Sample records for level set model

  1. A new region-edge based level set model with applications to image segmentation

    NASA Astrophysics Data System (ADS)

    Zhi, Xuhao; Shen, Hong-Bin

    2018-04-01

    Level set model has advantages in handling complex shapes and topological changes, and is widely used in image processing tasks. The image segmentation oriented level set models can be grouped into region-based models and edge-based models, both of which have merits and drawbacks. Region-based level set model relies on fitting to color intensity of separated regions, but is not sensitive to edge information. Edge-based level set model evolves by fitting to local gradient information, but can get easily affected by noise. We propose a region-edge based level set model, which considers saliency information into energy function and fuses color intensity with local gradient information. The evolution of the proposed model is implemented by a hierarchical two-stage protocol, and the experimental results show flexible initialization, robust evolution and precise segmentation.

  2. A level set approach for shock-induced α-γ phase transition of RDX

    NASA Astrophysics Data System (ADS)

    Josyula, Kartik; Rahul; De, Suvranu

    2018-02-01

    We present a thermodynamically consistent level sets approach based on regularization energy functional which can be directly incorporated into a Galerkin finite element framework to model interface motion. The regularization energy leads to a diffusive form of flux that is embedded within the level sets evolution equation which maintains the signed distance property of the level set function. The scheme is shown to compare well with the velocity extension method in capturing the interface position. The proposed level sets approach is employed to study the α-γphase transformation in RDX single crystal shocked along the (100) plane. Example problems in one and three dimensions are presented. We observe smooth evolution of the phase interface along the shock direction in both models. There is no diffusion of the interface during the zero level set evolution in the three dimensional model. The level sets approach is shown to capture the characteristics of the shock-induced α-γ phase transformation such as stress relaxation behind the phase interface and the finite time required for the phase transformation to complete. The regularization energy based level sets approach is efficient, robust, and easy to implement.

  3. Modeling Primary Breakup: A Three-Dimensional Eulerian Level Set/Vortex Sheet Method for Two-Phase Interface Dynamics

    NASA Technical Reports Server (NTRS)

    Herrmann, M.

    2003-01-01

    This paper is divided into four parts. First, the level set/vortex sheet method for three-dimensional two-phase interface dynamics is presented. Second, the LSS model for the primary breakup of turbulent liquid jets and sheets is outlined and all terms requiring subgrid modeling are identified. Then, preliminary three-dimensional results of the level set/vortex sheet method are presented and discussed. Finally, conclusions are drawn and an outlook to future work is given.

  4. Using the level set method in slab detachment modeling

    NASA Astrophysics Data System (ADS)

    Hillebrand, B.; Geenen, T.; Spakman, W.; van den Berg, A. P.

    2012-04-01

    Slab detachment plays an important role in the dynamics of several regions in the world such as the Mediterranean-Carpathian region and the Anatolia-Aegean Region. It is therefore important to gain better insights in the various aspects of this process by further modeling of this phenomenon. In this study we model slab detachment using a visco-plastic composite rheology consisting of diffusion, dislocation and Peierls creep. In order to gain more control over this visco-plastic composite rheology, as well as some deterministic advantages, the models presented in this study make use of the level set method (Osher and Sethian J. Comp. Phys., 1988). The level set method is a computational method to track interfaces. It works by creating a signed distance function which is zero at the interface of interest which is then advected by the flow field. This does not only allow one to track the interface but also to determine on which side of the interface a certain point is located since the level set function is determined in the entire domain and not just on the interface. The level set method is used in a wide variety of scientific fields including geophysics. In this study we use the level set method to keep track of the interface between the slab and the mantle. This allows us to determine more precisely the moment and depth of slab detachment. It also allows us to clearly distinguish the mantle from the slab and have therefore more control over their different rheologies. We focus on the role of Peierls creep in the slab detachment process and on the use of the level set method in modeling this process.

  5. The Thick Level-Set model for dynamic fragmentation

    DOE PAGES

    Stershic, Andrew J.; Dolbow, John E.; Moës, Nicolas

    2017-01-04

    The Thick Level-Set (TLS) model is implemented to simulate brittle media undergoing dynamic fragmentation. This non-local model is discretized by the finite element method with damage represented as a continuous field over the domain. A level-set function defines the extent and severity of damage, and a length scale is introduced to limit the damage gradient. Numerical studies in one dimension demonstrate that the proposed method reproduces the rate-dependent energy dissipation and fragment length observations from analytical, numerical, and experimental approaches. In conclusion, additional studies emphasize the importance of appropriate bulk constitutive models and sufficient spatial resolution of the length scale.

  6. A Comprehensive Multi-Level Model for Campus-Based Leadership Education

    ERIC Educational Resources Information Center

    Rosch, David; Spencer, Gayle L.; Hoag, Beth L.

    2017-01-01

    Within this application brief, we propose a comprehensive model for mapping the shape and optimizing the effectiveness of leadership education in campus-wide university settings. The four-level model is highlighted by inclusion of a philosophy statement detailing the values and purpose of leadership education on campus, a set of skills and…

  7. Hippocampus segmentation using locally weighted prior based level set

    NASA Astrophysics Data System (ADS)

    Achuthan, Anusha; Rajeswari, Mandava

    2015-12-01

    Segmentation of hippocampus in the brain is one of a major challenge in medical image segmentation due to its' imaging characteristics, with almost similar intensity between another adjacent gray matter structure, such as amygdala. The intensity similarity has causes the hippocampus to have weak or fuzzy boundaries. With this main challenge being demonstrated by hippocampus, a segmentation method that relies on image information alone may not produce accurate segmentation results. Therefore, it is needed an assimilation of prior information such as shape and spatial information into existing segmentation method to produce the expected segmentation. Previous studies has widely integrated prior information into segmentation methods. However, the prior information has been utilized through a global manner integration, and this does not reflect the real scenario during clinical delineation. Therefore, in this paper, a locally integrated prior information into a level set model is presented. This work utilizes a mean shape model to provide automatic initialization for level set evolution, and has been integrated as prior information into the level set model. The local integration of edge based information and prior information has been implemented through an edge weighting map that decides at voxel level which information need to be observed during a level set evolution. The edge weighting map shows which corresponding voxels having sufficient edge information. Experiments shows that the proposed integration of prior information locally into a conventional edge-based level set model, known as geodesic active contour has shown improvement of 9% in averaged Dice coefficient.

  8. A unified tensor level set for image segmentation.

    PubMed

    Wang, Bin; Gao, Xinbo; Tao, Dacheng; Li, Xuelong

    2010-06-01

    This paper presents a new region-based unified tensor level set model for image segmentation. This model introduces a three-order tensor to comprehensively depict features of pixels, e.g., gray value and the local geometrical features, such as orientation and gradient, and then, by defining a weighted distance, we generalized the representative region-based level set method from scalar to tensor. The proposed model has four main advantages compared with the traditional representative method as follows. First, involving the Gaussian filter bank, the model is robust against noise, particularly the salt- and pepper-type noise. Second, considering the local geometrical features, e.g., orientation and gradient, the model pays more attention to boundaries and makes the evolving curve stop more easily at the boundary location. Third, due to the unified tensor pixel representation representing the pixels, the model segments images more accurately and naturally. Fourth, based on a weighted distance definition, the model possesses the capacity to cope with data varying from scalar to vector, then to high-order tensor. We apply the proposed method to synthetic, medical, and natural images, and the result suggests that the proposed method is superior to the available representative region-based level set method.

  9. Atmospheric model development in support of SEASAT. Volume 2: Analysis models

    NASA Technical Reports Server (NTRS)

    Langland, R. A.

    1977-01-01

    As part of the SEASAT program of NASA, two sets of analysis programs were developed for the Jet Propulsion Laboratory. One set of programs produce 63 x 63 horizontal mesh analyses on a polar stereographic grid. The other set produces 187 x 187 third mesh analyses. The parameters analyzed include sea surface temperature, sea level pressure and twelve levels of upper air temperature, height and wind analyses. The analysis output is used to initialize the primitive equation forecast models.

  10. A level set-based topology optimization method for simultaneous design of elastic structure and coupled acoustic cavity using a two-phase material model

    NASA Astrophysics Data System (ADS)

    Noguchi, Yuki; Yamamoto, Takashi; Yamada, Takayuki; Izui, Kazuhiro; Nishiwaki, Shinji

    2017-09-01

    This papers proposes a level set-based topology optimization method for the simultaneous design of acoustic and structural material distributions. In this study, we develop a two-phase material model that is a mixture of an elastic material and acoustic medium, to represent an elastic structure and an acoustic cavity by controlling a volume fraction parameter. In the proposed model, boundary conditions at the two-phase material boundaries are satisfied naturally, avoiding the need to express these boundaries explicitly. We formulate a topology optimization problem to minimize the sound pressure level using this two-phase material model and a level set-based method that obtains topologies free from grayscales. The topological derivative of the objective functional is approximately derived using a variational approach and the adjoint variable method and is utilized to update the level set function via a time evolutionary reaction-diffusion equation. Several numerical examples present optimal acoustic and structural topologies that minimize the sound pressure generated from a vibrating elastic structure.

  11. An Accurate Fire-Spread Algorithm in the Weather Research and Forecasting Model Using the Level-Set Method

    NASA Astrophysics Data System (ADS)

    Muñoz-Esparza, Domingo; Kosović, Branko; Jiménez, Pedro A.; Coen, Janice L.

    2018-04-01

    The level-set method is typically used to track and propagate the fire perimeter in wildland fire models. Herein, a high-order level-set method using fifth-order WENO scheme for the discretization of spatial derivatives and third-order explicit Runge-Kutta temporal integration is implemented within the Weather Research and Forecasting model wildland fire physics package, WRF-Fire. The algorithm includes solution of an additional partial differential equation for level-set reinitialization. The accuracy of the fire-front shape and rate of spread in uncoupled simulations is systematically analyzed. It is demonstrated that the common implementation used by level-set-based wildfire models yields to rate-of-spread errors in the range 10-35% for typical grid sizes (Δ = 12.5-100 m) and considerably underestimates fire area. Moreover, the amplitude of fire-front gradients in the presence of explicitly resolved turbulence features is systematically underestimated. In contrast, the new WRF-Fire algorithm results in rate-of-spread errors that are lower than 1% and that become nearly grid independent. Also, the underestimation of fire area at the sharp transition between the fire front and the lateral flanks is found to be reduced by a factor of ≈7. A hybrid-order level-set method with locally reduced artificial viscosity is proposed, which substantially alleviates the computational cost associated with high-order discretizations while preserving accuracy. Simulations of the Last Chance wildfire demonstrate additional benefits of high-order accurate level-set algorithms when dealing with complex fuel heterogeneities, enabling propagation across narrow fuel gaps and more accurate fire backing over the lee side of no fuel clusters.

  12. Simulation of Heterogeneous Atom Probe Tip Shapes Evolution during Field Evaporation Using a Level Set Method and Different Evaporation Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijie; Li, Dongsheng; Xu, Wei

    2015-04-01

    In atom probe tomography (APT), accurate reconstruction of the spatial positions of field evaporated ions from measured detector patterns depends upon a correct understanding of the dynamic tip shape evolution and evaporation laws of component atoms. Artifacts in APT reconstructions of heterogeneous materials can be attributed to the assumption of homogeneous evaporation of all the elements in the material in addition to the assumption of a steady state hemispherical dynamic tip shape evolution. A level set method based specimen shape evolution model is developed in this study to simulate the evaporation of synthetic layered-structured APT tips. The simulation results ofmore » the shape evolution by the level set model qualitatively agree with the finite element method and the literature data using the finite difference method. The asymmetric evolving shape predicted by the level set model demonstrates the complex evaporation behavior of heterogeneous tip and the interface curvature can potentially lead to the artifacts in the APT reconstruction of such materials. Compared with other APT simulation methods, the new method provides smoother interface representation with the aid of the intrinsic sub-grid accuracy. Two evaporation models (linear and exponential evaporation laws) are implemented in the level set simulations and the effect of evaporation laws on the tip shape evolution is also presented.« less

  13. Numerical Modelling of Three-Fluid Flow Using The Level-set Method

    NASA Astrophysics Data System (ADS)

    Li, Hongying; Lou, Jing; Shang, Zhi

    2014-11-01

    This work presents a numerical model for simulation of three-fluid flow involving two different moving interfaces. These interfaces are captured using the level-set method via two different level-set functions. A combined formulation with only one set of conservation equations for the whole physical domain, consisting of the three different immiscible fluids, is employed. Numerical solution is performed on a fixed mesh using the finite volume method. Surface tension effect is incorporated using the Continuum Surface Force model. Validation of the present model is made against available results for stratified flow and rising bubble in a container with a free surface. Applications of the present model are demonstrated by a variety of three-fluid flow systems including (1) three-fluid stratified flow, (2) two-fluid stratified flow carrying the third fluid in the form of drops and (3) simultaneous rising and settling of two drops in a stationary third fluid. The work is supported by a Thematic and Strategic Research from A*STAR, Singapore (Ref. #: 1021640075).

  14. Muscular dystrophy summer camp: a case study of a non-traditional level I fieldwork using a collaborative supervision model.

    PubMed

    Provident, Ingrid M; Colmer, Maria A

    2013-01-01

    A shortage of traditional medical fieldwork placements has been reported in the United States. Alternative settings are being sought to meet the Accreditation Standards for Level I fieldwork. This study was designed to examine and report the outcomes of an alternative pediatric camp setting, using a group model of supervision to fulfill the requirements for Level I fieldwork. Thirty-seven students from two Pennsylvania OT schools. Two cohorts of students were studied over a two year period using multiple methods of retrospective review and data collection. Students supervised in a group model experienced positive outcomes, including opportunities to deliver client centered care, and understanding the role of caregiving for children with disabilities. The use of a collaborative model of fieldwork education at a camp setting has resulted in a viable approach for the successful attainment of Level I fieldwork objectives for multiple students under a single supervisor.

  15. Rotorcraft Noise Model

    NASA Technical Reports Server (NTRS)

    Lucas, Michael J.; Marcolini, Michael A.

    1997-01-01

    The Rotorcraft Noise Model (RNM) is an aircraft noise impact modeling computer program being developed for NASA-Langley Research Center which calculates sound levels at receiver positions either on a uniform grid or at specific defined locations. The basic computational model calculates a variety of metria. Acoustic properties of the noise source are defined by two sets of sound pressure hemispheres, each hemisphere being centered on a noise source of the aircraft. One set of sound hemispheres provides the broadband data in the form of one-third octave band sound levels. The other set of sound hemispheres provides narrowband data in the form of pure-tone sound pressure levels and phase. Noise contours on the ground are output graphically or in tabular format, and are suitable for inclusion in Environmental Impact Statements or Environmental Assessments.

  16. Robust and fast-converging level set method for side-scan sonar image segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Qingwu; Huo, Guanying

    2017-11-01

    A robust and fast-converging level set method is proposed for side-scan sonar (SSS) image segmentation. First, the noise in each sonar image is removed using the adaptive nonlinear complex diffusion filter. Second, k-means clustering is used to obtain the initial presegmentation image from the denoised image, and then the distance maps of the initial contours are reinitialized to guarantee the accuracy of the numerical calculation used in the level set evolution. Finally, the satisfactory segmentation is achieved using a robust variational level set model, where the evolution control parameters are generated by the presegmentation. The proposed method is successfully applied to both synthetic image with speckle noise and real SSS images. Experimental results show that the proposed method needs much less iteration and therefore is much faster than the fuzzy local information c-means clustering method, the level set method using a gamma observation model, and the enhanced region-scalable fitting method. Moreover, the proposed method can usually obtain more accurate segmentation results compared with other methods.

  17. Neural modeling and functional neuroimaging.

    PubMed

    Horwitz, B; Sporns, O

    1994-01-01

    Two research areas that so far have had little interaction with one another are functional neuroimaging and computational neuroscience. The application of computational models and techniques to the inherently rich data sets generated by "standard" neurophysiological methods has proven useful for interpreting these data sets and for providing predictions and hypotheses for further experiments. We suggest that both theory- and data-driven computational modeling of neuronal systems can help to interpret data generated by functional neuroimaging methods, especially those used with human subjects. In this article, we point out four sets of questions, addressable by computational neuroscientists whose answere would be of value and interest to those who perform functional neuroimaging. The first set consist of determining the neurobiological substrate of the signals measured by functional neuroimaging. The second set concerns developing systems-level models of functional neuroimaging data. The third set of questions involves integrating functional neuroimaging data across modalities, with a particular emphasis on relating electromagnetic with hemodynamic data. The last set asks how one can relate systems-level models to those at the neuronal and neural ensemble levels. We feel that there are ample reasons to link functional neuroimaging and neural modeling, and that combining the results from the two disciplines will result in furthering our understanding of the central nervous system. © 1994 Wiley-Liss, Inc. This Article is a US Goverment work and, as such, is in the public domain in the United State of America. Copyright © 1994 Wiley-Liss, Inc.

  18. The Development of the Speaker Independent ARM Continuous Speech Recognition System

    DTIC Science & Technology

    1992-01-01

    spokeTi airborne reconnaissance reports u-ing a speech recognition system based on phoneme-level hidden Markov models (HMMs). Previous versions of the ARM...will involve automatic selection from multiple model sets, corresponding to different speaker types, and that the most rudimen- tary partition of a...The vocabulary size for the ARM task is 497 words. These words are related to the phoneme-level symbols corresponding to the models in the model set

  19. Supervised variational model with statistical inference and its application in medical image segmentation.

    PubMed

    Li, Changyang; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Yin, Yong; Dagan Feng, David

    2015-01-01

    Automated and general medical image segmentation can be challenging because the foreground and the background may have complicated and overlapping density distributions in medical imaging. Conventional region-based level set algorithms often assume piecewise constant or piecewise smooth for segments, which are implausible for general medical image segmentation. Furthermore, low contrast and noise make identification of the boundaries between foreground and background difficult for edge-based level set algorithms. Thus, to address these problems, we suggest a supervised variational level set segmentation model to harness the statistical region energy functional with a weighted probability approximation. Our approach models the region density distributions by using the mixture-of-mixtures Gaussian model to better approximate real intensity distributions and distinguish statistical intensity differences between foreground and background. The region-based statistical model in our algorithm can intuitively provide better performance on noisy images. We constructed a weighted probability map on graphs to incorporate spatial indications from user input with a contextual constraint based on the minimization of contextual graphs energy functional. We measured the performance of our approach on ten noisy synthetic images and 58 medical datasets with heterogeneous intensities and ill-defined boundaries and compared our technique to the Chan-Vese region-based level set model, the geodesic active contour model with distance regularization, and the random walker model. Our method consistently achieved the highest Dice similarity coefficient when compared to the other methods.

  20. Lung segmentation from HRCT using united geometric active contours

    NASA Astrophysics Data System (ADS)

    Liu, Junwei; Li, Chuanfu; Xiong, Jin; Feng, Huanqing

    2007-12-01

    Accurate lung segmentation from high resolution CT images is a challenging task due to various detail tracheal structures, missing boundary segments and complex lung anatomy. One popular method is based on gray-level threshold, however its results are usually rough. A united geometric active contours model based on level set is proposed for lung segmentation in this paper. Particularly, this method combines local boundary information and region statistical-based model synchronously: 1) Boundary term ensures the integrality of lung tissue.2) Region term makes the level set function evolve with global characteristic and independent on initial settings. A penalizing energy term is introduced into the model, which forces the level set function evolving without re-initialization. The method is found to be much more efficient in lung segmentation than other methods that are only based on boundary or region. Results are shown by 3D lung surface reconstruction, which indicates that the method will play an important role in the design of computer-aided diagnostic (CAD) system.

  1. Left ventricle segmentation via two-layer level sets with circular shape constraint.

    PubMed

    Yang, Cong; Wu, Weiguo; Su, Yuanqi; Zhang, Shaoxiang

    2017-05-01

    This paper proposes a circular shape constraint and a novel two-layer level set method for the segmentation of the left ventricle (LV) from short-axis magnetic resonance images without training any shape models. Since the shape of LV throughout the apex-base axis is close to a ring shape, we propose a circle fitting term in the level set framework to detect the endocardium. The circle fitting term imposes a penalty on the evolving contour from its fitting circle, and thereby handles quite well with issues in LV segmentation, especially the presence of outflow track in basal slices and the intensity overlap between TPM and the myocardium. To extract the whole myocardium, the circle fitting term is incorporated into two-layer level set method. The endocardium and epicardium are respectively represented by two specified level contours of the level set function, which are evolved by an edge-based and a region-based active contour model. The proposed method has been quantitatively validated on the public data set from MICCAI 2009 challenge on the LV segmentation. Experimental results and comparisons with state-of-the-art demonstrate the accuracy and robustness of our method. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. [Research Progress of Multi-Model Medical Image Fusion at Feature Level].

    PubMed

    Zhang, Junjie; Zhou, Tao; Lu, Huiling; Wang, Huiqun

    2016-04-01

    Medical image fusion realizes advantage integration of functional images and anatomical images.This article discusses the research progress of multi-model medical image fusion at feature level.We firstly describe the principle of medical image fusion at feature level.Then we analyze and summarize fuzzy sets,rough sets,D-S evidence theory,artificial neural network,principal component analysis and other fusion methods’ applications in medical image fusion and get summery.Lastly,we in this article indicate present problems and the research direction of multi-model medical images in the future.

  3. A highly efficient 3D level-set grain growth algorithm tailored for ccNUMA architecture

    NASA Astrophysics Data System (ADS)

    Mießen, C.; Velinov, N.; Gottstein, G.; Barrales-Mora, L. A.

    2017-12-01

    A highly efficient simulation model for 2D and 3D grain growth was developed based on the level-set method. The model introduces modern computational concepts to achieve excellent performance on parallel computer architectures. Strong scalability was measured on cache-coherent non-uniform memory access (ccNUMA) architectures. To achieve this, the proposed approach considers the application of local level-set functions at the grain level. Ideal and non-ideal grain growth was simulated in 3D with the objective to study the evolution of statistical representative volume elements in polycrystals. In addition, microstructure evolution in an anisotropic magnetic material affected by an external magnetic field was simulated.

  4. A free energy-based surface tension force model for simulation of multiphase flows by level-set method

    NASA Astrophysics Data System (ADS)

    Yuan, H. Z.; Chen, Z.; Shu, C.; Wang, Y.; Niu, X. D.; Shu, S.

    2017-09-01

    In this paper, a free energy-based surface tension force (FESF) model is presented for accurately resolving the surface tension force in numerical simulation of multiphase flows by the level set method. By using the analytical form of order parameter along the normal direction to the interface in the phase-field method and the free energy principle, FESF model offers an explicit and analytical formulation for the surface tension force. The only variable in this formulation is the normal distance to the interface, which can be substituted by the distance function solved by the level set method. On one hand, as compared to conventional continuum surface force (CSF) model in the level set method, FESF model introduces no regularized delta function, due to which it suffers less from numerical diffusions and performs better in mass conservation. On the other hand, as compared to the phase field surface tension force (PFSF) model, the evaluation of surface tension force in FESF model is based on an analytical approach rather than numerical approximations of spatial derivatives. Therefore, better numerical stability and higher accuracy can be expected. Various numerical examples are tested to validate the robustness of the proposed FESF model. It turns out that FESF model performs better than CSF model and PFSF model in terms of accuracy, stability, convergence speed and mass conservation. It is also shown in numerical tests that FESF model can effectively simulate problems with high density/viscosity ratio, high Reynolds number and severe topological interfacial changes.

  5. Dynamic-thresholding level set: a novel computer-aided volumetry method for liver tumors in hepatic CT images

    NASA Astrophysics Data System (ADS)

    Cai, Wenli; Yoshida, Hiroyuki; Harris, Gordon J.

    2007-03-01

    Measurement of the volume of focal liver tumors, called liver tumor volumetry, is indispensable for assessing the growth of tumors and for monitoring the response of tumors to oncology treatments. Traditional edge models, such as the maximum gradient and zero-crossing methods, often fail to detect the accurate boundary of a fuzzy object such as a liver tumor. As a result, the computerized volumetry based on these edge models tends to differ from manual segmentation results performed by physicians. In this study, we developed a novel computerized volumetry method for fuzzy objects, called dynamic-thresholding level set (DT level set). An optimal threshold value computed from a histogram tends to shift, relative to the theoretical threshold value obtained from a normal distribution model, toward a smaller region in the histogram. We thus designed a mobile shell structure, called a propagating shell, which is a thick region encompassing the level set front. The optimal threshold calculated from the histogram of the shell drives the level set front toward the boundary of a liver tumor. When the volume ratio between the object and the background in the shell approaches one, the optimal threshold value best fits the theoretical threshold value and the shell stops propagating. Application of the DT level set to 26 hepatic CT cases with 63 biopsy-confirmed hepatocellular carcinomas (HCCs) and metastases showed that the computer measured volumes were highly correlated with those of tumors measured manually by physicians. Our preliminary results showed that DT level set was effective and accurate in estimating the volumes of liver tumors detected in hepatic CT images.

  6. Identifying Attributes of CO2 Leakage Zones in Shallow Aquifers Using a Parametric Level Set Method

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.; Islam, A.; Wheeler, M.

    2016-12-01

    Leakage through abandoned wells and geologic faults poses the greatest risk to CO2 storage permanence. For shallow aquifers, secondary CO2 plumes emanating from the leak zones may go undetected for a sustained period of time and has the greatest potential to cause large-scale and long-term environmental impacts. Identification of the attributes of leak zones, including their shape, location, and strength, is required for proper environmental risk assessment. This study applies a parametric level set (PaLS) method to characterize the leakage zone. Level set methods are appealing for tracking topological changes and recovering unknown shapes of objects. However, level set evolution using the conventional level set methods is challenging. In PaLS, the level set function is approximated using a weighted sum of basis functions and the level set evolution problem is replaced by an optimization problem. The efficacy of PaLS is demonstrated through recovering the source zone created by CO2 leakage into a carbonate aquifer. Our results show that PaLS is a robust source identification method that can recover the approximate source locations in the presence of measurement errors, model parameter uncertainty, and inaccurate initial guesses of source flux strengths. The PaLS inversion framework introduced in this work is generic and can be adapted for any reactive transport model by switching the pre- and post-processing routines.

  7. Closed-form estimates of the domain of attraction for nonlinear systems via fuzzy-polynomial models.

    PubMed

    Pitarch, José Luis; Sala, Antonio; Ariño, Carlos Vicente

    2014-04-01

    In this paper, the domain of attraction of the origin of a nonlinear system is estimated in closed form via level sets with polynomial boundaries, iteratively computed. In particular, the domain of attraction is expanded from a previous estimate, such as a classical Lyapunov level set. With the use of fuzzy-polynomial models, the domain of attraction analysis can be carried out via sum of squares optimization and an iterative algorithm. The result is a function that bounds the domain of attraction, free from the usual restriction of being positive and decrescent in all the interior of its level sets.

  8. Training a cell-level classifier for detecting basal-cell carcinoma by combining human visual attention maps with low-level handcrafted features

    PubMed Central

    Corredor, Germán; Whitney, Jon; Arias, Viviana; Madabhushi, Anant; Romero, Eduardo

    2017-01-01

    Abstract. Computational histomorphometric approaches typically use low-level image features for building machine learning classifiers. However, these approaches usually ignore high-level expert knowledge. A computational model (M_im) combines low-, mid-, and high-level image information to predict the likelihood of cancer in whole slide images. Handcrafted low- and mid-level features are computed from area, color, and spatial nuclei distributions. High-level information is implicitly captured from the recorded navigations of pathologists while exploring whole slide images during diagnostic tasks. This model was validated by predicting the presence of cancer in a set of unseen fields of view. The available database was composed of 24 cases of basal-cell carcinoma, from which 17 served to estimate the model parameters and the remaining 7 comprised the evaluation set. A total of 274 fields of view of size 1024×1024  pixels were extracted from the evaluation set. Then 176 patches from this set were used to train a support vector machine classifier to predict the presence of cancer on a patch-by-patch basis while the remaining 98 image patches were used for independent testing, ensuring that the training and test sets do not comprise patches from the same patient. A baseline model (M_ex) estimated the cancer likelihood for each of the image patches. M_ex uses the same visual features as M_im, but its weights are estimated from nuclei manually labeled as cancerous or noncancerous by a pathologist. M_im achieved an accuracy of 74.49% and an F-measure of 80.31%, while M_ex yielded corresponding accuracy and F-measures of 73.47% and 77.97%, respectively. PMID:28382314

  9. a Fast Segmentation Algorithm for C-V Model Based on Exponential Image Sequence Generation

    NASA Astrophysics Data System (ADS)

    Hu, J.; Lu, L.; Xu, J.; Zhang, J.

    2017-09-01

    For the island coastline segmentation, a fast segmentation algorithm for C-V model method based on exponential image sequence generation is proposed in this paper. The exponential multi-scale C-V model with level set inheritance and boundary inheritance is developed. The main research contributions are as follows: 1) the problems of the "holes" and "gaps" are solved when extraction coastline through the small scale shrinkage, low-pass filtering and area sorting of region. 2) the initial value of SDF (Signal Distance Function) and the level set are given by Otsu segmentation based on the difference of reflection SAR on land and sea, which are finely close to the coastline. 3) the computational complexity of continuous transition are successfully reduced between the different scales by the SDF and of level set inheritance. Experiment results show that the method accelerates the acquisition of initial level set formation, shortens the time of the extraction of coastline, at the same time, removes the non-coastline body part and improves the identification precision of the main body coastline, which automates the process of coastline segmentation.

  10. Forecasting model of Corylus, Alnus, and Betula pollen concentration levels using spatiotemporal correlation properties of pollen count.

    PubMed

    Nowosad, Jakub; Stach, Alfred; Kasprzyk, Idalia; Weryszko-Chmielewska, Elżbieta; Piotrowska-Weryszko, Krystyna; Puc, Małgorzata; Grewling, Łukasz; Pędziszewska, Anna; Uruska, Agnieszka; Myszkowska, Dorota; Chłopek, Kazimiera; Majkowska-Wojciechowska, Barbara

    The aim of the study was to create and evaluate models for predicting high levels of daily pollen concentration of Corylus , Alnus , and Betula using a spatiotemporal correlation of pollen count. For each taxon, a high pollen count level was established according to the first allergy symptoms during exposure. The dataset was divided into a training set and a test set, using a stratified random split. For each taxon and city, the model was built using a random forest method. Corylus models performed poorly. However, the study revealed the possibility of predicting with substantial accuracy the occurrence of days with high pollen concentrations of Alnus and Betula using past pollen count data from monitoring sites. These results can be used for building (1) simpler models, which require data only from aerobiological monitoring sites, and (2) combined meteorological and aerobiological models for predicting high levels of pollen concentration.

  11. Sculpting Computational-Level Models.

    PubMed

    Blokpoel, Mark

    2017-06-27

    In this commentary, I advocate for strict relations between Marr's levels of analysis. Under a strict relationship, each level is exactly implemented by the subordinate level. This yields two benefits. First, it brings consistency for multilevel explanations. Second, similar to how a sculptor chisels away superfluous marble, a modeler can chisel a computational-level model by applying constraints. By sculpting the model, one restricts the (potentially infinitely large) set of possible algorithmic- and implementational-level theories. Copyright © 2017 Cognitive Science Society, Inc.

  12. A new level set model for cell image segmentation

    NASA Astrophysics Data System (ADS)

    Ma, Jing-Feng; Hou, Kai; Bao, Shang-Lian; Chen, Chun

    2011-02-01

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing.

  13. Evaluating mallard adaptive management models with time series

    USGS Publications Warehouse

    Conn, P.B.; Kendall, W.L.

    2004-01-01

    Wildlife practitioners concerned with midcontinent mallard (Anas platyrhynchos) management in the United States have instituted a system of adaptive harvest management (AHM) as an objective format for setting harvest regulations. Under the AHM paradigm, predictions from a set of models that reflect key uncertainties about processes underlying population dynamics are used in coordination with optimization software to determine an optimal set of harvest decisions. Managers use comparisons of the predictive abilities of these models to gauge the relative truth of different hypotheses about density-dependent recruitment and survival, with better-predicting models giving more weight to the determination of harvest regulations. We tested the effectiveness of this strategy by examining convergence rates of 'predictor' models when the true model for population dynamics was known a priori. We generated time series for cases when the a priori model was 1 of the predictor models as well as for several cases when the a priori model was not in the model set. We further examined the addition of different levels of uncertainty into the variance structure of predictor models, reflecting different levels of confidence about estimated parameters. We showed that in certain situations, the model-selection process favors a predictor model that incorporates the hypotheses of additive harvest mortality and weakly density-dependent recruitment, even when the model is not used to generate data. Higher levels of predictor model variance led to decreased rates of convergence to the model that generated the data, but model weight trajectories were in general more stable. We suggest that predictive models should incorporate all sources of uncertainty about estimated parameters, that the variance structure should be similar for all predictor models, and that models with different functional forms for population dynamics should be considered for inclusion in predictor model! sets. All of these suggestions should help lower the probability of erroneous learning in mallard ABM and adaptive management in general.

  14. Analysis of precision and accuracy in a simple model of machine learning

    NASA Astrophysics Data System (ADS)

    Lee, Julian

    2017-12-01

    Machine learning is a procedure where a model for the world is constructed from a training set of examples. It is important that the model should capture relevant features of the training set, and at the same time make correct prediction for examples not included in the training set. I consider the polynomial regression, the simplest method of learning, and analyze the accuracy and precision for different levels of the model complexity.

  15. Modeling from Local to Subsystem Level Effects in Analog and Digital Circuits Due to Space Induced Single Event Transients

    NASA Technical Reports Server (NTRS)

    Perez, Reinaldo J.

    2011-01-01

    Single Event Transients in analog and digital electronics from space generated high energetic nuclear particles can disrupt either temporarily and sometimes permanently the functionality and performance of electronics in space vehicles. This work first provides some insights into the modeling of SET in electronic circuits that can be used in SPICE-like simulators. The work is then directed to present methodologies, one of which was developed by this author, for the assessment of SET at different levels of integration in electronics, from the circuit level to the subsystem level.

  16. Lithologic Effects on Landscape Response to Base Level Changes: A Modeling Study in the Context of the Eastern Jura Mountains, Switzerland

    NASA Astrophysics Data System (ADS)

    Yanites, Brian J.; Becker, Jens K.; Madritsch, Herfried; Schnellmann, Michael; Ehlers, Todd A.

    2017-11-01

    Landscape evolution is a product of the forces that drive geomorphic processes (e.g., tectonics and climate) and the resistance to those processes. The underlying lithology and structural setting in many landscapes set the resistance to erosion. This study uses a modified version of the Channel-Hillslope Integrated Landscape Development (CHILD) landscape evolution model to determine the effect of a spatially and temporally changing erodibility in a terrain with a complex base level history. Specifically, our focus is to quantify how the effects of variable lithology influence transient base level signals. We set up a series of numerical landscape evolution models with increasing levels of complexity based on the lithologic variability and base level history of the Jura Mountains of northern Switzerland. The models are consistent with lithology (and therewith erodibility) playing an important role in the transient evolution of the landscape. The results show that the erosion rate history at a location depends on the rock uplift and base level history, the range of erodibilities of the different lithologies, and the history of the surface geology downstream from the analyzed location. Near the model boundary, the history of erosion is dominated by the base level history. The transient wave of incision, however, is quite variable in the different model runs and depends on the geometric structure of lithology used. It is thus important to constrain the spatiotemporal erodibility patterns downstream of any given point of interest to understand the evolution of a landscape subject to variable base level in a quantitative framework.

  17. Scale separation for multi-scale modeling of free-surface and two-phase flows with the conservative sharp interface method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, L.H., E-mail: Luhui.Han@tum.de; Hu, X.Y., E-mail: Xiangyu.Hu@tum.de; Adams, N.A., E-mail: Nikolaus.Adams@tum.de

    In this paper we present a scale separation approach for multi-scale modeling of free-surface and two-phase flows with complex interface evolution. By performing a stimulus-response operation on the level-set function representing the interface, separation of resolvable and non-resolvable interface scales is achieved efficiently. Uniform positive and negative shifts of the level-set function are used to determine non-resolvable interface structures. Non-resolved interface structures are separated from the resolved ones and can be treated by a mixing model or a Lagrangian-particle model in order to preserve mass. Resolved interface structures are treated by the conservative sharp-interface model. Since the proposed scale separationmore » approach does not rely on topological information, unlike in previous work, it can be implemented in a straightforward fashion into a given level set based interface model. A number of two- and three-dimensional numerical tests demonstrate that the proposed method is able to cope with complex interface variations accurately and significantly increases robustness against underresolved interface structures.« less

  18. Reconstruction of incomplete cell paths through a 3D-2D level set segmentation

    NASA Astrophysics Data System (ADS)

    Hariri, Maia; Wan, Justin W. L.

    2012-02-01

    Segmentation of fluorescent cell images has been a popular technique for tracking live cells. One challenge of segmenting cells from fluorescence microscopy is that cells in fluorescent images frequently disappear. When the images are stacked together to form a 3D image volume, the disappearance of the cells leads to broken cell paths. In this paper, we present a segmentation method that can reconstruct incomplete cell paths. The key idea of this model is to perform 2D segmentation in a 3D framework. The 2D segmentation captures the cells that appear in the image slices while the 3D segmentation connects the broken cell paths. The formulation is similar to the Chan-Vese level set segmentation which detects edges by comparing the intensity value at each voxel with the mean intensity values inside and outside of the level set surface. Our model, however, performs the comparison on each 2D slice with the means calculated by the 2D projected contour. The resulting effect is to segment the cells on each image slice. Unlike segmentation on each image frame individually, these 2D contours together form the 3D level set function. By enforcing minimum mean curvature on the level set surface, our segmentation model is able to extend the cell contours right before (and after) the cell disappears (and reappears) into the gaps, eventually connecting the broken paths. We will present segmentation results of C2C12 cells in fluorescent images to illustrate the effectiveness of our model qualitatively and quantitatively by different numerical examples.

  19. Automatic segmentation of right ventricle on ultrasound images using sparse matrix transform and level set

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Cong, Zhibin; Halig, Luma V.; Fei, Baowei

    2013-03-01

    An automatic framework is proposed to segment right ventricle on ultrasound images. This method can automatically segment both epicardial and endocardial boundaries from a continuous echocardiography series by combining sparse matrix transform (SMT), a training model, and a localized region based level set. First, the sparse matrix transform extracts main motion regions of myocardium as eigenimages by analyzing statistical information of these images. Second, a training model of right ventricle is registered to the extracted eigenimages in order to automatically detect the main location of the right ventricle and the corresponding transform relationship between the training model and the SMT-extracted results in the series. Third, the training model is then adjusted as an adapted initialization for the segmentation of each image in the series. Finally, based on the adapted initializations, a localized region based level set algorithm is applied to segment both epicardial and endocardial boundaries of the right ventricle from the whole series. Experimental results from real subject data validated the performance of the proposed framework in segmenting right ventricle from echocardiography. The mean Dice scores for both epicardial and endocardial boundaries are 89.1%+/-2.3% and 83.6+/-7.3%, respectively. The automatic segmentation method based on sparse matrix transform and level set can provide a useful tool for quantitative cardiac imaging.

  20. Evaluation of average daily gain prediction by level one of the 1996 National Research Council beef model and development of net energy adjusters.

    PubMed

    Block, H C; Klopfenstein, T J; Erickson, G E

    2006-04-01

    Two data sets were developed to evaluate and refine feed energy predictions with the beef National Research Council (NRC, 1996) model level 1. The first data set included pen means of group-fed cattle from 31 growing trials (201 observations) and 17 finishing trials (154 observations) representing over 7,700 animals fed outside in dirt lots. The second data set consisted of 15 studies with individually fed cattle (916 observations) fed in a barn. In each data set, actual ADG was compared with ADG predicted with the NRC model level 1, assuming thermoneutral environmental conditions. Next, the observed ADG (kg), TDN intake (kg/d), and TDN concentration (kg/kg of DM) were used to develop equations to adjust the level 1 predicted diet NEm and NEg (diet NE adjusters) to be applied to more accurately predict ADG. In both data sets, the NRC (1996) model level 1 inaccurately predicted ADG (P < 0.001 for slope = 1; intercept = 0 when observed ADG was regressed on predicted ADG). The following nonlinear relationships to adjust NE based on observed ADG, TDN intake, and TDN concentration were all significant (P < 0.001): NE adjuster = 0.7011 x 10(-0.8562 x ADG) + 0.8042, R2 = 0.325, s(y.x) = 0.136 kg; NE adjuster = 4.795 10(-0.3689 x TDN intake) + 0.8233, R2 x = 0.714, s(y.x) = 0.157 kg; and NE adjuster = 357 x 10(-5.449 x TDN concentration) + 0.8138, R2 = 0.754, s(y.x) = 0.127 kg. An NE adjuster < 1 indicates overprediction of ADG. The average NE adjustment required for the pen-fed finishing trials was 0.820, whereas the (P < 0.001) adjustment of 0.906 for individually fed cattle indicates that the pen-fed environment increased NE requirements. The use of these equations should improve ADG prediction by the NRC (1996) model level 1, although the equations reflect limitations of the data from which they were developed and are appropriate only over the range of the developmental data set. There is a need for independent evaluation of the ability of the equations to improve ADG prediction by the NRC (1996) model level 1.

  1. Understanding a Basic Biological Process: Expert and Novice Models of Science.

    ERIC Educational Resources Information Center

    Kindfield, A. C. H.

    1994-01-01

    Reports on the meiosis models utilized by five individuals at each of three levels of expertise in genetics as each reasoned about this process in an individual interview setting. Results revealed a set of biologically correct features common to all individuals' models as well as a variety of model flaws (i.e., meiosis misunderstandings) which are…

  2. 3D level set methods for evolving fronts on tetrahedral meshes with adaptive mesh refinement

    DOE PAGES

    Morgan, Nathaniel Ray; Waltz, Jacob I.

    2017-03-02

    The level set method is commonly used to model dynamically evolving fronts and interfaces. In this work, we present new methods for evolving fronts with a specified velocity field or in the surface normal direction on 3D unstructured tetrahedral meshes with adaptive mesh refinement (AMR). The level set field is located at the nodes of the tetrahedral cells and is evolved using new upwind discretizations of Hamilton–Jacobi equations combined with a Runge–Kutta method for temporal integration. The level set field is periodically reinitialized to a signed distance function using an iterative approach with a new upwind gradient. We discuss themore » details of these level set and reinitialization methods. Results from a range of numerical test problems are presented.« less

  3. Evaluation of Model Specification, Variable Selection, and Adjustment Methods in Relation to Propensity Scores and Prognostic Scores in Multilevel Data

    ERIC Educational Resources Information Center

    Yu, Bing; Hong, Guanglei

    2012-01-01

    This study uses simulation examples representing three types of treatment assignment mechanisms in data generation (the random intercept and slopes setting, the random intercept setting, and a third setting with a cluster-level treatment and an individual-level outcome) in order to determine optimal procedures for reducing bias and improving…

  4. Modelling wildland fire propagation by tracking random fronts

    NASA Astrophysics Data System (ADS)

    Pagnini, G.; Mentrelli, A.

    2013-11-01

    Wildland fire propagation is studied in literature by two alternative approaches, namely the reaction-diffusion equation and the level-set method. These two approaches are considered alternative each other because the solution of the reaction-diffusion equation is generally a continuous smooth function that has an exponential decay and an infinite support, while the level-set method, which is a front tracking technique, generates a sharp function with a finite support. However, these two approaches can indeed be considered complementary and reconciled. Turbulent hot-air transport and fire spotting are phenomena with a random character that are extremely important in wildland fire propagation. As a consequence the fire front gets a random character, too. Hence a tracking method for random fronts is needed. In particular, the level-set contourn is here randomized accordingly to the probability density function of the interface particle displacement. Actually, when the level-set method is developed for tracking a front interface with a random motion, the resulting averaged process emerges to be governed by an evolution equation of the reaction-diffusion type. In this reconciled approach, the rate of spread of the fire keeps the same key and characterizing role proper to the level-set approach. The resulting model emerges to be suitable to simulate effects due to turbulent convection as fire flank and backing fire, the faster fire spread because of the actions by hot air pre-heating and by ember landing, and also the fire overcoming a firebreak zone that is a case not resolved by models based on the level-set method. Moreover, from the proposed formulation it follows a correction for the rate of spread formula due to the mean jump-length of firebrands in the downwind direction for the leeward sector of the fireline contour.

  5. Output levels of commercially available portable compact disc players and the potential risk to hearing.

    PubMed

    Fligor, Brian J; Cox, L Clarke

    2004-12-01

    To measure the sound levels generated by the headphones of commercially available portable compact disc players and provide hearing healthcare providers with safety guidelines based on a theoretical noise dose model. Using a Knowles Electronics Manikin for Acoustical Research and a personal computer, output levels across volume control settings were recorded from headphones driven by a standard signal (white noise) and compared with output levels from music samples of eight different genres. Many commercially available models from different manufacturers were investigated. Several different styles of headphones (insert, supra-aural, vertical, and circumaural) were used to determine if style of headphone influenced output level. Free-field equivalent sound pressure levels measured at maximum volume control setting ranged from 91 dBA to 121 dBA. Output levels varied across manufacturers and style of headphone, although generally the smaller the headphone, the higher the sound level for a given volume control setting. Specifically, in one manufacturer, insert earphones increased output level 7-9 dB, relative to the output from stock headphones included in the purchase of the CD player. In a few headphone-CD player combinations, peak sound pressure levels exceeded 130 dB SPL. Based on measured sound pressure levels across systems and the noise dose model recommended by National Institute for Occupational Safety and Health for protecting the occupational worker, a maximum permissible noise dose would typically be reached within 1 hr of listening with the volume control set to 70% of maximum gain using supra-aural headphones. Using headphones that resulted in boosting the output level (e.g., insert earphones used in this study) would significantly decrease the maximum safe volume control setting; this effect was unpredictable from one manufacturer to another. In the interest of providing a straightforward recommendation that should protect the hearing of the majority of consumers, reasonable guidelines would include a recommendation to limit headphone use to 1 hr or less per day if using supra-aural style headphones at a gain control setting of 60% of maximum.

  6. Wavelet energy-guided level set-based active contour: a segmentation method to segment highly similar regions.

    PubMed

    Achuthan, Anusha; Rajeswari, Mandava; Ramachandram, Dhanesh; Aziz, Mohd Ezane; Shuaib, Ibrahim Lutfi

    2010-07-01

    This paper introduces an approach to perform segmentation of regions in computed tomography (CT) images that exhibit intra-region intensity variations and at the same time have similar intensity distributions with surrounding/adjacent regions. In this work, we adapt a feature computed from wavelet transform called wavelet energy to represent the region information. The wavelet energy is embedded into a level set model to formulate the segmentation model called wavelet energy-guided level set-based active contour (WELSAC). The WELSAC model is evaluated using several synthetic and CT images focusing on tumour cases, which contain regions demonstrating the characteristics of intra-region intensity variations and having high similarity in intensity distributions with the adjacent regions. The obtained results show that the proposed WELSAC model is able to segment regions of interest in close correspondence with the manual delineation provided by the medical experts and to provide a solution for tumour detection. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Numerical Simulation of Dynamic Contact Angles and Contact Lines in Multiphase Flows using Level Set Method

    NASA Astrophysics Data System (ADS)

    Pendota, Premchand

    Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the past few decades, many mathematical models were developed for predicting the contact angles of the inter-face with the wall boundary under various flow conditions. These models are used to incorporate the physics of DCA and contact line motion in numerical simulations using various interface capturing/tracking techniques. In the current thesis, a simple approach to incorporate the static and dynamic contact angle boundary conditions using the level set method is developed and implemented in multiphase CFD codes, LIT (Level set Interface Tracking) (Herrmann (2008)) and NGA (flow solver) (Desjardins et al (2008)). Various DCA models and associated boundary conditions are reviewed. In addition, numerical aspects such as the occurrence of a stress singularity at the contact lines and grid convergence of macroscopic interface shape are dealt with in the context of the level set approach.

  8. Application of physiologically based pharmacokinetic modeling in setting acute exposure guideline levels for methylene chloride.

    PubMed

    Bos, Peter Martinus Jozef; Zeilmaker, Marco Jacob; van Eijkeren, Jan Cornelis Henri

    2006-06-01

    Acute exposure guideline levels (AEGLs) are derived to protect the human population from adverse health effects in case of single exposure due to an accidental release of chemicals into the atmosphere. AEGLs are set at three different levels of increasing toxicity for exposure durations ranging from 10 min to 8 h. In the AEGL setting for methylene chloride, specific additional topics had to be addressed. This included a change of relevant toxicity endpoint within the 10-min to 8-h exposure time range from central nervous system depression caused by the parent compound to formation of carboxyhemoglobin (COHb) via biotransformation to carbon monoxide. Additionally, the biotransformation of methylene chloride includes both a saturable step as well as genetic polymorphism of the glutathione transferase involved. Physiologically based pharmacokinetic modeling was considered to be the appropriate tool to address all these topics in an adequate way. Two available PBPK models were combined and extended with additional algorithms for the estimation of the maximum COHb levels. The model was validated and verified with data obtained from volunteer studies. It was concluded that all the mentioned topics could be adequately accounted for by the PBPK model. The AEGL values as calculated with the model were substantiated by experimental data with volunteers and are concluded to be practically applicable.

  9. Aerostructural Level Set Topology Optimization for a Common Research Model Wing

    NASA Technical Reports Server (NTRS)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia

    2014-01-01

    The purpose of this work is to use level set topology optimization to improve the design of a representative wing box structure for the NASA common research model. The objective is to minimize the total compliance of the structure under aerodynamic and body force loading, where the aerodynamic loading is coupled to the structural deformation. A taxi bump case was also considered, where only body force loads were applied. The trim condition that aerodynamic lift must balance the total weight of the aircraft is enforced by allowing the root angle of attack to change. The level set optimization method is implemented on an unstructured three-dimensional grid, so that the method can optimize a wing box with arbitrary geometry. Fast matching and upwind schemes are developed for an unstructured grid, which make the level set method robust and efficient. The adjoint method is used to obtain the coupled shape sensitivities required to perform aerostructural optimization of the wing box structure.

  10. Segmentation Using Multispectral Adaptive Contours

    DTIC Science & Technology

    2004-02-29

    Geometry, University of Toronto Press, 1959. 13. R . Malladi , J. Sethian, “Image Processing via Level Set Curvature Flow,” National Academy of Science, vol...92, pp. 7046, 1995. 14. R . Malladi , J. Sethian, C. Vemuri, "Shape Modeling with Front Propagation: a Level Set Approach," IEEE Transactions on...boundary-based active contour models are reviewed in this report; geometric active contours proposed by Caselles et al. [2] and by Malladi and Sethian [13

  11. PR-Set7 is degraded in a conditional Cul4A transgenic mouse model of lung cancer

    DOE PAGES

    Wang, Yang; Xu, Zhidong; Mao, Jian -Hua; ...

    2015-06-01

    Background and objective. Maintenance of genomic integrity is essential to ensure normal organismal development and to prevent diseases such as cancer. PR-Set7 (also known as Set8) is a cell cycle regulated enzyme that catalyses monomethylation of histone 4 at Lys20 (H4K20me1) to promote chromosome condensation and prevent DNA damage. Recent studies show that CRL4CDT2-mediated ubiquitylation of PR-Set7 leads to its degradation during S phase and after DNA damage. This might occur to ensure appropriate changes in chromosome structure during the cell cycle or to preserve genome integrity after DNA damage. Methods. We developed a new model of lung tumor developmentmore » in mice harboring a conditionally expressed allele of Cul4A. We have therefore used a mouse model to demonstrate for the first time that Cul4A is oncogenic in vivo. With this model, staining of PR-Set7 in the preneoplastic and tumor lesions in AdenoCre-induced mouse lungs was performed. Meanwhile we identified higher protein level changes of γ-tubulin and pericentrin by IHC. Results. The level of PR-Set7 down-regulated in the preneoplastic and adenocarcinomous lesions following over-expression of Cul4A. We also identified higher levels of the proteins pericentrin and γ-tubulin in Cul4A mouse lungs induced by AdenoCre. Conclusion. PR-Set7 is a direct target of Cul4A for degradation and involved in the formation of lung tumors in the conditional Cul4A transgenic mouse model.« less

  12. PR-Set7 is degraded in a conditional Cul4A transgenic mouse model of lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yang; Xu, Zhidong; Mao, Jian -Hua

    Background and objective. Maintenance of genomic integrity is essential to ensure normal organismal development and to prevent diseases such as cancer. PR-Set7 (also known as Set8) is a cell cycle regulated enzyme that catalyses monomethylation of histone 4 at Lys20 (H4K20me1) to promote chromosome condensation and prevent DNA damage. Recent studies show that CRL4CDT2-mediated ubiquitylation of PR-Set7 leads to its degradation during S phase and after DNA damage. This might occur to ensure appropriate changes in chromosome structure during the cell cycle or to preserve genome integrity after DNA damage. Methods. We developed a new model of lung tumor developmentmore » in mice harboring a conditionally expressed allele of Cul4A. We have therefore used a mouse model to demonstrate for the first time that Cul4A is oncogenic in vivo. With this model, staining of PR-Set7 in the preneoplastic and tumor lesions in AdenoCre-induced mouse lungs was performed. Meanwhile we identified higher protein level changes of γ-tubulin and pericentrin by IHC. Results. The level of PR-Set7 down-regulated in the preneoplastic and adenocarcinomous lesions following over-expression of Cul4A. We also identified higher levels of the proteins pericentrin and γ-tubulin in Cul4A mouse lungs induced by AdenoCre. Conclusion. PR-Set7 is a direct target of Cul4A for degradation and involved in the formation of lung tumors in the conditional Cul4A transgenic mouse model.« less

  13. Level-set techniques for facies identification in reservoir modeling

    NASA Astrophysics Data System (ADS)

    Iglesias, Marco A.; McLaughlin, Dennis

    2011-03-01

    In this paper we investigate the application of level-set techniques for facies identification in reservoir models. The identification of facies is a geometrical inverse ill-posed problem that we formulate in terms of shape optimization. The goal is to find a region (a geologic facies) that minimizes the misfit between predicted and measured data from an oil-water reservoir. In order to address the shape optimization problem, we present a novel application of the level-set iterative framework developed by Burger in (2002 Interfaces Free Bound. 5 301-29 2004 Inverse Problems 20 259-82) for inverse obstacle problems. The optimization is constrained by (the reservoir model) a nonlinear large-scale system of PDEs that describes the reservoir dynamics. We reformulate this reservoir model in a weak (integral) form whose shape derivative can be formally computed from standard results of shape calculus. At each iteration of the scheme, the current estimate of the shape derivative is utilized to define a velocity in the level-set equation. The proper selection of this velocity ensures that the new shape decreases the cost functional. We present results of facies identification where the velocity is computed with the gradient-based (GB) approach of Burger (2002) and the Levenberg-Marquardt (LM) technique of Burger (2004). While an adjoint formulation allows the straightforward application of the GB approach, the LM technique requires the computation of the large-scale Karush-Kuhn-Tucker system that arises at each iteration of the scheme. We efficiently solve this system by means of the representer method. We present some synthetic experiments to show and compare the capabilities and limitations of the proposed implementations of level-set techniques for the identification of geologic facies.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Nathaniel Ray; Waltz, Jacob I.

    The level set method is commonly used to model dynamically evolving fronts and interfaces. In this work, we present new methods for evolving fronts with a specified velocity field or in the surface normal direction on 3D unstructured tetrahedral meshes with adaptive mesh refinement (AMR). The level set field is located at the nodes of the tetrahedral cells and is evolved using new upwind discretizations of Hamilton–Jacobi equations combined with a Runge–Kutta method for temporal integration. The level set field is periodically reinitialized to a signed distance function using an iterative approach with a new upwind gradient. We discuss themore » details of these level set and reinitialization methods. Results from a range of numerical test problems are presented.« less

  15. Automated extraction of decision rules for leptin dynamics--a rough sets approach.

    PubMed

    Brtka, Vladimir; Stokić, Edith; Srdić, Biljana

    2008-08-01

    A significant area in the field of medical informatics is concerned with the learning of medical models from low-level data. The goals of inducing models from data are twofold: analysis of the structure of the models so as to gain new insight into the unknown phenomena, and development of classifiers or outcome predictors for unseen cases. In this paper, we will employ approach based on the relation of indiscernibility and rough sets theory to study certain questions concerning the design of model based on if-then rules, from low-level data including 36 parameters, one of them leptin. To generate easy to read, interpret, and inspect model, we have used ROSETTA software system. The main goal of this work is to get new insight into phenomena of leptin levels while interplaying with other risk factors in obesity.

  16. Understanding a basic biological process: Expert and novice models of meiosis

    NASA Astrophysics Data System (ADS)

    Kindfield, Ann C. H.

    Central to secondary and college-level biology instruction is the development of student understanding of a number of subcellular processes. Yet some of the most crucial are consistently cited as the most difficult components of biology to learn. Among these is meiosis. In this article I report on the meiosis models utilized by five individuals at each of three levels of expertise in genetics as each reasoned about this process in an individual interview setting. Detailed characterization of individual meiosis models and comparison among models revealed a set of biologically correct features common to all individuals' models as well as a variety of model flaws (i.e., meiosis misunderstandings) which are categorized according to type and level of expertise. These results are suggestive of both sources of various misunderstandings and factors that might contribute to the construction of a sound understanding of meiosis. Each of these is addressed in relation to their respective implications for instruction.

  17. Addressing HIV in the School Setting: Application of a School Change Model

    ERIC Educational Resources Information Center

    Walsh, Audra St. John; Chenneville, Tiffany

    2013-01-01

    This paper describes best practices for responding to youth with human immunodeficiency virus (HIV) in the school setting through the application of a school change model designed by the World Health Organization. This model applies a whole school approach and includes four levels that span the continuum from universal prevention to direct…

  18. Mid-Holocene hydrologic model of the Shingobee watershed, Minnesota

    USGS Publications Warehouse

    Filby, S.K.; Locke, Sharon M.; Person, M.A.; Winter, T.C.; Rosenberry, D.O.; Nieber, J.L.; Gutowski, W.J.; Ito, E.

    2002-01-01

    A hydrologifc model of the Shingobee Watershed in north-central Minnesota was developed to reconstruct mid-Holocene paleo-lake levels for Williams Lake, a surface-water body located in the southern portion of the watershed. Hydrologic parameters for the model were first estimated in a calibration exercise using a 9-yr historical record (1990-1998) of climatic and hydrologic stresses. The model reproduced observed temporal and spatial trends in surface/groundwater levels across the watershed. Mid-Holocene aquifer and lake levels were then reconstructed using two paleoclimatic data sets: CCM1 atmospheric general circulation model output and pollen-transfer functions using sediment core data from Williams Lake. Calculated paleo-lake levels based on pollen-derived paleoclimatic reconstructions indicated a 3.5-m drop in simulated lake levels and were in good agreement with the position of mid-Holocene beach sands observed in a Williams Lake sediment core transect. However, calculated paleolake levels based on CCM1 climate forcing produced only a 0.05-m drop in lake levels. We found that decreases in winter precipitation rather than temperature increases had the largest effect on simulated mid-Holocene lake levels. The study illustrates how watershed models can be used to critically evaluate paleoclimatic reconstructions by integrating geologic, climatic, limnologic, and hydrogeologic data sets. ?? 2002 University of Washington.

  19. Using meta-differential evolution to enhance a calculation of a continuous blood glucose level.

    PubMed

    Koutny, Tomas

    2016-09-01

    We developed a new model of glucose dynamics. The model calculates blood glucose level as a function of transcapillary glucose transport. In previous studies, we validated the model with animal experiments. We used analytical method to determine model parameters. In this study, we validate the model with subjects with type 1 diabetes. In addition, we combine the analytic method with meta-differential evolution. To validate the model with human patients, we obtained a data set of type 1 diabetes study that was coordinated by Jaeb Center for Health Research. We calculated a continuous blood glucose level from continuously measured interstitial fluid glucose level. We used 6 different scenarios to ensure robust validation of the calculation. Over 96% of calculated blood glucose levels fit A+B zones of the Clarke Error Grid. No data set required any correction of model parameters during the time course of measuring. We successfully verified the possibility of calculating a continuous blood glucose level of subjects with type 1 diabetes. This study signals a successful transition of our research from an animal experiment to a human patient. Researchers can test our model with their data on-line at https://diabetes.zcu.cz. Copyright © 2016 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. A variational approach to multi-phase motion of gas, liquid and solid based on the level set method

    NASA Astrophysics Data System (ADS)

    Yokoi, Kensuke

    2009-07-01

    We propose a simple and robust numerical algorithm to deal with multi-phase motion of gas, liquid and solid based on the level set method [S. Osher, J.A. Sethian, Front propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation, J. Comput. Phys. 79 (1988) 12; M. Sussman, P. Smereka, S. Osher, A level set approach for capturing solution to incompressible two-phase flow, J. Comput. Phys. 114 (1994) 146; J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press, 1999; S. Osher, R. Fedkiw, Level Set Methods and Dynamics Implicit Surface, Applied Mathematical Sciences, vol. 153, Springer, 2003]. In Eulerian framework, to simulate interaction between a moving solid object and an interfacial flow, we need to define at least two functions (level set functions) to distinguish three materials. In such simulations, in general two functions overlap and/or disagree due to numerical errors such as numerical diffusion. In this paper, we resolved the problem using the idea of the active contour model [M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, International Journal of Computer Vision 1 (1988) 321; V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours, International Journal of Computer Vision 22 (1997) 61; G. Sapiro, Geometric Partial Differential Equations and Image Analysis, Cambridge University Press, 2001; R. Kimmel, Numerical Geometry of Images: Theory, Algorithms, and Applications, Springer-Verlag, 2003] introduced in the field of image processing.

  1. Computational Analysis of AMPK-Mediated Neuroprotection Suggests Acute Excitotoxic Bioenergetics and Glucose Dynamics Are Regulated by a Minimal Set of Critical Reactions.

    PubMed

    Connolly, Niamh M C; D'Orsi, Beatrice; Monsefi, Naser; Huber, Heinrich J; Prehn, Jochen H M

    2016-01-01

    Loss of ionic homeostasis during excitotoxic stress depletes ATP levels and activates the AMP-activated protein kinase (AMPK), re-establishing energy production by increased expression of glucose transporters on the plasma membrane. Here, we develop a computational model to test whether this AMPK-mediated glucose import can rapidly restore ATP levels following a transient excitotoxic insult. We demonstrate that a highly compact model, comprising a minimal set of critical reactions, can closely resemble the rapid dynamics and cell-to-cell heterogeneity of ATP levels and AMPK activity, as confirmed by single-cell fluorescence microscopy in rat primary cerebellar neurons exposed to glutamate excitotoxicity. The model further correctly predicted an excitotoxicity-induced elevation of intracellular glucose, and well resembled the delayed recovery and cell-to-cell heterogeneity of experimentally measured glucose dynamics. The model also predicted necrotic bioenergetic collapse and altered calcium dynamics following more severe excitotoxic insults. In conclusion, our data suggest that a minimal set of critical reactions may determine the acute bioenergetic response to transient excitotoxicity and that an AMPK-mediated increase in intracellular glucose may be sufficient to rapidly recover ATP levels following an excitotoxic insult.

  2. Computational Analysis of AMPK-Mediated Neuroprotection Suggests Acute Excitotoxic Bioenergetics and Glucose Dynamics Are Regulated by a Minimal Set of Critical Reactions

    PubMed Central

    Connolly, Niamh M. C.; D’Orsi, Beatrice; Monsefi, Naser; Huber, Heinrich J.; Prehn, Jochen H. M.

    2016-01-01

    Loss of ionic homeostasis during excitotoxic stress depletes ATP levels and activates the AMP-activated protein kinase (AMPK), re-establishing energy production by increased expression of glucose transporters on the plasma membrane. Here, we develop a computational model to test whether this AMPK-mediated glucose import can rapidly restore ATP levels following a transient excitotoxic insult. We demonstrate that a highly compact model, comprising a minimal set of critical reactions, can closely resemble the rapid dynamics and cell-to-cell heterogeneity of ATP levels and AMPK activity, as confirmed by single-cell fluorescence microscopy in rat primary cerebellar neurons exposed to glutamate excitotoxicity. The model further correctly predicted an excitotoxicity-induced elevation of intracellular glucose, and well resembled the delayed recovery and cell-to-cell heterogeneity of experimentally measured glucose dynamics. The model also predicted necrotic bioenergetic collapse and altered calcium dynamics following more severe excitotoxic insults. In conclusion, our data suggest that a minimal set of critical reactions may determine the acute bioenergetic response to transient excitotoxicity and that an AMPK-mediated increase in intracellular glucose may be sufficient to rapidly recover ATP levels following an excitotoxic insult. PMID:26840769

  3. The use of an integrated variable fuzzy sets in water resources management

    NASA Astrophysics Data System (ADS)

    Qiu, Qingtai; Liu, Jia; Li, Chuanzhe; Yu, Xinzhe; Wang, Yang

    2018-06-01

    Based on the evaluation of the present situation of water resources and the development of water conservancy projects and social economy, optimal allocation of regional water resources presents an increasing need in the water resources management. Meanwhile it is also the most effective way to promote the harmonic relationship between human and water. In view of the own limitations of the traditional evaluations of which always choose a single index model using in optimal allocation of regional water resources, on the basis of the theory of variable fuzzy sets (VFS) and system dynamics (SD), an integrated variable fuzzy sets model (IVFS) is proposed to address dynamically complex problems in regional water resources management in this paper. The model is applied to evaluate the level of the optimal allocation of regional water resources of Zoucheng in China. Results show that the level of allocation schemes of water resources ranging from 2.5 to 3.5, generally showing a trend of lower level. To achieve optimal regional management of water resources, this model conveys a certain degree of accessing water resources management, which prominently improve the authentic assessment of water resources management by using the eigenvector of level H.

  4. A comprehensive dwelling unit choice model accommodating psychological constructs within a search strategy for consideration set formation.

    DOT National Transportation Integrated Search

    2015-12-01

    This study adopts a dwelling unit level of analysis and considers a probabilistic choice set generation approach for residential choice modeling. In doing so, we accommodate the fact that housing choices involve both characteristics of the dwelling u...

  5. A level-set method for two-phase flows with moving contact line and insoluble surfactant

    NASA Astrophysics Data System (ADS)

    Xu, Jian-Jun; Ren, Weiqing

    2014-04-01

    A level-set method for two-phase flows with moving contact line and insoluble surfactant is presented. The mathematical model consists of the Navier-Stokes equation for the flow field, a convection-diffusion equation for the surfactant concentration, together with the Navier boundary condition and a condition for the dynamic contact angle derived by Ren et al. (2010) [37]. The numerical method is based on the level-set continuum surface force method for two-phase flows with surfactant developed by Xu et al. (2012) [54] with some cautious treatment for the boundary conditions. The numerical method consists of three components: a flow solver for the velocity field, a solver for the surfactant concentration, and a solver for the level-set function. In the flow solver, the surface force is dealt with using the continuum surface force model. The unbalanced Young stress at the moving contact line is incorporated into the Navier boundary condition. A convergence study of the numerical method and a parametric study are presented. The influence of surfactant on the dynamics of the moving contact line is illustrated using examples. The capability of the level-set method to handle complex geometries is demonstrated by simulating a pendant drop detaching from a wall under gravity.

  6. Logistic random effects regression models: a comparison of statistical packages for binary and ordinal outcomes.

    PubMed

    Li, Baoyue; Lingsma, Hester F; Steyerberg, Ewout W; Lesaffre, Emmanuel

    2011-05-23

    Logistic random effects models are a popular tool to analyze multilevel also called hierarchical data with a binary or ordinal outcome. Here, we aim to compare different statistical software implementations of these models. We used individual patient data from 8509 patients in 231 centers with moderate and severe Traumatic Brain Injury (TBI) enrolled in eight Randomized Controlled Trials (RCTs) and three observational studies. We fitted logistic random effects regression models with the 5-point Glasgow Outcome Scale (GOS) as outcome, both dichotomized as well as ordinal, with center and/or trial as random effects, and as covariates age, motor score, pupil reactivity or trial. We then compared the implementations of frequentist and Bayesian methods to estimate the fixed and random effects. Frequentist approaches included R (lme4), Stata (GLLAMM), SAS (GLIMMIX and NLMIXED), MLwiN ([R]IGLS) and MIXOR, Bayesian approaches included WinBUGS, MLwiN (MCMC), R package MCMCglmm and SAS experimental procedure MCMC.Three data sets (the full data set and two sub-datasets) were analysed using basically two logistic random effects models with either one random effect for the center or two random effects for center and trial. For the ordinal outcome in the full data set also a proportional odds model with a random center effect was fitted. The packages gave similar parameter estimates for both the fixed and random effects and for the binary (and ordinal) models for the main study and when based on a relatively large number of level-1 (patient level) data compared to the number of level-2 (hospital level) data. However, when based on relatively sparse data set, i.e. when the numbers of level-1 and level-2 data units were about the same, the frequentist and Bayesian approaches showed somewhat different results. The software implementations differ considerably in flexibility, computation time, and usability. There are also differences in the availability of additional tools for model evaluation, such as diagnostic plots. The experimental SAS (version 9.2) procedure MCMC appeared to be inefficient. On relatively large data sets, the different software implementations of logistic random effects regression models produced similar results. Thus, for a large data set there seems to be no explicit preference (of course if there is no preference from a philosophical point of view) for either a frequentist or Bayesian approach (if based on vague priors). The choice for a particular implementation may largely depend on the desired flexibility, and the usability of the package. For small data sets the random effects variances are difficult to estimate. In the frequentist approaches the MLE of this variance was often estimated zero with a standard error that is either zero or could not be determined, while for Bayesian methods the estimates could depend on the chosen "non-informative" prior of the variance parameter. The starting value for the variance parameter may be also critical for the convergence of the Markov chain.

  7. Normal Theory Two-Stage ML Estimator When Data Are Missing at the Item Level

    PubMed Central

    Savalei, Victoria; Rhemtulla, Mijke

    2017-01-01

    In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately handle missing data at the item level. Item-level multiple imputation (MI), however, can handle such missing data straightforwardly. In this article, we develop an analytic approach for dealing with item-level missing data—that is, one that obtains a unique set of parameter estimates directly from the incomplete data set and does not require imputations. The proposed approach is a variant of the two-stage maximum likelihood (TSML) methodology, and it is the analytic equivalent of item-level MI. We compare the new TSML approach to three existing alternatives for handling item-level missing data: scale-level full information maximum likelihood, available-case maximum likelihood, and item-level MI. We find that the TSML approach is the best analytic approach, and its performance is similar to item-level MI. We recommend its implementation in popular software and its further study. PMID:29276371

  8. Normal Theory Two-Stage ML Estimator When Data Are Missing at the Item Level.

    PubMed

    Savalei, Victoria; Rhemtulla, Mijke

    2017-08-01

    In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately handle missing data at the item level. Item-level multiple imputation (MI), however, can handle such missing data straightforwardly. In this article, we develop an analytic approach for dealing with item-level missing data-that is, one that obtains a unique set of parameter estimates directly from the incomplete data set and does not require imputations. The proposed approach is a variant of the two-stage maximum likelihood (TSML) methodology, and it is the analytic equivalent of item-level MI. We compare the new TSML approach to three existing alternatives for handling item-level missing data: scale-level full information maximum likelihood, available-case maximum likelihood, and item-level MI. We find that the TSML approach is the best analytic approach, and its performance is similar to item-level MI. We recommend its implementation in popular software and its further study.

