structural link between channels and deltaic islands (termed structural connectivity). An alternate view of the deltaic network is one composed of interacting processes, such as relationships between external drivers (e.g., river discharge, tides, and wind) and internal deltaic response variables (e.g., water level and sediment concentration). This network, also referred to as process connectivity, is dynamic across space and time, often comprises nonlinear relationships, and contributes to the development of complex channel networks and ecologically rich island platforms. The importance of process connectivity has been acknowledged, however, few studies have directly quantified these network interactions. In this work, we quantify process connections in Wax Lake Delta (WLD), coastal Louisiana. WLD is a naturally prograding delta that serves as an analogue for river diversion projects, thus it provides an excellent setting for understanding the influence of river discharge, tides, and wind on water and sediment in a delta. Time series of water level and sediment concentration were collected in three channels from November 2013 to February 2014, while water level and turbidity were collected on an island from April 2014 to August 2015. Additionally, a model run on WLD bathymetry generated two years of sediment concentration time series in multiple channels. River discharge, tide, and wind measurements were collected from the USGS and NOAA, respectively. We analyze this data with information theory (IT), a set of statistics that measure uncertainty in signals and communication between signals. Using IT, the timescale, strength, and direction of network links are quantified by measuring the synchronization and direct influence from one variable to another. We compare channel and island process connections, which show distinct differences. Our study captures the temporal evolution of variable transport at multiple locations. While WLD is river dominated, tides and wind show unique transport signatures related to tidal spring and neap transitions and wind events.
NASA Astrophysics Data System (ADS)
Darnault, Romain; Callot, Jean-Paul; Ballard, Jean-François; Fraisse, Guillaume; Mengus, Jean-Marie; Ringenbach, Jean-Claude
2016-08-01
Several analogue modeling studies have been conducted during the past fifteen years with the aim to discuss the effects of sedimentation and erosion on Foreland Fold and Thrust Belt, among which a few have analyzed these processes at kilometric scale (Malavieille et al., 1993; Nalpas et al., 1999; Barrier et al., 2002; Pichot and Nalpas, 2009). The influence of syn-deformation sedimentation and erosion on the structural evolution of FFTB has been clearly demonstrated. Here, we propose to go further in this approach by the study of a more complex system with a double decollement level. The natural study case is the Bolivian sub-Andean thrust and fold belt, which present all the required criteria, such as the double decollement level. A set of analogue models performed under a CT-scan have been used to test the influence of several parameters on a fold and thrust belt system, among which: (i) the spatial variation of the sediment input, (ii) the spatial variation of the erosion rate, (iii) the relative distribution of sedimentation between foreland and hinterland. These experiments led to the following observations: 1. The upper decollement level acts as a decoupling level in case of increased sedimentation rate: it results in the verticalization of the shallower part (above the upper decollement level), while the deeper parts are not impacted. 2. Similarly, the increase of the erosion rate involves the uplift of the deeper part (below the upper decollement level), whereas the shallower parts are not impacted. 3. A high sedimentation rate in the foreland involves a fault and fold vergence reversal, followed by a back-thrusting of the shallower part. 4. A high sedimentation rate in the hinterland favours thrust development toward the foreland in the shallower parts.
Automatized set-up procedure for transcranial magnetic stimulation protocols.
Harquel, S; Diard, J; Raffin, E; Passera, B; Dall'Igna, G; Marendaz, C; David, O; Chauvin, A
2017-06-01
Transcranial Magnetic Stimulation (TMS) established itself as a powerful technique for probing and treating the human brain. Major technological evolutions, such as neuronavigation and robotized systems, have continuously increased the spatial reliability and reproducibility of TMS, by minimizing the influence of human and experimental factors. However, there is still a lack of efficient set-up procedure, which prevents the automation of TMS protocols. For example, the set-up procedure for defining the stimulation intensity specific to each subject is classically done manually by experienced practitioners, by assessing the motor cortical excitability level over the motor hotspot (HS) of a targeted muscle. This is time-consuming and introduces experimental variability. Therefore, we developed a probabilistic Bayesian model (AutoHS) that automatically identifies the HS position. Using virtual and real experiments, we compared the efficacy of the manual and automated procedures. AutoHS appeared to be more reproducible, faster, and at least as reliable as classical manual procedures. By combining AutoHS with robotized TMS and automated motor threshold estimation methods, our approach constitutes the first fully automated set-up procedure for TMS protocols. The use of this procedure decreases inter-experimenter variability while facilitating the handling of TMS protocols used for research and clinical routine. Copyright © 2017 Elsevier Inc. All rights reserved.
[Does Darwinism really contribute to ecology].
Mirkin, B M
2003-01-01
The author questions Ghilarov's (2003) claim that Darwinism has high explanatory power in ecology. He is agree with S.V. Meyen who believed that beside synthetic theory of evolution (the popular variant on Darwinism) other explanations of evolution are possible. It is emphasized that several processes (e.g., diversification and unification of species at one trophic level, as well as individual and diffusive coadaptations of species of different levels) can contribute to community evolution. Communities cannot be considered as units of natural selection.
The Sentinel-3 Surface Topography Mission (S-3 STM): Level 2 SAR Ocean Retracker
NASA Astrophysics Data System (ADS)
Dinardo, S.; Lucas, B.; Benveniste, J.
2015-12-01
The SRAL Radar Altimeter, on board of the ESA Mission Sentinel-3 (S-3), has the capacity to operate either in the Pulse-Limited Mode (also known as LRM) or in the novel Synthetic Aperture Radar (SAR) mode. Thanks to the initial results from SAR Altimetry obtained exploiting CryoSat-2 data, lately the interest by the scientific community in this new technology has significantly increased and consequently the definition of accurate processing methodologies (along with validation strategies) has now assumed a capital importance. In this paper, we present the algorithm proposed to retrieve from S-3 STM SAR return waveforms the standard ocean geophysical parameters (ocean topography, wave height and sigma nought) and the validation results that have been so far achieved exploiting the CryoSat-2 data as well as the simulated data. The inversion method (retracking) to extract from the return waveform the geophysical information is a curve best-fitting scheme based on the bounded Levenberg-Marquardt Least-Squares Estimation Method (LEVMAR-LSE). The S-3 STM SAR Ocean retracking algorithm adopts, as return waveform’s model, the “SAMOSA” model [Ray et al, 2014], named after the R&D project SAMOSA (led by Satoc and funded by ESA), in which it has been initially developed. The SAMOSA model is a physically-based model that offers a complete description of a SAR Altimeter return waveform from ocean surface, expressed in the form of maps of reflected power in Delay-Doppler space (also known as stack) or expressed as multilooked echoes. SAMOSA is able to account for an elliptical antenna pattern, mispointing errors in roll and yaw, surface scattering pattern, non-linear ocean wave statistics and spherical Earth surface effects. In spite of its truly comprehensive character, the SAMOSA model comes with a compact analytical formulation expressed in term of Modified Bessel functions. The specifications of the retracking algorithm have been gathered in a technical document (DPM) and delivered as baseline for industrial implementation. For operational needs, thanks to the fine tuning of the fitting library parameters and the usage of look-up table for Bessel functions computation, the CPU execution time was accelerated over 100 times and made the execution in par with real time. In the course of the ESA-funded project CryoSat+ for Ocean (CP4O), new technical evolutions for the algorithm have been proposed (as usage of PTR width look up table and application of a stack masking). One of the main outcomes of the CP4O project was that, with these latest evolutions, the SAMOSA SAR retracking was giving equivalent results to CNES CPP retracking prototype, which was built with a totally different approach, which enforces the validation results. Work actually is underway to align the industrial implementation with the last new evolutions. Further, in order to test the algorithm with a dataset as realistic as possible, a set of simulated Test Data Set (generated by S-3 STM End-to-End Simulator) has been created by CLS following the specifications as described in a test data set requirements document drafted by ESA. In this work, we will show the baseline algorithm details, the evolutions, the impact of the evolutions and the results obtained processing the CryoSat-2 data and the simulated test data set.
NASA Astrophysics Data System (ADS)
Ferret, Yann; Voineson, Guillaume; Pouvreau, Nicolas
2014-05-01
Nowadays, the study of the global sea level rise is a strong societal concern. The analysis of historical records of water level proves to be an ideal way to provide relevant arguments regarding the observed trends. In France, many systematic sea level observations have taken place since the mid-1800s. Despite this rich history, long sea level data sets digitally available are still scarce. Currently, only the time series of Brest, Marseille and recently the composite one of the Pertuis d'Antioche span periods longer than a century and are available to be taken into account in studies dealing with long term sea-level evolution. In this context, an important work of "data archaeology" is undertaken to rescue the numerous existing analog historical data that is part of the French scientific and cultural heritage. The present study is focused on the measurements carried out at the sea level observatory of Saint-Nazaire, located on the French Atlantic coast in the Loire estuary mouth area. Measurements were automatically performed with the use of float tide gauges from 1863 to 2007, but include some important gaps between 1920 and 1950. Since 2007, the Saint-Nazaire observatory is part of the French RONIM network operated by SHOM, and the old mechanical tide gauge has been superseded by a radar tide gauge (operated by "Grand Port Maritime" of Nantes-Saint-Nazaire). In total, the covered period is up to 150-year-long, including at least 125 years of continuous sea level measurements. With the reconstruction of this new data set, we aim at improving our knowledge on trends in sea level components on the Atlantic coast on large scale and on the coast vulnerability at more local scale. Moreover, because of the location of the station, it should be possible as well to study the influence of the Loire River on water level since the 19th century. It has been shown that the tidal range was strongly modified during the last century because of the anthropogenic influence along the river (dredging, coastal structures, etc.). This is particularly remarkable in upstream areas such as Nantes, but the impact in downstream locations such as Saint-Nazaire is still not completely quantified. As a first and primordial step, this study implies the inventory and the digitalization of existing ledgers and tidal charts. This time-demanding work induces to check the data quality and to make these data consistent over time in terms of vertical reference and time systems, which both evolved during the studied period. Preliminary analyses assess the high quality of the measurements. Once the final time-serie has been checked and rendered coherent, it will be made available in existing national databanks and websites: REFMAR for high-frequency data (hourly) and SONEL for the corresponding mean sea levels (daily, monthly and yearly).
Sequence Memory Constraints Give Rise to Language-Like Structure through Iterated Learning
Cornish, Hannah; Dale, Rick; Kirby, Simon; Christiansen, Morten H.
2017-01-01
Human language is composed of sequences of reusable elements. The origins of the sequential structure of language is a hotly debated topic in evolutionary linguistics. In this paper, we show that sets of sequences with language-like statistical properties can emerge from a process of cultural evolution under pressure from chunk-based memory constraints. We employ a novel experimental task that is non-linguistic and non-communicative in nature, in which participants are trained on and later asked to recall a set of sequences one-by-one. Recalled sequences from one participant become training data for the next participant. In this way, we simulate cultural evolution in the laboratory. Our results show a cumulative increase in structure, and by comparing this structure to data from existing linguistic corpora, we demonstrate a close parallel between the sets of sequences that emerge in our experiment and those seen in natural language. PMID:28118370
Sequence Memory Constraints Give Rise to Language-Like Structure through Iterated Learning.
Cornish, Hannah; Dale, Rick; Kirby, Simon; Christiansen, Morten H
2017-01-01
Human language is composed of sequences of reusable elements. The origins of the sequential structure of language is a hotly debated topic in evolutionary linguistics. In this paper, we show that sets of sequences with language-like statistical properties can emerge from a process of cultural evolution under pressure from chunk-based memory constraints. We employ a novel experimental task that is non-linguistic and non-communicative in nature, in which participants are trained on and later asked to recall a set of sequences one-by-one. Recalled sequences from one participant become training data for the next participant. In this way, we simulate cultural evolution in the laboratory. Our results show a cumulative increase in structure, and by comparing this structure to data from existing linguistic corpora, we demonstrate a close parallel between the sets of sequences that emerge in our experiment and those seen in natural language.
What chickens would tell you about the evolution of antigen processing and presentation.
Kaufman, Jim
2015-06-01
Outside of mammals, antigen processing and presentation have only been investigated in chickens. The chicken MHC is organized differently than mammals, allowing the co-evolution of polymorphic genes, with each MHC haplotype having a set of TAP1, TAP2 and tapasin alleles directed to high expression of a single classical class I molecule. However, the class I alleles vary in the size of peptide-binding repertoire, along with a suite of other properties. The salient features of the chicken MHC are found in many non-mammalian vertebrates, and are likely to have been set at the origin of the adaptive immune system of jawed vertebrates, with unrelated genes co-evolving to set up the original pathways. Half a billion years later, various features of presentation and resistance to disease still reflect this ancestral arrangement. Copyright © 2015 Elsevier Ltd. All rights reserved.
Transient responses' optimization by means of set-based multi-objective evolution
NASA Astrophysics Data System (ADS)
Avigad, Gideon; Eisenstadt, Erella; Goldvard, Alex; Salomon, Shaul
2012-04-01
In this article, a novel solution to multi-objective problems involving the optimization of transient responses is suggested. It is claimed that the common approach of treating such problems by introducing auxiliary objectives overlooks tradeoffs that should be presented to the decision makers. This means that, if at some time during the responses, one of the responses is optimal, it should not be overlooked. An evolutionary multi-objective algorithm is suggested in order to search for these optimal solutions. For this purpose, state-wise domination is utilized with a new crowding measure for ordered sets being suggested. The approach is tested on both artificial as well as on real life problems in order to explain the methodology and demonstrate its applicability and importance. The results indicate that, from an engineering point of view, the approach possesses several advantages over existing approaches. Moreover, the applications highlight the importance of set-based evolution.
Sustainable Data Evolution Technology for Power Grid Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
The SDET Tool is used to create open-access power grid data sets and facilitate updates of these data sets by the community. Pacific Northwest National Laboratory (PNNL) and its power industry and software vendor partners are developing an innovative sustainable data evolution technology (SDET) to create open-access power grid datasets and facilitate updates to these datasets by the power grid community. The objective is to make this a sustained effort within and beyond the ARPA-E GRID DATA program so that the datasets can evolve over time and meet the current and future needs for power grid optimization and potentially othermore » applications in power grid operation and planning.« less
DOT National Transportation Integrated Search
2002-01-01
This report documents the lessons learned during the evolution of the Virginia Department of Transportation's pilot project to use an automatic vehicle location (AVL) system during winter maintenance operations in an urban setting. AVL is a technolog...
Evolution and mass extinctions as lognormal stochastic processes
NASA Astrophysics Data System (ADS)
Maccone, Claudio
2014-10-01
In a series of recent papers and in a book, this author put forward a mathematical model capable of embracing the search for extra-terrestrial intelligence (SETI), Darwinian Evolution and Human History into a single, unified statistical picture, concisely called Evo-SETI. The relevant mathematical tools are: (1) Geometric Brownian motion (GBM), the stochastic process representing evolution as the stochastic increase of the number of species living on Earth over the last 3.5 billion years. This GBM is well known in the mathematics of finances (Black-Sholes models). Its main features are that its probability density function (pdf) is a lognormal pdf, and its mean value is either an increasing or, more rarely, decreasing exponential function of the time. (2) The probability distributions known as b-lognormals, i.e. lognormals starting at a certain positive instant b>0 rather than at the origin. These b-lognormals were then forced by us to have their peak value located on the exponential mean-value curve of the GBM (Peak-Locus theorem). In the framework of Darwinian Evolution, the resulting mathematical construction was shown to be what evolutionary biologists call Cladistics. (3) The (Shannon) entropy of such b-lognormals is then seen to represent the `degree of progress' reached by each living organism or by each big set of living organisms, like historic human civilizations. Having understood this fact, human history may then be cast into the language of b-lognormals that are more and more organized in time (i.e. having smaller and smaller entropy, or smaller and smaller `chaos'), and have their peaks on the increasing GBM exponential. This exponential is thus the `trend of progress' in human history. (4) All these results also match with SETI in that the statistical Drake equation (generalization of the ordinary Drake equation to encompass statistics) leads just to the lognormal distribution as the probability distribution for the number of extra-terrestrial civilizations existing in the Galaxy (as a consequence of the central limit theorem of statistics). (5) But the most striking new result is that the well-known `Molecular Clock of Evolution', namely the `constant rate of Evolution at the molecular level' as shown by Kimura's Neutral Theory of Molecular Evolution, identifies with growth rate of the entropy of our Evo-SETI model, because they both grew linearly in time since the origin of life. (6) Furthermore, we apply our Evo-SETI model to lognormal stochastic processes other than GBMs. For instance, we provide two models for the mass extinctions that occurred in the past: (a) one based on GBMs and (b) the other based on a parabolic mean value capable of covering both the extinction and the subsequent recovery of life forms. (7) Finally, we show that the Markov & Korotayev (2007, 2008) model for Darwinian Evolution identifies with an Evo-SETI model for which the mean value of the underlying lognormal stochastic process is a cubic function of the time. In conclusion: we have provided a new mathematical model capable of embracing molecular evolution, SETI and entropy into a simple set of statistical equations based upon b-lognormals and lognormal stochastic processes with arbitrary mean, of which the GBMs are the particular case of exponential growth.
Clark, Katie A.; Howe, Dana K.; Gafner, Kristin; Kusuma, Danika; Ping, Sita; Estes, Suzanne; Denver, Dee R.
2012-01-01
Selfish DNA poses a significant challenge to genome stability and organismal fitness in diverse eukaryotic lineages. Although selfish mitochondrial DNA (mtDNA) has known associations with cytoplasmic male sterility in numerous gynodioecious plant species and is manifested as petite mutants in experimental yeast lab populations, examples of selfish mtDNA in animals are less common. We analyzed the inheritance and evolution of mitochondrial DNA bearing large heteroplasmic deletions including nad5 gene sequences (nad5Δ mtDNA), in the nematode Caenorhabditis briggsae. The deletion is widespread in C. briggsae natural populations and is associated with deleterious organismal effects. We studied the inheritance patterns of nad5Δ mtDNA using eight sets of C. briggsae mutation-accumulation (MA) lines, each initiated from a different natural strain progenitor and bottlenecked as single hermaphrodites across generations. We observed a consistent and strong drive toward higher levels of deletion-bearing molecules in the heteroplasmic pool of mtDNA after ten generations of bottlenecking. Our results demonstrate a uniform transmission bias whereby nad5Δ mtDNA accumulates to higher levels relative to intact mtDNA in multiple genetically diverse natural strains of C. briggsae. We calculated an average 1% per-generation transmission bias for deletion-bearing mtDNA relative to intact genomes. Our study, coupled with known deleterious phenotypes associated with high deletion levels, shows that nad5Δ mtDNA are selfish genetic elements that have evolved in natural populations of C. briggsae, offering a powerful new system to study selfish mtDNA dynamics in metazoans. PMID:22859984
Rate of resistance evolution and polymorphism in long- and short-lived hosts.
Bruns, Emily; Hood, Michael E; Antonovics, Janis
2015-02-01
Recent theoretical work has shown that long-lived hosts are expected to evolve higher equilibrium levels of disease resistance than shorter-lived hosts, but questions of how longevity affects the rate of resistance evolution and the maintenance of polymorphism remain unanswered. Conventional wisdom suggests that adaptive evolution should occur more slowly in long-lived organisms than in short-lived organisms. However, the opposite may be true for the evolution of disease-resistance traits where exposure to disease, and therefore the strength of selection for resistance increases with longevity. In a single locus model of innate resistance to a frequency-dependent, sterilizing disease, longer lived hosts evolved resistance more rapidly than short-lived hosts. Moreover, resistance in long-lived hosts could only be polymorphic for more costly and more extreme resistance levels than short-lived hosts. The increased rate of evolution occurred in spite of longer generation times because longer-lived hosts had both a longer period of exposure to disease as well as higher disease prevalence. Qualitatively similar results were found when the model was extended to mortality-inducing diseases, or to density-dependent transmission modes. Our study shows that the evolutionary dynamics of host resistance is determined by more than just levels of resistance and cost, but is highly sensitive to the life-history traits of the host. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation
Cruz-Aceves, I.; Avina-Cervantes, J. G.; Lopez-Hernandez, J. M.; Rostro-Gonzalez, H.; Garcia-Capulin, C. H.; Torres-Cisneros, M.; Guzman-Cabrera, R.