  9. Setting analyst: A practical harvest planning technique

    Treesearch

    Olivier R.M. Halleux; W. Dale Greene

    2001-01-01

    Setting Analyst is an ArcView extension that facilitates practical harvest planning for ground-based systems. By modeling the travel patterns of ground-based machines, it compares different harvesting settings based on projected average skidding distance, logging costs, and site disturbance levels. Setting Analyst uses information commonly available to consulting...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stershic, Andrew J.; Dolbow, John E.; Moës, Nicolas

    The Thick Level-Set (TLS) model is implemented to simulate brittle media undergoing dynamic fragmentation. This non-local model is discretized by the finite element method with damage represented as a continuous field over the domain. A level-set function defines the extent and severity of damage, and a length scale is introduced to limit the damage gradient. Numerical studies in one dimension demonstrate that the proposed method reproduces the rate-dependent energy dissipation and fragment length observations from analytical, numerical, and experimental approaches. In conclusion, additional studies emphasize the importance of appropriate bulk constitutive models and sufficient spatial resolution of the length scale.

  11. Decomposition of Fuzzy Soft Sets with Finite Value Spaces

    PubMed Central

    Jun, Young Bae

    2014-01-01

    The notion of fuzzy soft sets is a hybrid soft computing model that integrates both gradualness and parameterization methods in harmony to deal with uncertainty. The decomposition of fuzzy soft sets is of great importance in both theory and practical applications with regard to decision making under uncertainty. This study aims to explore decomposition of fuzzy soft sets with finite value spaces. Scalar uni-product and int-product operations of fuzzy soft sets are introduced and some related properties are investigated. Using t-level soft sets, we define level equivalent relations and show that the quotient structure of the unit interval induced by level equivalent relations is isomorphic to the lattice consisting of all t-level soft sets of a given fuzzy soft set. We also introduce the concepts of crucial threshold values and complete threshold sets. Finally, some decomposition theorems for fuzzy soft sets with finite value spaces are established, illustrated by an example concerning the classification and rating of multimedia cell phones. The obtained results extend some classical decomposition theorems of fuzzy sets, since every fuzzy set can be viewed as a fuzzy soft set with a single parameter. PMID:24558342

  12. Decomposition of fuzzy soft sets with finite value spaces.

    PubMed

    Feng, Feng; Fujita, Hamido; Jun, Young Bae; Khan, Madad

    2014-01-01

    The notion of fuzzy soft sets is a hybrid soft computing model that integrates both gradualness and parameterization methods in harmony to deal with uncertainty. The decomposition of fuzzy soft sets is of great importance in both theory and practical applications with regard to decision making under uncertainty. This study aims to explore decomposition of fuzzy soft sets with finite value spaces. Scalar uni-product and int-product operations of fuzzy soft sets are introduced and some related properties are investigated. Using t-level soft sets, we define level equivalent relations and show that the quotient structure of the unit interval induced by level equivalent relations is isomorphic to the lattice consisting of all t-level soft sets of a given fuzzy soft set. We also introduce the concepts of crucial threshold values and complete threshold sets. Finally, some decomposition theorems for fuzzy soft sets with finite value spaces are established, illustrated by an example concerning the classification and rating of multimedia cell phones. The obtained results extend some classical decomposition theorems of fuzzy sets, since every fuzzy set can be viewed as a fuzzy soft set with a single parameter.

  13. Comparison of SVM, RF and ELM on an Electronic Nose for the Intelligent Evaluation of Paraffin Samples.

    PubMed

    Men, Hong; Fu, Songlin; Yang, Jialin; Cheng, Meiqi; Shi, Yan; Liu, Jingjing

    2018-01-18

    Paraffin odor intensity is an important quality indicator when a paraffin inspection is performed. Currently, paraffin odor level assessment is mainly dependent on an artificial sensory evaluation. In this paper, we developed a paraffin odor analysis system to classify and grade four kinds of paraffin samples. The original feature set was optimized using Principal Component Analysis (PCA) and Partial Least Squares (PLS). Support Vector Machine (SVM), Random Forest (RF), and Extreme Learning Machine (ELM) were applied to three different feature data sets for classification and level assessment of paraffin. For classification, the model based on SVM, with an accuracy rate of 100%, was superior to that based on RF, with an accuracy rate of 98.33-100%, and ELM, with an accuracy rate of 98.01-100%. For level assessment, the R² related to the training set was above 0.97 and the R² related to the test set was above 0.87. Through comprehensive comparison, the generalization of the model based on ELM was superior to those based on SVM and RF. The scoring errors for the three models were 0.0016-0.3494, lower than the error of 0.5-1.0 measured by industry standard experts, meaning these methods have a higher prediction accuracy for scoring paraffin level.

  14. Automatic Rooftop Extraction in Stereo Imagery Using Distance and Building Shape Regularized Level Set Evolution

    NASA Astrophysics Data System (ADS)

    Tian, J.; Krauß, T.; d'Angelo, P.

    2017-05-01

    Automatic rooftop extraction is one of the most challenging problems in remote sensing image analysis. Classical 2D image processing techniques are expensive due to the high amount of features required to locate buildings. This problem can be avoided when 3D information is available. In this paper, we show how to fuse the spectral and height information of stereo imagery to achieve an efficient and robust rooftop extraction. In the first step, the digital terrain model (DTM) and in turn the normalized digital surface model (nDSM) is generated by using a newly step-edge approach. In the second step, the initial building locations and rooftop boundaries are derived by removing the low-level pixels and high-level pixels with higher probability to be trees and shadows. This boundary is then served as the initial level set function, which is further refined to fit the best possible boundaries through distance regularized level-set curve evolution. During the fitting procedure, the edge-based active contour model is adopted and implemented by using the edges indicators extracted from panchromatic image. The performance of the proposed approach is tested by using the WorldView-2 satellite data captured over Munich.

  15. Answer Sets in a Fuzzy Equilibrium Logic

    NASA Astrophysics Data System (ADS)

    Schockaert, Steven; Janssen, Jeroen; Vermeir, Dirk; de Cock, Martine

    Since its introduction, answer set programming has been generalized in many directions, to cater to the needs of real-world applications. As one of the most general “classical” approaches, answer sets of arbitrary propositional theories can be defined as models in the equilibrium logic of Pearce. Fuzzy answer set programming, on the other hand, extends answer set programming with the capability of modeling continuous systems. In this paper, we combine the expressiveness of both approaches, and define answer sets of arbitrary fuzzy propositional theories as models in a fuzzification of equilibrium logic. We show that the resulting notion of answer set is compatible with existing definitions, when the syntactic restrictions of the corresponding approaches are met. We furthermore locate the complexity of the main reasoning tasks at the second level of the polynomial hierarchy. Finally, as an illustration of its modeling power, we show how fuzzy equilibrium logic can be used to find strong Nash equilibria.

  16. Level set methods for detonation shock dynamics using high-order finite elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrev, V. A.; Grogan, F. C.; Kolev, T. V.

    Level set methods are a popular approach to modeling evolving interfaces. We present a level set ad- vection solver in two and three dimensions using the discontinuous Galerkin method with high-order nite elements. During evolution, the level set function is reinitialized to a signed distance function to maintain ac- curacy. Our approach leads to stable front propagation and convergence on high-order, curved, unstructured meshes. The ability of the solver to implicitly track moving fronts lends itself to a number of applications; in particular, we highlight applications to high-explosive (HE) burn and detonation shock dynamics (DSD). We provide results for two-more » and three-dimensional benchmark problems as well as applications to DSD.« less

  17. A Poisson approach to the validation of failure time surrogate endpoints in individual patient data meta-analyses.

    PubMed

    Rotolo, Federico; Paoletti, Xavier; Burzykowski, Tomasz; Buyse, Marc; Michiels, Stefan

    2017-01-01

    Surrogate endpoints are often used in clinical trials instead of well-established hard endpoints for practical convenience. The meta-analytic approach relies on two measures of surrogacy: one at the individual level and one at the trial level. In the survival data setting, a two-step model based on copulas is commonly used. We present a new approach which employs a bivariate survival model with an individual random effect shared between the two endpoints and correlated treatment-by-trial interactions. We fit this model using auxiliary mixed Poisson models. We study via simulations the operating characteristics of this mixed Poisson approach as compared to the two-step copula approach. We illustrate the application of the methods on two individual patient data meta-analyses in gastric cancer, in the advanced setting (4069 patients from 20 randomized trials) and in the adjuvant setting (3288 patients from 14 randomized trials).

  18. Etch Profile Simulation Using Level Set Methods

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    Etching and deposition of materials are critical steps in semiconductor processing for device manufacturing. Both etching and deposition may have isotropic and anisotropic components, due to directional sputtering and redeposition of materials, for example. Previous attempts at modeling profile evolution have used so-called "string theory" to simulate the moving solid-gas interface between the semiconductor and the plasma. One complication of this method is that extensive de-looping schemes are required at the profile corners. We will present a 2D profile evolution simulation using level set theory to model the surface. (1) By embedding the location of the interface in a field variable, the need for de-looping schemes is eliminated and profile corners are more accurately modeled. This level set profile evolution model will calculate both isotropic and anisotropic etch and deposition rates of a substrate in low pressure (10s mTorr) plasmas, considering the incident ion energy angular distribution functions and neutral fluxes. We will present etching profiles of Si substrates in Ar/Cl2 discharges for various incident ion energies and trench geometries.

  19. Segmentation of prostate from ultrasound images using level sets on active band and intensity variation across edges.

    PubMed

    Li, Xu; Li, Chunming; Fedorov, Andriy; Kapur, Tina; Yang, Xiaoping

    2016-06-01

    In this paper, the authors propose a novel efficient method to segment ultrasound images of the prostate with weak boundaries. Segmentation of the prostate from ultrasound images with weak boundaries widely exists in clinical applications. One of the most typical examples is the diagnosis and treatment of prostate cancer. Accurate segmentation of the prostate boundaries from ultrasound images plays an important role in many prostate-related applications such as the accurate placement of the biopsy needles, the assignment of the appropriate therapy in cancer treatment, and the measurement of the prostate volume. Ultrasound images of the prostate are usually corrupted with intensity inhomogeneities, weak boundaries, and unwanted edges, which make the segmentation of the prostate an inherently difficult task. Regarding to these difficulties, the authors introduce an active band term and an edge descriptor term in the modified level set energy functional. The active band term is to deal with intensity inhomogeneities and the edge descriptor term is to capture the weak boundaries or to rule out unwanted boundaries. The level set function of the proposed model is updated in a band region around the zero level set which the authors call it an active band. The active band restricts the authors' method to utilize the local image information in a banded region around the prostate contour. Compared to traditional level set methods, the average intensities inside∖outside the zero level set are only computed in this banded region. Thus, only pixels in the active band have influence on the evolution of the level set. For weak boundaries, they are hard to be distinguished by human eyes, but in local patches in the band region around prostate boundaries, they are easier to be detected. The authors incorporate an edge descriptor to calculate the total intensity variation in a local patch paralleled to the normal direction of the zero level set, which can detect weak boundaries and avoid unwanted edges in the ultrasound images. The efficiency of the proposed model is demonstrated by experiments on real 3D volume images and 2D ultrasound images and comparisons with other approaches. Validation results on real 3D TRUS prostate images show that the authors' model can obtain a Dice similarity coefficient (DSC) of 94.03% ± 1.50% and a sensitivity of 93.16% ± 2.30%. Experiments on 100 typical 2D ultrasound images show that the authors' method can obtain a sensitivity of 94.87% ± 1.85% and a DSC of 95.82% ± 2.23%. A reproducibility experiment is done to evaluate the robustness of the proposed model. As far as the authors know, prostate segmentation from ultrasound images with weak boundaries and unwanted edges is a difficult task. A novel method using level sets with active band and the intensity variation across edges is proposed in this paper. Extensive experimental results demonstrate that the proposed method is more efficient and accurate.

  20. A study on the application of topic models to motif finding algorithms.

    PubMed

    Basha Gutierrez, Josep; Nakai, Kenta

    2016-12-22

    Topic models are statistical algorithms which try to discover the structure of a set of documents according to the abstract topics contained in them. Here we try to apply this approach to the discovery of the structure of the transcription factor binding sites (TFBS) contained in a set of biological sequences, which is a fundamental problem in molecular biology research for the understanding of transcriptional regulation. Here we present two methods that make use of topic models for motif finding. First, we developed an algorithm in which first a set of biological sequences are treated as text documents, and the k-mers contained in them as words, to then build a correlated topic model (CTM) and iteratively reduce its perplexity. We also used the perplexity measurement of CTMs to improve our previous algorithm based on a genetic algorithm and several statistical coefficients. The algorithms were tested with 56 data sets from four different species and compared to 14 other methods by the use of several coefficients both at nucleotide and site level. The results of our first approach showed a performance comparable to the other methods studied, especially at site level and in sensitivity scores, in which it scored better than any of the 14 existing tools. In the case of our previous algorithm, the new approach with the addition of the perplexity measurement clearly outperformed all of the other methods in sensitivity, both at nucleotide and site level, and in overall performance at site level. The statistics obtained show that the performance of a motif finding method based on the use of a CTM is satisfying enough to conclude that the application of topic models is a valid method for developing motif finding algorithms. Moreover, the addition of topic models to a previously developed method dramatically increased its performance, suggesting that this combined algorithm can be a useful tool to successfully predict motifs in different kinds of sets of DNA sequences.

  1. Ensuring congruency in multiscale modeling: towards linking agent based and continuum biomechanical models of arterial adaptation.

    PubMed

    Hayenga, Heather N; Thorne, Bryan C; Peirce, Shayn M; Humphrey, Jay D

    2011-11-01

    There is a need to develop multiscale models of vascular adaptations to understand tissue-level manifestations of cellular level mechanisms. Continuum-based biomechanical models are well suited for relating blood pressures and flows to stress-mediated changes in geometry and properties, but less so for describing underlying mechanobiological processes. Discrete stochastic agent-based models are well suited for representing biological processes at a cellular level, but not for describing tissue-level mechanical changes. We present here a conceptually new approach to facilitate the coupling of continuum and agent-based models. Because of ubiquitous limitations in both the tissue- and cell-level data from which one derives constitutive relations for continuum models and rule-sets for agent-based models, we suggest that model verification should enforce congruency across scales. That is, multiscale model parameters initially determined from data sets representing different scales should be refined, when possible, to ensure that common outputs are consistent. Potential advantages of this approach are illustrated by comparing simulated aortic responses to a sustained increase in blood pressure predicted by continuum and agent-based models both before and after instituting a genetic algorithm to refine 16 objectively bounded model parameters. We show that congruency-based parameter refinement not only yielded increased consistency across scales, it also yielded predictions that are closer to in vivo observations.

  2. Dissipative N-point-vortex Models in the Plane

    NASA Astrophysics Data System (ADS)

    Shashikanth, Banavara N.

    2010-02-01

    A method is presented for constructing point vortex models in the plane that dissipate the Hamiltonian function at any prescribed rate and yet conserve the level sets of the invariants of the Hamiltonian model arising from the SE (2) symmetries. The method is purely geometric in that it uses the level sets of the Hamiltonian and the invariants to construct the dissipative field and is based on elementary classical geometry in ℝ3. Extension to higher-dimensional spaces, such as the point vortex phase space, is done using exterior algebra. The method is in fact general enough to apply to any smooth finite-dimensional system with conserved quantities, and, for certain special cases, the dissipative vector field constructed can be associated with an appropriately defined double Nambu-Poisson bracket. The most interesting feature of this method is that it allows for an infinite sequence of such dissipative vector fields to be constructed by repeated application of a symmetric linear operator (matrix) at each point of the intersection of the level sets.

  3. A level set method for determining critical curvatures for drainage and imbibition.

    PubMed

    Prodanović, Masa; Bryant, Steven L

    2006-12-15

    An accurate description of the mechanics of pore level displacement of immiscible fluids could significantly improve the predictions from pore network models of capillary pressure-saturation curves, interfacial areas and relative permeability in real porous media. If we assume quasi-static displacement, at constant pressure and surface tension, pore scale interfaces are modeled as constant mean curvature surfaces, which are not easy to calculate. Moreover, the extremely irregular geometry of natural porous media makes it difficult to evaluate surface curvature values and corresponding geometric configurations of two fluids. Finally, accounting for the topological changes of the interface, such as splitting or merging, is nontrivial. We apply the level set method for tracking and propagating interfaces in order to robustly handle topological changes and to obtain geometrically correct interfaces. We describe a simple but robust model for determining critical curvatures for throat drainage and pore imbibition. The model is set up for quasi-static displacements but it nevertheless captures both reversible and irreversible behavior (Haines jump, pore body imbibition). The pore scale grain boundary conditions are extracted from model porous media and from imaged geometries in real rocks. The method gives quantitative agreement with measurements and with other theories and computational approaches.

  4. Modelling wildland fire propagation by tracking random fronts

    NASA Astrophysics Data System (ADS)

    Pagnini, G.; Mentrelli, A.

    2014-08-01

    Wildland fire propagation is studied in the literature by two alternative approaches, namely the reaction-diffusion equation and the level-set method. These two approaches are considered alternatives to each other because the solution of the reaction-diffusion equation is generally a continuous smooth function that has an exponential decay, and it is not zero in an infinite domain, while the level-set method, which is a front tracking technique, generates a sharp function that is not zero inside a compact domain. However, these two approaches can indeed be considered complementary and reconciled. Turbulent hot-air transport and fire spotting are phenomena with a random nature and they are extremely important in wildland fire propagation. Consequently, the fire front gets a random character, too; hence, a tracking method for random fronts is needed. In particular, the level-set contour is randomised here according to the probability density function of the interface particle displacement. Actually, when the level-set method is developed for tracking a front interface with a random motion, the resulting averaged process emerges to be governed by an evolution equation of the reaction-diffusion type. In this reconciled approach, the rate of spread of the fire keeps the same key and characterising role that is typical of the level-set approach. The resulting model emerges to be suitable for simulating effects due to turbulent convection, such as fire flank and backing fire, the faster fire spread being because of the actions by hot-air pre-heating and by ember landing, and also due to the fire overcoming a fire-break zone, which is a case not resolved by models based on the level-set method. Moreover, from the proposed formulation, a correction follows for the formula of the rate of spread which is due to the mean jump length of firebrands in the downwind direction for the leeward sector of the fireline contour. The presented study constitutes a proof of concept, and it needs to be subjected to a future validation.

  5. Relationships between college settings and student alcohol use before, during and after events: a multi-level study.

    PubMed

    Paschall, Mallie J; Saltz, Robert F

    2007-11-01

    We examined how alcohol risk is distributed based on college students' drinking before, during and after they go to certain settings. Students attending 14 California public universities (N=10,152) completed a web-based or mailed survey in the fall 2003 semester, which included questions about how many drinks they consumed before, during and after the last time they went to six settings/events: fraternity or sorority party, residence hall party, campus event (e.g. football game), off-campus party, bar/restaurant and outdoor setting (referent). Multi-level analyses were conducted in hierarchical linear modeling (HLM) to examine relationships between type of setting and level of alcohol use before, during and after going to the setting, and possible age and gender differences in these relationships. Drinking episodes (N=24,207) were level 1 units, students were level 2 units and colleges were level 3 units. The highest drinking levels were observed during all settings/events except campus events, with the highest number of drinks being consumed at off-campus parties, followed by residence hall and fraternity/sorority parties. The number of drinks consumed before a fraternity/sorority party was higher than other settings/events. Age group and gender differences in relationships between type of setting/event and 'before,''during' and 'after' drinking levels also were observed. For example, going to a bar/restaurant (relative to an outdoor setting) was positively associated with 'during' drinks among students of legal drinking age while no relationship was observed for underage students. Findings of this study indicate differences in the extent to which college settings are associated with student drinking levels before, during and after related events, and may have implications for intervention strategies targeting different types of settings.

  6. Pyomo v5.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, David; Hackebeil, Gabe; Laird, Carl Damon

    Pyomo supports the formulation and analysis of mathematical models for complex optimization applications. This capability is commonly associated with algebraic modeling languages (AMLs), which support the description and analysis of mathematical models with a high-level language. Although most AMLs are implemented in custom modeling languages, Pyomo's modeling objects are embedded within Python, a full- featured high-level programming language that contains a rich set of supporting libraries.

  7. Complex fuzzy soft expert sets

    NASA Astrophysics Data System (ADS)

    Selvachandran, Ganeshsree; Hafeed, Nisren A.; Salleh, Abdul Razak

    2017-04-01

    Complex fuzzy sets and its accompanying theory although at its infancy, has proven to be superior to classical type-1 fuzzy sets, due its ability in representing time-periodic problem parameters and capturing the seasonality of the fuzziness that exists in the elements of a set. These are important characteristics that are pervasive in most real world problems. However, there are two major problems that are inherent in complex fuzzy sets: it lacks a sufficient parameterization tool and it does not have a mechanism to validate the values assigned to the membership functions of the elements in a set. To overcome these problems, we propose the notion of complex fuzzy soft expert sets which is a hybrid model of complex fuzzy sets and soft expert sets. This model incorporates the advantages of complex fuzzy sets and soft sets, besides having the added advantage of allowing the users to know the opinion of all the experts in a single model without the need for any additional cumbersome operations. As such, this model effectively improves the accuracy of representation of problem parameters that are periodic in nature, besides having a higher level of computational efficiency compared to similar models in literature.

  8. Active-Reserve Force Cost Model

    DTIC Science & Technology

    2015-01-01

    structure to be maintained for a given level of expenditure. We have developed this methodology and set of associated computer-based tools to...rotational, and deployed units or systems • Attain acceptable steady state operational or presence levels , as measured by the number of units a...at the community level . By community, we mean the set of units of a given type: mission, platform, or capability. We do this because AC-RC force-mix

  9. Changes in Sea Levels around the British Isles Revisited (Invited)

    NASA Astrophysics Data System (ADS)

    Teferle, F. N.; Hansen, D. N.; Bingley, R. M.; Williams, S. D.; Woodworth, P. L.; Gehrels, W. R.; Bradley, S. L.; Stocchi, P.

    2009-12-01

    Recently a number of new and/or updated sources for estimates of vertical land movements for the British Isles have become available allowing the relative and average changes in sea levels for this region to be revisited. The geodetic data set stems from a combination of re-processed continuous Global Positioning System (GPS) measurements from stations in the British Isles and from a global reference frame network, and absolute gravity (AG) measurements from two stations in the British Isles. The geologic data set of late Holocene sea level indicators has recently been updated, now applying corrections for the 20th century sea level rise, syphoning effect and late Holocene global ice melt, and expanded to Northern Ireland and Ireland. Several new model predictions of the glacial isostatic adjustment (GIA) process active in this region form the modelling data set of vertical land movements for the British Isles. Correcting the updated revised local reference (RLR) trends from the Permanent Service for Mean Sea Level (PSMSL) with these vertical land movement data sets, regional and averaged changes in sea levels around the British Isles have been investigated. Special focus is thereby also given to the coastal areas that have recently been identified within the UK Climate Projections 2009.

  10. An experimental methodology for a fuzzy set preference model

    NASA Technical Reports Server (NTRS)

    Turksen, I. B.; Willson, Ian A.

    1992-01-01

    A flexible fuzzy set preference model first requires approximate methodologies for implementation. Fuzzy sets must be defined for each individual consumer using computer software, requiring a minimum of time and expertise on the part of the consumer. The amount of information needed in defining sets must also be established. The model itself must adapt fully to the subject's choice of attributes (vague or precise), attribute levels, and importance weights. The resulting individual-level model should be fully adapted to each consumer. The methodologies needed to develop this model will be equally useful in a new generation of intelligent systems which interact with ordinary consumers, controlling electronic devices through fuzzy expert systems or making recommendations based on a variety of inputs. The power of personal computers and their acceptance by consumers has yet to be fully utilized to create interactive knowledge systems that fully adapt their function to the user. Understanding individual consumer preferences is critical to the design of new products and the estimation of demand (market share) for existing products, which in turn is an input to management systems concerned with production and distribution. The question of what to make, for whom to make it and how much to make requires an understanding of the customer's preferences and the trade-offs that exist between alternatives. Conjoint analysis is a widely used methodology which de-composes an overall preference for an object into a combination of preferences for its constituent parts (attributes such as taste and price), which are combined using an appropriate combination function. Preferences are often expressed using linguistic terms which cannot be represented in conjoint models. Current models are also not implemented an individual level, making it difficult to reach meaningful conclusions about the cause of an individual's behavior from an aggregate model. The combination of complex aggregate models and vague linguistic preferences has greatly limited the usefulness and predictive validity of existing preference models. A fuzzy set preference model that uses linguistic variables and a fully interactive implementation should be able to simultaneously address these issues and substantially improve the accuracy of demand estimates. The parallel implementation of crisp and fuzzy conjoint models using identical data not only validates the fuzzy set model but also provides an opportunity to assess the impact of fuzzy set definitions and individual attribute choices implemented in the interactive methodology developed in this research. The generalized experimental tools needed for conjoint models can also be applied to many other types of intelligent systems.

  11. On the Relationship between Variational Level Set-Based and SOM-Based Active Contours

    PubMed Central

    Abdelsamea, Mohammed M.; Gnecco, Giorgio; Gaber, Mohamed Medhat; Elyan, Eyad

    2015-01-01

    Most Active Contour Models (ACMs) deal with the image segmentation problem as a functional optimization problem, as they work on dividing an image into several regions by optimizing a suitable functional. Among ACMs, variational level set methods have been used to build an active contour with the aim of modeling arbitrarily complex shapes. Moreover, they can handle also topological changes of the contours. Self-Organizing Maps (SOMs) have attracted the attention of many computer vision scientists, particularly in modeling an active contour based on the idea of utilizing the prototypes (weights) of a SOM to control the evolution of the contour. SOM-based models have been proposed in general with the aim of exploiting the specific ability of SOMs to learn the edge-map information via their topology preservation property and overcoming some drawbacks of other ACMs, such as trapping into local minima of the image energy functional to be minimized in such models. In this survey, we illustrate the main concepts of variational level set-based ACMs, SOM-based ACMs, and their relationship and review in a comprehensive fashion the development of their state-of-the-art models from a machine learning perspective, with a focus on their strengths and weaknesses. PMID:25960736

  12. Are cosmological data sets consistent with each other within the Λ cold dark matter model?

    NASA Astrophysics Data System (ADS)

    Raveri, Marco

    2016-02-01

    We use a complete and rigorous statistical indicator to measure the level of concordance between cosmological data sets, without relying on the inspection of the marginal posterior distribution of some selected parameters. We apply this test to state of the art cosmological data sets, to assess their agreement within the Λ cold dark matter model. We find that there is a good level of concordance between all the experiments with one noticeable exception. There is substantial evidence of tension between the cosmic microwave background temperature and polarization measurements of the Planck satellite and the data from the CFHTLenS weak lensing survey even when applying ultraconservative cuts. These results robustly point toward the possibility of having unaccounted systematic effects in the data, an incomplete modeling of the cosmological predictions or hints toward new physical phenomena.

  13. Modeling wildland fire propagation with level set methods

    Treesearch

    V. Mallet; D.E Keyes; F.E. Fendell

    2009-01-01

    Level set methods are versatile and extensible techniques for general front tracking problems, including the practically important problem of predicting the advance of a fire front across expanses of surface vegetation. Given a rule, empirical or otherwise, to specify the rate of advance of an infinitesimal segment of fire front arc normal to itself (i.e., given the...

  14. Latent Variable Regression 4-Level Hierarchical Model Using Multisite Multiple-Cohorts Longitudinal Data. CRESST Report 801

    ERIC Educational Resources Information Center

    Choi, Kilchan

    2011-01-01

    This report explores a new latent variable regression 4-level hierarchical model for monitoring school performance over time using multisite multiple-cohorts longitudinal data. This kind of data set has a 4-level hierarchical structure: time-series observation nested within students who are nested within different cohorts of students. These…

  15. Modeling relationships between landscape-level attributes and snorkel counts of chinook salmon and steelhead parr in Idaho

    Treesearch

    William L. Thompson; Danny C. Lee

    2000-01-01

    Knowledge of environmental factors impacting anadromous salmonids in their freshwater habitats, particularly at large spatial scales, may be important for restoring them to previously recorded levels in the northwestern United States. Consequently, we used existing data sets and an information-theoretic approach to model landscape-level attributes and snorkel count...

  16. Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S.

    DOE PAGES

    Sahoo, S.; Russo, T. A.; Elliott, J.; ...

    2017-05-13

    Climate, groundwater extraction, and surface water flows have complex nonlinear relationships with groundwater level in agricultural regions. To better understand the relative importance of each driver and predict groundwater level change, we develop a new ensemble modeling framework based on spectral analysis, machine learning, and uncertainty analysis, as an alternative to complex and computationally expensive physical models. We apply and evaluate this new approach in the context of two aquifer systems supporting agricultural production in the United States: the High Plains aquifer (HPA) and the Mississippi River Valley alluvial aquifer (MRVA). We select input data sets by using a combinationmore » of mutual information, genetic algorithms, and lag analysis, and then use the selected data sets in a Multilayer Perceptron network architecture to simulate seasonal groundwater level change. As expected, model results suggest that irrigation demand has the highest influence on groundwater level change for a majority of the wells. The subset of groundwater observations not used in model training or cross-validation correlates strongly (R > 0.8) with model results for 88 and 83% of the wells in the HPA and MRVA, respectively. In both aquifer systems, the error in the modeled cumulative groundwater level change during testing (2003-2012) was less than 2 m over a majority of the area. Here, we conclude that our modeling framework can serve as an alternative approach to simulating groundwater level change and water availability, especially in regions where subsurface properties are unknown.« less

  17. Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, S.; Russo, T. A.; Elliott, J.

    Climate, groundwater extraction, and surface water flows have complex nonlinear relationships with groundwater level in agricultural regions. To better understand the relative importance of each driver and predict groundwater level change, we develop a new ensemble modeling framework based on spectral analysis, machine learning, and uncertainty analysis, as an alternative to complex and computationally expensive physical models. We apply and evaluate this new approach in the context of two aquifer systems supporting agricultural production in the United States: the High Plains aquifer (HPA) and the Mississippi River Valley alluvial aquifer (MRVA). We select input data sets by using a combinationmore » of mutual information, genetic algorithms, and lag analysis, and then use the selected data sets in a Multilayer Perceptron network architecture to simulate seasonal groundwater level change. As expected, model results suggest that irrigation demand has the highest influence on groundwater level change for a majority of the wells. The subset of groundwater observations not used in model training or cross-validation correlates strongly (R > 0.8) with model results for 88 and 83% of the wells in the HPA and MRVA, respectively. In both aquifer systems, the error in the modeled cumulative groundwater level change during testing (2003-2012) was less than 2 m over a majority of the area. Here, we conclude that our modeling framework can serve as an alternative approach to simulating groundwater level change and water availability, especially in regions where subsurface properties are unknown.« less

  18. Gender differences in public and private drinking contexts: a multi-level GENACIS analysis.

    PubMed

    Bond, Jason C; Roberts, Sarah C M; Greenfield, Thomas K; Korcha, Rachael; Ye, Yu; Nayak, Madhabika B

    2010-05-01

    This multi-national study hypothesized that higher levels of country-level gender equality would predict smaller differences in the frequency of women's compared to men's drinking in public (like bars and restaurants) settings and possibly private (home or party) settings. GENACIS project survey data with drinking contexts included 22 countries in Europe (8); the Americas (7); Asia (3); Australasia (2), and Africa (2), analyzed using hierarchical linear models (individuals nested within country). Age, gender and marital status were individual predictors; country-level gender equality as well as equality in economic participation, education, and political participation, and reproductive autonomy and context of violence against women measures were country-level variables. In separate models, more reproductive autonomy, economic participation, and educational attainment and less violence against women predicted smaller differences in drinking in public settings. Once controlling for country-level economic status, only equality in economic participation predicted the size of the gender difference. Most country-level variables did not explain the gender difference in frequency of drinking in private settings. Where gender equality predicted this difference, the direction of the findings was opposite from the direction in public settings, with more equality predicting a larger gender difference, although this relationship was no longer significant after controlling for country-level economic status. Findings suggest that country-level gender equality may influence gender differences in drinking. However, the effects of gender equality on drinking may depend on the specific alcohol measure, in this case drinking context, as well as on the aspect of gender equality considered. Similar studies that use only global measures of gender equality may miss key relationships. We consider potential implications for alcohol related consequences, policy and public health.

  19. Logistic random effects regression models: a comparison of statistical packages for binary and ordinal outcomes

    PubMed Central

    2011-01-01

    Background Logistic random effects models are a popular tool to analyze multilevel also called hierarchical data with a binary or ordinal outcome. Here, we aim to compare different statistical software implementations of these models. Methods We used individual patient data from 8509 patients in 231 centers with moderate and severe Traumatic Brain Injury (TBI) enrolled in eight Randomized Controlled Trials (RCTs) and three observational studies. We fitted logistic random effects regression models with the 5-point Glasgow Outcome Scale (GOS) as outcome, both dichotomized as well as ordinal, with center and/or trial as random effects, and as covariates age, motor score, pupil reactivity or trial. We then compared the implementations of frequentist and Bayesian methods to estimate the fixed and random effects. Frequentist approaches included R (lme4), Stata (GLLAMM), SAS (GLIMMIX and NLMIXED), MLwiN ([R]IGLS) and MIXOR, Bayesian approaches included WinBUGS, MLwiN (MCMC), R package MCMCglmm and SAS experimental procedure MCMC. Three data sets (the full data set and two sub-datasets) were analysed using basically two logistic random effects models with either one random effect for the center or two random effects for center and trial. For the ordinal outcome in the full data set also a proportional odds model with a random center effect was fitted. Results The packages gave similar parameter estimates for both the fixed and random effects and for the binary (and ordinal) models for the main study and when based on a relatively large number of level-1 (patient level) data compared to the number of level-2 (hospital level) data. However, when based on relatively sparse data set, i.e. when the numbers of level-1 and level-2 data units were about the same, the frequentist and Bayesian approaches showed somewhat different results. The software implementations differ considerably in flexibility, computation time, and usability. There are also differences in the availability of additional tools for model evaluation, such as diagnostic plots. The experimental SAS (version 9.2) procedure MCMC appeared to be inefficient. Conclusions On relatively large data sets, the different software implementations of logistic random effects regression models produced similar results. Thus, for a large data set there seems to be no explicit preference (of course if there is no preference from a philosophical point of view) for either a frequentist or Bayesian approach (if based on vague priors). The choice for a particular implementation may largely depend on the desired flexibility, and the usability of the package. For small data sets the random effects variances are difficult to estimate. In the frequentist approaches the MLE of this variance was often estimated zero with a standard error that is either zero or could not be determined, while for Bayesian methods the estimates could depend on the chosen "non-informative" prior of the variance parameter. The starting value for the variance parameter may be also critical for the convergence of the Markov chain. PMID:21605357

  20. Activity interference and noise annoyance

    NASA Astrophysics Data System (ADS)

    Hall, F. L.; Taylor, S. M.; Birnie, S. E.

    1985-11-01

    Debate continues over differences in the dose-response functions used to predict the annoyance at different sources of transportation noise. This debate reflects the lack of an accepted model of noise annoyance in residential communities. In this paper a model is proposed which is focussed on activity interference as a central component mediating the relationship between noise exposure and annoyance. This model represents a departure from earlier models in two important respects. First, single event noise levels (e.g., maximum levels, sound exposure level) constitute the noise exposure variables in place of long-term energy equivalent measures (e.g., 24-hour Leq or Ldn). Second, the relationships within the model are expressed as probabilistic rather than deterministic equations. The model has been tested by using acoustical and social survey data collected at 57 sites in the Toronto region exposed to aircraft, road traffic or train noise. Logit analysis was used to estimate two sets of equations. The first predicts the probability of activity interference as a function of event noise level. Four types of interference are included: indoor speech, outdoor speech, difficulty getting to sleep and awakening. The second set predicts the probability of annoyance as a function of the combination of activity interferences. From the first set of equations, it was possible to estimate a function for indoor speech interference only. In this case, the maximum event level was the strongest predictor. The lack of significant results for the other types of interference is explained by the limitations of the data. The same function predicts indoor speech interference for all three sources—road, rail and aircraft noise. The results for the second set of equations show strong relationships between activity interference and the probability of annoyance. Again, the parameters of the logit equations are similar for the three sources. A trial application of the model predicts a higher probability of annoyance for aircraft than for road traffic situations with the same 24-hour Leq. This result suggests that the model may account for previously reported source differences in annoyance.

  1. Level set segmentation of medical images based on local region statistics and maximum a posteriori probability.

    PubMed

    Cui, Wenchao; Wang, Yi; Lei, Tao; Fan, Yangyu; Feng, Yan

    2013-01-01

    This paper presents a variational level set method for simultaneous segmentation and bias field estimation of medical images with intensity inhomogeneity. In our model, the statistics of image intensities belonging to each different tissue in local regions are characterized by Gaussian distributions with different means and variances. According to maximum a posteriori probability (MAP) and Bayes' rule, we first derive a local objective function for image intensities in a neighborhood around each pixel. Then this local objective function is integrated with respect to the neighborhood center over the entire image domain to give a global criterion. In level set framework, this global criterion defines an energy in terms of the level set functions that represent a partition of the image domain and a bias field that accounts for the intensity inhomogeneity of the image. Therefore, image segmentation and bias field estimation are simultaneously achieved via a level set evolution process. Experimental results for synthetic and real images show desirable performances of our method.

  2. Comparison of SVM, RF and ELM on an Electronic Nose for the Intelligent Evaluation of Paraffin Samples

    PubMed Central

    Men, Hong; Fu, Songlin; Yang, Jialin; Cheng, Meiqi; Shi, Yan

    2018-01-01

    Paraffin odor intensity is an important quality indicator when a paraffin inspection is performed. Currently, paraffin odor level assessment is mainly dependent on an artificial sensory evaluation. In this paper, we developed a paraffin odor analysis system to classify and grade four kinds of paraffin samples. The original feature set was optimized using Principal Component Analysis (PCA) and Partial Least Squares (PLS). Support Vector Machine (SVM), Random Forest (RF), and Extreme Learning Machine (ELM) were applied to three different feature data sets for classification and level assessment of paraffin. For classification, the model based on SVM, with an accuracy rate of 100%, was superior to that based on RF, with an accuracy rate of 98.33–100%, and ELM, with an accuracy rate of 98.01–100%. For level assessment, the R2 related to the training set was above 0.97 and the R2 related to the test set was above 0.87. Through comprehensive comparison, the generalization of the model based on ELM was superior to those based on SVM and RF. The scoring errors for the three models were 0.0016–0.3494, lower than the error of 0.5–1.0 measured by industry standard experts, meaning these methods have a higher prediction accuracy for scoring paraffin level. PMID:29346328

  3. Versatile Micromechanics Model for Multiscale Analysis of Composite Structures

    NASA Astrophysics Data System (ADS)

    Kwon, Y. W.; Park, M. S.

    2013-08-01

    A general-purpose micromechanics model was developed so that the model could be applied to various composite materials such as reinforced by particles, long fibers and short fibers as well as those containing micro voids. Additionally, the model can be used with hierarchical composite materials. The micromechanics model can be used to compute effective material properties like elastic moduli, shear moduli, Poisson's ratios, and coefficients of thermal expansion for the various composite materials. The model can also calculate the strains and stresses at the constituent material level such as fibers, particles, and whiskers from the composite level stresses and strains. The model was implemented into ABAQUS using the UMAT option for multiscale analysis. An extensive set of examples are presented to demonstrate the reliability and accuracy of the developed micromechanics model for different kinds of composite materials. Another set of examples is provided to study the multiscale analysis of composite structures.

  4. Standardized Mean Differences in Two-Level Cross-Classified Random Effects Models

    ERIC Educational Resources Information Center

    Lai, Mark H. C.; Kwok, Oi-Man

    2014-01-01

    Multilevel modeling techniques are becoming more popular in handling data with multilevel structure in educational and behavioral research. Recently, researchers have paid more attention to cross-classified data structure that naturally arises in educational settings. However, unlike traditional single-level research, methodological studies about…

  5. Analytical Work in Support of the Design and Operation of Two Dimensional Self Streamlining Test Sections

    NASA Technical Reports Server (NTRS)

    Judd, M.; Wolf, S. W. D.; Goodyer, M. J.

    1976-01-01

    A method has been developed for accurately computing the imaginary flow fields outside a flexible walled test section, applicable to lifting and non-lifting models. The tolerances in the setting of the flexible walls introduce only small levels of aerodynamic interference at the model. While it is not possible to apply corrections for the interference effects, they may be reduced by improving the setting accuracy of the portions of wall immediately above and below the model. Interference effects of the truncation of the length of the streamlined portion of a test section are brought to an acceptably small level by the use of a suitably long test section with the model placed centrally.

  6. Automatic segmentation of Leishmania parasite in microscopic images using a modified CV level set method

    NASA Astrophysics Data System (ADS)

    Farahi, Maria; Rabbani, Hossein; Talebi, Ardeshir; Sarrafzadeh, Omid; Ensafi, Shahab

    2015-12-01

    Visceral Leishmaniasis is a parasitic disease that affects liver, spleen and bone marrow. According to World Health Organization report, definitive diagnosis is possible just by direct observation of the Leishman body in the microscopic image taken from bone marrow samples. We utilize morphological and CV level set method to segment Leishman bodies in digital color microscopic images captured from bone marrow samples. Linear contrast stretching method is used for image enhancement and morphological method is applied to determine the parasite regions and wipe up unwanted objects. Modified global and local CV level set methods are proposed for segmentation and a shape based stopping factor is used to hasten the algorithm. Manual segmentation is considered as ground truth to evaluate the proposed method. This method is tested on 28 samples and achieved 10.90% mean of segmentation error for global model and 9.76% for local model.

  7. Discovering variable fractional orders of advection-dispersion equations from field data using multi-fidelity Bayesian optimization

    NASA Astrophysics Data System (ADS)

    Pang, Guofei; Perdikaris, Paris; Cai, Wei; Karniadakis, George Em

    2017-11-01

    The fractional advection-dispersion equation (FADE) can describe accurately the solute transport in groundwater but its fractional order has to be determined a priori. Here, we employ multi-fidelity Bayesian optimization to obtain the fractional order under various conditions, and we obtain more accurate results compared to previously published data. Moreover, the present method is very efficient as we use different levels of resolution to construct a stochastic surrogate model and quantify its uncertainty. We consider two different problem set ups. In the first set up, we obtain variable fractional orders of one-dimensional FADE, considering both synthetic and field data. In the second set up, we identify constant fractional orders of two-dimensional FADE using synthetic data. We employ multi-resolution simulations using two-level and three-level Gaussian process regression models to construct the surrogates.

  8. Segmentation of prostate from ultrasound images using level sets on active band and intensity variation across edges

    PubMed Central

    Li, Xu; Li, Chunming; Fedorov, Andriy; Kapur, Tina; Yang, Xiaoping

    2016-01-01

    Purpose: In this paper, the authors propose a novel efficient method to segment ultrasound images of the prostate with weak boundaries. Segmentation of the prostate from ultrasound images with weak boundaries widely exists in clinical applications. One of the most typical examples is the diagnosis and treatment of prostate cancer. Accurate segmentation of the prostate boundaries from ultrasound images plays an important role in many prostate-related applications such as the accurate placement of the biopsy needles, the assignment of the appropriate therapy in cancer treatment, and the measurement of the prostate volume. Methods: Ultrasound images of the prostate are usually corrupted with intensity inhomogeneities, weak boundaries, and unwanted edges, which make the segmentation of the prostate an inherently difficult task. Regarding to these difficulties, the authors introduce an active band term and an edge descriptor term in the modified level set energy functional. The active band term is to deal with intensity inhomogeneities and the edge descriptor term is to capture the weak boundaries or to rule out unwanted boundaries. The level set function of the proposed model is updated in a band region around the zero level set which the authors call it an active band. The active band restricts the authors’ method to utilize the local image information in a banded region around the prostate contour. Compared to traditional level set methods, the average intensities inside∖outside the zero level set are only computed in this banded region. Thus, only pixels in the active band have influence on the evolution of the level set. For weak boundaries, they are hard to be distinguished by human eyes, but in local patches in the band region around prostate boundaries, they are easier to be detected. The authors incorporate an edge descriptor to calculate the total intensity variation in a local patch paralleled to the normal direction of the zero level set, which can detect weak boundaries and avoid unwanted edges in the ultrasound images. Results: The efficiency of the proposed model is demonstrated by experiments on real 3D volume images and 2D ultrasound images and comparisons with other approaches. Validation results on real 3D TRUS prostate images show that the authors’ model can obtain a Dice similarity coefficient (DSC) of 94.03% ± 1.50% and a sensitivity of 93.16% ± 2.30%. Experiments on 100 typical 2D ultrasound images show that the authors’ method can obtain a sensitivity of 94.87% ± 1.85% and a DSC of 95.82% ± 2.23%. A reproducibility experiment is done to evaluate the robustness of the proposed model. Conclusions: As far as the authors know, prostate segmentation from ultrasound images with weak boundaries and unwanted edges is a difficult task. A novel method using level sets with active band and the intensity variation across edges is proposed in this paper. Extensive experimental results demonstrate that the proposed method is more efficient and accurate. PMID:27277056

  9. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma

    USGS Publications Warehouse

    Adams, G.P.; Runkle, Donna; Rea, Alan; Cederstrand, J.R.

    1997-01-01

    ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries, maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma. Ground water in 1,305 square miles of Quaternary-age alluvial and terrace deposits along the the Cimarron River from Freedom to Guthrie is an important source of water for irrigation, industrial, municipal, stock, and domestic supplies. Alluvial and terrace deposits are composed of interfingering lenses of clay, sandy clay, and cross-bedded poorly sorted sand and gravel. The aquifer is composed of hydraulically connected alluvial and terrace deposits that unconformably overlie the Permian-age Formations. The aquifer boundaries are from a ground-water modeling report on the alluvial and terrace aquifer along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma and published digital surficial geology data sets. The aquifer boundary data set was created from digital geologic data sets from maps published at a scale of 1:250,000. The hydraulic conductivity values, recharge rates, and ground-water level elevation contours are from the ground-water modeling report. Water-level elevation contours were digitized from a map at a scale of 1:250,000. The maps were published at a scale of 1:900,000. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  10. Unsupervised MRI segmentation of brain tissues using a local linear model and level set.

    PubMed

    Rivest-Hénault, David; Cheriet, Mohamed

    2011-02-01

    Real-world magnetic resonance imaging of the brain is affected by intensity nonuniformity (INU) phenomena which makes it difficult to fully automate the segmentation process. This difficult task is accomplished in this work by using a new method with two original features: (1) each brain tissue class is locally modeled using a local linear region representative, which allows us to account for the INU in an implicit way and to more accurately position the region's boundaries; and (2) the region models are embedded in the level set framework, so that the spatial coherence of the segmentation can be controlled in a natural way. Our new method has been tested on the ground-truthed Internet Brain Segmentation Repository (IBSR) database and gave promising results, with Tanimoto indexes ranging from 0.61 to 0.79 for the classification of the white matter and from 0.72 to 0.84 for the gray matter. To our knowledge, this is the first time a region-based level set model has been used to perform the segmentation of real-world MRI brain scans with convincing results. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Novel nonlinear knowledge-based mean force potentials based on machine learning.

    PubMed

    Dong, Qiwen; Zhou, Shuigeng

    2011-01-01

    The prediction of 3D structures of proteins from amino acid sequences is one of the most challenging problems in molecular biology. An essential task for solving this problem with coarse-grained models is to deduce effective interaction potentials. The development and evaluation of new energy functions is critical to accurately modeling the properties of biological macromolecules. Knowledge-based mean force potentials are derived from statistical analysis of proteins of known structures. Current knowledge-based potentials are almost in the form of weighted linear sum of interaction pairs. In this study, a class of novel nonlinear knowledge-based mean force potentials is presented. The potential parameters are obtained by nonlinear classifiers, instead of relative frequencies of interaction pairs against a reference state or linear classifiers. The support vector machine is used to derive the potential parameters on data sets that contain both native structures and decoy structures. Five knowledge-based mean force Boltzmann-based or linear potentials are introduced and their corresponding nonlinear potentials are implemented. They are the DIH potential (single-body residue-level Boltzmann-based potential), the DFIRE-SCM potential (two-body residue-level Boltzmann-based potential), the FS potential (two-body atom-level Boltzmann-based potential), the HR potential (two-body residue-level linear potential), and the T32S3 potential (two-body atom-level linear potential). Experiments are performed on well-established decoy sets, including the LKF data set, the CASP7 data set, and the Decoys “R”Us data set. The evaluation metrics include the energy Z score and the ability of each potential to discriminate native structures from a set of decoy structures. Experimental results show that all nonlinear potentials significantly outperform the corresponding Boltzmann-based or linear potentials, and the proposed discriminative framework is effective in developing knowledge-based mean force potentials. The nonlinear potentials can be widely used for ab initio protein structure prediction, model quality assessment, protein docking, and other challenging problems in computational biology.

  12. Mapping Topographic Structure in White Matter Pathways with Level Set Trees

    PubMed Central

    Kent, Brian P.; Rinaldo, Alessandro; Yeh, Fang-Cheng; Verstynen, Timothy

    2014-01-01

    Fiber tractography on diffusion imaging data offers rich potential for describing white matter pathways in the human brain, but characterizing the spatial organization in these large and complex data sets remains a challenge. We show that level set trees–which provide a concise representation of the hierarchical mode structure of probability density functions–offer a statistically-principled framework for visualizing and analyzing topography in fiber streamlines. Using diffusion spectrum imaging data collected on neurologically healthy controls (N = 30), we mapped white matter pathways from the cortex into the striatum using a deterministic tractography algorithm that estimates fiber bundles as dimensionless streamlines. Level set trees were used for interactive exploration of patterns in the endpoint distributions of the mapped fiber pathways and an efficient segmentation of the pathways that had empirical accuracy comparable to standard nonparametric clustering techniques. We show that level set trees can also be generalized to model pseudo-density functions in order to analyze a broader array of data types, including entire fiber streamlines. Finally, resampling methods show the reliability of the level set tree as a descriptive measure of topographic structure, illustrating its potential as a statistical descriptor in brain imaging analysis. These results highlight the broad applicability of level set trees for visualizing and analyzing high-dimensional data like fiber tractography output. PMID:24714673

  13. Discrete-time moment closure models for epidemic spreading in populations of interacting individuals.

    PubMed

    Frasca, Mattia; Sharkey, Kieran J

    2016-06-21

    Understanding the dynamics of spread of infectious diseases between individuals is essential for forecasting the evolution of an epidemic outbreak or for defining intervention policies. The problem is addressed by many approaches including stochastic and deterministic models formulated at diverse scales (individuals, populations) and different levels of detail. Here we consider discrete-time SIR (susceptible-infectious-removed) dynamics propagated on contact networks. We derive a novel set of 'discrete-time moment equations' for the probability of the system states at the level of individual nodes and pairs of nodes. These equations form a set which we close by introducing appropriate approximations of the joint probabilities appearing in them. For the example case of SIR processes, we formulate two types of model, one assuming statistical independence at the level of individuals and one at the level of pairs. From the pair-based model we then derive a model at the level of the population which captures the behavior of epidemics on homogeneous random networks. With respect to their continuous-time counterparts, the models include a larger number of possible transitions from one state to another and joint probabilities with a larger number of individuals. The approach is validated through numerical simulation over different network topologies. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. An Analysis of Turkey's PISA 2015 Results Using Two-Level Hierarchical Linear Modelling

    ERIC Educational Resources Information Center

    Atas, Dogu; Karadag, Özge

    2017-01-01

    In the field of education, most of the data collected are multi-level structured. Cities, city based schools, school based classes and finally students in the classrooms constitute a hierarchical structure. Hierarchical linear models give more accurate results compared to standard models when the data set has a structure going far as individuals,…

  15. A Multivariate Model for the Meta-Analysis of Study Level Survival Data at Multiple Times

    ERIC Educational Resources Information Center

    Jackson, Dan; Rollins, Katie; Coughlin, Patrick

    2014-01-01

    Motivated by our meta-analytic dataset involving survival rates after treatment for critical leg ischemia, we develop and apply a new multivariate model for the meta-analysis of study level survival data at multiple times. Our data set involves 50 studies that provide mortality rates at up to seven time points, which we model simultaneously, and…

  16. Modeling the Effects of Light and Sucrose on In Vitro Propagated Plants: A Multiscale System Analysis Using Artificial Intelligence Technology

    PubMed Central

    Gago, Jorge; Martínez-Núñez, Lourdes; Landín, Mariana; Flexas, Jaume; Gallego, Pedro P.

    2014-01-01

    Background Plant acclimation is a highly complex process, which cannot be fully understood by analysis at any one specific level (i.e. subcellular, cellular or whole plant scale). Various soft-computing techniques, such as neural networks or fuzzy logic, were designed to analyze complex multivariate data sets and might be used to model large such multiscale data sets in plant biology. Methodology and Principal Findings In this study we assessed the effectiveness of applying neuro-fuzzy logic to modeling the effects of light intensities and sucrose content/concentration in the in vitro culture of kiwifruit on plant acclimation, by modeling multivariate data from 14 parameters at different biological scales of organization. The model provides insights through application of 14 sets of straightforward rules and indicates that plants with lower stomatal aperture areas and higher photoinhibition and photoprotective status score best for acclimation. The model suggests the best condition for obtaining higher quality acclimatized plantlets is the combination of 2.3% sucrose and photonflux of 122–130 µmol m−2 s−1. Conclusions Our results demonstrate that artificial intelligence models are not only successful in identifying complex non-linear interactions among variables, by integrating large-scale data sets from different levels of biological organization in a holistic plant systems-biology approach, but can also be used successfully for inferring new results without further experimental work. PMID:24465829

  17. Modeling the effects of light and sucrose on in vitro propagated plants: a multiscale system analysis using artificial intelligence technology.

    PubMed

    Gago, Jorge; Martínez-Núñez, Lourdes; Landín, Mariana; Flexas, Jaume; Gallego, Pedro P

    2014-01-01

    Plant acclimation is a highly complex process, which cannot be fully understood by analysis at any one specific level (i.e. subcellular, cellular or whole plant scale). Various soft-computing techniques, such as neural networks or fuzzy logic, were designed to analyze complex multivariate data sets and might be used to model large such multiscale data sets in plant biology. In this study we assessed the effectiveness of applying neuro-fuzzy logic to modeling the effects of light intensities and sucrose content/concentration in the in vitro culture of kiwifruit on plant acclimation, by modeling multivariate data from 14 parameters at different biological scales of organization. The model provides insights through application of 14 sets of straightforward rules and indicates that plants with lower stomatal aperture areas and higher photoinhibition and photoprotective status score best for acclimation. The model suggests the best condition for obtaining higher quality acclimatized plantlets is the combination of 2.3% sucrose and photonflux of 122-130 µmol m(-2) s(-1). Our results demonstrate that artificial intelligence models are not only successful in identifying complex non-linear interactions among variables, by integrating large-scale data sets from different levels of biological organization in a holistic plant systems-biology approach, but can also be used successfully for inferring new results without further experimental work.

  18. A model and nomogram to predict tumor site origin for squamous cell cancer confined to cervical lymph nodes.

    PubMed

    Ali, Arif N; Switchenko, Jeffrey M; Kim, Sungjin; Kowalski, Jeanne; El-Deiry, Mark W; Beitler, Jonathan J

    2014-11-15

    The current study was conducted to develop a multifactorial statistical model to predict the specific head and neck (H&N) tumor site origin in cases of squamous cell carcinoma confined to the cervical lymph nodes ("unknown primaries"). The Surveillance, Epidemiology, and End Results (SEER) database was analyzed for patients with an H&N tumor site who were diagnosed between 2004 and 2011. The SEER patients were identified according to their H&N primary tumor site and clinically positive cervical lymph node levels at the time of presentation. The SEER patient data set was randomly divided into 2 data sets for the purposes of internal split-sample validation. The effects of cervical lymph node levels, age, race, and sex on H&N primary tumor site were examined using univariate and multivariate analyses. Multivariate logistic regression models and an associated set of nomograms were developed based on relevant factors to provide probabilities of tumor site origin. Analysis of the SEER database identified 20,011 patients with H&N disease with both site-level and lymph node-level data. Sex, race, age, and lymph node levels were associated with primary H&N tumor site (nasopharynx, hypopharynx, oropharynx, and larynx) in the multivariate models. Internal validation techniques affirmed the accuracy of these models on separate data. The incorporation of epidemiologic and lymph node data into a predictive model has the potential to provide valuable guidance to clinicians in the treatment of patients with squamous cell carcinoma confined to the cervical lymph nodes. © 2014 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society.

  19. Identification of immiscible NAPL contaminant sources in aquifers by a modified two-level saturation based imperialist competitive algorithm

    NASA Astrophysics Data System (ADS)

    Ghafouri, H. R.; Mosharaf-Dehkordi, M.; Afzalan, B.

    2017-07-01

    A simulation-optimization model is proposed for identifying the characteristics of local immiscible NAPL contaminant sources inside aquifers. This model employs the UTCHEM 9.0 software as its simulator for solving the governing equations associated with the multi-phase flow in porous media. As the optimization model, a novel two-level saturation based Imperialist Competitive Algorithm (ICA) is proposed to estimate the parameters of contaminant sources. The first level consists of three parallel independent ICAs and plays as a pre-conditioner for the second level which is a single modified ICA. The ICA in the second level is modified by dividing each country into a number of provinces (smaller parts). Similar to countries in the classical ICA, these provinces are optimized by the assimilation, competition, and revolution steps in the ICA. To increase the diversity of populations, a new approach named knock the base method is proposed. The performance and accuracy of the simulation-optimization model is assessed by solving a set of two and three-dimensional problems considering the effects of different parameters such as the grid size, rock heterogeneity and designated monitoring networks. The obtained numerical results indicate that using this simulation-optimization model provides accurate results at a less number of iterations when compared with the model employing the classical one-level ICA. A model is proposed to identify characteristics of immiscible NAPL contaminant sources. The contaminant is immiscible in water and multi-phase flow is simulated. The model is a multi-level saturation-based optimization algorithm based on ICA. Each answer string in second level is divided into a set of provinces. Each ICA is modified by incorporating a new knock the base model.

  20. The origins of Minnesota's mid-level dental practitioner: alignment of problem, political and policy streams.

    PubMed

    Gwozdek, Anne E; Tetrick, Renee; Shaefer, H Luke

    2014-10-01

    Using John Kingdon's agenda-setting model, this paper explores how Minnesota came to legislate a mid-level dental practitioner to its oral health workforce. Using a pluralist framework embracing the existence of various interests and convictions, this analysis highlights the roles of issue formation, agenda setting and politics in policymaking. Using Kingdon's agenda-setting model as a theoretical lens, and applying case study methodology, this paper analyzes how Minnesota came to legislate a mid-level dental practitione to its oral health workforce. Data have come from scholarly research, governmental and foundation agency reports, interviews with leaders involved in the mid-level dental practitioner initiative, news articles, and Minnesota statute. After 2 years of contentious and challenging legislative initiatives, the problem, policy and political streams converged and aligned with the compromise passage of a bill legalizing mid-level dental practitioner practice. The Minnesota Dental Therapist Law was the first-in-the-nation licensing law to develop a new dental professional workforce model to address access to oral health care. The Minnesota mid-level dental practitioner initiative demonstrates the important convergence and alignment of the access to oral health care problem and the subsequent collaboration between political interest groups and policymakers. Through partnerships and pluralist compromise, mid-level dental practitioner champions were able to open the policy window to move this legislation to law, enhancing the oral health workforce in Minnesota. Copyright © 2014 The American Dental Hygienists’ Association.

  1. The Origins of Minnesota's Mid-Level Dental Practitioner: Alignment of Problem, Political and Policy Streams.

    PubMed

    Gwozdek, Anne E; Tetrick, Renee; Shaefer, H Luke

    2015-06-01

    Using John Kingdon's agenda-setting model, this paper explores how Minnesota came to legislate a mid-level dental practitioner to its oral health workforce. Using a pluralist framework embracing the existence of various interests and convictions, this analysis highlights the roles of issue formation, agenda setting and politics in policymaking. Using Kingdon's agenda-setting model as a theoretical lens, and applying case study methodology, this paper analyzes how Minnesota came to legislate a mid-level dental practitione to its oral health workforce. Data have come from scholarly research, governmental and foundation agency reports, interviews with leaders involved in the mid-level dental practitioner initiative, news articles, and Minnesota statute. After 2 years of contentious and challenging legislative initiatives, the problem, policy and political streams converged and aligned with the compromise passage of a bill legalizing mid-level dental practitioner practice. The Minnesota Dental Therapist Law was the first-in-the-nation licensing law to develop a new dental professional workforce model to address access to oral health care. The Minnesota mid-level dental practitioner initiative demonstrates the important convergence and alignment of the access to oral health care problem and the subsequent collaboration between political interest groups and policymakers. Through partnerships and pluralist compromise, mid-level dental practitioner champions were able to open the policy window to move this legislation to law, enhancing the oral health workforce in Minnesota. Copyright © 2015 The American Dental Hygienists’ Association.

  2. Uncertainties of statistical downscaling from predictor selection: Equifinality and transferability

    NASA Astrophysics Data System (ADS)

    Fu, Guobin; Charles, Stephen P.; Chiew, Francis H. S.; Ekström, Marie; Potter, Nick J.

    2018-05-01

    The nonhomogeneous hidden Markov model (NHMM) statistical downscaling model, 38 catchments in southeast Australia and 19 general circulation models (GCMs) were used in this study to demonstrate statistical downscaling uncertainties caused by equifinality to and transferability. That is to say, there could be multiple sets of predictors that give similar daily rainfall simulation results for both calibration and validation periods, but project different amounts (or even directions of change) of rainfall changing in the future. Results indicated that two sets of predictors (Set 1 with predictors of sea level pressure north-south gradient, u-wind at 700 hPa, v-wind at 700 hPa, and specific humidity at 700 hPa and Set 2 with predictors of sea level pressure north-south gradient, u-wind at 700 hPa, v-wind at 700 hPa, and dewpoint temperature depression at 850 hPa) as inputs to the NHMM produced satisfactory results of seasonal rainfall in comparison with observations. For example, during the model calibration period, the relative errors across the 38 catchments ranged from 0.48 to 1.76% with a mean value of 1.09% for the predictor Set 1, and from 0.22 to 2.24% with a mean value of 1.16% for the predictor Set 2. However, the changes of future rainfall from NHMM projections based on 19 GCMs produced projections with a different sign for these two different sets of predictors: Set 1 predictors project an increase of future rainfall with magnitudes depending on future time periods and emission scenarios, but Set 2 predictors project a decline of future rainfall. Such divergent projections may present a significant challenge for applications of statistical downscaling as well as climate change impact studies, and could potentially imply caveats in many existing studies in the literature.

  3. Study of Burn Scar Extraction Automatically Based on Level Set Method using Remote Sensing Data

    PubMed Central

    Liu, Yang; Dai, Qin; Liu, JianBo; Liu, ShiBin; Yang, Jin

    2014-01-01

    Burn scar extraction using remote sensing data is an efficient way to precisely evaluate burn area and measure vegetation recovery. Traditional burn scar extraction methodologies have no well effect on burn scar image with blurred and irregular edges. To address these issues, this paper proposes an automatic method to extract burn scar based on Level Set Method (LSM). This method utilizes the advantages of the different features in remote sensing images, as well as considers the practical needs of extracting the burn scar rapidly and automatically. This approach integrates Change Vector Analysis (CVA), Normalized Difference Vegetation Index (NDVI) and the Normalized Burn Ratio (NBR) to obtain difference image and modifies conventional Level Set Method Chan-Vese (C-V) model with a new initial curve which results from a binary image applying K-means method on fitting errors of two near-infrared band images. Landsat 5 TM and Landsat 8 OLI data sets are used to validate the proposed method. Comparison with conventional C-V model, OSTU algorithm, Fuzzy C-mean (FCM) algorithm are made to show that the proposed approach can extract the outline curve of fire burn scar effectively and exactly. The method has higher extraction accuracy and less algorithm complexity than that of the conventional C-V model. PMID:24503563

  4. An Active Contour Model Based on Adaptive Threshold for Extraction of Cerebral Vascular Structures.

    PubMed

    Wang, Jiaxin; Zhao, Shifeng; Liu, Zifeng; Tian, Yun; Duan, Fuqing; Pan, Yutong

    2016-01-01

    Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels.

  5. Take the Reins on Model Quality with ModelCHECK and Gatekeeper

    NASA Technical Reports Server (NTRS)

    Jones, Corey

    2012-01-01

    Model quality and consistency has been an issue for us due to the diverse experience level and imaginative modeling techniques of our users. Fortunately, setting up ModelCHECK and Gatekeeper to enforce our best practices has helped greatly, but it wasn't easy. There were many challenges associated with setting up ModelCHECK and Gatekeeper including: limited documentation, restrictions within ModelCHECK, and resistance from end users. However, we consider ours a success story. In this presentation we will describe how we overcame these obstacles and present some of the details of how we configured them to work for us.

  6. Patient Experience-based Value Sets: Are They Stable?

    PubMed

    Pickard, A Simon; Hung, Yu-Ting; Lin, Fang-Ju; Lee, Todd A

    2017-11-01

    Although societal preference weights are desirable to inform resource-allocation decision-making, patient experienced health state-based value sets can be useful for clinical decision-making, but context may matter. To estimate EQ-5D value sets using visual analog scale (VAS) ratings for patients undergoing knee replacement surgery and compare the estimates before and after surgery. We used the Patient Reported Outcome Measures data collected by the UK National Health Service on patients undergoing knee replacement from 2009 to 2012. Generalized least squares regression models were used to derive value sets based on the EQ-5D-3 level using a development sample before and after surgery, and model performance was examined using a validation sample. A total of 90,450 preoperative and postoperative valuations were included. For preoperative valuations, the largest decrement in VAS values was associated with the dimension of anxiety/depression, followed by self-care, mobility, usual activities, and pain/discomfort. However, pain/discomfort had a greater impact on VAS value decrement in postoperative valuations. Compared with preoperative health problems, postsurgical health problems were associated with larger value decrements, with significant differences in several levels and dimensions, including level 2 of mobility, level 2/3 of usual activities, level 3 of pain/discomfort, and level 3 of anxiety/depression. Similar results were observed across subgroups stratified by age and sex. Findings suggest patient experience-based value sets are not stable (ie, context such as timing matters). However, the knowledge that lower values are assigned to health states postsurgery compared with presurgery may be useful for the patient-doctor decision-making process.

  7. Alternative supply specifications and estimates of regional supply and demand for stumpage.

    Treesearch

    Kent P. Connaughton; David H. Jackson; Gerard A. Majerus

    1988-01-01

    Four plausible sets of stumpage supply and demand equations were developed and estimated; the demand equation was the same for each set, although the supply equation differed. The supply specifications varied from the model of regional excess demand in which National Forest harvest levels were assumed fixed to a more realistic model in which the harvest on the National...

  8. Robust boundary detection of left ventricles on ultrasound images using ASM-level set method.

    PubMed

    Zhang, Yaonan; Gao, Yuan; Li, Hong; Teng, Yueyang; Kang, Yan

    2015-01-01

    Level set method has been widely used in medical image analysis, but it has difficulties when being used in the segmentation of left ventricular (LV) boundaries on echocardiography images because the boundaries are not very distinguish, and the signal-to-noise ratio of echocardiography images is not very high. In this paper, we introduce the Active Shape Model (ASM) into the traditional level set method to enforce shape constraints. It improves the accuracy of boundary detection and makes the evolution more efficient. The experiments conducted on the real cardiac ultrasound image sequences show a positive and promising result.

  9. Stability issues of nonlocal gravity during primordial inflation

    NASA Astrophysics Data System (ADS)

    Belgacem, Enis; Cusin, Giulia; Foffa, Stefano; Maggiore, Michele; Mancarella, Michele

    2018-01-01

    We study the cosmological evolution of some nonlocal gravity models, when the initial conditions are set during a phase of primordial inflation. We examine in particular three models, the so-called RT, RR and Δ4 models, previously introduced by our group. We find that, during inflation, the RT model has a viable background evolution, but at the level of cosmological perturbations develops instabilities that make it nonviable. In contrast, the RR and Δ4 models have a viable evolution even when their initial conditions are set during a phase of primordial inflation.

  10. A High-Resolution Tile-Based Approach for Classifying Biological Regions in Whole-Slide Histopathological Images

    PubMed Central

    Hoffman, R.A.; Kothari, S.; Phan, J.H.; Wang, M.D.

    2016-01-01

    Computational analysis of histopathological whole slide images (WSIs) has emerged as a potential means for improving cancer diagnosis and prognosis. However, an open issue relating to the automated processing of WSIs is the identification of biological regions such as tumor, stroma, and necrotic tissue on the slide. We develop a method for classifying WSI portions (512x512-pixel tiles) into biological regions by (1) extracting a set of 461 image features from each WSI tile, (2) optimizing tile-level prediction models using nested cross-validation on a small (600 tile) manually annotated tile-level training set, and (3) validating the models against a much larger (1.7x106 tile) data set for which ground truth was available on the whole-slide level. We calculated the predicted prevalence of each tissue region and compared this prevalence to the ground truth prevalence for each image in an independent validation set. Results show significant correlation between the predicted (using automated system) and reported biological region prevalences with p < 0.001 for eight of nine cases considered. PMID:27532012

  11. A High-Resolution Tile-Based Approach for Classifying Biological Regions in Whole-Slide Histopathological Images.

    PubMed

    Hoffman, R A; Kothari, S; Phan, J H; Wang, M D

    Computational analysis of histopathological whole slide images (WSIs) has emerged as a potential means for improving cancer diagnosis and prognosis. However, an open issue relating to the automated processing of WSIs is the identification of biological regions such as tumor, stroma, and necrotic tissue on the slide. We develop a method for classifying WSI portions (512x512-pixel tiles) into biological regions by (1) extracting a set of 461 image features from each WSI tile, (2) optimizing tile-level prediction models using nested cross-validation on a small (600 tile) manually annotated tile-level training set, and (3) validating the models against a much larger (1.7x10 6 tile) data set for which ground truth was available on the whole-slide level. We calculated the predicted prevalence of each tissue region and compared this prevalence to the ground truth prevalence for each image in an independent validation set. Results show significant correlation between the predicted (using automated system) and reported biological region prevalences with p < 0.001 for eight of nine cases considered.

  12. Stress among nurses working in emergency, anesthesiology and intensive care units depends on qualification: a Job Demand-Control survey.

    PubMed

    Trousselard, Marion; Dutheil, Frédéric; Naughton, Geraldine; Cosserant, Sylvie; Amadon, Sylvie; Dualé, Christian; Schoeffler, Pierre

    2016-02-01

    The nurse stress literature reports an overwhelming culture of acceptance and expectation of work stressors, ironically linked to the control of the workplace to effectively and proactively manage stress. The stressors involved in delivering "stress management" have been well studied in nursing-related workplaces, especially in acute care settings in accordance with the Karasek Job Demand-Control-Support (JDCS) model. However, little is known about the effects of specificity of an acute care unit and the level of qualifications on stress experienced by nurses. A survey using the JDCS model was conducted among 385 nurses working in three different acute care units (anesthesiology, emergency and intensive care unit) from a university hospital. Specific questions explored variables such as gender, acute care units, level of qualification and working experience. Two hundred questionnaires were returned. A high level of job strain was highlighted without a gender effect and in the absence of isostrain. Nurses from acute care units were located in the high stress quadrant of the JDCS model. Conversely, other nurses were commonly located in the "active" quadrant. Independent of acute care settings, the highest level of education was associated with the highest job strain and the lowest level of control. In an acute care setting, a high level of education was a key factor for high job stress and was associated with a perception of a low control in the workplace, both of which may be predictors of adverse mental health. In particular, the lack of control has been associated with moral distress, a frequently reported characteristic of acute care settings. To enhance the personal and professional outcomes of the advanced registered nurses, strategies for supporting nurses manage daily stressors in acute care are urgently required.