2013-01-01
This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation. PMID:23983809
Parameter optimization of differential evolution algorithm for automatic playlist generation problem
NASA Astrophysics Data System (ADS)
Alamag, Kaye Melina Natividad B.; Addawe, Joel M.
2017-11-01
With the digitalization of music, the number of collection of music increased largely and there is a need to create lists of music that filter the collection according to user preferences, thus giving rise to the Automatic Playlist Generation Problem (APGP). Previous attempts to solve this problem include the use of search and optimization algorithms. If a music database is very large, the algorithm to be used must be able to search the lists thoroughly taking into account the quality of the playlist given a set of user constraints. In this paper we perform an evolutionary meta-heuristic optimization algorithm, Differential Evolution (DE) using different combination of parameter values and select the best performing set when used to solve four standard test functions. Performance of the proposed algorithm is then compared with normal Genetic Algorithm (GA) and a hybrid GA with Tabu Search. Numerical simulations are carried out to show better results from Differential Evolution approach with the optimized parameter values.
Age constraints on the evolution of the Quetico belt, Superior Province, Ontario
NASA Technical Reports Server (NTRS)
Percival, J. A.; Sullivan, R. W.
1986-01-01
Much attention has been focused on the nature of Archean tectonic processes and the extent to which they were different from modern rigid-plate tectonics. The Archean Superior Province has linear metavolcanic and metasediment-dominated subprovinces of similar scale to cenozoic island arc-trench systems of the western Pacific, suggesting an origin by accreting arcs. Models of the evolution of metavolcanic belts in parts of the Superior Province suggest an arc setting but the tectonic environment and evolution of the intervening metasedimentary belts are poorly understood. In addition to explaining the setting giving rise to a linear sedimentary basin, models must account for subsequent shortening and high-temperature, low-pressure metamorphism. Correlation of rock units and events in adjacent metavolcanic and metasedimentary belts is a first step toward understanding large-scale crustal interactions. To this end, zircon geochronology has been applied to metavolcanic belts of the western Superior Province; new age data for the Quetico metasedimentary belt is reported, permitting correlation with the adjacent Wabigoon and Wawa metavolcanic subprovinces.
Dos Reis, Julio Cesar; Pruski, Cédric; Da Silveira, Marcos; Reynaud-Delaître, Chantal
2013-01-01
Mappings established between Knowledge Organization Systems (KOS) increase semantic interoperability between biomedical information systems. However, biomedical knowledge is highly dynamic and changes affecting KOS entities can potentially invalidate part or the totality of existing mappings. Understanding how mappings evolve and what the impacts of KOS evolution on mappings are is therefore crucial for the definition of an automatic approach to maintain mappings valid and up-to-date over time. In this article, we study variations of a specific KOS complex change (split) for two biomedical KOS (SNOMED CT and ICD-9-CM) through a rigorous method of investigation for identifying and refining complex changes, and for selecting representative cases. We empirically analyze and explain their influence on the evolution of associated mappings. Results point out the importance of considering various dimensions of the information described in KOS, like the semantic structure of concepts, the set of relevant information used to define the mappings and the change operations interfering with this set of information.
Reis, Julio Cesar Dos; Pruski, Cédric; Da Silveira, Marcos; Reynaud-Delaître, Chantal
2013-01-01
Mappings established between Knowledge Organization Systems (KOS) increase semantic interoperability between biomedical information systems. However, biomedical knowledge is highly dynamic and changes affecting KOS entities can potentially invalidate part or the totality of existing mappings. Understanding how mappings evolve and what the impacts of KOS evolution on mappings are is therefore crucial for the definition of an automatic approach to maintain mappings valid and up-to-date over time. In this article, we study variations of a specific KOS complex change (split) for two biomedical KOS (SNOMED CT and ICD-9-CM) through a rigorous method of investigation for identifying and refining complex changes, and for selecting representative cases. We empirically analyze and explain their influence on the evolution of associated mappings. Results point out the importance of considering various dimensions of the information described in KOS, like the semantic structure of concepts, the set of relevant information used to define the mappings and the change operations interfering with this set of information. PMID:24551341
He, Weiguo; Qin, Qinbo; Liu, Shaojun; Li, Tangluo; Wang, Jing; Xiao, Jun; Xie, Lihua; Zhang, Chun; Liu, Yun
2012-01-01
Through distant crossing, diploid, triploid and tetraploid hybrids of red crucian carp (Carassius auratus red var., RCC♀, Cyprininae, 2n = 100) × topmouth culter (Erythroculter ilishaeformis Bleeker, TC♂, Cultrinae, 2n = 48) were successfully produced. Diploid hybrids possessed 74 chromosomes with one set from RCC and one set from TC; triploid hybrids harbored 124 chromosomes with two sets from RCC and one set from TC; tetraploid hybrids had 148 chromosomes with two sets from RCC and two sets from TC. The 5S rDNA of the three different ploidy-level hybrids and their parents were sequenced and analyzed. There were three monomeric 5S rDNA classes (designated class I: 203 bp; class II: 340 bp; and class III: 477 bp) in RCC and two monomeric 5S rDNA classes (designated class IV: 188 bp, and class V: 286 bp) in TC. In the hybrid offspring, diploid hybrids inherited three 5S rDNA classes from their female parent (RCC) and only class IV from their male parent (TC). Triploid hybrids inherited class II and class III from their female parent (RCC) and class IV from their male parent (TC). Tetraploid hybrids gained class II and class III from their female parent (RCC), and generated a new 5S rDNA sequence (designated class I-N). The specific paternal 5S rDNA sequence of class V was not found in the hybrid offspring. Sequence analysis of 5S rDNA revealed the influence of hybridization and polyploidization on the organization and variation of 5S rDNA in fish. This is the first report on the coexistence in vertebrates of viable diploid, triploid and tetraploid hybrids produced by crossing parents with different chromosome numbers, and these new hybrids are novel specimens for studying the genomic variation in the first generation of interspecific hybrids, which has significance for evolution and fish genetics.
Previously unknown class of metalorganic compounds revealed in meteorites
Ruf, Alexander; Kanawati, Basem; Hertkorn, Norbert; Yin, Qing-Zhu; Moritz, Franco; Harir, Mourad; Lucio, Marianna; Michalke, Bernhard; Wimpenny, Joshua; Shilobreeva, Svetlana; Bronsky, Basil; Saraykin, Vladimir; Gabelica, Zelimir; Gougeon, Régis D.; Quirico, Eric; Ralew, Stefan; Jakubowski, Tomasz; Haack, Henning; Gonsior, Michael; Jenniskens, Peter; Hinman, Nancy W.; Schmitt-Kopplin, Philippe
2017-01-01
The rich diversity and complexity of organic matter found in meteorites is rapidly expanding our knowledge and understanding of extreme environments from which the early solar system emerged and evolved. Here, we report the discovery of a hitherto unknown chemical class, dihydroxymagnesium carboxylates [(OH)2MgO2CR]−, in meteoritic soluble organic matter. High collision energies, which are required for fragmentation, suggest substantial thermal stability of these Mg-metalorganics (CHOMg compounds). This was corroborated by their higher abundance in thermally processed meteorites. CHOMg compounds were found to be present in a set of 61 meteorites of diverse petrological classes. The appearance of this CHOMg chemical class extends the previously investigated, diverse set of CHNOS molecules. A connection between the evolution of organic compounds and minerals is made, as Mg released from minerals gets trapped into organic compounds. These CHOMg metalorganic compounds and their relation to thermal processing in meteorites might shed new light on our understanding of carbon speciation at a molecular level in meteorite parent bodies. PMID:28242686
Using Noise and Fluctuations for In Situ Measurements of Nitrogen Diffusion Depth.
Samoila, Cornel; Ursutiu, Doru; Schleer, Walter-Harald; Jinga, Vlad; Nascov, Victor
2016-10-05
In manufacturing processes involving diffusion (of C, N, S, etc.), the evolution of the layer depth is of the utmost importance: the success of the entire process depends on this parameter. Currently, nitriding is typically either calibrated using a "post process" method or controlled via indirect measurements (H2, O2, H2O + CO2). In the absence of "in situ" monitoring, any variation in the process parameters (gas concentration, temperature, steel composition, distance between sensors and furnace chamber) can cause expensive process inefficiency or failure. Indirect measurements can prevent process failure, but uncertainties and complications may arise in the relationship between the measured parameters and the actual diffusion process. In this paper, a method based on noise and fluctuation measurements is proposed that offers direct control of the layer depth evolution because the parameters of interest are measured in direct contact with the nitrided steel (represented by the active electrode). The paper addresses two related sets of experiments. The first set of experiments consisted of laboratory tests on nitrided samples using Barkhausen noise and yieded a linear relationship between the frequency exponent in the Hooge equation and the nitriding time. For the second set, a specific sensor based on conductivity noise (at the nitriding temperature) was built for shop-floor experiments. Although two different types of noise were measured in these two sets of experiments, the use of the frequency exponent to monitor the process evolution remained valid.