  13. Foundational model of structural connectivity in the nervous system with a schema for wiring diagrams, connectome, and basic plan architecture

    PubMed Central

    Swanson, Larry W.; Bota, Mihail

    2010-01-01

    The nervous system is a biological computer integrating the body's reflex and voluntary environmental interactions (behavior) with a relatively constant internal state (homeostasis)—promoting survival of the individual and species. The wiring diagram of the nervous system's structural connectivity provides an obligatory foundational model for understanding functional localization at molecular, cellular, systems, and behavioral organization levels. This paper provides a high-level, downwardly extendible, conceptual framework—like a compass and map—for describing and exploring in neuroinformatics systems (such as our Brain Architecture Knowledge Management System) the structural architecture of the nervous system's basic wiring diagram. For this, the Foundational Model of Connectivity's universe of discourse is the structural architecture of nervous system connectivity in all animals at all resolutions, and the model includes two key elements—a set of basic principles and an internally consistent set of concepts (defined vocabulary of standard terms)—arranged in an explicitly defined schema (set of relationships between concepts) allowing automatic inferences. In addition, rules and procedures for creating and modifying the foundational model are considered. Controlled vocabularies with broad community support typically are managed by standing committees of experts that create and refine boundary conditions, and a set of rules that are available on the Web. PMID:21078980

  14. A Validated Set of MIDAS V5 Task Network Model Scenarios to Evaluate Nextgen Closely Spaced Parallel Operations Concepts

    NASA Technical Reports Server (NTRS)

    Gore, Brian Francis; Hooey, Becky Lee; Haan, Nancy; Socash, Connie; Mahlstedt, Eric; Foyle, David C.

    2013-01-01

    The Closely Spaced Parallel Operations (CSPO) scenario is a complex, human performance model scenario that tested alternate operator roles and responsibilities to a series of off-nominal operations on approach and landing (see Gore, Hooey, Mahlstedt, Foyle, 2013). The model links together the procedures, equipment, crewstation, and external environment to produce predictions of operator performance in response to Next Generation system designs, like those expected in the National Airspaces NextGen concepts. The task analysis that is contained in the present report comes from the task analysis window in the MIDAS software. These tasks link definitions and states for equipment components, environmental features as well as operational contexts. The current task analysis culminated in 3300 tasks that included over 1000 Subject Matter Expert (SME)-vetted, re-usable procedural sets for three critical phases of flight; the Descent, Approach, and Land procedural sets (see Gore et al., 2011 for a description of the development of the tasks included in the model; Gore, Hooey, Mahlstedt, Foyle, 2013 for a description of the model, and its results; Hooey, Gore, Mahlstedt, Foyle, 2013 for a description of the guidelines that were generated from the models results; Gore, Hooey, Foyle, 2012 for a description of the models implementation and its settings). The rollout, after landing checks, taxi to gate and arrive at gate illustrated in Figure 1 were not used in the approach and divert scenarios exercised. The other networks in Figure 1 set up appropriate context settings for the flight deck.The current report presents the models task decomposition from the tophighest level and decomposes it to finer-grained levels. The first task that is completed by the model is to set all of the initial settings for the scenario runs included in the model (network 75 in Figure 1). This initialization process also resets the CAD graphic files contained with MIDAS, as well as the embedded operator models that comprise MIDAS. Following the initial settings, the model progresses to begin the first tasks required of the two flight deck operators, the Captain (CA) and the First Officer (FO). The task sets will initialize operator specific settings prior to loading all of the alerts, probes, and other events that occur in the scenario. As a note, the CA and FO were terms used in developing this model but the CA can also be thought of as the Pilot Flying (PF), while the FO can be considered the Pilot-Not-Flying (PNF)or Pilot Monitoring (PM). As such, the document refers to the operators as PFCA and PNFFO respectively.

  15. Extended Poisson process modelling and analysis of grouped binary data.

    PubMed

    Faddy, Malcolm J; Smith, David M

    2012-05-01

    A simple extension of the Poisson process results in binomially distributed counts of events in a time interval. A further extension generalises this to probability distributions under- or over-dispersed relative to the binomial distribution. Substantial levels of under-dispersion are possible with this modelling, but only modest levels of over-dispersion - up to Poisson-like variation. Although simple analytical expressions for the moments of these probability distributions are not available, approximate expressions for the mean and variance are derived, and used to re-parameterise the models. The modelling is applied in the analysis of two published data sets, one showing under-dispersion and the other over-dispersion. More appropriate assessment of the precision of estimated parameters and reliable model checking diagnostics follow from this more general modelling of these data sets. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Protein Models Docking Benchmark 2

    PubMed Central

    Anishchenko, Ivan; Kundrotas, Petras J.; Tuzikov, Alexander V.; Vakser, Ilya A.

    2015-01-01

    Structural characterization of protein-protein interactions is essential for our ability to understand life processes. However, only a fraction of known proteins have experimentally determined structures. Such structures provide templates for modeling of a large part of the proteome, where individual proteins can be docked by template-free or template-based techniques. Still, the sensitivity of the docking methods to the inherent inaccuracies of protein models, as opposed to the experimentally determined high-resolution structures, remains largely untested, primarily due to the absence of appropriate benchmark set(s). Structures in such a set should have pre-defined inaccuracy levels and, at the same time, resemble actual protein models in terms of structural motifs/packing. The set should also be large enough to ensure statistical reliability of the benchmarking results. We present a major update of the previously developed benchmark set of protein models. For each interactor, six models were generated with the model-to-native Cα RMSD in the 1 to 6 Å range. The models in the set were generated by a new approach, which corresponds to the actual modeling of new protein structures in the “real case scenario,” as opposed to the previous set, where a significant number of structures were model-like only. In addition, the larger number of complexes (165 vs. 63 in the previous set) increases the statistical reliability of the benchmarking. We estimated the highest accuracy of the predicted complexes (according to CAPRI criteria), which can be attained using the benchmark structures. The set is available at http://dockground.bioinformatics.ku.edu. PMID:25712716

  17. Family Life Education: Curriculum Guide.

    ERIC Educational Resources Information Center

    Zuccaro, Mary; And Others

    Designed to serve as a model and resource for teachers setting up family life education programs at the secondary level, this family life education curriculum guide presents a specific ten-session model for programs at both the high school and junior high school levels. While both programs attempt to provide a broad overview of the areas commonly…

  18. Exploring an Ecological Model of Perceived Usability within a Multi-Tiered Vocabulary Intervention

    ERIC Educational Resources Information Center

    Neugebauer, Sabina R.; Chafouleas, Sandra M.; Coyne, Michael D.; McCoach, D. Betsy; Briesch, Amy M.

    2016-01-01

    The present study examines an ecological model for intervention use to explain student vocabulary performance in a multi-tiered intervention setting. A teacher self-report measure composed of factors hypothesized to influence intervention use at multiple levels (i.e., individual, intervention, and system level) was administered to 54 teachers and…

  19. Research on multi-level decision game strategy of electricity sales market considering ETS and block chain

    NASA Astrophysics Data System (ADS)

    Liu, Jinjie

    2017-08-01

    In order to fully consider the impact of future policies and technologies on the electricity sales market, improve the efficiency of electricity market operation, realize the dual goal of power reform and energy saving and emission reduction, this paper uses multi-level decision theory to put forward the double-layer game model under the consideration of ETS and block chain. We set the maximization of electricity sales profit as upper level objective and establish a game strategy model of electricity purchase; while we set maximization of user satisfaction as lower level objective and build a choice behavior model based on customer satisfaction. This paper applies the strategy to the simulation of a sales company's transaction, and makes a horizontal comparison of the same industry competitors as well as a longitudinal comparison of game strategies considering different factors. The results show that Double-layer game model is reasonable and effective, it can significantly improve the efficiency of the electricity sales companies and user satisfaction, while promoting new energy consumption and achieving energy-saving emission reduction.

  20. Bayesian Model Development for Analysis of Open Source Information to Support the Assessment of Nuclear Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gastelum, Zoe N.; Whitney, Paul D.; White, Amanda M.

    2013-07-15

    Pacific Northwest National Laboratory has spent several years researching, developing, and validating large Bayesian network models to support integration of open source data sets for nuclear proliferation research. Our current work focuses on generating a set of interrelated models for multi-source assessment of nuclear programs, as opposed to a single comprehensive model. By using this approach, we can break down the models to cover logical sub-problems that can utilize different expertise and data sources. This approach allows researchers to utilize the models individually or in combination to detect and characterize a nuclear program and identify data gaps. The models operatemore » at various levels of granularity, covering a combination of state-level assessments with more detailed models of site or facility characteristics. This paper will describe the current open source-driven, nuclear nonproliferation models under development, the pros and cons of the analytical approach, and areas for additional research.« less

  1. The NIST Real-Time Control System (RCS): A Reference Model Architecture for Computational Intelligence

    NASA Technical Reports Server (NTRS)

    Albus, James S.

    1996-01-01

    The Real-time Control System (RCS) developed at NIST and elsewhere over the past two decades defines a reference model architecture for design and analysis of complex intelligent control systems. The RCS architecture consists of a hierarchically layered set of functional processing modules connected by a network of communication pathways. The primary distinguishing feature of the layers is the bandwidth of the control loops. The characteristic bandwidth of each level is determined by the spatial and temporal integration window of filters, the temporal frequency of signals and events, the spatial frequency of patterns, and the planning horizon and granularity of the planners that operate at each level. At each level, tasks are decomposed into sequential subtasks, to be performed by cooperating sets of subordinate agents. At each level, signals from sensors are filtered and correlated with spatial and temporal features that are relevant to the control function being implemented at that level.

  2. A Human-Automation Interface Model to Guide Automation of System Functions: A Way to Achieve Manning Goals in New Systems

    DTIC Science & Technology

    2006-06-01

    levels of automation applied as per Figure 13. .................................. 60 x THIS PAGE...models generated for this thesis were set to run for 60 minutes. To run the simulation for the set time, the analyst provides a random number seed to...1984). The IMPRINT 59 workload value of 60 has been used by a consensus of workload modeling SMEs to represent the ‘high’ threshold, while the

  3. Comparison of eigenvectors for coupled seismo-electromagnetic layered-Earth modelling

    NASA Astrophysics Data System (ADS)

    Grobbe, N.; Slob, E. C.; Thorbecke, J. W.

    2016-07-01

    We study the accuracy and numerical stability of three eigenvector sets for modelling the coupled poroelastic and electromagnetic layered-Earth response. We use a known eigenvector set, its flux-normalized version and a newly derived flux-normalized set. The new set is chosen such that the system is properly uncoupled when the coupling between the poroelastic and electromagnetic fields vanishes. We carry out two different numerical stability tests: the first test focuses on the internal system, eigenvector and eigenvalue consistency; the second test investigates the stability and preciseness of the flux-normalized systems by looking at identity relations. We find that the known set shows the largest deviation for both tests, whereas the new set performs best. In two additional numerical modelling experiments, these numerical inaccuracies are shown to generate numerical noise levels comparable to small signals, such as signals coming from the important interface conversion responses, especially when the coupling coefficient is small. When coupling vanishes completely, the known set does not produce proper results. The new set produces numerically stable and accurate results in all situations. We therefore strongly recommend to use this newly derived set for future layered-Earth seismo-electromagnetic modelling experiments.

  4. Efficient hyperspectral image segmentation using geometric active contour formulation

    NASA Astrophysics Data System (ADS)

    Albalooshi, Fatema A.; Sidike, Paheding; Asari, Vijayan K.

    2014-10-01

    In this paper, we present a new formulation of geometric active contours that embeds the local hyperspectral image information for an accurate object region and boundary extraction. We exploit self-organizing map (SOM) unsupervised neural network to train our model. The segmentation process is achieved by the construction of a level set cost functional, in which, the dynamic variable is the best matching unit (BMU) coming from SOM map. In addition, we use Gaussian filtering to discipline the deviation of the level set functional from a signed distance function and this actually helps to get rid of the re-initialization step that is computationally expensive. By using the properties of the collective computational ability and energy convergence capability of the active control models (ACM) energy functional, our method optimizes the geometric ACM energy functional with lower computational time and smoother level set function. The proposed algorithm starts with feature extraction from raw hyperspectral images. In this step, the principal component analysis (PCA) transformation is employed, and this actually helps in reducing dimensionality and selecting best sets of the significant spectral bands. Then the modified geometric level set functional based ACM is applied on the optimal number of spectral bands determined by the PCA. By introducing local significant spectral band information, our proposed method is capable to force the level set functional to be close to a signed distance function, and therefore considerably remove the need of the expensive re-initialization procedure. To verify the effectiveness of the proposed technique, we use real-life hyperspectral images and test our algorithm in varying textural regions. This framework can be easily adapted to different applications for object segmentation in aerial hyperspectral imagery.

  5. Top-Down CO Emissions Based On IASI Observations and Hemispheric Constraints on OH Levels

    NASA Astrophysics Data System (ADS)

    Müller, J.-F.; Stavrakou, T.; Bauwens, M.; George, M.; Hurtmans, D.; Coheur, P.-F.; Clerbaux, C.; Sweeney, C.

    2018-02-01

    Assessments of carbon monoxide emissions through inverse modeling are dependent on the modeled abundance of the hydroxyl radical (OH) which controls both the primary sink of CO and its photochemical source through hydrocarbon oxidation. However, most chemistry transport models (CTMs) fall short of reproducing constraints on hemispherically averaged OH levels derived from methylchloroform (MCF) observations. Here we construct five different OH fields compatible with MCF-based analyses, and we prescribe those fields in a global CTM to infer CO fluxes based on Infrared Atmospheric Sounding Interferometer (IASI) CO columns. Each OH field leads to a different set of optimized emissions. Comparisons with independent data (surface, ground-based remotely sensed, aircraft) indicate that the inversion adopting the lowest average OH level in the Northern Hemisphere (7.8 × 105 molec cm-3, ˜18% lower than the best estimate based on MCF measurements) provides the best overall agreement with all tested observation data sets.

  6. On the predictive ability of mechanistic models for the Haitian cholera epidemic.

    PubMed

    Mari, Lorenzo; Bertuzzo, Enrico; Finger, Flavio; Casagrandi, Renato; Gatto, Marino; Rinaldo, Andrea

    2015-03-06

    Predictive models of epidemic cholera need to resolve at suitable aggregation levels spatial data pertaining to local communities, epidemiological records, hydrologic drivers, waterways, patterns of human mobility and proxies of exposure rates. We address the above issue in a formal model comparison framework and provide a quantitative assessment of the explanatory and predictive abilities of various model settings with different spatial aggregation levels and coupling mechanisms. Reference is made to records of the recent Haiti cholera epidemics. Our intensive computations and objective model comparisons show that spatially explicit models accounting for spatial connections have better explanatory power than spatially disconnected ones for short-to-intermediate calibration windows, while parsimonious, spatially disconnected models perform better with long training sets. On average, spatially connected models show better predictive ability than disconnected ones. We suggest limits and validity of the various approaches and discuss the pathway towards the development of case-specific predictive tools in the context of emergency management. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Non-linear Equation using Plasma Brain Natriuretic Peptide Levels to Predict Cardiovascular Outcomes in Patients with Heart Failure

    NASA Astrophysics Data System (ADS)

    Fukuda, Hiroki; Suwa, Hideaki; Nakano, Atsushi; Sakamoto, Mari; Imazu, Miki; Hasegawa, Takuya; Takahama, Hiroyuki; Amaki, Makoto; Kanzaki, Hideaki; Anzai, Toshihisa; Mochizuki, Naoki; Ishii, Akira; Asanuma, Hiroshi; Asakura, Masanori; Washio, Takashi; Kitakaze, Masafumi

    2016-11-01

    Brain natriuretic peptide (BNP) is the most effective predictor of outcomes in chronic heart failure (CHF). This study sought to determine the qualitative relationship between the BNP levels at discharge and on the day of cardiovascular events in CHF patients. We devised a mathematical probabilistic model between the BNP levels at discharge (y) and on the day (t) of cardiovascular events after discharge for 113 CHF patients (Protocol I). We then prospectively evaluated this model on another set of 60 CHF patients who were readmitted (Protocol II). P(t|y) was the probability of cardiovascular events occurring after >t, the probability on t was given as p(t|y) = -dP(t|y)/dt, and p(t|y) = pP(t|y) = αyβP(t|y), along with p = αyβ (α and β were constant); the solution was p(t|y) = αyβ exp(-αyβt). We fitted this equation to the data set of Protocol I using the maximum likelihood principle, and we obtained the model p(t|y) = 0.000485y0.24788 exp(-0.000485y0.24788t). The cardiovascular event-free rate was computed as P(t) = 1/60Σi=1,…,60 exp(-0.000485yi0.24788t), based on this model and the BNP levels yi in a data set of Protocol II. We confirmed no difference between this model-based result and the actual event-free rate. In conclusion, the BNP levels showed a non-linear relationship with the day of occurrence of cardiovascular events in CHF patients.

  8. Evaluating the Effect of Flow and Interface Type on Pressures Delivered With Bubble CPAP in a Simulated Model.

    PubMed

    Bailes, Stephanie A; Firestone, Kimberly S; Dunn, Diane K; McNinch, Neil L; Brown, Miraides F; Volsko, Teresa A

    2016-03-01

    Bubble CPAP, used for spontaneously breathing infants to avoid intubation or postextubation support, can be delivered with different interface types. This study compared the effect that interfaces had on CPAP delivery. We hypothesized that there would be no difference between set and measured levels between interface types. A validated preterm infant nasal airway model was attached to the ASL 5000 breathing simulator. The simulator was programmed to deliver active breathing of a surfactant-deficient premature infant with breathing frequency at 70 breaths/min inspiratory time of 0.30 s, resistance of 150 cm H2O/L/s, compliance of 0.5 mL/cm H2O, tidal volume of 5 mL, and esophageal pressure of -10 cm H2O. Nasal CPAP prongs, size 4030, newborn and infant RAM cannulas were connected to a nasal airway model and a bubble CPAP system. CPAP levels were set at 4, 5, 6, 7, 8, and 9 cm H2O with flows of 6, 8, and 10 L/min each. Measurements were recorded after 1 min of stabilization. The analysis was performed using SAS 9.4. The Kolmogorov-Smirnov test assessed normality of the data. The Friedman test was used to compare non-normally distributed repeated measures. The Wilcoxon signed-rank test was used to conduct post hoc analysis. All tests were 2-sided, and P values of <.05 were considered as indicating significant differences unless otherwise indicated. At lower set CPAP levels, 4-6 cm H2O, measured CPAP dropped precipitously with the nasal prongs with the highest flow setting. At higher CPAP levels, 7-9 cm H2O measured CPAP concomitantly increased as the flow setting increased. Statistically significant differences in set and measured CPAP occurred for all devices across all CPAP levels, with the measured CPAP less than set for all conditions, P < .001. Set flow had a profound effect on measured CPAP. The concomitant drop in measured pressure with high and low flows could be attributed to increased resistance to spontaneous breathing or insufficient flow to meet inspiratory demand. Clinicians should be aware of the effect that the interface and flow have on CPAP delivery. Copyright © 2016 by Daedalus Enterprises.

  9. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar (registered trademark)-Fiber-Reinforced Polymer-Matrix Composites

    DTIC Science & Technology

    2013-03-01

    of coarser-scale materials and structures containing Kevlar fibers (e.g., yarns, fabrics, plies, lamina, and laminates ). Journal of Materials...Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar -Fiber-Reinforced Polymer-Matrix Composites M. Grujicic, B. Pandurangan, J.S...extensive set of molecular-level computational analyses regarding the role of various microstructural/morphological defects on the Kevlar fiber

  10. Change detection of polarimetric SAR images based on the KummerU Distribution

    NASA Astrophysics Data System (ADS)

    Chen, Quan; Zou, Pengfei; Li, Zhen; Zhang, Ping

    2014-11-01

    In the society of PolSAR image segmentation, change detection and classification, the classical Wishart distribution has been used for a long time, but it especially suit to low-resolution SAR image, because in traditional sensors, only a small number of scatterers are present in each resolution cell. With the improving of SAR systems these years, the classical statistical models can therefore be reconsidered for high resolution and polarimetric information contained in the images acquired by these advanced systems. In this study, SAR image segmentation algorithm based on level-set method, added with distance regularized level-set evolution (DRLSE) is performed using Envisat/ASAR single-polarization data and Radarsat-2 polarimetric images, respectively. KummerU heterogeneous clutter model is used in the later to overcome the homogeneous hypothesis at high resolution cell. An enhanced distance regularized level-set evolution (DRLSE-E) is also applied in the later, to ensure accurate computation and stable level-set evolution. Finally, change detection based on four polarimetric Radarsat-2 time series images is carried out at Genhe area of Inner Mongolia Autonomous Region, NorthEastern of China, where a heavy flood disaster occurred during the summer of 2013, result shows the recommend segmentation method can detect the change of watershed effectively.

  11. Environmental optimal control strategies based on plant canopy photosynthesis responses and greenhouse climate model

    NASA Astrophysics Data System (ADS)

    Deng, Lujuan; Xie, Songhe; Cui, Jiantao; Liu, Tao

    2006-11-01

    It is the essential goal of intelligent greenhouse environment optimal control to enhance income of cropper and energy save. There were some characteristics such as uncertainty, imprecision, nonlinear, strong coupling, bigger inertia and different time scale in greenhouse environment control system. So greenhouse environment optimal control was not easy and especially model-based optimal control method was more difficult. So the optimal control problem of plant environment in intelligent greenhouse was researched. Hierarchical greenhouse environment control system was constructed. In the first level data measuring was carried out and executive machine was controlled. Optimal setting points of climate controlled variable in greenhouse was calculated and chosen in the second level. Market analysis and planning were completed in third level. The problem of the optimal setting point was discussed in this paper. Firstly the model of plant canopy photosynthesis responses and the model of greenhouse climate model were constructed. Afterwards according to experience of the planting expert, in daytime the optimal goals were decided according to the most maximal photosynthesis rate principle. In nighttime on plant better growth conditions the optimal goals were decided by energy saving principle. Whereafter environment optimal control setting points were computed by GA. Compared the optimal result and recording data in real system, the method is reasonable and can achieve energy saving and the maximal photosynthesis rate in intelligent greenhouse

  12. Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance.

    PubMed

    Ngo, Tuan Anh; Lu, Zhi; Carneiro, Gustavo

    2017-01-01

    We introduce a new methodology that combines deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance (MR) data. This combination is relevant for segmentation problems, where the visual object of interest presents large shape and appearance variations, but the annotated training set is small, which is the case for various medical image analysis applications, including the one considered in this paper. In particular, level set methods are based on shape and appearance terms that use small training sets, but present limitations for modelling the visual object variations. Deep learning methods can model such variations using relatively small amounts of annotated training, but they often need to be regularised to produce good generalisation. Therefore, the combination of these methods brings together the advantages of both approaches, producing a methodology that needs small training sets and produces accurate segmentation results. We test our methodology on the MICCAI 2009 left ventricle segmentation challenge database (containing 15 sequences for training, 15 for validation and 15 for testing), where our approach achieves the most accurate results in the semi-automated problem and state-of-the-art results for the fully automated challenge. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  13. Application of class-modelling techniques to infrared spectra for analysis of pork adulteration in beef jerkys.

    PubMed

    Kuswandi, Bambang; Putri, Fitra Karima; Gani, Agus Abdul; Ahmad, Musa

    2015-12-01

    The use of chemometrics to analyse infrared spectra to predict pork adulteration in the beef jerky (dendeng) was explored. In the first step, the analysis of pork in the beef jerky formulation was conducted by blending the beef jerky with pork at 5-80 % levels. Then, they were powdered and classified into training set and test set. The second step, the spectra of the two sets was recorded by Fourier Transform Infrared (FTIR) spectroscopy using atenuated total reflection (ATR) cell on the basis of spectral data at frequency region 4000-700 cm(-1). The spectra was categorised into four data sets, i.e. (a) spectra in the whole region as data set 1; (b) spectra in the fingerprint region (1500-600 cm(-1)) as data set 2; (c) spectra in the whole region with treatment as data set 3; and (d) spectra in the fingerprint region with treatment as data set 4. The third step, the chemometric analysis were employed using three class-modelling techniques (i.e. LDA, SIMCA, and SVM) toward the data sets. Finally, the best result of the models towards the data sets on the adulteration analysis of the samples were selected and the best model was compared with the ELISA method. From the chemometric results, the LDA model on the data set 1 was found to be the best model, since it could classify and predict 100 % accuracy of the sample tested. The LDA model was applied toward the real samples of the beef jerky marketed in Jember, and the results showed that the LDA model developed was in good agreement with the ELISA method.

  14. Colorimetric characterization of digital cameras with unrestricted capture settings applicable for different illumination circumstances

    NASA Astrophysics Data System (ADS)

    Fang, Jingyu; Xu, Haisong; Wang, Zhehong; Wu, Xiaomin

    2016-05-01

    With colorimetric characterization, digital cameras can be used as image-based tristimulus colorimeters for color communication. In order to overcome the restriction of fixed capture settings adopted in the conventional colorimetric characterization procedures, a novel method was proposed considering capture settings. The method calculating colorimetric value of the measured image contains five main steps, including conversion from RGB values to equivalent ones of training settings through factors based on imaging system model so as to build the bridge between different settings, scaling factors involved in preparation steps for transformation mapping to avoid errors resulted from nonlinearity of polynomial mapping for different ranges of illumination levels. The experiment results indicate that the prediction error of the proposed method, which was measured by CIELAB color difference formula, reaches less than 2 CIELAB units under different illumination levels and different correlated color temperatures. This prediction accuracy for different capture settings remains the same level as the conventional method for particular lighting condition.

  15. Predictive Eco-Cruise Control (ECC) system : model development, modeling and potential benefits.

    DOT National Transportation Integrated Search

    2013-02-01

    The research develops a reference model of a predictive eco-cruise control (ECC) system that intelligently modulates vehicle speed within a pre-set speed range to minimize vehicle fuel consumption levels using roadway topographic information. The stu...

  16. Optimisation of dispersion parameters of Gaussian plume model for CO₂ dispersion.

    PubMed

    Liu, Xiong; Godbole, Ajit; Lu, Cheng; Michal, Guillaume; Venton, Philip

    2015-11-01

    The carbon capture and storage (CCS) and enhanced oil recovery (EOR) projects entail the possibility of accidental release of carbon dioxide (CO2) into the atmosphere. To quantify the spread of CO2 following such release, the 'Gaussian' dispersion model is often used to estimate the resulting CO2 concentration levels in the surroundings. The Gaussian model enables quick estimates of the concentration levels. However, the traditionally recommended values of the 'dispersion parameters' in the Gaussian model may not be directly applicable to CO2 dispersion. This paper presents an optimisation technique to obtain the dispersion parameters in order to achieve a quick estimation of CO2 concentration levels in the atmosphere following CO2 blowouts. The optimised dispersion parameters enable the Gaussian model to produce quick estimates of CO2 concentration levels, precluding the necessity to set up and run much more complicated models. Computational fluid dynamics (CFD) models were employed to produce reference CO2 dispersion profiles in various atmospheric stability classes (ASC), different 'source strengths' and degrees of ground roughness. The performance of the CFD models was validated against the 'Kit Fox' field measurements, involving dispersion over a flat horizontal terrain, both with low and high roughness regions. An optimisation model employing a genetic algorithm (GA) to determine the best dispersion parameters in the Gaussian plume model was set up. Optimum values of the dispersion parameters for different ASCs that can be used in the Gaussian plume model for predicting CO2 dispersion were obtained.

  17. What Is Wrong with ANOVA and Multiple Regression? Analyzing Sentence Reading Times with Hierarchical Linear Models

    ERIC Educational Resources Information Center

    Richter, Tobias

    2006-01-01

    Most reading time studies using naturalistic texts yield data sets characterized by a multilevel structure: Sentences (sentence level) are nested within persons (person level). In contrast to analysis of variance and multiple regression techniques, hierarchical linear models take the multilevel structure of reading time data into account. They…

  18. Cerebrospinal fluid neopterin decay characteristics after initiation of antiretroviral therapy.

    PubMed

    Yilmaz, Aylin; Yiannoutsos, Constantin T; Fuchs, Dietmar; Price, Richard W; Crozier, Kathryn; Hagberg, Lars; Spudich, Serena; Gisslén, Magnus

    2013-05-10

    Neopterin, a biomarker of macrophage activation, is elevated in the cerebrospinal fluid (CSF) of most HIV-infected individuals and decreases after initiation of antiretroviral therapy (ART). We studied decay characteristics of neopterin in CSF and blood after commencement of ART in HIV-infected subjects and estimated the set-point levels of CSF neopterin after ART-mediated viral suppression. CSF and blood neopterin were longitudinally measured in 102 neurologically asymptomatic HIV-infected subjects who were treatment-naïve or had been off ART for ≥ 6 months. We used a non-linear model to estimate neopterin decay in response to ART and a stable neopterin set-point attained after prolonged ART. Seven subjects with HIV-associated dementia (HAD) who initiated ART were studied for comparison. Non-HAD patients were followed for a median 84.7 months. Though CSF neopterin concentrations decreased rapidly after ART initiation, it was estimated that set-point levels would be below normal CSF neopterin levels (<5.8 nmol/L) in only 60/102 (59%) of these patients. Pre-ART CSF neopterin was the primary predictor of set-point (P <0.001). HAD subjects had higher baseline median CSF neopterin levels than non-HAD subjects (P <0.0001). Based on the non-HAD model, only 14% of HAD patients were predicted to reach normal levels. After virologically suppressive ART, abnormal CSF neopterin levels persisted in 41% of non-HAD and the majority of HAD patients. ART is not fully effective in ameliorating macrophage activation in CNS as well as blood, especially in subjects with higher pre-ART levels of immune activation.

  19. Preferential attachment in multiple trade networks

    NASA Astrophysics Data System (ADS)

    Foschi, Rachele; Riccaboni, Massimo; Schiavo, Stefano

    2014-08-01

    In this paper we develop a model for the evolution of multiple networks which is able to replicate the concentrated and sparse nature of world trade data. Our model is an extension of the preferential attachment growth model to the case of multiple networks. Countries trade a variety of goods of different complexity. Every country progressively evolves from trading less sophisticated to high-tech goods. The probabilities of capturing more trade opportunities at a given level of complexity and of starting to trade more complex goods are both proportional to the number of existing trade links. We provide a set of theoretical predictions and simulative results. A calibration exercise shows that our model replicates the same concentration level of world trade as well as the sparsity pattern of the trade matrix. We also discuss a set of numerical solutions to deal with large multiple networks.

  20. LBM-EP: Lattice-Boltzmann method for fast cardiac electrophysiology simulation from 3D images.

    PubMed

    Rapaka, S; Mansi, T; Georgescu, B; Pop, M; Wright, G A; Kamen, A; Comaniciu, Dorin

    2012-01-01

    Current treatments of heart rhythm troubles require careful planning and guidance for optimal outcomes. Computational models of cardiac electrophysiology are being proposed for therapy planning but current approaches are either too simplified or too computationally intensive for patient-specific simulations in clinical practice. This paper presents a novel approach, LBM-EP, to solve any type of mono-domain cardiac electrophysiology models at near real-time that is especially tailored for patient-specific simulations. The domain is discretized on a Cartesian grid with a level-set representation of patient's heart geometry, previously estimated from images automatically. The cell model is calculated node-wise, while the transmembrane potential is diffused using Lattice-Boltzmann method within the domain defined by the level-set. Experiments on synthetic cases, on a data set from CESC'10 and on one patient with myocardium scar showed that LBM-EP provides results comparable to an FEM implementation, while being 10 - 45 times faster. Fast, accurate, scalable and requiring no specific meshing, LBM-EP paves the way to efficient and detailed models of cardiac electrophysiology for therapy planning.

  1. In search of a common currency: A comparison of seven EQ-5D-5L value sets.

    PubMed

    Olsen, Jan Abel; Lamu, Admassu N; Cairns, John

    2018-01-01

    The recently published EQ-5D-5L value sets from Canada, England, Japan, Korea, the Netherlands, Spain, and Uruguay are compared with an aim to identify any similarities in preference pattern. We identify some striking similarities for Canada, England, the Netherlands, and Spain in terms of (a) the relative importance of the 5 dimensions; (b) the relative utility decrements across the 5 levels; and (c) the scale length. On the basis of the observed similarities across these 4 Western countries, we develop an amalgam model, WePP (western preference pattern), and compare it with these 4 value sets. The values generated by this model show a high degree of concordance with those of England, Canada, and Spain. Patient level data were obtained from the Multi-Instrument Comparison project, which includes participants from 6 countries in 7 disease groups (N = 7,933): The WePP values lie within the confidence intervals for the value sets in Canada, England, and Spain across the whole severity distribution. We suggest that the WePP model represents a useful "common currency" for (Western) countries that have not yet developed their own value sets. Further research is needed to disentangle the differences between value sets due to preference heterogeneity from those stemming from methodological differences. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Models of care for the management of hepatitis C virus among people who inject drugs: one size does not fit all.

    PubMed

    Bruggmann, Philip; Litwin, Alain H

    2013-08-01

    One of the major obstacles to hepatitis C virus (HCV) care in people who inject drugs (PWID) is the lack of treatment settings that are suitably adapted for the needs of this vulnerable population. Nevertheless, HCV treatment has been delivered successfully to PWID through various multidisciplinary models such as community-based clinics, substance abuse treatment clinics, and specialized hospital-based clinics. Models may be integrated in primary care--all under one roof in either addiction care units or general practitioner-based models--or can occur in secondary or tertiary care settings. Additional innovative models include directly observed therapy and peer-based models. A high level of acceptance of the individual life circumstances of PWID rather than rigid exclusion criteria will determine the level of success of any model of HCV management. The impact of highly potent and well-tolerated interferon-free HCV treatment regimens will remain negligible as long as access to therapy cannot be expanded to the most affected risk groups.

  3. Rapid calculation of accurate atomic charges for proteins via the electronegativity equalization method.

    PubMed

    Ionescu, Crina-Maria; Geidl, Stanislav; Svobodová Vařeková, Radka; Koča, Jaroslav

    2013-10-28

    We focused on the parametrization and evaluation of empirical models for fast and accurate calculation of conformationally dependent atomic charges in proteins. The models were based on the electronegativity equalization method (EEM), and the parametrization procedure was tailored to proteins. We used large protein fragments as reference structures and fitted the EEM model parameters using atomic charges computed by three population analyses (Mulliken, Natural, iterative Hirshfeld), at the Hartree-Fock level with two basis sets (6-31G*, 6-31G**) and in two environments (gas phase, implicit solvation). We parametrized and successfully validated 24 EEM models. When tested on insulin and ubiquitin, all models reproduced quantum mechanics level charges well and were consistent with respect to population analysis and basis set. Specifically, the models showed on average a correlation of 0.961, RMSD 0.097 e, and average absolute error per atom 0.072 e. The EEM models can be used with the freely available EEM implementation EEM_SOLVER.

  4. Development and benchmarking of TASSER(iter) for the iterative improvement of protein structure predictions.

    PubMed

    Lee, Seung Yup; Skolnick, Jeffrey

    2007-07-01

    To improve the accuracy of TASSER models especially in the limit where threading provided template alignments are of poor quality, we have developed the TASSER(iter) algorithm which uses the templates and contact restraints from TASSER generated models for iterative structure refinement. We apply TASSER(iter) to a large benchmark set of 2,773 nonhomologous single domain proteins that are < or = 200 in length and that cover the PDB at the level of 35% pairwise sequence identity. Overall, TASSER(iter) models have a smaller global average RMSD of 5.48 A compared to 5.81 A RMSD of the original TASSER models. Classifying the targets by the level of prediction difficulty (where Easy targets have a good template with a corresponding good threading alignment, Medium targets have a good template but a poor alignment, and Hard targets have an incorrectly identified template), TASSER(iter) (TASSER) models have an average RMSD of 4.15 A (4.35 A) for the Easy set and 9.05 A (9.52 A) for the Hard set. The largest reduction of average RMSD is for the Medium set where the TASSER(iter) models have an average global RMSD of 5.67 A compared to 6.72 A of the TASSER models. Seventy percent of the Medium set TASSER(iter) models have a smaller RMSD than the TASSER models, while 63% of the Easy and 60% of the Hard TASSER models are improved by TASSER(iter). For the foldable cases, where the targets have a RMSD to the native <6.5 A, TASSER(iter) shows obvious improvement over TASSER models: For the Medium set, it improves the success rate from 57.0 to 67.2%, followed by the Hard targets where the success rate improves from 32.0 to 34.8%, with the smallest improvement in the Easy targets from 82.6 to 84.0%. These results suggest that TASSER(iter) can provide more reliable predictions for targets of Medium difficulty, a range that had resisted improvement in the quality of protein structure predictions. 2007 Wiley-Liss, Inc.

  5. A General Water Resources Regulation Software System in China

    NASA Astrophysics Data System (ADS)

    LEI, X.

    2017-12-01

    To avoid iterative development of core modules in water resource normal regulation and emergency regulation and improve the capability of maintenance and optimization upgrading of regulation models and business logics, a general water resources regulation software framework was developed based on the collection and analysis of common demands for water resources regulation and emergency management. It can provide a customizable, secondary developed and extensible software framework for the three-level platform "MWR-Basin-Province". Meanwhile, this general software system can realize business collaboration and information sharing of water resources regulation schemes among the three-level platforms, so as to improve the decision-making ability of national water resources regulation. There are four main modules involved in the general software system: 1) A complete set of general water resources regulation modules allows secondary developer to custom-develop water resources regulation decision-making systems; 2) A complete set of model base and model computing software released in the form of Cloud services; 3) A complete set of tools to build the concept map and model system of basin water resources regulation, as well as a model management system to calibrate and configure model parameters; 4) A database which satisfies business functions and functional requirements of general water resources regulation software can finally provide technical support for building basin or regional water resources regulation models.

  6. A fuzzy set preference model for market share analysis

    NASA Technical Reports Server (NTRS)

    Turksen, I. B.; Willson, Ian A.

    1992-01-01

    Consumer preference models are widely used in new product design, marketing management, pricing, and market segmentation. The success of new products depends on accurate market share prediction and design decisions based on consumer preferences. The vague linguistic nature of consumer preferences and product attributes, combined with the substantial differences between individuals, creates a formidable challenge to marketing models. The most widely used methodology is conjoint analysis. Conjoint models, as currently implemented, represent linguistic preferences as ratio or interval-scaled numbers, use only numeric product attributes, and require aggregation of individuals for estimation purposes. It is not surprising that these models are costly to implement, are inflexible, and have a predictive validity that is not substantially better than chance. This affects the accuracy of market share estimates. A fuzzy set preference model can easily represent linguistic variables either in consumer preferences or product attributes with minimal measurement requirements (ordinal scales), while still estimating overall preferences suitable for market share prediction. This approach results in flexible individual-level conjoint models which can provide more accurate market share estimates from a smaller number of more meaningful consumer ratings. Fuzzy sets can be incorporated within existing preference model structures, such as a linear combination, using the techniques developed for conjoint analysis and market share estimation. The purpose of this article is to develop and fully test a fuzzy set preference model which can represent linguistic variables in individual-level models implemented in parallel with existing conjoint models. The potential improvements in market share prediction and predictive validity can substantially improve management decisions about what to make (product design), for whom to make it (market segmentation), and how much to make (market share prediction).

  7. Model tracking system for low-level radioactive waste disposal facilities: License application interrogatories and responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benbennick, M.E.; Broton, M.S.; Fuoto, J.S.

    This report describes a model tracking system for a low-level radioactive waste (LLW) disposal facility license application. In particular, the model tracks interrogatories (questions, requests for information, comments) and responses. A set of requirements and desired features for the model tracking system was developed, including required structure and computer screens. Nine tracking systems were then reviewed against the model system requirements and only two were found to meet all requirements. Using Kepner-Tregoe decision analysis, a model tracking system was selected.

  8. Individual-and Setting-Level Correlates of Secondary Traumatic Stress in Rape Crisis Center Staff.

    PubMed

    Dworkin, Emily R; Sorell, Nicole R; Allen, Nicole E

    2016-02-01

    Secondary traumatic stress (STS) is an issue of significant concern among providers who work with survivors of sexual assault. Although STS has been studied in relation to individual-level characteristics of a variety of types of trauma responders, less research has focused specifically on rape crisis centers as environments that might convey risk or protection from STS, and no research to knowledge has modeled setting-level variation in correlates of STS. The current study uses a sample of 164 staff members representing 40 rape crisis centers across a single Midwestern state to investigate the staff member-and agency-level correlates of STS. Results suggest that correlates exist at both levels of analysis. Younger age and greater severity of sexual assault history were statistically significant individual-level predictors of increased STS. Greater frequency of supervision was more strongly related to secondary stress for non-advocates than for advocates. At the setting level, lower levels of supervision and higher client loads agency-wide accounted for unique variance in staff members' STS. These findings suggest that characteristics of both providers and their settings are important to consider when understanding their STS. © The Author(s) 2014.

  9. [Settings-based prevention of overweight in childhood and adolescents : Theoretical foundation, determinants and intervention planning].

    PubMed

    Quilling, Eike; Dadaczynski, Kevin; Müller, Merle

    2016-11-01

    Childhood and adolescent overweight can still be seen as a global public health problem. Based on our socioeconomic understanding, overweight is the result of a complex interplay of a diverse array of factors acting on different levels. Hence, in addition to individual level determinants overweight prevention should also address environmental related factors as part of a holistic and integrated setting approach. This paper aims to discuss the setting approach with regard to overweight prevention in childhood and adolescence. In addition to a summary of environmental factors and their empirical influence on the determinants of overweight, theoretical approaches and planning models of settings-based overweight prevention are discussed. While settings can be characterized as specific social-spatial subsystems (e. g. kindergarten, schools), living environments relate to complex subject-oriented environments that may include various subsystems. Direct social contexts, educational contexts and community contexts as relevant systems for young people contain different evidence-based influences that need to be taken into account in settings based overweight prevention. To support a theory-driven intervention, numerous planning models exist, which are presented here. Given the strengthening of environments for health within the prevention law, the underlying settings approach also needs further development with regard to overweigth prevention. This includes the improvement of the theoretical foundation by aligning intervention practice of planning models, which also has a positive influence on the ability to measure its success.

  10. Applying Mondrian Cross-Conformal Prediction To Estimate Prediction Confidence on Large Imbalanced Bioactivity Data Sets.

    PubMed

    Sun, Jiangming; Carlsson, Lars; Ahlberg, Ernst; Norinder, Ulf; Engkvist, Ola; Chen, Hongming

    2017-07-24

    Conformal prediction has been proposed as a more rigorous way to define prediction confidence compared to other application domain concepts that have earlier been used for QSAR modeling. One main advantage of such a method is that it provides a prediction region potentially with multiple predicted labels, which contrasts to the single valued (regression) or single label (classification) output predictions by standard QSAR modeling algorithms. Standard conformal prediction might not be suitable for imbalanced data sets. Therefore, Mondrian cross-conformal prediction (MCCP) which combines the Mondrian inductive conformal prediction with cross-fold calibration sets has been introduced. In this study, the MCCP method was applied to 18 publicly available data sets that have various imbalance levels varying from 1:10 to 1:1000 (ratio of active/inactive compounds). Our results show that MCCP in general performed well on bioactivity data sets with various imbalance levels. More importantly, the method not only provides confidence of prediction and prediction regions compared to standard machine learning methods but also produces valid predictions for the minority class. In addition, a compound similarity based nonconformity measure was investigated. Our results demonstrate that although it gives valid predictions, its efficiency is much worse than that of model dependent metrics.

  11. Mixed Model Methods for Genomic Prediction and Variance Component Estimation of Additive and Dominance Effects Using SNP Markers

    PubMed Central

    Da, Yang; Wang, Chunkao; Wang, Shengwen; Hu, Guo

    2014-01-01

    We established a genomic model of quantitative trait with genomic additive and dominance relationships that parallels the traditional quantitative genetics model, which partitions a genotypic value as breeding value plus dominance deviation and calculates additive and dominance relationships using pedigree information. Based on this genomic model, two sets of computationally complementary but mathematically identical mixed model methods were developed for genomic best linear unbiased prediction (GBLUP) and genomic restricted maximum likelihood estimation (GREML) of additive and dominance effects using SNP markers. These two sets are referred to as the CE and QM sets, where the CE set was designed for large numbers of markers and the QM set was designed for large numbers of individuals. GBLUP and associated accuracy formulations for individuals in training and validation data sets were derived for breeding values, dominance deviations and genotypic values. Simulation study showed that GREML and GBLUP generally were able to capture small additive and dominance effects that each accounted for 0.00005–0.0003 of the phenotypic variance and GREML was able to differentiate true additive and dominance heritability levels. GBLUP of the total genetic value as the summation of additive and dominance effects had higher prediction accuracy than either additive or dominance GBLUP, causal variants had the highest accuracy of GREML and GBLUP, and predicted accuracies were in agreement with observed accuracies. Genomic additive and dominance relationship matrices using SNP markers were consistent with theoretical expectations. The GREML and GBLUP methods can be an effective tool for assessing the type and magnitude of genetic effects affecting a phenotype and for predicting the total genetic value at the whole genome level. PMID:24498162

  12. Mixed model methods for genomic prediction and variance component estimation of additive and dominance effects using SNP markers.

    PubMed

    Da, Yang; Wang, Chunkao; Wang, Shengwen; Hu, Guo

    2014-01-01

    We established a genomic model of quantitative trait with genomic additive and dominance relationships that parallels the traditional quantitative genetics model, which partitions a genotypic value as breeding value plus dominance deviation and calculates additive and dominance relationships using pedigree information. Based on this genomic model, two sets of computationally complementary but mathematically identical mixed model methods were developed for genomic best linear unbiased prediction (GBLUP) and genomic restricted maximum likelihood estimation (GREML) of additive and dominance effects using SNP markers. These two sets are referred to as the CE and QM sets, where the CE set was designed for large numbers of markers and the QM set was designed for large numbers of individuals. GBLUP and associated accuracy formulations for individuals in training and validation data sets were derived for breeding values, dominance deviations and genotypic values. Simulation study showed that GREML and GBLUP generally were able to capture small additive and dominance effects that each accounted for 0.00005-0.0003 of the phenotypic variance and GREML was able to differentiate true additive and dominance heritability levels. GBLUP of the total genetic value as the summation of additive and dominance effects had higher prediction accuracy than either additive or dominance GBLUP, causal variants had the highest accuracy of GREML and GBLUP, and predicted accuracies were in agreement with observed accuracies. Genomic additive and dominance relationship matrices using SNP markers were consistent with theoretical expectations. The GREML and GBLUP methods can be an effective tool for assessing the type and magnitude of genetic effects affecting a phenotype and for predicting the total genetic value at the whole genome level.

  13. Application of a tree-level hydrodynamic model to simulate plot-level transpiration in the upland oak/pine forest in New Jersey

    NASA Astrophysics Data System (ADS)

    Mirfenderesgi, G.; Bohrer, G.; Matheny, A. M.; Fatichi, S.; Frasson, R. P. M.; Schafer, K. V.

    2015-12-01

    The Finite-Elements Tree-Crown Hydrodynamics model version 2 (FETCH2) simulates water flow through the tree using the porous media analogy. Empirical equations relate water potential within the stem to stomatal conductance at the leaf level. Leaves are connected to the stem at each height. While still simplified, this approach brings realism to the simulation of transpiration compared with models where stomatal conductance is directly linked to soil moisture. The FETCH2 model accounts for plant hydraulic traits such as xylem conductivity, area of hydro-active xylem, vertical distribution of leaf area, and maximal and minimal xylem water content, and their effect on the dynamics of water flow in the tree system. Such a modeling tool enhances our understanding of the role of hydraulic limitations and allows us to incorporate the effects of short-term water stresses on transpiration. Here, we use FETCH2 parameterized and evaluated with a large sap-flow observations data set, collected from 21 trees of two genera (oak/pine) at Silas Little Experimental Forest, NJ. The well-drained deep sandy soil leads to water stress during many days throughout the growing season. We conduct a set of tree-level transpiration simulations, and use the results to evaluate the effects of different hydraulic strategies on daily transpiration and water use efficiency. We define these "hydraulic strategies" through combinations of multiple sets of parameters in the model that describe the root, stem and leaf hydraulics. After evaluating the performance of the model, we use the results to shed light on the future trajectory of the forest in terms of species-specific transpiration responses. Application of the model on the two co-occurring oak species (Quercus prinus L. and Quercus velutina Lam) shows that the applied modeling approach was successfully captures the differences in water-use strategy through optimizing multiple physiological and hydraulic parameters.

  14. A model to predict accommodations needed by disabled persons.

    PubMed

    Babski-Reeves, Kari; Williams, Sabrina; Waters, Tzer Nan; Crumpton-Young, Lesia L; McCauley-Bell, Pamela

    2005-09-01

    In this paper, several approaches to assist employers in the accommodation process for disabled employees are discussed and a mathematical model is proposed to assist employers in predicting the accommodation level needed by an individual with a mobility-related disability. This study investigates the validity and reliability of this model in assessing the accommodation level needed by individuals utilizing data collected from twelve individuals with mobility-related disabilities. Based on the results of the statistical analyses, this proposed model produces a feasible preliminary measure for assessing the accommodation level needed for persons with mobility-related disabilities. Suggestions for practical application of this model in an industrial setting are addressed.

  15. Chemical structure-based predictive model for methanogenic anaerobic biodegradation potential.

    PubMed

    Meylan, William; Boethling, Robert; Aronson, Dallas; Howard, Philip; Tunkel, Jay

    2007-09-01

    Many screening-level models exist for predicting aerobic biodegradation potential from chemical structure, but anaerobic biodegradation generally has been ignored by modelers. We used a fragment contribution approach to develop a model for predicting biodegradation potential under methanogenic anaerobic conditions. The new model has 37 fragments (substructures) and classifies a substance as either fast or slow, relative to the potential to be biodegraded in the "serum bottle" anaerobic biodegradation screening test (Organization for Economic Cooperation and Development Guideline 311). The model correctly classified 90, 77, and 91% of the chemicals in the training set (n = 169) and two independent validation sets (n = 35 and 23), respectively. Accuracy of predictions of fast and slow degradation was equal for training-set chemicals, but fast-degradation predictions were less accurate than slow-degradation predictions for the validation sets. Analysis of the signs of the fragment coefficients for this and the other (aerobic) Biowin models suggests that in the context of simple group contribution models, the majority of positive and negative structural influences on ultimate degradation are the same for aerobic and methanogenic anaerobic biodegradation.

  16. Construct Meaning in Multilevel Settings

    ERIC Educational Resources Information Center

    Stapleton, Laura M.; Yang, Ji Seung; Hancock, Gregory R.

    2016-01-01

    We present types of constructs, individual- and cluster-level, and their confirmatory factor analytic validation models when data are from individuals nested within clusters. When a construct is theoretically individual level, spurious construct-irrelevant dependency in the data may appear to signal cluster-level dependency; in such cases,…

  17. Data Release Summary Statement

    Atmospheric Science Data Center

    2016-11-14

    ... of the CALIPSO data products includes new versions of its standard Level1 and Level2 lidar data. The V4.10 CALIOP Level 2 data products ... essential ancillary data sets. The GTOPO30 Digital Elevation Model (DEM) used in V4.00 has been replaced by a substantially more accurate ...

  18. Review and evaluation of performance measures for survival prediction models in external validation settings.

    PubMed

    Rahman, M Shafiqur; Ambler, Gareth; Choodari-Oskooei, Babak; Omar, Rumana Z

    2017-04-18

    When developing a prediction model for survival data it is essential to validate its performance in external validation settings using appropriate performance measures. Although a number of such measures have been proposed, there is only limited guidance regarding their use in the context of model validation. This paper reviewed and evaluated a wide range of performance measures to provide some guidelines for their use in practice. An extensive simulation study based on two clinical datasets was conducted to investigate the performance of the measures in external validation settings. Measures were selected from categories that assess the overall performance, discrimination and calibration of a survival prediction model. Some of these have been modified to allow their use with validation data, and a case study is provided to describe how these measures can be estimated in practice. The measures were evaluated with respect to their robustness to censoring and ease of interpretation. All measures are implemented, or are straightforward to implement, in statistical software. Most of the performance measures were reasonably robust to moderate levels of censoring. One exception was Harrell's concordance measure which tended to increase as censoring increased. We recommend that Uno's concordance measure is used to quantify concordance when there are moderate levels of censoring. Alternatively, Gönen and Heller's measure could be considered, especially if censoring is very high, but we suggest that the prediction model is re-calibrated first. We also recommend that Royston's D is routinely reported to assess discrimination since it has an appealing interpretation. The calibration slope is useful for both internal and external validation settings and recommended to report routinely. Our recommendation would be to use any of the predictive accuracy measures and provide the corresponding predictive accuracy curves. In addition, we recommend to investigate the characteristics of the validation data such as the level of censoring and the distribution of the prognostic index derived in the validation setting before choosing the performance measures.

  19. A High-Level Language for Modeling Algorithms and Their Properties

    NASA Astrophysics Data System (ADS)

    Akhtar, Sabina; Merz, Stephan; Quinson, Martin

    Designers of concurrent and distributed algorithms usually express them using pseudo-code. In contrast, most verification techniques are based on more mathematically-oriented formalisms such as state transition systems. This conceptual gap contributes to hinder the use of formal verification techniques. Leslie Lamport introduced PlusCal, a high-level algorithmic language that has the "look and feel" of pseudo-code, but is equipped with a precise semantics and includes a high-level expression language based on set theory. PlusCal models can be compiled to TLA + and verified using the model checker tlc.

  20. Re-Evaluation of Development of the TMDL Using Long-Term Monitoring Data and Modeling

    NASA Astrophysics Data System (ADS)

    Squires, A.; Rittenburg, R.; Boll, J.; Brooks, E. S.

    2012-12-01

    Since 1996, 47,979 Total Maximum Daily Loads (TMDLs) have been approved throughout the United States for impaired water bodies. TMDLs are set through the determination of natural background loads for a given water body which then estimate contributions from point and nonpoint sources to create load allocations and determine acceptable pollutant levels to meet water quality standards. Monitoring data and hydrologic models may be used in this process. However, data sets used are often limited in duration and frequency, and model simulations are not always accurate. The objective of this study is to retrospectively look at the development and accuracy of the TMDL for a stream in an agricultural area using long-term monitoring data and a robust modeling process. The study area is the Paradise Creek Watershed in northern Idaho. A sediment TMDL was determined for the Idaho section of Paradise Creek in 1997. Sediment TMDL levels were determined using a short-term data set and the Water Erosion Prediction Project (WEPP) model. Background loads used for the TMDL in 1997 were from pre-agricultural levels, based on WEPP model results. We modified the WEPP model for simulation of saturation excess overland flow, the dominant runoff generation mechanism, and analyzed more than 10 years of high resolution monitoring data from 2001 - 2012, including discharge and total suspended solids. Results will compare background loading and current loading based on present-day land use documented during the monitoring period and compare previous WEPP model results with the modified WEPP model results. This research presents a reevaluation of the TMDL process with recommendations for a more scientifically sound methodology to attain realistic water quality goals.

  1. Simultaneous confidence sets for several effective doses.

    PubMed

    Tompsett, Daniel M; Biedermann, Stefanie; Liu, Wei

    2018-04-03

    Construction of simultaneous confidence sets for several effective doses currently relies on inverting the Scheffé type simultaneous confidence band, which is known to be conservative. We develop novel methodology to make the simultaneous coverage closer to its nominal level, for both two-sided and one-sided simultaneous confidence sets. Our approach is shown to be considerably less conservative than the current method, and is illustrated with an example on modeling the effect of smoking status and serum triglyceride level on the probability of the recurrence of a myocardial infarction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Key parameters of the sediment surface morphodynamics in an estuary - An assessment of model solutions

    NASA Astrophysics Data System (ADS)

    Sampath, D. M. R.; Boski, T.

    2018-05-01

    Large-scale geomorphological evolution of an estuarine system was simulated by means of a hybrid estuarine sedimentation model (HESM) applied to the Guadiana Estuary, in Southwest Iberia. The model simulates the decadal-scale morphodynamics of the system under environmental forcing, using a set of analytical solutions to simplified equations of tidal wave propagation in shallow waters, constrained by empirical knowledge of estuarine sedimentary dynamics and topography. The key controlling parameters of the model are bed friction (f), current velocity power of the erosion rate function (N), and sea-level rise rate. An assessment of sensitivity of the simulated sediment surface elevation (SSE) change to these controlling parameters was performed. The model predicted the spatial differentiation of accretion and erosion, the latter especially marked in the mudflats within mean sea level and low tide level and accretion was mainly in a subtidal channel. The average SSE change mutually depended on both the friction coefficient and power of the current velocity. Analysis of the average annual SSE change suggests that the state of intertidal and subtidal compartments of the estuarine system vary differently according to the dominant processes (erosion and accretion). As the Guadiana estuarine system shows dominant erosional behaviour in the context of sea-level rise and sediment supply reduction after the closure of the Alqueva Dam, the most plausible sets of parameter values for the Guadiana Estuary are N = 1.8 and f = 0.8f0, or N = 2 and f = f0, where f0 is the empirically estimated value. For these sets of parameter values, the relative errors in SSE change did not exceed ±20% in 73% of simulation cells in the studied area. Such a limit of accuracy can be acceptable for an idealized modelling of coastal evolution in response to uncertain sea-level rise scenarios in the context of reduced sediment supply due to flow regulation. Therefore, the idealized but cost-effective HESM model will be suitable for estimating the morphological impacts of sea-level rise on estuarine systems on a decadal timescale.

  3. Assessment of NDE Reliability Data

    NASA Technical Reports Server (NTRS)

    Yee, B. G. W.; Chang, F. H.; Couchman, J. C.; Lemon, G. H.; Packman, P. F.

    1976-01-01

    Twenty sets of relevant Nondestructive Evaluation (NDE) reliability data have been identified, collected, compiled, and categorized. A criterion for the selection of data for statistical analysis considerations has been formulated. A model to grade the quality and validity of the data sets has been developed. Data input formats, which record the pertinent parameters of the defect/specimen and inspection procedures, have been formulated for each NDE method. A comprehensive computer program has been written to calculate the probability of flaw detection at several confidence levels by the binomial distribution. This program also selects the desired data sets for pooling and tests the statistical pooling criteria before calculating the composite detection reliability. Probability of detection curves at 95 and 50 percent confidence levels have been plotted for individual sets of relevant data as well as for several sets of merged data with common sets of NDE parameters.

  4. HPC in Basin Modeling: Simulating Mechanical Compaction through Vertical Effective Stress using Level Sets

    NASA Astrophysics Data System (ADS)

    McGovern, S.; Kollet, S. J.; Buerger, C. M.; Schwede, R. L.; Podlaha, O. G.

    2017-12-01

    In the context of sedimentary basins, we present a model for the simulation of the movement of ageological formation (layers) during the evolution of the basin through sedimentation and compactionprocesses. Assuming a single phase saturated porous medium for the sedimentary layers, the modelfocuses on the tracking of the layer interfaces, through the use of the level set method, as sedimentationdrives fluid-flow and reduction of pore space by compaction. On the assumption of Terzaghi's effectivestress concept, the coupling of the pore fluid pressure to the motion of interfaces in 1-D is presented inMcGovern, et.al (2017) [1] .The current work extends the spatial domain to 3-D, though we maintain the assumption ofvertical effective stress to drive the compaction. The idealized geological evolution is conceptualized asthe motion of interfaces between rock layers, whose paths are determined by the magnitude of a speedfunction in the direction normal to the evolving layer interface. The speeds normal to the interface aredependent on the change in porosity, determined through an effective stress-based compaction law,such as the exponential Athy's law. Provided with the speeds normal to the interface, the level setmethod uses an advection equation to evolve a potential function, whose zero level set defines theinterface. Thus, the moving layer geometry influences the pore pressure distribution which couplesback to the interface speeds. The flexible construction of the speed function allows extension, in thefuture, to other terms to represent different physical processes, analogous to how the compaction rulerepresents material deformation.The 3-D model is implemented using the generic finite element method framework Deal II,which provides tools, building on p4est and interfacing to PETSc, for the massively parallel distributedsolution to the model equations [2]. Experiments are being run on the Juelich Supercomputing Center'sJureca cluster. [1] McGovern, et.al. (2017). Novel basin modelling concept for simulating deformation from mechanical compaction using level sets. Computational Geosciences, SI:ECMOR XV, 1-14.[2] Bangerth, et. al. (2011). Algorithms and data structures for massively parallel generic adaptive finite element codes. ACM Transactions on Mathematical Software (TOMS), 38(2):14.

  5. Can Mathematical Models Predict the Outcomes of Prostate Cancer Patients Undergoing Intermittent Androgen Deprivation Therapy?

    NASA Astrophysics Data System (ADS)

    Everett, R. A.; Packer, A. M.; Kuang, Y.

    Androgen deprivation therapy is a common treatment for advanced or metastatic prostate cancer. Like the normal prostate, most tumors depend on androgens for proliferation and survival but often develop treatment resistance. Hormonal treatment causes many undesirable side effects which significantly decrease the quality of life for patients. Intermittently applying androgen deprivation in cycles reduces the total duration with these negative effects and may reduce selective pressure for resistance. We extend an existing model which used measurements of patient testosterone levels to accurately fit measured serum prostate specific antigen (PSA) levels. We test the model's predictive accuracy, using only a subset of the data to find parameter values. The results are compared with those of an existing piecewise linear model which does not use testosterone as an input. Since actual treatment protocol is to re-apply therapy when PSA levels recover beyond some threshold value, we develop a second method for predicting the PSA levels. Based on a small set of data from seven patients, our results showed that the piecewise linear model produced slightly more accurate results while the two predictive methods are comparable. This suggests that a simpler model may be more beneficial for a predictive use compared to a more biologically insightful model, although further research is needed in this field prior to implementing mathematical models as a predictive method in a clinical setting. Nevertheless, both models are an important step in this direction.

  6. Can Mathematical Models Predict the Outcomes of Prostate Cancer Patients Undergoing Intermittent Androgen Deprivation Therapy?

    NASA Astrophysics Data System (ADS)

    Everett, R. A.; Packer, A. M.; Kuang, Y.

    2014-04-01

    Androgen deprivation therapy is a common treatment for advanced or metastatic prostate cancer. Like the normal prostate, most tumors depend on androgens for proliferation and survival but often develop treatment resistance. Hormonal treatment causes many undesirable side effects which significantly decrease the quality of life for patients. Intermittently applying androgen deprivation in cycles reduces the total duration with these negative effects and may reduce selective pressure for resistance. We extend an existing model which used measurements of patient testosterone levels to accurately fit measured serum prostate specific antigen (PSA) levels. We test the model's predictive accuracy, using only a subset of the data to find parameter values. The results are compared with those of an existing piecewise linear model which does not use testosterone as an input. Since actual treatment protocol is to re-apply therapy when PSA levels recover beyond some threshold value, we develop a second method for predicting the PSA levels. Based on a small set of data from seven patients, our results showed that the piecewise linear model produced slightly more accurate results while the two predictive methods are comparable. This suggests that a simpler model may be more beneficial for a predictive use compared to a more biologically insightful model, although further research is needed in this field prior to implementing mathematical models as a predictive method in a clinical setting. Nevertheless, both models are an important step in this direction.

  7. Diverse Data Sets Can Yield Reliable Information through Mechanistic Modeling: Salicylic Acid Clearance.

    PubMed

    Raymond, G M; Bassingthwaighte, J B

    This is a practical example of a powerful research strategy: putting together data from studies covering a diversity of conditions can yield a scientifically sound grasp of the phenomenon when the individual observations failed to provide definitive understanding. The rationale is that defining a realistic, quantitative, explanatory hypothesis for the whole set of studies, brings about a "consilience" of the often competing hypotheses considered for individual data sets. An internally consistent conjecture linking multiple data sets simultaneously provides stronger evidence on the characteristics of a system than does analysis of individual data sets limited to narrow ranges of conditions. Our example examines three very different data sets on the clearance of salicylic acid from humans: a high concentration set from aspirin overdoses; a set with medium concentrations from a research study on the influences of the route of administration and of sex on the clearance kinetics, and a set on low dose aspirin for cardiovascular health. Three models were tested: (1) a first order reaction, (2) a Michaelis-Menten (M-M) approach, and (3) an enzyme kinetic model with forward and backward reactions. The reaction rates found from model 1 were distinctly different for the three data sets, having no commonality. The M-M model 2 fitted each of the three data sets but gave a reliable estimates of the Michaelis constant only for the medium level data (K m = 24±5.4 mg/L); analyzing the three data sets together with model 2 gave K m = 18±2.6 mg/L. (Estimating parameters using larger numbers of data points in an optimization increases the degrees of freedom, constraining the range of the estimates). Using the enzyme kinetic model (3) increased the number of free parameters but nevertheless improved the goodness of fit to the combined data sets, giving tighter constraints, and a lower estimated K m = 14.6±2.9 mg/L, demonstrating that fitting diverse data sets with a single model improves confidence in the results. This modeling effort is also an example of reproducible science available at html://www.physiome.org/jsim/models/webmodel/NSR/SalicylicAcidClearance.

  8. A new kernel-based fuzzy level set method for automated segmentation of medical images in the presence of intensity inhomogeneity.

    PubMed

    Rastgarpour, Maryam; Shanbehzadeh, Jamshid

    2014-01-01

    Researchers recently apply an integrative approach to automate medical image segmentation for benefiting available methods and eliminating their disadvantages. Intensity inhomogeneity is a challenging and open problem in this area, which has received less attention by this approach. It has considerable effects on segmentation accuracy. This paper proposes a new kernel-based fuzzy level set algorithm by an integrative approach to deal with this problem. It can directly evolve from the initial level set obtained by Gaussian Kernel-Based Fuzzy C-Means (GKFCM). The controlling parameters of level set evolution are also estimated from the results of GKFCM. Moreover the proposed algorithm is enhanced with locally regularized evolution based on an image model that describes the composition of real-world images, in which intensity inhomogeneity is assumed as a component of an image. Such improvements make level set manipulation easier and lead to more robust segmentation in intensity inhomogeneity. The proposed algorithm has valuable benefits including automation, invariant of intensity inhomogeneity, and high accuracy. Performance evaluation of the proposed algorithm was carried on medical images from different modalities. The results confirm its effectiveness for medical image segmentation.

  9. Automatic image equalization and contrast enhancement using Gaussian mixture modeling.

    PubMed

    Celik, Turgay; Tjahjadi, Tardi

    2012-01-01

    In this paper, we propose an adaptive image equalization algorithm that automatically enhances the contrast in an input image. The algorithm uses the Gaussian mixture model to model the image gray-level distribution, and the intersection points of the Gaussian components in the model are used to partition the dynamic range of the image into input gray-level intervals. The contrast equalized image is generated by transforming the pixels' gray levels in each input interval to the appropriate output gray-level interval according to the dominant Gaussian component and the cumulative distribution function of the input interval. To take account of the hypothesis that homogeneous regions in the image represent homogeneous silences (or set of Gaussian components) in the image histogram, the Gaussian components with small variances are weighted with smaller values than the Gaussian components with larger variances, and the gray-level distribution is also used to weight the components in the mapping of the input interval to the output interval. Experimental results show that the proposed algorithm produces better or comparable enhanced images than several state-of-the-art algorithms. Unlike the other algorithms, the proposed algorithm is free of parameter setting for a given dynamic range of the enhanced image and can be applied to a wide range of image types.

  10. Assessment of the hybrid propagation model, Volume 1: Analysis of noise propagation effects

    DOT National Transportation Integrated Search

    2012-08-31

    This is the first of two volumes of a report on the Hybrid Propagation Model (HPM), an advanced prediction model for aviation noise propagation. This volume presents the noise level predictions for eleven different sets of propagation conditions, run...

  11. Epidemiology of leisure, transportation, occupational, and household physical activity: prevalence and associated factors.

    PubMed

    Florindo, Alex Antonio; Guimarães, Vanessa Valente; Cesar, Chester Luiz Galvão; Barros, Marilisa Berti de Azevedo; Alves, Maria Cecília Goi Porto; Goldbaum, Moisés

    2009-09-01

    To estimate the prevalence of and identify factors associated with physical activity in leisure, transportation, occupational, and household settings. This was a cross-sectional study aimed at investigating living and health conditions among the population of São Paulo, Brazil. Data on 1318 adults aged 18 to 65 years were used. To assess physical activity, the long version of the International Physical Activity Questionnaire was applied. Multivariate analysis was conducted using a hierarchical model. The greatest prevalence of insufficient activity related to transportation (91.7%), followed by leisure (77.5%), occupational (68.9%), and household settings (56.7%). The variables associated with insufficient levels of physical activity in leisure were female sex, older age, low education level, nonwhite skin color, smoking, and self-reported poor health; in occupational settings were female sex, white skin color, high education level, self-reported poor health, nonsmoking, and obesity; in transportation settings were female sex; and in household settings, with male sex, separated, or widowed status and high education level. Physical activity in transportation and leisure settings should be encouraged. This study will serve as a reference point in monitoring different types of physical activities and implementing public physical activity policies in developing countries.

  12. A new approach to hierarchical data analysis: Targeted maximum likelihood estimation for the causal effect of a cluster-level exposure.

    PubMed

    Balzer, Laura B; Zheng, Wenjing; van der Laan, Mark J; Petersen, Maya L

    2018-01-01

    We often seek to estimate the impact of an exposure naturally occurring or randomly assigned at the cluster-level. For example, the literature on neighborhood determinants of health continues to grow. Likewise, community randomized trials are applied to learn about real-world implementation, sustainability, and population effects of interventions with proven individual-level efficacy. In these settings, individual-level outcomes are correlated due to shared cluster-level factors, including the exposure, as well as social or biological interactions between individuals. To flexibly and efficiently estimate the effect of a cluster-level exposure, we present two targeted maximum likelihood estimators (TMLEs). The first TMLE is developed under a non-parametric causal model, which allows for arbitrary interactions between individuals within a cluster. These interactions include direct transmission of the outcome (i.e. contagion) and influence of one individual's covariates on another's outcome (i.e. covariate interference). The second TMLE is developed under a causal sub-model assuming the cluster-level and individual-specific covariates are sufficient to control for confounding. Simulations compare the alternative estimators and illustrate the potential gains from pairing individual-level risk factors and outcomes during estimation, while avoiding unwarranted assumptions. Our results suggest that estimation under the sub-model can result in bias and misleading inference in an observational setting. Incorporating working assumptions during estimation is more robust than assuming they hold in the underlying causal model. We illustrate our approach with an application to HIV prevention and treatment.

  13. The role of empathy and emotional intelligence in nurses' communication attitudes using regression models and fuzzy-set qualitative comparative analysis models.

    PubMed

    Giménez-Espert, María Del Carmen; Prado-Gascó, Vicente Javier

    2018-03-01

    To analyse link between empathy and emotional intelligence as a predictor of nurses' attitudes towards communication while comparing the contribution of emotional aspects and attitudinal elements on potential behaviour. Nurses' attitudes towards communication, empathy and emotional intelligence are key skills for nurses involved in patient care. There are currently no studies analysing this link, and its investigation is needed because attitudes may influence communication behaviours. Correlational study. To attain this goal, self-reported instruments (attitudes towards communication of nurses, trait emotional intelligence (Trait Emotional Meta-Mood Scale) and Jefferson Scale of Nursing Empathy (Jefferson Scale Nursing Empathy) were collected from 460 nurses between September 2015-February 2016. Two different analytical methodologies were used: traditional regression models and fuzzy-set qualitative comparative analysis models. The results of the regression model suggest that cognitive dimensions of attitude are a significant and positive predictor of the behavioural dimension. The perspective-taking dimension of empathy and the emotional-clarity dimension of emotional intelligence were significant positive predictors of the dimensions of attitudes towards communication, except for the affective dimension (for which the association was negative). The results of the fuzzy-set qualitative comparative analysis models confirm that the combination of high levels of cognitive dimension of attitudes, perspective-taking and emotional clarity explained high levels of the behavioural dimension of attitude. Empathy and emotional intelligence are predictors of nurses' attitudes towards communication, and the cognitive dimension of attitude is a good predictor of the behavioural dimension of attitudes towards communication of nurses in both regression models and fuzzy-set qualitative comparative analysis. In general, the fuzzy-set qualitative comparative analysis models appear to be better predictors than the regression models are. To evaluate current practices, establish intervention strategies and evaluate their effectiveness. The evaluation of these variables and their relationships are important in creating a satisfied and sustainable workforce and improving quality of care and patient health. © 2018 John Wiley & Sons Ltd.

  14. Skull defect reconstruction based on a new hybrid level set.

    PubMed

    Zhang, Ziqun; Zhang, Ran; Song, Zhijian

    2014-01-01

    Skull defect reconstruction is an important aspect of surgical repair. Historically, a skull defect prosthesis was created by the mirroring technique, surface fitting, or formed templates. These methods are not based on the anatomy of the individual patient's skull, and therefore, the prosthesis cannot precisely correct the defect. This study presented a new hybrid level set model, taking into account both the global optimization region information and the local accuracy edge information, while avoiding re-initialization during the evolution of the level set function. Based on the new method, a skull defect was reconstructed, and the skull prosthesis was produced by rapid prototyping technology. This resulted in a skull defect prosthesis that well matched the skull defect with excellent individual adaptation.

  15. EPA'S WATERSHED MANAGEMENT AND MODELING RESEARCH PROGRAM

    EPA Science Inventory

    Watershed management presumes that community groups can best solve many water quality and ecosystem problems at the watershed level rather than at the individual site, receiving waterbody, or discharger level. After assessing and ranking watershed problems, and setting environ...

  16. Not Your Basic Base Levels: Simulations of Erosion and Deposition With Fluctuating Water Levels in Coastal and Enclosed Basin Settings

    NASA Astrophysics Data System (ADS)

    Howard, A. D.; Matsubara, Y.; Lloyd, H.

    2006-12-01

    The DELIM landform evolution model has been adapted to investigate erosional and depositional landforms in two setting with fluctuating base levels. The first is erosion and wave planation of terraced landscapes in Coastal Plain sediments along the estuarine Potomac River. The last 3.5 million years of erosion is simulated with base level fluctuations based upon the long-term oceanic delta 18O record, eustatic sea level changes during the last 120 ka, estimates of the history of tectonic uplift in the region, and maximum depths of incision of the Potomac River during sea-level lowstands. Inhibition of runoff erosion by vegetation has been a crucial factor allowing persistence of uplands in the soft coastal plain bedrock. The role of vegetation is simulated as a contributing area- dependent critical shear stress. Development of wave-cut terraces is simulated by episodic planation of the landscape during base-level highstands. Although low base level excursions are infrequent and of short duration, the total amount of erosion is largely controlled by the depth and frequency of lowstands. The model has also been adapted to account for flow routing and accompanying erosion and sedimentation in landscapes with multiple enclosed depressions. The hydrological portion of the model has been calibrated and tested in the Great Basin and Mojave regions of the southwestern U.S. In such a setting, runoff, largely from mountains, may flow through several lacustrine basins, each with evaporative losses. An iterative approach determines the size and depth of lakes, including overflow (or not) that balances runoff and evaporation. The model utilizes information on temperatures, rainfall, runoff, and evaporation within the region to parameterize evaporation and runoff as functions of latitude, mean annual temperature, precipitation, and elevation. The model is successful in predicting the location of modern perennial lakes in the region as well as that of lakes during the last glacial maximum based upon published estimates of changes in mean annual temperature and precipitation within the region. The hydrological model has been coupled with the DELIM landform evolution model to investigate expected patterns of basin sedimentation in cratered landscapes on Mars and the role that fluctuating lake levels has on the form and preservation of deltaic and shoreline sedimentary platforms. As would be expected, base levels that fluctuate widely complicate the pattern of depositional landforms, but recognizable coastal benches develop even with high-amplitude variations.

  17. Repeated mass distributions and continuous distribution of long-lasting insecticidal nets: modelling sustainability of health benefits from mosquito nets, depending on case management.

    PubMed

    Briët, Olivier Jt; Penny, Melissa A

    2013-11-07

    Stagnating funds for malaria control have spurred interest in the question of how to sustain the gains of recent successes with long-lasting insecticidal nets (LLINs) and improved case management (CM). This simulation study examined the malaria transmission and disease dynamics in scenarios with sustained LLINs and CM interventions and tried to determine optimal LLIN distribution rates. The effects of abruptly halting LLIN distribution were also examined. Dynamic simulations of malaria in humans and mosquitoes were run on the OpenMalaria platform, using stochastic individual-based simulation models. LLINs were distributed in a range of transmission settings, with varying CM coverage levels. In the short-term, LLINs were beneficial over the entire transmission spectrum, reducing both transmission and disease burden. In the long-term, repeated distributions sustainably reduced transmission in all settings. However, because of the resulting reduction in acquired immunity in the population, the malaria disease burden, after initially being reduced, gradually increased and eventually stabilized at a new level. This new level was higher than the pre-intervention level in previously high transmission settings, if there is a maximum disease burden in the relationship between transmission and disease burden at intermediate transmission levels. This result could lead one to conclude that sustained LLIN distribution might not be cost-effective in high transmission settings in the long term. However, improved CM rendered LLINs more cost-effective in higher transmission settings than in those without improved CM and the majority of the African population lives in areas where CM and LLINs are sustainably combined. The effects of changes in LLIN distribution rate on cost-effectiveness were relatively small compared to the effects of changes in transmission setting and CM. Abruptly halting LLIN distribution led to temporary morbidity peaks, which were particularly large in low to intermediate transmission settings. This study reaffirms the importance of context specific intervention planning. Intervention planning must include combinations of malaria vector control and CM, and must consider both the pre-intervention transmission level and the intervention history to account for the loss of immunity and the potential for rebounds in disease burden.

  18. Level-Set Simulation of Viscous Free Surface Flow Around a Commercial Hull Form

    DTIC Science & Technology

    2005-04-15

    Abstract The viscous free surface flow around a 3600 TEU KRISO Container Ship is computed using the finite volume based multi-block RANS code, WAVIS...developed at KRISO . The free surface is captured with the Level-set method and the realizable k-ε model is employed for turbulence closure. The...computations are done for a 3600 TEU container ship of Korea Research Institute of Ships & Ocean Engineering, KORDI (hereafter, KRISO ) selected as

  19. Combining measurements to estimate properties and characterization extent of complex biochemical mixtures; applications to Heparan Sulfate

    PubMed Central

    Pradines, Joël R.; Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Farutin, Victor; Huang, Yongqing; Gunay, Nur Sibel; Capila, Ishan

    2016-01-01

    Complex mixtures of molecular species, such as glycoproteins and glycosaminoglycans, have important biological and therapeutic functions. Characterization of these mixtures with analytical chemistry measurements is an important step when developing generic drugs such as biosimilars. Recent developments have focused on analytical methods and statistical approaches to test similarity between mixtures. The question of how much uncertainty on mixture composition is reduced by combining several measurements still remains mostly unexplored. Mathematical frameworks to combine measurements, estimate mixture properties, and quantify remaining uncertainty, i.e. a characterization extent, are introduced here. Constrained optimization and mathematical modeling are applied to a set of twenty-three experimental measurements on heparan sulfate, a mixture of linear chains of disaccharides having different levels of sulfation. While this mixture has potentially over two million molecular species, mathematical modeling and the small set of measurements establish the existence of nonhomogeneity of sulfate level along chains and the presence of abundant sulfate repeats. Constrained optimization yields not only estimations of sulfate repeats and sulfate level at each position in the chains but also bounds on these levels, thereby estimating the extent of characterization of the sulfation pattern which is achieved by the set of measurements. PMID:27112127

  20. Combining measurements to estimate properties and characterization extent of complex biochemical mixtures; applications to Heparan Sulfate.

    PubMed

    Pradines, Joël R; Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Farutin, Victor; Huang, Yongqing; Gunay, Nur Sibel; Capila, Ishan

    2016-04-26

    Complex mixtures of molecular species, such as glycoproteins and glycosaminoglycans, have important biological and therapeutic functions. Characterization of these mixtures with analytical chemistry measurements is an important step when developing generic drugs such as biosimilars. Recent developments have focused on analytical methods and statistical approaches to test similarity between mixtures. The question of how much uncertainty on mixture composition is reduced by combining several measurements still remains mostly unexplored. Mathematical frameworks to combine measurements, estimate mixture properties, and quantify remaining uncertainty, i.e. a characterization extent, are introduced here. Constrained optimization and mathematical modeling are applied to a set of twenty-three experimental measurements on heparan sulfate, a mixture of linear chains of disaccharides having different levels of sulfation. While this mixture has potentially over two million molecular species, mathematical modeling and the small set of measurements establish the existence of nonhomogeneity of sulfate level along chains and the presence of abundant sulfate repeats. Constrained optimization yields not only estimations of sulfate repeats and sulfate level at each position in the chains but also bounds on these levels, thereby estimating the extent of characterization of the sulfation pattern which is achieved by the set of measurements.

  1. Combining measurements to estimate properties and characterization extent of complex biochemical mixtures; applications to Heparan Sulfate

    NASA Astrophysics Data System (ADS)

    Pradines, Joël R.; Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Farutin, Victor; Huang, Yongqing; Gunay, Nur Sibel; Capila, Ishan

    2016-04-01

    Complex mixtures of molecular species, such as glycoproteins and glycosaminoglycans, have important biological and therapeutic functions. Characterization of these mixtures with analytical chemistry measurements is an important step when developing generic drugs such as biosimilars. Recent developments have focused on analytical methods and statistical approaches to test similarity between mixtures. The question of how much uncertainty on mixture composition is reduced by combining several measurements still remains mostly unexplored. Mathematical frameworks to combine measurements, estimate mixture properties, and quantify remaining uncertainty, i.e. a characterization extent, are introduced here. Constrained optimization and mathematical modeling are applied to a set of twenty-three experimental measurements on heparan sulfate, a mixture of linear chains of disaccharides having different levels of sulfation. While this mixture has potentially over two million molecular species, mathematical modeling and the small set of measurements establish the existence of nonhomogeneity of sulfate level along chains and the presence of abundant sulfate repeats. Constrained optimization yields not only estimations of sulfate repeats and sulfate level at each position in the chains but also bounds on these levels, thereby estimating the extent of characterization of the sulfation pattern which is achieved by the set of measurements.

  2. Sample size determinations for group-based randomized clinical trials with different levels of data hierarchy between experimental and control arms.

    PubMed

    Heo, Moonseong; Litwin, Alain H; Blackstock, Oni; Kim, Namhee; Arnsten, Julia H

    2017-02-01

    We derived sample size formulae for detecting main effects in group-based randomized clinical trials with different levels of data hierarchy between experimental and control arms. Such designs are necessary when experimental interventions need to be administered to groups of subjects whereas control conditions need to be administered to individual subjects. This type of trial, often referred to as a partially nested or partially clustered design, has been implemented for management of chronic diseases such as diabetes and is beginning to emerge more commonly in wider clinical settings. Depending on the research setting, the level of hierarchy of data structure for the experimental arm can be three or two, whereas that for the control arm is two or one. Such different levels of data hierarchy assume correlation structures of outcomes that are different between arms, regardless of whether research settings require two or three level data structure for the experimental arm. Therefore, the different correlations should be taken into account for statistical modeling and for sample size determinations. To this end, we considered mixed-effects linear models with different correlation structures between experimental and control arms to theoretically derive and empirically validate the sample size formulae with simulation studies.

  3. Search for the standard model Higgs Boson produced in association with top quarks using the full CDF data set.

    PubMed

    Aaltonen, T; Álvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calamba, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chung, W H; Chung, Y S; Ciocci, M A; Clark, A; Clarke, C; Compostella, G; Connors, J; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; Dell'Orso, M; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, S; Ershaidat, N; Eusebi, R; Farrington, S; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Klimenko, S; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lecompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Mastrandrea, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Sorin, V; Song, H; Squillacioti, P; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhou, C; Zucchelli, S

    2012-11-02

    A search is presented for the standard model Higgs boson produced in association with top quarks using the full Run II proton-antiproton collision data set, corresponding to 9.45 fb(-1), collected by the Collider Detector at Fermilab. No significant excess over the expected background is observed, and 95% credibility-level upper bounds are placed on the cross section σ(ttH → lepton + missing transverse energy+jets). For a Higgs boson mass of 125 GeV/c(2), we expect to set a limit of 12.6 and observe a limit of 20.5 times the standard model rate. This represents the most sensitive search for a standard model Higgs boson in this channel to date.

  4. Space Generic Open Avionics Architecture (SGOAA) standard specification

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1993-01-01

    The purpose of this standard is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of a specific avionics hardware/software system. This standard defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.

  5. Cerebrospinal fluid neopterin decay characteristics after initiation of antiretroviral therapy

    PubMed Central

    2013-01-01

    Background Neopterin, a biomarker of macrophage activation, is elevated in the cerebrospinal fluid (CSF) of most HIV-infected individuals and decreases after initiation of antiretroviral therapy (ART). We studied decay characteristics of neopterin in CSF and blood after commencement of ART in HIV-infected subjects and estimated the set-point levels of CSF neopterin after ART-mediated viral suppression. Methods CSF and blood neopterin were longitudinally measured in 102 neurologically asymptomatic HIV-infected subjects who were treatment-naïve or had been off ART for ≥ 6 months. We used a non-linear model to estimate neopterin decay in response to ART and a stable neopterin set-point attained after prolonged ART. Seven subjects with HIV-associated dementia (HAD) who initiated ART were studied for comparison. Results Non-HAD patients were followed for a median 84.7 months. Though CSF neopterin concentrations decreased rapidly after ART initiation, it was estimated that set-point levels would be below normal CSF neopterin levels (<5.8 nmol/L) in only 60/102 (59%) of these patients. Pre-ART CSF neopterin was the primary predictor of set-point (P <0.001). HAD subjects had higher baseline median CSF neopterin levels than non-HAD subjects (P <0.0001). Based on the non-HAD model, only 14% of HAD patients were predicted to reach normal levels. Conclusions After virologically suppressive ART, abnormal CSF neopterin levels persisted in 41% of non-HAD and the majority of HAD patients. ART is not fully effective in ameliorating macrophage activation in CNS as well as blood, especially in subjects with higher pre-ART levels of immune activation. PMID:23664008

  6. GLOBALLY ADAPTIVE QUANTILE REGRESSION WITH ULTRA-HIGH DIMENSIONAL DATA

    PubMed Central

    Zheng, Qi; Peng, Limin; He, Xuming

    2015-01-01

    Quantile regression has become a valuable tool to analyze heterogeneous covaraite-response associations that are often encountered in practice. The development of quantile regression methodology for high dimensional covariates primarily focuses on examination of model sparsity at a single or multiple quantile levels, which are typically prespecified ad hoc by the users. The resulting models may be sensitive to the specific choices of the quantile levels, leading to difficulties in interpretation and erosion of confidence in the results. In this article, we propose a new penalization framework for quantile regression in the high dimensional setting. We employ adaptive L1 penalties, and more importantly, propose a uniform selector of the tuning parameter for a set of quantile levels to avoid some of the potential problems with model selection at individual quantile levels. Our proposed approach achieves consistent shrinkage of regression quantile estimates across a continuous range of quantiles levels, enhancing the flexibility and robustness of the existing penalized quantile regression methods. Our theoretical results include the oracle rate of uniform convergence and weak convergence of the parameter estimators. We also use numerical studies to confirm our theoretical findings and illustrate the practical utility of our proposal. PMID:26604424

  7. Estimating animal resource selection from telemetry data using point process models

    USGS Publications Warehouse

    Johnson, Devin S.; Hooten, Mevin B.; Kuhn, Carey E.

    2013-01-01

    To demonstrate the analysis of telemetry data with the point process approach, we analysed a data set of telemetry locations from northern fur seals (Callorhinus ursinus) in the Pribilof Islands, Alaska. Both a space–time and an aggregated space-only model were fitted. At the individual level, the space–time analysis showed little selection relative to the habitat covariates. However, at the study area level, the space-only model showed strong selection relative to the covariates.

  8. Biomedical image segmentation using geometric deformable models and metaheuristics.

    PubMed

    Mesejo, Pablo; Valsecchi, Andrea; Marrakchi-Kacem, Linda; Cagnoni, Stefano; Damas, Sergio

    2015-07-01

    This paper describes a hybrid level set approach for medical image segmentation. This new geometric deformable model combines region- and edge-based information with the prior shape knowledge introduced using deformable registration. Our proposal consists of two phases: training and test. The former implies the learning of the level set parameters by means of a Genetic Algorithm, while the latter is the proper segmentation, where another metaheuristic, in this case Scatter Search, derives the shape prior. In an experimental comparison, this approach has shown a better performance than a number of state-of-the-art methods when segmenting anatomical structures from different biomedical image modalities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Social Context of First Birth Timing in a Rapidly Changing Rural Setting

    PubMed Central

    Ghimire, Dirgha J.

    2016-01-01

    This article examines the influence of social context on the rate of first birth. Drawing on socialization models, I develop a theoretical framework to explain how different aspects of social context (i.e., neighbors), may affect the rate of first birth. Neighbors, who in the study setting comprise individuals’ immediate social context, have an important influence on the rate of first birth. To test my hypotheses, I leverage a setting, measures and analytical techniques designed to study the impact of macro-level social contexts on micro-level individual behavior. The results show that neighbors’ age at first birth, travel to the capital city and media exposure tend to reduce the first birth rate, while neighbors’ non-family work experience increases first birth rate. These effects are independent of neighborhood characteristics and are robust against several key variations in model specifications. PMID:27886737

  10. VDT microplane model with anisotropic effectiveness and plasticity

    NASA Astrophysics Data System (ADS)

    Benelfellah, Abdelkibir; Gratton, Michel; Caliez, Michael; Frachon, Arnaud; Picart, Didier

    2018-03-01

    The opening-closing state of the microcracks is a kinematic phenomenon usually modeled using a set of damage effectiveness variables, which results in different elastic responses for the same damage level. In this work, the microplane model with volumetric, deviatoric and tangential decomposition denoted V-D-T is modified. The influence of the confining pressure is taken into account in the damage variables evolution laws. For a better understanding of the mechanisms introduced into the model, the damage rosettes are presented for a strain given level. The model is confirmed through comparisons of the simulations with the experimental results of monotonic, and cyclic tensile and compressive testing with different levels of confining pressure.

  11. Detection of CMOS bridging faults using minimal stuck-at fault test sets

    NASA Technical Reports Server (NTRS)

    Ijaz, Nabeel; Frenzel, James F.

    1993-01-01

    The performance of minimal stuck-at fault test sets at detecting bridging faults are evaluated. New functional models of circuit primitives are presented which allow accurate representation of bridging faults under switch-level simulation. The effectiveness of the patterns is evaluated using both voltage and current testing.

  12. Designing a Standard Model for Development and Execution of an Analysis Project Plan

    DTIC Science & Technology

    2012-06-01

    mitigations set forth are agreeable to all parties involved. 1.3 Document Risks, Issues, and Constraints 1.1 Gather Information 1.2 Develop...parent requirement into lower level objective, performance-based sibling actions. Collective accomplishment of the set of derived “ sibling ” actions

  13. Adjusted variable plots for Cox's proportional hazards regression model.

    PubMed

    Hall, C B; Zeger, S L; Bandeen-Roche, K J

    1996-01-01

    Adjusted variable plots are useful in linear regression for outlier detection and for qualitative evaluation of the fit of a model. In this paper, we extend adjusted variable plots to Cox's proportional hazards model for possibly censored survival data. We propose three different plots: a risk level adjusted variable (RLAV) plot in which each observation in each risk set appears, a subject level adjusted variable (SLAV) plot in which each subject is represented by one point, and an event level adjusted variable (ELAV) plot in which the entire risk set at each failure event is represented by a single point. The latter two plots are derived from the RLAV by combining multiple points. In each point, the regression coefficient and standard error from a Cox proportional hazards regression is obtained by a simple linear regression through the origin fit to the coordinates of the pictured points. The plots are illustrated with a reanalysis of a dataset of 65 patients with multiple myeloma.

  14. Modeling and analysis of energy quantization effects on single electron inverter performance

    NASA Astrophysics Data System (ADS)

    Dan, Surya Shankar; Mahapatra, Santanu

    2009-08-01

    In this paper, for the first time, the effects of energy quantization on single electron transistor (SET) inverter performance are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantization mainly changes the Coulomb blockade region and drain current of SET devices and thus affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new analytical model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. A compact expression is developed for a novel parameter quantization threshold which is introduced for the first time in this paper. Quantization threshold explicitly defines the maximum energy quantization that an SET inverter logic circuit can withstand before its noise margin falls below a specified tolerance level. It is found that SET inverter designed with CT:CG=1/3 (where CT and CG are tunnel junction and gate capacitances, respectively) offers maximum robustness against energy quantization.

  15. Summary of photovoltaic system performance models

    NASA Technical Reports Server (NTRS)

    Smith, J. H.; Reiter, L. J.

    1984-01-01

    A detailed overview of photovoltaics (PV) performance modeling capabilities developed for analyzing PV system and component design and policy issues is provided. A set of 10 performance models are selected which span a representative range of capabilities from generalized first order calculations to highly specialized electrical network simulations. A set of performance modeling topics and characteristics is defined and used to examine some of the major issues associated with photovoltaic performance modeling. Each of the models is described in the context of these topics and characteristics to assess its purpose, approach, and level of detail. The issues are discussed in terms of the range of model capabilities available and summarized in tabular form for quick reference. The models are grouped into categories to illustrate their purposes and perspectives.

  16. Audio spectrum and sound pressure levels vary between pulse oximeters.

    PubMed

    Chandra, Deven; Tessler, Michael J; Usher, John

    2006-01-01

    The variable-pitch pulse oximeter is an important intraoperative patient monitor. Our ability to hear its auditory signal depends on its acoustical properties and our hearing. This study quantitatively describes the audio spectrum and sound pressure levels of the monitoring tones produced by five variable-pitch pulse oximeters. We compared the Datex-Ohmeda Capnomac Ultima, Hewlett-Packard M1166A, Datex-Engstrom AS/3, Ohmeda Biox 3700, and Datex-Ohmeda 3800 oximeters. Three machines of each of the five models were assessed for sound pressure levels (using a precision sound level meter) and audio spectrum (using a hanning windowed fast Fourier trans-form of three beats at saturations of 99%, 90%, and 85%). The widest range of sound pressure levels was produced by the Hewlett-Packard M1166A (46.5 +/- 1.74 dB to 76.9 +/- 2.77 dB). The loudest model was the Datex-Engstrom AS/3 (89.2 +/- 5.36 dB). Three oximeters, when set to the lower ranges of their volume settings, were indistinguishable from background operating room noise. Each model produced sounds with different audio spectra. Although each model produced a fundamental tone with multiple harmonic overtones, the number of harmonics varied with each model; from three harmonic tones on the Hewlett-Packard M1166A, to 12 on the Ohmeda Biox 3700. There were variations between models, and individual machines of the same model with respect to the fundamental tone associated with a given saturation. There is considerable variance in the sound pressure and audio spectrum of commercially-available pulse oximeters. Further studies are warranted in order to establish standards.

  17. Validating a spatially distributed hydrological model with soil morphology data

    NASA Astrophysics Data System (ADS)

    Doppler, T.; Honti, M.; Zihlmann, U.; Weisskopf, P.; Stamm, C.

    2013-10-01

    Spatially distributed hydrological models are popular tools in hydrology and they are claimed to be useful to support management decisions. Despite the high spatial resolution of the computed variables, calibration and validation is often carried out only on discharge time-series at specific locations due to the lack of spatially distributed reference data. Because of this restriction, the predictive power of these models, with regard to predicted spatial patterns, can usually not be judged. An example of spatial predictions in hydrology is the prediction of saturated areas in agricultural catchments. These areas can be important source areas for the transport of agrochemicals to the stream. We set up a spatially distributed model to predict saturated areas in a 1.2 km2 catchment in Switzerland with moderate topography. Around 40% of the catchment area are artificially drained. We measured weather data, discharge and groundwater levels in 11 piezometers for 1.5 yr. For broadening the spatially distributed data sets that can be used for model calibration and validation, we translated soil morphological data available from soil maps into an estimate of the duration of soil saturation in the soil horizons. We used redox-morphology signs for these estimates. This resulted in a data set with high spatial coverage on which the model predictions were validated. In general, these saturation estimates corresponded well to the measured groundwater levels. We worked with a model that would be applicable for management decisions because of its fast calculation speed and rather low data requirements. We simultaneously calibrated the model to the groundwater levels in the piezometers and discharge. The model was able to reproduce the general hydrological behavior of the catchment in terms of discharge and absolute groundwater levels. However, the accuracy of the groundwater level predictions was not high enough to be used for the prediction of saturated areas. The groundwater level dynamics were not adequately reproduced and the predicted spatial patterns of soil saturation did not correspond to the patterns estimated from the soil map. Our results indicate that an accurate prediction of the groundwater level dynamics of the shallow groundwater in our catchment that is subject to artificial drainage would require a more complex model. Especially high spatial resolution and very detailed process representations at the boundary between the unsaturated and the saturated zone are expected to be crucial. The data needed for such a detailed model are not generally available. The high computational demand and the complex model setup would require more resources than the direct identification of saturated areas in the field. This severely hampers the practical use of such models despite their usefulness for scientific purposes.

  18. Noise tests of a mixer nozzle-externally blown flap system

    NASA Technical Reports Server (NTRS)

    Goodykoontz, J. H.; Dorsch, R. G.; Groesbeck, D. E.

    1973-01-01

    Noise tests were conducted on a large scale model of an externally blown flap lift augmentation system, employing a mixer nozzle. The mixer nozzle consisted of seven flow passages with a total equivalent diameter of 40 centimeters. With the flaps in the 30 - 60 deg setting, the noise level below the wing was less with the mixer nozzle than when a standard circular nozzle was used. At the 10 - 20 deg flap setting, the noise levels were about the same when either nozzle was used. With retracted flaps, the noise level was higher when the mixer nozzle was used.

  19. An Aggregate IRT Procedure for Exploratory Factor Analysis

    ERIC Educational Resources Information Center

    Camilli, Gregory; Fox, Jean-Paul

    2015-01-01

    An aggregation strategy is proposed to potentially address practical limitation related to computing resources for two-level multidimensional item response theory (MIRT) models with large data sets. The aggregate model is derived by integration of the normal ogive model, and an adaptation of the stochastic approximation expectation maximization…

  20. Students' Mental Models of the Environment

    ERIC Educational Resources Information Center

    Shepardson, Daniel P.; Wee, Bryan; Priddy, Michelle; Harbor, Jon

    2007-01-01

    What are students' mental models of the environment? In what ways, if any, do students' mental models vary by grade level or community setting? These two questions guided the research reported in this article. The Environments Task was administered to students from 25 different teacher-classrooms. The student responses were first inductively…

  1. The effectiveness of flipped classroom learning model in secondary physics classroom setting

    NASA Astrophysics Data System (ADS)

    Prasetyo, B. D.; Suprapto, N.; Pudyastomo, R. N.

    2018-03-01

    The research aimed to describe the effectiveness of flipped classroom learning model on secondary physics classroom setting during Fall semester of 2017. The research object was Secondary 3 Physics group of Singapore School Kelapa Gading. This research was initiated by giving a pre-test, followed by treatment setting of the flipped classroom learning model. By the end of the learning process, the pupils were given a post-test and questionnaire to figure out pupils' response to the flipped classroom learning model. Based on the data analysis, 89% of pupils had passed the minimum criteria of standardization. The increment level in the students' mark was analysed by normalized n-gain formula, obtaining a normalized n-gain score of 0.4 which fulfil medium category range. Obtains from the questionnaire distributed to the students that 93% of students become more motivated to study physics and 89% of students were very happy to carry on hands-on activity based on the flipped classroom learning model. Those three aspects were used to generate a conclusion that applying flipped classroom learning model in Secondary Physics Classroom setting is effectively applicable.

  2. Where technology does not go: specialised neonatal care in resource-poor and conflict-affected contexts

    PubMed Central

    van den Boogaard, W.; Van den Bergh, R.; Takarinda, K. C.; Martinez, P.; Bekouanebandi, J. G.; Javed, I.; Ndelema, B.; Lefèvre, A.; Khalid, G. G.; Zuniga, I.

    2017-01-01

    Setting: Although neonatal mortality is gradually decreasing worldwide, 98% of neonatal deaths occur in low- and middle-income countries, where hospital care for sick and premature neonates is often unavailable. Médecins Sans Frontières Operational Centre Brussels (MSF-OCB) managed eight specialised neonatal care units (SNCUs) at district level in low-resource and conflict-affected settings in seven countries. Objective: To assess the performance of the MSF SNCU model across different settings in Africa and Southern Asia, and to describe the set-up of eight SNCUs, neonate characteristics and clinical outcomes among neonates from 2012 to 2015. Design: Multicentric descriptive study. Results: The MSF SNCU model was characterised by an absence of high-tech equipment and an emphasis on dedicated nursing and medical care. Focus was on the management of hypothermia, hypoglycaemia, feeding support and early identification/treatment of infection. Overall, 11 970 neonates were admitted, 41% of whom had low birthweight (<2500 g). The main diagnoses were low birthweight, asphyxia and neonatal infections. Overall mortality was 17%, with consistency across the sites. Chances of survival increased with higher birthweight. Conclusion: The standardised SNCU model was implemented across different contexts and showed in-patient outcomes within acceptable limits. Low-tech medical care for sick and premature neonates can and should be implemented at district hospital level in low-resource settings. PMID:28695092

  3. Land-cover mapping of Red Rock Canyon National Conservation Area and Coyote Springs, Piute-Eldorado Valley, and Mormon Mesa Areas of Critical Environmental Concern, Clark County, Nevada

    USGS Publications Warehouse

    Smith, J. LaRue; Damar, Nancy A.; Charlet, David A.; Westenburg, Craig L.

    2014-01-01

    DigitalGlobe’s QuickBird satellite high-resolution multispectral imagery was classified by using Visual Learning Systems’ Feature Analyst feature extraction software to produce land-cover data sets for the Red Rock Canyon National Conservation Area and the Coyote Springs, Piute-Eldorado Valley, and Mormon Mesa Areas of Critical Environmental Concern in Clark County, Nevada. Over 1,000 vegetation field samples were collected at the stand level. The field samples were classified to the National Vegetation Classification Standard, Version 2 hierarchy at the alliance level and above. Feature extraction models were developed for vegetation on the basis of the spectral and spatial characteristics of selected field samples by using the Feature Analyst hierarchical learning process. Individual model results were merged to create one data set for the Red Rock Canyon National Conservation Area and one for each of the Areas of Critical Environmental Concern. Field sample points and photographs were used to validate and update the data set after model results were merged. Non-vegetation data layers, such as roads and disturbed areas, were delineated from the imagery and added to the final data sets. The resulting land-cover data sets are significantly more detailed than previously were available, both in resolution and in vegetation classes.

  4. A Computational Model of Linguistic Humor in Puns.

    PubMed

    Kao, Justine T; Levy, Roger; Goodman, Noah D

    2016-07-01

    Humor plays an essential role in human interactions. Precisely what makes something funny, however, remains elusive. While research on natural language understanding has made significant advancements in recent years, there has been little direct integration of humor research with computational models of language understanding. In this paper, we propose two information-theoretic measures-ambiguity and distinctiveness-derived from a simple model of sentence processing. We test these measures on a set of puns and regular sentences and show that they correlate significantly with human judgments of funniness. Moreover, within a set of puns, the distinctiveness measure distinguishes exceptionally funny puns from mediocre ones. Our work is the first, to our knowledge, to integrate a computational model of general language understanding and humor theory to quantitatively predict humor at a fine-grained level. We present it as an example of a framework for applying models of language processing to understand higher level linguistic and cognitive phenomena. © 2015 The Authors. Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.

  5. An Optimization Model for the Selection of Bus-Only Lanes in a City.

    PubMed

    Chen, Qun

    2015-01-01

    The planning of urban bus-only lane networks is an important measure to improve bus service and bus priority. To determine the effective arrangement of bus-only lanes, a bi-level programming model for urban bus lane layout is developed in this study that considers accessibility and budget constraints. The goal of the upper-level model is to minimize the total travel time, and the lower-level model is a capacity-constrained traffic assignment model that describes the passenger flow assignment on bus lines, in which the priority sequence of the transfer times is reflected in the passengers' route-choice behaviors. Using the proposed bi-level programming model, optimal bus lines are selected from a set of candidate bus lines; thus, the corresponding bus lane network on which the selected bus lines run is determined. The solution method using a genetic algorithm in the bi-level programming model is developed, and two numerical examples are investigated to demonstrate the efficacy of the proposed model.

  6. Retina Image Vessel Segmentation Using a Hybrid CGLI Level Set Method

    PubMed Central

    Chen, Meizhu; Li, Jichun; Zhang, Encai

    2017-01-01

    As a nonintrusive method, the retina imaging provides us with a better way for the diagnosis of ophthalmologic diseases. Extracting the vessel profile automatically from the retina image is an important step in analyzing retina images. A novel hybrid active contour model is proposed to segment the fundus image automatically in this paper. It combines the signed pressure force function introduced by the Selective Binary and Gaussian Filtering Regularized Level Set (SBGFRLS) model with the local intensity property introduced by the Local Binary fitting (LBF) model to overcome the difficulty of the low contrast in segmentation process. It is more robust to the initial condition than the traditional methods and is easily implemented compared to the supervised vessel extraction methods. Proposed segmentation method was evaluated on two public datasets, DRIVE (Digital Retinal Images for Vessel Extraction) and STARE (Structured Analysis of the Retina) (the average accuracy of 0.9390 with 0.7358 sensitivity and 0.9680 specificity on DRIVE datasets and average accuracy of 0.9409 with 0.7449 sensitivity and 0.9690 specificity on STARE datasets). The experimental results show that our method is effective and our method is also robust to some kinds of pathology images compared with the traditional level set methods. PMID:28840122

  7. Electron-Impact Excitation Cross Sections for Modeling Non-Equilibrium Gas

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Liu, Yen; Panesi, Marco; Munafo, Alessandro; Wray, Alan; Carbon, Duane F.

    2015-01-01

    In order to provide a database for modeling hypersonic entry in a partially ionized gas under non-equilibrium, the electron-impact excitation cross sections of atoms have been calculated using perturbation theory. The energy levels covered in the calculation are retrieved from the level list in the HyperRad code. The downstream flow-field is determined by solving a set of continuity equations for each component. The individual structure of each energy level is included. These equations are then complemented by the Euler system of equations. Finally, the radiation field is modeled by solving the radiative transfer equation.

  8. Automatic segmentation of right ventricular ultrasound images using sparse matrix transform and a level set

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Cong, Zhibin; Fei, Baowei

    2013-11-01

    An automatic segmentation framework is proposed to segment the right ventricle (RV) in echocardiographic images. The method can automatically segment both epicardial and endocardial boundaries from a continuous echocardiography series by combining sparse matrix transform, a training model, and a localized region-based level set. First, the sparse matrix transform extracts main motion regions of the myocardium as eigen-images by analyzing the statistical information of the images. Second, an RV training model is registered to the eigen-images in order to locate the position of the RV. Third, the training model is adjusted and then serves as an optimized initialization for the segmentation of each image. Finally, based on the initializations, a localized, region-based level set algorithm is applied to segment both epicardial and endocardial boundaries in each echocardiograph. Three evaluation methods were used to validate the performance of the segmentation framework. The Dice coefficient measures the overall agreement between the manual and automatic segmentation. The absolute distance and the Hausdorff distance between the boundaries from manual and automatic segmentation were used to measure the accuracy of the segmentation. Ultrasound images of human subjects were used for validation. For the epicardial and endocardial boundaries, the Dice coefficients were 90.8 ± 1.7% and 87.3 ± 1.9%, the absolute distances were 2.0 ± 0.42 mm and 1.79 ± 0.45 mm, and the Hausdorff distances were 6.86 ± 1.71 mm and 7.02 ± 1.17 mm, respectively. The automatic segmentation method based on a sparse matrix transform and level set can provide a useful tool for quantitative cardiac imaging.

  9. Factors influencing delivered mean airway pressure during nasal CPAP with the RAM cannula.

    PubMed

    Gerdes, Jeffrey S; Sivieri, Emidio M; Abbasi, Soraya

    2016-01-01

    To measure mean airway pressure (MAP) delivered through the RAM Cannula® when used with a ventilator in CPAP mode as a function of percent nares occlusion in a simulated nasal interface/test lung model and to compare the results to MAPs using a nasal continuous positive airway pressure (NCPAP) interface with nares fully occluded. An artificial airway model was connected to a spontaneous breathing lung model in which MAP was measured at set NCPAP levels between 4 and 8 cmH2 O provided by a Dräger Evita XL® ventilator and delivered through three sizes of RAM cannulae. Measurements were performed with varying leakage at the nasal interface by decreasing occlusion from 100% to 29%, half-way prong insertion, and simulated mouth leakage. Comparison measurements were made using the Dräger BabyFlow® NCPAP interface with a full nasal seal. With simulated mouth closed, the Dräger interface delivered MAPs within 0.5 cmH2 O of set CPAP levels. For the RAM cannula, with 60-80% nares occlusion, overall delivered MAPs were 60 ± 17% less than set CPAP levels (P < 0.001). Further, MAP decreased progressively with decreasing percent nares occlusion. The simulated open mouth condition resulted in significantly lower MAPs to <1.7 cmH2 O. The one-half prong insertion depth condition, with closed mouth, yielded MAPs approximately 35 ± 9% less than full insertion pressures (P < 0.001). In our bench tests, the RAM interface connected to a ventilator in NCPAP mode failed to deliver set CPAP levels when applied using the manufacturer recommended 60-80% nares occlusion, even with closed mouth and full nasal prong insertion conditions. © 2015 Wiley Periodicals, Inc.

  10. Application of fuzzy set and Dempster-Shafer theory to organic geochemistry interpretation

    NASA Technical Reports Server (NTRS)

    Kim, C. S.; Isaksen, G. H.

    1993-01-01

    An application of fuzzy sets and Dempster Shafter Theory (DST) in modeling the interpretational process of organic geochemistry data for predicting the level of maturities of oil and source rock samples is presented. This was accomplished by (1) representing linguistic imprecision and imprecision associated with experience by a fuzzy set theory, (2) capturing the probabilistic nature of imperfect evidences by a DST, and (3) combining multiple evidences by utilizing John Yen's generalized Dempster-Shafter Theory (GDST), which allows DST to deal with fuzzy information. The current prototype provides collective beliefs on the predicted levels of maturity by combining multiple evidences through GDST's rule of combination.

  11. A methodology for modeling barrier island storm-impact scenarios

    USGS Publications Warehouse

    Mickey, Rangley C.; Long, Joseph W.; Plant, Nathaniel G.; Thompson, David M.; Dalyander, P. Soupy

    2017-02-16

    A methodology for developing a representative set of storm scenarios based on historical wave buoy and tide gauge data for a region at the Chandeleur Islands, Louisiana, was developed by the U.S. Geological Survey. The total water level was calculated for a 10-year period and analyzed against existing topographic data to identify when storm-induced wave action would affect island morphology. These events were categorized on the basis of the threshold of total water level and duration to create a set of storm scenarios that were simulated, using a high-fidelity, process-based, morphologic evolution model, on an idealized digital elevation model of the Chandeleur Islands. The simulated morphological changes resulting from these scenarios provide a range of impacts that can help coastal managers determine resiliency of proposed or existing coastal structures and identify vulnerable areas within those structures.

  12. Modelling the cost-effectiveness of mass screening and treatment for reducing Plasmodium falciparum malaria burden.

    PubMed

    Crowell, Valerie; Briët, Olivier J T; Hardy, Diggory; Chitnis, Nakul; Maire, Nicolas; Di Pasquale, Aurelio; Smith, Thomas A

    2013-01-03

    Past experience and modelling suggest that, in most cases, mass treatment strategies are not likely to succeed in interrupting Plasmodium falciparum malaria transmission. However, this does not preclude their use to reduce disease burden. Mass screening and treatment (MSAT) is preferred to mass drug administration (MDA), as the latter involves massive over-use of drugs. This paper reports simulations of the incremental cost-effectiveness of well-conducted MSAT campaigns as a strategy for P. falciparum malaria disease-burden reduction in settings with varying receptivity (ability of the combined vector population in a setting to transmit disease) and access to case management. MSAT incremental cost-effectiveness ratios (ICERs) were estimated in different sub-Saharan African settings using simulation models of the dynamics of malaria and a literature-based MSAT cost estimate. Imported infections were simulated at a rate of two per 1,000 population per annum. These estimates were compared to the ICERs of scaling up case management or insecticide-treated net (ITN) coverage in each baseline health system, in the absence of MSAT. MSAT averted most episodes, and resulted in the lowest ICERs, in settings with a moderate level of disease burden. At a low pre-intervention entomological inoculation rate (EIR) of two infectious bites per adult per annum (IBPAPA) MSAT was never more cost-effective than scaling up ITNs or case management coverage. However, at pre-intervention entomological inoculation rates (EIRs) of 20 and 50 IBPAPA and ITN coverage levels of 40 or 60%, respectively, the ICER of MSAT was similar to that of scaling up ITN coverage further. In all the transmission settings considered, achieving a minimal level of ITN coverage is a "best buy". At low transmission, MSAT probably is not worth considering. Instead, MSAT may be suitable at medium to high levels of transmission and at moderate ITN coverage. If undertaken as a burden-reducing intervention, MSAT should be continued indefinitely and should complement, not replace, case management and vector control interventions.

  13. Silica exposure during construction activities: statistical modeling of task-based measurements from the literature.

    PubMed

    Sauvé, Jean-François; Beaudry, Charles; Bégin, Denis; Dion, Chantal; Gérin, Michel; Lavoué, Jérôme

    2013-05-01

    Many construction activities can put workers at risk of breathing silica containing dusts, and there is an important body of literature documenting exposure levels using a task-based strategy. In this study, statistical modeling was used to analyze a data set containing 1466 task-based, personal respirable crystalline silica (RCS) measurements gathered from 46 sources to estimate exposure levels during construction tasks and the effects of determinants of exposure. Monte-Carlo simulation was used to recreate individual exposures from summary parameters, and the statistical modeling involved multimodel inference with Tobit models containing combinations of the following exposure variables: sampling year, sampling duration, construction sector, project type, workspace, ventilation, and controls. Exposure levels by task were predicted based on the median reported duration by activity, the year 1998, absence of source control methods, and an equal distribution of the other determinants of exposure. The model containing all the variables explained 60% of the variability and was identified as the best approximating model. Of the 27 tasks contained in the data set, abrasive blasting, masonry chipping, scabbling concrete, tuck pointing, and tunnel boring had estimated geometric means above 0.1mg m(-3) based on the exposure scenario developed. Water-fed tools and local exhaust ventilation were associated with a reduction of 71 and 69% in exposure levels compared with no controls, respectively. The predictive model developed can be used to estimate RCS concentrations for many construction activities in a wide range of circumstances.

  14. A sequence-dependent rigid-base model of DNA

    NASA Astrophysics Data System (ADS)

    Gonzalez, O.; Petkevičiutė, D.; Maddocks, J. H.

    2013-02-01

    A novel hierarchy of coarse-grain, sequence-dependent, rigid-base models of B-form DNA in solution is introduced. The hierarchy depends on both the assumed range of energetic couplings, and the extent of sequence dependence of the model parameters. A significant feature of the models is that they exhibit the phenomenon of frustration: each base cannot simultaneously minimize the energy of all of its interactions. As a consequence, an arbitrary DNA oligomer has an intrinsic or pre-existing stress, with the level of this frustration dependent on the particular sequence of the oligomer. Attention is focussed on the particular model in the hierarchy that has nearest-neighbor interactions and dimer sequence dependence of the model parameters. For a Gaussian version of this model, a complete coarse-grain parameter set is estimated. The parameterized model allows, for an oligomer of arbitrary length and sequence, a simple and explicit construction of an approximation to the configuration-space equilibrium probability density function for the oligomer in solution. The training set leading to the coarse-grain parameter set is itself extracted from a recent and extensive database of a large number of independent, atomic-resolution molecular dynamics (MD) simulations of short DNA oligomers immersed in explicit solvent. The Kullback-Leibler divergence between probability density functions is used to make several quantitative assessments of our nearest-neighbor, dimer-dependent model, which is compared against others in the hierarchy to assess various assumptions pertaining both to the locality of the energetic couplings and to the level of sequence dependence of its parameters. It is also compared directly against all-atom MD simulation to assess its predictive capabilities. The results show that the nearest-neighbor, dimer-dependent model can successfully resolve sequence effects both within and between oligomers. For example, due to the presence of frustration, the model can successfully predict the nonlocal changes in the minimum energy configuration of an oligomer that are consequent upon a local change of sequence at the level of a single point mutation.

  15. A sequence-dependent rigid-base model of DNA.

    PubMed

    Gonzalez, O; Petkevičiūtė, D; Maddocks, J H

    2013-02-07

    A novel hierarchy of coarse-grain, sequence-dependent, rigid-base models of B-form DNA in solution is introduced. The hierarchy depends on both the assumed range of energetic couplings, and the extent of sequence dependence of the model parameters. A significant feature of the models is that they exhibit the phenomenon of frustration: each base cannot simultaneously minimize the energy of all of its interactions. As a consequence, an arbitrary DNA oligomer has an intrinsic or pre-existing stress, with the level of this frustration dependent on the particular sequence of the oligomer. Attention is focussed on the particular model in the hierarchy that has nearest-neighbor interactions and dimer sequence dependence of the model parameters. For a Gaussian version of this model, a complete coarse-grain parameter set is estimated. The parameterized model allows, for an oligomer of arbitrary length and sequence, a simple and explicit construction of an approximation to the configuration-space equilibrium probability density function for the oligomer in solution. The training set leading to the coarse-grain parameter set is itself extracted from a recent and extensive database of a large number of independent, atomic-resolution molecular dynamics (MD) simulations of short DNA oligomers immersed in explicit solvent. The Kullback-Leibler divergence between probability density functions is used to make several quantitative assessments of our nearest-neighbor, dimer-dependent model, which is compared against others in the hierarchy to assess various assumptions pertaining both to the locality of the energetic couplings and to the level of sequence dependence of its parameters. It is also compared directly against all-atom MD simulation to assess its predictive capabilities. The results show that the nearest-neighbor, dimer-dependent model can successfully resolve sequence effects both within and between oligomers. For example, due to the presence of frustration, the model can successfully predict the nonlocal changes in the minimum energy configuration of an oligomer that are consequent upon a local change of sequence at the level of a single point mutation.

  16. Students' learning as the focus for shared involvement between universities and clinical practice: a didactic model for postgraduate degree projects.

    PubMed

    Öhlén, J; Berg, L; Björk Brämberg, E; Engström, Å; German Millberg, L; Höglund, I; Jacobsson, C; Lepp, M; Lidén, E; Lindström, I; Petzäll, K; Söderberg, S; Wijk, H

    2012-10-01

    In an academic programme, completion of a postgraduate degree project could be a significant means of promoting student learning in evidence- and experience-based practice. In specialist nursing education, which through the European Bologna process would be raised to the master's level, there is no tradition of including a postgraduate degree project. The aim was to develop a didactic model for specialist nursing students' postgraduate degree projects within the second cycle of higher education (master's level) and with a specific focus on nurturing shared involvement between universities and healthcare settings. This study embodies a participatory action research and theory-generating design founded on empirically practical try-outs. The 3-year project included five Swedish universities and related healthcare settings. A series of activities was performed and a number of data sources secured. Constant comparative analysis was applied. A didactic model is proposed for postgraduate degree projects in specialist nursing education aimed at nurturing shared involvement between universities and healthcare settings. The focus of the model is student learning in order to prepare the students for participation as specialist nurses in clinical knowledge development. The model is developed for the specialist nursing education, but it is general and could be applicable to various education programmes.

  17. Discretisation Schemes for Level Sets of Planar Gaussian Fields

    NASA Astrophysics Data System (ADS)

    Beliaev, D.; Muirhead, S.

    2018-01-01

    Smooth random Gaussian functions play an important role in mathematical physics, a main example being the random plane wave model conjectured by Berry to give a universal description of high-energy eigenfunctions of the Laplacian on generic compact manifolds. Our work is motivated by questions about the geometry of such random functions, in particular relating to the structure of their nodal and level sets. We study four discretisation schemes that extract information about level sets of planar Gaussian fields. Each scheme recovers information up to a different level of precision, and each requires a maximum mesh-size in order to be valid with high probability. The first two schemes are generalisations and enhancements of similar schemes that have appeared in the literature (Beffara and Gayet in Publ Math IHES, 2017. https://doi.org/10.1007/s10240-017-0093-0; Mischaikow and Wanner in Ann Appl Probab 17:980-1018, 2007); these give complete topological information about the level sets on either a local or global scale. As an application, we improve the results in Beffara and Gayet (2017) on Russo-Seymour-Welsh estimates for the nodal set of positively-correlated planar Gaussian fields. The third and fourth schemes are, to the best of our knowledge, completely new. The third scheme is specific to the nodal set of the random plane wave, and provides global topological information about the nodal set up to `visible ambiguities'. The fourth scheme gives a way to approximate the mean number of excursion domains of planar Gaussian fields.

  18. Search for new resonances decaying via WZ to leptons in proton–proton collisions at $$\\sqrt s =$$ 8 TeV

    DOE PAGES

    Khachatryan, V.

    2014-11-18

    A search is performed in proton–proton collisions at √s=8 TeV for exotic particles decaying via WZ to fully leptonic final states with electrons, muons, and neutrinos. The data set corresponds to an integrated luminosity of 19.5 fb -1. No significant excess is observed above the expected standard model background. Upper bounds at 95% confidence level are set on the production cross section of a W' boson as predicted by an extended gauge model, and on the W'WZ coupling. The expected and observed mass limits for a W' boson, as predicted by this model, are 1.55 and 1.47 TeV, respectively. Stringentmore » limits are also set in the context of low-scale technicolor models under a range of assumptions for the model parameters.« less

  19. Exercise Self-Efficacy as a Mediator between Goal-Setting and Physical Activity: Developing the Workplace as a Setting for Promoting Physical Activity.

    PubMed

    Iwasaki, Yoshie; Honda, Sumihisa; Kaneko, Shuji; Kurishima, Kazuhiro; Honda, Ayumi; Kakinuma, Ayumu; Jahng, Doosub

    2017-03-01

    Physical activity (PA) is ranked as a leading health indicator and the workplace is a key setting to promote PA. The purpose of this study was to examine how goal-setting and exercise self-efficacy (SE) during a health promotion program influenced PA level among Japanese workers. Using a cross-sectional study design, we surveyed 281 employees. The short version of the International Physical Activity Questionnaire was used to assess PA level. Exercise SE was assessed using a partially modified version of Oka's exercise SE scale. Personal goals were assessed as the total numbers of "yes" responses to five items regarding "details of personal goals to perform PA". A mediational model was used to examine whether exercise SE mediates between the number of personal goals and PA level. The mean age of the participants was 46.3 years, 76.2% were men, and the most common occupational category was software engineer (30.6%). The average PA level per week exceeded the recommended level in 127 participants (45.2%). One hundred and eighty-four participants (65.5%) set some form of concrete personal goal to perform PA. The relationship between the number of personal goals and PA level was mediated by exercise SE. Our study showed that exercise SE mediates goal-setting and increases PA. The results suggest that the components of PA promotion programs should be tailored to enhance participants' confidence in performing PA.

  20. String Scale Gauge Coupling Unification with Vector-Like Exotics and Noncanonical U(1)Y Normalization

    NASA Astrophysics Data System (ADS)

    Barger, V.; Jiang, Jing; Langacker, Paul; Li, Tianjun

    We use a new approach to study string scale gauge coupling unification systematically, allowing both the possibility of noncanonical U(1)Y normalization and the existence of vector-like particles whose quantum numbers are the same as those of the Standard Model (SM) fermions and their Hermitian conjugates and the SM adjoint particles. We first give all the independent sets (Yi) of particles that can be employed to achieve SU(3)C and SU(2)L string scale gauge coupling unification and calculate their masses. Second, for a noncanonical U(1)Y normalization, we obtain string scale SU(3)C ×SU(2)L ×U(1)Y gauge coupling unification by choosing suitable U(1)Y normalizations for each of the Yi sets. Alternatively, for the canonical U(1)Y normalization, we achieve string scale gauge coupling unification by considering suitable combinations of the Yi sets or by introducing additional independent sets (Zi), that do not affect the SU(3)C ×SU(2)L unification at tree level, and then choosing suitable combinations, one from the Yi sets and one from the Zi sets. We also briefly discuss string scale gauge coupling unification in models with higher Kac-Moody levels for SU(2)L or SU(3)C.

  1. Selection of muscle and nerve-cuff electrodes for neuroprostheses using customizable musculoskeletal model.

    PubMed

    Blana, Dimitra; Hincapie, Juan G; Chadwick, Edward K; Kirsch, Robert F

    2013-01-01

    Neuroprosthetic systems based on functional electrical stimulation aim to restore motor function to individuals with paralysis following spinal cord injury. Identifying the optimal electrode set for the neuroprosthesis is complicated because it depends on the characteristics of the individual (such as injury level), the force capacities of the muscles, the movements the system aims to restore, and the hardware limitations (number and type of electrodes available). An electrode-selection method has been developed that uses a customized musculoskeletal model. Candidate electrode sets are created based on desired functional outcomes and the hard ware limitations of the proposed system. Inverse-dynamic simulations are performed to determine the proportion of target movements that can be accomplished with each set; the set that allows the most movements to be performed is chosen as the optimal set. The technique is demonstrated here for a system recently developed by our research group to restore whole-arm movement to individuals with high-level tetraplegia. The optimal set included selective nerve-cuff electrodes for the radial and musculocutaneous nerves; single-channel cuffs for the axillary, suprascapular, upper subscapular, and long-thoracic nerves; and muscle-based electrodes for the remaining channels. The importance of functional goals, hardware limitations, muscle and nerve anatomy, and surgical feasibility are highlighted.

  2. Predicting climate-induced range shifts: model differences and model reliability.

    Treesearch

    Joshua J. Lawler; Denis White; Ronald P. Neilson; Andrew R. Blaustein

    2006-01-01

    Predicted changes in the global climate are likely to cause large shifts in the geographic ranges of many plant and animal species. To date, predictions of future range shifts have relied on a variety of modeling approaches with different levels of model accuracy. Using a common data set, we investigated the potential implications of alternative modeling approaches for...

  3. JEDI Transmission Line Model | Jobs and Economic Development Impact Models

    Science.gov Websites

    , reasonable default values are provided. Individual projects may vary and when possible, project specific data Line Model rel. TL12.23.16. JEDI Transmission Line Model User Reference Guide Using MS Excel 2007 When ;High." Set the level to "Medium" or "Low" and then re-open the JEDI worksheet

  4. The Impact of the Tree Prior on Molecular Dating of Data Sets Containing a Mixture of Inter- and Intraspecies Sampling.

    PubMed

    Ritchie, Andrew M; Lo, Nathan; Ho, Simon Y W

    2017-05-01

    In Bayesian phylogenetic analyses of genetic data, prior probability distributions need to be specified for the model parameters, including the tree. When Bayesian methods are used for molecular dating, available tree priors include those designed for species-level data, such as the pure-birth and birth-death priors, and coalescent-based priors designed for population-level data. However, molecular dating methods are frequently applied to data sets that include multiple individuals across multiple species. Such data sets violate the assumptions of both the speciation and coalescent-based tree priors, making it unclear which should be chosen and whether this choice can affect the estimation of node times. To investigate this problem, we used a simulation approach to produce data sets with different proportions of within- and between-species sampling under the multispecies coalescent model. These data sets were then analyzed under pure-birth, birth-death, constant-size coalescent, and skyline coalescent tree priors. We also explored the ability of Bayesian model testing to select the best-performing priors. We confirmed the applicability of our results to empirical data sets from cetaceans, phocids, and coregonid whitefish. Estimates of node times were generally robust to the choice of tree prior, but some combinations of tree priors and sampling schemes led to large differences in the age estimates. In particular, the pure-birth tree prior frequently led to inaccurate estimates for data sets containing a mixture of inter- and intraspecific sampling, whereas the birth-death and skyline coalescent priors produced stable results across all scenarios. Model testing provided an adequate means of rejecting inappropriate tree priors. Our results suggest that tree priors do not strongly affect Bayesian molecular dating results in most cases, even when severely misspecified. However, the choice of tree prior can be significant for the accuracy of dating results in the case of data sets with mixed inter- and intraspecies sampling. [Bayesian phylogenetic methods; model testing; molecular dating; node time; tree prior.]. © The authors 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  5. Metabolomics biomarkers to predict acamprosate treatment response in alcohol-dependent subjects.

    PubMed

    Hinton, David J; Vázquez, Marely Santiago; Geske, Jennifer R; Hitschfeld, Mario J; Ho, Ada M C; Karpyak, Victor M; Biernacka, Joanna M; Choi, Doo-Sup

    2017-05-31

    Precision medicine for alcohol use disorder (AUD) allows optimal treatment of the right patient with the right drug at the right time. Here, we generated multivariable models incorporating clinical information and serum metabolite levels to predict acamprosate treatment response. The sample of 120 patients was randomly split into a training set (n = 80) and test set (n = 40) five independent times. Treatment response was defined as complete abstinence (no alcohol consumption during 3 months of acamprosate treatment) while nonresponse was defined as any alcohol consumption during this period. In each of the five training sets, we built a predictive model using a least absolute shrinkage and section operator (LASSO) penalized selection method and then evaluated the predictive performance of each model in the corresponding test set. The models predicted acamprosate treatment response with a mean sensitivity and specificity in the test sets of 0.83 and 0.31, respectively, suggesting our model performed well at predicting responders, but not non-responders (i.e. many non-responders were predicted to respond). Studies with larger sample sizes and additional biomarkers will expand the clinical utility of predictive algorithms for pharmaceutical response in AUD.

  6. A model for hormonal control of the menstrual cycle: structural consistency but sensitivity with regard to data.

    PubMed

    Selgrade, J F; Harris, L A; Pasteur, R D

    2009-10-21

    This study presents a 13-dimensional system of delayed differential equations which predicts serum concentrations of five hormones important for regulation of the menstrual cycle. Parameters for the system are fit to two different data sets for normally cycling women. For these best fit parameter sets, model simulations agree well with the two different data sets but one model also has an abnormal stable periodic solution, which may represent polycystic ovarian syndrome. This abnormal cycle occurs for the model in which the normal cycle has estradiol levels at the high end of the normal range. Differences in model behavior are explained by studying hysteresis curves in bifurcation diagrams with respect to sensitive model parameters. For instance, one sensitive parameter is indicative of the estradiol concentration that promotes pituitary synthesis of a large amount of luteinizing hormone, which is required for ovulation. Also, it is observed that models with greater early follicular growth rates may have a greater risk of cycling abnormally.

  7. Distributed visualization of gridded geophysical data: the Carbon Data Explorer, version 0.2.3

    NASA Astrophysics Data System (ADS)

    Endsley, K. A.; Billmire, M. G.

    2016-01-01

    Due to the proliferation of geophysical models, particularly climate models, the increasing resolution of their spatiotemporal estimates of Earth system processes, and the desire to easily share results with collaborators, there is a genuine need for tools to manage, aggregate, visualize, and share data sets. We present a new, web-based software tool - the Carbon Data Explorer - that provides these capabilities for gridded geophysical data sets. While originally developed for visualizing carbon flux, this tool can accommodate any time-varying, spatially explicit scientific data set, particularly NASA Earth system science level III products. In addition, the tool's open-source licensing and web presence facilitate distributed scientific visualization, comparison with other data sets and uncertainty estimates, and data publishing and distribution.

  8. Reinstatement of Individual Past Events Revealed by the Similarity of Distributed Activation Patterns during Encoding and Retrieval

    PubMed Central

    Wing, Erik A.; Ritchey, Maureen; Cabeza, Roberto

    2015-01-01

    Neurobiological memory models assume memory traces are stored in neocortex, with pointers in the hippocampus, and are then reactivated during retrieval, yielding the experience of remembering. Whereas most prior neuroimaging studies on reactivation have focused on the reactivation of sets or categories of items, the current study sought to identify cortical patterns pertaining to memory for individual scenes. During encoding, participants viewed pictures of scenes paired with matching labels (e.g., “barn,” “tunnel”), and, during retrieval, they recalled the scenes in response to the labels and rated the quality of their visual memories. Using representational similarity analyses, we interrogated the similarity between activation patterns during encoding and retrieval both at the item level (individual scenes) and the set level (all scenes). The study yielded four main findings. First, in occipitotemporal cortex, memory success increased with encoding-retrieval similarity (ERS) at the item level but not at the set level, indicating the reactivation of individual scenes. Second, in ventrolateral pFC, memory increased with ERS for both item and set levels, indicating the recapitulation of memory processes that benefit encoding and retrieval of all scenes. Third, in retrosplenial/posterior cingulate cortex, ERS was sensitive to individual scene information irrespective of memory success, suggesting automatic activation of scene contexts. Finally, consistent with neurobiological models, hippocampal activity during encoding predicted the subsequent reactivation of individual items. These findings show the promise of studying memory with greater specificity by isolating individual mnemonic representations and determining their relationship to factors like the detail with which past events are remembered. PMID:25313659

  9. Derivation and validation of different machine-learning models in mortality prediction of trauma in motorcycle riders: a cross-sectional retrospective study in southern Taiwan

    PubMed Central

    Kuo, Pao-Jen; Wu, Shao-Chun; Chien, Peng-Chen; Rau, Cheng-Shyuan; Chen, Yi-Chun; Hsieh, Hsiao-Yun; Hsieh, Ching-Hua

    2018-01-01

    Objectives This study aimed to build and test the models of machine learning (ML) to predict the mortality of hospitalised motorcycle riders. Setting The study was conducted in a level-1 trauma centre in southern Taiwan. Participants Motorcycle riders who were hospitalised between January 2009 and December 2015 were classified into a training set (n=6306) and test set (n=946). Using the demographic information, injury characteristics and laboratory data of patients, logistic regression (LR), support vector machine (SVM) and decision tree (DT) analyses were performed to determine the mortality of individual motorcycle riders, under different conditions, using all samples or reduced samples, as well as all variables or selected features in the algorithm. Primary and secondary outcome measures The predictive performance of the model was evaluated based on accuracy, sensitivity, specificity and geometric mean, and an analysis of the area under the receiver operating characteristic curves of the two different models was carried out. Results In the training set, both LR and SVM had a significantly higher area under the receiver operating characteristic curve (AUC) than DT. No significant difference was observed in the AUC of LR and SVM, regardless of whether all samples or reduced samples and whether all variables or selected features were used. In the test set, the performance of the SVM model for all samples with selected features was better than that of all other models, with an accuracy of 98.73%, sensitivity of 86.96%, specificity of 99.02%, geometric mean of 92.79% and AUC of 0.9517, in mortality prediction. Conclusion ML can provide a feasible level of accuracy in predicting the mortality of motorcycle riders. Integration of the ML model, particularly the SVM algorithm in the trauma system, may help identify high-risk patients and, therefore, guide appropriate interventions by the clinical staff. PMID:29306885

  10. Prediction of recombinant protein overexpression in Escherichia coli using a machine learning based model (RPOLP).

    PubMed

    Habibi, Narjeskhatoon; Norouzi, Alireza; Mohd Hashim, Siti Z; Shamsir, Mohd Shahir; Samian, Razip

    2015-11-01

    Recombinant protein overexpression, an important biotechnological process, is ruled by complex biological rules which are mostly unknown, is in need of an intelligent algorithm so as to avoid resource-intensive lab-based trial and error experiments in order to determine the expression level of the recombinant protein. The purpose of this study is to propose a predictive model to estimate the level of recombinant protein overexpression for the first time in the literature using a machine learning approach based on the sequence, expression vector, and expression host. The expression host was confined to Escherichia coli which is the most popular bacterial host to overexpress recombinant proteins. To provide a handle to the problem, the overexpression level was categorized as low, medium and high. A set of features which were likely to affect the overexpression level was generated based on the known facts (e.g. gene length) and knowledge gathered from related literature. Then, a representative sub-set of features generated in the previous objective was determined using feature selection techniques. Finally a predictive model was developed using random forest classifier which was able to adequately classify the multi-class imbalanced small dataset constructed. The result showed that the predictive model provided a promising accuracy of 80% on average, in estimating the overexpression level of a recombinant protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Determinants of Awareness, Consideration, and Choice Set Size in University Choice.

    ERIC Educational Resources Information Center

    Dawes, Philip L.; Brown, Jennifer

    2002-01-01

    Developed and tested a model of students' university "brand" choice using five individual-level variables (ethnic group, age, gender, number of parents going to university, and academic ability) and one situational variable (duration of search) to explain variation in the sizes of awareness, consideration, and choice decision sets. (EV)

  12. Judgmental Standard Setting Using a Cognitive Components Model.

    ERIC Educational Resources Information Center

    McGinty, Dixie; Neel, John H.

    A new standard setting approach is introduced, called the cognitive components approach. Like the Angoff method, the cognitive components method generates minimum pass levels (MPLs) for each item. In both approaches, the item MPLs are summed for each judge, then averaged across judges to yield the standard. In the cognitive components approach,…

  13. An Innovative Model of Integrated Behavioral Health: School Psychologists in Pediatric Primary Care Settings

    ERIC Educational Resources Information Center

    Adams, Carolyn D.; Hinojosa, Sara; Armstrong, Kathleen; Takagishi, Jennifer; Dabrow, Sharon

    2016-01-01

    This article discusses an innovative example of integrated care in which doctoral level school psychology interns and residents worked alongside pediatric residents and pediatricians in the primary care settings to jointly provide services to patients. School psychologists specializing in pediatric health are uniquely trained to recognize and…

  14. Blood glucose prediction using neural network

    NASA Astrophysics Data System (ADS)

    Soh, Chit Siang; Zhang, Xiqin; Chen, Jianhong; Raveendran, P.; Soh, Phey Hong; Yeo, Joon Hock

    2008-02-01

    We used neural network for blood glucose level determination in this study. The data set used in this study was collected using a non-invasive blood glucose monitoring system with six laser diodes, each laser diode operating at distinct near infrared wavelength between 1500nm and 1800nm. The neural network is specifically used to determine blood glucose level of one individual who participated in an oral glucose tolerance test (OGTT) session. Partial least squares regression is also used for blood glucose level determination for the purpose of comparison with the neural network model. The neural network model performs better in the prediction of blood glucose level as compared with the partial least squares model.

  15. A novel simulation theory and model system for multi-field coupling pipe-flow system

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Jiang, Fan; Cai, Guobiao; Xu, Xu

    2017-09-01

    Due to the lack of a theoretical basis for multi-field coupling in many system-level models, a novel set of system-level basic equations for flow/heat transfer/combustion coupling is put forward. Then a finite volume model of quasi-1D transient flow field for multi-species compressible variable-cross-section pipe flow is established by discretising the basic equations on spatially staggered grids. Combining with the 2D axisymmetric model for pipe-wall temperature field and specific chemical reaction mechanisms, a finite volume model system is established; a set of specific calculation methods suitable for multi-field coupling system-level research is structured for various parameters in this model; specific modularisation simulation models can be further derived in accordance with specific structures of various typical components in a liquid propulsion system. This novel system can also be used to derive two sub-systems: a flow/heat transfer two-field coupling pipe-flow model system without chemical reaction and species diffusion; and a chemical equilibrium thermodynamic calculation-based multi-field coupling system. The applicability and accuracy of two sub-systems have been verified through a series of dynamic modelling and simulations in earlier studies. The validity of this system is verified in an air-hydrogen combustion sample system. The basic equations and the model system provide a unified universal theory and numerical system for modelling and simulation and even virtual testing of various pipeline systems.

  16. A validation procedure for a LADAR system radiometric simulation model

    NASA Astrophysics Data System (ADS)

    Leishman, Brad; Budge, Scott; Pack, Robert

    2007-04-01

    The USU LadarSIM software package is a ladar system engineering tool that has recently been enhanced to include the modeling of the radiometry of Ladar beam footprints. This paper will discuss our validation of the radiometric model and present a practical approach to future validation work. In order to validate complicated and interrelated factors affecting radiometry, a systematic approach had to be developed. Data for known parameters were first gathered then unknown parameters of the system were determined from simulation test scenarios. This was done in a way to isolate as many unknown variables as possible, then build on the previously obtained results. First, the appropriate voltage threshold levels of the discrimination electronics were set by analyzing the number of false alarms seen in actual data sets. With this threshold set, the system noise was then adjusted to achieve the appropriate number of dropouts. Once a suitable noise level was found, the range errors of the simulated and actual data sets were compared and studied. Predicted errors in range measurements were analyzed using two methods: first by examining the range error of a surface with known reflectivity and second by examining the range errors for specific detectors with known responsivities. This provided insight into the discrimination method and receiver electronics used in the actual system.

  17. Resident and facility characteristics associated with care-need level deterioration in long-term care welfare facilities in Japan.

    PubMed

    Jin, Xueying; Tamiya, Nanako; Jeon, Boyoung; Kawamura, Akira; Takahashi, Hideto; Noguchi, Haruko

    2018-05-01

    To determine the resident and facility characteristics associated with residents' care-need level deterioration in long-term care welfare facilities in Japan. A nationally representative sample of 358 886 residents who lived in 3774 long-term care welfare facilities for at least 1 year from October 2012 was obtained from long-term care insurance claims data. Facility characteristics were linked with a survey of institutions and establishments for long-term care in 2012. We used a multilevel logistic regression according to the inclusion and exclusion of lost to follow-up to define the resident and facility characteristics associated with resident care-need level deteriorations (lost to follow-up: the majority were hospitalized residents or had died; were treated as deterioration in the including loss to follow-up model). Adjusting for the covariates, at the resident level, older age and lower care-need level at baseline were more likely to show deterioration in the care-need level. At the facility level, metropolitan facilities, unit model (all private room settings) and mixed-model facilities (partly private room settings) were less likely to experience care-need level deterioration. A higher proportion of registered nurses among all nurses was negatively related to care-need level deterioration only in the model including lost to follow-up. A higher proportion of registered dietitians among all dietitians and the facilities in business for fewer years were negatively associated with care-need level deterioration only in the model excluding lost to follow-up. The present study could help identify residents who are at risk of care-need level deterioration, and could contribute to improvements in provider quality performance and enhance competence in the market. Geriatr Gerontol Int 2018; 18: 758-766. © 2018 The Authors Geriatrics & Gerontology International published by John Wiley & Sons Australia, Ltd on behalf of Japan Geriatrics Society.

  18. High-Resolution Regional Reanalysis in China: Evaluation of 1 Year Period Experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Pan, Yinong; Wang, Shuyu; Xu, Jianjun; Tang, Jianping

    2017-10-01

    Globally, reanalysis data sets are widely used in assessing climate change, validating numerical models, and understanding the interactions between the components of a climate system. However, due to the relatively coarse resolution, most global reanalysis data sets are not suitable to apply at the local and regional scales directly with the inadequate descriptions of mesoscale systems and climatic extreme incidents such as mesoscale convective systems, squall lines, tropical cyclones, regional droughts, and heat waves. In this study, by using a data assimilation system of Gridpoint Statistical Interpolation, and a mesoscale atmospheric model of Weather Research and Forecast model, we build a regional reanalysis system. This is preliminary and the first experimental attempt to construct a high-resolution reanalysis for China main land. Four regional test bed data sets are generated for year 2013 via three widely used methods (classical dynamical downscaling, spectral nudging, and data assimilation) and a hybrid method with data assimilation coupled with spectral nudging. Temperature at 2 m, precipitation, and upper level atmospheric variables are evaluated by comparing against observations for one-year-long tests. It can be concluded that the regional reanalysis with assimilation and nudging methods can better produce the atmospheric variables from surface to upper levels, and regional extreme events such as heat waves, than the classical dynamical downscaling. Compared to the ERA-Interim global reanalysis, the hybrid nudging method performs slightly better in reproducing upper level temperature and low-level moisture over China, which improves regional reanalysis data quality.