Using Noise and Fluctuations for In Situ Measurements of Nitrogen Diffusion Depth
Samoila, Cornel; Ursutiu, Doru; Schleer, Walter-Harald; Jinga, Vlad; Nascov, Victor
2016-01-01
In manufacturing processes involving diffusion (of C, N, S, etc.), the evolution of the layer depth is of the utmost importance: the success of the entire process depends on this parameter. Currently, nitriding is typically either calibrated using a “post process” method or controlled via indirect measurements (H2, O2, H2O + CO2). In the absence of “in situ” monitoring, any variation in the process parameters (gas concentration, temperature, steel composition, distance between sensors and furnace chamber) can cause expensive process inefficiency or failure. Indirect measurements can prevent process failure, but uncertainties and complications may arise in the relationship between the measured parameters and the actual diffusion process. In this paper, a method based on noise and fluctuation measurements is proposed that offers direct control of the layer depth evolution because the parameters of interest are measured in direct contact with the nitrided steel (represented by the active electrode). The paper addresses two related sets of experiments. The first set of experiments consisted of laboratory tests on nitrided samples using Barkhausen noise and yielded a linear relationship between the frequency exponent in the Hooge equation and the nitriding time. For the second set, a specific sensor based on conductivity noise (at the nitriding temperature) was built for shop-floor experiments. Although two different types of noise were measured in these two sets of experiments, the use of the frequency exponent to monitor the process evolution remained valid. PMID:28773941
Evolution and the Distribution of Glutaminyl and Asparaginyl Residues in Proteins
Robinson, Arthur B.
1974-01-01
Recent experiments on the deamidation of glutaminyl and asparaginyl residues in peptides and proteins support the hypothesis that these residues may serve as molecular clocks that control biological processes. A hypothesis is now offered that suggests that these molecular clocks are set by rejection or accumulation of appropriate sequences of residues including a glutaminyl or asparaginyl residue during evolution. PMID:4522799
A Numerical Study of Cirrus Clouds. Part I: Model Description.
NASA Astrophysics Data System (ADS)
Liu, Hui-Chun; Wang, Pao K.; Schlesinger, Robert E.
2003-04-01
This article, the first of a two-part series, presents a detailed description of a two-dimensional numerical cloud model directed toward elucidating the physical processes governing the evolution of cirrus clouds. The two primary scientific purposes of this work are (a) to determine the evolution and maintenance mechanisms of cirrus clouds and try to explain why some cirrus can persist for a long time; and (b) to investigate the influence of certain physical factors such as radiation, ice crystal habit, latent heat, ventilation effects, and aggregation mechanisms on the evolution of cirrus. The second part will discuss sets of model experiments that were run to address objectives (a) and (b), respectively.As set forth in this paper, the aforementioned two-dimensional numerical model, which comprises the research tool for this study, is organized into three modules that embody dynamics, microphysics, and radiation. The dynamic module develops a set of equations to describe shallow moist convection, also parameterizing turbulence by using a 1.5-order closure scheme. The microphysical module uses a double-moment scheme to simulate the evolution of the size distribution of ice particles. Heterogeneous and homogeneous nucleation of haze particles are included, along with other ice crystal processes such as diffusional growth, sedimentation, and aggregation. The radiation module uses a two-stream radiative transfer scheme to determine the radiative fluxes and heating rates, while the cloud optical properties are determined by the modified anomalous diffraction theory (MADT) for ice particles. One of the main advantages of this cirrus model is its explicit formulation of the microphysical and radiative properties as functions of ice crystal habit.
Mourao, Paulo Reis; Domingues Martinho, Vítor
2017-07-01
One of the most serious externalities of agricultural activity relates to greenhouse gas emissions. This work tests this relationship for the Portuguese case by examining data compiled since 1961. Employing cointegration techniques and vector error correction models (VECMs), we conclude that the evolution of the most representative vegetables and fruits in Portuguese production are associated with higher controls on the evolution of greenhouse gas emissions. Reversely, the evolution of the output levels of livestock and the most representative animal production have significantly increased the level of CO 2 (carbon dioxide) reported in Portugal. We also analyze the cycle length of the long-term relationship between agricultural activity and greenhouse gas emissions. In particular, we highlight the case of synthetic fertilizers, whose values of CO 2 have quickly risen due to changes in Portuguese vegetables, fruit, and animal production levels.
Research on System Coherence Evolution of Different Environmental Models
NASA Astrophysics Data System (ADS)
Zhang, Si-Qi; Lu, Jing-Bin; Li, Hong; Liu, Ji-Ping; Zhang, Xiao-Ru; Liu, Han; Liang, Yu; Ma, Ji; Liu, Xiao-Jing; Wu, Xiang-Yao
2018-04-01
In this paper, we have studied the evolution curve of two-level atomic system that the initial state is excited state. At the different of environmental reservoir models, which include the single Lorentzian, ideal photon band-gap, double Lorentzian and square Lorentzian reservoir, we researched the influence of these environmental reservoir models on the evolution of energy level population. At static no modulation, comparing the four environmental models, the atomic energy level population oscillation of square Lorentzian reservoir model is fastest, and the atomic system decoherence is slowest. Under dynamic modulation, comparing the photon band-gap model with the single Lorentzian reservoir model, no matter what form of dynamic modulation, the time of atoms decay to the ground state is longer for the photonic band-gap model. These conclusions make the idea of using the environmental change to modulate the coherent evolution of atomic system become true.
Determinants of the rate of protein sequence evolution
Zhang, Jianzhi; Yang, Jian-Rong
2015-01-01
The rate and mechanism of protein sequence evolution have been central questions in evolutionary biology since the 1960s. Although the rate of protein sequence evolution depends primarily on the level of functional constraint, exactly what constitutes functional constraint has remained unclear. The increasing availability of genomic data has allowed for much needed empirical examinations on the nature of functional constraint. These studies found that the evolutionary rate of a protein is predominantly influenced by its expression level rather than functional importance. A combination of theoretical and empirical analyses have identified multiple mechanisms behind these observations and demonstrated a prominent role that selection against errors in molecular and cellular processes plays in protein evolution. PMID:26055156
NASA Technical Reports Server (NTRS)
Bartlett, Karen B.; Sachse, Glen W.; Slate, Thomas; Harward, Charles; Blake, Donald R.
2003-01-01
Methane (CH4) mixing ratios in the northern Pacific Basin were sampled from two aircraft during the TRACE-P mission (Transport and Chemical Evolution over the Pacific) from late February through early April 2001 using a tunable diode laser system. Described in more detail by Jacob et al., the mission was designed to characterize Asian outflow to the Pacific, determine its chemical evolution, and assess changes to the atmosphere resulting from the rapid industrialization and increased energy usage on the Asian continent. The high-resolution, high-precision data set of roughly 13,800 CH4 measurements ranged between 1602 ppbv in stratospherically influenced air and 2149 ppbv in highly polluted air. Overall, CH4 mixing ratios were highly correlated with a variety of other trace gases characteristic of a mix of anthropogenic industrial and combustion sources and were strikingly correlated with ethane (C2H6) in particular. Averages with latitude in the near-surface (0-2 km) show that CH4 was elevated well above background levels north of 15 deg N close to the Asian continent. In the central and eastern Pacific, levels of CH4 were lower as continental inputs were mixed horizontally and vertically during transport. Overall, the correlation between CH4 and other hydrocarbons such as ethane (C2H6), ethyne (C2H2), and propane (C3H8) as well as the urban/industrial tracer perchloroethene (C2Cl4), suggests that for CH4 colocated sources such as landfills, wastewater treatment, and fossil fuel use associated with urban areas dominate regional inputs at this time. Comparisons between measurements made during TRACE-P and those of PEM-West B, flown during roughly the same time of year and under a similar meteorological setting 7 years earlier, suggest that although the TRACE-P CH4 observations are higher, the changes are not significantly greater than the increases seen in background air over this time interval.
Kazemian, Majid; Suryamohan, Kushal; Chen, Jia-Yu; Zhang, Yinan; Samee, Md Abul Hassan; Halfon, Marc S; Sinha, Saurabh
2014-09-01
Many genes familiar from Drosophila development, such as the so-called gap, pair-rule, and segment polarity genes, play important roles in the development of other insects and in many cases appear to be deployed in a similar fashion, despite the fact that Drosophila-like "long germband" development is highly derived and confined to a subset of insect families. Whether or not these similarities extend to the regulatory level is unknown. Identification of regulatory regions beyond the well-studied Drosophila has been challenging as even within the Diptera (flies, including mosquitoes) regulatory sequences have diverged past the point of recognition by standard alignment methods. Here, we demonstrate that methods we previously developed for computational cis-regulatory module (CRM) discovery in Drosophila can be used effectively in highly diverged (250-350 Myr) insect species including Anopheles gambiae, Tribolium castaneum, Apis mellifera, and Nasonia vitripennis. In Drosophila, we have successfully used small sets of known CRMs as "training data" to guide the search for other CRMs with related function. We show here that although species-specific CRM training data do not exist, training sets from Drosophila can facilitate CRM discovery in diverged insects. We validate in vivo over a dozen new CRMs, roughly doubling the number of known CRMs in the four non-Drosophila species. Given the growing wealth of Drosophila CRM annotation, these results suggest that extensive regulatory sequence annotation will be possible in newly sequenced insects without recourse to costly and labor-intensive genome-scale experiments. We develop a new method, Regulus, which computes a probabilistic score of similarity based on binding site composition (despite the absence of nucleotide-level sequence alignment), and demonstrate similarity between functionally related CRMs from orthologous loci. Our work represents an important step toward being able to trace the evolutionary history of gene regulatory networks and defining the mechanisms underlying insect evolution. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
NASA Astrophysics Data System (ADS)
Butters, O. W.; Katajainen, S.; Norton, A. J.; Lehto, H. J.; Piirola, V.
2009-03-01
Context: The origin, evolution, and ultimate fate of magnetic cataclysmic variables are poorly understood. It is largely the nature of the magnetic fields in these systems that leads to this poor understanding. Fundamental properties, such as the field strength and the axis alignment, are unknown in a majority of these systems. Aims: We undertake to put all the previous circular polarization measurements into context and systematically survey intermediate polars for signs of circular polarization, hence to get an indication of their true magnetic field strengths and try to understand the evolution of magnetic cataclysmic variables. Methods: We used the TurPol instrument at the Nordic Optical Telescope to obtain simultaneous UBVRI photo-polarimetric observations of a set of intermediate polars, during the epoch 2006 July 31-August 2. Results: Of this set of eight systems two (1RXS J213344.1+510725 and 1RXS J173021.5-055933) were found to show significant levels of circular polarization, varying with spin phase. Five others (V2306 Cyg, AO Psc, DQ Her, FO Aqr, and V1223 Sgr) show some evidence for circular polarization and variation of this with spin phase, whilst AE Aqr shows little evidence for polarized emission. We also report the first simultaneous UBVRI photometry of the newly identified intermediate polar 1RXS J173021.5-055933. Conclusions: Circular polarization may be ubiquitous in intermediate polars, albeit at a low level of one or two percent or less. It is stronger at longer wavelengths in the visible spectrum. Our results lend further support to the possible link between the presence of soft X-ray components and the detectability of circular polarization in intermediate polars. Based on observations obtained at the Nordic Optical Telescope at the Roque de los Muchachos Observatory in La Palma.