  19. A Risk Stratification Model for Lung Cancer Based on Gene Coexpression Network and Deep Learning

    PubMed Central

    2018-01-01

    Risk stratification model for lung cancer with gene expression profile is of great interest. Instead of previous models based on individual prognostic genes, we aimed to develop a novel system-level risk stratification model for lung adenocarcinoma based on gene coexpression network. Using multiple microarray, gene coexpression network analysis was performed to identify survival-related networks. A deep learning based risk stratification model was constructed with representative genes of these networks. The model was validated in two test sets. Survival analysis was performed using the output of the model to evaluate whether it could predict patients' survival independent of clinicopathological variables. Five networks were significantly associated with patients' survival. Considering prognostic significance and representativeness, genes of the two survival-related networks were selected for input of the model. The output of the model was significantly associated with patients' survival in two test sets and training set (p < 0.00001, p < 0.0001 and p = 0.02 for training and test sets 1 and 2, resp.). In multivariate analyses, the model was associated with patients' prognosis independent of other clinicopathological features. Our study presents a new perspective on incorporating gene coexpression networks into the gene expression signature and clinical application of deep learning in genomic data science for prognosis prediction. PMID:29581968

  20. The Association of Workplace Social Capital With Work Engagement of Employees in Health Care Settings: A Multilevel Cross-Sectional Analysis.

    PubMed

    Fujita, Sumiko; Kawakami, Norito; Ando, Emiko; Inoue, Akiomi; Tsuno, Kanami; Kurioka, Sumiko; Kawachi, Ichiro

    2016-03-01

    The aim of the study was to examine the cross-sectional multilevel association between unit-level workplace social capital and individual-level work engagement among employees in health care settings. The data were collected from employees of a Japanese health care corporation using a questionnaire. The analyses were limited to 440 respondents from 35 units comprising five or more respondents per unit. Unit-level workplace social capital was calculated as an average score of the Workplace Social Capital Scale for each unit. Multilevel regression analysis with a random intercept model was conducted. After adjusting for demographic variables, unit-level workplace social capital was significantly and positively associated with respondents' work engagement (P < 0.001). The association remained significant after additionally adjusting for individual-level perceptions of workplace social capital (P < 0.001). Workplace social capital might exert a positive contextual effect on work engagement of employees in health care settings.

  1. No correlation between Anderson Reservoir stage level and underlying Calaveras fault seismicity despite calculated differential stress increases

    USGS Publications Warehouse

    Parsons, T.

    2011-01-01

    Concerns have been raised that stresses from reservoir impoundment may trigger damaging earthquakes because rate changes have been associated with reservoir impoundment or stage-level changes globally. Here, the idea is tested blindly using Anderson Reservoir, which lies atop the seismically active Calaveras fault. The only knowledge held by the author going into the study was the expectation that reservoir levels change cyclically because of seasonal rainfall. Examination of seismicity rates near the reservoir reveals variability, but no correlation with stage-level changes. Three-dimensional fi nite-element modeling shows stress changes suffi cient for earthquake triggering along the Calaveras fault zone. Since many of the reported cases of induced triggering come from low-strain settings, it is speculated that gradual stressing from stage-level changes in high-strain settings may not be signifi cant. From this study, it can be concluded that reservoirs are not necessarily risky in active tectonic settings. ?? 2011 Geological Society of America.

  2. High-level intuitive features (HLIFs) for intuitive skin lesion description.

    PubMed

    Amelard, Robert; Glaister, Jeffrey; Wong, Alexander; Clausi, David A

    2015-03-01

    A set of high-level intuitive features (HLIFs) is proposed to quantitatively describe melanoma in standard camera images. Melanoma is the deadliest form of skin cancer. With rising incidence rates and subjectivity in current clinical detection methods, there is a need for melanoma decision support systems. Feature extraction is a critical step in melanoma decision support systems. Existing feature sets for analyzing standard camera images are comprised of low-level features, which exist in high-dimensional feature spaces and limit the system's ability to convey intuitive diagnostic rationale. The proposed HLIFs were designed to model the ABCD criteria commonly used by dermatologists such that each HLIF represents a human-observable characteristic. As such, intuitive diagnostic rationale can be conveyed to the user. Experimental results show that concatenating the proposed HLIFs with a full low-level feature set increased classification accuracy, and that HLIFs were able to separate the data better than low-level features with statistical significance. An example of a graphical interface for providing intuitive rationale is given.

  3. Comparisons of thermospheric density data sets and models

    NASA Astrophysics Data System (ADS)

    Doornbos, Eelco; van Helleputte, Tom; Emmert, John; Drob, Douglas; Bowman, Bruce R.; Pilinski, Marcin

    During the past decade, continuous long-term data sets of thermospheric density have become available to researchers. These data sets have been derived from accelerometer measurements made by the CHAMP and GRACE satellites and from Space Surveillance Network (SSN) tracking data and related Two-Line Element (TLE) sets. These data have already resulted in a large number of publications on physical interpretation and improvement of empirical density modelling. This study compares four different density data sets and two empirical density models, for the period 2002-2009. These data sources are the CHAMP (1) and GRACE (2) accelerometer measurements, the long-term database of densities derived from TLE data (3), the High Accuracy Satellite Drag Model (4) run by Air Force Space Command, calibrated using SSN data, and the NRLMSISE-00 (5) and Jacchia-Bowman 2008 (6) empirical models. In describing these data sets and models, specific attention is given to differences in the geo-metrical and aerodynamic satellite modelling, applied in the conversion from drag to density measurements, which are main sources of density biases. The differences in temporal and spa-tial resolution of the density data sources are also described and taken into account. With these aspects in mind, statistics of density comparisons have been computed, both as a function of solar and geomagnetic activity levels, and as a function of latitude and local solar time. These statistics give a detailed view of the relative accuracy of the different data sets and of the biases between them. The differences are analysed with the aim at providing rough error bars on the data and models and pinpointing issues which could receive attention in future iterations of data processing algorithms and in future model development.

  4. Statistical Significance and Baseline Monitoring.

    DTIC Science & Technology

    1984-07-01

    impacted at once........................... 24 6 Observed versus nominal a levels for multivariate tests of data sets (50 runs of 4 groups each...cumulative proportion of the observations found for each nominal level. The results of the comparisons of the observed versus nominal a levels for the...a values are always higher than nominal levels. Virtual- . .,ly all nominal a levels are below 0.20. In other words, the discriminant analysis models

  5. Modelling submerged coastal environments: Remote sensing technologies, techniques, and comparative analysis

    NASA Astrophysics Data System (ADS)

    Dillon, Chris

    Built upon remote sensing and GIS littoral zone characterization methodologies of the past decade, a series of loosely coupled models aimed to test, compare and synthesize multi-beam SONAR (MBES), Airborne LiDAR Bathymetry (ALB), and satellite based optical data sets in the Gulf of St. Lawrence, Canada, eco-region. Bathymetry and relative intensity metrics for the MBES and ALB data sets were run through a quantitative and qualitative comparison, which included outputs from the Benthic Terrain Modeller (BTM) tool. Substrate classification based on relative intensities of respective data sets and textural indices generated using grey level co-occurrence matrices (GLCM) were investigated. A spatial modelling framework built in ArcGIS(TM) for the derivation of bathymetric data sets from optical satellite imagery was also tested for proof of concept and validation. Where possible, efficiencies and semi-automation for repeatable testing was achieved using ArcGIS(TM) ModelBuilder. The findings from this study could assist future decision makers in the field of coastal management and hydrographic studies. Keywords: Seafloor terrain characterization, Benthic Terrain Modeller (BTM), Multi-beam SONAR, Airborne LiDAR Bathymetry, Satellite Derived Bathymetry, ArcGISTM ModelBuilder, Textural analysis, Substrate classification.

  6. Precise determination of time to reach viral load set point after acute HIV-1 infection.

    PubMed

    Huang, Xiaojie; Chen, Hui; Li, Wei; Li, Haiying; Jin, Xia; Perelson, Alan S; Fox, Zoe; Zhang, Tong; Xu, Xiaoning; Wu, Hao

    2012-12-01

    The HIV viral load set point has long been used as a prognostic marker of disease progression and more recently as an end-point parameter in HIV vaccine clinical trials. The definition of set point, however, is variable. Moreover, the earliest time at which the set point is reached after the onset of infection has never been clearly defined. In this study, we obtained sequential plasma viral load data from 60 acutely HIV-infected Chinese patients among a cohort of men who have sex with men, mathematically determined viral load set point levels, and estimated time to attain set point after infection. We also compared the results derived from our models and that obtained from an empirical method. With novel uncomplicated mathematic model, we discovered that set points may vary from 21 to 119 days dependent on the patients' initial viral load trajectory. The viral load set points were 4.28 ± 0.86 and 4.25 ± 0.87 log10 copies per milliliter (P = 0.08), respectively, as determined by our model and an empirical method, suggesting an excellent agreement between the old and new methods. We provide a novel method to estimate viral load set point at the very early stage of HIV infection. Application of this model can accurately and reliably determine the set point, thus providing a new tool for physicians to better monitor early intervention strategies in acutely infected patients and scientists to rationally design preventative vaccine studies.

  7. 76 FR 5691 - Cyprodinil; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ....'' This includes exposure through drinking water and in residential settings, but does not include... exposure from drinking water. The Agency used screening level water exposure models in the dietary exposure analysis and risk assessment for cyprodinil in drinking water. These simulation models take into account...

  8. 75 FR 17579 - Aminopyralid; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... exposure through drinking water and in residential settings, but does not include occupational exposure... from drinking water. The Agency used screening level water exposure models in the dietary exposure analysis and risk assessment for aminopyralid in drinking water. These simulation models take into account...

  9. Setting Strategic Directions Using Critical Success Factors.

    ERIC Educational Resources Information Center

    Bourne, Bonnie; Gates, Larry; Cofer, James

    2000-01-01

    Describes implementation of a system-level planning model focused on institutional improvement and effectiveness at the University of Missouri. Details implementation of three phases of the strategic planning model (strategic analysis, strategic thinking/decision-making, and campus outreach/systems administration planning); identifies critical…

  10. Detection and evaluation of DNA methylation markers found at SCGN and KLF14 loci to estimate human age.

    PubMed

    Alghanim, Hussain; Antunes, Joana; Silva, Deborah Soares Bispo Santos; Alho, Clarice Sampaio; Balamurugan, Kuppareddi; McCord, Bruce

    2017-11-01

    Recent developments in the analysis of epigenetic DNA methylation patterns have demonstrated that certain genetic loci show a linear correlation with chronological age. It is the goal of this study to identify a new set of epigenetic methylation markers for the forensic estimation of human age. A total number of 27 CpG sites at three genetic loci, SCGN, DLX5 and KLF14, were examined to evaluate the correlation of their methylation status with age. These sites were evaluated using 72 blood samples and 91 saliva samples collected from volunteers with ages ranging from 5 to 73 years. DNA was bisulfite modified followed by PCR amplification and pyrosequencing to determine the level of DNA methylation at each CpG site. In this study, certain CpG sites in SCGN and KLF14 loci showed methylation levels that were correlated with chronological age, however, the tested CpG sites in DLX5 did not show a correlation with age. Using a 52-saliva sample training set, two age-predictor models were developed by means of a multivariate linear regression analysis for age prediction. The two models performed similarly with a single-locus model explaining 85% of the age variance at a mean absolute deviation of 5.8 years and a dual-locus model explaining 84% of the age variance with a mean absolute deviation of 6.2 years. In the validation set, the mean absolute deviation was measured to be 8.0 years and 7.1 years for the single- and dual-locus model, respectively. Another age predictor model was also developed using a 40-blood sample training set that accounted for 71% of the age variance. This model gave a mean absolute deviation of 6.6 years for the training set and 10.3years for the validation set. The results indicate that specific CpGs in SCGN and KLF14 can be used as potential epigenetic markers to estimate age using saliva and blood specimens. These epigenetic markers could provide important information in cases where the determination of a suspect's age is critical in developing investigative leads. Copyright © 2017. Published by Elsevier B.V.

  11. Large Terrain Modeling and Visualization for Planets

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan; Cameron, Jonathan; Lim, Christopher

    2011-01-01

    Physics-based simulations are actively used in the design, testing, and operations phases of surface and near-surface planetary space missions. One of the challenges in realtime simulations is the ability to handle large multi-resolution terrain data sets within models as well as for visualization. In this paper, we describe special techniques that we have developed for visualization, paging, and data storage for dealing with these large data sets. The visualization technique uses a real-time GPU-based continuous level-of-detail technique that delivers multiple frames a second performance even for planetary scale terrain model sizes.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poyer, D.A.

    In this report, tests of statistical significance of five sets of variables with household energy consumption (at the point of end-use) are described. Five models, in sequence, were empirically estimated and tested for statistical significance by using the Residential Energy Consumption Survey of the US Department of Energy, Energy Information Administration. Each model incorporated additional information, embodied in a set of variables not previously specified in the energy demand system. The variable sets were generally labeled as economic variables, weather variables, household-structure variables, end-use variables, and housing-type variables. The tests of statistical significance showed each of the variable sets tomore » be highly significant in explaining the overall variance in energy consumption. The findings imply that the contemporaneous interaction of different types of variables, and not just one exclusive set of variables, determines the level of household energy consumption.« less

  13. Modified Kneser-Ney Smoothing of n-Gram Models

    NASA Technical Reports Server (NTRS)

    James, Frankie

    2000-01-01

    This report examines a series of tests that were performed on variations of the modified Kneser Ney smoothing model outlined in a study by Chen and Goodman. We explore several different ways of choosing and setting the discounting parameters, as well as the exclusion of singleton contexts at various levels of the model.

  14. The Substitution Augmentation Modification Redefinition (SAMR) Model: A Critical Review and Suggestions for Its Use

    ERIC Educational Resources Information Center

    Hamilton, Erica R.; Rosenberg, Joshua M.; Akcaoglu, Mete

    2016-01-01

    The Substitution, Augmentation, Modification, and Redefinition (SAMR) model is a four-level, taxonomy-based approach for selecting, using, and evaluating technology in K-12 settings (Puentedura 2006). Despite its increasing popularity among practitioners, the SAMR model is not currently represented in the extant literature. To focus the ongoing…

  15. Integrating fire management analysis into land management planning

    Treesearch

    Thomas J. Mills

    1983-01-01

    The analysis of alternative fire management programs should be integrated into the land and resource management planning process, but a single fire management analysis model cannot meet all planning needs. Therefore, a set of simulation models that are analytically separate from integrated land management planning models are required. The design of four levels of fire...

  16. An Evidence-Based Practice Model across the Academic and Clinical Settings

    ERIC Educational Resources Information Center

    Wolter, Julie A.; Corbin-Lewis, Kim; Self, Trisha; Elsweiler, Anne

    2011-01-01

    This tutorial is designed to provide academic communication sciences and disorders (CSD) programs, at both the undergraduate and graduate levels, with a comprehensive instructional model on evidence-based practice (EBP). The model was designed to help students view EBP as an ongoing process needed in all clinical decision making. The three facets…

  17. Refining Uses and Gratifications with a Human Information Processing Model.

    ERIC Educational Resources Information Center

    Griffin, Robert J.

    A study was conducted as part of a program to develop and test an individual level communications model. The model proposes that audience members bring to communications situations a set of learned cognitive processing strategies that produce cognitive structural representations of information in memory to facilitate the meeting of the various…

  18. Identifying arbitrary parameter zonation using multiple level set functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhiming; Vesselinov, Velimir Valentinov; Lei, Hongzhuan

    In this paper, we extended the analytical level set method [1, 2] for identifying a piece-wisely heterogeneous (zonation) binary system to the case with an arbitrary number of materials with unknown material properties. In the developed level set approach, starting from an initial guess, the material interfaces are propagated through iterations such that the residuals between the simulated and observed state variables (hydraulic head) is minimized. We derived an expression for the propagation velocity of the interface between any two materials, which is related to the permeability contrast between the materials on two sides of the interface, the sensitivity ofmore » the head to permeability, and the head residual. We also formulated an expression for updating the permeability of all materials, which is consistent with the steepest descent of the objective function. The developed approach has been demonstrated through many examples, ranging from totally synthetic cases to a case where the flow conditions are representative of a groundwater contaminant site at the Los Alamos National Laboratory. These examples indicate that the level set method can successfully identify zonation structures, even if the number of materials in the model domain is not exactly known in advance. Although the evolution of the material zonation depends on the initial guess field, inverse modeling runs starting with different initial guesses fields may converge to the similar final zonation structure. These examples also suggest that identifying interfaces of spatially distributed heterogeneities is more important than estimating their permeability values.« less

  19. Identifying arbitrary parameter zonation using multiple level set functions

    DOE PAGES

    Lu, Zhiming; Vesselinov, Velimir Valentinov; Lei, Hongzhuan

    2018-03-14

    In this paper, we extended the analytical level set method [1, 2] for identifying a piece-wisely heterogeneous (zonation) binary system to the case with an arbitrary number of materials with unknown material properties. In the developed level set approach, starting from an initial guess, the material interfaces are propagated through iterations such that the residuals between the simulated and observed state variables (hydraulic head) is minimized. We derived an expression for the propagation velocity of the interface between any two materials, which is related to the permeability contrast between the materials on two sides of the interface, the sensitivity ofmore » the head to permeability, and the head residual. We also formulated an expression for updating the permeability of all materials, which is consistent with the steepest descent of the objective function. The developed approach has been demonstrated through many examples, ranging from totally synthetic cases to a case where the flow conditions are representative of a groundwater contaminant site at the Los Alamos National Laboratory. These examples indicate that the level set method can successfully identify zonation structures, even if the number of materials in the model domain is not exactly known in advance. Although the evolution of the material zonation depends on the initial guess field, inverse modeling runs starting with different initial guesses fields may converge to the similar final zonation structure. These examples also suggest that identifying interfaces of spatially distributed heterogeneities is more important than estimating their permeability values.« less

  20. Identifying arbitrary parameter zonation using multiple level set functions

    NASA Astrophysics Data System (ADS)

    Lu, Zhiming; Vesselinov, Velimir V.; Lei, Hongzhuan

    2018-07-01

    In this paper, we extended the analytical level set method [1,2] for identifying a piece-wisely heterogeneous (zonation) binary system to the case with an arbitrary number of materials with unknown material properties. In the developed level set approach, starting from an initial guess, the material interfaces are propagated through iterations such that the residuals between the simulated and observed state variables (hydraulic head) is minimized. We derived an expression for the propagation velocity of the interface between any two materials, which is related to the permeability contrast between the materials on two sides of the interface, the sensitivity of the head to permeability, and the head residual. We also formulated an expression for updating the permeability of all materials, which is consistent with the steepest descent of the objective function. The developed approach has been demonstrated through many examples, ranging from totally synthetic cases to a case where the flow conditions are representative of a groundwater contaminant site at the Los Alamos National Laboratory. These examples indicate that the level set method can successfully identify zonation structures, even if the number of materials in the model domain is not exactly known in advance. Although the evolution of the material zonation depends on the initial guess field, inverse modeling runs starting with different initial guesses fields may converge to the similar final zonation structure. These examples also suggest that identifying interfaces of spatially distributed heterogeneities is more important than estimating their permeability values.

  1. Setting Us Free? Building Meaningful Models of Progression for a "Post-Levels" World

    ERIC Educational Resources Information Center

    Ford, Alex

    2014-01-01

    Alex Ford was thrilled by the prospect of freedom offered to history departments in England by the abolition of level descriptions within the National Curriculum. After analysing the range of competing purposes that the level descriptions were previously forced to serve, Ford argues that the three distinct tasks of measuring current attainment,…

  2. A Conditional Curie-Weiss Model for Stylized Multi-group Binary Choice with Social Interaction

    NASA Astrophysics Data System (ADS)

    Opoku, Alex Akwasi; Edusei, Kwame Owusu; Ansah, Richard Kwame

    2018-04-01

    This paper proposes a conditional Curie-Weiss model as a model for decision making in a stylized society made up of binary decision makers that face a particular dichotomous choice between two options. Following Brock and Durlauf (Discrete choice with social interaction I: theory, 1955), we set-up both socio-economic and statistical mechanical models for the choice problem. We point out when both the socio-economic and statistical mechanical models give rise to the same self-consistent equilibrium mean choice level(s). Phase diagram of the associated statistical mechanical model and its socio-economic implications are discussed.

  3. Multivariate Phylogenetic Comparative Methods: Evaluations, Comparisons, and Recommendations.

    PubMed

    Adams, Dean C; Collyer, Michael L

    2018-01-01

    Recent years have seen increased interest in phylogenetic comparative analyses of multivariate data sets, but to date the varied proposed approaches have not been extensively examined. Here we review the mathematical properties required of any multivariate method, and specifically evaluate existing multivariate phylogenetic comparative methods in this context. Phylogenetic comparative methods based on the full multivariate likelihood are robust to levels of covariation among trait dimensions and are insensitive to the orientation of the data set, but display increasing model misspecification as the number of trait dimensions increases. This is because the expected evolutionary covariance matrix (V) used in the likelihood calculations becomes more ill-conditioned as trait dimensionality increases, and as evolutionary models become more complex. Thus, these approaches are only appropriate for data sets with few traits and many species. Methods that summarize patterns across trait dimensions treated separately (e.g., SURFACE) incorrectly assume independence among trait dimensions, resulting in nearly a 100% model misspecification rate. Methods using pairwise composite likelihood are highly sensitive to levels of trait covariation, the orientation of the data set, and the number of trait dimensions. The consequences of these debilitating deficiencies are that a user can arrive at differing statistical conclusions, and therefore biological inferences, simply from a dataspace rotation, like principal component analysis. By contrast, algebraic generalizations of the standard phylogenetic comparative toolkit that use the trace of covariance matrices are insensitive to levels of trait covariation, the number of trait dimensions, and the orientation of the data set. Further, when appropriate permutation tests are used, these approaches display acceptable Type I error and statistical power. We conclude that methods summarizing information across trait dimensions, as well as pairwise composite likelihood methods should be avoided, whereas algebraic generalizations of the phylogenetic comparative toolkit provide a useful means of assessing macroevolutionary patterns in multivariate data. Finally, we discuss areas in which multivariate phylogenetic comparative methods are still in need of future development; namely highly multivariate Ornstein-Uhlenbeck models and approaches for multivariate evolutionary model comparisons. © The Author(s) 2017. Published by Oxford University Press on behalf of the Systematic Biology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. A framework for comparing different image segmentation methods and its use in studying equivalences between level set and fuzzy connectedness frameworks

    PubMed Central

    Ciesielski, Krzysztof Chris; Udupa, Jayaram K.

    2011-01-01

    In the current vast image segmentation literature, there seems to be considerable redundancy among algorithms, while there is a serious lack of methods that would allow their theoretical comparison to establish their similarity, equivalence, or distinctness. In this paper, we make an attempt to fill this gap. To accomplish this goal, we argue that: (1) every digital segmentation algorithm A should have a well defined continuous counterpart MA, referred to as its model, which constitutes an asymptotic of A when image resolution goes to infinity; (2) the equality of two such models MA and MA′ establishes a theoretical (asymptotic) equivalence of their digital counterparts A and A′. Such a comparison is of full theoretical value only when, for each involved algorithm A, its model MA is proved to be an asymptotic of A. So far, such proofs do not appear anywhere in the literature, even in the case of algorithms introduced as digitizations of continuous models, like level set segmentation algorithms. The main goal of this article is to explore a line of investigation for formally pairing the digital segmentation algorithms with their asymptotic models, justifying such relations with mathematical proofs, and using the results to compare the segmentation algorithms in this general theoretical framework. As a first step towards this general goal, we prove here that the gradient based thresholding model M∇ is the asymptotic for the fuzzy connectedness Udupa and Samarasekera segmentation algorithm used with gradient based affinity A∇. We also argue that, in a sense, M∇ is the asymptotic for the original front propagation level set algorithm of Malladi, Sethian, and Vemuri, thus establishing a theoretical equivalence between these two specific algorithms. Experimental evidence of this last equivalence is also provided. PMID:21442014

  5. QSAR Modeling Using Large-Scale Databases: Case Study for HIV-1 Reverse Transcriptase Inhibitors.

    PubMed

    Tarasova, Olga A; Urusova, Aleksandra F; Filimonov, Dmitry A; Nicklaus, Marc C; Zakharov, Alexey V; Poroikov, Vladimir V

    2015-07-27

    Large-scale databases are important sources of training sets for various QSAR modeling approaches. Generally, these databases contain information extracted from different sources. This variety of sources can produce inconsistency in the data, defined as sometimes widely diverging activity results for the same compound against the same target. Because such inconsistency can reduce the accuracy of predictive models built from these data, we are addressing the question of how best to use data from publicly and commercially accessible databases to create accurate and predictive QSAR models. We investigate the suitability of commercially and publicly available databases to QSAR modeling of antiviral activity (HIV-1 reverse transcriptase (RT) inhibition). We present several methods for the creation of modeling (i.e., training and test) sets from two, either commercially or freely available, databases: Thomson Reuters Integrity and ChEMBL. We found that the typical predictivities of QSAR models obtained using these different modeling set compilation methods differ significantly from each other. The best results were obtained using training sets compiled for compounds tested using only one method and material (i.e., a specific type of biological assay). Compound sets aggregated by target only typically yielded poorly predictive models. We discuss the possibility of "mix-and-matching" assay data across aggregating databases such as ChEMBL and Integrity and their current severe limitations for this purpose. One of them is the general lack of complete and semantic/computer-parsable descriptions of assay methodology carried by these databases that would allow one to determine mix-and-matchability of result sets at the assay level.

  6. Clinical outcomes of HIV care delivery models in the US: a systematic review.

    PubMed

    Kimmel, April D; Martin, Erika G; Galadima, Hadiza; Bono, Rose S; Tehrani, Ali Bonakdar; Cyrus, John W; Henderson, Margaret; Freedberg, Kenneth A; Krist, Alexander H

    2016-10-01

    With over 1 million people living with HIV, the US faces national challenges in HIV care delivery due to an inadequate HIV specialist workforce and the increasing role of non-communicable chronic diseases in driving morbidity and mortality in HIV-infected patients. Alternative HIV care delivery models, which include substantial roles for advanced practitioners and/or coordination between specialty and primary care settings in managing HIV-infected patients, may address these needs. We aimed to systematically review the evidence on patient-level HIV-specific and primary care health outcomes for HIV-infected adults receiving outpatient care across HIV care delivery models. We identified randomized trials and observational studies from bibliographic and other databases through March 2016. Eligible studies met pre-specified eligibility criteria including on care delivery models and patient-level health outcomes. We considered all available evidence, including non-experimental studies, and evaluated studies for risk of bias. We identified 3605 studies, of which 13 met eligibility criteria. Of the 13 eligible studies, the majority evaluated specialty-based care (9 studies). Across all studies and care delivery models, eligible studies primarily reported mortality and antiretroviral use, with specialty-based care associated with mortality reductions at the clinician and practice levels and with increased antiretroviral initiation or use at the clinician level but not the practice level. Limited and heterogeneous outcomes were reported for other patient-level HIV-specific outcomes (e.g., viral suppression) as well as for primary care health outcomes across all care delivery models. No studies addressed chronic care outcomes related to aging. Limited evidence was available across geographic settings and key populations. As re-design of care delivery in the US continues to evolve, better understanding of patient-level HIV-related and primary care health outcomes, especially across different staffing models and among different patient populations and geographic locations, is urgently needed to improve HIV disease management.

  7. Airborne culturable fungi in naturally ventilated primary school environments in a subtropical climate

    NASA Astrophysics Data System (ADS)

    Salonen, Heidi; Duchaine, Caroline; Mazaheri, Mandana; Clifford, Sam; Morawska, Lidia

    2015-04-01

    There is currently a lack of reference values for indoor air fungal concentrations to allow for the interpretation of measurement results in subtropical school settings. Analysis of the results of this work established that, in the majority of properly maintained subtropical school buildings, without any major affecting events such as floods or visible mould or moisture contamination, indoor culturable fungi levels were driven by outdoor concentration. The results also allowed us to benchmark the "baseline range" concentrations for total culturable fungi, Penicillium spp., Cladosporium spp. and Aspergillus spp. in such school settings. The measured concentration of total culturable fungi and three individual fungal genera were estimated using Bayesian hierarchical modelling. Pooling of these estimates provided a predictive distribution for concentrations at an unobserved school. The results indicated that "baseline" indoor concentration levels for indoor total fungi, Penicillium spp., Cladosporium spp. and Aspergillus spp. in such school settings were generally ≤1450, ≤680, ≤480 and ≤90 cfu/m3, respectively, and elevated levels would indicate mould damage in building structures. The indoor/outdoor ratio for most classrooms had 95% credible intervals containing 1, indicating that fungi concentrations are generally the same indoors and outdoors at each school. Bayesian fixed effects regression modelling showed that increasing both temperature and humidity resulted in higher levels of fungi concentration.

  8. Interdisciplinary education - a predator-prey model for developing a skill set in mathematics, biology and technology

    NASA Astrophysics Data System (ADS)

    van der Hoff, Quay

    2017-08-01

    The science of biology has been transforming dramatically and so the need for a stronger mathematical background for biology students has increased. Biological students reaching the senior or post-graduate level often come to realize that their mathematical background is insufficient. Similarly, students in a mathematics programme, interested in biological phenomena, find it difficult to master the complex systems encountered in biology. In short, the biologists do not have enough mathematics and the mathematicians are not being taught enough biology. The need for interdisciplinary curricula that includes disciplines such as biology, physical science, and mathematics is widely recognized, but has not been widely implemented. In this paper, it is suggested that students develop a skill set of ecology, mathematics and technology to encourage working across disciplinary boundaries. To illustrate such a skill set, a predator-prey model that contains self-limiting factors for both predator and prey is suggested. The general idea of dynamics, is introduced and students are encouraged to discover the applicability of this approach to more complex biological systems. The level of mathematics and technology required is not advanced; therefore, it is ideal for inclusion in a senior-level or introductory graduate-level course for students interested in mathematical biology.

  9. Abstraction and model evaluation in category learning.

    PubMed

    Vanpaemel, Wolf; Storms, Gert

    2010-05-01

    Thirty previously published data sets, from seminal category learning tasks, are reanalyzed using the varying abstraction model (VAM). Unlike a prototype-versus-exemplar analysis, which focuses on extreme levels of abstraction only, a VAM analysis also considers the possibility of partial abstraction. Whereas most data sets support no abstraction when only the extreme possibilities are considered, we show that evidence for abstraction can be provided using the broader view on abstraction provided by the VAM. The present results generalize earlier demonstrations of partial abstraction (Vanpaemel & Storms, 2008), in which only a small number of data sets was analyzed. Following the dominant modus operandi in category learning research, Vanpaemel and Storms evaluated the models on their best fit, a practice known to ignore the complexity of the models under consideration. In the present study, in contrast, model evaluation not only relies on the maximal likelihood, but also on the marginal likelihood, which is sensitive to model complexity. Finally, using a large recovery study, it is demonstrated that, across the 30 data sets, complexity differences between the models in the VAM family are small. This indicates that a (computationally challenging) complexity-sensitive model evaluation method is uncalled for, and that the use of a (computationally straightforward) complexity-insensitive model evaluation method is justified.

  10. Uncertainties in Atomic Data and Their Propagation Through Spectral Models. I.

    NASA Technical Reports Server (NTRS)

    Bautista, M. A.; Fivet, V.; Quinet, P.; Dunn, J.; Gull, T. R.; Kallman, T. R.; Mendoza, C.

    2013-01-01

    We present a method for computing uncertainties in spectral models, i.e., level populations, line emissivities, and emission line ratios, based upon the propagation of uncertainties originating from atomic data.We provide analytic expressions, in the form of linear sets of algebraic equations, for the coupled uncertainties among all levels. These equations can be solved efficiently for any set of physical conditions and uncertainties in the atomic data. We illustrate our method applied to spectral models of Oiii and Fe ii and discuss the impact of the uncertainties on atomic systems under different physical conditions. As to intrinsic uncertainties in theoretical atomic data, we propose that these uncertainties can be estimated from the dispersion in the results from various independent calculations. This technique provides excellent results for the uncertainties in A-values of forbidden transitions in [Fe ii]. Key words: atomic data - atomic processes - line: formation - methods: data analysis - molecular data - molecular processes - techniques: spectroscopic

  11. Numerical simulation of overflow at vertical weirs using a hybrid level set/VOF method

    NASA Astrophysics Data System (ADS)

    Lv, Xin; Zou, Qingping; Reeve, Dominic

    2011-10-01

    This paper presents the applications of a newly developed free surface flow model to the practical, while challenging overflow problems for weirs. Since the model takes advantage of the strengths of both the level set and volume of fluid methods and solves the Navier-Stokes equations on an unstructured mesh, it is capable of resolving the time evolution of very complex vortical motions, air entrainment and pressure variations due to violent deformations following overflow of the weir crest. In the present study, two different types of vertical weir, namely broad-crested and sharp-crested, are considered for validation purposes. The calculated overflow parameters such as pressure head distributions, velocity distributions, and water surface profiles are compared against experimental data as well as numerical results available in literature. A very good quantitative agreement has been obtained. The numerical model, thus, offers a good alternative to traditional experimental methods in the study of weir problems.

  12. Implicit kernel sparse shape representation: a sparse-neighbors-based objection segmentation framework.

    PubMed

    Yao, Jincao; Yu, Huimin; Hu, Roland

    2017-01-01

    This paper introduces a new implicit-kernel-sparse-shape-representation-based object segmentation framework. Given an input object whose shape is similar to some of the elements in the training set, the proposed model can automatically find a cluster of implicit kernel sparse neighbors to approximately represent the input shape and guide the segmentation. A distance-constrained probabilistic definition together with a dualization energy term is developed to connect high-level shape representation and low-level image information. We theoretically prove that our model not only derives from two projected convex sets but is also equivalent to a sparse-reconstruction-error-based representation in the Hilbert space. Finally, a "wake-sleep"-based segmentation framework is applied to drive the evolutionary curve to recover the original shape of the object. We test our model on two public datasets. Numerical experiments on both synthetic images and real applications show the superior capabilities of the proposed framework.

  13. Fast and efficient indexing approach for object recognition

    NASA Astrophysics Data System (ADS)

    Hefnawy, Alaa; Mashali, Samia A.; Rashwan, Mohsen; Fikri, Magdi

    1999-08-01

    This paper introduces a fast and efficient indexing approach for both 2D and 3D model-based object recognition in the presence of rotation, translation, and scale variations of objects. The indexing entries are computed after preprocessing the data by Haar wavelet decomposition. The scheme is based on a unified image feature detection approach based on Zernike moments. A set of low level features, e.g. high precision edges, gray level corners, are estimated by a set of orthogonal Zernike moments, calculated locally around every image point. A high dimensional, highly descriptive indexing entries are then calculated based on the correlation of these local features and employed for fast access to the model database to generate hypotheses. A list of the most candidate models is then presented by evaluating the hypotheses. Experimental results are included to demonstrate the effectiveness of the proposed indexing approach.

  14. Reliability and Validity Evidence for Achievement Goal Models in High School Physical Education Settings

    ERIC Educational Resources Information Center

    Guan, Jianmin; McBride, Ron; Xiang, Ping

    2007-01-01

    Although empirical research in academic areas provides support for both a 3-factor as well as a 4-factor achievement goal model, both models were proposed and tested with a collegiate sample. Little is known about the generalizability of either model with high school level samples. This study was designed to examine whether the 3-factor model…

  15. Ozone reference models for the middle atmosphere (new CIRA)

    NASA Technical Reports Server (NTRS)

    Keating, G. M.; Pitts, M. C.; Young, D. F.

    1989-01-01

    Models of ozone vertical structure were generated that were based on multiple data sets from satellites. The very good absolute accuracy of the individual data sets allowed the data to be directly combined to generate these models. The data used for generation of these models are from some of the most recent satellite measurements over the period 1978 to 1983. A discussion is provided of validation and error analyses of these data sets. Also, inconsistencies in data sets brought about by temporal variations or other factors are indicated. The models cover the pressure range from from 20 to 0.003 mb (25 to 90 km). The models for pressures less than 0.5 mb represent only the day side and are only provisional since there was limited longitudinal coverage at these levels. The models start near 25 km in accord with previous COSPAR international reference atmosphere (CIRA) models. Models are also provided of ozone mixing ratio as a function of height. The monthly standard deviation and interannual variations relative to zonal means are also provided. In addition to the models of monthly latitudinal variations in vertical structure based on satellite measurements, monthly models of total column ozone and its characteristic variability as a function of latitude based on four years of Nimbus 7 measurements, models of the relationship between vertical structure and total column ozone, and a midlatitude annual mean model are incorporated in this set of ozone reference atmospheres. Various systematic variations are discussed including the annual, semiannual, and quasibiennial oscillations, and diurnal, longitudinal, and response to solar activity variations.

  16. A Poor Relationship Between Sea Level and Deep-Water Sand Delivery

    NASA Astrophysics Data System (ADS)

    Harris, Ashley D.; Baumgardner, Sarah E.; Sun, Tao; Granjeon, Didier

    2018-08-01

    The most commonly cited control on delivery of sand to deep water is the rate of relative sea-level fall. The rapid rate of accommodation loss on the shelf causes sedimentation to shift basinward. Field and experimental numerical modeling studies have shown that deep-water sand delivery can occur during any stage of relative sea level position and across a large range of values of rate of relative sea-level change. However, these studies did not investigate the impact of sediment transport efficiency on the relationship between rate of relative sea-level change and deep-water sand delivery rate. We explore this relationship using a deterministic nonlinear diffusion-based numerical stratigraphic forward model. We vary across three orders of magnitude the diffusion coefficient value for marine settings, which controls sediment transport efficiency. We find that the rate of relative sea-level change can explain no more than 1% of the variability in deep-water sand delivery rates, regardless of sediment transport efficiency. Model results show a better correlation with relative sea level, with up to 55% of the variability in deep water sand delivery rates explained. The results presented here are consistent with studies of natural settings which suggest stochastic processes such as avulsion and slope failure, and interactions among such processes, may explain the remaining variance. Relative sea level is a better predictor of deep-water sand delivery than rate of relative sea-level change because it is the sea-level fall itself which promotes sand delivery, not the rate of the fall. We conclude that the poor relationship between sea level and sand delivery is not an artifact of the modeling parameters but is instead due to the inadequacy of relative sea level and the rate of relative sea-level change to fully describe the dimensional space in which depositional systems reside. Subsequently, sea level itself is unable to account for the interaction of multiple processes that contribute to sand delivery to deep water.

  17. Human Capital Investment and the Gender Division of Labor in a Brawn-Based Economy

    PubMed Central

    Pitt, Mark M.; Rosenzweig, Mark R.; Hassan, Nazmul

    2013-01-01

    We use a model of human capital investment and activity choice to explain facts describing gender differentials in the levels and returns to human capital investments. These include the higher return to and level of schooling, the small effect of healthiness on wages, and the large effect of healthiness on schooling for females relative to males. The model incorporates gender differences in the level and responsiveness of brawn to nutrition in a Roy-economy setting in which activities reward skill and brawn differentially. Empirical evidence from rural Bangladesh provides support for the model and the importance of the distribution of brawn. PMID:25152536

  18. 78 FR 3328 - Fluroxypyr; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... drinking water and in residential settings, but does not include occupational exposure. Section 408(b)(2)(C... from drinking water. The Agency used screening level water exposure models in the dietary exposure analysis and risk assessment for fluroxypyr in drinking water. These simulation models take into account...

  19. Maintenance = reuse-oriented software development

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.

    1989-01-01

    Maintenance is viewed as a reuse process. In this context, a set of models that can be used to support the maintenance process is discussed. A high level reuse framework is presented that characterizes the object of reuse, the process for adapting that object for its target application, and the reused object within its target application. Based upon this framework, a qualitative comparison is offered of the three maintenance process models with regard to their strengths and weaknesses and the circumstances in which they are appropriate. To provide a more systematic, quantitative approach for evaluating the appropriateness of the particular maintenance model, a measurement scheme is provided, based upon the reuse framework, in the form of an organized set of questions that need to be answered. To support the reuse perspective, a set of reuse enablers are discussed.

  20. Towards Precise Metadata-set for Discovering 3D Geospatial Models in Geo-portals

    NASA Astrophysics Data System (ADS)

    Zamyadi, A.; Pouliot, J.; Bédard, Y.

    2013-09-01

    Accessing 3D geospatial models, eventually at no cost and for unrestricted use, is certainly an important issue as they become popular among participatory communities, consultants, and officials. Various geo-portals, mainly established for 2D resources, have tried to provide access to existing 3D resources such as digital elevation model, LIDAR or classic topographic data. Describing the content of data, metadata is a key component of data discovery in geo-portals. An inventory of seven online geo-portals and commercial catalogues shows that the metadata referring to 3D information is very different from one geo-portal to another as well as for similar 3D resources in the same geo-portal. The inventory considered 971 data resources affiliated with elevation. 51% of them were from three geo-portals running at Canadian federal and municipal levels whose metadata resources did not consider 3D model by any definition. Regarding the remaining 49% which refer to 3D models, different definition of terms and metadata were found, resulting in confusion and misinterpretation. The overall assessment of these geo-portals clearly shows that the provided metadata do not integrate specific and common information about 3D geospatial models. Accordingly, the main objective of this research is to improve 3D geospatial model discovery in geo-portals by adding a specific metadata-set. Based on the knowledge and current practices on 3D modeling, and 3D data acquisition and management, a set of metadata is proposed to increase its suitability for 3D geospatial models. This metadata-set enables the definition of genuine classes, fields, and code-lists for a 3D metadata profile. The main structure of the proposal contains 21 metadata classes. These classes are classified in three packages as General and Complementary on contextual and structural information, and Availability on the transition from storage to delivery format. The proposed metadata set is compared with Canadian Geospatial Data Infrastructure (CGDI) metadata which is an implementation of North American Profile of ISO-19115. The comparison analyzes the two metadata against three simulated scenarios about discovering needed 3D geo-spatial datasets. Considering specific metadata about 3D geospatial models, the proposed metadata-set has six additional classes on geometric dimension, level of detail, geometric modeling, topology, and appearance information. In addition classes on data acquisition, preparation, and modeling, and physical availability have been specialized for 3D geospatial models.

  1. Determinants of urban sprawl in European cities

    PubMed Central

    Alvanides, Seraphim; Garrod, Guy

    2015-01-01

    This paper provides empirical evidence that helps to answer several key questions relating to the extent of urban sprawl in Europe. Building on the monocentric city model, this study uses existing data sources to derive a set of panel data for 282 European cities at three time points (1990, 2000 and 2006). Two indices of urban sprawl are calculated that, respectively, reflect changes in artificial area and the levels of urban fragmentation for each city. These are supplemented by a set of data on various economic and geographical variables that might explain the variation of the two indices. Using a Hausman-Taylor estimator and random regressors to control for the possible correlation between explanatory variables and unobservable city-level effects, we find that the fundamental conclusions of the standard monocentric model are valid in the European context for both indices. Although the variables generated by the monocentric model explain a large part of the variation of artificial area, their explanatory power for modelling the fragmentation index is relatively low. PMID:26321770

  2. Towards decision support for waiting lists: an operations management view.

    PubMed

    Vissers, J M; Van Der Bij, J D; Kusters, R J

    2001-06-01

    This paper considers the phenomenon of waiting lists in a healthcare setting, which is characterised by limitations on the national expenditure, to explore the potentials of an operations management perspective. A reference framework for waiting list management is described, distinguishing different levels of planning in healthcare--national, regional, hospital and process--that each contributes to the existence of waiting lists through managerial decision making. In addition, different underlying mechanisms in demand and supply are distinguished, which together explain the development of waiting lists. It is our contention that within this framework a series of situation specific models should be designed to support communication and decision making. This is illustrated by the modelling of the demand for cataract treatment in a regional setting in the south-eastern part of the Netherlands. An input-output model was developed to support decisions regarding waiting lists. The model projects the demand for treatment at a regional level and makes it possible to evaluate waiting list impacts for different scenarios to meet this demand.

  3. Determinants of urban sprawl in European cities.

    PubMed

    Oueslati, Walid; Alvanides, Seraphim; Garrod, Guy

    2015-07-01

    This paper provides empirical evidence that helps to answer several key questions relating to the extent of urban sprawl in Europe. Building on the monocentric city model, this study uses existing data sources to derive a set of panel data for 282 European cities at three time points (1990, 2000 and 2006). Two indices of urban sprawl are calculated that, respectively, reflect changes in artificial area and the levels of urban fragmentation for each city. These are supplemented by a set of data on various economic and geographical variables that might explain the variation of the two indices. Using a Hausman-Taylor estimator and random regressors to control for the possible correlation between explanatory variables and unobservable city-level effects, we find that the fundamental conclusions of the standard monocentric model are valid in the European context for both indices. Although the variables generated by the monocentric model explain a large part of the variation of artificial area, their explanatory power for modelling the fragmentation index is relatively low.

  4. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change

    USGS Publications Warehouse

    Vitousek, Sean; Barnard, Patrick; Limber, Patrick W.; Erikson, Li; Cole, Blake

    2017-01-01

    We present a shoreline change model for coastal hazard assessment and management planning. The model, CoSMoS-COAST (Coastal One-line Assimilated Simulation Tool), is a transect-based, one-line model that predicts short-term and long-term shoreline response to climate change in the 21st century. The proposed model represents a novel, modular synthesis of process-based models of coastline evolution due to longshore and cross-shore transport by waves and sea-level rise. Additionally, the model uses an extended Kalman filter for data assimilation of historical shoreline positions to improve estimates of model parameters and thereby improve confidence in long-term predictions. We apply CoSMoS-COAST to simulate sandy shoreline evolution along 500 km of coastline in Southern California, which hosts complex mixtures of beach settings variably backed by dunes, bluffs, cliffs, estuaries, river mouths, and urban infrastructure, providing applicability of the model to virtually any coastal setting. Aided by data assimilation, the model is able to reproduce the observed signal of seasonal shoreline change for the hindcast period of 1995-2010, showing excellent agreement between modeled and observed beach states. The skill of the model during the hindcast period improves confidence in the model's predictive capability when applied to the forecast period (2010-2100) driven by GCM-projected wave and sea-level conditions. Predictions of shoreline change with limited human intervention indicate that 31% to 67% of Southern California beaches may become completely eroded by 2100 under sea-level rise scenarios of 0.93 to 2.0 m.

  5. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change

    NASA Astrophysics Data System (ADS)

    Vitousek, Sean; Barnard, Patrick L.; Limber, Patrick; Erikson, Li; Cole, Blake

    2017-04-01

    We present a shoreline change model for coastal hazard assessment and management planning. The model, CoSMoS-COAST (Coastal One-line Assimilated Simulation Tool), is a transect-based, one-line model that predicts short-term and long-term shoreline response to climate change in the 21st century. The proposed model represents a novel, modular synthesis of process-based models of coastline evolution due to longshore and cross-shore transport by waves and sea level rise. Additionally, the model uses an extended Kalman filter for data assimilation of historical shoreline positions to improve estimates of model parameters and thereby improve confidence in long-term predictions. We apply CoSMoS-COAST to simulate sandy shoreline evolution along 500 km of coastline in Southern California, which hosts complex mixtures of beach settings variably backed by dunes, bluffs, cliffs, estuaries, river mouths, and urban infrastructure, providing applicability of the model to virtually any coastal setting. Aided by data assimilation, the model is able to reproduce the observed signal of seasonal shoreline change for the hindcast period of 1995-2010, showing excellent agreement between modeled and observed beach states. The skill of the model during the hindcast period improves confidence in the model's predictive capability when applied to the forecast period (2010-2100) driven by GCM-projected wave and sea level conditions. Predictions of shoreline change with limited human intervention indicate that 31% to 67% of Southern California beaches may become completely eroded by 2100 under sea level rise scenarios of 0.93 to 2.0 m.

  6. Interface modeling in incompressible media using level sets in Escript

    NASA Astrophysics Data System (ADS)

    Gross, L.; Bourgouin, L.; Hale, A. J.; Mühlhaus, H.-B.

    2007-08-01

    We use a finite element (FEM) formulation of the level set method to model geological fluid flow problems involving interface propagation. Interface problems are ubiquitous in geophysics. Here we focus on a Rayleigh-Taylor instability, namely mantel plumes evolution, and the growth of lava domes. Both problems require the accurate description of the propagation of an interface between heavy and light materials (plume) or between high viscous lava and low viscous air (lava dome), respectively. The implementation of the models is based on Escript which is a Python module for the solution of partial differential equations (PDEs) using spatial discretization techniques such as FEM. It is designed to describe numerical models in the language of PDEs while using computational components implemented in C and C++ to achieve high performance for time-intensive, numerical calculations. A critical step in the solution geological flow problems is the solution of the velocity-pressure problem. We describe how the Escript module can be used for a high-level implementation of an efficient variant of the well-known Uzawa scheme. We begin with a brief outline of the Escript modules and then present illustrations of its usage for the numerical solutions of the problems mentioned above.

  7. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell π-conjugated systems

    NASA Astrophysics Data System (ADS)

    Champagne, Benoı̂t; Botek, Edith; Nakano, Masayoshi; Nitta, Tomoshige; Yamaguchi, Kizashi

    2005-03-01

    The basis set and electron correlation effects on the static polarizability (α) and second hyperpolarizability (γ) are investigated ab initio for two model open-shell π-conjugated systems, the C5H7 radical and the C6H8 radical cation in their doublet state. Basis set investigations evidence that the linear and nonlinear responses of the radical cation necessitate the use of a less extended basis set than its neutral analog. Indeed, double-zeta-type basis sets supplemented by a set of d polarization functions but no diffuse functions already provide accurate (hyper)polarizabilities for C6H8 whereas diffuse functions are compulsory for C5H7, in particular, p diffuse functions. In addition to the 6-31G*+pd basis set, basis sets resulting from removing not necessary diffuse functions from the augmented correlation consistent polarized valence double zeta basis set have been shown to provide (hyper)polarizability values of similar quality as more extended basis sets such as augmented correlation consistent polarized valence triple zeta and doubly augmented correlation consistent polarized valence double zeta. Using the selected atomic basis sets, the (hyper)polarizabilities of these two model compounds are calculated at different levels of approximation in order to assess the impact of including electron correlation. As a function of the method of calculation antiparallel and parallel variations have been demonstrated for α and γ of the two model compounds, respectively. For the polarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset methods bracket the reference value obtained at the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples level whereas the projected unrestricted second-order Møller-Plesset results are in much closer agreement with the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples values than the projected unrestricted Hartree-Fock results. Moreover, the differences between the restricted open-shell Hartree-Fock and restricted open-shell second-order Møller-Plesset methods are small. In what concerns the second hyperpolarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset values remain of similar quality while using spin-projected schemes fails for the charged system but performs nicely for the neutral one. The restricted open-shell schemes, and especially the restricted open-shell second-order Møller-Plesset method, provide for both compounds γ values close to the results obtained at the unrestricted coupled cluster level including singles and doubles with a perturbative inclusion of the triples. Thus, to obtain well-converged α and γ values at low-order electron correlation levels, the removal of spin contamination is a necessary but not a sufficient condition. Density-functional theory calculations of α and γ have also been carried out using several exchange-correlation functionals. Those employing hybrid exchange-correlation functionals have been shown to reproduce fairly well the reference coupled cluster polarizability and second hyperpolarizability values. In addition, inclusion of Hartree-Fock exchange is of major importance for determining accurate polarizability whereas for the second hyperpolarizability the gradient corrections are large.

  8. The Role of Presented Objects in Deriving Color Preference Criteria from Psychophysical Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Royer, Michael P.; Wei, Minchen

    Of the many “components” of a color rendering measure, one is perhaps the most important: the set of color samples (spectral reflectance functions) that are employed as a standardized means of evaluating and rating a light source. At the same time, a standardized set of color samples can never apply perfectly to a real space or a real set of observed objects, meaning there will always be some level of mismatch between the predicted and observed color shifts. This mismatch is important for lighting specifiers to consider, but even more critical for experiments that seek to evaluate the relationship betweenmore » color rendering measures and human perception. This article explores how the color distortions of three possible experimental object sets compare to the color distortions predicted using the color evaluation samples of IES TM-30-15 (TM-30). The experimental object sets include those from Royer and colleagues [2016], a set of produce (10 fruits and vegetables), and the X-rite Color Checker Classic. The differences are traced back to properties of the samples sets, such as the coverage of color space, average chroma level, and specific spectral features. The consequence of the differences, that the visual evaluation is based on color distortions that are substantially different from what is predicted, can lead to inaccurate criteria or models of a given perception, such as preference. To minimize the error in using criteria or models when specifying color rendering attributes for a given application, the criteria or models should be developed using a set of experimental objects that matches the typical objects of the application as closely as possible. Alternatively, if typical objects of an application cannot be reasonably determined, an object set that matches the distortions predicted by TM-30 as close as possible is likely to provide the most meaningful results.« less

  9. Regression Analysis of Long-term Profile Ozone Data Set from BUV Instruments

    NASA Technical Reports Server (NTRS)

    Frith, Stacey; Taylor, Steve; DeLand, Matt; Ahn, Chang-Woo; Stolarski, Richard S.

    2005-01-01

    We have produced a profile merged ozone data set (MOD) based on the SBUV/SBUV2 series of nadir-viewing satellite backscatter instruments, covering the period from November 1978 - December 2003. In 2004, data from the Nimbus 7 SBUV and NOAA 9,11, and 16 SBUV/2 instruments were reprocessed using the Version 8 (V8) algorithm and most recent calibrations. More recently, data from the Nimbus 4 BUV instrument, which operated from 1970 - 1977, were also reprocessed using the V8 algorithm. As part of the V8 profile calibration, the Nimbus 7 and NOAA 9 (1993-1997 only) instrument calibrations have been adjusted to match the NOAA 11 calibration, which was established from comparisons with SSBUV shuttle flight data. Given the level of agreement between the data sets, we simply average the ozone values during periods of instrument overlap to produce the MOD profile data set. We use statistical time-series analysis of the MOD profile data set (1978-2003) to estimate the change in profile ozone due to changing stratospheric chlorine levels. The Nimbus 4 BUV data offer an opportunity to test the physical properties of our statistical model. We extrapolate our statistical model fit backwards in time and compare to the Nimbus 4 data. We compare the statistics of the residuals from the fit for the Nimbus 4 period to those obtained from the 1978-2003 period over which the statistical model coefficients were estimated.

  10. More Precise Estimation of Lower-Level Interaction Effects in Multilevel Models.

    PubMed

    Loeys, Tom; Josephy, Haeike; Dewitte, Marieke

    2018-01-01

    In hierarchical data, the effect of a lower-level predictor on a lower-level outcome may often be confounded by an (un)measured upper-level factor. When such confounding is left unaddressed, the effect of the lower-level predictor is estimated with bias. Separating this effect into a within- and between-component removes such bias in a linear random intercept model under a specific set of assumptions for the confounder. When the effect of the lower-level predictor is additionally moderated by another lower-level predictor, an interaction between both lower-level predictors is included into the model. To address unmeasured upper-level confounding, this interaction term ought to be decomposed into a within- and between-component as well. This can be achieved by first multiplying both predictors and centering that product term next, or vice versa. We show that while both approaches, on average, yield the same estimates of the interaction effect in linear models, the former decomposition is much more precise and robust against misspecification of the effects of cross-level and upper-level terms, compared to the latter.

  11. Virtual Levels and Role Models: N-Level Structural Equations Model of Reciprocal Ratings Data.

    PubMed

    Mehta, Paras D

    2018-01-01

    A general latent variable modeling framework called n-Level Structural Equations Modeling (NL-SEM) for dependent data-structures is introduced. NL-SEM is applicable to a wide range of complex multilevel data-structures (e.g., cross-classified, switching membership, etc.). Reciprocal dyadic ratings obtained in round-robin design involve complex set of dependencies that cannot be modeled within Multilevel Modeling (MLM) or Structural Equations Modeling (SEM) frameworks. The Social Relations Model (SRM) for round robin data is used as an example to illustrate key aspects of the NL-SEM framework. NL-SEM introduces novel constructs such as 'virtual levels' that allows a natural specification of latent variable SRMs. An empirical application of an explanatory SRM for personality using xxM, a software package implementing NL-SEM is presented. Results show that person perceptions are an integral aspect of personality. Methodological implications of NL-SEM for the analyses of an emerging class of contextual- and relational-SEMs are discussed.

  12. Cognitive control over learning: Creating, clustering and generalizing task-set structure

    PubMed Central

    Collins, Anne G.E.; Frank, Michael J.

    2013-01-01

    Executive functions and learning share common neural substrates essential for their expression, notably in prefrontal cortex and basal ganglia. Understanding how they interact requires studying how cognitive control facilitates learning, but also how learning provides the (potentially hidden) structure, such as abstract rules or task-sets, needed for cognitive control. We investigate this question from three complementary angles. First, we develop a new computational “C-TS” (context-task-set) model inspired by non-parametric Bayesian methods, specifying how the learner might infer hidden structure and decide whether to re-use that structure in new situations, or to create new structure. Second, we develop a neurobiologically explicit model to assess potential mechanisms of such interactive structured learning in multiple circuits linking frontal cortex and basal ganglia. We systematically explore the link betweens these levels of modeling across multiple task demands. We find that the network provides an approximate implementation of high level C-TS computations, where manipulations of specific neural mechanisms are well captured by variations in distinct C-TS parameters. Third, this synergism across models yields strong predictions about the nature of human optimal and suboptimal choices and response times during learning. In particular, the models suggest that participants spontaneously build task-set structure into a learning problem when not cued to do so, which predicts positive and negative transfer in subsequent generalization tests. We provide evidence for these predictions in two experiments and show that the C-TS model provides a good quantitative fit to human sequences of choices in this task. These findings implicate a strong tendency to interactively engage cognitive control and learning, resulting in structured abstract representations that afford generalization opportunities, and thus potentially long-term rather than short-term optimality. PMID:23356780

  13. The influence of societal individualism on a century of tobacco use: modelling the prevalence of smoking.

    PubMed

    Lang, John C; Abrams, Daniel M; De Sterck, Hans

    2015-12-22

    Smoking of tobacco is estimated to have caused approximately six million deaths worldwide in 2014. Responding effectively to this epidemic requires a thorough understanding of how smoking behaviour is transmitted and modified. We present a new mathematical model of the social dynamics that cause cigarette smoking to spread in a population, incorporating aspects of individual and social utility. Model predictions are tested against two independent data sets spanning 25 countries: a newly compiled century-long composite data set on smoking prevalence, and Hofstede's individualism/collectivism measure (IDV). The general model prediction that more individualistic societies will show faster adoption and cessation of smoking is supported by the full 25 country smoking prevalence data set. Calibration of the model to the available smoking prevalence data is possible in a subset of 7 countries. Consistency of fitted model parameters with an additional, independent, data set further supports our model: the fitted value of the country-specific model parameter that determines the relative importance of social and individual factors in the decision of whether or not to smoke, is found to be significantly correlated with Hofstede's IDV for the 25 countries in our data set. Our model in conjunction with extensive data on smoking prevalence provides evidence for the hypothesis that individualism/collectivism may have an important influence on the dynamics of smoking prevalence at the aggregate, population level. Significant implications for public health interventions are discussed.

  14. Final project memorandum: sea-level rise modeling handbook: resource guide for resource managers, engineers, and scientists

    USGS Publications Warehouse

    Doyle, Thomas W.

    2015-01-01

    Coastal wetlands of the Southeastern United States are undergoing retreat and migration from increasing tidal inundation and saltwater intrusion attributed to climate variability and sea-level rise. Much of the literature describing potential sea-level rise projections and modeling predictions are found in peer-reviewed academic journals or government technical reports largely suited to reading by other Ph.D. scientists who are more familiar or engaged in the climate change debate. Various sea-level rise and coastal wetland models have been developed and applied of different designs and scales of spatial and temporal complexity for predicting habitat and environmental change that have not heretofore been synthesized to aid natural resource managers of their utility and limitations. Training sessions were conducted with Federal land managers with U.S. Fish and Wildlife Service, National Park Service, and NOAA National Estuarine Research Reserves as well as state partners and nongovernmental organizations across the northern Gulf Coast from Florida to Texas to educate and to evaluate user needs and understanding of concepts, data, and modeling tools for projecting sea-level rise and its impact on coastal habitats and wildlife. As a result, this handbook was constructed from these training and feedback sessions with coastal managers and biologists of published decision-support tools and simulation models for sea-level rise and climate change assessments. A simplified tabular context was developed listing the various kinds of decision-support tools and ecological models along with criteria to distinguish the source, scale, and quality of information input and geographic data sets, physical and biological constraints and relationships, datum characteristics of water and land elevation components, utility options for setting sea-level rise and climate change scenarios, and ease or difficulty of storing, displaying, or interpreting model output. The handbook is designed to be a primer to understanding sea-level rise and a practical synthesis of the current state of knowledge and modeling tools as a resource guide for DOl land management needs and facilitating Landscape Conservation Cooperative (LCC) research and conservation initiatives.

  15. Agenda Setting for Health Promotion: Exploring an Adapted Model for the Social Media Era.

    PubMed

    Albalawi, Yousef; Sixsmith, Jane

    2015-01-01

    The foundation of best practice in health promotion is a robust theoretical base that informs design, implementation, and evaluation of interventions that promote the public's health. This study provides a novel contribution to health promotion through the adaptation of the agenda-setting approach in response to the contribution of social media. This exploration and proposed adaptation is derived from a study that examined the effectiveness of Twitter in influencing agenda setting among users in relation to road traffic accidents in Saudi Arabia. The proposed adaptations to the agenda-setting model to be explored reflect two levels of engagement: agenda setting within the social media sphere and the position of social media within classic agenda setting. This exploratory research aims to assess the veracity of the proposed adaptations on the basis of the hypotheses developed to test these two levels of engagement. To validate the hypotheses, we collected and analyzed data from two primary sources: Twitter activities and Saudi national newspapers. Keyword mentions served as indicators of agenda promotion; for Twitter, interactions were used to measure the process of agenda setting within the platform. The Twitter final dataset comprised 59,046 tweets and 38,066 users who contributed by tweeting, replying, or retweeting. Variables were collected for each tweet and user. In addition, 518 keyword mentions were recorded from six popular Saudi national newspapers. The results showed significant ratification of the study hypotheses at both levels of engagement that framed the proposed adaptions. The results indicate that social media facilitates the contribution of individuals in influencing agendas (individual users accounted for 76.29%, 67.79%, and 96.16% of retweet impressions, total impressions, and amplification multipliers, respectively), a component missing from traditional constructions of agenda-setting models. The influence of organizations on agenda setting is also highlighted (in the data of user interactions, organizational accounts registered 17% and 14.74% as source and target of interactions, respectively). In addition, 13 striking similarities showed the relationship between newspapers and Twitter on the mentions trends line. The effective use of social media platforms in health promotion intervention programs requires new strategies that consider the limitations of traditional communication channels. Conducting research is vital to establishing a strong basis for modifying, designing, and developing new health promotion strategies and approaches.

  16. Agenda Setting for Health Promotion: Exploring an Adapted Model for the Social Media Era

    PubMed Central

    2015-01-01

    Background The foundation of best practice in health promotion is a robust theoretical base that informs design, implementation, and evaluation of interventions that promote the public’s health. This study provides a novel contribution to health promotion through the adaptation of the agenda-setting approach in response to the contribution of social media. This exploration and proposed adaptation is derived from a study that examined the effectiveness of Twitter in influencing agenda setting among users in relation to road traffic accidents in Saudi Arabia. Objective The proposed adaptations to the agenda-setting model to be explored reflect two levels of engagement: agenda setting within the social media sphere and the position of social media within classic agenda setting. This exploratory research aims to assess the veracity of the proposed adaptations on the basis of the hypotheses developed to test these two levels of engagement. Methods To validate the hypotheses, we collected and analyzed data from two primary sources: Twitter activities and Saudi national newspapers. Keyword mentions served as indicators of agenda promotion; for Twitter, interactions were used to measure the process of agenda setting within the platform. The Twitter final dataset comprised 59,046 tweets and 38,066 users who contributed by tweeting, replying, or retweeting. Variables were collected for each tweet and user. In addition, 518 keyword mentions were recorded from six popular Saudi national newspapers. Results The results showed significant ratification of the study hypotheses at both levels of engagement that framed the proposed adaptions. The results indicate that social media facilitates the contribution of individuals in influencing agendas (individual users accounted for 76.29%, 67.79%, and 96.16% of retweet impressions, total impressions, and amplification multipliers, respectively), a component missing from traditional constructions of agenda-setting models. The influence of organizations on agenda setting is also highlighted (in the data of user interactions, organizational accounts registered 17% and 14.74% as source and target of interactions, respectively). In addition, 13 striking similarities showed the relationship between newspapers and Twitter on the mentions trends line. Conclusions The effective use of social media platforms in health promotion intervention programs requires new strategies that consider the limitations of traditional communication channels. Conducting research is vital to establishing a strong basis for modifying, designing, and developing new health promotion strategies and approaches. PMID:27227139

  17. A geometric level set model for ultrasounds analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarti, A.; Malladi, R.

    We propose a partial differential equation (PDE) for filtering and segmentation of echocardiographic images based on a geometric-driven scheme. The method allows edge-preserving image smoothing and a semi-automatic segmentation of the heart chambers, that regularizes the shapes and improves edge fidelity especially in presence of distinct gaps in the edge map as is common in ultrasound imagery. A numerical scheme for solving the proposed PDE is borrowed from level set methods. Results on human in vivo acquired 2D, 2D+time,3D, 3D+time echocardiographic images are shown.

  18. Search for dark matter in association with a Higgs boson decaying to two photons at s = 13 TeV with the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    A search for dark matter in association with a Higgs boson decaying to two photons is presented. This study is based on data collected with the ATLAS detector, corresponding to an integrated luminosity of 36.1 fb -1 of proton-proton collisions at the LHC at a center-of-mass energy of 13 TeV in 2015 and 2016. No significant excess over the expected background is observed. Upper limits at 95% confidence level are set on the visible cross section for beyond the Standard Model physics processes, and the production cross section times branching fraction of the Standard Model Higgs boson decaying into twomore » photons in association with missing transverse momentum in three different benchmark models. Finally, limits at 95% confidence level are also set on the observed signal in two-dimensional mass planes. Additionally, the results are interpreted in terms of 90% confidence-level limits on the dark-matter–nucleon scattering cross section, as a function of the dark-matter particle mass, for a spin-independent scenario.« less

  19. Search for dark matter in association with a Higgs boson decaying to two photons at √{s }=13 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S. C.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Christodoulou, V.; Chromek-Burckhart, D.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Eramo, L.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vasconcelos Corga, K.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Bello, F. A.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Petrillo, K. F.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, Changqiao; Li, H.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Mateos, D.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McNamara, P. C.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Poulard, G.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, Dms; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.-J.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamatani, M.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration

    2017-12-01

    A search for dark matter in association with a Higgs boson decaying to two photons is presented. This study is based on data collected with the ATLAS detector, corresponding to an integrated luminosity of 36.1 fb-1 of proton-proton collisions at the LHC at a center-of-mass energy of 13 TeV in 2015 and 2016. No significant excess over the expected background is observed. Upper limits at 95% confidence level are set on the visible cross section for beyond the Standard Model physics processes, and the production cross section times branching fraction of the Standard Model Higgs boson decaying into two photons in association with missing transverse momentum in three different benchmark models. Limits at 95% confidence level are also set on the observed signal in two-dimensional mass planes. Additionally, the results are interpreted in terms of 90% confidence-level limits on the dark-matter-nucleon scattering cross section, as a function of the dark-matter particle mass, for a spin-independent scenario.

  20. Search for dark matter in association with a Higgs boson decaying to two photons at s = 13 TeV with the ATLAS detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-12-08

    A search for dark matter in association with a Higgs boson decaying to two photons is presented. This study is based on data collected with the ATLAS detector, corresponding to an integrated luminosity of 36.1 fb -1 of proton-proton collisions at the LHC at a center-of-mass energy of 13 TeV in 2015 and 2016. No significant excess over the expected background is observed. Upper limits at 95% confidence level are set on the visible cross section for beyond the Standard Model physics processes, and the production cross section times branching fraction of the Standard Model Higgs boson decaying into twomore » photons in association with missing transverse momentum in three different benchmark models. Finally, limits at 95% confidence level are also set on the observed signal in two-dimensional mass planes. Additionally, the results are interpreted in terms of 90% confidence-level limits on the dark-matter–nucleon scattering cross section, as a function of the dark-matter particle mass, for a spin-independent scenario.« less

  1. A Flexible Approach for the Statistical Visualization of Ensemble Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, K.; Wilson, A.; Bremer, P.

    2009-09-29

    Scientists are increasingly moving towards ensemble data sets to explore relationships present in dynamic systems. Ensemble data sets combine spatio-temporal simulation results generated using multiple numerical models, sampled input conditions and perturbed parameters. While ensemble data sets are a powerful tool for mitigating uncertainty, they pose significant visualization and analysis challenges due to their complexity. We present a collection of overview and statistical displays linked through a high level of interactivity to provide a framework for gaining key scientific insight into the distribution of the simulation results as well as the uncertainty associated with the data. In contrast to methodsmore » that present large amounts of diverse information in a single display, we argue that combining multiple linked statistical displays yields a clearer presentation of the data and facilitates a greater level of visual data analysis. We demonstrate this approach using driving problems from climate modeling and meteorology and discuss generalizations to other fields.« less

  2. CalTOX (registered trademark), A multimedia total exposure model spreadsheet user's guide. Version 4.0(Beta)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKone, T.E.; Enoch, K.G.

    2002-08-01

    CalTOX has been developed as a set of spreadsheet models and spreadsheet data sets to assist in assessing human exposures from continuous releases to multiple environmental media, i.e. air, soil, and water. It has also been used for waste classification and for setting soil clean-up levels at uncontrolled hazardous wastes sites. The modeling components of CalTOX include a multimedia transport and transformation model, multi-pathway exposure scenario models, and add-ins to quantify and evaluate uncertainty and variability. All parameter values used as inputs to CalTOX are distributions, described in terms of mean values and a coefficient of variation, rather than asmore » point estimates or plausible upper values such as most other models employ. This probabilistic approach allows both sensitivity and uncertainty analyses to be directly incorporated into the model operation. This manual provides CalTOX users with a brief overview of the CalTOX spreadsheet model and provides instructions for using the spreadsheet to make deterministic and probabilistic calculations of source-dose-risk relationships.« less

  3. Synthesis and Control of Flexible Systems with Component-Level Uncertainties

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Lim, Kyong B.

    2009-01-01

    An efficient and computationally robust method for synthesis of component dynamics is developed. The method defines the interface forces/moments as feasible vectors in transformed coordinates to ensure that connectivity requirements of the combined structure are met. The synthesized system is then defined in a transformed set of feasible coordinates. The simplicity of form is exploited to effectively deal with modeling parametric and non-parametric uncertainties at the substructure level. Uncertainty models of reasonable size and complexity are synthesized for the combined structure from those in the substructure models. In particular, we address frequency and damping uncertainties at the component level. The approach first considers the robustness of synthesized flexible systems. It is then extended to deal with non-synthesized dynamic models with component-level uncertainties by projecting uncertainties to the system level. A numerical example is given to demonstrate the feasibility of the proposed approach.