Towards physical principles of biological evolution
NASA Astrophysics Data System (ADS)
Katsnelson, Mikhail I.; Wolf, Yuri I.; Koonin, Eugene V.
2018-03-01
Biological systems reach organizational complexity that far exceeds the complexity of any known inanimate objects. Biological entities undoubtedly obey the laws of quantum physics and statistical mechanics. However, is modern physics sufficient to adequately describe, model and explain the evolution of biological complexity? Detailed parallels have been drawn between statistical thermodynamics and the population-genetic theory of biological evolution. Based on these parallels, we outline new perspectives on biological innovation and major transitions in evolution, and introduce a biological equivalent of thermodynamic potential that reflects the innovation propensity of an evolving population. Deep analogies have been suggested to also exist between the properties of biological entities and processes, and those of frustrated states in physics, such as glasses. Such systems are characterized by frustration whereby local state with minimal free energy conflict with the global minimum, resulting in ‘emergent phenomena’. We extend such analogies by examining frustration-type phenomena, such as conflicts between different levels of selection, in biological evolution. These frustration effects appear to drive the evolution of biological complexity. We further address evolution in multidimensional fitness landscapes from the point of view of percolation theory and suggest that percolation at level above the critical threshold dictates the tree-like evolution of complex organisms. Taken together, these multiple connections between fundamental processes in physics and biology imply that construction of a meaningful physical theory of biological evolution might not be a futile effort. However, it is unrealistic to expect that such a theory can be created in one scoop; if it ever comes to being, this can only happen through integration of multiple physical models of evolutionary processes. Furthermore, the existing framework of theoretical physics is unlikely to suffice for adequate modeling of the biological level of complexity, and new developments within physics itself are likely to be required.
Faster-X Evolution of Gene Expression in Drosophila
Meisel, Richard P.; Malone, John H.; Clark, Andrew G.
2012-01-01
DNA sequences on X chromosomes often have a faster rate of evolution when compared to similar loci on the autosomes, and well articulated models provide reasons why the X-linked mode of inheritance may be responsible for the faster evolution of X-linked genes. We analyzed microarray and RNA–seq data collected from females and males of six Drosophila species and found that the expression levels of X-linked genes also diverge faster than autosomal gene expression, similar to the “faster-X” effect often observed in DNA sequence evolution. Faster-X evolution of gene expression was recently described in mammals, but it was limited to the evolutionary lineages shortly following the creation of the therian X chromosome. In contrast, we detect a faster-X effect along both deep lineages and those on the tips of the Drosophila phylogeny. In Drosophila males, the dosage compensation complex (DCC) binds the X chromosome, creating a unique chromatin environment that promotes the hyper-expression of X-linked genes. We find that DCC binding, chromatin environment, and breadth of expression are all predictive of the rate of gene expression evolution. In addition, estimates of the intraspecific genetic polymorphism underlying gene expression variation suggest that X-linked expression levels are not under relaxed selective constraints. We therefore hypothesize that the faster-X evolution of gene expression is the result of the adaptive fixation of beneficial mutations at X-linked loci that change expression level in cis. This adaptive faster-X evolution of gene expression is limited to genes that are narrowly expressed in a single tissue, suggesting that relaxed pleiotropic constraints permit a faster response to selection. Finally, we present a conceptional framework to explain faster-X expression evolution, and we use this framework to examine differences in the faster-X effect between Drosophila and mammals. PMID:23071459
Evolution of cooperative strategies from first principles.
Burtsev, Mikhail; Turchin, Peter
2006-04-20
One of the greatest challenges in the modern biological and social sciences is to understand the evolution of cooperative behaviour. General outlines of the answer to this puzzle are currently emerging as a result of developments in the theories of kin selection, reciprocity, multilevel selection and cultural group selection. The main conceptual tool used in probing the logical coherence of proposed explanations has been game theory, including both analytical models and agent-based simulations. The game-theoretic approach yields clear-cut results but assumes, as a rule, a simple structure of payoffs and a small set of possible strategies. Here we propose a more stringent test of the theory by developing a computer model with a considerably extended spectrum of possible strategies. In our model, agents are endowed with a limited set of receptors, a set of elementary actions and a neural net in between. Behavioural strategies are not predetermined; instead, the process of evolution constructs and reconstructs them from elementary actions. Two new strategies of cooperative attack and defence emerge in simulations, as well as the well-known dove, hawk and bourgeois strategies. Our results indicate that cooperative strategies can evolve even under such minimalist assumptions, provided that agents are capable of perceiving heritable external markers of other agents.
Collision in the Central Alps: 1. Thermal Modelling
NASA Astrophysics Data System (ADS)
Engi, M.; Roselle, G. T.; Brouwer, F. M.; Berger, A.
2003-04-01
Recent tectonic reconstructions for the Central Alps, based in part on seismic profiles across of the orogen, have produced fairly robust kinematic scenarios for the Tertiary evolution. We have used these to set up 2D finite element models [1] to simulate the thermal evolution at orogenic scales. Results are helpful to understand the metamorphic and geochronological record in the Central Alps. Several features recognized as crucial in collisional orogens have been incorporated in our models: Adaptive grids are used to accommodate tectonic mass flow; properties of a tectonic accretion channel (TAC), situated near the footwall of the upper (Apulian) plate, are incorporated (TAC: 5-10 km wide [2]); a mobile fragment (pit: 5-10 km thick, 25-50 km long) at the plate interface is allowed to first be subducted, then to be extruded along the subduction channel to mid-crustal levels during the nappe stacking phase, and finally to be exhumed by backthrusting and erosion; partial melting and its thermal effects are computed. The thermal evolution in crucial parts of the model orogen is depicted in P-T and T-t trajectories, and in time slices showing the evolution of metamorphic facies and degrees of late partial melting. Comparison of simulation results with the regional distribution of (Eocene) high pressure fragments in the Lepontine Alps and of their (Oligo/Miocene) Barrovian overprint indicate that (a) decompression is near-isothermal along a very imited part of the path only; (b) the highest temperatures attained following collision do not reach the observed ˜700^oC unless the TAC is fairly radiogenic (heat production ge˜2 μW/m^3) or there is substantial heat advected by asthenospheric melts migrating up the subduction channel; (c) moderate amounts of partial melting occurred within the the TAC during decompression, following the assembly (at mid-crustal levels) of various crustal and mantle fragments with very diverse P-T-t histories. [1] Roselle et al. (2002) Amer. J. Sci. 302: 381-409 [2] Engi et al. (2001) Geology 29: 1143-1146
NASA Astrophysics Data System (ADS)
Culling, D. P.; Allison, M. A.; Kulp, M. A.; Georgiou, I. Y.; Weathers, H. D., III
2016-12-01
The Louisiana coast is an invaluable asset to the nation's human, economic, and ecological welfare. However, due to the combined effects of coastal erosion, subsidence, and sea level rise, Louisiana is losing on average 25 km2 of its valuable coastal wetlands per year. Terrebonne- Timbalier Bay and the associated Lafourche deltaic lobe headland is a critical section of this coast for wetlands and infrastructure protection and restoration in the State's Master Plan. Historical imagery and bathymetry clearly show the rapid transgression and erosional degradation of both sets of headland-flanking barrier island shorelines due to wave attack and relative sea level rise in the past 150 y. The focus of the present study is a barrier island system: an ocean-fronting modern-barrier shoreline and a paleo-deltaic headland barrier arc inland of the active barrier. The evolution of the modern barrier arc is closely tied to the shallow geologic framework over which it is transgressing, and specifically the sand re-activation capacity of the antecedent geology once erosional forces are introduced. To understand the evolution of these barrier systems and how to address their protection and re-nourishment, it is important to quantify (1) the depositional facies geometry and (2) the volume of sand in these back-barrier sandy lithosomes. Here we present new observations from CHIRP sub-bottom seismic multibeam bathymetry and LIDAR topography, and surface grab and vibracore sampling in an effort to quantify the sediment availability within the underlying geologic framework and reconstruct the geomorphic evolution of these barrier shorelines. Preliminary results show the morphologic expression of antecedent geology, which is evident in seismic and bathymetric patterns, and the presence of near-surface and surface sandy stratigraphy within the back barrier bay. Observations of sandy units agree with results from Kulp et al. (2005), who showed the presence and extent of sandy lithofacies within 3 m of the surface proximal to the Raccoon Pass tidal-inlet. We suggest this sand is an important potential resource for the longevity of proximal sandy barriers as transgression continues; one identified lithesome alone is estimated to contain 5.25 km3 of fine-grained sand.
Six Classroom Exercises to Teach Natural Selection to Undergraduate Biology Students
Kalinowski, Steven T.; Leonard, Mary J.; Andrews, Tessa M.; Litt, Andrea R.
2013-01-01
Students in introductory biology courses frequently have misconceptions regarding natural selection. In this paper, we describe six activities that biology instructors can use to teach undergraduate students in introductory biology courses how natural selection causes evolution. These activities begin with a lesson introducing students to natural selection and also include discussions on sexual selection, molecular evolution, evolution of complex traits, and the evolution of behavior. The set of six topics gives students the opportunity to see how natural selection operates in a variety of contexts. Pre- and postinstruction testing showed students’ understanding of natural selection increased substantially after completing this series of learning activities. Testing throughout this unit showed steadily increasing student understanding, and surveys indicated students enjoyed the activities. PMID:24006396
Coherence Evolution and Transfer Supplemented by Sender's Initial-State Restoring
NASA Astrophysics Data System (ADS)
Fel'dman, E. B.; Zenchuk, A. I.