  4. CALIOP V4.10 L1 & L2 Release Announcement

    Atmospheric Science Data Center

    2016-11-14

    ... CALIPSO mission announces the release of new versions of its standard Level 1 and Level 2 lidar data products.  These products are ... essential ancillary data sets. The GTOPO30 Digital Elevation Model (DEM) used in V4.00 has been replaced by a substantially more accurate ...

  5. A QSAR Model for Thyroperoxidase Inhibition and Screening of a Large Set of Environmental Chemicals (SOT)

    EPA Science Inventory

    Thyroid hormones (THs) are critical modulators of a wide range of biological processes from neurodevelopment to metabolism. Well regulated levels of THs are critical during development and even moderate changes in maternal or fetal TH levels produce irreversible neurological defi...

  6. Evaluation of Hydration Free Energy by Level-Set Variational Implicit-Solvent Model with Coulomb-Field Approximation.

    PubMed

    Guo, Zuojun; Li, Bo; Dzubiella, Joachim; Cheng, Li-Tien; McCammon, J Andrew; Che, Jianwei

    2013-03-12

    In this article, we systematically apply a novel implicit-solvent model, the variational implicit-solvent model (VISM) together with the Coulomb-Field Approximation (CFA), to calculate the hydration free energy of a large set of small organic molecules. Because these molecules have been studied in detail by molecular dynamics simulations and other implicit-solvent models, they provide a good benchmark for evaluating the performance of VISM-CFA. With all-atom Amber force field parameters, VISM-CFA is able to reproduce well not only the experimental and MD simulated total hydration free energy but also the polar and nonpolar contributions individually. The correlation between VISM-CFA and experiments is R 2 = 0.763 for the total hydration free energy, with a root-mean-square deviation (RMSD) of 1.83 kcal/mol, and the correlation to results from TIP3P explicit water MD simulations is R 2 = 0.839 with a RMSD = 1.36 kcal/mol. In addition, we demonstrate that VISM captures dewetting phenomena in the p53/MDM2 complex and hydrophobic characteristics in the system. This work demonstrates that the level-set VISM-CFA can be used to study the energetic behavior of realistic molecular systems with complicated geometries in solvation, protein-ligand binding, protein-protein association, and protein folding processes.

  7. The likelihood of achieving quantified road safety targets: a binary logistic regression model for possible factors.

    PubMed

    Sze, N N; Wong, S C; Lee, C Y

    2014-12-01

    In past several decades, many countries have set quantified road safety targets to motivate transport authorities to develop systematic road safety strategies and measures and facilitate the achievement of continuous road safety improvement. Studies have been conducted to evaluate the association between the setting of quantified road safety targets and road fatality reduction, in both the short and long run, by comparing road fatalities before and after the implementation of a quantified road safety target. However, not much work has been done to evaluate whether the quantified road safety targets are actually achieved. In this study, we used a binary logistic regression model to examine the factors - including vehicle ownership, fatality rate, and national income, in addition to level of ambition and duration of target - that contribute to a target's success. We analyzed 55 quantified road safety targets set by 29 countries from 1981 to 2009, and the results indicate that targets that are in progress and with lower level of ambitions had a higher likelihood of eventually being achieved. Moreover, possible interaction effects on the association between level of ambition and the likelihood of success are also revealed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The Impact of Household Heads' Education Levels on the Poverty Risk: The Evidence from Turkey

    ERIC Educational Resources Information Center

    Bilenkisi, Fikret; Gungor, Mahmut Sami; Tapsin, Gulcin

    2015-01-01

    This study aims to analyze the relationship between the education levels of household heads and the poverty risk of households in Turkey. The logistic regression models have been estimated with the poverty risk of a household as a dependent variable and a set of educational levels as explanatory variables for all households. There are subgroups of…

  9. Evidence-Based Adequacy Model for School Funding: Success Rates in Illinois Schools that Meet Targets

    ERIC Educational Resources Information Center

    Murphy, Gregory J.

    2012-01-01

    This quantitative study explores the 2010 recommendation of the Educational Funding Advisory Board to consider the Evidence-Based Adequacy model of school funding in Illinois. This school funding model identifies and costs research based practices necessary in a prototypical school and sets funding levels based upon those practices. This study…

  10. Theoretical branching ratios for the 5I7 to 5I7 levels of Ho(3+) in the garnets A3B2C3O12 (A = Y,La,Lu,Gd; B = Al,Lu,Sc,Ga; C = Al,Ga)

    NASA Technical Reports Server (NTRS)

    Filer, Elizabeth D.; Morrison, Clyde A.; Turner, Gregory A.; Barnes, Norman P.

    1991-01-01

    Results are reported from an experimental study investigating triply ionized holmium in 10 garnets using the point-change model to predict theoretical energy levels and temperature-dependent branching ratios for the 5I7 to 5I8 manifolds for temperatures between 50 and 400 K. Plots were made for the largest lines at 300 K. YScAG was plotted twice, once for each set of X-ray data available. Energy levels are predicted based on theoretical crystal-field parameters, and good agreement to experiment is found. It is suggested that the present set of theoretical crystal-field parameters provides good estimates of the energy levels for the other hosts on which there are no experimental optical data. X-ray and index-of-refraction data are used to evaluate the performance of 10 lasers via a quantum mechanical model to predict the position of the energy levels and the temperature-dependent branching rations of the 5I7 to 5I8 levels of holmium. The fractional population inversion required for threshold is also evaluated.

  11. Two Methods to Derive Ground-level Concentrations of PM2.5 with Improved Accuracy in the North China, Calibrating MODIS AOD and CMAQ Model Predictions

    NASA Astrophysics Data System (ADS)

    Lyu, Baolei; Hu, Yongtao; Chang, Howard; Russell, Armistead; Bai, Yuqi

    2016-04-01

    Reliable and accurate characterizations of ground-level PM2.5 concentrations are essential to understand pollution sources and evaluate human exposures etc. Monitoring network could only provide direct point-level observations at limited locations. At the locations without monitors, there are generally two ways to estimate the pollution levels of PM2.5. One is observations of aerosol properties from the satellite-based remote sensing, such as Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD). The other one is from deterministic atmospheric chemistry models, such as the Community Multi-Scale Air Quality Model (CMAQ). In this study, we used a statistical spatio-temporal downscaler to calibrate the two datasets to monitor observations to derive fine-scale ground-level concentrations of PM2.5 with improved accuracy. We treated both MODIS AOD and CMAQ model predictions as biased proxy estimations of PM2.5 pollution levels. The downscaler proposed a Bayesian framework to model the spatially and temporally varying coefficients of the two types of estimations in the linear regression setting, in order to correct biases. Especially for calibrating MODIS AOD, a city-specific linear model was established to fill the missing AOD values, and a novel interpolation-based variable, i.e. PM2.5 Spatial Interpolator, was introduced to account for the spatial dependence among grid cells. We selected the heavy polluted and populated North China as our study area, in a grid setting of 81×81 12-km cells. For the evaluation of calibration performance for retrieved MODIS AOD, the R2 was 0.61 by the full model with PM2.5 Spatial Interpolator being presented, and was 0.48 with PM2.5 Spatial Interpolator not being presented. The constructed AOD values effectively predicted PM2.5 concentrations under our model structure, with R2=0.78. For the evaluation of calibrated CMAQ predictions, the R2 was 0.51, a little less than that of calibrated AOD. Finally we obtained two sets of calibrated estimations of ground-level PM2.5 concentrations with complete spatial coverage. By comparing the two datasets, we found that the prediction from AOD have a little smoother texture than that from CMAQ. The former also predicted larger heavy pollution area in the southern Hebei province than the latter, but in a small margin. In general, they have pretty similar spatial patterns, indicating the reliability of our data fusion method. In summary, the statistical spatio-temporal downscaler could provide improvements on MODIS AOD and CMAQ's predictions on PM2.5 pollution levels. Future work would focus on fusing three datasets, as aforementioned monitor observations, MODIS AOD and CMAQ predictions, to derive predictions of ground-level PM2.5 pollution levels with even increased accuracy.

  12. FACTOR ANALYTIC MODELS OF CLUSTERED MULTIVARIATE DATA WITH INFORMATIVE CENSORING

    EPA Science Inventory

    This paper describes a general class of factor analytic models for the analysis of clustered multivariate data in the presence of informative missingness. We assume that there are distinct sets of cluster-level latent variables related to the primary outcomes and to the censorin...

  13. Models of Intervention in Mathematics: Reweaving the Tapestry

    ERIC Educational Resources Information Center

    Fosnot, Catherine

    2010-01-01

    Explore successful models of intervention. No Child Left Behind has set the high expectation that every child meet grade level expectations. This publication synthesizes the research on intervention programs and best practices related to mathematical instructional pedagogy and differentiation to assist teachers, schools, and school districts in…

  14. Representing Micro-Macro Linkages by Actor-Based Dynamic Network Models

    PubMed Central

    Snijders, Tom A.B.; Steglich, Christian E.G.

    2014-01-01

    Stochastic actor-based models for network dynamics have the primary aim of statistical inference about processes of network change, but may be regarded as a kind of agent-based models. Similar to many other agent-based models, they are based on local rules for actor behavior. Different from many other agent-based models, by including elements of generalized linear statistical models they aim to be realistic detailed representations of network dynamics in empirical data sets. Statistical parallels to micro-macro considerations can be found in the estimation of parameters determining local actor behavior from empirical data, and the assessment of goodness of fit from the correspondence with network-level descriptives. This article studies several network-level consequences of dynamic actor-based models applied to represent cross-sectional network data. Two examples illustrate how network-level characteristics can be obtained as emergent features implied by micro-specifications of actor-based models. PMID:25960578

  15. Mathematical Methods of System Analysis in Construction Materials

    NASA Astrophysics Data System (ADS)

    Garkina, Irina; Danilov, Alexander

    2017-10-01

    System attributes of construction materials are defined: complexity of an object, integrity of set of elements, existence of essential, stable relations between elements defining integrative properties of system, existence of structure, etc. On the basis of cognitive modelling (intensive and extensive properties; the operating parameters) materials (as difficult systems) and creation of the cognitive map the hierarchical modular structure of criteria of quality is under construction. It actually is a basis for preparation of the specification on development of material (the required organization and properties). Proceeding from a modern paradigm (model of statement of problems and their decisions) of development of materials, levels and modules are specified in structure of material. It when using the principles of the system analysis allows to considered technological process as the difficult system consisting of elements of the distinguished specification level: from atomic before separate process. Each element of system depending on an effective objective is considered as separate system with more detailed levels of decomposition. Among them, semantic and qualitative analyses of an object (are considered a research objective, decomposition levels, separate elements and communications between them come to light). Further formalization of the available knowledge in the form of mathematical models (structural identification) is carried out; communications between input and output parameters (parametrical identification) are defined. Hierarchical structures of criteria of quality are under construction for each allocated level. On her the relevant hierarchical structures of system (material) are under construction. Regularities of structurization and formation of properties, generally are considered at the levels from micro to a macrostructure. The mathematical model of material is represented as set of the models corresponding to private criteria by which separate modules and their levels (the mathematical description, a decision algorithm) are defined. Adequacy is established (compliance of results of modelling to experimental data; is defined by the level of knowledge of process and validity of the accepted assumptions). The global criterion of quality of material is considered as a set of private criteria (properties). Synthesis of material is carried out on the basis of one-criteria optimization on each of the chosen private criteria. Results of one-criteria optimization are used at multicriteria optimization. The methods of developing materials as single-purpose, multi-purpose, including contradictory, systems are indicated. The scheme of synthesis of composite materials as difficult systems is developed. The specified system approach effectively was used in case of synthesis of composite materials with special properties.

  16. Many-level multilevel structural equation modeling: An efficient evaluation strategy.

    PubMed

    Pritikin, Joshua N; Hunter, Michael D; von Oertzen, Timo; Brick, Timothy R; Boker, Steven M

    2017-01-01

    Structural equation models are increasingly used for clustered or multilevel data in cases where mixed regression is too inflexible. However, when there are many levels of nesting, these models can become difficult to estimate. We introduce a novel evaluation strategy, Rampart, that applies an orthogonal rotation to the parts of a model that conform to commonly met requirements. This rotation dramatically simplifies fit evaluation in a way that becomes more potent as the size of the data set increases. We validate and evaluate the implementation using a 3-level latent regression simulation study. Then we analyze data from a state-wide child behavioral health measure administered by the Oklahoma Department of Human Services. We demonstrate the efficiency of Rampart compared to other similar software using a latent factor model with a 5-level decomposition of latent variance. Rampart is implemented in OpenMx, a free and open source software.

  17. Digital data set that describe aquifer characteristics of the Antlers aquifer in southeastern Oklahoma

    USGS Publications Warehouse

    Abbott, Marvin M.; Runkle, D.L.; Rea, Alan

    1997-01-01

    ARC/INFO export and nonproprietary format file This diskette contains digitized aquifer boundaries and maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the Antlers aquifer in southeastern Oklahoma. The Early Cretaceous-age Antlers Sandstone is an important source of water in an area that underlies about 4,400-square miles of all or part of Atoka, Bryan, Carter, Choctaw, Johnston, Love, Marshall, McCurtain, and Pushmataha Counties. The Antlers aquifer consists of sand, clay, conglomerate, and limestone in the outcrop area. The upper part of the Antlers aquifer consists of beds of sand, poorly cemented sandstone, sandy shale, silt, and clay. The Antlers aquifer is unconfined where it outcrops in about an 1,800-square-mile area. The recharge, hydraulic conductivity, and aquifer boundaries data sets include the outcrop area of the Antlers Sandstone in Oklahoma and areas where the Antlers is overlain by alluvial and terrace deposits and a few small thin outcrops of the Goodland Limestone. Most of the lines in these data sets were extracted from published digital geology data sets. Some of the lines were interpolated in areas where the Antlers aquifer is overlain by alluvial and terrace deposits near streams and rivers. The interpolated lines are very similar to the aquifer boundaries published in a ground-water modeling report for the Antlers aquifer. The maps from which this data set was derived were scanned or digitized from maps published at a scale of 1:250,000. The water-level elevation contours were digitized from a map at a scale of 1:250,000 that was used to prepare the final map published in a ground-water flow model report. Hydraulic conductivity and recharge values also are published in the ground-water model report for the Antlers aquifer. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  18. Analytical modelling of temperature effects on an AMPA-type synapse.

    PubMed

    Kufel, Dominik S; Wojcik, Grzegorz M

    2018-05-11

    It was previously reported, that temperature may significantly influence neural dynamics on the different levels of brain function. Thus, in computational neuroscience, it would be useful to make models scalable for a wide range of various brain temperatures. However, lack of experimental data and an absence of temperature-dependent analytical models of synaptic conductance does not allow to include temperature effects at the multi-neuron modeling level. In this paper, we propose a first step to deal with this problem: A new analytical model of AMPA-type synaptic conductance, which is able to incorporate temperature effects in low-frequency stimulations. It was constructed based on Markov model description of AMPA receptor kinetics using the set of coupled ODEs. The closed-form solution for the set of differential equations was found using uncoupling assumption (introduced in the paper) with few simplifications motivated both from experimental data and from Monte Carlo simulation of synaptic transmission. The model may be used for computationally efficient and biologically accurate implementation of temperature effects on AMPA receptor conductance in large-scale neural network simulations. As a result, it may open a wide range of new possibilities for researching the influence of temperature on certain aspects of brain functioning.

  19. Problem-oriented patient record model as a conceptual foundation for a multi-professional electronic patient record.

    PubMed

    De Clercq, Etienne

    2008-09-01

    It is widely accepted that the development of electronic patient records, or even of a common electronic patient record, is one possible way to improve cooperation and data communication between nurses and physicians. Yet, little has been done so far to develop a common conceptual model for both medical and nursing patient records, which is a first challenge that should be met to set up a common electronic patient record. In this paper, we describe a problem-oriented conceptual model and we show how it may suit both nursing and medical perspectives in a hospital setting. We started from existing nursing theory and from an initial model previously set up for primary care. In a hospital pilot site, a multi-disciplinary team refined this model using one large and complex clinical case (retrospective study) and nine ongoing cases (prospective study). An internal validation was performed through hospital-wide multi-professional interviews and through discussions around a graphical user interface prototype. To assess the consistency of the model, a computer engineer specified it. Finally, a Belgian expert working group performed an external assessment of the model. As a basis for a common patient record we propose a simple problem-oriented conceptual model with two levels of meta-information. The model is mapped with current nursing theories and it includes the following concepts: "health care element", "health approach", "health agent", "contact", "subcontact" and "service". These concepts, their interrelationships and some practical rules for using the model are illustrated in this paper. Our results are compatible with ongoing standardization work at the Belgian and European levels. Our conceptual model is potentially a foundation for a multi-professional electronic patient record that is problem-oriented and therefore patient-centred.

  20. A model-driven approach to information security compliance

    NASA Astrophysics Data System (ADS)

    Correia, Anacleto; Gonçalves, António; Teodoro, M. Filomena

    2017-06-01

    The availability, integrity and confidentiality of information are fundamental to the long-term survival of any organization. Information security is a complex issue that must be holistically approached, combining assets that support corporate systems, in an extended network of business partners, vendors, customers and other stakeholders. This paper addresses the conception and implementation of information security systems, conform the ISO/IEC 27000 set of standards, using the model-driven approach. The process begins with the conception of a domain level model (computation independent model) based on information security vocabulary present in the ISO/IEC 27001 standard. Based on this model, after embedding in the model mandatory rules for attaining ISO/IEC 27001 conformance, a platform independent model is derived. Finally, a platform specific model serves the base for testing the compliance of information security systems with the ISO/IEC 27000 set of standards.

  1. The valuation of the EQ-5D in Portugal.

    PubMed

    Ferreira, Lara N; Ferreira, Pedro L; Pereira, Luis N; Oppe, Mark

    2014-03-01

    The EQ-5D is a preference-based measure widely used in cost-utility analysis (CUA). Several countries have conducted surveys to derive value sets, but this was not the case for Portugal. The purpose of this study was to estimate a value set for the EQ-5D for Portugal using the time trade-off (TTO). A representative sample of the Portuguese general population (n = 450) stratified by age and gender valued 24 health states. Face-to-face interviews were conducted by trained interviewers. Each respondent ranked and valued seven health states using the TTO. Several models were estimated at both the individual and aggregated levels to predict health state valuations. Alternative functional forms were considered to account for the skewed distribution of these valuations. The models were analyzed in terms of their coefficients, overall fit and the ability for predicting the TTO values. Random effects models were estimated using generalized least squares and were robust across model specification. The results are generally consistent with other value sets. This research provides the Portuguese EQ-5D value set based on the preferences of the Portuguese general population as measured by the TTO. This value set is recommended for use in CUA conducted in Portugal.

  2. The effects of competition on efficiency of electricity generation: A post-PURPA analysis

    NASA Astrophysics Data System (ADS)

    Jordan, Paula Faye

    1998-10-01

    The central issue of this research is the effects increased market competition has on production efficiency. Specifically, the research focuses upon measuring the relative level of efficiency in the generation of electricity in 1978 and 1993. It is hypothesized that the Public Utilities Regulatory Policy Act (PURPA), passed by Congress in 1978, made progress toward achieving its legislative intent of increasing competition, and therefore increased efficiency, in the generation of electricity. The methodology used to measure levels of efficiency in this research is the stochastic statistical estimator with the functional form of the translog production function. The models are then estimated using the maximum likelihood estimating technique using plant level data of coal generating units in the U.S. for 1978 and 1993. Results from the estimation of these models indicate that: (a) For the technical efficiency measures, the 1978 data set out performed the 1993 data set for the OTE and OTE of Fuel measures; (b) the 1993 data set was relatively more efficient in the OTE of Capital and the OTE of Labor when compared to the 1978 data set; (c) The 1993 observations indicated a relatively greater level of efficiency over 1978 in the OAE, OAE of Fuel, and OAE of Capital measures; (d) The OAE of Labor measure findings supported the 1978 observations as more efficient when compared to the 1993 set of observations; (e) When looking at the top and bottom ranked sites within each data set, the results indicated that sites which were top or poor performers for the technical and allocative efficiency measures tended to be a top or poor performer for the overall, fuel, and capital measures. The sites that appeared as a top or poor performer of labor measures within the technical and allocative groups were often unique and didn't necessarily appear as a top or poor performer in the other efficiency measures.

  3. Effects of host social hierarchy on disease persistence.

    PubMed

    Davidson, Ross S; Marion, Glenn; Hutchings, Michael R

    2008-08-07

    The effects of social hierarchy on population dynamics and epidemiology are examined through a model which contains a number of fundamental features of hierarchical systems, but is simple enough to allow analytical insight. In order to allow for differences in birth rates, contact rates and movement rates among different sets of individuals the population is first divided into subgroups representing levels in the hierarchy. Movement, representing dominance challenges, is allowed between any two levels, giving a completely connected network. The model includes hierarchical effects by introducing a set of dominance parameters which affect birth rates in each social level and movement rates between social levels, dependent upon their rank. Although natural hierarchies vary greatly in form, the skewing of contact patterns, introduced here through non-uniform dominance parameters, has marked effects on the spread of disease. A simple homogeneous mixing differential equation model of a disease with SI dynamics in a population subject to simple birth and death process is presented and it is shown that the hierarchical model tends to this as certain parameter regions are approached. Outside of these parameter regions correlations within the system give rise to deviations from the simple theory. A Gaussian moment closure scheme is developed which extends the homogeneous model in order to take account of correlations arising from the hierarchical structure, and it is shown that the results are in reasonable agreement with simulations across a range of parameters. This approach helps to elucidate the origin of hierarchical effects and shows that it may be straightforward to relate the correlations in the model to measurable quantities which could be used to determine the importance of hierarchical corrections. Overall, hierarchical effects decrease the levels of disease present in a given population compared to a homogeneous unstructured model, but show higher levels of disease than structured models with no hierarchy. The separation between these three models is greatest when the rate of dominance challenges is low, reducing mixing, and when the disease prevalence is low. This suggests that these effects will often need to be considered in models being used to examine the impact of control strategies where the low disease prevalence behaviour of a model is critical.

  4. Validating a spatially distributed hydrological model with soil morphology data

    NASA Astrophysics Data System (ADS)

    Doppler, T.; Honti, M.; Zihlmann, U.; Weisskopf, P.; Stamm, C.

    2014-09-01

    Spatially distributed models are popular tools in hydrology claimed to be useful to support management decisions. Despite the high spatial resolution of the computed variables, calibration and validation is often carried out only on discharge time series at specific locations due to the lack of spatially distributed reference data. Because of this restriction, the predictive power of these models, with regard to predicted spatial patterns, can usually not be judged. An example of spatial predictions in hydrology is the prediction of saturated areas in agricultural catchments. These areas can be important source areas for inputs of agrochemicals to the stream. We set up a spatially distributed model to predict saturated areas in a 1.2 km2 catchment in Switzerland with moderate topography and artificial drainage. We translated soil morphological data available from soil maps into an estimate of the duration of soil saturation in the soil horizons. This resulted in a data set with high spatial coverage on which the model predictions were validated. In general, these saturation estimates corresponded well to the measured groundwater levels. We worked with a model that would be applicable for management decisions because of its fast calculation speed and rather low data requirements. We simultaneously calibrated the model to observed groundwater levels and discharge. The model was able to reproduce the general hydrological behavior of the catchment in terms of discharge and absolute groundwater levels. However, the the groundwater level predictions were not accurate enough to be used for the prediction of saturated areas. Groundwater level dynamics were not adequately reproduced and the predicted spatial saturation patterns did not correspond to those estimated from the soil map. Our results indicate that an accurate prediction of the groundwater level dynamics of the shallow groundwater in our catchment that is subject to artificial drainage would require a model that better represents processes at the boundary between the unsaturated and the saturated zone. However, data needed for such a more detailed model are not generally available. This severely hampers the practical use of such models despite their usefulness for scientific purposes.

  5. Modelling strategies to break transmission of lymphatic filariasis--aggregation, adherence and vector competence greatly alter elimination.

    PubMed

    Irvine, M A; Reimer, L J; Njenga, S M; Gunawardena, S; Kelly-Hope, L; Bockarie, M; Hollingsworth, T D

    2015-10-22

    With ambitious targets to eliminate lymphatic filariasis over the coming years, there is a need to identify optimal strategies to achieve them in areas with different baseline prevalence and stages of control. Modelling can assist in identifying what data should be collected and what strategies are best for which scenarios. We develop a new individual-based, stochastic mathematical model of the transmission of lymphatic filariasis. We validate the model by fitting to a first time point and predicting future timepoints from surveillance data in Kenya and Sri Lanka, which have different vectors and different stages of the control programme. We then simulate different treatment scenarios in low, medium and high transmission settings, comparing once yearly mass drug administration (MDA) with more frequent MDA and higher coverage. We investigate the potential impact that vector control, systematic non-compliance and different levels of aggregation have on the dynamics of transmission and control. In all settings, increasing coverage from 65 to 80 % has a similar impact on control to treating twice a year at 65 % coverage, for fewer drug treatments being distributed. Vector control has a large impact, even at moderate levels. The extent of aggregation of parasite loads amongst a small portion of the population, which has been estimated to be highly variable in different settings, can undermine the success of a programme, particularly if high risk sub-communities are not accessing interventions. Even moderate levels of vector control have a large impact both on the reduction in prevalence and the maintenance of gains made during MDA, even when parasite loads are highly aggregated, and use of vector control is at moderate levels. For the same prevalence, differences in aggregation and adherence can result in very different dynamics. The novel analysis of a small amount of surveillance data and resulting simulations highlight the need for more individual level data to be analysed to effectively tailor programmes in the drive for elimination.

  6. Extracting risk modeling information from medical articles.

    PubMed

    Deleris, Léa A; Sacaleanu, Bogdan; Tounsi, Lamia

    2013-01-01

    Risk modeling in healthcare is both ubiquitous and in its infancy. On the one hand, a significant proportion of medical research focuses on determining the factors that influence the incidence, severity and treatment of diseases, which is a form of risk identification. Those studies typically investigate the micro-level of risk modeling, i.e., the existence of dependences between a reduced set of hypothesized (or demonstrated) risk factors and a focus disease or treatment. On the other hand, the macro-level of risk modeling, i.e., articulating how a large number of such risk factors interact to affect diseases and treatments is not widespread, though essential for medical decision support modeling. By exploiting advances in natural language processing, we believe that information contained in unstructured texts such as medical articles could be extracted to facilitate aggregation into macro-level risk models.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    A search for W' bosons in events with one lepton (electron or muon) and missing transverse momentum is presented. The search uses 3.2 fb -1 of pp collision data collected at √s=13 TeV by the ATLAS experiment at the LHC in 2015. The transverse mass distribution is examined and no significant excess of events above the level expected from Standard Model processes is observed. Upper limits on the W' boson cross-section times branching ratio to leptons are set as a function of the W' mass. Within the Sequential Standard Model W ' masses below 4.07 TeV are excluded at the 95%more » confidence level. This extends the limit set using LHC data at √s=8 TeV by around 800 GeV.« less

  8. The Study and Design of Adaptive Learning System Based on Fuzzy Set Theory

    NASA Astrophysics Data System (ADS)

    Jia, Bing; Zhong, Shaochun; Zheng, Tianyang; Liu, Zhiyong

    Adaptive learning is an effective way to improve the learning outcomes, that is, the selection of learning content and presentation should be adapted to each learner's learning context, learning levels and learning ability. Adaptive Learning System (ALS) can provide effective support for adaptive learning. This paper proposes a new ALS based on fuzzy set theory. It can effectively estimate the learner's knowledge level by test according to learner's target. Then take the factors of learner's cognitive ability and preference into consideration to achieve self-organization and push plan of knowledge. This paper focuses on the design and implementation of domain model and user model in ALS. Experiments confirmed that the system providing adaptive content can effectively help learners to memory the content and improve their comprehension.

  9. Deformed supersymmetric quantum mechanics with spin variables

    NASA Astrophysics Data System (ADS)

    Fedoruk, Sergey; Ivanov, Evgeny; Sidorov, Stepan

    2018-01-01

    We quantize the one-particle model of the SU(2|1) supersymmetric multiparticle mechanics with the additional semi-dynamical spin degrees of freedom. We find the relevant energy spectrum and the full set of physical states as functions of the mass-dimension deformation parameter m and SU(2) spin q\\in (Z_{>0,}1/2+Z_{≥0}) . It is found that the states at the fixed energy level form irreducible multiplets of the supergroup SU(2|1). Also, the hidden superconformal symmetry OSp(4|2) of the model is revealed in the classical and quantum cases. We calculate the OSp(4|2) Casimir operators and demonstrate that the full set of the physical states belonging to different energy levels at fixed q are unified into an irreducible OSp(4|2) multiplet.

  10. Charge redistribution in QM:QM ONIOM model systems: a constrained density functional theory approach

    NASA Astrophysics Data System (ADS)

    Beckett, Daniel; Krukau, Aliaksandr; Raghavachari, Krishnan

    2017-11-01

    The ONIOM hybrid method has found considerable success in QM:QM studies designed to approximate a high level of theory at a significantly reduced cost. This cost reduction is achieved by treating only a small model system with the target level of theory and the rest of the system with a low, inexpensive, level of theory. However, the choice of an appropriate model system is a limiting factor in ONIOM calculations and effects such as charge redistribution across the model system boundary must be considered as a source of error. In an effort to increase the general applicability of the ONIOM model, a method to treat the charge redistribution effect is developed using constrained density functional theory (CDFT) to constrain the charge experienced by the model system in the full calculation to the link atoms in the truncated model system calculations. Two separate CDFT-ONIOM schemes are developed and tested on a set of 20 reactions with eight combinations of levels of theory. It is shown that a scheme using a scaled Lagrange multiplier term obtained from the low-level CDFT model calculation outperforms ONIOM at each combination of levels of theory from 32% to 70%.

  11. Optimization of autoregressive, exogenous inputs-based typhoon inundation forecasting models using a multi-objective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ouyang, Huei-Tau

    2017-07-01

    Three types of model for forecasting inundation levels during typhoons were optimized: the linear autoregressive model with exogenous inputs (LARX), the nonlinear autoregressive model with exogenous inputs with wavelet function (NLARX-W) and the nonlinear autoregressive model with exogenous inputs with sigmoid function (NLARX-S). The forecast performance was evaluated by three indices: coefficient of efficiency, error in peak water level and relative time shift. Historical typhoon data were used to establish water-level forecasting models that satisfy all three objectives. A multi-objective genetic algorithm was employed to search for the Pareto-optimal model set that satisfies all three objectives and select the ideal models for the three indices. Findings showed that the optimized nonlinear models (NLARX-W and NLARX-S) outperformed the linear model (LARX). Among the nonlinear models, the optimized NLARX-W model achieved a more balanced performance on the three indices than the NLARX-S models and is recommended for inundation forecasting during typhoons.

  12. GeneTopics - interpretation of gene sets via literature-driven topic models

    PubMed Central

    2013-01-01

    Background Annotation of a set of genes is often accomplished through comparison to a library of labelled gene sets such as biological processes or canonical pathways. However, this approach might fail if the employed libraries are not up to date with the latest research, don't capture relevant biological themes or are curated at a different level of granularity than is required to appropriately analyze the input gene set. At the same time, the vast biomedical literature offers an unstructured repository of the latest research findings that can be tapped to provide thematic sub-groupings for any input gene set. Methods Our proposed method relies on a gene-specific text corpus and extracts commonalities between documents in an unsupervised manner using a topic model approach. We automatically determine the number of topics summarizing the corpus and calculate a gene relevancy score for each topic allowing us to eliminate non-specific topics. As a result we obtain a set of literature topics in which each topic is associated with a subset of the input genes providing directly interpretable keywords and corresponding documents for literature research. Results We validate our method based on labelled gene sets from the KEGG metabolic pathway collection and the genetic association database (GAD) and show that the approach is able to detect topics consistent with the labelled annotation. Furthermore, we discuss the results on three different types of experimentally derived gene sets, (1) differentially expressed genes from a cardiac hypertrophy experiment in mice, (2) altered transcript abundance in human pancreatic beta cells, and (3) genes implicated by GWA studies to be associated with metabolite levels in a healthy population. In all three cases, we are able to replicate findings from the original papers in a quick and semi-automated manner. Conclusions Our approach provides a novel way of automatically generating meaningful annotations for gene sets that are directly tied to relevant articles in the literature. Extending a general topic model method, the approach introduced here establishes a workflow for the interpretation of gene sets generated from diverse experimental scenarios that can complement the classical approach of comparison to reference gene sets. PMID:24564875

  13. Artificial neural networks modelling the prednisolone nanoprecipitation in microfluidic reactors.

    PubMed

    Ali, Hany S M; Blagden, Nicholas; York, Peter; Amani, Amir; Brook, Toni

    2009-06-28

    This study employs artificial neural networks (ANNs) to create a model to identify relationships between variables affecting drug nanoprecipitation using microfluidic reactors. The input variables examined were saturation levels of prednisolone, solvent and antisolvent flow rates, microreactor inlet angles and internal diameters, while particle size was the single output. ANNs software was used to analyse a set of data obtained by random selection of the variables. The developed model was then assessed using a separate set of validation data and provided good agreement with the observed results. The antisolvent flow rate was found to have the dominant role on determining final particle size.

  14. Projecting the Population-level Effects of Mercury on the Common Loon in the Northeast

    NASA Astrophysics Data System (ADS)

    Evers, D. C.; Mitro, M. G.; Gleason, T. R.

    2001-05-01

    The Common Loon (Gavia immer) is a top-level predator in aquatic systems and is at risk to mercury contamination. This risk is of particular concern in the Northeast, the region of North America in which loons have the highest mean body concentration of methylmercury (MeHg). We used matrix population models to project the population-level effects of mercury on loons in four states in the Northeast (New York, Vermont, New Hampshire, and Maine) exhibiting different levels of risk to MeHg. Four categories of risk to MeHg (low, moderate, high, and extra high) were established based on MeHg levels observed in loons and associated effects observed at the individual and population levels in the field (e.g., behavior and reproductive success). We parameterized deterministic matrix population models using survival estimates from a 12-year band-resight data set and productivity estimates from a 25-year data set of nesting loon observations in NH. The juvenile loon survival rate was 0.55 (minimum) and 0.63 (maximum) (ages 1-3), and the adult loon survival rate was 0.95 (ages 4-30). The mean age at first reproduction was 7. The mean fertility was 0.26 fledgelings per individual at low to moderate risk; there were 53% fewer fledged young per individual at high to extra high risk. Productivity was weighted by risk for each state. The portion of the breeding population at high to extra high risk was 10% in NY, 15% in VT, 17% in NH, and 28% in ME. We also constructed a stochastic model in which productivity was randomly selected in each time step from the 25 estimates in the NH data set. Model results indicated a negative population growth rate for some states. There was a decreasing trend in population growth rate as the percentage of the loon population at high to extra high risk increased. The stochastic model showed that the population growth rate varied over a range of about 0.05 from year to year, and this range decreased as the percentage of the loon population at high to extra high risk increased. These results suggest that an increase in risk to mercury that effects a change in reproductive success may have a negative population-level effect on loons.

  15. Health level 7 development framework for medication administration.

    PubMed

    Kim, Hwa Sun; Cho, Hune

    2009-01-01

    We propose the creation of a standard data model for medication administration activities through the development of a clinical document architecture using the Health Level 7 Development Framework process based on an object-oriented analysis and the development method of Health Level 7 Version 3. Medication administration is the most common activity performed by clinical professionals in healthcare settings. A standardized information model and structured hospital information system are necessary to achieve evidence-based clinical activities. A virtual scenario is used to demonstrate the proposed method of administering medication. We used the Health Level 7 Development Framework and other tools to create the clinical document architecture, which allowed us to illustrate each step of the Health Level 7 Development Framework in the administration of medication. We generated an information model of the medication administration process as one clinical activity. It should become a fundamental conceptual model for understanding international-standard methodology by healthcare professionals and nursing practitioners with the objective of modeling healthcare information systems.

  16. Ontology-Based Model Of Firm Competitiveness

    NASA Astrophysics Data System (ADS)

    Deliyska, Boryana; Stoenchev, Nikolay

    2010-10-01

    Competitiveness is important characteristics of each business organization (firm, company, corporation etc). It is of great significance for the organization existence and defines evaluation criteria of business success at microeconomical level. Each criterium comprises set of indicators with specific weight coefficients. In the work an ontology-based model of firm competitiveness is presented as a set of several mutually connected ontologies. It would be useful for knowledge structuring, standardization and sharing among experts and software engineers who develop application in the domain. Then the assessment of the competitiveness of various business organizations could be generated more effectively.

  17. A Multi-Faceted Approach to Successful Transition for Students with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Dubberly, Russell G.

    2011-01-01

    This report summarizes the multi-faceted, dynamic instructional model implemented to increase positive transition outcomes for high school students with intellectual disabilities. This report is based on the programmatic methods implemented within a secondary-level school in an urban setting. This pedagogical model facilitates the use of…

  18. Software engineering the mixed model for genome-wide association studies on large samples

    USDA-ARS?s Scientific Manuscript database

    Mixed models improve the ability to detect phenotype-genotype associations in the presence of population stratification and multiple levels of relatedness in genome-wide association studies (GWAS), but for large data sets the resource consumption becomes impractical. At the same time, the sample siz...

  19. Cultural Regulation and the Reshaping of the University

    ERIC Educational Resources Information Center

    O'Brien, Stephen

    2012-01-01

    This paper is set within the context of university change in the Republic of Ireland. Irish third-level institutions are increasingly situated, whilst situating themselves, in the global advance of the so-called "entrepreneurial" university model. This model promotes knowledge as utilitarian and performative that, in turn, informs new…

  20. Framework for a Quantitative Systemic Toxicity Model (FutureToxII)

    EPA Science Inventory

    EPA’s ToxCast program profiles the bioactivity of chemicals in a diverse set of ~700 high throughput screening (HTS) assays. In collaboration with L’Oreal, a quantitative model of systemic toxicity was developed using no effect levels (NEL) from ToxRefDB for 633 chemicals with HT...

  1. Level-Set Variational Implicit-Solvent Modeling of Biomolecules with the Coulomb-Field Approximation

    PubMed Central

    2011-01-01

    Central in the variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett.2006, 96, 087802 and J. Chem. Phys.2006, 124, 084905] of molecular solvation is a mean-field free-energy functional of all possible solute–solvent interfaces or dielectric boundaries. Such a functional can be minimized numerically by a level-set method to determine stable equilibrium conformations and solvation free energies. Applications to nonpolar systems have shown that the level-set VISM is efficient and leads to qualitatively and often quantitatively correct results. In particular, it is capable of capturing capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states as found in molecular dynamics (MD) simulations. In this work, we introduce into the VISM the Coulomb-field approximation of the electrostatic free energy. Such an approximation is a volume integral over an arbitrary shaped solvent region, requiring no solutions to any partial differential equations. With this approximation, we obtain the effective boundary force and use it as the “normal velocity” in the level-set relaxation. We test the new approach by calculating solvation free energies and potentials of mean force for small and large molecules, including the two-domain protein BphC. Our results reveal the importance of coupling polar and nonpolar interactions in the underlying molecular systems. In particular, dehydration near the domain interface of BphC subunits is found to be highly sensitive to local electrostatic potentials as seen in previous MD simulations. This is a first step toward capturing the complex protein dehydration process by an implicit-solvent approach. PMID:22346739

  2. A Comparison of Methods of Vertical Equating.

    ERIC Educational Resources Information Center

    Loyd, Brenda H.; Hoover, H. D.

    Rasch model vertical equating procedures were applied to three mathematics computation tests for grades six, seven, and eight. Each level of the test was composed of 45 items in three sets of 15 items, arranged in such a way that tests for adjacent grades had two sets (30 items) in common, and the sixth and eighth grades had 15 items in common. In…

  3. Low back pain in 17 countries, a Rasch analysis of the ICF core set for low back pain.

    PubMed

    Røe, Cecilie; Bautz-Holter, Erik; Cieza, Alarcos

    2013-03-01

    Previous studies indicate that a worldwide measurement tool may be developed based on the International Classification of Functioning Disability and Health (ICF) Core Sets for chronic conditions. The aim of the present study was to explore the possibility of constructing a cross-cultural measurement of functioning for patients with low back pain (LBP) on the basis of the Comprehensive ICF Core Set for LBP and to evaluate the properties of the ICF Core Set. The Comprehensive ICF Core Set for LBP was scored by health professionals for 972 patients with LBP from 17 countries. Qualifier levels of the categories, invariance across age, sex and countries, construct validity and the ordering of the categories in the components of body function, body structure, activities and participation were explored by Rasch analysis. The item-trait χ2-statistics showed that the 53 categories in the ICF Core Set for LBP did not fit the Rasch model (P<0.001). The main challenge was the invariance in the responses according to country. Analysis of the four countries with the largest sample sizes indicated that the data from Germany fit the Rasch model, and the data from Norway, Serbia and Kuwait in terms of the components of body functions and activities and participation also fit the model. The component of body functions and activity and participation had a negative mean location, -2.19 (SD 1.19) and -2.98 (SD 1.07), respectively. The negative location indicates that the ICF Core Set reflects patients with a lower level of function than the present patient sample. The present results indicate that it may be possible to construct a clinical measure of function on the basis of the Comprehensive ICF Core Set for LBP by calculating country-specific scores before pooling the data.

  4. Space Generic Open Avionics Architecture (SGOAA) standard specification

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1994-01-01

    This standard establishes the Space Generic Open Avionics Architecture (SGOAA). The SGOAA includes a generic functional model, processing structural model, and an architecture interface model. This standard defines the requirements for applying these models to the development of spacecraft core avionics systems. The purpose of this standard is to provide an umbrella set of requirements for applying the generic architecture models to the design of a specific avionics hardware/software processing system. This standard defines a generic set of system interface points to facilitate identification of critical services and interfaces. It establishes the requirement for applying appropriate low level detailed implementation standards to those interfaces points. The generic core avionics functions and processing structural models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.

  5. Two-way coupled SPH and particle level set fluid simulation.

    PubMed

    Losasso, Frank; Talton, Jerry; Kwatra, Nipun; Fedkiw, Ronald

    2008-01-01

    Grid-based methods have difficulty resolving features on or below the scale of the underlying grid. Although adaptive methods (e.g. RLE, octrees) can alleviate this to some degree, separate techniques are still required for simulating small-scale phenomena such as spray and foam, especially since these more diffuse materials typically behave quite differently than their denser counterparts. In this paper, we propose a two-way coupled simulation framework that uses the particle level set method to efficiently model dense liquid volumes and a smoothed particle hydrodynamics (SPH) method to simulate diffuse regions such as sprays. Our novel SPH method allows us to simulate both dense and diffuse water volumes, fully incorporates the particles that are automatically generated by the particle level set method in under-resolved regions, and allows for two way mixing between dense SPH volumes and grid-based liquid representations.

  6. Non-invasive prediction of hemoglobin levels by principal component and back propagation artificial neural network

    PubMed Central

    Ding, Haiquan; Lu, Qipeng; Gao, Hongzhi; Peng, Zhongqi

    2014-01-01

    To facilitate non-invasive diagnosis of anemia, specific equipment was developed, and non-invasive hemoglobin (HB) detection method based on back propagation artificial neural network (BP-ANN) was studied. In this paper, we combined a broadband light source composed of 9 LEDs with grating spectrograph and Si photodiode array, and then developed a high-performance spectrophotometric system. By using this equipment, fingertip spectra of 109 volunteers were measured. In order to deduct the interference of redundant data, principal component analysis (PCA) was applied to reduce the dimensionality of collected spectra. Then the principal components of the spectra were taken as input of BP-ANN model. On this basis we obtained the optimal network structure, in which node numbers of input layer, hidden layer, and output layer was 9, 11, and 1. Calibration and correction sample sets were used for analyzing the accuracy of non-invasive hemoglobin measurement, and prediction sample set was used for testing the adaptability of the model. The correlation coefficient of network model established by this method is 0.94, standard error of calibration, correction, and prediction are 11.29g/L, 11.47g/L, and 11.01g/L respectively. The result proves that there exist good correlations between spectra of three sample sets and actual hemoglobin level, and the model has a good robustness. It is indicated that the developed spectrophotometric system has potential for the non-invasive detection of HB levels with the method of BP-ANN combined with PCA. PMID:24761296

  7. Tools for quantifying isotopic niche space and dietary variation at the individual and population level.

    USGS Publications Warehouse

    Newsome, Seth D.; Yeakel, Justin D.; Wheatley, Patrick V.; Tinker, M. Tim

    2012-01-01

    Ecologists are increasingly using stable isotope analysis to inform questions about variation in resource and habitat use from the individual to community level. In this study we investigate data sets from 2 California sea otter (Enhydra lutris nereis) populations to illustrate the advantages and potential pitfalls of applying various statistical and quantitative approaches to isotopic data. We have subdivided these tools, or metrics, into 3 categories: IsoSpace metrics, stable isotope mixing models, and DietSpace metrics. IsoSpace metrics are used to quantify the spatial attributes of isotopic data that are typically presented in bivariate (e.g., δ13C versus δ15N) 2-dimensional space. We review IsoSpace metrics currently in use and present a technique by which uncertainty can be included to calculate the convex hull area of consumers or prey, or both. We then apply a Bayesian-based mixing model to quantify the proportion of potential dietary sources to the diet of each sea otter population and compare this to observational foraging data. Finally, we assess individual dietary specialization by comparing a previously published technique, variance components analysis, to 2 novel DietSpace metrics that are based on mixing model output. As the use of stable isotope analysis in ecology continues to grow, the field will need a set of quantitative tools for assessing isotopic variance at the individual to community level. Along with recent advances in Bayesian-based mixing models, we hope that the IsoSpace and DietSpace metrics described here will provide another set of interpretive tools for ecologists.

  8. Small area-level variation in the incidence of psychotic disorders in an urban area in France: an ecological study.

    PubMed

    Szoke, Andrei; Pignon, Baptiste; Baudin, Grégoire; Tortelli, Andrea; Richard, Jean-Romain; Leboyer, Marion; Schürhoff, Franck

    2016-07-01

    We sought to determine whether significant variation in the incidence of clinically relevant psychoses existed at an ecological level in an urban French setting, and to examine possible factors associated with this variation. We aimed to advance the literature by testing this hypothesis in a novel population setting and by comparing a variety of spatial models. We sought to identify all first episode cases of non-affective and affective psychotic disorders presenting in a defined urban catchment area over a 4 years period, over more than half a million person-years at-risk. Because data from geographic close neighbourhoods usually show spatial autocorrelation, we used for our analyses Bayesian modelling. We included small area neighbourhood measures of deprivation, migrants' density and social fragmentation as putative explanatory variables in the models. Incidence of broad psychotic disorders shows spatial patterning with the best fit for models that included both strong autocorrelation between neighbouring areas and weak autocorrelation between areas further apart. Affective psychotic disorders showed similar spatial patterning and were associated with the proportion of migrants/foreigners in the area (inverse correlation). In contrast, non-affective psychoses did not show spatial patterning. At ecological level, the variation in the number of cases and the factors that influence this variation are different for non-affective and affective psychotic disorders. Important differences in results-compared with previous studies in different settings-point to the importance of the context and the necessity of further studies to understand these differences.

  9. Adversarial risk analysis with incomplete information: a level-k approach.

    PubMed

    Rothschild, Casey; McLay, Laura; Guikema, Seth

    2012-07-01

    This article proposes, develops, and illustrates the application of level-k game theory to adversarial risk analysis. Level-k reasoning, which assumes that players play strategically but have bounded rationality, is useful for operationalizing a Bayesian approach to adversarial risk analysis. It can be applied in a broad class of settings, including settings with asynchronous play and partial but incomplete revelation of early moves. Its computational and elicitation requirements are modest. We illustrate the approach with an application to a simple defend-attack model in which the defender's countermeasures are revealed with a probability less than one to the attacker before he decides on how or whether to attack. © 2011 Society for Risk Analysis.

  10. Integrated Medical Model (IMM) Optimization Version 4.0 Functional Improvements

    NASA Technical Reports Server (NTRS)

    Arellano, John; Young, M.; Boley, L.; Garcia, Y.; Saile, L.; Walton, M.; Kerstman, E.; Reyes, D.; Goodenow, D. A.; Myers, J. G.

    2016-01-01

    The IMMs ability to assess mission outcome risk levels relative to available resources provides a unique capability to provide guidance on optimal operational medical kit and vehicle resources. Post-processing optimization allows IMM to optimize essential resources to improve a specific model outcome such as maximization of the Crew Health Index (CHI), or minimization of the probability of evacuation (EVAC) or the loss of crew life (LOCL). Mass and or volume constrain the optimized resource set. The IMMs probabilistic simulation uses input data on one hundred medical conditions to simulate medical events that may occur in spaceflight, the resources required to treat those events, and the resulting impact to the mission based on specific crew and mission characteristics. Because IMM version 4.0 provides for partial treatment for medical events, IMM Optimization 4.0 scores resources at the individual resource unit increment level as opposed to the full condition-specific treatment set level, as done in version 3.0. This allows the inclusion of as many resources as possible in the event that an entire set of resources called out for treatment cannot satisfy the constraints. IMM Optimization version 4.0 adds capabilities that increase efficiency by creating multiple resource sets based on differing constraints and priorities, CHI, EVAC, or LOCL. It also provides sets of resources that improve mission-related IMM v4.0 outputs with improved performance compared to the prior optimization. The new optimization represents much improved fidelity that will improve the utility of the IMM 4.0 for decision support.

  11. A Qualitative Readiness-Requirements Assessment Model for Enterprise Big-Data Infrastructure Investment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olama, Mohammed M; McNair, Wade; Sukumar, Sreenivas R

    2014-01-01

    In the last three decades, there has been an exponential growth in the area of information technology providing the information processing needs of data-driven businesses in government, science, and private industry in the form of capturing, staging, integrating, conveying, analyzing, and transferring data that will help knowledge workers and decision makers make sound business decisions. Data integration across enterprise warehouses is one of the most challenging steps in the big data analytics strategy. Several levels of data integration have been identified across enterprise warehouses: data accessibility, common data platform, and consolidated data model. Each level of integration has its ownmore » set of complexities that requires a certain amount of time, budget, and resources to implement. Such levels of integration are designed to address the technical challenges inherent in consolidating the disparate data sources. In this paper, we present a methodology based on industry best practices to measure the readiness of an organization and its data sets against the different levels of data integration. We introduce a new Integration Level Model (ILM) tool, which is used for quantifying an organization and data system s readiness to share data at a certain level of data integration. It is based largely on the established and accepted framework provided in the Data Management Association (DAMA-DMBOK). It comprises several key data management functions and supporting activities, together with several environmental elements that describe and apply to each function. The proposed model scores the maturity of a system s data governance processes and provides a pragmatic methodology for evaluating integration risks. The higher the computed scores, the better managed the source data system and the greater the likelihood that the data system can be brought in at a higher level of integration.« less

  12. A qualitative readiness-requirements assessment model for enterprise big-data infrastructure investment

    NASA Astrophysics Data System (ADS)

    Olama, Mohammed M.; McNair, Allen W.; Sukumar, Sreenivas R.; Nutaro, James J.

    2014-05-01

    In the last three decades, there has been an exponential growth in the area of information technology providing the information processing needs of data-driven businesses in government, science, and private industry in the form of capturing, staging, integrating, conveying, analyzing, and transferring data that will help knowledge workers and decision makers make sound business decisions. Data integration across enterprise warehouses is one of the most challenging steps in the big data analytics strategy. Several levels of data integration have been identified across enterprise warehouses: data accessibility, common data platform, and consolidated data model. Each level of integration has its own set of complexities that requires a certain amount of time, budget, and resources to implement. Such levels of integration are designed to address the technical challenges inherent in consolidating the disparate data sources. In this paper, we present a methodology based on industry best practices to measure the readiness of an organization and its data sets against the different levels of data integration. We introduce a new Integration Level Model (ILM) tool, which is used for quantifying an organization and data system's readiness to share data at a certain level of data integration. It is based largely on the established and accepted framework provided in the Data Management Association (DAMADMBOK). It comprises several key data management functions and supporting activities, together with several environmental elements that describe and apply to each function. The proposed model scores the maturity of a system's data governance processes and provides a pragmatic methodology for evaluating integration risks. The higher the computed scores, the better managed the source data system and the greater the likelihood that the data system can be brought in at a higher level of integration.

  13. Noise measurements for various configurations of a model of a mixer nozzle externally blown flap system

    NASA Technical Reports Server (NTRS)

    Goodykoontz, J. H.; Wagner, J. M.; Sargent, N. B.

    1973-01-01

    Noise data were taken for variations to a large scale model of an externally blown flap lift augmentation system. The variations included two different mixer nozzles (7 and 8 lobes), two different wing models (2 and 3 flaps), and different lateral distances between the wing chord line and the nozzle centerline. When the seven lobe was used with the trailing flap in the 60 deg position, increasing the wing to nozzle distance had no effect on the sound level. When the eight lobe nozzle was used there was a decrease in sound level. With the 20 deg flap setting the noise level decreased when the distance was increased using either nozzle.

  14. A multi-level model of emerging technology: An empirical study of the evolution of biotechnology from 1976 to 2003

    PubMed Central

    van Witteloostuijn, Arjen

    2018-01-01

    In this paper, we develop an ecological, multi-level model that can be used to study the evolution of emerging technology. More specifically, by defining technology as a system composed of a set of interacting components, we can build upon the argument of multi-level density dependence from organizational ecology to develop a distribution-independent model of technological evolution. This allows us to distinguish between different stages of component development, which provides more insight into the emergence of stable component configurations, or dominant designs. We validate our hypotheses in the biotechnology industry by using patent data from the USPTO from 1976 to 2003. PMID:29795575

  15. Stereochemical analysis of (+)-limonene using theoretical and experimental NMR and chiroptical data

    NASA Astrophysics Data System (ADS)

    Reinscheid, F.; Reinscheid, U. M.

    2016-02-01

    Using limonene as test molecule, the success and the limitations of three chiroptical methods (optical rotatory dispersion (ORD), electronic and vibrational circular dichroism, ECD and VCD) could be demonstrated. At quite low levels of theory (mpw1pw91/cc-pvdz, IEFPCM (integral equation formalism polarizable continuum model)) the experimental ORD values differ by less than 10 units from the calculated values. The modelling in the condensed phase still represents a challenge so that experimental NMR data were used to test for aggregation and solvent-solute interactions. After establishing a reasonable structural model, only the ECD spectra prediction showed a decisive dependence on the basis set: only augmented (in the case of Dunning's basis sets) or diffuse (in the case of Pople's basis sets) basis sets predicted the position and shape of the ECD bands correctly. Based on these result we propose a procedure to assign the absolute configuration (AC) of an unknown compound using the comparison between experimental and calculated chiroptical data.

  16. A Global Rapid Integrated Monitoring System for Water Cycle and Water Resource Assessment (Global-RIMS)

    NASA Technical Reports Server (NTRS)

    Roads, John; Voeroesmarty, Charles

    2005-01-01

    The main focus of our work was to solidify underlying data sets, the data processing tools and the modeling environment needed to perform a series of long-term global and regional hydrological simulations leading eventually to routine hydrometeorological predictions. A water and energy budget synthesis was developed for the Mississippi River Basin (Roads et al. 2003), in order to understand better what kinds of errors exist in current hydrometeorological data sets. This study is now being extended globally with a larger number of observations and model based data sets under the new NASA NEWS program. A global comparison of a number of precipitation data sets was subsequently carried out (Fekete et al. 2004) in which it was further shown that reanalysis precipitation has substantial problems, which subsequently led us to the development of a precipitation assimilation effort (Nunes and Roads 2005). We believe that with current levels of model skill in predicting precipitation that precipitation assimilation is necessary to get the appropriate land surface forcing.

  17. Advanced methods for modeling water-levels and estimating drawdowns with SeriesSEE, an Excel add-in

    USGS Publications Warehouse

    Halford, Keith; Garcia, C. Amanda; Fenelon, Joe; Mirus, Benjamin B.

    2012-12-21

    Water-level modeling is used for multiple-well aquifer tests to reliably differentiate pumping responses from natural water-level changes in wells, or “environmental fluctuations.” Synthetic water levels are created during water-level modeling and represent the summation of multiple component fluctuations, including those caused by environmental forcing and pumping. Pumping signals are modeled by transforming step-wise pumping records into water-level changes by using superimposed Theis functions. Water-levels can be modeled robustly with this Theis-transform approach because environmental fluctuations and pumping signals are simulated simultaneously. Water-level modeling with Theis transforms has been implemented in the program SeriesSEE, which is a Microsoft® Excel add-in. Moving average, Theis, pneumatic-lag, and gamma functions transform time series of measured values into water-level model components in SeriesSEE. Earth tides and step transforms are additional computed water-level model components. Water-level models are calibrated by minimizing a sum-of-squares objective function where singular value decomposition and Tikhonov regularization stabilize results. Drawdown estimates from a water-level model are the summation of all Theis transforms minus residual differences between synthetic and measured water levels. The accuracy of drawdown estimates is limited primarily by noise in the data sets, not the Theis-transform approach. Drawdowns much smaller than environmental fluctuations have been detected across major fault structures, at distances of more than 1 mile from the pumping well, and with limited pre-pumping and recovery data at sites across the United States. In addition to water-level modeling, utilities exist in SeriesSEE for viewing, cleaning, manipulating, and analyzing time-series data.

  18. A social preference valuations set for EQ-5D health states in Flanders, Belgium.

    PubMed

    Cleemput, Irina

    2010-04-01

    This study aimed at deriving a preference valuation set for EQ-5D health states from the general Flemish public in Belgium. A EuroQol valuation instrument with 16 health states to be valued on a visual analogue scale was sent to a random sample of 2,754 adults. The initial response rate was 35%. Eventually, 548 (20%) respondents provided useable valuations for modeling. Valuations for 245 health states were modeled using a random effects model. The selection of the model was based on two criteria: health state valuations must be consistent, and the difference with the directly observed valuations must be small. A model including a value decrement if any health dimension of the EQ-5D is on the worst level was selected to construct the social health state valuation set. A comparison with health state valuations from other countries showed similarities, especially with those from New Zealand. The use of a single preference valuation set across different health economic evaluations within a country is highly preferable to increase their usability for policy makers. This study contributes to the standardization of outcome measurement in economic evaluations in Belgium.

  19. The effect of various parameters of large scale radio propagation models on improving performance mobile communications

    NASA Astrophysics Data System (ADS)

    Pinem, M.; Fauzi, R.

    2018-02-01

    One technique for ensuring continuity of wireless communication services and keeping a smooth transition on mobile communication networks is the soft handover technique. In the Soft Handover (SHO) technique the inclusion and reduction of Base Station from the set of active sets is determined by initiation triggers. One of the initiation triggers is based on the strong reception signal. In this paper we observed the influence of parameters of large-scale radio propagation models to improve the performance of mobile communications. The observation parameters for characterizing the performance of the specified mobile system are Drop Call, Radio Link Degradation Rate and Average Size of Active Set (AS). The simulated results show that the increase in altitude of Base Station (BS) Antenna and Mobile Station (MS) Antenna contributes to the improvement of signal power reception level so as to improve Radio Link quality and increase the average size of Active Set and reduce the average Drop Call rate. It was also found that Hata’s propagation model contributed significantly to improvements in system performance parameters compared to Okumura’s propagation model and Lee’s propagation model.

  20. Estimating Multi-Level Discrete-Time Hazard Models Using Cross-Sectional Data: Neighborhood Effects on the Onset of Adolescent Cigarette Use.

    ERIC Educational Resources Information Center

    Reardon, Sean F.; Brennan, Robert T.; Buka, Stephen L.

    2002-01-01

    Developed procedures for constructing a retrospective person-period data set from cross-sectional data and discusses modeling strategies for estimating multilevel discrete-time event history models. Applied the methods to the analysis of cigarette use by 1,979 urban adolescents. Results show the influence of the racial composition of the…

  1. The Motivational Determinants of Task Performance in a Non-Industrial Milieu: A Modification and Extension of Vroom's Model.

    ERIC Educational Resources Information Center

    Mendel, Raymond M.; Dickinson, Terry L.

    Vroom's cognitive model, which proposes to both explain and predict an individual's level of work productivity by drawing on the construct motivation, is discussed and three hypotheses generated: (1) that Vroom's model does predict performance in a non-industrial setting; (2) that it predicts self-perceived performance better than measures…

  2. Coastal aquifer management under parameter uncertainty: Ensemble surrogate modeling based simulation-optimization

    NASA Astrophysics Data System (ADS)

    Janardhanan, S.; Datta, B.

    2011-12-01

    Surrogate models are widely used to develop computationally efficient simulation-optimization models to solve complex groundwater management problems. Artificial intelligence based models are most often used for this purpose where they are trained using predictor-predictand data obtained from a numerical simulation model. Most often this is implemented with the assumption that the parameters and boundary conditions used in the numerical simulation model are perfectly known. However, in most practical situations these values are uncertain. Under these circumstances the application of such approximation surrogates becomes limited. In our study we develop a surrogate model based coupled simulation optimization methodology for determining optimal pumping strategies for coastal aquifers considering parameter uncertainty. An ensemble surrogate modeling approach is used along with multiple realization optimization. The methodology is used to solve a multi-objective coastal aquifer management problem considering two conflicting objectives. Hydraulic conductivity and the aquifer recharge are considered as uncertain values. Three dimensional coupled flow and transport simulation model FEMWATER is used to simulate the aquifer responses for a number of scenarios corresponding to Latin hypercube samples of pumping and uncertain parameters to generate input-output patterns for training the surrogate models. Non-parametric bootstrap sampling of this original data set is used to generate multiple data sets which belong to different regions in the multi-dimensional decision and parameter space. These data sets are used to train and test multiple surrogate models based on genetic programming. The ensemble of surrogate models is then linked to a multi-objective genetic algorithm to solve the pumping optimization problem. Two conflicting objectives, viz, maximizing total pumping from beneficial wells and minimizing the total pumping from barrier wells for hydraulic control of saltwater intrusion are considered. The salinity levels resulting at strategic locations due to these pumping are predicted using the ensemble surrogates and are constrained to be within pre-specified levels. Different realizations of the concentration values are obtained from the ensemble predictions corresponding to each candidate solution of pumping. Reliability concept is incorporated as the percent of the total number of surrogate models which satisfy the imposed constraints. The methodology was applied to a realistic coastal aquifer system in Burdekin delta area in Australia. It was found that all optimal solutions corresponding to a reliability level of 0.99 satisfy all the constraints and as reducing reliability level decreases the constraint violation increases. Thus ensemble surrogate model based simulation-optimization was found to be useful in deriving multi-objective optimal pumping strategies for coastal aquifers under parameter uncertainty.

  3. MODELING WATER QUALITY IN DRINKING WATER DISTRIBUTION SYSTEMS: SELECTED CASE STUDIES

    EPA Science Inventory

    The SDWA of 1974 and its' Amendments of 1986 require that the USEPA establish maximum contaminant level goals (MCLGs) for each contaminant which may have an adverse effect on the health of persons. Each goal must be set at a level at which no known or anticipated adverse effects ...

  4. Social Engagement, Attention and Competence of Preschoolers with Hearing Loss

    ERIC Educational Resources Information Center

    Brown, P. Margaret; Bortoli, Anna; Remine, Maria D.; Othman, Basyariatul

    2008-01-01

    The social engagement, social attention skills and social competence of 10 hearing preschoolers and 10 preschoolers with hearing loss were investigated during free play in inclusive oral kindergarten settings using a three-level hierarchical model. When comparing the types of opportunities, at the first level, the children with hearing loss…

  5. A simulation study on Bayesian Ridge regression models for several collinearity levels

    NASA Astrophysics Data System (ADS)

    Efendi, Achmad; Effrihan

    2017-12-01

    When analyzing data with multiple regression model if there are collinearities, then one or several predictor variables are usually omitted from the model. However, there sometimes some reasons, for instance medical or economic reasons, the predictors are all important and should be included in the model. Ridge regression model is not uncommon in some researches to use to cope with collinearity. Through this modeling, weights for predictor variables are used for estimating parameters. The next estimation process could follow the concept of likelihood. Furthermore, for the estimation nowadays the Bayesian version could be an alternative. This estimation method does not match likelihood one in terms of popularity due to some difficulties; computation and so forth. Nevertheless, with the growing improvement of computational methodology recently, this caveat should not at the moment become a problem. This paper discusses about simulation process for evaluating the characteristic of Bayesian Ridge regression parameter estimates. There are several simulation settings based on variety of collinearity levels and sample sizes. The results show that Bayesian method gives better performance for relatively small sample sizes, and for other settings the method does perform relatively similar to the likelihood method.

  6. Decentralization of CD4 testing in resource-limited settings: 7 years of experience in six African countries.

    PubMed

    Marinucci, F; Medina-Moreno, S; Paterniti, A D; Wattleworth, M; Redfield, R R

    2011-05-01

    Improving access to CD4 testing in resource-limited settings can be achieved through both centralized and decentralized testing networks. Decentralized testing models are more suitable for countries where the HIV epidemic affects a large portion of rural populations. Timely access to accurate CD4 results is crucial at the primary level of the health system. For the past 7 years, the Institute of Human Virology of the University of Maryland School of Medicine has implemented a flexible and sustainable three-phase model: (1) site assessment and improvement, (2) appropriate technology selection with capacity building through practical training and laboratory mentoring, and (3) quality management system strengthening and monitoring, to support accessibility to reliable CD4 counting at the point of service. CD4 testing capacity was established in 122 of 229 (53%) laboratories supported in Nigeria, Uganda, Kenya, Zambia, Tanzania, and Rwanda. Among those in rural settings, 46% (69/151) had CD4 testing available at site level, with a functioning flow cytometer installed at 28% (8/29) and 50% (61/122) of level 1 and level 2 sites, respectively. To strengthen local capacity, a total of 1,152 laboratory technicians were trained through 188 training sessions provided both on-site and at central locations. The overall quality of CD4 total testing procedure was assessed at 76% (92/121) of the laboratories, with 25% (23/92), 34% (31/92), and 33% (30/92) of them reporting excellent, good, and satisfactory performance. Balancing country-specific factors with the location of the clinic, number of patients, and the expected workload, was crucial in adapting this flexible model for decentralizing CD4 testing. The close collaboration with local governments and private vendors was key to successfully expanding access to CD4 testing within the framework of HIV care and treatment programs and for the sustainability of medical laboratories in resource-limited settings. Copyright © 2011 International Society for Advancement of Cytometry.

  7. A Novel Tool Improves Existing Estimates of Recent Tuberculosis Transmission in Settings of Sparse Data Collection.

    PubMed

    Kasaie, Parastu; Mathema, Barun; Kelton, W David; Azman, Andrew S; Pennington, Jeff; Dowdy, David W

    2015-01-01

    In any setting, a proportion of incident active tuberculosis (TB) reflects recent transmission ("recent transmission proportion"), whereas the remainder represents reactivation. Appropriately estimating the recent transmission proportion has important implications for local TB control, but existing approaches have known biases, especially where data are incomplete. We constructed a stochastic individual-based model of a TB epidemic and designed a set of simulations (derivation set) to develop two regression-based tools for estimating the recent transmission proportion from five inputs: underlying TB incidence, sampling coverage, study duration, clustered proportion of observed cases, and proportion of observed clusters in the sample. We tested these tools on a set of unrelated simulations (validation set), and compared their performance against that of the traditional 'n-1' approach. In the validation set, the regression tools reduced the absolute estimation bias (difference between estimated and true recent transmission proportion) in the 'n-1' technique by a median [interquartile range] of 60% [9%, 82%] and 69% [30%, 87%]. The bias in the 'n-1' model was highly sensitive to underlying levels of study coverage and duration, and substantially underestimated the recent transmission proportion in settings of incomplete data coverage. By contrast, the regression models' performance was more consistent across different epidemiological settings and study characteristics. We provide one of these regression models as a user-friendly, web-based tool. Novel tools can improve our ability to estimate the recent TB transmission proportion from data that are observable (or estimable) by public health practitioners with limited available molecular data.

  8. Search for high-mass resonances in dilepton final states in proton-proton collisions at $$\\sqrt{s}=$$ 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    A search is presented for new high-mass resonances decaying into electron or muon pairs. The search uses proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the CMS experiment at the LHC in 2016, corresponding to an integrated luminosity of 36 fbmore » $$^{-1}$$. Observations are in agreement with standard model expectations. Upper limits on the product of a new resonance production cross section and branching fraction to dileptons are calculated in a model-independent manner. This permits the interpretation of the limits in models predicting a narrow dielectron or dimuon resonance. A scan of different intrinsic width hypotheses is performed. Limits are set on the masses of various hypothetical particles. For the Z$$'_\\mathrm{SSM}$$ (Z$$'_{\\psi}$$) particle, which arises in the sequential standard model (superstring-inspired model), a lower mass limit of 4.50 (3.90) TeV is set at 95% confidence level. The lightest Kaluza-Klein graviton arising in the Randall-Sundrum model of extra dimensions, with coupling parameters $$k/\\overline{M}_\\mathrm{Pl}$$ of 0.01, 0.05, and 0.10, is excluded at 95% confidence level below 2.10 , 3.65 , and 4.25 TeV, respectively. In a simplified model of dark matter production via a vector or axial vector mediator, limits at 95% confidence level are obtained on the masses of the dark matter particle and its mediator.« less

  9. An efficient mass-preserving interface-correction level set/ghost fluid method for droplet suspensions under depletion forces

    NASA Astrophysics Data System (ADS)

    Ge, Zhouyang; Loiseau, Jean-Christophe; Tammisola, Outi; Brandt, Luca

    2018-01-01

    Aiming for the simulation of colloidal droplets in microfluidic devices, we present here a numerical method for two-fluid systems subject to surface tension and depletion forces among the suspended droplets. The algorithm is based on an efficient solver for the incompressible two-phase Navier-Stokes equations, and uses a mass-conserving level set method to capture the fluid interface. The four novel ingredients proposed here are, firstly, an interface-correction level set (ICLS) method; global mass conservation is achieved by performing an additional advection near the interface, with a correction velocity obtained by locally solving an algebraic equation, which is easy to implement in both 2D and 3D. Secondly, we report a second-order accurate geometric estimation of the curvature at the interface and, thirdly, the combination of the ghost fluid method with the fast pressure-correction approach enabling an accurate and fast computation even for large density contrasts. Finally, we derive a hydrodynamic model for the interaction forces induced by depletion of surfactant micelles and combine it with a multiple level set approach to study short-range interactions among droplets in the presence of attracting forces.

  10. Supporting nurse practitioners' practice in primary healthcare settings: a three-level qualitative model.

    PubMed

    Chouinard, Véronique; Contandriopoulos, Damien; Perroux, Mélanie; Larouche, Catherine

    2017-06-26

    While greater reliance on nurse practitioners in primary healthcare settings can improve service efficiency and accessibility, their integration is not straightforward, challenging existing role definitions of both registered nurses and physicians. Developing adequate support practices is therefore essential in primary healthcare nurse practitioners' integration. This study's main objective is to examine different structures and mechanisms put in place to support the development of primary healthcare nurse practitioner's practice in different healthcare settings, and develop a practical model for identifying and planning adequate support practices. This study is part of a larger multicentre study on primary healthcare nurse practitioners in the province of Quebec, Canada. It focuses on three healthcare settings into which one or more primary healthcare nurse practitioners have been integrated. Case studies have been selected to cover a maximum of variations in terms of location, organizational setting, and stages of primary healthcare nurse practitioner integration. Findings are based on the analysis of available documentation in each primary healthcare setting and on semi-structured interviews with key actors in each clinical team. Data were analyzed following thematic and cross-sectional analysis approaches. This article identifies three types of support practices: clinical, team, and systemic. This three-level analysis demonstrates that, on the ground, primary healthcare nurse practitioner integration is essentially a team-based, multilevel endeavour. Despite the existence of a provincial implementation plan, the three settings adopted very different implementation structures and practices, and different actors were involved at each of the three levels. The results also indicated that nursing departments played a decisive role at all three levels. Based on these findings, we suggest that support practices should be adapted to each organization's environment and experience and be modified as needed throughout the integration process. We also stress the importance of combining this approach with a strong coordination mechanism involving managers who have in-depth understanding of nursing professional roles and scopes of practice. Making primary healthcare nurse practitioner integration frameworks more flexible and clarifying and strengthening the role of senior nursing managers could be the key to successful integration.

  11. The impact of the board's strategy-setting role on board-management relations and hospital performance.

    PubMed

    Büchner, Vera Antonia; Schreyögg, Jonas; Schultz, Carsten

    2014-01-01

    The appropriate governance of hospitals largely depends on effective cooperation between governing boards and hospital management. Governing boards play an important role in strategy-setting as part of their support for hospital management. However, in certain situations, this active strategic role may also generate discord within this relationship. The objective of this study is to investigate the impact of the roles, attributes, and processes of governing boards on hospital performance. We examine the impact of the governing board's strategy-setting role on board-management collaboration quality and on financial performance while also analyzing the interaction effects of board diversity and board activity level. The data are derived from a survey that was sent simultaneously to German hospitals and their associated governing board, combined with objective performance information from annual financial statements and quality reports. We use a structural equation modeling approach to test the model. The results indicate that different board characteristics have a significant impact on hospital performance (R = .37). The strategy-setting role and board-management collaboration quality have a positive effect on hospital performance, whereas the impact of strategy-setting on collaboration quality is negative. We find that the positive effect of strategy-setting on performance increases with decreasing board diversity. When board members have more homogeneous backgrounds and exhibit higher board activity levels, the negative effect of the strategy-setting on collaboration quality also increases. Active strategy-setting by a governing board may generally improve hospital performance. Diverse members of governing boards should be involved in strategy-setting for hospitals. However, high board-management collaboration quality may be compromised if managerial autonomy is too highly restricted. Consequently, hospitals should support board-management collaboration about empowered contrasting board roles.

  12. Semantic enrichment of clinical models towards semantic interoperability. The heart failure summary use case.

    PubMed

    Martínez-Costa, Catalina; Cornet, Ronald; Karlsson, Daniel; Schulz, Stefan; Kalra, Dipak

    2015-05-01

    To improve semantic interoperability of electronic health records (EHRs) by ontology-based mediation across syntactically heterogeneous representations of the same or similar clinical information. Our approach is based on a semantic layer that consists of: (1) a set of ontologies supported by (2) a set of semantic patterns. The first aspect of the semantic layer helps standardize the clinical information modeling task and the second shields modelers from the complexity of ontology modeling. We applied this approach to heterogeneous representations of an excerpt of a heart failure summary. Using a set of finite top-level patterns to derive semantic patterns, we demonstrate that those patterns, or compositions thereof, can be used to represent information from clinical models. Homogeneous querying of the same or similar information, when represented according to heterogeneous clinical models, is feasible. Our approach focuses on the meaning embedded in EHRs, regardless of their structure. This complex task requires a clear ontological commitment (ie, agreement to consistently use the shared vocabulary within some context), together with formalization rules. These requirements are supported by semantic patterns. Other potential uses of this approach, such as clinical models validation, require further investigation. We show how an ontology-based representation of a clinical summary, guided by semantic patterns, allows homogeneous querying of heterogeneous information structures. Whether there are a finite number of top-level patterns is an open question. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Assessment of EGM2008 in Europe using accurate astrogeodetic vertical deflections and omission error estimates from SRTM/DTM2006.0 residual terrain model data

    NASA Astrophysics Data System (ADS)

    Hirt, C.; Marti, U.; Bürki, B.; Featherstone, W. E.

    2010-10-01

    We assess the new EGM2008 Earth gravitational model using a set of 1056 astrogeodetic vertical deflections over parts of continental Europe. Our astrogeodetic vertical deflection data set originates from zenith camera observations performed during 1983-2008. This set, which is completely independent from EGM2008, covers, e.g., Switzerland, Germany, Portugal and Greece, and samples a variety of topography - level terrain, medium elevated and rugged Alpine areas. We describe how EGM2008 is used to compute vertical deflections according to Helmert's (surface) definition. Particular attention is paid to estimating the EGM2008 signal omission error from residual terrain model (RTM) data. The RTM data is obtained from the Shuttle Radar Topography Mission (SRTM) elevation model and the DTM2006.0 high degree spherical harmonic reference surface. The comparisons between the astrogeodetic and EGM2008 vertical deflections show an agreement of about 3 arc seconds (root mean square, RMS). Adding omission error estimates from RTM to EGM2008 significantly reduces the discrepancies from the complete European set of astrogeodetic deflections to 1 arc second (RMS). Depending on the region, the RMS errors vary between 0.4 and 1.5 arc seconds. These values not only reflect EGM2008 commission errors, but also short-scale mass-density anomalies not modelled from the RTM data. Given (1) formally stated EGM2008 commission error estimates of about 0.6-0.8 arc seconds for vertical deflections, and (2) that short-scale mass-density anomalies may affect vertical deflections by about 1 arc second, the agreement between EGM2008 and our astrogeodetic deflection data set is very good. Further focus is placed on the investigation of the high-degree spectral bands of EGM2008. As a general conclusion, EGM2008 - enhanced by RTM data - is capable of predicting Helmert vertical deflections at the 1 arc second accuracy level over Europe.

  14. Predictive model for CO2 generation and decay in building envelopes

    NASA Astrophysics Data System (ADS)

    Aglan, Heshmat A.

    2003-01-01

    Understanding carbon dioxide generation and decay patterns in buildings with high occupancy levels is useful to identify their indoor air quality, air change rates, percent fresh air makeup, occupancy pattern, and how a variable air volume system to off-set undesirable CO2 level can be modulated. A mathematical model governing the generation and decay of CO2 in building envelopes with forced ventilation due to high occupancy is developed. The model has been verified experimentally in a newly constructed energy efficient healthy house. It was shown that the model accurately predicts the CO2 concentration at any time during the generation and decay processes.

  15. Summary of the searches for squarks and gluinos using √s = 8 TeV pp collisions with the ATLAS experiment at the LHC

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2015-10-08

    A summary is presented of ATLAS searches for gluinos and first- and second-generation squarks in final states containing jets and missing transverse momentum, with or without leptons or b-jets, in the √s = 8 TeV data set collected at the Large Hadron Collider in 2012. This paper reports the results of new interpretations and statistical combinations of previously published analyses, as well as a new analysis. Since no significant excess of events over the Standard Model expectation is observed, the data are used to set limits in a variety of models. In all the considered simplified models that assume R-paritymore » conservation, the limit on the gluino mass exceeds 1150 GeV at 95% confidence level, for an LSP mass smaller than 100 GeV. Moreover, exclusion limits are set for left-handed squarks in a phenomenological MSSM model, a minimal Supergravity/Constrained MSSM model, R-parity-violation scenarios, a minimal gauge-mediated supersymmetry breaking model, a natural gauge mediation model, a non-universal Higgs mass model with gaugino mediation and a minimal model of universal extra dimensions.« less

  16. County-level poverty is equally associated with unmet health care needs in rural and urban settings.

    PubMed

    Peterson, Lars E; Litaker, David G

    2010-01-01

    Regional poverty is associated with reduced access to health care. Whether this relationship is equally strong in both rural and urban settings or is affected by the contextual and individual-level characteristics that distinguish these areas, is unclear. Compare the association between regional poverty with self-reported unmet need, a marker of health care access, by rural/urban setting. Multilevel, cross-sectional analysis of a state-representative sample of 39,953 adults stratified by rural/urban status, linked at the county level to data describing contextual characteristics. Weighted random intercept models examined the independent association of regional poverty with unmet needs, controlling for a range of contextual and individual-level characteristics. The unadjusted association between regional poverty levels and unmet needs was similar in both rural (OR = 1.06 [95% CI, 1.04-1.08]) and urban (OR = 1.03 [1.02-1.05]) settings. Adjusting for other contextual characteristics increased the size of the association in both rural (OR = 1.11 [1.04-1.19]) and urban (OR = 1.11 [1.05-1.18]) settings. Further adjustment for individual characteristics had little additional effect in rural (OR = 1.10 [1.00-1.20]) or urban (OR = 1.11 [1.01-1.22]) settings. To better meet the health care needs of all Americans, health care systems in areas with high regional poverty should acknowledge the relationship between poverty and unmet health care needs. Investments, or other interventions, that reduce regional poverty may be useful strategies for improving health through better access to health care. © 2010 National Rural Health Association.

  17. Occupancy in community-level studies

    USGS Publications Warehouse

    MacKenzie, Darryl I.; Nichols, James; Royle, Andy; Pollock, Kenneth H.; Bailey, Larissa L.; Hines, James

    2018-01-01

    Another type of multi-species studies, are those focused on community-level metrics such as species richness. In this chapter we detail how some of the single-species occupancy models described in earlier chapters have been applied, or extended, for use in such studies, while accounting for imperfect detection. We highlight how Bayesian methods using MCMC are particularly useful in such settings to easily calculate relevant community-level summaries based on presence/absence data. These modeling approaches can be used to assess richness at a single point in time, or to investigate changes in the species pool over time.

  18. Building an ACT-R Reader for Eye-Tracking Corpus Data.

    PubMed

    Dotlačil, Jakub

    2018-01-01

    Cognitive architectures have often been applied to data from individual experiments. In this paper, I develop an ACT-R reader that can model a much larger set of data, eye-tracking corpus data. It is shown that the resulting model has a good fit to the data for the considered low-level processes. Unlike previous related works (most prominently, Engelmann, Vasishth, Engbert & Kliegl, ), the model achieves the fit by estimating free parameters of ACT-R using Bayesian estimation and Markov-Chain Monte Carlo (MCMC) techniques, rather than by relying on the mix of manual selection + default values. The method used in the paper is generalizable beyond this particular model and data set and could be used on other ACT-R models. Copyright © 2017 Cognitive Science Society, Inc.

  19. Probe-level linear model fitting and mixture modeling results in high accuracy detection of differential gene expression.

    PubMed

    Lemieux, Sébastien

    2006-08-25

    The identification of differentially expressed genes (DEGs) from Affymetrix GeneChips arrays is currently done by first computing expression levels from the low-level probe intensities, then deriving significance by comparing these expression levels between conditions. The proposed PL-LM (Probe-Level Linear Model) method implements a linear model applied on the probe-level data to directly estimate the treatment effect. A finite mixture of Gaussian components is then used to identify DEGs using the coefficients estimated by the linear model. This approach can readily be applied to experimental design with or without replication. On a wholly defined dataset, the PL-LM method was able to identify 75% of the differentially expressed genes within 10% of false positives. This accuracy was achieved both using the three replicates per conditions available in the dataset and using only one replicate per condition. The method achieves, on this dataset, a higher accuracy than the best set of tools identified by the authors of the dataset, and does so using only one replicate per condition.

  20. Development of a Trip Energy Estimation Model Using Real-World Global Positioning System Driving Data: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, Jacob; Wood, Eric W; Zhu, Lei

    A data-driven technique for estimation of energy requirements for a proposed vehicle trip has been developed. Based on over 700,000 miles of driving data, the technique has been applied to generate a model that estimates trip energy requirements. The model uses a novel binning approach to categorize driving by road type, traffic conditions, and driving profile. The trip-level energy estimations can easily be aggregated to any higher-level transportation system network desired. The model has been tested and validated on the Austin, Texas, data set used to build this model. Ground-truth energy consumption for the data set was obtained from Futuremore » Automotive Systems Technology Simulator (FASTSim) vehicle simulation results. The energy estimation model has demonstrated 12.1 percent normalized total absolute error. The energy estimation from the model can be used to inform control strategies in routing tools, such as change in departure time, alternate routing, and alternate destinations, to reduce energy consumption. The model can also be used to determine more accurate energy consumption of regional or national transportation networks if trip origin and destinations are known. Additionally, this method allows the estimation tool to be tuned to a specific driver or vehicle type.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arion is a library and tool set that enables researchers to holistically define test system models. To define a complex system for testing an algorithm or control requires expertise across multiple domains. Simulating a complex system requires the integration of multiple simulators and test hardware, each with their own specification languages and concepts. This requires extensive set of knowledge and capabilities. Arion was developed to alleviate this challenge. Arion is a library of Java libraries that abstracts the concepts from supported simulators into a cohesive model language that allows someone to build models to their needed level of fidelity andmore » expertise. Arion is also a software tool that translates the users model back into the specification languages of the simulators and test hardware needed for execution.« less

  2. Land Use Change on Household Farms in the Ecuadorian Amazon: Design and Implementation of an Agent-Based Model.

    PubMed

    Mena, Carlos F; Walsh, Stephen J; Frizzelle, Brian G; Xiaozheng, Yao; Malanson, George P

    2011-01-01

    This paper describes the design and implementation of an Agent-Based Model (ABM) used to simulate land use change on household farms in the Northern Ecuadorian Amazon (NEA). The ABM simulates decision-making processes at the household level that is examined through a longitudinal, socio-economic and demographic survey that was conducted in 1990 and 1999. Geographic Information Systems (GIS) are used to establish spatial relationships between farms and their environment, while classified Landsat Thematic Mapper (TM) imagery is used to set initial land use/land cover conditions for the spatial simulation, assess from-to land use/land cover change patterns, and describe trajectories of land use change at the farm and landscape levels. Results from prior studies in the NEA provide insights into the key social and ecological variables, describe human behavioral functions, and examine population-environment interactions that are linked to deforestation and agricultural extensification, population migration, and demographic change. Within the architecture of the model, agents are classified as active or passive. The model comprises four modules, i.e., initialization, demography, agriculture, and migration that operate individually, but are linked through key household processes. The main outputs of the model include a spatially-explicit representation of the land use/land cover on survey and non-survey farms and at the landscape level for each annual time-step, as well as simulated socio-economic and demographic characteristics of households and communities. The work describes the design and implementation of the model and how population-environment interactions can be addressed in a frontier setting. The paper contributes to land change science by examining important pattern-process relations, advocating a spatial modeling approach that is capable of synthesizing fundamental relationships at the farm level, and links people and environment in complex ways.

  3. Model potentials for main group elements Li through Rn

    NASA Astrophysics Data System (ADS)

    Sakai, Yoshiko; Miyoshi, Eisaku; Klobukowski, Mariusz; Huzinaga, Sigeru

    1997-05-01

    Model potential (MP) parameters and valence basis sets were systematically determined for the main group elements Li through Rn. For alkali and alkaline-earth metal atoms, the outermost core (n-1)p electrons were treated explicitly together with the ns valence electrons. For the remaining atoms, only the valence ns and np electrons were treated explicitly. The major relativistic effects at the level of Cowan and Griffin's quasi-relativistic Hartree-Fock method (QRHF) were incorporated in the MPs for all atoms heavier than Kr. The valence orbitals thus obtained have inner nodal structure. The reliability of the MP method was tested in calculations for X-, X, and X+ (X=Br, I, and At) at the SCF level and the results were compared with the corresponding values given by the numerical HF (or QRHF) calculations. Calculations that include electron correlation were done for X-, X, and X+ (X=Cl and Br) at the SDCI level and for As2 at the CASSCF and MRSDCI levels. These results were compared with those of all-electron (AE) calculations using the well-tempered basis sets. Close agreement between the MP and AE results was obtained at all levels of the treatment.

  4. Trophic signatures of seabirds suggest shifts in oceanic ecosystems.

    PubMed

    Gagne, Tyler O; Hyrenbach, K David; Hagemann, Molly E; Van Houtan, Kyle S

    2018-02-01

    Pelagic ecosystems are dynamic ocean regions whose immense natural capital is affected by climate change, pollution, and commercial fisheries. Trophic level-based indicators derived from fishery catch data may reveal the food web status of these systems, but the utility of these metrics has been debated because of targeting bias in fisheries catch. We analyze a unique, fishery-independent data set of North Pacific seabird tissues to inform ecosystem trends over 13 decades (1890s to 2010s). Trophic position declined broadly in five of eight species sampled, indicating a long-term shift from higher-trophic level to lower-trophic level prey. No species increased their trophic position. Given species prey preferences, Bayesian diet reconstructions suggest a shift from fishes to squids, a result consistent with both catch reports and ecosystem models. Machine learning models further reveal that trophic position trends have a complex set of drivers including climate, commercial fisheries, and ecomorphology. Our results show that multiple species of fish-consuming seabirds may track the complex changes occurring in marine ecosystems.

  5. The Role of Type and Source of Uncertainty on the Processing of Climate Models Projections.

    PubMed

    Benjamin, Daniel M; Budescu, David V

    2018-01-01

    Scientists agree that the climate is changing due to human activities, but there is less agreement about the specific consequences and their timeline. Disagreement among climate projections is attributable to the complexity of climate models that differ in their structure, parameters, initial conditions, etc. We examine how different sources of uncertainty affect people's interpretation of, and reaction to, information about climate change by presenting participants forecasts from multiple experts. Participants viewed three types of sets of sea-level rise projections: (1) precise, but conflicting ; (2) imprecise , but agreeing, and (3) hybrid that were both conflicting and imprecise. They estimated the most likely sea-level rise, provided a range of possible values and rated the sets on several features - ambiguity, credibility, completeness, etc. In Study 1, everyone saw the same hybrid set. We found that participants were sensitive to uncertainty between sources, but not to uncertainty about which model was used. The impacts of conflict and imprecision were combined for estimation tasks and compromised for feature ratings . Estimates were closer to the experts' original projections, and sets were rated more favorably under imprecision. Estimates were least consistent with (narrower than) the experts in the hybrid condition, but participants rated the conflicting set least favorably. In Study 2, we investigated the hybrid case in more detail by creating several distinct interval sets that combine conflict and imprecision. Two factors drive perceptual differences: overlap - the structure of the forecast set (whether intersecting, nested, tangent, or disjoint) - and a symmetry - the balance of the set. Estimates were primarily driven by asymmetry, and preferences were primarily driven by overlap. Asymmetric sets were least consistent with the experts: estimated ranges were narrower, and estimates of the most likely value were shifted further below the set mean. Intersecting and nested sets were rated similarly to imprecision, and ratings of disjoint and tangent sets were rated like conflict. Our goal was to determine which underlying factors of information sets drive perceptions of uncertainty in consistent, predictable ways. The two studies lead us to conclude that perceptions of agreement require intersection and balance, and overly precise forecasts lead to greater perceptions of disagreement and a greater likelihood of the public discrediting and misinterpreting information.

  6. The Role of Type and Source of Uncertainty on the Processing of Climate Models Projections

    PubMed Central

    Benjamin, Daniel M.; Budescu, David V.

    2018-01-01

    Scientists agree that the climate is changing due to human activities, but there is less agreement about the specific consequences and their timeline. Disagreement among climate projections is attributable to the complexity of climate models that differ in their structure, parameters, initial conditions, etc. We examine how different sources of uncertainty affect people’s interpretation of, and reaction to, information about climate change by presenting participants forecasts from multiple experts. Participants viewed three types of sets of sea-level rise projections: (1) precise, but conflicting; (2) imprecise, but agreeing, and (3) hybrid that were both conflicting and imprecise. They estimated the most likely sea-level rise, provided a range of possible values and rated the sets on several features – ambiguity, credibility, completeness, etc. In Study 1, everyone saw the same hybrid set. We found that participants were sensitive to uncertainty between sources, but not to uncertainty about which model was used. The impacts of conflict and imprecision were combined for estimation tasks and compromised for feature ratings. Estimates were closer to the experts’ original projections, and sets were rated more favorably under imprecision. Estimates were least consistent with (narrower than) the experts in the hybrid condition, but participants rated the conflicting set least favorably. In Study 2, we investigated the hybrid case in more detail by creating several distinct interval sets that combine conflict and imprecision. Two factors drive perceptual differences: overlap – the structure of the forecast set (whether intersecting, nested, tangent, or disjoint) – and asymmetry – the balance of the set. Estimates were primarily driven by asymmetry, and preferences were primarily driven by overlap. Asymmetric sets were least consistent with the experts: estimated ranges were narrower, and estimates of the most likely value were shifted further below the set mean. Intersecting and nested sets were rated similarly to imprecision, and ratings of disjoint and tangent sets were rated like conflict. Our goal was to determine which underlying factors of information sets drive perceptions of uncertainty in consistent, predictable ways. The two studies lead us to conclude that perceptions of agreement require intersection and balance, and overly precise forecasts lead to greater perceptions of disagreement and a greater likelihood of the public discrediting and misinterpreting information. PMID:29636717

  7. e-Dairy: a dynamic and stochastic whole-farm model that predicts biophysical and economic performance of grazing dairy systems.

    PubMed

    Baudracco, J; Lopez-Villalobos, N; Holmes, C W; Comeron, E A; Macdonald, K A; Barry, T N

    2013-05-01

    A whole-farm, stochastic and dynamic simulation model was developed to predict biophysical and economic performance of grazing dairy systems. Several whole-farm models simulate grazing dairy systems, but most of them work at a herd level. This model, named e-Dairy, differs from the few models that work at an animal level, because it allows stochastic behaviour of the genetic merit of individual cows for several traits, namely, yields of milk, fat and protein, live weight (LW) and body condition score (BCS) within a whole-farm model. This model accounts for genetic differences between cows, is sensitive to genotype × environment interactions at an animal level and allows pasture growth, milk and supplements price to behave stochastically. The model includes an energy-based animal module that predicts intake at grazing, mammary gland functioning and body lipid change. This whole-farm model simulates a 365-day period for individual cows within a herd, with cow parameters randomly generated on the basis of the mean parameter values, defined as input and variance and co-variances from experimental data sets. The main inputs of e-Dairy are farm area, use of land, type of pasture, type of crops, monthly pasture growth rate, supplements offered, nutritional quality of feeds, herd description including herd size, age structure, calving pattern, BCS and LW at calving, probabilities of pregnancy, average genetic merit and economic values for items of income and costs. The model allows to set management policies to define: dry-off cows (ceasing of lactation), target pre- and post-grazing herbage mass and feed supplementation. The main outputs are herbage dry matter intake, annual pasture utilisation, milk yield, changes in BCS and LW, economic farm profit and return on assets. The model showed satisfactory accuracy of prediction when validated against two data sets from farmlet system experiments. Relative prediction errors were <10% for all variables, and concordance correlation coefficients over 0.80 for annual pasture utilisation, yields of milk and milk solids (MS; fat plus protein), and of 0.69 and 0.48 for LW and BCS, respectively. A simulation of two contrasting dairy systems is presented to show the practical use of the model. The model can be used to explore the effects of feeding level and genetic merit and their interactions for grazing dairy systems, evaluating the trade-offs between profit and the associated risk.

  8. Modelling habitat associations with fingernail clam (Family: Sphaeriidae) counts at multiple spatial scales using hierarchical count models

    USGS Publications Warehouse

    Gray, B.R.; Haro, R.J.; Rogala, J.T.; Sauer, J.S.

    2005-01-01

    1. Macroinvertebrate count data often exhibit nested or hierarchical structure. Examples include multiple measurements along each of a set of streams, and multiple synoptic measurements from each of a set of ponds. With data exhibiting hierarchical structure, outcomes at both sampling (e.g. Within stream) and aggregated (e.g. Stream) scales are often of interest. Unfortunately, methods for modelling hierarchical count data have received little attention in the ecological literature. 2. We demonstrate the use of hierarchical count models using fingernail clam (Family: Sphaeriidae) count data and habitat predictors derived from sampling and aggregated spatial scales. The sampling scale corresponded to that of a standard Ponar grab (0.052 m(2)) and the aggregated scale to impounded and backwater regions within 38-197 km reaches of the Upper Mississippi River. Impounded and backwater regions were resampled annually for 10 years. Consequently, measurements on clams were nested within years. Counts were treated as negative binomial random variates, and means from each resampling event as random departures from the impounded and backwater region grand means. 3. Clam models were improved by the addition of covariates that varied at both the sampling and regional scales. Substrate composition varied at the sampling scale and was associated with model improvements, and reductions (for a given mean) in variance at the sampling scale. Inorganic suspended solids (ISS) levels, measured in the summer preceding sampling, also yielded model improvements and were associated with reductions in variances at the regional rather than sampling scales. ISS levels were negatively associated with mean clam counts. 4. Hierarchical models allow hierarchically structured data to be modelled without ignoring information specific to levels of the hierarchy. In addition, information at each hierarchical level may be modelled as functions of covariates that themselves vary by and within levels. As a result, hierarchical models provide researchers and resource managers with a method for modelling hierarchical data that explicitly recognises both the sampling design and the information contained in the corresponding data.

  9. Comparative Benchmark Dose Modeling as a Tool to Make the First Estimate of Safe Human Exposure Levels to Lunar Dust

    NASA Technical Reports Server (NTRS)

    James, John T.; Lam, Chiu-wing; Scully, Robert R.

    2013-01-01

    Brief exposures of Apollo Astronauts to lunar dust occasionally elicited upper respiratory irritation; however, no limits were ever set for prolonged exposure ot lunar dust. Habitats for exploration, whether mobile of fixed must be designed to limit human exposure to lunar dust to safe levels. We have used a new technique we call Comparative Benchmark Dose Modeling to estimate safe exposure limits for lunar dust collected during the Apollo 14 mission.

  10. Goal setting with mothers in child development services.

    PubMed

    Forsingdal, S; St John, W; Miller, V; Harvey, A; Wearne, P

    2014-07-01

    The aim of this grounded theory study was to explore mothers' perspectives of the processes of collaborative goal setting in multidisciplinary child development services involving follow-up home therapy. Semi-structured interviews were conducted in South East Queensland, Australia with 14 mothers of children aged 3-6 years who were accessing multidisciplinary child development services. Interviews were focussed around the process of goal setting. A grounded theory of Maternal Roles in Goal Setting (The M-RIGS Model) was developed from analysis of data. Mothers assumed Dependent, Active Participator and Collaborator roles when engaging with the therapist in goal-setting processes. These roles were characterized by the mother's level of dependence on the therapist and insight into their child's needs and therapy processes. Goal Factors, Parent Factors and Therapist Factors influenced and added complexity to the goal-setting process. The M-RIGS Model highlights that mothers take on a range of roles in the goal-setting process. Although family-centred practice encourages negotiation and collaborative goal setting, parents may not always be ready to take on highly collaborative roles. Better understanding of parent roles, goal-setting processes and influencing factors will inform better engagement with families accessing multidisciplinary child development services. © 2013 John Wiley & Sons Ltd.

  11. Forecasting the impact of storm waves and sea-level rise on Midway Atoll and Laysan Island within the Papahānaumokuākea Marine National Monument—a comparison of passive versus dynamic inundation models

    USGS Publications Warehouse

    Storlazzi, Curt D.; Berkowitz, Paul; Reynolds, Michelle H.; Logan, Joshua B.

    2013-01-01

    Two inundation events in 2011 underscored the potential for elevated water levels to damage infrastructure and affect terrestrial ecosystems on the low-lying Northwestern Hawaiian Islands in the Papahānaumokuākea Marine National Monument. The goal of this study was to compare passive "bathtub" inundation models based on geographic information systems (GIS) to those that include dynamic water levels caused by wave-induced set-up and run-up for two end-member island morphologies: Midway, a classic atoll with islands on the shallow (2-8 m) atoll rim and a deep, central lagoon; and Laysan, which is characterized by a deep (20-30 m) atoll rim and an island at the center of the atoll. Vulnerability to elevated water levels was assessed using hindcast wind and wave data to drive coupled physics-based numerical wave, current, and water-level models for the atolls. The resulting model data were then used to compute run-up elevations using a parametric run-up equation under both present conditions and future sea-level-rise scenarios. In both geomorphologies, wave heights and wavelengths adjacent to the island shorelines increased more than three times and four times, respectively, with increasing values of sea-level rise, as more deep-water wave energy could propagate over the atoll rim and larger wind-driven waves could develop on the atoll. Although these increases in water depth resulted in decreased set-up along the islands’ shorelines, the larger wave heights and longer wavelengths due to sea-level rise increased the resulting wave-induced run-up. Run-up values were spatially heterogeneous and dependent on the direction of incident wave direction, bathymetry, and island configuration. Island inundation was modeled to increase substantially when wave-driven effects were included, suggesting that inundation and impacts to infrastructure and terrestrial habitats will occur at lower values of predicted sea-level rise, and thus sooner in the 21st century, than suggested by passive GIS-based "bathtub" inundation models. Lastly, observations and the modeling results suggest that classic atolls with islands on a shallow atoll rim are more susceptible to the combined effects of sea-level rise and wave-driven inundation than atolls characterized by a deep atoll rim.

  12. Development of an interprofessional competency model for healthcare leadership.

    PubMed

    Calhoun, Judith G; Dollett, Lorayne; Sinioris, Marie E; Wainio, Joyce Anne; Butler, Peter W; Griffith, John R; Warden, Gail L

    2008-01-01

    During the past decade, there has been a growing interest in competency-based performance systems for enhancing both individual and organizational performance in health professions education and the varied healthcare industry sectors. In 2003, the Institute of Medicine's report Health Professions Education: A Bridge to Quality called for a core set of competencies across the professions to ultimately improve the quality of healthcare in the United States. This article reviews the processes and outcomes associated with the development of the Health Leadership Competency Model (HLCM), an evidence-based and behaviorally focused approach for evaluating leadership skills across the professions, including health management, medicine, and nursing, and across career stages. The HLCM was developed from extensive academic research and widespread application outside healthcare. Early development included behavioral event interviewing, psychometric analysis, and cross-industry sector benchmarking. Application to healthcare was supported by additional literature review, practice analysis, expert panel inputs, and pilot-testing surveys. The model addresses three overarching domains subsuming 26 behavioral and technical competencies. Each competency is composed of prescriptive behavioral indicators, or levels, for development and assessment as individuals progress through their careers from entry-level to mid-level and advanced stages of lifelong development. The model supports identification of opportunities for leadership improvement in both academic and practice settings.

  13. Performability evaluation of the SIFT computer

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.; Furchtgott, D. G.; Wu, L. T.

    1979-01-01

    Performability modeling and evaluation techniques are applied to the SIFT computer as it might operate in the computational evironment of an air transport mission. User-visible performance of the total system (SIFT plus its environment) is modeled as a random variable taking values in a set of levels of accomplishment. These levels are defined in terms of four attributes of total system behavior: safety, no change in mission profile, no operational penalties, and no economic process whose states describe the internal structure of SIFT as well as relavant conditions of the environment. Base model state trajectories are related to accomplishment levels via a capability function which is formulated in terms of a 3-level model hierarchy. Performability evaluation algorithms are then applied to determine the performability of the total system for various choices of computer and environment parameter values. Numerical results of those evaluations are presented and, in conclusion, some implications of this effort are discussed.

  14. Redesign of a Variable-Gain Output Feedback Longitudinal Controller Flown on the High-Alpha Research Vehicle (HARV)

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.

    1998-01-01

    This paper describes a redesigned longitudinal controller that flew on the High-Alpha Research Vehicle (HARV) during calendar years (CY) 1995 and 1996. Linear models are developed for both the modified controller and a baseline controller that was flown in CY 1994. The modified controller was developed with three gain sets for flight evaluation, and several linear analysis results are shown comparing the gain sets. A Neal-Smith flying qualities analysis shows that performance for the low- and medium-gain sets is near the level 1 boundary, depending upon the bandwidth assumed, whereas the high-gain set indicates a sensitivity problem. A newly developed high-alpha Bode envelope criterion indicates that the control system gains may be slightly high, even for the low-gain set. A large motion-base simulator in the United Kingdom was used to evaluate the various controllers. Desired performance, which appeared to be satisfactory for flight, was generally met with both the low- and medium-gain sets. Both the high-gain set and the baseline controller were very sensitive, and it was easy to generate pilot-induced oscillation (PIO) in some of the target-tracking maneuvers. Flight target-tracking results varied from level 1 to level 3 and from no sensitivity to PIO. These results were related to pilot technique and whether actuator rate saturation was encountered.

  15. Generation of topographic terrain models utilizing synthetic aperture radar and surface level data

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L. (Inventor)

    1991-01-01

    Topographical terrain models are generated by digitally delineating the boundary of the region under investigation from the data obtained from an airborne synthetic aperture radar image and surface elevation data concurrently acquired either from an airborne instrument or at ground level. A set of coregistered boundary maps thus generated are then digitally combined in three dimensional space with the acquired surface elevation data by means of image processing software stored in a digital computer. The method is particularly applicable for generating terrain models of flooded regions covered entirely or in part by foliage.

  16. AIR Model Preflight Analysis

    NASA Technical Reports Server (NTRS)

    Tai, H.; Wilson, J. W.; Maiden, D. L.

    2003-01-01

    The atmospheric ionizing radiation (AIR) ER-2 preflight analysis, one of the first attempts to obtain a relatively complete measurement set of the high-altitude radiation level environment, is described in this paper. The primary thrust is to characterize the atmospheric radiation and to define dose levels at high-altitude flight. A secondary thrust is to develop and validate dosimetric techniques and monitoring devices for protecting aircrews. With a few chosen routes, we can measure the experimental results and validate the AIR model predictions. Eventually, as more measurements are made, we gain more understanding about the hazardous radiation environment and acquire more confidence in the prediction models.

  17. Model fit evaluation in multilevel structural equation models

    PubMed Central

    Ryu, Ehri

    2014-01-01

    Assessing goodness of model fit is one of the key questions in structural equation modeling (SEM). Goodness of fit is the extent to which the hypothesized model reproduces the multivariate structure underlying the set of variables. During the earlier development of multilevel structural equation models, the “standard” approach was to evaluate the goodness of fit for the entire model across all levels simultaneously. The model fit statistics produced by the standard approach have a potential problem in detecting lack of fit in the higher-level model for which the effective sample size is much smaller. Also when the standard approach results in poor model fit, it is not clear at which level the model does not fit well. This article reviews two alternative approaches that have been proposed to overcome the limitations of the standard approach. One is a two-step procedure which first produces estimates of saturated covariance matrices at each level and then performs single-level analysis at each level with the estimated covariance matrices as input (Yuan and Bentler, 2007). The other level-specific approach utilizes partially saturated models to obtain test statistics and fit indices for each level separately (Ryu and West, 2009). Simulation studies (e.g., Yuan and Bentler, 2007; Ryu and West, 2009) have consistently shown that both alternative approaches performed well in detecting lack of fit at any level, whereas the standard approach failed to detect lack of fit at the higher level. It is recommended that the alternative approaches are used to assess the model fit in multilevel structural equation model. Advantages and disadvantages of the two alternative approaches are discussed. The alternative approaches are demonstrated in an empirical example. PMID:24550882

  18. Convoys of care: Theorizing intersections of formal and informal care

    PubMed Central

    Kemp, Candace L.; Ball, Mary M.; Perkins, Molly M.

    2013-01-01

    Although most care to frail elders is provided informally, much of this care is paired with formal care services. Yet, common approaches to conceptualizing the formal–informal intersection often are static, do not consider self-care, and typically do not account for multi-level influences. In response, we introduce the “convoy of care” model as an alternative way to conceptualize the intersection and to theorize connections between care convoy properties and caregiver and recipient outcomes. The model draws on Kahn and Antonucci's (1980) convoy model of social relations, expanding it to include both formal and informal care providers and also incorporates theoretical and conceptual threads from life course, feminist gerontology, social ecology, and symbolic interactionist perspectives. This article synthesizes theoretical and empirical knowledge and demonstrates the convoy of care model in an increasingly popular long-term care setting, assisted living. We conceptualize care convoys as dynamic, evolving, person- and family-specific, and influenced by a host of multi-level factors. Care convoys have implications for older adults’ quality of care and ability to age in place, for job satisfaction and retention among formal caregivers, and for informal caregiver burden. The model moves beyond existing conceptual work to provide a comprehensive, multi-level, multi-factor framework that can be used to inform future research, including research in other care settings, and to spark further theoretical development. PMID:23273553

  19. Predicting Honeybee Colony Failure: Using the BEEHAVE Model to Simulate Colony Responses to Pesticides

    PubMed Central

    2015-01-01

    To simulate effects of pesticides on different honeybee (Apis mellifera L.) life stages, we used the BEEHAVE model to explore how increased mortalities of larvae, in-hive workers, and foragers, as well as reduced egg-laying rate, could impact colony dynamics over multiple years. Stresses were applied for 30 days, both as multiples of the modeled control mortality and as set percentage daily mortalities to assess the sensitivity of the modeled colony both to small fluctuations in mortality and periods of low to very high daily mortality. These stresses simulate stylized exposure of the different life stages to nectar and pollen contaminated with pesticide for 30 days. Increasing adult bee mortality had a much greater impact on colony survival than mortality of bee larvae or reduction in egg laying rate. Importantly, the seasonal timing of the imposed mortality affected the magnitude of the impact at colony level. In line with the LD50, we propose a new index of “lethal imposed stress”: the LIS50 which indicates the level of stress on individuals that results in 50% colony mortality. This (or any LISx) is a comparative index for exploring the effects of different stressors at colony level in model simulations. While colony failure is not an acceptable protection goal, this index could be used to inform the setting of future regulatory protection goals. PMID:26444386

  20. Cloud-Based Orchestration of a Model-Based Power and Data Analysis Toolchain

    NASA Technical Reports Server (NTRS)

    Post, Ethan; Cole, Bjorn; Dinkel, Kevin; Kim, Hongman; Lee, Erich; Nairouz, Bassem

    2016-01-01

    The proposed Europa Mission concept contains many engineering and scientific instruments that consume varying amounts of power and produce varying amounts of data throughout the mission. System-level power and data usage must be well understood and analyzed to verify design requirements. Numerous cross-disciplinary tools and analysis models are used to simulate the system-level spacecraft power and data behavior. This paper addresses the problem of orchestrating a consistent set of models, tools, and data in a unified analysis toolchain when ownership is distributed among numerous domain experts. An analysis and simulation environment was developed as a way to manage the complexity of the power and data analysis toolchain and to reduce the simulation turnaround time. A system model data repository is used as the trusted store of high-level inputs and results while other remote servers are used for archival of larger data sets and for analysis tool execution. Simulation data passes through numerous domain-specific analysis tools and end-to-end simulation execution is enabled through a web-based tool. The use of a cloud-based service facilitates coordination among distributed developers and enables scalable computation and storage needs, and ensures a consistent execution environment. Configuration management is emphasized to maintain traceability between current and historical simulation runs and their corresponding versions of models, tools and data.

  1. An export coefficient based inexact fuzzy bi-level multi-objective programming model for the management of agricultural nonpoint source pollution under uncertainty

    NASA Astrophysics Data System (ADS)

    Cai, Yanpeng; Rong, Qiangqiang; Yang, Zhifeng; Yue, Wencong; Tan, Qian

    2018-02-01

    In this research, an export coefficient based inexact fuzzy bi-level multi-objective programming (EC-IFBLMOP) model was developed through integrating export coefficient model (ECM), interval parameter programming (IPP) and fuzzy parameter programming (FPP) within a bi-level multi-objective programming framework. The proposed EC-IFBLMOP model can effectively deal with the multiple uncertainties expressed as discrete intervals and fuzzy membership functions. Also, the complexities in agricultural systems, such as the cooperation and gaming relationship between the decision makers at different levels, can be fully considered in the model. The developed model was then applied to identify the optimal land use patterns and BMP implementing levels for agricultural nonpoint source (NPS) pollution management in a subcatchment in the upper stream watershed of the Miyun Reservoir in north China. The results of the model showed that the desired optimal land use patterns and implementing levels of best management of practices (BMPs) would be obtained. It is the gaming result between the upper- and lower-level decision makers, when the allowable discharge amounts of NPS pollutants were limited. Moreover, results corresponding to different decision scenarios could provide a set of decision alternatives for the upper- and lower-level decision makers to identify the most appropriate management strategy. The model has a good applicability and can be effectively utilized for agricultural NPS pollution management.

  2. Decentralized supply chain network design: monopoly, duopoly and oligopoly competitions under uncertainty

    NASA Astrophysics Data System (ADS)

    Seyedhosseini, Seyed Mohammad; Fahimi, Kaveh; Makui, Ahmad

    2017-12-01

    This paper presents the competitive supply chain network design problem in which n decentralized supply chains simultaneously enter the market with no existing rival chain, shape their networks and set wholesale and retail prices in competitive mode. The customer demand is elastic and price dependent, customer utility function is based on the Hoteling model and the chains produce identical or highly substitutable products. We construct a solution algorithm based on bi-level programming and possibility theory. In the proposed bi-level model, the inner part sets the prices based on simultaneous extra- and Stackleberg intra- chains competitions, and the outer part shapes the networks in cooperative competitions. Finally, we use a real-word study to discuss the effect of the different structures of the competitors on the equilibrium solution. Moreover, sensitivity analyses are conducted and managerial insights are offered.

  3. Implementing the Indiana Model. Indiana Leadership Consortium: Equity through Change.

    ERIC Educational Resources Information Center

    Indiana Leadership Consortium.

    This guide, which was developed as a part of a multi-year, statewide effort to institutionalize gender equity in various educational settings throughout Indiana, presents a step-by-step process model for achieving gender equity in the state's secondary- and postsecondary-level vocational programs through coalition building and implementation of a…

  4. Truck Noise X : Noise Reduction Options for Diesel Powered International Harvester Trucks : Volume 1. Development Work.

    DOT National Transportation Integrated Search

    1977-04-01

    Noise reduction option development work was carried out on two inservice diesel powered IH trucks, consisting of a Cab-over model and a Conventional model with a baseline exterior noise level of 87 dB(A) each. Since no specific noise goals were set, ...

  5. Physiologically-based Pharmacokinetic(PBPK) Models Application to Screen Environmental Hazards Related to Adverse Outcome Pathways(AOPs)

    EPA Science Inventory

    PBPK models are useful in estimating exposure levels based on in vitro to in vivo extrapolation (IVIVE) calculations. Linkage of large sets of chemically screened vitro signature effects to in vivo adverse outcomes using IVIVE is central to the concepts of toxicology in the 21st ...

  6. ICT in EMI Programmes at Tertiary Level in Spain: A Holistic Model

    ERIC Educational Resources Information Center

    Hernandez-Nanclares, Nuria; Jimenez-Munoz, Antonio

    2016-01-01

    The European Higher Education Area (EHEA) in Spain has increased the number of degrees taught through English, although secondary schools do not ensure an appropriate set of linguistic skills for bilingual degrees. A holistic, accountable model for Information and Communications Technology (ICT)-supported learning can give students the adequate…

  7. Regional Dimensions of the Triple Helix Model: Setting the Context

    ERIC Educational Resources Information Center

    Todeva, Emanuela; Danson, Mike

    2016-01-01

    This paper introduces the rationale for the special issue and its contributions, which bridge the literature on regional development and the Triple Helix model. The concept of the Triple Helix at the sub-national, and specifically regional, level is established and examined, with special regard to regional economic development founded on…

  8. Quantitative Model of Systemic Toxicity Using ToxCast and ToxRefDB (SOT)

    EPA Science Inventory

    EPA’s ToxCast program profiles the bioactivity of chemicals in a diverse set of ~700 high throughput screening (HTS) assays. In collaboration with L’Oreal, a quantitative model of systemic toxicity was developed using no effect levels (NEL) from ToxRefDB for 633 chemicals with HT...

  9. The Influence of Minority Group Cultural Models on Persistence in College

    ERIC Educational Resources Information Center

    Jenkins, Adelbert H.; Harburg, Ernest; Weissberg, Norman C.; Donnelly, Thomas

    2004-01-01

    The performance and attrition levels of two sets of African American college students were analyzed to understand the influence of minority groups in persisting with college as a test of Ogbu's cultural-ecological model. It was observed that voluntary immigrant group students stayed in college much longer than the involuntary immigrants group…

  10. Comparisons of Air Radiation Model with Shock Tube Measurements

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; McCorkle, Evan; Bogdanoff, David W.; Allen, Gary A., Jr.

    2009-01-01

    This paper presents an assessment of the predictive capability of shock layer radiation model appropriate for NASA s Orion Crew Exploration Vehicle lunar return entry. A detailed set of spectrally resolved radiation intensity comparisons are made with recently conducted tests in the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center. The spectral range spanned from vacuum ultraviolet wavelength of 115 nm to infrared wavelength of 1400 nm. The analysis is done for 9.5-10.5 km/s shock passing through room temperature synthetic air at 0.2, 0.3 and 0.7 Torr. The comparisons between model and measurements show discrepancies in the level of background continuum radiation and intensities of atomic lines. Impurities in the EAST facility in the form of carbon bearing species are also modeled to estimate the level of contaminants and their impact on the comparisons. The discrepancies, although large is some cases, exhibit order and consistency. A set of tests and analyses improvements are proposed as forward work plan in order to confirm or reject various proposed reasons for the observed discrepancies.

  11. Elkhorn Slough: Detecting Eutrophication through Geospatial Modeling Applications

    NASA Astrophysics Data System (ADS)

    Caraballo Álvarez, I. O.; Childs, A.; Jurich, K.

    2016-12-01

    Elkhorn Slough in Monterey, California, has experienced substantial nutrient loading and eutrophication over the past 21 years as a result of fertilizer-rich runoff from nearby agricultural fields. This study seeks to identify and track spatial patterns of eutrophication hotspots and the correlation to land use changes, possible nutrient sources, and general climatic trends using remotely sensed and in situ data. Threats of rising sea level, subsiding marshes, and increased eutrophication hotspots demonstrate the necessity to analyze the effects of increasing nutrient loads, relative sea level changes, and sedimentation within Elkhorn Slough. The Soil & Water Assessment Tool (SWAT) model integrates specified inputs to assess nutrient and sediment loading and their sources. TerrSet's Land Change Modeler forecasts the future potential of land change transitions for various land cover classes around the slough as a result of nutrient loading, eutrophication, and increased sedimentation. TerrSet's Earth Trends Modeler provides a comprehensive analysis of image time series to rapidly assess long term eutrophication trends and detect spatial patterns of known hotspots. Results from this study will inform future coastal management practices and provide greater spatial and temporal insight into Elkhorn Slough eutrophication dynamics.

  12. Rank Order Entropy: why one metric is not enough

    PubMed Central

    McLellan, Margaret R.; Ryan, M. Dominic; Breneman, Curt M.

    2011-01-01

    The use of Quantitative Structure-Activity Relationship models to address problems in drug discovery has a mixed history, generally resulting from the mis-application of QSAR models that were either poorly constructed or used outside of their domains of applicability. This situation has motivated the development of a variety of model performance metrics (r2, PRESS r2, F-tests, etc) designed to increase user confidence in the validity of QSAR predictions. In a typical workflow scenario, QSAR models are created and validated on training sets of molecules using metrics such as Leave-One-Out or many-fold cross-validation methods that attempt to assess their internal consistency. However, few current validation methods are designed to directly address the stability of QSAR predictions in response to changes in the information content of the training set. Since the main purpose of QSAR is to quickly and accurately estimate a property of interest for an untested set of molecules, it makes sense to have a means at hand to correctly set user expectations of model performance. In fact, the numerical value of a molecular prediction is often less important to the end user than knowing the rank order of that set of molecules according to their predicted endpoint values. Consequently, a means for characterizing the stability of predicted rank order is an important component of predictive QSAR. Unfortunately, none of the many validation metrics currently available directly measure the stability of rank order prediction, making the development of an additional metric that can quantify model stability a high priority. To address this need, this work examines the stabilities of QSAR rank order models created from representative data sets, descriptor sets, and modeling methods that were then assessed using Kendall Tau as a rank order metric, upon which the Shannon Entropy was evaluated as a means of quantifying rank-order stability. Random removal of data from the training set, also known as Data Truncation Analysis (DTA), was used as a means for systematically reducing the information content of each training set while examining both rank order performance and rank order stability in the face of training set data loss. The premise for DTA ROE model evaluation is that the response of a model to incremental loss of training information will be indicative of the quality and sufficiency of its training set, learning method, and descriptor types to cover a particular domain of applicability. This process is termed a “rank order entropy” evaluation, or ROE. By analogy with information theory, an unstable rank order model displays a high level of implicit entropy, while a QSAR rank order model which remains nearly unchanged during training set reductions would show low entropy. In this work, the ROE metric was applied to 71 data sets of different sizes, and was found to reveal more information about the behavior of the models than traditional metrics alone. Stable, or consistently performing models, did not necessarily predict rank order well. Models that performed well in rank order did not necessarily perform well in traditional metrics. In the end, it was shown that ROE metrics suggested that some QSAR models that are typically used should be discarded. ROE evaluation helps to discern which combinations of data set, descriptor set, and modeling methods lead to usable models in prioritization schemes, and provides confidence in the use of a particular model within a specific domain of applicability. PMID:21875058

  13. Can we teach core clinical obstetrics and gynaecology skills using low fidelity simulation in an interprofessional setting?

    PubMed

    Kumar, Arunaz; Gilmour, Carole; Nestel, Debra; Aldridge, Robyn; McLelland, Gayle; Wallace, Euan

    2014-12-01

    Core clinical skills acquisition is an essential component of undergraduate medical and midwifery education. Although interprofessional education is an increasingly common format for learning efficient teamwork in clinical medicine, its value in undergraduate education is less clear. We present a collaborative effort from the medical and midwifery schools of Monash University, Melbourne, towards the development of an educational package centred around a core skills-based workshop using low fidelity simulation models in an interprofessional setting. Detailed feedback on the package was positive with respect to the relevance of the teaching content, whether the topic was well taught by task trainers and simulation models used, pitch of level of teaching and perception of confidence gained in performing the skill on a real patient after attending the workshop. Overall, interprofessional core skills training using low fidelity simulation models introduced at an undergraduate level in medicine and midwifery had a good acceptance. © 2014 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  14. Implementation of Malaria Dynamic Models in Municipality Level Early Warning Systems in Colombia. Part I: Description of Study Sites

    PubMed Central

    Ruiz, Daniel; Cerón, Viviana; Molina, Adriana M.; Quiñónes, Martha L.; Jiménez, Mónica M.; Ahumada, Martha; Gutiérrez, Patricia; Osorio, Salua; Mantilla, Gilma; Connor, Stephen J.; Thomson, Madeleine C.

    2014-01-01

    As part of the Integrated National Adaptation Pilot project and the Integrated Surveillance and Control System, the Colombian National Institute of Health is working on the design and implementation of a Malaria Early Warning System framework, supported by seasonal climate forecasting capabilities, weather and environmental monitoring, and malaria statistical and dynamic models. In this report, we provide an overview of the local ecoepidemiologic settings where four malaria process-based mathematical models are currently being implemented at a municipal level. The description includes general characteristics, malaria situation (predominant type of infection, malaria-positive cases data, malaria incidence, and seasonality), entomologic conditions (primary and secondary vectors, mosquito densities, and feeding frequencies), climatic conditions (climatology and long-term trends), key drivers of epidemic outbreaks, and non-climatic factors (populations at risk, control campaigns, and socioeconomic conditions). Selected pilot sites exhibit different ecoepidemiologic settings that must be taken into account in the development of the integrated surveillance and control system. PMID:24891460

  15. Identity related to living situation in six individuals with congenital quadriplegia.

    PubMed

    Robey, Kenneth L

    2008-01-01

    This study was a preliminary examination of structural aspects of identity, particularly identity associated with living situation, in individuals who have quadriplegia due to cerebral palsy. A hierarchical classes algorithm (HICLAS) was used to construct idiographic 'identity structure' models for three individuals who are living in an inpatient hospital setting and for three individuals living in community-based group residences. Indices derived from the models indicate that the identity 'myself as one who has a disability' was structurally superordinate (i.e., resided at a high hierarchical level) for all six participants, suggesting a high level of importance of this identity in participants' sense of self. The models also indicate that while identity associated with one's particular living situation was superordinate for persons living in the hospital, it was not for persons living in community residences. While conclusions based on this small sample are necessarily limited, the data suggest that identity associated with living situation might differ in structural centrality, and presumably subjective importance, for persons living in inpatient versus community-based settings.

  16. A fuzzy chance-constrained programming model with type 1 and type 2 fuzzy sets for solid waste management under uncertainty

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolin; Ma, Chi; Wan, Zhifang; Wang, Kewei

    2017-06-01

    Effective management of municipal solid waste (MSW) is critical for urban planning and development. This study aims to develop an integrated type 1 and type 2 fuzzy sets chance-constrained programming (ITFCCP) model for tackling regional MSW management problem under a fuzzy environment, where waste generation amounts are supposed to be type 2 fuzzy variables and treated capacities of facilities are assumed to be type 1 fuzzy variables. The evaluation and expression of uncertainty overcome the drawbacks in describing fuzzy possibility distributions as oversimplified forms. The fuzzy constraints are converted to their crisp equivalents through chance-constrained programming under the same or different confidence levels. Regional waste management of the City of Dalian, China, was used as a case study for demonstration. The solutions under various confidence levels reflect the trade-off between system economy and reliability. It is concluded that the ITFCCP model is capable of helping decision makers to generate reasonable waste-allocation alternatives under uncertainties.

  17. Alternative ways of using field-based estimates to calibrate ecosystem models and their implications for carbon cycle studies

    USGS Publications Warehouse

    He, Yujie; Zhuang, Qianlai; McGuire, David; Liu, Yaling; Chen, Min

    2013-01-01

    Model-data fusion is a process in which field observations are used to constrain model parameters. How observations are used to constrain parameters has a direct impact on the carbon cycle dynamics simulated by ecosystem models. In this study, we present an evaluation of several options for the use of observations in modeling regional carbon dynamics and explore the implications of those options. We calibrated the Terrestrial Ecosystem Model on a hierarchy of three vegetation classification levels for the Alaskan boreal forest: species level, plant-functional-type level (PFT level), and biome level, and we examined the differences in simulated carbon dynamics. Species-specific field-based estimates were directly used to parameterize the model for species-level simulations, while weighted averages based on species percent cover were used to generate estimates for PFT- and biome-level model parameterization. We found that calibrated key ecosystem process parameters differed substantially among species and overlapped for species that are categorized into different PFTs. Our analysis of parameter sets suggests that the PFT-level parameterizations primarily reflected the dominant species and that functional information of some species were lost from the PFT-level parameterizations. The biome-level parameterization was primarily representative of the needleleaf PFT and lost information on broadleaf species or PFT function. Our results indicate that PFT-level simulations may be potentially representative of the performance of species-level simulations while biome-level simulations may result in biased estimates. Improved theoretical and empirical justifications for grouping species into PFTs or biomes are needed to adequately represent the dynamics of ecosystem functioning and structure.

  18. Argobots: A Lightweight Low-Level Threading and Tasking Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Sangmin; Amer, Abdelhalim; Balaji, Pavan

    In the past few decades, a number of user-level threading and tasking models have been proposed in the literature to address the shortcomings of OS-level threads, primarily with respect to cost and flexibility. Current state-of-the-art user-level threading and tasking models, however, are either too specific to applications or architectures or are not as powerful or flexible. In this paper, we present Argobots, a lightweight, low-level threading and tasking framework that is designed as a portable and performant substrate for high-level programming models or runtime systems. Argobots offers a carefully designed execution model that balances generality of functionality with providing amore » rich set of controls to allow specialization by the user or high-level programming model. We describe the design, implementation, and optimization of Argobots and present integrations with three example high-level models: OpenMP, MPI, and co-located I/O service. Evaluations show that (1) Argobots outperforms existing generic threading runtimes; (2) our OpenMP runtime offers more efficient interoperability capabilities than production OpenMP runtimes do; (3) when MPI interoperates with Argobots instead of Pthreads, it enjoys reduced synchronization costs and better latency hiding capabilities; and (4) I/O service with Argobots reduces interference with co-located applications, achieving performance competitive with that of the Pthreads version.« less

  19. Spectral imaging using consumer-level devices and kernel-based regression.

    PubMed

    Heikkinen, Ville; Cámara, Clara; Hirvonen, Tapani; Penttinen, Niko

    2016-06-01

    Hyperspectral reflectance factor image estimations were performed in the 400-700 nm wavelength range using a portable consumer-level laptop display as an adjustable light source for a trichromatic camera. Targets of interest were ColorChecker Classic samples, Munsell Matte samples, geometrically challenging tempera icon paintings from the turn of the 20th century, and human hands. Measurements and simulations were performed using Nikon D80 RGB camera and Dell Vostro 2520 laptop screen as a light source. Estimations were performed without spectral characteristics of the devices and by emphasizing simplicity for training sets and estimation model optimization. Spectral and color error images are shown for the estimations using line-scanned hyperspectral images as the ground truth. Estimations were performed using kernel-based regression models via a first-degree inhomogeneous polynomial kernel and a Matérn kernel, where in the latter case the median heuristic approach for model optimization and link function for bounded estimation were evaluated. Results suggest modest requirements for a training set and show that all estimation models have markedly improved accuracy with respect to the DE00 color distance (up to 99% for paintings and hands) and the Pearson distance (up to 98% for paintings and 99% for hands) from a weak training set (Digital ColorChecker SG) case when small representative training data were used in the estimation.

  20. Imaging metallic samples using electrical capacitance tomography: forward modelling and reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Hosani, E. Al; Zhang, M.; Abascal, J. F. P. J.; Soleimani, M.

    2016-11-01

    Electrical capacitance tomography (ECT) is an imaging technology used to reconstruct the permittivity distribution within the sensing region. So far, ECT has been primarily used to image non-conductive media only, since if the conductivity of the imaged object is high, the capacitance measuring circuit will be almost shortened by the conductivity path and a clear image cannot be produced using the standard image reconstruction approaches. This paper tackles the problem of imaging metallic samples using conventional ECT systems by investigating the two main aspects of image reconstruction algorithms, namely the forward problem and the inverse problem. For the forward problem, two different methods to model the region of high conductivity in ECT is presented. On the other hand, for the inverse problem, three different algorithms to reconstruct the high contrast images are examined. The first two methods are the linear single step Tikhonov method and the iterative total variation regularization method, and use two sets of ECT data to reconstruct the image in time difference mode. The third method, namely the level set method, uses absolute ECT measurements and was developed using a metallic forward model. The results indicate that the applications of conventional ECT systems can be extended to metal samples using the suggested algorithms and forward model, especially using a level set algorithm to find the boundary of the metal.

  1. Wavelet Analysis Used for Spectral Background Removal in the Determination of Glucose from Near-Infrared Single-Beam Spectra

    PubMed Central

    Wan, Boyong; Small, Gary W.

    2010-01-01

    Wavelet analysis is developed as a preprocessing tool for use in removing background information from near-infrared (near-IR) single-beam spectra before the construction of multivariate calibration models. Three data sets collected with three different near-IR spectrometers are investigated that involve the determination of physiological levels of glucose (1-30 mM) in a simulated biological matrix containing alanine, ascorbate, lactate, triacetin, and urea in phosphate buffer. A factorial design is employed to optimize the specific wavelet function used and the level of decomposition applied, in addition to the spectral range and number of latent variables associated with a partial least-squares calibration model. The prediction performance of the computed models is studied with separate data acquired after the collection of the calibration spectra. This evaluation includes one data set collected over a period of more than six months. Preprocessing with wavelet analysis is also compared to the calculation of second-derivative spectra. Over the three data sets evaluated, wavelet analysis is observed to produce better-performing calibration models, with improvements in concentration predictions on the order of 30% being realized relative to models based on either second-derivative spectra or spectra preprocessed with simple additive and multiplicative scaling correction. This methodology allows the construction of stable calibrations directly with single-beam spectra, thereby eliminating the need for the collection of a separate background or reference spectrum. PMID:21035604

  2. Wavelet analysis used for spectral background removal in the determination of glucose from near-infrared single-beam spectra.

    PubMed

    Wan, Boyong; Small, Gary W

    2010-11-29

    Wavelet analysis is developed as a preprocessing tool for use in removing background information from near-infrared (near-IR) single-beam spectra before the construction of multivariate calibration models. Three data sets collected with three different near-IR spectrometers are investigated that involve the determination of physiological levels of glucose (1-30 mM) in a simulated biological matrix containing alanine, ascorbate, lactate, triacetin, and urea in phosphate buffer. A factorial design is employed to optimize the specific wavelet function used and the level of decomposition applied, in addition to the spectral range and number of latent variables associated with a partial least-squares calibration model. The prediction performance of the computed models is studied with separate data acquired after the collection of the calibration spectra. This evaluation includes one data set collected over a period of more than 6 months. Preprocessing with wavelet analysis is also compared to the calculation of second-derivative spectra. Over the three data sets evaluated, wavelet analysis is observed to produce better-performing calibration models, with improvements in concentration predictions on the order of 30% being realized relative to models based on either second-derivative spectra or spectra preprocessed with simple additive and multiplicative scaling correction. This methodology allows the construction of stable calibrations directly with single-beam spectra, thereby eliminating the need for the collection of a separate background or reference spectrum. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Isolated effect of geometry on mitral valve function for in silico model development.

    PubMed

    Siefert, Andrew William; Rabbah, Jean-Pierre Michel; Saikrishnan, Neelakantan; Kunzelman, Karyn Susanne; Yoganathan, Ajit Prithivaraj

    2015-01-01

    Computational models for the heart's mitral valve (MV) exhibit several uncertainties that may be reduced by further developing these models using ground-truth data-sets. This study generated a ground-truth data-set by quantifying the effects of isolated mitral annular flattening, symmetric annular dilatation, symmetric papillary muscle (PM) displacement and asymmetric PM displacement on leaflet coaptation, mitral regurgitation (MR) and anterior leaflet strain. MVs were mounted in an in vitro left heart simulator and tested under pulsatile haemodynamics. Mitral leaflet coaptation length, coaptation depth, tenting area, MR volume, MR jet direction and anterior leaflet strain in the radial and circumferential directions were successfully quantified at increasing levels of geometric distortion. From these data, increase in the levels of isolated PM displacement resulted in the greatest mean change in coaptation depth (70% increase), tenting area (150% increase) and radial leaflet strain (37% increase) while annular dilatation resulted in the largest mean change in coaptation length (50% decrease) and regurgitation volume (134% increase). Regurgitant jets were centrally located for symmetric annular dilatation and symmetric PM displacement. Asymmetric PM displacement resulted in asymmetrically directed jets. Peak changes in anterior leaflet strain in the circumferential direction were smaller and exhibited non-significant differences across the tested conditions. When used together, this ground-truth data-set may be used to parametrically evaluate and develop modelling assumptions for both the MV leaflets and subvalvular apparatus. This novel data may improve MV computational models and provide a platform for the development of future surgical planning tools.

  4. Estimating the Expected Value of Sample Information Using the Probabilistic Sensitivity Analysis Sample

    PubMed Central

    Oakley, Jeremy E.; Brennan, Alan; Breeze, Penny

    2015-01-01

    Health economic decision-analytic models are used to estimate the expected net benefits of competing decision options. The true values of the input parameters of such models are rarely known with certainty, and it is often useful to quantify the value to the decision maker of reducing uncertainty through collecting new data. In the context of a particular decision problem, the value of a proposed research design can be quantified by its expected value of sample information (EVSI). EVSI is commonly estimated via a 2-level Monte Carlo procedure in which plausible data sets are generated in an outer loop, and then, conditional on these, the parameters of the decision model are updated via Bayes rule and sampled in an inner loop. At each iteration of the inner loop, the decision model is evaluated. This is computationally demanding and may be difficult if the posterior distribution of the model parameters conditional on sampled data is hard to sample from. We describe a fast nonparametric regression-based method for estimating per-patient EVSI that requires only the probabilistic sensitivity analysis sample (i.e., the set of samples drawn from the joint distribution of the parameters and the corresponding net benefits). The method avoids the need to sample from the posterior distributions of the parameters and avoids the need to rerun the model. The only requirement is that sample data sets can be generated. The method is applicable with a model of any complexity and with any specification of model parameter distribution. We demonstrate in a case study the superior efficiency of the regression method over the 2-level Monte Carlo method. PMID:25810269

  5. Image reconstructions from super-sampled data sets with resolution modeling in PET imaging.

    PubMed

    Li, Yusheng; Matej, Samuel; Metzler, Scott D

    2014-12-01

    Spatial resolution in positron emission tomography (PET) is still a limiting factor in many imaging applications. To improve the spatial resolution for an existing scanner with fixed crystal sizes, mechanical movements such as scanner wobbling and object shifting have been considered for PET systems. Multiple acquisitions from different positions can provide complementary information and increased spatial sampling. The objective of this paper is to explore an efficient and useful reconstruction framework to reconstruct super-resolution images from super-sampled low-resolution data sets. The authors introduce a super-sampling data acquisition model based on the physical processes with tomographic, downsampling, and shifting matrices as its building blocks. Based on the model, we extend the MLEM and Landweber algorithms to reconstruct images from super-sampled data sets. The authors also derive a backprojection-filtration-like (BPF-like) method for the super-sampling reconstruction. Furthermore, they explore variant methods for super-sampling reconstructions: the separate super-sampling resolution-modeling reconstruction and the reconstruction without downsampling to further improve image quality at the cost of more computation. The authors use simulated reconstruction of a resolution phantom to evaluate the three types of algorithms with different super-samplings at different count levels. Contrast recovery coefficient (CRC) versus background variability, as an image-quality metric, is calculated at each iteration for all reconstructions. The authors observe that all three algorithms can significantly and consistently achieve increased CRCs at fixed background variability and reduce background artifacts with super-sampled data sets at the same count levels. For the same super-sampled data sets, the MLEM method achieves better image quality than the Landweber method, which in turn achieves better image quality than the BPF-like method. The authors also demonstrate that the reconstructions from super-sampled data sets using a fine system matrix yield improved image quality compared to the reconstructions using a coarse system matrix. Super-sampling reconstructions with different count levels showed that the more spatial-resolution improvement can be obtained with higher count at a larger iteration number. The authors developed a super-sampling reconstruction framework that can reconstruct super-resolution images using the super-sampling data sets simultaneously with known acquisition motion. The super-sampling PET acquisition using the proposed algorithms provides an effective and economic way to improve image quality for PET imaging, which has an important implication in preclinical and clinical region-of-interest PET imaging applications.

  6. A systematic review of transmission dynamic studies of methicillin-resistant Staphylococcus aureus in non-hospital residential facilities.

    PubMed

    Kwok, Kin On; Read, Jonathan M; Tang, Arthur; Chen, Hong; Riley, Steven; Kam, Kai Man

    2018-04-18

    Non-hospital residential facilities are important reservoirs for MRSA transmission. However, conclusions and public health implications drawn from the many mathematical models depicting nosocomial MRSA transmission may not be applicable to these settings. Therefore, we reviewed the MRSA transmission dynamics studies in defined non-hospital residential facilities to: (1) provide an overview of basic epidemiology which has been addressed; (2) identify future research direction; and (3) improve future model implementation. A review was conducted by searching related keywords in PUBMED without time restriction as well as internet searches via Google search engine. We included only articles describing the epidemiological transmission pathways of MRSA/community-associated MRSA within and between defined non-hospital residential settings. Among the 10 included articles, nursing homes (NHs) and correctional facilities (CFs) were two settings considered most frequently. Importation of colonized residents was a plausible reason for MRSA outbreaks in NHs, where MRSA was endemic without strict infection control interventions. The importance of NHs over hospitals in increasing nosocomial MRSA prevalence was highlighted. Suggested interventions in NHs included: appropriate staffing level, screening and decolonizing, and hand hygiene. On the other hand, the small population amongst inmates in CFs has no effect on MRSA community transmission. Included models ranged from system-level compartmental models to agent-based models. There was no consensus over the course of disease progression in these models, which were mainly featured with NH residents /CF inmates/ hospital patients as transmission pathways. Some parameters used by these models were outdated or unfit. Importance of NHs has been highlighted from these current studies addressing scattered aspects of MRSA epidemiology. However, the wide variety of non-hospital residential settings suggest that more work is needed before robust conclusions can be drawn. Learning from existing work for hospitals, we identified critical future research direction in this area from infection control, ecological and economic perspectives. From current model deficiencies, we suggest more transmission pathways be specified to depict MRSA transmission, and further empirical studies be stressed to support evidence-based mathematical models of MRSA in non-hospital facilities. Future models should be ready to cope with the aging population structure.

  7. Predicting fatty acid profiles in blood based on food intake and the FADS1 rs174546 SNP.

    PubMed

    Hallmann, Jacqueline; Kolossa, Silvia; Gedrich, Kurt; Celis-Morales, Carlos; Forster, Hannah; O'Donovan, Clare B; Woolhead, Clara; Macready, Anna L; Fallaize, Rosalind; Marsaux, Cyril F M; Lambrinou, Christina-Paulina; Mavrogianni, Christina; Moschonis, George; Navas-Carretero, Santiago; San-Cristobal, Rodrigo; Godlewska, Magdalena; Surwiłło, Agnieszka; Mathers, John C; Gibney, Eileen R; Brennan, Lorraine; Walsh, Marianne C; Lovegrove, Julie A; Saris, Wim H M; Manios, Yannis; Martinez, Jose Alfredo; Traczyk, Iwona; Gibney, Michael J; Daniel, Hannelore

    2015-12-01

    A high intake of n-3 PUFA provides health benefits via changes in the n-6/n-3 ratio in blood. In addition to such dietary PUFAs, variants in the fatty acid desaturase 1 (FADS1) gene are also associated with altered PUFA profiles. We used mathematical modeling to predict levels of PUFA in whole blood, based on multiple hypothesis testing and bootstrapped LASSO selected food items, anthropometric and lifestyle factors, and the rs174546 genotypes in FADS1 from 1607 participants (Food4Me Study). The models were developed using data from the first reported time point (training set) and their predictive power was evaluated using data from the last reported time point (test set). Among other food items, fish, pizza, chicken, and cereals were identified as being associated with the PUFA profiles. Using these food items and the rs174546 genotypes as predictors, models explained 26-43% of the variability in PUFA concentrations in the training set and 22-33% in the test set. Selecting food items using multiple hypothesis testing is a valuable contribution to determine predictors, as our models' predictive power is higher compared to analogue studies. As unique feature, we additionally confirmed our models' power based on a test set. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fast and robust group-wise eQTL mapping using sparse graphical models.

    PubMed

    Cheng, Wei; Shi, Yu; Zhang, Xiang; Wang, Wei

    2015-01-16

    Genome-wide expression quantitative trait loci (eQTL) studies have emerged as a powerful tool to understand the genetic basis of gene expression and complex traits. The traditional eQTL methods focus on testing the associations between individual single-nucleotide polymorphisms (SNPs) and gene expression traits. A major drawback of this approach is that it cannot model the joint effect of a set of SNPs on a set of genes, which may correspond to hidden biological pathways. We introduce a new approach to identify novel group-wise associations between sets of SNPs and sets of genes. Such associations are captured by hidden variables connecting SNPs and genes. Our model is a linear-Gaussian model and uses two types of hidden variables. One captures the set associations between SNPs and genes, and the other captures confounders. We develop an efficient optimization procedure which makes this approach suitable for large scale studies. Extensive experimental evaluations on both simulated and real datasets demonstrate that the proposed methods can effectively capture both individual and group-wise signals that cannot be identified by the state-of-the-art eQTL mapping methods. Considering group-wise associations significantly improves the accuracy of eQTL mapping, and the successful multi-layer regression model opens a new approach to understand how multiple SNPs interact with each other to jointly affect the expression level of a group of genes.