2017-12-01
The evolution of quantum coherences comes with a set of conservation laws provided that the Hamiltonian governing this evolution conserves the spin-excitation number. At that, coherences do not intertwist during the evolution. Using the transmission line and the receiver in the initial ground state we can transfer the coherences to the receiver without interaction between them, although the matrix elements contributing to each particular coherence intertwist in the receiver's state. Therefore we propose a tool based on the unitary transformation at the receiver side to untwist these elements and thus restore (at least partially) the structure of the sender's initial density matrix. A communication line with two-qubit sender and receiver is considered as an example of implementation of this technique.
Hale, Piers J
2013-01-01
The nineteenth century theologian, author and poet Charles Kingsley was a notable populariser of Darwinian evolution. He championed Darwin's cause and that of honesty in science for more than a decade from 1859 to 1871. Kingsley's interpretation of evolution shaped his theology, his politics and his views on race. The relationship between men and apes set the context for Kingsley's consideration of these issues. Having defended Darwin for a decade in 1871 Kingsley was dismayed to read Darwin's account of the evolution of morals in Descent of Man. He subsequently distanced himself from Darwin's conclusions even though he remained an ardent evolutionist until his death in 1875.
Evolution of Devonian carbonate-shelf margin, Nevada
Morrow, J.R.; Sandberg, C.A.
2008-01-01
The north-trending, 550-km-long Nevada segment of the Devonian carbonate-shelf margin, which fringed western North America, evidences the complex interaction of paleotectonics, eustasy, biotic changes, and bolide impact-related influences. Margin reconstruction is complicated by mid-Paleozoic to Paleogene compressional tectonics and younger extensional and strike-slip faulting. Reports published during the past three decades identify 12 important events that influenced development of shelf-margin settings; in chronological order, these are: (1) Early Devonian inheritance of Silurian stable shelf inargin, (2) formation of Early to early Middle 'Devonian shelf-margin basins, (3) propradation of later Middle Devonian shelf margin, (4) late Middle Devonian Taghanic ondap and continuing long-term Frasnian transgression, (5) initiation of latest Middle Devonian to early Frasnian proto-Antler orogenic forebulge, (6) mid-Frasnian Alamo Impact, (7) accelerated development of proto-Antler forebulge and backbulge Pilot basin, (8) global late Frasnian sentichatovae sea-level rise, (9) end-Frasnian sea-level fluctuations and ensuing mass extinction, (10) long-term Famennian regression and continept-wide erosion, (11) late Famennian emergence: of Ahtler orogenic highlands, and (12) end-Devonian eustatic sea-level fall. Although of considerable value for understanding facies relationships and geometries, existing standard carbonate platform-margin models developed for passive settings else-where do not adequately describe the diverse depositional and, structural settings along the Nevada Devonian platform margin. Recent structural and geochemical studies suggest that the Early to Middle Devonian-shelf-margin basins may have been fault-bound and controlled by inherited Precambrian structure. Subsequently, the migrating latest Middle to Late Devonian Antler orogenic forebulge exerted a dominant control on shelf-margin position, morphology, and sedimentation. ??Geological Society of America.
Cryptic genetic variation, evolution's hidden substrate
Paaby, Annalise B.; Rockman, Matthew V.
2016-01-01
Cryptic genetic variation is invisible under normal conditions but fuel for evolution when circumstances change. In theory, CGV can represent a massive cache of adaptive potential or a pool of deleterious alleles in need of constant suppression. CGV emerges from both neutral and selective processes and it may inform how human populations respond to change. In experimental settings, CGV facilitates adaptation, but does it play an important role in the real world? We review the empirical support for widespread CGV in natural populations, including its potential role in emerging human diseases and the growing evidence of its contribution to evolution. PMID:24614309
TIM Barrel Protein Structure Classification Using Alignment Approach and Best Hit Strategy
NASA Astrophysics Data System (ADS)
Chu, Jia-Han; Lin, Chun Yuan; Chang, Cheng-Wen; Lee, Chihan; Yang, Yuh-Shyong; Tang, Chuan Yi
2007-11-01
The classification of protein structures is essential for their function determination in bioinformatics. It has been estimated that around 10% of all known enzymes have TIM barrel domains from the Structural Classification of Proteins (SCOP) database. With its high sequence variation and diverse functionalities, TIM barrel protein becomes to be an attractive target for protein engineering and for the evolution study. Hence, in this paper, an alignment approach with the best hit strategy is proposed to classify the TIM barrel protein structure in terms of superfamily and family levels in the SCOP. This work is also used to do the classification for class level in the Enzyme nomenclature (ENZYME) database. Two testing data sets, TIM40D and TIM95D, both are used to evaluate this approach. The resulting classification has an overall prediction accuracy rate of 90.3% for the superfamily level in the SCOP, 89.5% for the family level in the SCOP and 70.1% for the class level in the ENZYME. These results demonstrate that the alignment approach with the best hit strategy is a simple and viable method for the TIM barrel protein structure classification, even only has the amino acid sequences information.
Pechenick, Eitan Adam; Danforth, Christopher M.; Dodds, Peter Sheridan
2015-01-01
It is tempting to treat frequency trends from the Google Books data sets as indicators of the “true” popularity of various words and phrases. Doing so allows us to draw quantitatively strong conclusions about the evolution of cultural perception of a given topic, such as time or gender. However, the Google Books corpus suffers from a number of limitations which make it an obscure mask of cultural popularity. A primary issue is that the corpus is in effect a library, containing one of each book. A single, prolific author is thereby able to noticeably insert new phrases into the Google Books lexicon, whether the author is widely read or not. With this understood, the Google Books corpus remains an important data set to be considered more lexicon-like than text-like. Here, we show that a distinct problematic feature arises from the inclusion of scientific texts, which have become an increasingly substantive portion of the corpus throughout the 1900s. The result is a surge of phrases typical to academic articles but less common in general, such as references to time in the form of citations. We use information theoretic methods to highlight these dynamics by examining and comparing major contributions via a divergence measure of English data sets between decades in the period 1800–2000. We find that only the English Fiction data set from the second version of the corpus is not heavily affected by professional texts. Overall, our findings call into question the vast majority of existing claims drawn from the Google Books corpus, and point to the need to fully characterize the dynamics of the corpus before using these data sets to draw broad conclusions about cultural and linguistic evolution. PMID:26445406
Pechenick, Eitan Adam; Danforth, Christopher M; Dodds, Peter Sheridan
2015-01-01
It is tempting to treat frequency trends from the Google Books data sets as indicators of the "true" popularity of various words and phrases. Doing so allows us to draw quantitatively strong conclusions about the evolution of cultural perception of a given topic, such as time or gender. However, the Google Books corpus suffers from a number of limitations which make it an obscure mask of cultural popularity. A primary issue is that the corpus is in effect a library, containing one of each book. A single, prolific author is thereby able to noticeably insert new phrases into the Google Books lexicon, whether the author is widely read or not. With this understood, the Google Books corpus remains an important data set to be considered more lexicon-like than text-like. Here, we show that a distinct problematic feature arises from the inclusion of scientific texts, which have become an increasingly substantive portion of the corpus throughout the 1900 s. The result is a surge of phrases typical to academic articles but less common in general, such as references to time in the form of citations. We use information theoretic methods to highlight these dynamics by examining and comparing major contributions via a divergence measure of English data sets between decades in the period 1800-2000. We find that only the English Fiction data set from the second version of the corpus is not heavily affected by professional texts. Overall, our findings call into question the vast majority of existing claims drawn from the Google Books corpus, and point to the need to fully characterize the dynamics of the corpus before using these data sets to draw broad conclusions about cultural and linguistic evolution.
Viral genetic variation accounts for a third of variability in HIV-1 set-point viral load in Europe
Wymant, Chris; Cornelissen, Marion; Gall, Astrid; Bakker, Margreet; Bezemer, Daniela; Hall, Matthew; Hillebregt, Mariska; Ong, Swee Hoe; Albert, Jan; Bannert, Norbert; Fellay, Jacques; Fransen, Katrien; Gourlay, Annabelle J.; Grabowski, M. Kate; Gunsenheimer-Bartmeyer, Barbara; Günthard, Huldrych F.; Kivelä, Pia; Kouyos, Roger; Laeyendecker, Oliver; Liitsola, Kirsi; Meyer, Laurence; Porter, Kholoud; Ristola, Matti; van Sighem, Ard; Vanham, Guido; Berkhout, Ben; Kellam, Paul; Reiss, Peter; Fraser, Christophe
2017-01-01
HIV-1 set-point viral load—the approximately stable value of viraemia in the first years of chronic infection—is a strong predictor of clinical outcome and is highly variable across infected individuals. To better understand HIV-1 pathogenesis and the evolution of the viral population, we must quantify the heritability of set-point viral load, which is the fraction of variation in this phenotype attributable to viral genetic variation. However, current estimates of heritability vary widely, from 6% to 59%. Here we used a dataset of 2,028 seroconverters infected between 1985 and 2013 from 5 European countries (Belgium, Switzerland, France, the Netherlands and the United Kingdom) and estimated the heritability of set-point viral load at 31% (CI 15%–43%). Specifically, heritability was measured using models of character evolution describing how viral load evolves on the phylogeny of whole-genome viral sequences. In contrast to previous studies, (i) we measured viral loads using standardized assays on a sample collected in a strict time window of 6 to 24 months after infection, from which the viral genome was also sequenced; (ii) we compared 2 models of character evolution, the classical “Brownian motion” model and another model (“Ornstein–Uhlenbeck”) that includes stabilising selection on viral load; (iii) we controlled for covariates, including age and sex, which may inflate estimates of heritability; and (iv) we developed a goodness of fit test based on the correlation of viral loads in cherries of the phylogenetic tree, showing that both models of character evolution fit the data well. An overall heritability of 31% (CI 15%–43%) is consistent with other studies based on regression of viral load in donor–recipient pairs. Thus, about a third of variation in HIV-1 virulence is attributable to viral genetic variation. PMID:28604782
Viscous anisotropy of textured olivine aggregates: 2. Micromechanical model
NASA Astrophysics Data System (ADS)
Hansen, Lars N.; Conrad, Clinton P.; Boneh, Yuval; Skemer, Philip; Warren, Jessica M.; Kohlstedt, David L.