  9. The Model-Based Study of the Effectiveness of Reporting Lists of Small Feature Sets Using RNA-Seq Data.

    PubMed

    Kim, Eunji; Ivanov, Ivan; Hua, Jianping; Lampe, Johanna W; Hullar, Meredith Aj; Chapkin, Robert S; Dougherty, Edward R

    2017-01-01

    Ranking feature sets for phenotype classification based on gene expression is a challenging issue in cancer bioinformatics. When the number of samples is small, all feature selection algorithms are known to be unreliable, producing significant error, and error estimators suffer from different degrees of imprecision. The problem is compounded by the fact that the accuracy of classification depends on the manner in which the phenomena are transformed into data by the measurement technology. Because next-generation sequencing technologies amount to a nonlinear transformation of the actual gene or RNA concentrations, they can potentially produce less discriminative data relative to the actual gene expression levels. In this study, we compare the performance of ranking feature sets derived from a model of RNA-Seq data with that of a multivariate normal model of gene concentrations using 3 measures: (1) ranking power, (2) length of extensions, and (3) Bayes features. This is the model-based study to examine the effectiveness of reporting lists of small feature sets using RNA-Seq data and the effects of different model parameters and error estimators. The results demonstrate that the general trends of the parameter effects on the ranking power of the underlying gene concentrations are preserved in the RNA-Seq data, whereas the power of finding a good feature set becomes weaker when gene concentrations are transformed by the sequencing machine.

  10. Hearing Tests on Mobile Devices: Evaluation of the Reference Sound Level by Means of Biological Calibration.

    PubMed

    Masalski, Marcin; Kipiński, Lech; Grysiński, Tomasz; Kręcicki, Tomasz

    2016-05-30

    Hearing tests carried out in home setting by means of mobile devices require previous calibration of the reference sound level. Mobile devices with bundled headphones create a possibility of applying the predefined level for a particular model as an alternative to calibrating each device separately. The objective of this study was to determine the reference sound level for sets composed of a mobile device and bundled headphones. Reference sound levels for Android-based mobile devices were determined using an open access mobile phone app by means of biological calibration, that is, in relation to the normal-hearing threshold. The examinations were conducted in 2 groups: an uncontrolled and a controlled one. In the uncontrolled group, the fully automated self-measurements were carried out in home conditions by 18- to 35-year-old subjects, without prior hearing problems, recruited online. Calibration was conducted as a preliminary step in preparation for further examination. In the controlled group, audiologist-assisted examinations were performed in a sound booth, on normal-hearing subjects verified through pure-tone audiometry, recruited offline from among the workers and patients of the clinic. In both the groups, the reference sound levels were determined on a subject's mobile device using the Bekesy audiometry. The reference sound levels were compared between the groups. Intramodel and intermodel analyses were carried out as well. In the uncontrolled group, 8988 calibrations were conducted on 8620 different devices representing 2040 models. In the controlled group, 158 calibrations (test and retest) were conducted on 79 devices representing 50 models. Result analysis was performed for 10 most frequently used models in both the groups. The difference in reference sound levels between uncontrolled and controlled groups was 1.50 dB (SD 4.42). The mean SD of the reference sound level determined for devices within the same model was 4.03 dB (95% CI 3.93-4.11). Statistically significant differences were found across models. Reference sound levels determined in the uncontrolled group are comparable to the values obtained in the controlled group. This validates the use of biological calibration in the uncontrolled group for determining the predefined reference sound level for new devices. Moreover, due to a relatively small deviation of the reference sound level for devices of the same model, it is feasible to conduct hearing screening on devices calibrated with the predefined reference sound level.

  11. Use of statistical and neural net approaches in predicting toxicity of chemicals.

    PubMed

    Basak, S C; Grunwald, G D; Gute, B D; Balasubramanian, K; Opitz, D

    2000-01-01

    Hierarchical quantitative structure-activity relationships (H-QSAR) have been developed as a new approach in constructing models for estimating physicochemical, biomedicinal, and toxicological properties of interest. This approach uses increasingly more complex molecular descriptors in a graduated approach to model building. In this study, statistical and neural network methods have been applied to the development of H-QSAR models for estimating the acute aquatic toxicity (LC50) of 69 benzene derivatives to Pimephales promelas (fathead minnow). Topostructural, topochemical, geometrical, and quantum chemical indices were used as the four levels of the hierarchical method. It is clear from both the statistical and neural network models that topostructural indices alone cannot adequately model this set of congeneric chemicals. Not surprisingly, topochemical indices greatly increase the predictive power of both statistical and neural network models. Quantum chemical indices also add significantly to the modeling of this set of acute aquatic toxicity data.

  12. Exploring the capacity of radar remote sensing to estimate wetland marshes water storage.

    PubMed

    Grings, F; Salvia, M; Karszenbaum, H; Ferrazzoli, P; Kandus, P; Perna, P

    2009-05-01

    This paper focuses on the use of radar remote sensing for water storage estimation in wetland marshes of the Paraná River Delta in Argentina. The approach followed is based on the analysis of a temporal set of ENVISAT ASAR data which includes images acquired under different polarizations and incidence angles as well as different environmental conditions (water level, precipitation, and vegetation condition). Two marsh species, named junco and cortadera, were monitored. This overall data set gave us the possibility of studying and understanding the basic interactions between the radar, the soil under different flood conditions, and the vegetation structure. The comprehension of the observed features was addressed through electromagnetic models developed for these ecosystems. The procedure used in this work to estimate water level within marshes combines a direct electromagnetic model, field work data specifically obtained to feed the model, the actual ASAR measurements and a well known retrieval scheme based on a cost function. Results are validated with water level evaluations at specific points. A map showing an estimation of the water storage capacity and its error in junco and cortadera areas for the date where the investigation was done is also presented.

  13. Are school-level factors associated with primary school students' experience of physical violence from school staff in Uganda?

    PubMed Central

    Knight, Louise; Nakuti, Janet; Allen, Elizabeth; Gannett, Katherine R.; Naker, Dipak; Devries, Karen M.

    2016-01-01

    Background The nature and structure of the school environment has the potential to shape children's health and well being. Few studies have explored the importance of school-level factors in explaining a child's likelihood of experiencing violence from school staff, particularly in low-resource settings such as Uganda. Methods To quantify to what extent a student's risk of violence is determined by school-level factors we fitted multilevel logistic regression models to investigate associations and present between-school variance partition coefficients. School structural factors, academic and supportive environment are explored. Results 53% of students reported physical violence from staff. Only 6% of variation in students' experience of violence was due to differences between schools and half the variation was explained by the school-level factors modelled. Schools with a higher proportion of girls are associated with increased odds of physical violence from staff. Students in schools with a high level of student perceptions of school connectedness have a 36% reduced odds of experiencing physical violence from staff, but no other school-level factor was significantly associated. Conclusion Our findings suggest that physical violence by school staff is widespread across different types of schools in this setting, but interventions that improve students' school connectedness should be considered. PMID:26647396

  14. A jazz-based approach for optimal setting of pressure reducing valves in water distribution networks

    NASA Astrophysics Data System (ADS)

    De Paola, Francesco; Galdiero, Enzo; Giugni, Maurizio

    2016-05-01

    This study presents a model for valve setting in water distribution networks (WDNs), with the aim of reducing the level of leakage. The approach is based on the harmony search (HS) optimization algorithm. The HS mimics a jazz improvisation process able to find the best solutions, in this case corresponding to valve settings in a WDN. The model also interfaces with the improved version of a popular hydraulic simulator, EPANET 2.0, to check the hydraulic constraints and to evaluate the performances of the solutions. Penalties are introduced in the objective function in case of violation of the hydraulic constraints. The model is applied to two case studies, and the obtained results in terms of pressure reductions are comparable with those of competitive metaheuristic algorithms (e.g. genetic algorithms). The results demonstrate the suitability of the HS algorithm for water network management and optimization.

  15. Setting development goals using stochastic dynamical system models

    PubMed Central

    Nicolis, Stamatios C.; Bali Swain, Ranjula; Sumpter, David J. T.

    2017-01-01

    The Millennium Development Goals (MDG) programme was an ambitious attempt to encourage a globalised solution to important but often-overlooked development problems. The programme led to wide-ranging development but it has also been criticised for unrealistic and arbitrary targets. In this paper, we show how country-specific development targets can be set using stochastic, dynamical system models built from historical data. In particular, we show that the MDG target of two-thirds reduction of child mortality from 1990 levels was infeasible for most countries, especially in sub-Saharan Africa. At the same time, the MDG targets were not ambitious enough for fast-developing countries such as Brazil and China. We suggest that model-based setting of country-specific targets is essential for the success of global development programmes such as the Sustainable Development Goals (SDG). This approach should provide clear, quantifiable targets for policymakers. PMID:28241057

  16. Setting development goals using stochastic dynamical system models.

    PubMed

    Ranganathan, Shyam; Nicolis, Stamatios C; Bali Swain, Ranjula; Sumpter, David J T

    2017-01-01

    The Millennium Development Goals (MDG) programme was an ambitious attempt to encourage a globalised solution to important but often-overlooked development problems. The programme led to wide-ranging development but it has also been criticised for unrealistic and arbitrary targets. In this paper, we show how country-specific development targets can be set using stochastic, dynamical system models built from historical data. In particular, we show that the MDG target of two-thirds reduction of child mortality from 1990 levels was infeasible for most countries, especially in sub-Saharan Africa. At the same time, the MDG targets were not ambitious enough for fast-developing countries such as Brazil and China. We suggest that model-based setting of country-specific targets is essential for the success of global development programmes such as the Sustainable Development Goals (SDG). This approach should provide clear, quantifiable targets for policymakers.

  17. Effect of different implementations of the same ice history in GIA modeling

    NASA Astrophysics Data System (ADS)

    Barletta, V. R.; Bordoni, A.

    2013-11-01

    This study shows the effect of changing the way ice histories are implemented in Glacial Isostatic Adjustment (GIA) codes to solve the sea level equation. The ice history models are being constantly improved and are provided in different formats. The overall algorithmic design of the sea-level equation solver often forces to implement the ice model in a representation that differs from the one originally provided. We show that using different representations of the same ice model gives important differences and artificial contributions to the sea level estimates, both at global and at regional scale. This study is not a speculative exercise. The ICE-5G model adopted in this work is widely used in present day sea-level analysis, but discrepancies between the results obtained by different groups for the same ice models still exist, and it was the effort to set a common reference for the sea-level community that inspired this work. Understanding this issue is important to be able to reduce the artefacts introduced by a non-suitable ice model representation. This is especially important when developing new GIA models, since neglecting this problem can easily lead to wrong alignment of the ice and sea-level histories, particularly close to the deglaciation areas, like Antarctica.

  18. A Joint Gaussian Process Model for Active Visual Recognition with Expertise Estimation in Crowdsourcing

    PubMed Central

    Long, Chengjiang; Hua, Gang; Kapoor, Ashish

    2015-01-01

    We present a noise resilient probabilistic model for active learning of a Gaussian process classifier from crowds, i.e., a set of noisy labelers. It explicitly models both the overall label noise and the expertise level of each individual labeler with two levels of flip models. Expectation propagation is adopted for efficient approximate Bayesian inference of our probabilistic model for classification, based on which, a generalized EM algorithm is derived to estimate both the global label noise and the expertise of each individual labeler. The probabilistic nature of our model immediately allows the adoption of the prediction entropy for active selection of data samples to be labeled, and active selection of high quality labelers based on their estimated expertise to label the data. We apply the proposed model for four visual recognition tasks, i.e., object category recognition, multi-modal activity recognition, gender recognition, and fine-grained classification, on four datasets with real crowd-sourced labels from the Amazon Mechanical Turk. The experiments clearly demonstrate the efficacy of the proposed model. In addition, we extend the proposed model with the Predictive Active Set Selection Method to speed up the active learning system, whose efficacy is verified by conducting experiments on the first three datasets. The results show our extended model can not only preserve a higher accuracy, but also achieve a higher efficiency. PMID:26924892

  19. Finite Element Methods and Multiphase Continuum Theory for Modeling 3D Air-Water-Sediment Interactions

    NASA Astrophysics Data System (ADS)

    Kees, C. E.; Miller, C. T.; Dimakopoulos, A.; Farthing, M.

    2016-12-01

    The last decade has seen an expansion in the development and application of 3D free surface flow models in the context of environmental simulation. These models are based primarily on the combination of effective algorithms, namely level set and volume-of-fluid methods, with high-performance, parallel computing. These models are still computationally expensive and suitable primarily when high-fidelity modeling near structures is required. While most research on algorithms and implementations has been conducted in the context of finite volume methods, recent work has extended a class of level set schemes to finite element methods on unstructured methods. This work considers models of three-phase flow in domains containing air, water, and granular phases. These multi-phase continuum mechanical formulations show great promise for applications such as analysis of coastal and riverine structures. This work will consider formulations proposed in the literature over the last decade as well as new formulations derived using the thermodynamically constrained averaging theory, an approach to deriving and closing macroscale continuum models for multi-phase and multi-component processes. The target applications require the ability to simulate wave breaking and structure over-topping, particularly fully three-dimensional, non-hydrostatic flows that drive these phenomena. A conservative level set scheme suitable for higher-order finite element methods is used to describe the air/water phase interaction. The interaction of these air/water flows with granular materials, such as sand and rubble, must also be modeled. The range of granular media dynamics targeted including flow and wave transmision through the solid media as well as erosion and deposition of granular media and moving bed dynamics. For the granular phase we consider volume- and time-averaged continuum mechanical formulations that are discretized with the finite element method and coupled to the underlying air/water flow via operator splitting (fractional step) schemes. Particular attention will be given to verification and validation of the numerical model and important qualitative features of the numerical methods including phase conservation, wave energy dissipation, and computational efficiency in regimes of interest.

  20. Metrics for Performance Evaluation of Patient Exercises during Physical Therapy.

    PubMed

    Vakanski, Aleksandar; Ferguson, Jake M; Lee, Stephen

    2017-06-01

    The article proposes a set of metrics for evaluation of patient performance in physical therapy exercises. Taxonomy is employed that classifies the metrics into quantitative and qualitative categories, based on the level of abstraction of the captured motion sequences. Further, the quantitative metrics are classified into model-less and model-based metrics, in reference to whether the evaluation employs the raw measurements of patient performed motions, or whether the evaluation is based on a mathematical model of the motions. The reviewed metrics include root-mean square distance, Kullback Leibler divergence, log-likelihood, heuristic consistency, Fugl-Meyer Assessment, and similar. The metrics are evaluated for a set of five human motions captured with a Kinect sensor. The metrics can potentially be integrated into a system that employs machine learning for modelling and assessment of the consistency of patient performance in home-based therapy setting. Automated performance evaluation can overcome the inherent subjectivity in human performed therapy assessment, and it can increase the adherence to prescribed therapy plans, and reduce healthcare costs.

  1. Search for high-mass new phenomena in the dilepton final state using proton–proton collisions at s = 13 TeV with the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    A search is conducted for both resonant and non-resonant high-mass new phenomena in dielectron and dimuon final states. The search uses 3.2 fb-1of proton–proton collision data, collected at √s = 13 TeV by the ATLAS experiment at the LHC in 2015. The dilepton invariant mass is used as the discriminating variable. No significant deviation from the Standard Model prediction is observed; therefore limits are set on the signal model parameters of interest at 95% credibility level. Upper limits are set on the cross-section times branching ratio for resonances decaying to dileptons, and the limits are converted into lower limits onmore » the resonance mass, ranging between 2.74 TeV and 3.36 TeV, depending on the model. Lower limits on the ℓℓqq contact interaction scale are set between 16.7 TeV and 25.2 TeV, also depending on the model.« less

  2. Search for high-mass new phenomena in the dilepton final state using proton-proton collisions at √{ s} = 13TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duffield, E. M.; Duflot, L.; Duguid, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanisch, S.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kentaro, K.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Melo, M.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rettie, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration

    2016-10-01

    A search is conducted for both resonant and non-resonant high-mass new phenomena in dielectron and dimuon final states. The search uses 3.2fb-1 of proton-proton collision data, collected at √{ s} = 13TeV by the ATLAS experiment at the LHC in 2015. The dilepton invariant mass is used as the discriminating variable. No significant deviation from the Standard Model prediction is observed; therefore limits are set on the signal model parameters of interest at 95% credibility level. Upper limits are set on the cross-section times branching ratio for resonances decaying to dileptons, and the limits are converted into lower limits on the resonance mass, ranging between 2.74 TeV and 3.36 TeV, depending on the model. Lower limits on the ℓℓqq contact interaction scale are set between 16.7 TeV and 25.2 TeV, also depending on the model.

  3. Search for diphoton events with large missing transverse energy with 36 pb-1 of 7 TeV proton-proton collision data with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andari, N.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Dos Santos Pedrosa, F. Baltasar; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Harpaz, S. Behar; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ami, S. Ben; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byatt, T.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Barajas, C. A. Chavez; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Almenar, C. Cuenca; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P. V. M.; Da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P. E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lotto, B.; De Mora, L.; De Nooij, L.; De Oliveira Branco, M.; De Pedis, D.; de Saintignon, P.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Yildiz, H. Duran; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Martin, T. Fonseca; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; Navarro, J. E. García; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Golovnia, S. N.; Gomes, A.; Fajardo, L. S. Gomez; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; Silva, M. L. Gonzalez; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Eschrich, I. Gough; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamal, P.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Belenguer, M. Jimenez; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Jovin, T.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Keung, J.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J. N.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Sterzo, F. Lo; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Miguens, J. Machado; Macina, D.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; dit Latour, B. Martin; Martinez, M.; Outschoorn, V. Martinez; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; McGlone, H.; Mchedlidze, G.; McLaren, R. A.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meuser, S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Herrera, C. Mora; Moraes, A.; Morais, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nožička, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohska, T. K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Damazio, D. Oliveira; Garcia, E. Oliver; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; y Garzon, G. Otero; Ottersbach, J. P.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Øye, O. K.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Griso, S. Pagan; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Cavalcanti, T. Perez; Codina, E. Perez; Pérez García-Estañ, M. T.; Reale, V. Perez; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Peshekhonov, V. D.; Peters, O.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piec, S. M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Dos Santos, D. Roda; Rodier, S.; Rodriguez, D.; Garcia, Y. Rodriguez; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Savva, P.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Schwindt, T.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockmanns, T.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Subramania, H. S.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Castanheira, M. Teixeira Dias; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van der Ster, D.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, A. V.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; della Porta, G. Zevi; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2011-10-01

    Making use of 36 pb-1 of proton-proton collision data at sqrt{s} =7 TeV, the ATLAS Collaboration has performed a search for diphoton events with large missing transverse energy. Observing no excess of events above the Standard Model prediction, a 95% Confidence Level (CL) upper limit is set on the cross section for new physics of σ<0.38-0.65 pb in the context of a generalised model of gauge-mediated supersymmetry breaking (GGM) with a bino-like lightest neutralino, and of σ<0.18-0.23 pb in the context of a specific model with one universal extra dimension (UED). A 95% CL lower limit of 560 GeV, for bino masses above 50 GeV, is set on the GGM gluino mass, while a lower limit of 1/ R>961 GeV is set on the UED compactification radius R. These limits provide the most stringent tests of these models to date.

  4. Modeling groundwater nitrate concentrations in private wells in Iowa

    USGS Publications Warehouse

    Wheeler, David C.; Nolan, Bernard T.; Flory, Abigail R.; DellaValle, Curt T.; Ward, Mary H.

    2015-01-01

    Contamination of drinking water by nitrate is a growing problem in many agricultural areas of the country. Ingested nitrate can lead to the endogenous formation of N-nitroso compounds, potent carcinogens. We developed a predictive model for nitrate concentrations in private wells in Iowa. Using 34,084 measurements of nitrate in private wells, we trained and tested random forest models to predict log nitrate levels by systematically assessing the predictive performance of 179 variables in 36 thematic groups (well depth, distance to sinkholes, location, land use, soil characteristics, nitrogen inputs, meteorology, and other factors). The final model contained 66 variables in 17 groups. Some of the most important variables were well depth, slope length within 1 km of the well, year of sample, and distance to nearest animal feeding operation. The correlation between observed and estimated nitrate concentrations was excellent in the training set (r-square = 0.77) and was acceptable in the testing set (r-square = 0.38). The random forest model had substantially better predictive performance than a traditional linear regression model or a regression tree. Our model will be used to investigate the association between nitrate levels in drinking water and cancer risk in the Iowa participants of the Agricultural Health Study cohort.

  5. Modeling groundwater nitrate concentrations in private wells in Iowa.

    PubMed

    Wheeler, David C; Nolan, Bernard T; Flory, Abigail R; DellaValle, Curt T; Ward, Mary H

    2015-12-01

    Contamination of drinking water by nitrate is a growing problem in many agricultural areas of the country. Ingested nitrate can lead to the endogenous formation of N-nitroso compounds, potent carcinogens. We developed a predictive model for nitrate concentrations in private wells in Iowa. Using 34,084 measurements of nitrate in private wells, we trained and tested random forest models to predict log nitrate levels by systematically assessing the predictive performance of 179 variables in 36 thematic groups (well depth, distance to sinkholes, location, land use, soil characteristics, nitrogen inputs, meteorology, and other factors). The final model contained 66 variables in 17 groups. Some of the most important variables were well depth, slope length within 1 km of the well, year of sample, and distance to nearest animal feeding operation. The correlation between observed and estimated nitrate concentrations was excellent in the training set (r-square=0.77) and was acceptable in the testing set (r-square=0.38). The random forest model had substantially better predictive performance than a traditional linear regression model or a regression tree. Our model will be used to investigate the association between nitrate levels in drinking water and cancer risk in the Iowa participants of the Agricultural Health Study cohort. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Three-Dimensional Modeling of Aircraft High-Lift Components with Vehicle Sketch Pad

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.

    2016-01-01

    Vehicle Sketch Pad (OpenVSP) is a parametric geometry modeler that has been used extensively for conceptual design studies of aircraft, including studies using higher-order analysis. OpenVSP can model flap and slat surfaces using simple shearing of the airfoil coordinates, which is an appropriate level of complexity for lower-order aerodynamic analysis methods. For three-dimensional analysis, however, there is not a built-in method for defining the high-lift components in OpenVSP in a realistic manner, or for controlling their complex motions in a parametric manner that is intuitive to the designer. This paper seeks instead to utilize OpenVSP's existing capabilities, and establish a set of best practices for modeling high-lift components at a level of complexity suitable for higher-order analysis methods. Techniques are described for modeling the flap and slat components as separate three-dimensional surfaces, and for controlling their motion using simple parameters defined in the local hinge-axis frame of reference. To demonstrate the methodology, an OpenVSP model for the Energy-Efficient Transport (EET) AR12 wind-tunnel model has been created, taking advantage of OpenVSP's Advanced Parameter Linking capability to translate the motions of the high-lift components from the hinge-axis coordinate system to a set of transformations in OpenVSP's frame of reference.

  7. Planck constraints on holographic dark energy

    NASA Astrophysics Data System (ADS)

    Li, Miao; Li, Xiao-Dong; Ma, Yin-Zhe; Zhang, Xin; Zhang, Zhenhui

    2013-09-01

    We perform a detailed investigation on the cosmological constraints on the holographic dark energy (HDE) model by using the Plank data. We find that HDE can provide a good fit to the Plank high-l (l gtrsim 40) temperature power spectrum, while the discrepancy at l simeq 20-40 found in the ΛCDM model remains unsolved in the HDE model. The Plank data alone can lead to strong and reliable constraint on the HDE parameter c. At the 68% confidence level (CL), we obtain c = 0.508 ± 0.207 with Plank+WP+lensing, favoring the present phantom behavior of HDE at the more than 2σ CL. By combining Plank+WP with the external astrophysical data sets, i.e. the BAO measurements from 6dFGS+SDSS DR7(R)+BOSS DR9, the direct Hubble constant measurement result (H0 = 73.8 ± 2.4 kms-1Mpc-1) from the HST, the SNLS3 supernovae data set, and Union2.1 supernovae data set, we get the 68% CL constraint results c = 0.484 ± 0.070, 0.474 ± 0.049, 0.594 ± 0.051, and 0.642 ± 0.066, respectively. The constraints can be improved by 2%-15% if we further add the Plank lensing data into the analysis. Compared with the WMAP-9 results, the Plank results reduce the error by 30%-60%, and prefer a phantom-like HDE at higher significant level. We also investigate the tension between different data sets. We find no evident tension when we combine Plank data with BAO and HST. Especially, we find that the strong correlation between Ωmh3 and dark energy parameters is helpful in relieving the tension between the Plank and HST measurements. The residual value of χ2Plank+WP+HST-χ2Plank+WP is 7.8 in the ΛCDM model, and is reduced to 1.0 or 0.3 if we switch the dark energy to w model or the holographic model. When we introduce supernovae data sets into the analysis, some tension appears. We find that the SNLS3 data set is in tension with all other data sets; for example, for the Plank+WP, WMAP-9 and BAO+HST, the corresponding Δχ2 is equal to 6.4, 3.5 and 4.1, respectively. As a comparison, the Union2.1 data set is consistent with these three data sets, but the combination Union2.1+BAO+HST is in tension with Plank+WP+lensing, corresponding to a large Δχ2 that is equal to 8.6 (1.4% probability). Thus, combining internal inconsistent data sets (SNIa+BAO+HST with Plank+WP+lensing) can lead to ambiguous results, and it is necessary to perform the HDE data analysis for each independent data sets. Our tightest self-consistent constraint is c = 0.495 ± 0.039 obtained from Plank+WP+BAO+HST+lensing.

  8. Statistical Evidence Suggests that Inattention Drives Hyperactivity/Impulsivity in Attention Deficit-Hyperactivity Disorder

    PubMed Central

    Sokolova, Elena; Groot, Perry; Claassen, Tom; van Hulzen, Kimm J.; Glennon, Jeffrey C.; Franke, Barbara

    2016-01-01

    Background Numerous factor analytic studies consistently support a distinction between two symptom domains of attention-deficit/hyperactivity disorder (ADHD), inattention and hyperactivity/impulsivity. Both dimensions show high internal consistency and moderate to strong correlations with each other. However, it is not clear what drives this strong correlation. The aim of this paper is to address this issue. Method We applied a sophisticated approach for causal discovery on three independent data sets of scores of the two ADHD dimensions in NeuroIMAGE (total N = 675), ADHD-200 (N = 245), and IMpACT (N = 164), assessed by different raters and instruments, and further used information on gender or a genetic risk haplotype. Results In all data sets we found strong statistical evidence for the same pattern: the clear dependence between hyperactivity/impulsivity symptom level and an established genetic factor (either gender or risk haplotype) vanishes when one conditions upon inattention symptom level. Under reasonable assumptions, e.g., that phenotypes do not cause genotypes, a causal model that is consistent with this pattern contains a causal path from inattention to hyperactivity/impulsivity. Conclusions The robust dependency cancellation observed in three different data sets suggests that inattention is a driving factor for hyperactivity/impulsivity. This causal hypothesis can be further validated in intervention studies. Our model suggests that interventions that affect inattention will also have an effect on the level of hyperactivity/impulsivity. On the other hand, interventions that affect hyperactivity/impulsivity would not change the level of inattention. This causal model may explain earlier findings on heritable factors causing ADHD reported in the study of twins with learning difficulties. PMID:27768717

  9. Using a coupled groundwater/surfacewater model to predict climate-change impacts to lakes in the Trout Lake watershed, Northern Wisconsin

    USGS Publications Warehouse

    Walker, John F.; Hunt, Randall J.; Markstrom, Steven L.; Hay, Lauren E.; Doherty, John

    2009-01-01

    A major focus of the U.S. Geological Survey’s Trout Lake Water, Energy, and Biogeochemical Budgets (WEBB) project is the development of a watershed model to allow predictions of hydrologic response to future conditions including land-use and climate change. The coupled groundwater/surface-water model GSFLOW was chosen for this purpose because it could easily incorporate an existing groundwater flow model and it provides for simulation of surface-water processes. The Trout Lake watershed in northern Wisconsin is underlain by a highly conductive outwash sand aquifer. In this area, streamflow is dominated by groundwater contributions; however, surface runoff occurs during intense rainfall periods and spring snowmelt. Surface runoff also occurs locally near stream/lake areas where the unsaturated zone is thin. A diverse data set, collected from 1992 to 2007 for the Trout Lake WEBB project and the co-located and NSF-funded North Temperate Lakes LTER project, includes snowpack, solar radiation, potential evapotranspiration, lake levels, groundwater levels, and streamflow. The timeseries processing software TSPROC (Doherty 2003) was used to distill the large time series data set to a smaller set of observations and summary statistics that captured the salient hydrologic information. The timeseries processing reduced hundreds of thousands of observations to less than 5,000. Model calibration included specific predictions for several lakes in the study area using the PEST parameter estimation suite of software (Doherty 2007). The calibrated model was used to simulate the hydrologic response in the study lakes to a variety of climate change scenarios culled from the IPCC Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon et al. 2007). Results from the simulations indicate climate change could result in substantial changes to the lake levels and components of the hydrologic budget of a seepage lake in the flow system. For a drainage lake lower in the flow system, the impacts of climate change are diminished. 

  10. Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: Gaps and opportunities for developing a coordinated regional sampling network

    PubMed Central

    Griffith, Kereen T.; Larriviere, Jack C.; Feher, Laura C.; Cahoon, Donald R.; Enwright, Nicholas M.; Oster, David A.; Tirpak, John M.; Woodrey, Mark S.; Collini, Renee C.; Baustian, Joseph J.; Breithaupt, Joshua L.; Cherry, Julia A.; Conrad, Jeremy R.; Cormier, Nicole; Coronado-Molina, Carlos A.; Donoghue, Joseph F.; Graham, Sean A.; Harper, Jennifer W.; Hester, Mark W.; Howard, Rebecca J.; Krauss, Ken W.; Kroes, Daniel E.; Lane, Robert R.; McKee, Karen L.; Mendelssohn, Irving A.; Middleton, Beth A.; Moon, Jena A.; Piazza, Sarai C.; Rankin, Nicole M.; Sklar, Fred H.; Steyer, Greg D.; Swanson, Kathleen M.; Swarzenski, Christopher M.; Vervaeke, William C.; Willis, Jonathan M.; Wilson, K. Van

    2017-01-01

    Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH) approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise). Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana’s network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be used to transform a broadly disseminated and unplanned collection of SET-MH stations into a coordinated and strategic regional network. This regional network would provide data for predicting and preparing for the responses of coastal wetlands to accelerated sea-level rise and other aspects of global change. PMID:28902904

  11. Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: Gaps and opportunities for developing a coordinated regional sampling network

    USGS Publications Warehouse

    Osland, Michael J.; Griffith, Kereen T.; Larriviere, Jack C.; Feher, Laura C.; Cahoon, Donald R.; Enwright, Nicholas M.; Oster, David A.; Tirpak, John M.; Woodrey, Mark S.; Collini, Renee C.; Baustian, Joseph J.; Breithaupt, Joshua L.; Cherry, Julia A; Conrad, Jeremy R.; Cormier, Nicole; Coronado-Molina, Carlos A.; Donoghue, Joseph F.; Graham, Sean A.; Harper, Jennifer W.; Hester, Mark W.; Howard, Rebecca J.; Krauss, Ken W.; Kroes, Daniel; Lane, Robert R.; Mckee, Karen L.; Mendelssohn, Irving A.; Middleton, Beth A.; Moon, Jena A.; Piazza, Sarai; Rankin, Nicole M.; Sklar, Fred H.; Steyer, Gregory D.; Swanson, Kathleen M.; Swarzenski, Christopher M.; Vervaeke, William; Willis, Jonathan M; Van Wilson, K.

    2017-01-01

    Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH) approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise). Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana’s network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be used to transform a broadly disseminated and unplanned collection of SET-MH stations into a coordinated and strategic regional network. This regional network would provide data for predicting and preparing for the responses of coastal wetlands to accelerated sea-level rise and other aspects of global change.

  12. Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: Gaps and opportunities for developing a coordinated regional sampling network.

    PubMed

    Osland, Michael J; Griffith, Kereen T; Larriviere, Jack C; Feher, Laura C; Cahoon, Donald R; Enwright, Nicholas M; Oster, David A; Tirpak, John M; Woodrey, Mark S; Collini, Renee C; Baustian, Joseph J; Breithaupt, Joshua L; Cherry, Julia A; Conrad, Jeremy R; Cormier, Nicole; Coronado-Molina, Carlos A; Donoghue, Joseph F; Graham, Sean A; Harper, Jennifer W; Hester, Mark W; Howard, Rebecca J; Krauss, Ken W; Kroes, Daniel E; Lane, Robert R; McKee, Karen L; Mendelssohn, Irving A; Middleton, Beth A; Moon, Jena A; Piazza, Sarai C; Rankin, Nicole M; Sklar, Fred H; Steyer, Greg D; Swanson, Kathleen M; Swarzenski, Christopher M; Vervaeke, William C; Willis, Jonathan M; Wilson, K Van

    2017-01-01

    Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH) approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise). Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana's network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be used to transform a broadly disseminated and unplanned collection of SET-MH stations into a coordinated and strategic regional network. This regional network would provide data for predicting and preparing for the responses of coastal wetlands to accelerated sea-level rise and other aspects of global change.

  13. Advanced development of atmospheric models. [SEASAT Program support

    NASA Technical Reports Server (NTRS)

    Kesel, P. G.; Langland, R. A.; Stephens, P. L.; Welleck, R. E.; Wolff, P. M.

    1979-01-01

    A set of atmospheric analysis and prediction models was developed in support of the SEASAT Program existing objective analysis models which utilize a 125x125 polar stereographic grid of the Northern Hemisphere, which were modified in order to incorporate and assess the impact of (real or simulated) satellite data in the analysis of a two-day meteorological scenario in January 1979. Program/procedural changes included: (1) a provision to utilize winds in the sea level pressure and multi-level height analyses (1000-100 MBS); (2) The capability to perform a pre-analysis at two control levels (1000 MBS and 250 MBS); (3) a greater degree of wind- and mass-field coupling, especially at these controls levels; (4) an improved facility to bogus the analyses based on results of the preanalysis; and (5) a provision to utilize (SIRS) satellite thickness values and cloud motion vectors in the multi-level height analysis.

  14. Managing the Process of Protection Level Assessment of the Complex Organization and Technical Industrial Enterprises

    NASA Astrophysics Data System (ADS)

    Gorlov, A. P.; Averchenkov, V. I.; Rytov, M. Yu; Eryomenko, V. T.

    2017-01-01

    The article is concerned with mathematical simulation of protection level assessment of complex organizational and technical systems of industrial enterprises by creating automated system, which main functions are: information security (IS) audit, forming of the enterprise threats model, recommendations concerning creation of the information protection system, a set of organizational-administrative documentation.

  15. Calibrating the pixel-level Kepler imaging data with a causal data-driven model

    NASA Astrophysics Data System (ADS)

    Wang, Dun; Foreman-Mackey, Daniel; Hogg, David W.; Schölkopf, Bernhard

    2015-01-01

    In general, astronomical observations are affected by several kinds of noise, each with it's own causal source; there is photon noise, stochastic source variability, and residuals coming from imperfect calibration of the detector or telescope. In particular, the precision of NASA Kepler photometry for exoplanet science—the most precise photometric measurements of stars ever made—appears to be limited by unknown or untracked variations in spacecraft pointing and temperature, and unmodeled stellar variability. Here we present the Causal Pixel Model (CPM) for Kepler data, a data-driven model intended to capture variability but preserve transit signals. The CPM works at the pixel level (not the photometric measurement level); it can capture more fine-grained information about the variation of the spacecraft than is available in the pixel-summed aperture photometry. The basic idea is that CPM predicts each target pixel value from a large number of pixels of other stars sharing the instrument variabilities while not containing any information on possible transits at the target star. In addition, we use the target star's future and past (auto-regression). By appropriately separating the data into training and test sets, we ensure that information about any transit will be perfectly isolated from the fitting of the model. The method has four hyper-parameters (the number of predictor stars, the auto-regressive window size, and two L2-regularization amplitudes for model components), which we set by cross-validation. We determine a generic set of hyper-parameters that works well on most of the stars with 11≤V≤12 mag and apply the method to a corresponding set of target stars with known planet transits. We find that we can consistently outperform (for the purposes of exoplanet detection) the Kepler Pre-search Data Conditioning (PDC) method for exoplanet discovery, often improving the SNR by a factor of two. While we have not yet exhaustively tested the method at other magnitudes, we expect that it should be generally applicable, with positive consequences for subsequent exoplanet detection or stellar variability (in which case we must exclude the autoregressive part to preserve intrinsic variability).

  16. Sustainability of cross-functional teams for marketing strategy development and implementation.

    PubMed

    Kono, Ken; Antonucci, Don

    2006-01-01

    This article presents a case study on a cross-functional team used for marketing strategy development and execution at a health insurance company. The study found a set of success factors that contributed to the initial success of the team, but the factors were not enough to maintain the team's high level of productivity over time. The study later identified a set of 8 factors that helped sustain the team's high-productivity level. The 2 sets (ie, success and its subsequent sustainability factors) are analyzed against a normative model of team effectiveness. All the factors are explained by the normative model except for 1 sustainability factor, "challenge motivator." In fact, the study found the "challenge motivator" to be the most critical factor to keep up the team's productivity over time. Apart from a performance crisis, the authors developed 3 "challenge motivators"--first, more granular market information that could unearth hidden performance issues; second, constant value creation to shareholders as the firm being publicly traded; and third, the firm's strategic mandate to meet and exceed customer expectations that puts ultimate performance pressure on the marketing strategy team.

  17. Health governance--its introduction in Lanarkshire Health Board.

    PubMed

    Wrench, J G; Moir, D C

    2002-01-01

    To describe an approach to implementing the principles of clinical governance in a Health Board setting. Using guidance from the Scottish Executive and The Faculty of Public Health Medicine to set up a health governance structure at Health Board level. Auditing current work to identify areas that required to be progressed. Lanarkshire Health Board. A Health Governance Committee and a Health Governance Advisory Group, to support the work of the main committee, were set up at Board level. The Scottish Executive Governance Monitoring Template has been adapted to cover the main public health functions. Topics considered in the first year include qualifications, registration and CPD activity of Consultants in Public Health Medicine, audit of public health advice on gastro-intestinal illness, audit of DPH Annual Report and audit of items of business on Health Board agenda. The model developed in Lanarkshire has a Health Governance Advisory Group which works in support of the main Health Governance Committee. This model works well in practice with much of the routine work being done by the Advisory Group. This has streamlined the work of the Health Governance Committee and facilitated its introduction.

  18. Integration of SAR and DEM data: Geometrical considerations

    NASA Technical Reports Server (NTRS)

    Kropatsch, Walter G.

    1991-01-01

    General principles for integrating data from different sources are derived from the experience of registration of SAR images with digital elevation models (DEM) data. The integration consists of establishing geometrical relations between the data sets that allow us to accumulate information from both data sets for any given object point (e.g., elevation, slope, backscatter of ground cover, etc.). Since the geometries of the two data are completely different they cannot be compared on a pixel by pixel basis. The presented approach detects instances of higher level features in both data sets independently and performs the matching at the high level. Besides the efficiency of this general strategy it further allows the integration of additional knowledge sources: world knowledge and sensor characteristics are also useful sources of information. The SAR features layover and shadow can be detected easily in SAR images. An analytical method to find such regions also in a DEM needs in addition the parameters of the flight path of the SAR sensor and the range projection model. The generation of the SAR layover and shadow maps is summarized and new extensions to this method are proposed.

  19. Optimal compliant-surface jumping: a multi-segment model of springboard standing jumps.

    PubMed

    Cheng, Kuangyou B; Hubbard, Mont

    2005-09-01

    A multi-segment model is used to investigate optimal compliant-surface jumping strategies and is applied to springboard standing jumps. The human model has four segments representing the feet, shanks, thighs, and trunk-head-arms. A rigid bar with a rotational spring on one end and a point mass on the other end (the tip) models the springboard. Board tip mass, length, and stiffness are functions of the fulcrum setting. Body segments and board tip are connected by frictionless hinge joints and are driven by joint torque actuators at the ankle, knee, and hip. One constant (maximum isometric torque) and three variable functions (of instantaneous joint angle, angular velocity, and activation level) determine each joint torque. Movement from a nearly straight motionless initial posture to jump takeoff is simulated. The objective is to find joint torque activation patterns during board contact so that jump height can be maximized. Minimum and maximum joint angles, rates of change of normalized activation levels, and contact duration are constrained. Optimal springboard jumping simulations can reasonably predict jumper vertical velocity and jump height. Qualitatively similar joint torque activation patterns are found over different fulcrum settings. Different from rigid-surface jumping where maximal activation is maintained until takeoff, joint activation decreases near takeoff in compliant-surface jumping. The fulcrum-height relations in experimental data were predicted by the models. However, lack of practice at non-preferred fulcrum settings might have caused less jump height than the models' prediction. Larger fulcrum numbers are beneficial for taller/heavier jumpers because they need more time to extend joints.

  20. Propellant Readiness Level: A Methodological Approach to Propellant Characterization

    NASA Technical Reports Server (NTRS)

    Bossard, John A.; Rhys, Noah O.

    2010-01-01

    A methodological approach to defining propellant characterization is presented. The method is based on the well-established Technology Readiness Level nomenclature. This approach establishes the Propellant Readiness Level as a metric for ascertaining the readiness of a propellant or a propellant combination by evaluating the following set of propellant characteristics: thermodynamic data, toxicity, applications, combustion data, heat transfer data, material compatibility, analytical prediction modeling, injector/chamber geometry, pressurization, ignition, combustion stability, system storability, qualification testing, and flight capability. The methodology is meant to be applicable to all propellants or propellant combinations; liquid, solid, and gaseous propellants as well as monopropellants and propellant combinations are equally served. The functionality of the proposed approach is tested through the evaluation and comparison of an example set of hydrocarbon fuels.

  1. Bessel functions in mass action modeling of memories and remembrances

    NASA Astrophysics Data System (ADS)

    Freeman, Walter J.; Capolupo, Antonio; Kozma, Robert; Olivares del Campo, Andrés; Vitiello, Giuseppe

    2015-10-01

    Data from experimental observations of a class of neurological processes (Freeman K-sets) present functional distribution reproducing Bessel function behavior. We model such processes with couples of damped/amplified oscillators which provide time dependent representation of Bessel equation. The root loci of poles and zeros conform to solutions of K-sets. Some light is shed on the problem of filling the gap between the cellular level dynamics and the brain functional activity. Breakdown of time-reversal symmetry is related with the cortex thermodynamic features. This provides a possible mechanism to deduce lifetime of recorded memory.

  2. Determination and representation of electric charge distributions associated with adverse weather conditions

    NASA Technical Reports Server (NTRS)

    Rompala, John T.

    1992-01-01

    Algorithms are presented for determining the size and location of electric charges which model storm systems and lightning strikes. The analysis utilizes readings from a grid of ground level field mills and geometric constraints on parameters to arrive at a representative set of charges. This set is used to generate three dimensional graphical depictions of the set as well as contour maps of the ground level electrical environment over the grid. The composite, analytic and graphic package is demonstrated and evaluated using controlled input data and archived data from a storm system. The results demonstrate the packages utility as: an operational tool in appraising adverse weather conditions; a research tool in studies of topics such as storm structure, storm dynamics, and lightning; and a tool in designing and evaluating grid systems.

  3. Search for new phenomena with the M_{T2} variable in the all-hadronic final state produced in proton-proton collisions at √{s} = 13 {TeV}

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rabady, D.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Strauss, J.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Croce, D. Di; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Junior, M. Correa Martins; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Souza, S. Fonseca; Huertas Guativa, L. M.; Malbouisson, H.; De Almeida, M. Melo; Mora Herrera, C.; Mundim, L.; Nogima, H.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Da Silva De Araujo, F. Torres; Pereira, A. Vilela; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Stoykova, S.; Sultanov, G.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Kamel, A. Ellithi; Khalil, S.; Mohamed, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; de Cassagnac, R. Granier; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Leiton, A. G. Stahl; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Bihan, A.-C. Le; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Khvedelidze, A.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Pardos, C. Diez; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Bein, S.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Junkes, A.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Bhawandeep, U.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Lezki, S.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Guiducci, L.; Marcellini, S.; Masetti, G.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; de Fatis, T. Tabarelli; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Biasotto, M.; Bisello, D.; Boletti, A.; Carlin, R.; Oliveira, A. Carvalho Antunes De; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Fantinel, S.; Fanzago, F.; Gasparini, U.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Braghieri, A.; Fallavollita, F.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Solestizi, L. Alunni; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Mariani, V.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Ali, M. A. B. Md; Mohamad Idris, F.; Abdullah, W. A. T. Wan; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Qazi, S.; Saddique, A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Da Cruz E Silva, C. Beirão; Calpas, B.; Di Francesco, A.; Faccioli, P.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chadeeva, M.; Markin, O.; Parygin, P.; Philippov, D.; Polikarpov, S.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Del Valle, A. Escalante; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Arbol, P. Martinez Ruiz del; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Karacheban, O.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bachmair, F.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Shchutska, L.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zagozdzinska, A.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Adiguzel, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Topaksu, A. Kayis; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Burns, D.; De La Barca Sanchez, M. Calderon; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Della Porta, G. Zevi; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; De Sá, R. Lopes; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Perry, T.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; De Lima, R. Teixeira; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Benaglia, A.; Cooperstein, S.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2017-10-01

    A search for new phenomena is performed using events with jets and significant transverse momentum imbalance, as inferred through the M_{T2} variable. The results are based on a sample of proton-proton collisions collected in 2016 at a center-of-mass energy of 13 {TeV} with the CMS detector and corresponding to an integrated luminosity of 35.9 {fb}^ {-1}. No excess event yield is observed above the predicted standard model background, and the results are interpreted as exclusion limits at 95% confidence level on the masses of predicted particles in a variety of simplified models of R-parity conserving supersymmetry. Depending on the details of the model, 95% confidence level lower limits on the gluino (light-flavor squark) masses are placed up to 2025 (1550) {GeV}. Mass limits as high as 1070 (1175) {GeV} are set on the masses of top (bottom) squarks. Information is provided to enable re-interpretation of these results, including model-independent limits on the number of non-standard model events for a set of simplified, inclusive search regions.

  4. 3D robust Chan-Vese model for industrial computed tomography volume data segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Linghui; Zeng, Li; Luan, Xiao

    2013-11-01

    Industrial computed tomography (CT) has been widely applied in many areas of non-destructive testing (NDT) and non-destructive evaluation (NDE). In practice, CT volume data to be dealt with may be corrupted by noise. This paper addresses the segmentation of noisy industrial CT volume data. Motivated by the research on the Chan-Vese (CV) model, we present a region-based active contour model that draws upon intensity information in local regions with a controllable scale. In the presence of noise, a local energy is firstly defined according to the intensity difference within a local neighborhood. Then a global energy is defined to integrate local energy with respect to all image points. In a level set formulation, this energy is represented by a variational level set function, where a surface evolution equation is derived for energy minimization. Comparative analysis with the CV model indicates the comparable performance of the 3D robust Chan-Vese (RCV) model. The quantitative evaluation also shows the segmentation accuracy of 3D RCV. In addition, the efficiency of our approach is validated under several types of noise, such as Poisson noise, Gaussian noise, salt-and-pepper noise and speckle noise.

  5. A dynamical pattern recognition model of gamma activity in auditory cortex

    PubMed Central

    Zavaglia, M.; Canolty, R.T.; Schofield, T.M.; Leff, A.P.; Ursino, M.; Knight, R.T.; Penny, W.D.

    2012-01-01

    This paper describes a dynamical process which serves both as a model of temporal pattern recognition in the brain and as a forward model of neuroimaging data. This process is considered at two separate levels of analysis: the algorithmic and implementation levels. At an algorithmic level, recognition is based on the use of Occurrence Time features. Using a speech digit database we show that for noisy recognition environments, these features rival standard cepstral coefficient features. At an implementation level, the model is defined using a Weakly Coupled Oscillator (WCO) framework and uses a transient synchronization mechanism to signal a recognition event. In a second set of experiments, we use the strength of the synchronization event to predict the high gamma (75–150 Hz) activity produced by the brain in response to word versus non-word stimuli. Quantitative model fits allow us to make inferences about parameters governing pattern recognition dynamics in the brain. PMID:22327049

  6. Optimization of programming parameters in children with the advanced bionics cochlear implant.

    PubMed

    Baudhuin, Jacquelyn; Cadieux, Jamie; Firszt, Jill B; Reeder, Ruth M; Maxson, Jerrica L

    2012-05-01

    Cochlear implants provide access to soft intensity sounds and therefore improved audibility for children with severe-to-profound hearing loss. Speech processor programming parameters, such as threshold (or T-level), input dynamic range (IDR), and microphone sensitivity, contribute to the recipient's program and influence audibility. When soundfield thresholds obtained through the speech processor are elevated, programming parameters can be modified to improve soft sound detection. Adult recipients show improved detection for low-level sounds when T-levels are set at raised levels and show better speech understanding in quiet when wider IDRs are used. Little is known about the effects of parameter settings on detection and speech recognition in children using today's cochlear implant technology. The overall study aim was to assess optimal T-level, IDR, and sensitivity settings in pediatric recipients of the Advanced Bionics cochlear implant. Two experiments were conducted. Experiment 1 examined the effects of two T-level settings on soundfield thresholds and detection of the Ling 6 sounds. One program set T-levels at 10% of most comfortable levels (M-levels) and another at 10 current units (CUs) below the level judged as "soft." Experiment 2 examined the effects of IDR and sensitivity settings on speech recognition in quiet and noise. Participants were 11 children 7-17 yr of age (mean 11.3) implanted with the Advanced Bionics High Resolution 90K or CII cochlear implant system who had speech recognition scores of 20% or greater on a monosyllabic word test. Two T-level programs were compared for detection of the Ling sounds and frequency modulated (FM) tones. Differing IDR/sensitivity programs (50/0, 50/10, 70/0, 70/10) were compared using Ling and FM tone detection thresholds, CNC (consonant-vowel nucleus-consonant) words at 50 dB SPL, and Hearing in Noise Test for Children (HINT-C) sentences at 65 dB SPL in the presence of four-talker babble (+8 signal-to-noise ratio). Outcomes were analyzed using a paired t-test and a mixed-model repeated measures analysis of variance (ANOVA). T-levels set 10 CUs below "soft" resulted in significantly lower detection thresholds for all six Ling sounds and FM tones at 250, 1000, 3000, 4000, and 6000 Hz. When comparing programs differing by IDR and sensitivity, a 50 dB IDR with a 0 sensitivity setting showed significantly poorer thresholds for low frequency FM tones and voiced Ling sounds. Analysis of group mean scores for CNC words in quiet or HINT-C sentences in noise indicated no significant differences across IDR/sensitivity settings. Individual data, however, showed significant differences between IDR/sensitivity programs in noise; the optimal program differed across participants. In pediatric recipients of the Advanced Bionics cochlear implant device, manually setting T-levels with ascending loudness judgments should be considered when possible or when low-level sounds are inaudible. Study findings confirm the need to determine program settings on an individual basis as well as the importance of speech recognition verification measures in both quiet and noise. Clinical guidelines are suggested for selection of programming parameters in both young and older children. American Academy of Audiology.

  7. A spatial panel ordered-response model with application to the analysis of urban land-use development intensity patterns

    NASA Astrophysics Data System (ADS)

    Ferdous, Nazneen; Bhat, Chandra R.

    2013-01-01

    This paper proposes and estimates a spatial panel ordered-response probit model with temporal autoregressive error terms to analyze changes in urban land development intensity levels over time. Such a model structure maintains a close linkage between the land owner's decision (unobserved to the analyst) and the land development intensity level (observed by the analyst) and accommodates spatial interactions between land owners that lead to spatial spillover effects. In addition, the model structure incorporates spatial heterogeneity as well as spatial heteroscedasticity. The resulting model is estimated using a composite marginal likelihood (CML) approach that does not require any simulation machinery and that can be applied to data sets of any size. A simulation exercise indicates that the CML approach recovers the model parameters very well, even in the presence of high spatial and temporal dependence. In addition, the simulation results demonstrate that ignoring spatial dependency and spatial heterogeneity when both are actually present will lead to bias in parameter estimation. A demonstration exercise applies the proposed model to examine urban land development intensity levels using parcel-level data from Austin, Texas.

  8. Geodynamics branch data base for main magnetic field analysis

    NASA Technical Reports Server (NTRS)

    Langel, Robert A.; Baldwin, R. T.

    1991-01-01

    The data sets used in geomagnetic field modeling at GSFC are described. Data are measured and obtained from a variety of information and sources. For clarity, data sets from different sources are categorized and processed separately. The data base is composed of magnetic observatory data, surface data, high quality aeromagnetic, high quality total intensity marine data, satellite data, and repeat data. These individual data categories are described in detail in a series of notebooks in the Geodynamics Branch, GSFC. This catalog reviews the original data sets, the processing history, and the final data sets available for each individual category of the data base and is to be used as a reference manual for the notebooks. Each data type used in geomagnetic field modeling has varying levels of complexity requiring specialized processing routines for satellite and observatory data and two general routines for processing aeromagnetic, marine, land survey, and repeat data.

  9. Mental Health Collaborative Care and Its Role in Primary Care Settings

    PubMed Central

    Goodrich, David E.; Kilbourne, Amy M.; Nord, Kristina M.; Bauer, Mark S.

    2013-01-01

    Collaborative care models (CCMs) provide a pragmatic strategy to deliver integrated mental health and medical care for persons with mental health conditions served in primary care settings. CCMs are team-based intervention to enact system-level redesign by improving patient care through organizational leadership support, provider decision support, and clinical information systems as well as engaging patients in their care through self-management support and linkages to community resources. The model is also a cost-efficient strategy for primary care practices to improve outcomes for a range of mental health conditions across populations and settings. CCMs can help achieve integrated care aims under healthcare reform yet organizational and financial issues may affect adoption into routine primary care. Notably, successful implementation of CCMs in routine care will require alignment of financial incentives to support systems redesign investments, reimbursements for mental health providers, and adaptation across different practice settings and infrastructure to offer all CCM components. PMID:23881714

  10. Mental health collaborative care and its role in primary care settings.

    PubMed

    Goodrich, David E; Kilbourne, Amy M; Nord, Kristina M; Bauer, Mark S

    2013-08-01

    Collaborative care models (CCMs) provide a pragmatic strategy to deliver integrated mental health and medical care for persons with mental health conditions served in primary care settings. CCMs are team-based intervention to enact system-level redesign by improving patient care through organizational leadership support, provider decision support, and clinical information systems, as well as engaging patients in their care through self-management support and linkages to community resources. The model is also a cost-efficient strategy for primary care practices to improve outcomes for a range of mental health conditions across populations and settings. CCMs can help achieve integrated care aims underhealth care reform yet organizational and financial issues may affect adoption into routine primary care. Notably, successful implementation of CCMs in routine care will require alignment of financial incentives to support systems redesign investments, reimbursements for mental health providers, and adaptation across different practice settings and infrastructure to offer all CCM components.

  11. Street-level noise in an urban setting: assessment and contribution to personal exposure.

    PubMed

    McAlexander, Tara P; Gershon, Robyn R M; Neitzel, Richard L

    2015-02-28

    The urban soundscape, which represents the totality of noise in the urban setting, is formed from a wide range of sources. One of the most ubiquitous and least studied of these is street-level (i.e., sidewalk) noise. Mainly associated with vehicular traffic, street level noise is hard to ignore and hard to escape. It is also potentially dangerous, as excessive noise from any source is an important risk factor for adverse health effects. This study was conducted to better characterize the urban soundscape and the role of street level noise on overall personal noise exposure in an urban setting. Street-level noise measures were obtained at 99 street sites located throughout New York City (NYC), along with data on time, location, and sources of environmental noise. The relationship between street-level noise measures and potential predictors of noise was analyzed using linear and logistic regression models, and geospatial modeling was used to evaluate spatial trends in noise. Daily durations of street-level activities (time spent standing, sitting, walking and running on streets) were estimated via survey from a sample of NYC community members recruited at NYC street fairs. Street-level noise measurements were then combined with daily exposure durations for each member of the sample to estimate exposure to street noise, as well as exposure to other sources of noise. The mean street noise level was 73.4 dBA, with substantial spatial variation (range 55.8-95.0 dBA). Density of vehicular (road) traffic was significantly associated with excessive street level noise levels. Exposure duration data for street-level noise and other common sources of noise were collected from 1894 NYC community members. Based on individual street-level exposure estimates, and in consideration of all other sources of noise exposure in an urban population, we estimated that street noise exposure contributes approximately 4% to an average individual's annual noise dose. Street-level noise exposure is a potentially important source of overall noise exposure, and the reduction of environmental sources of excessive street- level noise should be a priority for public health and urban planning.

  12. Thresholding functional connectomes by means of mixture modeling.

    PubMed

    Bielczyk, Natalia Z; Walocha, Fabian; Ebel, Patrick W; Haak, Koen V; Llera, Alberto; Buitelaar, Jan K; Glennon, Jeffrey C; Beckmann, Christian F

    2018-05-01

    Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are typically operationalized through the full or partial correlation between all pairs of regional time series. Estimating the structure of the latent underlying functional connectome from the set of pair-wise partial correlations remains an open research problem though. Typically, this thresholding problem is approached by proportional thresholding, or by means of parametric or non-parametric permutation testing across a cohort of subjects at each possible connection. As an alternative, we propose a data-driven thresholding approach for network matrices on the basis of mixture modeling. This approach allows for creating subject-specific sparse connectomes by modeling the full set of partial correlations as a mixture of low correlation values associated with weak or unreliable edges in the connectome and a sparse set of reliable connections. Consequently, we propose to use alternative thresholding strategy based on the model fit using pseudo-False Discovery Rates derived on the basis of the empirical null estimated as part of the mixture distribution. We evaluate the method on synthetic benchmark fMRI datasets where the underlying network structure is known, and demonstrate that it gives improved performance with respect to the alternative methods for thresholding connectomes, given the canonical thresholding levels. We also demonstrate that mixture modeling gives highly reproducible results when applied to the functional connectomes of the visual system derived from the n-back Working Memory task in the Human Connectome Project. The sparse connectomes obtained from mixture modeling are further discussed in the light of the previous knowledge of the functional architecture of the visual system in humans. We also demonstrate that with use of our method, we are able to extract similar information on the group level as can be achieved with permutation testing even though these two methods are not equivalent. We demonstrate that with both of these methods, we obtain functional decoupling between the two hemispheres in the higher order areas of the visual cortex during visual stimulation as compared to the resting state, which is in line with previous studies suggesting lateralization in the visual processing. However, as opposed to permutation testing, our approach does not require inference at the cohort level and can be used for creating sparse connectomes at the level of a single subject. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Clusternomics: Integrative context-dependent clustering for heterogeneous datasets

    PubMed Central

    Wernisch, Lorenz

    2017-01-01

    Integrative clustering is used to identify groups of samples by jointly analysing multiple datasets describing the same set of biological samples, such as gene expression, copy number, methylation etc. Most existing algorithms for integrative clustering assume that there is a shared consistent set of clusters across all datasets, and most of the data samples follow this structure. However in practice, the structure across heterogeneous datasets can be more varied, with clusters being joined in some datasets and separated in others. In this paper, we present a probabilistic clustering method to identify groups across datasets that do not share the same cluster structure. The proposed algorithm, Clusternomics, identifies groups of samples that share their global behaviour across heterogeneous datasets. The algorithm models clusters on the level of individual datasets, while also extracting global structure that arises from the local cluster assignments. Clusters on both the local and the global level are modelled using a hierarchical Dirichlet mixture model to identify structure on both levels. We evaluated the model both on simulated and on real-world datasets. The simulated data exemplifies datasets with varying degrees of common structure. In such a setting Clusternomics outperforms existing algorithms for integrative and consensus clustering. In a real-world application, we used the algorithm for cancer subtyping, identifying subtypes of cancer from heterogeneous datasets. We applied the algorithm to TCGA breast cancer dataset, integrating gene expression, miRNA expression, DNA methylation and proteomics. The algorithm extracted clinically meaningful clusters with significantly different survival probabilities. We also evaluated the algorithm on lung and kidney cancer TCGA datasets with high dimensionality, again showing clinically significant results and scalability of the algorithm. PMID:29036190

  14. Clusternomics: Integrative context-dependent clustering for heterogeneous datasets.

    PubMed

    Gabasova, Evelina; Reid, John; Wernisch, Lorenz

    2017-10-01

    Integrative clustering is used to identify groups of samples by jointly analysing multiple datasets describing the same set of biological samples, such as gene expression, copy number, methylation etc. Most existing algorithms for integrative clustering assume that there is a shared consistent set of clusters across all datasets, and most of the data samples follow this structure. However in practice, the structure across heterogeneous datasets can be more varied, with clusters being joined in some datasets and separated in others. In this paper, we present a probabilistic clustering method to identify groups across datasets that do not share the same cluster structure. The proposed algorithm, Clusternomics, identifies groups of samples that share their global behaviour across heterogeneous datasets. The algorithm models clusters on the level of individual datasets, while also extracting global structure that arises from the local cluster assignments. Clusters on both the local and the global level are modelled using a hierarchical Dirichlet mixture model to identify structure on both levels. We evaluated the model both on simulated and on real-world datasets. The simulated data exemplifies datasets with varying degrees of common structure. In such a setting Clusternomics outperforms existing algorithms for integrative and consensus clustering. In a real-world application, we used the algorithm for cancer subtyping, identifying subtypes of cancer from heterogeneous datasets. We applied the algorithm to TCGA breast cancer dataset, integrating gene expression, miRNA expression, DNA methylation and proteomics. The algorithm extracted clinically meaningful clusters with significantly different survival probabilities. We also evaluated the algorithm on lung and kidney cancer TCGA datasets with high dimensionality, again showing clinically significant results and scalability of the algorithm.

  15. Rapid and non-invasive analysis of deoxynivalenol in durum and common wheat by Fourier-Transform Near Infrared (FT-NIR) spectroscopy.

    PubMed

    De Girolamo, A; Lippolis, V; Nordkvist, E; Visconti, A

    2009-06-01

    Fourier transform near-infrared spectroscopy (FT-NIR) was used for rapid and non-invasive analysis of deoxynivalenol (DON) in durum and common wheat. The relevance of using ground wheat samples with a homogeneous particle size distribution to minimize measurement variations and avoid DON segregation among particles of different sizes was established. Calibration models for durum wheat, common wheat and durum + common wheat samples, with particle size <500 microm, were obtained by using partial least squares (PLS) regression with an external validation technique. Values of root mean square error of prediction (RMSEP, 306-379 microg kg(-1)) were comparable and not too far from values of root mean square error of cross-validation (RMSECV, 470-555 microg kg(-1)). Coefficients of determination (r(2)) indicated an "approximate to good" level of prediction of the DON content by FT-NIR spectroscopy in the PLS calibration models (r(2) = 0.71-0.83), and a "good" discrimination between low and high DON contents in the PLS validation models (r(2) = 0.58-0.63). A "limited to good" practical utility of the models was ascertained by range error ratio (RER) values higher than 6. A qualitative model, based on 197 calibration samples, was developed to discriminate between blank and naturally contaminated wheat samples by setting a cut-off at 300 microg kg(-1) DON to separate the two classes. The model correctly classified 69% of the 65 validation samples with most misclassified samples (16 of 20) showing DON contamination levels quite close to the cut-off level. These findings suggest that FT-NIR analysis is suitable for the determination of DON in unprocessed wheat at levels far below the maximum permitted limits set by the European Commission.

  16. Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments

    PubMed Central

    Jozwik, Kamila M.; Kriegeskorte, Nikolaus; Storrs, Katherine R.; Mur, Marieke

    2017-01-01

    Recent advances in Deep convolutional Neural Networks (DNNs) have enabled unprecedentedly accurate computational models of brain representations, and present an exciting opportunity to model diverse cognitive functions. State-of-the-art DNNs achieve human-level performance on object categorisation, but it is unclear how well they capture human behavior on complex cognitive tasks. Recent reports suggest that DNNs can explain significant variance in one such task, judging object similarity. Here, we extend these findings by replicating them for a rich set of object images, comparing performance across layers within two DNNs of different depths, and examining how the DNNs’ performance compares to that of non-computational “conceptual” models. Human observers performed similarity judgments for a set of 92 images of real-world objects. Representations of the same images were obtained in each of the layers of two DNNs of different depths (8-layer AlexNet and 16-layer VGG-16). To create conceptual models, other human observers generated visual-feature labels (e.g., “eye”) and category labels (e.g., “animal”) for the same image set. Feature labels were divided into parts, colors, textures and contours, while category labels were divided into subordinate, basic, and superordinate categories. We fitted models derived from the features, categories, and from each layer of each DNN to the similarity judgments, using representational similarity analysis to evaluate model performance. In both DNNs, similarity within the last layer explains most of the explainable variance in human similarity judgments. The last layer outperforms almost all feature-based models. Late and mid-level layers outperform some but not all feature-based models. Importantly, categorical models predict similarity judgments significantly better than any DNN layer. Our results provide further evidence for commonalities between DNNs and brain representations. Models derived from visual features other than object parts perform relatively poorly, perhaps because DNNs more comprehensively capture the colors, textures and contours which matter to human object perception. However, categorical models outperform DNNs, suggesting that further work may be needed to bring high-level semantic representations in DNNs closer to those extracted by humans. Modern DNNs explain similarity judgments remarkably well considering they were not trained on this task, and are promising models for many aspects of human cognition. PMID:29062291

  17. Visual Saliency Detection Based on Multiscale Deep CNN Features.

    PubMed

    Guanbin Li; Yizhou Yu

    2016-11-01

    Visual saliency is a fundamental problem in both cognitive and computational sciences, including computer vision. In this paper, we discover that a high-quality visual saliency model can be learned from multiscale features extracted using deep convolutional neural networks (CNNs), which have had many successes in visual recognition tasks. For learning such saliency models, we introduce a neural network architecture, which has fully connected layers on top of CNNs responsible for feature extraction at three different scales. The penultimate layer of our neural network has been confirmed to be a discriminative high-level feature vector for saliency detection, which we call deep contrast feature. To generate a more robust feature, we integrate handcrafted low-level features with our deep contrast feature. To promote further research and evaluation of visual saliency models, we also construct a new large database of 4447 challenging images and their pixelwise saliency annotations. Experimental results demonstrate that our proposed method is capable of achieving the state-of-the-art performance on all public benchmarks, improving the F-measure by 6.12% and 10%, respectively, on the DUT-OMRON data set and our new data set (HKU-IS), and lowering the mean absolute error by 9% and 35.3%, respectively, on these two data sets.

  18. Digital data sets that describe aquifer characteristics of the Rush Springs Aquifer in western Oklahoma

    USGS Publications Warehouse

    Runkle, D.L.; Becker, M.F.; Rea, Alan

    1997-01-01

    This diskette contains digitized aquifer boundaries and maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the Rush Spring aquifer in western Oklahoma. This area encompasses all or part of Blaine, Caddo, Canadian, Comanche, Custer, Dewey, Grady, Stephens, and Washita Counties. These digital data sets were developed by Mark F. Becker to use as input into a computer model that simulated ground-water flow in the Rush Springs aquifer (Mark F. Becker, U.S. Geological Survey, written commun., 1997). For the purposes of modeling the ground-water flow in the Rush Springs aquifer, Mark F. Becker (written commun., 1997) defined the Rush Springs aquifer to include the Rush Springs Formation, alluvial and terrace deposits along major streams, and parts of the Marlow Formations, particularly in the eastern part of the aquifer boundary area. The Permian-age Rush Springs Formation consists of highly cross-bedded sandstone with some interbedded dolomite and gypsum. The Rush Springs Formation is overlain by Quaternary-age alluvial and terrace deposits that consist of unconsolidated clay, silt, sand, and gravel. The Rush Springs Formation is underlain by the Permian-age Marlow Formation that consists of interbedded sandstones, siltstones, mudstones, gypsum-anhydrite, and dolomite beds (Mark F. Becker, written commun., 1997). The parts of the Marlow Formation that have high permeability and porosity are where the Marlow Formation is included as part of the Rush Springs aquifer. The Rush Springs aquifer underlies about 2,400 square miles of western Oklahoma and is an important source of water for irrigation, livestock, industrial, municipal, and domestic use. Irrigation wells are reported to have well yields greater than 1,000 gallons per minute (Mark F. Becker, written commun., 1997). Mark F. Becker created some of the aquifer boundaries, hydraulic conductivity, and recharge data sets by digitizing parts of previously published surficial geology maps. The hydraulic conductivity and recharge values are the input data to the ground-water flow model (Mark F. Becker, written commun., 1997). The water-level elevation data set was prepared at a scale of 1:250,000 by Mark F. Becker (written commun., 1997) from water levels measured in wells prior to the year 1950. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  19. Blood pressure long term regulation: A neural network model of the set point development

    PubMed Central

    2011-01-01

    Background The notion of the nucleus tractus solitarius (NTS) as a comparator evaluating the error signal between its rostral neural structures (RNS) and the cardiovascular receptor afferents into it has been recently presented. From this perspective, stress can cause hypertension via set point changes, so offering an answer to an old question. Even though the local blood flow to tissues is influenced by circulating vasoactive hormones and also by local factors, there is yet significant sympathetic control. It is well established that the state of maturation of sympathetic innervation of blood vessels at birth varies across animal species and it takes place mostly during the postnatal period. During ontogeny, chemoreceptors are functional; they discharge when the partial pressures of oxygen and carbon dioxide in the arterial blood are not normal. Methods The model is a simple biological plausible adaptative neural network to simulate the development of the sympathetic nervous control. It is hypothesized that during ontogeny, from the RNS afferents to the NTS, the optimal level of each sympathetic efferent discharge is learned through the chemoreceptors' feedback. Its mean discharge leads to normal oxygen and carbon dioxide levels in each tissue. Thus, the sympathetic efferent discharge sets at the optimal level if, despite maximal drift, the local blood flow is compensated for by autoregulation. Such optimal level produces minimum chemoreceptor output, which must be maintained by the nervous system. Since blood flow is controlled by arterial blood pressure, the long-term mean level is stabilized to regulate oxygen and carbon dioxide levels. After development, the cardiopulmonary reflexes play an important role in controlling efferent sympathetic nerve activity to the kidneys and modulating sodium and water excretion. Results Starting from fixed RNS afferents to the NTS and random synaptic weight values, the sympathetic efferents converged to the optimal values. When learning was completed, the output from the chemoreceptors became zero because the sympathetic efferents led to normal partial pressures of oxygen and carbon dioxide. Conclusions We introduce here a simple simulating computational theory to study, from a neurophysiologic point of view, the sympathetic development of cardiovascular regulation due to feedback signals sent off by cardiovascular receptors. The model simulates, too, how the NTS, as emergent property, acts as a comparator and how its rostral afferents behave as set point. PMID:21693057

  20. Predicting outcome in severe traumatic brain injury using a simple prognostic model.

    PubMed

    Sobuwa, Simpiwe; Hartzenberg, Henry Benjamin; Geduld, Heike; Uys, Corrie

    2014-06-17

    Several studies have made it possible to predict outcome in severe traumatic brain injury (TBI) making it beneficial as an aid for clinical decision-making in the emergency setting. However, reliable predictive models are lacking for resource-limited prehospital settings such as those in developing countries like South Africa. To develop a simple predictive model for severe TBI using clinical variables in a South African prehospital setting. All consecutive patients admitted at two level-one centres in Cape Town, South Africa, for severe TBI were included. A binary logistic regression model was used, which included three predictor variables: oxygen saturation (SpO₂), Glasgow Coma Scale (GCS) and pupil reactivity. The Glasgow Outcome Scale was used to assess outcome on hospital discharge. A total of 74.4% of the outcomes were correctly predicted by the logistic regression model. The model demonstrated SpO₂ (p=0.019), GCS (p=0.001) and pupil reactivity (p=0.002) as independently significant predictors of outcome in severe TBI. Odds ratios of a good outcome were 3.148 (SpO₂ ≥ 90%), 5.108 (GCS 6 - 8) and 4.405 (pupils bilaterally reactive). This model is potentially useful for effective predictions of outcome in severe TBI.

Top