2016-10-01
The significant viscous anisotropy that results from crystallographic alignment (texture) of olivine grains in deformed upper mantle rocks strongly influences a large variety of geodynamic processes. Our ability to explore the effects of anisotropic viscosity in simulations of these processes requires a mechanical model that can predict the magnitude of anisotropy and its evolution. Unfortunately, existing models of olivine textural evolution and viscous anisotropy are calibrated for relatively small deformations and simple strain paths, making them less general than desired for many large-scale geodynamic scenarios. Here we develop a new set of micromechanical models to describe the mechanical behavior and textural evolution of olivine through a large range of strains and complex strain histories. For the mechanical behavior, we explore two extreme scenarios, one in which each grain experiences the same stress tensor (Sachs model) and one in which each grain undergoes a strain rate as close as possible to the macroscopic strain rate (pseudo-Taylor model). For the textural evolution, we develop a new model in which the director method is used to control the rate of grain rotation and the available slip systems in olivine are used to control the axis of rotation. Only recently has enough laboratory data on the deformation of olivine become available to calibrate these models. We use these new data to conduct inversions for the best parameters to characterize both the mechanical and textural evolution models. These inversions demonstrate that the calibrated pseudo-Taylor model best reproduces the mechanical observations. Additionally, the pseudo-Taylor textural evolution model can reasonably reproduce the observed texture strength, shape, and orientation after large and complex deformations. A quantitative comparison between our calibrated models and previously published models reveals that our new models excel in predicting the magnitude of viscous anisotropy and the details of the textural evolution. In addition, we demonstrate that the mechanical and textural evolution models can be coupled and used to reproduce mechanical evolution during large-strain torsion tests. This set of models therefore provides a new geodynamic tool for incorporating viscous anisotropy into large-scale numerical simulations.
Functional and evolutionary insights from the Ciona notochord transcriptome.
Reeves, Wendy M; Wu, Yuye; Harder, Matthew J; Veeman, Michael T
2017-09-15
The notochord of the ascidian Ciona consists of only 40 cells, and is a longstanding model for studying organogenesis in a small, simple embryo. Here, we perform RNAseq on flow-sorted notochord cells from multiple stages to define a comprehensive Ciona notochord transcriptome. We identify 1364 genes with enriched expression and extensively validate the results by in situ hybridization. These genes are highly enriched for Gene Ontology terms related to the extracellular matrix, cell adhesion and cytoskeleton. Orthologs of 112 of the Ciona notochord genes have known notochord expression in vertebrates, more than twice as many as predicted by chance alone. This set of putative effector genes with notochord expression conserved from tunicates to vertebrates will be invaluable for testing hypotheses about notochord evolution. The full set of Ciona notochord genes provides a foundation for systems-level studies of notochord gene regulation and morphogenesis. We find only modest overlap between this set of notochord-enriched transcripts and the genes upregulated by ectopic expression of the key notochord transcription factor Brachyury, indicating that Brachyury is not a notochord master regulator gene as strictly defined. © 2017. Published by The Company of Biologists Ltd.
Mid-Cenozoic tectonic and paleoenvironmental setting of the central Arctic Ocean
O'Regan, M.; Moran, K.; Backman, J.; Jakobsson, M.; Sangiorgi, F.; Brinkhuis, Henk; Pockalny, Rob; Skelton, Alasdair; Stickley, Catherine E.; Koc, N.; Brumsack, Hans-Juergen; Willard, Debra A.
2008-01-01
Drilling results from the Integrated Ocean Drilling Program's Arctic Coring Expedition (ACEX) to the Lomonosov Ridge (LR) document a 26 million year hiatus that separates freshwater-influenced biosilica-rich deposits of the middle Eocene from fossil-poor glaciomarine silty clays of the early Miocene. Detailed micropaleontological and sedimentological data from sediments surrounding this mid-Cenozoic hiatus describe a shallow water setting for the LR, a finding that conflicts with predrilling seismic predictions and an initial postcruise assessment of its subsidence history that assumed smooth thermally controlled subsidence following rifting. A review of Cenozoic tectonic processes affecting the geodynamic evolution of the central Arctic Ocean highlights a prolonged phase of basin-wide compression that ended in the early Miocene. The coincidence in timing between the end of compression and the start of rapid early Miocene subsidence provides a compelling link between these observations and similarly accounts for the shallow water setting that persisted more than 30 million years after rifting ended. However, for much of the late Paleogene and early Neogene, tectonic reconstructions of the Arctic Ocean describe a landlocked basin, adding additional uncertainty to reconstructions of paleodepth estimates as the magnitude of regional sea level variations remains unknown.
Meslin, Camille; Plakke, Melissa S.; Deutsch, Aaron B.; Small, Brandon S.; Morehouse, Nathan I.; Clark, Nathan L.
2015-01-01
Persistent adaptive challenges are often met with the evolution of novel physiological traits. Although there are specific examples of single genes providing new physiological functions, studies on the origin of complex organ functions are lacking. One such derived set of complex functions is found in the Lepidopteran bursa copulatrix, an organ within the female reproductive tract that digests nutrients from the male ejaculate or spermatophore. Here, we characterized bursa physiology and the evolutionary mechanisms by which it was equipped with digestive and absorptive functionality. By studying the transcriptome of the bursa and eight other tissues, we revealed a suite of highly expressed and secreted gene products providing the bursa with a combination of stomach-like traits for mechanical and enzymatic digestion of the male spermatophore. By subsequently placing these bursa genes in an evolutionary framework, we found that the vast majority of their novel digestive functions were co-opted by borrowing genes that continue to be expressed in nonreproductive tissues. However, a number of bursa-specific genes have also arisen, some of which represent unique gene families restricted to Lepidoptera and may provide novel bursa-specific functions. This pattern of promiscuous gene borrowing and relatively infrequent evolution of tissue-specific duplicates stands in contrast to studies of the evolution of novelty via single gene co-option. Our results suggest that the evolution of complex organ-level phenotypes may often be enabled (and subsequently constrained) by changes in tissue specificity that allow expression of existing genes in novel contexts, such as reproduction. The extent to which the selective pressures encountered in these novel roles require resolution via duplication and sub/neofunctionalization is likely to be determined by the need for specialized reproductive functionality. Thus, complex physiological phenotypes such as that found in the bursa offer important opportunities for understanding the relative role of pleiotropy and specialization in adaptive evolution. PMID:25725432
NASA Astrophysics Data System (ADS)
Melki, Fetheddine; Zouaghi, Taher; Chelbi, Mohamed Ben; Bédir, Mourad; Zargouni, Fouad
2010-09-01
The structural pattern, tectono-sedimentary framework and geodynamic evolution for Mesozoic and Cenozoic deep structures of the Gulf of Tunis (north-eastern Tunisia) are proposed using petroleum well data and a 2-D seismic interpretation. The structural system of the study area is marked by two sets of faults that control the Mesozoic subsidence and inversions during the Paleogene and Neogene times: (i) a NE-SW striking set associated with folds and faults, which have a reverse component; and (ii) a NW-SE striking set active during the Tertiary extension episodes and delineating grabens and subsiding synclines. In order to better characterize the tectono-sedimentary evolution of the Gulf of Tunis structures, seismic data interpretations are compared to stratigraphic and structural data from wells and neighbouring outcrops. The Atlas and external Tell belonged to the southernmost Tethyan margin record a geodynamic evolution including: (i) rifting periods of subsidence and Tethyan oceanic accretions from Triassic until Early Cretaceous: we recognized high subsiding zones (Raja and Carthage domains), less subsiding zones (Gamart domain) and a completely emerged area (Raouad domain); (ii) compressive events during the Cenozoic with relaxation periods of the Oligocene-Aquitanian and Messinian-Early Pliocene. The NW-SE Late Eocene and Tortonian compressive events caused local inversions with sealed and eroded folded structures. During Middle to Late Miocene and Early Pliocene, we have identified depocentre structures corresponding to half-grabens and synclines in the Carthage and Karkouane domains. The north-south contractional events at the end of Early Pliocene and Late Pliocene periods are associated with significant inversion of subsidence and synsedimentary folded structures. Structuring and major tectonic events, recognized in the Gulf of Tunis, are linked to the common geodynamic evolution of the north African and western Mediterranean basins.
Mullon, Charles; Lehmann, Laurent
2017-08-01
Human evolution depends on the co-evolution between genetically determined behaviors and socially transmitted information. Although vertical transmission of cultural information from parent to offspring is common in hominins, its effects on cumulative cultural evolution are not fully understood. Here, we investigate gene-culture co-evolution in a family-structured population by studying the invasion fitness of a mutant allele that influences a deterministic level of cultural information (e.g., amount of knowledge or skill) to which diploid carriers of the mutant are exposed in subsequent generations. We show that the selection gradient on such a mutant, and the concomitant level of cultural information it generates, can be evaluated analytically under the assumption that the cultural dynamic has a single attractor point, thereby making gene-culture co-evolution in family-structured populations with multigenerational effects mathematically tractable. We apply our result to study how genetically determined phenotypes of individual and social learning co-evolve with the level of adaptive information they generate under vertical transmission. We find that vertical transmission increases adaptive information due to kin selection effects, but when information is transmitted as efficiently between family members as between unrelated individuals, this increase is moderate in diploids. By contrast, we show that the way resource allocation into learning trades off with allocation into reproduction (the "learning-reproduction trade-off") significantly influences levels of adaptive information. We also show that vertical transmission prevents evolutionary branching and may therefore play a qualitative role in gene-culture co-evolutionary dynamics. More generally, our analysis of selection suggests that vertical transmission can significantly increase levels of adaptive information under the biologically plausible condition that information transmission between relatives is more efficient than between unrelated individuals. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nigro, Fabrizio; Renda, Pietro; Favara, Rocco
2010-05-01
In the young mountain chains underwent to emersion, the different crustal blocks which compose the belt may be subjected to differentiate tilting during uplift. The tilting process may be revealed both by the stratal pattern of the syn-uplifting deposits or deduced by the function altitude/area ratio. The prevailing of the uplift rate with respect to the tilting rate (and vice versa) result from the shape of this function. So, in young mountains the hypsometric analysis may results a useful tool for decipher how the crustal blocks are underwent to uplift. An integrate analysis based on stratigraphy, structural and morphometric data represents the correctly approach for characterise the landform evolution in regions underwent to active tectonics. In the aim to evaluate the recent tectonic history from topography in regions underwent to active deformations, by deducing the effect of tectonisms on landforms, the definition of the boundary conditions (regarding the crustal deformation) is fundamental for morphometric analysis. In fact, the morphologic style and the morphometric pattern in tectonically active settings are closely related to the dominance of rock masses exceeding for uplift (or failure for subsidence) with respect to the exogenous erosional processes. Collisional geodynamic processes induce crustal growth for faulting and folding. In this earth's sectors, the uplift of crustal blocks is a very common effect of compressional deformation. It reflects for example fold amplification and thrusting, but it is a very common process also in settings dominated by crustal thinning, where the viscoelastic properties of the lithosphere induce tilting and localised uplift of normal-faulted crustal blocks. The uplift rate is rarely uniform for wide areas within the orogens on the passive margins, but it changes from adjacent crustal blocks as the effect of space-variation of kinematics conditions or density. It also may change within a single block, as the effect of tilting, which induces synchronously mass elevation and subsidence. Not considering sea-level fluctuations and the climatic-lithologic parameters, the 2D distribution of uplift rate influences the landmass evolution in time. The tendency of rock masses to equilibrium resulting from concurrent tectonic building and denudation forces defines the geomorphic cycle. This evolution is checked by different stages, each characterised by a well-recognisable morphometric patterns. The dominance of uplift or erosion and concurrent block tilting induce characteristic a landform evolution tendency, which may be evaluated with the morphometric analysis. A lot of morphometric functions describe the equilibrium stage of landmasses, providing useful tools for deciphering how tectonics acts in typology (e.g. inducing uplift uniformly or with crustal block tilting) and resulting effects on landforms (magnitude of uplift rate vs tilting rate). We aim to contribute in the description of landforms evolution in Sicily (Central Mediterranean) under different morphoevolutive settings, where may prevails uplift, tilting or erosion, each characterised by different morphometric trends. The present-day elevation of Pliocene to upper Pleistocene deposits suggests that Northen Sicily underwent neotectonic uplift. The recent non-uniform uplift of Northern Sicily coastal sector is suggested by the different elevation of the Pliocene-Upper Pleistocene marine deposits. The maximum uplift rate characterise the NE Sicily and the minimum the NW Sicily. The overall westwards decreasing trend of uplift is in places broken in the sectors where are located a lot of morphostructures. Localised uplift rates higher than the adjacent coastal plains are suggested by the present-day elevation of the beachshore deposits of Tyrrhenian age. Northern Sicily may be divided into a lot of crustal blocks, underwent to different tilting and uplift rates. Accentuate tilting and uplift results from transtensional active faulting of the already emplaced chain units, as also suggested by seismicity and the focal plane solutions of recent strong earthquakes.
Origin and Evolution of Water Oxidation before the Last Common Ancestor of the Cyanobacteria.
Cardona, Tanai; Murray, James W; Rutherford, A William
2015-05-01
Photosystem II, the water oxidizing enzyme, altered the course of evolution by filling the atmosphere with oxygen. Here, we reconstruct the origin and evolution of water oxidation at an unprecedented level of detail by studying the phylogeny of all D1 subunits, the main protein coordinating the water oxidizing cluster (Mn4CaO5) of Photosystem II. We show that D1 exists in several forms making well-defined clades, some of which could have evolved before the origin of water oxidation and presenting many atypical characteristics. The most ancient form is found in the genome of Gloeobacter kilaueensis JS-1 and this has a C-terminus with a higher sequence identity to D2 than to any other D1. Two other groups of early evolving D1 correspond to those expressed under prolonged far-red illumination and in darkness. These atypical D1 forms are characterized by a dramatically different Mn4CaO5 binding site and a Photosystem II containing such a site may assemble an unconventional metal cluster. The first D1 forms with a full set of ligands to the Mn4CaO5 cluster are grouped with D1 proteins expressed only under low oxygen concentrations and the latest evolving form is the dominant type of D1 found in all cyanobacteria and plastids. In addition, we show that the plastid ancestor had a D1 more similar to those in early branching Synechococcus. We suggest each one of these forms of D1 originated from transitional forms at different stages toward the innovation and optimization of water oxidation before the last common ancestor of all known cyanobacteria. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
A stochastic model for tumor geometry evolution during radiation therapy in cervical cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yifang; Lee, Chi-Guhn; Chan, Timothy C. Y., E-mail: tcychan@mie.utoronto.ca
2014-02-15
Purpose: To develop mathematical models to predict the evolution of tumor geometry in cervical cancer undergoing radiation therapy. Methods: The authors develop two mathematical models to estimate tumor geometry change: a Markov model and an isomorphic shrinkage model. The Markov model describes tumor evolution by investigating the change in state (either tumor or nontumor) of voxels on the tumor surface. It assumes that the evolution follows a Markov process. Transition probabilities are obtained using maximum likelihood estimation and depend on the states of neighboring voxels. The isomorphic shrinkage model describes tumor shrinkage or growth in terms of layers of voxelsmore » on the tumor surface, instead of modeling individual voxels. The two proposed models were applied to data from 29 cervical cancer patients treated at Princess Margaret Cancer Centre and then compared to a constant volume approach. Model performance was measured using sensitivity and specificity. Results: The Markov model outperformed both the isomorphic shrinkage and constant volume models in terms of the trade-off between sensitivity (target coverage) and specificity (normal tissue sparing). Generally, the Markov model achieved a few percentage points in improvement in either sensitivity or specificity compared to the other models. The isomorphic shrinkage model was comparable to the Markov approach under certain parameter settings. Convex tumor shapes were easier to predict. Conclusions: By modeling tumor geometry change at the voxel level using a probabilistic model, improvements in target coverage and normal tissue sparing are possible. Our Markov model is flexible and has tunable parameters to adjust model performance to meet a range of criteria. Such a model may support the development of an adaptive paradigm for radiation therapy of cervical cancer.« less
Sangpakdee, Wiwat; Tanomtong, Alongkoad; Chaveerach, Arunrat; Pinthong, Krit; Trifonov, Vladimir; Loth, Kristina; Hensel, Christiana; Liehr, Thomas; Weise, Anja; Fan, Xiaobo
2018-04-01
The question how evolution and speciation work is one of the major interests of biology. Especially, genetic including karyotypic evolution within primates is of special interest due to the close phylogenetic position of Macaca and Homo sapiens and the role as in vivo models in medical research, neuroscience, behavior, pharmacology, reproduction and Acquired Immune Deficiency Syndrome (AIDS). Karyotypes of five macaque species from South East Asia and of one macaque species as well as mandrill from Africa were analyzed by high resolution molecular cytogenetics to obtain new insights into karyotypic evolution of old world monkeys. Molecular cytogenetics applying human probes and probe sets was applied in chromosomes of Macaca arctoides, M. fascicularis, M. nemestrina, M. assamensis, M. sylvanus, M. mulatta and Mandrillus sphinx. Established two- to multicolor-fluorescence in situ hybridization (FISH) approaches were applied. Locus-specific probes, whole and partial chromosome paint probes were hybridized. Especially the FISH-banding approach multicolor-banding (MCB) as well as probes oriented towards heterochromatin turned out to be highly efficient for interspecies comparison. Karyotypes of all seven studied species could be characterized in detail. Surprisingly, no evolutionary conserved differences were found among macaques, including mandrill. Between the seven here studied and phenotypically so different species we expected several via FISH detectable karyoypic and submicroscopic changes and were surprised to find none of them on a molecular cytogenetic level. Spatial separation, may explain the speciation and different evolution for some of them, like African M. sylvanus, Mandrillus sphinx and the South Asian macaques. However, for the partially or completely overlapping habitats of the five studied South Asian macaques the species separation process can also not be deduced to karyotypic separation.
North-south asymmetry of Ca II K regions determined from OAUC spectroheliograms: 1996 - 2006
NASA Astrophysics Data System (ADS)
Dorotovič, I.; Rybák, J.; Garcia, A.; Journoud, P.
2010-12-01
The solar activity (SA) evolution levels are not identical in the northern and southern Sun's hemispheres. This fact was repeatedly confirmed in the past by the analysis of a number of long-term observations of various SA indices in individual atmospheric layers of the Sun and in different bandwidths. The north-south asymmetry (NSA) is thus a significant tool in investigation of long-term SA variations. This paper presents a software tool to determine the NSA of the area of bright chromospheric plages, as measured in the Ca II K3 spectroheliograms registered since 1926 in the Observatário Astronómico da Universidade de Coimbra, Portugal, as well as evolution of sizes of these areas in the period 1996 - 2006. The algorithm of the program is limited to determining the total area of bright features in the Ca II K3 emission line based on the definition of the threshold value for relative brightness and, therefore, it does not resolve brightness of individual chromospheric features. A comparison and cross-correlation of this NSA with the NSAs found for the sunspots and coronal green line brightness have been added. In the near future we intend to 1) determine the NSA of the area of bright chromospheric Ca II K3 regions back to the year 1926, and 2) compare the evolution of the surface area of these regions in the period 1970-2006 with the evolution of the magnetic index obtained at Mt. Wilson Observatory, which would also help in setting up a proxy reconstruction of the magnetic index back to 1926. Since 2007 new spectroheliograms have been recorded using a CCD camera and, therefore, in the future we will also address this issue for the period 2007 - present.